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Abstract

Machine Learning (ML) was employed to identify features in MEG recordings of 16

participants performing MI. ML was applied to data obtained using three methods:

1) two sources localized to somatosensory cortex; 2) all 306 MEG sensors; and 3) 80

anatomical sources localized via known coordinates. A linear kernel support vector

machine was fit to frequency features extracted by fast fourier transform and accuracy

(ability to accurately class trials as rest or imagery) evaluated with leave one batch

out cross validation. The two-source model performed poorly with accuracy of 0.7,

while the 80-source and sensor-level models performed well with accuracy greater

than 0.9. Sensor-level models selected sensors analogous to C4, FC4, and F10 as

key sensors. Use of ML to identify features in MI-based neuroimaging data can be

applied to make MI interventions clinically feasible options through reducing cost,

setup time, and expertise required to employ neurofeedback.
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Chapter 1

Introduction

1.1 Executive Summary

There are 50 000 strokes every year in Canada, and over 300 000 Canadians currently

live with the effects of stroke [3]. Stroke rehabilitation depends heavily on Repetitive

Task Practice (RTP), targeted physical therapy focused on restoring capacity in key

quality of life tasks. RTP drives plastic changes in the brain which allow it to relearn

and reconnect lost functionality. For patients with a fully or mostly paretic limb, RTP

is not an option, and alternative therapies are required. MI, mentally rehearsing an

action without executing it, has been shown to activate many of the same brain

regions as RTP, though at reduced amplitude [2]. MI intervention could be used to

provide therapy to patients who have completely lost motor function in a limb, or as

an adjunct to traditional therapy when patients are exhausted or a trained therapist

is unavailable.

MI presents its own set of challenges. It’s difficult to quantify MI ability, deter-

mine how well a patient is performing MI, or even to determine whether the patient

is performing MI at all. Neurofeedback, the process of analyzing brain activity in real

time and using it to generate feedback for the participant, could be used to overcome

all of these problems and make MI into a viable therapeutic tool for stroke rehabili-

tation. The therapeutic effects of MI have been shown to improve with provision of

neurofeedback.

As characterizing the neural activity patterns which underly MI is still an active

field of research, it would be helpful to have a data driven method for extracting the

signal components which best characterize MI in order to better inform our choice

of sources for provision of feedback. Machine learning, the study of building predic-

tive models from complex multidimensional data sets, can provide tools which allow

us to take a large quantity of neuroimaging data and extract those features which

best discriminate different states. Machine learning presents several advantages over

1
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more traditional statistical analysis. Rather than making a set of assumptions and

testing the probability of the gathered data under those assumptions, machine learn-

ing assumes only that the labelled classes can be predicted from the gathered data,

and experimentally gives a measure of confidence in this hypothesis in the form of

the cross validated accuracy. If the model built can successfully predict which dis-

tribution new data was drawn from, we can be very confident the model reflects the

underlying distributions in our data set well. We will employ a linear kernel support

vector machine to classify trials based on whether a participant was performing MI

or resting quietly. Using the learned model, we will identify the key features which

discriminate MI from Rest in frequency space, and identify potential features to use

in the provision of neurofeedback.

Data was previously gathered using MEG from a pool of 18 participants, two

of which were rejected due to excessive electromyographic activity during imagery.

We sampled this data in three ways: two sources in right and left S1 as identified

by median nerve stimulation and equivalent current dipole estimation, all 306 MEG

sensors, and finally 80 beamformed sources with anatomical coordinates drawn from

the literature. We investigated the locations and frequencies of brain activity in all

conditions.

We found that while the two sources localized by median nerve stimulation pro-

vided insufficiently reliable data to generalize across participants, the sensor and 80

source level models could accurately predict whether a participant was performing

MI in as yet unseen participants, suggesting these models have captured the general

pattern of MI shared across most participants. The models found weightings which

share many features with the results of other Functional Magnetic Resonance Imag-

ing (fMRI) and MEG studies. Changes in the beta frequency band (15-30 Hz) were

weighted in sources including centrolateral and ventrolateral prefrontal cortex, dorso-

lateral and ventrolateral premotor cortex, S1, and superior parietal cortex. Changes

in the mu or alpha bands (8-12 Hz) were weighted in ventral temporal cortex, thala-

mus, S1, and superior parietal cortex. Feedback effects observed, including dramatic

changes in lateralization of MI activity, agree well with previous work. Using source

space projection, we localize the differences between these models to specific anatom-

ical regions.
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The sensor model was employed to test a data driven system for identifying a

reduced set of ten sensors which retained high classification accuracy, potentially

facilitating development of a system with a small electrode set for providing clinically

feasible neurofeedback in a small form factor and with fast setup time. There are

many potential algorithms for identifying the optimal sensors from the data, and

further work is required on a larger data set, with the results empirically validated,

before a prototype can be developed. Once in the hands of clinicians, this device

would allow widespread use of neurofeedback based MI interventions for patients at

home, resting in the hospital, or during regular clinical visits.

1.2 Motivation

1.2.1 The Impact of Stroke

Stroke is an interruption of blood flow to, or the hemorrhaging of blood vessels in,

the brain, killing affected neural populations and resulting in commensurate loss of

function. There are 50 000 strokes every year in Canada, and over 300 000 Canadians

currently live with the effects of stroke. Deficits in speech, writing, motor function,

and cognitive capacity are common, and in many cases are never fully restored even

after years of therapy. Many cannot return to work, and the ongoing costs of stroke in

terms of lost quality of life, productivity, and dependence on the health care system

for continuing care have been estimated to be as high as $3.6 billion annually by the

Public Health Agency of Canada in their 2009 report [3].

1.2.2 The Current State of Post-Stroke Neurorehabilitation

The severity of stroke related impairment has prompted extensive investigation into

the time course of and mechanisms underlying stroke recovery. It has long been ob-

served that in the first 2-8 weeks post stroke a period of rapid spontaneous recovery

begins, followed by a plateau which typically remains stable in the absence of in-

tervention [4][5]. In rats, increased concentrations of GAP43, a protein produced in

large quantities in neuronal growth cones and associated with long-term potentiation,

was observed 3-14 days post lesion, while increased concentrations of synaptophysin,

a critical synaptic vesicle protein, from 14-60 days post lesion [6]. This suggests that
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the spontaneous recovery period after stroke consists of an early reweighting phase

where connection strengths are relearned in the absence of the damaged region, and a

longer late phase of gross rewiring as new synapses are formed in an attempt to create

new pathways which route around the damage. The goal, then, is to both maximize

the benefit of this period of heightened plasticity and extend its length.

Experience dependent plasticity in primary motor and premotor cortices have

been observed as early as the 1950’s in the work of Glees & Cole [7] in monkeys.

More recent neurophysiological work by Nudo et al [8] has shown that after lesion

of the Dorsal Forelimb (DFL) region of motor cortex in squirrel monkeys, in the

absence of task specific activity involving the DFL, the remaining region devoted

to the DFL decreased in size. When instead the monkeys were given a course of

rehabilitative therapy involving RTP using the DFL, the remaining area of motor

cortex dedicated to the DFL increased in size by taking over adjacent regions, and

this was strongly correlated with improved task performance [9]. When repeatedly

asked to perform a challenging task, dramatic increases in cortical area devoted to

involved sensory and motor regions can be observed in healthy squirrel monkeys [10],

with preferential recovery of areas related to these tasks post lesion [11]. Even in

subcortical stroke experimental work has shown that cortical reorganization is key

to functional recovery [12], likely via rerouting of connections between cortex and

damaged subcortical regions.

Experience dependent plasticity, then, is a clear candidate for an effective interven-

tion to maximize the restoration of function during the spontaneous recovery period

and beyond. Studies examining neuroplastic changes induced in stroke patients by

therapy have confirmed many of the results found in primate and rat models [13],

unfortunately plasticity can be a double edged sword. Mounting evidence has shown

that aspects of spontaneous recovery can be harmful to long term functional recovery

[4]. Compensation with the unaffected limb causes increases in limb representation in

the contralesional hemisphere, though it can be prevented with RTP [14]. Reciprocal

inhibition between motor cortices causes further reductions in cortical representation

in the lesioned hemisphere as it can no longer compete. Without therapeutic inter-

vention, this results in further functional deficits in the impaired limb and near total

reliance on the unimpaired limb for day to day tasks.
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In patients who have stroke induced loss of motor function, exercise therapies

have proven themselves highly effective methods of driving plasticity and restoring

functionality. Use-dependent therapy, a focus on repeating task specific motions

undertaken frequently during everyday life, can preferentially restore functionality

which most improves long term quality of life. It serves as a critical component of

modern clinical stroke rehabilitation strategies supported by the Canadian Guide on

stroke best practices [15]. Constraint induced movement therapy is one example of

highly effective use dependent therapy [16], constraining the unimpaired limb to force

use of the impaired limb. It improves compliance and focuses on forcing the patient

to rely on the damaged regions of cortex.

Converging evidence points to a mechanism by which forced reliance on the

lesioned hemisphere may lead to improved patient outcomes post-stroke. Inter-

hemispheric inhibition from contralesional M1 to ipsilesional M1 has been shown

to be higher post-stroke, likely because of the inability of the lesioned hemisphere to

generate reciprocal inhibition of sufficient magnitude [17]. In controls during unilat-

eral motor tasks both primary motor cortices enter into an inhibitory competition,

with the dominant hemisphere for the task winning out and leading to facilitation.

In patients post-stroke, the lesioned hemisphere often cannot win the inhibitory com-

petition, even when it is the designated hemisphere for the task. This leads to a

compensatory reliance on the contralesional hemisphere, and inferior outcomes [18].

A longitudinal fMRI study of 12 patients post-stroke by Askim et al [19] found lat-

erality index, the degree to which Blood Oxygen Level Dependent (BOLD) activity

during a unilateral motor task of the contralesional hand was stronger in the ipsile-

sional hemisphere, was correlated with improvement on the Motor Action Scale and

modified Rankin Scale, among many others. They also found increases in contrale-

sional Secondary Somatosensory Cortex (S2) BOLD activity to be correlated with

recovery. Dong et al [20] studied 8 patients post-stroke and similarly found laterality

index of the BOLD signal towards the ipsilesional hemisphere was correlated with

scores on the Wolf Motor Function Test. Lateralization of activity to the ipsilesional

cortex is therefore an important goal for any therapeutic intervention post-stroke.

In addition to changes in lateralization, constraint induced movement therapy

improves plastic reorganization in and around task related areas. Liepert et al [21]
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measured the extent of hand representation in both hemispheres of motor cortex via

TMS in 13 stroke patients with upper limb hemiparesis in the chronic stage before

they were given a 12 day course of constraint induced movement therapy. Initially

the contralesional hemisphere showed a significantly larger hand representation. After

therapeutic intervention the extent of hand representation was measured again, and

found to be not significantly different across hemispheres. This relative equalization

of representation size was correlated with functional recovery as measured by the

motor activity log. This is compelling evidence supporting the beneficial effects of

use-dependent therapy in driving plastic changes which underly functional recovery.

Unfortunately, as these techniques require prolonged exercise and stroke patients

are easily susceptible to fatigue, they can only be performed for a limited period each

day. Further, use-dependent therapies are not an option for many patients who are left

with a completely paretic limb post stroke. A new therapeutic paradigm is required

to restore these patients to the point where they can perform, and potentially as an

adjunct to improve, these more traditional therapies. Transcranial magnetic stimu-

lation, stem cell treatments, and neuroregenerative drug therapies are all promising

potential avenues for study, but it would be far simpler if a method could be de-

vised to offer the same gains and activate the same networks as proven use-dependent

exercise therapies without the requirement to actually move the impaired limb.

1.3 Motor Imagery

MI is the recruitment of motor networks for a planned action in the absence of full

execution. The actual motion performed during neurorehabilitative physical therapy

are not important for the exercise effects, but for the brain activity it drives. Any

methodology which generates the same patterns of brain activity should be simi-

larly effective at driving plastic changes which restore functionality. Neuroimaging

and electrophysiological recordings have shown that MI occupies a middle ground

between Motor Execution (ME) and planning, activating many of the same networks

but without full execution, and thus without the same proprioceptive and kinaes-

thetic feedback. Several studies have shown that, as MI recruits the same regions

of the motor network as actual execution [22][2], neurological insult which prevents

action may also prevent effective imagery of that same action [23]. Page et al [24]
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administered a course of task specific practice and MI based therapy to 10 stroke pa-

tients with loss of upper limb function over three weeks and found improvements on

the Fugl-Meyer assessment and the Action Research Arm Test. In addition, increased

activation in premotor and primary motor areas bilaterally and superior parietal cor-

tex ipsilateral to the affected hand, and decreased activation in the rest of parietal

cortex ipsilateral to the affected hand was found during wrist flexion post treatment

as measured by fMRI. These findings together suggest that while stroke patients with

motor deficits may find MI related to the affected limbs very challenging, improve-

ment in task specific MI ability has the potential to support plastic changes with

commensurate improvements in task specific functional measures.

1.3.1 Motor Imagery as an Adjunct to Exercise Therapy

MI has been shown to reduce the amount of subsequent RTP required to reach a fixed

level of proficiency when compared to participants who trained using RTP alone [25].

This improvement in skill acquisition is encouraging for MI’s potential as a therapeutic

adjunct to physical therapy, allowing patients to continue to improve while unable

to participate in further physical therapy either from exhaustion or lack of available

hospital resources.

