
MARITIME TRAFFIC ANOMALY DETECTION FROM AIS
SATELLITE DATA IN NEAR PORT REGIONS

by

Bo Liu

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2015

c© Copyright by Bo Liu, 2015

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . viii

List of Abbreviation and Symbols Used ix

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Aim and Objectives . 3

1.2 Research Methodology . 3

1.3 Scientific Contribution . 6

1.4 Publications . 6

1.5 Thesis Outline . 7

Chapter 2 Related Work . 9

2.1 Trajectory Clustering And Maritime Traffic Clustering 9

2.2 Anomaly Detection in Maritime Surveillance 15

Chapter 3 Normal Traffic Patterns Extraction Model 19

3.1 Representing Trajectory Data . 20

3.2 Normal Moving Trajectories Extraction 21

3.2.1 Density-Based Spatial Clustering of Applications with Noise
considering Speed and Direction 21

3.2.2 Gravity Vector . 28

3.3 Normal Stopping Areas Extraction 31

Chapter 4 Anomaly Detection . 36

4.1 Three Division Distances . 36

4.2 Anomaly Detection Model . 39

ii

Chapter 5 Evaluation . 43

5.1 Normal Traffic Patterns Extraction Model 43
5.1.1 Juan de Fuca Strait . 44
5.1.2 Los Angeles Long Beach . 45

5.2 Anomaly Detection Model . 47
5.2.1 Experiment On Unlabeled Data Set 49
5.2.2 Experiment On Labeled Data Set 53

Chapter 6 Conclusion . 59

6.1 Future Work . 60

Bibliography . 64

Appendix A Source Code of the Algorithms 70

A.1 Source Code of Normal Traffic Patterns Extraction Model 70
A.1.1 Code of Clustering Process . 71
A.1.2 GVs Calculation . 75
A.1.3 SSPs Calculation . 80

A.2 Source Code of Anomaly Detection Model 82

iii

List of Tables

Table 5.1 Quartile statistics of the three division distances 52

Table 5.2 Labels and descriptions by the expert 56

Table 5.3 Confusion Matrix I . 58

Table 5.4 Confusion Matrix II . 58

iv

List of Figures

Figure 1.1 The framework for Maritime Anomaly Detection. This can be
roughly regarded as a two-step procedure. First, the normal
traffic extraction model extracts the normal traffic patterns
from the historical AIS data repository. Then the extracted
Gravity Vectors (GVs) and Sampled Stopping Points (SSPs)
are employed by the anomaly detection model to decide the
abnormality of the new given trajectory. 4

Figure 3.1 Three defined relations for the density-based clustering algorithm. 24

Figure 3.2 Calculate Gravity Vectors (GV) for one moving cluster. Blue
arrows stand for the trajectory points of the cluster, red arrows
are the final Gravity Vectors. The length (L) of the GV is the
SOGavg of the GV. The width of a grid g is the pre-defined
length for partitioning the points. 29

Figure 3.3 Border Values of a stopping cluster 32

Figure 3.4 An example of a stopping area where simple random sampling
cannot work. There are three regions (A,B and C) with higher
density than the whole area’s average density. 34

Figure 4.1 Two Abnormal Cases after considering COG and SOG 38

Figure 4.2 One case that the simple combination of the two division dis-
tances cannot work. There are two moving clusters in one spe-
cific area and the two clusters are with two different average
COGs. 39

Figure 4.3 The maximum CDD distribution in the area of Juan de Fuca
Strait. 41

Figure 4.4 The Cumulative Distribution Function of the maximum CDD
in the area of Juan de Fuca Strait. 41

Figure 5.1 Juan de Fuca Strait and its approaches (west) [25] 44

Figure 5.2 The clustering results of JUAN DE FUCA STRAIT area. Points
in blue color are the noise. Other different colors stand for dif-
ferent clusters. The cluster in dark green is a stopping cluster. 45

Figure 5.3 The Gravity Vectors and Sampled Stopping Points extracted
from the clusters in Juan de Fuca Strait area. 46

v

Figure 5.4 Map of Los Angeles Long Beach and the navigation rules de-
fined [25] . 46

Figure 5.5 Extract Stopping Sampling Points (SSP) from stopping clus-
ters in Los Angeles Port Area. The stopping clusters are first
extracted using DBSCAN [15] algorithm shown in (a) and dif-
ferent colors stand for different clusters. Then Algorithm 2 is
used for getting the SSPs (shown in figures (b) and (c)) 48

Figure 5.6 The clustering results of Los Angeles Long Beach area. This
only shows the moving points(in blue) and the corresponding
moving clusters (in different colors). 49

Figure 5.7 The Gravity Vectors and Sampled Stopping Points extracted
from the clusters in Los Angeles Long Beach area. 50

Figure 5.8 The Gravity Vectors (open circles) and Sampled Stopping Points
(filled circles) extracted from the clusters in JUAN DE FUCA
STRAIT area. 51

Figure 5.9 The anomaly labeling results of the trajectory data points in
JUAN DE FUCA STRAIT area. GVs and SSPs are in red and
the normal points are in green. The two types of abnormal
points are in blue (abnormal in relation to ADD or RDD) and
purple (abnormal in relation to CDD). 52

Figure 5.10 First example of the abnormal trajectories detected by our
framework. GVs and SSPs are in red and the normal points
are in green. The two types of abnormal points are in blue (ab-
normal in relation to ADD or RDD) and purple (abnormal in
relation to CDD). 53

Figure 5.11 Second example of the abnormal trajectories detected by our
framework. GVs and SSPs are in red and the normal points
are in green. The two types of abnormal points are in blue
(abnormal in relation to ADD or RDD) and purple (abnormal
in relation to CDD). 54

Figure 5.12 Third example of the abnormal trajectories detected by our
framework. GVs and SSPs are in red and the normal points
are in green. The two types of abnormal points are in blue
(abnormal in relation to ADD or RDD) and purple (abnormal
in relation to CDD). 54

Figure 5.13 Fourth example of the abnormal trajectories detected by our
framework. GVs and SSPs are in red and the normal points
are in green. The two types of abnormal points are in blue
(abnormal in relation to ADD or RDD) and purple (abnormal
in relation to CDD). 55

vi

Figure 5.14 Fifth example of the abnormal trajectories detected by our
framework. GVs and SSPs are in red and the normal points
are in green. The two types of abnormal points are in blue (ab-
normal in relation to ADD or RDD) and purple (abnormal in
relation to CDD). 55

Figure 5.15 Sixth example of the abnormal trajectories detected by our
framework. GVs and SSPs are in red and the normal points
are in green. The two types of abnormal points are in blue (ab-
normal in relation to ADD or RDD) and purple (abnormal in
relation to CDD). 56

Figure 6.1 One situation that our algorithm cannot detect the anoma-
lies. Two normal lanes (Lane A and Lane B) detected by DB-
SCANSD are in red and purple. A new anomaly trajectory C
is in blue. 62

vii

Abstract

Maritime traffic monitoring is an important aspect of safety and security in close-

to-port operations. While there is a large amount of data with variable quality,

decision makers need reliable information about possible situations or threats. In

this thesis, we propose a two-component maritime traffic anomaly detection model.

First, it extracts normal ship trajectory patterns using, besides ship tracing data,

the publicly available IMO Rules. The main result of clustering is a set of generated

lanes that can be mapped to those defined in the IMO directives. Then, we show how

the second anomaly detection component detects anomalous navigational behaviors

based on three specialized division distances with the clusters. It decides for each

point if the vessel is anomalous, considering longitude, latitude, direction and speed.

This point-based approach is applicable for real-time AIS (Automatic Identification

System) surveillance; it is also feasible for analysts to set their own threshold for

labeling whole trajectories.

viii

List of Abbreviation and Symbols Used

Nε(p) Eps-neighborhood of a point p

ADD Absolute Division Distance

AIS Automaitc Identification System

CDD Cosine Division Distance

COG Course Over Ground

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DBSCANSD Density-Based Spatial Clustering of Applications with Noise con-

sidering Speed and Direction

EM Expectation Maximization

GPS Global Positioning System

GV Gravity Vector

IMO Iternational Maritime Organization

MMSI Maritime Mobile Service Identity

RDD Relative Division Distance

SOG Speed Over Ground

SSP Sampled Stopping Point

TSS Traffic Separation Scheme Boundaries

UTC Coordinated Universal Time

ix

Acknowledgements

I would like to first express my deepest appreciation to my supervisor, Dr.Stan

Matwin, for his support, guidance, encouragement and patience throughout my mas-

ter program. His valuable suggestions and directions helped to improve the quality

of this thesis. He also provides me with precious opportunities to work with multiple

projects which can help me open my view.

Besides my supervisor, I would like to thank the rest of my thesis committee:

Prof.Raza Abidi, Prof.Ronald Pelot and Prof.Dirk Arnold for their encouragement,

insightful comments, and hard questions.

My sincere thanks also goes to Dr.Erico N.de Souza, my project leader. His advices

and ideas guided me work on the right paths of the projects. He has also spent a lot

time reviewing my papers and this thesis, which is a great help to me.

My parents, Baolong and Changling, who have always been supporting me and

have never said no to my any decisions. Without them, this thesis cannot be finished.

I would also like to extend my gratefulness to all my friends and labmates in

the Big Data Institute: Dr.Rob Warren, Dr.Xiaoguang Wang, Ahmad, Behrouz, Di-

ana, Habibeh, Xuan, Eman, Baifan, David, Lulu and Vineeth for the stimulating

discussions and for all the fun we have had in the past two years.

Last but not least, I would like to acknowledge the generous support of GSTS,

Inc., ExactEarth, Inc., Marine Environmental, Observation, Prediction And Response

Network (MEOPAR), and the Natural Science and Engineering Research Council of

Canada (NSERC).

x

Chapter 1

Introduction

Today maritime transportation represents 90% of international trade volume [59]

and there are more than 50,000 vessels sailing the ocean every day [32]. So the

challenges related to safety and security aspects in the maritime domain are of high

priority. Modeling ship behavior helps improve security for authorities and one crucial

task of maritime surveillance is abnormal vessel behaviours detection. Anomalies in

the maritime domain, such as unexpected stops, deviations from regulated routes,

inconsistent speed or direction etc., may be related to risks like collisions1, grounding2,

sea drunkenness3, smuggling, piracy4, etc. To address the issue, different data sources

such as data from Automatic Identification System (AIS), synthetic aperture radar,

high frequency surface wave radars, infra-red sensors, videos and intelligent reports

[27] are used by the maritime authorities. Data generated by AIS are utilized in this

thesis.

Automatic Identification System (AIS) is an automatic tracking system to identify

and locate vessels by exchanging data with other nearby ships, AIS base stations and

satellites. The use of this system has been required by the International Maritime

Organization (IMO) since 2004 to enhance safety and efficiency of navigation and

improve situational awareness and assessment [21]. IMO was established in Geneva in

1948 with an initial name of Inter-Governmental Maritime Consultative Organization

(IMCO). Then in 1982, it was changed to the International Maritime Organization 5.

The IMO’s headquarter is in London, United Kingdom and it is a specialised agency

of the United Nations with 171 Member States and three Associate Members. IMO

is the global standard-setting authority for the safety, security and environmental

1http://gcaptain.com/tag/ship-collision/
2http://www.wisegeek.com/what-is-ship-grounding.htm
3http://www.theglobeandmail.com/news/national/canadian-navy-officer-charged-with-

drunkenness-disobeying-orders/article23023966/
4http://www.maritime-executive.com/article/pirates-attack-two-vessels-in-asia
5https://en.wikipedia.org/wiki/International Maritime Organization

1

2

performance of international shipping 6. According to the regulations defined by

IMO, all ships of 300 gross tonnage and upwards engaged on international voyages and

cargo ships of 500 gross tonnage and upwards not engaged on international voyages

and passenger ships irrespective of size shall be fitted with an automatic identification

system and over 400,000 ships worldwide have installed these transponders [6].

AIS messages are automatically broadcasted with a reporting frequency directly

proportional to the speed of the vessel [46]. The data can certainly be viewed as big

data: a stream of some 80 million messages are generated per day. Two categories

of data (static and dynamic information) are transmitted by the AIS transponders.

Static information, which must be programmed into the AIS transceiver, includes

IMO number, Maritime Mobile Service Identity (MMSI) number, vessel call sign,

vessel type, vessel dimensions (length and beam). The dynamic information, which

needs to be updated automatically, includes the ship’s location (Longitude and Lat-

itude), Course Over Ground (COG), Speed Over Ground (SOG), heading, Rate of

Turn (ROT), time in UTC (Coordinated Universal Time), navigational status etc [2].

In this thesis, both static and dynamic information is used to tackle the maritime

anomaly detection task.

IMO also controls the navigational lanes that vessels must use when approaching

some ports around the world. Specifically, the rules which regulate the general direc-

tions in the specific regions for the vessels to navigate are called Traffic Separation

Schemes (TSS) [1]. The regulations to establish TSSs mandatory were first proposed

by IMO’s Maritime Safety Committee meeting in March 1971 and this recommenda-

tion was adopted by the IMO later the same year. The first corresponding mandatory

traffic scheme is the Dover Straits scheme.7 These navigational lanes are definitely

good resources for maritime surveillance analysis, but unfortunately, current tools do

not offer automatic ways to check whether the vessels are obeying these lanes.

Only checking if the ships are obeying the lanes cannot satisfy the demand of

maritime surveillance. TSS regulates the normal geographical lanes for ships to sail,

but it does not provide exact speed regulations in specific regions. More specifically,

there are no rules to determine the maximum or minimum speed of a particular type

of vessels to sail in a given area. Although there are some rules defined by particular

6http://www.imo.org/en/About/Pages/Default.aspx
7http://www.imo.org/OurWork/Safety/Navigation/Pages/ShipsRouteing.aspx

3

ports authorities to restrict the vessels’ speed, it is still necessary to apply some

methods to extract specific speed information from the real-life dataset. Fortunately,

one dynamic type of information, SOG (Speed Over Ground), is included in AIS

messages and approaches that are able to utilize this historical speed information for

anomaly detection are desirable.

1.1 Aim and Objectives

Based on the above introduction to the background of maritime traffic anomaly de-

tection, the overall research aim of this thesis can be stated as: Review and analyse

existing anomaly detection algorithms for trajectory data, and propose new or modified

approaches that are well-suited for the task.

In order to address the aim, the following objectives are identified:

1). Investigate and survey the related approaches proposed for anomaly

detection in trajectory data.

2). Propose new algorithms fused with IMO rules to tackle anomaly de-

tection task in the maritime domain.

3). Demonstrate the effectiveness of the proposed algorithms on real world

AIS data sets.

1.2 Research Methodology

To address the aim and objectives stated in Section 1.1, we propose a clustering-based

maritime traffic anomaly detection framework. An overview of the entire framework

is shown in Figure 1.1. The approach includes two components: the normal traffic

patterns extraction model and the anomaly detection model. As can been seen from

Figure 1.1, historical AIS data is first sent to the normal patterns extraction model

which generates, as output, a set of Gravity Vectors (GV) and Sampled Stopping

Points (SSP) via its two sub-components (Normal Moving Trajectories Extraction

component and Normal Stopping Areas Extraction component). Afterwards, when

new ship trajectory data is to be judged, the next phase model will be applied based

on the normal traffic patterns results to decide the new data’s abnormality.

5

Direction) as the basic algorithm to detect the main traffic lanes within the data.

DBSCANSD is based on DBSCAN (Density-Based Spatial Clustering of Applications

with Noise) [15] algorithm, modified to consider that for each point of a cluster, the

neighborhood of a given radius has to contain at least a minimum number of points

with similar SOGs (Speed Over Ground) and COGs (Course Over Ground). The

experiments demonstrate that the clusters can reflect normal patterns of the vessels.

However, it is not feasible to employ all the points of the clusters to decide the new

arriving trajectory data’s abnormality. As a result, a representation called Gravity

Vector (GV) is proposed. A GV is a vector composed of 5 features: average COG,

average SOG, average Latitude, average Longitude and Median Distance. The Median

Distance of the GV is the median of the distances between all the trajectory points

and the GV in the cell. The Median Distance is to measure the width of navigational

lanes. Thus, the output of the moving pattern extraction model can be a set of GVs

which carries information about speed, direction, location and even the relative width

of the lanes. More details about the process can be found in Section 3.2.

For the case where the SOG is less than 0.5 knots (stop areas), the original DB-

SCAN algorithm [15] is executed because speed (SOG) and direction (COG) are not

important factors. Another type of vector is created as output, called Sampled Stop-

ping Point (SSP), which is dependent only on the geographic shape of the region.

The experiments show that a small number of SSPs can represent a stopping area

well in terms of the shape of the area. More details about the process can be found

in Section 3.3.

Once the normal patterns are extracted from the historical AIS data, the second

phase is the anomaly detection model (presented in Chapter 4), can be applied for

the new arriving data. In this process, three specialized distances including Absolute

Division Distance (ADD), Relative Division Distance (RDD) and Cosine Division

Distance (CDD) are proposed to decide the abnormality of one specific data point.

Specifically, ADD is employed in the stopping points abnormality detection phase

while RDD and CDD are used for the moving part. Furthermore, one anomaly

detection algorithm using the three specialized division distances is proposed in Sec-

tion 4.2. Although the approach is point-based, which is applicable for real-time

AIS surveillance, it is also flexible enough for analysts to set their own threshold for

6

labeling whole trajectories.

