Structural-based Testing Methodologies for
Visual Dataflow Languages

by

Marcel R. Karam

Submitted in partial fulfilment of the requirements for the degree of
DOCTOR of PHILOSOPHY

Major Subject: Computer Science

at

DALHOUSIE UNIVERSITY

Halifax, Nova Scotia December, 2001.

©by Marcel R. Karam, 2001

I+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada

Your fle Votre rétérence

Our file Notre rélérence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership ofthe ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise . de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadi

0-612-77596-8

Dalhousie University

Faculty of Computer Science

The undersigned hereby certify that they have examined, and recommended to the Faculty
of Graduate studies for acceptance, the Thesis entitled “Structural-based Testing Method-
ologies for Visual Dataflow Languages” by Marcel R. Karam in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Dated: W ZZ‘/OL

Supervisor: Dr. Trevor Smedley

External Examiner: Dr. Allen Ambler

University of Kansas, USA

Examiners: Dr. Phil Cox /

Dr. William Philips

1l

DALHOUSIE UNIVERSITY

Faculty of Computer Science

“AUTHORITY TO DISTRIBUTE MANUSCRIPT THESIS”

Date: December, 07, 2001.

AUTHOR: Marcel R. Karam
TITLE: Structural-based Testing Methodologies for Visual Dataflow
Languages

MAJOR SUBJECT: Computer Science
DEGREE: Doctor of Philosophy

CONVOCATION: May, 2002

Permission is herewith granted to Dalhousie University to circulate and to have copied

for non-commerecial purposes, at its discretion, the above thesis upon the request of indi-

N

Signature of Author

viduals or institutions.

The author reserves other publication rights, and neither the thesis nor extensive extracts

from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted mate-
rial appearing in this thesis (other than brief excerpts requiring only proper acknowledg-

ment in scholarly writing), and that all such use is clearly acknowledged.

iii

To my beloved parents Ragheb & Helene,
my brother Issam & his family,
and
my brother Jalal.
ALSO

To the precious soul of my uncle Emile.

v

Table of Contents

LIST OF FIGURES ottt ite et iee s e tiie e iie s a e e snaesas viii
LIST OF TABLES . . .ottt iie ittt iia e ieia s a et eenns X
LIST OF ABBREVIATIONS .. itttiit ettt iiiiae e iiin e ina s aenes Xi
ACKNOWLEDGMENT S &ttt ett et iiie et iia et xii
ABSTRACT oottt ittt ettt e eia e i xiii
CHAPTER | Basic Definitions and Thesis Objectivesoove. |
Ll INEROAUCHION © v e e et e et e e et e e e e e I
|2 Fundamentals of Software Testingo.vve i 2
3 Whatis a Test Adequacy Criterion?.oovveiiiin e 3
3.1 Classes of Test Adequacy Criteria.o.vvvvvi 4
|4 Program-based Structural TEStNGvvievvi 6
14.1 The Control Flow Graph Model of a Program: An Informal Introduction............ 6
|42 Control-flow Test Adequacy Criteria.o 7
42,1 The Subsume Relationship . ..o 9
143 Data-flow Test Adequacy Criteria.ovvv v 10
1.5 Programming Paradigm. vvevi e |10
1.6 Thesis ObJECHIVES. . o\ .o ttvt et et et Il
CHAPTER 2 Program-based Structural Testingcooviivinenne. 13
Dl IPOAUCHION © v v v v e ettt et e e e e I3
2.2 The Control Flow Graph Model: A Formal Definition....... ... 14
22.1 Representing The Control Flow Graphoovvvvivrii |7
222 Dealing With LOOPS . oot v ittt |7
23 Control-flow Adequacy Criteriaovvvivv i 18
23,1 Statement COVEIAZEo\ v vttt 19
232 Branch COVEIAgE . .. oot oottt et 19
233 PathCoverage........coviiveniiveniiiins e 20
234 Feasibility. . ..o\ e e 20
24 Data-flow Adequacy Criteria.ovvvvve i 21
24| Data-flow Informationina CFG ...t 21
242 Intraprocedural Data-flow Adequacy Criteria........coovvvviiere 25
243 The Rapps and Weyuker Criteria Family ... 26
2431 The All-definitions . . oo e 26
2432 THhE AlFUSES . . vt v ettt et e e 27
2433 The All-definition-use Pathsot 28
2434 The All-c-uses/Some-p-uses and The All-p-uses/Some-c-Uses ... 29
244 The NEafos Critera. . v v vttt et e i 30
2440 Ak-drInteraction ... ovuur et 30

v

2442 The Required k-tuples Criteria.ooovviiiii 31

245 The Laski and Korel Criteria. vvvvii v 32
245.1 The Reach Coverage Criterionovvv i 32
2452 The Context Coverage Criteriono 32
2453 The Ordered Context Coverage Criterion ... 34
246 Data-flow Testing for Structured and Dynamic Data.oooovveoenennnnnn 35
2.5 The Structural Testing Subsume Hierarchy 36
2.6 Integration TESHNG. ...\t v et 37
2.7 Interprocedural Data-flow Testing ...« ..ovooviei i 38

27.1 lssues in Computing Interprocedural Definition-use Chains.ooovvievnn 39
2.8 VisUal Programming. ouvvee e en et 45
29 Prograph; A Brief OVErvIEW. ooiv i 47

29.1 The Dataflow Computational Model 48

292 ViSUL SYNTAX. . vt v vt e e 48

293 Editing ENVIFONMENT ..o iv et 49

CHAPTER 3 A Control-flow Testing Methodology for Prograph............... 50
3] IEPOAUCTION + o« v e ettt et et et e e 50
32 Dataflow Languages in The context of Prograph ..., 51

32.1 The Order of Execution in Prograph 54
32.1.1 The Data Dependency oouvrverneiruiii 54
3.2.12 The Control Dependenciesvvvr vt 55
32.1.3 The Control ANNOTALIONS . .« vt vt 55

322 Restricted Prograph.o 59

3.3 Testing Form-based Languages: Related Work. ..o 60
34 Testing Visual Dataflow Languagesoveviiier 61

34.1 An Abstract Model for Prograph.o 62

342 Building Data and Control Dependencies in OCGs........oovivviiiiiennnnn 63

343 IMPIEmMEntation ou i 64

35 AN EXAMPIE Lo 67
3.6 Findings Summary and New Directionsooiveiie i 69

CHAPTER 4 A Data-flow Testing Methodology for Visual Dataflow Languages. 71

4] INtrOdUCHION . et 71
4?2 The Procedural Aspect of Dataflow Languages. ... 72
42.1 The Method Structure in Prograph.o 73
4772 Definition-use Association for Dataflow Languagest 76
43 IMPIEMENTALION ottt vv et e et 78
430 AN EXAMPlE L. 8|
44 Interprocedural Data-flow Testing for Dataflow Languages.oovoinvn 85
44,1 lssues in Collecting The Interprocedural Dataflow Analysis in Dataflow Languages. . .86
442 Constructing The Interprocedural Operation Case Graph ... 90
443 Dealing With Aliases.ovuve 103
45 AN EXAMPIE oot 105
46 Findings Summary and New Directions 13

vi

CHAPTER 5 Testing Visual Object-flow Languages 114

Sl IMtrOdUCHION .« o ottt ettt e e e e e [14
52 Data-flow Testing for Text-based Object Oriented Languages 116
5.2.1 Other Issues in Data-flow Testing for Text-based OOP Languages. 121
5.3 The Object-flow in Prograph. ... |24
54 Testing Variable Interactions in Visual Object-flow Languages 124
54.1 Definition-use Association for Object-flow Languages............ ..ot 129
55 Data-flow Testing of Classes in Dataflow Languages, 131
5.5.1 Intramethod Data-flow Testingttt 131
55.1.1 Collecting the Intramethod Static du-associations.oe, 132
55.1.2 Visually Representing Executed du-associations., 132
552 Intermethod TeStNG . ..o\ v vttt 133
553 Intraclass TeStiNg . ..ot vv i 134
554 Polymorphic TeStiNgottt 135
5.6 Summary and New Directions ... 135
CHAPTER 6 ConcludingRemarks............. ..., 137
6.1 Chapters SUMMArYottt e 137
6.2 Visual-based Testing of Imperative Languages.coovvviiiiiiiii i, 140
6.2.1 Integrated Testing and Visual Validating Environment. (41
622 Proposed Systemand Method. 142
6.2.3 Reflecting The Testedness 148
624 Locating the Errorin the Source Code..............coo i 148
6.2, BENEliS . 149
6.3 Conclusion and FUture WOrko e 149
Bibliography e 151

vii

List of Figures

CHAPTER | Basic Definitions and Thesis Objectivesconcnccnncnne, I
Figure |-1. The structural testing hierarchy of test adequacy Criteria. ... 5
Figure 1-2. Data-flow and control-flow program-based structural testing. ...

Figure 1-3. The control flow graph or flow graph of @ program........mm.
Figure -4, An example illustrating both statement and branch coverage criteria

CHAPTER 2 Program-based Structural Testingccooevccncrnmnccrniciinsennnnn, I3
Figure 2-1. The rules for generating a control flow graph Model. ... [5
Figure 2-2. A CFG illuStrating @ loOp. et |8
Figure 2-3. An example of an infeasible COdE. v, 20
Figure 2-4. A sample C program and its control flow graph (CFG)..mmmismssssssssssin 23
Figure 2-5. A definition-clear subpath wrt. x to a use reached by that definition. 27
Figure 2-6. A CFG illustrating the All-defs Criterion. ... s, 27
Figure 2-7. A definition-clear subpaths wrt. x illustrating the All-uses criterion. ... 27
Figure 2-8. An example illustrating the All-USEs CrItErION. .. 28
Figure 2-9. Definition-clear subpaths wrt. x illustrating the All-du-paths criterion. ... 29
Figure 2-10. Ntafos [-dr and 2-dr interaction Paths. ... s, 30
Figure 2-11. An example illustrating the required k-tuple criteria
Figure 2-12. An example illustrating the concept of the context coverage criterion........... 33
Figure 2-13. An example of a Context COVErage. .. s 33
Figure 2-14. lllustrating the concept of the ordered context coverage criterion. .. 34
Figure 2-15. An example of an Ordered Context COVErage. .. 35
Figure 2-16. A code fragment illustrating du-path iSSUES IN rTays. ..., 35
Figure 2-17. The subsume hierarchy for structural-based t€StNG ..., 37
Figure 2-18, An example illustrating the interprocedural dataflow analysis.......mmmmn 40
Figure 2-19. An example illustrating the presence of aliases in imperative languages. 43

CHAPTER 3 A Control-flow Testing Methodology for Prographcnneee. 50
Figure 3-1. A Prograph program for QUICKSOrt. .
Figure 3-2. An example illustrating a Next Case on success
Figure 3-3. A Next Case applied on success to an operation that cannot fail. ... 56
Figure 3-4. An operation that is control annotated with finish of failure in a local. ... 57
Figure 3-5. An operation that is control annotated with finish of failure in a looped case..57
Figure 3-6. An operation annotated with terminate on failure in a looped case. ... 58
Figure 3-7. An iterative Factorial method containing one error (right), and its OCG (left).67
Figure 3-8. Modified Factorial LOCal. st 69

CHAPTER 4 A Data-flow Testing Methodology for Visual Dataflow Languages..7|
Figure 4-1. An example of a c-use and a p-use in Prograph. ..., 73
Figure 4-2. Method input and output in Prograph Cases. ... 74
Figure 4-3. The binding an actual parameter to a reference parameter at a call site.......... 74
Figure 4-4. Variable interactions in the structure of a local operation in Prograph. ... 75
Figure 4-5. An example of a looped annotated local operation in Progragh. ... 75
Figure 4-6. The iterative Factorial method containing an error (right), and its OCG (left)..82
Figure 4-7. The inspected iterative ProCedUre. . 84

viii

Figure 4-8. The corrected factorial 100ped 10Cal. wmmwsmmsimsismmssmsssmsssssssssssssss 85
Figure 4-9. A Prograph example illustrating both direct and indirect data dependencies. .86
Figure 4-10. Procedures Main, A, and B and its corresponding OCG sub-graphs. 88
Figure 4-11. An example of an alias introduced at a call Site. . 90
Figure 4-12. Creating the Entry and Exit Nodes for procedures A and B. ... 93
Figure 4-13. The algorithm to construct the IOCG(P) of a visual dataflow program F...... 94
Figure 4-14. Creating the Call and Return Nodes for procedures A and B 95
Figure 4-15. Reaching edges for procedures Main, A, and B 96
Figure 4-16. Interreaching edges for procedures Main, A, and B in Figure 4-1 O S 97
Figure 4-17. The connected IOCG sub-graphs for procedures Main, A, and B in. ... 99
Figure 4-18. The procedure used to propagate the interprocedural uses information..... 101
Figure 4-19. An example of an alias at @ all STt e |04
Figure 4-20. The unaliased IOCG for the program depicted in Figure 4-19. oo 105
Figure 421, The OCGs (left) for methods iterative and factorials (FIght)...mmmmsese 106
Figure 4-22. Interprocedural du-chains with l0oped UNIVErsals. ... 108
Figure 4-23. The connected IOCG for the Factorial program. .. |10
Figure 4-24. A visual communication of the testedness of the factorial method. ... 12
CHAPTER 5 Testing Visual Object-flow Languages ... 114
Figure 5-1. The class and its call graph representation. ... 118
Figure 5-2. A class A (left) and its Class Call Graph (FHght). . 120
Figure 5-3. The representation of a Class Call Graph enclosed in a frame. s 121
Figure 5-4. An example of a message and a polymOrphiC SErVET e 122
Figure 5-5. A pictorial representation of the Section icon in Prograph. s, 124
Figure 5-6. An example of get and set METhOAS. .. [25
Figure 5-7. The example of Figure 5-6 with a synchro enforced between n5 and n8...... 126
Figure 5-8. The alternative way of visually coding the example of Figure SR S 128
Figure 5-9. Modified labels after the scan and replace techniqUe. s 129
Figure 5-10. A p-use of attributes in visual object-flow languages such as Prograph.......... 130
Figure 5-11. Intermethod du-associations in Prograph. ... 133
Figure 5-12. The visual representation of a Class Calling Graph. v |34
CHAPTER 6 Concluding Remarks.........cccncniiciesnssns 137
Figure 6-1. The integrated testing and validating environment in the proposed IDE. 142
Figure 6-2. A C example containing an error (left) and its CFG (§=(a1 I —— 143
Figure 6-3. The control and data-flow information of the example in Figure 6-2. ... [45
Figure 6-4. The collection of blocks inside the loop labeled n3 of Figure 6-3. . |47

X

List of Tables

CHAPTER 2 Program-based Structural Testing ... 13
Table 2-1. Tabulated p-uses and their associated edges in the CFG of Figure 2-4.....vvven 24
Table 2-2. Tabulated definitions, and their c-uses in each node in the CFG of Figure 2-4...24
Table 2-3. The DCU and DPU of the program depicted in Figure 2-4 ... 25

CHAPTER 3 A Control-flow Testing Methodology for Prograph ... 50
Table 3-1. A test suite for the dataflow program shown in Figure 3-2. ., 68

CHAPTER 4 A Data-flow Testing Methodology for Visual Dataflow Languages..7|

Table 4-1. Exercised du-associations and edges of the program in Figure 4-6............wmn. 83
Table 4-2. The DEF and UPCON sets for the IOCG sub-graphs nodes of Figure 4-16......98
Table 4-3. The DEF and UPCON sets for the program in Figure 4-2 1. 109

Table 4-4. Intraprocedural testedness of factorial and iterative Methods. ... 11
Table 4-5. Interprocedural testedness of the Factorial program in Figure 4-21. v 11

CHAPTER 6 Concluding Remarks..........ncinnnininnisisisnsssnsssssnssns 137
Table 6-1. Node and edges test suite for the C program shown in Figure 6-2. ... 144
Table 6-2. All-du-paths test suite for the C program shown in FIgure 6-2. ... |44

List of Abbreviations

AV
CFG
CRG
CCG
DFTT
GUI
ICFG
IDE
I0CG
ITVVE
OCG
OOP
VDPLs
VP
VPEs
VPLs
W

WYSIWYT

Administrative View

Control Flow Graph

Cell Relation Graph

Class Call Graph

Dataflow Testing Tool

Graphical User Interface

Interprocedural Control Flow Graph
Integrated Development Environment
Interprocedural Operation Case Graph
Integrated Testing and Visual Validating Environment
Operation Case Graph

Object Oriented Programming

Visual Dataflow Programming Languages
Visual Programming

Visual Programming Environments
Visual Programming Languages
Validation View

What You See Is What You Test

Xi

Acknowledgments

First and foremost, I would like to express my sincere and most profound gratitude to my
supervisor, Dr. Trevor Smedley, for his extensive guidance, unparalleled support, and infinite
wisdom. His confidence in my ability to complete the work presented in this thesis, has always

given me the strength to overcome numerous obstacles.