Several studies have had success in using MI therapies alone, showing limited im-

provements on a variety of functional measures, but widely differing evaluation metrics

continue to make comprehensive evaluation challenging [26][27][28]. The wide variety

of functional outcome measures chosen and the difficulty or impossibility of trans-

lating one score to another, combined with variability in dose and imagery type all

make meta-analysis all but impossible in many cases. Further, it is difficult to quan-

tify how skilled participants are at performing MI, or even whether they are following

the instructions at all. Without neuroimaging or electrophysiological recording while

imagery is being performed, evaluating task performance is completely impossible. As

the patterns of activity that lead to optimal recovery are unknown and may vary from

participant to participant, determining how close any given participant is to achiev-

ing this ideal imagery, or even minimally efficacious imagery, is difficult. The best we

can do at the moment is to identify general directions of change in activity patterns

which we believe will lead to improved functional outcomes, for example encouraging
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lateralization to the ipsilesional hemisphere, thus encouraging dependency upon the

damaged region and avoiding compensation with the undamaged hemisphere.

In order for patients to progress along these desirable pathways to improved MI,

feedback must be provided. Feedback is a key factor in the learning process, as with

no ability to assess and correct error, nor gauge improvement it is both difficult to

maintain motivation and quantify progress towards targets [29][30]. Neurofeedback

has the potential to dramatically improve the efficacy of MI as a standardized thera-

peutic tool.

1.4 Neurofeedback

Neurofeedback, the real-time visualization of a participant’s measured brain activity,

offers both a quantitative evaluation metric and a potentially effective training tool

for improving patient’s ability to perform MI. By closing the feedback loop between

brain activity and imaging (Fig. 1.1) it allows patients to dynamically alter their own

brain activity in response to real time neuroimaging visualizations. As a training

tool, neurofeedback has been used both for Brain Computer Interface (BCI) [31], the

measurement of neural activity as input for a computer system, and altering activity

patterns in target brain regions [32].

Research has shown that neurofeedback can improve the ability of MI to mod-

ulate brain activity, which can lead to clinically relevant behavioural outcomes and

improvements on functional measures. Boe et al [1] provided participants with neu-

rofeedback over three sessions based on cortical oscillations in the beta (15-30 Hz)

frequency band from sources localized to bilateral S1 using median nerve stimula-

tion. Neurofeedback consisted of two bars, with a height proportional to the negative

log change in beta power from baseline. During an imagined left handed 4-finger

7-button press sequence task, participants were better able to lateralize beta activ-

ity to the contralateral hemisphere and demonstrated greater beta desynchronization

in primary somatosensory cortex during imagery versus healthy controls who per-

formed MI in the absence of neurofeedback. All participants were right handed, and

participants who received neurofeedback were instructed to maximize the size of the

bar representing right hemisphere beta ERD and minimize the bar representing left

hemisphere beta ERD.
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Signal Acquisition

Figure 1.1: Neurofeedback is the process of recording signals generated by neural ac-
tivity, processing those signals, feeding the signal through a BCI program, generating
feedback in some sensory modality, and presenting it to the participant, all in real or
near-real time.

Similarly, using fMRI neurofeedback, Berman et al [33] demonstrated patients

were able to significantly increase the magnitude of the BOLD signal response in

contralateral M1 when training with a two finger tapping task. Unexpectedly, par-

ticipants were unable to achieve the same effect while performing MI of the same

task despite showing BOLD activity in many regions associated with MI. Chiew et al

[34] found 7 of their 13 participants who received fMRI based neurofeedback based

on degree of lateralization of BOLD signal in M1 were able to significantly increase

M1 lateralization over the sham group who received pre-recorded NF from one of

the NF group participants. Participants alternated blocks performing left and right

handed kinaesthetic MI, with the degree of lateralization required for success in each

trial increasing or decreasing as a function of number of successive successful or failed

trials, respectively. This difficulty in controlling M1 BOLD activity may simply be a

variability in dosage requirements across the population, a limitation of fMRI based

neurofeedback, or it may indicate potential difficulty in rehabilitating M1 lesions using

MI.

A direct examination of the impact of an EEG based MI neurofeedback system

on measures of functional recovery found correlations between altered lateralization
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of brain activity in patients given neurofeedback and improvements in subjective and

objective functional measures, providing preliminary evidence for the efficacy of neu-

rofeedback assisted MI in a clinical setting [35]. Pichiorri et al [36] compared the

effects of MI intervention on functional outcome measures in stroke patients with and

without neurofeedback, finding increases on the Fugl-Meyer Assessment, increases in

contralateral beta desynchronization, and increases in inter-hemispheric connectivity

in the sensorimotor network with provision of feedback. Their feedback system de-

pended on manual feature extraction performed by neurologists examining patient

EEG data.

1.4.1 Neurofeedback Presentation

In order to provide neurofeedback, one must first identify the spatiotemporal com-

ponent of the signal which will form its basis. Correctly isolating activity from task

relevant anatomical areas of the brain, and identifying signal components and rele-

vant frequency bands is likely key to providing accurate and efficacious neurofeedback.

The sheer volume of information provided by modern neuroimaging techniques can

make this process challenging, especially for tasks within as yet unknown networks.

Brain activity in several key frequency bands related to ME and MI have been ex-

plored in the literature, including mu (8-14 Hz), beta (15-30 Hz), and gamma (30-100

Hz). Beta and gamma have been further subdivided into low beta (15-20 Hz), high

beta (20-30 Hz), low gamma (30-60 Hz) and high gamma (70-90 Hz), each based on

differential time course and the circumstances under which they are modulated [37].

Modulation of beta oscillations in primary sensorimotor areas has been observed

in both active and passive motion, imagery, in anticipation of motor related cues,

when observing movement, and during sensory stimulation, to list only the most rele-

vant examples outlined in Kilavik et al’s [38] review of sensorimotor beta oscillations.

Motor activity consistently generates strong beta Event Related Desynchronization

(ERD) followed by a transient Post-Movement Beta Rebound (PMBR) after motor

activity ends [39]. The beta ERD persists for as long as movement [40] or gradations

in force [41] continue, with no apparent sensitivity to type of movement in degree of

beta ERD [40], but movement type and limb dependent changes in peak frequency

[42]. Beta ERD can also be generated by other motor-related tasks, most notably
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including MI [2][43]. Mu oscillations also show ERD in sensorimotor cortex during

motor activity and imagery, but without an analogous post-movement rebound [39].

There are many competing hypotheses for what functional role, if any, beta ERD and

the PMBR play in motor function. It has been suggested the beta rhythm represents

an idling state for sensorimotor cortex [44], disrupted when activity is required, with

the PMBR enforcing the idle state to halt further motion. This is supported by the

correlation between beta ERD and the BOLD signal [45]. If beta ERD is a measure

of neural population activity, it should correlate with the BOLD measure of cortical

energy expenditure. The sensorimotor beta rhythm may also represent a sensory inte-

gration process, similar to proposed mechanisms of gamma activity in primary visual

cortex [46], taking in somatosensory feedback to evaluate the completed movement

and plan the next [47]. Cassim et al [48] found ischaemic nerve block of the arm -

restricting blood flow until sensory afferents became non responsive as assessed by

the absence of the median sensory nerve action potential - prevented PMBR after a

finger movement task, suggesting it is related not to movement termination but ter-

mination of movement related sensory feedback. Beta oscillations have been shown

to increase corticomuscular coherence, corticocortico coherence, magnitude of sensory

evoked potentials, and increases in information flow throughout the motor network

as measured by Granger causality, leading some to hypothesize that beta rhythms

are part of a system for information transfer between cortical regions [38].

Transient high gamma (70-90 Hz) bursts have also been recorded early in ME [49].

Unlike beta ERD, this transient high gamma ERS has an amplitude proportional to

the intensity of movement, is only generated during active movement, and is highly

somatotopically localized [50]. This suggests high gamma ERD is very tightly linked

to motor commands, and not to sensory feedback.

In order to improve the viability of MI neurofeedback for treating loss of motor

function post stroke, we need to identify the optimal set of spatiotemporal features

to display to the participant. These are likely the same features which are shared

with ME activity in healthy participants, as the desired goal is to guide the patient

towards this more functional pattern of activity. Kraeutner et al [2] showed that

in the beta band ME and MI share common activation patterns in premotor and

supplementary motor areas, differing in degree of beta ERD in M1 and S1. If the
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primary differences between MI and ME are simply a matter of degree, then providing

feedback which improves MI performance as defined by degree of desynchronization

in select frequency bands in specified brain regions should yield many of the same

therapeutic effects of RTP.

Neurological insult may change these patterns dramatically, creating both advan-

tages and disadvantages to a more personalized approach focused on learning the

features which characterize MI for a single patient. On the one hand, they may not

be capable of generating the kind of activity typical of a healthy population; per-

haps stroke has caused another neural population to adopt the function of a lesioned

region, and the general model doesn’t account for this. By identifying the features

which characterize this particular participant’s MI, we may be able to account for

this and provide feedback which will guide this new arrangement to maximally re-

store functional capability. On the other hand, to learn to provide feedback from

poor quality or ineffective imagery could result in leading the patient into perpetuat-

ing ineffective patterns like contralesional control. The ability to identify the features

which best characterize high quality MI in the general population, and potentially

to automatically tailor this feedback system to an individual participant without the

need for clinician intervention would therefore be ideal for making neurofeedback a

practical and clinically relevant tool.

1.5 Machine Learning

1.5.1 The Principles of Learning

Machine learning is a field of computer science devoted to the study of how to ex-

tract predictive models from complex data sets, broadly divided into supervised and

unsupervised learning techniques. Data is composed of sets of vectors of features,

also called exemplars, each of which may be anything from a voltage sample recorded

from a sensor to number of packs a day smoked by a patient. Supervised learning

attempts to predict the class of new data after training on data labelled with known

correct class information, while unsupervised learning attempts to automatically iden-

tify patterns in unlabelled data. As we are interested in the differences between easily

labelled data (imagery vs rest, feedback vs control), supervised learning is ideal for
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this task. Many techniques in supervised learning rely on the selection of a decision

boundary, a hyperplane in the space formed by the feature set such that new data

points can be accurately classified based on which side of the boundary they fall upon.

The standard selection process employs some modified variant of gradient descent,

iteratively shifting the decision boundary in the direction that optimally improves a

fitness function like mean squared error or classification error until some local minima

is found. Many techniques are employed to avoid settling on poor local minima, but

identifying the global minima is impossible in the absence of perfect knowledge of the

problem space, and as such the best solution found within some bounded search must

be accepted.

Machine learning offers several key advantages over simpler statistical analysis.

Learning algorithms cannot simply be satisfied with an effect size and confidence

intervals indicating that two groups are different, they must find patterns in the

data which reliably allow individual exemplars to be assigned to groups. Further,

the ability of the generated model to make predictions allows it to be easily and

concretely validated in applications like BCI. The strict demands of prediction and

focus on reliably differentiable features generates models which better characterize

the essential differences between the phenomena of interest [51].

1.5.2 Evaluation

In supervised learning, the simplest way to evaluate the effectiveness of the model is

accuracy, proportion of correctly classified trials, on a withheld data set. The more

data withheld, the more robust the evaluation but the less data available for training.

This problem can be obviated by the use of cross validation, building multiple models

withholding a different segment of the data for testing each time until the model has

been evaluated on all of the data without ever having seen it during training [52].

There are a variety of methods of splitting data for cross validation, here we use

Leave One Batch Out (LOBO) cross validation, with each batch corresponding to a

participant. All trials except those of one participant are used for training, then the

model is tested on the trials of the withheld participant and the process is repeated,

withholding a different participant each time. The difficulties of generalizing models

across participants makes this a more accurate test of whether the model has genuinely
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extracted patterns which broadly represent the state of interest - in this case, MI.

1.5.3 The Importance of Representation

Much as arabic numerals allow much faster recognition of patterns in numbers than

their roman counterparts, the way in which data is represented when presented to

a learning algorithm is key to its success. A linear decision boundary cannot learn

to discriminate between one class surrounded by another, but a transformation into

polar coordinates can make that non-linear problem easily solved by a linear classi-

fier. When applying machine learning to neuroimaging, the feature set is typically

composed of sensors and sources used, and whether signals are presented in the time

domain, frequency domain, or both. Preprocessing and feature conditioning are also

key steps in establishing a tractable problem for the learning algorithm. The features

of interest for classifying a particular pattern of neural activity can vary widely, even

across individuals. The challenge of identifying which of these features is best suited

to identifying MI will be a central focus of this research.

Considerable work has been done on paring down the large volume of information

obtained by whole head analysis into only the most salient features. Santana et

al [53] demonstrated superior accuracy when classifying direction of attention from

MEG data by using an adaptive sensor and frequency selection system. An adaptive

source level selection system may be even more powerful, and capable of dynamically

determining which brain regions most reliably alter their patterns of activity for an

individual or participant group.

Herman et al [54] found that amongst power spectral density, Continuous Wavelet

Transform (CWT), Short-Time Fourier Transform (STFT), and several other repre-

sentations that power spectral density was the most informative for discriminating

right/left MI, and that amongst Linear Discriminant Analysis (LDA), Linear Support

Vector Machine (LSVM), and two Gaussian kernel Support Vector Machines (SVMs),

that the linear classifiers had the best accuracy and generalizability. Key features in

the frequency or size domains during MI included the beta band (typically 15-30 Hz),

and the mu band (8-12 Hz).



15

1.5.4 Recursive Feature Elimination/Addition

For learning algorithms which assign importance to each feature, the algorithm itself

can bootstrap feature extraction. By taking the full set of features and iteratively

removing the least discriminative features, or taking an empty set of features and it-

eratively adding the most discriminative, a reduced feature subset can be built. This

subset allows building smaller, faster training models which are often more accurate

as noisy, misleading, and redundant features are removed. Recursive feature addition

has the advantage of being faster running, especially with a small number of tar-

get features, as it takes much less time to train models with few features. Recursive

Feature Elimination (RFE), while taking longer to compute, can better capture infor-

mative combinations of features; if two features are valuable together but individually

uninformative, recursive feature addition will likely never select them.

