CANADIAN THESES ON MICROFICHE

THESES CANADIENNES SUR MICROFICHE

Natio

K1A ON4

National Library of Canada Collections» Development Branch Bibliothèque nationale du Canada Direction du développement des collections

I.S.B.N.

Canadian Theses on Microfiche Service Ottawa, Canada

· •

NÓTICÉ

The quality of this microfiche is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us a poor photocopy.

Previously copyrighted materials (journal articles, published tests, etc.) are not filmed.

Reproduction in full or in part of this film is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30. Please read the authorization forms which accompany this thesis.

THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED

La qualité de cette microfiche dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

AVIS

° S'il manque des pages, veuillez communiquer àvec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de mauvaise qualité.

Les documents qui font déjà l'objet d'un droit d'auteur (articles de revue, examens publiés, etc.) no sont pas microfilmés.

La reproduction, même partielle, de ce microfilm est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30. Veuillez prendre connaissance des formules d'autorisation qui accompagnent cette thèse.

> LA THÈSE A ÉTÉ MICROFILMÉE TELLE QUE • NOUS L'AVONS RECUE

FORMATION AND EVALUATION OF LIPOSOMAL DRUG DELIVERY SYSTEMS

bγ

ų,

A Thesis

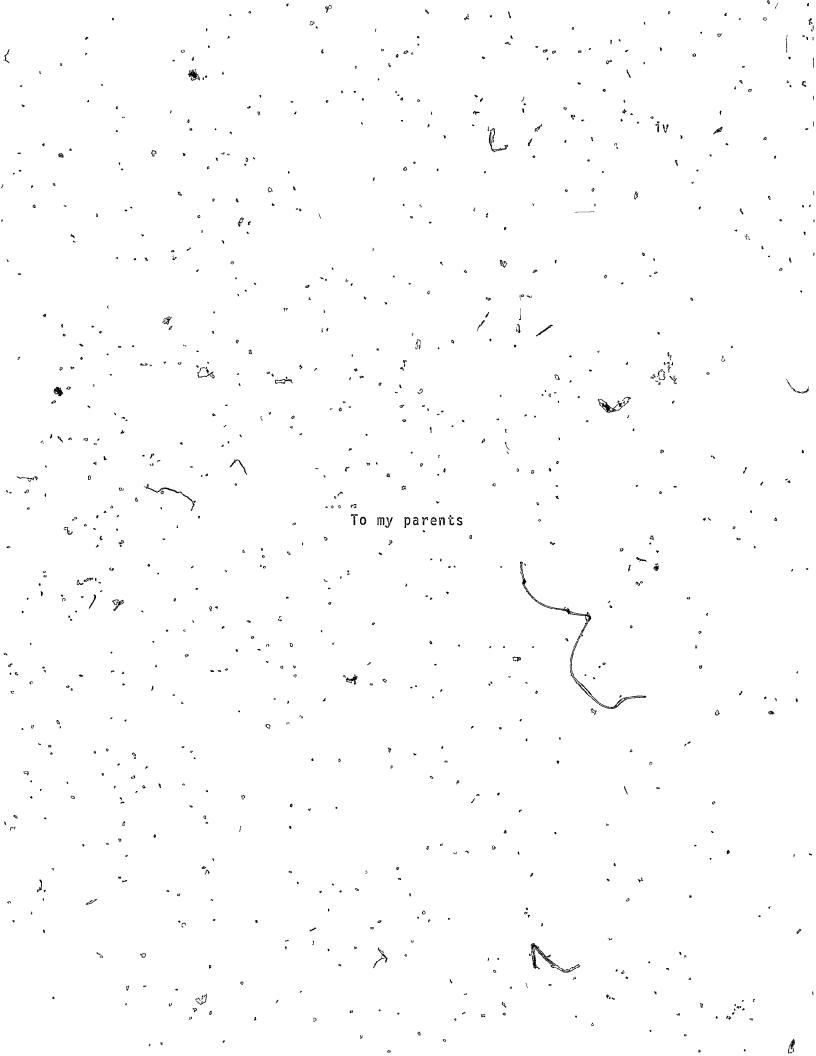
Entitled

e.t.

C Ashokkumar Goundalkar : M.Pharm. (Nagpur University, India)

Faculty of Graduate Studies of Dalhousie University on university of matter for the requirements for the sequirements for the sequence of the sequence

Submitted to the


Doctor of Philoso,phy

the degree of

College of Pharmacy, Faculty of Health Professions Dalhousie University, Halifax, Nova Scotia

> . December 11, 1984, 🕺 👷

> > \mathcal{O}

	• •
TABLE OF CONTENTS	· Page '
O h a durw a du	- • ^x i .
Abstract	- ° __ ∧••• X11••
List of Tables	4
List of Figures	XV. 0
List of Abbreviations :	xviii .
Acknowl edgements	ххі
INTRODUCTION ,	- 1
Statement of the problem	-2 ,
Literature review	° <u>*</u> 3
Liposomes	3
Composition of liposomes	5 '
Types of liposomes	, 6 ´
Methods of preparing liposomes	, 10
Drug entrapment in liposomes	16
Separation of free drug from liposomes	21
Filtration of liposomes	24
Characterization of liposomes	25
Stability and storage of liposomes	 28 _ມ
Drug targeting	29
Antibody mediated drug targeting	, × 31
Liposomal drug targeting	32
	34 `
Binding of antibodies to liposomes	38
Liposome cell interactions <u>in vitro</u>	53
Distribution and interactions of liposomes <u>in vivo</u>	,
Toxicity of liposomes	67
• v	

V .

. ف با

١.

ţz

S

``'' *a

D

°,

ζ

.

۵

۵.,

		Page
s 3 * .	Rotential applications of liposomes .	6 9
Ře	search hypotheses and objectives	، 80 ^{- 1} ،
· · · MATER	ITALS AND METHODS	 .
ч. Ч.	Materials, Equipment and Instruments, Animals, Antibodies, Tumors	` 88
	STUDIES WITH TRIAMGINOLONE ACETONIDE	92
· .	Attempts to improve the liposomal encapsulation of triamcinolone acetonide	۰ 92 یۇ
• •	Attempts to concentrate the liposomal preparation ,	94
• ``.	Evaluation of the supernation of the liposomal preparation	95
 0 . *	Synthesis of Triamcinolone acetonide-21-	. 95
دىر ي	Preparation and evaluation of TRMA and TRMA-21- palmitate liposomes	· .99 :
۵. ک	STUDIES WITH METHOTREXATE	· 100 ,
•	SECTION I: REV LIPOSOMES	100
· · ·	Preparation of MTX liposomes by reverse phase ; evaporation (REV) method	100
·	- Separation of free MTX from liposome encapsulated	, 102
	Determination of MTX in liposomes	102
, , , , , , , , , , , , , , , , , , ,	Preliminary stability studies of neutral MTX	104
	Size distribution of liposomes	104
· · · ·	<u>In vitro</u> drug release studies from positive MIX liposomes	104
)		. 0 0
, , , , , , , , , , , , , , , , , , ,		• •
		• ^) æ
•		5 A

. م

, , 5

0

د ۳

, D ;

, ***r_____

ٽ م

۱[°]07 Covalent attachment of antibodies to liposomes Synthesis of N-[3-(2-pyridy]dithio)propio@y]] __dipalmit.oy] phosphatidy]ethanolamine-(PDP-DPPE) 107 Synthesis of N-13-(2-pyridyldithio)propionyll . phosphatidyTethanolamine 108 Synthesis of N-13-(2-pyridyldithio)propionyll 109 stearylamine (PDP-SA) Preparation of antibody fragments 111, Coupling of Fab' fragments to liposomes 113 Measurement of 2-thiopyridinone (2-TP) release 115 Covalent, coupling of IgG to liposomes by ECDI method 115 Covalent coupling of IgG to liposomes by Barbet et al. (1981) method 117 Preparation of PDP-IgG 118 Covalent coupling of IgG to liposomes 118 Determination of antibody activity 121 Preparation of ¹²⁵I~BSA 121 Antibody activity before binding to 122 liposomes Antibody activity after binding to 123 liposomes 124-Leakage of drug during coupling procedure Studies of antibody mediated binding of positive MTX 124 liposomes by melanoma cells -Membrane Immunofluorescence assay of PDP-anti-124 melanoma globulin 126-Immunofluorescence technique 126 Radiotracer method

vii

Page

lere		
¢	o ,	Page
. 5	<u>In vitro</u> studies against Caki cells	128
	. <u>In vitro</u> studies against EL ₄ lymphoma cells*	129
ہ 1	Growth curve for EL ₄ lymphoma cells	129
	Attempts to quantitate the number of cells in presence of liposomes	、 130
	Effect of MTX liposomes against EL ₄ cells	133
	<u>In vitro</u> studies against human melanomá M ₂₁ cells	_. 133 [°] .
	Growth curve for human melanoma cells	133 🦏
` -	_Effect of MTX liposomes on human melanoma cells	, 135 <i>*</i>
	In vivo studies	136 _ ′
0	SECTION 2: SUV LIPOSOMES	138
р. Р. со	Preparation of positively charged SUV liposomes containing MTX	138
• • £5	Gel filtration chromatography to separate unencapsu- lated MTX o	138 · ,
6	Covalent coupling of IgG to liposomes	139 。
t Ç	Separation of antibody coated SUV from unbound	139
1	Aftempts using Sephacryl S-400 and Sepharose	, 139·
•	Ficoll floatation centrifugation	140
*	Liposome binding studies with human melanoma cells	141
BESUL	TS AND DISCUSSION	143
	STUDIES WITH TRIAMCINOLONE ACETONIDE	144
đ	Attempts to improve liposomal encapsulation of TRMA	124
	·	

0:

۵ ۲

÷

í.

vi

J.A

	5 4 O · · · · ·	· · · · · ·
σ		Paĝe
	Gel filtration chromatography and dialysis of the supernatant	149
	Attempts to concentrate the liposomal preparation	151 .
<i>.</i>	Synthesis of TRMA-21-palmitate	152 0
1-	Preparation and evaluation of TRMA-21-palmitate liposomes	155
u	STUDIES WITH METHOTREXATE	162,
д	SECTION 1: REV LIPOSOMES	ຸ162 ູ້
-	Formulation and preparation of MTX liposomes	162
`	Determination of MTX in liposomes	ຳ63໌ ·
	MTX encapsulation efficiency	<u>)</u> 66
•	Size distribution of liposomes	166
	<u>In vitro</u> drug release studies from positive MTX r	זלו , י
0	Covalent attachment of antibodies to liposomes	176
• 、	Synthesis of PDP-DPPE	177 •
-	Synthesis of PDP-PE	177 `' .
•	"Synthesis of PDP-SA	178
J	Preparation of antibody fragments and coupling to liposomes	181
	IgG coupling to liposomes by ECDI method	186
. '	IgG coupling to liposomes by Barbet et al. (1981) method	1 <u>8</u> 8
•	Antibody mediated binding of positive MTX liposomes by melanoma cells	193
•	_Immunofluorescence staining technique	193
¥	j Radiotracer technique	195
-1×		n L

0

C

، م

\$:

Ŋ.,

わな

0

ø

	Page .	
In vitro studies against Cakigcells	· 197	
<u>In vitro</u> studies against EL ₄ lymphoma cells	201	
Attempts to quantitate the number of cells in presence of liposomes	, 201 ,	0
<u>In vitro</u> studies against EL ₄ cells .	° 211 ·	
<u>In vitro</u> studięs aga inst human melanomą (M ₂₁) cells 🕨	215	
In vivo studies against murine EL ₄ lymphoma	215	
SECTION 2: SUV LIPOSOMES	228	
Preparation of positively charged SUV containing	228	
Separation of unentrapped drug from liposomes	230 [°]	
Covalent coupling of IgG to liposomes	235 🤇 🐍	
Liposome binding studies with human melanoma	<u>242</u>	
SUMMARY AND CONCLUSION	245	1
Studies with triamcinolone acetonide liposomes	246	-
Studies with methotrexate liposomes	247	
REFERENCES	252 -	
APPENDICES	285	-
	د 4 ت	
	•	
ci '	ې ۲	

8 a

'.ÂBSTRACT

The two major objectives, of this project were: to improve liposome encapsulation of triamcinolone acetonide (TRMA) and, to develop and evaluate chemoimmunoliposomes using methotrexate (

Formulations and methods of preparation were varied to overcome the poor encapsulation of TRMA, with little success. High encapsulation of JRMA in liposomes was finally achieved through chemical modification. A new derivative, JRMA-21-palmitate (TRMA-P), was synthesized using a ... procedure which regulted in high yield and purity. Encapsulation studies revealed almost complete incorporation of TRMA-P into liposomes.

In the <u>in vivo</u> evaluation against murine EL₄ lymphoma, MTX entrapped in REV liposomes showed a marginal improvement in the survival time of tumor bearing mice. Coating the liposomes with antibodies did not improve the efficacy of MTX liposomes. Overall, these results seem to indicate no beneficial effect of MTX entrapped in liposomes whether coated with antitumor antibodies or not.

LIST OF TABLES

A CLARK

3

Ţable	· · · ·	Page	
1	Types of Liposomes	11	
2	Methods of preparation of liposomes	, 14	
3	Binding of antibodies to liposomes	39	,
4	Chemical reactions involved in covalent binding of antibodies to liposomes	43	
5 👞	Results of the study of different methods and/or formulations of liposomal preparation with TRMA	145	
6 , °	Development of TLC procedure to separate TRMA, TRMA-21-palmitate and palmitic acid	ູ156	•
, 7	Synthesis of TRMA-21-palmitate	157	
8	Comparative data for liposomal encapsulation of triamcindlone acetonide and triamcindlone	د ت	
Å	acetonide-21-palmitate	158	
[*] 9	Spectrophotometric determination of methotrexate in liposomes	165	
10 ,	Standard curve for methotrexate (MTX); solvent: methanol	167	
]] ,	Some parameters for methotrexate (MTX) encapsula- tion in liposomes	, 169	
12	Results of preliminary stability studies of neutral methodrexate (MTX) containing liposomes	170	
13, * , , , ,	Size distribution of methotrexate (MTX) containing . liposomes	170	
14.°,	Calibration curve for methotrexate (MTX); solverft: 0.5%,NaHCO3	, 172	
15	Release of methotrexate (MTX) from liposomes	174	
16	FLC of PDP-DPPE reaction mixture on silica gel H	179	
17	TLC of PDP-SA reaction mixture on silica gel	180	
ι,		a 1	

ÿ

xii

Table	o tina tina tina tina tina tina tina tina	Page
18	Covalent coupling of antibodies to liposomes using PDP-SA	185
19 [′] .	Covalent coupling of antibodies to liposomes using PDP-SA according to the method described by Barbet <u>et al</u> . 1981	189
20 .	Calibration curve for radioimmunoassay of anti- BSA IgG	191
<u>،</u> 21 ،	Binding of antibody coated methorexate (MTX) containing liposomes (REV) by human melanoma cells	196
22	Growth curve for Caki cells	198
23	Effect of methotrexate (MTX) containing liposomes, on Caki cells <u>in vitro</u>	200
24	Growth curves for EL ₄ lymphoma cells	202
25	Expected contamination of cell counts by liposomes at a cell count of 163800 cells/2 ml (i.e. per plate)	204 · *
26	Centrifugation of neutral methotrexate (MTX)	[\] -206
27 .	Effect of triton X-100, sodium dodecyl sulfate, methanol and ether on cells and/or liposomes	°210 ُ
28	Effect of methotrexate (MTX) containing liposomes on EL ₄ lymphoma cells <u>in vitro</u>	212
29	Effect of targeted methotrexate (MTX) containing liposomes on EL ₄ lymphoma cells <u>in vitro</u>	213 _
30	Growth curve for human melanoma (M ₂₁) cells	216
31	Effect of positive methotrexate (MTX) containing liposomes on human melanoma (M ₂₁) cells	218
32 . • •	In vivo evaluation of methotrexate (MTX) containing Tiposomes in the treatment of EL_4 ascites tumor	219
33	Toxicity of methotrexate (MTX) containing liposomes	<i>i</i> ^{°°} 221 ∕ Ъ∘

2

9

Z

. *بتر* ،

xiii

Ĭ

~		1 ° -
Table		Page
34 · .	In vivo evaluation of methotrexate (MTX) containing Tiposomes in the treatment of EL_4 ascites tumor	°2,22 '
35 •	In vivo evaluation of targeted methotrexate (MTX) containing liposomes in the treatment of EL_4 ascites tumor	223
36	In vivo evaluation of targeted methotrexate containing liposomes in the treatment of EL_{4} ascites tumor	, 225
37	Encapsulation efficiency of ³ H-methotrexate (MTX) ; in small unilamellar vesicles (SUV)	, 229≗ .₫
38	Ficoll floatation centrifugation of antibody bound liposomes	240 ⁱ
[′] 39	Binding of antibodiy coated methotrexate (MTX) containing liposomes (SUV) by human melanoma cells	243
	0 · · · · · · · · · · · · · · · · · · ·	

Q

2

· · · ·

01

0

P 🚯

. v

^{CJ}. P

٥,

α

LIST OF FIGURES

Σ.

. 1

ý

ł

9

Figure	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	Page
° 1° ′	Liposomes	् 7
2	Distribution of drugs within a liposome (18
3 ₀ °.	["] Chemical structure and alternative names for Triamcinolone Acetonide	83 ,
- 4	Chemical structure and alternative names for Methotrexate	85 *
5	USP XVIII dissolution testing apparatus modified to study the drug release from liposomes	106
6	Synthesis of <u>N</u> -[3-(2-pyridyldithio)propionyl] stearylamine (PDP-SA)	J10
. 7 [°] '	Schematic répresentation of liposome-Fab'	114
8	Schematic representation of liposome-IgG poupling	116
ڊ 9 ,	Preparation of PDP-IgG	119
, 10	Schematic representation of liposome-IgG coupling (Barbet <u>et al</u> . 1981)	120
11 .	Anticancer evaluation of methotrexate (MTX) containing liposomes in vitro	134
,]2 ,	`Anticancer evaluation o'r methotrexate (MTX) containing liposomes <u>in vivo</u>	137
13	Sephadex G-50 elution profile of supernatant obtained by centrifugation of filtered ³ H-triamcinolone acetonide (TRMA) liposomal preparation	, 150
, 14 ·····	Calibration line for spectrophotometric determination of methotrexate (MTX) dissolved in methanol	168
2		

c, 7

1

١

XA

F	igure	s '	· , · <i>b</i> ·	Page
	15	,	Calibration line for spectrophotometric	
•	•		determination of methotrexate (MTX) dissolved in 0.5% NaHCO $_3$	173
].	16	° °	Release of methotrexate (MTX) as determined by dialysis technique	175
	17	~	Elution profiles of IgG, F(ab')2 and pepsin digest of IgG from Sephacryl S-200	182
	18,	•	Isolation of F(ab') ₂ from IgG by affinity chromatography on Protein A-Sepharose CL-4B	183
	19		Release of 2-thiopyridinone from liposomes containing PDP-SA following the addition of dithiothreitol	187
	20		Calibration curve for radioimmunoassay of anti- BSA IgG	192
	21	3	Fluorescence photomicrograph showing the binding of anti-melanoma globulin coated methotrexate containing liposomes to target melanoma cells	194
1	22		Growth curve for Caki cells in McCoy's medium supplemented with 15% fetal bovine serum and antibiotics	199
	23	æ	Growth curves for EL _A lymphoma cells in RPMI 1640 medium supplemented with 10% fetal bovine serum and antibio _f tics	* 203
	24	~	Scatter and Fluorescence distribution of liposomes and EL ₄ lymphoma cells	208
•	25		Growth curve for human melanoma cells in RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics	217
	26		Elution profile of "free" and liposome (SUV) encapsulated methotrexate (MTX) from Sephadex G-25	231 ′
	27		Elution profile of ³ H-methotrexate (MTX) solution from Sephadex G-25	232
	2		· · · · · · · · · · · · · · · · · · ·	· ·> .
		¢		

₫.

1:

¢

۲

ជ

٥

0

xvi

•

,	(D)	Ň	
	х х	` x `v ii	• • • •
۵ ۹	•	، ۹	`
Figure	•	Page	
28	Rechromatography, on Sephadex G-25, of liposomal (SUV) ³ H-methotrexate (MTX) obtained by gel filtration	233	*
29	Sephadex G-25 elution profile of liposomal (SUV) ³ H-methotrexate (MTX) obtained by dialysis	ی 234 °	с. 4
3 0.	Elution profiles of liposomal (SUV) ³ H-methotrexate (MTX) and IgG from Sephacryl S-400	~ 237 [°]	
ຸ 31 [°]	Elution profiles of liposomal (SUV) ³ H-methotrexate (MTX) and IgG from Sepharose 4B	238	• .
	,		

ميكية ، م

٥.

Δ

ŵ

· 7

2

Q

1

, ¢ • • • •

1

`.

- i. o o

• • • • • • • •

LIST OF ABBREVIATIONS

xviii

4

anti-EL, globulin, anti-EL, IgG AEG anti-melanoma globulin, anti-M₂₁ IgG AMG bovine serum albumin BSA balanced salt solution BSS' chalesterol GHOL Ci curie concentration conc counts per minute cpm dicetyl phosphate DCP dimethy] solfoxide-**DMSO** DL-*a*-dipalmitoylphosphatidyl choline DPPC dipalmitoyl L- α -phosphatidylethanolamihe DPPE disintegrations per minute dpm , dithiothreitol DTT 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide HCl ECDI EL_4 cells EL_4 Jymphoma cells egg phosphatidylcholine EPC fluorescence activated cell sorter , 5 FACS fetal bovine serum FBS fetal calf serum FCS gram g gravity хg hr hour hertz Hz

	IgG	immunoglobulin G .
	I.P.	intraperitoneal
	I.V.	·intravenous
	IR	infrared 🔪
	log P	logarithmic partition coefficient
	M	molar
	M ₂₁ cells	M ₂₁ melanoma cells
	min	minute
	MLV	•multilamellar vesicle '
-,	mp	melting point
	MTX	methotrexate
	nm ,	nanometer
	NMR	nuclear magnetic resonance
	NRG	normal rabbit globulin, normal rabbit IgG
5	N.S.	not statistically significant
	PBS	phosphate buffered saline
ø	PĊ,	egg phosphatidylcholine
	PDPDPPE	<u>N-[3-(2-pyridy]dithio)propiony]]dipalmitoy] L-α-phosphatidy]ethano]amine</u>
a	PDP-IgG	IgG_subscituted with SPDP
	PDP-PE	<u>N</u> -[3-(2-pyridy]dithio)propiony]]phosphatidy]ethanolamine
•	PDP-SA	<u>N</u> -[3-(2-pyridyldithio)propionyl]stearylamine
	PE	egg phosphatidylethanolamine
	ppm	parts per milion
•	q.s.	quantity sufficient to produce
	•	· · · · · · · · · · · · · · · · · · ·

xix

• •

REV reverse phase evaporation vesicle revolutions per minute rpm stearylamine ŞA s.c. subcutaneous standard deviation S.D. sodium dodecyl sulfate SDS N-succinimidy1-3-(2-pyridy1dithio)propionate SPDP small unilamellar vesicle SUV TLC thin layer chromatography 2-TP 2-thiopyridinoné ·triamcinolone acetonide . TRMA, triamcinolone acetonide-21-palmitate TRMA-P ultraviolet UV · vegetable phosphatidylcholine VPC Prefixes for units of measurement: mano (10⁷⁹) n micro (10⁻⁶) μ $milli^{(10^{-3})}$ kilo^{*} (10⁻³) k

XX

Q

'. ACKNOWLEDGEMENTS

First and foremost, I would like to thank. Dr. Michael Mezei for advice and encouragement during the entire course of these investigations and the preparation of this thesis. I am grateful to Dr. Tarun Ghose for the guidance and facilities generously provided for the second part of this investigation. The chemistry aspect of this project could not have been accomplished but for the invaluable guidance

I owe my thanks to Jane Hilchie, Bruce Cameron, Dr. Isaac Abraham, Sujata Joshi, Dr. Padmaja Kulkarni, Damaso Sadi, Molly Mammen, Helen Cruz and Shashi Uniyal for their help in various aspects throughout these investigations. Special thanks to Elizabeth Foy for keeping me up-to-date with the literature. Last, but not least, thanks are due to Lisa Parsons for the neat typing of this thesis.

The financial assistance in the form of Graduate Fellowship (1980-1984) received from the Faculty of Graduate Studies and the College of Pharmacy of Dalhousie University and also the Pharmacy Research Award Fellowships from Parke, Davis Canada Inc. (1983-84) and Novopharm Ltd. (1984) are gratefully acknowledged.

Xxi

'INTRODUCTION

° • • • •

e d

STATEMENT OF, THE PROBLEM

For the past several years attempts have been made to reduce the toxicity and increase the therapeutic activity of drugs. Often the toxicity is due to their disposition⁹ at a site where the therapeutic action is not desired. Thus conceptually, if it were possible to achieve a higher concentration of drug at the site of action and a decrease or elimination at the site of toxicity, the potency of the drug could be increased with concomitant reduction in its toxicity. Such a concept is referred to as "drug-targeting". Qptimal treatment of any disease involves the targeting of a drug to the site of action.

In topical therapy the untoward side effects are invariably due to percutaneous absorption and consequent systemic action of drugs. Thus optimal topical therapy involves the reduction in systemic action and the increase in the local action of drugs. Despite great strides in the ointment bases, it has not been possible to eliminate the percutaneous absorption of drugs. Use of liposome entrapped drugs has shown promising results in this direction (Mezei and Gulasekharam 1980, 1982).

In cancer chemotherapy the indiscriminate action of antitumor drugs limits their use severely. Here again liposomes have been recently investigated as carriers of these drugs with the hope of achieving selective action. They are equipped with tumor specific antibodies to further 'improve their selectivitiy (Toonen and Crommelin 1983, Weinsten and Leserman 1984).

The feasibility of therapeutic application of liposomal drug delivery approach in topical as well as cancer therapy deserves careful assessment. The goal of this project therefore was to study the encapsulation of, drugs into liposomes and their evaluation as drug delivery

LITERATURE REVIEW

LIPOSOMES

systems.

Liposomes can be defined as concentric phospholipid bilayers separated by aqueous compartments (Tyrrell et al. 1976). Pharmaceutically, Thosomes can be considered as a type of galenic dosage form. They are microcapsules made up of phospholipids. Historically, the liposomes were first prepared by Bangham and his co-workers in Cambridge (Bangham et al. 1965). Subsequently these liquid crystals (smectic mesophases) were called "Bangosomes" for some time. In the beginning, they were used only as models of biological membranes (Banghamaet al. 1965, 1974). However, as their applications became diversified, they have become increasingly popular as drug carriers. A number of reviews, books and several research reports have appeared to

substantiate this notion (Tyrrell <u>et al</u>. 1976, Kimelberg and Mayhew 1978, Papahadjopoulos 1978, Gregoriadis 1979,

Ryman and Tyrrell 1979, Gregoriadis and Allison 1980, Juliano and Layton 1980, Kellaway <u>et al</u>. 1980ab, Knight 1981, Rieger 1981, Lelkes 1982, Puisieux and Benita 1982, Yatvin and Lelkes 1982, Gregoriadis 1983, Ostro 1983, Poste 1983, Puisieux 1983, Gregoriadis 1984, Weinstein and Leserman 1984, Whelan 1984).

Although drug entrapment in Aipid vesicles has been utilized for almost two decades (the term "chemoliposomes" for liposomes containing drugs is a recent one (Hashimoto <u>et al. 1983)</u>. Chemoliposomes when further equipped with an antibody are called "chemoimmunoliposomes" (Hashimoto <u>et al</u>. 1983). LIPOSOMES AND MICELLES

Micelles are well known in pharmacy mainly as solubilizing systems. There is some similarity between liposomes and micelles. The similarity lies in the arrangement of lipid molecules. In both systems, i.e. liposomes and micelles, the amphiphilic lipid molecules align themselves in a similar manner, however in micelles the leaflet or the lipid layer is monomolecular and in liposomes is bimolecular. Another difference is that micelles do not possess aqueous compartments whereas liposomes do. A more important distinction is that micellar structure is in a dynamic equilibrium state. There is a continuous equilibrium between monomers, micelles and drug solubilizates (Fendler and Romero 1977, Fendler 1984). Such

2.

an equilibrium nature does not exist with liposomes. This unique property makes liposomes more suitable as drug carriers.

مريد تو

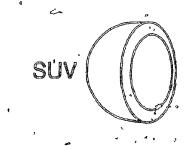
COMPOSITION OF LIPOSOMES

· Phospholipid is the main component of liposomes. .However, one or more other lipids are usually included for specific reasons. For example, the role of cholesterol in membranes to bring about "intermediate fluidity" by modifying the hydrocarbon chains of phospholipids, is wall known. This, in effect, produces a tighter packing of lipid, molecules in liposomes leading to decrease in permeability. Cholesterol is therefore included to reduce the leakage of entrapped substances (Fendler 1980) as well as to improve the structural stability of the lipid vesicle in biological fluids (Senior and Gregoriadis 1982). Antioxidants like α - tocopherol (vitamin E) are included to prevent autooxidation of unsaturated phospholipids (Hunt and Tsang 1981, Fukuzawa et al. 1982, Guey-Shuang et al. 1982). Anionic lipids like dicetyl phosphate, phosphatidic acid, phosphatidylserine or stearic acid and cationic lipids such as stearylamine are used to impart either negative or positive surface charge to liposomes. The presence of a charge may prevent aggregation of liposome's (Page Thomas and Phillips 1979); also it may improve the entrapment of the aqueous phase because of increased distance between lipid

Ð

layers brought about by electrical repulsion (Puisieux and Benita 1982).

In addition to the lipid phase discussed above the aqueous phase (swelling medium) is essential for the formation of liposomes. Such an aqueous phase could either be water, ionic solution or a solution of drug.


Multilamellar.(MLV) , Small.unilamellar[®](SUV) and Large /unilamellar (LUV)[°] vesicles:

TYPES OF LIPOSOMES

Various types of liposomes exist. The type may depend on size or number of lipid bilayers, on the method of preparation, or on other characteristics.

On the basis of size and the number of lipid bilayers, liposomes are classified mainly into 3 types (Juliano 1981): MLV, LUV and SUV, (Fig. 1)(Schreier 1982). The multilamellar or multicompartment vesicles (MLV) vary in size from 0.05 μ m to 10 μ m and possess up to 10 lamellae, (Lichtenberg and Markello 1984). The unilamellar or single compartment vesicles, small.(SUV) and large (LUV) are of size 0.025 μ m to 0.05 μ m and 0.1 μ m respectively. The SUV has a particle weight of about 2 x 10⁶ daltons and because of its small size cannot efficiently accommodate materials of molecular weight more than 4 x 10⁴ daltons (Szoka and Papahadjopoulos 1980).

0) ° °

7

H₂O LM

S

HS

 \bigcirc

Figure 1. Fiposomes (Schreier 1982) MLV: multilamellar vesiçle SUV: small unilamellar vesicle LM: lipid membrane LS: lipid soluble drug HS: water soluble drug

MEV

ĊĬ

Reverse phase evaporation vesicles:

Vesicles obtained by the reverse phase evaporation method of Szoka and Papahadjopoulos (19,78) are referred to as REVs. These REVs are uni- to oligo-lamellar in nature and larger than EUV. Terms LUV and REV are often used synonymously.

French press and Ether injection vesicles:

The French press vesicles or FPVs are prepared by using an hydraulic press (Hamilton <u>et al</u>. 1980). These are similar to LUV in their characteristics. Ether injection vesicles or EIVs are liposomes resulting from the injection of ethereal solution of phospholipids into Warm aqueous solution (Deamer & Bangham 1976). Though they are wunilamellar their volume trapping efficiency is almost 10 times superior, to SUV.

Cell sized liposomes:

Kim and Martin (1981) have reported the preparation of cell size unilametrar liposomes which have potential for introduction of genetic materials like DNA, chromosomes, etc. into cultured mammalian somatic cells. These have diameters comparable to that of human erythrocyte (7 μ m) and a capture volume of up to 144 μ l/mg. Giant liposomes:

Uni- and oligo-lamellar liposomes with a diameter greater than 10 µm are considered as giant liposomes. Oku and MacDonald (1983ab) have reported the formation of giant

liposomes by two different procedures. In one procedure (1983a) they make these liposomes from lipids in chaotropic ion solutions such as sodium trichloroacetate, guanidine hydrochloride and urea. The other procedure (1983b) utilises alkali metal chlorides like KCl or RbCl in conjunction with freezing, thawing and dialysis.

Recently, a novel type of liposome called multivesicular liposomes (MVL) have been described (Kim <u>et</u> <u>al</u> 1983). These were prepared by evaporation of organic 'solvents from chloroform ether spherules dispersed in water. Diameter's of these vesicles range from 29 \pm 10 µm to 5.6 \pm 1.7 µm. The striking feature is the extremely high percentage of encapsulation of up to 89%.

The pH sensitive liposomes were suggested by Yatvin <u>et al</u>. in 1980 to target anticancer drugs to metastatic lesions. Such liposomes, constructed with a pH sensitive lipid-palmitoylhomocysteine (PHC), were supposed to release their contents when in contact with areas of body in which pH is less than physiological e.g. primary tumors and metastases.

Polymerized liposomes:

They are supposed to be better models for ' biomembranes. The polymerized liposomes (Buschl <u>et al</u>. 1982, Leaver <u>et al</u>. 1983, Fendler 1984) are made by

using polymerisable lipids e.g. butadiene derivatives, diacetylene containing phospholipids. A recent report (Juliano <u>et al</u>. 1984) relates to photopolymerized limosomes.

Magnetoliposomes:

Immunoliposomes containing ferromagnetic particles (ferrite powder) were proposed by Margolis <u>et al</u>. (1983) for sorting of cells. Associated with cytotoxic drugs they might possibly be of use in cancer therapy as well. "Solid" and "Fluid" liposomes:

Every liposome has a gel to liquid crystalline phase transition temperature. Above this phase transition temperature liposomes are "fluid" and below it they are "solid". For instance, DPPC liposomes are solid at 37⁰ where as egg PC liposomes are fluid at the same temperature. Transition temperatures of different phospholipids have been tabulated by Szoka and Papahadjopoulos (1980).

A comparison of the properties of some of the above mentioned liposomes is given in Table 1. METHODS OF PREPARING LIPOSOMES

The type of liposomes, in some respects, depends on the method used to prepare them. To date, several methods have been reported to prepare liposomes. A comparative study of these different, methods can be found in excellent reviews by Szoka and Papahadjopoulos (1980,1981), Ryman and Tyrrell (1979) and Hauser (1982). The choice of the method

. 10

•		Types of liposomes	
NAME	SIZE ° · (μm) ·	INTERNAL AQUEOUS SPACE (נולע (איז) איז	ENTRAPHENT EFFICIENCY ^C , (%/mg_lpids)
SUK MLV LUV REV FPV FIV GV EIV CUL MVL	0.025-0.05 0.05-18 0.1 0.5 0.04-0.08 0.05-0.02 1-100 0.03-0.1 6.2-12.2 5.6-29	<0.5 >4 10 ≥10 ≤10A N.A. 100-800 15 243 106-&	<1 5-15 20 20-50 10=30 20-30 N.A. >1 15-60 <89
	l sonicated unilame e vortexed multilam	nellar vesicles.	

Table l^a

11

IlV: large vortexed multilamellar vesicles. LUV. large unilamellar vesicles. REV: reverse phase evaporation vesicles. FPV: french-pressed vesicles. FIV: freeze-thaw wesicles. GV: glant vesicles. ELV: ether-injection vesicles.

CUL: cell-size uni-lemallar liposomes. -IVL: multivesicular, liposomes NA: not available.

l

^aUpdated the table from Yatvin and Lelkes (1982).

^bInternal aqueous space or capture yolume is defined as the volume enclosed by a given amount of lipid and with units liters (or microliters) entrapped pershole (or/micromole) of total lipid (lmol or μ) μ mol). It is independent of lipid concentration.

^CEntrapment or encapsulation efficiency is defined as the percentage of the compound that becomes entrapped. It is directly proportional to lipid concentration.

has a bearing on the type of Piposomes desired for a particular application. Shaking, sonication.and reverse phase evaporation are the three most widely used methods. Bangham method:

This method, also known as shaking method, is the classical method to prepare liposomes. Using a rotary vacuum evaporator, a thin film of lipids is produced on the inner wall of a round bottom or pear shaped flask. The lipid film is then shaken with the aqueous medium at the phase transition temperature of the phospholipid. Liposomes obtained in this way are mainly multilamellar and of heterogeneous size distribution.

Sonication:

This method produces vesicles of fairly uniform size when MLV, obtained as above, are subjected to high energy ultrasonic waves (Juliano 1981). The sonication is usually carried out `at the temperature of phase transition. of the phospholipid. Either the probe of the bath sonicator could be employed for this purpose. Reverse phase evaporation:

The disadvantages of the SUV were partly overcome when Szoka and Papahadjopoulos (1978) reported their reverse phase evaporation method. In this procedure the lipids are dissolved in organic solvents (like ether) and then dispersed in aqueous medium to be entrapped. The dispersion is then sonicated to produce a w/o type of emulsion. After the removal of organic solvents, the aqueous dispersion is shaken at or above the phase transition temperature of the lipid. The resulting liposomes are uni- to oligo-lame far with a distinct advantage of high capture volume of aqueous phase.

13

The importance of the method of preparation of liposomes on the encapsulation efficiency of the drug is evident from the study of Tsukada <u>et al</u>. (1982). They observed maximum encapsulation of the poorly soluble drug carboquone when the liposomes were prepared by REV method. Bangham, Ethanol injection and Ether infusion methods were unsuccessful for carboquone encapsulation.

Other methods and their advantages and disadvantages are listed in Table 2. It is of interest to note that even some commercial equipment like Lipoprep R_* and Mini-Lipoprep $R_{,}$ for preparation of liposomes on the laboratory scale, have started to appear on the market. Lipoprep-CLS $R_{,}$ is suitable for continuous large scale production of liposomes. All these equipment work on the.

*Lipoprep ^R, Mini-Lipoprep ^R and Lipoprep-CLS ^R are available from Dianorm-Gerate, Postfach 126, D-8000, Munchen 65, FRG. First two cost about 12480 and 945 Swiss Francs respectively.

	-	-	ø		c ,
	Liposome obtained	Encapsu- lation	Advantages	Disadvantages	Reference
	obtamed	efficienc %	У	5	p '
1	Ի⊥v 0.05-10 µm	5-15	Easy to prepare 5	Lo:7 encapsulation efficiency Heterogeneous size dis- tribution Not suitable for thermo- labile substances	Bangham <u>et al</u> . 1965
	SUV «0.025-0.05 µm	0.5-1 *مچه	Homogenous size distribution Perhaps better for uptake by cells (Machy & Leserman 1983)	Least encapsulation ' efficiency ' Proteins may be denatured	Huang 1969 . Huang and Thompson 1974
	REV 0.12-0.2 µm {]	20-60	High encapsulation efficiency & large aqueous space	Organic solvents may be deleterious to biologically active molecules	Szoka & Papahadjopoulos
			Good for certain	Heterogenous size	Szoka et al. 1980

Table 2 Nethods of preparation of liposomes

₩ethod

~

3

Bangham method

Sonication

Ģ

3

, T.

ę

1

	с. 	_« 0.025-0.05 µm	لمچنې ۱	distribution Perhaps better for uptake by cells (Machy & Leserman 1983)	efficiency Proteins may be denatured	Huang and Thompson 1974	
	Reverse phase evaporation	REV 0.12-0.2 μm {]	20-60	High encapsulation efficiency & large aqueous space Good for certain enzymes (Kurosaki <u>et al</u> . 1981)	Organic solvents may be deleterious to biologically active molecules Heterogenous size distribution	Szoka & Papahadjopoulos 1978	
A	Calcium-induced fusion	LW 0.2-1 µm	10-15	High encapsulation efficiency Suitable for macro- molecules including viruses	Restricted to acidic phospholipids like phosphatidylserine Heterogeneous	Papahadjopoulos <u>et al</u> . 1975 Dimitriadis 1978 Papahadjopoulos & Vail 1978 Wilschut <u>et al</u> . 1983	
	Detergeht. dialysis & Detergent ° gel filtration	un -lamellar 0.03-0.1 บุฑ	• 0	Good for reconstitution of intrinsic membrane proteins Homogeneous size distribution	Low encapsulation efficiency less practical for encapsu- lation of water soluble drugs	Brummer <u>et al</u> . 1976 Milsmann <u>et al</u> . 1978 Enoch and Strittmater 1979 Zumbuehl and Veder 91981	

	· • •		•	4	, D	· · ·	
۲	•	•		۵ ۲		· · · ·	
	,		c	Table 2 (con	t(nued)		ط
40 ~	Method	Liposome obtained	Encapsu- lation efficienc, g	Advantages	Disaovantages	Reference'	•
	French press '	รบV SUV 0.04-0.06 มก	10-30	Gentler handling of labile materials vesicles of greater stability		Hamilton et al. p^{A} 1980	
`	ىب ،	1	· • •	Unilamellar vesicles with 10 to 50 times larger aqueous space than sonicated vesicles Liposomes could be pre-	\sim		e
	. '	\$	e.	eratures like 0, 25 etc.	§	d (d -	
	Freezing and thaving	0.05-0.2 µm	10-30	Ľ., , , , , , , , , , , , , , , , , , ,	Size and entrapment efficiency critically dependent on the ionic strength of the buffer	Pick 1981	
¢	Ether injection	unilamaller 0.06-0.13 มก	₽ 1	Vol. trapping efficiency is 10-100 + times that of sonicated preparations suitable for macro- molecules.	Unsuitable for heat or ether labile drugs Lov encapsulation efficiency not homogeneous in size.	Deamer & Bangham 1976 Deamer 1978 -	
۰ ۲	Ethanol injection	′SUV .03-0.11 μm	0.4-1.5		Heterogeneous Produces a dilute dispersion of SUV. Lov encapsulation efficiency.		
	Differential high-speed ultracentri- fugation	Unilamellar		Homogeneous size distribution No disadvantages of molecular sieve chromatography.	-	Barenholz <u>et al</u> . 1977.	
٥	۰.۲	<i>.</i>	•	Rapid method. Higher vesicles yield without dilution.			15
				່ 3 1 ເ	٩		
	*		a	-			41

⊳

•

Ø

~~ ° °

Э

principle of detergent dialysis, reported by Milsman<u>et</u> <u>al</u>. (1978) and Zumbuehl and Weder (1981). Another liposome preparation instrument, a microemulsifier called Microfluidizer M-110**TM, has-recently emerged. It works on the principle of fluid flow and produces liposomes of uniform size from 50 nm to

1000 nm.

DRUG ENTRAPMENT IN LIPOSOMES

The potential of liposomes as drug carriers was recognised in the early 1970s. Since then the aspect of drug entrapment into liposomes has been addressed by several authors (Fendler and Romero 1977, Stamp and Juliano 1979, Fendler 1980). The entrapment of a drug is accomplished by placing the drug either in the aqueous phase or in the lipid phase during the preparation of liposomes. Drugs that are lipid soluble are treated similar to lipids and those that are water soluble are dissolved in the aqueous phase. Orugs of intermediate polarity could be treated either way.

The distribution of a drug within the liposomes is

**MicroFluidics Corporation, a division of Biotechnology Development Corporation, 44 Mechanic Street, Newton, Massachusetts 02164 U.S.A.)

ذ.

0-

intercalated with the lipid bilayer whereas polar ones are present in the aqueous phase. The drugs with intermediate polarity span both aqueous and lipid phase of the vesicle (Fig. 2).

17

There is an interplay of several factors affecting the entrapment of drugs within liposomes. These factors are: Physicochemical properties of the drug

- solubility

- steric hindrance

Properties related to liposomes

IJ

- size

___charge

- lipid composition

- capture volume

• - ionic concentration, pH of hydration medium
 Method of preparation
 Miscellaneous

Physicochemical properties of drug:

The drugs that are highly soluble either in water or in lipid are encapsulated well in liposomes. On the contrary, the encapsulation of drugs with only marginal solubility both in water and lipid, e.g. 6-mercaptopurine '(Fendler and Romero 1977), is not efficient.

Defrise-Quertain <u>et al</u>. (1980) h<u>ave</u> related the log P values of drugs to their encapsulation efficiency in liposomes. The log P value is the logarithm of octanol

Ø

water partition coefficient of the drug and is a measure of its solubility. Defrise-Quertain <u>et al</u>. concluded that drugs with log P values of greater than 5 and less than -0.3 were optimum candidates for encapsulation in liposomes. Drugs with log P values between 1.7 and 4 were the worst candidates for this purpose. This finding was supported by the fact that drugs like cortisol palmitate (log P = 9), cortisol octanoate (log P = 4.75) and methotrexate (log P = - 1.85) were encapsulated well in liposomes. On the contrary, the encapsulation of drugs like cortisol (0:59 \approx log P < 1.93) was very poor (Defrise-Quertain <u>et al</u>. 1980).

The log P values of drugs could be increased by chemical modification such as palmitoylation. This approach has been successfully exploited for enhancing drug encapsulation in liposomes (Shaw <u>et al</u>. 1976, Goundalkar and Mezei 1984). One should, however, be cautious not to reduce the pharmacological activity of the drug as a result of such chemical manipulation. Within a certain limit the liposomal encapsulation of palmitoyl derivative of a drug approaches 100% (Goundalkar and Mezei 1984).

Since in chemotherapeutic applications it is the absolute drug concentration rather than the percentage incorporation, that is the important factor, it is essential to increase the amounts of drug entrapment as much as possible (Fendler and Romero 1977). The palmitoylation not

only provides such increased absolute drug concentration in liposomes but also the encapsulation is complete (i.e. 100%). Thus, the liposomal encapsulation obtained by palmitoylation_is_unsurpassed by any other method., Hence this approach is worth trying even for water soluble drugs with optimum log P values such as methotrexate. Preparation of drug-phosphatidate compounds and hydrophobic prodrugs a other analogous approaches suggested for improving liposomal encapsulation'of drugs (Page Thomas and Phillips 1979, Knight 1981b). The compound, squalene, stands out distinctly as a compound with a high log P_value and yet has very poor liposomal encapsulation. This unusual behavior is attributed to the steric hindrance caused by this molecule (Defrise-Quertain et al. 1980). Other miscellaneous principles like ion pairing (Jay and Digenis 1982), charge transfer complex formation (Tsujii et al. 1976, Kano and Fendler 1977) have also been utilized for enhancing drug entrapment in liposomes.

Properties related to liposomes:

<u>Capture volume, size, charge</u>: The higher the capture 'volume, the higher is the entrapment of water soluble drugs. The same relationship also applies to the size of liposomes, since size and capture volume are often proportiona]. The presence of a charge on liposomes may lead to increased encapsulation (Alpar <u>et al</u>. 1981). As mentioned earlier, higher entrapment is attributed to

increased aqueous space due to electrostatic repulsion between like charged lamellae of liposomes (Puisieux and Benita 1982).

Lipid compositions Hydration medium: Cholesterol plays a major role as a stabilizing agent for liposomes. It reduces the leakage of drugs out of liposomes. Apart from this, it also contributes to increased encapsulation of drugs like doxorubicin (Yotsuyanagi <u>et al. 1981</u>). Conversely, cholesterol may also interfere with encapsulation (Tsukada <u>et al. 1982</u>). The phospholipid composition could also play a major role in determining the efficiency of drug incorporation in liposomes (Tsukada <u>et al. 1982</u>).

The influence of the pH of Wdration medium on the association of doxorubicin with liposomes has recently been reported (Crommelin <u>et al</u>. 1983).

The encapsulation of drugs within liposomes is rarely one hundred percent. A lot of drug remains unentrapped. Separation of untrapped or "free" or "naked" drug is necessary in order to obtain a "pure" liposomal preparation. The methods used for this purpose are as follows:

Gel filtrátion

Ultracentrifugation

· Centrifugation

Other methods

Dialysis

Gel filtration:

When a crude liposomal preparation is passed through a gel filtration (molecular sieve chromatography) column, liposomes come out in the void volume. The free drug appears later in the retarded volume. So, the two can be easily separated. However, problems of mechanical blocking of columns have been experienced with crude MLV and REV liposomes (unpublished observations). Filtration of liposomes through smaller pore size polycarbonate filters may perhaps overcome this problem. Also, to be considered 'is the non specific adsorption of liposomal lipids to the 'gel of the column. A way to get around this problem is to presaturate the column with lipids before use (Huang 1969).

The dilution of the liposomal fraction is a main drawback of this method. The diluted preparation can, however, be concentrated by ultrafiltration method, for example, using amicon centriflow ^R filters. Various gel "filtration media, e.g. Sephadex G-25, G-50, Sepharose 4B, 6B etc., are being used for this purpose. Sepharose CL-4B," CL-2B and controlled pore glass have been used also to separate multilamellar Piposomes from unilamellar ones (Chen and Schulle 1979, Yotsuyanagi <u>et al</u>. 1981). An evaluation of different gel-media for their ability to separate liposomes of different size has been reported (Jederstrom and Russell 1981). When the unentrapped

substance is a macromolecule like DNA, protein etc., the choice of proper gel is more important, as routine gels like Sephadex G-50 or G-25 cannot be used in such cases. The upper limit of the fractionation range of gels like Sephadex G-50 or G-25 is less than the molecular weight of the protein.

2,3

Centrifugation:

Macrovesicles can be sedimented down by high speed centrifugation. The liposome pellet could further be washed by centrifugation to remove the nonspecifically adhering drug. However, this method of separation cannot be applied to SUV. Also, when the unencapsulated drug is in the form of undissolved crystals this method has little value. Simplicity and absence of dilution effect are the main advantages of this method.

Dialysis and Ultracentrifugation:

Untrapped drug can also be separated from liposomes by exhaustive dialysis. However, leakage of trapped drug out of liposomes may be a problem sometimes. Dialysis has also been used to improve the liposome size distributions (Bosworth <u>et al</u> 1982). The ultracentrifugation method of separating free and encapsulated drug is used mainly for microvesicles, like SUV. Repeated washing of liposomal pellet is needed to remove the adhering free drug as in other centrifugation methods. G

Other methods:

S' The method of differential centrifugation has been used to separate liposome encapsulated nucleic acids from unencapsulated material. Similarly, nuclease digestion followed by gel filtration and floatation of liposomes on discontinuous polymer gradients, have been used for the separation of liposomes from free nucleic acids. The latter method is rapid and well suited for the separation of liposomes under sterile conditions (Fraley and Papahadjopoulos 1981).

FILTRATION OF LIPOSOMES

Filtration of liposomes is done either to reduce the size of liposomes (Morii <u>et al</u>. 1983), or to improve the size digtribution of liposomes (Olson <u>et al</u>. 1979).

The filtration of liposomes is usually carried out under positive of negative pressure, using filters made of polycarbonate (Olson <u>et al</u>. 1979). The liposomes obtained by filtration are supposed to be more uniform than unfiltered ones. It is important to note that the "soft" liposomes, those slightly bigger than the pore size of the filter, are able to pass through the filter by deformation with no change in post-filtration liposome size (Brendzel and Miller 1980). Use of elevated temperature is known to facilitate the operation of filtration reducing the chances of clogging of filters (Olson <u>et al</u>. 1979). A

through polycarbonate membranes has been shown to produce '''''' unilamellar liposomes of intermediate size (0.1-0.2 µm (Szoka <u>et al</u>. 1980, Dužgunes <u>et al</u>. 1983). CHARACTERIZATION OF LIPOSOMES

The properties of liposomes have profound infiduences on their behaviour <u>in vitro</u> or <u>in vivo</u>. Therefore, the characterization of liposomes in terms of their size, surface charge, drug release etc. are important.

The average size and the size distribution of liposomes are important parameters affecting the behaviour of liposomes. Optical microscopy has been used by some. investigators (Rahman <u>et al</u>. 1974, Gulasekharam 1980), to determine gross size distribution of liposomes especially MLV and REV. Since smaller liposomes are beyond the. resolution of an optical microscope, the use of this method is far from satisfactory to obtain an exact size distribution of liposomes. Fluorescence microscopy could be used if a fluorescent lipid is included in the lipid bilayer of liposomes. Electron microscopy seems to be the popular method of assessing liposome size. However, it involves considerable skill, effort and time to orepare samples for electron microscopic analysis.

been used to analyse, as well as to fractionate, liposomes on the basis of their size (Nozaki et al. 1982, Machy and Leserman 1983, Reynolds <u>et al</u>. 1983). An Agarose Gel TLC method is particularly suited for a quick assessment of the efficiency of sonication, consequently the size reduction of liposomes (Van Renswoude <u>et al</u>. 1980). The sedimentation field flow fraction (SFFF) method described by Kirkland <u>et al</u>. (1982) is rapid and analyses both size and particle weight of liposomes. A laser light scattering method called quasi-elastic light scattering (QELS) has been used by Morvi <u>et al</u>. (1983) to obtain average diameter and polydispersity index of liposomes. It is said that this method can detect even very small liposomes down to 30 nm (Rao 1983). A technique called photon correlation spectroscopy has also been used to study vesicle size (Gole and Carlson 1982).

26

Another simple method of obtaining liposome size distribution is to use an electronic counter i.e. Coulter counter with proper specifications (400-channel analyser, 10-15 µm aperture) as recommended by Rahman (1980) and used by others. It is an extremely rapid method, and gives an accurate size distribution. Dilution of the sample is all that is needed to count the liposomes using this instrument. The recently introduced "Coulter Model N4 Analyser" which measures particle size in the range of 3 nanometers to 2 micrometers would perhaps be a better model for size analysis of liposomes. Once the size distribution of a liposome preparation is known, the other parameters such as particle number, surface area, trapped volume etc. can easily be derived (Pidgen and Hunt 1981). Surface charge of liposomes:

It is usually assumed <u>a priori</u> that incorporation of a charged lipid gives rise to the positive or negative charge on the surface of liposomes. No tests are usually carried out to check whether this is true. However, the surface potential (quantitative measure of surface charge) of liposomes could be measured in a Zetameter (Bangham <u>et</u> <u>al</u>. 1974) or by using a fluorescent pH indicator (Fernandez 1981).

Drug release from liposomes:

Thé <u>in vitro</u> testing of drug release from liposomes could reflect <u>in vivo</u> release pattern. Therefore, some investigators have carried out efflux experiments before administering the liposomes <u>in vivo</u>. Most of the techniques used to separate free and bound drug could be used to evaluate drug release from liposomes.

The dialysis technique was used by Arakawa <u>et al</u>. (1975) to test the release of model water soluble compound from liposomes. Technique of ultrafiltration through Amicon centriflo CF-25 was applied by Tsukada <u>et al</u>. (1982) in their release study. In a recent report Arrowsmith <u>et</u> <u>al</u>. (1983) used centrifugation technique to study <u>in</u> vitro release of steroids from liposomes.

STABILITY AND STORAGE OF L'IPOSOMES

In many of the investigations liposomes have been stored in the refrigerator (rom a few days to a few weeks without apparent instability. However, such short time stability⁽¹⁾ is of little use if liposomes are ever to be used like other pharmaceutical preparations. As a pharmaceutical preparation, liposomes should have a shelf life of at least a year, preferably at room temperature (Rao 1983). Stability and storage studies of liposomes have special significance in this context.