I would also like to express my deepest gratitude to Dr. Phil Cox for his guidance and encour-

agement throughout the course of my graduate work.

I would also like to express my sincere gratitude to Dr. Abdel-Aziz Farrag for his unmeasured

support during my undergraduate studies.

To my longtime friend and Ph.D. role model, Dr. Camille Habib, I would like to say thank

you for your constant support and motivation.
To my brother, Dr. Jalal Karam, I would like to say thank you for always being there for me.
Last but not least, I would like to express my love, appreciation, and gratitude to my wonderful

parents. Although words can hardly express how I feel about them; however, I trust they know

that I treasure both their love and unmatched support for me.

X1l

Abstract

Visual dataflow programming languages have become an important topic of research in recent
years, yielding a variety of research systems and commercial applications [9][10]{21][80]. As
with any programming language, be it visual or textual, programs written in visual dataflow
languages like Prograph may contain faults. Thus, to ensure the correct functioning of visual
dataflow programs, testing is required. Despite this valid observation, we find no discussion in
the literature that addressed a specific testing methodology for visual dataflow programs. We
did find, however, adequate discussions related to testing methodologies for imperative, declar-
ative, and form-based languages.

In this thesis, we investigated, from structural testing perspectives, differences between imper-
ative and visual dataflow languages. Our investigations revealed opportunities to adapt code-
based structural testing to test visual dataflow languages. Based on that adaptation, we have
developed an integrated Dataflow Testing Tool (DFTT) and used it to visually and empirically
validate our testing results. Those results showed that our structural-based testing methodol-
ogy, in particular the “All-du paths” testing, provide an important error detection ability in
visual dataflow languages. To communicate the testedness of a visual dataflow program, we
provided a visual testing and validating environment in the DFTT by using visual annotations
to reflect, based on a certain testing criterion, the testedness of an operation, a predicate oper-
ation, or a datalink.

We also investigated from a data-flow testing perspective, differences between code-based
object oriented languages and visual object-flow languages in the context of Prograph. Our
findings revealed that, analogous to code-based object oriented languages, there are three levels
of testing instance variable data-flow interactions in visual object-flow languages. In each level
we showed how code-based data-flow testing techniques can be adapted to collect that level’s
appropriate du-chains. As for our new research directions, we have proposed an Integrated
Testing and Visual Validating Environment (ITVVE) for imperative languages that allows
users/testers to visualize both tested and untested du-associations. We also showed that the
ITVVE provides a visual testing environment that facilitates the task of approximating the loca-
tion of errors in the code.

Xiii

1 Basic Definitions and Thesis
Objectives

1.1 Introduction

Visual programming languages (VPLs) have become an important topic of research in recent
years. The dataflow paradigm is one of the most popular computational models for VPLs [49].
The visual dataflow paradigm for programfning is represented as a directed graph where nodes
represent user-defined or system-defined operations, and the data flows through edges or links
between nodes. Links going into a node represent the operation’s data input, links going out
of a node represent the operation’s output or result. Therefore, programming in this paradigm
involves assembling operation elements that send and receive data. Once the data flows into an
operation, it is evaluated accordingly, and the resulting data flows out of the operation and on
towards other operations along datalinks for further evaluation. Unlike imperative program-
ming languages where the order of execution of programming statements is rigidly structured
by the programmer, a dataflow language simply specifies data dependencies, and an operation
is executed when all of its input data become available. This model of execution is known as
the dataflow computational model. In a pure dataflow model, control constructs are not explic-
itly specified by the programmer; rather, the order of execution is implied by the operations’
data interdependencies. To allow the user to explicitly add control constructs such as those
found in imperative languages, dataflow languages [9][10][21](80] extended the pure dataflow
model to include the necessary control constructs. This extension is necessary in order for a
dataflow language to have any practical use. Thus, a dataflow program can be characterized by

both its data and control dependencies.

Visual dataflow programming languages (VDPLs) provide meaningful visual representations

for the creation, modification, execution and examination of programs. Users of VDPLs write

2

programs by creating icons that are connected via datalinks. We refer to this activity in this
thesis as visual coding. Like any other programming language, be it textual or visual, dataflow
programs are prone to faults that could originate at the visual coding level. In spite of this valid
observation, we find no discussion in the research literature of techniques for testing or assess-
ing the reliability of visual dataflow programs. In contrast, we find that most test adequacy cri-
teria were researched for imperative and declarative languages [8][17][29][56][59][76], and a
number of both commercial and experimental testing packages have been developed based on
these strategies [33][46]. Some recent work focused on testing form-based languages [16][17].
Although the visual dataflow paradigm is similar to the visual form-based paradigm in that they
are both visual, several characteristics of the form-based paradigm such as the dependency-
driven nature of its evaluation engine, suggest a different approach when testing VDPLs More

on testing form-based languages can be found in Section 3.3 of Chapter 3.

In this Chaprer, we seek to illustrate the basic notions — and not the precise definition — under-
lying the followings terms: soffware testing test adequacy criteria; control flow graph; program-
based structural testing, programming paradigms; and dataflow visual programming languages.
This will make further discussions more readily understandable, and lay the groundwork for
the introduction of our research objectives. In Section 1.2 and Section 1.3, we briefly cover the
fundamentals of software testing and test adequacy criteria, respectively. In the latcer, we
explain what it means to adequately test a program and how measurements are obtained from
a particular criterion. In Section 1.4, we informally introduce program-based structural test-
ing, briefly cover the basic notion of a control flow graph, and introduce two testing criteria of
program-based structural testing: control-flow and data-flow. In Section 1.5, we give the basic
definition of a programming paradigm, and give special attention to the visual dataflow pro-
gramming paradigm. Finally, in Section 1.6, we define our research objectives and discuss the

organization of the remainder of this thesis.

1.2 Fundamentals of Software Testing

Testing and debugging are certainly related but not synonymous. Formal definitions of the

word “testing” are: “testing is the process of demonstrating that errors are not present; the pur-

pose of testing is to show that a program performs its intended functions correctly; and testing
is the process of establishing confidence that a program does what it is supposed to do” [35].
These definitions have misguided both readers and testers, and are considered by some to be
the primary cause of poor program testing [64]. In general, program testing is a costly activity,
and that cost should be compensated by increasing the reliability of a program. Since one can
make the assumption that any program is almost certain to contain errors, one should not test
a program to show that it works; rather, to find as many errors as possible. Thus, a more appro-
priate definition for testing is: “testing is the process of executing a program with the intent of
finding errors ” [64]. Given this definition, it is only natural to ask: can we test a program to
find “all” of its errors? The answer to this question, as will be shown, is negative. Debugging,
on the other hand, is a two-part process; it begins with some indication of the existence of an
error and it is the activity of (1) determining the exact nature and location of the suspected

error within the program, and (2) fixing or repairing the error.

Having defined the objective of testing, the only technique to guarantee a program’s correct-
ness is to execute it on all possible inputs. While testing all possible input values would provide
the most complete picture of a program’s behavior, the input domain is usually too large for
exhaustive testing to be practical. Rather, the usual procedure is to select a relatively small
subset that is in some sense a representative of the entire input domain. When evaluating large
programs however, satisfying these requirements becomes impractical due to the infinite input
tests that have to be generated. Thus, other, less “stern” techniques had to be developed. Good-
enough and Gerharts [37] pioneering work in software testing focused on testing techniques
that are based on some selected criteria. These criteria are best known as test adequacy criteria,

and will be discussed briefly next.

1.3 What is a Test Adequacy Criterion?

Test adequacy criteria are testing objectives that are quantified, reasonable, and achievable
[48). This means that, under any one particular test adequacy criterion, the tester is expected
to: (1) define which parts of the program need be tested, and measure how well those parts have

been exercised; and (2) determine whether testing of a particular program is sufficient.

4

A number of test adequacy criteria have been proposed and investigated in the testing literature
[93][94][95]. The most frequently quoted classes of test adequacy criteria are: structural-based

testing; fault-based testing; and error-based testing. Each class will be briefly introduced next.

1.3.1 Classes of Test Adequacy Ciriteria

One way to classify test adequacy criteria is by the underlying testing approach [95]. There are

three basic approaches to software testing:

o structural-based testing; this approach specifies testing requirements in terms of the cover-
age of a particular set of elements in the structure of a program or its specification. In the
structure of a program, properties such as logical decisions are considered the set of ele-
ments that need to be exercised or covered. In the specification of a program, properties

such as algebraic specifications are considered the set of elements that need to be exercised.

e fault-based testing: this approach focuses on using test data to detect defects in the pro-
gram or its specifications. For example, program-fault-based testing attempts to uncover
faults that have been intentionally planted in the program. Planted faults are known as
mutants. Specification-fault-based testing attempts to detect faults in the implementation

that are derived from misinterpreting the specification of a program.

o error-based testing; this approach focus on using test data that mimic the kinds of mis-
takes that programmers make when constructing programs. Deriving these test data
requires partitioning the input domain of a program according to either the program or the
specification. When partitioning the input domain according to the program, we say that
two input data belong to the same sub-domain if they cause the same “computation” or
execution path to be traversed. Thus, sub-domains correspond to subsets of the program’s
execution paths. When partitioning the input domain according to the specification, a sub-
set of data is considered a sub-domain if the specification requires the same function on the

data.

5

As depicted in Figure 1-1, each approach can be applied based on the specification of the soft-
ware (specifications-based) or the program code (program-based or code-based). Specification-
based structural testing requires testing in terms of the requirements of the software so that a
test set is adequate if all the identified features have been exercised. Program-based testing spec-
ifies testing requirements in terms of the program under test and decides whether the program
has been thoroughly exercised. As depicted in Figure 1-2, structural program-based testing can
be based on either the control-flow or the data-flow of a program. When applied to the control-
flow of a program, program-based testing is known as the control-flow testing criteria; how-
ever, when applied to the data-flow of a program, it is known as data-flow testing criteria. In
this research work, we focus on investigating program-based testing for visual dataflow lan-

guages.

Classification of test adequacy criteria

Fault-based | | Structural-based Error-based
testing testing testing

Specification-based Program-based

Figure |-1. The structural testing hierarchy of test adequacy criteria.

The testing literature often refers to white-box testing and black-box testing as the two major
categories in software testing. In white-box testing, testers have access to the internal structure
of a program. Test cases derived from the program’s structure attempt to exercise program ele-
ments such as all logical decisions on both their true or false sides. Thus, any program-based
testing belongs to the white-box testing category. Black-box testing, on the other hand, treats
the program under test as a “black box” where no knowledge about the implementation of the
program is assumed. It is performed during later stages of testing and attempts to find errors
such as: incorrect or missing functions; interface errors; performance errors; and errors in data
structures or external database access. Thus, any specification-based testing belongs to the

black-box testing category.

Program-based

P

Control-flow Data-flow

Figure 1-2. Data-flow and control-flow program-based structural testing.

1.4 Program-based Structural Testing

Program-based testing is a special method for obtaining code coverage. When using program-
based testing, we try to cover the program’s code with as many test cases as possible. Test cases
are derived from the code logic and are independent of the functional specifications. As men-
tioned in Section 1.3.1, program-based structural test adequacy criteria can be applied to the
control-flow or the data-flow of a program. Both types are based on the control flow graph
model of a program structure. Before introducing the ideas behind both control-flow and data-
flow testing, it is essential that we briefly introduce the control flow graph model of a program

under test.

1.4.1 The Control Flow Graph Model of a Program: An Informal

Introduction

There are a number of conventions for control flow graph (CFG) models with subtle differ-
ences; however, most adequacy criteria can be defined independently of such conventions [95].
In general, a CFG is a directed graph that consists of a set Vof nodes and a set of Ec Nx N
directed edges between nodes. Each node represents a linear sequence of computation. Each
edge representing a transfer of control is an ordered pair (71, #2) of nodes, and is associated

with a predicate that represents the condition of control transfer from node 71 to node n2.

7

In a CFG, there is an entry node 7, and an exit node 7,. Every node in a CFG must be on a

path from 7, to 7,. An example of a CFG is depicted in Figure 1-3.

1.4.2 Control-flow Test Adequacy Ciriteria.

One way to classify control-flow test adequacy criteria is by the underlying coverage approach.
There are three basic coverage criteria associated with control-flow testing: path coverage; state-

ment coverage; and branch coverage. Each coverage criterion will be informally introduced next.

Figure I-3. The control flow graph or flow graph of a program.

o Path Coverage. The path coverage criterion requires that all execution paths from a pro-
gram’s entry to its exit are executed during testing. This is accomplished through an
exhaustive path testing that tests all possible paths of control flow through the program. In
practice however, the number of logical paths through a program can be astronomical. For
example, consider the trivial program represented with a CFG in Figure 1-3. Each node or

circle in the graph of Figure 1-3 represents a segment of statements that executes sequen-

8

tially, possibly terminating with a branching statement. Each edge or 4rc represents a trans-
fer of control or branch between segments. The graph of Figure 1-3 depicts a 10 to 20
program statements consisting of a “for” loop in node 7/ that iterates 20 times, and con-
tains nested “if” statements, then determining the number of unique logic paths is the
same as determining the total number of unique ways of moving from node 71 to node
nl 1. If we assume that all decisions in the program are independent from one another, the
number of paths from 71 to 711 is approximately 5204 519 4... + 51. One might however
argue that, in actual programs, every decision is not independent from every other deci-
sion, meaning that the number of possible paths is less. This argument can be easily

defeated since actual programs are much larger than the simple program represented by the

CFG in Figure 1-3.

Statement Coverage. In software testing practices, testers are often required to generate test
cases to exercise every statement in the program under test. Exercising every statement
means traversing every node in the CFG representing the program under test. The percent-
age of traversed nodes during testing is a measurement of test adequacy. Thus, a test set
that results in the traversal or coverage of all nodes is considered adequate according to the
statement coverage criterion. Statement coverage is also known as the All-statements or All-
nodes criterion. Consider the example in Figure 1-4 (top right) and its CFG (bottom). In
this example, it is possible to execute every statement by writing a single test case that
traverses the following paths: 71, n2, n3, n4, and n5. That is, by setting the following
assignments to the variables: 2 = 2, 6= 0, and x to 4. This criterion is considered weak
since, some edges, such as (z1, 72) that represent the control flow, are not exercised. To test
all the edges in a CFG of a program under test, a branch coverage criterion is needed, and

will be briefly presented next.

void funcl(a, b, ¢) {

if ((a> 1) && (b == 0))
x = x/a;

if(a==2) I (x> 1))

X =x+1;

}

Figure 1-4. An example illustrating both statement and branch coverage criteria.