1.3 Scientific Contribution

This thesis is based on previously published work by the author. The published work

has also been updated and extended with new theoretical and empirical results in

this thesis. The main contributions of this thesis are listed as following:

• Proposal of the algorithm of DBSCANSD (Density-Based Spatial Clus-

tering of Applications with Noise considering Speed and Direction), a

novel point-based trajectory clustering algorithm which is applicable for

various domains.

• Proposal of a normal maritime traffic extraction model based on stops−

and−moves approach [53].

• Proposal of a normal maritime traffic extraction model associating with

the IMO rules.

• Proposal of two methods to represent the results of clustering, which are

the Gravity Vector (GV) for moving clusters and the Sampled Stopping

Point (SSP) for stopping clusters.

• Proposal of three specialized division distances measures for maritime

anomaly detection.

• Implementation of the proposed maritime anomaly detection framework.

• Evaluation of the proposed maritime anomaly detection framework’s

effectiveness using both visualization and quantitative approaches.

1.4 Publications

In this section, the publications published during the author’s master study are listed.

The first two publications are highly relevant to the thesis while the other two are

less relevant to the thesis. Publication 2) first introduces the normal traffic extraction

model and has been extended with more detailed explanation in Chapter 3. The

anomaly detection model proposed in Chapter 4 is extended from the Publication 1).

7

1) Bo Liu, Erico N.de Souza, Casey Hilliard and Stan Matwin, Ship Movement

Anomaly Detection Using Specialized Distance Measures, IEEE Interna-

tional Conference on Information Fusion (FUSION 2015), 6-9 July 2015, Wash-

ington, DC, USA. (to appear)

2) Bo Liu, Erico N.de Souza, Stan Matwin and Marcin Sydow, Knowledge-based

Clustering of Ship Trajectories Using Density-based Approach, Proceed-

ings of IEEE International Conference on Big Data (IEEE BigData 2014), 27-30

October 2014, Washington, DC, USA. pp. 603-608.

3) Xiaoguang Wang, Xuan Liu, Bo Liu, Stan Matwin and Erico N.de Souza, Vessel

Route Anomaly Detection with Hadoop MapReduce, Proceedings of IEEE

International Conference on Big Data (IEEE BigData 2014), 27-30 October 2014,

Washington, DC, USA. pp. 25-30.

4) Robert Warren and Bo Liu, Language, Cultural Influences and Intelligence

in Historical Gazetteers of the Great War, Proceedings of IEEE Interna-

tional Conference on Big Data (IEEE BigData 2014), 27-30 October 2014, Wash-

ington, DC, USA. pp. 70-72.

1.5 Thesis Outline

The remainder of the dissertation is organized as follows. Chapter 2 presents the

related work. It is divided into two parts. The first part (Section 2.1) is about

trajectory clustering in general and ship trajectory clustering in the maritime domain

in particular. Section 2.2 is an overview and survey on anomaly detection techniques

used for maritime security.

We present our clustering-based maritime anomaly detection framework in Chap-

ter 3 and Chapter 4. In Chapter 3, we propose our maritime traffic patterns extraction

model (Section 3.2 and Section 3.3) after giving the definition of a trajectory in the

maritime domain (Section 3.1). As we treat the ship trajectories as two different

types based on a speed threshold, moving and stopping, which are explained in more

details, Section 3.2 and Section 3.3 propose the normal moving patterns extraction

8

model and normal stopping areas extraction model, respectively. Two different rep-

resentative methods, Gravity Vector (GV) and Sampled Stopping Point (SSP) that

represent the moving clustering results and stopping clustering results, are introduced

accordingly in the two sections. Chapter 4 presents the anomaly detection model. As

our method is a distance-based model, three division distances are first presented in

Section 4.1 and then our abnormal detection algorithm is introduced in Section 4.2.

To evaluate the effectiveness of our framework, experiments are done in Chapter 5.

First, in Section 5.1, to evaluate the normal traffic patterns extraction model, regions

of Juan de Fuca Strait and Los Angeles Long Beach are selected and the results

are presented in Section 5.1.1 and Section 5.1.2. Then in Section 5.2, we conducted

another two experiments in the same region of Juan de Fuca Strait. The first one

is conducted with the non-labeled data while the second one is done after labelling

the data. The results of the first experiment (Section 5.2.1) are shown visually and

the second experiment (Section 5.2.2) compares our model’s results with the labels

by the expert.

Finally, in Chapter 6 we conclude with a summary and discuss our method’s

limitations and the potential directions for future work.

Chapter 2

Related Work

The problem examined in this thesis can be roughly described as maritime data

anomaly detection, a rather specific task. But the increasing demand for detecting

and identifying anomalous events from maritime traffic data keeps attracting more

and more researchers’ attention.

The approach proposed in this thesis is an unsupervised model based on clustering,

so in this chapter, a survey on trajectory clustering and other normal traffic extraction

techniques are first given in Section 2.1. Since maritime anomaly detection can be

considered as a specific type of anomaly detection tasks in maritime domain, we

survey previous work in anomaly detection in Section 2.2 and also introduce some

representative work done in the maritime domain.

2.1 Trajectory Clustering And Maritime Traffic Clustering

As stated in the previous chapter, our maritime anomaly detection framework is a

clustering-based approach, so in this section, we first introduce the problem of trajec-

tory clustering and then provide a survey of various algorithms for solving it. Mean-

while, discussions on the works’ limitations for maritime traffic anomaly detection are

also conducted while introducing different techniques.

The use of satellites and tracking facilities, such as GPS (Global Positioning Sys-

tem), AIS (Automatic Identification System) and RFID (Radio Frequency Identifi-

cation Devices) has increased over the past decades, which leads to an increasing

number of tracking applications [19]. The data spread over various domains and

examples include vehicle position data [18], airplane tracking data [19], ships or ves-

sels tracking data [42][41][59][40][47] and even hurricane or animal movement data

[33][17]. One crucial task of the applications is trajectory clustering, which is the

process to discover the motion patterns from the tracking data. Exploring different

trajectory clustering techniques to extract clusters can help analysts to gain better

9

10

insights from the data.

Before investigating different clustering algorithms for trajectories, one point needs

to be mentioned. Since the goal of trajectory clustering is to find normal paths by

grouping similar trajectories together [32], there are lots of works aiming to find

proper measures of similarity between trajectories, such as Euclidean distance [18],

DTW (Dynamic Time Warping) [28] and LCSS (Longest Common Subsequence) [61].

A comparison between various similarity methods is conducted in [65] and majority of

these measures are alignment based distances, which are not appropriate for the ship

trajectory extraction task due to the sparseness of the AIS data. So in this thesis, we

focus more on other clustering-based techniques to address the task.

According to [20], clustering is the process of grouping a set of physical or ab-

stract objects into classes of similar objects and the proposed clustering algorithms

are usually categorized into four types: partitioning methods (e.g., K-Means [48] and

K-Medoids [26]), hierarchical methods like BIRCH (Balanced Iterative Reducing and

Clustering using Hierarchies) [64], density-based methods including DBSCAN [15],

OPTICS (Ordering Points To Identify the Clustering Structure) [5] and DENCLUE

(DENsity-based CLUstEring) [23]), and grid-based methods such as STING (STa-

tistical INformation Grid-based method) [62] and CLIQUE (CLustering In QUEst)

[63]). Among various types of clustering approaches, density-based clustering algo-

rithms can be most suitable for this work because they can find arbitrary shapes of

clusters. In the following paragraph, one representative approach is introduced and

the reasons why this type of algorithm is suitable is discussed as well.

DBSCAN (Density-based spatial clustering of applications with noise) proposed

by Martin et al. [15] in 1996 is one of the fundamental density-based clustering tech-

niques. The key idea of this clustering algorithm is that for each point of a cluster the

neighborhood of a given radius has to contain at least a minimum number of points.

So the algorithm requires two additional parameters, eps andminPts, as input, where

the eps is the radius and minPts is the minimum number of points required to form

a dense region. After applying DBSCAN on a set of points, the points are classified

as core points, border points and noise points. Here both core points and border

points form clusters while the noise points are filtered out. Compared to other types

of clustering algorithm, DBSCAN has two main advantages which make it well-suited

11

for the maritime trajectory clustering task. Firstly, the algorithm can provide good

results in many cases since it is able to discover clusters of arbitrary shapes and it is

robust to detect outliers [20]. Secondly, unlike K-Means [48], users are not required

to provide the number of expected clusters before running the algorithm. However,

one crucial limitation is that the original DBSCAN algorithm can only take into ac-

count location data (Longitude and Latitude), which cannot satisfy the requirement

of performing this anomaly detection in the maritime domain. Therefore, as part of

our work, we extend DBSCAN to adopt other attributes, such as speed and direction,

to find normal traffic patterns from the moving trajectory dataset.

To handle specific issues of tracking data, researchers propose various approaches

which extend the original DBSCAN in different ways. One method called DB-SMoT

(Direction Based Stops and Moves of Trajectories) [47] is a clustering method based on

the direction change in a minimal amount of time. For example, if there is a sequence

of points with enough direction variance but the duration between the last point

and the first point is less than the minimal time threshold, the sequence will not be

considered as a final cluster. The main purpose of the algorithm is to find interesting

places using single fishing ship trajectory data. The methodology introduced by the

authors is simply using DBSCAN to cluster all the data points with a bigger direction

variation than the pre-defined threshold. This algorithm is helpful in this specific

scenario but cannot be fit for anomaly detection in consideration of the significance

of the speed. Different from DB-SMoT, another work done by Palma et al. [42]

called CB-SMoT (Clustering-Based Stops and Moves of Trajectories) takes speed

into account. However, due to the goal of the paper which is also to find interesting

places, the method only uses speed as a threshold and then conducts clustering work

on the low-speed data set. In this case, the idea of CB-SMoT can be adopted for

extracting stopping areas from AIS data. In Section 3.3, we present our approach

to cluster and represent the stopping areas in the sea. However, CB-SMoT cannot

be applied to extract different clusters with various normal speeds from navigational

data set.

One partition-and-group framework, TRACLUS (TRAjectory CLUStering) [33],

also uses density-based clustering to detect general lanes. TRACLUS is proposed by

Lee et al. [33] and is one of the main references in the field of trajectory clustering.

12

The algorithm is trajectory-based. It tries to solve the clustering problem from the

view of line segments of given whole trajectories. The general procedure of TRA-

CLUS is to first partition each trajectory into line segments and then group close line

segments into one particular cluster. The reason why they partition the whole track

into short sub-segments before the clustering process is that clustering trajectories as

a whole could lose similar portions of the trajectories [33]. Lastly, a representative

trajectory is computed for each cluster. One limitation of this strategy is that it can-

not consider the speed, which is very important to maritime traffic tasks. Another

problem in the adaptation of this algorithm to our task is that TRACLUS is sensitive

to the parameters (eps and MinLns). Although the paper provides an optimal esti-

mation algorithm for thresholds, the experiments conducted in [33] demonstrate that

the generated pair of parameters are not guaranteed to be optimal. When we tried

to employ the algorithm for extracting normal ship trajectories, a satisfactory result

could not be obtained even after a large number of trials. Fortunately, compared to

TRACLUS, our model is less sensitive to the parameters as long as the analysts have

some knowledge of the maritime domain.

One popular scenario of applying trajectory clustering techniques is video surveil-

lance and monitoring systems. After distinguishing the foreground objects from the

background [55] and identifying the positions of the moving objects (e.g. cars, pedes-

trians, etc.) in the foreground image, trajectory clustering approaches can be applied

to group similar trajectories of the moving objects. In the work done by Paciarelli

et al. [44][52], a dynamic model is presented to group similar trajectories into clus-

ters. The model is essentially maintaining a forest of trees to represent the normal

patterns. The prefix of one particular node, from the root node to the current node,

stands for a specific normal path formed by all the clusters in the branch (including

the root and the node itself). When a new trajectory is fed into the system, a prefix

matching will be conducted and the best matching cluster will adopt the new arriving

trajectory to update its properties, including physical coordinates and variances of the

trajectory points inside the cluster. One issue of the approach is that a large number

of trees need to be stored, because different trajectories may have different starting

points and each start point needs a corresponding root node. Another limitation is

that the prefix matching phase requires complete trajectories to be observed, which

13

is infeasible in maritime traffic tracking. It is common to have gaps in the AIS data

stream and the gaps can vary from milliseconds to days. In addition to the above

two problems, similar to TRACLUS [33], it cannot take speed into account, which is

a fundamental issue in coastal surveillance. Currently in this thesis, the point-based

approach is proposed to address the issue of the inconsistently updated trajectory

data and no concern about prefix matching exists.

Inspired by the work done by Paciarelli et al. [44][52], Guillarme et al. propose

a trajectory-based “unsupervised normalcy model” [32] for S-AIS data. This work is

also based on stop and move framework [53] and applies corresponding strategies on

moving trajectories and stopping areas. Similar to TRACLUS [33], this technique is

also a partition-and-group framework, which first partitions the historical trajectories

into sub-segments. To extract normal patterns from moving trajectories, the authors

introduce a technique based on the OPTICS algorithm [5]. OPTICS has the advan-

tage of handling situations where clusters exist at different density levels, but it needs

more experts’ input knowledge for selecting relevant clusters from different clusters

levels, which is more complicated than our non-hierarchical clustering approach. So

this is less feasible for applying the algorithm in a large area with complicated traffic

routes. Then for stopping areas extraction, the authors present a representation to

estimate the locations and the spatial extent of a stopping area. This method is simi-

lar to their solution used for moving trajectories, that is, it tries to use one particular

node to represent an arbitrary shape of region. This will cause a bias while it comes

to coastal stopping areas since the areas might not be in circle shapes. Fortunately,

the Sampled Stopping Points proposed in this work can represent arbitrary shapes of

regions well.

Ferreira et al. [17] propose a strategy called VFKM (Vector Field K-Means) based

on vector field fitting. The idea behind their method is to induce a similarity notion

on the data set by using streamlines of a single vector field. Two main elements of this

algorithm are fitting the vector fields and assignment of trajectories to clusters [17].

Since the approach assigns the trajectories to the vector fields, it is also a trajectory-

based method. VFKM is an iterative model similar to original K-Means [48] and

two main steps are involved in each iteration. First, the trajectories are partitioned

randomly into K clusters (similar to the initialization of original K-Means). Then the

14

clusters are updated by assigning each trajectory to the vector field that it fits best.

These two steps are repeated iteratively until a convergence criterion is met. There

are several limitation related to the algorithm. Firstly, as mentioned by the authors

[17], the performance of the algorithm is sensitive to the choice of initial clusters.

Secondly, although this method can consider other features (e.g. direction and speed)

of the trajectory data, it cannot provide a representative trajectory. Instead, the

algorithm output is k representative vector fields which cannot be employed in our

case. Fortunately, in our thesis, the output of the maritime traffic extraction model

is two sets of representative vectors (Gravity Vectors and Sampled Stopping Points),

which is feasible for handling the anomaly detection problem.

One work which provides mechanisms to manage traffic in the ocean that is similar

to ours is an unsupervised framework called TREAD (Traffic Route Extraction and

Anomaly Detection), proposed by Pallotta et al. [41][59][40]. It is designed to detect

low likelihood behaviors and predict future vessel positions from maritime traffic data.

TREAD is a point-based framework and the traffic routes are built by the way-points

generated by the clustering process, that is, the route objects are directly formed

by the flow vectors of the vessels whose paths connect the derived way-points. The

assumption of using waypoints to build the traffic lanes is that the vessels’ trajecto-

ries are composed of a set of connected straight lines. Another similar methodology

proposed by Gariel et al. [19] is also a way-point-based clustering framework for han-

dling airspace monitoring. The objective of the method is to identify and group the

turning points into way-points and to use the sequence of way-points to represent the

aircraft’s trajectories. To get the way-points from the historical flight data, two tra-

ditional clustering algorithms are employed. When the spatial distribution is sparse,

K-MEANS [48] is used, and when the distribution is dense, DBSCAN [15] is used.

This point-based idea has a practical advantage of handling trajectories of unequal

length or with gaps, which is common due to the low satellite coverage of AIS around

the world. The main difference in relation to TREAD [41] relies on the fact that our

work tries to directly map the rules defined by IMO into real data available from AIS

readings.

Another main advantage of the clustering framework proposed in this thesis is that

in the clustering process the IMO rules, particular Traffic Separation Schemes, are

15

taken into account, which is not the case in previous works. Therefore, our approach

maps rules defined by IMO directly to the AIS data, and in that sense it is similar

to the Candide [4] system, which is a digital face reconstruction mask. Candide uses

a pre-defined digital face mask to be adjusted in a facial picture, and allows the

generation of new facial expressions without any extra information. From the rule

mapping perspective, this work does the same, with the difference that we use the

set of rules defined by IMO and check if vessels are following them.

2.2 Anomaly Detection in Maritime Surveillance

The objective of anomaly detection is to find patterns in data that do not conform to

expected behavior and these nonconforming patterns are often referred to as anoma-

lies or outliers [10]. Anomalies or outliers are related to, but distinct from, noise in

the data. As defined in [10], noise is some patterns or phenomena in data that are not

of interest to the analyst, but act as a hindrance to data analysis. Thus, activities on

handling these unwanted noise involve noise removal [57] and noise accommodation

[49]. But in anomaly detection tasks, the outliers or the anomalies are the patterns

which attract much attention from the analysts in various domains, such as fraud

detection for credit cards [54], insurance [60], or health care [35], intrusion detection

for cyber-security [34] and military surveillance for enemy activities [10]. In this the-

sis, our work focuses on detecting the anomaly navigational behaviors of the ships

or vessels. Since noise filtering process is not involved in the pre-processing step, the

noise caused by AIS devices’ issues might also be detected as part of the anomalies.