Frokjaer <u>et al</u>. (1982) have investigated the long term storage of liposomes. They concluded that distearoylphosphatidylcholine (DSPC)/cholesterol (CHOL)(2/1) liposomes were stable physicochemically when stored at 4°C for about 10 months. Similarly Rao (1983) has claimed that a Pentostam^R liposome product was stable for several months with less than 10% leakage. The formulation or composition of this product, however, was not reported.

Van Bommel and Crommelin (1983) have tried freeze drying and freezing of liposomes for storage. They reported that in most cases the aqueous marker was lost considerably as a result of freeze thaw cycle or freeze drying. However, this was dependent on lipid composition. Best results were obtained with dipalmitoylphosphatidylcholine (DPPC)/ dipalmitoylphosphatidylglycerol(DPPG) 10/1 vesicles. Using additives like lactose improved the stability of these

yesicles to freeze drying. Strauss and Ingenito (1980) have investigated the use of cryoprotective agents (e.g. glycerol) and membrane proteins in stabilizing liposomes to freezing and thawing effect. Effect of phospholipid: cholesterol ratio on the response of liposomes to various rates of cooling to -196° C has been reported by Morris (1982). In the absence of DMSO, the cryoprotectant, liposomes lost the entrapped glucose completely following freezing to and thawing from -196° C. In the presence of DMSO, however, liposomes containing 20 mol% cholesterol exhibited minimum glucose release when subjected to similar treatment at a cooling rate of 1.7° C min -1 (Morris 1982).

DRUG TARGETING

Drugs are "double edged swords". They have beneficial effects as well as toxic side effects. Severity of toxic effects may sometimes not be as serious as we think. But, certainly the toxic effects are very severe in case of anticancer drugs. These toxic side effects are, often, due to the non selective drug disposition and therefore the indiscriminate action of the drugs. For instance, anticancer drugs exercise their lethal effect on proliferating cells of both normal type as well as malignant type. There is not much qualitative difference between a cancer cell and a normal dividing cell. Therefore in order to reduce or eliminate the toxic effects, drugs have to be

directed to only the diseased sites (i.e. target sites) to achieve selective action.

1

30

The concept of drug targeting has been with us ever since Paul Ehrlich in 1906 dreamt'about the "magic bullets" of diphtheria toxin for the treatment of cancer (Magee and Ristow 1983, Poste and Kirsh 1983). Recently there has been dramatic increase in research activities to solve the problem of drug targeting.

. The various approaches for drug targeting could be chemical, physical or biological. Prodrugs, the drugs which can be converted into active form at target sites, are examples of chemical approaches (Henderson 1983). Physical approaches embrace such wide areas as emulsions (Kreuter 1983b), polymers (Henderson 1983) microspheres, magnetically responsive or otherwise (Illum and Davis 1982, Widder et al. 1982), nanoparticles (Illum et al. 1983, Kreuter' 1983abc), red blood cells (RBC) (Pitt et al. 1983) and RBC ghosts (Ihler 1979) and liposomes (Gregoriadis 1981, Rogers 1982, Widder et al. 1982, Banker et al. 1983, Gregoriadis 1983b) and so on. The biological approaches include the use of bigmolecules such as deoxyribonucleic acid (DNA) (deDuve /1980, Trouet et al. 1981, lipoproteins (Cøúnsell and Pokland 1982), and antibodies (Gregoriadis 1983b, Gregoriadis <u>et al</u>. 1982). Antibodies, liposomes, and the combination will be discussed in more detail since this is one of the main topics of this thesis. ρ

ANTIBODY MEDIATED DRUG TARGETING

The idea of using antibodies as drug carriers was conceived by Paul Ehrlich as early as 1906. However, it was not until 1958, that this idea was first put to application by Mathe <u>et al</u>. (1958). Since then several studies have been reported on cytotoxic drugs as well as diagnostic agents linked to antibodies. Comprehensive review articles have covered these studies (Ghose and Blair 1978, Rankin and McVie 1983, Rowland 1983).

Most investigations of antibodies as drug carriers have been conducted with heterologous (polyclonal) antibodies raised in rabbit, goat, etc. The procedure of extensive absorption of the xenogenic antisera with normal tissues (liver, spleen, kidney, RBC) has been used to improve the specificity of such polyclonal antibodies. This procedure, however, sometimes takes away the specificity of the antibodies and other times leaves toxic antinormal antibodies, resulting in an antibody preparation which is either toxic or non specific. The monoclonal antibodies of recent origin may be an answer for such major drawbacks of polyclonal antibodies. Further, the advent of hybridoma (hybrid myeloma) technology has made possible the production of monoclonal antibodies in adequate amounts (Levy and Miller 1983). These monoclonal antibodies have exceptional

specificity and therefore they are displacing the polyclonal antibodies in their role as carriers of drugs and/or diagnostic agents. Recent reviews signify such a grend (Baldwin 1983, Baldwin and Pimm 1983, Davis and Illum T983, Lutz 1983, Obrist 1983, Poste and Kirsch 1983, Conner 1984).

32

Targeting of drugs using unmodified @liposomes is referred to as passive targeting of liposomes (Poste 1983, Poste and Kirsh 1983). Liposomes, like other colloidal particles, are rapidly scavenged by organs like liver, spleen and bone marrow which are rich in reticuloendo, the lial ? \cdot cells. The capillaries in the lung can physically trap aggregates of liposomes. These properties have made liposomes selective drug carriers in diseases like leishmaniasis where target sites are liver cells. Manv anticancer drugs have also been tried in liposomes for targeting or to reduce side effects (Kaye 1981, Yatvin and Lelkes 1982). Weinstein et al. (1979) applied hyperthermia to cause selective» release of methotrexate (MTX) from liposomes. Strategies like this, in which the drug=carrier complex releases the drug only when exposed to specific microénvironment changes such as pH or temperature, have been referred to as physical targeting by Postemand --Kirsh (1983). This category also includes magnetic drug carriers which could be modulated by external magnetic In many instances liposome's have improved the fields.

effectiveness of the entrapped drug for reasons other than targeting. Those reasons are - protection of drug from biological degradation, (Weinstein and Leserman 1984), reduction of toxic effects (Forssen and Tokes 1981), improved transport of drugs across transport deficient tumor cells (Patel et al. 1982, Todd et al. 1982, Deliconstantinos et al. 1983) depot effect (Kaye et al. 1981).

However, in many instances liposomal entrapment of drugs has not brought about any significant beneficial effect, rather in some cases it has led to increased toxicity. Most of these negative effects have been attributed mainly to the uptake of liposomes by reticulo endothelial system (RES). Efforts were therefore concentrated to overcome this situation. Use of antibodies conjugated to liposomes is a result of such efforts.

As mentioned earlier, the properties of antibodies which enable them to interact specifically with complementary antigens has made them suitable as site specific drug carriers. However, there are some major concerns for using antibodies alone as drug carriers - one is that, the carrier capacity of antibodies is limited. If too much drug is loaded on an antibody, its reactivity is at stake. Secondly, administration of a large quantity of an #body-drug conjugate, to compensate for the limited carrier capacity, could lead to allergic reactions.

Perhaps the combination of the higher carrier capacity of liposomes and target seeking capability of antibodies may be the answer for some of the problems outlined above. As a result this field of active targeting of liposomes is getting increased attention these days (Zaharko <u>et al</u>. 1979, Gregoriadis 1982, Magee and Ristow 1983). The term "active targeting of liposomes" is, however, not restricted to liposome-antibody complexes but includes all liposomes bearing any ligand that will "recognize" molecular or) macromolecular determinants of the surface of the "target" cells (Poste and Kirsh 1983).

BINDING OF ANTIBODIES TO LIPOSOMES

In order to realize the potential of active or immunospecific targeting of liposomes, the two entities, namely, antibody and liposomes, have to be somehow associated or conjugated. Initial studies resorted to physical binding of antibodies to liposomes. This means that the antibodies were bound by methods like incubation with preformed liposomes or during liposome preparation by co-sonication of immunoglobulins and liposomes (Gregoriadis and Neerunjun 1975). Two main criticisms have been levelled at this kind of binding. The force of association may be too weak to keep the two entities together for sufficient time until the liposomes reach the target sites. Secondly, the amount of antibody that is bound to vesicles may be too small to serve its needed purpose.

Significant improvements over these drawbacks came about when chemical or covalent binding methods were introduced. The advent of covalent binding methods were partly due to the existence of such linking procedures in areas such as protein modification, enzyme-antibody conjugation, hapten-carrier conjugation, cytoxic agent-antibody conjugation (Carraway and Koshland 1972, Wold 1972, Bauminger and Wilchek 1980, Erlanger 1980, O'Sullivan and Marks 1981, Blair, and Ghose 1983, Ghose <u>et al</u> 1983).

35

Among the several methods available to date, some are of particular interest because of their high efficiency of The method reported by Barbet et al. in 1981, bindina. has a binding efficiency of more than 40%. In this method the antibody has to be modified with the heterobifunctional reagent N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP) and then reduced with dithiothreitol before coupling to liposomes: Another method by Martin et al. (1981) also has a high efficiency of coupling (14-26%). Both these methods require the presence of a reactive disulfide group in the liposome membrane. 'Reactive liposome lipids for this purpose are synthesized from reaction between SPDP and amine containing phospholipids like phosphatidylethanolamine (PE), dipalmitoylphosphatidylethanolamine (DPPE) etc." The binding of antibodies to liposomes in both cases is brought about by an exchange reaction between the thiol group of the antibody

and disulfide group present in the liposomal membrane. The difference in the two methods lies in the way the thiolf group is generated in the antibody. In the method described by Martin et al. (1981) the thiol antibody (Fab'-SH) is obtained by the reduction of $F(ab')_2$, whereas in the other method immunoglobulin.G (IgG) is first modified using SPDP by the method of Carlsson et al. (1978). Modified IgG is then treated with dithiothreitol to produce thiol IgG which then reacts with liposomes. In both the methods, homopolymerization and/or intramolecular cross linking are kept to a minimum because thiol-disulfide reaction is faster than thiol-thiol interaction. The method described by Martin <u>et al</u>. is time consuming, as it involves many steps like digestion of IgG, protein A sepharose 4B and sephacryl S-1000 column chromatography to separate F(ab')₂. Methods similar in principle to that of Barbet <u>et al</u>. have been used to conjugate antibodies or. proteins to sendai virus particles (Tomasi <u>et al</u>. 1982) and to red blood cells also (Godfrey et al. 1981, Jou et al. 1983).

There is a drawback in using a disulfide linkage to bind antibodies to liposomes. Disulfide bonds could be . cleaved by thiols such as cysteine present in the serum. An improved method was reported by Martin and Papahadjopoulos (1982). to overcome such unstable linkage. The improved method utilizes a maleimide derivative of

phosphatidylethanolamine and introduces an essentially irreversible thio-ether bond between antibody (Fab') and liposomes. Using this same principle, Hashimoto <u>et al</u>. (1983b) have linked-subunits of IgM antibodies, a different class of antibodies, to liposomes. Immunoliposomes bearing IgM fragments, being divalent, may have a superior antigen binding property compared to Fab' bearing liposomes.

37

The detergent (deoxycholate) dialysis method, a method to prepare liposomes, has also been used to anchor ant foodies to liposomes. Variations of the method have been reported (Harsch 'et' al. 1981, Shen et àl. 1982). Whatever the variation, a derivative of the antibody has to be made with palmitic acid prior to binding. "This' is _usually done by first preparing an activated ester of palimitic acid using N-hydroxysuccin⁴imide and then reacting this ester with the antibody. Based on percent binding, the detergent dialysis method may, appear to have a high efficiency of binding. However, in fact, the absolute amount of antibody bound to liposomes, which is perhaps more important, is low in these cases. Furthermore, the majority of hposomes did not.bind the antibódy. Goldmacher (1983) attributes this to the saturaced palmitoyl chain. The rotations about the C-C bond give a coiled conformation to the saturated hydrocarbon Ehajn, making it sterically difficult to penetrate into the liposomal membrane. He, therefore, advocates the use of linoleil derivative of ."

protein rather than palmitoyl derivative for binding to the liposomes. All the detergent dialysis methods suffer from a drawback that the entrapped drug may leak out of liposomes" during the procedure of antibody incorporation.

Carbodiimides can also be used to cross link antibodies to liposomes. They react with free carboxyl groups of IgG to form a reactive intermediate, which further reacts with primary amino groups provided by lipids such as PE, DPPE in liposomes. These methods, though rapid, suffer from low amount of binding and reduced efficiency. Moreover undesirable homocoupling and intramolecular crosslinking in antibodies, liposomes or both cannot be ruled out. The principle, binding parameters and the chemistry of different binding methods are given in Tables. 3' and 4.

Ideally the choice of a method should meet the Following requirements: 1) a sufficient quantity of antibody must be bound with the liposomes; 2) the liposome-antibody bond should be stable; 3) the antibody specific binding properties should remain unchanged; 4) the liposome integrity during the immobilization procedure should preserved.

: LIPOSOME CELL INTERACTIONS <u>IN VITRO</u>

Some indication of <u>in vivo</u> performance of liposomes could be obtained by studying their interaction with cells <u>in vitro</u>. Such studies necessitate the prior

38 .

	, G 1 	م ب د	• • • • • • • • • • • • • • • • • • •	- `` ۲	· · · · · · · · · · · · · · · · · · ·
	• • •	• •	\$ 6	•	*/
چ پ د	, ,	۵ ۵	, ~ ۷		
	~ . 	£		۵ ۰.	
.*		<u>Table 3</u> Binding of antibodies to 1	iposomes	• • • • • •	- /
- 2°°°	Nethod and Reference % binding of anti at certain protein	Binding parameters ibody ug antibody	No. of antibody molecules/vesicle	'Principle of binding	
° ?	1) SPDP method ~ Martin <u>et al</u> . 14% at 12.5 mg/ml (1981) to 26% at 1 mg/ml	100 t0 600 μg [*] Fab'/μmole phospholipid	veșičle ,	2-pyridyldisulfide derivative of PE is prepared using SPDP. F(ab'), ie Fab'-s-s-Fab' is reduced with DTT to get Fab'-SH which then reacts with PDP-PE in liposomes. ThioI disulfide interchange links Fab' to liposomes via disul- fide bridge.	· · · ·
•	2) SPDP method $\frac{1}{2}$ Leserman et al, (1980) >40% Barbet et al. (1981) Leserman et al. (1981)	· · · · · · · · · · · · · · · · · · ·	molecule/580A% ** vesicle _,	Using SPDP, 2-pyridyldisulfide groups are first introduced into both 1gG and PE. 2-pyridyldisulfide derivative of 1gG is then reduced with DTT and reacted with PDP-PE in liposomes. Thiol disulfide interchange links IgG to lipo- somes via disulfide bond.	
	3)-SMPB method Martin & Papahadjopoulos 20-30% (1982)	70-584 ug Fab' /umol phospholipid at 0.5-4.0 mg/ml	at 340 μg/μmol. /0.2 μm vesicle.	4-(p-maleimidophenyl) butyryl derivative of phosphatidyl ethanolamine (MPB-PE) is prepared using SMPB. F(ab')_ is reduced.with DIT to give Fab'-SH, which then reacts with maleimide molety of MPB-PE in liposomes. Alkylation reaction cross links Fab' to liposomes via thioether bridge.	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • •	بند		3 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

	•		р Д	•	 	· · ·	•
· 、 、 ·/	٠ # [°] ٤	۰. · · · · · · · · · · · · · · · · · · ·	· · · ·	Table 3 (contin	ued)	Е " Т. В.	
	• -	Nethod and Reference	Bind & binding of antibody at certain protein conc.	ing parameters µg antibody Aµmole lipid	No. of antibody', molecules/vesicle	Principle of binding	
		4) HBPE Method Hashimoto <u>et</u> al. (1983b)	34-68% at 2 - 0.5 mg/ml	31-61 µg IgG protein,µmole phospholipid at 0.5-2 mg/ml		N2(m-mal@imidobenzoyl) deriva- tive of DPPE (i.e. MBPE) is obtained using m-maleimidoben- zoyl-N-hydroxysuccinimide (HBS). IgM is reduced with cysteine to get SH-bearing subunits which is reacted with MBPE in liposomes. IgM subunits link to liposomes through Fc portion via thioether bridge.	* <u>\$</u>
		5) Detergent dialysis (palmitoylation) math Huang <u>et al</u> . (1980) Harsch <u>et al</u> (1981) Huang <u>et al</u> . (1982) Shen <u>et al</u> . (1982)	od 80% or more	100 µg/mg phospholipid	48 IgG/1000A ⁰ 。 liposome	Antibody is derivatized with palmitic acid using an acti- vated ester of N-hydroxysuc- cinimide. Palmitoyl antibody is incorporated into liposomes by detergent (deoxycholate) dialysis method.	2
		6) Carbodiimide method Johnson <u>et al</u> . (1966) Dunnick <u>et al</u> . (1975) Endoh <u>et al</u> . (1981)	0.125%	19-20 µg IgG /µmole PC at 10 IgG.	mg/m] . ∧⇒ °⊳ ``	Mater soluble carbodiimide (EDCI) activates carboxyl groups on IgG to react with nucleophilic groups such as NH2 on phosphatidylethano- lamine present in liposomes. Amide bond links IgG to liposomes.	ه ه ۵

-

ø

٤.

-

0

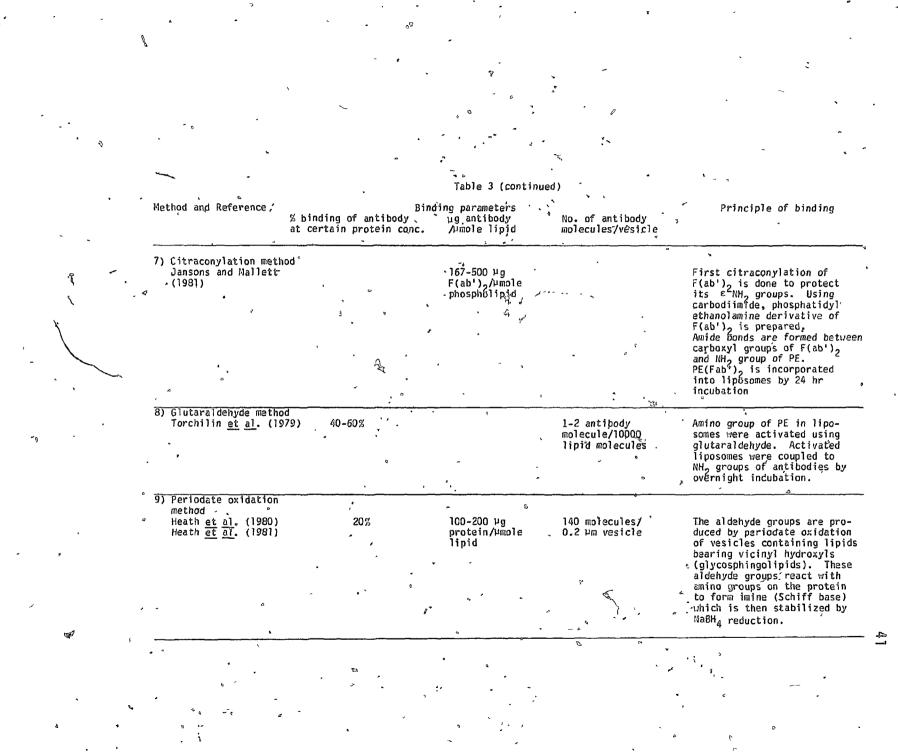
, *

۹

. .

ኑ

...


**

•

°,

۰0 ۲

42_

o

Table 3 (continued)

Q

¢.

 Method and Reference
 Binding parameters
 Principle of®binding

 % binding of antibody at certain protein conc.
 µg antibody /µmole lipid
 No. of antibody molecules/vesicle
 Principle of®binding

 10)Iodo ADLPE method Sinha & Karush (1979,1982)
 -33%
 100 ug Fab⁴ /µmole total lipid
 Sulfhydryl reactive, phospholipid containing alkylating

 reagefit, N=(Me² dod ADLPE)
 -33%
 100 ug Fab⁴ /µmole total lipid
 Sulfhydryl reactive, phospholipid containing alkylating

 we -dansyllysyl)-phosphatidyl ethanolamine (idd ADLPE) is synthesized. Fab⁴-Sh obtained by reduction of F(ab⁴)₂
 using mercaptoethanol is alkylated with iddo-ADLPE. Fab⁴-ADLPE is then incorporated into liposomes by incubation.

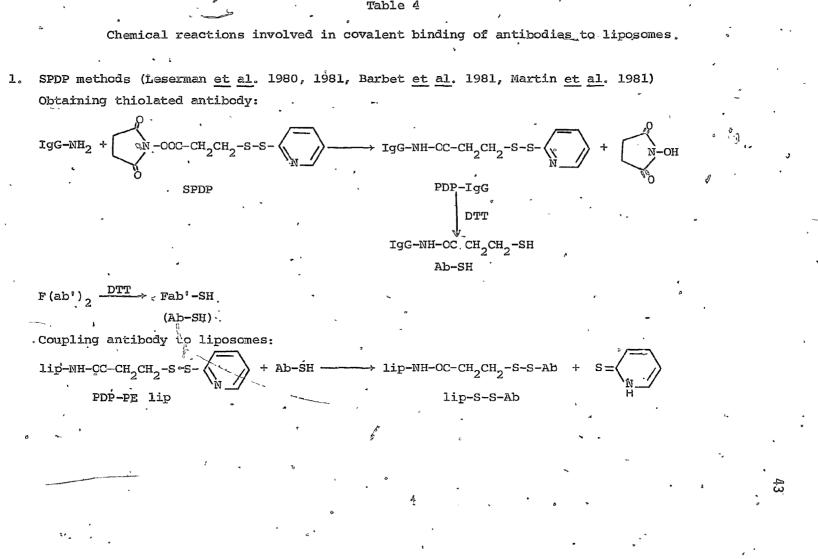



Table 4

Ω

MPB-PE lip

2

lip-S-Fab'

-. β^{*} -

. -

44

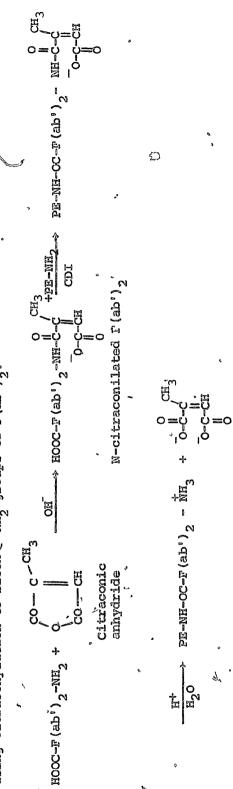

Ð.

Table 4 (continued)

Carbodiimide methods (Johnson et al. 1966, Dunnick et al. 1975, Endoh et al. 1981, Jansons and Mallett 1981) 'n

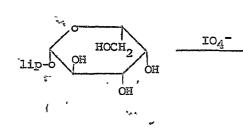
Lip-NH2 + IgG-COOH - CDL 11p-NH-OC+IgG

using citraconylation to block $\in -MH_2$ groups of F(ab¹)₂:

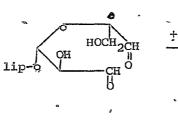
PE-F(ab'), lip PE-F(ab'), lip

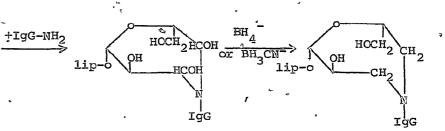
Citraconic acid

PE-F(ab')₂


٢

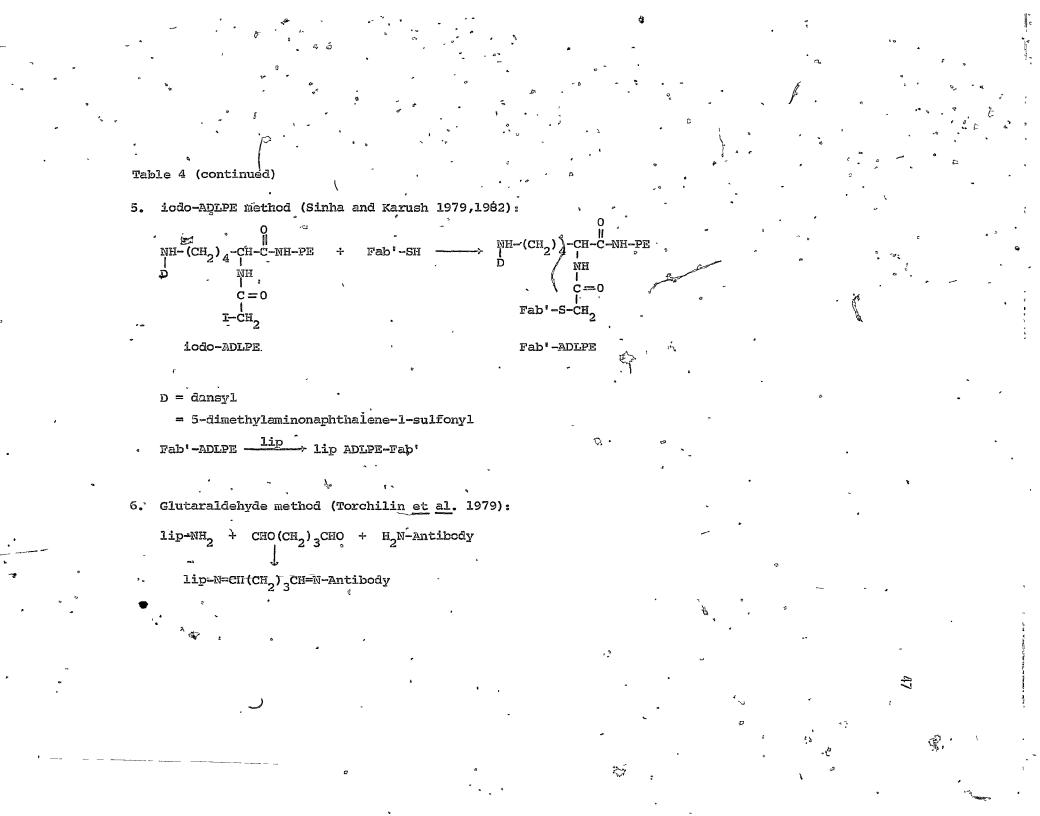
45

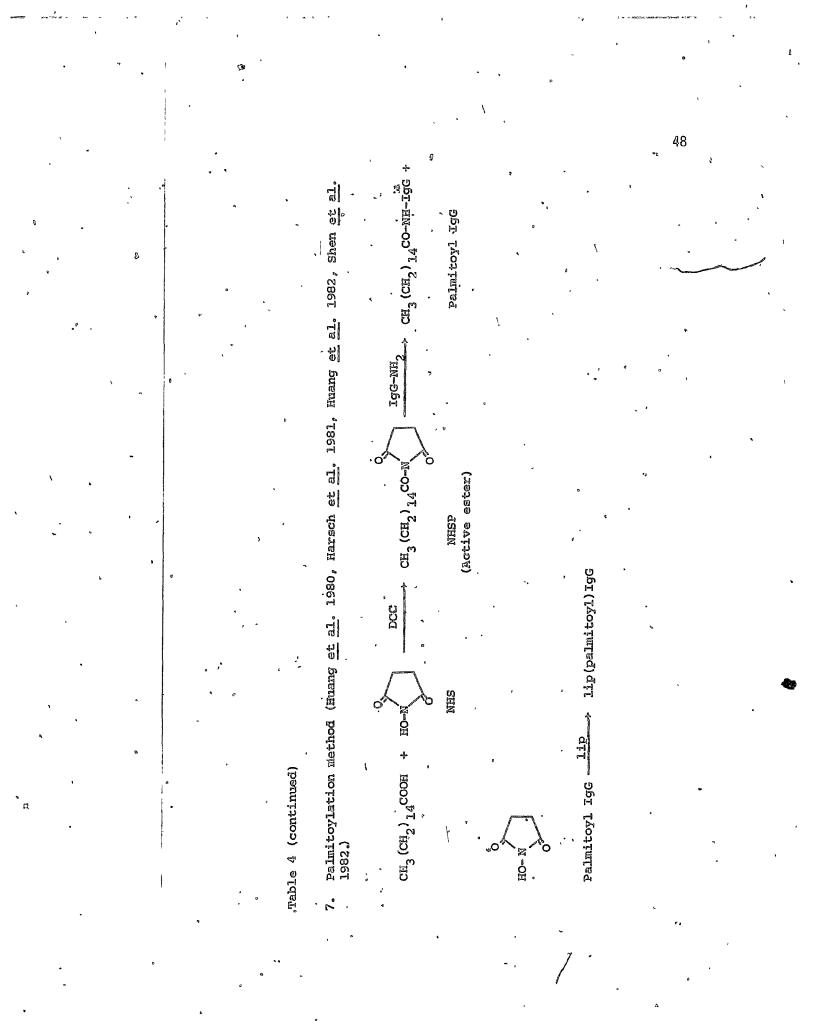

y Se


Table 4 (continued)

4. Periodate oxidation method (Heath et al. 1980, 1981)

 \odot





•, a - o -

knowledge of the stability of liposomes in the medium of cell culture. The various components of the cell culture medium may have profound effects on liposome-cell interactions. For example, calcium ions are known to, cause increased binding of acidic liposomes to red blood cells. (Eytan <u>et al</u>. 1982). The poor stability of cholesterol free liposomes in the serum is very well known (Kirby <u>et</u> <u>al</u>. 1980a). It may sometimes be necessary to eliminate one or more of the interfering components of the cell culture medium to simplify the interpretation of interaction studies (Noteboom 1983).

There are different ways that these studies can be undertaken. Either the liposomal contents or the liposomal membrane, or more appropriately, both, could be used as markers. Lipid markers include radiolabelled phospholipid, cholesterol or more stable hexadecyl cholesterol ether (Pool <u>et al. 1982</u>). Schroit & Madsen (1983) have synthesized ¹²⁵ I-phospholipids to see vesicle-cell transfer. Fluorescent lipids like N-(fluorescein isothiocyanyl)phosphatidylethanolamine (N-FITC-PE) could also be used to serve the purpose. Water soluble fluorescent compounds like carboxyfluorescein could be used to make the aqueous contents fluorescent (Weinstein <u>et al</u>. 1977). In the case of immunoliposomes, antibodie, the third component could be labelled with ¹²⁵I. Recently.

AQ

liposomes containing colloidal gold are reported to be useful as a probe for liposome-cell interactions (Hong <u>et</u> <u>al</u>, 1983). Generally, in an interaction study, cells and liposomes are incubated together for a predetermined time. At the end of the incubation period liposomes are separated and the cells are washed to get rid of loosely bound liposomes. Subsequently, the cells are analysed for liposomal markers qualitatively (e.g. by fluorescence microscopy) or quantitatively (e.g. by counting radioactivity).

The separation of free liposomes from cell bound liposomes is an important step in vesicle-cell interactions." SUVs could be separated from cells by sedimenting the latter at low speed centrifugation. To facilitate the separation, materials like Ficoll 10%, Ficoll-paque, dextran 10%, etc, have been used in density gradient centrifugation (Jones & Osborn 1977, Fountain <u>et al</u>. 1980, Bragman <u>et al</u>. '' 1983). Liposomes usually float and cells pelletize in such. density gradient medium: REV, MLV or other macrovesicles might still pose a problem with regard to their separation from cells.

Mechanisms of liposome cell interactions in vitro:

Whatever the method of study, liposomes are proposed to interact with cells in four major ways: 1) stable adsorption 2) endocytosis 3) fusion and 4) lipid exchange.

The definitions as given by Pagano & Weinstein (197,8) and a brief description of each of these mechanisms follow: 1. Stable adsorption is the association of intact liposomes with the cell surface without their internalization. The term "stable" emphasizes that the adsorbed liposomes /are not removed by washing of the cells. 'However, they could be detached by treatments such as trypsinization of the cells. (Pagano and Takeichi 1977, Chander et al: 1983). The adsorption of liposomes to cells depends on the transition temperature of phospholipids in liposomes as well as the temperature of study. "Solid" Tiposomes adsorb more than "fluid" liposomes. Interesting y_{i_0} the relationship between temperature and adsorption to ce1ls, as observed by Pagano and Takeichi (1977), is an inverse one. The forces involved in the adsorption process could be nonspecific (e.g. electrostatic, hydrophobic) or specific (e.g. surface receptors, antibodies).

2. Endocytosis is the uptake of intact liposomes into endocytotic vesicles. It is an active process requiring energy and therefore could be inhibited by cytochalasin B or other oxidative or glycolytic metabolic inhibitors. On endocytosis liposomes may fuse with lysosomes wherein they will be acted upon by various enzymes, causing the release of active ingredients into the cytoplasm. "Solid" liposomes are more prone to endocytosis than "fluid" ones. A recent investigation indicates that smaller liposomes are

5L

endocytosed more easily than larger ones (Machy and Leserman

52

3. Fusion is the merging of lipid bilayer with the plasma membrane and concomitant release of liposome contents into cytoplasmic space. It can be distinguished from endocytosis on the basis of inhibitor studies. Fusion does not require energy and hince is not inhibited by metabolic: inhibitors.
4. Lipid transfer is the transfer of lipid molecules between liposomes and cells without the association of the cell with the aqueous contents of the liposome. Proteins present at the cell surface or in the medium may mediate the transfer of lipid molecules. Loss of lipid molecules to plasma high density lipoproteins (HDL) is an analogous example of lipid transfer.

Mechanisms outlined above are not mutually exclusive (Pagano and Weinstein 1978). For instance, adsorption is a prerequisite for endocytosis of the rest of the vesicle. More over, one or more mechanisms may be taking place simultaneously. However, certain mechanisms may be predominant depending on cell type, e.g. phagocytic or nonphagocytic, conditions of incubation and the properties of liposomes (charge, size, fluidity). Use of fusogens like polyethylene glycol, virus, lysolecithin, lectins, etc. to bring about cell-cell fusion are well known. These agents could similarly be used to induce fusion of liposome with cells although lysolecithin was more toxic to cells (Szoka et al. 1981).

Kimelberg and Maynew (1978) have illustrated the different interaction mechanisms diagramatically. These authors also state that transcapillary passage of liposomes and/or their contents may follow similar mechanisms. Several other reports have appeared to date on liposome cell interactions. Some have addressed the question of mechanism of interaction. Others have obne such studies from another perspective, mainly to see the effectiveness of liposomes for drug delivery to cells or organisms in <u>in vitro</u>. culture conditions. Both increased and decreased delivery of liposome contents has been observed (Weinstein <u>et al</u>. 1978, Allen <u>et al</u>. 1981, Nonrie: <u>et al</u>. 1982, Onaga and Baillie 1982, Patel <u>et al</u>. 1983, Jansońs and Panzner 1983).

DISTRIBUTION AND INTERACTIONS OF LIPOSOMES IN VIVO

Liposome, behavior within the biological milieu is governed by a number of factors. Route of administration is one such important factor. Other factors are comprised of characteristics related to liposomes such as size, charge, lipid composition, dose etc. Role of these factors would be discussed appropriately under different routes of Intravenous route (I.V.)

On intravenous administration liposomes rapidly interact with blood components. Serum proteins such as apolipoproteins, high density lipoproteins (HDL), could cause aggregation, alteration of permeability and destabilization of liposomes (Scherphof <u>et al</u>. 1978; Allen and Cleland 1980; Guo <u>et al</u>. 1980; Allen 1981; Gregoriadis <u>et al</u>. 1983). The extent of any damage to liposomes depends on their composition (Senior and Gregoriadis 1982, Bali <u>et al</u>. 1983). Cholesterol incorporation renders liposomes less vulnerable to attack by. plasma proteins and subsequent loss of their phospholipids to HDL (Gregoriadis 1980).

Substitution of sphingomyelin for phosphatidylcholine has improved the stability of liposomes in serum <u>in</u> <u>vitro</u> as well as <u>in wivo</u> (Huang <u>et al</u>. 1980; Kuhn 1983). Other lipid compositions e.g. 6-aminomanhose derivative of cholesterol have also shown similar results (Mauk <u>et al</u>. 1980). Recently, however, the ujew "more stable liposomes may not be effective drug carriers" has been put forth by Humt (1982). The author states that moderately stable liposomes, especially MLV, when first destabilised by blood components actually facilitate the release of a priming dose of drug needed to achieve the desired therapeutic level. The subsequent release is slow

and provides a maintenance dose over a long period of time. Thus these MLVs may possibly function as ideal sustained release drug delivery systems.

55

Other components of blood, namely leukocytes, platelets, erythrocytes, have also been shown to interact with liposomes (Eytan <u>et al</u>. 1982, Juliano <u>et al</u>. 1983; Kuhn <u>et al</u>. 1983). Leukocytes can internalize the liposomes <u>via</u> phagocytosis (Kuhn <u>et al</u>. 1983). Interestingly, stability of liposomes in whole human blood is greater than in the serum (Lelkes and Tandeter 1982; Kuhn <u>et al</u>. 1983), persumably due to the protective effect of erythocytes.

After the first encounter with the components of the blood, diposomes probably would be carried to the lung. Here, larger liposomes or aggregates could be arrested by lung capillaries. Pulmonary retention could also be influenced by charge and composition of liposomes (Fidler <u>et al</u>. 1980). The liposomes would next be coming in contact with the reticuloendothelial system (RES). Interaction of liposomes with the RES has been a subject of study by many investigators. The organs of the RES-liver, 'spleen, bone marrow take up liposomes similar to other colloids or suspensions. A typical distribution profile of 'L.V'. injected sonicated liposomes could be as follows: liver 22,4%, spleen 6.0%, lung 8,6%, midney 9.6%, plasma 11.5% (Kimelberg and Mayhew 1978).

Extravasation of small liposomes from the blood stream is possible in organs like liver, spleen and bone marrow because these organs are lined by a type of capillary called sinusoidal or discontinuous capillaries. The gaps in the endothelial lining of sinusoidal capillaries are in the order of 0.1 μ m or less and also these capillaries lack subendothelial basement membrane. These properties make them amenable to extravasation of liposomes. However, capillaries of other types like continuous (e.g. skeletal muscle and smooth muscle capillaries) and fenestrated (e.g. G.I.T.) capillaries do not allow extravasation of liposomes. In inflammed tissues, permeability of blood vessels is supposed to increase. Even so, Poste (1983) did not observe any extravasation of liposomes under inflammatory conditions. Despite this fact some authors hypothesize that in diseased organs (tumors), blood capillaries may be more permeable to allow passage of liposomes (Proffitt et al.

In the hepatic uptake of liposomes, the major role is played by the Kupffer cells (also known as fixed macrophages or mesenchymal cells) of the liver. Hepatocytes or the parenchymal cells possibly play a minor role. Time may be an important factor in deciding which cell population of the liver takes up liposomes preferentially (Freise <u>et al</u>. 1980). Ironically, in the presence of hepatocellular tumor, only a small uptake of MTX liposomes by the liver was

1983).

observed (Freise <u>et al</u>. 1979). Endocytosis has been implicated as the chief mechanism for the uptake of liposomes by Kupffer cells. Liposomes administered I.V. have been shown to be present inside the Kupffer cells associated with the lysosomal compartment by light and electron microscopy (Welden <u>et al</u>. 1983). Further, the subcellular fractionation studies have complemented these findings implicating endocytic uptake.

The pharmacokinetic clearance and/or disposition of liposomes depends on size (Abra and Hunt 1981, 1982) lipid composition (Fidler et al. 1980, Gregoriadis and Senior 1980, Huang et al. 1980) surface charge (Fidler et al. 1980, Koa and Lon 1980, Abraham et al. 1984) and the dose (Abra and Hunt 1981, Bosworth and Hunt 1982, Beaumier et al. 1983) of liposomes. The larger the liposomes the faster their clearance (Fidler et al. The cleagance half time can range from 1 hr for SUV 1980). to ~10 min for larger vesicles. However, the clearance of free drug has been found to be even more rapid with clearance half time of 3-5 min (Yatvin and Lelkes 1982). --Considering just the lipid composition of liposomes, half times for clearance could range from 0.1 hr (dilaurylphosphatidylcholine-cholesterol) to 2 hr (phosphatidylcholine) to 16.5 hr (sphingomyelin) (Huang et al. 1980; Yatvin and Lelkes 1982). Negatively charged vesicles are cleared faster than positive and neutral

ves, icles. Recently, it has become evident that irrespective of their original charge all liposomes acquire a negative charge in the presence of serum. In the light of this, the differential clearance rates could result from differences in the way the blood proteins interact with liposomes or from, differences in their net negative charge densities (Kimelberg and Mayhew 1978).

It is interesting to note that the blood cells, though bigger than liposomes, are not scavenged by the liver_until they are functional. This fact suggests the possible existence of some recognition factors on blood cells revealing them as "self". Recognition factors could also be present in the serum. These, as yet unknown, factors may opsonize (coat) liposomes causing them to be perceived as "non-self" by Kupffer cells and/or fixed macrophages in the spleen (Kimelberg and Mayhew 1978) There are not many studies related to clearance of liposomes linked to cell recognition ligands. As regards to immunoliposomes, however, the clearance is expected to be enhanced if the Fc regions of the antibody are exposed, rather than hidden, on the surface of liposomes. Circulating monocytes and reticuloendothelial cells, through their Fc receptors, would rapidly react with the Fc region of the antibody and clear the liposomes.

RES blockade:

Several efforts have been made to reduce the RES uptake of liposomes so that their interactions with other tissues may be improved. One strategy has been to use very small liposomes like SUV that are cleared from circulation 🗎 more slowly than the larger MLV, "REV or LUVs. The other approach has been to block the RES. RES blockade could be accomplished by \dot{I} .V. administration of substances like charcoal (Hudson and Hay 1981, Souhami et al. 1981), latex particles, methylpalmitate, dextran sul/fate (Souhami et al. 1981) or empty liposomes (Abra et al. 1980). Perhaps empty liposomes are less toxic in comparison to other non-biodegradable particulate materials. The efficiency of RES blockade could be improved by using liposomes comprised of appropriate lipids, e.g. -6-aminomannose derivative of cholesterol (Wuetal 1981, Proffitt et al. 1983), glycolipids like lactosylceramide (Spanjer and Scherphof 1983), lactosylcerebroside and dimannosyl diglyceride (Szoka and Mayhew 1983). Thus a RES blockade which is reversible in 24 hrs, can be imposed easily. Despite this, the value of this method in the context of liposome mediated drug delivery, tas not been impressive at all (Poste 1983). The reason is the inability of,liposomes to reach tissues outside the mononuclear phagocyte system. Repeated administration of RES blockers or liposomes may paralyse the RES function

leading to toxic problems (Poste 1983). This point should be borne in mind while attempting long term therapy with liposomes.

Finally, there are certain anatomical sites which the intravenously administered liposomes cannot reach (Juliano 1981). One of them is the CNS and the other is the urinary tract. Liposomes cannot reach the CNS because they cannot cross the blood brain barrier. Similarly, they are not filtered by glomeruli and hence cannot appear in the urinary tract.

2. Intraperitoneal route (I.P.)

0

Convenience makes this a common route of administration in animal studies but not so in humans. Only in situations such as diseases of the peritoneal cavity or ovarian cancer, as this route of administration used in humans (Mayhew and Papahadjopqulos 1983, Ozols et al. 1984). By and large, the distribution of liposomes or thear contents observed after I.P. administration, is qualitatively similar to that after I.V. administration, Quantitative differences, however, do exist. Compared to I.V. route, two to three times less uptake in RES organs like liver, spleen and higher uptake in gut, lymph glands has been seen by I.P. route (Elléns et al. 1981). Also the peritoneal cavity functions as a reservoir of vesicles for some hours (Ellens et al. 1981). The transport of liposomes from the peritoneal cavity into the general

circulation and eventually to tissues named above possibly occurs <u>via</u> lymphatic pathway. It could also take place through the capillary lining of the cavity. According to Poste (1983) terminal lymphatics (i.e. lympatic capillaries) offer a far less formidable barrier to the passage of liposomes than continuous and fenestrated blood capillaries. Perhaps the I.P. route is beneficial for targeting liposomes to the lymphatic system (Hisaoka <u>et al. 1982</u>).

. In many cases the I.P. route is less toxic than the -I.Y. route. 'For example, toxicity was reduced when, actinomycime D was administered in liposome form by I.P. route to ascites tumor bearing mice. However, ilt may not be so with liposomes containing certain other drugs MTX entrapped liposomes administered I.P. (0.25 mg MTX per ~ 30, g mouse) caused sudden death of all the mice in 24 hrs but " no death occured on I.V. administration of the same liposomes in the same dose for 5 days.(Freise et al. 1979). Tyrrel et al. (1976) reports a 100 fold increase in toxicity of intraperitoneally given MTX'liposomes over free drug from unpublished date of Colley. 3: Subcutanéous and intramuscular route (S.C. and i.M.) Liposomes administered subcutaneously may have an increased biological half-life depending on their

composition. Subcutaneously administered insulin liposomes provided prolonged hypoglycemic effect compared to free

insulin (Stevenson <u>et al</u>. 1982)., This prolongation effect was attributed to the protection of insulin from degradation, provided by liposomes. Similarly Segal <u>et</u> <u>al</u>. (1976) found delayed release of entrapped materials from large MLV injected into the rat testicles. Liposomes injected I.M. or S.C. behave similar to the -

intraperitoneally administered liposomes in that they exhibit initial slow clearance from the site of injection (Fountain <u>et al</u>. 1980b), followed by absorption into lymphatics and then into the blood stream leading to localization in RES. Liposomes injected into the foot pad also have similar fate. Subcutaneous or I.M. route could therefore possibly be used to deliver drugs to the draining regional lymph node. An example of this is the delivery of anticancer drugs or radioimaging agents to lymph node metastasis (Khaio <u>et al</u>. 1983, Osborne <u>et al</u>. 1983). 4. Intraarticular route

This route of administration of liposomes has been investigated for the treatment of arthritis. Results in "animals as well as humans have shown prolonged localized" action of drug entrapped in liposomes (Dingle <u>et al</u>. 1978; Page Thomas and Phillips 1979). Although most studies dealt with cortisol palmitate liposomes, MTX liposomes have also been studied by intraarticular, injection to improve its

antifinflammatory activity (Foong and Green 1983; Green and Foong 1983).

5. Intratracheal route

, **(**)

Liposomes have been administered into the tracheae in aerosol form for local treatment of lung tumors and/or metastases or respiratory distress syndrome (Sachman and Tsao 1980). Liposomes, so administered, remain within the lung over an extended period of time. Little or no redistribution <u>via</u> circulation into other organs has been observed.

6. Oral route

A report of oral administration of insulin in liposomes, first appeared in 1976 (Patel and Ryman 1976). Studies reported later showed much bester hypoglycemic activity possibly due to better lipid composition of liposomes (Dapergolas and Gregoriadis 1976). However, there are reports indicating the inability of liposomes to be absorbed from the gut. (Deshmukh <u>et al</u>. 1981, Schwinke et al. 1984).

Further, some scientists report that the liposomes are completely degraded by the detergent action of bile salts. Nevertheless, the reports indicate the possibilities for oral administration of liposome encapsulated drugs at least to protect them from premature digestion (Deshmukh <u>et</u> <u>al</u>. 1981). Liposomes for this purpose should be formulated so as to withstand the rigors of the

gastrointestinal environment such as acids, digestive enzymes and detergents like bile salts. According to some reports, "solid" dipalmitoylphosphatidylcholine (DPPC), distearoylphosphatidylcholine (DSPC) liposomes are more stable in G.I.T. than "fluid" egg PC liposomes, possibly due to diminished hydrolysis of the former by the pancreatic phospholipases (Daper)olas and Gregoriadis 1976, Rowland and Noodley 1980, 1981). More recently liposomes made of lipids, .e.g. diether and dialkyl analog of PC. (Deshmukh et al. 1981), which are resistant to the action of phospholipase have been reported. The mode of absorption of orally administered liposomes; and their contents could be analogous to that of chylomichons, at least partially. Accordingly liposomes might follow lymphatic pathways of the gut with less or no absorption via the portal vein, which is sometimes beneficial. Apart from insulin, other substances like gentamycin (Morgan and Uilliams^{*1980}), heparin (Ueno et al. 1982), factor VIII (Hemker et al. 1980) have also been shown to be absorbed from G.I.T. when encapsulated in liposomes. Very recently Nagata et al. (1984) have reported superior effect of oral liposomal. vitamin K₁ over other dosage forms. 7. Dermal Application

completely avoided if liposomes could be applied topically. The ingenious idea of exploitation of liposomes as solective

topical drug delivery systems was conceived and investigated first in this laboratory by Mezei and Gulasekharam (1980). Studies in ~rabbits (Gulasekharam 1980, Mezeii and Gulasekharam 1980) and guinea pigs (unpublished observations) have shown that indeed drug disposition is altered favorably "then applied in liposomal form. That is to say - higher amounts of drug appeared in epidermis, dermis, the target sites and lower amounts in subcutaneous Further modification into a suitable pharmaceutical tisque. dosage form^{*}maintained this favourable disposition pattern (Mezei and Gulasekharam 1982)'. D'érmal application of liposome entrapped drugs has great potential from the . following perspectives: systemic toxicity of some topically administered drugs (e.g., corticosteroids) could be reduced or eliminated and the quality of topical therapy could be ' enhanced by selective dermal delivery of drugs.

Hewever, the mechanism for the favorably altered drug disposition by liposomes, is only speculative at this stage. Oncopossibility is that liposomes act as a depotr releasing the drug slowly but in a sustained fashion (Vervin and Lelkes 1982). Dermal use of liposomes as humectants has also been reported (Idson 1981, Rieger 1981).

. One of the early reports of topical application of the ever was that of Smolin-

et al. (1981):" According to the report, in herpes infection of the eye, the therapeutic faction of iodoxuridine was greatly improved when administered in liposome. encapsulated form: Corneal uptake of liposome encapsulated indoxble and penicillin G was investigated by Schaeffer and Krohn (1982): The findings suggested enhanced transcorneal flux of both the drugs by liposomisation." Megau et al. (1981) have reported an "increased binding of liposomes to the ocular lens mediated by lectin Con A. . Investigations of ocular distribution of triamcinolone acetonide and dihydrostreptomycin sulfate have been carried. out in this laboratory (Singh®and Mezei 1983, 1984, Singh 1982). Based on these studies, the authors recommended liposomes as suitable ophthalmic drug carriers for lipid soluble drugs but not for water soluble drugs. Stratford et al. (1983) found opposite effects on corneal and conjunctival absorption of liposomal epinephrine and inulth. Epiniphrine absorption decreased by 50% whereas inulin absorption increased 10 times by liposome entrapment. Very. recently Barza et, al. (1984) reported that liposome. encapsulation might extend the effect of subconjuctivally injected antibiotic like gentamýcin. 9. Miscellaneous routes

A recent report (Forsisen and Tokes 1983) says that the intradermal intection of doxorubicin liposomes produced less dependence to free doxorubicin. It was

therefore implicated that the dermal toxicity of doxorubicin arising from extravasation of drug during I.V. infusion could be eliminated by liposome entrapment. Apart from intragastric route discussed earlier insulin liposomes have also been administered <u>via</u> sublingual route (Ueingarten <u>et al.</u> 1981). Results indicated enhanced effect of insulin entrapped in liposomes. Toxicity of Liposomes

·Large volumes of lecithin emulsions (e.g. 'Intralipid) are given intravenously without apparent toxicity. Considering this, empty Prosomes which are also composed mainly of phospholipids should not be taxic in the doses administered. Despite this expectation there are some reports concerning the toxicity of liposomes. Such toxicity depends mainly on their composition and dose. Stearylamine containing liposomes were most toxic while negative liposomes with phosphatidyl serine or dicetylphosphate were more toxic than neutral liposomes (Adams et al. 1977). Intragerebral injection of stearylamine or dicetylphosphate containing liposomes into mice produced toxic symptoms such a's epileptic seizures, cerebral necrósis, etc. (Adams ét al. 1977). The same liposomes administered in a lesser dose, did not show any toxic symptoms. To some extent the toxicity also depends on the size of liposomes. Though of similar composition (PS:PC:CHOL), MLVs of size 0.5-3.2 µm were more toxic (LD $_{\rm KO}=300$ mg/kg), than SUVs of size 0.03 μm

(LD₅₀=5.5 g/kg). Mayhew and Papahadjopoulos (1983) report that they observed marked initial gross necrotic effects on normal liver when mice were injected with 5 g /kg of DPPC:CHOL liposomes. But the liver reverted back to normal state in 7 days.

Although plain liposomes may be considered relatively non-toxic chemoliposomes may exhibit increased toxicity. Such toxicity would naturally be resulting from altered tissue distribution and pharmacokinetics of entrapped drugs. -- Uptake by macrophages of, or sustained release from, liposomes containing cytotoxic drugs might lead to increased. toxicity. This is because of the simple fact that what is sometimes good for killing cancer cells is also bad for normal cells. This aspect is particularly highlighted in. the review by Kaye-(1981). Sustained release of cytotoxic drugs of phase specific type (e.g. MTX, ara-c) from liposomes is good for killing cancer cells. At the same time this might adversely affect normal "proliferating cells, leading to increased host toxicity. Therefore, MTX and ara-c liposomes were more toxic than the "free" drug in some studies (Kaye 1981). Also, the uptake of cytotoxic liposomes by macrophages (fixed or mobile) may wipe out one of the host's vital defence mechanisms. For example, systemic administration of liposome encapsulated bleomycin and several other antitumor sdrugs of cycle nonspectific type,

instead of killing cancer cells, adversely enhanced metastatic spread of malignant tumor (Poste 1983). These findings highlight the fact that the liposome entrapment in some instances might make an otherwise less toxic drug into a more toxic one. Not withstanding all this, an intravenous infusion, to man, of large volumes of liposomes containing an antimitotic compound has produced no toxicity whatsoever (Coune <u>et al</u>. 1983).

POTENTIAL APPLICATIONS OF LIPOSOMES

As mentioned earlier, since their discovery in the early 1960s, research applications of liposomes have proliferated and diversified. The use of liposomes as drug carrier's was reported first by Gregoriadis in early 1970s (Gregoriadis et al. 1974, Gregoriadis 1976). Following this they have been extensively investigated as carriers of drugs, ofneluding enzyme's (Weissmann and Finkelstein 1980), chelating agents (Rahman 1980), Svitamins (Alpar et al. ,1981) antibiotics (Richardson 1983) alkaloids (Todorov and Deliconstantinos 1982) and corticostervids (Shaw and Dingle 1980), Liposomes are relatively, nontoxic and biodegradable because they are composed of natural constituents of body. They are versatile, allowing easy manipulation of structural characteristics like size, charge, lipid composition, etc. These beneficial properties have been partially, responsible for making these lipid vesicles attractive drug carriers.

Cancer chemotherapy and enzyme therapy have been the fields sof most extensive studies. These and other areas of applications will be highlighted.