« Branch Coverage. This criterion requires that test cases exercise both the true and false out-
come of each logical decision in a program. In other word, each branch direction in the
CFG must be traversed at least once. Consider the example shown in Figure 1-4. In this
example, edges (n1, n2) and (n1, n3) cover the true and false branches of the predicate or
conditional statement in node 71. The percentage of the traversed branches during testing
is a measurement of test adequacy. The branch coverage criterion is also known as the Al/-

branches criterion.

1.4.2.1 The Subsume Relationship

We say that a test adequacy criterion A subsumes some other testing criterion B if all the ele-
ments that B exercises are also exercised by 4. For example, in the branch coverage criterion,
every statement must be executed if every branch direction is executed because every statement
is on some subpath emanating from either a branch statement or from the entry point of the

program. Thus, branch coverage subsumes statement coverage.

10

1.4.3 Data-flow Test Adequacy Criteria

Given the definition of a variable x in a program, it is frequently useful to know what uses
might be affected by the particular definition. The inverse is also true; that is, for a given use
the definitions of data items which can potentially supply values to it are of interest. Such data-
flow relationships are called definition-use or def-use and use-definition or use-def, respectively.
Data-flow testing focuses on how variables are bound to values, and how these variables are to
be used. So rather than selecting program paths based on the control structure of a program,
data-flow testing is based on selecting paths that trace input variables through a program until
they are ultimately used to produce output values. Accounting for the data-flow paths within
a procedure or unit is known as intraprocedural data-flow testing. Accounting for data-flow
paths in the program as whole is known as interprocedural data-flow testing. More on data-flow

test adequacy criteria can be found in the data-flow literature survey of Chapter 2.

1.5 Programming Paradigm

A paradigm is the various systems of ideas that have been used to guide the design of program-
ming languages. It can be thought of as a collection of programming “styles” or abstract fea-
tures that categorize a group of languages which are accepted and used by a group of
programmers. The most prominent paradigms discussed in the literature are: imperative;
declarative; object oriented; and dataflow. The imperative paradigm is well known, and repre-
sents languages such as C and Pascal where programming is procedure-oriented. The declara-
tive paradigm focuses on predicate logic in which the basic concept is a relation. An example
of a declarative language is Prolog. The object oriented paradigm covers languages that sup-
port, among other features, classes, methods, objects, and message passing. Some of these lan-
guages are: C++; SmallTalk; and SIMULA. The dataflow paradigm covers languages in which
the ordering of operations is not explicitly specified by the programmer, but is that implied by
the data interdependencies [81]. Visual languages that adopt the dataflow paradigm, are
known as visual dataflow programming languages or VDPLs. In VDPLs, icons are the language

constructs, and data flows between these icons via datalinks.

11

VDPLs can be either domain specific or general purpose. In a domain specific DVPLs, users
cannot map a variety of application domains using the language’s constructs. Thus, the lan-
guage becomes restricted to one particular domain. LabView® [10] for example, is a domain
specific (scientific) VDPL that is designed for creating virtual instrumentations. Prograph®
[80] on the other hand, is a general purpose VDPL that it is not particular to any one specific
domain of programming. It is a representative of both commercial and research VDPLs, and

was used to develop a number of commercial software packages.

1.6 Thesis Objectives

Our objective is to provide VDPL users with a structural-based testing methodology to test
their visual dataflow programs. In pursuit of this objective, we investigate, from a structural
testing perspective, differences between imperative and visual dataflow languages. Our find-
ings, as we shall see, reveal opportunities to adapt code-based testing for visual dataflow lan-
guages. Based on those findings, we introduce new testing methodologies that make it possible
for visual dataflow language users to visually and empirically inspect, based on a particular

structural-based testing criterion, the testedness of a visual dataflow program.

The remainder of this thesis is organized as follows: in Chapter 2, we formally introduce code-
based control-flow and code-based data-flow test adequacy criteria for imperative languages.
We also discuss some issues related to data-flow analysis of both intraprocedural and interpro-
cedural data-flow testing. Finally, we discuss the main characteristics of visual programming,
followed by an overview of the visual dataflow paradigm in the context of Prograph. In Chapter
3, we illustrate some of Prograph’s main functionalities and discuss the subset of the language
considered for this work. We then investigate, from a structural-based testing perspective, dif-
ferences between dataflow and imperative languages. The results reveal opportunities for adapt-
ing code-based control-flow testing criteria to dataflow languages. We show that our proposed
testing methodology is well suited for visual dataflow programs. In particular, the All-branches
criterion provides important error detection ability, and can be applied to any dataflow pro-
gram. Empirical results obtained using the Data Flow Testing Tool (DFTT), a tool we have

developed, will reveal that analogous to imperative languages, the All-branches criterion cannot

12

detect all the errors in a visual dataflow program. Thus, to help catch those undetected errors,
a more rigorous testing should be applied. This is indeed the focus of Chapter 4. Related work
pertaining to the use of visual annotation in reflecting the testedness of form-based languages
is also discussed in Chapter 3. In Chapter 4, we discuss, in the context of Prograph, differences
in the language structure, between imperative and the procedural aspect of dataflow languages.
The findings reveal an opportunity to adapt code-based definition-use testing or du-testing for
visual dataflow languages. The adapted du-testing is subsequently used to achieve both intra-
procedural and interprocedural data-flow test adequacy criteria for visual dataflow languages,
in particular the All-du-paths‘criterion. Examples and empirical results will show that, analo-
gous to imperative languages [32], the All-du-paths criterion that we have adapted for visual
dataflow languages subsumes the All-branches criterion we have introduced in Chapter 3. In
Chapter 5, we take the code-based structural testing methodology introduced in Chapters 3
and 4 for testing the procedural aspect of visual dataflow languages, and extend it to test the
object oriented features of visual dataflow languages. Analogous to text-based object oriented
languages, the object oriented features of visual dataflow languages introduce new bug hazards
and challenges for code-based testing. We examine these challenges and hazards for object ori-
ented dataflow languages in the context of Prograph, and subsequently introduce a new meth-
odology to allow visual object-flow program testers to visually test for the presence of these
hazards. In Chapter 6, we present a summary of issues and ideas pertaining to the originality
of the work presented in this thesis. This summary is then followed by a discussion on our new
research directions. This involves a proposal of a method and system for an Integrated Devel-
opment Environment (IDE)-specific compiler technique that deals with the use of visual ele-
ments to interactively communicate to the user/tester, according to a certain structural-based
testing criterion, the testedness of imperative and textual-based object oriented programs.
Finally we conclude with some future work which may involve: (1) Establishing a hierarchy of
structural testing criteria for visual dataflow languages and comparing that with the hierarchy
of structural testing criteria for imperative languages, and (2) generalizing our proposed

method and system so that is could be, with moderate changes, applied to any existing IDE.

. The All-du-paths is a member of the Rapps and Weyuker [76] family of data-flow test adequacy criteria, and will be
explained in detail in Section 2.4.3 of Chapter 2.

13

2 Program-based Structural
Testing

2.1 Introduction

As the collection of high level languages increased over time, so did the paradigms that repre-
sent them [4]. A paradigm is the various systems of ideas that have been used to guide the
design of programming languages. It can be thought of as a collection of abstract features that
categorizes a group of languages which are accepted and used by a group of programmers. The
most prominent paradigms discussed in the literature are: imperative, declarative, functional,
object oriented, and dataflow. Imperative languages such as C provide facilities for assigning
and retrieving values to and from memory locations. The structural-based testing techniques
discussed in this chapter are all applicable to imperative programs. Declarative languages such
as Prolog and FormsIII [16] provide facilities for defining relations or functions among the
entities of the program. A technique that adapts code-based testing was introduced in [16][17]
to test, in the context of FormslIl, declarative languages. Functional languages such as LISP
allow the user to express computations as the evaluation of mathematical functions. We are not
aware of any structural-based testing technique for functional languages. Object oriented lan-
guages such as C++ allow the user to associate behavior with data-structures called “objects” —
that belong to classes — which are usually structured into a hierarchy. Structural-based testing
for object oriented methods within a class is analogous to structural testing for imperative lan-
guages. However, in the object oriented paradigm, polymorphism1 for example, introduces a
new set of bug hazards [12] that cannot occur in imperative languages. For those types of bug
hazards, various techniques have been proposed [12][40]. Chapter 5 offers an in depth look at

how structural-based testing is appropriately extended to test bugs introduced by the unique

. Polymorphism is a mechanism found in object oriented languages that allows the same message to be bound to differ
ent methods in a class hierarchy.

14

features of object oriented languages. The visual dataflow paradigm allows users to associate
program constructs with links through which data travels or flows. To the best of our knowl-
edge, the testing literature does not contain any work on testing visual dataflow languages.
Thus, a primary goal of this research work is to provide visual dataflow language users with a

structural-based testing methodology to test their visual dataflow programs.

The rest of this Chapter is organized as follows: In Section 2.2, we formally define the control
flow graph model. In Section 2.3, we formally define the following test adequacy criteria: state-
ment coverage; branch coverage; and path coverage. In Section 2.4, we formally define data-
flow test adequacy criteria and the concept of intraprocedural data-flow testing. In Section 2.5,
we briefly discuss the subsume relationship among the control-flow and data-flow adequacy
criteria discussed in this Chapter. In Section 2.6, we briefly discuss the concept and approaches
to integration testing. The latter introduces new challenges for structural testing. For example,
when applying data-flow testing to two or more integrated units or procedures, the data-flow
analysis of these components has to account for definitions whose uses, due to procedure calls,
extend beyond procedure boundaries. This testing is known as interprocedural data-flow test-
ing, and is indeed the focus of Section 2.7. Finally, in Section 2.8, we conclude with a general

discussion on visual languages, and the visual dataflow paradigm in the context of Prograph.

2.2 The Control Flow Graph Model: A Formal Definition

The use of graphs is widespread. Society uses graph-based notations such as organizational
charts, circuit diagrams, and flow charts [13]. The control flow graph (CFG) model has been
used as a mapping model for program structures. It is widely used in the static analysis of soft-
ware, such as defining and studying program-based test adequacy criteria. A CFG is a directed
graph that consists of a set IV of nodes and a set £c Nx N of directed edges between nodes.
Each node represents a linear sequence of computation. Each edge representing a transfer of
control is an ordered pair (n1, #2) of nodes, and is associated with a predicate that represents
the condition of control transfer from node 71 to node #2. In a CFG for a procedure p, there
is an entry node 7,and an exit node 7,. Every node in a CFG must be on a path from 7, to 7.

It should be noted here that there are a number of conventions for CFG models with subtle

15

differences; however, most adequacy criteria can be independently defined of such conven-
tions. For programs written in procedural programming languages, a CFG can be automati-
cally generated using the rules depicted in Figure 2-1. These rules represent the most common

textual imperative programming constructs.

{c) fori; =e jtoeyda S end d) Sl; 52; s S

Figure 2-1. The rules for generating a control flow graph model.

In general, to construct a CFG, a program code is decomposed into a set of disjoint blocks of
linear sequences of statements. A block is a sequence of consecutive statements in which the
flow of control enters at the beginning of the block and exists at the end without halt or the
possibility of branching except at the end; that is, whenever the first statement of a block is exe-
cuted, the other statements in that block are executed in the given order. The first statement
of a block is the only statement that may be executed directly after the execution of a statement
in another block. Usually, each block corresponds to a node in the CFG. Thus, we define a
block as a maximal set of ordered statements S = {s},55, 53,..., 5,} such that if n>1, for i =2,...,
n, 5;is the unique executional successor of 5; 1, and s;.; is the unique executional predecessor of

5. Thus, the first statement of a block is the only one that may have an executional predecessor

16

outside the block, and the last statement is the only one that may have an executional successor
outside the block. Furthermore, since conditional transfer cannot have unique executional suc-
cessors, every conditional transfer must be the last statement of a block. A control transfer from
one block to another is represented by a directed edge between the nodes such that the condi-

tion of the control transfer is associated with it.

Let G be a CFG representing a program Q where a node 7; corresponds to a block 4; of Q. An
edge from node ; to node 7, exists in G and is denoted (7), iff either the last statement of
bjis a transfer whose target is the first statement of &, or the last statement of &; is not an
unconditional transfer and it semantically precedes the first statement of 4. Given an edge (7
ny), we say that 7; is a predecessor of nj, and 7 is a successor of 7;. Informally, the presence of
an edge (nj, ny) in G indicates that it is possible for execution to flow from the last statement

in 4; to the first statement in b;. The following is graph theory related terminologies that are

applicable to G:

o A complete computation path is a path that starts with 7,and ends with 7, in G. It is also
known as a computation path or execution path. It is important to note here that there
might not be input data that will cause the sequence of statements of a complete path to be
executed. There is no algorithm in the literature that can predict the excecutability of a cer-
tain complete path; however, testing does not require that all complete paths be executed,

rather a subset;

e An empty path is a path of length 1. In this case, the path contains no edges; rather a node,

and it is written as (7);
o Acycleisapath p=(np npees 2, 1p);
* A cycle-free path is a path that does not contain cycles as subpaths;

s A finite path is a sequence of nodes (ny,...., n), £#> 2, such that there is an edge from #; to

n, fori=1,2,.., k1;
* A simple path is a path whose nodes, except possibly the first and the last, are distinct;

* A loop-free path is a path whose nodes are all distinct; and

17

o A syntactically endless loop is a path (np,...., ny), k>1, ny = ny, such that none of the blocks
represented by the nodes on the path contains a conditional transfer statement whose tar-
get is either in a block that is not on the path or is a halt statement. Such a path contains
no possible escape and can be detected and eliminated from a program. Thus, it is assumed

that programs under test do not contain syntactically endless loops.
2.2.1 Representing The Control Flow Graph

Representing a CFG can be accomplished using standard methods that include an adjacency
matrix and a path matrix. An adjacency matrix may be formed from the control flow graph
such that an edge (5, /) is one, iff there is an arc in the graph from node i to node j. A path
matrix may be formed from the adjacency matrix in which an edge (3, j) is one, iff there is some
path (along any number of arcs) from node 7 to node j. For each basic block, two boolean vec-
tors are defined such that one vector indicates which variables the block defines, while the other
gives the variables referenced by the block. These two matrices and vectors provide sufficient
information to test the program without further reference to the program source code [47].
Inspecting a graph can be done using standard algorithms such as breadth-first or depth-firse

search.

2.2.2 Dealing With Loops

A loop is a special language construct that allows for the iteration of one or more statements.
A loop that contains no other loops is called an inner loop. Ina CFG, a loop can be represented
as a collection of nodes such that: (1) the collection of nodes has a unique entry called the
header; (2) there must be at least one way to iterate the loop; that is, there should be at least
one path back to the header; and (3) all nodes in the collection are strongly connected; that is,
from any node in the loop to any other, there is a path of length one or more, wholly within

the loop.

A header is a node in a loop such that the only way to reach a node of the loop from a node

outside the loop is first to go through the header. The entry point into a loop must dominate

18

all other nodes in that loop; otherwise, it would not be the sole entry to the loop. A node # of
a flow graph dominates a node 7;, if every path from the header to 7; goes through 7; Under
this definition, every node dominates itself, and the entry of the loop dominates all other nodes
in the loop. For example, in the CFG depicted in Figure 2-2, #I dominates every other node;
12 dominates itself since control can reach any other node along the edge (n1, n3); n3 domi-
nates all but 77 and 72 #4 dominates all but 71, 2, and 73 since all paths must go through
cither (n1, n2, n3, nd) or (nl, n3, n4); n5and n6 dominate only themselves because the flow
of control can skip around either by going through the other; 77 dominates #7, n8, 9, and

n10: n8 dominates 78, n9, and 710; n9 and 710 dominate only themselves.