Maritime Anomaly Detection techniques primarily fall into two categories: sta-

tistical modelling [30][46][13] and predictive modelling [41][39][29]. The general idea

of statistical techniques for anomaly detection is to fit a statistical model for normal

behaviors with the given data set and then apply a statistical inference test to de-

termine if a previously unseen instance belongs to the model [10]. Approaches based

on predictive models usually predict future status information (e.g. position, speed

and course) of a particular vessel and then compare the real data with the prediction

to decide the abnormality. Additionally, there is another type of approach trying

to solve the problem based on predefined rules. One representative work was done

by Roy et al. [50][51] and an expert system for automated anomaly detection was

16

introduced. As we know, one limitation about these kind of systems is that they are

relying on the knowledge of predefined rules, as a result, much effort needs to be done

to categorize anomalies. In the papers [50][51], the authors identified a taxonomy of

kinematic and geo-spatial concepts in the vessels tracking domain and the taxonomy

has to be updated once a new rule is found. Since not much work focuses on rule-

based type of techniques, this survey of maritime anomaly detection is more about

the other two main categories.

In the maritime domain, the majority of statistical models are built upon the

momentary kinematic features (position, course, speed and acceleration rate) of indi-

vidual vessels.

Laxhammar [30] used a Gaussian Mixture Model (GMM) and a greedy version of

Expectation-Maximization (EM) for clustering. A GMM can be regarded as an en-

semble model of K multivariate Gaussian distributions (mixture components). GMM

is an extension of single Gaussian and it has the advantage of approximating arbi-

trarily complex distributions in arbitrarily high dimensions. The greedy EM-learning

(greedy Expectation-Maximization-learning) algorithm, an extension to the classi-

cal EM-algorithm, is employed to determine the optimal number of components (or

distributions) and the parameter set for all the distributions. So the greedy EM algo-

rithm is basically an iterative model with mainly two steps in each iteration; the first

step is to insert a new component and the second step is to apply classical EM until

convergence. Then in order to label new data, the likelihood of the new point will

be first calculated based on the probability distribution obtained from the clustering

phase. Further, it will be classified as abnormal if the likelihood is below a certain

predefined alarm threshold.

According to [31], GMM is not an optimal model because it needs an assumption

that the distribution of vessel positions along the major axis of the sea lane segments

is uniform. To tackle this issue, in [46], the authors propose to use adaptive Kernel

Density Estimator (KDE) for estimating unknown probability densities and modelling

arbitrary sea lanes. KDE, also known as the Parzen Window method, is a non-

parametric model and the estimated PDF (Probability Density Function) can be

determined based merely on the training data, which is superior to GMM. Then

in the anomaly detection phase, the anomaly detector is sequentially applied to the

17

incoming data. The value of new incoming point’s density is calculated under the null

hypothesis (no anomaly) and this value is then compared with a detector parameter

related to false alarms for deciding the new point’s abnormality.

A comparison between the two approaches above [30] and [46] is given in [31],

demonstrating that the anomaly detection results from both models are not sat-

isfactory as the two models detect the anomalous segments after rather long dis-

tances (three kilometers and four kilometers respectively) while an expected effective

anomaly detector should detect such behaviors at a shorter distance [31]. Another

disadvantage of the two statistical methods is that it is hard to interpret in terms of

anomaly types, even if they could find anomaly patterns promptly. Once a point is

determined to be abnormal, the likelihood value in [30] and the density value in [46]

cannot indicate the types of the abnormality. For example, the analysts cannot know

whether the point deviates too far away from the normal lanes or the vessel sails too

slow or too fast compared to normal speed.

In [13], Gerben et al. propose a technique based on Machine Learning models. In

their work, different trajectory alignment kernels (Dynamic Time Warping [28] and

Edit Distance [38]) are applied with one-class SVMs (Support Vector Machine) [11]

for detecting the outlying trajectories. This trajectory-based method requires that

the complete trajectory has been observed before it can be classified as normal or

anomalous [45], which is not applicable for sequential anomaly detection in incomplete

trajectories (real-time AIS surveillance), unlike our proposed point-based method.

Pallotta et al. [41] suggest the use of rule-based and low-likelihood models for

anomaly detection. As stated in a previous paragraph, the rule-based techniques

generate alerts based on a set of pre-defined rules. So the rules defined in this ap-

proach are similar to those in other knowledge-based work, which require maritime

domain experts’ knowledge. As an example, no specific rules defined for maximum

speed in different sea regions can be found in IMO publications [1][25], so the maxi-

mum speed pre-defined in a port area can only be accurately estimated by a specialist

knowledgeable about the area. Similar to the work done in [30], the low-likelihood

anomaly detection aims at detecting deviations from the normal patterns or distribu-

tions derived from the training AIS data. For this low-likelihood detection, a Weibull

model was employed (a parametric exponential-like model), along with a sliding time

18

window technique to avoid problems with incomplete and intermittent tracks.

Similar to the work done in [41], Nevell [39] proposes to use a Bayesian approach

to predict the future route of a particular vessel for comparison. This methodology

is based on a node-sparse network, built from different kinds of coastal nodes. The

idea of pre-defining a global maritime traffic network is also adopted in [7] where

the network is constructed based on the historical data. But instead of a Bayesian

approach, Soleimani et al. [7] employ the A∗ [14] algorithm to decide the optimal or

expected route. In [29], the authors insist that an overall threat is indicated by a

sequence of the individual behaviours. Therefore, five specific anomalies (deviation

from standard route, unexpected AIS activity, unexpected port arrival, close approach

with another ship and entering a zone known as illegal exchanges) are introduced to

extend Nevell’s work [39] to assess the probability of a higher-level threat based on a

constructed Bayesian Network.

One issue with the work described in [39][29] is that it cannot incorporate speed

into deciding if a trajectory is anomalous; instead the judgement is based only on

position. Another problem is that a pre-defined network may not be applicable in

many near-port regions due to the nature of port traffic. Traffic in near-port areas is

usually variable and the vessels are not always following straight lanes (optimal routes

in [39][29]). Fortunately, both of these problems are handled with our approach.

The anomaly detection model in this thesis uses the results of the clustering

framework presented in Chapter 3, which generates normal moving patterns and

arbitrary shapes of stopping areas. The proposed anomaly detection method is point

based but is capable of handling trajectory tracks. For each track the algorithm will

return an anomaly ratio. The ratio is based on three types of specialized distances to

take position, direction and speed into consideration.

Chapter 3

Normal Traffic Patterns Extraction Model

Vessels consistently follow different movement patterns in different areas. For in-

stance, cargo ships may travel along straight lines at high speed in the middle of the

sea, while they may frequently adjust their directions at low speed in the port or

offshore platform areas.

As a consequence, Spaccapietra [53] introduced a model to reason about trajec-

tories, which is called stops and moves. So a trajectory can be treated as a sequence

of moves and stops [53], and in the work done by [59][41][32], maritime trajectories

analysis is conducted from these two different aspects as well, moving patterns and

stopping patterns distinguished by a speed threshold. According to [32], the stop and

move model has two main advantages: 1) stopping areas are interesting areas which

need to be discovered; 2) stopping points are one important source of noise during

trajectory clustering and stopping points do not include any motion information for

path modelling. In addition to the above mentioned advantages, another benefit is

that it can help to decrease the search space complexity during moving trajectories

clustering since the stopping points are filtered out before applying the algorithm.

In this work, we employ a similar method to extract different normal patterns

from the historical AIS dataset with a stopping SOG (Speed Over Ground) threshold

of 0.5 knots. More specifically, we first divide the historical AIS data into two subsets:

the set of moving points (with SOG not less than 0.5 knots) and the set of stopping

points (with SOG less than 0.5 knots). The threshold of 0.5 knots is selected based on

multiple experiments: we have tried the numbers from 0.1 to 1.0 by increments of 0.05.

It shows that there is no significant difference between the clustering results. Since

our approach is density-based, the high density stopping areas are mostly contributed

by those points with 0 knots. Thus, the approach is not sensitive to the threshold

selected by users. Instead of merely clustering the waypoints of the trajectory data

[59][41], normal moving trajectories and arbitrary shapes of stopping regions will

19

20

be extracted based on the entire moving and stopping dataset in the specific area,

respectively.

In this chapter, a definition for a trajectory in the maritime domain (Section 3.1)

is first given and then the model for extracting normal patterns from the historical

AIS data is proposed. For the case where SOG is not less than 0.5 knots (moving

patterns), we propose DBSCANSD (Density-Based Spatial Clustering of Applications

with Noise considering Speed and Direction) as the basic algorithm to detect the main

traffic lanes within the data. The algorithm’s output is a set of Gravity Vectors (GV),

which are vectors formed by 5 features: average COG, average SOG, average Latitude,

average Longitude and Median Distance. In Section 3.2, for the case where the SOG is

less than 0.5 knots (stopping areas), the original DBSCAN [15] algorithm is executed

because speed and direction are not important factors. Another type of vector is

created as output, labelled Sampled Stopping Point (SSP), which is dependent only

on the geographic shape of the region. (Section 3.3)

3.1 Representing Trajectory Data

Definition 1 (Trajectory) A trajectory is a finite sequence T = ((x1, t1), (x2, t2), ...

, (xm, tm)). Each data point xi corresponds to a multi-dimensional feature vector of

a moving object at time point ti, where ti < ti+1 for i =1,..., m-1.

A trajectory can be defined as a data type representing the movement of an object.

A trajectory can be represented by a multidimensional time series [3] or a sequence of

multi-dimensional points [33]. In this thesis, we modify the definition of its raw form

(Definition 1) [45] to adapt it for our work. The new definition of a ship trajectory

is as following:

Definition 2 (Trajectory in Maritime Domain) A trajectory is a finite sequence T =

((x1, t1), (x2, t2), ... , (xm, tm)) where xi is a set of < Latitude, Longitude, COG, SOG >

and ti is the time-stamp.

Here in Definition 2, each vector xi is called a trajectory point, but in this

thesis, we simply use point or data point where the context is clear.

21

3.2 Normal Moving Trajectories Extraction

As stated at the beginning of the chapter, given a data set of AIS historical tracking

points, we divide them into stopping and moving parts based on the threshold of 0.5

knots. In this section, we present our moving trajectory extraction model.

As we know, compared to stopping patterns, the moving part plays a more im-

portant role in the anomaly detection task since there is a higher collision risk for

a vessel sailing at high speed than at low speed in the stopping areas. To extract

normal patterns from the moving AIS data, we first propose the new clustering al-

gorithm DBSCANSD (Density-Based Spatial Clustering of Applications with Noise

considering Speed and Direction).

3.2.1 Density-Based Spatial Clustering of Applications with Noise

considering Speed and Direction

Density-Based Spatial Clustering of Applications with Noise considering Speed and

Direction (DBSCANSD), shown in Algorithm 1, is a density-based clustering algo-

rithm based on the algorithm DBSCAN [15]. The main observation behind our ap-

proach is that it is common for different types of ships to sail with different velocities

in one similar area of the sea. For instance, the cruise speed of a cargo ship can be

faster than a fishing ship. Even the same type of vessels can behave differently in

relation to direction. Imagine that an oil tanker sails between two different countries.

When the vessel is full, its speed is slower than when it is empty.

Definition 3 (Eps-neighborhood of a point) Given a databse D of moving trajectory

points in a specific area, the Eps − neighborhood of a point p, denoted by Nε(p), is

defined by Nε(p) = {q ∈ D | dist(p, q) < ε}

As discussed in Chapter 2, the key idea of DBSCAN [15] is that for each point of a

cluster the neighborhood of a given radius has to contain at least a minimum number

of points. Here in this thesis, we adopt this idea but also consider two other factors,

maximum speed variance (MaxSpd) and maximum direction variance (MaxDir).

The intuition behind this is that the neighbors of a trajectory point should be not

only near enough, but also with similar COG (Course Over Ground) and SOG (Speed

22

Over Ground). Thus, we can modify the definition of Eps-neighborhood (Definition

3) in [15] to Definition 4.

Definition 4 (Eps-neighborhood of a trajectory point) Given a database D of moving

trajectory points in a specific area, the Eps−neighborhood of a trajectory point p, de-

noted by Nε(p), is defined by Nε(p) = {q ∈ D | dist(p, q) < ε and |p.SOG− q.SOG| <

MaxSpd and |p.COG− q.COG| < MaxDir}

Note that dist(p, q) is the Geographical Distance [58] between p and q, instead

of Euclidean distance, because it is necessary to take in consideration the Earth’s

curvature to calculate distances.

Then in the following, we also give the formal definitions of other essential no-

tions for our density-based algorithm. The definitions are changed from the ones

originally defined for 2-Dimensional points in the algorithm of DBSCAN [15] to those

for trajectory points.

Definition 5 (Core trajectory point) Given a database D of moving trajectory points

in a specific area, a trajectory point p in D is called a core trajectory point w.r.t. the

parameters of ε, MinPts, MaxSpd and MaxDir if |Nε(p)| ≥MinPts

Definition 6 (Directly density-reachable) Given a database D of moving trajectory

points in a specific area, a trajectory point p in D is directly density-reachable from

another trajectory point q in D w.r.t. the parameters of ε, MinPts, MaxSpd and

MaxDir if p ∈ Nε(q) and |Nε(q)| ≥MinPts

From Definition 6, we can find out whether point q is a core trajectory point

according to Definition 5. Because |Nε(q)| ≥ MinPts, q is a core trajectory point.

If the point q is also directly density-reachable from the point p, the point q will be

also a core trajectory point clearly. But when the point p is not a core point and it is

directly density-reachable from core point q, the point p is called Border Trajectory

Point.

Definition 7 (Density-reachable) Given a database D of moving trajectory points in

a specific area, a trajectory point p in D is density-reachable from another trajectory

point q in D w.r.t. the parameters of ε, MinPts, MaxSpd and MaxDir if there is a

23

chain of trajectory points p1, ..., pn, p1 = q, pn = p such that pi+1 is directly density-

reachable from pi (1 ≤ i < n)

From Definition 7, we can find the trajectory point p can be either a border

trajectory point or core trajectory point if p is density-reachable from point q. But

the point q and other points (except p) in the chain must be core trajectory points.

Therefore, this relation is transitive, but it is not symmetric [15].

Definition 8 (Density-connected) Given a database D of moving trajectory points in

a specific area, a trajectory point p in D is density-connected to another trajectory

point q in D w.r.t. the parameters of ε, MinPts, MaxSpd and MaxDir if there is a

trajectory point o such that both p and q is density-reachable from o w.r.t. ε, MinPts,

MaxSpd and MaxDir

However, if there exist multiple trajectory points (p1, ..., pn) that are density-

reachable from one core trajectory point o, then points p1, ..., pn can be all border

trajectory points. In such a cluster, one border trajectory point (p1) is obviously

not density-reachable from any other border points (p2, ..., pn). So it is necessary to

define a relationship (Definition 8) for any pairs of two border trajectory points in

the same cluster.

With the three density-based relations defined as above, it is easy to see the rela-

tionships between them. Figure 3.1 demonstrates these relationships. For example,

if there are two trajectory points p and q, and p is directly density-reachable from q,

p will be not only density-reachable but also density-connected from q. However, if p

is density-reachable from q, it will be also density-connected from q but may be not

directly density-reachable from q.

Now the concepts of Cluster and Noise (Definition 9 and Definition 10 respec-

tively) can be defined based on the above three relations (Directly density-reachable,

Density-reachable and Density-connected):

Definition 9 (cluster) Given a database D of moving trajectory points in a specific

area, a cluster C w.r.t. ε and MinPts is a non-empty subset of D satisfying the

following two conditions:

1) ∃ p ∈ C, ∀ q ∈ D, if q is density-reachable from p w.r.t. the parameters of ε,

MinPts, MaxSpd and MaxDir, then q ∈ C

25

Algorithm 1 DBSCANSD

1: procedure DBSCANSD(DatasetM , eps, MinPts, MaxDir, MaxSpd)

2: Mark all points in moving dataset DatasetM as unclassified

3: clusterList← empty list

4: for each unclassified point P in DatasetM do

5: Mark P as classified

6: neighborP ts ← queryNeighborPoints (DatasetM , P , eps, MinPts,

MaxDir, MaxSpd)

7: if neighborP ts is not NULL then

8: clusterList.add(neighborP ts)

9: for each cluster C in clusterList do

10: for each cluster C ′ in clusterList do

11: if C and C ′ are different clusters then

12: if mergeClusters(C, C ′) is TRUE then

13: clusterList.remove(C ′)

14: return clusterList

15: procedure queryNeighborPoints(data, P , eps, MinPts, MaxDir,

MaxSpd)

16: cluster ← empty list

17: for each point Q in data do

18: if distance(P ,Q) < eps then

19: if |P.SOG−Q.SOG| < MaxSpd then

20: if |P.COG−Q.COG| < MaxDir then

21: cluster.add(Q)

22: if cluster.size > MinPts then

23: Mark P as core point

24: return cluster

25: return NULL

26

26: procedure mergeClusters(clusterA, clusterB)

27: merge← FALSE

28: for each point Q in clusterB do

29: if point Q is core point and clusterA contains Q then

30: merge← TRUE

31: for each point Q′ in clusterB do

32: clusterA.add(Q′)

33: break

34: return merge

Time Complexity Analysis of DBSCANSD algorithm:

procedure QueryNeighbourPoints (lines 15-25):

The dominating operation is the if test (lines 18-20), data size: n =data.size. The

implementation presented in Algorithm 1 has linear time complexity O(n) where n is

the size of the data set. However, if some spatial index is used the time complexity

can be reduced to O(log(n)).

procedure MergeClusters (lines 26-34):

The dominating operation is the contains test operation (line 29), the data size

is the number of elements the second cluster b =clusterB.size. In the simple

implementation presented in Algorithm 1 the worst time complexity is linear O(b),

if we assume the constant time cost of contains operation (this can be achieved by

keeping a hash-set structure). However, this procedure can be accelerated with more

sophisticated data structures, in particular avoiding adding elements one by one.

procedure DBSCANSD (lines 1-14):

Finally, the main procedure DBSCANSD is dominated by the two consecutive loops:

point neighbourhoods computation (lines 4-8) and cluster merging (lines 9-13). The

data size is the total number of elements n =DataSetM.size. The initialisation (line

3) is linear O(n). Each of the two loops (lines 4-8 and lines 9-13) in the simple

implementation presented in Algorithm 1 can be bounded with the quadratic time

complexity O(n2), however, as we mentioned above, it is possible to accelerate it by

applying more sophisticated data structures in the sub-procedures. To sum up, the

27

DBSCANSD algorithm has at most quadratic time complexity O(n2) but there is defi-

nitely a room for improvement that will be further explored as the part of the future

work.