70

Among the chemotherapeutic agents anticancer drugs are highly toxic ones. The therapeutic use of these drugs is limited by their toxicity. Hence this is the area wherein . improvement in the therapeutic index is sought out most desperately. The efforts made to use liposomes in cancer chemotherapy are therefore extensive. About 15 or so cytotoxic drugs have so far been encapsulated in liposomes. Among these, methotrexate (MTX), cytosine arabinoside (ara-c), doxorubicin and actinomycin are the most extensively studied ones. Investigations with liposome encapsulated anticancer agents have given rise to some interesting results. Many of these resules suggest that the liposomes have, a role in enhancing the efficacy of certain antitumor drugs. Papahadjopdulos et al. (1976) Showed that actinomycin D entrapped in liposomes could overcome the drug resistance in Chinese hamster cell line in vitro. In vivo studies of the same drug with drug resistant tumors gave negative results (Kaye et al. 1981). An increased intracellular delivery (in vitro) of ara-CTP (active metabolice of ara-c) from liposomes was demonstrated in drug sensitive L1210 cells.' The increased delivery also resulted in distinct fincreased, cytotoxic activity in

vitro over free ara-CTP. But, ara-c and ara-CTP liposomes when tested in vivo with drug resistant mouse lymphoma failed to show any effect (Richardson and Ryman 1982). Another interesting property of liposomes is the prolongation of plasma half-life of entrapped drugs resulting in a depot effect which could also depend on liposome size and composition (Allen and Everest 1983). This has been observed or predicted, with cytotoxic drugs such as methotrexate (Kaye et al. 1981, Richardson and ·Ryman 1982), actinomycin D (Kaye et al. 1981), vincristine (Firth et al. 1984), ara-c (Rustum et al. 1979) adriamycin (Forssen and Tokes 1983b) and flurodeoxyuridine (Juliano <u>et al</u>. 1983). However such prolongation of half-life may or may not be beneficial therapeutically depending on the type of drug or properties unique to a particular drug.

This aspect has/been discussed under the toxicity of liposomes (please see page 67). Reduction in toxicity might result, in the case of cycle nonspecific drugs (e.g. actinomycin D, cyclophosphamide). The cardiac toxicity of adriamycin and general toxicity of actinomycin D was reduced as a result of liposome entrapment (Rahman <u>et al</u> 1978, Olson <u>et al</u> 1982, Ganapathi and Krishan 1984).

Several comparative studies on the cytotoxic effects of free and liposome encapsulated drugs have been reported.

Some workers claim that efficacy of drugs such as cytosine arabinoside (Mayhew et al. 1976), nocodazole^{.K} (Laduron et al. 1983), carboquone (Hisaoka et al. 1982b), ciseplatinum diamminodïchloride (Sur et al. 1983), and doxorubicin (Mayhew and Rustum 1983) is actually enhanced by liposomal entrapment. Many of these investigations were carried out using ascites tumors or I.V. tumors (eg. L1210 leukemia). Ascites tumor bears little resemblence to tumors in a real life situation. Lately, studies involving solid tumors also began to appear. Some of the recent reports of investigations of liposomal cytotoxic_drugs in solid and metastatic tumors-are: methotrexate liposomes to treat solid rodent (Kosloski et al. 1978) and murine tumor (Weinstein et al. 1980), , doxorubicin liposomes to treat mouse lung tumor (Abra et al. 1983), actinomycin D liposòmes to treat murine renal ådenocárcinoma (Kedar et al. 1980), doxorubicin 🗉 liposomes to treat mouse primary and metastatic liver tumors -(Maÿhew and Rustum 1983). Recentlý, 'Frossen and Tokes 🥍 (1983) nave shown improved therapeutic benefit of doxorubicin liposomes against Lewis lung carcinoma. Such improved effect was attributed to the significant reduction in immunosuppressive activity of doxorubicin in addition to reduced cardiac toxicity and depot effect.

The effect of liposome encapsulated antitumor drugs could also be influenced by lipid composition of liposomes as evident from recent investigations (Kirby and Gregoriadis 1983).

Use of hyperthermia resulted in selective release of liposome entrapped cytotoxic agents to tumors (Weinstein <u>et al. 1979,1980).</u> Other than this, attempts to target liposomes to tumors have largely been unsuccessful. The non-selectivity of anticancer liposomes prompted investigators to make them targetable by use of cytophilic ligands such as antibodies, lectins, etc. (Leserman <u>et</u> <u>al</u>. 1983; Monsigny <u>et al</u>. 1983): Such efforts emerged only recently and although many <u>in vitro</u> studies of antibody targeted liposomes have been reported, most of these dealt with cells such as RBCs or spleen cells (Weinstein <u>et al</u>. 1978, Harsch <u>et al</u>. 1981; Herrman and Mescher 1981, Huang <u>et al</u>. 1981, Machy <u>et al</u>. 1982ab, Rogers 1982b, Bragman <u>et al</u>. 1983, Machy and Leserman 1983, Heath et al. 1984).

Very few studies dealing with cancer cells have so far been reported. Binding of antigen bearing liposomes to morine myeloma tumor cells was shown by Leserman <u>et al</u>. (1979,1980b). However, binding did not result in increased delivery of vesicle contents into cells. There are other feports supporting this observation (Weinstein <u>et al</u>. 1978, Todd et al. 1980). Heath et al. (1983) and

Matthay: et al. (1984) recently reported an increase in specific toxicity of monoclonal antibody targeted methotrexate- γ -aspartate liposomes.

The first and so far the only investigation of \underline{ih} <u>vivo</u> anticancer evaluation of monoclonal antibody targeted liposomes containing an antitumor drug was reported recently by Hashimoto <u>et al</u>. (1983). The authors demonstrated an augmented antitumor effect of actinomycin D liposomes bearing tumor specific IgM subunits against mouse mammary tumor cells <u>in vitro</u> as well as <u>in vivo</u> (I.P. and S.C. tumor). However, many more studies are needed before the relevance of immunospecific targeting of liposomes for therapy could become clear.

A comprehensive coverage of evaluations of liposome -encapsulated anticancer drugs is dealt with in review articles by several authors (Yatvin and Lelkes 1982, kaye 1981, Mayhew and Papahadjopoulos 1983, Weinstein and -Leserman 1984).

Immunomodulators

Refractory macrophages can be activated to selectively kill metastatic cancer cells by the use of immunomodulators called macrophage activating factors (MAF) (eg. muramyl dipeptide (MDP), lymphokines). MDP is rapidly excreted following parenteral administration. Encapsulation of MDP in MLV liposomes provides a mechanism to achieve an efficient macrophage activity in vivo. Application of liposomal MAF for total eradication of metastasis has been widely indestigated by Fidler and co-workers (Schroit <u>et</u> <u>al</u>. 1983). Their experiments have shown convincing results for tumor free survival of animals as well as humans with lymphnode and pulmonary metastases.

Another promising aspect of liposomes is the promotion of strong humoral and cell mediated immune response to antigens associated with liposomes without the side effects of other adjuants (Alvin and Richards 1983). Liposomes in this regard have been experimented with associated antigens such as cholera, influenza virus (virosómes), rubella, hepatitis B virus, herpes simplex virus, diphtheria.toxoid.

Stimulation of the immune response is good for active immunization, but in the context of drug targeting it is detrimental. Single injection of antibody directed. liposomes would not elicit perceivable antibody response but multiple injections would (van Rooijen and van Nieuwmegen 1982). However no such antiidiotypic response was observed on multiple injections of immunoliposomes in a study by Leserman <u>et al</u>. (1983). In the event of positive antibody response, immunoliposomes would be coated with antibodies directed against them, preventing the specific homing of liposomes. Consequently Fc portions of the second antibody may target the liposomes to B lymphocytes in general. If this results in the killing of such

75 '

lymphocytes, the interference with drug targeting might be overcome (van Rôoijen and van Nieuwmégen 1982). Enzyme therapy

76

Metabolic diseases or Tysosomal storage diseases, e.g. Gaucher's, Pompe, Tay-Sach's disease are characterized by accumulation of substrates into the lysosomal compartment of liver cells due to enzyme deficiency. Treatment of these diseases have failed because of the inability of exogenously administered enzymes to reach the lysosomes. Enzymes administered are inactivated by proteolysis or by antibodies before they reach lysosomes. They also give rise to hypersensitive and immunological reactions. Enclosed in liposomes, the enzymes are shielded against any damage. More importantly, liposomes being lysosomotropic, would be able to carry their enzyme payload into the targets, the lysosomes (Desnick <u>et al</u>. 1978, Puisieux and Benita 1982, Weissman and Finkelstein 1980). Superoxide dismutases (SOD)

These are a class of metallo enzymes that are able to protect the organism against the toxic effect of oxygen free radicals, with the aid of catalases. It has been shown that cellular incorporation of SOD is increased by liposome

encapsulation. Some believe that SOD liposomes could also reduce the side effects of radiotherapy and antitumor chemotherapy (Puisieux and Benita 1982).

Treatment of heavy metal-poisoning ,

Iron poisoning as well as iron storage diseases such as thalassaemia have been treated successfully with Piposome entrapped chelating agents like EDTA and desferrioxamine (Rahman 1980).""Naked" administration of these agents has drawbacks like poor intracellular penetration, rapid excretion and side effects. Administration by entrapment in liposomes increases the uptake of these chelating agents in the liver, the site of metal storage. As a result, elimination of toxic metals takes place faster. Other studies, in which animals loaded with plutonium, mercury, gold and treated with liposomes encapsulated chelators have again demonstrated the therapeutic value of the system

(Rahman <u>et *al</u>. 1973).

Therapy of intracellular parasitic or microbial diseases

Leishmaniasis is a tropical disease caused by <u>Leishmania donovani</u>, a protozoan which invades the cells of the RES. Antimonial drugs (e.g. stibophen) are the drugs of choice to treat this disease. However, these antimonials are extremely toxic to the heart and kidney. Their toxicity could be reduced several fold by administration in liposome encapsulated form. The efficacy of antimonials has been increased dramatically (700 fold) by encapsulation in liposomes, presumably due to targeting of these drugs to lysosomes of the fixed macrophages in the liver (Chapman <u>et al</u>. 1984). However, an entirely different mechanism, namely, production of parasite toxic oxygen metabolites was implicated in the improved efficacy of primaquine liposomes, in the therapy of visceral as well as cutaneous.

Malaria is another example of intracellular parasitic disease. Pirson and his co-workers (1980), (Smith <u>et</u> <u>al</u>. 1983) studied the use of primaguine liposomes in the therapy of malaria. Though they observed reduction in ` toxicity of primaguine when entrapped in liposomes, there was no increase in the activity of the drug.

Apart from these parasitic diseases, there are many bacterial diseases in which the causative bacteria reside in phagocytric cells. Examples include diseases such as tuberculosis, leprosy, trypanosomiasis, brucellosis, trachoma etc. Opportunity exists for improvement in the treatment of these diseases by using liposome encapsulated 'drugs (Richardson &1983). In his leading article Richardson (1983) quotes the study dealing with treatment of tuberculosis using liposome encapsulated antitubercular In an, in vitro study, the bactericidal effect of drug. dihydrostreptomycin against intraphagocytic Staph. aureus increased when entrapped in liposomes (Bonventre and Gregoriådis 1978). In another investigation liposome entrapped amphotericin B, a lipid soluble antibiotic was shown to be less toxic but therapeutically effective against Candida albicans infection in mice (Juliano et al.

Ê?

1983b). The therapeutic index was increased by 2 to 6 fold

over free drug. A recent article indicates that liposomal amphotericin Bar toxic to fungal cells but not to mammalian cells (Mehta <u>et al</u>. 1984). Desiderio, and Campbell (1983) have reported an enhanced intraphagocytic killing of <u>S. typhimurium</u> by liposome encapsulated cephalothin. Liposomes as diagnostic tools

79

Gamma emitting radionuclides or radio pharmaceuticals, (e.g. $99m_{Tc}$, 131I) can be trapped in liposomes/just as drugs can. Such liposomes could possibly be used to diagnose primary neoplasms and perhaps also to destroy them if liposomes contain destructive radionuclides (β emitters). The course of γ -emitting radionuclides can be detected using a gamma camera or a rectilinear scanner. (McDoughll 1980).

It' is important to note here that, for the purpose of diagnosis, mere binding of radiolabelled liposomes to target cell's is enough, where as selective therapy needs their internalization as well. If, it is possible to further enhance the diagnostic ability of radionuclide containing liposomes, they could be done so by anchoring appropriate antibodies to their surface.

Liposomes as topical drug delivery systems

Mezei and Gulasekharam (1980, 1982) have demonstrated the feasibility of using liposomes to deliver drugs selectively to skin. This would also have an added advantage of reducing unwanted percutaneous absorption. ° Ophthalmic application of drugs in liposomes has also given rise to beneficial effects. As mentioned earlier a Smolin <u>et al</u>. (1981) have reported the superior effect of iodoxuridine liposomes in the treatment of herpes infection of eye. Singh and Mezei (1983,1984), based on their ocular distribution studies, have recommended ophthalmic liposomes for administering lipophilic drugs. Miscellaneous applications

Liposomes have been used as models for studying intestinal drug absorption especially of β - lactam antibiotics by Kimura <u>et al</u>. (1980). In the field of genetic engineering, application of liposomes for intracellular delivery of nucleic acids to alter the genotype of cells has been envisaged by Papahadjopoulos, (1981).

RESEARCH HYPOTHESES AND OBJECTIVES

Liposomes have been widely investigated as carriers of drugs in general. Specifically, pioneering studies from this laboratory (Mezei and Gulasekharam 1980, 1982) have explored their potential importance in topical therapy. In these studies, the dermal disposition of the drug triamcinolone acetonide (TRMA) appeared to be altered favourably when it was applied topically in liposome encapsulated form. The next approach was to optimize the factors for selective dermal delivery of drugs using liposomes. Hence the research proposal put forth was to Sinvestigate the effect of factors such as liposome size, supface charge and lipid composition on the disposition of topically applied TRMA liposomes. However, initial experiments soon revealed that the encapsulation of TRMA in liposomes was far from satisfactory. In the light of this new finding the goal of the project was changed to improving the liposomal encapsulation of TRMA. The present hypothesis was that the chemical modification of TRMA would improve its incorporation into the liposomes.

81

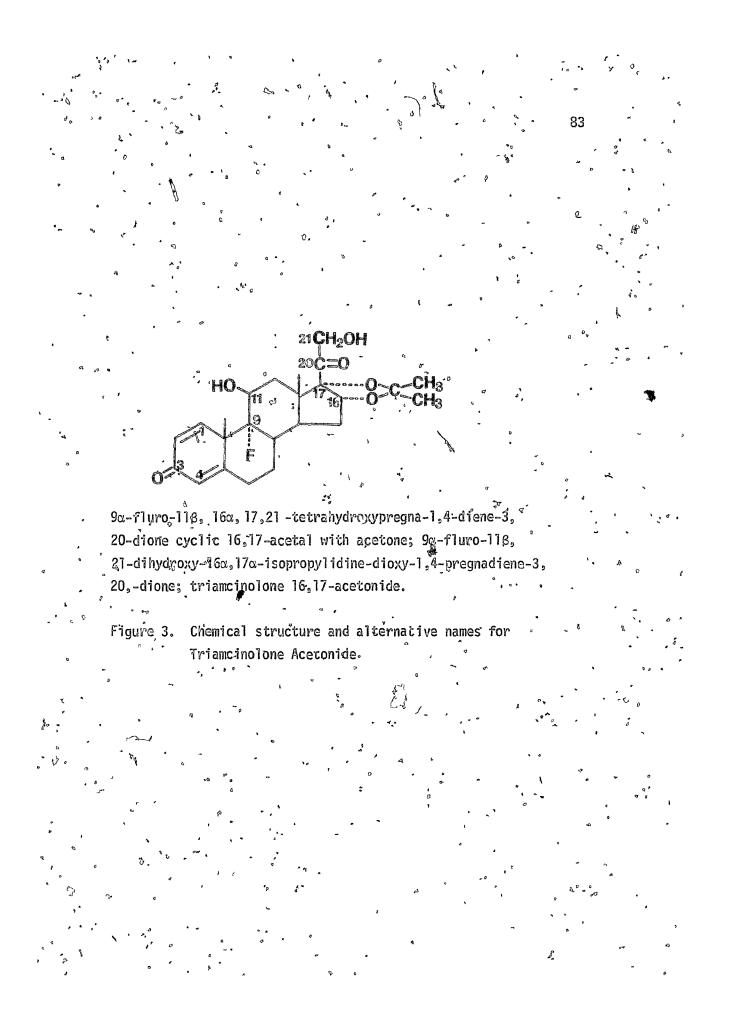
Another part of this investigation relates to the use of liposome encapsulated antineoplastic drugs in the therapy of cancer. There have been many reports of liposomes as site specific carriers of anticancer drugs. Recently, however, it is recognized that mere encapsulation in liposomes does not suffice and that liposomes have to be provided with target seeking cytophilic ligands such as antitumor antibodies in order to accomplish the task of targeting. Another hypothesis of this research, therefore was that liposomal encapsulation of the model anticancer agent methotrexate and further modification of liposomes with antibodies would improve the anticancer activity of methotrexate.

To test the above two hypotheses the following spécific objectives were set forth;

To improve the encapsulation of TRMA in liposomes.
 To prepare and characterize MTX liposomes.

To covalently couple antibodies to liposomes and characterize them.

4. To evalute the anticancer activity of MTX liposomes by <u>in vitro</u> and <u>in vivo</u> techniques.

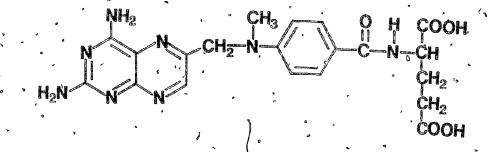

Triamcinolone acetonide and methotrexate were chosen as model drugs mainly because the previous relevant studies (Mezei and Gulasekharam 1980, 1982, Kulkarni <u>et al</u>. 1981) dealtowith these drugs. Studies with the same drugs would provide a basis for comparative evaluation of different approaches.

; Triamcinolone acetonide '

.

It is an antiinflammatory drug of intermediate potency belonging to the general class of corticosteroids (Popper and Watnick 1974). Its structure and chemical names are shown in Fig. 3 (Florey 1972). Use of TRMA in the treatment of non-infective inflammatory skin disorders, such as dermatitis, psoriasis and eczema is well known (Jones and Barreuther 1981). Tobical TRMA preparations are available in the form of creams, ointments and lotions with a drug concentration of 0.1% or 0.5% (Jones and Barrenther 1981).

It is noteworthy that topically administered corticosteroids could be absorbed into the systemic circulation although to a very small extent, approximately 1% of the applied dose. On entering systemic circulation



they have the potential to produce toxic effects such as suppressing of hypothalamus-pituitary-adrenal (HPA) axis and Cushing's syndrome (Hallam 1980, Morman 1981). Percutaneous absorption is more likely to occur in infants and children especially on long term application and with the use of an occlusive dressing (Gasiorowski-Mauroy 1981). A need to prevent such toxicity by reducing or eliminating the percutaneous absorption of corticosteroids is therefore evident. Hence, if liposomes could deliver TRMA selectively to skin, the significance of the achievement could not be overemphasized.

TRMA is available in ³H or ¹⁴C form allowing its determination in minute quantities in biological samp^{*}Tes. Methotrexate

It is a widely used cancer chemotherapeutic agent particularly in the treatment of neoplastic diseases such as acute lymphocytic leukemia, non-Hodgkin's lymphoma, osteosarcoma, choriocarcinoma, head and meck cancer and breast cancer (Jolivet et al. 1983, Martin and Ballentine 1983). Fig. 4 gives its chemical structure, different chemical names and other synonyms. MTX has to be stored protected from light to prevent possible photodecomposition.

MTX is an antimetabolite of folic acid. Its mode of action is by competitive and irreversible inhibition of the enzyme dihydrofolate reductase (DHFR) which in turn inhibits

المركبة

85

N-[4- [(2,4-diamino-6-pteridiny] -methylimethylamine benzoy]] glutamic acid; 4-amino-10-methylfolic acid; amethopterin.

Figure 4. Chemical structure and alternative names for Methotrexate.

the formation of tetrahydrofolic acid from dihydrofolic acid. The resultant folic acid deficiency blocks nucleic acid synthesis and cell division. Thus, it is a cell cycle ("S: phase) specific drug.

High cell turnover may be eliminated in malignant tissue but other rapidly dividing normal tissue such as bone marrow, the epithelial Lining of the gastrointestinal tract and the bronchioles and the cells in the hair follicles may also be severely damaged. Immunosuppression is an additional toxic side effect of MTX. Another side effect, the nephrotoxicity, probably caused by precipitation of MTX or its 7-OH metabolite, could be minimized by maintaining alkaline diuresis during treatment (Jolivet <u>et al</u> 1983, Anonymous 1984). Development of resistance to MTX treatment s not uncommon (Chabner <u>et al</u>. 1984).

Any attempt, be it liposome or otherwise, to target MTX or other cytotoxic agents preferentially to cancer cells, is a welcome measure because of the highly toxic nature of these drugs. Although it could be analysed by methods (Florey 1976, Sadee et al. 1980, Breithaupt et al. 1982 then et al. 1984), like HPLC, UV spectrophotometry and RIA, the availability of labelled MTX makes its quantitative analysis more sensitive and reliable. MTX is official in USP XX, BP 1980, BPC 1979 and European Pharmacopoeia, Vol. III 1975. For human use BP 1980 recommends a dose of 5 to 100 mg at suitable intervals.

MA

HO

Materials

DL=α-dipalmitoylphosphatidyl°choline (DPPC), cholesterol (CHOL), stearylamine (SA), dicetyl phosphate (DCP), dipalmitoyl phosphatidylethanolamine (DPPE), egg phosphatidylethanolaming (PE), palmitoyl chloride, triamcinolone acetonide (TRMA), silica gel & chromatographic grade, 100-200 mesh), methotrexate $a(\pm)$ amethopterin, MTX), absolute methanol, dithiothreitol (DTT), bovine serum albumin (BSA), protein standard solution were obtained from Sigma Chemical Cómpany, Št. Löuis, Missouri. [6,7-3H(N)]tri`amcinolon'e acetonide (³H-TRMA) of specific activity 31.3-37.0 Ci/mmol and Biofluor Rascintillator solution were purchased from New England Nuclear, Boston, Massachusetts. $[3',5',7-^{3}H]$ -methotrexate sodium salt ($^{3}H_{-}MTX$) of specific activity 200 mCi/mmol, ¹²⁵I-NaI of specific activity 15.2 mCi/µg of iodine were from Amersham, Arlington Heights, Illinois. Prepacked Sephadex G-25 M PD-10 columns, Sephadex G-50, Sephacryl S-200, Protein A Sepharose CL-4B, chromatograph columns (K_{15/90}, Bed vol. = 90 x 1.5 cm = 154 ml; K9/15, Bed vol. = 15 x 0.9 cm = 9.5 ml), Ficoll 400, N-succinimidy1-3- (2-pyridy1dithio)propionate (SPDP), Sephacryl S-400, Sepharose 4B were from Pharmacia Fine . Chemicals, Pharmacia (Canada) Inc., Dorval, Quebec. Alkaline detergent solution Decon^R 75 concentrate, precoated silicadel 60 F 254 TLC aluminium sheets

manufactured by Merck were purchased from BDH Chemicals, Toronto, Ontario. RPMI 1640 powder medium, fetal bovine serum (FBŠ) were from Flow Laboratories Inc., Mississauga, Ontarió. Polycarbonate filters (8 µm and 12 µm) were procured from Nucléopore Corporation, Pleasanton, California. Immersible ØX-10^R ultrafiltration units were bought from Millipore, Bedford, Massachúsetts. Polypropylene Eppendorf^R micro test tubés (400 µl) were from Brinkman Instruments Inc., Westbury, New York. Naphthalene, pyridine, calcium chloride dihydrate and all the solvents were from Fisher Scientific Co.

89

Equipment and instruments used were the following: Beckman Liquid Scintillation Counter LS 3133T - Beckman Instruments Inc., Fullerton, California. Gamma, counter, Model 1085 - Nuclear-Chicago Corporation, Des Plaines, Illinois. Coulter counter, model Z_F - Coulter Electronics Inc., Hileah, Florida. Refrigerated centrifuges, model PR-6 and model B-20, centrifuge, universal model UV, Clinical centrifuge, model CL -International Equipment Company, Needham Heights, Massachusetts. Universal Spectrophotometer PMQII and Standard Universal and GFL microscopes - Carl Zeiss, Oberkochen, West Germany. Olympus Inverted microscope -Tokyo. Mettler Type H207 and Micro Gram-atic Balances Top loading PL300 balance - E. Mettler, Zurich, Switzerland/

LKB 700 UltroRac^R Fraction Collector - LKB-Produkter AB, Bromma, Sweden. Metabolic Shaking Incubator - Precision-Scientific Company, Chicago. Wrist Action Shaker^R, Model 75 - Burrell Corporation, Pittsburgh, Pennsylvania. Buchler Portable Rotary Evaporator - Buchler Instruments Inc., Fort Lee, New Jersey. [°] Bransonic 220 Ultrasonic Cleaner - Branson ·Cleaning Equipment Company, Shelton, Connecticut. Sonic dismembrator - Artek System Corporation, distributed by BioGard Hood - the Baker Company Inc., Sanford, • Fisher. Incubator' for tissue culture - National, a Heinicke Maine. ČCo. Laboratory Counter - Clay Adams, Parsippany, NJ. Beckman[°] 152 Microfuge. Fisher Accumet^R pH meter model 210. Super-mixer - Lab-line Instruments, Inc., Melrose Eppendorf standard fixed-volume pipettes. Park, ILL: Pipetman continuously adjustable digital micrometer pipettes - Mandel Scientific Co. Ltd.; Montreal, PQ: Swin-Lok Membrane Holders - Nucleopore, Pleasanton, Ca. USP dissolution rate testing assembly consisting of water bath and Thermomix 1480 temperature regulator (B.Braun, Melsungen AG, West Germany). Dissolution stirrer and stirrer drive model 53 (Hanson Research Corp., Northbridge, California), Masterflex^R Peristalysis pump, model 7016.20 and its speed controller (Cole Parmer Instrument Co., Chicago, ILL.) and Spectronic 21 Bausch, and Lomb Spectroghotometer with flow through cell.

90

Animals 🖞

C57BL/6J mice were ordered from Jackson Laboratory, Bar Harbour, Maine.

Antibodies:

Anti-BSA, anti-EL4 and anti-M21 polyclonal antibodies were obtained from Dr. Ghose, Department of Pathology. These antibodies were raised in rabbits by injecting either BSA, EL4 cells or M21 cells. The anti-EL4 sera, inactivated at 56°C for 30 min was absorbed extensively with washed homogenates of liver, lung, kidney.and spleen from normal adult C57BL/6J mice. After heat inactivation, the anti-M21 sera was absorbed only, with human red cells. IgG antibodies were obtained from these serums by fractionation with 33% saturated ammonium sulfate.

Tumors:

The EL4 lymphoma is a murine tumor originally obtained from the Chester Beatty Research Institute (London, England) in 1969 and has been maintained in Dr. Ghose¹S laboratory by serial I.P. passage in C57BL/6J mice. The human melanoma line M21, obtained from the Scripp's Research Institute, La Jolla, Ca. in 1979, is maintained in Dr. Ghose's laboratory, by serial transplantation of melanoma cells S.C. in the flank of nude mice of BALB/c background. The human kidney carcinoma line caki-1, obtained from the American Type Culture Collection, Rockville, MD. is maintained in Dr. Ghose's laboratory.

METHODS

STUDIES WITH TRIAMCINOLONE ACETONIDE - <u>Attempts to improve the liposomal encapsulation of</u> triamcinolone acetonide (TRMA)

Different methods and formulations that were tried to improve the liposomal entrapment of TRMA were as follows: Rotary vacuum evaporation followed by mechanical shaking:

Stock solutions (5 mg/ml) of lipids and TRMA in chloroform:methanol (2:1), were used. Appropriate quantities of lipid and TRMA were placed in a suitable pear shaped flask. The solvent was evaporated in a rotary vacuum evaporator at room temperature. Alternate addition and evaporation of chloroform was done until a smooth thin film was obtained. The film was heated to 60° C for 30 minutes. To the flask was then added an appropriate quantity of aqueous Swelling (dispersion) medium (in most cases aqueous 8 mM CaCl₂ solution) which had been prewarmed to 60° C. The flask was then immediately shaken, using a wrist action shaker, at 60° C for 30 min.

Different formulations (expressed in molar ratio) tried by the above method were:

DPPC:CHOL:SA (1.0:1.0:0.2)
 DPPC:CHOL:TRMA (1.0:0.7:0.3)
 DPPC:CHOL:TRMA:SA (0.7:0.5:0.5:0.4)
 DPPC:CHOL:TRMA:SA (1.0:0.5:0.5:0.2)
 DPPC:CHOL:TRMA:SA (4.0:2.0:0.5:0.6)

In all the above formulations aqueous 8 mM CaCl₂ solution was used as the swelling medium. The final concentration of TRMA was approximately 0.1% w/v even though initially the concentrations were sometimes higher than this.

Formulation #4 was also tried with 8 mM CaCl₂ solution containing 5-10% v/v alcohol as the swelling medium.

Reverse phase evaporation (REV):

DPPC 100 mg (136 micromoles), CHOL 52.66 mg (136 micromoles) and TRMA 5 mg (11.5 micromoles) were added to a 50 ml round bottom flask with a long extension neck and the solvent was removed under reduced pressure by a rotary vacuum evaporator. The residue was redissolved in a mixture of 8 ml of diethyl ether and 4.5 ml of chloroform. Water, 4.2 ml, was then added. The resulting two phase system was sonicated briefly (2-5 min) in a bath type sonicator at 0-5°C. The mixture was then placed on the rotary evaporator and the organic solvent was removed under reduced pressure at room temperature. The aqueous suspension was then shaken mechanically at 50-60°C for 30 minutes.

After preparing the liposomes by any of the above methods, the preparation was allowed to remain at room temperature for about an hour and then observed under the

microscope (Carl Zeiss, magnification 640X, polarized light). They were further subjected to either filtration through a polycarbonate filter (8 or 12 µm pore size) and/or centrifugation at 22000 x g.

Attempts to concentrate the liposomal preparation

By filtration through 0.45 µm millipore filter: Liposomes were prepared using ³H-TRMA by normal evaporation and shaking method. The preparation was filtered through 8 µm polycarbonate filter. The filtrate was forced though a 0.45 µm millipore filter until the volume above the filter was reduced to half the original volume. This was done using a standard filtration assembly consisting of syringe and filter holder. High force was needed to force the preparation through the filter. kadioactivity per unit volume of the preparation above the filter was measured before and after filtration. By rotary vacuum evaporation:

A known volume of TRMA liposomal preparation containing radioactive TRMA and which was filtered through 8 µm polycarbonate filter was placed in a small pear shaped flask. The preparation was concentrated to about one-third the original volume by rotary vacuum evaporation at room temperature. Measurement of radioactivity per unit volume and microscopic observation of the preparation was done before and after concentration. Evaluation of the supernatant of the liposomal preparation Gel filtration chromatography of the supernatant:

Sephadex G-50 (4 g) soaked in distilled water for a day and in 8 mM CaCl₂ solution (containing 5% v/v alcohol) for about 2.3 hrs was packed into a column of dimensions 17 cm x 1.5 cm. The column was washed with 200-300 ml of 8 mM CaCl₂ solution containing 5% v/v alcohol. Void volume was determined using 2 ml of Blue dextran 2000 solution.

Cationic liposomes with TRMA were prepared by rotary vacuum evaporation followed by mechanical shaking with 8 mM CaCl₂ solution containing 5% v/v alcohol. The formula used was DPPC:CHOL:TRMA:SA (1.0:0.5:0.5:0.2) with 840° μ Ci of ³H-TRMA and 5.9 mg of TRMA. The preparation was filtered through 8 μ m polycarbonate filter and then centrifuged at 22000 × g for 30 minutes. Gel filtration chromatography was carried out on this supernatant.

• One ml of the supernatant was applied to the column and eluted with 8 mM CaCl₂ solution (5% v/v alcohol). Fractions of one ml were collected. An aliquot of each fraction was added to 10 ml of Bray's solution (see appendix) and the radioactivity was determined. Dialysis of the supernatant:

A dialysis bag was made using dialyzer tubing of length about 5 cm inflated diameter of 1.58 cm. Supernatant, 1.5 ml, of known specific radioactivity was added to the bag. The bag was suspended in 800 ml of magnetically stirred distilled water contained in a beaker. Dialysis was allowed to proceed at room temperature overnight. Radioactivity per unit volume of dialysate and dialysing medium was measured. <u>Synthesis of Triancinolone acetonide-21-palmitate</u> Method of Shaw, Knight and Dingle^a (19.76):

³H_TTRMA (50 µCi) was placed in a 50 ml glass stoppered round bottom flask. The solvent was allowed to evaporate. Unlabelled TRMA (1.4339,g, 3.3 mmol) dissolved in pyridine (20 ml) and palmitoyl chloride^b (2.4 ml, 7.92 mmol) were added. The mixture was stirred magnetically at room temperature for 15 hrs. The reaction mixture was then poured into 1N sulfuric acid with vigorous stirring. Crude product was separated by filtration and purified in 0.5-0.9 g batches by column chromatography on 16g silica gel (60-200 mesh) eluting with toluene:ethyl acetate:acetic acid (90:10:1), using a maximum flow rate of 150-170 ml/hr and collecting 25 ml fractions which were monitored by TLC. [©] Fractions containing TRMA-21-palmitate were combined and recrystallized from methañol.

a: crude product was obtained by putting the reaction mixture in 1N H₂SO₄ instead of by vacuum evaporation as done by authors.

b: purity of palmitoyl@chloride was verified by its IR spectrum.

Qverall recovered yield, 0.235 g, 10.6%; conversion based on specific activity, 37.7%; mp^a <u>ca</u>. 143-147⁰; IR (Nujol) (appendix 2): 1760 (ester C = 0), 1740 (ketone C = 0), 1670 (α , β - α ', β ' unsaturated ketone C = 0), 1620 (C = C conjugated with ketone), and 890 cm⁻¹ (<u>cis</u> CH of Δ -1,4 system); ¹H-NMR (CDCl₃): δ 0.88 (t; 3H, terminal CH₃), 0.94 (s, 3H, 18-CH₃), 1.25 (narrow m, 27H, acetonide β - CH₃ and CH₂ chain), 1.42 (s, 3H, acetonide α CH₃), 1.55 (s, 3H; 19-CH₃), 1.6-2.5 (m, 4H, GH₂CH₂CO₂), 4.90 (s, 2H, 21-CH₂O), 4.97 (br, 1H', 16-CHO), 6.12 (d, 1H, J_{2,4} = 0.6 Hz, 4-CH), 6.44 (dd, 1H, J_{2,4} = 0.6 Hz), J_{1,2} = 9.5 Hz, 2-CH), and 7.22 ppm (d, 1H, J_{1,2} = 9.5 Hz, F-CH). <u>Anal</u> - Calc. for C₂₄H₆₁O₇F: C, 71.39; H, 9.44; F, 2.82. Found: C, 71.26; H, 9.25; F, 2.80.

A portion of the reaction mixture was kept at room temperature for about a week to see whether there was any improvement in the yield.

Method using chloroform as solvent^b: '

#Approximately 1 mmol of TRMA (439 mg) was dissolved in 35 ml of chloroform in a round bottom flask. Triethylamine,

- a: Melting point was determined using Gallenkamp melting point apparatus.
- b: Methylene.chloride could not be used as solvent as the solubility of TRMA was less in this solvent.

0.3 ml (202 mg, 2 mmol), and palmitoyl chloride, 0.7 ml (550 mg, 2 mmol) were added. The mixture was then stirred magnetically at room temperature for abo 23 hrs, then at 42° for 19 hrs. The reaction mixture was washed with 1 N H_2SO_4 (15 ml). The chloroform layer was collected and evaporated to dryness using an air jet. Dry residue was then purified by column chromatography as before. Yield 105 mg; 15.6%.

Method o Diamanti and Bianchi (1971):

Approximately 1 mmol of TRMA (435 mg) was dissolved in 4 ml of N,N-dimethylformámide in a 10 ml pear shaped flask. One ml of pyridine (160 mg, 2 mmol) and 0.7 ml (550 mg, 2 mmol) of palmitoyl chloride were added. The mixture was stirred using a magnetic stirrer for about 22 hrs. The solution was then poured into 1 N H_2SO_4 (1600 ml) with vigorous stirring. Separated solid was then filtered. This crude product was purified by column chromatography. Yield, 471 mg, 70%.

Different solvent systems were tried to separate TRMA-21-palmitate from the other components of the reaction mixture, by TLC using silica gel plates. On the basis of R, values, the solvent system containing toluene:ethyl

acetate:glacial acetic acid (90:10:1) was chosen for column chromatography.

Preparation and comparative evaluation of TRMA and TRMA-21-palmitate liposomes

To reliably determine encapsulation efficiency, radioactive triamcinolone acetonide-21-palmitate was prepared by Diamanti and Bianchi method from $[6, 7^{3}H(N)]$ -triamcínolone acetonide. Multilamellar liposomes were prepared as described by Mezei, and Gulasekharam (1980) using 13 mole% TRMA-21-palmitate and 87 mole% DPPC, a formula similar to the one recommended for cortisol-21-palmitate liposomes (Fildes and Oliver 1978). Dipalmitoyl phosphatidyl choline (160 mg) and triamcinolone. acetonide-21-palmitate (22 mg, 350 µCi) in chloroform-methanol (2:1) were evaporated in a pear shaped flask using a rotary vacuum evaporator to obtain a thin film. The film was then dispersed with 22 ml of aqueous 8 ° mM CaCl₂ solution at 60⁰C. The preparation was evaluated microscopically and then filtered through a 12 μm The filtrate was then centrifuged at polycarbonate filter. Rádioactivity in each fraction was 22000 x g for 25 min. measured after each treatment. Triamcinolone acetonide liposomes were prepared in a similar manner.

STUDIES WITH METHOTREXATE SECTION.1: REV LIPOSOMES

100

Preparation of MTX liposomes by reverse phase evaporation, (REV) method:

Three formulation were used to prepare liposomes of different surface charges:

- ° 1. DPPC : CHOL : 0.5 : 0.5* (neutral liposomes)
 - 2. DPPC : CHOL : SA : 0.4 : 0.5: 0.1 (positive liposomes)
 - 3. DPPC : CHOL : DCP' : 0.4 : 0.5 : 0.1 (negative liposomes)

Preparation of neutral MTX** liposomes:

DPPC 100 mg (136 μ moles) and cholesterol 52.66 mg (136 μ moles) were placed in a 50 ml round bottom flask with a long extension neck and the solvent was removed under reduced pressure by a rotary evaporator. The residue was redissolved in a mixture of 4.5 ml of chloroform and 8 ml of ether. A few drops of methanol were added to remove turbidity, if any, then MTX solution (\simeq 50 mg MTX/6 ml with

*molar ratio

**All the operations involving MTX were conducted in dark for MTX is light sensitive. Also all the preparations containing MTX³ were stored in containers wrapped in. or without 3 A-MTX) in 0.5% sodium bicarbonate (4.2 ml) was added. The resulting yellowish two-phase system was sonicated briefly (2-5 minutes) in a bath type sonicator at $0-5^{\circ}$ C. The mixture was then placed on a rotary evaporator and the organic solvent was removed under reduced pressure at room temperature (in about 30 minutes). Care was taken to prevent loss of the preparation due to frothing. The aqueous suspension was then shaken mechanically at 50-60°C for 30 minutes. The preparation was allowed to stay at room temperature for about an hour and then observed under the optical microscope with a magnification of 640X. Preparation of positively charged MTX liposomes:

101

These were prepared similar to neutral MTX liposomes except that lipid concentration was: DPPC 80 mg (109 μmoles), cholesterol 52.56 mg (136 μmoles) and stearylamine 7.5 mg (27 μmoles). Preparations of negatively charged MTX liposomes:

These were prepared similarly to neutral MTX liposomes except that lipid concentration was: DPPC 80 mg (109 μ moles), CHOL 52.56 mg (136 μ moles) and dicetyl phosphate 14.9 mg (27 μ moles).

Preparation of 'empty' liposomes:

The 'empty' liposomes, containing no MTX, were prepared by using 0.5% sodium bicarbonate solution instead of the MTX solution. Presence or absence of charged lipid gave a charge or no charge to the liposome surface.

Separation of free MTX from liposome encapsulated MTX:

The liposomal preparation was centrifuged in a high speed centrifuge at 16000 rpm (22000 x g) for 25 minutes at room temperature. The pellet was then washed with 0.5% sodium bicarbonate solution by centrifugation. Finally the pellet was made up to the desired volume with 0.5% sodium bicarbonate solution. Percentage encapsulation of MTX was arrived at by comparing the amount of MTX present in the pellet to the original quantity of MTX taken for encapsulation.

Determination of MTX in liposomes:

Direct spectrophotometric assay of MTX in liposomes:

An aliquot sample (100 μ l) of the neutral MTX liposomes, was diluted to 50 ml with 0.5% sodium bicarbonate solution and the absorbance was read at 370 nm using 0.5% sodium bicarbonate solution as blank. MTX has an extinction coefficient of 7 x 10³ M⁻¹ cm⁻¹ at 370 nm. Based on this, MTX content was calculated.

Spectophotometric assay after triton-x-100 treatment:

An aliquot sample (100 Pl) of the neutral MTX liposomes was diluted to 50 ml and the optical density (OD) at 370 hm was noted. Triton-X-100 (0.5 ml) was then added -to 50 ml of diluted liposomal preparation (final concentration of triton-X-100 = 1% v/v) and allowed to stand at room temperature for 30 minutes. Optical density was again recorded.

Spectrophotometric assay of MTX in lipsomes using 'empty' liposomes as blank:

'Empty' liposomes were prepared similar to meutral MTX liposomes. Both MTX and 'empty' liposomes were diluted to the same extent with 0.5% sodium bicarbonate solution and the OD of MTX liposomes was read at 370 nm using 'empty' liposomes as blank.

MTX determiantion in liposomes using methanol as solvent: Preparation of standard curve: Standard solution of MTX was prepared by adding 1 ml of 0.5% sodium bicarbonate solution (to assist in dissolving MTX) to 9.07 mg of MTX and was made up to 100 ml with distilled methanol. Aliquots (1,2,3,...., 7 ml) of standard solution were diluted to 25 ml with methanol and the extinction at 303 nm was measured. Calibration curve was obtained by plotting absorbance readings against concentration of MTX. Assay of MTX liposomes:

MTX liposomes were suitably diluted with methanol and the OD was read at 303 nm using methanolic solution of empty liposomes as blank. Concentration of MTX was read off from the calibration curve.

Radioactive assay of MTX in liposomes:

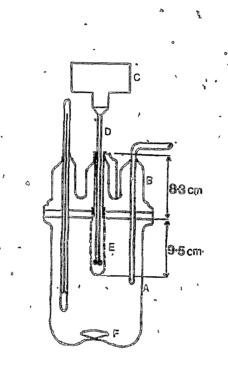
r x

Whenever ³H-MTX liposomes were prepared, MTX content was quantitated by radioactive tracer technique. Aliquots of liposomes were counted in Bray's solution or Biofluor^R using the liquid scintillation counter.

103-

Preliminary stability studies of neutral NTX liposomes:

MTX, 58.7 mg containing 10 µCi of ³H_MTX was dissolved in 6 ml of 0.5% sodium bicarbonate solution. Neutral MTX liposomes were prepared as described earlier using 4.2 ml of this MTX solution. A 2 ml sample of liposomes was stored at 37° and another one at room temperature for one week. Free MTX was separated from liposomal MTX by centrifugation as described earlier. MTX remaining in the liposomes was determined by radioactive counting of liposome sample. Size distribution of liposomes:


Size distribution of liposomes was determined by using a Coulter Counter equipped with a 100 micron aperture tube. The machine was precalibrated with monodisperse latex particles of standard size. Size distribution of liposomes was generated by systematically altering the aperture current, threshold and attenuation settings of the instrument.

In vitro drug release studies from positive MTX liposomes: Preparation of calibration curve for MTX:

For the estimation of MTX in the dialysis medium, a calibration curve was constructed as follows: A stock solution was prepared by dissolving ~10 mg of accurately weighed MTX in 50 ml of 0.5% NaHCO₃ solution. The stock solution was suitably diluted to obtain MTX solutions of strength 0.2 µg/ml to 10 µg/ml. Absorbance of these

solutions were determined using Spectronic Spectrophotometer at the wavelength of 303 nm. Calibration line was obtained by plotting absorbance against drug concentration. <u>Drug release studies</u>:

MTX liposomes, for drug release studies, were prepared by REV method using the formula DPPC:CHOL: &A:0.4:0.5:0.1. The release of MTX from liposomes was determined by a modification of the dynamic dialysis method of Arakawa et al. (1975) which in itself was a modification of original method of Meyer and Guttman (1968, 1970). USP dissolution test apparatus was ^bused with modification as shown in Fig. MTX liposomal preparation was diluted with 0.5% NaHCO, 5. solution in a volume ratio of 2:1. Seven ml of this diluted, liposome preparation (total MTX = 10.5-12.25 mg) was placed inside a 9.5 cm l'ong dialysis bag ('inflated diameter 1.58 cm) suspended from a 8.3 cm length tube made out of a 10 cc plastic syringe. The sac was suspended in 900 ml of 0.5% NaHCO, solution, contained in the dissolution vessel. The system was maintained at a fixed temperature by the temperature controlled water bath. The contents of the sac were stirred with a twisted glass rod rotated at ~ 125 rpm. External solution was stirred with a magnetic stirring bar. In order to determine the drug content of the external solution, the solution was continuously circulated through a flow through cell placed in a spectrophotometer which read

106

A, vessel; B, four-hole cover ; C, stirring motor; D; glass stirrer; E, dialysis bag; F, stirring magnet

Figure 5. USP XVIII dissolution testing apparatus modified to study the drug release from liposomes.

the absorbance at 303 nm. The absorbance was recorded on a chart by the recording device interfaced with the spectrophotometer. Concentration of MTX was obtained by referring to the calibration curve. Experiments were done at different temperatures.

C1

To see the effect of fetal bovine serum (FBS) on the release of MTX from liposomes, the liposomal preparation was mixed with dialysed FBS, in a volume ratio of 2:1 and was placed in the dialysis tube. The release of MTX was then determined as described earlier.

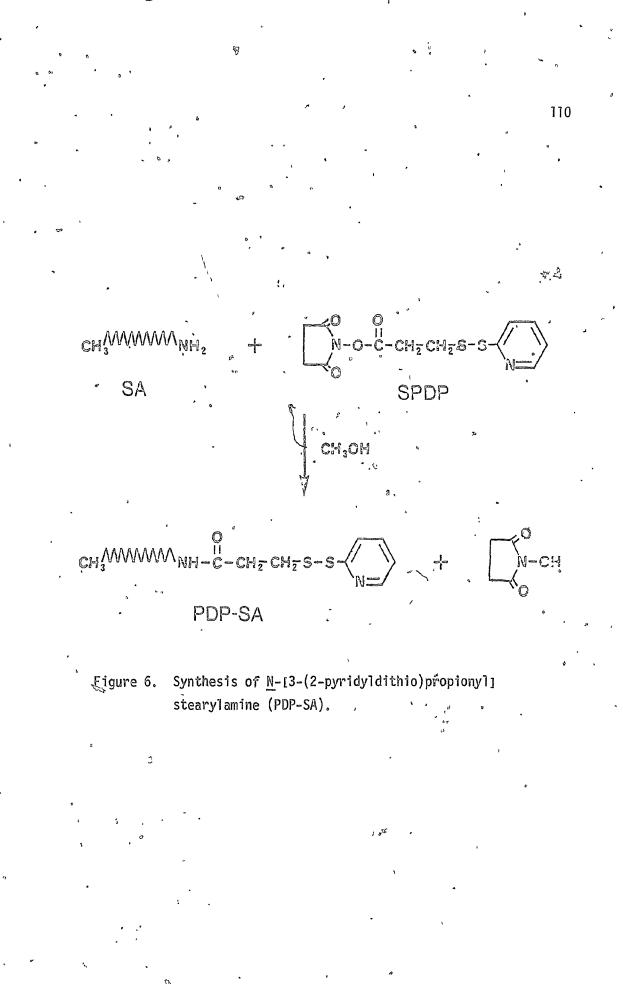
<u>Covalent attachment of antibodies to liposomes</u> <u>Synthesis of N-[3-(2-Pyridyldithio) propionyl]dipalmitoyl</u> <u>phosphatidyl ethanolamine (PDP-DPPE)</u>:

PDP-DPPE was synthesized by the method of Martin <u>et al</u>. (1981). DPPE 34.6 mg (50 µmol) was "dissolved" in 5 ml of absolute methanol containing 7 µl (50 µmol) of triethylamine and 25 mg (80 µmol) of SPDP. The reaction was carried out under nitrogen atmosphere. Course of reaction was followed by TLC. Reaction was stopped after 5 hours. Methanol was removed by vacuum evaporation and the products were redissolved in chloroform and applied on a 6-7 g (10 ml) silica gel (100-200 mesh) column which had been activated (150°C overnight) and prewashed with 100 ml of chloroform. The column was eluted with an additional 20 ml of chloroform followed by 20 ml of each of the following, chloroform: methanol mixtures - 40:1; 30:1; 25:1; 20:1; 15:1

°107

and finally with 60 ml of 10:1 chloroform-methanol. The maximum flow rate was about 2 ml per minute. The phosphate containing fractions eluting in 15:1 and 10:1 chloroform-methanol were combined and concentrated by rotary vacuum evaporation.

Analysis by TLC (Silica gel H; solvent system: chloroform-methanol-acetic acid 60:20:3; detecting reagent: molybdic acid reagent and/or iodine vapors) indicated phosphate positive spot of R_f value greater than that of DPPE. The product was stored at -15°C. The quantity of product obtained was too small.to determine the yield.


Different solvents like methylene chloride, pyridine, dimethyl formamide, ethanol, dimethylsulfoxide were tried to dissolve DPPE so that the yield of PDP-DPPE could be improved.

Synthesis of N-[3-(2-Pyridyldithio) propionyl] phosphatidylethanolamine (PDP-PE):

PDP-PE was synthesized the same way as PDP-DPPE (Martin <u>et al</u>. 1981). The reaction was conducted in a screw capped Multivial (Supelco) with a Teflon^R septum under nitrogen atmosphere using egg phosphatidyl ethanolamine 37:2 mg (50 µmöl*). Unlike DPPE, egg PE was

*Based on_dioleyl form egg PE has a mol. wt. of 744 as r'eported in Supelco Handbook of Lipäds, 6th ed. 1980, p. 10. completely soluble in methanol. A special vial was used for better stability of egg PE during reaction. Chromatographically purified PDP-PE was weighed and the yield calculated. The product was stored in a dessiccator at -15° C. Synthesis of N-[3-(2-Pyridyldithio)propionyl] stearlyamine(PDP-SA) (Fig. 6):

Though the principle of this synthesis is similar to the above two syntheses the procedure of synthesis and purification was developed by us. Stearylamine 260 mg (965 $\mu\,\text{mol}$) and SPDP 200 mg (640 $\mu\,\text{mol}$) were dissolved separately in 12 ml portions of absolute methanol. The solution of SPDP (was added dropwise to the steary lamine solution and reaction was carried out at room temperature. Reaction was monitored by TLC. After 30 minutes of reaction, the methanol-was removed by vacuum evaporation. The product was purified by column chromatography on 12 g of silica gel (100-200 mesh). Column was eluted with ethyl acetate-petroleum ether (40:60) using a maximum flow rate of 85-100 ml/hr, collecting 10 ml fractions which were monitored by TLC. Fractions containing PDP-SA were pooled and concentrated under reduced pressure. Overall recovered yield was 282 mg, i.e. 94%; mp 61°C; IR(CH₂Cl₂)(appendix 4): 3450(-NH-), 2950 [(CH₂)₁₈], $1690(-C0-N_{\odot})$, 1525 cm^{-1} (Amide II); $[^{13}C]-NMR$ (CDCl₃) (appendix 5): 175; 170(<u>cis</u> and <u>trans</u> CO), 160-120 (5, . pyridyl), 40-27 (several, CH₂), 23 ppm (CH₃).

. ⁰ .

b .

. . Anal.-Calc. for $C_{26}H_{46}H_2S_2O$: C, 66.90; H, 9.93; N, 6.00; S, 13.74. "Found C, 67.28; H, 9.89; N, 5.81; S, 13.75." Preparation of antibody fragments: Preparation of $(ab')_2$ from IgG

Normal rabbit serum IgG, about 120 mg, stored precipitated in 40% saturated ammonium sulfate at 4° C was centrifuged at 1000 x g for 15 min at 4° C. Precipitate was dissolved in a minimum volume of 0_{\circ} Ol M phosphate buffered saline (PBS) (pH 7.2). The IgG solution was then dialysed against PBS at 4° until free from NH₄⁺ ions to Nessler's reagent. This took about 2 days, changing the PBS (4 liters) four times. Frotein content was determined by Biuret method.

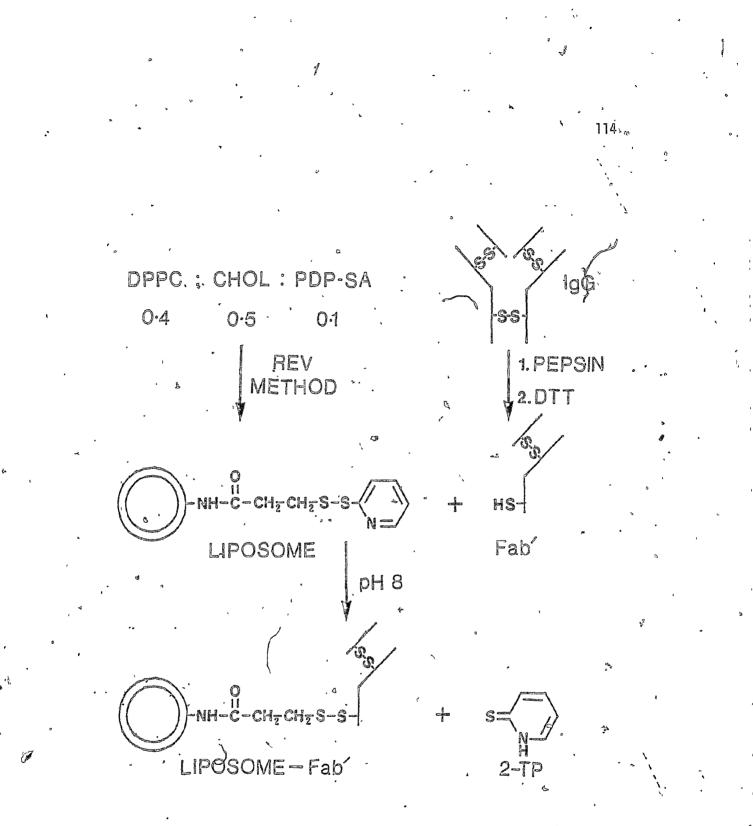
Digestion of IgG: IgG (120 mg) in PBS (pH 7.2) was dialysed against 0.1 M sodium acetate - acetic acid buffer (pH 4) solution for about 13 hours to equilibrate the IgG solution with the buffer. Precipitate, if any, was removed by centrifugation. Protein concentration was then determined by Biuret method. Concentration of IgG was adjusted to lie. between 10-20 mg/ml. For each 100 mg IgG, 2 mg of pepsin (dissolved on 0.1'M sodium acetate-acetic acid buffer) was added, which was then incubated at 37° for 18-20 hrs in a waterbath for digestion. Pepsin and other insoluble materials were removed by centrifugation (1000 rpm for 20 min). To inactivate the enzyme that was not removed

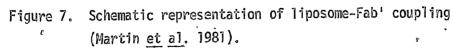
the supernatant was dialysed against PBS pH 7.2 for about 22 hr.s.

Isolation of fragments: A 7.5 ml aliquot of the pepsin digest was applied to a sephacryl S-200 column ($K_{15/90}$ column, Bed volume = 90 x 1.5 m = 154 ml) pre-equilibrated with PBS. The column was eluted with PBS collecting 2 ml fraction's at 3-4 min time interval. Absorbance of each of the 100 fractions was measured at 280 nm using UV spectrophotometer. Fractions representing included volume, consisting mainly of F($(b'_{2})_{2}$ and some IgG and/or Fc, were pooled.