1.6 Linear Discriminant Analysis

LDA seeks to explain a discrete dependent variable, class, by a linear combination of

the continuous independent variables, the features. In this respect, it can be consid-

ered the complement of the Analysis of Variance (ANOVA), which seeks to explain a

continuous dependent variable by a linear combination of discrete independent vari-

ables. LDA also shares similarities with Principal Components Analysis (PCA), in

that both seek to find a projection onto the axes of greatest variance, but PCA is

interested in projecting the data along the axes of greatest absolute variance, while

LDA is only concerned with projecting onto the axes along which there is great-

est inter-class variance. Like the ANOVA, LDA assumes the features are normally

distributed, and that each feature shares the same covariance.

The simplicity and low computational cost of LDA make it useful in applications

where learning and classification must be performed very quickly, or where it is de-

sirable that the model be easily interpretable. It has been employed successfully in

many BCI and neurofeedback systems [55]. Tangwiriyasakul et al [56] employed LDA

and common spatial patterns filtering to classify MI in stroke patients measured with

EEG. They found it was possible to train a model based on healthy contralesional

activity and predict ipsilesional MI with an accuracy of 0.7 using 3 or 11 EEG sensors
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positioned near M1, or up to 0.9 using 45 sensors. Yue et al [57] employed LDA to

classify MI in a 15 sensor EEG BCI to control a simulated pendulum balanced on a

cart. Five of their six participants were able to successfully use MI of the left or right

hand to move the cart and keep the pendulum stable for up to 35 seconds.

1.6.1 Computing Fisher’s Linear Discriminant

The degree to which each linear combination of features is a good axis to project the

data onto to achieve optimal class separation is evaluated by the following equations:

J(v) =
(µ1 − µ2)

2

s21 + s22
(1.1)

sc =
n∑

i=1

(ci − µc)
2 (1.2)

where v is the axis, J(v) is Fischer’s Discriminant, µc is the mean of class c on

axis v, sc is the scatter along v of class c, and ci is the ith sample of class c along v.

Maximizing Fisher’s Discriminant thus maximizes the difference between class means,

while minimizing within class variance. This helps determine the most useful linear

combination of features, and can be used as a simple linear classifier by choosing a

linear decision boundary along this most discriminating axis.

1.7 Support Vector Machines

SVM were developed by Cortes & Vapnik [58] as a practical implementation of sta-

tistical learning theory capable of tackling difficult supervised learning problems with

high dimensionality while maximizing generalizability. Statistical learning theory ex-

amines the problem of extracting from an arbitrary labelled data set the function

which generated the original classifications. SVMs have achieved strong results in a

wide variety of machine learning problems, including many applications in the BCI

and neuroimaging domains [55].

1.7.1 Finding the Decision Boundary

The training data is composed of input vectors, which are transformed into some

higher dimensional feature space where the data is linearly separable. By choosing
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different kernel functions arbitrary decision surfaces in input space can be created,

giving the SVM the capacity to find a computationally much more tractable linear

decision boundary in feature space to solve a wide variety of nonlinear problems.

This mapping can be extremely expensive to compute due to the high dimensionality

of the space, but we only require the dot product between our learned weights and

our feature vector in this space to produce a prediction. By using the kernel trick,

this dot product can be computed for certain kernel functions without solving the

full mapping. Once in feature space the parameters of a hyperplane must be chosen

such that they maximize the margin between this decision boundary and the training

vectors, as seen in Fig. 1.2. This convex optimization problem is typically formulated

in either dual or primal form, with dual form being best suited to the case where the

number of features exceeds the number of data points. Conveniently, this compu-

tationally expensive optimization problem can be vastly simplified by choosing only

to optimize the decision boundary with respect to a subset of training vectors which

best represent the boundary between the two classes - the eponymous support vectors.

This also serves to increase the probability of accurately classifying new exemplars,

improving generalizability by reducing the risk of overfitting.

1.7.2 Structural Risk Minimization

The desire to accurately classify all training exemplars can harm generalized accuracy

on new data via overfitting - learning a needlessly complex model which attempts to

account for noise or outliers. Vapnik and Chervonenkis outlined the VC Dimension

to quantify this tradeoff between accuracy on the training set and model complexity

[59], and the penalty or soft margin parameter C of the SVM determines the degree to

which one or the other is favoured. By properly choosing C during parameter selec-

tion, the model can settle on a suitable level of complexity to capture the patterns in

the data without sacrificing the ability to smooth out noise to improve generalization.

1.7.3 Regularization

Regularization is a tool for minimizing overfitting by penalizing overconfidence in

models. L1 regularization roughly corresponds to a laplacian prior and tolerates

individually very high and low weights, while L2 regularization corresponds to a
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Figure 1.2: Optimizing the margin between the decision boundary and the two classes
minimizes the probability of classification error on new data.

gaussian prior and thus is less tolerant of outlying weights. L1 regularization leads

to very sparse models, which makes it useful for encoding sparse signals or feature

selection, but is generally outperformed by L2 regularization in classification tasks.

1.7.4 Related Work

Yi et al [60] used EEG to classify single and multi-limb MI involving one hand, one

foot, both hands, or either hand paired with the contralateral foot. Several variants

of common spatial patterns filtering were compared for feature extraction and SVM

used for classification, yielding a mean accuracy of 0.7 on this seven class problem.

Tam et al [61] employed RFE using SVM accuracy as the evaluation metric to

identify a minimal set of EEG electrodes for driving a MI vs rest based BCI to ad-

minister functional electrical stimulation to five stroke patients. They found that

between 10 and 20 of their 64 electrodes yielded over 0.9 accuracy, and that repeated

calibration sessions contributed little over the first. This suggests inter-session vari-

ability is not a large factor in personalizing neurofeedback, dramatically reducing the

amount of training and preparation time required to deploy such a system. Despite

this accuracy, there were only small functional improvements on the Action Research

Arm Test and Fugl-Meyer test.
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Adaptive learning systems may be an effective synthesis of generalized and per-

sonalized models. Spüler et al [62] explored an adaptive SVM based classification

system providing online feedback for MI and mental subtraction. Their system esti-

mated the posterior probability of a given trial being correctly classified, and if it was

over a threshold pt, they added it as a training exemplar of that class and updated

the model. They found that when building personalized models on one session and

testing it on a second, it outperformed several online and offline learning techniques,

yielding mean accuracies of 0.897 offline and 0.846 online. It may be possible to

adapt this methodology by providing a generalized model to achieve immediate basic

functionality without training and have it adaptively tailor itself to the participant.

In general other studies employing ML in the neurofeedback domain have built

subject specific models. Weights and, when used, sensor elimination are fit to an

individual and evaluated on that same individual, as in Yi et al [60] and Tam et al

[61]. Lal et al [63] explored SVM based RFE for sensor selection in a MI BCI, but

only used five participants, having rejected three, and once again performed within-

participant testing for their sensor selections and used 10-fold cross validation within

each participant to evaluate accuracy. Ideally we would like a subset of sensors which

can be used for any participant, and to empirically test its ability to generalize across

participants.

Unsupervised learning is typically what is used in zero training BCI systems,

learning to classify online as data is gathered, and thus avoiding training scans. Kin-

dermans et al [64] explored an unsupervised training approach which used a randomly

initialized classifier which re-examined its previous classifications after each block to

improve. Popescu et al [65] explored a similar unsupervised learning based MI BCI

with a set of 6 dry electrodes, closely approximating the sort of system a clinic could

employ. These systems effectively reduce training times, but are potentially unsuit-

able to neurofeedback as they very closely fit to individual participants, potentially

leading to provision of feedback which perpetuates ineffective patterns of activity.

A system capable of fitting to participants who are more skilled at performing MI

and generalizing across participants to provide feedback would be preferable from a

rehabilitation point of view.
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1.8 Magnetoencephalography

MEG is a functional neuroimaging technology which can non-invasively provide su-

perior spatial resolution over EEG due to the reduced signal smearing from the much

simpler propagation of magnetic fields through the head as opposed to electrical po-

tentials, and superior temporal resolution to fMRI due to the slow dynamics of the

BOLD response. This makes MEG an excellent instrument for measuring spatiotem-

poral components of cortical activity, especially complex or high frequency oscillatory

patterns. Though we eventually plan to transition to EEG for clinical deployment,

MEG is a stronger candidate for system development and prototyping.

Our data set consists of MI, ME, and resting blocks. MI and ME are known to

induce changes in oscillatory neural activity which are easily detected using MEG.

Using source localization techniques we can localize the neuroanatomical generators

of these patterns of activity with relatively high specificity, allowing us to discuss

our findings in the context of the broad literature of neuroanatomical structure and

function.

1.8.1 How MEG Works

MEG measures magnetic fields primarily generated by synchronous firing of cortical

neural populations in sulci, and thus oriented parallel to the scalp. These magnetic

fields are on the order of fT, and require incredibly sensitive magnetometers to detect.

In 1962, Josephson theorized the quantum mechanical properties of a thin insulating

layer in a superconducting loop, or Josephson junction, and that they would be suit-

able for converting voltage to frequency [66]. Anderson & Rowell first observed this

effect in 1963 [67], and work began on employing this effect in creating an extremely

sensitive magnetometer. This work resulted in Superconducting Quantum Interfer-

ence Devices (SQUIDs), superconducting wire loops with Josephson junctions, which

convert magnetic flux, changes in magnetic field strength, into a voltage oscillation

[68]. The high accuracy with which frequency can be measured gives SQUID magne-

tometers sufficient sensitivity to detect these small cortical magnetic fields.

Two sensor types are created from SQUIDs in our system, magnetometers and

planar gradiometers. Magnetometers are traditional SQUIDs, measuring magnetic
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flux. Planar gradiometers consist of two adjacent wire loops running in opposite di-

rections. Changes in magnetic flux across the two loops are amplified, while magnetic

fields which induce current in both loops equally are cancelled. This attenuates en-

vironmental noise while increasing sensitivity to magnetic flux generated by current

flowing perpendicular to the axis of the loops. By clustering two planar gradiometers

aligned along the lateral and anterior-posterior axes with a magnetometer, a sensitive

and specific picture of the local magnetic flux is captured.

1.8.2 Source Estimation in MEG

When localizing sources from sensor arrays there are two main problems of interest:

the forward problem, and the inverse problem. The forward problem requires solving

for the sensor values which would be measured given a set of sources and their activity.

This is a well-defined problem which is easily solved. Its complement, the inverse

problem, requires solving for a set of sources and their activity given a set of sensors

and their recorded values. This problem has an infinite number of solutions, and

thus heuristics and constraints must be used to yield plausible and useful solutions.

Sources are typically limited to within the area of the head, and further limited to

grey matter regions through boundary element modelling and co-registration with

either structural fMRI or a template brain.

In Equivalent Current Dipole (ECD) estimation, sources are assumed to originate

from a small number of equivalent current dipoles, point sources of magnetic flux.

Given a distance between the sensor and source greater than the distance between a

cluster of small sources, this is a good approximation, and works well in practice. By

minimizing the error between the proposed set of dipoles and the activity measured,

we obtain a set of dipoles which best fit the data.

ECD estimation works best for small numbers of sources. In order to improve

its ability to localize activity to many specific anatomical regions and estimate the

time-course of the activity at each, a technique developed for RADAR arrays called

beamforming is employed. Beamforming can extract time-locked responses even when

they are not phase-locked, a significant advantage over evoked field averaging. By

using the covariance matrix of the sensor array a set of weights can be assigned

to each sensor such that signals generated from areas other than the target source
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are strongly attenuated. These weights, once computed, can be applied very quickly,

allowing many such weightings to be applied to extract the signal from a large number

of sources in real time [69].

1.9 Project Objectives

In this project we aim to improve the quality of neurofeedback by training a machine

learning model to identify the components which best discriminate rest from MI, and

thus will provide the most accurate feedback. In order to do this, we will analyze

previously collected data to answer three main questions:

1.9.1 Objective 1

Question

Can participant state (MI vs rest) be accurately predicted from beta power in

primary somatosensory cortex after training?

Rationale

In our group’s previous work [1], mean beta power from two sources in right

and left somatosensory cortex were used to provide neurofeedback. The degree

to which this signal can be used to discriminate MI from rest is not known, and

will serve as an important baseline for comparison to further work.

Hypothesis

We predict that beta power in primary somatosensory cortex will be a good

general discriminator of MI and rest, and thus we should see good generalized

classification accuracy across all participants after training.

1.9.2 Objective 2

Question

Can we identify which MEG sensors are most discriminative between rest and

MI?

Rationale

In developing a clinically useful MI feedback tool, a system for identifying the
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most discriminative minimal set of sensors for provision of neurofeedback would

help reduce the size, complexity, setup time, and cost of the final product. Here

we will investigate how effectively we can discriminate MI from rest with sensor

level models, and with models based on a small subset of sensors, to evaluate

how accuracy changes when a smaller sensor set is used.

Hypothesis

We predict sensors over primary motor cortex, supplementary motor cortex,

and posterior parietal cortex will be consistently ranked amongst the highest

across all participants.

1.9.3 Objective 3

Question

Using source level modelling of MEG data across the whole brain, can we iden-

tify the anatomical regions whose activity best discriminates MI across our

participants?

Rationale

In order to better understand the neurophysiological principles underlying MI

it is important to localize the relevant signal components to their anatomical

sources. Without an understanding of which sources are relevant in which

frequency bands, the extensive literature on functional connectivity and task

related networks cannot be used to make inferences about the potential effects

of feedback based on any features identified.