Figure 2-2. A CFG illustrating a loop.
2.3 Control-flow Adequacy Criteria

Control-flow testing is modeled as a traverse in the CFG representing a program Q. Every exe-
cution corresponds to a path in the CFG from the entry node to the exit node. Such a path is
called an execution path. An effective criterion requires paths with a high probability of reveal-

ing faults; that is, when the program is run with test data that cause the selected paths to be

19

executed, there is a high probability that faults, if they exist, are exposed by those test runs.
Essentially, the effectiveness of such criteria depends not only on the selected paths but also on
the test data for those paths. Test cases used in control-flow testing are derived from the logic
of the source code, and are independent of functional specifications [48]. There are three well
known control-flow testing criteria that are dependent on path traversal in a CFG. These are
statement coverage; branch coverage; and path coverage. Each of these coverage criteria will be

formally defined next.

2.3.1 Statement Coverage

Statement coverage requires executing all the statements in the program under test [48]. Since
statements in Qare organized as blocks in G, and those blocks correspond to nodes in the CFG,
covering all the statements means covering all the nodes in G. Given a set of execution paths P
={pp P P} and the set of all nodes N = {ny, ny,... n,,} ina control flow graph G, Psatisfies
the statement coverage criterion iff V'is on P. A test set that satisfies this requirement is con-
sidered to be adequate according to the statement coverage criterion. The percentage of exe-

cuted statements is 2 measurement of the statement coverage.

2.3.2 Branch Coverage

Branch coverage is similar to statement coverage, except that in branch coverage, all control
transfers in a program under test are exercised during testing. The percentage of the control
transfers executed during testing is a measurement of test adequacy. Given a set of execution
paths P = {p}, ps.... p,} and the set of all edges E = {e}, ..., &} ina control flow graph G, P

satisfies the branch coverage criterion iff for any edge e € E; some path in P contains e.

It is important to observe that if all edges in a CFG are covered, all statements are necessarily
covered. Thus, a test set that satisfies branch coverage, must also satisfy statement coverage.
This relationship between test coverage criteria is called the subsume! relationship. Hence

branch coverage subsumes statement coverage. If all branches are exercised, it does not mean

. The subsume hierarchy of structural-based test adequacy criteria discussed in Chapter 2 is depicted in Figure 2-17.

20

that all combinations of control transfers are traversed. This requirement is usually covered by

applying the path coverage criterion which is explained next.

2.3.3 Path Coverage

The path coverage criterion requires that all the execution paths from the program’s entry node
n,to its exit node 7, are traversed during testing. Given a set of execution paths P = {p}, py...,
. in a control flow graph G, Psatisfies the path coverage criterion iff Pcontains all execution
paths from 7, to 7, in G. The path coverage criterion is too strong to be practically useful,
because there exist an infinite number of different paths in programs with loops. This would
result in infinite test sets which means that testing cannot finish in a finite period of time. Prac-
tically speaking, however, a test has to be completed in a finite period. The requirement that a

test adequacy criterion can always be satisfied by a finite set is called finite applicability [94].

2.3.4 Feasibility

Statement and branch coverage, in some cases, cannot be fully achieved because of the possi-
bility of the existence of infeasible or dead code. This problem occurs simply when none of the
testinput data can exercise a specific statement or a branch. To illustrate, consider the fragment
of code and its CFG in the example of Figure 2-3. In this example, the programmer has omit-
ted the minus sign before “3” in the statement “if(k >3)”. If the value of £ is less than 2, then
% cannot possibly be greater than 3. Thus, neither “x = x + k”can be reached, nor edges (72,

n4) and (n2, n5) can be traversed.

ifk < 2) {
if(k > 3) { // should have been: k > -3

x=x+k; }

Figure 2-3. An example of an infeasible code.

21

For both statement and branch coverage criteria, the possible presence of infeasible code in 2
program makes these criteria not finitely applicable. For these criteria, a finitely applicable ver-
sion called the feasible version of the testing criterion was subsequently defined [94]. The fea-
sible version recognizes, due to the presence of dead code, the possibility of not fully satisfying
a certain coverage criterion. The introduction of a feasible criterion, as argued by Weyuker
(871, might cause undecidability in testing, because (1) it may not be decided whether a test
set satisfies a given adequacy criterion, and (2) the question whether a statement, branch, or
path is feasible, is undecidable. In general, one of the major weaknesses of all these aformen-
tioned coverage criteria is that they are solely based on syntactic information and do not con-

sider semantic issues such as infeasible paths [20].

2.4 Data-flow Adequacy Criteria

In the previous section, we described how a program’s control-flow information is represented
and used in a2 CFG to achieve control-flow test adequacy criteria such as the All-statements and
All-branches. In this section, we discuss how a programs’s data-flow information is incorpo-
rated into a CFG, and how this information is used to achieve data-flow test adequacy criteria.
Then, three intraprocedural (unit) dataflow adequacy criteria are reviewed: Rapps and

Weyuker [29][76]; Ntafos [66] [67]; and Laski and Korel [56].

2.4.1 Data-flow Information in a CFG

Although data-flow analysis is traditionally used in the last two phases of a compiler, namely,
code optimization and code generation, it has also become an integral part of other language
processing tools such as anomaly checkers, and testers. In the latter, paths from nodes contain-
ing definitions to nodes where those definitions are used (definition-use chains) are of interest.
This data-flow information; in particular definition-use chains (du-chains) are required to
apply data-flow testing. Data-flow analysis techniques for computing definition-use chains for
individual procedures Aho [1] (pp. 632-633) are well known and have been used in various
tools, including data-flow testers introduced by: Frankl and Weyuker [33][34]; Harrold and
Soffa [44]; and Korel and Laski [57]. In general, data-flow analysis refers to the part of a com-

22

piler that examines the CFG of a program’s source code, and collect desired information per-
taining to the definitions and uses of variables in 7€ CFG. Once definitions and uses in each
node 7 have been identified and represented, collecting the du-chains in the program can be

accomplished by using well known techniques such as the one proposed by Aho [1].

As discussed previously, occurrences of variables at each node n€ CFG are classified as either
a definition occurrence or a use occurrence. A node n € CFG contains a definition occurrence
of a variable if there is a statement in 7’s corresponding block & that binds a value to that vari-
able. For example, in Figure 2-4, the node labeled 74 contains a definition of z A use occur-
rence of a variable is where the value of the variable is referenced. Each use occurrence is further

classified as being a computational use or a predicate use [76].

A node n € CFG contains a computational use or c-use of a variable if there is a statement in
#'s corresponding block & that references the value of that variable. For example, in Figure 2-

4, the node labeled 72 contains a computational use or c-use of y.

Since data-flow analysis for the purpose of data-flow testing is concerned with tracing defini-
tions whose uses do not occur in the same node, we make a distinction between a local c-use
and global c-use. A c-use of a variable x is said to be global at a node # if no definition of x
semantically precedes the c-use in 7. That is, the value of x must have been bound to it in some

other node ne CFG.

A node n€ CFG contains a predicate use or p-use of a variable if the last statement in the cor-
responding block & contains a predicate statement where the value of that variable is used to
decide whether a predicate is true for selecting execution paths. A conditional transfer state-
ment in a block & corresponding to a node 7€ CFG has two executional successors: 7, and 7,
such that 7 # j. Since the value of the variable occurring in the predicate statement determines
whether 7; or n;will be executed next, a p-use s associated with edges rather than with the node
in which the predicate statement occurs. For example, in Figure 2-4, edges (n1, n2) and (nl,

#3) contain a p-use of y. Since p-uses are associated with edges, no distinction need be made

between local p-uses and global p-uses.

23

void procl (void) { read x,y

scanf ("%d%d", x, y); ifly < 0)
if(y <0){ T @ ;,
p=Y
} /] end if
else {
p=-y
} 1/ end else
z7=1;

while (p = 0)
{

2=2%%;
p=p-1
} /I end of while
if(y=0)
{
inta=z+1;
printf (a);
} /] end if

else

a=z+1

print (a)

z=1/z;
} /! end else
} // end of procl()

Figure 2-4. A sample C program and its control flow graph (CFG).

Data-flow test adequacy deals with subpaths from definitions to nodes where those definitions
are used or definition-use chains. Let P={p}, p2 p3--» p,} be the set of all subpaths from def-
initions to nodes where those definitions are used. We say that a definition-clear path with
respect to a variable xis a path p; (1 < # < 7) such that for all nodes Nin p; there is no definition
occurrence of x. A definition of x at a node # € CFG reaches a c-use of xat node ve CFG, iff
there is a path p; from # to v such that p; = (, wy, Wa..., Wy, 0) and (W), Wo...;wy,) is defini-
tion-clear with respect to x, and the occurrence of xat vis a global c-use. Similarly, a definition
of xat u reaches a p-use in w,,, if there is a path p; = (4, wy, wp,..., Wy, v) from #to v, and (w),
Wo...r Wy, is definition-clear with respect to x, and there is a predicate occurrence of x associ-
ated with the edge (w,,, v). We say that a definition feasibly reaches a use on a path p € P, iff

there exists at least one input datum that can cause the execution or traversal of p in CFG.

24

Table 2-1. Tabulated p-uses and their associated edges in the CFG of Figure 2-4.

P-USE edges

{ (nl,n2)
{} (nl,n3)
{p} (n5,né)
{p} (n5,n7)
V2 (n7,n8)
{r (n7,n9)

To incorporate definition and use information into each node ne CFG, two sets, DEF[#] and
C-USE[#], are associated with each node 7, and one set, P-USE[#, nj], is associated with each
edge containing a predicate use. These sets are defined as follows: DEF[#] is the set of variables
for which # contains a global definition; C-USE[#] is the set of variables for which # contains
a global c-use; and P-USE([#;, 7] is the set of variables for which edge (7; 7)) contains a pred-
icate use. Table 2-1 illustrates the p-uses and their associated edges in the CFG of Figure 2-4.
Similarly, Table 2-2 illustrates the definitions and their c-uses for each node in the CFG of

Figure 2-4.

Table 2-2. Tabulated definitions, and their c-uses in each node in the CFG of Figure 2-4.

node DEF C-USE
l {xv} {o}

2 {p} {r}

3 {p} {v}

4 {2} {o}

5 @ {o}

6 {z.p} {x.z.p}
7 {o} {o}

8 {} {z}

9 {a} {z,a}

After associating the DEF, C-USE, and P-USE sets with the appropriate nodes and edges in
the CFG, the definition predicate-use (DPU) and the definition computation-use (DCU) sets

can be defined and associated to each node n € CFG as follows: Let #; be any node in a CFG

25

and x any variable € DEF[#}], we say that DCU][x, 7] is the set of all nodes 7 such that x €
C—USE[nj] for which there is a definition-clear path with respect to x from 7; to n A DPU[x,
n] is the set of all edges (;, 7)) such that x € P-USE[n;, 7] for which there is a definition-
clear path with regards to x from #; to n; Table 2-3 illustrates the DPU and DCU sets for the
example in Figure 2-4. We say that a path (7y,...., #;, n) is a definition-use path or du-path
with respect to a variable x if 7; has a global definition of x and either 7, has a c-use of xand
(pperes my 1) i 2 definition-clear simple path with respect to x, or (7, 7;) has a p-use of xand

Hryenn 1) is a definition-clear loop-free path with respect to x.
1 ; p p p

Table 2-3. The DCU and DPU of the program depicted in Figure 2-4

DCU (x,nl) = {né} DPU (x,nl) = {o}

DCU (y,nl) = {n2,n3} DPU (. nl) = {(nl,n2), (n1,n3), (n7.n8), (n7,n9)}
DCU (p,n2) = {né} DPU (p,n2) = {(n5,né), (n5,n7)}

DCU (p,n3) = {né} DPU (p, n3) = {(n5, né), (n5,n7)}

DCU (p, n6) = {né} DPU (p, né) = {(n5,né), (n5,n7)}

DCU (z. n4) = {n6,n8,n%} | DPU (z,n4) = {z}
DCU (z,né) = {né,n8,n9} | DPU (z,né) = {2}
DCU (z,n8) = {6} DPU (z,n8) = {@}

2.4.2 Intraprocedural Data-flow Adequacy Criteria

Data-flow testing of a procedure or intraprocedural data-flow testing, considers the flow of data
within a procedure, while assuming some approximation about definitions and about uses of
reference parameters and global variables at call sites. A call site in imperative languages is a
statement S that invokes a procedure. For example, S;: x= B(y) is a statement that contains a
call site that invokes a procedure B, such that 3, an actual parameter in procedure 4, is passed
into the argument list of A Once y is bound in the called procedure to its corresponding ref-
erence parameter, say 2 it is assumed that z is neither defined nor used inside A. This assump-
tion is based on the fact that intraprocedural data-flow testing is concerned with testing one
procedure at a time. Thus, in the data-flow analysis of procedure A we say that yis used at Sj.
There are three prominent groups of intraprocedural data-flow adequacy criteria in the testing

literature. These criteria will be reviewed next.

26

2.4.3 The Rapps and Weyuker Criteria Family

Rapps and Weyuker [76] proposed a family of test adequacy criteria based on the data-flow
information of a program. The foundation of this family is to compute definition-clear sub-
paths from each definition to all or some use(s). This family of criteria is mainly concerned with
the simplest type of data-flow paths which start with a definition of a variable and end with a
use of the same variable. This family includes: All-definitions; All-uses; All-cuses/Some-puses; All-
puses/Some-cuses; All-puses; and All-du paths. In [29], Frankl and Weyuker redefined the original
dataflow criteria [76] because it did not take into account the feasibility issue. The feasibility
issue says that for a given program Qand a data-flow criterion C; it may be the case that no test
data for Q satisfies C. This scenario occurs when none of the paths that cover a particular du-
association required by C is executable. In such a scenario, Q cannot be adequately tested
according to C. The new family of adequacy criteria was called the feasible data flow criteria,
and it required that test data exercise only those du-associations that are executable. Next we

discuss each member of the feasible family of test adequacy criteria.

2.4.3.1 The All-definitions

Let P={p}, po-.s pt be the set of all possible executable paths in a control flow graph G rep-
resenting a program Q. As illustrated in Figure 2-5, the All-definitions criterion or All-defs
requires tracing some definition-clear subpath of a variable xat a node #; to some use reached
by that definition at a node 7;. An adequate test should cover all definition occurrences in the
sense that for each definition occurrence, the testing paths should cover a path through which
the definition reaches a use of the definition. In general, we say that a definition & of a variable
x reaches a use #at a point pntin the program if there is a path p from o %, such that xis not

redefined or killed along p.

Formally, a set L of execution paths, C P, satisfies this criterion, iff for all definition occurrences
of a variable x such that there is a use of x which is feasibly reachable from the definition, there
is at least one path pCL that includes a subpath through which the definition of x reaches some

use occurrence of x.

27

x=3 y=X

def-clear subpath :

s

Figure 2-5. A definition-clear subpath wrt. x to a use reached by that definition.

For example, in Figure 2-6, a satisfying All-defs with regards to variable x is: (nI, n3). The
reader should note that, in this criterion, errors that occur in un-executed nodes or untraversed

edges would go undetected.

scanf ("%d", &x);

x 20 x<0
Y=X y=—x

Figure 2-6. A CFG illustrating the All-defs criterion.