Removal of undigested IgG and Fc by affinity chromatography: Protein A-Sepharose CL-AB, 1.5 g, was swollen in 10 ml of PBS for 1 hr at room temperature and then packed into a small chromatography column ($K_{g/15}$, Bed volume = 15 x 0.9 cm = 9.5 ml). Pooled fractions from the sephacryl S-200 column (20 ml) were filtered through this column at a flow rate of ~45 ml/hr. To remove the unbound proteins the column was washed with PBS until no more protein left the column. Fractions of 2-6 ml were collected. Absorption of each fraction was measured at 280 nm to detect the presence of protein. The bound protein (IgG and Fc) was eluted with a solution of 0.58% (0.1M) acetic acid in normal saline (pH 2.8). PBS fractions containing protein which represent F(ab')₂ were pooled and concentrated using immersible CS-10TM ultrafilters

(millipore) to get a $F(ab')_2$ concentration of about 10 mg/ml., $F(ab')_2$ yield was found to be 44%. The column was regenerated by washing with PBS (two column bed volumes). The column was stored at 4° . Preparation of Fab' fragments:

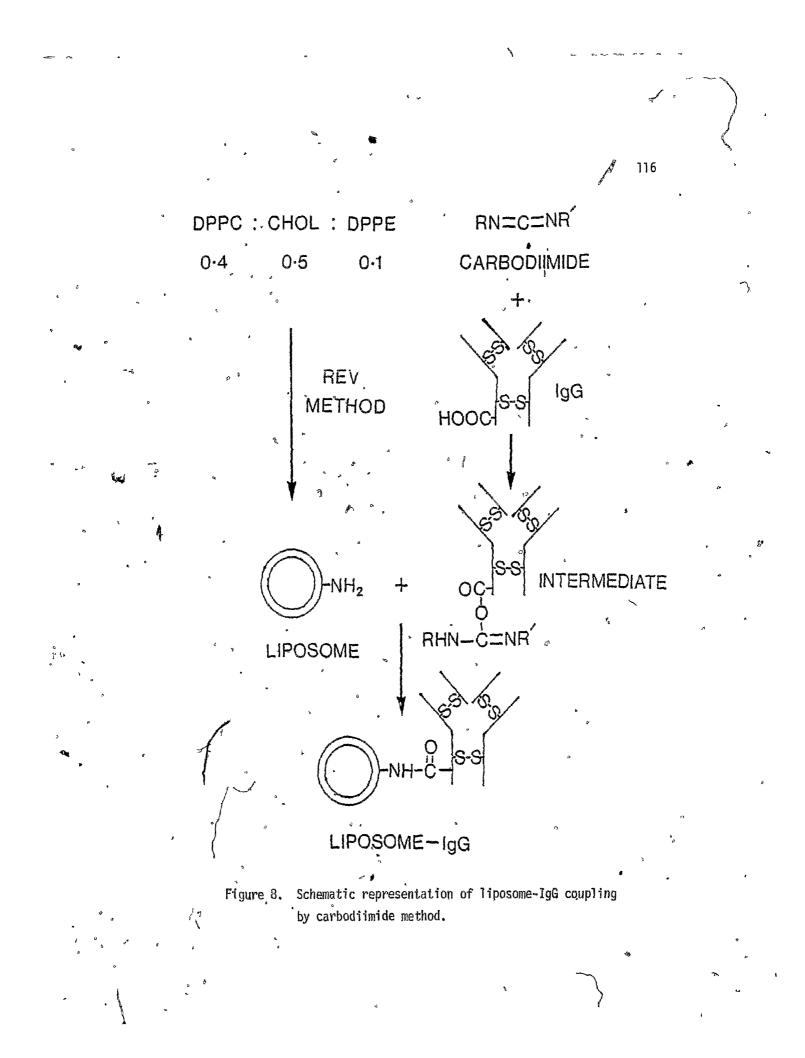

 $F(ab')_2$ solution in PBS was dialysed against pH 5.5 buffer for about 12 hours to equilibrate with the buffer. Fab' fragments were generated from the above $F(ab')_2$ preparations (10 mg/ml) by reduction with dithiothreitol (final concentration 20 mM) for 90 min under nitrogen atmosphere at 25°C. The mixture was then placed on Sephadex G-25 column and dithiothreitol was separated from the reduced Fab' fragments with the aid of deoxygenated buffer pH 5.5. Fab' appearing in the void volume of such a column was maintained under nitrogen and used immediately for coupling to liposomes.


Preparation of liposomes for Fab' coupling:

DPPC, cholesterol and PDP-SA in the mole ratio of 0.4: 0.5: 0.1 were used to prepare empty liposomes by the reverse phase evaporation technique described earlier. Specifically, DPPC 80 mg (109 μ mol), cholesterol 52.5 mg (136 μ mol) and PDP-SA 12.5 mg (27 μ mol) and 0.5% sodium bicarbonate solution (4.2ml) were used to prepare liposomes. <u>Coupling of Fab</u> fragments to liposomes (Fig. 7):

The liposomal preparation was diluted three times with 0.5% sodium bicarbonate solution so that the concentration

۵


of DPPC was about 4-12 µmol/ml. An equal volume of tab' fragments was then mixed under nitrogen in a sealed vial. The pH was adjusted to 8 with IN sodium hydroxide. The mixture was stirred magnetically under mitrogen at 25°C for 2 hours. Reaction mixture was then centrifuged at 16000 rpm (22000 x g) for 26 min. Supernatant was set aside. The pellet was washed with 0.5% sodium bicarbonate solution by centrifugation and then made up to the desired volume with 0.5% sodium bicarbonate solution. Fab' concentration in liposomes was determined by Lowry's protein estimation method. Insoluble lipid material was removed by centrifugation before measuring the absorption at 540 nm. Measurement of 2-Thiopyridinone (2°-TP), release:

An excess DTT dissolved in 0.5% MaHCO₃ solution (i.e. 4 drops of 40 mg/ml DTT solution) was added to a disperigion of DPPC-Chol-PDP-SA liposomes (4:5:1, 50 µl liposomes and 3 ml 0.5% NaHCO₃ solution) at time 0. Absorbance was measured at 343 nm in a dual beam recording spectrophotometer (PyeUnicam^b SP8-100 UV spectrophotometer). <u>Covalent coupling of IgG to liposomes by ECDI method</u> (Fig. 8):

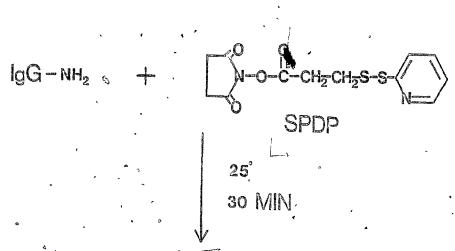
Preparation of liposomes:

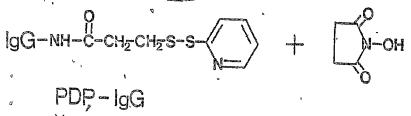
REV liposomes with the formula DPPC:CHOL:DPPE:0.4: 0.5:0.1 were prepared as described earlier. They contained DPPC 80 mg (109 µmol), cholesterol 52.5 mg (136 µmol).DPPE 18:9 mg (27 µmol) and 0.5% NaHCQ₃ (pH 8) solution 4.2 ml.

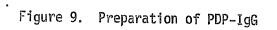
115 •

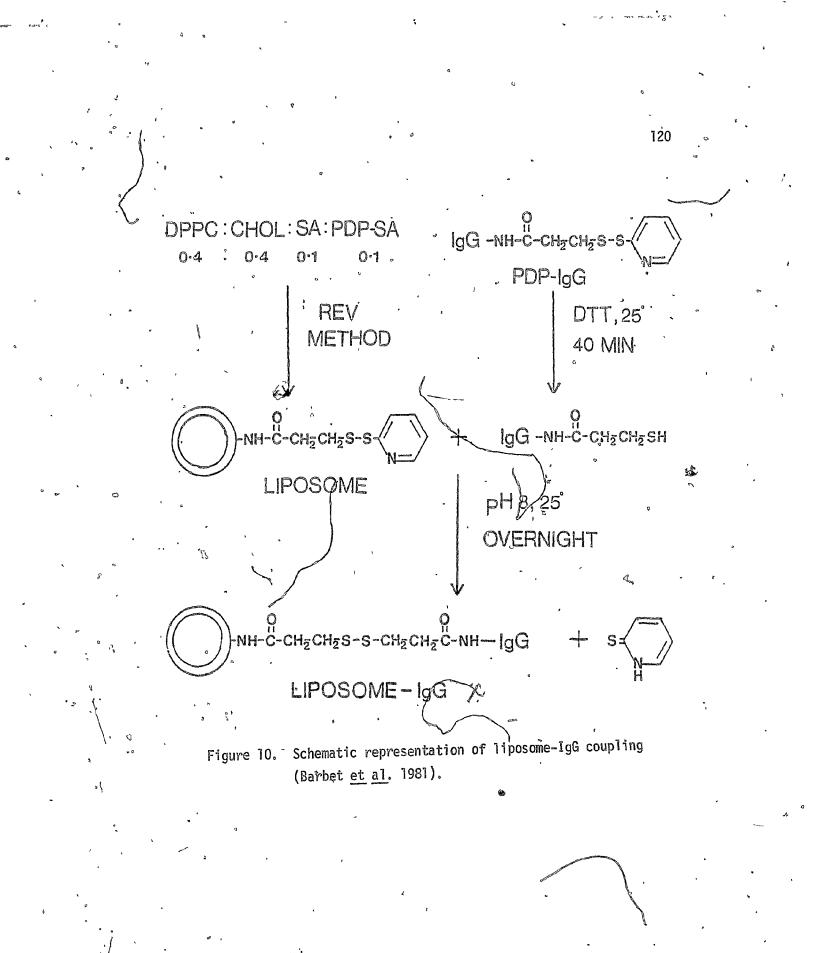
Coupling of IgG to liposomes:

The procedure described by Endoh et al. (1981) was. followed, A 20% solution (0.4 ml) (i.e. 80 mg) of 1-ethyl-3-(3-dimethylaminopropyl)carbodimide HCl was added to a mixture of liposomes (100 μ l) and normal rabbit IgG solution (4 ml). The pH of the reaction mixture was found to be approximately 7.5. After standing for 2 hours at 25⁰C the pH was adjusted to 4.1 with 0.3.N HCl. The mixture was layered over 7 ml of Ficoll-paque and centrifuged at 3500 rpm (750 x g) for 20 min at 21°C. The liposomes floating on top were carefully withdrawn using a pasteur pipette and resuspended in .5 ml of 0.5% sodium bicarbonate solution and washed three times by centrifugation. The pellet was diluted with 100 μ l of 0.5% sodium bicarbonate solution. IgG content of liposomes was, determined by modified Lowry's method of protein estimation ("Methods in Enzymology" vol. 72, pp 296-297).


The nonspecific binding of IgG to liposomes was determined by the same procedure but without using ECDI and Q.3 N HCI. <u>Covalent coupling of IgG to liposomes by Barbet et al.</u> (1981) method:


Preparation of liposomes:


Preparations containing large unilamellar and oligolamellar liposomes were obtained by the reverse phase evaporation method using DL-α-dipalmitoyl phosphatidyl


choline (DPPC), cholesterol, SA, and PDP-SA in a molar ratio of 4:4:1:1. Specifically, DPPC (80 mg, 109 µmol), oholesterol (42 mg, 109 µmol), SA (7.5 mg, 27.8 µmol) and PDP-SA (12.7 mg, 27.3 µmol) were dissolved in a mixture of chloroform (4.5 ml) and diethyl ether (8 ml). Next, 4.2 ml of 0.5% NaHCO₃ (pH 8) was added, after which, the lipid solution was sonicated at 0-5°C for 5 min in a bath-type sonicator. Organic solvents were removed from the resulting emulsion-like dispersion by a rotary vacuum evaporator. The aqueous dispersion was then shaken at 55°C for half an hour ta obtain liposomes.

Rabbit anti-BSA IgG was fraction ated with 33% saturated ammonium sulfate from immune sera. Pyridyl disulfide moieties were introduced into IgG, using the a_{a} heterobifunctional reagent SPDP by the method of Carlsson <u>et al</u>. (1978). Ten moles of SPDP was reacted with 1 mole of IgG in 0.1 M sodium phosphate buffer containing 0.15 M NaCl, pH 7.5, for 30 min. The reaction mixture was dialyzed extensively against the above buffer at 4°C in order to remove low molecular weight substances. The content of 2-pyridyl disulphide groups, as determined by the method of Carlsson <u>et al</u>. (1978), was 6-8.2 per mol of IgG. The modified IgG was stored at -20°C until needed. Covalent coupling of IgG to liposomes (Fig. 10):

0,

PDP-IgG was bound to liposomes by the method of Barbet et a%. (1981). PDP-IgG was reduced with dithiothroitol (D,TT) in O.1 M sodium acetate buffer containing 0.15 M NaCl, pH 4.5 for 40 min. Excess DTT and pyridine-2-thione were removed by gel filtration on Sephadex G-25 M column equilibrated with 0.5% NaHCO₃. Thiolated IgG (8-12.6 mg) and liposomes (26 µmol of phospholipid) were stirmed together overnight at room temperature and pH 8. Liposomes were separated from unbound antibody twice by centrifugation at 22000 x g for 25 min followed by washing of the pellet with 0.5% NaHCO₂. In order to determine non-specific adherence of antibodies to liposomes, 9 mg of PDP-IgG that had not been reduced by DTT was mixed with liposomes as above. The protein content of the liposome fraction was analysed by the method of Lowry et al. (1951). Determination of antibody activity Preparation of $\frac{125}{1}$ I-BSA:

G

Radioiodination of bovtne serum albumin (BSA) was done by the chloramine T technique (Hudson and Hay 1980, Chard J982). Iodination procedure was carried out in a fume hood taking necessary precautions. First the following solutions were prepared: BSA, 4 mg/ml in 0.1 M PBS pH 7.5, chloramine T, 1 mg/ml in 0.1 M PBS, sodium metabisulfite, 2 mg/ml in 0.1 M PBS. A prepacked Sephadex G-25 M PD-10 column was equilibrated with 0.01 M PBS containing 2 mg/ml of BSA. BSA 8 mg in 2 ml of 0.1 M PBS was placed in a small screw capped

glass vial and 2 mCi of Na¹²⁵I (vol. = 40 µl) was added. Iodination reaction was started by adding 120 µg of chloramine T. The reaction mixture was stirred magnetically, After 2 minutes, the reaction was stopped by adding sodium metabisulfite, 240 µg. After making up the volume to 2.5 ml with 0.1 M PBS, the whole sample was loaded on the Sephadex G-25 column and eluted with 0.01 M PBS containing BSA 2 mg/ml. The first 2.5 ml of eluate was discarded and the next 3.5 ml was collected and dialysed extensively against 0.01 M PBS. 125 I-BSA prepared had a specific activity of ~77.38 µCi/mg of BSA. Antibody activity before binding to liposomes:

The antigen-binding capacity of the anti-BSA IgG was determined using ¹²⁵I-BSA as antigen by a method based on Farr assay (Hudson and Hay 4980). An aliquot (5 µl or so) of stock ¹²⁵I-BSA was diluted with cold BSA solution (4 mg/ml in 0.1 M PBS) so that 400 µg of BSA (i.e. 100 µl) had an activity of ~50000 cpm. Varying amounts of anti-BSA IgG (from ~25 to ~250 µg) were placed in each of the plastic test tubes and total volume in each tube was made up to 40 µl with 0.1 M PBS. In order to determine non-specific adherence of BSA to the tubes, only 0.1 M PBS (40 µl) was added to two of the tubes. To each tube was then added 100 µl of ¹²⁵I-BSA (i.e. 400 µg and 50000 cpm) and the tubes were incubated at 37°C for 2 hr in a continuous shaker. This was followed by incubation in the refrigerator

 $(4^{\circ}C)$ for an additional 2 hrs with occasional shaking. Αt the end of the incubation period, 360 μ l of 0.1 M PBS and 500 μ l of saturated ammonium sulfate solution were added to each tube and mixed rapidly. After allowing the tubes to stand for 30 min, they were centrifuged at 7000 rpm for 20 Supernatant was discarded. Precipitate was washed min. twice with 50% saturated ammonium sulfate solution by centrifugatlon. After removing the final wash supernatant, 'the' precipitate was counted in a gamma counter. Τo determine non-specific binding of 125 I-BSA to normal rabbit IgG (NRG), the experiment was repeated for various concentrations of NRG similar to anti-BSA IgG. Amount of BSA bound to IgG was calculated and a calibration curve was plotted. The antigen binding capacity of anti-BSA IgG, before coupling to liposomes was determined from this calibration curve.

Antibody activity after binding to liposomes:

<u>.</u>

For determining the antigen-binding capacity of the IgG linked to liposomes, an aliquot of liposome-anti-BSA IgG containing 314 µg of IgG was incubated with an excess of ¹²⁵I-BSA(400 µg_y 55000 cpm) for 2 µr at 37°C with continuous shaking. This was followed by incubation at 4°C for an additional 2 hr. Liposome-antibody-antigen complex was then sedimented by centrifugation at 22000 x g for 30 min. The pellet was washed twice with 0.1 M PBS. The amount of BSA bound to liposomes was calculated by

determining the ¹²⁵I associated with the pellet. In control experiments the non-specific binding of ¹²⁵I-BSA to normal rabbit IgG-liposomes was determined. Values for specific binding to anti-BSA IgG were corrected by subtracting the amounts of radi

Leakage of drug during coupling procedure:

This was investigated by linking IgG to liposomes containing methotrexate in them. These liposomes were prepared similar to 'empty' liposomes by REV method as described already, except that a 20 mM solution of MTX in 0.5% NaHCO₃ was used for entrapment. Crude liposomes obtained were washed twice with 0.5% NaHCO₃ by centrifugation at 22000 x g for 25 min. The washed pellet, which consisted of MTX liposomes free from unentrapped MTX, was finally dispersed in a volume of 0.5% NaHCO₃. The leakage of entrapped MTX during antibody-liposome coupling was calculated as the difference between liposomal MTX content (determined spectrophotometrically at 303 nm in methanol) before and after attachment of thiolated normal rabbit IgG to the liposomes.

Studies of antibody mediated binding of positive MTX liposomes by melanoma cells:

Membrane Immunofluorescence assay of PDP-anti-melanoma globulin:

To see whether there was any change in the antibody

124

Q

titer on thiolation, membrane immunofluorescence was performed on viable M_{21} melanøma cells. A cell suspension containing 10⁷ cells/ml was (prepared in 0.01 M PBS using freshly harvested cells. A series of dilutions (2 mg, 200 µg; 10 \eth µg, 50 µg, 25 µg/ml) of thiolated and nonthiolated anti-melanoma globulin and normal rabbit globulin (negative control) were prepared in 0.01 M PBS containing . 0.1% BSA. Fifty μ l of cell suspension was placed in each of the several polypropylene micro test tubes of size 400 μ l. Diluted antibody sample, 50μ l, was added to each tube and mixed well." Tubes, were incubated at 4⁰C for 30 min. After the incubation was over, cells were washed three times with cold 0.01 M PBS by centrifugation in Beckman $^{
m R}$ 152 microNuge for 2 min. Goat anti-rabbit globulin (GARG) fluorescein isothiocyanate (FITC) conjugate (conc. 1:10), 20 μ 1 was added to the washed cells in each tube and reincubated at 4° for 30 min. Following this cells were again washed three times with 0.01M PBS by centrifugation as before. Cells were then suspended in a drop of glycerol (i.e. 90% glycerol in tris buffer). A droplet of the cell suspension was mounted on glassa slide for observation by fluorescence microscopy.

Preparation of ^{*3}H-MTX liposomes and antibody conjugation:

³H-MTX containing liposomes were prepared by REV method using the formulation DPPC:CHOL:SA:PDP-SA:0.4:0.4: 0.1:0.1. The solution used for entrapment Mad a MTX conc.

٢.

of 250 µg/ml. and a radioactivity of 6.736 µCi/ml. Antimelanoma globulin and NRG were conjugated to liposomes by Barbet <u>et al</u>. (1981) method. Final liposome preparation consisted of 58 µg/ml of MTX, 2 mg/ml of antibody and 1.545 µCi/ml of radioactivity. Antibody mediated binding of positive MTX liposomes by melanoma cells:

Antibody mediated binding of MTX liposomes by melanoma cells was assessed qualitatively and quantitatively by immunofluorescence and radiotracer method respectively. ' Immunofluorescence technique:

Membrane immunofluorescence staining technique used for assessing the titer of the antibody was adapted here. A series of dilutions (containing antibody conc. 2 mg, 200 µg, 100 µg, 50 µg, 25 µg/ml) of MTX. liposomes bearing anti-melanoma globulin, NRG or no antiBody were prepared in 0.01 M PBS containing 0.1% BSA. Melanoma cells were treated with these samples following by GARG-FITC conjugate and processed as described under membrane immunofluorescence a'ssay.

Radiotracer method:

Single cell suspension of melanoma M_{21} cells of concentration ~0.5 x 10⁶ cells/ml was prepared in RPMI 1640 medium containing 10% FBS and antibiotics. These cells were plated in tissue culture dishes (60 x 15 mm) at a concentration of ~3 x 10⁶ cells per dish and allowed to

126 "

grow in the incubator at 37°C. At 72 hr, floating cells in each dish were discarded and cells adhering to the dish were washed gently three times with 3 ml of cold 0.01 M PBS. Cells were then incubated with 50 μ l of ³H-MTX liposomes with or without conjugated antibody in 1.5 ml of RPMI 1640 medium containing no FBS, for various times at different temperatures. The final concentration of various components in the incubation mixture were as follows: MTX, 1.9-2.0 µg/ml (4.20-4.45μM); antibody, 54-69 μg/ml; radioactivity ~168860 dpm/l.5 ml. At the end of the incubation period, unbound liposomes were discarded by decantation and adhering cells were washed gently, five times with 2-3 ml of 0.01 M The cells were then detached with 1.5 ml of EDTA PBS. solution. Detached cells (1.5 ml) along with the EDTA washings of the plate (1.5 ml) were layered gently on 10 ml of 10% Ficol (with 5 mM EDTA) placed in a centrifuge tube. Tubes were centrifuged in IEC clinical centrifuge at maximum speed for 10 min. Cell pellet was washed with 6 ml of 0.01 M PBS by centrifugation for 10 min. Cell pellet was then dissolved in 1 ml of 0.5% buffered sodium dodecyl sulfate solution (see appendix). To determine the cell associated radioactivity, an aliquot (0.5 ml) was added to 15 ml of Biofluor^R and counted in the [°]liquid scintillation counter. Protein estimation was done by the method of Lowry et al. (1951) using 100 H aliquots of lysate.

11

In vitro studies against Caki cells:

Human renal carcinoma (Caki) cells were grown in 250 cm³ polystyrene flasks in McCoy's medium supplemented with', 15% fetal bovine serum and antibiotics (200 u penicillin, 200 μ g streptomycin per ml). Cells were harvested from log phase growth. Cells were suspended by a 3-5 min incubation with 0.25% trypsin in Ca- and Mg-free balanced salt solution (BSS) at 37⁰C, followed by gentle pipetting. Cell viability was monitored by trypan blue exclusion test. Approximately 10⁵ cells in 2 ml were seeded into each 35 mm plastic petri dish. After allowing the cells to grow for 24 hours, the medium was carefully removed. Two ml of fresh medium containing either liposome entrapped methotrexate. non-entrapped methotrexate or empty liposomes was added to each petri dish. In the first type of the cytostatic studies (i.e. in case of non-entrapped MTX and a control) these plates were allowed to incubate for 4 days at 37° in humidified atmosphere of 5% $CO_2/95\%$ air. On day 4, the final cell density in each of the petri plates was determined with a coulter counter. In the second type of cytostatic studies (i.e. the liposomal MTX, empty_liposomes and a control) the medium in the plates was removed. The new médium containing the drug was added to each petri dish. This procedure was repeated every 24 hours for 3 consecutive days. 24 hours after the last change of medium, the final cell density was determined. Percent inhibition

of growth was calculated by companying the growth of treated cells to that of the untreated cell population. Growth curve for Caki cells was determined by counting cell growth at different time intervals for up to 5 days. In vitro studies against EL_4 lymphoma cells:

129

٥°: ,

EL_A lymphoma (EL_A) cells were grown 🕫 200 cm³ glass bottles in RPMI 1640 medium (18 ml) supplemented with. 10% fetal bovine serum (FBS) and antibiotics (200 u penicillin, 200 µg streptómycin per ml). Cells were harvested from log phase growth (after approximately f days of growth). Cells were centrifuged at 1600 mpm (200 x g) for 6 min at 21^{0°}C to remove med⁴lum and then washed in PBS (50 ml) by centrifugation. After taking the initial count using hemocytometer, cell concent[®] ation was adjusted to 2 x 10⁶ cells/ml with the medium. This was used as stock cell suspension. Cell viability was checked by trypan blue exclusion test. Cell suspensions of desired strength were prepared from stock cell suspension. Two ml of cell suspension in the medium was placed in 35 mm petri dishes at two different initial cell densities of 5 x 10⁴ cells/ml and 1 x 10⁵ cells/ml. The petri plates weré incubated at 37° C in humidified atmosphere of 5% CO₂/95% air. Celt counts per plate was obtained using a coulter counter at settings of threshold 5, amplification 1 and aperture current 16. For counting, the cell suspension was diluted

to the 20 ml mark in the coulter cup. Counts were made of 3 or 4 replicate plates. Cells were counted every 24 hours up to 4 days. Growth curve was obtained by plotting the number of cells against time in hours. <u>Attempts to quantitate the number of cells in presence of</u>

Use of centrifugation to selectively settle cells:

Samples containing EL₄ cells and liposomes were centrifuged at 1600 rpm (200 x g) for 10 min at 21°C.
 Cell counts were made of the pellet and supernatant fractions using a coulter counter.
 Use of Fluorescence Activated Cell Sorter (FACS):

Samples containing cells and liposomes were treated . with acridine orange as in scheme I in order to stain the cells. Samples were then analysed using the cell sorter. Fluorescence distribution of cells and scatter distribution of liposome and/or cells were obtained. Use of Triton X-100, sodium dodecyl sulfate, methanol and ether:

 EL_4 cell suspension of strength approximately 100,000 cells/ml was prepared. Different dilutions (i.e. 1:50, 1:500, 1:5000) of neutral MTX liposomes in medium, were prepared as would be encountered in actual <u>in vitro</u> studies. To 1 ml of cell suspension 100 µl of liposomes were added and these samples were then incubated with different concentrations of triton-X-100, sodium

 dodecyl sulfate, methanol and ether for 30 minutes at room temperature. Counts were taken in the coulter counter before and after incubation with these/reagents. Cells alone and liposómes alone were also treated in the similar manner and counts taken.

Scheme I

132

Fluorescence staining of EL_4° cells using Acridine orange: \circ Prepare sample so that concentration is 1-2 x 10⁶ cell/ml

Take 0.2 ml of cells

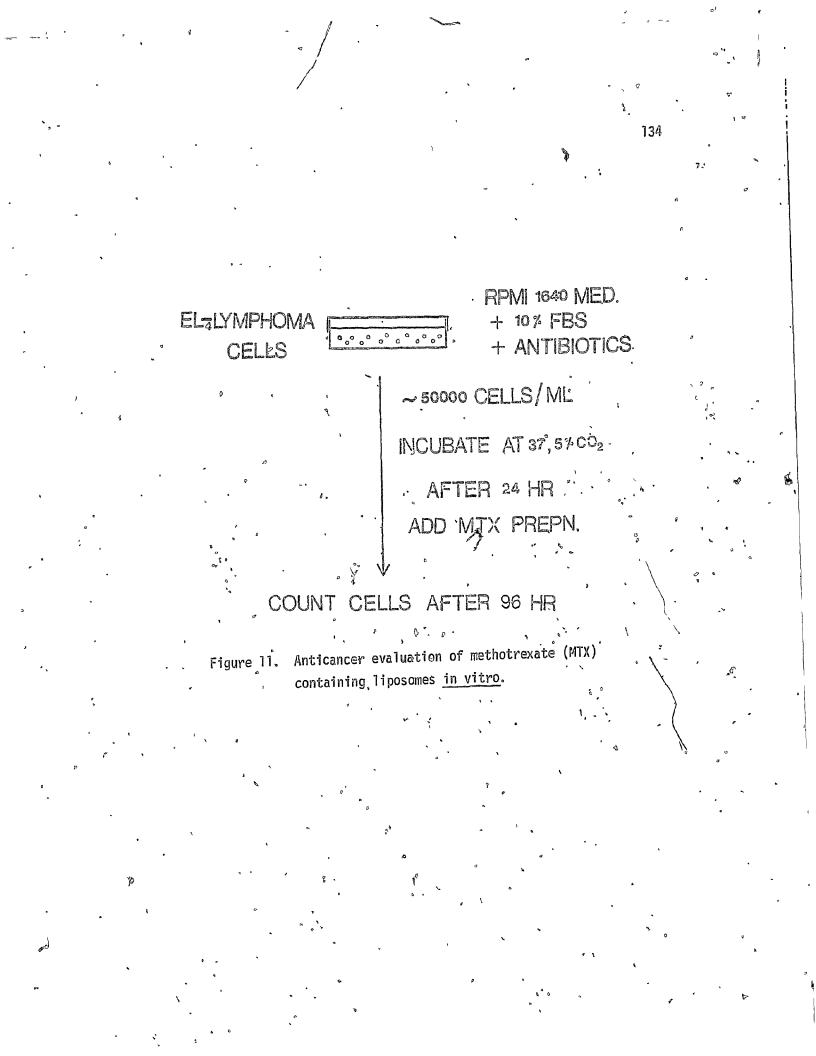
Add 0.5 ml of solution A.

Add 1.2 ml of Acridine orange in solution B* (Final concentration of Acridine orange with cell: 30 µg/ml).

Observe under the fluorescnece microscope or analyse in FACS

Solution A*: 0.01% triton-X-100 0.08 N HCL pH 2.2 0.15 N NaCl

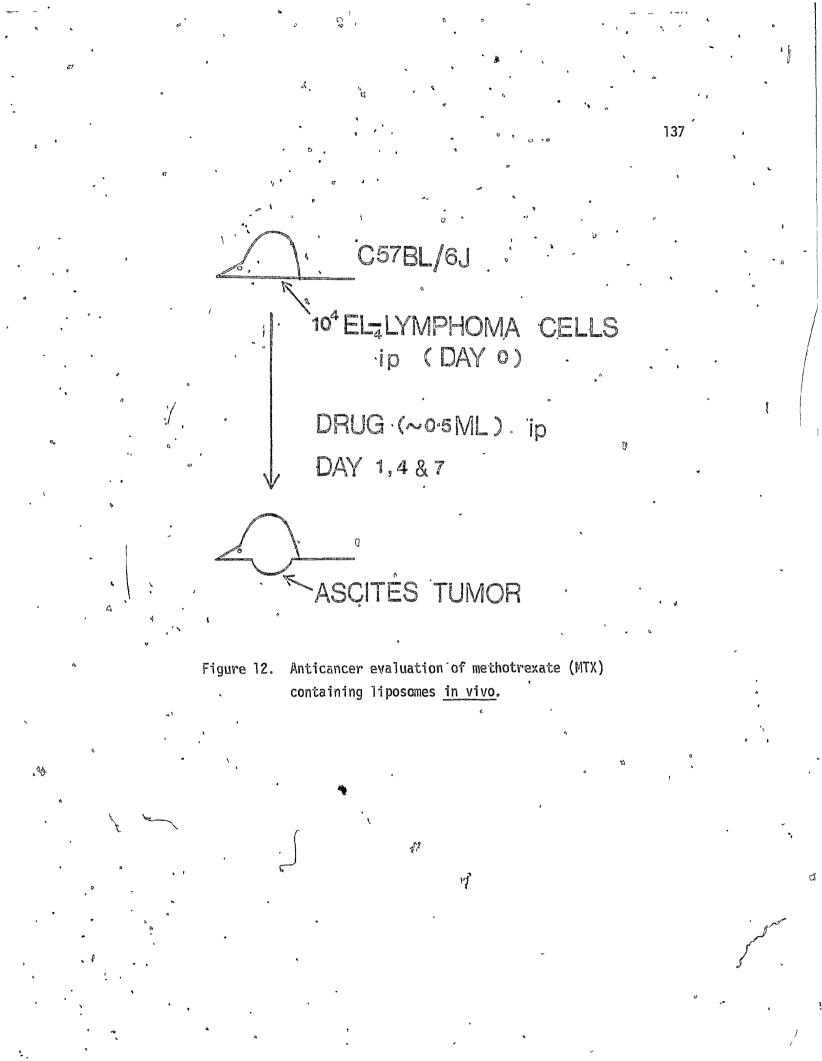
Solution B*: 63.5 ml of 0.2 M $Na_2 HPO_4$ 36.5 ml of 0.1 M citric acid pH 6.0 0.0372 g of sodium EDTA (1 mM)


*Acridine orange is made uply in distilled water at 1 mg/ml.

Effect of MTX liposomes against EL₄ cells in vitro: (Fig. 11)

EL₄ lymphoma cells were grown in RPMI 1640 medium with 10% FBS and antibiotics. Cells were harvested from log phase growth. For <u>in vitro</u> studies (cytostatic studies) cells were seeded by dilution into 35 mm culture plates, 2 ml/plate at approximately 50000 cells/ml and incubated at 37°C in humidified atmosphere of 5% CO₂/95% air. After 24 hours, cell counts were made of the number of cells per plate. Different dilutions of liposomes ('empty' or containing MTX) were made with medium and added to each plate and incubated as above. Three days later plates from culture were counted. In case of liposome treated samples, counts were made before and after treatment with . triton-X-100. Each count consisted of at least three replicates. Growth inhibition was calculated by comparing the growth in treated samples to that of control.

<u>In vitro studieś against human melanoma M₂₁ cells:</u> Growth curve for human melanoma cells:


Melanoma (M₂₁) cells were grówn in 200 cc prescription bottles as monolayer cultures in RPMI 1640 medium (18 ml) supplemented with 10% FBS and antibiotics. Cells were harvested from log phase growth (i.e. after about 4 days of growth). Cells were suspended by a 5-8 min incubation with ~5 ml of EDTA solution (see appendix 1) at 37°C, following by gentle tapping of the bottle. The EDTA

action was stopped by adding some spent medium (5 ml) and/or by dilution with 0.01 M PBS to a volume of 50 ml. Cells were pelleted and then washed with 50 ml of 0.01 M PBS by centrifugation. Cells were then suspended in the culture medium at a concentration of about 2×10^6 cells/ml.to obtain a stock suspension. The viability of the cells was checked by trypan blue exclusion test. An aliquot of stock, cell suspension was suitably diluted to obtain a cell suspension of strength 50000 cell's/ml. Two ml of cell suspension (i.e. 100,000 cells) was plated in 35 x 10 mm tissue culture dish and cells were allowed to grow at 37° C. At the end of incubation, floating cells in the dish were diggarded by decantation. Cells sticking to the surface of the dish were released by incubation with EDTA solution (1 ml) at 37° C and counted in the coulter counter.' Cells were counted every 24 hr up to 5 days. The growth curve was constructed by plotting the number of cells. against time of growth in hr.

Effect of MTX liposomes on human melanoma cells <u>in vitro</u>: To see the effect of MTX liposomes on the growth of melanoma cells, 100,000 cells, i.e. 2 ml in each tissue culture dish were incubated at 37°C. At 24 hr, drug preparations (vol. 100 µl) were added to each dish at different concentrations and the incubation was continued. At 96 hr, incubation was stopped and the floating cells and liposomes in each plate were discarded by decantation. Cells adheming to the dish were released by EDTA treatment and counted in the coulter counter. The inhibition of growth was calculated by comparing the cell growth in drug treated plate to that in untreated plate.

__EL_ ascites tumor inhibikjon was tested in 12-17 weeks old, female C 57 BL/6J mice weighing about 20 g or more. Each mouse was inoculated (day 0) with 1 x 10^4 , EL, lymphoma cells washed twice in PBS after aspiration from the peritoheal cavity of mouse bearing a_7 day old tumor (passaged by weekly i.p. injections of $1 \times 10^{\prime}$ cells). On days l_{0} 4 and 7 the various groups of mice were given I.P. injections of approximately 0.5 ml of MTX alone, 'empty' liposomes alone, physical mixture of MIX and 'empty' liposomes, or MTX liposomes. Each mouse was weighed on the days of injection; the doses of drugs were calculated on a body weight basis and the survival time was noted. Weights of mice were recorded twice weekly for 50 days and once weekly later on. During treatment mice were maintained on alkaline water to avoid possible renal toxicity. Whenever there was doubt as to the cause of death being tumor or not, a gross autopsy was done and tissue's (liver, spleen, kidney, lung, femur, heart and thymus) were fixed in 10% buffered formalin phosphate ('neutral') and sent for processing and aining with hematoxylin and eosin for examination by light microscopy.

SECTION 2: SUV LIPOSOMES

Preparation of positively charged SUV liposomes

containing MTX:

Small unilamellar liposomes with a positive surface charge were prepared using the lipid formula: DPPC:CHOL:SA, (0.5:0.4:0.1). 'First, the MLVs were prepared as follows. DPPC 40 mg, CHOL 16.85 mg and SA 2.94 mg were dissolved in chloroform-methanol (2:1) and solvents were evaporated, in a pear shaped flask, using a rotary vacuum evaporator to obtain a thin film. The film was then dispersed with 10 ml of 3 H-MTX'soʻlution (10 μ Ci) by sh'aking in a water bath at 50-55⁰C for 30_mmin. The resulting MLVs were sonicated in '5 ml portions in a test tube (16 x 100 mm). The sonication was carriéd out using a probe-type sonicator (sonic dismembrator) at a setting for 60 in pulses lasting 20 sec in 40 sec periods for 30 min. The large liposomes and probe fragments were removed by centrifugation at 22,000 x g for 20 min. Only the upper 4 ml of the total 5 ml suspension was collected. * The unencapsulated MTX was removed by exhaustive dialysis against 0.5% NaHCO3.

<u>Gel filtřation chromatography to separate unencapsulated</u>

The gel filtration chromatography through Sephadex G-25 prepacked column was tried for the separation of liposomes from unentrapped MTX. Prior to the chromatography, 2.5 ml of empty SUV were passed through the column to avoid any nonspecific adsorption (Machy and Leserman 1983). A 1 ml sample of the liposome preparation was loaded on the column and eluted with 0.5% NaHCO₃. Fractions of 1 ml size were collected. An aliquot of each fraction was counted in Biofluor^R for ³H-radioactivity. The fractions containing liposomes were pooled.

These liposomes as well as liposomes purified by dialysis were rechromatographed to determine the extent of contamination by free drug in each sample. Covalent coupling of IgG to liposomes:

Liposomes:

For coupling antibodies, SUV liposomes were prepared with PDP-SA using the formula: DPPC: CHOL: SA: PDP-SA: 0.5: 0.3: 0.1: 0.1.

Coupling reaction:

PDP-IgG was prepared as described earlier. PDP-IgG was linked to SUV liposomes by the method of Barbet <u>et</u> <u>al</u>. (1981) essentially similar to the method described for REV liposomes. However, initially different quantities of antibody and lipid were tried for the reaction. The thiolated IgG and SUV were stirred together overnight at 'room temperature and pH 8.

Separation of antibody coated SUV from unbound antibody: Attempts using Sephacryl S-400 and Sepharose 4B gels:

Sephacryl S-400 superfine (l.3 x 17.5 cm, Bed volume = 14.2 ml) and Sepharose 4B (l.3 x 17 cm, Bed volume = 13,9

ml) columns were packed. ³H-MTX SUV, IgG and reaction mixture of SUV and thiolated IgG were gel filtered through these columns to see whether antibody coated liposomes could be separated from unbound antibody. Prior to the chromatography, 2 ml of empty SUV and 2 ml of fetal calf serum were passed through the column to avoid nonspecific adsorption during chromatography. In each case volume of the loaded sample was 0.5 ml. IgG fractions were followed by OD₂₈₀... Liposome fractions were monitored by determining the ³H-radioactivity in the sample aliquots. Ficoll-floatation centrifugation:

This technique as described by Shen et al. (1982) was used to separate the antibody coated liposomes from unbound antibody. Two ml of the liposome antibody reaction mixture was mixed with 2 ml of Ficoll solution (25% in 0.5% NaHCO₃) in a transparent 13.5 ml cellulose.nitrate tube (16 x 76 mm). Four ml of 10% Ficoll in 0.5%/NaHCO2 was then overlaid, followed by 1.ml of 0.5% NaHCO2. The tube was centrifuged at 3000 rpm for 30 min in an IEC low speed centrifuge. The liposomes floated to the interphase between 0.5% NaHCO2 and 10% Ficoll or between 10% Ficoll and 12.5% Ficoll depending on the amount of protein associated. The liposome band was collected by puncturing the tube. Protein concentration in liposomes was estimated by BioRad method which is based on dye binding (Bradford 1976). Lowry et

al. (1951) method could not be used because of the interference by Ficoll. Liposome binding studies with human melanoma cells:

Preparation of antibody linked liposomes:

1.

³H-MTX SUV were prepared by sonication as described earlier using DPPC 80 mg, CHOL 25.3 mg, SA 5.87 mg and PDP-SA 10.15 mg. Twenty ml of ³H-MTX solution (200 PCi) was used for encapsulation. The unentrapped MTX was removed by exhaustive dialysis.

The 3 H-MTX SUV obtained as above were reacted with thiolated antibody (.~10 mg antibody for 2 ml SUV), in a volume ratio of 2:1, overnight. The antibody coated liposomes were separated from unbound antibody by Ficoll floatation centrifugation. The protein concentration and 3 H-radioactivity were determined. The liposome preparation used in the binding study comprised 0.45 µCi/ml of 3 H-radioactivity and 1.75-3.7 mg/ml of protein. The concentration of MTX in these liposomes was negligible. Binding studies:

These studies were carried out similar to those described for REV liposomes. Melanoma cells were incubated with 50 µl of antibody coated or plain 3 H-MTX SUV at 37° C for 2 hr. At the end of the incubation period, cells were separated by centrifugation using 10% Ficoll (with 5 mM EDTA) in 0.01 M PBS. The washed cell pellet was solubilised in 1 ml of 0.5% buffered SDS solution. To determine the

cell associated radioactivity an aliquot (0.5 ml) was added to 10 ml of Biofluor^R and counted in a liquid scintillation counter. The protein concentration was determined by the method of Lowry <u>et al</u>. (1951) using 100 μ aliquots of lysate.

142

÷.

RESULTS AND DISCUSSION

.

• • • •

• • • •

, ,

RESULTS AND DISCUSSION STUDIES WITH TRIAMCINOLONE ACETONIDE

144

Attempts to improve liposomal encapsulation of TRMA

The problem that most of the TRMA was not getting encapsulated was realized when a systematic study of TRMA liposomal preparations was undertaken. Results are shown in Table 5. The lack of liposomal encapsulation of TRMA can be assessed by determining the nature and the amount of crystals in the liposomal preparation. The presence of aradioactivity in the non-liposomal fraction and the presence of a considerable amount of crystals in a liposomal preparation was an indication of poor encapsulation of TRMA since most of the crystals are too large to be within the lipid vesicles.

The percent radioactivity found in the supernatant after filtration (through polycarbonate filter 8 m or 12 m) and centrifugation (at 22000 x g) also indicates the amount of TRMA which is not associated with liposomes. The higher the percentage of radioactivity remaining on the filter and present in the supernatant the lower the amount γ of TRMA encapsulated in the liposomes. The filtration \sim should remove all crystals, the centrifugation separates the liposomal fraction from any drug in solution.

Met	hod and/or Formulation ^a	Observation	Comments ,
1.	DPPC: CHOL: SA 1 1 0.2	liposomes, no crystals	Hence the crystals seen in TRMA liposomes are not due to, these ingredients
2.	DPPC: CHOL: TRMA . 1 0.7 0.3	liposomes and considerable - amount of crystals	All the TRMA is not going into the liposomes.
3.	DPPC: CHOL: TRMA: SA 0.7 0.5 0.5 0.4	iposomes and considerable amount of crystals	All the TRMA is not going into the liposomes.
4.	DPPC: CHOL: TRMA: SA 1 0.5 0.5 0.2	liposomes and considerable _ amount of crystals	All the TRMA is not going into the liposomes.
	After filtration of liposomal preparation through 12 山田 polycarbonate ff的ter	iposomes and very few crystals, loss of radioactivity of about 74% (of radioactivity before filtration)	Filtration through 12 µm poly- carbonate filter removes majority of the crystals.
		· · · · · ·	Loss of radioactivity could be due to the retention of TRMA crystals by the filter and some liposomes adsorbed to the filter
	After filtration through sintered glass filter. (medium pore size)	liposomes, hardly any crystals loss of radioactivity 66%	Filtration through sintered glass filter (M) effectively removes all the crystals, but there is also a possibility of more loss of liposome
	•	æ	1 9

£

Table 5Results of the study of different methods and/or formulationsof liposomal preparation with TRMA

a: Unless otherwise mentioned the method of preparation of liposomes is Mechanical shaking with 8 mM aqueous CaCl₂ solution after rotary vacuum evaporation.

Strength is approximately 0.1% w/v TRMA.

N I	• , .	,		a de la constante de
	. ° 0	, ,	· · ·	• • •
· · ·		· · · · · · · · · · · · · · · · · · ·	- -	•
e -			· ·	, <u>`</u>
· .	Method and/or Formulation ^a	Table 5 (continued) - Observation	Comments	
- .	5. DPPC: CHOL: TRMA: SA 1 0.5 0.5 0.2	liposomes and considerable amount of crystals	1	-
1	Swelling liquid: 8 mM CaCl, solution containing 5-10% ∛/v alcohol		·	
·	After storing the preparation at room temperature for about 24 hours	crystals seem to attain bigger size		
- 	and then filtered through 12 µm polycarbonate filter	no crystals in filtrate, but 40-70% loss of radioactivity	Use of 8 mM CaCl, containing 5-10% v/v alcohol helps to remove all the crystals when filtered through 12 µm polycarbonate filter because of bigger size of crystals	, ^ • •
~	centrifugation of filtrate at 16000 rpm (22,000 x g)	60-90% of radioactivity (of filtrate) is in the supernatant	Possibly due to submicroscopic liposomes and/or free dissolved . TRMA	<i>,</i>
· · ·	6. DPPC: CHOL: TRMA: SA 4 2 0.5 0.6	liposomes and considerable amount of crystals	Increasing the lipid content as much as 4 times also did not prevent the presence of crystals	• •
	7. DPPC: CHOL: TRMA 5.9 5.9 0.5	bigger liposomes and considerable amount of crystals	Reverse phase evaporation which gives large liposomes, which are used for encapsulating particulate matter like chromosomes, and viruses, did not eliminate crystals	•
*		· · ·		- 4
		· .	146	
	•	- *	, , ,	
	· · · · ·	•	*	۲ ب دع

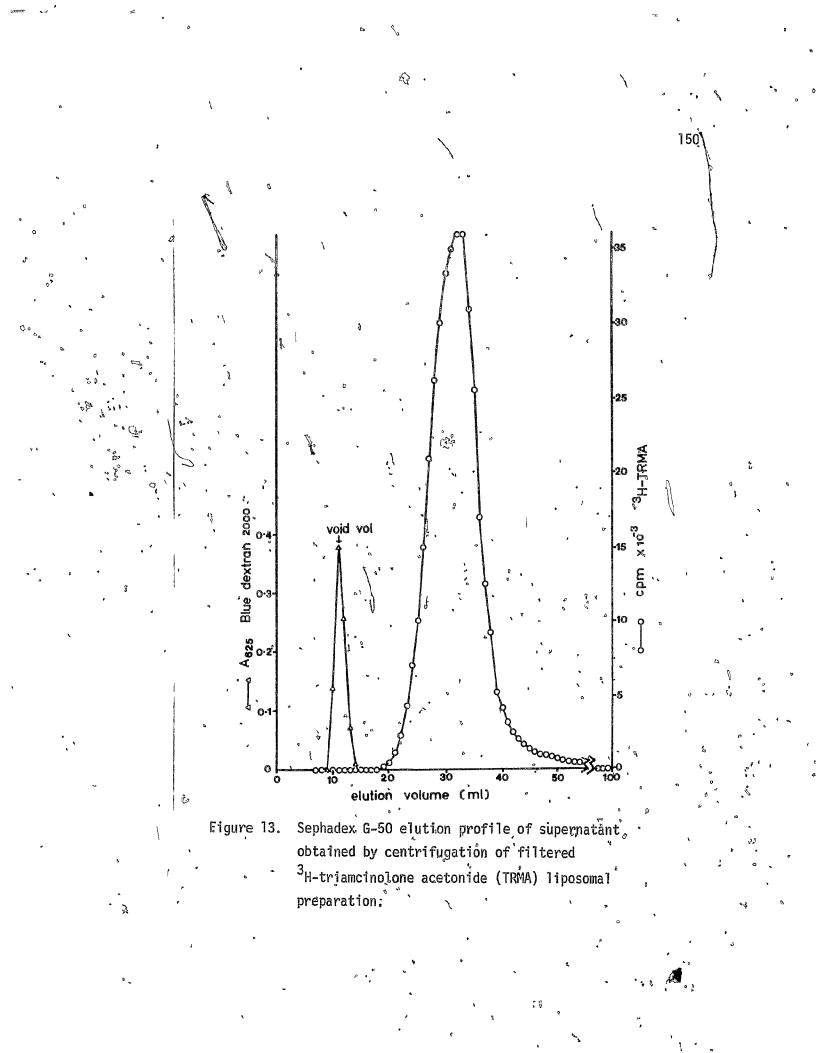
First it was thought that the poor encapsulation observed was due to improper film thickness, shaking, temperature of preparation or other technical variations. Having varied and controlled each factor it was found that these factors, although important in the preparation of the liposomes, were not the causes for poor encapsulation of TRMA. Optimizing all factors related to the method of preparation or to lipid composition it was found that only a small amount of TRMA could be encapsulated (Table 5).

147

Injecting an ethanolic solution of lipidss into a large quantity of water is a reported method of preparing liposomes (Kremer <u>et al</u>. 1977). Final concentration of alcohol in such a liposomal preparation was 5-10% v/v. This concentration of alcohol was tolerated or was removed by dialysis. An idea was conceived that this concentration of alcohol, if present in our TRMA liposomal preparation, may reduce crystal formation and hence the filtration step could be avoided. Hence, a 8 mM CaCl₂ solution containing 5-10% v/v alcohol was used as swelling liquid. Contrary to our assumption, crystals were still observed and they were much bigger compared to those obtained with the aqueous CaCl₂ method (Table 5). This indicated that a bigger pore sizepolyčarbonate filter could be used to remove all crystals and thus provide a more complete separation of crystals and lipid vesicles. The loss of liposomes due to filtration which may occur with polycarbonate filters of lower pore size, is also reduced.

The next approach was to alter the lipid to drug ratio. It was anticipated that by increasing the phospholipid quantity a higher encapsulation of TRMA would be possible. Even a four-fold increase in phospholipid quantity failed to prevent the presence of crystals in the liposomal preparation (Table 5).

It has been reported that even particulate material like chromosomes, viruses, etc. can be encapsulated in liposomes. For encapsulation of that type, a technique called "reverse phase evaporation" has been successfully used (Szoka and Papahadjopoulos 1978). The salient feature of this technique is that it produces large uni- to oligo-lamellar liposomes with high capture volume. They are big enough to encapsulate particulate matter like the ones mentioned above. It was thought that it would be possible to improve the encapsulation of TRMA if the very fine microcrystals of TRMA could be encapsulated in these big liposomes. The reverse phase evaporation technique was, therefore, tried. Unfortunately, this technique did not prove any better than those discussed earlier.


Based on the results of all these experiments listed in Table 5, it.could be concluded that the TRMA, as such, can be encapsulated into liposomes only to a very limited degree.

Gel filtration chromatography and dialysis of the supernatant

Filtration of the TRMA liposomal preparation through 8 or 12 µm polycarbonate filter removes the crystals. Subsequent centrifugation at 22000 x g pellets the liposomes. Up to about 85% of the radioactivity of the filtered liposomal preparation was found in the supernatant. This could be due to TRMA in solution or to submicroscopic liposomes containing TRMA, which are not sedimentable at 22000 x g. Ultracentrifugation for one hr at 100,000 x g also gave similar results. Gel filtration chromatography and dialysis were done to determine which possibility was correct.

Gel filtration chromatography using Sephadex G-50 has been used to separate liposomes from the free unencapsulated drug (Arakawa <u>et al</u>. 1975). Dialysis techniques have also been used for the same purpose (Parker <u>et al</u>. 1981). 'In the former technique, liposome associated drug will emerge in void volume while free drug remains in the retarded volume (Fig. 13).

After overnight dialysis of the supernatant the initial radioactivity was greatly reduced. The dialysate

and dialysing medium had approximately the same radioactivity per unit volume. Had there been liposomes containing TRMA in the supernatant, this equality would not be expected to be reached so easily.

The results of both these studies (i.e. gel filtration and dialysis) indicate the absence of liposome encapsulated TRMA in the supernatant. Hence the radioactivity in the supernatant can only be accounted for by the free solubilized drug.

Attempts to concentrate the liposomal preparation

The liposomal preparation referred to here, is the one obtained after filtration through 8 or 12 µm polycarbonate filter. As there was significant loss of drug in the supernatant by centrifugation, other methods, namely rotary vacuum evaporation and filtration through 0.45 µm filter were tried in order to concentrate the liposomal

Filtration

Filtration of the liposomal preparation through a filter of 0.45 µm pore size would not allow Riposomes larger than l µm² to pass through. Only the solvent and mainly the solubilized drug would pass through.

The radioactivity of the liposomal preparation collected from above the filter was almost the same before and after concentration to half the original volume. This

151

implies that this preparation cannot be concentrated any further by this method and possibly by ultrafiltration also.

The liposomal preparation could be reduced to one-third the original volume by evaporation. Radioactivity per unit volume was three times higher than the initial value. However, the preparation which had no crystals before now contained crystals. It is probable that some of the TRMA which was in solution crystallized out because of the removal of the solvent.

Hence, these methods and also centrifugation rule out the possibility of increasing the concentration of the liposomal preparation any further.

Synthesis of TRMA-21-palmitate

One of the reasons to prepare and utilize TRMA-21-palmitate was to test the hypothesis that encapsulation efficiency can be improved by chemical modification of the drug and that the reason for the low degree of encapsulation of TRMA is due to its structure rather than inappropriate preparation techniques.

The idea for the chemical modification of TRMA to TRMA-21-palmitate was derived from a publication by Shaw et al. (1976). They had failed in their attempt to prepare a stable liposomal preparation containing the steroid, cortisol (Hydrocortisone). Chemical modification of cortisol to 21-octanoate or to 21-palmitate markedly

increased the liposomal retention of this steroid; 21-palmitate had the maximum retention. A hydrophobic "anchor" like palmitate or stearate on cortisol interacts with the lipid Bilayer of the liposome and keeps the "head group" of cortisol attached to liposomes. Lack of a sufficiently long, linear hydrophobic "anchor" leads to lack of retention of that compound by the liposomes. Interaction of palmitate of cortisol-21-palmitate with the lipid bilayer was later confirmed by Fildes and Oliver (1978).