Hypothesis

We predict sources in primary motor cortex, supplementary motor cortex, and

posterior parietal cortex will be consistently ranked amongst the highest across

all participants.

1.9.4 Between Group Comparisons

As an extension of both Objective 2 and Objective 3, given that we have group

labelled data and previous results of Boe et al [1] to draw comparison with, we will
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examine the differences between models built to discriminate imagery on a participant

set who received feedback vs those who did not. We expect to see the lateralization

effect of feedback observed by Boe et al.

1.9.5 Collective Significance

Once we have the set of most discriminative signal components, the minimal set of

sensors required to detect them, and the neurophysiological sources generating them,

we have the required information to design and test a prototype system with stroke

patients.



Chapter 2

Methods

2.1 Task

The full methodology can be found in Boe et al, 2014 [1], but in brief: 18 right

handed non-disabled participants (8 male, mean age 24.7 ± 3.8 years), each having

provided written informed consent, participated in the study. The methodology was

approved by the IWK Health Centre Research Ethics Board. Each participant was

brought in for three sessions to perform a fine motor task while undergoing an MEG

scan in an Elekta Neuromag MEG system, with one group receiving neurofeedback

(9 participants) and the other acting as control (9 participants). Two feedback group

participants were dropped due to excessive motor activation during imagery blocks as

measured by electromyography, leaving a total of 7. The task consisted of a sequence

of 7 button presses on a 4 button keypad, to be repeated as many times as possible

over a ten second period using the left hand. Data from two participants were rejected

due to unacceptably large numbers of artefacts or ME during imagery. Ten second

trials of activity would alternate with ten second trials of quiet resting. In each block

there were 15 active and 15 rest trials. In half of the blocks the participant was asked

to imagine performing the task, rather than actually pressing the buttons (Fig. 2.1).

At all times electromyography was recorded from the flexor and extensor muscles of

the digits. Imagery trials containing electromyographic activity were rejected by an

automated thresholding system which looked for muscle activity that was significantly

different from baseline as determined by a paired t-test (p < 0.05).

2.2 Data Acquisition

Data was sampled at 1500 Hz, with an immediate bandpass filter of 0.1 - 500 Hz

applied. Data was saved for offline analysis, and simultaneously each one second

segment was sent for real-time processing.

25
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Figure 2.1: The timeline of the task performed by each participant in each session in
the study by Boe et al, 2014 [1].

2.2.1 Objective 1: Generating Virtual Depth Electrodes

Two ECD estimates centred on Primary Somatosensory Cortex (S1) in the right and

left hemispheres were computed on data gathered from each participant during each

session. Median nerve stimulation was used to generate the two initial seeds in S1

for the fitting algorithm. A custom extension of the Fieldtrip package was used to

compute the fits. A single sphere model was used for source estimation, with a sphere

based on a 200-point head digitization obtained prior to scanning.This dipole fitting

yielded two sets of sensor weights which, after being updated with head position

information, could be multiplied with the MEG data as it was gathered to generate

an estimate of current flow projected into cortex very quickly, facilitating real-time

provision of feedback.

2.2.2 Objective 2: Sensor Data

Data from all 204 planar gradiometers and 102 magnetometers was used directly in

this analysis. This data set was extracted post-experiment, and was not originally

used for provision of feedback.

2.2.3 Objective 3: 80 Virtual Depth Electrodes

80 equivalent current dipole estimates were seeded with relevant anatomical locations

drawn from the literature [70][71], relabelling the Frontal Eye Fields as Anterior

Premotor Cortex. Elekta Neuromag’s beamforming software was used to compute

the fits. A boundary element model based on a template brain was used to constrain

the fits. This data set was extracted post-experiment, and was not originally used for

provision of feedback.
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2.3 Preprocessing

For real time feedback and the two-source analysis, data was low-pass filtered at 333

Hz. For the sensor and source level analysis it was down sampled to 250 Hz, low

pass filtered at 70 Hz, and had Independent Components Analysis [72] and Temporal

Signal Space Separation [73] applied to remove artefacts and attenuate external noise.

In all cases the data was epoched around the imagery, motor execution, or rest start

event codes, with the segment from 10 seconds before to 10 seconds after each event

being used for further processing.

2.4 Feature Extraction

Features for the machine learning algorithm were extracted from sensor or source

data as the amplitude of oscillatory activity. For all data sets, the absolute value of

the STFT of each trial was taken using 256 sample windows for Objectives 2 & 3, or

1024 sample windows for Objective 1 (1.024 seconds for all) with 128 or 512 sample

steps from 1 to 8 seconds (trial) and -9 to -2 seconds (baseline). Both baseline and

trial segments had their windows averaged before the averaged trial was divided by

the averaged baseline and the log base two taken. The resulting array of log power

change from baseline by frequency was used as the feature vector for training. In

the case of the two source data, this feature set was reduced by further averaging

over four frequency ranges: mu (8-12 Hz), beta (15-30 Hz), low gamma (30-45 Hz),

and high gamma (45-70 Hz). These features were used to both match the feature

chosen for the real-time feedback and allow for the potential value of other frequency

bands. In the sensor and 80-source data sets 72 frequency bins from 0 to 70 Hz were

extracted from each sensor or source as features. Participants were instructed to close

their eyes during imagery and motor execution blocks, but open them during rest. As

engagement of the visual system is known to impact oscillatory activity in primary

visual areas, for each sensor and 80-source data set a second set was generated where

all sensors more than 30cm posterior of the midline, or sources more then 30 cm

posterior of the midline and less than 10 cm above the midline were eliminated as

well as all sources more than 70 cm posterior of the midline, to examine the effects

of removing features from primary visual areas. These data sets are referred to as
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Occipital Excluded, while the full sensor or source array is Occipital Included. Each

feature was divided by its standard deviation and had its mean subtracted prior

to learning to allow meaningful comparison between learned weights. The Python

libraries NumPy, SciPy [74], MNE Python [75][76], Matplotlib [77], and Pandas [78]

were used for data processing and feature extraction.

2.5 Training

The LSVM model used L2 regularization, a squared hinge loss function, and solved

the dual problem. The hinge loss function is max(0, 1 − t · y), where y is the scalar

prediction of the model and t is the true class (t ∈ {−1, 1}). C and tolerance were

chosen by a stochastic sampling from predefined parameter distributions, generating

and testing models for a fixed number of iterations before returning the parameters

that yielded the highest cross-validated performance. In practice this led to vary-

ing C and tolerance from run to run, but accuracy was largely insensitive to these

differences, and it reduced training time over a full grid search.

The feature vectors were arranged into blocks by participant, and a LOBO cross

validation system was used to evaluate accuracy (proportion of trials correctly classi-

fied), whereby the model trained on all but one participant, and then was evaluated

based on its accuracy on the remaining participant. All accuracy and feedback in-

formation presented was therefore on a participant the model had never seen before.

The stochastic parameter search also used LOBO cross validation, leaving one of

the training participants out each time. This effectively resulted in a nested cross-

validation, whereby within the training set one participant was held out each time

and the parameters which yielded the highest average accuracy over all these held

out training participants were selected. These parameters were then used to fit a

model on a full training set and finally evaluated on the held out test participant.

This was done to ensure the parameters were optimized for ability to generalize across

participants. The Python library Scikit Learn [79] was used for training.

When plotting group accuracies, kernel density estimation with bandwidth se-

lected by Silverman’s rule was used to approximate the probability density function

for accuracy. These plots can be read as smoothed histograms, where the bandwidth

is the smoothing factor.
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2.5.1 Objective 1: Two Source Models

The dramatically reduced feature set in Objective 1 made the LSVM unnecessarily

complex. A simple LDA classifier was used instead, requiring no parameterization.

It was still trained and validated as above using LOBO.

2.5.2 Objective 2: Recursive Sensor Elimination

In order to identify the reduced set of sensors which are most informative for dis-

criminating MI, Recursive Sensor Elimination (RSE) was performed, employing the

weightings learned using the general training methodology outlined above. This ide-

ally removes spurious and redundant features, keeping only those which are essential

to predicting class membership. A sensor’s weight was computed as the mean of the

absolute value of its ten frequency bins with weights of greatest magnitude. Each

pass all of the features from the sensor with the lowest weight were dropped from the

feature set, the model was retrained on this reduced feature set, and the process was

repeated until only features from the ten most informative sensors remained. A final

model was then trained as per the general training methodology outlined above on

this reduced feature subset to obtain a final cross validated accuracy. This analysis

was performed with occipital sensors excluded.

2.5.3 Objective 3: Source Rankings

For each of two frequency bands, beta and mu, the weight of each feature was normal-

ized to the greatest absolute weight within that band for that cross validation fold,

the sensor weighted according to the mean weight of the frequency features in that

band, and the mean sensor weight taken over all folds. Only the relative weightings

are of interest, and normalization ensured that any change in the total weighting in

a given fold would not skew the mean.
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Results

3.1 Objective 1: Can participant state (MI vs rest) be accurately

predicted from beta power in primary somatosensory cortex after

training?

Participant state could be predicted to a limited extent using only the two sources

fitted to the field evoked by median nerve stimulation, but had difficulty generalizing

across participants. Simple two source models were built using LDA on average event

related change in synchronization in four frequency bands for a total of four features

per source: mu (8-12 Hz), beta (15-30 Hz), low gamma (30-45 Hz), and the remaining

mid gamma band (45-70 Hz). These models showed extremely variable accuracies

(Table 3.1), with a mean accuracy of 0.724±0.131 (Minimum 0.481, maximum 0.870)

for the Feedback group and 0.741±0.122 (Minimum 0.520, maximum 1.000) for the

Control group, which can largely be attributed to several participants either failing to

demonstrate the expected beta ERD or showing beta ERS during imagery trials. As

seen in Fig. 3.1, although the localized sources for each participant were on average

between S1 and M1 in Talairach space, they varied several cm in both axes. This

positional variability likely contributed to the poor generalization ability.

As an example, the data for feedback participant 3 is shown in Fig. 3.2, where it

can be seen that the grand mean of the training set follows the expected pattern of

beta desynchronization during imagery, but the mean of the testing set deviates to the

point that the simple model learned on the training data is no longer valid. Increasing

the number of sources involved, or looking at the sensor level, can potentially allow

the identification of more reliable regions, or multiple regions which taken together

are resistant to unusual patterns in any one area.

30
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MEG data: seed locations for neurofeedback

Fig. 2 shows the positions of ECDs determined from localization of
the left and right SEF data for all subjects and sessions overlaid on a
template brain. The dipole locations appropriately overlay the left and
right sensorimotor cortices. Grand-average lead fields for the two
dipoles determined during the localizer block are also shown in Fig. 2,
with planar gradiometers at each sensor location combined using a
sumof squares calculation. The sensors that aremost sensitive to activa-
tion in each sensorimotor cortex are clearly disambiguated on the left
and right frontal sensors. Results showing the spatial specificity of the
two sources (left and right) are shown in Fig. 3. As the right source is
moved toward the left source, the source amplitude for left SEF data
decreases as a function of distance from the initial dipole location. The
same is true for the left source. In both cases, the source amplitude
has reduced by 80% at the midline. This indicates that the left source is
insensitive to activation at the right source, and vice versa.

MEG data: beta power

Fig. 4 shows the grand-average change in beta power for MI trials.
Beta rhythm ERD begins in the 1 s prior to the “Go” cue, with
desynchronization increasing for the first 3 s of the MI interval. Beta
rhythm ERD ends 10 s later when the participant hears the “Rest” cue,
and is followed immediately by 2 s of beta rhythm ERS (i.e., post-MI
“rebound”). Based on the beta rhythm time course, MI-related beta
rhythm strength was determined in the 7 s beginning 3 s following
the “Go” cue. Rest-related beta rhythm strength was determined in
the 7 s of data ending 1 s before the cue.

Fig. 5 shows the group-averaged percent signal change from
baseline for the beta rhythm in each condition, session, and group. The

FB group shows decreasing right (i.e., contralateral to imagined
movement) sensorimotor cortex beta rhythmamplitudes over repeated
sessions occurring during MI and rest. Decreased beta rhythm ampli-
tude indicates that the FB group increases the activation of contralateral
sensorimotor cortex over repeated sessions. Increased activation of con-
tralateral sensorimotor cortex occurred during MI and the rest interval.
A similar pattern is not observed in the left (i.e., ipsilateral) sensorimo-
tor cortex, which shows little change in beta rhythm amplitude during
MI or rest. The control group exhibits decreasing ipsilateral sensorimo-
tor cortex beta rhythm amplitudes over repeated sessions during MI.
This decrease in beta rhythm amplitude indicates that the control
group increases MI-related activation of ipsilateral sensorimotor cortex
over repeated sessions.

The most likely LME model for beta rhythm amplitude included a
significant three-way interaction Session × Group × Hemisphere, a
significant two-way interaction Group × Hemisphere, and a significant
main effect of State. Given the three-way interaction, we do not inter-
pret the two-way interaction, according to the principle of marginality
(Venables, 1998). The main effect of State indicated that beta rhythm

Fig. 2. (a) Seed locations for neurofeedback for all subjects and all sessions are shown as
cyan circles. The mean location for each hemisphere is shown as a red square. (b) MEG
sensor weights for generating neurofeedback signals for each sensorimotor cortex are
shown.

Fig. 3. The spatial specificity of neurofeedback sources is shown for a representative
subject. As the dipole location is shifted away from the correct location (i.e., left and
right sensorimotor cortex), the somatosensory evoked field (SEF) source amplitude
decreases, reaching 20% by themidline. This finding indicates that each dipole is sensitive
to activity in contralateral sensorimotor cortex only.