We use external knowledge based on the Traffic Separation Schemes (TSS) [1]

defined by IMO to adjust the parameters of the algorithm; therefore, we are using

the lanes defined in IMO publications to fit the clustering results. As we know, once

the area is determined, the two parameters MaxDir and MaxSpd should be fixed.

The two parameters are relying on the corresponding port areas. During this thesis

work, multiple pairs of values were tested to find the optimal MaxDir and MaxSpd.

Our experiments indicate that 5◦ and 5 knot are the best parameters for both tested

ports (Los Angeles Long Beach area and Juan De Fuca Strait area).

On the other hand, the parameters eps and MinPts must be defined for each

port. Thus, another set of experiments were done to select the best pair for each

area. For instance, when a lane generated by the clustering algorithm has any gaps

compared to the one in the IMO TSS regulations, the analyst must increase the value

of eps or decrease that of MinPts. In this way, the lanes with lower densities might

be adopted as parts of the clusters to fill in the gaps. The two parameters eps and

MinPts selected in this procedure will be directly used in the next stopping area

extraction phase.

After applying DBSCANSD to the ship trajectory dataset, those geographically

close trajectory points with similar direction and speed will be grouped together to

form a cluster. Then, we can not only get arbitrary shapes of clusters, but we can also

separate those close points with great different normal SOGs and COGs into multiple

clusters. Moreover, the algorithm can even treat a ship’s acceleration or deceleration

as a cluster, as long as the MaxSpd is well defined. Similarly, if the MaxDir is

defined well, a curve shape of navigation will be also treated as one cluster. It should

be noted that this point-based clutering approach can force the trajectory points of

the same vessel to form multiple clusters if the vessel is not travelling along straight

line or the vessel adjusts its speed significantly during navigating. But for one specifc

trajectory point, it can not be shared by multiple clsuters, that is to say, it can only

belong to one particular cluster.

28

3.2.2 Gravity Vector

Although the clustering results can reflect normal patterns of the vessels, it is not

feasible to employ all the trajectory points in every cluster to decide the abnormality

of the new arriving trajectory data because the time complexity of comparing the new

trajectory and the clusters is O(n ∗m) where n is the total number of the trajectory

points in the clustering results and m is the number of points in the new arriving

trajectory. As a result, an approach for cluster reduction is necessary.

Some techniques [12][37] that try to map the results to another representative

object are proposed for compressing the original clustering results. For example, a

spline-based clustering approach is introduced in [12], however, since our approach

is a point-based clustering algorithm and the output is multiple sets of points, the

idea of using splines is not applicable in this work. Another idea called centroid and

envelope has been used for path modeling in vision-based trajectory learning [37].

The centroid can minimally specify the corresponding path and the envelope is used

for denoting the path extent. In our case, we adopt a similar idea as centroid and

envelope. Here we call it Gravity Vector (GV).

A Gravity Vector is extracted by partitioning a cluster into multiple parts, there-

fore, each cluster can contain multiple Gravity Vectors. Figure 3.2 presents an ex-

ample of calculating the Gravity Vectors of one cluster. To partition a cluster, a grid

width needs to be first determined. The grid width (g in Figure 3.2) can be decided

based on the domain knowledge or multiple experiments’ results. Here in this thesis,

we choose the length of eps used in Algorithm 1 as that of g. A Gravity Vector is a

vector formed by five features: average COG, average SOG, average Latitude, average

Longitude and Median Distance. Then one Gravity Vector GVi can be denoted by:

GVi =< COGavg, SOGavg, LATavg, LONavg, Dmedian > (3.1)

As seen in Figure 3.2, all the blue arrows in the figure are belonging to the same

cluster and we can see that all the trajectory points in this cluster have similar COGs

(directions). Although it is a bit hard to see the speeds from the figure, we know each

point in the cluster has minor SOG variation compared with its neighbors’ SOGs.

In this example, since the cluster is partitioned into 8 grids, the final output for

representing the cluster will be a set of 8 Gravity Vectors. The steps of calculating

30

COGavg =

∑k
i=1 TPi.COG

k
(3.2)

SOGavg =

∑k
i=1 TPi.SOG

k
(3.3)

LATavg =

∑k
i=1 TPi.Latitude

k
(3.4)

LONavg =

∑k
i=1 TPi.Longitude

k
(3.5)

Then to calculate the last feature Dmedian, we should first calculate the distances

between all k points in the grid and the average geographical point (LATavg, LONavg)

generated by formula 3.4 and formula 3.5. After this, we can apply a linear time

complexity algorithm for computing median Dmedian based on Hoare’s PARTITION

algorithm.

In Lemma 1, we present the time complexity of calculating GVs for a cluster.

Lemma 1 The worst time complexity of calculating a specific cluster’s Gravity Vec-

tors is O(n), where n is the total number of points in the cluster.

Proof. Assume there are n points in one cluster and the cluster is partitioned into

m grids. Step (1) takes O(n) time to calculate the average COG of the whole cluster.

Step (2) takes O(n) time to map all the points to the axis of average COG and O(n)

time to partition them into m grids. In step(3), to calculate one particular GV for

the ith grid with ki points, it takes O(ki) time to calculate the first 4 features and

O(ki) time to calculate the median distance in linear time using one of the algorithms

based on the Hoare’s partition algorithm [24], for example the Blum-Floyd-Pratt-

Rivest-Tarjan algorithm [8] that has linear worst time.

And this procedure needs to be repeated for m times, the total time for step (3)

can be calculated as following:

W (n) =
m∑

i=1

O(ki) = O(n)

31

Thus the pessimistic total time complexity for the whole procedure from step (1)

to step (3) is O(n).

The feature Median Distance can be used to measure the width variance of a

moving cluster. The work done by Etienne et al [16] shows the choice of the statistical

decile used to compute the spatio-temporal channel can give a tolerable estimate of

this channel’s width. However, we use median rather than ninth decile in [16] to

provide a more robust width estimation metric. The distance is not the exact width

of the channel, instead, it is a relative distance for outlier detection. More detailed

information about how to use the GV for anomaly detection is presented in Chapter

4.

3.3 Normal Stopping Areas Extraction

In stopping areas, such as ports and wharfs, there may be different types of ships at

anchor with zero-velocity or new arriving vessels entering the area with extremely low

speed. In this case, vessels can stop with their prows pointing to any directions and

change their headings frequently to arrive at the anchorage berths. Therefore, direc-

tion is no longer an essential part for analyzing the risk of collision. The possibility

of a low-speed vessel colliding with another ship is very low; therefore this situation

was excluded from the clustering process. In other words, only when a ship sails

with a higher speed than the stopping threshold in a stopping area can we label the

data as outlier. So the task of this stage is to identify the locations and geographical

shapes of the stopping areas from the historical data set. Once the stopping areas are

identified, the case of grounding (vessels are stopping unexpectedly in an area which

is far from stopping areas) is also feasible to be detected.

Based on the analysis of stopping regions, the original DBSCAN [15] algorithm

can be employed for stopping points clustering since speed or direction is no longer

essential factors. The output is a set of stopping clusters with high density of trajec-

tory points. Intuitively, there is a relatively large number of vessels gathered in each

stopping cluster, which indicates the region is a reasonable place for ships to anchor.

It should be noted that it is common to have both stopping clusters and moving

33

Algorithm 2 Extract SSP From Stopping Dataset

Input: The list of the stopping points of the region, DatasetS; Reachable distance,

eps; Reachable minimum number of points, MinPts

Output: The list storing the region’s SSP, resultSSP

1: StoppingPointsClusters← DBSCAN(DatasetS, eps, MinPts) . see DBSCAN

algorithm in [15]

2: resultSSP ← empty list

3: for each cluster C in StoppingPointsClusters do

4: lat1, lat2 ← minimum and maximum of all the points’ Latitude values in

cluster C

5: lon1, lon2 ← minimum and maximum of all the points’ Longitude values in

cluster C

. estimate the sample size for cluster C

6: area← |(lat1− lat2) ∗ (lon1− lon2)|

7: if area = 0 then

8: sample size← 1

9: else

10: sample size← Ceiling(area/(π ∗ eps2))
. sample the stopping area points

11: count← 0

12: while count < sample size do

13: randomly select one point P from cluster C

14: if P is far from all points in resultSSP then

15: resultSSP .add(P)

16: count++

17: return resultSSP

35

micro-regions.

An example is shown in Figure 3.4. Figure 3.4 shows a stopping area with three

higher densely sub-regions and all the black points are the stopping points of the

clustering result. We can see that the sub-region A has the highest density while B

and C have relatively lower density which are still higher than the whole average. So

in this example, if we simply employ a random selection technique, the majority of

the final points shall be extracted from region A and then regions B and C. There

might be only a limited number of points that are sampled from the rest of the

whole stopping area, which is not supposed to happen in terms of representing the

whole area’s shape. As a consequence, we need to modulate the sampling process to

stratified sampling to give each sub-region equal probability to be selected. This can

be easily done with lines 11−16; the distance condition in line 14 can be defined by

eps as well. The algorithm has linear time complexity.

Thus, with the Gravity Vectors and Sampled Stopping Points extracted from

the moving and stopping AIS data separately, the anomaly detection task can be

conducted, the techniques for which are presented in the next chapter.

Chapter 4

Anomaly Detection

In this chapter, we present our anomaly detection model. Similar to the normal

traffic pattern extraction model, we also treat stopping and moving separately. A

ship trajectory in a particular area, especially in the near-port areas, can consist

of both stopping points and moving points. Hence, given one incoming trajectory

data set (one sequence of trajectory points with same identification), every point in

this trajectory should first be labeled as stopping or moving according to the SOG

threshold (0.5 knots) and then be checked for abnormality. In the following part of

the section, three division distances are first presented in Section 4.1 and then our

abnormal detection model is introduced in Section 4.2.

4.1 Three Division Distances

In this section, three specialized division distances are proposed to label every data

point: Absolute Division Distance (ADD), Relative Division Distance (RDD) and Co-

sine Division Distance (CDD). ADD is employed in the stopping points abnormality

detection phase while RDD and CDD are used for the moving part. The definitions

of the three division distances are given in the following. Here we use target points

to represent the points of a new coming trajectory to be labeled.

The Absolute Division Distance between a target point Pt and a Sampled

Stopping Point Ps is defined as:

Dabsolute = Distance((Pt.Lat, Pt.Lon), (Ps.Lat, Ps.Lon)) (4.1)

As can be seen in Definition 4.1, ADD is actually the Geographical Distance

[58] between Latitude and Longitude values of the target point(Pt) and the sampled

stopping point(Ps).

36

37

TheRelative Division Distance between a target point Pt and a Gravity Vector

GV is defined as:

Drelative =
Distance((Pt.Lat, Pt.Lon), (GV.Lat,GV.Lon))

GV.MedianDistance
(4.2)

For moving trajectory points, we adopt RDD (Drelative) rather than ADD (Dabsolute)

because the normal moving lanes could have different widths according to their sur-

rounding geographical environment. The routes in a narrow strait can be more

cramped than those in the open sea. Relative distance, the ratio of a point’s dis-

tance from the centroid to the median distance of all the points in one cluster from

the centroid, is one efficient metric in clustering-based approaches for detecting out-

liers [56]. We replace the centroid of each cluster with our Gravity Vectors, which

can be regarded as surrogates for a centroid when we only consider Longitude and

Latitude. As stated in [36] and previous section, every cluster can have more than

one GV, in which case the median distance of one GV can be used to measure the

width variance of a moving cluster. Another work that confirms this approach is

presented by Etienne et al. [16] in which it is shown that the choice of the statistical

decile used to compute the spatio-temporal channel can give a tolerable estimate of

this channel’s width.

The next division distance is CDD, which is employed to involve direction and

speed of moving objects. The Cosine Division Distance between a target point Pt

and a Gravity Vector GV is defined as:

Dcosine = cosα×
min(Pt.SOG,GV.SOG)

max(Pt.SOG,GV.SOG)
(4.3)

where:

α is the angle between the two directions, that is, the difference between

Pt’s COG and GV ’s COG.

The intuition behind CDD is to combine the angle (≤ 180◦) between the two

directions (angle α is defined by COG differences between Pt and GV) and the dif-

ference between the two speeds. Figure 4.1 shows two abnormal cases that consider

40

Algorithm 3 Detect abnormality of the target trajectory

Input: (1) The target trajectory dataset, D; (2) The lists of Sampled Stopping

Points and Gravity Vectors from the previous model, SSP and GV ; (3) Three

thresholds, add threshold, rdd threshold and cdd threshold

Output: The abnormality rate, abnormality

1: Separate D into two sub-datasets based on the speed threshold, moving dataset

D m and stopping dataset D s

2: Initialize all labels of points in D m and D s as Normal

. label stopping points of the target trajectory

3: for each data point S in D s do

4: ADD s ← minimum(ADD(S,SSP))

5: if ADD s > add threshold then

6: S.label ← Abnormal

. label moving points of the target trajectory

7: for each data point M in D m do

8: RDD m← minimum(RDD(M ,GV))

9: if RDD m > rdd threshold then

10: M.label ← Abnormal

11: else

12: CDD m← maximum(CDD(M ,GV))

13: if CDD m < cdd threshold then

14: M.label ← Abnormal

15: count ab ← the number of the abnormal points in D

16: count all ← the total number of all points in D

17: abnormality ← count ab/count all

18: return abnormality

42

then when a new trajectory dataset is given, we can use this value as the basis for

anomaly detection.

Chapter 5

Evaluation

In this chapter, experiments are done to evaluate the effectiveness of the proposed

approach. First, to evaluate the normal traffic patterns extraction model, regions

of Juan de Fuca Strait (Section 5.1.1) and Los Angeles Long Beach (Section 5.1.2)

are selected and the results are presented in Section 5.1. Then in Section 5.2, we

conducted two other experiments in the same region of Juan de Fuca Strait. The first

one is conducted with the non-labeled data while the second one is done after labelling

the data. The results of the first experiment (Section 5.2.1) are shown visually and

the second experiment (Section 5.2.2) compares our models results with the labels by

the expert.

5.1 Normal Traffic Patterns Extraction Model

In this section, we evaluate the effectiveness of our maritime normal patterns detec-

tion model in two regions. The data set contains non-anonymized messages from

ships in the region of Juan de Fuca Strait and the region of Los Angeles Long Beach.

The data set is in CSV (Comma Separated Values) format. Every row in the data set

represents one particular trajectory point of a vessel and every point includes hundres

of attributes (columns). But in this work, we use five attributes: MMSI, Longitude,

Latitude, SOG and COG. The movement rules for port areas defined by IMO ex-

tracted from the IMO publication [25] are shown in Figure 5.1 and 5.4. Evaluation of

the normal patterns detection model is related to the problem of evaluating clusters

quality and this is always not a trivial task. Our strategy is to use our approach to

generate the lanes and then compare the results with these rules.

Both experiments are conducted on a laptop of MacOS with an Intel Core i5

(1.3GHz) processor and a RAM of 4GB (1600 MHz DDR3). The implementation of

the algorithm is a single-threaded, single-process Java program.

43

44

5.1.1 Juan de Fuca Strait

The Strait of Juan de Fuca separates the south coast of Vancouver Island from the

north coast of State of Washington. The entrance of it lies between Cape Flattery

(48◦23′N.,124◦44′W.) and Carmanah Point (48◦37′N.,124◦45′W.) [9]. Figure 5.1 shows

a map of this area and the predefined rules for it.

Figure 5.1: Juan de Fuca Strait and its approaches (west) [25]

The data set prepared for this experiment is two-months of trajectory data from

November 1 to December 31 in 2012. It consists of 67,850 trajectory points. The

whole dataset is not used; instead 46,000 records (40,000 moving points and 6,000

stopping points distinguished by the SOG threshold 0.5 knot) are selected randomly.

As can be observed that there are much more moving points than stopping points,

which is caused by the geographical environment of the area. Since this is a strait

region with only one small stopping area (shown in dark green in Figure 5.2), it is

more common for a vessel to approach to or exit from the port in this strait area.

After applying the two clustering algorithms, 14 different clusters including 13

moving clusters and 1 stopping cluster are extracted. The result can be seen in Figure

5.2. Points in blue are the original traffic points while others are the cluster points.

The size (total number of the points composing the clusters) of moving clustering

46

Figure 5.3: The Gravity Vectors and Sampled Stopping Points extracted from the
clusters in Juan de Fuca Strait area.