Synthesis of drug-phosphatidate compound or drug-lecithin compound (Page Thomas and Phillips 1979) is another approach used for incorporation of drug into liposomes.

It is possible that TRMA behaves similarly to cortisol, both being steroids, with respect to liposomal retention. Conversion of TRMA to TRMA-21-palmitate may induce a similar behavioral change in TRMA. Hence, it was decided to synthesize TRMA-21-palmitate, as this compound was not available commercially.

The possibility of loss of pharmacological activity on chemical modification has mot been overlooked here. Cortisol palmitate had improved antiinflammatory activity compared to the absence of such an activity with cortisol acetate. Moreover, cortisol-21-palmitate was resistant to C-21 ester hydrolysis unlike smaller esters like cortisol octanoate (Shaw et al. 1978). Similar properties may be

0

expected of TRMA-21-palmitate. Furthermore, certain C-21 esters of TRMA have shown superior antiinflammatory effect for topical use compared to TRMA (Diamanti and Bianchi 1971).

The method of Shaw, Knight and Dingle (1976) was used in the first attempt to synthesize TRMA-21-palmitate. It was soon determined, by TLC techniques, that the synthesis was possible. The crude product (product I) obtained by this method was purified by column chromatography using chloroform:methanol (99:1) as eluant. The product (product II) obtained was expected to be TRMA-21-palmitate. Surprisingly, it had a wide melting point range, from 60 to 86°C. Palmitic acid has a melting point of 60-63°C. This led to the suspicion that the supposedly pure product was not pure but might have been contaminated with palmitic acid. The necessity arose to find out whether product II contained palmitic acid or not.

Using silica gel TLC sheet containing a fluorescent indicator, TRMA and TRMA-21-palmitate could be detected under ultraviolet light. This method could not be used for palmitic acid. After trying different reagents, chromic acid-sulfuric acid was chosen as the detecting reagent for all three. These compounds appear as dark spots on spraying the silica gel TLC plate with chromic acid-sulfuric acid and heating at 150°C for half an hour in an oven. Using the chromic and sulfuric acid mixture as the detecting reagent

154 .

and the suitable solvent system, it was possible to identify palmitic acid in mproduct II.

Then another TLC procedure followed by column chromatographic procedure was developed for the separation of TRMA-21-palmitate from TRMA and palmitic acid. All three components had different R_f values of not more than 0.47 in the solvent system toluene:ethyl acetate:glacial acetic acid (90:10:1) (Table 6). Hence, this system was chosen for column chromatography.

Percent yield of TRMA-21-palmitate

The method developed by Shaw, Knight and Dingle gave a poor conversion as shown by specific activity. Percent recovery was very low, only 10.6% (Table 7). This could be loss due to manipulation.

Other reaction conditions were tried to improve the conversion and/or recovered yield. It was found that the Diamanti and Bianchi's method using N,N-dimethylformamide⁹ gave a much better yield (see Table 7) compared to other methods. This method was used for further synthesis of TRMA-21-palmitate, both labelled and unlabelled. Preparation and evaluation of TRMA-21-palmitate liposomes:

Results of these studies are summarized in Table 8. These results indicate considerable improvement in liposomal encapsulation of triamcinolone acetonide as a result of palmitoylation. In the case of the triamcinolone acetonide liposomal preparation the first major loss occured after filtration through a 12 μ m polycarbonate filter. This

Solvent system TRMA TRMA-21- palmitate Palmitic acid 1. Chloroform: Methanol 95 0.55 0.87 Not possible to separa from TRMA-21-palmitate 2. Chloroform: Methanol 99 0.05 0.54 Not possible to separa from TRMA-21-palmitate 3. Chloroform 0.00 0.19 Not possible to separa from TRMA-21-palmitate 4. Benzene: Dioxane: Glacial 90 N.D. 0.71 0.83 90 25 Acetic Acid 0.009 0.21 0.47 Acetic Acid 0 0.019 0.47				٩	R	, value
95 5 Chloroform: Methanol 0.05 0.54 99 1 Chloroform Methanol 0.00 0.54 Chloroform 0.00 0.19 Not possible to separa from TRMA-21-palmitate N.D. 0.71 0.83 90 25 Acetic Acid 1 S. Toluene: Ethylacetate: Glacial 0.009 Acetic Acid 0 0.21 0.47		Solven	-	TRMA	TRMA-21-	Palmitic acid
 2. Chloroform: Methanol 0.05 0.54 Not possible to separa from TRMA-21-palmitate 3. Chloroform 0.00 0.19 Not possible to separa from TRMA-21-palmitate 4. Benzene: Dioxane: Glacial N.D. 0.71 0.83 90 25 Acetic Acid 1 5. Toluene: Ethylacetate: Glacial 0.009 0.21 0.47 Acetic Acid 1 	٦.			0.55	0.87	Not possible to separate from TRMA-21-palmitate
4. Benzene: Dioxane: Glacial N.D. 0.71 90 25 Acetic Acid 5. Toluene: Ethylacetate:Glacial 0.009 0.21 Acetic Acid 0.47 0.47	2.		m: Methanol	. 0.05	0.54	
 4. Benzene: Dioxane: Glacial N.D. 0.71 0.83 90 25 Acetic Acid 5. Toluene: Ethylacetate:Glacial 0.009 0.21 0.47 Acetic Acid 			ກ	0.00	.0.19	Not possible to separate from TRMA-21-palmitate
Acetic Acid Acid	4.	Benzene: 90	25 Acetic Acid		0.71	0.83
	5.	Toluene:			0.21	, 0.47
	, E	» 90	Aci 10 1	d :	â -	•

<u>Table 6</u> Development of TLC procedure to separate TRMA, TRMA-21-palmitate and palmitic acid

N.D.: not done.

<u>,</u> ``

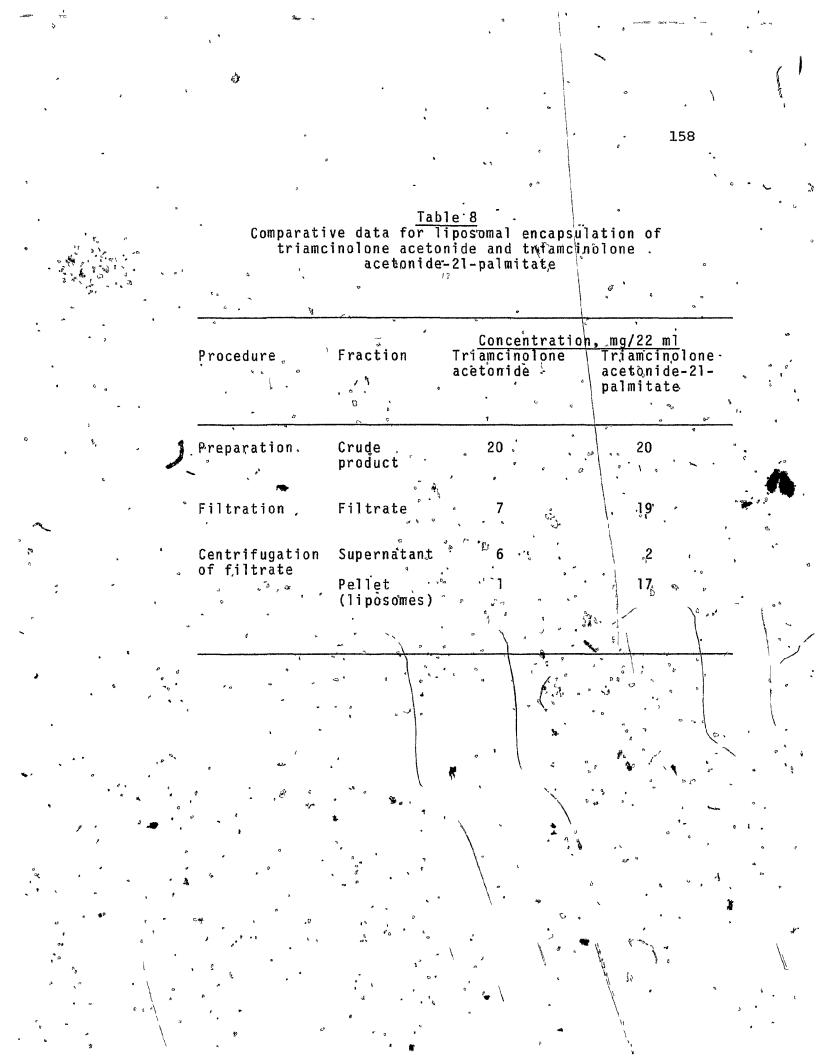
٥

156

THE .

ð

D


solvent: pyridine: base: Pyridine. 10.6 ^b solvent: chloroform: base: 15.6 solvent: dimethylformamide: base: 70:0 pyridine 70:0 it is possible that these values do not represent the percent conversion. Percent conversion may be same or higher as found with method 1. Percent conversion calculated on basis of radioactivity was 37.7.	•	Method	Percent Recovery det
triethylamine solvent: dimethylformamide: base: 70:0 pyridine it is possible that these values do not represent the percent conversion. Percent conversion may be same or higher as found with method 1. Percent conversion calculated on basis of radioactivity was 37.7.	solvent:	pyridine: base: Pyridin	e. 10.6 ^b
pyridine it is possible that these values do not represent the percent conversion. Percent conversion may be same or higher as found with method 1. Percent conversion calculated on basis of radioactivity was 37.7.			15.6 🖘
it is possible that these values do not represent the percent conversion. Percent conversion may be same or higher as found with method 1. Percent conversion calculated on basis of radioactivity was 37.7.	solvent: pyridine	dimethylformamide: base	: 70:0
percent conversion. Percent conversion may be same or higher as found with method 1. Percent conversion calculated on basis of radioactivity was 37.7.	o	· · · · ·	· · · · · · · · · · · · · · · · · · ·
	percent c higher as Percent c	onversion. Percent conv found with method l. onversion calculated on	
	percent c higher as Percent c	onversion. Percent conv found with method l. onversion calculated on	basis of radioactivity
	percent c higher as Percent c	onversion. Percent conv found with method l. onversion calculated on	basis of radioactivity
• • • •	percent c higher as Percent c	onversion. Percent conv found with method l. onversion calculated on	basis of radioactivity
	percent c higher as Percent c was 37.7.	onversion. Percent conv found with method l. onversion calculated on	basis of radioactivity

157

C,

ψ

Ċ,

filtration step is necessary with the liposomal encapsulation of a lipophilic drug. Since the drug is insoluble or very slightly soluble in the aqueous medium, igwedge only that portion is encapsulated that is in solution, or in . a molecular state, intimately associated with the lipid -bilayers; the remaining portion is in solid form (crystals) which, although it is probably unencapsulated, would be present in the liposomal fraction after centrifugation. The loss of 13 mg (i.e. 65%) triamcinolone acetonide by the filtration process was due mainly to unencapsulated crystals observed in the "crude" preparation. Such crystals were absent in the filtrate. No crystals were seen even in the unfiltered triamcinolone acetonide-21-palmitate liposomal fraction; consequently only 1 mg (i.e. 5%) was lost by filtration. This suggests that the palmitate form has a stronger association with the lipid layers and almostcomplete encapsulation is achieved.

The second major loss in the case of triamcinolone acetonide liposomes was in the supernatant after centrifugation of the filtrate. This is due mainly to the drug in solution but not associated with liposomes. Evidence for this was demonstrated by gel filtration chromatography (Fig 13). Thus the overall encapsulation of triamcinolone acetonide, determined in the final purified liposomal fraction, was only 5% while that of its palmitate derivative could be close to almost 100%, if one considers

the unavoidable loss due to the filtration and centrifugation procedures (i.e. adsorption to the filter and glassware). Another minor but inherent loss of liposomes could be due to the presence of small (<0.5 µm) liposomes which are not completely sedimented by the centrifugation force. However, for comparison purposes, both preparations were analysed by the same procedures, and consequently the same considerations should be applied.

1.2

A possible reason for increased encapsulation of the palmitate derivative could be the change in the partition coefficient/from a nonfavourable one to a favourable one. For lipid soluble compounds a logarithmic partition coefficient (log P) between 1.7 and 4 is unfavourable for liposomal encapsulation (Defrise-Quertain <u>et al.</u> 1980). Triamcinolone acetonide has a log P of 2.53 (Hansch and Leo 1979). Palmitoylation would increase this to approximately .11 as calculated using subsituent constants (Hansch and Leo 1979).

The mechanism for increased encapsulation could be predicted to be analogous to that of cortisol-21-palmitate (Fildes and Oliver 1978). The palmitoyl chain may act as a "hydrophobic anchor" holding the steroid head group on the surface of the lipid bilayer.

One of the drawbacks in liposomal drug delivery systems is the poor encapsulation of a drug in the liposomes. That chemical modification is likely to be a

powerful approach to overcome such an obstacle is evident by this (Goundalkar and Mezei 1984) and another (Shaw <u>et</u> ... <u>al</u>. 1976) investigation.

Ą

STUDIES WITH METHOTREXATE SECTION 1: REN LIPOSOMES. 162

Formulation and preparation of MTX liposomes

After reviewing different publications related to MTX liposomes a suitable formula was designed for the preparation of MTX liposomes. DPPC, one of the most stable and uniform phospholipids, was chosen in place of the most frequently used egg or vegetable phosphafidyl choline (EPC or VPC). It is imperative, that liposomes leak as little as possible when encapsulating water soluble types of drugs like MTX. Since cholesterol confers this property to liposomes, it was included in the formula. Charged lipids were used in the concentration of 10 moles to impart desired surface charge to liposomes. Other components were included in the formulation with some specific purpose in mind as imentioned in appropriate places.

There aré many different methods of preparing liposomes. A comparison of these-methods in the literature reveals that reverse phase evaporation (REV) method is one of the best methods for encapsulation of water soluble types of drugs REV method was therefore used to encapsulate MTX into the liposomes.

The MTX is practically insoluble in water, alcohol, c. chloroform and ether However, it is freely soluble in diquite solutions of alkali bydroxides; and carbonates. Sodium bicarbonate solution 0.5% (pH=8) was hence used to prepare MTX solution needed for liposomal encapsulation.

Use of DPPC in place of egg or vegetable phosphatidyl choline introduces certain changes in the regular REV method. Mixture of chloroform and ether is necessary to dissolve DPPC completely while ether alone is sufficient in case of EPC or VPC. Shaking the aqueous dispersion at 55° C is needed for DPPC liposomes because of the higher transition temperature of the lipid. A definite ratio of lipids, organic phase and aqueous phase, as used in the procedure is needed to ensure maximum capture volume (Szoka et al. 1978), consequently maximum encapsulation of MTX. Separation of free MTX from liposomal MTX:

Gel filtration chromatography (using Sephadex G-50) is invariably used for quantitative separation of unencapsulated drug from liposome encapsulated drug. Centrifugation methods for this purpose may not be as quantitative as gel filtration chromatography. However, because of dilution and the time consuming nature of the latter, centrifugation was used for routine separation of free MTX.

Determination of MTX in liposomes.

MTX has an absorption maximum at 370 nm and at 303 nm. Determination of MTX in Tiposomes was therefore aftempted by direct reading of suitable dilution of MTX liposomes at i 370 nm. These direct readings gave absorption values higher

than those expected. Once we realised that these high absorption readings could be due to turbidity of liposomal samples (which we did not expect in such highly diluted samples), attempts were directed towards overcoming this problem.

164

Triton-X-100 has been used to cause the release of encapsulated drug from within the liposomes. With the hope of lysing the liposomes and thereby overcoming the turbidity, the liposome samples therefore were subjected to Triton-X-100 treatment. As shown by absorption readings (Table 0), the detergent treatment did not eliginate the turbidity of the liposomal preparation suggesting that Triton-X-100 may not dissolve liposomes. To match the turbidity in MTX liposomes 'empty' liposomes of similar dilution was then tried as a blank for . estimating MTX in liposomes. Though not theoretically ideal, this manipulation, provided a method to quantitatively estimate MTX in Tiposomes.

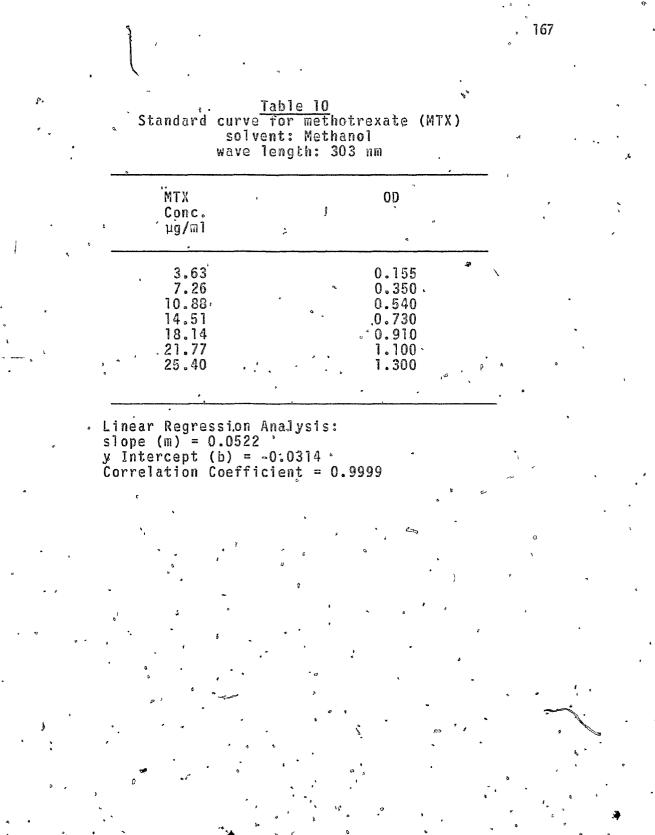
A more veliable procedure to determine MTX in liposomes has been recently described by Todd et al. (1982). In this procedure methanol was used to dissolve MTX encapsulated in liposomes. In methanol, MTX has an absorption maximum at 303 onm where lipids have minimal extinction (in the order of 0.05 or less). This method was adopted for many of the further assays of MTX in liposomes.

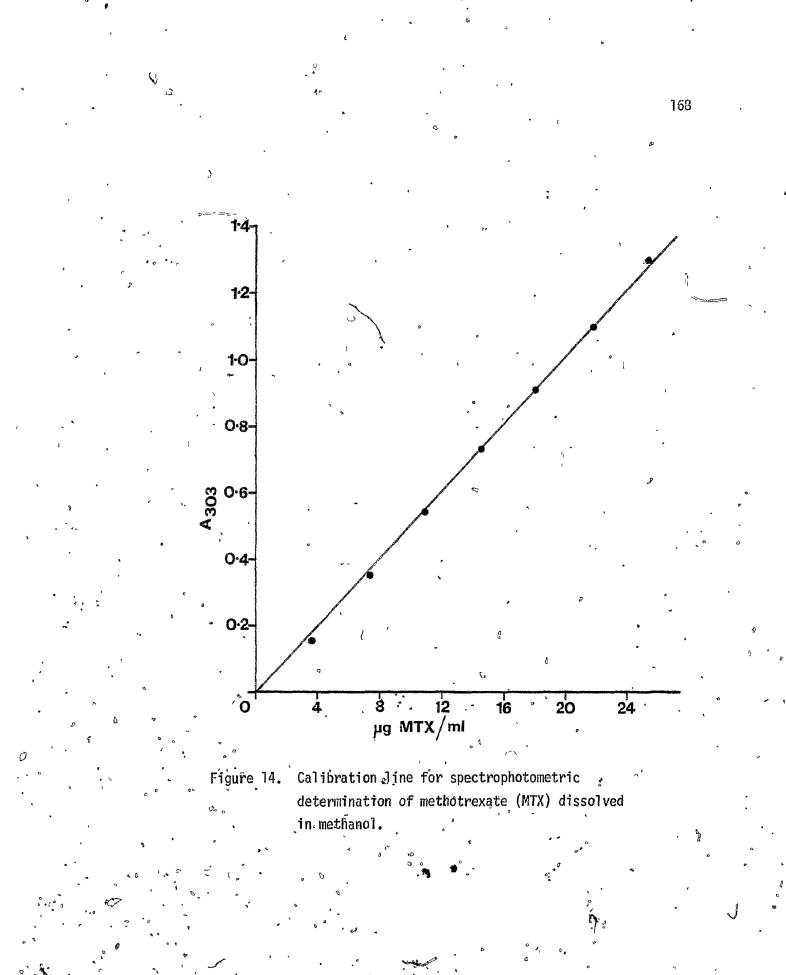
Manipula	tion		Absorption readings*, {	Comments	
	n X-100 tre c triton X-		0.46	·	
after	triton X-1	00 .	0.43 , .	Triton X-100 ine tive in overcomi turbidity	ffec ng
with	ation of bl 0.5% NaHCO as blank.	ank:	0.46	۲	·
with . `as`b]	"empty" lip ank	osomes	0.21	"Empty: liposomes may possibly be us as blank	ed.
*100 µ1 sodium b	of original icarbonate	liposon solution	nes diluted	to 50 ml with 0.5	æ
	•		· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,	5 T
•	· · · · · · · · · · · · · · · · · · ·	• • • •	· (, ·		• • • •
· . · ·	· · · · ·		, , « ¹ , , , , , , , , , , , , , , , , , , ,		، ،
	•	-	r. *		• .

Ð

A calibration line shown in Fig. 14 and Table 10 was constructed for this purpose.

Radioactive assay method


Availability of ³H-MTX provided a sensitive, simple and reliable method for quantitative assays, but, because of the inconvenience of working with radioactive samples (for instance in case of coulter counting of liposome samples) and also increased cost, this method was avoided wherever possible.


MTX encapsulation efficiency

Results in Table II indicate that MTX encapsulation is better in positive liposomes. This could possibly be due to larger aqueous space between two like charged lipid lamellae in positive liposomes.

Results of preliminary stability studies of neutral MTX liposomes (Table 12) indicate that they are adequately stable at rôom temperature for the time period tested. But a slight decrease in stability could be observed at 37°C. Size distribution of liposomes

A coulter counter equipped with a 400 channel analyser and an aperture tube of 10-15 micron aperture size is recommended for size determination of liposomes (Rahman 1980) perhaps because of wide size range of liposomes However, in the absence of such an instrument, the counter with 100 aperture tube may at least give some rough estimate of the size distribution of liposomes. One could

°.	٠ ٩		· · · ·	° °	, 3	•
• • 0	بي ب م	. e - 	ي ب	-	a +	• • • • •
, , , , , , , , , , , , , , , , , , ,	-	- · · ·		°. ° ° °	٠ •	· · ·
	• • •	Some parameters o	<u>Tabie</u> f methotrexate	11 (MTX) encapsulation	in liposomes	· · · · · · · · · · · · · · · · · · ·
		Type of liposomes	Neutral ,	BPositive	Negative	۰ ۱
· • • •		Percent encapsulation of MTX	9.9-10.8	18-34 . " •	N.D. ``´`	· · ·
	ار	mg MTX/m1 Tiposomes	0:8686-1.3029	3.0000-4.2000	1.0000-1.5000	٥
· · ·	â i	mg total lipid/ml liposomes	38-53	48-70	N.D.	3, °, (0
-	v.	Final volume of liposomes (ml)	2.9-4	2-2.9	N.D. • *	
* ** *	· · · ·	N.D.: not done	r	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	* * *
		13	7		•)	
• • •		。 一 · · · ·		۹ ۱		· · · · · ·

•	٢	at	room temp	. at 37	°C.	
out of	t MTX leaked liposomes a storage		- 1,8%*	28 -	34%*	Ð
- *These unavoi washin	dable loss i	y be on the h in supernatan	igh side s t would be	ince certa there wit	in h every	
, ,	-		¥ ن			*
	, c <i>i</i>				0	
			. 13			
	Size dis	<u>Table</u> stribution of	methotrex	ate (MŤX)		
	Size dis	stribution of containing	methotrex	ate (MŤX) 、,		
	¢	containing	methotrexa liposomes Percent of	• • •		
	Size	stribution of containing . Neutra	methotrexa liposomes Percent of	total Positive		
	Size µm	stribution of containing Neutra liposo	methotrexa liposomes Percent of	total Positive liposome		•
, , , , , , , , , , , , , , , , , , ,	Size µm <2	stribution of containing Neutra liposo 67	methotrexa liposomes Percent of	total Positive liposome 89		•
, , , , , , , , , , , , , , , , , , ,	Size µm <2 - 5*	stribution of containing 	methotrexa liposomes Percent of	total Positive liposome 89		•
, , , , , , , , , , , , , , , , , , ,	Size µm <2 - 5*	stribution of containing 	methotrexa liposomes Percent of	total Positive liposome 89		· ·
, , , , , , , , , , , , , , , , , , ,	Size µm <2 - 5*	stribution of containing 	methotrexa liposomes Percent of	total Positive liposome 89		•
, , , , , , , , , , , , , , , , , , ,	Size µm <2 - 5*	stribution of containing 	methotrexa liposomes Percent of	total Positive liposome 89		•

ł

x

(iii)

1

U

expect a larger size for positive MTX liposomes because of repulsion between like charged lipid lamellae, as mentioned earlier, but they were found to be somewhat smaller in size (see Table 13) to neutral liposomes. Some of the neutral liposomes may aggregate to form larger clumps which the counter may fail to distinguish from single liposomes. This might be the reason for finding the neutral liposomes larger in size than the positively charged liposomes. On previous occasions, aggregates were indeed observed in the case of neutral liposomes when examined by optical microscopy. In vitro drug release studies from positive MTX liposomes

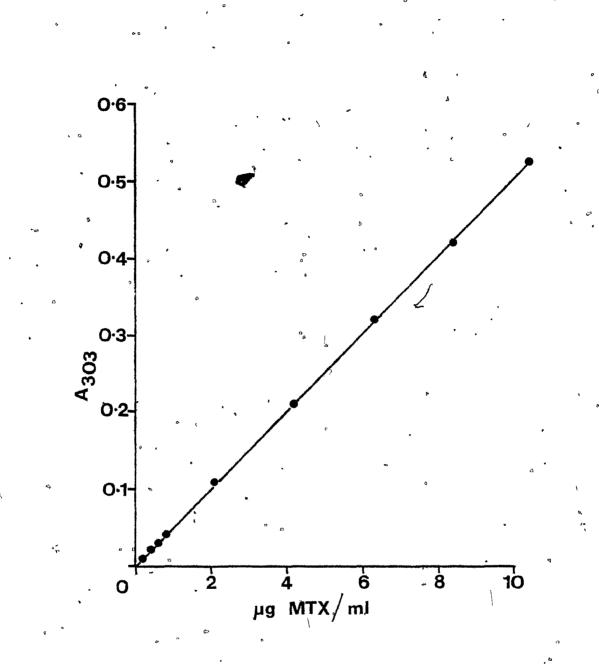
Results of these studies are shown in Fig. 16 and Table 15. The concentration of the drug that is released into the dissolution medium (0.5% sodium bicarbonate) was. determined by uv absorption spectrophotometry at 303 nm. Figure 15 and Table 14 represents the calibration line used for this purpose. The profiles in Fig. 16 indicate that the release of MTX from the liposomes is a slow process and is * temperature dependent. However, the release at 60°C, the temperature greater than the transition temperature of DPPC, is not as great as one would expect. At, or above, the \mathscr{C} transition temperature liposomes become more "fluid" and sudden and rapid burst of their contents is normally expected. This did not happen with our liposomes. Perhaps, this is because of the presence of large percentage of cholesterol (50%) in these vesicles. The property of cholesterol to insulate against the effect of temperature on the fluidity of the membrane is well known. Fetal calf

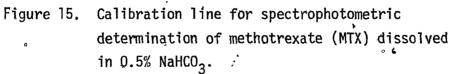
Table 14 Calibration curve for methotrexate (MTX) solvent:0.5% NaHCO₃ wave length: 303 nm

a

3

MTX conc. µg/ml	- OD °	
0.21 " -	0.011	- *
• 0.42	0.020	
0.63	0.031	
0.84	0.045	
1.04	0,055	
2.09	. 0.105	
4.18	0.210	
6.27	0.320	
8.35	0.420	
10.44	0.525	


Linear Regression Analysis: Slopé[,] (m) = 0.0504 y[,]Lntercept (b) = 0.0003 Correlation coefficient = 0.9999


*

172

-

U

<u>د</u> م

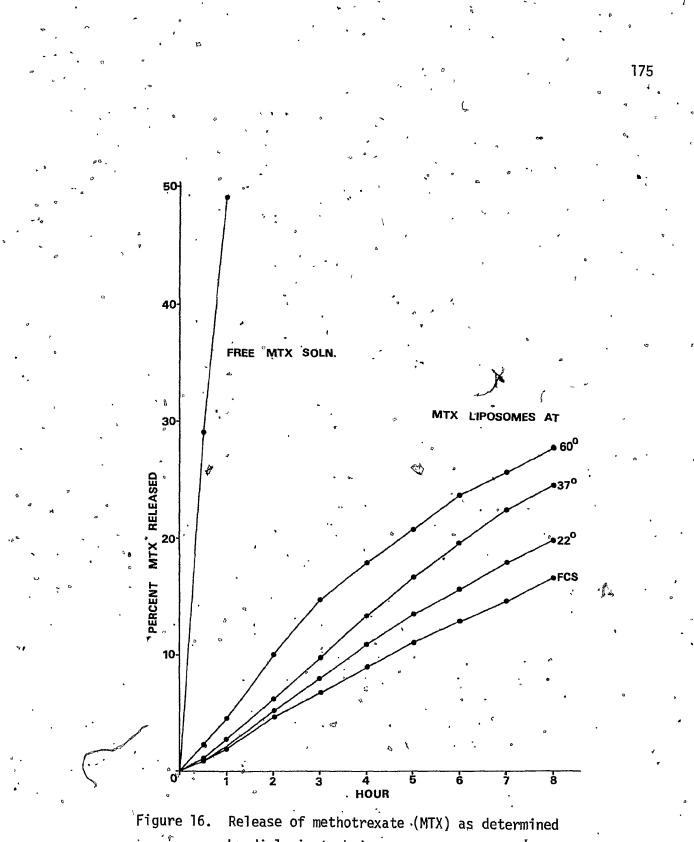
ime	% released from free			•	'	р С С С
hr	MTX soln	at 22 ⁰ C	at 37°C.	at 60°C	with ECS	;** °
.5	29.07	0.87	1. 13	2.19	0,,80	6. 4
1_	49.02 -	2.19	¢ 2.85°	4.46	1.94	8
2	71.16	5.23	_ 6.2 1	10.03	4. 63	-
3	80.47	7.99	9.77	14.74	6.72	
4	83.65	10.86	13.42	1:7.90	8.89	* *o
5	85.06	, 13.42	16.61	20°.72°	10.97	۰.
	86.26	15.63	19.65	23.66	12.82	·
7	87.47	17.90	22.41	25.69	14.64	
8	87.47	19.77	24.66	27.78	16.47	

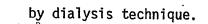
Table 15. Release* of methotrexate (MTX) from liposomes

5

o

3


0 9


۵

с¢,

*Release is determined by dialysis technique. **Fetal calf serum.

Ľ

. .

-• serum (FCS) does not seem to have much effect on the efflux of MTX from liposomes. This is unusual because many reports have indicated that the serum proteins destabilize liposomes. Again, the seemingly stable nature of these vesicles might be the result of increased cholesterol content. Cholesterol is known to protect liposomes from attack by serum proteins. Thus the results of these studies reconfirm the protective role of cholesterol in liposomes against the effect of temperature and proteins. Covalent attachment of antibodies to liposomes

Although this aspect is relatively new in the field of liposome research, a number of methods have been reported (see Table 3) for covalent coupling of antibodies or proteins to liposomes. Percent attachment has been very low in most of these methods. The method described by Martin <u>et al</u>. (1981) involves the attachment of Fab' to liposomes via disulfide bonds. Because the percentage of antibody attached and also the amount of antibodies attached per micromole of phospholipid have been comparatively, higher by this method we decided to test it for our study. In this method there is a need to synthesize 3-(2-pyridyl dithio) propionyl derivative of a lipid since the latter is required to be present in the liposomes for covalently linking Fab' via disulfide bond.

Synthesis of PDP-DPPE

N.

Egg phosphatidyl ethanolamine, which is frequently used by other investigators, is chemically less stable because of the presence of unsaturated fatty acyl moiety in the molecule. The resulting PDP PE also becomes prone to oxidation giving rise to stability problems. Hence we planned to synthesize a more stable alternative i.e. PDP BPPE.

The yield of PDP-DPPE obtained however, was too small to be characterized. It was soon realised that this was due to incomplete dissolution of DPPE in methanol, the solvent for the reactants. An increase in the quantity of methanol from 3 ml to 10 ml for 35 mg of DPPE was still not enough to dissolve it completely. Other solvents like methylene chloride (6 ml.), ethanol (5 ml), pyridine (10 ml), dimethyl formamide (2 ml), DMSO (3 ml) and some combinations of these solvents were tried to dissolve the (35 mg) DPPE with ittle success. Though on heating, all the DPPE went into solution in above instances, it precipitated out on cooling to room temperature. The reaction was not tried at higher temperatures lest it may decompose SPDP. Synthesis of PDP-PE:

Without much success in improving the yield of PDP-DPPE, we decided then to synthesize PDP-PE (from egg yolk phosphatidyl ethanolamine) though it would be expected to be less stable than PDP-DPPE. The yield of PDP-PE was found to be 52%. TLC studies with the solvent system: Methanol-acetic acid-water: 60:20:3 °. revealed that R_f values of egg PE and PDP-PE were quite similar to those of DPPE and PDP-DPPE respectively (Table 16). Also silica gel F 254 (silica gel with a fluorescent indicator) TLC plates could be substituted for silica gel H plates without great difference in R_f values. Synthesis of PDP-SA: '

As a result of a "midnight brain storm" the idea to synthesize PDP-SA occurred suddenly. Stearylamine is used routinely to confer positive charge onto liposomes. It has a primary amino group to react with SPDP and a long hydrophobic stearyl group to efficiently interact with the lipid bilayer of liposomes. Because of these properties and also because PDP-SA would be more stable (by the presence of saturated fatty acyl moiety) we thought, we should try to synthesize PDP-SA and use it in place of PDP-PE for coupling Fab'. Another good point to this idea is that stearylamine is not only more stable but also cheaper compared to egg PE or DPPE.

Development of TLC procedure for separation of SA, PDP-SA, SPDP and another unidentified product of the reaction:

Initially R_f values of these compounds were determined by TLC on silica gel F 254 plates using ethyl acetate as the solvent system (Table 17). Due to the fluorescent indicator on the TLC plates, PDP-SA and SPDP

-

Table 16 TLC of PDP-DPPE reaction mixture on silica gel H Solvent system: chloroform-methanol-acetic acid 60:20:3 Detecting reagent: Molybdic acid reagent and/or iodine vapors

Component of reaction R_f

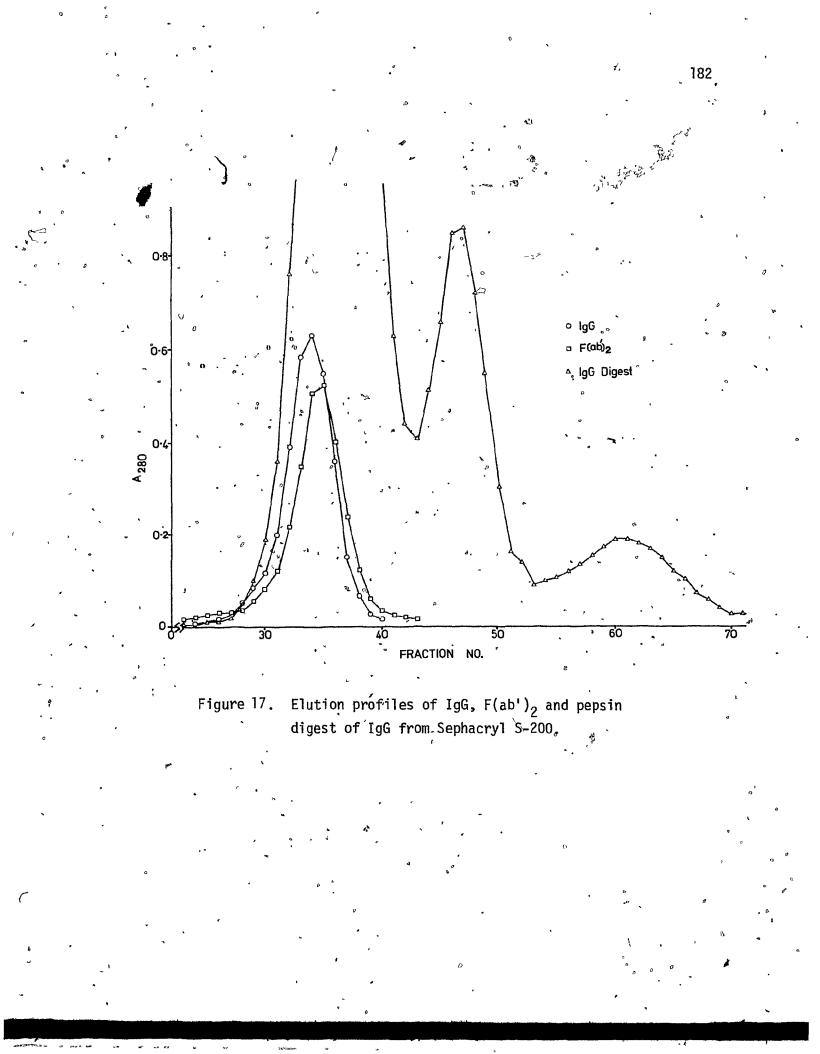
~	•			
	DPPE*	*	0.25	
	SPDP		0.99	
	Triethylamine	,	°°°0.41	
	PDP-DPPE*	α	0.66	

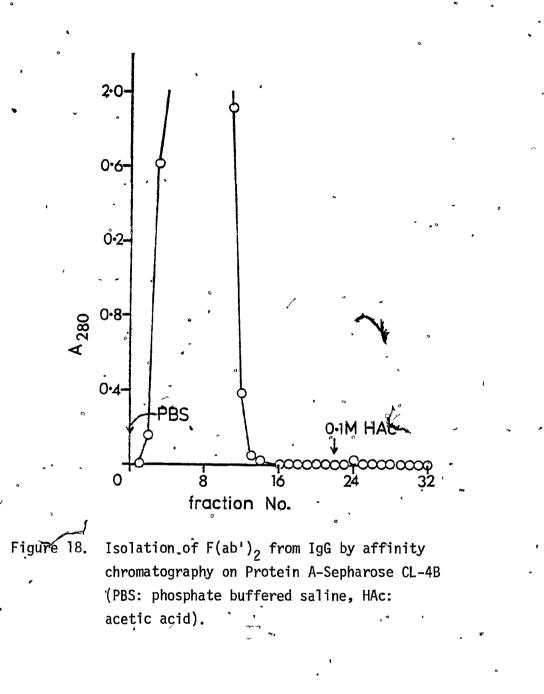
*R_f values of egg PE and PDP-PE were almost the same as those of DPPE and PDP-DPPE respectively.

ANAL ST

Table 17 Table 17 TLC of PDP-SA reaction mixture on silica gel F 254

Component of reaction mixture	R solvent Ethyl acetate	system: Ethyl acetate: petroleum ether 40:60
Stearylamine	0.02	۰ ۵ ۰ ۰ ۰
SPDP	0.47	• 0.16
PDP-SA	0.48	0.22
unidentified product	0.64	0.56


unidentified product 0.64


could be detected under shortwave uv light. However, todoplatinate reagent spray gave brighter, distinctly colored spots (SA-pink, PDP-SA-dark colored). Iodine vapors could also be used for visualizing these compounds on TLC. Since R_f values of these components were more than 0.4 (except stearylamine), the polarity of the solvent system was gradually decreased to get a suitable solvent system. Ethyl acetate-petroleum ether in the ratios 90:10, 80:20, 60:40, 40:60 were tried as solvent systems. The R_f value of SPBP decreased gradually. Finally ethyl acetatepetroleum ether 40:60 was chosen as the suitable solvent system.for purification of PDP-SA by column chromatography based on R_f values as shown in Table 17.

The I.R. and N.M.R. spectra (appendix 4 & 5) of the solution of the synthesized product was consistent with the chemical structure of PDP-SA.

Preparation of antibody fragments and coupling to

Preparation of F(ab')₂ from IgG is usually accomplished by the digestion of IgG. The proteolytic enzyme, pepsin, was used to cleave the Fc portion of IgG. The elution profile of digested IgG from Sephacryl S200 is shown in Fig. 17. The undigested IgG is then removed by affinity chromatography using protein A sepharose 4B column (see elution profile in Fig. 18). Protein A (tyrosine residues) has an affinity for the Fc portion of IgG and

183

Ø

thus retains IgG on the column while $F(ab')_2$ elutes out. Dithiothreitol, at pH 5.5, reduces the disulfide bond of $F(ab')_2$ producing monovalent Fab'-SH. Preparation, separation and goupling of Fab' has to be done in nitrogen atmosphere to prevent oxidation and reassociation to Fab"-SH to form Fab'-S-Fab' (i.e. $F(ab')_2$). Hence a closed system consisting of chromatography column connected to reaction vial was used in these experiments.

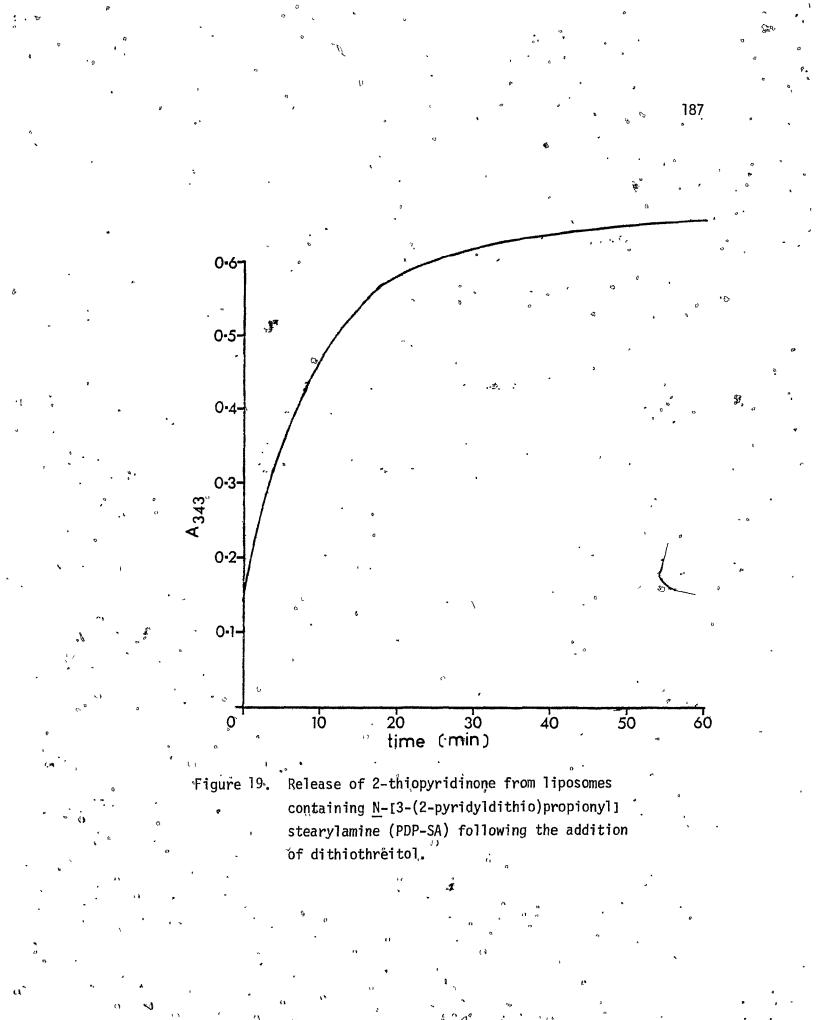
Fab'-liposome coupling takes place as a result of the disulfide exchange reaction between the thiol group on each Fab' fragment and the pyridyldithio moiety of PDP-SA molecules present in vesicle membranes. Simultaneously the chromophore 2-thiopyridinone is also released as a product of the reaction.

Results of our efforts to attach Fab' are shown in Table 18. Martin <u>et al</u>. (1981) reported about 14-26% coupling of Fab' with up to 600 µg of Fab' per mol phospholipid. We were unable to reproduce these comparatively high values of Fab' coupling to liposomes; our results showed only 3.2% binding. One possible reason could be that our REV liposomes, were not extruded through 0.4 and 0.2 µm polycarbonate filters prior to Fab' attachment. This treatment may perhaps increase the number of available pyridyl dithio groups for interactions with Fab'-SH due to smaller and more uniform size of vesicles. Such treatment

						e 18 🕤		.	
0	Cova	lent	coupl	ling of	antibod	ies to 1	iposomes	using	PDP-SA

1/ 0

	Martin <u>et al</u> . (1981) method Specific binding	ECDI method (Endol Specific binding	h <u>et al</u> . 1981) Nonspecific binding [.]
Reaction mixture	24 mg Fab ^ı -SH + 1 ml liposomes	420 mg IgG 1 mT 1 posomes ECDI	420 mg IgG + .1 m1 liposomes
Amount bound to liposomes	770 μg Fab'/ml liposomes 29 μg Fab'/μmole DPPC	2530 μg IgG ml liposomes 97 μg IgG/μmole DPPC	300 µg IgG/ml liposomes l2 µg IgG/µmole DPPC
Percent bound	3.20	0.60	0.07


of REV MTX liposomes may possibly rupture some vesicles and release the entrapped methotrexate in which case the very purpose of choosing REV method would be dispensed with.

Other possible reason for lower attachment of Fab' could be the use of PDP-SA in place of PDP-PE. Although one could expect PDP-SA to interact similarly to PDB-PE with the lipid bilayer, the possibility of a lower fraction of total pyridyldithio moieties on the surface of liposomes in the case of the former (i.e. PDP-SA) cannot be ruled out. Fig. 19 gives an idea regarding only the total pyridyldithio moieties present in liposomes with PDP-SA. To characterize the surface pyridyldithio moieties requires the synthesis of a non-permeable reducing agent like dihydrolipoamidecreater.

IgG coupling to liposomes by ECDI method

The lower percentage attachment and elaborate procedure involved in Fab' coupling by the Martin <u>et</u> <u>al</u>. method prompted us to try direct attachment of IgG by a simpler ECDI method. Though this sort of IgG-liposome coupling was reported as early as 1975 (Dunnick <u>et al</u>. 1975), a more detailed study is reported recently by Endoh <u>et al</u>. (1981). The mechanism of IgG coupling to kiposomes via carbodiimide is illustrated in Fig. 8.

Results of this method are compared with those of the previous method in Table 18. Our values obtained here are higher compared to the values (0,13%, 20 µg IgG/µmole PC) of

Endoh <u>et al</u>. (1981). These differences could be attributed to different reaction conditions like pH, reaction medium, etc. The amount of IgG bound per μ mol of phospholipid is higher, 97 μ g, compared to Fab' coupling, which was 29 μ g. This could simply be due to higher amount of IgG in the reaction mixture, i.e. 420 mg IgG vs 24 mg Fåb'-SH. Percentage attachment was still low, only 0.6%, and hence this method was abandoned. IgG coupling to liposomes by the method described

by Barbet et al. (1981)

Both the previous methods' did not provide sufficient antibody binding efficiency. A new approach of antibody-liposome linking was therefore investigated. We utilized the method described by Barbet et al. (1981) but substituted PDP-DPPE with PDP-SA. By this method, about 24-32% of the thiolated IgG became bound to liposomes (96-123 μ g IgG μ mol⁻¹ phospholipid) (Table 19). We thus achieved a binding efficiency comparable to that reported by Barbet et al. (1981) and Martin et al. (1981), i.e. 40% and 14-26% respectively. The non-specific adherence of antibodies to liposomes was only 0.9% (3.1 µg IgG µmol⁻¹ phospholipid). This confirms that the chemical Treation between thiolated IgG and liposomes"(i.e. the thiol-disulfide exchange reaction) was responsible for increased binding of IgG to liposomes.

		A ;
	Specific binding	Nonspecific binding
Reaction mixture	8 - 12.6 mg PDP∹IgG + °	9 mg PDP-IgG +
	l ml liposomes (26 µmol DPPC) → + DTT	l ml liposomes (26 μmol DPPC) ^ No DTT
Amount bound to liposomes	2.5 - 3.2 mg IgG/ml liposomes 96-123 μg/ μmol DPPC	0.08 mg IgG/ml liposome 3.l μg/μmol DPPC
	liposomes 96-123 µg/	
liposomes	liposomes 96-123 μg/ μmol DPPC ·	3.1 μg/μmol DPPC
liposomes	liposomes 96-123 μg/ μmol DPPC . 24 - 32	3.1 μg/μmol DPPC

Table 19

¢

~

1

7

189

× 3

For immunospecific liposomal targeting it is essential that the liposome-bound antibody retains its immunological reactivity: The antigen-binding capacity of anti-BSA IgG before incorporation in liposomes was found to be 0.1641 g BSA/ g anti-BSA IgG as calculated from the calibration curve in Fig. 20 (Table 20). The antigen-binding capacity of the rabbit anti-BSA IgG was reduced by only about 20% after its linkage to liposomes (Goundalkar <u>et al.</u> 1984a).

By virtue of the primary amino group, stearylamine can react readily with the heterobifunctional reagent SPDP tom give rise to another reactive compound: PDP-SA. Stearylamine, in contrast to PE, has a well defined and simple molecular structure, i.e. it has a single hydrocarbon shain whereas PE has two fatty acyl chains of varying length and saturation. Because of its single chain, PDP-SA may better fit into the lipid bilayers of the liposomes than the two-"tailed" PDP-PE in which the length of the two chains are often unequal. Further, because its chain is saturated, PDP-SA is likely to be more stable than PDP-PE with its ' unsaturated fatty acyl chains. An oxidative reaction involving the PDP-PE could affect the integrity of liposomes and the stability of their linkage to antibodies. Other advantages of using PDP-SA for coupling antibodies to liposomes are the low cost of SA, the simple synthesis procedure and the almost complete quantitative "conversion of SA to `PDP-SA` (Goundalkar <u>et al</u>. 1984a). Only about 20%

Anti-BSA IgG µg ,	BSA bound to Anti-BSA IgG (a)	- BSA bound to ⁶ Normal IgG (b) μg	BSA bound specifically f anti-BSA [®] IgG (a-b) µg
27.64	6.56.	4.00	2.56
55.29	14.95	.6.00	8.95
, 82 . 93	22.30	·7.00	15.30
165.86	45.87	10.00	35.87
221.15	61.02	12.00	5].02
331.72	· 83.40	16.00	71.40
442.30	100.77	20,50	80.27

Calibration curve for radioimmunoassay of anti-BSA IgG

P

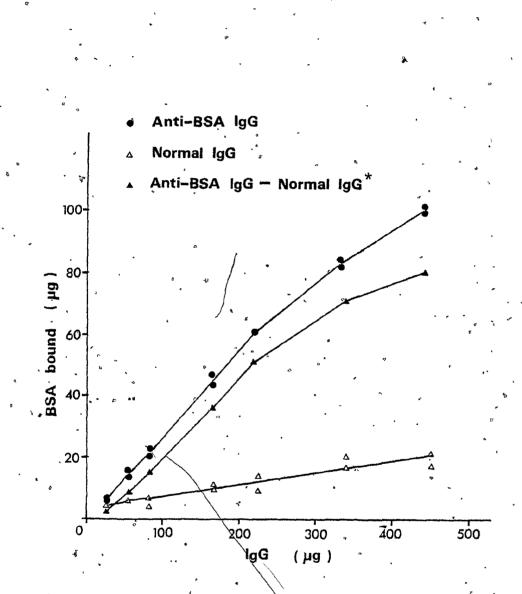


Figure 20. Calibration curve for radioimmunoassay of anti-BSA IgG.

*Indicates the difference between BSA bound to Anti-BSA IgG and Normal IgG

of entrapped MTX leaked during the overnight binding reaction.

Antibodý mediated.binding of positive MTX liposomes by

Immunofluorescence staining technique:

Antibody titer of Enti-melanoma globulin, determined by the membrane immunofluorescence technique, was found to be 50 µg/ml. Thiolated globulin also had a similar titer value. It can therefore be inferred that the immunological activity is unaffected by modification of the IgG with SPDP.

By the same immunofluorescence technique we tried to assess the interaction of an body coated liposomes with Examination by fluorescence microscopy melanoma cells. showed that at high concentration (2 mg/ml of antibody protein), both normal rabbit IgG (NRG) and anti-melanoma IgG coated liposomes were bound to cells indiscriminately. At low concentration (200 μ g/ml of antibody protein), however, it appeared as though there was increased binding of liposomes to melanoma cells when the former were coated with anti-melanoma IgG (Ghose et al. 1984, Goundalkar et al. 1984b). Fig. 21 shows a photomicrographic depiction of such antibody mediated binding of liposomes to cells. Such a phenomenon, however, needs further confirmation by objective tests such as radiotracer technique.

Figure 21. Fluorescence photomicrograph showing the binding of anti-melanoma globulin coated methotrexate containing liposomes to target melanoma cells.

ć

Radiotracer technique

One of the reasons for undertaking interaction studies with melanoma cells was the fact that they are monolayer type. These cells grow attached to the surface of the plate unlike the EL, cells which grow in suspension. Because of their attachment to the surface of the plate, we thought that the unbound liposomes could easily be separated from the cells by decantation and washing procedure. Our initial experiments proved this to be wrong. Even after decantation and washing many liposomes though nor bound to cells. remained associated with cells. More washing resulted merely in increased loss of cells. Also, the characteristics of some of the cell's were altered on addition of MTX liposomes resulting in agglutination. observations, led us to adopt the technique of centrifugation using 10% Ficoll for separating unbound liposomes from cells. This seemed to be a satisfactory method.

Liposome-cell interaction studies were carried out at two different temperatures for two different periods of time. Results of these experiments are presented in Table 21. Examination of the table indicates that the association of MTX with the cells increased in the following order: IgG coated MTX liposomes > MTX liposomes > free MTX solution. 'However, there was no significant difference in the binding of anti-melanoma globulin coated and NRG coated MTX liposomes to melanoma cells. Slightly higher association of

Sample	Percent of	added radioacti	vity associate	d,with cells ±S
	Ohr**at 37	⁷⁰ C 1hr at 37 [°] C	2hr at 37	C 2hr at 4 ⁰
MTX soln.	N.D.	N . D`.	0.0012 ±0.0003	- 0.005 ±0.00006
Positive MTX	3.15	` N.D	12.08	6.70
liposomes .	±0.22		±1.76	±1.12
NRG-MTX	6.54	21.45	27.73	11.55
liposomes	±0.61	±0.53	±1.57	±1.65
AMG-MTX	4.82	14.49	23.20	11.74
1†posomes	±0.15	±1.61	±1.75	±0.89
*standard devia **0 hr is the m less than 15 ND: not done.	inimum time ne	eded for mixing	and centrifug	ing the samples;
*. *	ن نر ،		0 C	• • •
~ °	,	o	5 • •	,

<u>Table 21</u> Binding of antibody spated methotrexate (MTX) containing liposomes (REV) by human melanoma cells

9L

liposomes bearing NRG could be attributed to the higher protein concentration (2.058 mg/ml as opposed to 1.619 mg/ml in anti-melanoma IgG-MTX liposomes) in these liposomes. This kind of result iss surprising particularly in light of a our previous "observation by fluorescence microscopy of increased binding of antimelanoma globulin bearing liposomes to target melanoma cells. The obvious anomaly between these two findings could possibly be due to an inefficient separation of unbound,liposomes from cells. Despite the presence of 10% Ficoll, some unbound liposomes because of their larger size might have settled along with the cells. Problems such as this would make it difficult to distinguish between specific and nonspecific antibody mediated binding of liposomes to cells.