Fig. 4. The grand-average change in beta power for MI across all trials, blocks, sessions,
subjects, and groups is shown.Data are shown for sources in both left and right sensorimo-
tor cortices. Both sources exhibit increasing beta rhythm event-related desynchronization
beginning just prior to the “Go” cue (t = 0 s) that becomes a sustained response ~3 s
following the “Go” cue. A small beta rhythm event-related synchronization occurs imme-
diately following the “Rest” cue.

163S. Boe et al. / NeuroImage 101 (2014) 159–167

Figure 3.1: The seed locations for neurofeedback for all subjects are shown as cyan
circles, with the mean location shown as a red square. [1]
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Table 3.1: Classification Accuracies for Two Source Analysis

Task Imagery
Group Control Feedback

Subj #
0 – 0.632
1 – 0.737
2 – 0.870
3 – 0.667
4 – 0.820
5 – 0.481
6 – 0.860
7 0.895 –
8 0.769 –
9 0.729 –
10 1.000 –
11 0.520 –
12 0.853 –
13 0.696 –
14 0.542 –
15 0.667 –
Mean 0.741 0.724
CI 0.122 0.131
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Figure 3.2: Mean feature value vs frequency (Hz) plots for a two source LDA model.
The solid red and blue lines represent the class means for the training set, the dotted
lines the testing set, and the solid green line the learned weights. Participant 3 was
held back to test this model, and the reason for the low accuracy becomes obvious
when the right hemisphere beta synchronization in their testing data is contrasted
with the desynchronization in the training mean. Several other participants displayed
similarly unexpected patterns in alpha and beta, producing similarly low accuracies.
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3.2 Objective 2: Can we identify which MEG sensors are most

discriminative between rest and MI?

Overall the sensor level models were able to accurately differentiate imagery and rest

in most participants with a mean accuracy of 0.929±0.064 (Min. 0.823, Max. 0.980)

for the Feedback group and 0.956±0.037 (Min. 0.854, Max. 1.000) for the Control

group, as laid out in Table 3.2 and Fig. 3.3. Removing the occipital sensors changed

accuracy by an average of 0.0436±0.08505 for Feedback, −0.0257±0.0376 for Control,

and −0.0058± 0.0060 for Motor. The increases in accuracy were a result of unusual

cases where a participant showed misleading alpha activity during imagery. Transfer

loss, the difference between cross validated accuracy on the training data and the

accuracy on the held out testing participant, is presented in Table 3.3. Transfer loss

represents some combination of two main factors: degree of model overfitting, and

the degree to which one participant differed from the overall pattern. These are not

directly separable, as they are two sides of the same coin. Without outside information

it’s impossible to know if a participant was difficult to predict because the model

overfit and failed to generalize sufficiently well, or because they were mislabelled,

i.e., not performing the task correctly. In general, consistent transfer losses indicate

overfitting, while outlying transfer losses likely indicate something anomalous about

the data. Participant 3’s transfer loss of -0.44 is likely an irregularity in the data, as

it vastly exceeds the mean transfer loss of -0.10, and will be explored further in the

discussion.

Because each fold omits one participant for testing, the choice of which fold to

display as representative is not obvious. I have elected to plot the models from

the folds where the participant who displayed the greatest transfer loss were held

out as the testing set. This biases the plots provided, but as some bias is inevitable

removing an outlier seems the least undesirable choice. Further, this makes it possible

to contrast this model with the actual data of these outlying participants to better

understand why they differ and how the model failed to capture their patterns of

activity. Models where participant 3 was held out for testing were chosen for Sensor

level Feedback Imagery and Motor plots, and where participant 15 was held out for

Control Imagery.

Sensors over primary sensorimotor and premotor areas of cortex are heavily weighted
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for beta desynchronization, with the control group favouring the left hemisphere

(Fig. 3.4) with maximal left and right hemisphere weights of 0.75 and 0.5 in gra-

diometers, and 0.8 and 0.2 in magnetometers. Both the feedback and motor groups

favour the right hemisphere (Figs. 3.5 and 3.6) with maximal left and right hemisphere

weights of 0.6 and 1.2 in gradiometers during MI, 0.3 and 0.9 in magnetometers dur-

ing MI, 1.6 and 2.0 in gradiometers during ME, and 0.9 and 1.5 in magnetometers

during ME, respectively. Sensors over primary visual areas show heavy weighting to-

wards alpha synchronization. Removing occipital areas doesn’t eliminate this alpha

weighting entirely, as it can still be seen in the most posterior sensors (Figs. 3.7 and

3.8).

3.2.1 Recursive Sensor Elimination

Overall the accuracy of models built on a reduced set of ten sensors remained very

high (Table 3.4), demonstrating a reduced sensor set can still be highly effective for

discriminating MI on our data set. In the Motor task RSE selected gradiometers

over right hemisphere sensorimotor areas, magnetometers over bilateral sensorimotor

areas, and gradiometers over left hemisphere prefrontal (Fig. 3.9). Imagery task

selections selected left hemisphere sensorimotor in the Control condition, and right

hemisphere sensorimotor in the Feedback condition. Right hemisphere sensors over

prefrontal areas were reliably selected in both Imagery conditions but not in Motor.

3.2.2 Representative Models vs Mean Weights

In traditional machine learning applications, accurate classification is the primary

goal and examining the model is secondary if performed at all. In this work, however,

we are primarily concerned with which features the model identified as important,

and use accuracy as a validation measure for the confidence we should place in these

feature selections. This suggests the average weights over each fold should be eval-

uated as in a bootstrapped statistical analysis, but this averaged model may not

actually be particularly good at accurately classifying the data. Either representa-

tive models from noteworthy folds must be selected, or the averaged model validated

again. Validating the averaged model requires either a second held out data set, fur-

ther reducing the training set, or applying the averaged model to the entire data set
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Table 3.2: Classification Accuracies for Sensor Level Analysis

Task Imagery Motor
Group Control Feedback All
Occipital Included Excluded Included Excluded Included Excluded

Subj #
0 – – 0.921 0.974 0.983 0.967
1 – – 0.974 0.974 0.967 0.950
2 – – 0.978 0.978 0.983 0.967
3 – – 0.542 0.833 0.950 0.950
4 – – 0.940 0.940 0.983 0.983
5 – – 0.865 0.827 0.983 0.983
6 – – 0.980 0.980 0.967 0.967
7 1.000 1.000 – – 0.967 0.967
8 0.962 0.962 – – 0.983 0.983
9 0.938 0.979 – – 0.983 1.000
10 1.000 1.000 – – 0.967 0.967
11 0.980 0.960 – – 0.950 0.950
12 1.000 1.000 – – 0.983 0.950
13 1.000 0.913 – – 0.983 0.950
14 0.958 0.938 – – 1.000 1.000
15 1.000 0.854 – – 0.950 0.950
Mean 0.982 0.956 0.886 0.929 0.974 0.968
CI 0.018 0.037 0.145 0.064 0.008 0.009
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Table 3.3: Transfer Loss for Sensor Level Analysis

Task Imagery Motor
Group Control Feedback All
Occipital Included Excluded Included Excluded Included Excluded

Subj #
0 – – -0.067 -0.015 -0.014 -0.030
1 – – -0.022 -0.022 -0.031 -0.048
2 – – 0.018 0.010 -0.013 -0.030
3 – – -0.444 -0.148 -0.049 -0.049
4 – – -0.040 -0.028 -0.016 -0.016
5 – – -0.131 -0.169 -0.014 -0.014
6 – – -0.008 -0.012 -0.031 -0.031
7 0.008 0.003 – – -0.032 -0.032
8 -0.033 -0.036 – – -0.016 -0.017
9 -0.062 -0.018 – – -0.014 0.002
10 0.003 0.003 – – -0.030 -0.030
11 -0.020 -0.040 – – -0.049 -0.049
12 0.000 0.011 – – -0.016 -0.047
13 0.003 -0.081 – – -0.017 -0.049
14 -0.042 -0.062 – – 0.003 0.003
15 0.000 -0.146 – – -0.049 -0.048
Mean -0.016 -0.041 -0.099 -0.055 -0.024 -0.030
CI 0.019 0.039 0.147 0.067 0.008 0.009
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Figure 3.3: The probability density curves for accuracy for each sensor and source level
analysis is plotted with error bars representing 95% confidence intervals of the mean.
Participant 3 was particularly difficult to classify, as seen in Table 3.2, and caused
the extremely large variance in the Sensor Feedback Occipital Included distribution.



39

60 40 20 0 20 40 60 80
Left - Right

60

40

20

0

20

40

60
P
o
st

e
ri

o
r 

- 
A

n
te

ri
o
r

Mu (8-12Hz) Grad

60 40 20 0 20 40 60 80
Left - Right

60

40

20

0

20

40

60

P
o
st

e
ri

o
r 

- 
A

n
te

ri
o
r

Mu (8-12Hz) Grad

60 40 20 0 20 40 60 80
Left - Right

60

40

20

0

20

40

60

P
o
st

e
ri

o
r 

- 
A

n
te

ri
o
r

Mu (8-12Hz) Mag

60 40 20 0 20 40 60 80
Left - Right

60

40

20

0

20

40

60

P
o
st

e
ri

o
r 

- 
A

n
te

ri
o
r

Beta (15-30Hz) Grad

60 40 20 0 20 40 60 80
Left - Right

60

40

20

0

20

40

60

P
o
st

e
ri

o
r 

- 
A

n
te

ri
o
r

Beta (15-30Hz) Grad

60 40 20 0 20 40 60 80
Left - Right

60

40

20

0

20

40

60

P
o
st

e
ri

o
r 

- 
A

n
te

ri
o
r

Beta (15-30Hz) Mag

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

Figure 3.4: Sensor level model of Control group during MI, participant 15 held back
for testing. Blue indicates desynchronization was associated with Imagery in the as-
sociated frequency band, red synchronization was associated with Imagery. Weights
are normalized within each frequency band. Alpha and Beta synchronization in oc-
cipital cortex was weighted heavily throughout the control group, to a much higher
degree than the feedback group. Mu and Beta desynchronization was weighted in left
hemisphere sensors over sensorimotor areas.
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Figure 3.5: Sensor level model of Feedback group during MI, participant 3 held back
for testing. Occipital mu synchronization was selected in a larger group of sensors than
in ME. Right hemisphere beta desynchronization was again weighted approximately
twice as heavily as left. Bilateral mu desynchronization in sensorimotor cortex was
also selected in the planar gradiometers.
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Figure 3.6: Sensor level model of all participants during ME, participant 3 held
back for testing. Occipital alpha/mu and beta synchronization, along with right
hemisphere sensorimotor beta desynchronization, were preferentially weighted. Right
hemisphere sensorimotor beta was weighted approximately twice as heavily as left.
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Figure 3.7: Sensor level model of Control group during MI without occipital sensors,
participant 15 held back for testing. The same left hemisphere bias in beta and mu
desynchronization can be seen. With occipital sensors removed, alpha synchronization
weighting can be seen in the remaining most posterior sensors.
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Figure 3.8: Sensor level model of Feedback group during MI without occipital sensors,
participant 3 held back for testing. Weighting across beta and alpha/mu are largely
unchanged with the removal of occipital sensors. The lower relative weighting of
beta synchronization in occipital sensors in the Feedback group suggest that it is less
important to differentiating the two classes, and the minimal effect removing these
sensors had on the rest of the model seems to support this.

Table 3.4: Classification Accuracies for Recursive Sensor Elimination Analysis

Task Imagery Motor
Group Control Feedback All
Occipital Included Excluded Included Excluded Included Excluded

Subj #
0 – – 0.921 0.921 0.967 0.983
1 – – 0.974 0.842 0.950 0.950
2 – – 1.000 0.978 0.950 0.933
3 – – 0.542 0.625 0.967 0.967
4 – – 0.900 0.940 0.983 0.983
5 – – 0.808 0.788 1.000 0.983
6 – – 0.980 0.980 0.983 0.967
7 1.000 1.000 – – 0.983 0.983
8 0.904 0.942 – – 0.967 0.933
9 0.958 0.958 – – 1.000 1.000
10 1.000 0.964 – – 0.967 0.983
11 0.980 0.960 – – 0.967 0.967
12 1.000 1.000 – – 0.900 0.933
13 0.957 0.804 – – 0.967 0.917
14 0.958 0.833 – – 1.000 1.000
15 1.000 0.833 – – 0.950 0.950
Mean 0.973 0.922 0.875 0.868 0.969 0.965
CI 0.025 0.059 0.149 0.119 0.013 0.014
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Figure 3.9: Sensor plots with anterior up, posterior down. For each sensor, the number
of times it remained in the top ten after recursive sensor elimination in each condition
is shown. The Feedback group contained 7 participants, Control 9 participants, and
for the motor analysis both groups were pooled for a total of 16 participants. The ME
selections reliably clustered around Fc4/C4 in the right hemisphere, F9 on the left
hemisphere, and to a lesser extent Fc3/C3 on the left hemisphere. The MI selections
were less stable, but this is perhaps not surprising as with each person removed
a proportionally larger amount of the data was also removed. On both MI data
sets, posterior sources likely sensitive to alpha were selected, further confounding the
results. The very reliable response of primary visual alpha leads to high weightings,
which make sensors which can detect it very attractive choices to this selection system.
Feedback and Control still demonstrated the laterality biases seen in all sensor and
the later source models, with Feedback preferring right hemisphere sensors around
Fc4/C4 and Control left hemisphere Fc3/C3. Over all sets, magnetometers were the
most frequently selected sensors.
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and relaxing the requirement that performance be evaluated on as yet unseen data.