Figure 5.4: Map of Los Angeles Long Beach and the navigation rules defined [25]

47

in year 2012) dataset has been prepared. There are 327,694 records (99,937 moving

points and 227,757 stopping points) in this dataset. We adopt all the moving points

in this dataset for moving clusters generation and the first 20,000 stopping points for

stopping area generation.

Figure 5.5 shows the result of stopping clusters sampling procedure in the area of

Los Angeles Long Beach. There are 7 different stopping clusters in Figure 5.5(a) with

19,089 stopping points generated by DBSCAN algorithm [15]. Then after applying

Algorithm 2, only 26 Stopping Sampled Points (shown in green color in Figure 5.5(b)

and 5.5(c)) are selected with excellent quality in terms of the representativeness.

Then the algorithm DBSCANSD is applied to moving points. Ultimately, 48,404

points are selected to form 51 moving clusters from the original 99,937 points. This

result is shown in Figure 5.6. From the figure we can see that in the stopping area,

there are multiple moving clusters too. This is because vessels in the area have to

change their headings frequently to arrive at the specified anchor location and our

algorithm will treat this curve-shape movement as multiple moving clusters with

slight COG differences. The last step for this normal traffic pattern extraction is to

calculate the Gravity Vectors of the moving clusters. The GVs of the area can be seen

in Figure 5.7 and the SSPs (filled circles in dark green color) extracted in the previous

step are also shown in the same figure. The total running time of this experiment

is 669.8 seconds (290.8 seconds for moving points clustering and 379.0 seconds for

stopping points clustering).

5.2 Anomaly Detection Model

In this section, we evaluate the effectiveness of our maritime anomaly detection model

in the region of Juan de Fuca Strait. The evaluation work contains two parts, the

first one is conducted with the non-labeled data while the second one is done after

labelling the data. The results of the first experiment are shown visually and the

second experiment compares our model’s results with the labels by the expert.

The data set which was prepared for normal traffic patterns extraction phase

comprises two months of trajectory data from November 1 to December 31 in 2012

and contains 67,850 trajectory points. The whole data set is not used for extracting

normal patterns, instead 46,000 records (40,000 moving points and 6,000 stopping

48

(a) Stopping clusters by DBSCAN [15] (b) Stopping clusters and Sampled

Stopping Points generated

(c) Sampled Stopping Points generated

Figure 5.5: Extract Stopping Sampling Points (SSP) from stopping clusters in Los Angeles Port Area. The stopping clusters

are first extracted using DBSCAN [15] algorithm shown in (a) and different colors stand for different clusters. Then Algorithm

2 is used for getting the SSPs (shown in figures (b) and (c))

50

Figure 5.7: The Gravity Vectors and Sampled Stopping Points extracted from the
clusters in Los Angeles Long Beach area.

The next step before detecting anomalous trajectories is to estimate the three

thresholds (add threshold, rdd threshold, cdd threshold) to be used in Algorithm 3.

As stated before, the remaining 21,850 trajectory records are chosen for this phase.

There are 10,825 stopping points and 11,025 moving points in this subset.

The quartile values of ADD and RDD of the subset are shown in Table 5.1 (column

1 and column 2). The authors tested different thresholds to be used as the anomaly

detector. After various tests, for the area of Strait of Juan de Fuca the best threshold

value was to consider 95% of the data as normal in relation to distance, and from

this sub-set another 95% of the data to be considered normal in relation to speed

and direction. The main objective is to reduce the number of false alarms (vessels

considered abnormal, while they are normal), and this filtered data will later be

evaluated by a human expert that will give the final decision. The model is flexible

to allow changing this threshold value depending on the geographical area under

evaluation.

51

Figure 5.8: The Gravity Vectors (open circles) and Sampled Stopping Points (filled
circles) extracted from the clusters in JUAN DE FUCA STRAIT area.

So we choose the sample quantiles of 0.95 for both ADD and RDD. The corre-

sponding thresholds in this case, add threshold and rdd threshold in Algorithm 3,

are 97.290 and 5.938. After calculating the RDD threshold, the statistic for CDD is

obtained (shown in the 3rd column in Table 5.1). Then we select 0.05 as the possibil-

ity to decide the third threshold (0.485) which can be employed as our CDD threshold

(cdd threshold in Algorithm 3).

With the extracted normal patterns and the thresholds estimated, we start to

evaluate the capacity for detecting abnormal trajectories.

In this step, we first apply our model to the trajectory data points; the labeling

results of the data points are shown in Figure 5.9. The red points stand for the GVs

and the SSP in this area. The green points are normal, while the blue and purple

ones are abnormal. More specifically, a blue point means it is too far away from the

corresponding GV or SSP, while a purple point represents that its speed or direction

is aberrant in the specific location. In this case, 1,534 points (872 in blue and 662 in

57

provided by the expert are shown in Table 5.2.

The labels assigned by the expert are not based on the points; instead, they are

based on the whole sub-tracks. In other words, as long as one sub-track shows an

anomalous pattern, the whole set of points inside the sub-track will be assigned as one

kind of abnormal label. Another noteworthy point is that the expert has not taken

SOG (speed) into account except for Harbour behavior during his labeling process.

That is, whether the speed of the vessel is too fast or too slow near the lane is not

considered, but our algorithm can take this into account.

From Table 5.2, we can firstly assume the label of Normal as normal patterns

based on the description. Then the label Harbour can also be considered as a normal

case because it is reasonable for a vessel to moor in harbour. Lastly, we observe that

all the sub-tracks with the label of Leave Lane only have tiny changes from their

route and they still navigate strictly within the normal lanes. So we also classify the

label of Leave Lane as normal.

After dividing the 284 tracks (284 different MMSIs), 2,122 sub-tracks are gener-

ated. Among them, 680 sub-tracks contain only one point (Length=0 nautical mile).

Then 14 sub-tracks are classified as abnormal labels (other than Leave Lane, see Ta-

ble 5.2) by the expert and the remaining 1,428 tracks are all normal patterns. Thus

we can see that the data set is a highly imbalanced data set which can make our work

extremely challenging.

At this point we can use our algorithm to label the data set and compare the

results with the expert’s labels. To compare the results, we first apply the same

division method to separate the tracks. We can then use a threshold to decide the

whole sub-track’s label. In this experiment, we employ 60% as the threshold value.

That means that if the portion of abnormal points in one track is greater than 60%,

we will label this whole track as abnormal. Using this approach, we find that 131

sub-tracks are classified as abnormal and the remaining 1,311 sub-tracks are normal.

Table 5.3 is the confusion matrix for the experiment.

From Table 5.3 we can see that 4 sub-tracks are classified as abnormal by both the

expert and our model and 1301 sub-tracks are classified as normal by both too. On

the other hand, another 10 sub-tracks are labeled as abnormal by the expert while

normal by our model. The remaining 127 sub-tracks are classified as abnormal by our

58

Table 5.3: Confusion Matrix I
Abnormal Normal

(Our Model) (Our Model)
Abnormal (Expert’s Label) 4 10
Normal (Expert’s Label) 127 1301

Table 5.4: Confusion Matrix II
Abnormal Normal

(Our Model) (Our Model)
Abnormal (Expert’s Label) 4 10
Normal (Expert’s Label) 52 1376

model while normal by the expert. And the overall accuracy of this detection result

is 90.49%.

To improve the result, we investigate the 14 sub-tracks designated as abnormal

by the expert. Among these, we find that the 4 which are further designated as

abnormal by the algorithm are so labeled solely because of their direction. After

investigating other tracks, we find that even if the ships deviate far from the lane the

expert may still label them as normal. The intuition behind this is straight-forward,

as the labelling process is based on Traffic Separation Scheme (TSS) [1] boundaries

and the expert cannot affirm that a trajectory point far from the TSS Boundaries is

abnormal. Considering this fact, in the following experiment, we ignore the abnormal

labels caused by RDD or ADD during the evaluation and we choose a lower threshold

for deciding whole sub-tracks’ labels. In the previous experiment we use 60% while

we choose 10% here. The reason why we use this smaller threshold is because we have

much less abnormal labels. If we use 60%, we cannot detect any abnormal tracks. It

should be noted that the threshold can be adjusted based on the input from domain

experts. In real-time application, it is not necessary to have the threshold while

labelling the new incoming points instead of tracks.

Table 5.4 presents the improved results and we can see that the overall accuracy

has been increased from 90.49% to 95.70% while keeping the same recall for abnormal

cases.

Chapter 6

Conclusion

In this thesis, a maritime traffic pattern extraction model has been first proposed.

The approach first separates the trajectory data set into moving and stopping subsets,

and then employ different strategies in corresponding subsets. The main advantage

of this work is that two attributes, speed and direction, are taken into account during

the clustering phase. In this way, geographically close trajectory points with similar

direction and speed can be grouped together to form a cluster. We also present two

methods to represent the results of clustering; that is, Gravity Vector for moving

clusters and Sampled Stopping Point for stopping clusters.

Another contribution of the proposed normal traffic extraction model is that it can

be easily extended for other scenarios. Besides the maritime anomaly detection task

addressed in this thesis, the moving trajectories clustering algorithm (DBSCANSD)

and Gravity Vectors are also applicable for other trajectory clustering tasks (e.g.

vehicle position data, animal movement data, hurricane monitoring data). Thus,

more experiments can be done with other domains’ data sets to verify our method’s

applicability in the future study.

To show the effectiveness of our approach, two real data sets from different regions

(Juan de Fuca Strait area and Los Angeles Long Beach area) are used. We have

compared the generated results with the rules defined by IMO and it shows that the

results can be successfully mapped to the rules. This demonstrates that our model

can effectively mine normal patterns in the two areas, which is another contribution

of this work.

One limitation of the normal traffic extraction model is that it is sensitive to

parameters. The model requires four parameters (eps, MinPts, MaxDir, MaxSpd)

during the moving traffic patterns extraction phase and two parameters (eps and

MinPts) for stopping area generation. So, if the model is applied in another area, a

new set of parameters needs to be given to achieve a good clustering result. Thus,

59

60

to achieve satisfactory clustering results, it is necessary to possess a good maritime

background. Specifically, when we distinguish moving points from stopping points

in the first step, a reasonable SOG threshold is required. Here in this thesis, we

adopt 0.5 knots as the threshold for distinguishing stopping and moving. Besides,

before applying DBSCANSD to moving trajectory points, we cannot simply assume

the tolerated angle (MaxDir) between two close points’ directions and the tolerated

difference (MaxSpd) between two close points’ speeds.

The Gravity Vectors and Sampled Stopping Points detected by the proposed ap-

proach can help authorities update their rules (e.g. re-position the buoy markers).

Some other research studies like route planning and vessel position prediction can

also be conducted based on our model’s results.

Based on the Gravity Vectors and Sampled Stopping Points extracted from the

clustering phase, we then propose the anomaly detection model for maritime traf-

fic data. An abnormality detection algorithm is presented based on three division

distances (Absolute Division Distance, Relative Division Distance and Cosine Divi-

sion Distance). This model is a fairly straightforward point-based approach, and is

capable of handling complicated maritime traffic situations. One advantage is that

the clustering process is associated with TSS Boundaries [1], which can assure a re-

liable clustering result for the following anomaly detection work. Another critical

advantage is that besides position information (Longitude and Latitude), the model

can also take speed and direction into account while deciding the abnormality of a

single trajectory point. The model is also flexible enough for analysts to set their own

thresholds to label whole trajectories.

In order to evaluate the effectiveness of the anomaly model, a highly imbalanced

data set from Juan de Fuca Strait area is used. There are 2,122 trajectories while

only 14 of them are abnormal (imbalance rate ≈ 0.66%). Fortunately, as shown in

Table 5.4, our model can detect 28.57% of the abnormal tracks while maintaining a

relatively high overall accuracy (95.70%).

6.1 Future Work

One of the possible directions of future work is to improve the efficiency of the pre-

sented algorithms by applying more sophisticated data structures (like spatial indexes,

61

for example). This issue is important in the context of big sizes of the processed data.

Moreover, there exist a number of publications to address the scalability issue of DB-

SCAN using MapReduce, such as [22][43]. Thus, DBSCANSD is also flexible to be

implemented in parallel as it is extended from DBSCAN. One idea is to first parti-

tion the AIS data to multiple sets based on the Longitude and Latitude and then

apply our clustering algorithm on each sets. If the data is partitioned well, the time

complexity can be reduced significantly which can make it feasible for a much bigger

area’s data clustering. In this thesis the focus was not on optimising the efficiency of

the algorithms but to present the ideas. We envisage algorithm optimisation in the

future work.

One may argue about the use of an unsupervised learning approach instead of

supervised learning methods. The reason for this is that there is insufficient labeled

data to train an effective model. Once we get enough labeled data we will explore

other supervised learning techniques for this anomaly detection task. For example,

we can try some classification algorithms designed for handling imbalanced data sets

and the proposed specialized division distances can be used as the features of the clas-

sification models. Then comparisons between those results and our model’s outcomes

could be done to illustrate the effectiveness of the proposed division distances.

One limitation of the anomaly detection evaluation model is that the labelling

process applied by the expert does not consider speed while our work takes this into

account. This leads to another possible future direction, that is, more work should be

done by the experts while labelling the data set to consider speed. In this way, the false

alert rate can also be reduced while the identification of the anomaly trajectories is

improved. Another limitation is that the experiments are only conducted with data

from Juan de Fuca Strait area and as a result, more experiments in other regions

should be done to better illustrate the effectiveness of our approach.

As discussed before, this is a point-based method and the output is two sets of

representative vectors (Gravity Vectors and Sampled Stopping Points). As a conse-

quence, one limitation of our clustering algorithm, compared to trajectory-based ones,

is that ours cannot take into account the behavior over time. One example of this

limitation is illustrated in Figure 6.1. Assume there are two main lanes in the region

and they are Lane A and Lane B (shown in red color and purple color separately).

63

of a particular vessel and then compare the real data with the prediction to decide

the abnormality. Thus, to improve the performance of the model, an ensemble model

which incorporates the predictive model can be developed in the future. Specifically,

once a trajectory point needs to be labeled, we can consider both its anomalous score

(output of our proposed model) and its deviation from the predicted position to get

a more confident result.

Bibliography

[1] Colreg.2/circ.57 new and amended existing traffic separation schemes. http:

//www.imo.org/blast/blastDataHelper.asp?data_id=14761&filename=57.

pdf. Accessed: 2006-05-26.

[2] IALA Guidelines on the Universal Automatic Identification System (AIS), Vol-
ume 1, Part II-Technical Issues Edition 1.1. IALA/AISM-20ter rue Schnapper,
78100 Saint Germain en Laye, France, 2002.

[3] Charu C Aggarwal and Chandan K Reddy. Data Clustering: Algorithms and
Applications. CRC Press, 2013.

[4] Jrgen Ahlberg. Candide-3 - an updated parameterised face. Technical report,
2001.

[5] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Op-
tics: ordering points to identify the clustering structure. In ACM Sigmod Record,
volume 28, pages 49–60. ACM, 1999.

[6] Heather Ball. Satellite AIS for Dummies. Wiley, Mississauga, ON, 2013.

[7] Casey Hilliard Behrouz Haji Soleimani, Erico N. De Souza and Stan Matwin.
Anomaly detection in maritime data based on geometrical analysis of trajectories.
In Information Fusion, 2015 18th International Conference on. IEEE, 2015.

[8] Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, and
Robert E. Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7(4):448–
461, August 1973.

[9] United States. Defense Mapping Agency. Hydrographic/Topographic Center.
Sailing Directions (enroute) British Columbia. Pub. (United States. Defense
Mapping Agency. Hydrographic/Topographic Center). Defense Mapping Agency,
Hydrographic/Topographic Center, 2012.

[10] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Computing Surveys (CSUR), 41(3):15, 2009.

[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn-
ing, 20(3):273–297, 1995.

[12] Anders Dahlbom and Lars Niklasson. Trajectory clustering for coastal surveil-
lance. In Information Fusion, 2007 10th International Conference on, pages 1–8.
IEEE, 2007.

64

65

[13] Gerben Klaas Dirk De Vries and Maarten Van Someren. Machine learning for
vessel trajectories using compression, alignments and domain knowledge. Expert
Systems with Applications, 39(18):13426–13439, 2012.

[14] Rina Dechter and Judea Pearl. Generalized best-first search strategies and the
optimality of a*. J. ACM, 32(3):505–536, July 1985.

[15] Martin Ester, Hans peter Kriegel, Jrg S, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. pages
226–231. AAAI Press, 1996.

[16] Laurent Etienne and Thomas Devogele. Spatio-temporal trajectory analysis of
mobile objects following the same itinerary. Advances in Geo-Spatial Information
Science, 17(1):11–34, 2012.

[17] Nivan Ferreira, James T. Klosowski, Carlos Eduardo Scheidegger, and Cláudio T.
Silva. Vector field k-means: Clustering trajectories by fitting multiple vector
fields. CoRR, abs/1208.5801, 2012.

[18] Zhouyu Fu, Weiming Hu, and Tieniu Tan. Similarity based vehicle trajectory
clustering and anomaly detection. In Image Processing, 2005. ICIP 2005. IEEE
International Conference on, volume 2, pages II–602. IEEE, 2005.

[19] Maxime Gariel, Ashok N Srivastava, and Eric Feron. Trajectory clustering and
an application to airspace monitoring. Intelligent Transportation Systems, IEEE
Transactions on, 12(4):1511–1524, 2011.

[20] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2005.

[21] Abbas Harati-Mokhtari, Alan Wall, Philip Brooks, and Jin Wang. Automatic
identification system (ais): data reliability and human error implications. Journal
of navigation, 60(03):373–389, 2007.