2.4.3.2 The All-uses

This criterion is based on the fact that a definition occurrence of a variable may reach more
than one use occurrence. As depicted in Figure 2-7, the definition of x in 7; reaches, via defi-
nition-clear subpaths with regards to % uses of xin 7;, 74, and 7, repectively. Thus, this crite-
rion is concerned with tracing definition-clear subpaths with regards to a variable x at a node

n; to each use (n; 7y, 7) reached by that definition.

deficlear wre x def-clear subpath
-

_— a=X

x=3 def-clear subpath
—-— —— b= x

def-clear subpath
-— -——’@ c=X

Figure 2-7. A definition-clear subpaths wrt. x illustrating the All-uses criterion,

28

Formally, a set L of execution paths, L C P, satisfies this criterion iff for all definition occur-
rences of a variable x, and all the use occurrences of x that the definition feasibly reaches, there
is at least one path p in L such that p includes a subpath through which that definition reaches
the use. For example, in Figure 2-8, the All-uses paths with regards to x are: (nl, n2, n4, n5,
1n7), and (nl, n3, n4, n6, n7). The All-uses criterion was also proposed by Herman [1976], but

was called the reach coverage criterion.

scanf ("%d", &y);

Figure 2-8. An example illustrating the All-uses criterion.

2.4.3.3 The All-definition-use Paths

This criterion is concerned with tracing all definition-clear subpaths that are cycle-free or
simple-cycles from each definition of a variable x to each use reached by that definition and
each successor node of the use. For example, in Figure 2-9, the definition of x at node 7,
reaches, via three definition-clear subpaths the use of xat 7;. Given a definition occurrence of
a variable x and a use of x that is reachable from that definition, there may exist many paths
through which the definition reaches the use. Since there may exist an infinite number of infea-
sible paths, the applicability of this criterion restricts these paths to be cycle-free or simple

cycles.

29

cycle free or simple cycle

def-clear
| | []

def-clear wrt x

cycle free or simple cycle

x=3 def-clear
Pprun =m

cycle free or simple cycle
def-clear

Figure 2-9. Definition-clear subpaths wrt. x illustrating the All-du-paths criterion.

Formally, a set L of execution paths, L C Psatisfies this criterion iff for all definitions of a vari-
able xand all paths M C L through which that definition reaches a use of x, there is at least one
path p in L such that M is a subpath of L, and M is cycle-free or contains only simple cycles.
For example, in Figure 2-8, the All-du-paths with regards to x are: (n1, n2, n4, n5, n7), (nl,
n3, n4, n6, n)), and (nl, n2, n4, n6, n7). The the All-du-paths subsumes the All-uses criterion
because the All-du-paths requires that test data be included which cause certain combination

of path segments to be traversed, whereas the All-uses criterion does not.

2.4.3.4 The All-c-uses/Some-p-uses and The All-p-uses/Some-c-uses

Emphasis in these criteria is placed on either computational uses or predicate uses. The All-c-
uses/Some-p-uses criterion with regards to a variable x, requires that all x's computational uses
be exercised; however, if no c-uses exist for x one p-use, at least, should be exercised. In con-
trast, the All-p-uses/Some-c-uses places emphasis on p-uses. It requires paths that exercise all
p-uses, and exercise at least one c-use, when there is no p-use. Two more weaker criteria were
also defined. These criteria are: All-p-uses and All-c-uses. The All-p-uses ignores all the com-

putational uses, whereas the All-c-uses ignores all the predicate uses.

30

2.4.4 The Ntafos Criteria

Nitafos [66] proposed a family of test adequacy criteria the foundation of which is the observa-
tion of how the values of different variables interact. The family of adequacy criteria is called
the required k-tuples, where kis a natural number >1. The required k-tuples require that a path
set P covers chains of alternating definitions and uses, or definition-reference interactions
called £-drinteraction (£> 1). Each definition in a k-dr interaction reaches the next use in the
chain, which occurs at the same node as the next definition in the chain. For example, in
Figure 2-10, a 1-dr interaction for 4 = 1, is a definition-clear path with regards to x from its
definition at a node 7; to its use at a node 72,. Also a 2-dr interaction for £ = 2, is a definition-
clear path with respect to x from its definition in 73 to its use in the definition of yin ny and
a definition-clear subpath with regards to y from its definition in 7 to its use in n5. We for-

mally define a k-dr interaction next.

x =3 def-clear y=x
1dr (R = —(2)
X =4 def-clear ¥=X z=y

2-dr @—-'_ - | () d:f;-clez :

Figure 2-10. Ntafos |-dr and 2-dr interaction paths.

2.4.4.1 A k-dr Interaction

In a k-dr interaction, the definition of a variable x; in a statement s; (i.e, the first definition)
and the reference x;; in 5 (the last reference) are treated as the focal points of the interaction
“or as a path that starts at the beginning and ends at the end”. The rest of the interaction may
be viewed as a sequence of events leading up to the last reference or a sequence of actions that
follows the first definition. In general, there will be a set of k-dr interactions that have the same
last reference, each representing one of a variety of paths along which that reference can be
reached. Similarly, there will be a set of k-dr interactions that have the same first definitions,
each describing one of a variety of sequences of that definition. A k-dr interaction specifies that

the reference to x; in s;, ; is used directly (in the same statement) to define x;, ; in s;, ;. Given

31

that 1 € 7 < £, a k-dr interaction can be formally defined as a sequence S = [d(x)), u;(x)),
dx)), ufx2),..., dilxp), uyxp)] where: dx)) is a definition of variable x; u/x,) is a use of vari-
able x; both u{x) and d;, ;(x;) are associated with the same node 7, ;; and for all j, the ith def-
inition reaches the izh use. Given that & 1 < 4, an interaction path for a k-dr interaction is a
path P= (1)) * p; *(np) * po* (ng9) ¢ (ny)) * Py * (n) such that, dx) reaches u{x) through
p; The required k-tuples criterion which we formally define next, thus requires that all k-dr

interactions be tested.

2.4.4.2 The Required k-tuples Criteria

The required k-tuples requires some subpath propagating each k-dr interaction such that (1) if
the last use is a predicate the propagation should consider both branches, and (2) if the first
definition or the last use is in a loop, the propagation should consider either a minimal or some
larger number of loop iterations. Thus, a required k-tuples is a class of strategies obtained by
varying k. This means that higher values of £ result in a more complex data flow interaction. A
set P of execution paths satisfies the required k-tuples iff for all j-dr interactions , 1 < j< 4,
there is at least one path p in Psuch that p includes a subpath which is an interaction path for

L. The CFG in Figure 2-11 illustrates a 1-dr interaction and its satisfying paths.

1-dr interaction:
Path: nl, n2, n4, n3, n6
d1(x) to ug(x)
d;(x) 1o uS(X)
d(x) to ugx)
di(y) to ua(y)
d4(y) to ugly)
Path: nl1, n2, n3, n3, n6
d1(y) o us(y)
dy () to ugy) ug(y), d3(x)
d3(x) to us(x)
d3(x) to ug(x)

(n1) 1), d19)

Path: nl, n2. n3, n5, n2, n4, nS, n2, n3, n5, n6

d3(%) to ugx)
dy(y) o ux(y)
d4(y) to us(x) ug(y), ugx)

Figure 2-11. An example illustrating the required k-tuple criteria.

32

2.4.5 The Laski and Korel Criteria

Laski and Korel [56] defined a set of adequacy criteria that require a combination of definitions
that reach uses at some node via a subpath. These criteria emphasize the fact that a given node
may contain uses of several different variables, where each use may be reached by several defi-
nitions occurring at different nodes. Thus, these criteria are concerned with selecting subpaths
along which the various combinations of definitions reach the desired node. These criteria are:

the reach coverage; context coverage; and the ordered context coverage.

2.4.5.1 The Reach Coverage Criterion

The reach coverage is analogous to the All-uses criterion introduced by Weyker [76]. It requires
some definition-clear subpath from each definition to all uses reached by that definition. This
criterion is satisfied when a path set contains at least one subpath between each definition and
each use reached by that definition. Thus a set P satisfies this criterion iff for all definitions
d (%) and all uses u,(x) reached by d,,(x), P contains at least one subpath (m) ® p * (n), such

that p is a definition-clear with respect to variable x.

2.4.5.2 The Context Coverage Criterion

The Context Coverage Criterion requires some subpath along which each set of definitions
reaches uses at each node. For example, in Figure 2-12, the definition of x in 71, reaches the
definition of yin 72 via a definition-clear path with respect to x, then the definition of yin 72,
reaches the definition of zin 73 via a definition-clear path with respect to x and y, and finally
the definition of z in 73, reaches the use of x, 3 and z in node 74 via a definition-clear path
with respect to %, , and z. Before this criterion can be formally defined, the following defini-

tion is needed.

33

Context Coverage

a=X+y-2

-2
Y z=4
. 3def—clear wrt: /'@_ _ C . :
@/" def-clear wrt x and y def-clear wrt x, y, and z

Figure 2-12. An example illustrating the concept of the context coverage criterion.

Definition Context (DC): A definition context of a node 7 is the set of definitions DC(n) =
[d;(xp), dy(2p)s..., d ()], some permutation of which is an ordered definition context of z. In
general, there is a many-to-one relationship between the ordered definition contexts of n,
which are sets of definitions, and the definition contexts of 7, which are sequences of defini-
tions. Having defined the DC, the context coverage criterion can be formally defined as fol-
lows: a set Pof execution paths satisfies the Context Coverage criteria iff for all nodes 7 and for
all DC(#), there is at least one path pin Psuch that p is a context subpath for D({#). The exam-
ple in Figure 2-13 illustrates what we have described formally for the Context Coverage crite-

rion.

Paths for DC(n6)

-nl, n2, n4, n5, n6
<dy(x), d4(y)>

-nl, n2, n3, n5, n6
<d3(x), dj (y)>

-nl, n2, n3, n5, n2, n4, n5, n6
<d3(x), ds(y)>

uz(y), d3(x) @ @ ug(x), dg(y)

us(x)

ug(y), uglx)

Figure 2-13. An example of a Context Coverage.

34

2.4.5.3 The Ordered Context Coverage Criterion

To illustrate the concept of this criterion, consider the trivial example in Figure 2-14. The
sequence of definitions <nl, n2, nd>, <nl, n2, n3, n4>, and <nl, n2, n3, n2, n3, n4> in
Figure 2-14 is an ordered context coverage with respect to x, yand z. Thus, the ordered context
coverage criterion requires that some subpath along which each sequence of definitions reach

uses at each node. Before this criterion can be formally defined, the following definition is

needed.

Ordered Context Coverage

a=X-y+ 17

—Pras = =

def-clear
def-clear

Figure 2-14. llustrating the concept of the ordered context coverage criterion.

Ordered Definition Context (ODC): an ordered definition context is sequence of definitions
that occur along the same subpath and that reaches uses at that node via the subpath. The order
of the definitions in the sequence is the same as their order in the subpath. An ordered context
subpath for an ordered definition context is a subpath along which the ordered definition con-
text occurs. Let 72 be a node in a control flow graph G, and let {x;, x3,...., x4} be the (non-empty)
subset of variable use occurrences in 7. An ordered definition context of node # or ODCl(#) is
a sequence of definitions [d; (x7), da(x),..., d(x;)] associated with nodes 7, 72,..., 7 such that
there exists a path P=p;® (1)) * po* (1))...* pp® (np) * pp,1 * (#) called an ordered context path
for the node 7 with respect to the sequence [72, 7,...., ng), iff for all i=2,3,..., k, the subpath
2:* (1) ® pi1® (1) %o ® Ppyy s definition-clear with respect to x; ;. Having defined the
ODGC, the ordered context coverage criterion can be formally defined as follows: Given a set P
of execution paths, this criterion is satisfied iff for all nodes #and all ordered definition contexts
ODC(n), there is at least one path p in P such that p is a context subpath for OD((n). The
example in Figure 2-15 illustrates what we have described formally for the ordered context cov-

erage criterion.

35

ODC(n6) = <d(x), d4(y)>
<d1(y), d3(x)>
<d3(x), d4(y)>
<d4ly), d3(x)>

uz(y), d3(x)

Satisfying paths for ODC (n6):
-nl, n2, n4, n5, n6
-nl, n2, n3, n3, n6
-nl, n2, n3, n5, n2, n4, n5, n6
- nl, n2, n4, n5, n2, n3, n5, n6

us(x)

ug(y), ugx)

Figure 2-15. An example of an Ordered Context Coverage.

2.4.6 Data-flow Testing for Structured and Dynamic Data

The data flow testing strategies discussed thus far have made no distinction berween atomic
data such as integers and structured data such as arrays. Hamlet et al. [39] argue that treating
structured data as aggregate values may lead to two problems. The first problem occurs when
a du-path is identified but it is not present for an array element. For example, consider the code
fragment that exchanges two distinct elements in array M, using M[0] as temporary in

Figure 2-16.

Figure 2-16. A code fragment illustrating du-path issues in arrays.

Treating M as a single value would results in a du-path from each statement to the next. How-
ever, a closer inspection of the code reveals that the only actual du-path involving M[0] is in

the first and last statement. The second problem occurs when a path is missed because of a false

36

intermediate assignment. For example, in Figure 2-16, the actual du-path is the only one that
will not be identified since it appears to be “falsely” interrupted by the middle statement. Those
two problems are known as the commission and omission mistakes, repectively. One solution
to circumvent these mistakes is to treat each element in a structured data as an independent
atomic data. For example, array access can be treated in a similar fashion to simple variables.
An access can be either a definition M[x] = m, or reference n= M[j]. A definition M[x] = m,
may occur in some statement 5;, and 72 = M[] can be referenced in some other statement s,
(many statements later), iff M[4] has not been redefined anywhere between s; and 5, The pres-
ence of subscripts also complicates conditions under which a test case is satisfied, and can give
rise to non-satisfiable test cases [94]. For example, there is no easy way to tell if two subscript
expressions can ever be the same, or to tell if they are necessarily different. A partial solution to
this problem was proposed by Hamlet et al. [39]. The partial solution uses a symbolic equation

solver to determine whether two occurrences of an array element are indeed the same element.

The dataflow testing strategies discussed thus far also did not take into account the effect of
dynamic data such as pointers. The presence of pointers in imperative languages makes data-
flow analysis more complex, for they cause uncertainty regarding what is defined and used.
One safe assumption that can be made with regards to what a pointer p points to given that we
know nothing about pis to assume that it is a potentially going to change or define any variable.
By the same token we assume that any use of the data pointed to by p can potentially use any
variable. This assumption can result in inconclusive testing results especially in programs with
more complex pointers interactions. A technique in [68] proposes a solution to deal with one

level-pointers in the C language.

2.5 The Structural Testing Subsume Hierarchy

As mentioned in Section 1.4.2, a test strategy A is said to subsume some other strategy B if all
the elements that B exercises are also exercised by 4. The subsume hierarchy is an analytical
ranking of coverages. Many researchers have compared the test strategies that make up the sub-
sume hierarchy; however, no generalizable results about relative bug-finding effectiveness have

been established that correlate with this ranking.

37

All-paths
Ordered Conext \ Required k-Tuples
Coverage All-du-paths (k>2)
Conext Coverage
All-uses
All-c-uses/Some-p-uses All-p-uses/Some-c-uses
All-c-uses All-defs All-p-uses
All-edges
All-nodes

Figure 2-17. The subsume hierarchy for structural-based testing.

Since nothing conclusive can be inferred about the number and kind of bugs that remain,
reaching a coverage goal does not indicate that a higher criterion is necessarily better at finding
bugs for a particular application and vise versa [12]. Figure 2-17 depicts, based on the result of

the work done by [94], the subsume hierarchy of the test adequacy criteria presented thus far.

2.6 Integration Testing

Unit testing focuses on individual components. Once faults in each component or unit have
been removed and test cases do not reveal any new faults, units are ready to be integrated into
a larger subsystem. At this point, components are still likely to contain faults. These faults stem

from the interactions of integrated procedures. To test these faults interprocedural testing is

38

required. Interprocedural data-flow testing is the topic of discussion in Section 2.7. Integration
testing allows the testing of increasingly more complex parts of the system while keeping the
location of potential faults relatively small. This means that the most recently added compo-
nent is usually the one that triggers the most recent fault discovery. Several approaches have
been devised to accomplish integration testing and they are: big bang testing; bottom-up; top-

down; and sandwich testing. Each approach will be briefly discussed next.