We presented here representative models, but for completeness the averaged weight

figures are presented in the appendix.

3.2.3 Summary of results for Objective 2

RSE generated distinctive patterns clustering around a small subset of sensors, but

interestingly these sensors were not necessarily in regions shown to be heavily weighted

in all sensor models. For instance, ME models universally chose a gradiometer in left

hemisphere prefrontal cortex, which received only small weights in beta and mu in all-

sensor models. The accuracy of the models suggests they are still extracting signals

capable of discriminating MI effectively, but more analysis is required to determine

what exactly makes the bilateral prefrontal sensors selected frequently in all models

valuable features.

As more data is gathered, confidence in the discriminative value of the identified

clusters will improve. This system is capable of identifying a minimal sensor set that

will work for many participants, but even with our small sample size we observed

outliers for whom this model did not apply. With a large enough sample, if these

outlying participants can be grouped and show reliable patterns, it may be possible

to build a voting pool of several models which can collectively discriminate MI in

most of the population.

3.3 Objective 3: Using source level modelling of MEG data across the

whole brain, can we identify the anatomical regions whose activity

best discriminates MI across our participants?

Source level models obtained accuracies lower than sensor level equivalents but within

confidence intervals for their means, as seen in Table 3.5 and Fig. 3.3. Transfer loss

is shown in Table 3.6. Models with participant 4 held out were chosen to represent

Source level Feedback Imagery and Motor, while Participant 15 was again chosen for

Control Imagery. Source level models built on ME weighted beta desynchronization

in the premotor network including dorsolateral and ventrolateral premotor cortex, su-

perior parietal cortex, and the precuneus heavily, as well as alpha desynchronization

in superior parietal cortex and the precuneus (Fig. 3.10). Beta desynchronization



44

in primary motor areas was of interest but weighted less heavily. Alpha synchro-

nization throughout primary visual cortex was weighted heavily, as participants were

instructed to close their eyes during ME to mirror imagery instructions.

Models built on feedback group imagery were similarly focused on beta desyn-

chronization in the premotor and sensorimotor networks, with a similar weighting

pattern to motor activity (Fig. 3.11). Increased weight was placed on occipital al-

pha synchronization in V1, V2, and the Fusiform Gyrus. The importance of these

areas is artificially inflated for the task of discriminating MI vs rest by instruction to

keep the eyes open during rest. Eliminating occipital cortex sources reduced accu-

racy by an average of −0.0073± 0.0409 for Feedback, −0.0342± 0.0320 for Control,

and −0.0126± 0.0103 for Motor. While beta weighting remained largely unchanged

after removal of occipital sources, right hemisphere alpha synchronization showed dra-

matically increased weighting in the thalamus, parahippocampal cortex, and ventral

temporal cortex (Fig. 3.12).

Models built on control group imagery showed a bias towards left hemisphere

beta desynchronization in the premotor and sensorimotor networks, in contrast to

the right hemisphere focused models built on feedback participants, with an increased

emphasis on beta synchronization in primary visual areas (Fig. 3.13). These effects

may be attributed to a much stronger or more broad-spectrum synchronization during

imagery in primary visual in the control group. When occipital areas are eliminated,

the control group displayed a pattern of reweighing similar to the feedback group after

occipital was removed, with the notable difference of alpha synchronization being

weighted heavily in left hemisphere thalamus, parahippocampal cortex, and ventral

temporal cortex (Fig. 3.14). The bias towards left hemisphere beta desynchronization

was increased after removing occipital sources.

3.3.1 Source Rankings

The beta source rankings laid out in Fig. 3.15 highlight many of the largest and most

promising effects of neurofeedback. Feedback models showed dramatically higher

weightings for beta desynchronization in primary motor cortex than Control and

even Motor models. Left M1: Control -0.217±0.068, Feedback -0.710±0.144, Mo-

tor -0.253±0.050; Right M1: Control -0.068±0.070, Feedback -0.636±0.080, Motor
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Table 3.5: Classification Accuracies for Source Level Analysis

Task Imagery Motor
Group Control Feedback All
Occipital Included Excluded Included Excluded Included Excluded

Subj #
0 – – 0.895 0.974 0.783 0.750
1 – – 1.000 0.947 0.983 0.950
2 – – 0.978 0.978 0.900 0.883
3 – – 0.833 0.875 0.933 0.983
4 – – 0.840 0.760 0.733 0.717
5 – – 0.846 0.827 0.950 0.917
6 – – 0.980 0.960 0.967 0.967
7 1.000 1.000 – – 0.983 0.983
8 0.962 0.942 – – 0.950 0.917
9 0.938 0.958 – – 0.967 0.950
10 1.000 0.964 – – 0.967 0.967
11 0.980 0.980 – – 0.983 0.983
12 1.000 1.000 – – 1.000 1.000
13 0.978 0.913 – – 0.967 0.950
14 0.958 0.875 – – 0.900 0.883
15 0.979 0.854 – – 1.000 0.950
Mean 0.977 0.943 0.910 0.903 0.935 0.922
CI 0.017 0.040 0.068 0.078 0.040 0.043
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Table 3.6: Transfer Loss for Source Level Analysis

Task Imagery Motor
Group Control Feedback All
Occipital Included Excluded Included Excluded Included Excluded

Subj #
0 – – -0.101 -0.019 -0.216 -0.247
1 – – 0.008 -0.045 -0.010 -0.044
2 – – -0.006 -0.022 -0.096 -0.114
3 – – -0.130 -0.092 -0.050 0.002
4 – – -0.144 -0.208 -0.263 -0.280
5 – – -0.150 -0.169 -0.048 -0.082
6 – – -0.004 -0.024 -0.032 -0.032
7 0.008 0.008 – – -0.013 -0.011
8 -0.033 -0.052 – – -0.048 -0.080
9 -0.062 -0.039 – – -0.031 -0.048
10 0.000 -0.036 – – -0.033 -0.033
11 -0.020 -0.020 – – -0.017 -0.014
12 0.003 0.006 – – 0.002 0.003
13 -0.016 -0.075 – – -0.027 -0.039
14 -0.039 -0.122 – – -0.100 -0.112
15 -0.021 -0.146 – – 0.017 -0.033
Mean -0.020 -0.053 -0.075 -0.083 -0.060 -0.073
CI 0.017 0.041 0.066 0.072 0.041 0.044
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Figure 3.10: Source level model of all participants during ME, participant 4 held back
for testing. The size of each source represents the mean absolute value of the weights
in the specified frequency range, with colour intensity reflecting the degree to which
the mean weight was negative (desynchronization, blue) or positive (synchronization,
red). The ten sources with highest mean absolute weighting are labelled. Unlike
Kraeutner et al [2], our model found activity in the precuneus, fusiform gurus, and
precuneus predictive of ME. They did not examine mu, but our model found mu
activity also predictive in the cuneus, precuneus, fusiform gyrus, and V1. Unexpect-
edly, beta activity in primary motor cortex was not amongst the ten most predictive
sources.
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Figure 3.11: Source level model of Feedback group during MI, participant 4 held
back for testing. Bilateral premotor, S1, M1, and right hemisphere superior parietal
cortex were weighted in beta ERD. Left hemisphere S1 was weighted in alpha ERD,
and alpha ERS was weighted in primary visual areas and right hemisphere sources
including fusiform gyrus, parahippocampal, and ventral temporal cortex.
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Figure 3.12: Source level model of Feedback group during MI without occipital
sources, participant 4 held back for testing. Alpha ERD was primarily weighted in
left hemisphere S1 and superior parietal cortex. Alpha ERS was primarily weighted
in right hemisphere thalamus, subgenual cingulate, parahippocampal, and ventral
temporal cortex. Feedback appears to have shifted the degree to which lateralization
of Alpha ERS was predictive of MI.
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Figure 3.13: Source level model of Control group during MI, participant 13 held back
for testing. Left hemisphere premotor and superior parietal cortex were weighted in
beta ERD, superior parietal cortex in alpha ERD, and both beta and alpha ERS in
primary visual areas.
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Figure 3.14: Source level model of Control group during MI without occipital sources,
participant 13 held back for testing. Beta ERD is primarily weighted in left hemi-
sphere premotor, prefrontal, and superior parietal sources. Alpha ERD was weighted
in left superior parietal cortex, and alpha ERS in subgenual cingulate cortex, ventral
temporal, and thalamic sources along the midline and left hemisphere.
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-0.405±0.044. Neurofeedback increased the degree to which beta desynchronization

throughout the sensorimotor and premotor networks in contralateral hemisphere was

reliably predictive of MI. Participants were instructed to focus on kinaesthetic im-

agery, imagining haptic and proprioceptive sensations which would result from the

imagined action. S1 plays a key role in processing haptic feedback, and these instruc-

tions may have contributed to the high weightings assigned to primary somatosen-

sory cortex after feedback. Left S1: CTRL -0.379±0.079, FB -0.776±0.087, Motor

-0.519±0.049; Right S1: CTRL -0.199±0.104, FB -0.653±0.103, Motor -0.420±0.054.

The ventrolateral premotor cortex in both hemisphere was consistently amongst the

most heavily weighted in all conditions. Areas throughout sensorimotor cortex were

also amongst the most heavily weighted. Right hemisphere M1 was important in

motor and feedback models, but not control models. Left M1 was important only

in feedback models, having relatively low weight in motor and control. The right

hemisphere anterior insula, whose neighbour the posterior insula has reciprocal con-

nections to S2 and the thalamus, was weighted heavily in feedback models. This

may be a case of over specific labelling beyond the resolution of the beamformer,

with activation in posterior insula being included in the estimated source activity for

anterior insula. Beta synchronization weights were, as seen in both the sensor and

source models, much lower in the feedback group than in control. Feedback seems to

have induced dramatic shifts in superior parietal cortex lateralization, with the right

hemisphere going from synchronization to desynchronization, and the weighting of left

hemisphere desynchronization dropping dramatically. Left Superior Parietal Cortex:

CTRL -0.728±0.103, FB -0.081±0.124, Motor -0.647±0.037; Right Superior Parietal

Cortex: CTRL 0.211±0.061, FB -0.543±0.105, Motor -0.052±0.028. (Fig. 3.16)

3.3.2 Summary of results for Objective 3

Source level models were able to predict state in unseen participants with high accu-

racy, and again successfully identified the pattern of lateralization previously found to

be associated with neurofeedback. Centrolateral and ventrolateral prefrontal cortex,

dorsolateral and ventrolateral premotor cortex, S1, and superior parietal cortex were

all identified as potential targets for neurofeedback in the beta band, along with the

ventral temporal cortex and thalamus for neurofeedback in the alpha band. The two
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Figure 3.15: Sources ranked by mean normalized weighting in the beta band (15-30Hz)
with 95% confidence intervals. Models trained on participants performing MI or ME
in Session 3. The Feedback group contained 7 participants, Control 9 participants,
and Motor both groups pooled for a total of 16 participants.
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Figure 3.16: Sources ranked by mean normalized weighting in the mu band (8-12Hz)
with 95% confidence intervals. Models trained on participants performing MI or ME
in Session 3. The Feedback group contained 7 participants, Control 9 participants,
and Motor both groups pooled for a total of 16 participants.
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groups primarily differed in laterality, with both weighting roughly the same sources

but in opposite hemispheres.



Chapter 4

Discussion

We sought to identify whether two ECD estimated sources in right and left senso-

rimotor cortices localized via median nerve stimulation were sufficient to accurate

discriminate MI vs Rest. We hypothesized, based on previous work showing changes

in brain activity after beta neurofeedback using those two sources, that MI would be

discriminable based on this same two source feature set. We sought to identify which

MEG sensors were most discriminative in that same classification problem and which

minimal set of MEG sensors was sufficient for reliable classification, hypothesizing

that sensors positioned over supplementary and premotor areas, along with primary

motor cortex and the superior parietal cortex, being closest to the signals of interest,

would be most discriminative. Finally, we sought to identify which frequency bands in

which anatomical sources were most discriminative of MI vs Rest. We hypothesized

that beta in primary motor, premotor, and superior parietal cortices would be most

discriminative, based on their key roles in the motor planning networks as identified

in the literature.

Models built on two sources localized via median nerve stimulation could not re-

liably discriminate MI from rest across our participant pool. This could be due to

the variability in source location, making a single model incapable of capturing the

different patterns evoked at each location, or it could be a case of insufficient in-

formation to reliably overcome noise and patterns from unrelated activity. Accuracy

improved dramatically when the model was built using a larger number of consistently

placed sources, or all sensors. These larger models had further utility in identifying

information rich areas for sensor placement in a proposed clinically practical small

electrode EEG system, and in identifying which anatomical regions provide the most

discriminative feedback across participants. It is unknown whether provision of feed-

back based on these areas would improve functional outcomes, but my work provides

avenues of inquiry for further MEG based research into the dynamics of MI and

56
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neurofeedback.

As the ultimate goal is to improve provision of neurofeedback, it is encouraging

to see the relative ease with which models of MI can transfer to new participants and

retain high classification accuracies. The models all learned important differences

between the Feedback and Control groups, capturing the same pattern of lateraliza-

tion of activity reported in Boe et al [1]. Once developed, the system can scale to

very large data sets on even moderate hardware using batch learning, processing a

small number of trials at a time and iteratively improving the model, allowing hun-

dreds of thousands of participants to be used, improving generalization and effectively

avoiding patient training periods which may be clinically impractical.