[22] Yaobin He, Haoyu Tan, Wuman Luo, Shengzhong Feng, and Jianping Fan. Mr-
dbscan: a scalable mapreduce-based dbscan algorithm for heavily skewed data.
Frontiers of Computer Science, 8(1):83–99, 2014.

[23] Alexander Hinneburg and Daniel A Keim. An efficient approach to clustering in
large multimedia databases with noise. In KDD, volume 98, pages 58–65, 1998.

[24] C. A. R. Hoare. Algorithm 63: Partition. Commun. ACM, 4(7):321–, July 1961.

[25] IMO. Ships’ Routeing. International Maritime Organization, London, 2013.

[26] Leonard Kaufman and Peter Rousseeuw. Clustering by means of medoids. North-
Holland, 1987.

66

[27] Samira Kazemi, Shahrooz Abghari, Niklas Lavesson, Henric Johnson, and Peter
Ryman. Open data for anomaly detection in maritime surveillance. Expert
Systems with Applications, 40(14):5719–5729, 2013.

[28] Eamonn J Keogh and Michael J Pazzani. Scaling up dynamic time warping for
datamining applications. In Proceedings of the sixth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 285–289. ACM, 2000.

[29] Richard O Lane, David A Nevell, Steven D Hayward, and Thomas W Beaney.
Maritime anomaly detection and threat assessment. In Information Fusion (FU-
SION), 2010 13th Conference on, pages 1–8. IEEE, 2010.

[30] Rikard Laxhammar. Anomaly detection for sea surveillance. In Information
Fusion, 2008 11th International Conference on, pages 1–8. IEEE, 2008.

[31] Rikard Laxhammar, Göran Falkman, and Egils Sviestins. Anomaly detection
in sea traffic-a comparison of the gaussian mixture model and the kernel den-
sity estimator. In Information Fusion, 2009. FUSION’09. 12th International
Conference on, pages 756–763. IEEE, 2009.

[32] Nicolas Le Guillarme and Xavier Lerouvreur. Unsupervised extraction of knowl-
edge from s-ais data for maritime situational awareness. In Information Fu-
sion (FUSION), 2013 16th International Conference on, pages 2025–2032. IEEE,
2013.

[33] Jae-Gil Lee, Jiawei Han, and Kyu-Young Whang. Trajectory clustering: A
partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD In-
ter. Conf. on Management of Data, SIGMOD ’07, pages 593–604, New York,
NY, USA, 2007. ACM.

[34] Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in net-
work intrusion detection using clusters. In Proceedings of the Twenty-eighth Aus-
tralasian conference on Computer Science-Volume 38, pages 333–342. Australian
Computer Society, Inc., 2005.

[35] Jing Li, Kuei-Ying Huang, Jionghua Jin, and Jianjun Shi. A survey on statis-
tical methods for health care fraud detection. Health care management science,
11(3):275–287, 2008.

[36] Bo Liu, Erico N de Souza, Stan Matwin, and Marcin Sydow. Knowledge-based
clustering of ship trajectories using density-based approach. In Big Data (Big
Data), 2014 IEEE International Conference on, pages 603–608. IEEE, 2014.

[37] Brendan Tran Morris and Mohan M. Trivedi. A survey of vision-based trajectory
learning and analysis for surveillance. IEEE Trans. Circuits Syst. Video Techn.,
18(8):1114–1127, 2008.

67

[38] Gonzalo Navarro. A guided tour to approximate string matching. ACM comput-
ing surveys (CSUR), 33(1):31–88, 2001.

[39] David Nevell. Anomaly detection in white shipping. Mathematics in Defence,
2009.

[40] Giuliana Pallotta, Michele Vespe, and Karna Bryan. Traffic knowledge discov-
ery from ais data. In Information Fusion (FUSION), 2013 16th International
Conference on, pages 1996–2003. IEEE, 2013.

[41] Giuliana Pallotta, Michele Vespe, and Karna Bryan. Vessel pattern knowledge
discovery from ais data: A framework for anomaly detection and route prediction.
Entropy, 15(6):2218–2245, 2013.

[42] Andrey Tietbohl Palma, Vania Bogorny, Bart Kuijpers, and Luis Otavio Alvares.
A clustering-based approach for discovering interesting places in trajectories. In
Proceedings of the 2008 ACM Symposium on Applied Computing, SAC ’08, pages
863–868, New York, NY, USA, 2008. ACM.

[43] Md Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, and Alok Choudhary. A new scalable parallel dbscan algorithm using
the disjoint-set data structure. In High Performance Computing, Networking,
Storage and Analysis (SC), 2012 International Conference for, pages 1–11. IEEE,
2012.

[44] Claudio Piciarelli, Gian Luca Foresti, and Lauro Snidaro. Trajectory clustering
and its applications for video surveillance. In Advanced Video and Signal Based
Surveillance, 2005. AVSS 2005. IEEE Conference on, pages 40–45. IEEE, 2005.

[45] Laxhammar Rikard. Anomaly detection in trajectory data for surveillance ap-
plications. Studies from the school of science and technology at rebro university
19, 2011.

[46] Branko Ristic, Barbara La Scala, Mark Morelande, and Neil Gordon. Statistical
analysis of motion patterns in ais data: Anomaly detection and motion predic-
tion. In Information Fusion, 2008 11th International Conference on, pages 1–7.
IEEE, 2008.

[47] Jose Antonio MR Rocha, Gabriel Oliveira, Luis O Alvares, Vania Bogorny, and
VC Times. Db-smot: a direction-based spatio-temporal clustering method. In
Intelligent systems (IS), 2010 5th IEEE international conference, pages 114–119.
IEEE, 2010.

[48] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and val-
idation of cluster analysis. Journal of computational and applied mathematics,
20:53–65, 1987.

68

[49] Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection,
volume 589. John Wiley & Sons, 2005.

[50] Jean Roy. Rule-based expert system for maritime anomaly detection. In SPIE
Defense, Security, and Sensing, pages 76662N–76662N. International Society for
Optics and Photonics, 2010.

[51] Jean Roy and Michael Davenport. Categorization of maritime anomalies for no-
tification and alerting purpose. In NATO workshop on data fusion and anomaly
detection for maritime situational awareness, La Spezia, Italy, pages 15–17, 2009.

[52] Lauro Snidaro, Claudio Piciarelli, and Gian Luca Foresti. Fusion of trajectory
clusters for situation assessment. In Information Fusion, 2006 9th International
Conference on, pages 1–7. IEEE, 2006.

[53] Stefano Spaccapietra, Christine Parent, Maria Luisa Damiani, Jose Antonio
de Macedo, Fabio Porto, and Christelle Vangenot. A conceptual view on trajec-
tories. Data Knowl. Eng., 65(1):126–146, April 2008.

[54] Abhinav Srivastava, Amlan Kundu, Shamik Sural, and Arun K Majumdar.
Credit card fraud detection using hidden markov model. Dependable and Se-
cure Computing, IEEE Transactions on, 5(1):37–48, 2008.

[55] Chris Stauffer and W Eric L Grimson. Learning patterns of activity using real-
time tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 22(8):747–757, 2000.

[56] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data
Mining, (First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2005.

[57] Henry S Teng, Kaihu Chen, and SC Lu. Adaptive real-time anomaly detection
using inductively generated sequential patterns. In Research in Security and
Privacy, 1990. Proceedings., 1990 IEEE Computer Society Symposium on, pages
278–284. IEEE, 1990.

[58] Chris Veness. Calculate distance, bearing and more between latitude/longitude
points. http://www.movable-type.co.uk/scripts/latlong.html.

[59] Michele Vespe, Ingrid Visentini, Karna Bryan, and Paolo Braca. Unsupervised
learning of maritime traffic patterns for anomaly detection. In Data Fusion &
Target Tracking Conf. (DF&TT 2012): Algorithms & Applications, 9th IET,
pages 1–5. IET, 2012.

[60] Stijn Viaene, Richard A Derrig, Bart Baesens, and Guido Dedene. A comparison
of state-of-the-art classification techniques for expert automobile insurance claim
fraud detection. Journal of Risk and Insurance, 69(3):373–421, 2002.

69

[61] Michail Vlachos, George Kollios, and Dimitrios Gunopulos. Discovering simi-
lar multidimensional trajectories. In Data Engineering, 2002. Proceedings. 18th
International Conference on, pages 673–684. IEEE, 2002.

[62] Wei Wang, Jiong Yang, Richard Muntz, et al. Sting: A statistical information
grid approach to spatial data mining. In VLDB, volume 97, pages 186–195, 1997.

[63] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, Wei Li,
et al. New algorithms for fast discovery of association rules. In KDD, volume 97,
pages 283–286, 1997.

[64] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data
clustering method for very large databases. In ACM SIGMOD Record, volume 25,
pages 103–114. ACM, 1996.

[65] Zhang Zhang, Kaiqi Huang, and Tieniu Tan. Comparison of similarity measures
for trajectory clustering in outdoor surveillance scenes. In Pattern Recognition,
2006. ICPR 2006. 18th International Conference on, volume 3, pages 1135–1138.
IEEE, 2006.

Appendix A

Source Code of the Algorithms

In this appendix, some key source code implemented during the thesis is shown.

The whole framework is divided into two parts: normal traffic patterns extraction

model and anomaly detection model. The first part shown in A.1 has been mostly

implemented in Java with a small portion of R code. While the second part shown

in A.2 has been implemented totally in R.

A.1 Source Code of Normal Traffic Patterns Extraction Model

As discussed in Chapter 3, the normal traffic extraction model includes two differ-

ent clustering components (DBSCANSD and DBSCAN) to handle moving trajectory

points and stopping areas respectively. Before presenting the code for clustering, it

is necessary to first define the classes of Trajectory Point and Cluster.

1 pub l i c c l a s s Tra jec toryPo int {

2 p r i va t e S t r ing mmsi ; //mmsi , the id o f the v e s s e l

3 p r i va t e long timestamp ; // second o f UTC time stamp

4 // the f o l l ow i n g protec t ed v a r i a b l e s are to be i nh e r i t e d by GV

5 protec t ed double l ong i tude ; // l ong i tude

6 protec t ed double l a t i t u d e ; // l a t i t u d e

7 protec t ed double SOG; // speed over ground

8 protec t ed double COG; // course over ground

9 // the f o l l ow i n g two are u s e f u l dur ing the c l u s t e r i n g proce s s

10 p r i va t e boolean i sV i s i t e d ; //whether i t has been v i s i t e d

11 p r i va t e boolean i sCorePo int ; //whether i t i s a core po int

12 pub l i c Tra jec toryPo int () {

13 t h i s . i sV i s i t e d = f a l s e ; // i n i t i a l i z e the po int unv i s i t ed

14 }

15 // generate g e t t e r and s e t t e r f un c t i on s . . .

16 }

Listing A.1: Class of TrajecotryPoint

70

71

The cluster defined in Definition 9 is basically a set of trajectory points. So the

Class of Cluster can be written as follows:

1 pub l i c c l a s s C lus t e r {

2 p r i va t e ArrayList<TrajectoryPoint> c l u s t e r ;

3 p r i va t e double avgCOG; // the average d i r e c t i o n (COG) o f the whole

c l u s t e r

4 pub l i c C lus t e r () {}

5 pub l i c double ca l cu l a t eAve rageD i r e c t i on () {

6 double sum = 0 ;

7 f o r (i n t i =0; i<t h i s . c l u s t e r . s i z e () ; i++) {

8 sum = sum+th i s . c l u s t e r . get (i) . getCOG() ;

9 }

10 double avg = sum/(double) (t h i s . c l u s t e r . s i z e ()) ;

11 re turn avg ;

12 }

13 // generate g e t t e r and s e t t e r f un c t i on s . . .

14 }

Listing A.2: Class of Cluster

A.1.1 Code of Clustering Process

The clustering process includes two steps which are DBSCANSD for moving points

clustering and DBSCAN for stopping points clustering. The two steps have been

implemented together in terms of the code’s reusability (DBSCANSD can be regarded

as an extension of DBSCAN).

1 pub l i c c l a s s DBScanSD {

2 // f i n a l c l u s t e r i n g r e s u l t s , a g l oba l v a r i ab l e

3 p r i va t e ArrayList<Cluster> r e s u l tC l u s t e r s = new

ArrayList<Cluster >() ;

4 /∗∗

5 ∗ Apply DBSCANSD on the data s e t . I f the data i s s toppoing points ,

s e t i sS topPo int as t rue and i t w i l l execute the o r i g i n a l

DBSCAN d i r e c t l y . I f the data i s moving points , s e t i sS topPo int

as f a l s e and i t w i l l execute DBSCANSD con s i d e r i ng speed and

d i r e c t i o n .

6 ∗/

72

7 pub l i c ArrayList<Cluster> applyDBScanSD(ArrayList<TrajectoryPoint>

po in t sL i s t , double eps , i n t minPoints , double maxSpd , double

maxDir , boolean i sStopPo int) {

8 f o r (i n t index=0; index<po i n t sL i s t . s i z e () ; index++) {

9 //we should mark the po int as v i s i t e d , i t has no problem

because here we use a f o r loop , i t can stop

10 ArrayList<TrajectoryPoint> tmpLst = new

ArrayList<TrajectoryPoint >() ;

11 Tra jec toryPo int p = po i n t sL i s t . get (index) ;

12 i f (p . i sV i s i t e d ()&&index !=(po i n t sL i s t . s i z e ()−1)&&index%4096!=0)

cont inue ;

13 tmpLst = isCorePo int (po in t sL i s t , p , eps , minPoints , maxSpd ,

maxDir , i sS topPo int) ;

14 i f (tmpLst!= nu l l | | index==(po i n t sL i s t . s i z e ()−1) | | index%4096==0){

15 Clus te r c = new Clus te r () ;

16 c . s e tC lu s t e r (tmpLst) ;

17 i f (tmpLst!= nu l l) r e s u l tC l u s t e r s . add (c) ;

18 i n t l ength=r e s u l tC l u s t e r s . s i z e () ;

19 boolean f l a g = true ;

20 i f ((index%4096==0) | | (index==(po i n t sL i s t . s i z e ()−1))) {

21 whi l e (f l a g) {

22 f l a g = f a l s e ;

23 f o r (i n t i =0; i<l ength ; i++){

24 f o r (i n t j =0; j<l ength ; j++){

25 i f (i != j) {

26 i f (i == length) {

27 f l a g = true ;

28 cont inue ;

29 }

30 i f (mergeClusters (r e s u l tC l u s t e r s . get (i) ,

r e s u l tC l u s t e r s . get (j))) {

31 r e s u l tC l u s t e r s . remove (j) ;

32 j−−;

33 length−−;

34 }

35 }

36 }

37 }

38 }

73

39 }

40 }

41 }

42 re turn r e s u l tC l u s t e r s ;

43 }

44 /∗∗

45 ∗ Merge two c l u s t e r s i n to one c l u s t e r

46 ∗/

47 pub l i c boolean mergeClusters (C lus t e r c lusterA , C lus t e r c lu s t e rB) {

48 boolean merge = f a l s e ;

49 i f (c lu s t e rA . ge tC lu s t e r () == nu l l | | c lu s t e rB . ge tC lu s t e r () ==

nu l l) {

50 re turn merge ;

51 }

52 f o r (i n t index = 0 ; index < c lu s t e rB . ge tC lu s t e r () . s i z e () ; index++)

{

53 Tra jec toryPo int p = c lu s t e rB . ge tC lu s t e r () . get (index) ;

54 i f (p . i sCorePo int () && c lus t e rA . ge tC lu s t e r () . conta in s (p)) {

55 merge = true ;

56 break ;

57 }

58 }

59 i f (merge) {

60 f o r (i n t index=0; index<c lu s t e rB . ge tC lu s t e r () . s i z e () ; index++) {

61 i f (! c lu s t e rA . ge tC lu s t e r () . conta in s (c lu s t e rB . g e tC lu s t e r ()

. get (index))) {

62 c lu s t e rA . ge tC lu s t e r () . add (c lu s t e rB . ge tC lu s t e r () . get (index)) ;

63 }

64 }

65 }

66 re turn merge ;

67 }

68 /∗∗

69 ∗ Decide i f the po int p i s core point , i f yes , r e turn the l i s t

with p and i t s ne ighbors , i f no , r e turn nu l l .

70 ∗/

74

71 pub l i c ArrayList<TrajectoryPoint>

i sCorePo int (ArrayList<TrajectoryPoint> l s t , Tra jec toryPo int p ,

double eps , i n t minPoints , double maxSpd , double maxDir , boolean

i sStopPo int) {

72 i n t count = 0 ;

73 ArrayList<TrajectoryPoint> tmpList = new

ArrayList<TrajectoryPoint >() ;

74 f o r (I t e r a t o r<TrajectoryPoint> i t = l s t . i t e r a t o r () ; i t . hasNext () ;)

{

75 Tra jec toryPo int q = i t . next () ;

76 i f (i sDens i tyReachab le (p , q , eps , minPoints , maxSpd , maxDir ,

i sS topPo int)) {

77 count++;

78 i f (! tmpList . conta in s (q)) {

79 tmpList . add (q) ;

80 }

81 }

82 }

83 i f (count>=minPoints) {

84 p . setCorePoint (t rue) ;

85 p . s e tV i s i t e d (t rue) ;

86 re turn tmpList ;

87 }

88 re turn nu l l ;

89 }

90 /∗∗

91 ∗ Decide i f the two po in t s are dens i ty reachab l e .