« The big bang strategy assumes that all components are first tested individually and then
tested together as a single system. Although it sounds simple, big bang testing is expensive.
This is mainly due to the fact that if a test case uncovers a fault, it is sometimes difficult to

accurately pinpoint the specific area in the code responsible for the error.

* The bottom-up approach strategy first tests each component of the bottom layer and then
integrates them with components of the next layer up. A layer in this context indicates the
place of a component in the calling graph of a program. When two components are tested
together, we call this a double test. Testing three components together is a triple test. Like-
wise, testing four components is called quadruple test [35] [79]. This process is repeated

until all layers are combined together.

« The top-down testing strategy uni tests the components of the top layer first and then
integrates the components of the next layer down. Once all components of a new layer

have been tested together, the next layer in the layer hierarchy is chosen

e The sandwich testing strategy combines both the top-down and the bottom-up strategies

in an effort to make use of the best of both strategies.

2.7 Interprocedural Data-flow Testing

The data-flow testing methods discussed thus far have been restricted to testing data depen-
dencies that exist within a program unit or intraprocedural testing. In this section we will dis-
cuss the concept of testing a program as a whole or interprocedural testing. In general, given a
program P consisting of a set of procedures P= {p}, pp..., p,} €ach p;in P(2 < i<) is repre-
sented by its own CFGwhere local information about formal and actual parameters at call and

return sites are collected. The call site is the point before we enter a called procedure or a sub-

39

routine, and the return site is the point after we “come back” or return from the called proce-
dure. Information about the interaction among procedures is then used to connect the sub-
graphs to construct the interprocedural or “global” CFG. Using structural testing criteria such
as data-flow testing can then be applied to test the program as a whole. Issues relating to the
identification and computation of interprocedural data-flow analysis for imperative languages

will be discussed next.

2.7.1 Issues in Computing Interprocedural Definition-use Chains

The basic idea of interprocedural data-flow testing is to test the data dependencies that stretch
across procedure boundaries. With imperative languages, there are two types of interprocedural
data dependencies: direct data dependencies; and indirect data dependencies. A direct data
dependency is a du-association whose definition occurs in a directly called procedure p2of p1.
This dependency exists when: (1) a definition occurrence of an actual parameter in one proce-
dure reaches a use occurrence of the corresponding actual parameter at a call site, (i.e. proce-
dure call); (2) a definition occurrence of a formal parameter in a called procedure reaches the
use of the corresponding actual parameter at the return site, (i.e. call return); and (3) a defini-
tion of a global variable reaches a call or return site. A formal parameter exists in the input
parameter list of a called procedure, whereas an actual parameter is a variable in the calling pro-

cedure that reaches the call site. At call sites, actual and formal parameter are bound.

An indirect data dependency is a du-association whose definition occurs in procedure P and
use occurs in an indirectly called procedure Q of P. The conditions governing an indirect data
dependencies are similar to those for direct data dependency, except that multiple levels of pro-
cedure calls and return are considered. Indirect data dependencies can be determined by con-
sidering the possible uses and definitions along the calling sequence. Given the aformentioned
conditions under which either a direct or indirect data dependency may occur, data-flow ade-
quacy criteria designed for unit testing can be extended to cover variable definitions and their
uses which extend beyond a program unit’s boundary. This type of dependency between a def-
inition in one procedure and its uses, via its corresponding formal parameter in another proce-

dure, is known as interprocedural data dependency. Thus, interprocedural data-flow testing is

40

concerned with testing these dependencies. In this section we discuss issues concerning the

identification of interprocedural dependencies.

void main () void P (int y) void Q (int z)
{ { {
int x; if(y>51 iflz>7){
read(x); y=y+1;) 72=1*5;
I?(X)Z i } printf("%d", 2);
if(x < 10) { Qly)s |
x=x-1; if(y< 6)1{ }
1 y=y-1;
Q) prmtf("%d", y);
printf(“%d”, x); }
}
entry k entry entry
int x; al .
read(x) 1 if(y>5) n7 q if{z>7)

4_ T 7N F /\
| P n2 I nl5
8|y=y+l — Qs n9 o=
" __+\ z= show (z) I

eXlt

if(y<6) | nt0

r4

show(y); [n12!

N exit

Return patu
I L
| I Call site
L

Call path

Figure 2-18. An example illustrating the interprocedural dataflow analysis.

Consider the example in Figure 2-18. In that example, there is a three procedure program:
main; P and Q. Each procedure’s CFG is depicted beneath its code. To simplify the interpro-
cedural dependency discussion, we represent a call site by a single basic block, shown as a

dashed box. Arrows whose source are a filled circle @ represent a call path, whereas

41

simple arrows represent a return path. We also associate a node number with each node or
block in the CFG(s). There are three main issues related to interprocedural du-chain analysis
in imperative languages: preserving a variable over a procedural call, preserving the calling con-

text, and dealing with aliases. Each issue will be discussed next.

* Preserving a variable over procedure call. In Figure 2-18, the definition of x in 7/ may be
preserved over the call to Pin 72 This means that when x is bound to y in P, y can reach,
unchanged, the call to Q in 79, which causes y to be bound to zin Q. In the latter, there is a
path on which z can reach, unchanged, the end of Q and subsequently back into P via the
return path from the exit node of Q to the dashed box #9in P. In the latter, y can reach,
unchanged, the end P and back into main via the return path from the exit node of Pto the

dashed box #2 in main.

Thus, information about the interprocedural data-flow in Pand Q is required to determine
that the definition of x in 7 may be preserved over the call to Pin 72 [58], and subsequently
reaches the use of x in 74 75, and n6. Moreover, tracking the definition of x in #1 over proce-
dure calls and returns is required to determine that this definition of x (in 71) reaches the uses

of yin n7, n8, n10, n11, and n12in P, and the uses of zin n13, n14, and n15in Q.

Gathering this information requires that either (1) the information about called procedures be
incorporated at call sites during the analysis of the calling procedure or (2) an estimate of the
information about called procedures be used during initial analysis of the calling procedure and
that this information be updated when more accurate data-flow information is determined.
The problem with the first method is that, if procedures are processed in any order or are recur-
sive, incomplete information may be available about called procedures at call sites. With the
second method, each procedure can be individually processed to abstract the intraprocedural
information, and an estimate about the definition and use information at call sites. This initial
estimate can then be updated by propagating information about other procedures over the
nodes and edges of a graph that represents the entire program. For the sake of simplicity, we

refer to this graph as the “global” graph of a program.

42

* Preserving the calling context of called procedures. To preserve the calling context during
the computation of interprocedural du-chains, only those paths through the program that
agree with the call sequence for some possible control path should be traversed when tracking
data-flow pairs over return paths from procedures. For example, consider the definition of x in
n4 that reaches the call to procedure Q in 75 in Figure 2-18. Since there is a path through Q
on which zis not re-defined, the definition of x in #4 can reach the end of Q. Since there are
two calls to Q, there are two return paths from Q: one that returns directly to main and the
other that returns indirectly through P. Ignoring the call sequence suggests that the definition
of xin n4 has uses in #3, n4, and n6. However, a closer inspection of control paths through
the program reveals that this definition in 74 reaches the end of @, and subsequently back into
main, only when it is called directly from main. Thus, this definition can only reach the use of

xin n6.

* Dealing with aliases. The presence of aliases complicates the identification of precise inter-
procedural du-chains. An alias may be introduced at the call site, if the variable reaching the
call site is passed in two different locations in the parameter list of the call. To illustrate, we
refer now to the example in Figure 2-19. In that figure, variable x in #1 is passed in two loca-
tions in the parameter list of the call to P. At the call site of 2, formal parameters y and 7 are
aliases of each other. Then, in 76, this alias is propagated to procedure B because y and 7 are
passed as parameters, thus causing zand j to be aliased. If we ignore the effects of aliasing, the
only definition in B that reaches the use of yin #7is the definition of zin 79. Acknowledging
the presence of aliases reveals that, when y and 7 are aliased, the definition of j in 710 also

reaches the use of yin »/.

43

void main () void A (int y int) VO{id B (int z, int j)
{ ~ {
int x; ifly>35){ if(z>7){
read(x); B(y, 1); 2= T4j;
Alx, x); printf("%d%d", y, i); else
printf{(“%d”, x); } j=z*-
} } printf("%d", 2);
}
int x; al if(y>5) nd if(z>7 | n8
read(x);
! N
TN N
| Alox); | n2 B(y, i); | n6 -
—1— _I_ Z=Z+1;__’|show(z);|
¥ n9 nl0
show(x);| n3 show(y,i)| n7

Figure 2-19. An example illustrating the presence of aliases in imperative languages.

A number of data-flow analysis techniques have been developed to compute interprocedural
dependency information. Some existing flow-insensitive' data-flow analysis techniques such as
Banning (7], Barth [6], Cooper and Kennedy [22], and Lomet [58] provide summary data-
flow information for determining the local effects of called procedures at call sites. These tech-
niques do not provide information about the locations of interprocedural definitions and uses
in other procedures in the program. A flow sensitive technique that processes non-recursive
procedures in reverse invocation order Allen et al. [3] incorporates the abstracted information
about called procedures at call sites to obtain the local reaching information. This technique
requires that a procedure be processed only after those that it calls have been processed, which
imposes an ordering on the procedure processing. This order restriction results in a penalty
when changes are made in a procedure, for it causes the reanalysis of those procedures directly

or indirectly dependent on the changed procedure. Also, this technique does not compute the

|. Interprocedural data-flow information is flow-insensitive if the control flow of called procedures is not used in the com-
putation of definitions and uses in the program

44

locations of the definition-use chains across procedure boundaries and cannot handle recursive
procedures with the ordering restriction.

! interproce-

The program summary graph developed by Callahan [19] provides flow-sensitive
dural data-flow information that solves the interprocedural k:ll, mod, and wuse problems. For
example, in the program summary graph, the kill of each formal parameter in a procedure is
represented with a boolean variable that indicates whether the variable is redefined along all
paths by a call to the procedure. An iterative technique uses the paths through the program
summary graph to compute the kill for the formal parameters in each procedure. The structure

of the program summary graph does not allow for the preservation of the calling context of

called procedures.

A technique introduced by [65], uses the super graph or in-line substitution to compute the
interprocedural du-chains. The super graph structure is prohibitive for large programs, and
cannot provide efficient data-flow analysis in the presence of recursive procedures. In addition,
separate compilation cannot be supported since either the code or the control flow graph of

each procedure must be available during the analysis.

Another technique was introduced by Sofa and Rapp [44] This technique computes defini-
tion-use and use-definition chains that extend across procedure boundaries at call and return
sites. Intraprocedural data-flow analysis for each procedure is performed separately and does
not require information from other procedures, thus supporting separate compilation. When
a procedure is processed, information about definition and use information is abstracted and
used to construct its interprocedural control flow graph (ICFG). Once all the procedures under
test are processed, their intraprocedural data-flow information is then propagated throughout
the program via the /CFG to obtain sets of reaching definitions and/or reachable uses for each
interprocedural control point. The control points include procedure entry, exit, call, and

return. The propagation algorithm proposed in this approach uses a two phase propagation

| Interprocedural data-flow information is flow-sensitive if the control flow of called procedures is used in the computa-
tion of definitions and uses in the program

45

strategy to preserve the calling context of called procedures. The algorithm also handles recur-

sive procedures and alias pairs.

2.8 Visual Programming

Visual Programming (VP) is a process by which meaningful graphical representations are used
to create programs. An important factor in determining whether a given programming system
can be considered as being a VP system, lies in the conceptual correctness of the first phrase.
VP can be categorized into: Visual Programming Environments (VPEs) and Visual Program-

ming Languages (VPLs). Each category will be briefly discussed next.

. The Visual Programming Environment: A VPE usually consists of a set of tools that
interact to accomplish parts of a programming task. A programming language is considered to
be a visual environment if its tools are graphical and allow the programmer to use graphical
techniques for manipulating visual artifacts, and displaying the structure of the program. Visu-
alAge® is an example of a visual environment. It provides graphical tools such as class browsers,
wizards, and syntax coloring techniques to assist or aid the programmer. One difficulty with
large programs in a VPE can be attributed to the overwhelming number of “visual objects/pic-
tures”. Such overwhelming number of objects makes it difficult for a user to visualize the
system as a whole. Incorporating some filtering mechanism can aid the programmer in man-

aging the amount of visualized data.

. Visual Programming Languages: VPLs allow programmers to develop programs using
visual constructs such as charts, diagrams, icons, or tables. VPLsare not entirely “text-free”, text
can be part of the visual syntax providing services such as labels for the graphical elements and
comments. VPLsare used to improve the programmers ability to express program logic and to
understand how a program works. The graphical nature of a VPL allows for a cleaner, more
explicit display of program relationships than is possible with textual languages. This is
achieved through the closeness of mapping provided between the problem domain and the

solution. In general, VPLs share the following characteristics: conceptual simplicity; concrete

46

programming process; explicit relational depiction; and visual feedback [63]. Each of these four

characteristics will be briefly explained next.

. Conceptual Simplicity: VPLs attempt to reduce the complexity of programming by
reducing the number of concepts needed to create and comprehend a program. Some VPLs
eliminate the concept of explicit variable declarations and operator types. Others shield the user
from more difficult concepts such as memory management. VPLs that target novice end-users
tend to be simple; however, they still provide enough computing flexibility to perform any task
in the domain specific area. Conceptual simplicity cannot be considered weak. General pur-
pose VPLs balance conceptual simplicity while ensuring enough programming flexibility to
express any computation that can be accomplished in a textual language. Prograph is a general
purpose dataflow VPL that is more conceptually simple than most textual languages, yet it can
still perform any computation. Domain specific VPLson the other hand, can be generally con-
ceptually simple since they focus on the application’s domain. LabView [10] is a domain spe-

cific VPL that is used for scientific instrumentations.

. Concrete Programming Process: Concreteness is a shared characteristic of a VPL and
its encompassing VPE [63]. This characteristic is manifested in the programmer’s ability to use
a specific value for a computation rather then a description of all possible values. For example,
the number 0 is a concrete value that can be used for a computational task. On the other hand,
declaring a variable of type integer which may hold the value “0” is not concrete. Concreteness
can also be used to provide feedback or to specify a program. For example, in a spreadsheet,
when entering a formula for a cell instead of specifying a cell to be used in computation by its
row and column index, a user can point to the desired cell and the system will fill in the appro-

priate values.

. Explicit Relational Depiction: The relationship between program constructs in a VPL
is visually explicit. For example, dataflow diagrams show the relationships between operations

while flowcharts show the control flow of the program.

47

. Feedback: VPEsand VPLs provide two types of feedbacks: visual feedback, and imme-
diate visual feedback [25]. A visual feedback is a process by which the environment visually
alerts the user about the presence of “bugs” as a result of running a program. Immediate visual
feedback is a process by which a user is directly informed about a certain action. For example,
the auto recalculation feature of spreadsheet languages such as Formslll, is an immediate
knowledge of the effect of a program edit. Immediate feedback does not hinder the program-
mer from creating the program, nor does it interrupt his/her thought process; rather, it acts as
a helpful guide. Visual immediacy is important for program creation and debugging. There are
three kinds of visual immediacy that the VPL and VPE can provide temporal, spatial, and
semantic [84]. Temporal immediacy, as previously described, is the level of feedback or liveli-
ness of a system. Spatial immediacy reduces the spatial gap between the locations of the error
and that of the object used to indicate the presence of the error. There are two kinds of spatial
gaps, low spatial gap, and high spatial gap. An example of a high spatial gap is the output from
a compiler that informs the user of the line number of an incorrect statement. An example of
a low spatial gap is the highlighting of an incorrectly spelled word by a spell checker. Semantic
immediacy is the distance between semantically related bits and sources of information. For
example, in Prograph the distance between a method call and the actual method body is narrow
because the user can double-click on the method icon — where that method is used — to open

its body for viewing or editing.