Online learning and cross-domain adaptation are two machine learning strategies

that may have valuable applications in providing neurofeedback, but may also have

undesirable drawbacks. Online learning is the process of updating the model with

each new training example as it’s measured and used to provide feedback, rather

than using a static pre-trained model. Cross-domain adaptation, or transfer learning,

involves adapting model parameters to better fit a new participant or patient in

a way that accounts for some of the inter-patient variability without changing the

underlying structure the model has already learned. Both can improve classification

accuracy by accounting for specific nuances of a given participant’s pattern of activity,

but improving functional outcomes and not classification accuracy is the true goal. A

moving goalpost for feedback could be frustrating for participants if it drifts away, but

a goal that adaptively moves towards the participant’s current state is not conducive

to driving changes in activity which will in turn drive neuroplasticity in desired areas.

4.1 General Limitations

As rest trials were only used as a baseline in the initial provision of feedback there was

no issue with instructing participants to keep their eyes open while resting. This had

the unfortunate effect of making it extremely difficult to determine whether there were

any genuine effects of MI or provision of feedback on alpha rhythms, and provided a

potentially spurious but very predictive feature. The shift in alpha weighting from

bilateral in control to primarily right lateralized in feedback suggests there may have

been an effect of feedback, but how this is linked to MI is difficult to determine from
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this data. It is possible the feedback group are not only better at selectively focusing

on kinaesthetic imagery of the left hand, but also at selectively visualizing movement

of the left hand and restricting activity to the left visual hemifield.

Beamforming is a powerful technique for source localization, but as with any solu-

tion to the inverse problem it comes with assumptions and drawbacks. Due to the way

it uses the covariance matrix of the sensors to attenuate signals not originating from

the source of interest, two sources which are very tightly correlated may effectively

cancel each other out, eliminating output from both. In practice it takes sources that

are almost perfectly correlated to cause this effect, and it generally does not cause

problems in neuroimaging, but it is possible that pairs of very tightly causally linked

sources may not appear in our data. Further, it is not a perfect spatial filter. Signals

generated by nearby or intervening regions may bleed in to the signal localized to

a specific source. In all cases, it must be kept in mind that the label given to a

source may not be the only or even the primary generator of the signal recorded. In

conjunction with the use of a template brain in our boundary element model, this

likely means there is a small amount of variation in exactly which anatomical region

is under each virtual source between participants [69].

Training vectors were averages over 7 seconds of data, drawn from each of the 10

second trials. Reduced time segments with less or no averaging could have been used

to generate a much larger number of trials with more noise which would be expected

under real use conditions. The longer the epoch averaged over, the greater the degree

to which a stochastic signal component cancels itself while the evoked components

of the signal remain unattenuated. The preprocessing method was chosen to remain

consistent with that used in previous work by Boe et al [1], which found neurofeedback

based on similar preprocessing effective in driving changes in brain activity. Since

participants are often instructed to keep their eyes closed during imagery, improved

temporal response times below the length of the imagery block are of questionable

value compared to an improved signal to noise ratio and more representative model

for analysis. In an alternative feedback paradigm, reduced sample lengths might be

advantageous, and this should be explored in future work.

As the models built were all rest vs task in session 3, they do not directly speak to

the effects of feedback or training, but instead only to state specific activity patterns
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within each group. A multi class data set containing session and group labelled data

would pose a much more difficult classification task, but would generate a model of

both feedback and training effects. A more powerful learning algorithm may be re-

quired to solve this more difficult classification problem, such as those discussed in

future work, but the complexity of the models they generate make them commensu-

rately more difficult to interpret and visualize.

As the models are built with a data driven learning system, it is entirely possi-

ble for the model to learn to reinforce undesirable behaviour. On our data set, it

learned which features best discriminate the imagery the participants in a group per-

formed from rest, not the features which would yield the best outcomes were they to

be provided as feedback. Training the model on first time participants with no MI

experience, or on patients in the acute period post stroke, and using those models

to provide feedback would almost certainly yield poor results as they were merely

taught to continue what they were already doing. Identification of the best feature

set for provision of effective feedback requires a data set which includes outcome

measures or participants known to be performing skilled MI, and preferably both.

We believe the feedback group of participants are performing higher quality MI than

the control group, due in large part to the lateralization of activity to the correct

hemisphere, and their increased amplitude of beta desynchronization, but in the ab-

sence of a quantitative means of evaluating MI quality this remains speculation. A

model trained on quantifiably high quality MI data and given a limited ability to

adapt certain parameters to new participants - shifting source locations to account

for small anatomical differences, or translating weights up or down in frequency space

to account for varying centre frequencies of mu or beta activity, for instance - may

be the ideal solution.

4.2 Objective 1: Can participant state (MI vs rest) be accurately

predicted from beta power in sensorimotor cortex after training?

The simple models generated using two sources were unable to reliably predict par-

ticipant state, but this does present several important questions. Is it important to

be able to predict participant state from the signals used to provide neurofeedback?

Is the degree to which imagery can be discriminated from rest indicative of imagery



60

quality? Is it possible feedback based on less discriminative signals could lead to

greater improvements in functional outcome?

If we could be certain that improving beta desynchronization at the site of maxi-

mal activity after median nerve stimulation was the best way to improve functional

outcomes post-stroke, the fact that it couldn’t reliably be used to predict whether a

participant was doing imagery would not be relevant. Either reliable discrimination

would come with increased dosage, or discriminability would be unrelated to func-

tional outcomes and would never be obtained. It would seem unlikely, though, that

feedback from a signal which was often indiscriminable from resting would be useful

for training a participant to improve. Discriminability here is defined as the ability to

predict the state the participant was instructed to be in, and not necessarily the state

they actually reached. It is possible predictive failures are a function of unsuccessful

task performance, rather than a failure of the features to discriminate state. If the

task is sufficiently difficult, a feedback signal which frequently but correctly reports

failure is still valuable. We are forced to rely on subjective reports by participants,

and the two previous sessions of training they received, in asserting that they were

capable of performing MI when instructed. As Boe et al [1] found significant changes

in the patterns of activity evoked when compared to the first session when providing

neurofeedback from these sources, discriminability is clearly not required for driving

changes in activity with feedback. As we have not tested the effects of provision of

feedback based on any of the models we have generated, it remains to be seen whether

feedback based on signals with greater discriminability would yield better results. It

seems reasonable to hypothesize that signals which are most discriminative might

yield the best feedback, but it remains an open question, and one with important

implications for the value of our approach.

4.3 Objective 2: Can we identify which MEG sensors are most

discriminative between rest and MI?

Identifying a minimal subset of sensor positions which best capture the signals that

characterize MI is a key step in realizing a clinically practical aid to MI interventions.

The size and complexity of the proposed EEG system, and therefore its setup time,

can be dramatically reduced by minimizing the number of sensors required. Further,
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this system could be applied to stroke patients to automatically identify new optimal

sensor placement sites to account for changes in the topography of the MI signals of

interest after cortical damage.

4.3.1 Most Discriminative Sensors

While there was considerable variability in which sensors were selected in the top ten,

a smaller set of 3-5 sensors was consistently selected across almost all participants.

Given the high accuracy of this reduced sensor set, this suggests it may be worth

investigating whether a very reduced set of 5 sensors may be all that is required to

build models which provide effective neurofeedback. Sensors along both sides of the

midline over sensorimotor cortex and sensors over both lateral extremes of prefrontal

cortex were consistently selected. The middle frontal, precentral, and inferior frontal

gyri as well as supplementary motor areas have been found to consistently activate

during upper limb MI [80], and these are the most likely anatomical sources for the

signals these sensors are most sensitive to.

4.3.2 Case Study: Participant 3

Participant 3 showed a number of anomalous traits which made their data worth

investigating in greater detail. Models trained on other participants demonstrated

poor accuracy when classifying participant 3’s imagery, but improved when trained

after occipital sensors had been eliminated. Further, models trained after RSE were

completely unable to classify participant 3, with accuracy approaching chance. In

order to ascertain why this happened, deviation from the training mean in heavily

weighted features was used to identify in which sensors and frequency bands this

participant differed most from the rest of our sample. By identifying the mean change

in brain activity during MI over the participants the model trained on, and comparing

it to the pattern of activity actually displayed in the testing set drawn from participant

3, we may be able to identify misleading or spurious features to omit in future.

The deviation from the training mean in each feature was computed and multiplied

by the weight assigned by the model to that feature. The five sensors which displayed

the largest weighted deviation in mu and beta features were then selected for more

in depth analysis, plotting mean feature values over training trials with confidence



62

0 10 20 30 40 50 60 70
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

M
e
a
n
 E

R
S
/E

R
D

Sensor 246

Learned Weights
Test Imagery
Test Rest
Training Imagery
Training Rest

0 10 20 30 40 50 60 70
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

M
e
a
n
 E

R
S
/E

R
D

Sensor 253

Learned Weights
Test Imagery
Test Rest
Training Imagery
Training Rest

0 10 20 30 40 50 60 70
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

M
e
a
n
 E

R
S
/E

R
D

Sensor 233

Learned Weights
Test Imagery
Test Rest
Training Imagery
Training Rest

0 10 20 30 40 50 60 70
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

M
e
a
n
 E

R
S
/E

R
D

Sensor 115

Learned Weights
Test Imagery
Test Rest
Training Imagery
Training Rest

0 10 20 30 40 50 60 70
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

M
e
a
n
 E

R
S
/E

R
D

Sensor 134

Learned Weights
Test Imagery
Test Rest
Training Imagery
Training Rest

0 10 20 30 40 50 60 70
Frequency (Hz)

1.0

0.5

0.0

0.5

1.0

M
e
a
n
 E

R
S
/E

R
D

Sensor 229

Learned Weights
Test Imagery
Test Rest
Training Imagery
Training Rest

Figure 4.1: The six sensors drawn from the occipital included analysis in which
participant 3 deviated most from the training mean. Shaded areas are 95% confidence
intervals for the mean. The green line represents the model weights learned on the
training data, and in general follow the sign of the solid red line representing mean
Imagery activity in the training set. The dotted lines represent the individual testing
participant’s mean. Areas where the red dotted line and the green line are of opposing
sign contribute to misclassification. Participant 3 demonstrated an unexpected large
amplitude beta synchronization in the 20-22 Hz band in sensors 246, 253, and 233
during imagery. Unexpected Mu synchronization during imagery was observed in
sensor 134 at 11 Hz.
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Figure 4.2: The six sensors in which participant 3 deviated most from the training
mean. Shaded areas are 95% confidence intervals for the mean. The green line
represents the model weights learned on the training data. Sensors 210, 193, 191,
and 78, all show unexpected beta synchronization during imagery. In sensor 191, low
gamma activity appears highly predictive of MI, though on average these features were
uninformative. In sensors 78, 116, and 135 there was strong alpha synchronization
during imagery, contrary to the strong desynchronization observed on average.
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intervals, mean feature values over test trials with confidence intervals, and finally

the weights learned on the training set for imagery including occipital (Fig. 4.1) and

excluding occipital (Fig. 4.2).

Participant 3 demonstrated an unexpected large amplitude beta synchronization

in the 20-22 Hz band in sensors 246, 253, and 233 during imagery. Unexpected Mu

synchronization during imagery was observed in sensor 134 at 11 Hz. It is difficult to

determine why participant 3 displayed this reversed pattern of activity, but it seems

likely they were not performing the task correctly. The reversal of alpha activity

could be explained by confusion with regard to when to keep eyes closed versus open,

but this doesn’t explain the reversed pattern of beta synchronization. If they were

simply performing the task during rest trials and resting during active trials we would

expect to see an accuracy well below 0.5. As accuracy was close to chance, it seems

the activity patterns displayed by other participants were in no way predictive of

state for participant 3.

4.3.3 Towards Clinical Applicability for MI

Practicing physiotherapists often see patients for 20-40 minutes per session. This

makes minimization of setup time a critical factor in clinical applicability. Two po-

tentially valuable goals of this research were reducing the number of electrodes and

minimizing training time, as the process of EEG cap preparation and initial BCI

familiarization form the bulk of preparation time.

We found we could successfully use our model to dramatically reduce the number

of sensors with only small losses in accuracy.

LOBO cross validation is both a more strict standard for validating generated

models and a means of estimating real-world transfer loss in feedback quality. The

generally high accuracy of these models on unseen participants suggests a zero BCI

training system would be practical for providing MI neurofeedback. Thought it was

not explored here, it may be further improved by online adaptation of the model

to the participant during initial trials, though this does pose the risk of learning to

reinforce suboptimal imagery activity patterns.
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4.4 Objective 3: Using source level modelling of MEG data across the

whole brain, can we identify the anatomical regions whose activity

best discriminates MI across our participants?

While source localization quickly becomes impractical with a reduced sensor set,

source level models can improve our understanding of the the functional roles of the

signals we employ for feedback, and thus the potential implications of the changes we

drive for recovery. A solid understanding of what neurofeedback changes, the nature

and function of the patterns of activity which are evoked by ME and MI, and the

changes in activity patterns following stroke are all critical to designing efficacious

therapeutic interventions based around MI.