92 ∗/

93 pub l i c boolean i sDens i tyReachab le (Tra jec toryPo int p1 ,

Tra jec toryPo int p2 , double eps , i n t minPts , double maxSpd ,

double maxDir , boolean i sStopPo int) {

94 boolean r e s u l t = f a l s e ;

95 i f (gpsDistance (p1 . ge tLat i tude () , p1 . getLongitude () ,

p2 . ge tLat i tude () , p2 . getLongitude ()) <=eps) {

96 // i f they are stopping points , we can d i r e c t l y use o r i g i n a l

DBSCAN algor i thm without con s i d e r i ng speed or d i r e c t i o n

97 i f (i sS topPo int) re turn true ;

98 i f (Math . abs (p1 . getCOG()−p2 . getCOG())<maxDir) {

99 i f (Math . abs (p1 . getSOG()−p2 . getSOG())<maxSpd) {

75

100 r e s u l t = true ;

101 }

102 }

103 }

104 re turn r e s u l t ;

105 }

106 /∗∗

107 ∗ c a l c u a l t e the gps d i s t anc e between two t r a j e c t o r y po in t s

c on s i d e r i ng the curve o f the earth .

108 ∗/

109 pub l i c s t a t i c double gpsDistance (double la t1 , double lng1 , double

lat2 , double lng2) {

110 double earthRadius = 3958 . 75 ;

111 double dLat = Math . toRadians (la t2−l a t 1) ;

112 double dLng = Math . toRadians (lng2−lng1) ;

113 double a = Math . s i n (dLat /2) ∗ Math . s i n (dLat /2) +

114 Math . cos (Math . toRadians (l a t 1)) ∗ Math . cos (Math . toRadians (l a t 2))

∗

115 Math . s i n (dLng/2) ∗ Math . s i n (dLng/2) ;

116 double c = 2 ∗ Math . atan2 (Math . s q r t (a) , Math . s q r t (1−a)) ;

117 double d i s t = earthRadius ∗ c ;

118 i n t meterConversion = 1609 ;

119 re turn (double) (d i s t ∗ meterConversion) ;

120 }

121 }

Listing A.3: The code of clustering process

A.1.2 GVs Calculation

In this section, the code of the algorithm to calculate a cluster’s Gravity Vectors

is given. First, as defined in Chapter 3, a Gravity Vector is a vector formed by

5 features: average COG, average SOG, average Latitude, average Longitude and

Median Distance, the class of the Gravity Vector needs to be first presented. Here

the GV is inherited from the Class of Trajectory Point (Listing A.1).

1 pub l i c c l a s s GravityVector extends Tra jec toryPo int {

2 p r i va t e double medianDistance ; // the median d i s t anc e f e a t u r e

76

3 pub l i c GravityVector (double long i tude , double l a t i t ude , double COG,

double SOG, double medianDistance) {

4 t h i s . l a t i t u d e = l a t i t u d e ;

5 t h i s . l ong i tude = long i tude ;

6 t h i s .COG = COG;

7 t h i s .SOG = SOG;

8 t h i s . medianDistance = medianDistance ;

9 }

10 // generate g e t t e r and s e t t e r f un c t i on s . . .

11 }

Listing A.4: Class of Gravity Vector

As demonstrated in Chapter 3, the process of calculating GVs of a cluster needs

to map the trajectory points to an axis of the average direction. So here a Class

called Mapping Point is also given and it also inherits from the Class of Trajectory

Point:

1 pub l i c c l a s s MappingPoint extends Tra jec toryPo int {

2 p r i va t e double mappingtude ; //mapping po int ’ s coo rd ina te on the

exact ax i s

3 /∗∗

4 ∗ Mapping Point i s the po int that i s mapped onto the ax i s (average

d i r e c t i o n o f the whole c l u s t e r)

5 ∗/

6 pub l i c MappingPoint (double long i tude , double l a t i t ude , double

mappingtude , double COG, double SOG) {

7 t h i s . l ong i tude = long i tude ;

8 t h i s . l a t i t u d e = l a t i t u d e ;

9 t h i s . mappingtude = mappingtude ;

10 t h i s .COG = COG;

11 t h i s .SOG = SOG;

12 }

13 /∗∗

14 ∗ map the t r a j e c t o r y po int to the p a r t i c u l a r ax i s and return the

mapping po int

15 ∗/

16 pub l i c MappingPoint convertPointToMappingPoint (Tra jec toryPo int p ,

double avgCOG) {

17 double mappingtude = 0 ;

77

18 double ang le = (avgCOG/(double) 180) ∗ Math . PI ;

19 i f ((avgCOG>=0&&avgCOG<90)) {

20 mappingtude = (p . getLongitude () + (1 . 0/Math . tan (ang le)) ∗

p . ge tLat i tude ()) ∗ Math . s i n (ang le) ;

21 } e l s e i f ((avgCOG >= 270&&avgCOG<360)) {

22 mappingtude = (p . ge tLat i tude () − (Math . tan (Math . PI∗2−ang le)) ∗

p . getLongitude ()) ∗ Math . cos (Math . PI∗2 − ang le) ;

23 } e l s e i f (avgCOG >= 90&&avgCOG<180) {

24 mappingtude = ((Math . tan (Math . PI−ang le)) ∗p . getLongitude () −

p . ge tLat i tude ()) ∗ Math . cos (Math . PI − ang le) ;

25 } e l s e i f (avgCOG >= 180&&avgCOG<270) {

26 mappingtude = −(((double) 1/Math . tan (ang le − Math . PI)) ∗

p . ge tLat i tude () + p . getLongitude ()) ∗ Math . s i n (ang le −

Math . PI) ;

27 }

28 MappingPoint mp = new MappingPoint (p . getLongitude () ,

p . ge tLat i tude () , mappingtude , p . getCOG() , p . getSOG()) ;

29 re turn mp;

30 }

31 // generate s e t t e r and g e t t e r f un c t i on s . . .

32 }

Listing A.5: Class of Mapping Point

After having the Gravity Vector and Mapping Point classes, we can start to write

the code for extracting the GVs from a given cluster.

1 pub l i c c l a s s Grav i tyVectorExtract ion {

2 /∗∗

3 ∗ ex t r a c t the GVs from the moving c l u s t e r

4 ∗ @param c l u s t e r : input a c l u s t e r f o r e x t r a c t i n g the GVs

5 ∗ @return an a r r a y l i s t o f GVs

6 ∗/

7 pub l i c ArrayList<GravityVector> ext ractGrav i tyVector (C lus t e r

c l u s t e r) {

8 //Step (1) : Ca l cu la t e the average COG of the whole c l u s t e r

9 double avgCOG = c l u s t e r . c a l cu l a t eAve rageD i r e c t i on () ;

10 // Step (2) Map a l l the po in t s to the ax i s and p a r t i t i o n the po in t s

based on 0 .01 g r id width

11 ArrayList<MappingPoint> mpLst = new ArrayList<MappingPoint>() ;

78

12 f o r (i n t i =0; i<c l u s t e r . g e tC lu s t e r () . s i z e () ; i++) {

13 MappingPoint mp =

MappingPoint . convertPointToMappingPoint (c l u s t e r . g e tC lu s t e r ()

. get (i) , avgCOG) ;

14 mpLst . add (mp) ;

15 }

16 i n s e r t i o n S o r t (mpLst) ;

17 ArrayList<GravityVector> ppL = new ArrayList<GravityVector >() ;

18 i n t count = 0 ;

19 i n t k = 0 ;

20 double sum x = 0 ;

21 double sum y = 0 ;

22 double sum SOG = 0 ;

23 double sum COG = 0 ;

24 ArrayList<MappingPoint> traPointsTMP = new

ArrayList<MappingPoint>() ;

25 double medianDistance = 0 ;

26 // p a r t i t i o n the po in t s and c a l c u l a t e each GV f o r each c e l l

27 whi l e (count<=mpLst . s i z e ()) {

28 i f (count < mpLst . s i z e () && (mpLst . get (count) . getMappingtude ()

− mpLst . get (k) . getMappingtude () < 0 . 01)) {// 0 .01 as the

pre−de f ined g r id width

29 sum x = sum x+mpLst . get (count) . getLongitude () ;

30 sum y = sum y+mpLst . get (count) . ge tLat i tude () ;

31 sum SOG = sum SOG+mpLst . get (count) . getSOG() ;

32 sum COG = sum COG+mpLst . get (count) . getCOG() ;

33 traPointsTMP . add (mpLst . get (count)) ;

34 count++;

35 } e l s e {

36 double x = 0 ;

37 double y = 0 ;

38 double sog = 0 ;

39 double cog = 0 ;

40 x = sum x/(double) (count−k) ;

41 y = sum y/(double) (count−k) ;

42 sog = sum SOG/(double) (count−k) ;

43 cog = sum COG/(double) (count−k) ;

44 // i n s e r t median d i s t anc e c a l c u l a t i o n

45 double [] d i s t an c e s = new double [traPointsTMP . s i z e ()] ;

79

46 f o r (i n t i =0; i<traPointsTMP . s i z e () ; i++) {

47 double lon=traPointsTMP . get (i) . getLongitude () ;

48 double l a t=traPointsTMP . get (i) . ge tLat i tude () ;

49 double d i s t = gpsDistance (l a t , lon , y , x) ;

50 d i s t an c e s [i]= d i s t ;

51 }

52 //medianDistance

53 medianDistance = qu a r t i l e (d i s tance s , 50) ;

54 // f o r each c e l l o f the gr id , c a l c u l a t e i t s GV

55 GravityVector gv = new

GravityVector (x , y , cog , sog , medianDistance) ;

56 ppL . add (gv) ;

57 sum x = 0 ;

58 sum y = 0 ;

59 sum COG = 0 ;

60 sum SOG = 0 ;

61 k = count ;

62 traPointsTMP . c l e a r () ;

63 i f (count==mpLst . s i z e ()) break ;

64 }

65 }

66 re turn ppL ;

67 }

68 /∗∗

69 ∗ i n s e r t i o n s o r t i n g

70 ∗/

71 pub l i c void i n s e r t i o n S o r t (ArrayList<MappingPoint> mpl) {

72 f o r (i n t i =1; i<mpl . s i z e () ; i++) {

73 i n t k = i ;

74 MappingPoint mp = mpl . get (i) ;

75 boolean in s e r tA l r eady = f a l s e ;

76 whi l e (mpl . get (i) . getMappingtude ()<mpl . get (k−1) . getMappingtude ())

{

77 i f (k==1) {

78 mpl . remove (i) ;

79 mpl . add (0 , mp) ;

80 in s e r tA l r eady = true ;

81 break ;

82 }

80

83 k−−;

84 }

85 i f (! i n s e r tA l r eady) {

86 mpl . remove (i) ;

87 mpl . add (k ,mp) ;

88 }

89 }

90 }

91 /∗∗

92 ∗ Retr ive the q u a r t i l e va lue from an array , used f o r gene ra t ing

r e l a t i v e d i s t anc e .

93 ∗ @param va lue s The array o f data

94 ∗ @param lowerPercent The percent cut o f f . For the lower q u a r t i l e

use 25 , f o r the upper−qu a r t i l e use 75

95 ∗ @return the q u a r t i l e va lue

96 ∗/

97 pub l i c double q u a r t i l e (double [] va lues , double lowerPercent) {

98 i f (va lue s == nu l l | | va lue s . l ength == 0) {

99 throw new I l l ega lArgumentExcept ion (”The data array e i t h e r

i s nu l l or does not conta in any data . ”) ;

100 }

101 // order the va lue s

102 double [] v = new double [va lue s . l ength] ;

103 Arrays . s o r t (v) ;

104 i n t n=0;

105 i f (v . l ength==1) {

106 n = 0 ;

107 }

108 e l s e n = (i n t) Math . round (v . l ength ∗ l owerPercent / 100) ;

109 re turn v [n] ;

110 }

111 }

Listing A.6: Extract GVs from a cluster

A.1.3 SSPs Calculation

SSP (Sampled Stopping Point) is a type of points to represent the geo-spatial shape of

a cluster and it does not need to consider the factors of speed or direction (See Section

81

3.3). Here the algorithm of extracting SSPs from stopping clusters (Algorithm 2) has

been implemented in R.

1 ## The main func t i on o f SSP ex t r a c t i on proce s s .

2 ## The parameter o f s t opp ingC lu s t e r s i s the stopping c l u s t e r i n g r e s u l t s

generated by DBSCAN;

3 ## The parameter o f rad iu s here i s the eps de f in ed during the

c l u s t e r i n g proce s s

4 stopPointsSampl ing<−f unc t i on (s topp ingClus te r s , r ad iu s) {

5 c l u s t e r IDs<−unique (s t opp ingC lu s t e r s [, ” c l u s t e r i n d ex ”]) ;

6 end=length (c l u s t e r IDs) ;

7 r e s u l t<− data . frame (Longitude=numeric () , Lat i tude=numeric ()) ;

8 f o r (i in 1 : end) {

9 id=c l u s t e r IDs [i] ;

10 c lu s t e rData<−s t opp ingC lu s t e r s [s t opp ingC lu s t e r s $ c l u s t e r i nd e x==id ,] ;

11 sample num<−sampleNumberEstimate (c lusterData , rad iu s) ;

12 sampledPoints<−samplePointsFromData (c lusterData , sample num, rad iu s) ;

13 r e s u l t<−rbind (r e su l t , sampledPoints) ;

14 }

15 re turn (r e s u l t) ;

16 }

17 ## Sample po in t s from stopping c l u s t e r s such that every sampled po int

i s f a r enough from other sampled po in t s

18 samplePointsFromData<−f unc t i on (data , sample num, rad iu s) {

19 r e s u l t<− sampledPoint<−data [sample (nrow (data) ,1) , 2 : 3] ;

20 count=1;

21 whi l e (count<sample num) {

22 sampledPoint<−data [sample (nrow (data) ,1) , 2 : 3] ;

23 end=nrow (r e s u l t) ;

24 nearFlag=FALSE;

25 f o r (i in 1 : end) {

26 i f (gpsDistance (r e s u l t [i ,] , sampledPoint)<rad iu s) {

27 nearFlag=TRUE;

28 break ;

29 }

30 }

31 i f (nearFlag) {

32 next ;

33 } e l s e {

82

34 count=count+1;

35 r e s u l t<−rbind (r e su l t , sampledPoint) ;

36 }

37 }

38 re turn (r e s u l t) ;

39 }

40 ## Estimate the number o f po in t s to be sampled

41 sampleNumberEstimate<−f unc t i on (c l u s t e rPo in t s , r ad iu s) {

42 min x<−min(c l u s t e rPo i n t s [, ” Lat i tude ”]) ; #downmost po int

43 max x<−max(c l u s t e rPo i n t s [, ” Lat i tude ”]) ; #upmost po int

44 min y<−min(c l u s t e rPo i n t s [, ”Longitude ”]) ; #r ightmost po int

45 max y<−max(c l u s t e rPo i n t s [, ”Longitude ”]) ; #l e f tmos t po int

46 areaEst imate<−(max x−min x) ∗ (max y−min y) ;

47 numberEstimate<− f l o o r (areaEst imate / (p i ∗ rad iu s ˆ2))+1;

48 i f (areaEst imate==0) {

49 numberEstimate=max((max x−min x) , (max y−min y)) / rad iu s +1;

50 }

51 re turn (numberEstimate) ;

52 }

Listing A.7: Extract SSPs from stopping clusters

A.2 Source Code of Anomaly Detection Model

This section is focused on the anomaly detection labeling process. The algorithm

uses as input the clusters described in previous sections, and uses them to generate a

label that informs what type of anomaly was found. The algorithm associates labels

to each AIS data point according to the following:

• 0 stands for distance abnormal

• 1 is normal

• -1 is direction or speed abnormal

• 9 is data incomplete

The R function code, called labelAnomalyPointsWithStopMoveclusters, contains

the function that is responsible for the labeling detection. Observe that this function

uses other helper functions that are later described. The function inputs are the

following:

83

• The inputData parameter is a data frame of the following format: (“MMSI”,

“SOG”, “Longitude”, “Latitude”, “COG”);

• The normalPointsMove parameter is a data frame of the following format: (“clus-

terindex”, “Longitude”, “Latitude”, “SOG”, “COG”, “QuartileDistance”)

• The normalPointsStop is a data frame with the following format: (“Longi-

tude”,“Latitude”)

The algorithm first executes a check to guarantee that data is in correct format, by

verifying if all required fields in inputData are complete. If they are not, the algorithm

adds a label 9, indicating that data is incomplete. This step guarantees that all AIS

coordinates that have missing values are going to be labeled as incomplete.

Next, the algorithm executes a function called generatefeaturesRelativeDistance,

which generates a set of extra distance descriptors for the inputData parameter. This

function is presented in next section. These distances will be used to rank which AIS

points are more abnormal than others. The function getIndexOfFarPointsRELATIVE

calculates which points are abnormal in relation to distance from the clusters. This

function uses two extra parameters as threshold to indicate the anomaly. These values

were empirically found during clustering steps.

If the points are still normal in relation to distance from the clusters, it does not

mean that they are normal in relation to speed and direction. Then a second set of

tests is required to check abnormality. This is started in function getIndexOfNear-

PointsRELATIVE, which simple gets a list of points that are close to the clusters.

After getting the list of close points, the algorithm generates another set of distances

that are used to estimate direction and speed anomalies. This is done in function gen-

eratefeatures4 that calculates the cosine distance, and speed similarities in relation

to the cluster. Next section presents the other sub-routines.