2.9 Prograph; A Brief Overview

Prograph is a visual dataflow, object oriented language developed by P.T. Cox and T.
Pietrzykowski at the Technical University of Nova Scotia (TUNS) in 1984. We have chosen
Prograph in this Thesis as a representative of visual dataflow languages because it is one of the
few commercial visual dataflow languages that is available to us, and a number of commercial
software packages have been created using it. Prograph exists on the Macintosh and the Win-
dows platforms. It has a number of features that makes it a desirable visual dataflow language.
These features are: visual syntax; dataflow computational model; editing environment; and

object oriented capability. Each of these features will be explained next.

48

2.9.1 The Dataflow Computational Model

The dataflow is one of the most popular computational models for VPLs[49]. The most prom-
inent feature that characterizes the power of a dataflow VPL and determines its acceptance, is
the availability of the rich library of predefined methods that are used as the elementary build-
ing blocks. Prograph uses the dataflow paradigm for programming. It is represented as a
directed graph where nodes represent user-defined or system-defined methods, and the data
flows through edges or “links” between nodes. Links going into a node represent the method’s
data input, links going out of a node represent the method’s output or result. A node is exe-
cuted when all of its input data is available. This model of execution is called data-driven. In
practice, a linear execution order for the operations in a method is predetermined by topolog-
ically sorting the directed acyclic graph of operations, subject to certain constraints. For exam-
ple, an operation with a control should be executed as early as possible. In a pure data flow
model where no control constructs are added, the sequence in which operations are executed
is not explicitly specified. That is, the ordering of the operations is not specified by the pro-
grammer, but is implied by the data interdependencies. Many dataflow languages such as
Prograph, have modified the pure dataflow model to allow control constructs such as iteration
and sequential execution. Prograph easily allows the programmer to control the order of exe-

cution via a special mechanism called the synchro.

2.9.2 Visual Syntax

Prograph has an entirely graphical syntax based on the dataflow nature of the its computational
model. The syntax is simple, but still allows for the expression of powerful language constructs
without sacrificing efficiency. Prograph’s syntax is almost completely iconic with text being
used only for naming language elements and for commenting the semantic intent of the code.
Prograph’s syntax consists entirely of icons and associated visual annotations representing var-
ious kinds of operations, methods, data links, and groups of code. The icons are the language,
they do not represent textual information that lies “hidden” behind or in them; rather, they are
the executable code. This allows for intuitive debugging since the programmer debugs the

actual source code and not a transformation of the source code.

49

2.9.3 Editing Environment

The environment for Prograph is an integrated program development system that includes:
program editor, code interpreter, debugger, and Graphical User Interface (GUI) builder. The
visual syntax of Prograph provides for a seamless integration of the Integrated Development
Environment (IDE) and the language. In general, The visual syntax of Prograph shields the
user from syntactical errors; however, semantic errors can still be present and will only be
caught at run time if the code containing the “error” is executed. Prograph’s interpreter facili-
tates progressive program evaluation since it allows bits and pieces of program code to be exe-
cuted independently, or in isolation from other code. An interesting feature of Prograph is that,
while a program is running, major changes such as adding or removing language constructs or

even classes can be accomplished and the changes take effect immediately.

50

3 A Control-flow Testing
Methodology for Prograph

3.1 Introduction

As with any programming language, visual or textual, a dataflow program may contain faults.
To ensure the correct functioning of dataflow programs, and increase confidence in the quality
of these programs, testing is required. In this Chapter, we investigate, from a testing perspec-
tive, differences between dataflow and imperative languages. We show that significant similar-
ities exist between dataflow and imperative programs. For example, in imperative languages,
tests are often run in three steps: first, inputs are initialized; next, the program is executed; and
finally, results are validated [16]. A similar process is applicable to programs written using data-
flow languages. Further similarities between the control dependencies in both imperative and
dataflow languages reveal opportunities for adapting code-based control-flow testing criteria to

test dataflow languages.

The remainder of this Chapter is organized as follows: in Section 3.2 we give a brief overview
of Prograph and discuss its subset that we are considering for this work. In Section 3.3 we
review related work involving the use of visual annotation to communicate the testedness of
visual form-based languages. We show that the testing methodology developed for form-based
languages is not suitable for dataflow languages. In Section 3.5, we propose an Operation Con-
trol Graph (OCG) model for testing dataflow languages. We show how both the data and con-
trol dependencies of dataflow languages can be represented in the OCG, and how the latter is
suitable for applying control flow testing criteria to dataflow languages. We also show that our
testing methodology is well suited for dataflow programs. In particular, the All-branches crite-
rion provides important error detection ability, and can be applied to any dataflow program.

We have implemented a testing system that allows users to visually and empirically investigate

51

the testedness of predicate edges and nodes in Prograph. Our testing tool can communicate
testing results in the visual environment of dataflow languages in a way that requires no exten-
sive formal knowledge of testing on the part of the user. This testing approach for dataflow lan-
guages is based on the empirical studies of WYSIWYT [16] which have shown that
programmers can indeed use this approach to test software without extensive formal knowledge
of testing. In this work we assume that the user of the DFTT serves as the oracle that validates
the correctness of test case outputs. Our empirical results in Section 3.6 show that, analogous
to imperative languages, the All-branches criterion cannot detect all the errors in a dataflow
program. Thus, to help catch those undetected errors, a more rigorous testing should be
applied. This is indeed the focus of Chapter Four. Finally, in Section 3.7, we conclude with a

summary of our findings and brief discussion on directions for further work

3.2 Dataflow Languages in The context of Prograph

In visual dataflow languages, users code by creating icons and linking them together. The icons
in dataflow languages are the source code and not some visual representation of a textual code
that lies beneath the icons. The order of execution, when not explicitly defined by the user, is

determined by the editing environment of the language implementation.

émg 1:1 call sort E@:EEE@E Universals of "OQuicksort" EE%‘

SE=— @ 1:2 quicksort =EEE=|
e

call sort quicksort

B AL,

T

SEE @2 2:2 quicksort ERE

A o

o A a a

(AT 272z

Figure 3-1. A Prograph program for Quicksort.

52

Prograph is an example of a dataflow visual programming language. Since much of our work
is based on the visual programming environment of Prograph, in this section we will informally
introduce its syntax and semantics using an example. Figure 3-1 shows a Prograph implemen-
tation of the well known algorithm “quicksort” for sorting a list into ascending order. The top
centre window in this diagram depicts two icons for the methods call sort and quicksort. Note
that Prograph is an object-oriented language, hence the term “method” is used to refer to enti-

ties known as procedures in standard programming languages.

The left side in Figure 3-1 shows the details of the method call sort, a dataflow diagram in
which three operations are connected sequentially. The first operation in this diagram, ask, is
a primitive that calls system-supplied code to produce a dialogue requesting input from the
user. Once this has been executed, the data input by the user flows down the datalink to the
operation quicksort, invoking the method quicksort. This method expects to receive a list,
which it sorts as explained below, outputting the sorted list, which flows down the datalink to
the show operation. The show produces a dialogue displaying the sorted list. The small circle
icons on the top and bottom of an operation, representing inputs and outputs are called zermi-

nals and roors respectively.

The method quicksort consists of two cases, each represented by a dataflow diagram as shown
in the lower right two windows of Figure 1. The first case, shown in the window entitled 1:2
quicksort, implements the recursive case of the algorithm, while the second implements the
base case. In general, a method consists of a sequence of cases. In the first case of quicksort, the
first operation to be executed is the match operation, , which tests to see if the incoming
data is the empty list. The icon attached to the right end of the match is a next case on success
control, which is triggered by success of the match, immediately terminating the execution of
the first caseand initiating execution of the second. If this occurs, the empty list is simply passed
through as the output of the second case, and execution of quicksort finishes, producing the
empty list. The thin operation at the top of a case where parameters are copied into the case is
called an input bar, while the one at the bottom where results are passed out is called an ouzpur

bar.

53

If the input list is not empty, the control on the match operation in the first case is not trig-
gered, and the first caseis executed. Here, the primitive operation detach-l outputs the first ele-
ment of the list and the remainder of the list on its left and right rooss respectively. Next, the
operation, @ , is executed. This operation is an example of a multiplex illustrating several
features of the language. First, the three-dimensional nature of the operation indicates that the
primitive operation 2 will be applied repeatedly. Second, the zerminal annotated as - is a list
terminal, indicating that a list is expected as data, one element of which will be consumed by
each execution of the operation. In this example, when the multiplex is executed, the first ele-
ment of the list input to the casewill be compared with each of the remaining elements. Finally
the special 700ts & and # indicate that this particular multiplex is a partition, which divides the
list of items arriving on the list annotated ferminal into two lists, items for which the compar-
ison is successful and those for which it is not. These two lists appear on the ¢ and # roots

respectively.

The lists produced by the partition multiplex are sorted by recursive calls to the quicksort
method. The final sorted list is then assembled using the two primitive operations attach-l,

which attaches an element to the left end of a list, and (join), which concatenates two lists.

Clearly, the execution mechanism of Prograph is data-driven dataflow. That is, an operation
executes when all its input data is available. In practice, a linear execution order for the opera-
tions in a case is predetermined by topologically sorting the directed acyclic graph of operations
and subject to certain constraints. For example, an operation with a control should be executed

as early as possible.

In our example the method quicksort has only one input and one output, and therefore does
not illustrate the relationship between the terminals of an operation and the ro0#s of the input
bar in a case of the method it invokes. These zerminals and roots must be of equal number, and
are matched from left to right. A similar relationship exists between the roozs of an operation

and the terminals of the output bar in a case of a method invoked by the operation.

54

One important kind of operation not illustrated in the above example is the local operation. A
local operation is one that does not call a separately defined method such as the quicksort
method shown above. Instead it contains its own sequence of cases, called a local method. It is

therefore analogous to a parametrized begin-end block in a standard procedural language.

The formal semantics of Prograph are defined by specifying an execution function for each oper-
ation in a program. Each execution function maps a list X'to a pair (¥; ¢) where c is a control
flag, Yis a list, and the lengths of the lists X'and Yare respectively equal to the number of zer-
minals and the number of roots of the operation, and the elements Xand Yare from a domain
A containing all values of simple types, and instances of classes. Execution functions may pro-
duce the special value error; for example, if a list zerminal receives a value which is not a list.

By defining execution functions for operations, the input/output behavior of a program is spec-

ified.

3.2.1 The Order of Execution in Prograph

The order of execution in Prograph is determined by the editor during the “visual coding”
phase. The language’s constructs or operations are topologically sorted in a way that preserves
two kinds of dependencies among those different constructs: data dependency; and control

dependency.

3.2.1.1 The Data Dependency

The data dependency is represented via data links from an operation’s r004(s) to another oper-
ation’s terminal(s), and an operation executes only when all of its data are available on its zer-
minal(s). For example, let Aand Bbe two non-annotated operations, if 4 is data-dependent on
B, in which case there exists a data link from B’s roo#(s) to A’s terminal(s), A executes after B. If
B is data-dependent on 4, in which case there exists a data link from A’ roof(s) to B's termi-
nal(s), B executes after A. If Aand B are not data-dependent; however, the data becomes first

available on either A or B, the order of execution can be either A->B or B->A, where “->

denotes the order of execution from left to right.

55

3.2.1.2 The Control Dependencies

The control dependencies can be divided into two categories: multiplex annotations and con-
trol annotations. Multiplex operations are analogous to loop constructs in imperative lan-
guages. The Prograph editor permits the following multiplex annotations: repeat; list; and loop.
The control annotations are similar to the predicate statements or controls found in imperative

languages. Both types of controls will be briefly introduced next.

3.2.1.3 The Control Annotations

Every operation except the input bar can have a control annotation. The flow of execution is
affected by the control annotations to operations. Prograph contains the following control
annotations: Continue, Next Case, Finish; Terminate, and Fail. Each of these control annota-
tions can be applied to an operation on either success or failure. Operations in Prograph are
divided into two sets: A and A’, such that A contains the set of operations that can fail and A’
contain the set of operations that cannot fail. Let O be an operation € A, O’an operation €
A’, we say that there are two signals associated with O (fzz/and success), and one signal (success)
associated with O. Let M be a user-defined method or local, and M a multiplexed user-defined

method or localin a Prograph program, then the following flow of execution are possible:

* Continue: this is the default or implicit control for every operation in Prograph. When an
operation with implicit Continue on success is encountered, the flow of execution simply
continues to the next operation. When an operation is annotated with a Continue on fail-

ure [X], the flow of execution also continues to the next operation.

* Next Case: this control decides whether execution continues in the present case or jumps to
the next case. When O in M or M is annotated with a Next Case on either success |~| or fail-
ure [x|, and the condition associated with the control succeeds, the flow of execution aban-
dons the current case and jumps to the next case, otherwise the flow of execution is not
interrupted and it simply moves to the next operation in the present case. For example,

consider the universal U in Figure 3-2. When the value received from ask is not equal to

56

“3” the execution breaks out of “1:2 U” and start executing in “2:2 U”. The Next Case

control is analogous to the then part of an if then statement in imperative languages. When

0’in M or M is annotated with a Next Case on failure, the flow of execution simply moves

to the next operation in the current cass however, if O’is annotated with a Nexz Case on

success, the flow of execution unconditionally abandons the current case and jumps to the

next case. For example, consider the universal Uin Figure 3-3. When the flow of execution

reaches the show primitive, it is executed, and the execution breaks out of “1:2 U” and

starts executing in “2:2 U”. When applied to an operation O, the Next Case on success

behaves like a “goro” statement in imperative languages.

=12V =—REE=

&2 220

O (n)

LA,

i 7 7 (nT)

o ey (6) || g e (n10) [~ |
- -

& [4]»

Figure 3-2. An example illustrating a Next Case on success.
EE=—= 172 U E==FERNEIE 2.0
Tz 7 777 GED) = 7723 (n3)
[~ A, Z2 (nd) |- . s (8] - |
hd

[f4)

Figure 3-3. A Next Case applied on success to an operation that cannot fail.

* Finish: this control is only generally useful when applied to operations in multiplexed locals

failure (), and the condition associated with the control either succeeds or fails, the flow

57

of execution simply continues to the next operation. For example, consider the example in
Figure 3-4. Regardless of the value that is received at the mazch operation, the flow of exe-
cution will continue to the next operation. This is also the case, had the match operation
been annotated with a Finish on success. When O in M is annotated with a Finish on either
success or failure, and the condition associated with the control succeeds, the flow of execu-
tion continues normally; however once the end of the case is reached, the execution breaks
out of the multiplexed operation. For example, consider the example in Figure 3-5. When
the value is received by the operation that is labeled 78 is > “3”, the flow of execution con-
tinues; however, once the Output Bar of “1:1 locall” (the operation labeled 710) is exe-
cuted the loop breaks. When O’in either M or M is annotated with a Finish on failure, the
flow of execution does not break (infinite loop) out of either M or M since O’ cannot
return a fzi/signal. When O’in either M or M is annotated with a Finish on success, and the
condition associated with the control succeeds, the flow of execution continues normally;

however once the end of the case is reached, the execution breaks out.

EI== 2 11 U =E0EEET 1:4 tocald
e () & 2 (n6)
FZ ask 4] (n2)
(n8)
22 (n9) |]
[4]*

4:1 tocatt

R T ()

Figure 3-5. An operation that is control annotated with finish of failure in a looped case.