4.4.1 Most Discriminative Sources

When primary visual areas were included they consistently ranked amongst the high-

est based on reliable changes in alpha synchronization during imagery, but this was

confounded by the fact that participants had their eyes open during Rest trials. Beta

ERD was most weighted in primary sensory and motor, ventrolateral and dorsolateral

premotor, and the superior and inferior parietal cortices, which agrees well with the

established key sources in the sensorimotor network. Primary sensory regions and

sometimes superior parietal cortex weighted ERD heavily in mu. These source rank-

ings agree well with the meta activation likelihood estimation of 75 fMRI MI studies

performed by Hetu et al [80], both showing ventrolateral and dorsolateral premo-

tor cortex, superior parietal cortex, and the precuneus. The dorsolateral prefrontal

cortex, which was amongst the top rated sources in some models, maps on to the

middle frontal gyrus in their work, though they found that this area was predomi-

nantly activated by lower limb MI on the right hemisphere and upper limb MI on the

left. This may have been an effect of task laterality in the studies they evaluated, as

we found right hemisphere dorsolateral prefrontal cortex activation in this left upper

limb imagery task after feedback.
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4.4.2 Case Study: Participant 4

In order to ascertain what caused the poor accuracy when classifying Participant

4 in both the Imagery and Motor tasks each trial was multiplied by the learned

model weights and the deviation from the training mean was computed to ascertain in

which sources and frequency bands this participant differed most. These sources were

then selected for more in depth analysis, plotting mean feature values over training

trials with confidence intervals, mean feature values over test trials with confidence

intervals, and finally the weights learned on the training set in motor (Fig. 4.4)

and imagery (Fig. 4.3), respectively. Alpha activity in Thalamus, Ventral Temporal

Cortex, Angular Gyrus, and Inferior Parietal Cortex across both imagery and motor

tasks was highly misleading in participant 4. Where most participants showed alpha

synchronization in these areas during both imagery and motor tasks, participant 4

showed desynchronization. For instance, in the Thalamus in training data there was

a mean peak at 11 Hz of 0.6 during ME, while in the testing data there was a mean

peak at 10 Hz of −0.5. Similarly, in the imagery data the Thalamus showed a mean

peak at 10 Hz in the training set of 0.7, while in testing it showed a peak at 9 Hz

of −0.6. It seems likely this participant reversed the instructions for when to open

and close their eyes, leaving them open during task and closed during rest. If this

is true, it suggests the alpha trends in thalamus, precuneus, ventral temporal cortex,

and aubgenial cingulate cortex, among others, are a result of eyes open/closed and

not directly related to imagery/rest. A robust clinical system for identifying MI may

benefit from resilience to noise introduced by whether the patient opts to perform the

task with eyes open or closed. Weights learned on this data set could not account

for this, but with a large enough data set, if many participants displayed this pattern

of activity, the model would learn these were unreliable indicators and reduce their

weighting. Outliers in important features are a major challenge to generalizability

and transferability of a model, and the difficulties inherent in verifying compliance in

MI tasks for labelling purposes compounds this.

There appears to be conflicting evidence related to alpha lateralization. When

occipital sources are removed there is a reliable lateralization of alpha weights to

the left hemisphere in the control group and the right hemisphere in the feedback

group, but as the case study on participant 4 demonstrated, it’s possible these signal
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components are generated by whether eyes are open or closed during a trial. If this is

an effect of exogenous activation of the visual system, and not imagery, why should

neurofeedback affect its lateralization? It seems there may be more than one effect

entangled here, and a methodology which more carefully controls for the state of the

visual system would be required to separate them.

4.4.3 Comparison with Functional Connectivity Networks

Functional connectivity network analysis is a powerful technique for establishing the

role that information transfer between anatomical regions plays in task specific pro-

cessing. As our technique has generated a task-related source ranking, this is an ideal

opportunity to compare our results with several alternate techniques which produce

similar results. Bardouille & Boe examined cortico-cortico coherence, a measure of

task induced phase-locking and information transfer, to generate task-related func-

tional connectivity maps for bilateral ME vs rest [71]. They found bilateral ventrolat-

eral and dorsolateral premotor cortex showed a high degree of connectivity with other

regions, as well as the Frontal Eye Fields (labelled Anterior Premotor Cortex here),

Inferior Parietal Cortex, Middle Temporal Cortex, and Precuneus. These sources

were all consistently weighted heavily, though they often found the frequency bands

of interest were in the gamma band (32-64 Hz) or, in the case of Ventrolateral Premo-

tor Cortex, the delta band (4-8 Hz). These frequency bands were available as features

to our models, but were less consistently and heavily weighted than alpha/mu and

beta. This may indicate the phase locking of these regions, and not ERS/ERD carries

most of their information content, and suggests a possible new set of features with

which to augment our models.

Xu et al used the node betweenness centrality metric and fMRI to investigate the

differences in the functional connectivity networks of MI and ME [81]. They found

supplementary motor area was the key node in the ME network, while the right

primary motor cortex and left thalamus were the key nodes in the MI network. That

M1 was not a key node in the ME network is unexpected; that it plays a larger role in

MI than ME doubly so. This counterintuitive result can also be seen in the weightings

assigned to the M1, ventrolateral premotor, anterior premotor, and thalamic sources

in our motor and imagery models. M1 was more important for predicting state - or
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Figure 4.3: The six sources in which participant 3 deviated most from the training
mean. Shaded areas are 95% confidence intervals for the mean. The green line
represents the model weights learned on the training data, and in general follow the
sign of the red line representing Imagery. The dotted lines represent the individual
testing participant’s mean. Areas where the red dotted line and the green line are
of opposing sign contribute to misclassification. This participant shows a pattern
of activity in thalamus, ventral temporal cortex, and angular gyrus roughly inverted
from the training mean in the alpha band. M1 shows a possible example of overfitting
in its weighting of alpha. The weight assigned here despite the overlapping confidence
intervals suggests one participant in the training group showed alpha synchronization,
and the model adapted to account for this and optimize classification accuracy. In
most participants, where there was little to no ERS/ERD here, this had no effect. In
this unseen participant, however, it contributed to misclassification.
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Figure 4.4: The six sources in which participant 4 deviated most from the training
mean. Shaded areas are 95% confidence intervals for the mean. The green line
represents the model weights learned on the training data, and in general follow the
sign of the red line representing motor. The dotted lines represent the individual
testing participant’s mean. Areas where the red dotted line and the green line are
of opposing sign contribute to misclassification. This participant shows a pattern of
activity in thalamus, ventral temporal cortex, and the subgenual cingulate cortex in
alpha which is roughly the inverse of the training mean.
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perhaps other regions less important - in MI after neurofeedback than in ME.

Bajaj et al. [82] explored functional connectivity in the sensorimotor network

at frequencies less than 0.1 Hz using spectral granger causality and fMRI. They

examined the effects of a course of MI therapy without feedback and MI+RTP in

patients between 1 and 54 months post stroke, as well as a healthy control group

who received no intervention. Exclusion criteria included a motor activity log score

of over 2.5, the inability to extend the affected wrist at least 20◦, or the inability

to extend two fingers and thumb at least 10◦. MI therapy patients performed 8, 30

minute imagery sessions a day guided by an audio tape for a total dosage of 60h over

3 weeks. The MI+RTP group received 3 hours of physical therapy and an hour of MI

therapy for 15 days. They found significant impairment in information flow between

bilateral M1, premotor cortex, and SMA in the patient group as compared to the

control group, with significant improvement in the MI+RTP group but not the MI

alone group. This improvement in information flow was correlated with improvement

on the Fugl-Meyer Assessment in the MI+RTP group. We would hypothesize the

MI group in this study would have shown markedly better improvement if provided

neurofeedback while practicing. Providing such large dosages of neurofeedback would

require the small portable neurofeedback system previously discussed.

These directional relations between network regions create a complex fingerprint

for each state, an information rich representation which could markedly improve sep-

arability over largely mutually independent ERS/ERD source models. Brain regions

do not operate in isolation, and the coordination of a full network is required for

full functionality. We effectively use ERS/ERD as a proxy measure for network

activation, but information theoretic measures like cortico-cortico coherence, spec-

tral granger causality, transfer entropy, and conditional mutual information could be

used to quantify information flow within the network directly. Further study is re-

quired to determine whether reinforcing typical patterns of information flow within

the network is more directly correlated with recovery than strengthening ERS/ERD.

A feedback methodology based on both would be complex, but tractable with ma-

chine learning. Bivariate models, models which examine information flow between

pairs of sensors, have been shown highly effective in the complex, network-centric

field of seizure prediction where univariate models and traditional statistical models
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have proven ineffective [83].

4.5 Future Work

Models built to discriminate first session and third, or later, session trials could

directly speak to the axis along which the brain activity of participants is progress-

ing when presented with MI neurofeedback. This could be used to directly quantify

progress, allowing neurofeedback efficacy curves to be built for each participant, help-

ing to understand dosage effects and inter-session rest and reinforcement effects on

MI ability. By identifying whether there are diminishing returns or a saturation ef-

fect of dosage over time we can avoid wasting the time of patients and clinicians.

If no such effects are found, we can quantify the tradeoff between session lengths

and effect, allowing clinicians to make informed decisions about how to prescribe

neurofeedback in practice. These models could also be used to evaluate whether a

participant was progressing particularly slowly, potentially signifying damage which

precludes MI interventions.

The recursive sensor elimination models should be tested in EEG, and the value of

such a sensor selection methodology evaluated in stroke patients with varying extents

of damage. By mapping lesion locations and identifying how the sensor selection

system adapts, and how this influences outcomes from the resulting neurofeedback,

we can determine whether it is beneficial to adapt the feedback to account for the

damage. It’s possible it would be more beneficial to reinforce limited activity in the

damaged tissue, and that encouraging a shift to nearby cortical regions may not result

in optimal outcomes. This may heavily depend on the time since stroke. Early in the

acute phase driving activity in the damaged area may cause further damage, whereas

at the height of plasticity during the 2-8 week period it may encourage recovery

of lost functionality. Late in recovery, when plasticity is no longer heightened, it

may be impractical to target the damaged regions if they have still not recovered

their functional role, and better functional outcomes may be obtained by settling for

encouraging those important functions to transfer to adjacent healthy regions.

Augmented with patient outcomes on tests like the Fugl-Meyer, Action Research

Arm Test, or similar, a data set similar to this could be used to build an effective

patient outcome prediction system. Dong et al [20] explored whether laterality index
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could be used to predict patient outcomes using fMRI of MI. A very rich data set

could be gathered with MEG from patients prior to beginning a course of standard

physiotherapy, including ERS/ERD and information flow in the motor network. If

followed up with post-therapy outcome measures, an effective clinical tool could be

built to inform clinicians of expected outcomes for patients, allowing them to focus

additional effort on patients who might otherwise have a poor prognosis, or attempt

alternative therapies.

The structure of neurophysiological data obtained from MEG and EEG lends itself

well to several other learning algorithms. Conceptualized as a machine vision problem,

with time-frequency response functions forming an image and each sensor acting as a

colour layer, the convolutional neural network (convnet) becomes an excellent choice

for classifying state. Convnets have achieved state of the art results in many difficult

image classification problems [84]. Convnets take advantage of structural assumptions

inherent in images, using locally connected neurons in a spatial region instead of layers

of totally connected neurons which would generate far too many connections to scale

to high resolution data and likely result in overfitting. The kernels used in early

layers can combine or leave separate colour channels as necessary. These assumptions

hold well in the case of time-frequency response functions, where the two dimensional

structure of the data holds rich information, and the manner in which different sensors

should be combined may be complex.

Conceptualized as a multi-channel sound recognition problem, with sequences of

power spectra from multiple sources arrayed in time as in speech processing, Long

Short-Term Memory (LSTM) becomes an excellent choice for capturing these com-

plex temporal sequences. LSTM is a form a recurrent neural network, a technique

whereby the output of a layer of neurons is fed as input into itself iteratively to create

depth while keeping the number of connections to learn from increasing, allowing very

deep hierarchies with low training costs. Graves et al [85] achieved state of the art

classification accuracies on the TIMIT speech recognition data set.

These hierarchical, deep learning approaches to feature extraction and classifi-

cation are robust to noise, generalize well, and can learn new features which are

themselves complex conditional combinations of simpler features. Using these learned

encodings offers excellent classification accuracy, but can make the model difficult to
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interpret. Most immediately accessible are the key features learned, which for im-

ages are extremely similar to those encoded in primary visual areas of the primate

neocortex. By examining which signal components - potentially in time-frequency,

information flow, or other spaces - are captured in these more complex features we

might learn the fundamental building blocks of the task-related signal in MEG.

4.6 Conclusion

We investigated which spatiotemporal signal components best discriminate MI from

rest at the source and sensor level across participants. Sensor and 80-Source level

models were successfully able to discriminate MI vs Rest in unseen participants with

an average of greater than 90% accuracy. A likely minimal set of sensor placements

was identified, and shown to be capable of classifying MI vs Rest with only a small

loss in accuracy. 80-Source level models weighted changes in beta synchronization

in bilateral ventrolateral premotor cortex, dorsolateral premotor cortex, anterior pre-

motor cortex, S1, M1, superior parietal cortex, and inferior parietal cortex, along

with ipsilateral hemisphere S2. M1 was much more important to classifying MI after

feedback. Alpha/mu weightings were more difficult to interpret due to the confound-

ing state related activation of the visual system. The model weighted changes in

alpha synchronization in ventral temporal cortex, parahippocampal cortex, retros-

plenial cingulate cortex, precuneus, thalamus, and subgenual cingulate cortex. The

Control group models heavily favoured ipsilateral hemisphere sources and sensors in

both bands, while Feedback group models demonstrated a partial but marked shift to

contralateral sources and sensors. Further work is still required to validate the results

of this methodology in improving participant outcomes, but it provides avenues for

further study in both MEG and EEG, and helps to lay the groundwork for a future

clinically useful neurofeedback tool.
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Appendix

Figure 4.5: Signal from sensor 255 over right hemisphere M1 during ME processed
with FFT and STFT demonstrating ratio to baseline signal.
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Figure 4.6: Mean weights of all sensor level models of Control group during MI,
occipital sources included.
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Figure 4.7: Mean weights of all sensor level models of Feedback group during MI,
occipital sources included.
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Figure 4.8: Mean weights of all source level models of Control group during MI,
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Figure 4.9: Mean weights of all source level models of Feedback group during MI,
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