In vitro studies against Caki cells

These <u>in vitro</u> studies were done according to the method described by Todd <u>et al</u>. (1982). In this method, because of the unstability of drug entrapped liposomes (for instance, due to Teakage of the drug from liposomes) in presence of growth medium (Todd <u>et al</u>. 1982) fresh liposomes were added every 24 hours. The previous liposomes and free drug if any were removed by decantation. Cells were not disturbed in this process as they grow in monolayer fashion sticking to the bottom surface of the culture flask.

Figure 22 and Table 22 represent the growth curve for Caki cells. Results in Table 23 reveal that neutral MTX

-

1.

.

7

	Tabl	le 22	2, *	4
Growth	curve	for	Ĉaki	cells*

Time hr.	•	•	No. of cells SD
- 10	x x	•	136840
	ö		َنْ ±5680
72	,		[′] 399480′
*			±5080
96 🐁 .	•*	•	329480
	-		`₀ ±54600
1.20			381200
ه م ب	۔ سرچ سمبھار سیسی	•	±19120

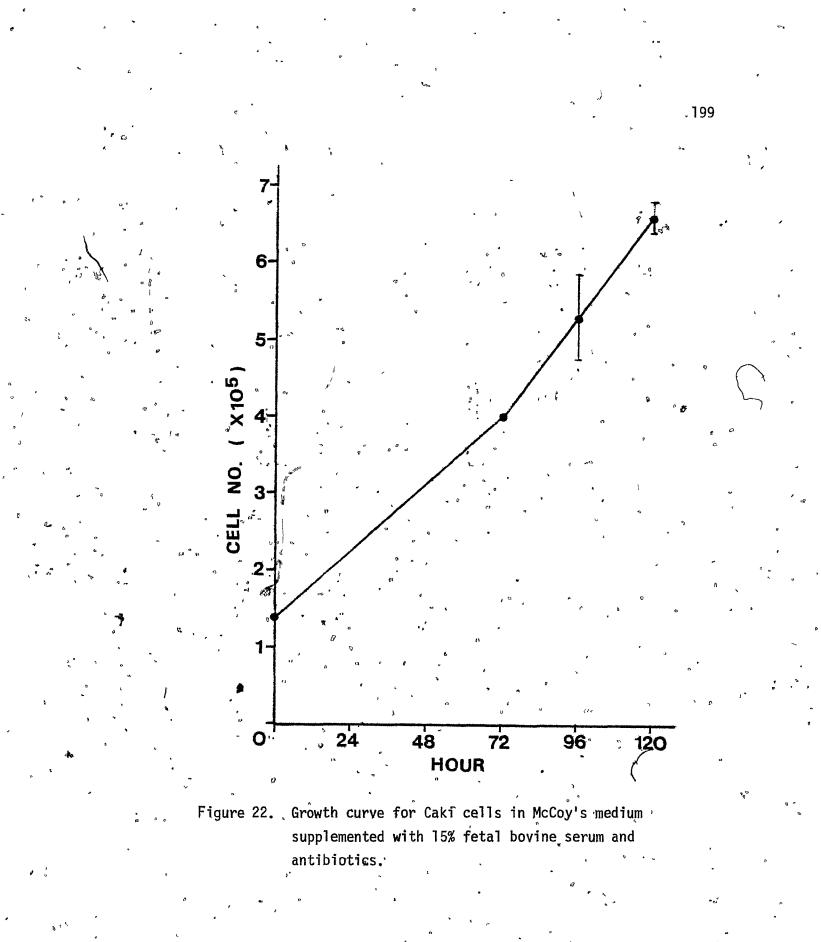
á

ð

7

• •

*Growth medium: McCoy's medium supplemented with 15% fetal bovine serum and antibiotics


0

....

ť?

-

nυ

a an sitter a statistic wit parts see the statistic state the a

·~ .

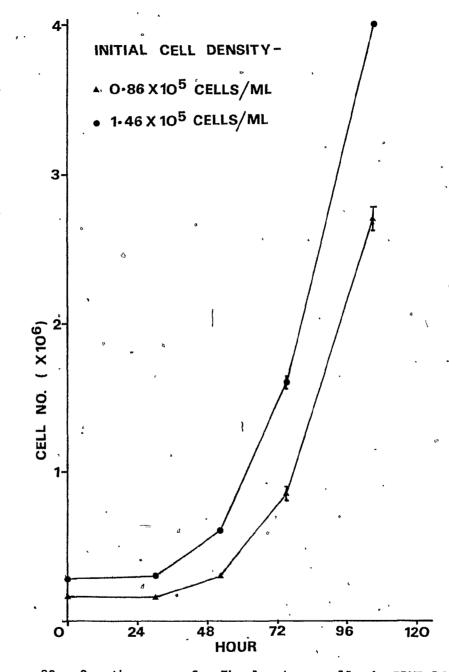
Freatment	Conc. µg/ml	Percent inhibition of growth
Control , ~	¢ _ \$	0
FreeMTX	° 0.50 <-	40 .
Neutral MTX lipôsomes	0.065	6
• • •	0.13.	3
۵	0.65	. 8
°	1.30 .	2
Empty Tiposomes	Q.13	5
, o	1.30	· ² · .
· /	a (
· · · · ·	• • • • • • • • • • • • • • • • • • • •	
• •	u * /* 4 **	
° .	```	ð

¢

200.-

liposomes (in the concentration range tested) are virtually ineffective against Caki cells compared to free.MTX solution. Perhaps the rate of release of MTX from liposomes is too low to be effective against the cells. Furthermore, in comparison to EL_4 cells (Table 28) Caki cells are less sensitive to MTX. This is evident from the fact that with Caki cells only 40% growth inhibition is observed at a MTX concentration of 0.5 µg/ml while with EL_4 cells 86% inhibition is observed at as low a concentration as 0.1 µg/ml.

In vitro studies against EL4 lymphoma cells


EL₄ cells were grown in RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics. Figure 23 and Table 24 represent the growth pattern for these cells.

A couple of <u>in vitro</u> experiments were done in which samples containing both cells and liposomes were counted using coulter counter. It was soon realized that in these experiments cell counts were being contaminated by liposomal counts. The possible theoretical contamination by liposomes in such cell counts is given in Table 25. However, this could vary unpredictably from sample to sample of liposomes, different ionic nature of liposomes, and depending on time of contact between liposomes and cells. Hence a single

Time hr	No.	of cells ±SD	۵
0	172960 ±5920	293320 ±15400	· · · · · · · · · · · · · · · · · · ·
30 • • • •	164360 ±1920	300040 ±9800	'n
52 _,	302680 ±9800	600000 ±36600	v
75	848000 ±28120	1640000 ±82040	>
105	2672000 ±84200	4020000 ±13760	υ

 $\frac{\text{Table 24}}{\text{Growth curves for EL}_{4}}$ Tymphona cells*

*Growth medium: RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics

Û

ŧ

Figure 23. Growth curves for EL₄ lymphoma cells in RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics.

Table 25 Expected contamination of cell counts by liposomes at a cell count of 163800 cells/2 ml (i.e. per plate) a

100 µl	of liposomes dilution		ributed by liposomes
01	, , ,	. t = 24 hr	t t = 96 hr
1.	1:50	68(56)	73(10)
2.	1:500	17	1.8
3.	1 :50 00	2(1,)	0.2 (0.09)

Note:

It was assumed that all the liposomes (at t=0) would be intact at t = 24 and t = 96 hr. Values in parenthesis relate to 'empty' liposomes while others relate to neutral methotrexate liposomes. 1.

2.

suitable correction factor cannot be arrived at. Direct counting of cells using hemocytometer is not feasible because it was difficult to distinguish between cells and liposomes under an optical microscope.

Use of centrifugation to cause selective settling of cells:

To separate cells from the liposomes, centrifugation at 200 x g was tried with the hope that the cells would settle down, while liposomes would be located in the supernatant. The usual centrifugal force, 200 x g is used to settle EL₄ cells while we had used 22000 x g in the centrifugation of liposomes in the method of preparation. Unexpectably though, the results (Table 26) indicated that most of the liposomes also are settling down at this low centrifugal force. Consequently this method also proved to be futile.

Use of fluorescence activated cell sorter (FACS):

FACS, as the name suggests is an instrument used mainly for sorting of cells on the basis of fluorescence intensity of cells passing through a laser beam. For this purpose cells are to be stained with acridine orange or any other fluorescent stain. Acridine orange binds to DNA and makes cells fluorescent leaving liposomes unstained. Thus FACS can differentiate between cells and liposomes by the presence or absence of fluorescence. FACS can also generate a scatter histogram based on light scattering by particles, passing through a laser beam. Unlike a coulter counter, Table 26 Centrifugation of neutral methotrexate (MTX) containing liposomes: 1600 rpm (200×g) for 10 min at 21°C

n.,

	Dilution of liposomes	Co Pellet	unt in Supernatant
	1:50	312560 (94.5%)	\ 18326 . (5.5%)
,	1:500	33200 (84.5%)	6120 (15.5%)
1	1:5000 .	7280 (72%)	2840 (28%)

ь **Б**

Þ

si-cher

Ĵą.

FACS cannot count a definite volume of sample. However, it was thought possible to obtain a ratio of cells to liposomes based on total counts due to scatter and fluorescence. Difference between scatter counts and fluorescence counts would represent liposome counts, while fluorescence counts would represent cells alone. It was thought the above ratio supplemented with a total count from coulter counter could be used to arrive at actual number of cells. However, as seen in Fig. 24, a complete scatter histogram could not be generated; a considerable number of liposomes in the lower end of size distribution range were being left out. Therefore, this resulted in an incomplete scatter count, consequently, the ratio of cells: liposomes was incorrect. Different manipulations of the instrument were tried with little success. This method was therefore abandoned.

After treating the sample with acridine orange, it was possible to clearly distinguish between liposomes and fluorescent cells by fluorescence microscopy. But again, counting of fluorescent cells using hemocytometer was not accurate enough to be adopted for our purpose. Use of triton-X-100, sodium dodecyl sulfate (SDS, sodium lauryl sulfate), methanol and ether in the counting of cells

in presence of liposomes:

Samples containing liposomes, cells and combination of both were treated with the above reagents in order to test the possibility of selectively lysing either cells or

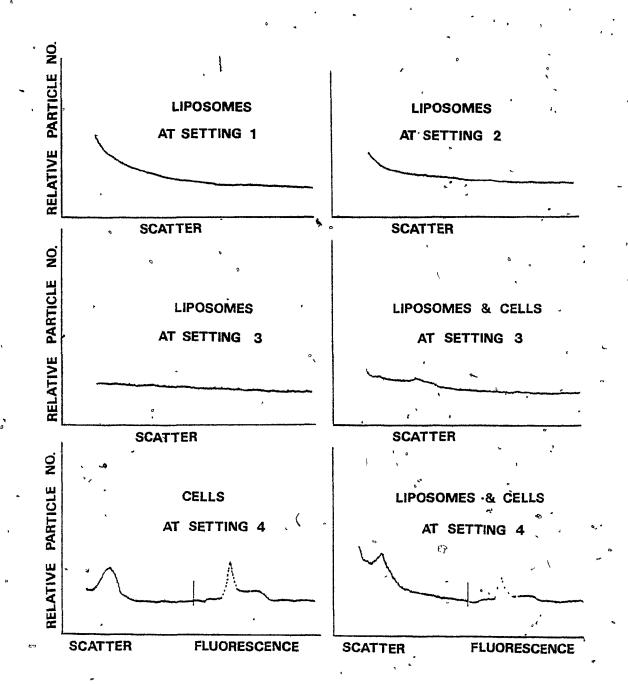


Figure 24. Scatter and Fluorescence distribution of liposomes

and EL₄ lymphoma cells.

208、

liposomes by detergent action or solvent action. Triton-X-100 has been used to cause release of entrapped substances from liposomes (Rowland and Woodley 1981). It is evident from results (Table 27) that, at a concentration of 1% triton-X-100, all cells are being lysed leaving the liposome's intact. It may seem surprising why liposomes are left intact and still triton-X-100 is used to release entrapped substances. 'Triton-X-100 may make liposomes leaky but without destroying their structural integrity. Structural composition may change because of interaction of triton-X-100 with the liposomal membrane. The observation of Alonso et al. (1981) is consistent with this kind of action of triton-X-100 on liposomes. Also it can be recapitulated here, that in our efforts to determine MTX in liposomes by spectrophotometry, we were unable to eliminate liposomal turbidity by triton-X-100 treatment. Perhaps this partly explains the reason for the same. The method of selectively lysing cells with triton-X-100 was then followed `in all our further studies with EL, cells involving $\sub{\cdot}$ quantitation of cell number in presence of liposomes. Numbers in Table 27 are self explanatory regarding the effect of other reagents. SDS was nonspecific fin its action, on liposomes and cells. It is not clear why SDS (anionic), which is also a detergent, like triton-X-100 (neutral) may behave differently from the latter. The difference in the

		. Pe	rcent 1	ysis	•
Treatmen	t			Cells an	d liposomes gether
۶ ۲	cells alo	ne liposomes	alone	actual	theoretica
Triton X-10	0		•	,	· ·
0.1		0	ø	20	20
· 1%	99	,. 0	•	25	23
10%		9	<i>c</i>	32	- 23 29
	•	f	-	<i>()</i>	
Sodium dode	cyl sulfate			*	
. 0.1		⁻ 48		_	6 0
1%	9 9	61		74 [.]	70
10%	→ 99	. 73		80	79
	*	· , ·	-	د	
lethanol	-		,		P
° 1%	0 -	· 0		•	<i>v</i>
10%	0	0			-
⁻ 50 %		2		9	
4	•	• •	-		•
Ether*	•	4			
0.0		· ` 5		,	P
0.5	% 7	. 6	•	2	
´ 5 %	。 7	8	7		

<u>Table 27</u> Effect of triton X-100, sodium, dodecyl sulfate, methanol and ether on cells and/or liposomes.

*more than 5% v/v resulted in immiscibility

đ

chemical structure, charge, of both, may be responsible for the different action in lysing cells and lipid vesicles. In vitro studies against EL_A cells

211

Results in Table 28 indicate that liposomal MTX, irrespective of charge is less effective against EL₄ cells compared to the free MTX solution. As already mentioned, this could perhaps be due to the limited availability of free MTX as a result of slower release of MTX from liposomes. Among the three different types of liposomes, cationic liposomes seem to be more effective. Because of the electrostatic attraction, cationic liposomes may possibly interact more efficiently with cells which are usually negatively charged. This facilitated interaction may also lead to more release of free MTX from liposomes to be effective in arresting cell growth.

Results of the <u>in vitro</u> evaluation of targeted, i.e. anti-EL₄ globulin (AEG) coated MTX liposomes are presented in Table 29. As evident from this table, though the AEG coated liposomes were slightly more effective in inhibiting the growth of EL_4 cells than the NRG coated liposomes, such difference was not statistically significant. Also the physical mixture of AEG (i.e. specific antibody) and positively charged MTX liposomes seems to be equal in its effectiveness to that of liposomes coated covalently with AEG.

1L U

'.Treatment	Conc. μg/m ζ P	ercent inhibition of growth (± SD)
Control	· · · · · · · · · · · · · · · · · · ·	0.00
Frèe MTX	••• 0°•01 • 0.10 1.00	44 (± 9), * 86 (± 2) 86 (± 2)
Empty Neutral Liposomes	0.01* 0.10*	. 0 0
Neutral MTX Liposomes	°0.013 • ∵.0.13 	4 4 82
Positive MTX Liposomes	••• 0.01 • • 0.10 1.00 • ·	6 (± 6) 53 (± 24) 96 (± 6)
Negat'ivé MTX Liposomes	0.01 0.10 1.00	• • • • 89 •

S

k.z.

500

P	α	Effèct of	ce (C	115 <u>in</u> onc. 0	vitro: .1 µg/ml) .	۰۰۰۰۰ ۲		6 . 9
5	ى	Treatm	ent	k	% Inhi	bition of ±SD	growth		١
`≏ . ⊻ .	,	Con	trol		• <u></u>	0	5		-
1	1 J	Anti-EL ₄ - Liposomes	GLOB-MTX	æ ⁿ	7	74.5* [±] 4.6 "	•		· •
		NRG-MTX L	iposomes		u	້61.1* ±10.໑	* *	ø.	
`	•	Anti-EL ₄ - Liposomes	GLOB + M Phy. Mi	ТХ Х.	, 1	79.8* • 1 4.0			
	······		between	these	means	s per t-te	ac+		
م • •	*No	difference		0,1000	incurio iu			۲	τ.
4 4	*No	difference	8) 	- 3 6 •	×	• • f
, , , , , ,	*No ,	difference	р (С!	ď				r	•
• • •	*No ,	difference	, ,	a -	· · · ·		- 	a	• • •
, , , , , , , , , , , , , , , , , , ,	*No `	difference	° €1	a a •	•			a	•
	۹.	, , , , , ,	° €1	d 		1			
	۹.	, , , , , , , , ,	ъ 					۵ ۲ ۲	
, , , , , , , , , , , , , , , , , , ,	۹.	, , , , , , , , ,	° €1						

ž

·.-

2,13

. 0

رمه +

Ð

•.¥

2

+

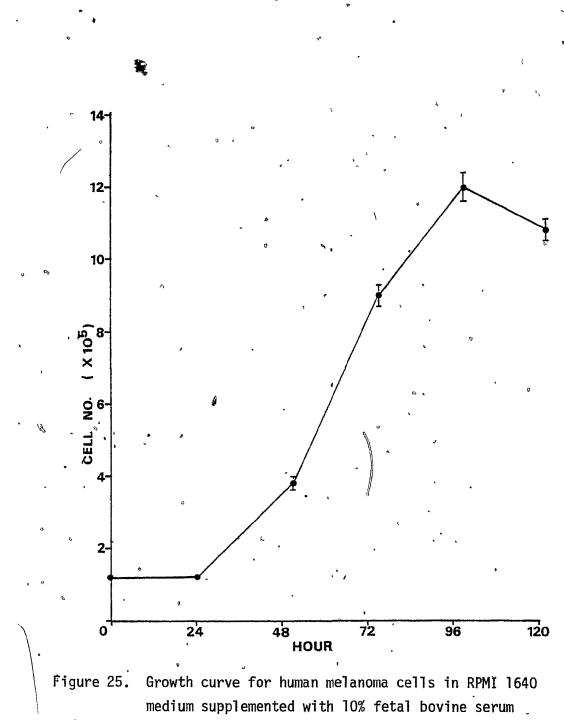
These results are contrary to those that we expected. Many explanations are possible for these minds of results. One of them is the specificity of the antibody itself. These antibodies, because they are palyclonal would possess much lower specificity than the mongelonal type. Further reduction in the specificity could result from the extensive. absorption procedure used in the preparation of these antibodies. The extensive absorption of the antisera with normal tissues could wash away a considerable amount of antibody activity and this would result in the reduction in the affinity of the antibody preparation. Accordingly, Uadia P. (unpublished observations) observed increased affinity in anti-melanoma antibodies obtained from unabsorbed sera compared to those obtained from absorbed sera. Secondly, even if antibodies were capable of targeting the liposomes to the EL_A cells, if liposomes are not taken up by the cells, targeting would be futile., Recently, it is being understood that for liposomes to be taken up by cells, they have to be as small as possible (Machy and Leserman 1983, Matthay et al. 1984). The liposomes used in this study were bigger in size; their size varied from < 2 μm to This size factor could have caused hindrance for 8 µm. their uptake by the cells even if they were targeted. Thirdly, the amount of antibody associated with the liposomes may not be quite sufficient for the intended role

214

HAN MY HARA

of targeting. Any combination of these factors could have given rise to results contrary to our expectations. In vitro studies against human melanoma (M₂₁) cells:

Figure 25 and Table 30 represent the growth curve for M_{21} cells. With M_{21} cells, the effectiveness of MTX entrapped only in positively charged liposomes was tested. Results are shown in Table 31. These results are qualitatively similar to what we observed with EL₄ cells. Once again liposome entrapped MTX is less effective compared with free MTX. However, these cells show lesser sensitivity to MTX than EL₄ cells (Table 28). But, in comparison with Caki cells (Table 23), these cells show an increased sensitivity to MTX.


Initial <u>in vivo</u> studies were conducted using both neutral and positively charged MTX liposomes. Mice bearing EL₄ ascites tumor were treated with liposomes at a MTX dose of 5 mg/kg body weight. As can be seen from Table 32, this dose caused a great amount of host toxicity resulting in early death of many of the mice. Marked decrease in weight was one of the criteria used to assign the death as due to toxicity or otherwise. Also the presence or absence of ascites tumor in the dead mice was ascertained by microscopic examination of a smear from the peritoneal cavity. Because of the great toxicity observed at a dose of 5 mg/kg, further experiments were tried by reducing the dose

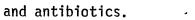

Growth -cı	urve fór	human melanoma (M ₂₁) cells*
1	Time hr	°°No. of cells ±SD
·		
	0 ′	125320 ± 51200
2	24	121400 ± 3120 '
۱ ۳. ۳	51	375040 🏝 21720
7	75	899680 ± 27400
· ·	99	. 119720 ± 36080
12	22	1075480 ± 33680 ,

Table 30.

*Growth medium: RPMI 1640 medium supplemented with 10% fetal bovine serum and antibiotics.

ه ر

Table 31	
Effect of positive methotrexate (MTX) containing	
liposomes on human melanoma (M ₂₁) cells	
	,

3

l,

\$

. ^ı

1

2

ì

\ a

• 0

	Percent inhibition				
Conc. of MTX 、		e MTX	(± SD) • free MTX soln.		
] μg/m]	81.3	(±0.7)	89.9 (±0.9)		
0.6 µg∕ml	75.0	(±1.1)	ND*		
0.3 µg/m1	72.1	(±2.9)	n ND		
0.2 µg∕m1	17.0	(±2.3)	98.0 (±0.5)		
0.1 μg/ml 🔪	0		. 85.4 (±0.3)		
0.01 µg/ml∘ `	' 0		0		

z.A

5

લ્ય

ং

218

*

Treatment	Total No. of mice	Survival days	Mean survival time Days ‡SD	Statistical** significance
Control (untreated)	11	14,15,15,15,17,17,17,18 18,20,28	17.6 ± 3.9	a
Free MTX soln.	6	17,18,18,18,20,24	19.2 ± 2.6	N.S.
Free MTX soln. + positive empty liposome	6 es	14,16,17,18,18,19	17.0 ± 1.8	Ň.S.
Neutral MTX liposomes	້6	9*,10*,13*,20*,26,33	18.5 ± 9.6	N.S.
Positive MTX lipòsomes	• 14	4*,6*,9*,10*,10*,10*,10*,10* 10*,14*,15*,21,22,25,33	14.2 ± 8.2	N,S.

<u>Table 32</u> <u>In vivo</u> evaluation of methotrexate (MTX) containing liposomes in the treatment of EL₄ ascites tumor (Doso of MTX = 5 mg/kg on 14 4 and 7th days I P.)

*death due to toxicity **student's t-test N.S. = not significant

219

3

*~~

of MTX to 4, 3.5 and 3 mg/kg body weight. However, only positively charged MTX liposomes were tested in these and later experiments for the simple reason that these liposomes possessed the advantage of higher encapsulation and they were more effective <u>in vitro</u> than the other types of liposomes. As could be expected, a gradual reduction in the dose brought about a parallel decrease in host toxicity, as evident from the results in Table 33. The toxicity was completely eliminated at the MTX dose of 3.5 mg/kg. Further <u>in vivo</u> evaluations were therefore pursued at this dose level of MTX. It is important to note here that neither the empty liposomes, nor their physical mixture with free MTX solution were toxic. The toxicity was observed only when

At the dose level of 3.5 mg/kg, the positive MTX liposomes were more effective (p <.001) than the free MTX solution (Table 34). An increase of about 22 percent in survival time of tumor bearing mice, was observed. However, there were no long term survivors.

With the hope that equipping the MTX loaded liposomes with tumor specific antibodies might result in improved therapeutic effectiveness, <u>in vivo</u> studies were carried out using positive MTX liposomes coated covalently with AEG. The liposomes coated with NRG served as one of the controls. Results are summarized in Table 35. Contrary to what we expected, MTX liposomes became more toxic when coated with

Toxicity of positive methotrexate (MTX) containing liposomes*

			Ţ.	•
-0	», »	Dose of MTX	% Death Due to Toxicity	•
` .		5 °mġ∕kgĈ	67 - 75	**************************************
·		4.ằang∕kg	4 0	
Ð	*	3.5 mg/kg	° 0	
5		3 mg/kg	Õ	•

Ι.

* Empty liposomes alone or with free MTX soln. were not toxic at 5 mg/kg.

(°

	somes in	Table 34 tion of methotrexate (MTX) the treatment of EL ₄ asic (= 3.5 mg/kg on day 1, 4	tes tumor	• •
Treatment	Total No. of mice	Survival days	Mean survival time Days ±SD	Statistical significance
Control (untreated)	12	16,16,17,17,17,18,18 18,18,19,20,21	, 17.9 ± 1.5	•
Free MTX soln.	6	16,17,17,18,20,21	18.2 ± 1.9	`N.S.
. Positive MŢX liposomes	17 ,	17,18,19,19,19,21,21, 22,22,22,23,23,24,24, 27,28,29	22.2 ± 3.4	p<.001* °

÷,

£

*t-test N.S. = not significant

222

20

TreatmentTotal No. of miceSurvival daysLong term survivors,Statistical** significance1. Control (untreated)1117,17,18,18,18,18,18, 19,20,20,22,25 \cdot \cdot 2. NRG-MTX liposomes1110*,10*,11*,11*,12, 21,22,23,24,35+,35+a2N.S.3. Anti-EL_4-GLOB-119*,11*,20*,21*,22, 9*,11*,20*,21*,22,1N.S.		د 	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
19,20,20,22,25 2. NRG-MTX liposomes 11 10*,10*,11*,11*,12, 2 21,22,23,24,35+,35+a 3. Anti-EL,-GLOB- 11 9*,11*,20*,21*,22, 1 N.S.	No. of	Survival days	term		
21,22,23,24,35+,35+ ^a 3. Anti-EL,-GLOB- 11 9*,11*,20*,21*,22, 1 N.S.	11	17,17,18,18,18,18, 19,20,20,22,25	α. 		, ,
	11	10*,10*,11*,11*,12, 21,22,23,24,35+,35+	2	N.S.	•
MTX lipôsomes 22,23,24,25,26,56+	11	9*,11*,20*,21*,22, 22,23,24,25,26,56+	.] .	N.S.	1 - N - 1
MTX lipdsomes 4. Anti-EL ₄ -GLOB and MTX liposomes		No. of mice 11 11	No. of mice 11 17,17,18,18,18,18, 19,20,20,22,25 11 10*,10*,11*,11*,12, 21,22,23,24,35+,35+ ^a 11 9*,11*,20*,21*,22, 22,23,24,25,26,56+	No. of miceterm survivors,11 $17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 20, 20, 22, 25$ 11 $10*, 10*, 11*, 11*, 12, a$ 11 $10*, 10*, 11*, 11*, 12, a$ 21, 22, 23, 24, 35+, 35+a11 $9*, 11*, 20*, 21*, 22, a$ 11 $9*, 11*, 20*, 21*, 22, a$ 11 $14, 14, 23, 23, 24, 26, a$	Total No. of mice Survival days term survivors Long term significance Statistical significance 11 17,17,18,18,18,18,18, 19,20,20,22,25 1 Statistical significance 11 10*,10*,11*,11*,12, 21,22,23,24,35+,35+ ^a 2 N.S. 11 9*,11*,20*,21*,22, 22,23,24,25,26,56+ 1 N.S. 11 14,14,23,23,24,26, 2 N.S.

*death due to toxicity ¹/₂ **test performed: modified Wilcoxon[®] test (Burdette[®] and Gehan 1970) ^a Mouse, whose survival day is denoted with a númber followed by a plus sign, survived tumor free.

IgG antibodies than they were otherwise; at the dose of 3.5 mg/kg plain MTX liposomes did not cause toxicity. However, there were some long term survivors in mice trèated with specific (i.e. AEG) as well as non specific (i.e. NRG) antibody coated liposomes. Long term survivors were present also in the group of mice treated with the physical mixture of AEG and MTX liposomes. Over all, statistically there was no difference in any of these treatments. On the contrary, coating the liposomes with antibodies resulted in increased host toxicity. The toxicity could not be overcome by reduction in the dose (3 mg/kg). Nor did the increase in dose (4 mg/kg) bring about any increase in the number of long term survivors (see Table 36).

In the <u>in vitro</u> evaluation also, no difference was observed in the effect of MTX liposomes coated with either antibody. In this respect, both <u>in vitro</u> as well as <u>in</u> <u>vivo</u> studies seem to indicate the same thing. In the <u>in</u> <u>vivo</u> studies too, the failure to observe superior activity of targeted MTX liposomes could be attributed to the same set of factors that were discussed under the results of <u>in</u> vitro experiments.

The increased toxicity of MTX entrapped in liposomes could be due to the slow clearance of MTX from the body. The clearance of the MTX could be slowed down, firstly, because of slow release of MTX from the liposomes; only the "free" form of MTX can be eliminated. Secondly, the intra

¢	Treatment [°]	Total No. of mice	Survival days *	Mean sur tim Days		Statıstical** significance	
į,	Control (untreated)	5	14,17,17,17,18	16.6	±1.5	دا .	
2.	NRG-MTX liposomes	5	9*,9*,10*,14*,22	12.87	±5.5	Not different from control (l)	
⁻ 3.	Anti-EL ₄ -GLO8- MTX liposomes	5,	18,20,21,23,28		±3.8	Significantly different from	
D		÷	° ,	•	- - 3	control (1) $(p<0.02)$ and NRG-MTX lipo- some $(p<0.05,$ t-test) but not from phy. mix.	
4.	Anti-EL ₄ -GLOB and MTX ⁴ lipoşomes [.] Phy. mix.	5	່ 11 , 13 , 20 , 27 , 42+	\$	и 5	Not different from control (1)	
×	a	Dose of	MTX = 4 mg/kg on days	; 1, 4 and	7 i.p.		• • •
5.	Control.	4	, 17,20,22,25 ·	21 ±	3,4		
6.	Antî-EL ₄ -GLOB- MTX ₂ liposomes	6 ```	14*,15*,15*,19,23, ~ ° °	18.2 ±	4.1	Not different from control as per t-test	-
*	leath due to toxicity	ct i Rurida	tte and Géhan 1970) w	as perform	ned unle	ss otherwise	-

۰,

Table 36

°o

9

٢.

3

225

°,

3

£

peritoneal route of administration itself could further delay the clearance of MTX. The peritoneal cavity could thus act as reservoir for toxic MTX, releasing it slowly into the lymphatic and blood circulation over a long period of time. Also, the MTX from the peritoneal reservoir, could infiltrate into the surrounding tissues, such as gastrointestinal mucosa and cause intestinal. denudation There is a direct correlation which could be lethal. between the toxicity and the length of time MTX persists in . the body (Chabner and Young 1973). In a trial experiment, we administered MTX liposomes, to normal mice by intravenous route at a dosage of 3.5 mg/kg on day 1, 4 and 7. None of these mice succumbed to toxic death; instead all the mice. survived indefinitely like normal ones. This finding gives credence to the earlier statement that the intraperitoneal route itself could have caused increased toxicity for Though I.P. route is usually safer than the I.V. liposomes. route, this does not seem to hold true as regards to MTX liposomes, which is evident from this investigation and also from other reports (Tyrrell et al. 1976, Freise et al. 1979 and Kaye 1981).

The toxicity which vanished at a dose of 3.5 mg/kg, was restored when the liposomes were conjugated to IgG, be it specific or otherwise. In the absence of the uptake by the EL₄ cells, the antibody coated MTX liposomes could be taken up by the macrophages lining the peritoneal cavity.

226.

This undesired uptake is conceivable because the Fc parts of IgG on, liposomes can interact with Fc receptors on macrophages and trigger phagocytosis. The uptake of toxic MTX liposomes by the macrophages could be suicidal to them. The end result of all this would be to wipe out part of the immune system. Therefore the liposomes with the antibody could have been more toxic to the mice than those without antibody. Further, the toxicity could also be generated by antibody liposome conjugation process.

SECTION 2: SUV LIPOSOMES

Preparation of positively charged SUV containing MTX:

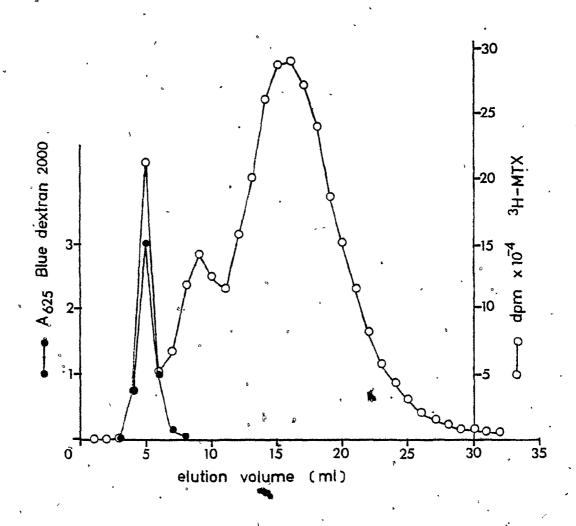
As is common practice, SUVs were prepared by sonication of MLVs: In order to do this, Noth bath as well as probe sonication were attempted. The bath sonication (55000 cycles/sec) was performed at 50-55°C for 60 min. Visual as well as the microscopic examination of these vesicles revealed inefficient breakdown of large liposomes into SUVs. The probe sonication however, proved to be more effective in obtaining the SUVs. In the absence of PDP-SA, the liposome dispersion, became almost clear after probe sonication for 30 min. The increased clarity is an indication of reduction in size of larger MLVs into smaller SUVs. All the SUVs were hence prepared by probe sonication method.

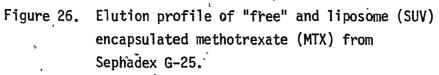
In the presence of PDP-SA, however, the sonicated liposomes were less clear and contained a considerable amount of large liposomes. Large liposomes and probe particles could be eliminated by centrifugation at 22000 x g for 20 min. The difficulty in sonicating the PDP-SA containing liposomes could be due to the altered lipid composition itself. Despite this, it might be possible to overcome the problem by prolonging the time of sonication. Lower encapsulation efficiences (see Table 37) reflect the reduced efficiency of size reduction of PDP-SA liposomes.

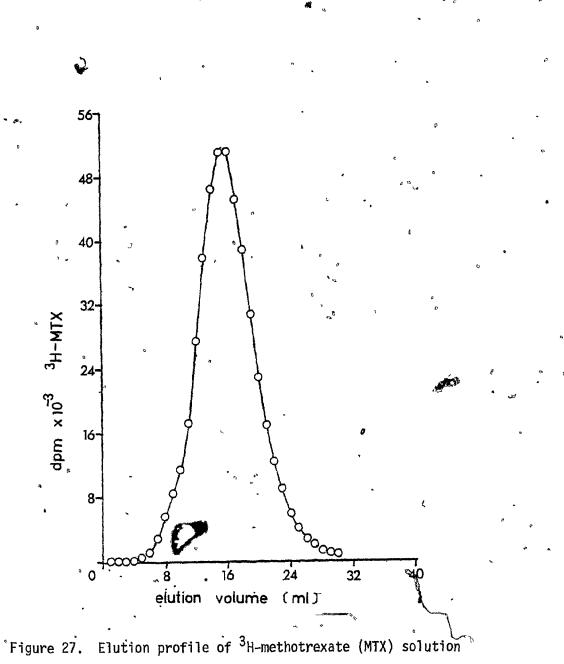
<u>Table 37</u> Encapsulation efficiency of H-methotrexate (MTX) in small unilamellar vesicles (SUV)

Batch No.	SUV		SUV with PDP-SA .
1 2 3	3.24% 1.93%	}	2.2% 0.67% , 1.25%
<u>.</u>	mean 2.59% ±SD 0.93%	1	1.37% 0.77%

. >

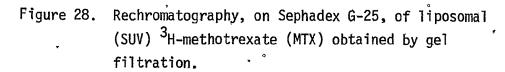

٩.


229


Z

Separation of unentrapped drug from liposomes:

Gels like Sephadex G-25 or G-50 have often been used to separate liposomes from unentrapped drug. Compared to 🕔 dialysis, it is a time saving method. Therefore, we tried this approach first. The results of Sephadex G-25 gel filtration chromatography of the sonicated 3 H-MTX liposomes are seen in Fig. 26. Two distinct peaks are clearly seen in this figure; one in the vold volume as measured by using Blue dextram 2000 and the other in the retarded volume. The peak representing the retarded volume coincided with the peak obtained by chromatography of free MTX solution on the same column (Fig. 27). Fractions in the void volume represent liposomes. These fractions were also visually turbid indjcating the presence of liposomes. The fractions containing the majority of liposomes were pooled. In order to assess the extent of separation of unencapsulated drug, the pooled liposomes were rechromatographed on Sephadex G-25 column: The elution profile in Fig. 28 was obtained as a result of this experiment. The figure gives an indication of the presence of a large quantity of free drug in the liposome sample as shown by a large peak in the retarded volume. In contrast, gel filtration of the liposomes from which the free drug was removed by exhaustive dialysis, showed only one peak at the void volume (see Fig. 29). This clearly shows the absence of any free drug in the liposomes purified by dialysis.



from Sephadex G-25.

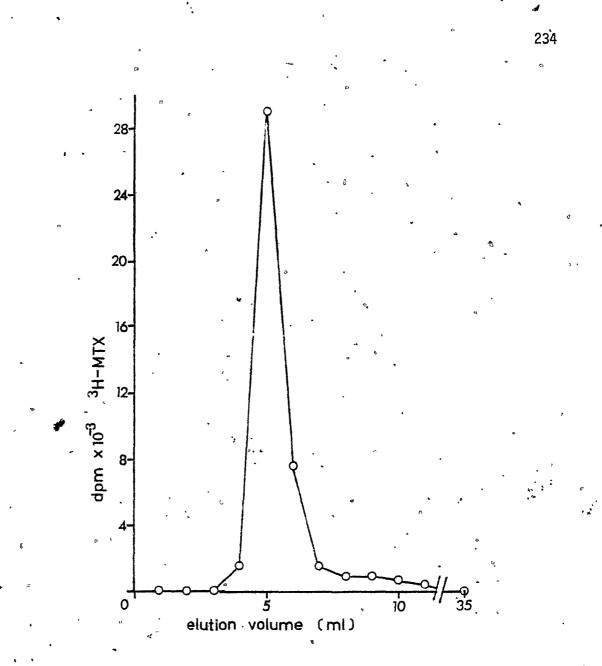


Figure 29. Sephadex G-25 elution profile of liposomal (SUV) 3 H-methotrexate (MTX) obtained by dialysis.

tes to Ball stands R was

The presence of contamination as free drug in liposomes purified by gel filtration is also evident from the high encapsulation efficiency (9.1%) obtained for these SUV. This value, arrived at by comparing the area under the peaks in Fig. 26 is quite high for SUVs. On the other hand, the encapsulation efficiency (1.4%) for dialysed liposomes conforms well to the literature value for SUVs. Although gel filtration should cause no problem in removing the free drug, the method proved unsatisfactory in our case. The type of gel and height of the column could be the possible factors for such inefficiency. These results thus prove that dialysis is the best way to get rid of free drug from sonicated liposomes.

Covalent coupling of IgG to liposomes Coupling reaction

The principle of our method of binding IgG to SUVs is the same as that described by Barbet <u>et al</u>. (1981). The presence of PDP-SA in liposomes and of PDP groups on IgG molecules makes the thiol disulfide exchange reaction possible. Because of this reaction, IgG binds covalently to SUV liposomes as is the case with REV liposomes. Separation of antibody coated SUV from unbound antibody . This step of separating antibody coated liposomes from

•unbound antibody is quite different for SUV and REV liposomes. REV liposomes, because of their bigger size can . easily be sedimented by high speed centrifugation. In

contrast, SUV's being very small in size, are difficult to sediment by this technique. Ultracentrifugation could perhaps cause settling of SUVs, but, is very difficult to redisperse the resulting pellet. Hence, unlike for REV liposomes, the technique of centrifugation for separation of unbound antibody was dispensed with for SUVs.

. Many investigators have used the technique of gel filtration through appropriate gels for isolation of liposomes and antibody. Hence we tried two different gels, namely, Sephacryl S-400 superfine and Sepharose 4B for this Based on theoretical considerations (i.e. their purpose. fractionation range) both these gels should be able to resolve liposomes and IgG. As expected, liposomes and IgG[,] are well resolved when passed through these columns (see Fig. 30,31). Unfortunately, when the liposome antibody reaction mixture was run through the columns both the column's failed to separate the liposomes from unbound IgG: A plausible explanation for this could be the aggregation of liposomes upon binding of IgG to them. Such aggregated liposomes could physically be trapped on the column. The problem of aggregation has been observed by other . investigators also (Jou et al. 1984, Matthay et al. The concentration of "the protein, i.e. antibody, is 1984). one of the factors responsible for aggregation. The higher the protein concentration, the higher the degree of aggregation. Aggregation has been overcome by many

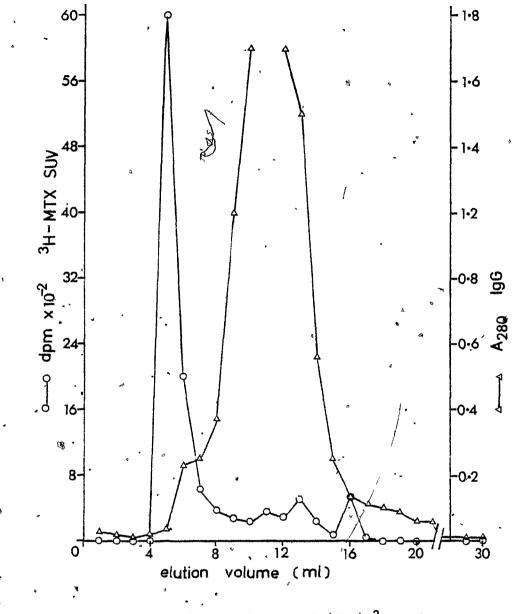
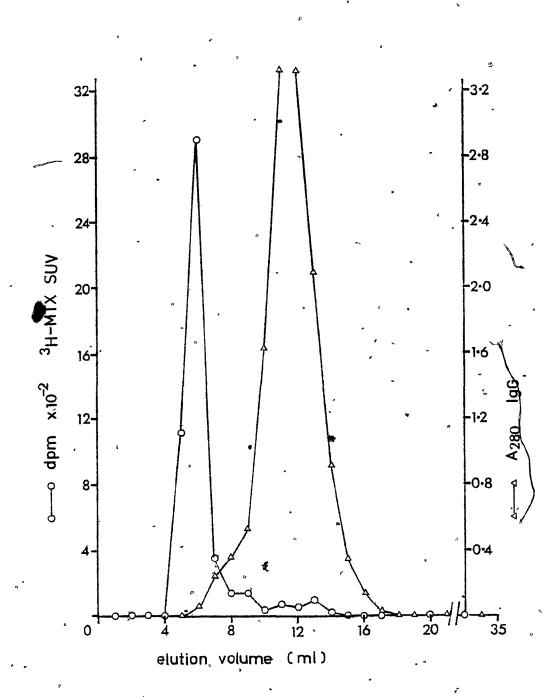
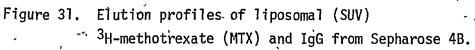




Figure 30. Elution profiles of liposomal (SUV) ³H-methotrexate (MTX) and IgG from Sephacryl S-400.

ł

237

investigators by the use of low amounts of antibody for binding to liposomes. However, in almost all of those instances the antibody used was monoclonal. The monoclonal antibodies are supposed to possess exceptionally high specificity. In our case, the antibody used was a polyclonal one which has poor specificity compared to the monoclonal type. Therefore, it was necessary for us to have a higher concentration of IgG in our coupling reaction mixture to compensate for the lower specificity of our polyclonal antibodies.

Ficoll floatation centrifugation

<u>j</u>r

This technique had been used by Shen <u>et al</u>. (1982) for separation of liposomes from unbound antibody. Fraley <u>et al</u>. (1980) had used a similar technique to isolate liposomes from unencapsulated DNA. We tested the feasibility of this approach, at first using plain liposomes and then the experiments were conducted using antibody liposome reaction mixture. Results of these experiments are shown in Table 38. Examination of this table implies that the position of the liposomes in the Ficoll gradient depends on the concentration of protein associated with them. If the protein concentration is high (4.3 mg/ml) the liposomes settle to the bottom of the gradient. An intermediate concentration causes the liposomes to band between 10% Ficoll and 12.5% Ficoll. At low concentration, however, the liposomes float on top[®] of 10% Ficoll below 0.5% NaHCO₃.

Ļ	x ' <i>c</i>	.* ,	ب		. •
		×	Ŧ	· ·	,
	Ficoll floa	<u>Ta</u> tation centrifug	<u>ble 38</u> ation of antibody	bound liposom	es . ,
1	Amount (mg) of protein (IgG)'per ml of liposome in the reaction mixture	with Actual obtained	in (IgG) associate liposomes Corrected* mg/m1	band	on of liposome-IgG in the density ient following ntrifugation
~	15.45 - 15.95	18.69 - 19.57	4. 30 4.50	Bottom	i.e. settles to ttom
	10.50 - 10.70	1.75`- 1.80**	2.63 - ,2.70	Middle Middle No% an	i.e. between. d 12.5% Ficoll
4. 42	5.25 - 7:98 .	1.25 - 1.80	1.02 - 1.40	. Top i. 10% Fi	e. between 0% and coll _*
، هم	*Corrected to the original **It was difficult to separ	volume of liposo ate and get a mo	mes in the reaction re concentrated ba	on mixture. and of liposom	e-IgG.
`~~``		· · ·		2	· · · ·
•	• • •		, ~ , , , , , , , , , , , , , , , , , ,		/

This phenomenon of varying degree of floatation can easily be explained by the fact that increasing the concentration of protein with liposomes gives rise to increase in density.

The concentration of protein present in liposomes depends upon the amount of liposomes and IgG in the reaction mixture. At our ideal experimental conditions (i.e. when encapsulation efficiency of SUVs was 2.2%), 2 volumes of SUVs reacted with 1 volume of IgG solution (10 mg/m]), liposomes floated on top of the Ficoll after centrifugation. Under the same conditions, when the binding was performed using 1 volume of SUV and 1 volume of antibody, liposomes either banded between, 10 and 12.5% Ficoll or settled to the bottom after centrifugation, depending on protein concentration. We were interested in liposomes which could float on 10% Ficoll, so that they can be separated from . cells, in the binding studies. Therefore, to obtain such liposomes, we always used 2 volumes of liposome and 1 volume of antibody in coupling experiments.

Although the antibody bound liposomes floated on 10% Ficoll, when observed under the microscope, these liposomes showed the presence of aggregates. Attempts were made to break these aggregates by forcing the preparation through 0.4 µm polycarbonate filter. Extreme difficulty was experienced during this filtration and whatever little filtrate was obtained was devoid of liposomes. In other words, liposomes were trapped by the filter itself. A problem such as this was also observed by Matthay <u>et al</u>. (1984). These authors attributed this problem to the higher protein concentration. Consistent with this notion, we had no difficulty in filtering SUV liposomes with no antibody through the 0.4 μ m filter. As mentioned earlier, because we needed higher amounts of protein associated with the liposome, we could not avoid the formation of aggregates. <u>Liposomes binding studies with melanoma cells</u>

These experiments were conducted with human melanoma (M₂₁) cells similar to those done with the REV liposomes. It was thought that in the former binding studies, because of the larger size of REV liposomes, some unbound liposomes might have settled along with the cells. This might have masked the increased binding of specific antibody coated liposomes to target melanoma cells. It was anticipated that the use of SUV liposomes, because of their smaller size, would overcome this problem. Another reason for conducting experiments with SUV liposomes was the recent finding that small liposomes are better than large liposomes for intracellular drug delivery (Machy and Leserman 1983).

The results of the binding studies with antibody coated SUV liposomes are presented in Table 39. These results, when compared to results obtained with REV liposomes (Table 21) suggest that liposomes bind to cells as a function of their size. The REV liposomes bound more than SUV liposomes to melanoma cells. As observed earlier, the

Sample.	Percent of added radioactivity associated with cells ±SD		
Positive MTX liposomes	3.44 ±0.20		
NRG-MTX liposomes	21.44 ±0.94		
AMG-MTX liposomes	5.02 ±1.12		

<u>Table 39</u> Binding of antibody coated methotrexate (MTX) containing liposomes (SUV) by human melanoma cells Time of incubation = 2 hr Temp. = 37°C x.

....

1 Ť

ł

mere presence of antibody on liposomes, further increased their binding to cells. However, unlike what was expected, these results once again fail to show any targeting, i.e. increased binding of liposomes coated with specific antibody. It is difficult to envisage a specific cause for these unexpected results. A possible reason could be the presence of aggregates in the liposomes. The aggregates might behave similar to REV liposomes and also could magnify the problem by getting enmeshed between cells.

Thus, the drawbacks associated with REV liposomes could not be overcome by SUV liposomes. Hence the cell specific targeting of antibody coated liposomes could not be observed. Further experiments, perhaps with monoclonal antibodies, might shed some light on this aspect. The high specificity of monoclonals should permit them to be used in just microgram quantities in these type of experiments. As evident from many published reports, at such small protein concentration, the aggregation of liposomes could be completely eliminated.

SUMMARY AND CONCLUSION

o

١

1 4

٢

SUMMARY AND CONCLUSION

Studies with triamcinolone acetonide liposomes

The original objective of this study was to evaluate the effect of charge, size and lipid composition of triamcinolone acetonide (TRMA) liposomes on drug disposition. However, when attempts were made to prepare liposomes containing TRMA, it became clear that the encapsulation of TRMA was very low. Different approaches, such as alteration in lipid composition, change in swelling medium or method of preparation, etc. were tried to improve the liposomal incorporation of TRMA: Despite these attempts it was virtually impossible to get the required 0.1% w/v concentration of TRMA incorporated into the liposomes. In the light of these findings, the objective of the project was changed to improving the liposomal incorporation of TRMA by chemical modification. Prèvious investigations (Shaw ; et al. 1976) indicated that attaching a lipophilic chain to a corticosteroid (cortisol) improved the efficiency of liposomal encapsulation. On this basis we decided to prepare and test the palmitate ester of TMRA. The synthesis of this compound, triamcinolone acetonide-21-palmitate (TRMA-P) has not been previously reported. To obtain a high yield of TRMA-21- palmitate, suitable synthesis and purification procedure were developed in our laboratory. The product of the synthesis was characterized by IR, NMR

and elemental analysis. Results of the encapsulation studies with TRMA-P demonstrate a great improvement in the incorporation brought about by palmitoylation. The palmitate derivative was almost completely taken up into the liposomes proving the hypothesis that palmitoylation could enhance the liposome encapsulation of drugs (Goundalkar and Mezei 1984).

247

Studies with methotrexate liposomes

The main purpose of these studies was to investigate the in vivo and in vitro anticancer effect of MTX entrapped in liposomes with or without covalently linked antitumor antibodies. The reverse phase evaporation (REV) method was adopted to achieve higher encapsulation of MTX The sonication method was used to within the liposomes, prepare small unilamellar MTX liposomes which were used only in interaction studies with cells. Entraphent studies with REV liposomes indicated maximum entrapment of MTX when the liposomes had a positive surface charge. Other characterization parameters that were tested for the REV liposomes included their size and drug release pattern. These liposomes were found to be quite stable even in the presence of fetal calf serum, presumably due to the high cholesterol concentration associated with them.

To prepare targeted liposomes, antibodies were linked to them covalently. The reactive PDP-derivative of a lipid, needed for this purpose, had to be synthesized as it was not

. ***.**.,

available commercially. Our attempts to synthesize PDP-PE and PDP-DPPE by reported methods failed to provide these derivatives in sufficient quantities. However, we have synthesized a new lipid derivative with a high yield, namely PDP-SA. The chemical structure of the PDP-SA was verified by IR, NMR and elemental analysis. . Using PDP-SA, we investigated two different methods of covalent binding of antibodies to liposomes. We also tested ECDI method (Endoh et al. 1981) of binding of IgG to liposomes. Our results indicated high efficiency of binding only with the method of Barbet et al. (1981). The binding procedure $^{-\prime}$ did not cause any substantial reduction in the activity of • the antibody when tested by radioimmunoassay (Goundalkar We, therefore, followed this procedure et al. 1984a). to prepare antibody coated liposomes for further tests.

The results of our interaction studies with human melanoma cells showed increased binding of MTX liposomes to cells when they were coated with antibodies. This was observed both with REV and SUV liposomes. The examination by microscopy of the samples stained by membrane immunofluorescence revealed that larger numbers of liposomes bound to melanoma cells when liposomes were linked to anti-melanoma IgG than when they were linked to non-specific IgG (Goundalkar <u>et al.</u> 1984b). However, such specific binding could not be quantitated by radio tracer technique

even with SUV liposomes. The failure to quantitate the specific binding of targeted liposomes has been attributed to such factors as low specificity of antibodies, the aggregating nature of liposomes and cells, etc. More refined studies, preferably using monoclonal antibodies, would be necessary to confirm the antibody mediated targeting of liposomes to cells in vitro.

. In vitro cytostatic studies using three different cell lines, Caki-1, EL_4 lymphoma and melanoma (M₂₁), gave qualitatively similar results. MTX was less effective in inhibiting the growth of cancer cells when encapsulated vin liposomes. The diminished cytostatic effect was attributed to the slow release of MTX from liposomes and also the inability of cells to take up the REV liposomes. Among the three types of liposomes tested, positively charged MTX liposomes appear to be superior to the other two types in their growth inhibitory effect. Coating the REV MTX liposomes with antitumor antibodies did not improve their in vitro performance. When tested against EL_A cells, there was no difference in the cytostatic effect of MTX liposomes coated with anti-EL $_{\Delta}$ IgG and normal rabbit IqG.

Mouse EL₄ lymphoma (ascites tumor) tumor model was used for the <u>in vivo</u> anticancer evaluation of MTX ~.' liposomes (Ghose <u>et al</u>. 1984). The route of administration was intraperitoneal. MTX, when incorporated in REV liposomes, exhibited high host toxicity while empty

liposomes alone or mixed with the solution of MTX did not show such toxicity. The toxicity was found to be dose dependent. At, or below, the dose level of 3.5 mg/kg no toxicity was observed and further in vivo studies were conducted at this dose level using positively charged MTX liposomes. Our results have shown a statistically significant increase in surviyal of tumor bearing mice when treated with positively charged MTX liposomes at the 3.5 Though statistically significant, this increase ma/ka dose. was only marginal. However, for reasons unknown, the toxicity reappeared when MTX liposomes were coated with antibodies, antitumor or otherwise, and it persisted even at the dose level of 3 mg/kg. There were a few long term survivors in mice treated with 3.5 mg MTX/kg of antibody* liposome conjugates. No such long term survivors were present in mice treated with unconjugated MTX liposomes. However, over all, there was no statistical difference between treatment and controls in the experiments with antibody coated liposomes.