1 ## l ab e l the input data with normal moving c l u s t e r s (GVs) and normal

stopping c l u s t e r s (SSPs)

2 labelAnomalyPointsWithStopMoveclusters<−f unc t i on (inputData ,

normalPointsMove , normalPointsStop) {

3 labe ledData<−inputData ;

4 labe ledData [, ” l a b e l ”]<−l abe ledData [, 1] ;

5 labe ledData [, ” l a b e l ”]<−1 ;

6 #c a l u l a t e f e a t u r e s f o r the 1 s t s tep

7 #ex t r a c t those incomplete data

84

8 end=nrow (labe ledData) ;

9 f o r (i in 1 : end) {

10 i f (! complete . c a s e s (labe ledData [i ,])) {

11 labe ledData [i , ” l a b e l ”]<−9 ;

12 }

13 }

14 p r i n t (” Incomplete r e co rd s l ab e l ed f i n i s h e d ”)

15 featuresOne <− g en e r a t e f e a tu r e sRe l a t i v eD i s t an c e (inputData ,

normalpointsMove = normalPointsMove , normalpointsStop =

normalPointsStop) ;

16 #below th r e sho ld s are f o r Juan De Fuca s t r a i t in paper o f

”Knowledge−based c l u s t e r i n g o f sh ip t r a j e c t o r i e s us ing

dens i ty−based approach”

17 r e l d i s th r e sho ld = 5 . 7 6 5 ;

18 abs d i s th r e sho ld = 94.096

19 #get i n d i c e s f o r f a r po in t s

20 index f a r r e l a t i v e <− getIndexOfFarPointsRELATIVE (featuresOne ,

r e l d i s thresho ld , abs d i s th r e sho ld = abs d i s th r e sho ld) ;

21 i f (nrow (index f a r r e l a t i v e)>0) {

22 f o r (m in 1 : nrow (index f a r r e l a t i v e)) {

23 i f (labe ledData [index f a r r e l a t i v e [m, 1] , ” l a b e l ”] !=9) {

24 labe ledData [index f a r r e l a t i v e [m, 1] , ” l a b e l ”] <−0 ;

25 }

26 }

27 }

28 p r i n t (” F i r s t s tep f i n i s h e d . ”)

29 #2nd step

30 index near r e l a t i v e <− getIndexOfNearPointsRELATIVE (featuresOne ,

r e l d i s thresho ld , abs d i s th r e sho ld) ;

31 i f (nrow (index near r e l a t i v e)>0) {

32 featureSecond<−g en e r a t e f e a tu r e s 4 (inputData [index near r e l a t i v e

[, 1] ,] , normalPoints , r e l d i s th r e sho ld) ;

33 cos ineThresho ld =0.588

34 end2 = nrow (featureSecond) ;

35 f o r (j in 1 : end2) {

36 i f (f eatureSecond [j ,] $ c o sS im i l a r i t y<cos ineThresho ld) {

37 labe ledData [index near r e l a t i v e [f eatureSecond [j ,] $INDEX, 1] ,

” l a b e l ”] <− (−1) ;

38 }

85

39 }

40 }

41 p r i n t (”Data l a b e l p roce s s f i n i s h e d ! ”)

42 re turn (labe ledData) ;

43 }

44 ## generate f e a t u r e s c on s i d e r i ng r e l a t i v e d i s t anc e

45 ## r e a l p o i n t s : the po int to be l ab e l ed

46 ## normalpointsMove : moving c l u s t e r s (GVs)

47 ## normalpointsStop : s topping c l u s t e r s (SSPs)

48 g en e r a t e f e a tu r e sRe l a t i v eD i s t an c e <− f unc t i on (r e a l po i n t s ,

normalpointsMove , normalpointsStop) {

49 end = nrow (r e a l p o i n t s) ;

50 f e a t u r e s = data . frame (d i s t anc e=numeric () ,

r e l a t i v e d i s t anc e=numeric () , SOGRatio=numeric () , COG=numeric () ,

i sS topPo int=i n t e g e r ()) ;

51 f o r (i in 1 : end) {

52 f e a t u r e s =

rbind (f e a tu r e s , c a l c u l a t eD i s t an c e sRe l a t i v e (r e a l p o i n t s [i ,] ,

normalpointsMove , normalpointsStop)) ;

53 }

54 colnames (f e a t u r e s) <− c (”Absolute Distance ” , ” Re l a t i v e Distance ” ,

”SOGratio” , ”COG” , ” i sStopPo int ”) ;

55 re turn (f e a t u r e s) ;

56 }

57 ## ca l c u l a t e the r e l a t i v e d i s t an c e s between the po int and the c l u s t e r s

58 ## r e a l p o i n t s : the po int to be l ab e l ed

59 ## normalpointsMove : moving c l u s t e r s (GVs)

60 ## normalpointsStop : s topping c l u s t e r s (SSPs)

61 c a l c u l a t eD i s t an c e sRe l a t i v e<− f unc t i on (r ea lpo in t , normalpoints ,

normalpointsStop) {

62 index = −1;

63 min d = 1000000000000000;

64 r e l a t i v e d i s t anc e = 1000000000000000;

65 end = nrow (normalpoints) ;

66 end2=nrow (normalpointsStop) ;

67 i sStopPo int = 0 ;

68 #use 0 .5 as s topping po int cond i t ion , we can change i t to another

speed th r e sho ld

69 i f (r e a l p o i n t [1 , ”SOG”]<=0.5 | ! complete . c a s e s (r e a l p o i n t [1 ,])) {

86

70 i sStopPo int = 1 ;

71 f o r (i in 1 : end2) {

72 #ac tua l l y here I should use abso lu t e d i s t anc e in s t ead o f

r e l a t i v e d i s t anc e

73 #I am too lazy to do t h i s and t h i s w i l l not i n f l u e n c e the

r e su l t , j u s t a name

74 d i s t ance tmp = gpsd i s t (r e a l p o i n t [1 , ” Lat i tude ”] ,

r e a l p o i n t [1 , ”Longitude ”] ,

normalpointsStop [i , ” Lat i tude ”] ,

normalpointsStop [i , ”Longitude ”]) ;

75 i f (d i s t anc e tmp < min d) {

76 r e l a t i v e d i s t anc e<−999999999;#stands f o r NA

77 min d <−d i s t anc e tmp ;

78 index <− i ;

79 }

80 }

81 } e l s e {

82 f o r (i in 1 : end) {

83 d i s t ance = gpsd i s t (r e a l p o i n t [1 , ” Lat i tude ”] , r e a l p o i n t [1 ,

”Longitude ”] , normalpoints [i , ” Lat i tude ”] ,

normalpoints [i , ”Longitude ”]) ;

84 qua r t i l eD i s t an c e=normalpoints [i , ” Quar t i l eD i s tance ”] ;

85 i f (qua r t i l eD i s t an c e==0) {

86 qua r t i l eD i s t an c e =1; #to avoid the x/0 e r r o r

87 }

88 r e l a t i v e d i s tmp = d i s t anc e / qua r t i l eD i s t an c e ;

89 i f (r e l a t i v e d i s tmp < r e l a t i v e d i s t anc e) {

90 r e l a t i v e d i s t anc e<−r e l a t i v e d i s tmp

91 min d <−d i s t anc e ;

92 index <− i ;

93 }

94 }

95 }

96 spe ed ra t i o <− (abs (r e a l p o i n t [1 , ”SOG”] −

normalpoints [index , ”SOG”])) / normalpoints [index , ”SOG”] ;

97 d i r e c t i o n d i f<− abs (r e a l p o i n t [1 , ”COG”] − normalpoints [index , ”COG”]) ;

98

99 re turn (c (min d , r e l a t i v e d i s tance , speedrat i o , d i r e c t i o n d i f ,

i sS topPo int)) ;

87

100 }

101 ## used f o r c a l c u l a t i n g the geog raph i ca l d i s t anc e o f two po s i t i o n s

102 ## la t 1 : l a t i t u d e o f po int 1

103 ## lon1 : l ong i tude o f po int 1

104 ## la t 2 : l a t i t u d e o f po int 2

105 ## lon2 : l ong i tude o f po int 2

106 gp sd i s t<−f unc t i on (lat1 , lon1 , la t2 , lon2) {

107 R = 6367000;

108 d l a t = (lat2−l a t 1) ∗ pi / 180 ;

109 dlon = (lon2−lon1) ∗ pi / 180 ;

110 rad l a t1 = l a t 1 ∗ pi / 180 ;

111 rad l a t2 = l a t 2 ∗ pi / 180 ;

112 a = s i n (d l a t / 2) ∗ s i n (d l a t / 2) + (s i n (dlon / 2) ∗ s i n (dlon / 2) ∗

cos (r ad l a t1) ∗ cos (r ad l a t2)) ;

113 c = 2 ∗ atan2 (sq r t (a) , s q r t (1−a)) ;

114 d = R ∗ c ;

115 d ;

116 }

117 ## get the i n d i c e s o f those po in t s which are too f a r away

118 ## t e s t s e t : the data s e t to be l ab e l ed

119 ## d i s i s the th r e sho ld f o r the d i s t anc e

120 getIndexOfFarPoints <− f unc t i on (t e s t set , d i s) {

121 end = nrow (t e s t s e t)

122 index = data . frame (index=numeric ()) ;

123 f o r (i in 1 : end) {

124 i f (t e s t s e t [i ,] $ d i s tance>d i s) {

125 index <− rbind (index , i) ;

126 }

127 }

128 re turn (index) ;

129 }

130 ## get the i n d i c e s o f the po in t s that are near the c l u s t e r s

131 ## they can be used f o r t r a i n i n g or p r ed i c t i n g the speed&d i r e c t i o n

abnormal th ing

132 getIndexOfNearPoints <− f unc t i on (t e s t set , d i s) {

133 end = nrow (t e s t s e t)

134 index = data . frame (index=numeric ()) ;

135 f o r (i in 1 : end) {

136 i f (t e s t s e t [i ,] $ d i s tance<=d i s) {

88

137 index <− rbind (index , i) ;

138 }

139 }

140 re turn (index) ;

141 }

142 ## get the i n d i c e s o f the po in t s that are near the c l u s t e r s r e l a t i v e l y

143 ## they can be used f o r t r a i n i n g or p r ed i c t i n g the speed&d i r e c t i o n

abnormal th ing

144 #th i s i s based on r e l a t i v e d i s t anc e

145 getIndexOfNearPointsRELATIVE <− f unc t i on (t e s t set ,

r e l a t i v e d i s thresho ld , abs d i s th r e sho ld) {

146 end = nrow (t e s t s e t)

147 index = data . frame (index=numeric ()) ;

148 f o r (i in 1 : end) {

149 i f (t e s t s e t [i , ” i sS topPo int ”]==1) {

150 } e l s e {

151 i f (t e s t s e t [i ,] $ Re l a t i v e Distance <=

r e l a t i v e d i s th r e sho ld) {

152 index <− rbind (index , i) ;

153 }

154 }

155 }

156 re turn (index) ;

157 }

158 ## po in t s f a r away from normal po in t s

159 ## th i s i s based on r e l a t i v e d i s t anc e

160 ## r e l a t i v e d i s th r e sho ld : the th r e sho ld f o r moving po in t s

161 ## abs d i s t anc e : the th r e sho ld f o r s topping po in t s

162 getIndexOfFarPointsRELATIVE <− f unc t i on (t e s t set ,

r e l a t i v e d i s thresho ld , abs d i s th r e sho ld) {

163 end = nrow (t e s t s e t)

164 index = data . frame (index=numeric ()) ;

165 f o r (i in 1 : end) {

166 i f (t e s t s e t [i , ” i sS topPo int ”]==1) {

167 i f (t e s t s e t [i ,] $Absolute Distance > abs d i s th r e sho ld) {

168 index<−rbind (index , i) ;

169 }

170 } e l s e {

89

171 i f (t e s t s e t [i ,] $ Re l a t i v e Distance > r e l a t i v e d i s th r e sho ld)

{

172 index <− rbind (index , i) ;

173 }

174 }

175 }

176 re turn (index) ;

177 }

178 ## generate the f e a t u r e s f o r the second l a b e l l i n g s tep : c o s i n e d i v i s i o n

d i s t anc e

179 g en e r a t e f e a tu r e s 4 <− f unc t i on (r e a l po i n t s , normalpoints ,

th r e sho ld r e l a t i v e) {

180 end = nrow (r e a l p o i n t s) ;

181 f e a t u r e s = data . frame (r e l a t i v eD i s t a n c e=numeric () ,

distanceSD=numeric () ,

d i s t anc e=numeric () , c o s S im i l a r i t y=numeric () ,

d i s t a n c e S im i l a r i t y=numeric () , SOG=numeric () , COG=numeric () ,

INDEX=numeric ()) ;

182 p r i n t (” Star t to l a b e l c o s i n e d i v i s i o n d i s t an c e s ”)

183 f o r (i in 1 : end) {

184 index = i ;

185 i f (complete . c a s e s (r e a l p o i n t s [i ,])) {

186 tmp<−c a l c u l a t eD i s t an c e s 4 (r e a l p o i n t s [i ,] , index ,

normalpoints , th r e sho ld r e l a t i v e) ;

187 f e a t u r e s <− rbind (f e a tu r e s , tmp) ;

188 }

189 }

190 colnames (f e a t u r e s) <− c (” r e l a t i v eD i s t a n c e ” , ” distanceSD” ,

” d i s t ance ” , ” c o s S im i l a r i t y ” , ” d i s t a n c e S im i l a r i t y ” , ”SOGdif” ,

”COGdif” , ”INDEX”) ;

191 #distanceSD minimum d i s t anc e con s i d e r i ng speed and d i r e c t i o n

192 re turn (f e a t u r e s) ;

193 }

194 ## subrout ine in func t i on o f ” g en e r a t e f e a tu r e s 4 ”

195 ca l c u l a t eD i s t an c e s 4<− f unc t i on (r ea lpo in t , index , normalpoints ,

th r e sho ld) {

196 min r e l a t i v eD i s t a n c e = 1000000000; # used f o r s t o r i n g the r e l a t i v e

d i s t anc e con s i d e r i ng speed&d i r e c t i o n

90

197 min d = 100000000000; #used f o r s t o r i n g the d i s t ance to the

nea r e s t po in t s c on s i d e r i ng speed&d i r e c t i o n

198 c o s S im i l a r i t y = −1000000; # c o s i n e S im i l a r i t y

199 d i r e c t i o n d i f<−100000000; # d i r e c t i o n d i f f e r e n c e

200 speed <− 100000000; # speed d i f f e r e n c e

201 min d i s t anc e <− 10000000000;#used f o r s t o r i n g the nea r e s t po in t s

without con s i d e r i ng speed&d i r e c t i o n

202 d i s t a n c e S im i l a r i t y <− 0 ;

203 end = nrow (normalpoints) ;

204 f o r (i in 1 : end) {

205 d i s t ance = gpsd i s t (r e a l p o i n t [1 , ” Lat i tude ”] , r e a l p o i n t [1 ,

”Longitude ”] , normalpoints [i , ” Lat i tude ”] , normalpoints [i ,

”Longitude ”]) ;

206 r e l a t i v e d i s t anc e = d i s t anc e / (normalpoints [i ,

” Quar t i l eD i s tance ”] + 0.00000001) ;

207 # below i s to record the nea r e s t po int in the space without

con s i d e r i ng speed & d i r e c t i o n

208 i f (d i s tance<min d i s t anc e) {

209 min d i s t anc e = d i s t anc e ;

210 }

211 i f (r e l a t i v e d i s t anc e < th r e sho ld) {

212 min r e l a t i v eD i s t a n c e=r e l a t i v e d i s t anc e ;

213 # cons id e r those po in t s with smal l speed in the stop area

as normal , that i s , no need to con s id e r d i r e c t i o n

parameter (s e t i t s d i f f e r e n c e to 0)

214 i f (r e a l p o i n t [1 , ”SOG”]<=0.3& normalpoints [i , ”SOG”]<=0.3) {

215 i f (d i s tance<min d) {

216 min d <− d i s t anc e ;

217 }

218 speed <− abs (r e a l p o i n t [1 , ”SOG”]−normalpoints [i , ”SOG”]) ;

219 d i r e c t i o n d i f <− 0 ;

220

221 c o s S im i l a r i t y = 1 ;

222 }

223 e l s e {

224 i f (r e a l p o i n t [1 , ”SOG”]>normalpoints [i , ”SOG”]) {

225 speedRatio <−

normalpoints [i , ”SOG”] / r e a l p o i n t [1 , ”SOG”] ;

91

226 cosSimi lar ityTmp <− cos (((abs (r e a l p o i n t [1 , ”COG”] −

normalpoints [i , ”COG”])) / 180) ∗ pi) ∗ speedRatio ;

227 } e l s e {

228 speedRatio <−

r e a l p o i n t [1 , ”SOG”] / normalpoints [i , ”SOG”] ;

229 cosSimi lar ityTmp <− cos (((abs (r e a l p o i n t [1 , ”COG”] −

normalpoints [i , ”COG”])) / 180) ∗ pi) ∗ speedRatio ;

230 }

231 i f (cosSimilarityTmp>c o s S im i l a r i t y) {

232 min d <−d i s t anc e ;

233 d i r e c t i o n d i f<−

abs (r e a l p o i n t [1 , ”COG”]−normalpoints [i , ”COG”]) ;

234 speed<−abs (normalpoints [i , ”SOG”]− r e a l p o i n t [1 , ”SOG”]) ;

235 c o s S im i l a r i t y<− cosSimi lar ityTmp ;

236 }

237 }

238 }

239 d i s t a n c e S im i l a r i t y <− (min d i s t anc e+1)/ (min d+1)

240 }

241 re turn (c (min r e l a t i v eD i s t an c e , min d , min d i s tance , c o sS im i l a r i t y ,

d i s t an c eS im i l a r i t y , speed , d i r e c t i o n d i f , index)) ;

242 }

Listing A.8: Anomaly Detection