In conclusion, our studies did not show selectivity in A the action of liposome encapsulated drug in cancer therapy. However, it would be inappropriate to extrapolate these findings to other drugs in general. The action of drugs encapsulated in liposomes is governed by several factors such as route of administration, properties unique to the

drug itself, specificity of the antibodies (in the case of targeted liposomes), properties of the liposomes, etc. Our <u>in vitro</u> and <u>in vivo</u> anticancer studies were done using relatively large REV liposomes and less specific polyclonal antibodies. Use of SUV and monoclonal antibodies may provide favorable results in this regard.

n REFERENCES

REFERENCES

Abra RM, Bosworth ME, Hunt CA. Liposome disposition <u>in</u> <u>vivo</u>: effects of pre-dosing with liposomes. Res Commun Chem Pathol Pharmacol 1980; 29(2):349-360.

Abra RM, Hunt CA. Liposome disposition in vivo III. Dose and vesicle size effects. Biochim Biophys Acta 1981;666:493-503.

Abra RM, Hunt CA. Liposome disposition <u>in vivo</u> IV: The interaction of sequential doses of liposomes having different diameters. Res Commun Chem Pathol Pharmac 1982; 36(1):17-31.

Abra RM, Hunt¹³CA, Fu KK, Peters JH. Delivery of therapeutic doses of doxorubicin to the mouse lung using lung accumulating liposomes proves unsuccessful. Cancer Chemother Pharmacol 1983; 11:98-101.

Abraham I, Goundalkar A, Mezei M. Effect of liposomal surface charge on the pharmacokinetics of an encapsulated model compound. Biopharm Drug Dispos 1984 (in press).

Adams DH, Joyce G, Richardson VJ, Ryman BE, Wisniewski HM. Liposome toxicity in the mouse central nervous system. J Neurolog Sci 1977; 31:173-179.

Allen TM, Cleland LG. Serum induced leakage of liposome contents. Biochim Biophys Acta 1980; 597:418-426.

Allen TM. A study of phospholipid interactions between high-density lipoproteins and small unilamellar vesicles. Biochim Biophys Acta 1981; 640: 385-397.

Allen TM, McAllister L, Mansolf S, Gyorffy E. Liposome-cell interactions. A study of the interactions of liposomes containing entrapped anti-cancer drugs with the EMT6, S49 **#** and AE₁ (Transport-deficient) cell lines. Biochim Biophys Acta 1981; 643:346-362.

Allen TM, Everest JM. Effect of liposome size and drug release properties on pharmacokinetics of encapsulated drug in rats. J Pharmacol Exptl Therap 1983; 226(2):539-544.

Alpar OH, Bamford JB, Walters V. The in vero incorporation and release of hydroxocobalamin by liposomes. Int J Pharm 1981; 7:349-351. Alving CR, Richards RL. Immunologic aspects of liposomes. In: Ostro MJ ed. Liposomes. New York: Marcel Dekker, 1983:209-288.

Anonýmous. Inpharma 1984; No. 421 (28 Jan):}6-17.

Arakawa E, Imai Y, Kobayashi H, Okumura K, Sezaki H. Application of drug-containing liposomes to the duration of the intramuscular absorption of water soluble drugs in rats. Chem Pharm Bull 1975; 23(10):2218-2222.

Arrowsmith M, Hadgraft J, Kellaway IW. The <u>in vitro</u> release of steroids from liposomes. Int J Pharm 1983; 14:191-208.

Baldwin RW. Monoclonal antibodies for drug targeting in cancer therapy. Pharm Int 1983; 4(6):137-140.

Baldwin RW, Pimm MV. Antitumor monoclonal antibodies for radioimmunodetections of tumors and drug targeting. Cancer Metastasis Rev 1983; 2:89-106.

Bali A, Dhawan S, Gupta CM. Stability of liposomes in circulation is markedly enhanced by structural modification of their phospholipid component. FEBS Lett 1983; 154(2):373-377.

Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13:238-252.

Bangham AD, Hill MW, Miller NGA. Preparation and use of liposomes as models of biological membranes. In: Korn ED, ed. Methods in Membrane Biology. Vol. 1 New York: Plenum press, 1974:1-68.

Banker GS, Anderson NR, Kildsig DO. The future of pharmacotherapeutics; trends in drugs, dosage forms and drug delivery. Pharm Int 1983; 4(1):9-12.

Barbet J, Machy P, Leserman LD. Monoclonal antibody covalently couplied to liposomes: Specific targeting to cells. J. Suptramolec Struct Cell Biochem 1981; 16:243-258.

Barenholz Y, Gibbes D, Litman BJ, Goll J, Thompson TE, Carlson FD. A simple method for the preparation of homogeneous phospholipid vesicles. Biochemistry 1977; 16(12):2806-2810. Barza M, Baum J, Szoka F Jr. Pharmacokientics of subconjunctival liposome encapsulated gentamycin in normal rabbit eyes. Investig Ophthalmol Vis Sci 1984; 25:486-490.

Batzri S, Korn ED. Single bilayer liposome's prepared without sonication. Blochim Biophys Acta 1973; 298:1015-1019.

Bauminger S, Wilchek M. The use of carbodifmides in the preparation of immunizing conjugates. In: Colowick SP, Kaplan NO, eds. Methods in Enzymology Vol. 70, New York Academic press, 1980:151-159.

Beaumier PL, Hwang KJ, Slattery JT, Effect of liposome dose on the elimination of small unilamellar sphingomyelinkcholesterol vesicles from the circulation. Res Commun Chem Pathol Pharmacol 1983; 39(2):277-289.

Blair AH, Ghose TI. Linkage of cytotoxic agents to immunoglobulins. J Immunol Methods 1983; 59:129-143.

Bonventre PF, Gregoriadis G. Killing of intraphagecytic <u>Staphalococcus</u> <u>aureus</u> by Dihydrostreptomycin entrapped within liposomes. Antimicrob Agents Chemother 1978; 13(6): 1049-1051.

Bosworth ME, Hunt CA. Liposome disposition in vivo II Dose dependency. J Pharm Sci 1982; 71(1):100-104.

Bosworth ME, Hunt CA, Pratt D. Liposome dialysis for improved size distributions. J Pharm Sci 1982; 71(7):806-812.

Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248-354.

Bragman KS, Heath TD, Papahadjopoulos D. Simultaneous interaction of monoclonal antibody-targeted liposomes with two receptors on K562 cells. Biochim Biophys Acta 1983; 730(2):187-195.

Breithaupt H, Kuenzlen E, Goebel G. Rapid High Pressure Liquid Chromatographic Determination of Methotrexate and its metabolites 7-Hydroxymethotrexate and 2,4-Diamino-N¹⁰methylpteroic acid in biological fluids. Anal Biochem 1982; 121:103-113. Brunner J, Skrabal P, Hauser H. Single bilayer vesicles prepared without sonication. Physicochemical properties. Biochim Biophys Acta 1976; 455:322-331.

Burdette WJ, Gehan EA. Planning and analysis of clinical studies, Springfield, Illinois: Charles C. Thomas, 1970:72-78.

Buschl R, Ringsdorf H, Zimmermann U. Electric field induced fusion of large liposomes from natural and polymerizable lipids. FEBS Lett 1982; 150(1):38-42.

Carlsson J, Drevin H, Axen R. Protein thiolation and reversible protein-protein conjugation. N-succininidyl 3-(2-pyridyldithio) propionate, a new heterobifunctional reagent. Biochem J 1978; 173:723-737.

Carraway KL, Koshland DE Jr. Carbodiimide modification of proteins. In: Colowick SP, Kaplan NO. eds. Methods in Enzymology Vol. 25, New York: Academic press, 1972:617-623.

Chabner BA, Young RC. Threshold methotrexate concentration for <u>in vivo</u> inhibition of DNA synthesis in normal and tumorous target tissues. J Clin Invest 1973; 52:1804-1811.

Chabner, Cowan, Ozols, Myers. Overcoming drug resistance in the treatment of cancer. Am Pharm 1984; NS 24(4):12-14.

Chander A, Claypool WD Jr, Strauss III JF, Fisher AB. Uptake of liposomal phosphatidylcholine by granular pneumocytes in primary culture. Am J Physiol 1983; 245(5):C397-C404.

Chapman WL Jr, Hanson WL, Alving CR, Hendricks LD. Antileishmanial activity of liposome encapsulated meglumine antimonate in the dog. Am J Vet Res 1984; 45(5):1028-1030.

Chard T. An introduction to Radioimmunoassay and related techniques. In: Work TS, Work de eds. Laboratory Techniques in Biochemistry and Molécular Biology, Vol. 6, Part 2, Amsterdam: Elsevier Biomedical Press, 1982:51-71.

Chen C, Schullery SE. Gel filtration of egg phosphatidylcholine vesicles. J Biochem Biophys Methods 1979; 1:189-192. Chen ML, McGuire WP, Lad TE, Chiou WL. A specific HPLC assay to determine the pharmacokinetics of methotrexate in patients. Int J Clin Pharmacol Ther Toxicol 1984; 22(1):1-6.

Conner CS. Therapy with monoclonal antibodies. Drug Intell -Clin Pharm 1984; 18(1):65-66.

Coune A, Sculier JP, Fruhling J <u>et al</u>. IV administration of a water-insoluble antimitotic compound entrapped in liposomes. Preliminary report on infusion of large volumes of liposomes. Preliminary report on infusion of large volumes of liposomes to man. Cancer Treat Reports 1983; 67(11):1031-1033.

Counsell RE, Pohland RC. Lipoproteins as potential site-specific delivery systems for diagnostic and therapeutic agents. J Med Chem 1982; 25(10):1115-1120.

Crommelin DJA, Slaats N, van Bloois L. Preparation and characterization of doxorubicin containing liposomes: I. Influence of liposome charge and pH of hydration medium on loading capacity and particle size. Int J Pharm 1983; 16:79-92.

Damen J, Dijkstra J, Regts J, Scherphof G. Effect of lipoprotein-free plasma on the interaction of human plasma high density lipoprotein with egg yolk phosphatidylcholine liposomes. Biochim Biophys Acta 1980; 620:90-99.

Dapergolas G, Gregoriadis G. Hypoglycemic effect of liposome-entrapped insulin administered intragastrically into rats. Lancet 1976; II, Part 2 (7990):824-827.

Davis SS, Illum L. Drug delivery systems. Practitioner .1983; 227:153%-1543.

Deamer D, Bangham AD. Large volume liposomes by an ether vaporization method. Biochim Biophys Acta 1976; 443:629-634.

Deamer DW. Preparation and properties of ether-injection liposomes. Ann NY Acad Sci 1978; 308:250-258. de Duve C. Lysosomotropic agents as drugs and carriers for drugs. In: Bearn AG, ed. Better therapy with existing drugs: New uses and delivery systems. Rahway, New Jersey: Merck Sharp and Dohme International, A division of Merck and Co., Inc. 1981:119-132.

Defrise-Quertain F, Chatelain P, Ruysschaert, Delmelle M. Spin label partitioning in lipid vesticles. A model study for drug encapsulation. Biochim Biophys Acta 1980; 628:57-68.

Deligonstantinos G, Ramantanis G, Todorou DK. Interaction of ^{99m}TC-labelled liposomes with Walker tumor cells <u>in</u> <u>vitro</u>. Liposome mediated introduction of thaliblastine into resistant Walker tumor cells. Gen Pharmac 1983; 14(4):407-411.

Deshmukh DS, Bear WD, Brockerhoff H. Can intact liposomes be absorbed in the gut? Life Sci 1981; 28:239-242.

Desiderio JV, Campbell SG. Intraphagocytic killing of Salmonella typhimurium by liposome-encapsulated cephalothin. J Infect Dis 1983; 148(3):563-570.

Desnick RJ, Fiddler MB, Douglas SD, Hudson LDS. Enzyume therapy XI: Immunologic considerations for replacement therapy with unentrapped, erythrocyte- and liposome entrapped enzymes. In: Gatt S, Fraysz L, Mandel P eds. Adv Exp Med Biol Vol. 101, New York: Plenum press, 1978:753-764,

Diamanti E, Bianchi GE. New esters of triamcinolone acetonide for topical antiphlogistic use. Arzneim Forsch (Drug Res) 1971; 21(2):251-252.

Dimitriadis G. Introduction of ribonucleic acids into cells by means of liposomes. Nucleic Acids Res 1978; 5(4):1381-1386.

Dingle JT, Gordon JL, Hazleman BL <u>et al</u>. Novel treatment for joint inflammation. Nature 1978; 271:372-373.

Dunnick JK, McDougall IR, Aragon S, Goris ML, Kriss JP. Vesicle interactions with polyamino acids and antibody: <u>in</u> <u>vitro</u> and <u>in vivo</u> studies. J Nucl Med 1975; 16(6):483-487. Duzgunes N, Wilschut J, Hon'g K <u>et al</u>. Physicochemical characterization of large unilamellar phospholipid vesicles prepared by reverse-phase evaporation. Biochim Biophys Acta 1983; 732(1):289-299.

Ellens H, Morsett H, Scherphof G. <u>In vivo</u> fate of large unilamellar sphingomyelin-cholesterol liposomes after peritoneal and intravenous injection into rats. Biochim Biophys Acta 1981; 674:10-18.

Endoh H, Suzuki Y, Hashimoto Y. Antibody coating of liposomes with l-ethyl-3-(3-dimethylaminopropyl) carbodiimide and the effect on target specificity. J Immunol Methods, 1981; 44:79-85.

Enoch HG, Strittmatter P. Formation and properties of 1000 A diameter, single bilayer phospholipid vesicles. Proc Natl Acad Sci USA 1979; 76(1):145-149...

Erlanger BF. The preparation of antigenic hapten-carrier conjugates: a survey. In: Colowick SP, Kaplan NO eds. Methods in Enzymology vol. 70, New York: Academic press, 1980:85-105.

Eytan GD, Broza R, Notsani B-E, Dáchir D, Gad AE. Interactions of acidic liposomes with red blood cells. Induction of endocytosis and shedding of pasticles. Biochim Biophys Acta 1982; 689:464-474.

Fendler JH, Romero A. Liposomes as drug carriers. Life Sci 1977; 20:1109-1120.

Fendler JH. Optimizing Drug Entrapment in Liposomes. Chemical and Biophysical Considerations. In: Gregoriadis G, Allison AC, eds. Liposomes in Biological Systems. New York: John Wiley and Sons, 1980:87-98.

Fendler JH. Membrane Mimetic Chemistry. 'Chem Eng N 1984; 62(1):25-38.

Fernandez MS. Determination of surface potential in liposomes. Biochim Biophys Acta 1981; 646:23-26.

Fidler IJ; Raz A, Fogler WE, Poste G. Pulmonary localization of intravenously injected liposomes. Recent Results Cancer Res 1980; 75(2):246-251. Fildes FJT, Oliver JE. Interaction of cortisol-21-palmitate with liposomes examined by differential scanning calorimetry. J Pharm Pharmacol 1978; 30::337-342.

Firth G, Oliver AS, McKeran RO. Studies on the use of antimitotic drugs entrapped within liposomes and of their action on a human glioma cell line. J Neurol Sci 1984; 63:153-165.

Florey K. Triamcinolone acetonide. In: Florey K ed. Analytical Profiles of Drug substances. Vol. 1, New York: Academic Press, 1972:397-421.

Florey K. Methotrexate. In: Florey K. ed. Analytical Profiles of Drug substances Vol. 5, New York: Academic press, 1976:283-305.

Foong WC, Green KL. Pharmacokinetics of liposome sontrapped methotrexate injected into arthritic joints. J Pharm Pharmacol 1983; 35:84P.

Forssen EA, Tokes ZA. Use of anionic liposomes for the reduction of chronic doxorubicin-induced cardiotoxicity. Proc Natl Acad Sci USA 1981; 78(3):1873-1877.

Forssen EA, Tokes ZA.³ Attenuation of dermal toxicity of doxorubicin by liposome encapsulation. Cancer Treat Reports 1983a; 67(5):481-483.#

Forssen EA, Tokes ZA. Improved therapeutics beperits of doxorubicin by entrapment in anionic liposomes. Cancer Res 1983b; 43:546-550.

Fountain MW, Chiovetti R Jr, Kercret H, Parrish DO, Segrest VP. Liposome-cell interactions. A rapid assay for cells in suspension culture. Biochim Biophys Acta 1980a; 596:420-425.

Fountain MW, Pedersoli WM, Ganjam VK, Ravis WR. Phosphatidylcholine-Digoxin liposome drug delivery vehicle: An evaluation of the intramuscular route of administration in dogs. Curr Ther Res 1980b; 28(4):558-561.

Fraley R, Subramani S, Berg P, Papahadjopoulos D. Introduction of liposome-encapsulated SV₄₀ DNA into cells. J Biol Chem 1980; 255(21):10431-10435. Fraley R, Papahadjopoulos D. New generation liposomes: the engineering of an efficient vehicle for intracellular delivery of nucleic acids. TIBS 1981; 6(3):77-80.

Freise J,Schmidt FW, Magerstedt P. Effect of liposome entrapped methotrexate on Ehrlich ascites tumor cells and uptake in primary liver cell tumor. J Cancer Res Clin Oncol-1979; 94:21-27.

Freise J, Muller WH, Brolsch C, Schmidt FW. <u>In vivo</u> distribution of liposomes between parenchymal and non parenchymal cells in rat liver. Biomedicine 1980; 32:118-123.

Frokjaer S, Hjorth EL, Worts O. Stability and storage of liposomes. In: Bundgaard H, Hansen AB, Kofod H eds. Optimization of drug delivery. Alfred Benzon Symposium 17. Munksgaard, Copenhagen 1982:384-401.

Fukuzawa K, Tokumura A, Ouchi S, Tsukatani H. Antioxidant activities of tocopherols on Fe²⁺-ascorbate induced lipid peroxidation in lecithin liposomes. Lipids 1982; 17(7):511-513.

Ganapathi R, Krishan A. Effect of cholesterol content of liposomes on the encapsulation, efflux and toxicity of adriamycin. Biochem Pharmacol 1984; 33(4):698-700.

Gasiorowski-Mauroy ME. Topical steroids in the treatment of common dermatoses. Copmpr Ther 1981; 7(1):8-12.

Ghose T, Blair AH. Antibody linked cytotoxic agents in the treatment of cancer: current status and future prospects. J Natl Cancer Inst 1978; 61(3), 657-676.

Ghose TI, Blair AH, Kulkarni PN. Preparation of antibody-linked cytotoxic agents. In: Colowick SP, Kaplan NO, eds. Methods in Enzymology Vol. 93 New York: Academic Press, 1983:280-333.

Ghose T, Blair AH, Uadia P, Kulkarni PN, Goundalkar A, Mezei M, Ferrone S. Antibodies as carriers of cancer chemotherapeutic agents. Ann NY Acad Sci 1984 (in press).

Godfrey W, Doe B, Wallace EF, Bredt B, Wofsy L. Affinity targeting of membrane vesicles to cell surfaces. Exp Cell Res 1981; 135:137-145.

Goldmacher VS. Immobilization of protein molecules on liposomes. Anchorage by artificially bound unsaturated hydrocarbon tails. Blochem Pharmacol 1983; 32(7):1207-1210.

Goll J, Carlson FD. Photon correlation spectroscopic study of the size distribution of phospholipid vesicles. Biophy J 1982; 38(1):7-13.

Goundalkar A, Mezei A. Chemical modification of triamcinolone acetonide to improve liposomal encapsulation. J Pharm Sci 1984; 73(4):834-835.

Goundalkar A, Ghose T, Mezei M. Covalent binding of antibodies to liposomes using a novel lipid derivative. J Pharm Pharmacol 1984a; 36:465-466.

Goundalkar A, Mezei M, Ghose T. Preparation of targeted liposomes and their interaction with human melanoma cells. (Abstract) Clin Biochem 1984b; 17:209.

Guey-Shuang WU, Stein RA, Mead JF. Autoxidation of phosphatidylcholine liposomes. Lipids 1982; 17(6):403-413.

Gulasekharam V. Liposomes for selective delivery of drugs in topical routes of administration. [Master's Thesis]. Halifax, Nova Scotia: Dalhousie University, 1980.

Guo LSS, Hamilton RL, Goerke J, Weinstein JN, Havel RJ. Interaction of unilamellar liposomes with serum lipoproteins and apolipoproteins. J Lipid Res 1980; 21:993-1003.

Green KL, Foong FC. The stability of methotrexate liposomes in rheumatoid synovial fluid. J Pharm Pharmacol 1983; 35:93P.

Gregoriadis G, Swain CP, Wills EJ, Tavill AS. Drug-carrier • potential of liposomes in cancer chemotherapy. Lancet 1974; I, Part 2 (7870):1313-1316.

Gregoriadis G, Neerunjun ED. Homing of liposomes to target cells. Biochem Biophys Res. Comm 1975; 65(2):537-544. Gregoriadis G. The carrier potential of liposomes in biology and medicine. New Eng J Med 1976; 295(13):704-709.

Gregoriadis G. Liposomes. In: Gregoriadis G. ed. Drug Carreirs in Biology and Medicine. New York: Academic Press, 1979:287-341.

263

Gregoriadis G, Davis C. Stability of liposomes <u>in vivo</u> and <u>in vitro</u> is promoted by their cholesterol content and the presence of blood cells. Biochem Biophys Res Commun 1979; 89(4):1287-1293.

Gregoriadis G, Allison AC eds. Liposomes in Biological Systems. New York: John Wiley and Sons, 1980.

Gregoriadis G, Senior J.' The phospholipid component of small unilamellar liposomes controls the rate of clearance of entrapped solutes from the circulation. FEBS Lett 1980; 119(1);43-46.

Gregoriadis G. Targeting of drugs: Implications in medicine. Lancet 1981; II, Part 1(8240) 1:241-247.

Gregoriadis G. Use of monoclonal antibodies and liposomes to improve drug delivery. Present status and future implications. Drugs 1982; 24(4):261-266.

Gregoriadis G, Senior J, Trouet A. eds. Targeting of drugs. New York: Plenum Press, 1982.

Gregoriadis G. Liposomes as drug carriers. Pharm Int 1983a; 4(2):33-37.

Gregoriadis G. Targeting of drugs with molecules, cells and liposomes. TIPS 1983b; 4:304-307.

Gregoriadis G, Kirby C, Senior J. Optimization of liposome behaviour in vivo. Biol Cell 1983; 47(1):11-18.

Gregoriadis G. ed. Liposome Technology.Vol. I-III, Florida:CRC Press, 1984.

Hallam NF. The use and abuse of topical corticosteroids in dermatology. Scott Med J 1980; 25:287-291.

Hamilton RL Jr., Goerke J, GuoLSS, Williams MC, Havel RJ. Unilamellar liposomes made with the French pressure cell: a simple preparative and semiguantitative technique. J Lip Res 1980: 21:981-992.

Hansch C, Leo A. Substituent constants for correlation analysis in chemistry and biology. New York: Wiley, 1979:19,315. Harsch M, Walther P, Weder HG, Hengartner H. Targeting of monoclonal antibody-coated liposomes to sheep red blood. cells. Biochem Biophys Res Commun 1981, 103(3):1069-1076.

Hashimoto Y, Sugawara M, Musuko T, Hojo H. Antitumor effect of actinomycin D entrapped in liposomes bearing subunits of tumor-specific monoclonal immunoglobulin M antibody. Cancer Res 1983a; 43:5328-5334.

Hashimoto Y, Sugawara M, Endoh H. Coating of liposomes with subunits of monoclonal IgM antibody and targeting of the liposomes. J Immunol Methods 1983b; 62:155-162.

Hauser H. Methods of preparation of lipid vesicles: assessment of their suitability for drug encapsulation. TIPS 1982;.3(7):274-277.

Heath TD, Fraley RT, Papahadjopoulos D. Antibody targeting of liposomes: Cell specificity obtained by conjugation of F(ab')₂ to vesicle surface. Science 1980; 210:539-541.

Heath TD, Macher BA, Papahadjopoulôs D. Covalent attachment of immunoglobulins to liposomes via glycosphingolipids. Biochim Biophys Acta 1981; 640:66-81.

Heath TD, Montgomery JA, Piper JR, Papahadjopoulos D. Antibody targeted liposomes: Increase in specific toxicity of methotrexate-Y-aspartate. Proc Natl Acad Sci USA 1983; 80:1377-1381.

Heath TD, Fraley RT, Bentz J, Voss EW Jr', Herron JN, Papahadjopoulos D. Antibody directed liposomes. Determination of affinity constants for soluble and liposome bound antifluorescein. Biochim Biophys Acta 1984; 770:148-158

Hemker HC, Mubler AD, Hermens W1, Zwaal RFA. Oral treatment of hemophilia A by gastrointestinal absorption of factor VIII entrapped in liposomes. Lancet 1980; I, Part 1 (8159):70-71.

Henderson NL. Recent advances in drug delivery system technology. In: Hess H-J ed. Annual reports in medicinal chemistry vol. 18, New York: Academic Press, 1983:275-284.

265

Л

Herrmann SH, Mescher MF. Lymphocyte recognition of H-2 antigen in liposomes. J Supramolec Struct Cell Biochem 1981; 16:121-131.

Hisaoka M, Tsukada K, Morioka T. Studies on liposomeencapsulated carboquone. III Enhancement of lymphatic transport of carboquone by encapsulation. J Pharm Dyn 1982a; 5:27-33.

Hisaoka M, Tsukada K, Morioka T, Inomata T, Arakawa M. Studies on liposome-encapsulated carboquone. IV Enhancement of antitumor activity of carboquone against Ehrlich ascites carcinoma by encapsulation. J Pharm Dyn 1982b; 5:34-39.

Hong K, Friend DS, Glabe CG, Papahadjopoulos D. Liposomes containing colloidal gold are a useful probe of liposome-cell interactions. Biochim Biophys Acta 1983; * 732:320-323.

Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry 1969; 8(1):344-352.

Huang C, Thompson TE. Preparation of Homogeneous, Single-walled phosphatidylcholine vesicles. In: Fleischer S, Packer L, eds. Biomembranes. New York: Academic Press, 1984:485-489 (Colowick SP, Kaplan NO, eds. Methods in Enzymology, vol. 32).

Huang A, Huang L, Kennel SJ. Monoclonal antibody covalently couplied with fatty acid. J Biol Chem 1980; 255(17):8015-8018.

Huang A, Kennel SJ, Huang L. Immunoliposome labeling: A sensitive and specific method for cell surface labeling. Immunol Methods 1981; 46(2):141-151.

Huang A, Tsao YS, Kennel SJ, Huang L. Characterization of antibody covalently couplied to liposomes. Biochim Biophys Acta 1982; 716:140-150.

Hudson L, Hay FC. Practical Immunology. 2nd ed. Oxford: Blackwell Scientific Publications, 1980:94-98.

Hunt CA, Tsang S. α -Tocopherol retards autoxidation and prolongs the shelf life of liposomes. Int J Pharm 1981; 8:101-110.

Hunt CA. Liposome disposition <u>in vivo</u> V. Liposome stability in plasma and implications for drug carrier function. Biochim Biophys Acta 1982; 719:450-463.

Hwang KJ, Luk K-FS, Beaumier PL. Hepatic uptake and degradation of unilamellar sphingomyelin/cholesterol liposomes: A kinetic study. Proc Natl Acad Sci USA 1980; 77(7):4030-4034.

Idson B. New opportunities for skin care ingredients. Drúg Cosmet Ind 1981; 128(1):36-37, 90.

266

Illum L, Davis SS. The targeting of drugs parenterally by use of microspheres. J Parent Sci Tech 1982; 36(6):242-248.

Illum L, Jones PDE, Kreuter J, Baldwin RW, Davis SS. Adsorption of monoclonal antibodies to polyhexylcyanoacrylate nanoparticles and subsequent immunospecific binding to tumor cells <u>in vitro</u>. Int J Pharm 1983; 17:65-76.

Jansons VK, Mallett PL. Targeted liposomes: A method for preparation and analysis. Anal Biochem 1981; 111:54-59.

Jansons VK, Panzner EA. Lipósomes as a means to introduce fragment A of diphtheria toxin into cells. Biochim Biophys Acta 1983; 735:433-437.

Jay M,Digenis G., Enhanced entrappment of a quaternary ammonium compound in liposomes by ion-pairing. J Pharm Sci 1982; 71(8):958-960.

Jederstrom G, Russell G. Size exclusion chromatography of liposomes on different gel media. J Pharm Sci 1981; 70(8):874-878.

Johnson HM, Brenner K, Hall HE. The use of a water soluble carbodiimide as a coupling reagent in the passive hemagglutination test. J'Immunol 1966; 97(6):791-796.

Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA. The pharmacology and clinical use of methotrexate. .New Engl J Med 1983; 309(18):1094-1104.

Jones NC, Osborn MJ. Interaction of <u>Salmonella</u> <u>typhimurium</u> with phospholipid vesicles. Incorporation of exogenous lipids into intact cells. J Biol Chem 1977; 252(20):7398-7404. Jones WN, Barreuther AD. Corticosteroids: When and How to .use them. Drug Ther 1981; 11:135-139, 143-144.

Jou Y-H, Jarlinksi S, Mayhew E, Bankert RB. Use of . heterobifunctional cross-linking reagents to prepare antibody-liposome conjugates: Development of methods to reduce liposome aggregation during conjugation, (Abstract) Fed Proc 1984; 43(7):1971.

Jou Y-H, Mazzaferro K, Mayers GL, Bankert RB. Methods for the attachment of haptens and proteins to erythrocytes. In: Colowick SP, Kaplan NO eds. Methods in Enzymology vol. 92, New York: Academic Press, 1983:257-276.

Juliano RL, Layton D. Liposomes as a drug delivery system. In: Juliano RL ed. Drug delivery systems, New York, Oxford University Press, 1980: Chap 6.

Juliano RL. Liposomes as a drug delivery system. TIPS 1981; 2(2):39-42.

Juliano RL, Hsu MJ, Peterson D, Regen SL, Singh A. Interactions of conventional or photopolymerized liposomes with platelets in vitro. Exp Cell Res 1983a; 146:422-427.

Juliano R, Lopez-Berenstein G, Mehta R, Hopfer R, Mehta K, Kasi L. Pharmacokinetic and therapeutic consequences of liposomal drug delivery: Fluorodeoxyuridine and Amphotericin B as examples. Biol Cell 1983b; 47:39-46.

Juliano RL, Hsu MJ, Regen SL, Singh M. Photopolymerized phospholipid vesicles. Stability and retention of hydrophilic and hydrophobic marker substances. Biochim Biophys Acta 1984; 770:109,114.

Kao_YJ, Loo TL. Pharmacological disposition of negatively charged phospholipid vesicles in rats. J*Pharm Sci 1980; 69(11):1338-1340.

Kano K, Fendler JH. Enhanced uptake of drugs in liposomes: use of labile vitamin B_{12} complexes of 6-mercaptopurine and 8_{τ} azaguanine. Life Sci 1977; 20: 1729-1734.

Kaye SB. Liposomes-Problems and promise as selecting drug carriers. Cancer Treat Rev 1981; 8:27-50.

Kaye SB, Boden JA, Ryman BE. The effect of liposome (phospholipid vesicle) entrappment of actinomycin D and methotrexate on the <u>in vivo</u> treatment of sensitive and resistant solid murine tumors. Eur J Cancer 1981; 17:279-289.

Kedar A, Mayhew E, Moore RH, Williams P, Murphy GP. Effect of actinomycin D containing lipid vesicles on murine renal adenocarcinoma. J Surg Oncol 1980; 15:363-365.

Kellaway IW, Hadgraft J, Ahmed M <u>et al</u>. Liposomes-model membranes for modern medicine. Manuf Chem Aerosol News 1980a; 51(8):43-44.

Kellaway IW, Hadgraft J, Ahmed M <u>et al</u>. Liposomes-model membranes for modern medicine. Manuf Chem Aerosol News .1980b; 51(9):33-34.

Khato J, del Campo AA, Sieber SM. Carrier activity of sonicated small liposomes containing melphalan to regional lymph nodes of rats. Pharmacology 1983; 26:230-240.

Kim S, Martin GM. Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution. Biochim Biophys Acta 1981; 646:1-9.

Kim S, Turker MS, Chi EY, Sela S, Martin GM. Preparation of multivesicular liposomes. Biochim Biophys Acta 1983; 728:339-348.

Kimelberg HK, Mayhew EG. Properties and biological effects of liposomes and their uses in Pharmacology and Toxicology. In: Goldberg L, ed. CRC critical Reviews in Toxicology. Cleveland, Ohio: CRC Press, 1978:25-29.

Kimura T, Yoshikawa M, Yasuhara M, Sezaki H. The use of liposomes as a model for drug absorption: -lactam antibodies. J Pharm Pharmacol 1980; 32:394-398.

Kirby C, Gregoriadis G. The effect of the cholesterol content of small unilamellar liposomes on the fate of their lipid components in vivo. Life Sci 1980; 27:2223-2230.

Kirby C, Clarke J, Gregoriadis G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem J 1980a; 186:591-598.

Kirby C, Clarke J, Gregoriadis G. Cholesterol content of small unilamellar liposomes controls phospholipid loss to high density lipoproteins in the presence of serum. FEBS Lett 1980b; 111(2):324-328.

Kirby C, Gregoriadis G. The effect of lipid composition of small unilamellar liposomes containing melphalane and vincristine on drug clearance after injection sinto mice. Biochem Pharmacol 1983; 32(4):609-615.

Kirkland JJ, Yau WW, Szoka FC. Sedimentation field flow fractionation of liposomes. Science-1982; 215:296-298.

Kosloski MJ, Rosen F, Milholland RJ, Papahadjopoulos D. Effect of lipid vesicle (liposome) encapsulation of methotrexate on its chemotherapeutic efficacy in solid rodent tumors. Cancer Res 1978; 38:2848-2853.

Kuhn SH, Gemperli B, Shephard EG <u>et al</u>. Interactions of liposomes with human leukocytes in while blood. Biochim Biophys Acta 1983; 762:119-127.

Kulkarni PN, Blair AH, Ghose TI. Covalent binding of methotrexate to immunoglobulins and the effect of antibody-linked drug on tumor growth,<u>in vivo</u>. Cancer Res 1981; 41:2700-2706,

Kurosaki Y, Kimura T, Muranishi S, Sezaki H. The use of liposomes as enzyme carriers.' I. Dependence of Enzyme stability on the method of preparation. Chem Pharm Bull 1981; 29(4):1175-1178...

Knight CG, ed. Liposomes: From physical structure to therapeutic applications. New York: Elsevier Biomedical Press, 1981a.

Knight CG. Hydrophobic prodrugs in liposomes. In: Knight CG., ed.. Liposomes: From physical structure to therapeutic applications. New York: Elsevier Biomedical Press, 1981b:381-389.

Kremer JMH, Esker MWJvd, Pathmamanoharan C, Wiersema PH. Vesicles of variable diameter prepared by a modified injection method. Biochemistry 1977; 16(17):3932-3935.

Kreuter J. Evaluation of nanoparticles as drug-delivery systems I: Preparation methods. Pharm Acta Helv 1983a; 58(7):196-209.

Kreuter J. Evaluation of nanoparticles as drug-delivery systems II: comparison of the body distribution of nanoparticles with the body distribution of microspheres (diameter >1 μ m), liposomes and emulsions. Pharm Acta Helv 1983b; 58(8):217-226.

270

Kreuter J. Evaluation of nanoparticles as drug-delivery systems III: materials, stability, toxicity, possibilities of targeting and use. Pharm Acta Helv 1983C; 58(9-10):242-250.

Laduron C, Coune A, Atassi G et al. Chemotherapeutic efficacy of nocodazole encapsulated in liposomes on L1210 murine leukemia. Res Commun Chem Pathol Pharmacol 1983; 39(3):419-436.

Large P, Gregoriadis G. Phospholipid composition of small unilamellar Piposomes containing melphalan influences drug action in mice bearing PC6 tumors. Biochem Pharmacol T983; 32(7):1315-1318.

Leaver J, Alonso A, Durrani AA, Chapman D. The physical properties and photopolymerization of diacetylene containing phospholipid liposomes. Biochim Biophys Acta 1983; 732:210-218.

Lelkes PI', Tandeter HB. Studies on the methodology of the carboxyfluoprescein assay and on the mechanism of liposome stabilization by red blood cells in vitro. Biochim Biophys Acta 1982; 716:410-419.

Leserman LD, Weinstein JN, Blumenthal R, Sharrow SO, Terry - WD. Binding of antigen-bearing fluorescent liposomes to the murine myeloma tumor MOPC 315. J Immunol 1979; 122(2):585-591.

Leserman LD, Barbet J, Kourilsky F. Targeting to cells fluorescent liposomes covalently coupled with monoclonal o antibody or protein A. Nature 1980a; 288:602-604.

L'eserman LD, Weinstein JN, Moone JJ, Terry WD. Specific interaction of myeloma tumor cells with hapten bearing liposomes containing methotrexate and carboxyfluorescein. Cancer Res 1980b; 40:4768-4774. Leserman LD, Machy P; Barbet J. Cell specific drug transfer from liposomes bearing monoclonal antibodies. Nature 1981; 293:226-228.

271

Leserman LD, Machy P, Devaux C, Barbet J. Antibody bearing liposomes: Targeting <u>in vivo</u>. Biol Cell 1983; 47:111-116.

Levy R, Miller RA. Tumor therapy with monoclonal antibodies. Fed Proc 1983; 42(9):2650-2656.

Lichtenberg D, Markello T. Structural characteristics of phospholipid multilamellar liposomes. J Pharm Sci 1984 37 73(1):122-125.

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193:265-275.

Lutz D. Immunotherapy of cancer: a critical review. Int J Clin Pharmacol Ther Toxicol 1983; 21(3):118-129.

Machy P, Pierres M, Barbet J, Leserman LD. Drug transfer into lymphoblasts mediated by liposomes bound to distinct sites on H-2 encoded I-A, I-E and K molecules. J Immunol 1982a; 129(5):2098-2102.

Machy P, Barbet J, Leserman LD. Differential endocytosis of T and B lymphocyte surface molecules evaluated with antibody-bearing fluorescent liposomes containing methotrexate. Proc Natl Acad Sci USA 1982b; 79:4148-4152.

Machy P, Leserman LD. Small liposomes are better/than large liposomes for specific drug delivery <u>in vitro</u>., Biochim Biophys Acta 1983; 730:313-320.

Magee WE, Ristow SS. Targeting to lymphoid cells of the immune net work. Pharmac Ther 1983; 21:295-323.

Margolis LB, Namiot VA, Kljukin LM. Magnetoliposomes: Another principle of cell sorting. Biochim Biophys Acta 1983; 735:193-195.

Martin FJ, Hubbell WL, Paphadjopoulos D. Immunospecific targeting of liposomes to cells: A novel and efficient method for covalent attachment of Fab' fragments via disulfide bonds. Biochemistry 1981; 20(14):4229-4238. Martin WJ, Ballentine R. Patient education on cancer chemotherapeutic agents. An Pharm 1983; NS23(10):32-37.

Mathe G, Loc T, Bernard J. Effect sur la leucemie L1210 de la souris d'une combinaison par diazotation d'A-methopterine et de gamma-globulines de hamsters porteur de cette leucemie par heterogreffe. Comptes Réndues 1958; 246:1626-1628.

272

Matthay KK, heath TD, Papahadjopoulos D. Specific enhancement of drug delivery to AKR lymphoma by antibody-targeted small unilamellar vesicles. Cancer Res 1984; 44:1880-1886.

Mauk MR, Gamble RC, Baldeschwieler JD. Targeting of lipid vesicles: Specificity of carbonydrate receptor analogues for leukocytes'in mide. Proc Natl Acad Sci USA 1980; 77(8):4430-4434.

Mayhew E, Papahadjopoulos D, Rustum YM <u>et al</u>. Inhibition of tumor cell growth <u>in vitro</u> and <u>in vivo</u> by 1- -D-Arabinofuranosylcytosine entrapped within phospholipid vesicles. Cancer Res 1976; 36:4406-4411.

Mayhew E, Papahadjopoulos D. Therapeutic applications of liposomes. In: Ostro'MJ, ed. Liposomes, New York: Marcel Dekker, 1983:289-341,

Mayhew E, Rustum Y. Effect of liposome entrapped chemotherapeutic agents on mouse primary and metastatic tumors. Biol Cell 1983; 47:81-86.

McDougall 4R'. Liposomes as diagnostic tools. In: Gregoriadis G, Allison AC eds. Liposomes in Biological. Systems, New York: John Hiley, 1980.; 325-344.

Megaw JM, Takei Y, Lerman S. Lectin mediated binding of liposomes to the ocular lens. Exp Eye Res 1981; 32/395-405.

Mehta R, Lopez-Berestein G, Hopfer R, Mills"K, Juli/ano RL. Liposomal amphotericin B is toxic to fungal cells but not to mammalian cells. Biochim Biophys Acta 1984; 770:230-234.

Meyer MC, Guttman DE. Novel method for studying protein binding. J Pharm Sci 1968; 57(9/):1627-1629.

Meyer MC, Guttman DE., Dynamic dialysis as a method for studying state in binding I: Factors affecting the kinetics of dialysis through a cellphang membrane, J Pharm Sci 1970; 59(1):33:38.

Mezei M, Gulasekharam V. Liposomes - a selective drug delivery system for the topical route of administration I. Lotion dosage form. Life Sci 1980; 26: 1473-1477.

Mezei M, Gulasekharam V. Liposomes - a selective drug delivery system for the topical route of administration: gel dosage form. J Pharm Pharmacol 1982; 34:473-474. /

Milsmann MHU, Schuendener RA, Ueder, HG. /The preparation of large single bildyer liposomes by a fast and controlled dialysis. Biochim Biophys Acta 1978; 512:147=155.

Mon'signy M, Kieda C, Roche A-C. Membrane glycoproteins, glycolipids and membrane lectins as recognition signals in a normal and malignant cells. Biol Cell 1983; '47:95-110.

Morgan JR, Williams KF. Preparation and properties of liposome associated gentamycin. Antimicrob Agents Chemother 1980; 17(4): 544-548.

Morii M, Abu-Zaid SS, Takeguchi N. Size and permeability of liposomes extruded through polycarbonate membranes. Int J Pharm 1983; 17(2-3):215-224.

Morman MR. Possible side effects of topical steroids. Am ` Fam Physician 1981; 23(1):]21.-125. "

Nagata M, Yotsuyanagi T, Nonomura M, İkeda K. Coagulation recovery after warfarin-induced hypoprothrombinaemia by oral administration of liposomally-associated vitamin.K₁ to rabbits. J Pharm Pharmacol 1984; 36:527-533.

New RRC, Chance ML, Heath S. Liposome therapy for experimental cutaneous and visceral leishmaniasis. Biol Cell 1983; 47:59-64. Nicolau C, Poste G, eds. Liposomes <u>in vivo</u>. Biology of the cell vol. 47, France: Societe Francaise de Microscopie Electronique, 1983.

274

Norrie DH, Pietrowski RA, Stephen J. Screening the efficiency of intracytoplasmic delivery of materials to HeLa cells by liposomes. Anal Biochem,1982; 127:276-281:

Noteboom WD. The effects of culture conditions on the use of animal cells for drug testing. J Parenteral Sci Tech 1983; 37(6):226-231.

Nozaki Y, Lasic DD, Tanford C, Reynolds JA. Size analysis of phospholipid vesicle preparations. Science 1982; 217(4557):366-367.

Obrist R. Monoclonal antibodies as drug carriers in oncology: TIPS 1983; 4(9):375-379.

- Oku N, Macdonald RC. Formation of giant liposomes from lipids in chaotropic ion solutions. Biochim Biophys Acta y 1983a; 734:54-61.

Oku N, Macdonald RC. Differential Effects of Alkali Metal Chlorides on Formation of Giant Liposomes by Freezing and Thawing and Dialysis. Biochemistry 1983b; 22:855-863.

Olson F, Hunt, CA, Szoka F, Vail WJ, Papahadjopoulos D. Rreparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 1979; 557:9-23.

Olson F, Mayhew E, Maslow D, Rustum'Y, Szoka F. Characterisation, coxicity and therapeutic efficacy of adriamycin encapsulated in liposomes. Eur J Cancer Clin Oncol 1982; 18(2):167-176.

Opaga IC, Baillie AJ, The uptake of liposomal and free ("C) chloramphenicol by <u>Tetrahymena pyriformis</u>. Int J Pharm 1982; 12: 323-330.

Osborne MP, Payne JW, Richardsón VJ, McCready VR, Ryman BE. The preoperative detection of auxillary lymph node metastases in breast cancer by isotope imaging. Br J Surg 1983; 70:141-144.

Ostro MJ ed. Liposomes, New York: Marcel Dekker, Inc. 1983.

O'Súllivan MJ, Marks'V. Methods for the preparation of enzyme-antibody conjugates for use in enzyme immunoassay. In: Methods in Enzymology vol. 73, New York: Academic Press, 1981:147-166.

Ozols RF, Myers CE, Young RC. Intraperitoneal Chemotherapy (Editorial). Ann Int Med 1984; 101(1):118-120.

Pagano RE, Takeichi M. Adhesion of phospholipid vesicles to chinese hamster fibroblasts. Role of cell surface proteins. d Cell Biol 1977; 74:531-546.

Pagano RE, Ueinstein JN.) Interactions of liposomes with mammalian.cells. Ann Rev Biophys Bioeng 1978; 7:435-468.

Page Thómás DP, Phiíľips NC. ¢Intra-articular liposomal' therapy. I.a. Neuberger A, Tatum EL èds: Front Biol vol 48, Amsterdam: North-Holland Publishing Company, 1979:601-624.

Papahadjopoulos D, Vail UJ, Jacobson K. Poste G. Cochleater & lipid cylinders: Formationm by fusion of unilamellar lipid vesicles. Biochim Biophys Acta, 1975; 394:483-49 Me

Papahadjopoulos D, Poste G, Vail HJ, Biedler JL. Use of lipid vesicles as carriers to introduce Actinomycin D into resistmant tumor cells. Cancer Res 1976; 36:2988-2994.

٨

Papahadjopoulos D, ed. Liposomes and their uses in Biology and Medicine. Ann NY Acad Sci vol. 308, New York: The New York Academy of Sciences, 1978.

Papahadjopoulos D, Vail WJ. Incorporation of macromolecules within large unilamellar vesicles (LUV). Ann NY Acad Sçi 1978; 308:259-267.

Parker RJ, Hartman KD, Sieber SM. Lymphatic absorption and tissue disposition of liposome entrapped C-Adriamycin following intraperitoneal administration to rats. Cancer Res 1981; 41:1311-1317.

Patel HM, Ryman BE. Oral administration of insulin by encapsulation within liposomes. FEBS Lett. 1976; 62:60-63. Patel KR, Jonah MM, Rahman YE. <u>In vitro</u> uptake and therapeutic application of liposome encapsulated methotrexate in mouse hepatoma 129. Eur J Cancer Clin Oncol 1982; 18(9):833-845. Pick U. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch Biochem Biophys 1981; 212(1):186-194.

276

Pidgeon C, "Hunt CA., Calculating number and surface area of liposomes in any suspension. J Pharm Sci 1981; 70(2):173-176,

Pirson P, Steiger RF, Trouet A. "Primaguine liposomes 'in 'the chemotherapy of experimental murine malaria. Ann Trop Med Parasitol 1980; 74(4):383-391.

Pitt E, Johnson. CM, Lewis DA. Encapsulation of drugs in intact erythrocytes: An intravenous delivery system. Biochem Pharmcol 1983; 32(22):3359-3368.

Pool GL, French ME, Edwards RA, Huang L, Lumb RH. Use of radiolabelled hexadecylcholesterylether as a liposome marker. Lipids 1982; 17(6):448-452.

Popper TL, Watnick AS. Antiinflammatory stefoids. In: Scherrer RA and Whitehouse MW eds. Antiinflammatory Agents Chemistry. and Pharmacology Vol. I, New York: Academic Press, 1974:245-290 (de Stevéns ed. Medicinal Chemistry Vol. 13-I)

Poste G. Liposome targeting in vivo: Problems and opportunities. Biol Cell 1983; 47(1):19-38.

Poste G, Kirsh R. Site-specific (Targeted) drug delivery in cancer therapy. Biotechnology 1983; 1:869-878.

Proffitt RT, Williams LE, Presant CA <u>et</u><u>al</u>. Liposomal blockade of the reticuloendothelial system: Improved tumor imaging with small unilamellar vestcles. Science 1983; 220:502-505.

Puisieux F, Bebita S. Towards a new galenic dosage form,

Puisjeux F. Les liposomes. Ann Pharm Fr 1983;4]:3-13.

Rahman YE, Rosenthal MW, Cerny EA, Moretti ES. Preparation and prolonged tissue retention of liposomes encapsulated chelating agents. J Lab Clin Med. 1974, 83(4):640-647. (Rahman-YE, Hanson WR, Bharucha J, Ainsvorth EJ, Jaroslov.BN. Mechanisms of reduction of antitumor drug toxicity by liposome encapsulation. Ann NY Acad Sci 1938; 308:325-342.

Rahman YE. Liposomos and chelating agents. In: Gregoriadis G, Atlison AC, eds. Liposomes in biological-systems, New York: John Wiley and Son's, 1980:265-298.

Rankin EN, NcVie JG. Radioimmunodetection of cancer: problems and potential. Br Med J 1983; 287:1402-1404.

Rao LS. Liposome dosage form development - some practical considerations. #J Parenteral Sci Tech 1983; 37(3):72-75;

Reynolds'JA, Nozaki Y, Tanford C. Gel exclusion chromatography on S-1000 Sephacryl: Application to phospholipid vesicles. Anal Biochem 1983; 130:471-474.

Richardson VJ, Ryman BE. Effect of liposomally trapped antitumor drugs on a drug-resistant mouse lymphoma <u>in</u> vivo. Br J Cancer 1982; 45:552-558.

Richardson VJ. Liposomes in antimicrobian chemotherapy. Antimicrob Chemother 1983; 12(6):532-534.

Rieger MM. Current aspects of cosmetic science III, Lipo'some's and their uses. Cosmet Toilet 1981; 96:35-38%

Rogers JA. Recent developments in drug delivery. Can J Hosp Pharm 1982a; 35(6):170-174, 196.

Rógers, MJ. H-2^b bound to egg lecithtn liposomes: biochemical and functional properties. Clin Exp Immunol 1982b; 48(3):561-573.

Rowland RN, Woodley JF. The stability of liposomes and ` `<u>vitro</u> to pH, bile salts and pancreatic lipase. Biochim `B'iophys Acta 1980; 620:400-409.

'Rowland RN, Woodley JF. The uptake of distearoylphosphatidylcholine/cholesterol liposomes by rat intestinal sacs <u>in vitro</u>. Biochim Biophys Acta 1981; 673:217-223.

Rowland GF. Use of antibodies to target drugs to tumor cells. Clin Immunol Allerg 1983; 3(2):235-257.

Rustum YM, Dave C, Mayhew E, Papahadjopoulos D. Role of liposome type and route of administration in the antitumor activity of liposome-entrapped 1-β-D-arabinofuranosylcytosine against mouse L1210 leukemia. Cancer Res 1979; 39:1390-1395.

Sadee W, Beelan GCM. Methotrexate In: Sadee W, Beelen GCM, eds. Drug level monitoring. Analytical techniques, metabolism and pharmacokinetics. New York; John Wiley and Sons, 1980:327-334.

Schaeffer HE, Krohn D. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci 1982; 22(2):220-227.

Scherphof G, Roerdink F, Waite M, Parks J. Disintegration of phosphatidylcholine liposomes in plasma as a result of interaction with high-density lipoproteins. Biochim Biophys Acta 1978; 542:296-307.

Schreier H. Liposomen – ein neuartiger Arzneistofftrager. Pharmazie in unserer Zeit 1982; 11(4):97-102.

Schroit AJ, Madsen JW. ^{/`}Śynthesis and properties of radioiodinated phospholipid analogues that spontaneously 'undergo vesicle-vesicle and vesicle-cell transfer. Biochemistry 1983; 22:3617-3623:

Schroit AJ, Galligioni E, Fidler IJ. Factors influencing the in situ activation of macrophages by liposomes containing muramyl dipeptide. Biol Cell 1983; 47:87-94.

Schwinke DL, Ganesan MG, Weiner ND. <u>In situ</u> jejunal uptake from liposomal systems. Int J Pharm 1984; 20:119-127.

Segal AW, Gregoriadis G, Black CDV. Liposomes as vehicles for the local release of drugs. Clin Sci Molec.Med 1975; .49:99-106.

Senior J, Gregoriadis G. Stability of small unilamellar liposomes in serum and clearance from the circulation: the effect of the phospholipid and cholesterol components. Life Sci 1982; 30(24):2123-2136.

Shaw IH, Knight CG, Dingle JJ. Liposomal retention of modified anti-inflammatory steroid. Biochem J 1976; 156:473-476.

Shau IH, Dingle JT, Phillips NC, Page Thomas PD, Knight CG. Liposomes in the treatment of experimental arthritis. Ann. NY Acad Sci 1978; 308:435-436.

279·

Shaw IH, Dingle JT. Liposomes as steroid carriers in the intra-articular therapy of rheumatoid arthritis. In: Gregoriadis G, Allison AC eds. Liposomes in Biological SyStems, New York: John Wiley, 1980:299-324.

Shen D, Huang A, Huang L. An improved method for covalent attachment of antibody to liposomes. Biochim Biophys Acta ~ 1982; 689:31-37.

Singh K. Ocular distribution of liposome encapsulated drugs. [Master's thesis] Halifax, Nova Scotia: Dalhousie Unviersity, 1982.

J.co

Singh K, Mezei. M: Liposomal ophthalmic drug delivery system I. Triamcinolone acetonide. Int J Pharm 1983; 16:339-344.

Singh K, Mezei M. Liposomal ophthalmic drug delivery system II. Dihydrostreptomycin sulfate, Int J Pharm 1984; 19(3):263-269.

Sinha D, Kamush F. Attachment to membrages of exogenous immunoglobulin conjugated to a hydrophobic anchor. Biochem Biophys Res Commun 1979; 90(2):554-560.

Sinha D. Karush F[®]. Specific reactivity of lipid vesicles conjugated with oriented anti-lactose antibody fragments. Biochim Biophys[,] Acta 1982; 684:187-194.

Smith JE, Pirson P, Sinden RE. Studies on the kinetics of uptake and distribution of free and liposome-entrapped primaquine and of sporozites by isolated perfused rat liver. Ann Trop Med Parasitol 1983; 77(4):379-386.

Smolin G, Okumoto M, Feiler S, Condon D. .Idoxuridine-liposome therapy for herpes simplex keratitis... Am J Ophthalmol 1981; 91:220-225.

Souhami RL, Patel HM, Ryman BE. The effect of reticuloendothelial blockade on the blood clearance and tissue distribution of liposomes. Biochim Biophys Acta 1981; 674:354-371. Spjer HH, Scherphof GL., Targeting of lactosylceramidecontaining liposomes to hepatocytes <u>in vivo</u>. Biochim Biophys Acta 1983; 734:40-47

Stamp-D, Juliano RL. Factors affecting the encapsulation of drugs within liposomes. Can J Physiol Pharmacol 1979; 57:535-539.

Stevenson RW, Patel HM, Parsons JA, Rýman BE. Prolonged hypoglycemic effect in diabetic dogs due to subcutaneous administration of insulin in liposomes. Diabetes 1982; 31:506-511.

Stratford RE Jr, & Tig DC, Redell MA, Lee VHL. Effects of topically applied liposomes on disposition of epinephrine ... and inulin in the albino rabbit eye. Int J Pharm 1983; 13:263-272.

Strauss G, Ingenito EP. Stabilization of liposome bilayers to freezing and thawing: Effects of cryoprotective agents and membrane proteins. Cryobiology 1980; 17:508-515.

Sur B, Ray RR, Sur P, Roy DK. Effect of liposomal encapsulation of cis-platinum diamminodichloride in the treatment of Ehrlich ascites carcinoma. Oncology 1983; 40:372-376

Szoka F Jr., Papahadjopoulos D., Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proc Natl Acad Sci USA 1978; 75(9):4194-4198.

Szoka F. Jr., Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Ann Rev Biophys Bioeng 1980; 9:467-508.

Szoka F, Olson F, Heath T, Vail W, Mayhew E, Papahadjopoulos D. Preparation of unilamellar liposomes of intermedjate size (0.1-0.2 µm) by a combination of reverse phase eventation and extrusion through polycarbonate membranes. Biochim Biophys Acta 1980; 501:559-571.

Szoka F, Papahadjopoulos D. Liposomes: Preparation and characterization. In: Knight CG, ed. Liposomes: From physical structure to therapeutic applications. New York: Elsevier Biomedical Press, 1981. Szoka F, Magnusson K-É, Wojcieszyn J, Hou Y, Derzko Z, Jacobson K. Use of lecting and polyethylene glycol for fusion of glycolipid-containing liposomes with euka tic cells. Proc Natl Açad Sci USA 1981; 78(3):1685-1689. &

Szoka FC'Jr., Marsew E. Alteration of liposome disposition in vivo by bilayer situated carbohydrates. Biochem Biophys Res Commun 1983; 110(1):140-146.

Todd JA, Levine AM, Tokes ZA. Liposome encapsulated methotrexate interactions with human chronic lymphocytic S leukemia cells. JNCI 1980, 64(4):7,15-719.

Todd JA; Modest EJ, Rossow PW, Tokes ZA. Liposome encapsulation enhancement of methotrexate sensitivity in transport resistant human leukemic cell line Biochem Pharmacol 1982; 31(4):541-546.

Todorov DK, Deliconstantinos G. Incorporation of the antitumor alkaloid, thaliblastine in liposomes enhances (ts cytotoxic activity <u>in vitro</u>. Experienta 1982; 38(7):857-859.

Tomasi M, Gitman AG, Friedlander B, Loyter A. Conjugation of specific antibodies to Sendai virus particles. FEBS Lett 1982; 143(2):252-256.

Toonen PAHM, Crommelin DJA. Immunoglobulins as targeting agents for liposome encapsualted drugs. Pharm Weekbl Sci Ed 1983; 5:269-280.

Torchilin VP, Khaw BA, Smirnov VH, Haber E. Preservation of antimyosin antibody activity after covalent coupling to liposomes. Biochem Bjophys Res Commun 1979;...

Trouet A, Baurain R, Campeneere DD, Layton D, Masquelier M. DNA, liposomes and proteins as carriers for antitumoral drugs. Recent Results Cancer Res 1981; 75(2):229-235.

Tsujii K. Sunamoto J, Fendler JH. Improved entrapment of drugs in modified liposomes. Life Sci 1976; 19:1743-1750.

* Tsukada K. Okada R, Hisaoka M, Morioka T. Liposome-encapsulated carboquone. I. Method of preparation and carboquone release. Chem Pharm Bull 1982; 30(10):3679-3684. Tyrrell DA, Heath TD, Colley CM, Ryman BE. New aspects of liposomes. Biochim Biophys Acta 1976; 475:259-302.

Ueno M, Nakasaki T, Horikoshi I, Sakuragawa N. Oral administration of liposomally-entrapped heparin to beagle dogs. Chem Pharm Bull 1982; 30(6):2245-2247.

van Bommel I, Crommelin DJA. Integrity of liposomes on storage in aqueous solution or after freezing or freeze-drying. In: FIP 83 Abstracts, 43rd International Congress of Pharmaceutical Sciences, Montreux, Switzerland, September 1983:325.

Van Renswoude AJBM, Blumenthal R, Weinstein JN. "Thin-layer" • chromatography with agarose gels. A quick, simple method for evaluating liposome size. Biochim Biophys Acta 1980; 595:151-156.

 Van Rooijen N, van Nieuwmegen R. / Immunoadjuant properties of liposomes. In: Gregoriadis G, Senior J, Trouet A, eds. Targeting of drugs. NATO ASI, series A, New York: Plenum press, 1982:301-326.

Weingarten C, Moufti A, Desjeux JR, Luong TT, Durand G, Devissaguet JP, Puisieux F. Oral ingestion of insulin liposomes: Effects of the administration route. Life Sci 1981; 28:2747-2752.

Weinstein JN, Yoshikami S, Henkart P, Blumenthal R, Hagins WA. Liposome-cell Interaction: Transfer and intracellular release of a trapped fluorescent marker. Science 1977; 195:489-491

Weinstein JN, Blumenthal R, Sharrow SO, Henkart PA. Antipody-mediated targeting of liposomes. Binding to lymprocytes does not ensure incorporation of vesicle contents into the cells. Biochim Biophys Acta 1978; 509:272-278

Weinstein JN, Magin RL; Yatvin MB, Zaharko DS. Liposomes and local hyperthermia: Selective delivery of methotrexate to heated tymors. Science 1979; 204:188-191.

Weinstein JN, Magin RL, Cysyk RL, Zaharko DS. Treatment of L12JO murine tumors with local hyperthermia and temperature sensitive liposomes containing methotrexate. Cancer Res 1980; 40:1388-1395.

Weinstein JN, Leserman LD. Liposomes'as drug carriers in cancer chemotherapy. Pharmac Ther 1984; 24:207-233.

Weissmann G, Finkelstein M. Uptake of enzyme bearing liposomes by cells <u>in vivo</u> and <u>in vitro</u>. In: Gregoriadis G, Allison AC, eds. Liposomes in Biological Systems, New York: John Wiley, 1980; 153-178.

Weldon JS, Munnell JF, Hanson WL, Alving CR. Linosomal chemotherapy in visceral leishmaniasis: An ultrastructural study of an intracellular pathway. Z. Parasitenkd 1983; 69:415-424.

Whelan WJ. Use of liposomes in medicine. Biochem Soc Trans 1984; 12(2):333-335.

Widder KJ, Senyei AE, Sears B. Experimental methods in ` cancer therapeutics. J[.] Pharm Sci 1982; 71(4):379-387.

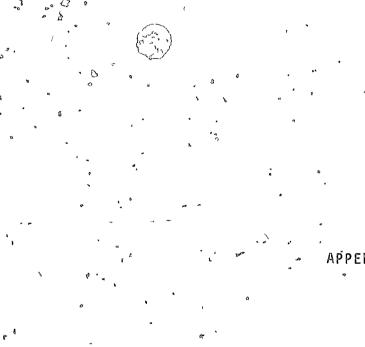
Wilschut J, Duzgunes N, Hong K; Hoekstra D, Papahadjopoulos D. Retention of aqueous contents during divalent cation-induced fusion of phospholipid vesicles. Biochim Bigphys Acta 1983; 734:309-318.

Wold F. Bifunctional reagents. In: Colowick SP, Kaplan NO eds. Methods in Enzymology vol. 25, New York: Academic Press, 1982:623-651.

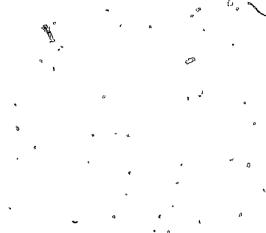
Wu P-S, Tin GW, Baldeschwieler JD. Phagocytosis of carbohydrate-modified phospholipid vesicles by macrophage. Proc Natl Acad Sci USA 1981; 78(4):2033-2037.

Yatvin MB, Kreutz W, Horwitz BA, Shinitzky M. pH sensitive liposomes: Possible clinical implications. Science 1980; 210:1253-1255.

Yatvin°MB, Lelkes PI. Clinical prospects for liposomes. Med Phys 1982; 9(2):149-175.


Yatsuyanagi T, Nonomura M, Ikeda K. Ultrasonic size reduction of liposomes and volume estimation of internal °aqueous phase. J Parenteral Sci Tech 1981; 35(6):271-275.

Zachman RD, Tsao FHC. Pulmonary uptake of liposomal phosphatidylcholine. Pediat Res 1980; 14:24-27.


Zaharko DS, Przybylski M, Oliverio VT. Binding of anticancer drugs to carrier molecules. In: DeVita VT Jr, Busch H eds. Methods in cancer research vol. 16, New York: Academic Press, 1979:347-380.

284

Zumbuehl.O, Weder HG. Liposomes of controllable size in the range of 40 to 180 nm by defined dialysis of lipid/detergent mixed micelles. Biochim Biophys Acta 1981; 640:252-262.

۵,

ENDICES

. a

285

s

Appendix l

286

.Formulae for different solutions

Bray's solutions (Bray GA, Anal Biochem 1960; 1:

Omnifluor 4 g° Naphthalene, 30 g Ethylene glycol 410 ml Methanol 50 ml 1,4-dioxane q.s. 500 ml

0.01 M Phosphate buffered saline (0.01 M PBS):

2.

NaH ₂ PO ₄ .H ₂ O	18 g
Na ₂ HPO ₄	38.1 g
NaCl	340 g
Ďistilled water – ′	4 liter
°, by	7

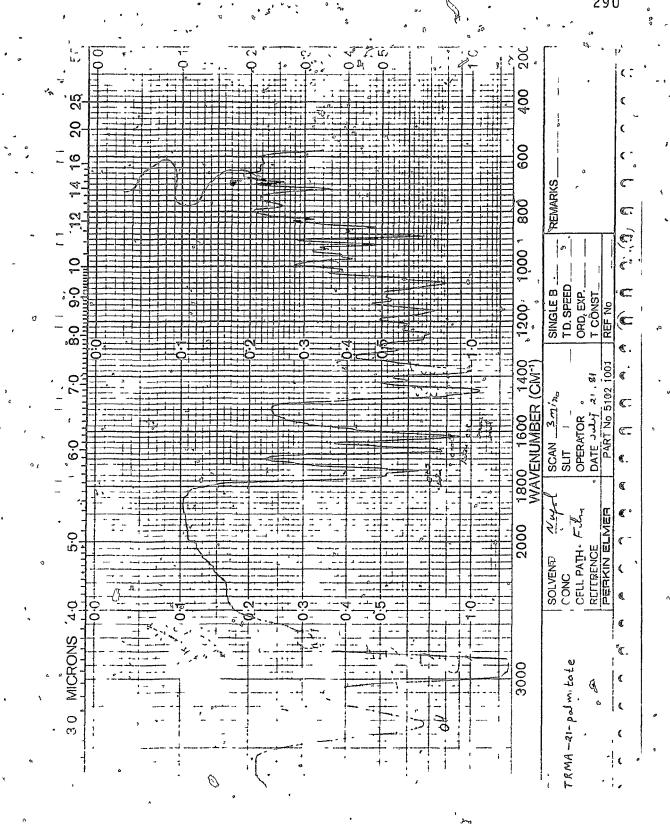
(Dilutê the solution 10 times with distilled water . . to obtain 0.01M PBS)

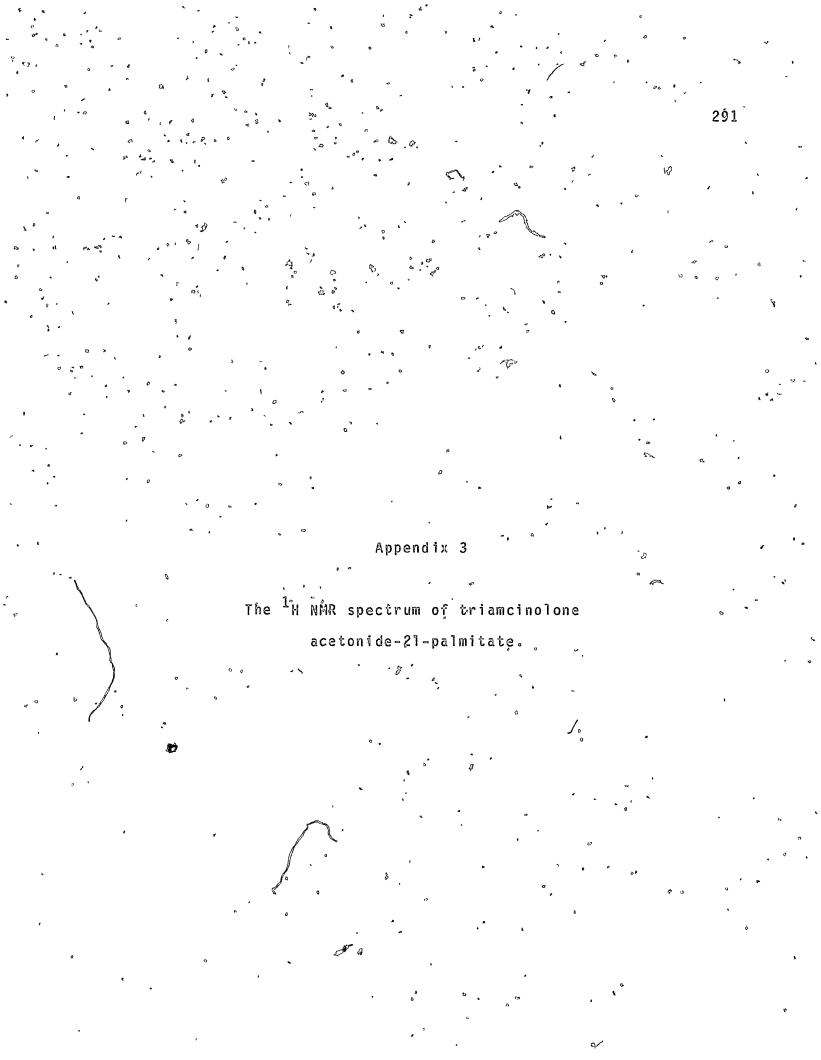
•	*	
، م بو		۴۰.
		· · · · · · · · · · · · · · · · · · ·
· · · ·	· · · ·	· · · · 287
		¢ '
``	3. Acetate buffer pH 5:	
	1 M acetic acid [,] °	,84 ml .
、	Anhydroussodium acetate	17.2 g
٨	or .	с С,
	Sodium acetate 3H ₂ 0	27.2`g
0	Distilled water q.s.	Ą liter į
	°, рн .	.5
×.	· · · ·	د •
¢	lM acetic acid:	,
, ,	Glacial aceric acid	57.7 mî • , , , ° .
۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲. ۲	Distilled water q.s.	/ 1000 ml
· · · · ·	4. 0(.1 M Sodium phosphate buffer, 0.	ູ່ 15 M NaCl ກໍ່ມີ 7.5:
g ' u	٥	420 ml
с б	$0_{0.2} \text{ M} \text{Na}_{2}\text{HPO}_{4}$ 0.2 Mo NaH ₂ PO ₄	80 ml
र		8.5 g
•	NaCl .	، من
	Distilled water q.s.	
4		. 7.5
~	$0.2 \text{ M} \text{Na}_{2}\text{HPO}_{4}$: $\text{Na}_{2}\text{HPO}_{4}$ 28.4 g/liter	۰ ۶
<i>*</i> ,	$0.2 \text{ M NaH}_2\text{PO}_4$: NaH $_2\text{PO}_4$.H $_2\text{O}$ 27.6 g/liter	N .
·		', , d
	5. O.1 M Acetate buffer, O.15 M NaCl	•
1	· (Glacial aceti´c acid 、	5.72 ml °°.
	- 1N NaOH q.s.	pH 4.5
	NaCl	8.5 g
o	Distilled water q.s.	1000 ml
4	o)	· _
	ί.	•
к. гэ	•	、

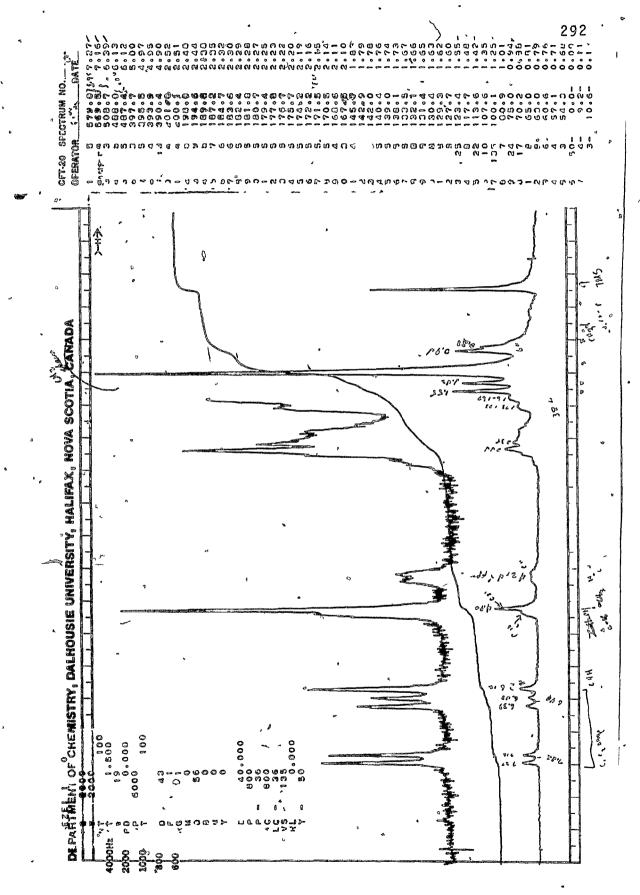
0.5% Sodium dodecyl sulfate buffered solution: 6 ... (Johnson LF, Fuhrman CL, Abelson HT. Cancer Res 1978; 38:2408-2412) Tris HCl 1.58 g (0.01M) 5.845 g (0.1M) NaC1[°] Sodium dodecyl sulfate \mathcal{O} (0:5%) 5 g 0.292 g (0.001M) EDTA l 1000 ml Distilled water 7.4 pН Ä ⁶ EDTA solution for tissue culture: 7。 υ EDTA (sodium salt) , KC1 0.4ag NaC1 8:0 g NaHCO₂ 0[°].35 g Glucose 1.0 g Phenol red 0.005 g Distilled water 1000 ml 8. Alkaline water: Sodium citrate ' 2 g Sodium bicarbonate 2 g Tap water q.s. 1000 ml

•

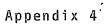
Appendix 2

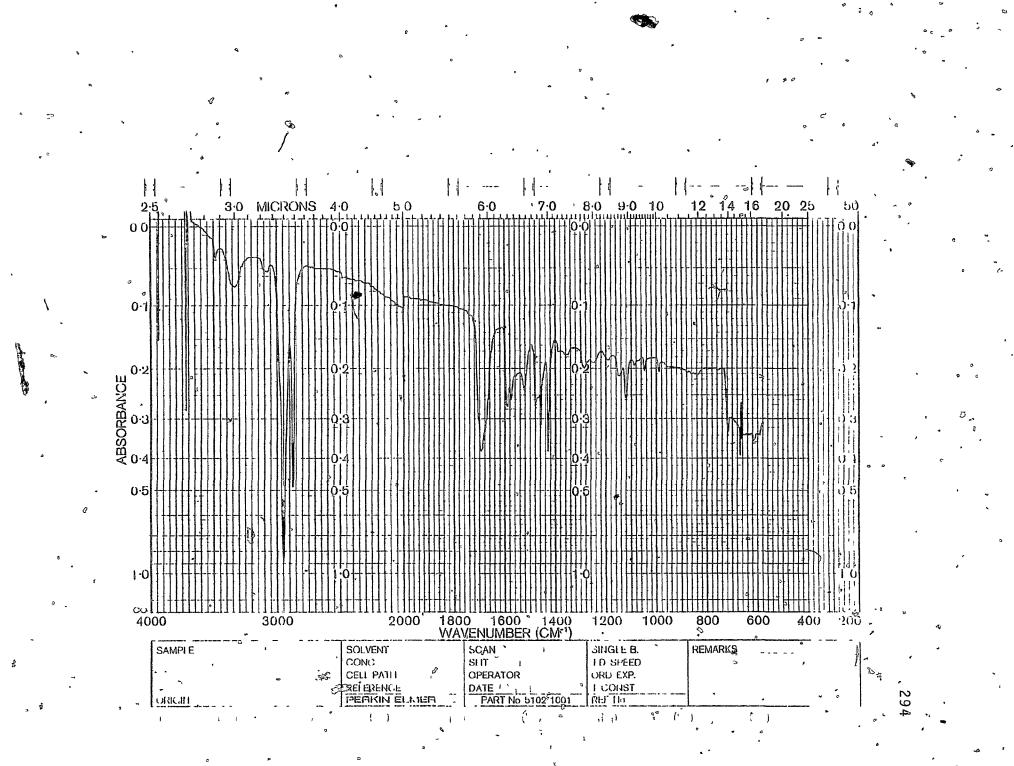

2

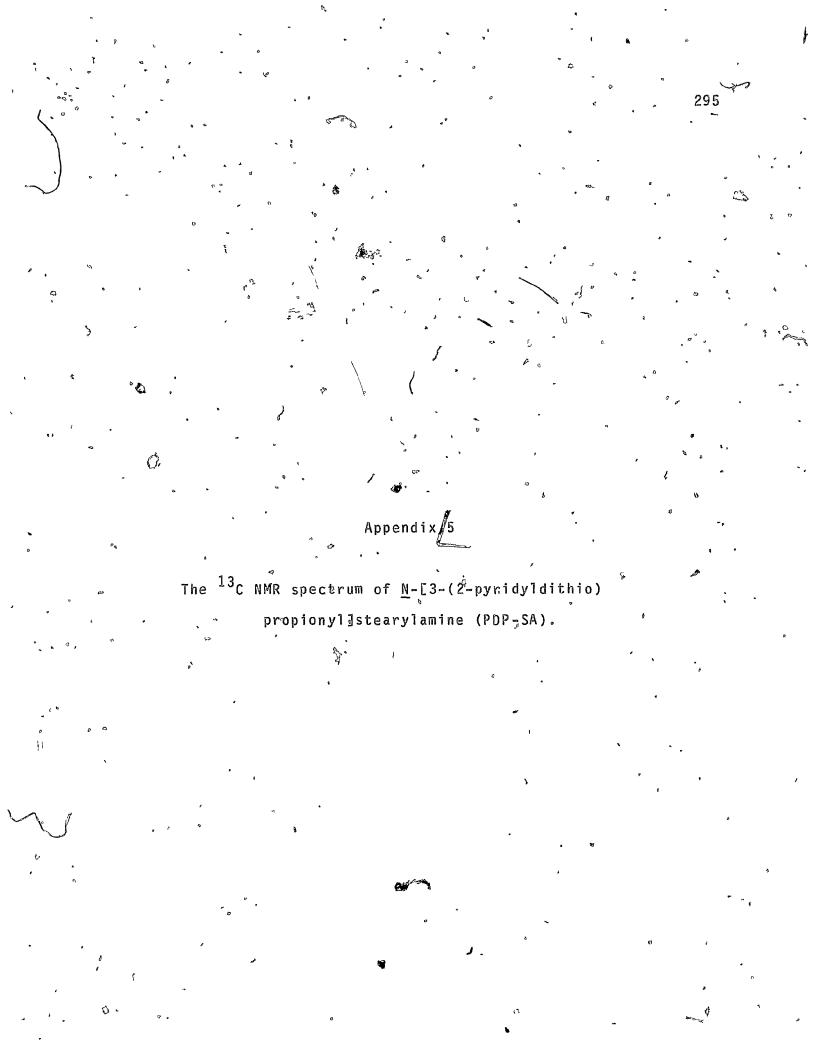

289

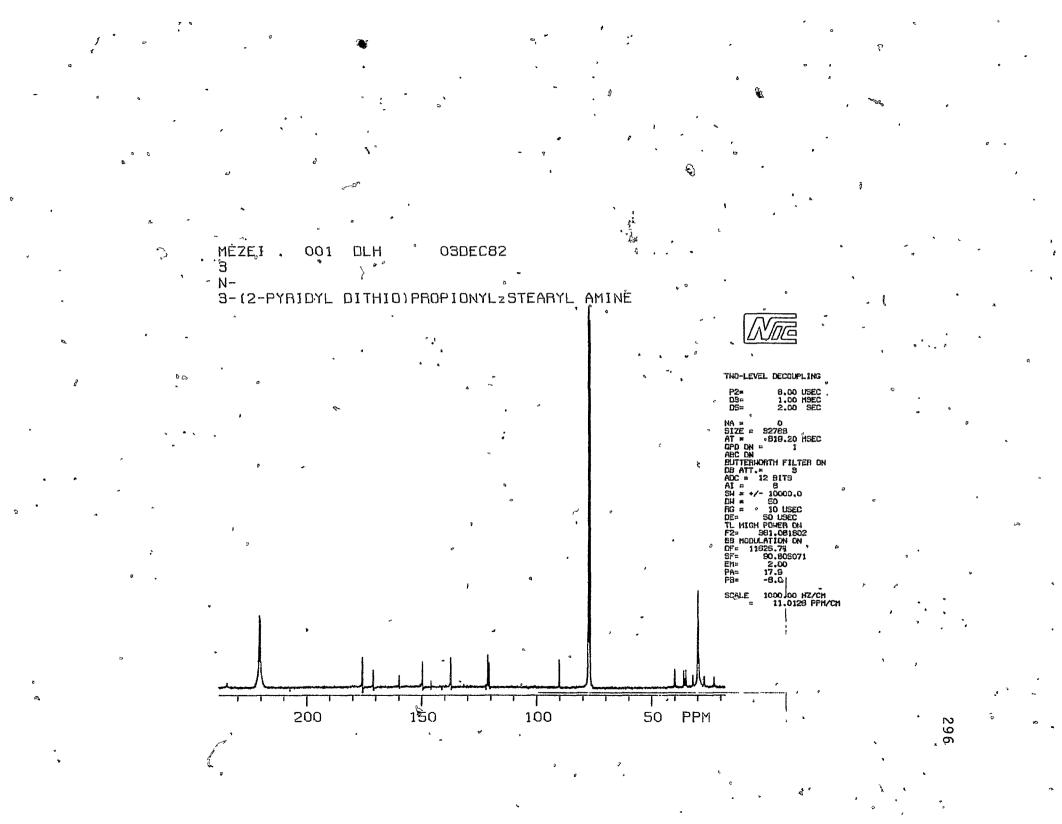

The IR spectrum of triamcinolone acetonide-21-

palmitate.


ſ

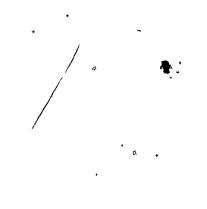

Ű ۵


, ্শা


293

The IR spectrum of N = [3 - (2 - pyridy]dithio). propiony]]stearylamine (PDP-SA).

-



ŝ.,

Appendix 6

Publications

۲ بر بر

297

Ŗ

1

 $\langle 0 \rangle$

Chemical Modification of Triamcinolone Acetohide to Improve Liposomal Encapsulation

ASHOK GOUNDALKAR and MICHAEL MEZEI *

Received February 7, 1983, from the College of Pharmacy, Dalhousse University, Halifax, N.S. D3H 315, Canada 18 1983 Accepted for publication April

Abstract \Box The 21 palmitate of triameinolone acctanide was synthesized to aid in the liposomal encapsulation of the drug Encapsulation efficiency of triamcinolone acctonide 21-palmitate was 85%, compared with 5% for the narent drug

Keyplinacci D Trancindone acetonide—synthesis of the 21 palmitate ester, liposomal encapsulation O Liposomes—encapsulation of triamcinolone acetonide-21-palmitate, synthesis

Liposomes are microscopic vesicles composed of phospholipid bilayers'separated by aqueous compartments Their potential as temporal and spatiotemporal drug delivery systems is being widely investigated (1-3). The applicability of liposomes as selective drug delivery systems for cutaneous administration of drugs has been studied (4, 5) in this laboratory using triamcinolone acetonide as the model drug Attempts to test various types of lipocomes with the same drug revealed a low level of encapsulation of the drug in the multifamellar liposomes

A relationship between lipocomal encapsulation and the structure of the derivatives of another corticosteroid, hydrocortisone, has been reported by Shaw et al (6). The observation that among a variety of derivatives, hydrocortisone-21palmitate had the maximum encapsulation in the liposomes led us to study a similar approach for enhancing encapsulation of triamcinolone acetonide The synthesis and purification of triancinolone acetonide-21-palmitate, based on the principles of the methods reported by Shaw et al. (6) and Diamanti and Bianchi (7), is described in this report. \$

EXPERIMENTAL

9-Fluero-21-(1-oxohexadecony)-11-bydroxy-16,17-(1-methylidix)lidere)-b.c(oxy)]-pregna-1,4-d ene-3,20-d ane---Triamcinotone acetonide (435 mg, 1 mmol) vas dissolved in 4 mL of N.N-dimethylformanude Pyridige (160 I minor visa dissolved in 4 mil. of N N-0 minetayliormanice rynoine (100 mg, 2 mmol) and palmitely chloride (550 mg, 2 mmol) were added, the mil. ture vas stirred magnetically at toom temperature for 22 h, and then was poured into 0.5 M sulfure acid (1600 mL) and stirred vigonously The preduct was removed by filtration and vas purified by column chromatography on

Table 1-Comparative Bata for Lipscontal Encapeulat on of Triantmelone Acetoride and Triantemplane Acetoride-21-Palmitate

		Concentration, mg/22 mL	
Procedure	• Fraction	Triamcinotone Acctonide	Triamcinolone Acetonide 21 Palmitate
Preparation	Crude product	20	20
Filtration	Filtrate	7	19
Centrifugation	Supernatant	6	2
-	Pellet (hposomes)	i	17

Journal of Pharmaceutical Sciences Vol 73, No 6, Juno 1984

1. $J_{24} = 0.6$ Hz, 4 CH) 6 44 (dd, 1, $J_{24} = 0.6$ Hz, $J_{12} = 9.5$ Hz, 2-CH), and 7 22 ppm (d, 1, $J_{12} = 9.5$ Hz, 1-CH) Anal --Calc for $C_{24}H_{61}FO_7$ C, 71 39, H, 9 44, F, 2 82 Found C, 71 26,

H, 9 25, F, 2 80 Preparation of Monorma-To reliably determine encapsulation efficiency. Preparations of algorithmetical to reliably determine encapsulation efficiency, radioactive transmitoriane acetomide 21 palmitate vas prepared as above from [6,7-9]t]irramennolane acetomide Multilamellar lapacomes vere prepared as described by Mezei and Gulaesharam (4) Dipalmitoly phosphatidyl choline (160 mg) and irrameno'aris acetomide-21 palmitate (22 mg, 350 µC) in chloroform-methanel (21) were evaporated using a rotary evaporator. The film was then disperced with 22 mL of aqueous 8 mM CaCl₂ solution at 60°C The preparation was evaluated microscopically and then filtered through a 12 μ m polycarbonate filter. The filtrate was then centrifuged at 22,000×g for 25 min Radioactivity in each fraction was measured after each treatment Triameinolone acctonide liposomes were prepared in a similar manner

RESULTS AND DISCUSSION

Results presented in Table I indicate considerable improvement in hpoleral encapsulation of triamcinolone acctonide as a result of palmitoylation. In the encapsulation of transferiturine actionate as a result of primity attained in the dass of the transmolores accessing income program attained to the second program attained attained at second after filtration through a 12-µm polycarbonate filter. This filtration step is necessary with the hpcromal encap-uplation of a hpophilic drug. Since the drug is necolable or very slightly calluble in the advecous medium, only that portion is encap-ulated that is in colution and intimately accessed with the the drug is necessary. ind bilayers, the remaining portion is in solid form which, although it is un-encapsulated, would be present in the lipocomal fraction after centrifugation. The loss of 13 mg (i e, 65%) of triamenolone acctonide by the filtration process was due mainly to unencap-ulated crystals observed in the crude process was due mainly to themecapulated crystals observed in the crede preparation. Such crystals were ab-atm in the filtrate No crystals were seen even in the unfiltered transmolone actionide-21-palmitate lipecomal fraction, consequently only 1 mg ($e + s^{-5}$) was lost by the filtration. This suggests that the palmitate form has a stronger association with the hp d layers and that almost complete encapsulation is achieved

The second major loss in the case of triameinolone acctoride liporomes was in the supernation after centrifugation of the filtrate. This is due mainly to In the superintantic estimate galaxies of the initial of the base mainly to the drug in colutor but nat associated with inscourse Evidence for this was demonstrated by gel filtration chromatography Thus, the overall encage-lation of trameinolone accounde, determined in the final purified light fraction, vas only 5% while that of its palmitate derivative vas found to be 85% The encapsulation of the palmitate derivative could be close to 900% if one considers the unavoidable loss due to the filtration and centrifugation procedures, re, by adcorption to the filter and glassivate. Another miner but inherent less of lipacomes could be due to the presence of small (<0 5 µm) lipo_omes, which are not completely codimented by contribugation. However, for comparison purposes, both preparations were analyzed by the same pro-cedures, and consequently, the same considerations should be applied

A possible reacon for instracted enapylation of the palmatic derivative could be the change in the partition coefficient. For hp d-coluble compounds a logarithmic partition coefficient (log P) between 1 7 and 4 is unfavorable for hpc.omal encapsulation (8) Tramensolo, s accionate has a log P of 2 33 (9) Palmitoylation would increase this to ~11 as calculated using substituent constants (9)

constants (9) The mechanism for increased encap-ulation could be predicted to be analogous to that of hydrocortisone-21-palmitate (10). The palmitoyl chain may act as "hydrophob caechor" ho'ding the steroid head group on the surface of the lipid bilayer One of the drawbacks in tiposomal drug delivery systems is the poor en-capsulation of the drug in the lipo.omes. Chemical modification is likely to be a poverful approach to overcomp such an obstacle, as evidenced here and sevidenced here and a sevidence and and an an of the drug was ascenated with

elsewhere (6) Although only a small amount of the drug was associated with the hpscomes the drug disposition was altered favorably on dermal application of a transmiolone acetoride lipsomal preparation (4, 5). In light of this; the potential usefulness of this highly concentrated hipsomal transmionor

0022-3549/ 84/ 0300-0834801 00/ 0[×] 1984, American Pharmaceutical Association

298

В.

acetanide-21-palmitate preparation as a relective drug delivery system for cutaneous administration may be optimal

REFERENCES

(1) G Gregori, di., in "Lipacance in Diological Systems," G Gregoriadis and A C. Alicon, Eds., Wiley, Nev. York, N Y. 1960 p. 377
(2) R L Juliaro and D Layton, in "Drug Delivery Systems," R L Juliano, Ed., Oxford University Press, New York, N Y. (1900)
(3) M D Yatvin and P I Lelker, *M.J. Pays*, 9, 149 (1902)
(4) M Mezer and V Golaseki aram, Life Sci., 26, 1473 (1980)
(5) M Mezer and V Golaseki aram, J Pharm Planneol 34, 473
(1922)
(6) J H Shavi, C G Knight, and J T Dingle, Diochem J. 183, 473

ŝ

~

L

 $\mathcal{I}_{\mathbf{i}}$

C

ß

سر میں

٩

"

a

(7) E. Diamonti and G. E. Dianchi. Arzeviri, Forsch., 23, 251 (1971)
(3) F. Defree Quertain P. Creintain, J. 14. Raymenhart, and M. Del melle, Buchim Biophys. Acta 622, 57 (1980)
(9) C. Honch and A. Leo, "Studiette Constants For Correlation Analysis in Chemilitry and Diology," Wiley, New York, N.Y., 1979 pp. 19. 315
(10) F. J. T. Fildes and J. E. Oliver, J. Pharm. Plarmacol.; 30, 337 (1970)

ACKNOWLEDGMENTS

ACKNOVIZZEROVENES This study was supported by the Med cal Research Council of Coanda (MA 6664) The autiliars thank Dr P S. Farmer, College of Pharmacy, Dalhausie University, Halftar, Nova Scotta, for his advice and acadetarce during the counce of this project

U

J Pharm. Pharmacol. 1984, 36, 465–466 Communicated November 10, 1983

COMMUNICATIONS ·

© 1984 J Pharm Pharmacol

300

465

Covalent binding of antibodies to liposomes using a novel lipid derivative

ASHOK GOUNDALKAR, TARUN GHOSET, MICHAEL MEZEI*, College of Pharmacy, Faculty of Health Professions and +Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS Canada B3H 3J5

 $N-[\hat{3}-(2-Pyridyldithio)$ propionyl] stearylamine (PDP-SA) was synthesized from a reaction between stearylamine and the heterobifunctional reagent N-succinimidylicyridyldithio) propionate. Use of this PDP-SA to covalently couple antibodics to liposomes was investigated The binding efficiency was found to be 24-32%. The antibodies bound to liposomes were shown to retain the specific antibody activity. This new procedure of coupling antibodies to liposomes could be an efficient means to deliver drugs to selected target organs, especially in cancer chemotherapy.

· Several methods to couple antibodies to liposomes via a stable covalent linkage have been reported (Barbet et al 1981; Endoh et al 1981; Jansons & Mallett 1981; Martin et al 1981; Shen et al 1982; Goldmacher 1983). Martin et al (1981) have described a method which has a higher efficiency of binding than achieved by the other methods and which avoids dialysis in the presence of a detergent. However, because of the use of an unsaturated phosphatudylethanolamine derivative, the longterm stability of the product might be questionable due to the risk of oxidation. We report here the successful linkage of a rabbit anti-BSA IgG to liposomes using a stearylamine derivative of N-succinimidyl-3-(2pyridyldithio) propionate (SPDP). This method has a high efficiency of binding without substantially interfering with the antibody activity of the bound IgG and the product does not have the risk of undergoing oxidation.

Methods .

Synthesis of N-[3-(2-pyridyldithio) propionyl] stearylamine (PDP-SA). Stearylamine^a (SA) (260 mg, 965 µmol) and N-succinimidyl 3-(2-pyridyldithio) propionate (SPDP) (200 mg, 640 µmol) were dissolved separately in 12 ml portions of absolute methanol. The solution of SPDP was added dropwise to the stearylamine solution and the mixture was stirred at room temperature (20 °C) for 30 min. Methanol was then removed under reduced pressure. The crude product was purified by column chromatography on silica gel; eluting with ethyl acetate-light petroleum (40:60) (282 mg, 94%): mp 61 °C; ir (CH₂Cl₂): 3450 (-NH-), 2950 [(CH₂)₁₀], \d690 (Amide I) and 1525 cm⁻¹ (Amide II); [¹³C]-nmr (CDCl₃): 175, 170 (cis and trans CO), 160-120 (5, pyridyl), 40-27 (several, CH₂), 23 pm

° Correspondence.

(CH₃). Anal. Calc. for $C_{26}H_{46}N_2S_2O$: C, 66 90; H, 9·93; N, 6·00; S, 13·74. Found C, 67·28. H, 9·89; N, 5·81; S, 13·75.

Preparation of liposomes. Preparations containing large unilamellar and oligolamellar liposomes were obtained by the reverse-phase evaporation method described by Szoka & Papahadjopoulos (1978) using DL-αdipalmitoyl phosphatidyl choline (DPPC), cholesterol, SA, and PDP-SA in a molar ratio of 4:4:1:1. Specifically, DPPC (80 mg, 109 µmol), cholesterol (42 mg, 109 µmol), SA (7.5 mg, 27.8 µmol) and PDP-SA (12.7 mg, 27.3 µmol) were dissolved in a mixture of chloroform (4.5 ml) and diethyl ether (8 ml). Next, 4.2 ml of 0.5% NaHCO3 (pH 8) was added, after which, the lipid solution was sonicated at 0-5 °C for 5 min in a bath-type sonicator. Organic solvents were removed from the resulting emulsion-like dispersion by a rotary vacuum evaporator. The aqueous dispersion was then shaken at 55 °C for half an hour to obtain liposomes.

To incorporate methotrexate (MTX) into the liposomes a 20 mM solution of MTX in 0.5% NaHCO₃ was used for entrapment. Crude liposomes thus obtained were washed twice with 0.5% NaHCO₃ by centrifugation at 22 000g for 25 min. The washed pellet, which consisted of MTX liposomes free from unentrapped MTX, was finally dispersed in a volume of 0.5% NaHCO₃. The leakage of entrapped MTX during antibody-liposome coupling was calculated as the difference between liposomal MTX content (determined spectrophotometrically at 303 nm in methanol) before and after attachment of thiolated normal rabbit IgG to the liposomes.

Preparation of PDP-IgG. Rabbit-anti-BSA IgG was fractionated with 33% saturated animonium sulphate from immune cera and its antibody activity was assayed by radial immunodiffusion as described by Kulkarni et al (1981). Pyridyl disulphide moieties were introduced into IgG, using the heterobifunctional reagent SPDP by the method of Carlseon et al (1973). Ten moles of SPDP was reacted with 1 mol of IgG in 0.1 m sodium phosphate buffer containing 0.1 m NaCl, pH 7.5, for 30 min. The reaction mixture was dialysed extensively against the above buffer at 4 °C in order to remove low-molecular-weight substances. The content of 2-pyridyl disulphide groups, as determined by the method of Carlsson et al (1978), was 6–8.2 per mole of

COMMUNICATIONS

needed

Covalent coupling of antibodies to liposomes. PDP-IgG was bound to liposomes by the method of Barbet et al (1981). PDP-IgG was reduced with dithiothreitol (DTT) in 0.1 M sodium acetate buffer containing 0.1 M NaCl, pH 4.5 for 40 min. Excess DTT and pyridine-2thione were removed by gel filtration on a Sephadex G-25 M column equilibrated with 0.5% NaHCO₃. Thiolated IgG (8-12.6 mg) and liposomes (26 µmol of phospholipid) were stirred together overnight at room temperature and pH 8. Liposomes were separated from unbound antibody twice by centrifugation at 22 000g for 25 min followed by washing of the pellet with 0.5% NaHCO3. In order to determine non-specific adherence of antibodies to liposomes, 9 mg of PDP-IgG t t had not been reduced by DTT was mixed with liposomes as above. The protein content of the liposome fraction was analysed by the method of Lowry et al (1951).

Determination of antibody activity. The antigen-binding capacity of the anti-BSA IgG was determined using ^{[125}]BSA as antigen by a method based on Farr assay (Hudson & Hay 1980). For determining the antigenbinding capacity of the IgG linked to liposomes, an aliquot of liposome-anti-BSA IgG containing 314 µg of IgG was incubated with an excess of [125]BSA (400 µg, 55 000 counts min-1) for 2 h at 37 °C with continuous shaking. This was followed by incubation at 4 °C for an additional 2 h. Liposome-antibody-antigen complex was then sedimented by centrifugation at 22 000g for 30 mm. The pellet was washed twice with 0.1 M PBS. The amount of BSA bound to liposomes was calculated by determining the 125I associated with the pellet. In control experiments the non-specific binding of ^{[125}]]BSA to normal rabbit IgG₆ or normal rabbit IgG-liposomes was determined. Values for specific binding to anti-BSA IgG were corrected by subtracting the amounts of radioactivity that bound nonspecifically.

Results and discussion

About 24-32% of the thiolated IgG became bound to liposomes (96-123 µg IgG µmol-1 phospholipid), a binding efficiency comparable to that reported by other investigators (Barbet et al 1981; Martin et al 1981). The non-specific adherence of antibodies to liposomes was only 0.9% (3.1 μ g IgG μ mol⁻¹ phospholipid). This confirms that the chemical reaction between thiolated IgG and liposomes (i.e. the fhiol-disulfide exchange reaction) was responsible for increased binding of IgG to lipocomes.

For immunospecific liposomal targeting it is essential that the liposome-bound antibody retain its immunological reactivity. The antigen-binding capacity of anti-BSA IgG before incorporation in liposomes was found to be 0.1641 µg BSA/µg anti-BSA IgG. The antigenbinding capacity of the rabbit anti-BSA IgG was

IgG. The modified IgG was stored at -20 °C until reduced by only about 20% after its linkage to liposomes.

> By virtue of the, primary amino group, stearylamine can react readily with the heterobifunctional reagent SPDP to give rise to another reactive compound: PDP-SA.

Stearylamine, in contrast to phosphatidylethanolamine, has a well-defined and simple molecular structure, i.e. it has a single hydrocarbon chain whereas phosphatidylethanolamine (PE), has two fatty acyl chains of varying length and saturation. Because of its single chain, PDP-SA may have a better fit into the lipid bilayers of the liposomes than the two-tailed' PDP-PE in which the length of the two chains are often unequal. Further, because its chain is saturated, PDP-SA is likely to be more stable than PDP-PE with its unsaturated fatty acyl chains: An oxidative reaction involving the PDP-PE could affect the integrity of liposomes and the stability of their linkage to antibodies. Other advantages of using PDP-SA for coupling antibodies to liposomes are the low cost of SA, the simple synthesis procedure and the almost quantitative conversion of SA to PDP-SA. Only about 20% of entrapped MTX leaked during the overnight binding reaction. Thus, by the linkage of appropriate antitumour antibodies to MTXcontaining liposomes, it may be possible to add to the tumour-inhibitory effect of MTX linked directly to anti-tumour IgG (Kulkarni et al 1981).

We thank Dr P. S. Farmer, College of Pharmacy, Dalhousie University, for his advice in the chemical synthesis aspect of this project and Mr Peter King, Editorial Services, Kellogg Library for his assistance with the preparation of this manuscript. Supported by the Medical Research Council of Canada (MA 6664 and MT 6922).

REFERENCES

- Barbet, J., Machy, P., Leserman, L. D. (1981) J. Supra-molec. Struct. Cell. Biochem 16; 243-258
- Carlsson, J., Drevin, H., Axen, R./(1978), Biochem. J. 173: 723-737
- Endoh, H., Suzuki, Y. Hashimoto, Y. (1981) J. Immunol. Methods 44: 79-85
- Goldmacher, V. S. (1933) Biochem. Pharmacol 32: 1207-1210
- Hudson, L., Hay, F C. (1980) Practical Immunology. Blackwell Scientific Publications, Oxford, 2nd ed, pp 94-98
- Jansons, V. K., Mallett, P. L. (1881) Anal. Biochem. 111: 54-59
- Kulkami, P. N., Blair, A. H., Ghose, T. I. (1981) Cancer Res. 41: 2700-2706
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. (1951) J. Biol. Chem 193: 265–275
- Martin, F. J., Hubbell, W. L., Papahadjopoulos, D (1981) Biochemistry 20: 4229-4238
- Shen, D., Huang, A., Huang, L. (1982) Biochim. Biophys. Acta 689: 31-37

Szoka, F. Jr., Papahadjopoulos, D. (1978) Proc. Natl. Acad. Sci. USA 75: 4194–4198

466

apleen of a BBUF rat by stimulating splenic T colls (obtained from a diabetic rat) in vitro with islet coll antigens for three days, recovering T cell blacts on a Percell density gradient, and growing such blacts with interleukin 2 (IL-2). A dualiar autoreactive T cell line vas derived di-rectly from the pancroas of a diabetic BB rat. Is-lets of Langerhams were recovered from the pan-ereas by collagenated displicit. The second second layer was propared by further digestion with tryp-gin. T cells could be cultured from this monolayer by adding IL-2. These T cells rapidly overgrow all other cell types, and showed specificity for islet cell antigens. The isolation and long torn growth of autgreactive T cell cloues will allow detailed atudies of the role that T colls play in the pathogeneois of IDDM.

Standardo of TDDN:.
9 RELEASE OF ACTIVE HEAT FEOLAT FLAY IN END pathogenetic of TDDN:.
9 RELEASE OF ACTIVE HEATHOREMATE CO.TAINING FRAG-EXITS PROM CARELER ANTITUMOR HEATHOREMATE CO.TAINING FRAG-Pathology², Pacelet of Heddeine, Edhavaie University, Unifer, Nova Secola, 331 407.
Instructoreast (ITTA) coupled to InG contibudies university, Unifers, Nova Secola, 331 407.
Instructoreast (ITTA) coupled to InG contibudies university, Unifers, Nova Secola, 331 407.
Instructoreast (ITTA) coupled to InG contibudies against twore-associated antifens on cause ELA lymphesa or human UII oblissa calls thibits unor calls accuas-ing the second and the second and the second and the second into the second and the second and the second and offective in inhibiting dihydrofolate reductate (DHFR) in "the than her free drugs. However, free HTK is core offective in inhibiting dihydrofolate reductate (DHFR) in "the than her free drugs to intracellular catabolies by UII calls in vitro. There of intracellular catabolies by UII calls in vitro. Therefore, inplicating is and object intracting in a second of the second and becket de her freentanell in very how optical at pH 4.6, acti-vated by dithotherital and inhibited by antipain and togliyeine chloremethy ketnes, inplicating ipponasi augures, then into the lead inhibited by antipain and togliyeine, and isplicating ipposed in the second offer by therefore, again isplicating ipposed in the second offer by the section was resolved into two peaks by bhAr-callulated inhibiting DHFR as the original conjugate.

ò

60 PREPARATION OF TARGETED LIFOSOMES AND THEIR INTER-ACTION ULTIVILIZIAN MELANDIA CELLS. <u>A. Goundalkar</u>, H. Nezel, T. Ghose, ² College, of Pharmacy and ⁴Department of Pathology, Faulty of Heddelmo, Dalhousde University, Halifan, N.S.

Taculty of Hodicino, Dalhousie University, Halifan, N.S. Ball 407 Educations, i.e. artificial phospholipid(Vesicles, are being widely investigated as extricts of anticancer drugs. Anti-tures antibodies may improve the hosing capability of drug enrying lipoceases to turar cells. In order to covalently bind 156 Co lipocease, a novel lipid derivative H-3-(2-pyridyldithio)propionyl] starylamine (FDP-SA) was ayathesized. Thial disulfide exchange reaction was used for the linkage of 156 to lipocease. Such chacical linkage did not significantly alter the antibody activity as shown by addisimusances.

The interaction between notherrenate-corrying lipecones linked to enticalcarka. [36 and target mela-use icils and studied using conbrane incumofluorecence. Microccopic emanination revealed "At larget numbers of lipecones bound to M21 cells when the lipecones were linked to anticalances lg6 than when they were linked to monspecific lg6. Nowever, whether lipecone-encapsulated drugs are taken up by target cells traning to be investigated. cells remains to be investigated.

61 LYMPH NODE INTASTASIS: ULTRASTRUCTURAL STUDICS ON THE RAT 13762 MANPARY CARCINOMA AND WALKER CARCINOMA. 1. Carr and M. Lavy, Dapt. of Pathology, University of Hani-toha and St. Boniface General Hospital, Hinnipeg, Manitoba R21 2A6.

Two types of rat tumor cells have been studied while spread-Two types of rat tumps cells have been studied while spread-ing on a plastic surface in vitro; their behavior as reflected principally in their ultrastructure has been compared with the behavior of the same tumors metastasizing from the footpad fo the poplical lyoph node as seen by transmission electron microscopy. It has been found that 13762 rat mamminy tumor cells do not spread readily on a plastic surface and do not migrate actively through the sinusoidal wall. On the other hand Walker rat carcinoma cells protrude fulerodis and spread

CLINICAL BIOCHEMISTRY VOLUME 17, FEBRUARY 1984

readily on a plastic surface and also protrudo filopodia and magnate readily through the atmussidal vall, both into the pulp of the lymph node and into sits cappule. These findings auggest that call movement in important in lymph node metasta-sis, to a varying degrees in different tumber. Supported by National Canter Institute of Canada and St. Bonsface General Hospital Research Foundation.

62 GENERATION OF MONOCLONAL ANTREODIES TO NUMAR REMAL CELL CAECINONA P Diouin, <u>S Jothy</u>, Department of Pathology, McGill University, Hontreel, P.Q. NJA 284.

Pethology, McGill University, Hontroal, F.Q. 1134 2004. The purpose of this study was to dovelop investigative and diagnostic probes to study human renal coll carciness (ECC). Honogical shibodies (MAD) were generated after immunication of mice with nicroscal and lipidic fractions of fresh RCC tissue. Screening was optimized to identify calls secreting IgG entibodies based upon the difference in their reactivity with ECC and normal kidney (HK). Collures supermetants tage togeted by ELISA for binding of FigG to desorbed ECC and NK tissue extracts; nocreting wells were then systematically tested by, indirect immunfluorencence (I.IY) on paired frozon sections of ECC and HK. Soleted hybridenae, eshibiting differential taining, were then cloned and expanded by induction of sacitos. Free immunicat dice the hybridens growth rate ranged frem 60 to 732. Out of 320 microculture supernatants tosted by ELISA 40 gave a high differential ratio of ECC/MK binding activity. I IF seconing showed that 10 of these super-natants contained IgG antibodies with differential staining of ECC w K, no dotectable staining of X was reaud with 2 MLD. Formaling files operative constained by immunoperediase was shown to be usable with 2 MAD. In conclusion a systematic comparison bottles normal and ture tissues by immuniaf cansoli Cates of ECC. Supported in part by the Hinistre do is Science et do la bight objection screening of MAD for their potential use in investigative and digenostic tests of ECC. Supported in part by the Hinistre do la Science et do la To chalese concer Find.

Production of a Progrossive Autoiseune Rephritis in the Rat by Multiple Infravencus Injections of Neterologous Anti-rat Kidney F3 Antiserus. R. LAMMIGAN, J. CORMIGN 63-A.I. BARABAS. University of Celgary, Calgary,

Ten rats received S weekly IV injections of 1 of of a raphit anti-rat kidney fraction 3 antibody. One control room proceived a ginalle IV injection of 1 al of the antiserum validweed by your weekly injections of 1 al nercal, rabbit werum. A second control aroup previved S weekly injections on ornal rabbit serum. The experiment was togainsted at 12 wesks. The test grown of anisely were severely proteinmune is 100 uprodevi. Animals in the control groups had no arotannyria. By insunofluorescenge the test aroups showed richness bedded fluorescence (severely and the control group of anos bedded fluorescence (severely and the test aroup as needly in a difficult for an the control group was needly for an the second control group was needly of the test anymals root deta the clonerul of the test anymals convoluted tubules of normal rat kidneys when stind for rat queeaglobulin the two control groups were negative. Me conclude that group restry is now the antigorus produced a propressive insume comply disease at the result of an autoissume process. ten rats received 5 neekly IV injections of 1 of of

as the result of an autoremune p.acess.

64 ACCUMULATION OF FAT IN LIVER CELLS OF BATS GIVEN CHOLINE-HETHICKNE DEFICIENT DIFT. <u>I. Padeoro</u>, A. Chochal, T. Bushere and E. Farber. Dopt. of Pathology, University of Torento, Torento, Ostario, M55 1AB.

Torpato, Untaria, his ind. Emperimental dota deficient in choline have been reported to initially cause severe stantonin about the central voin followed eventually by fibrosic originating around the central vein. This study by listrost ("durtroft N.S. (1950) Ant. Acc. 105,61), was done at a time when the dist preparation under may well have contained nightfrant mounts of follogism and/ar may have been deficient in folic acid and Vitamin D_{12} . In contrast, we report the accumulation of fat 5 m a pari-portal distribution, with relative sparing of Zone 111 hepatorytes, in Fischer 144 rate fod a dist deficient in foliging and low in archioning. This preforential Zone 1 fat accumulation was nost marked in the first week of freque the dist. Lange thy follow up of anthale on this dist for 12-29

dict. Long torn follow up of animals on this diet for 12-29

POOR COPY COPIE DE QUALITEE INFERIEURE