58

o Terminate: this control is only generally useful when applied to operations in both multi-
plexed and non-multiplexed locals or user-defined methods. When O in either M or M is
annotated with Terminate on either success [¥] or failure [%), and the condition associated
with the control succeeds, the flow of execution simply breaks out of the current case. For
example, consider the example in Figure 3-6. When the value that is received by operation
that is labeled #8is > “3”, the flow of execution breaks out of the looped case. When O’in
either M or M is annotated with a Terminate on failure, the flow of execution, does not
break out (infinite loop) of either M or M since O’ cannot return a fzil signal. When O’in
either M or M is annotated with a Terminate on success, and the condition associated with

its control succeeds, the flow of execution breaks out.

=0 11V =RER=ERAS 121 tocalt

]

s T (n6)
n 3

A L A A 2 1ON)

) (n9)

(n5)

7 (n10)

<]

[¢]»

Figure 3-6. An operation annotated with terminate on failure in a looped case.

e Fuil the fail annotation plays the role of the #hrow construct of Java or C in exception han-
dling. When O in M or M is annotated with a Fzi/ on either success @) or failure (), and
the condition associated with its control succeeds, the flow of execution simply breaks out
of the current case and the failure is propagated to either M or M, provided that M or M
can catch that error by applying the appropriate control. If that appropriate control is not
applied to either Mor M, then an error is generated during run-rime. When O’in eicher M
or M is annotated with a Fail on failure, the flow of execution is not interrupted. When O’

in either M or M is annotated with a Fzil on success, it behaves like O.

59

3.2.2 Restricted Prograph

Prograph is a commercial visual dataflow object-oriented language. Prograph allows its users
to develop methods that can be either part of a class or universal methods. The universal meth-
ods are analogous to global procedures in imperative languages. Features such as persistents or

global variables are also available in Prograph.

Operations in Prograph can execute as soon as all of the data they need is available. The result
of this is that operations in a method have no guaranteed order of execution [80]. Various fea-
tures of Prograph allow for operations to have side-effects. With no fixed execution order, in
the presence of side-effects, it would be necessary to test every possible order to ensure that a
program functions correctly. Since this is not practical, for the purpose of our current work,
we have chosen a subset of Prograph with no side effects. In particular, the object-oriented fea-

tures and global variables are not considered. In future works we intend to address these issues.

Furthermore, there are a variety of features of Prograph which can be considered “syntactic
sugar” (i.e. they can be reproduced from more basic elements, albeit with sometimes signifi-
cantly more complicated code). Although they are extremely useful to Prograph programmers,
there would be no value in including them in our discussions, and, in fact, they would signif-
icantly complicate our presentations. Thus, we further simplify the structure of the language
by not considering the following operations: the partition multiplex; the continue control

annotations; the fail control annotation; and the list annotation on roo#s or terminals.

Therefore, the subset of Prograph considered here contains the following operations: input
bar; outpur bar; local and universal methods; constants; match; and primitives or system defined
methods. These operations, may have the following control annotations: next case, finish, ter-
minate, or repeat annotation. Roots and terminals may have loop annotations. An operation
which is control annotated is referred to as a predicate operation otherwise it is a non-predicate

operation.

60

3.3 Testing Form-based Languages: Related Work

Form-based visual programming languages provide a declarative approach to programming,
characterized by a dependency-driven, direct-manipulation working model [17]. Users of
form-based languages create cells, and define formulas for those cells. These formulas may or
may not reference values contained in other cells. When a cell X references a cell Yin its for-
mula, a dependency is created between Xand Y, and we say that Xis dependent on Y. If a newly
created or edited cell references other cells, its value is calculated only after the values of the
cells it references are recalculated. This is much the same as spreadsheet calculations work,
although form based languages such as FormslIII are more general than spreadsheet applica-
tions [16]. Along with data dependencies such as these, another kind of dependency in form-
based languages is the control dependencies that exist within each cell’s formula. The use of
predicate expressions within cell formulas create control dependencies that are comparable to
the flow of control in imperative languages. Thus, from a testing perspective, a form-based lan-
guage has two significant properties: the flow of control within each formula; and the data

dependencies between cells.

To test form-based visual languages, [17] proposed to model these properties in Cell Relation
Graph (CRG). In a CRG, each formula is represented by a formula graph. The formula graph
is comparable to a control flow graph that represents a procedure in an imperative program.
Cell dependencies between formula graphs are represented by edges between these graphs. For
example, if cell X depends on cell ¥; an edge would be added from X's formula graph to Y's
formula graph. The cell dependency edges do not represent the flow of control between for-
mula graphs, but rather the order in which Xor Yor both must be executed for a given input,
or whether the execution of X will immediately follow the execution of Y. Edges within the
formula graphs, on the other hand, do represent the flow of control within the cell’s formulas.
The abstract model proposed by [17] made it possible to apply a variety of testing criteria. The
work in [16] was extended in [16]. The latter proposed the use of visual elements to commu-

nicate to the user the testedness of cell formulas under a particular test adequacy criterion.

61

Our work parallels this, dealing with the specific problems related to testing and presenting test
results in visual dataflow programs. In our work we adopt the approach proposed in [17], that
is, we make use of the visual constructs of dataflow languages to communicate the testedness

of a procedure or universal method under a certain testing criterion.

Although dataflow languages are similarly characterized by both data and control dependen-
cies, several features of dataflow languages make the abstract model developed in [17] not fully
applicable for testing dataflow languages. First, not all visual dataflow languages are responsive.
This means that program execution is not accomplished automatically, and the user must
explicitly run tests after making program modifications. Furthermore, the data dependencies
in visual dataflow languages like Prograph are local to the procedure in which they exist. That,
is, when P is modified, the new data dependencies (if any) that exist between P5 visual con-
structs, including those involved in a call to another universal method Q, are re-evaluated by

the editing environment only for P, and not for Q.

3.4 Testing Visual Dataflow Languages

In imperative languages, the strict ordering of execution of non-predicate statements allow
these statements to be grouped into sets of disjoint blocks which can be treated as a single unit

when constructing the control flow graph of the program.

The situation is different in visual dataflow languages, however. The order of execution of non-
predicate operations or statements is not predetermined by the programmer, but is simply
based on data dependencies. If we were to construct a control flow graph of a program, taking
into consideration all possible execution orders, it would be extremely large and complex. It
would also most likely be impossible to satisfy any criteria using this graph, since most dataflow
language implementations choose a specific execution ordering for non-predicate operations

and use that for every execution.

This is, in fact, the execution behavior of Prograph programs. The execution order is main-

tained by a topological sort that is performed on all operations during the phases of program-

62

ming and modification of the visual code. At this stage in our research, we are considering a
subset of Prograph in which operations have no side-effects. As a result, any execution order of
a sequence of non-predicate operations will yield the same result. Thus, we need only consider

one order — the one determined by the editing environment of the language.

In trying to represent both the data and control dependencies of dataflow languages in a suit-
able graph, we find that the notion of a disjoint blocks in dataflow based languages is different
from that of imperative languages. There, a disjoint block represents a group of non-predicate
statements at the end of which a predicate statement exists. In dataflow languages each disjoint
block is represented by a single operation. Thus, we represent every non-predicate operation
with a node in the flow graph, linked together in the execution order chosen as described above.
Predicate or control annotated operations in a dataflow language are analogous to their imper-
ative counterparts, and they are represented with a node that has #rue and false edges corre-
sponding to the flow of execution based on the outcome of the predicate. Adapting the control
flow graph to accommodate the data flow computation model permits us to apply all-nodes
and all-edges testing criteria to a dataflow program in a manner that is effective and efficient.

Next we present our abstract model for testing dataflow languages.

3.4.1 An Abstract Model for Prograph

As was discussed in previous sections, test adequacy criteria for different paradigms are gener-
ally defined on abstract models of programs, rather than directly on the code itself. Here we
use this approach by adapting the flow graph designed for imperative languages to accommo-

date visual dataflow languages.

Each procedure in Prograph consists of one or more cases. So given a Prograph procedure p in
a program P, we can construct an Operation Case Graph (OCG) for each casein p. Each OCG
has a unique entry and exit nodes 7, and 7, respectively. The 7, node of a procedure pis linked
to the 7, node of the first case of the method. The 7, node of each successive case in p is linked

to the #, node of p. Each OCGwill be assigned the name and label of its corresponding case in

63

Prograph. For example, if a method X has two cases (1:2 X and 2:2 X denoting X “case one of
two”and X “case two of two”, respectively), the OCG graphs will be labeled 7:2 X, and 2:2 X.

Locals are also comprised of one or more cases. So when a Jocal operation is encountered, the
appropriate OCG will be constructed, and an edge is constructed to connect the node repre-
senting the predecessor of the local operation with the entry node 7, of the OCG representing

the local.

3.4.2 Building Data and Control Dependencies in OCGs

Given a program P, we represent each procedure p € Pwith an OCG. The OCG represents
two properties of p’s operations: data and control dependencies. For each procedure, there is a
sequence of operations, O = <0}, 0 03..., 0,,>, Whose order corresponds to a valid execution
ordering with respect to the data dependencies in the procedure (in particular, this will be the
execution order chosen by the editing environment). Thus, to model the data dependencies in
the OCG, and preserve the execution order, we represent each non-control operation o, € O,
where 1 < 7 < m, with a node #;in OCG, linked together with an edge to #,,, the node repre-

senting the next operation o, in O.

To represent the control dependencies between operations in O, we represent each control-
annotated operation 0; € O with a node 7;and two edges representing the (#7ue and false) exe-
cution possibilities. The node of the control-annotated operations is analogous to those of the

nodes used to represent predicate statements in imperative languages.

As was mentioned earlier, the subset of Prograph we are considering has four different control
annotations: Next Case; Terminate; Finish; or Repeat, and one roo#/ terminal annotated loop.

Next we show how we represent these annotations in the OCG.

An operation o; with a Next Case annotation will be represented by a node 7; with two edges
coming from it (¢rue and false), one connected to 7;,; which is the node representing the next

sequential operation 0, in the current case, and the other to 7, of the next case.

64

An operation o;with a Terminate annotation will be represented by a node »; with two edges
coming from it (#rue and false), one connected to 7;,; which is the node representing the next

sequential operation o, in the current case, and the other to 7, of the current case.

An operation o;with a Finish annotation is unique in the sense that when it is activated in non-
repeated or looped case, the flow of control does not change upon the outcome of the Finish
control. This means that if the outcome is either true or false, the next node that gets traversed
or executed is the same. The same situation occurs when the Finish annotated operation hap-
pens to be in a repeated or looped case; however, here the true or false outcome may set a flag
that will indicate whether successive iterations will take place after finishing the current itera-
tion. Thus, to handle a Finish annotated operation, be it in a repeated or non-repeated case,
and represent both its true and false outcome, we represent o; with a node #; with two edges
coming from it (#7ue and false). One edge connected to 7;,1, the node representing the next
sequential operation o;, in the current case, and the other edge to a dummy node 4. From the
dummy node 4 we also construct an edge to 7;,;. The reason for constructing this edge is to
allow the flow of control to go to 7;,; when the outcome of the Finish control goes through
the dummy node & When 4 exists in a looped Jocal and is traversed, it sets a flag value that

indicates whether the loop edge can be traversed.

An operation o; with a repeat or a loop annotation will be represented according to the type of
the operation. For example, if o; is a local operation, we construct an edge from the node rep-
resenting the Output Bar in the Jocal’s OCG'to the node representing the Input Bar in the local’s
OCG. On the other hand, if o;is not a local operation we represent it with a node 7, construct
an edge that goes out of 7; and back into #;. A Prograph program and its OCG are shown in

Figure 3-7.

3.4.3 Implementation

The iconic nature of the visual dataflow paradigm makes it impossible to use conventional text

scanners to construct the OCG that represents the visual code. To accommodate this funda-

65

mental difference between visual and textual languages, we have modified a Prograph-to-Java

translator in a way that allowed us to provide the following functionalities:

* The ability to collect the static analysis of both nodes and edges by probing each operation
of the set O.

e The ability to track the dynamic analysis of both nodes and edges.

¢ The ability to visually communicate the testedeness of operations, which in turn helps

locate the faults in the visual code.

Testing and communicating results is an integrated process within the Prograph environment.
We have developed a dataflow testing tool or DFTT that is integrated in Prograph. This tool
allows the user to choose a testing criterion such as All-branches, and visually observe the test-
edness of each control annotated operation. For example, if a control annotated operation is
only tested on its either true or false outcome, then our testing environment tracks that anno-
tated operation in the Prograph code and colors half of it green and the other red, signalling
that only one branch was tested. We next discuss our testing methodology which provides these

functionalities described above.

Task|: Collecting static nodes and edges.

Several algorithms for collecting static branches and nodes have been developed for imperative
languages [17]. All these algorithms rely on the textual nature of the program’s source code to
extract its static analysis. These algorithms are not applicable to dataflow languages. Collecting
the static analysis in dataflow languages requires access to the internal data structure that host
these operations. For each node 7; € OCG representing operation 0; € O, we maintain two
attributes: Traversed; and @p. The Traversed attribute is assigned to FALSE, and it indicates
that this particular node that represents a Prograph operation has not been exercised. The @
is a pointer that points to o;, and is used by the DFTT to locate operations in the Prograph
code during the visual presentation of operation testedness. For each node 7, € OCG repre-

senting a control annotated operation 0, € O, we maintain two attributes: 75 or True branch;

66

Fb or False branch. The Th and Fb are boolean variables, and are initially assigned to FALSE.
They indicate that the true and false branches of the predicate or annotated operation in

Prograph have not been exercised.

Task 2:Tracking the Execution

To track the dynamic execution, we have simply modified the Prograph-to-Java translator in a
way that allows us to probe each operation before it is translated. Once the textual code has
been compiled, test cases are run on the Java code rather than on the Prograph visual code. The
DFTT records every executed operation and maintains its appropriate attributes. For example,
if a non-control annotated operation 0 € O has been executed, the testing tool changes its 77a-
versed attribute value to TRUE. Likewise, as a control-annotated operation is executed on both
its true and false outcome, the testing tool changes the operation attributes values of 75 and

Fbto TRUE.

Task3: Communicating testing results

The data collected in Tasks 1 and 2 provide test adequacy information to the user in a way that
requires no extensive formal understanding of testing notions. For example, if the user chooses
the All-nodes criterion, the DFTT, after each test case, incrementally determines the executed
nodes for each operation, and calculates the tested node percentage. Each executed operation
will be colored green to indicate that it is tested and red otherwise. Moreover, the tested per-
centage result is inserted as a comment under each universal method. For control annotated
operations, they are colored green if both edges are executed, half green and half red if one edge
is tested, and red otherwise. This visual feedback helps users identify quickly what has and has
not been tested. For those operations that remain untested, the visual feedback is twofold: first,
it aids the user in developing the appropriate test cases, and second, it helps in locating any

remaining faults in the visual code.

3.5 An Example

67

We will illustrate what we have described thus far with a simple example that uses an iterative

approach to calculate the factorial of 2 number. The program that is shown in the right side of

Figure 3-7 contains one error.

I 1:2 iterative
entry [z e o e e e i e
N E=—— 12 rerative =—RAREAE
N A T r T ety d
F T
E S
T g
12 berative
I 2:2 lterative 1:1 factorial il rarrrrrrard 1S
ent 7e
Sorry, number mus... ¢
&) '
F T E T 118 M
v |
[d]
[
121 factorial
11
o
W b i ////////// i ne
7x
nit
L 0 1
P77 N1 2 A |
-
exit 11¥
—] it f— Kl

Figure 3-7. An iterative Factorial method containing one error (right), and its OCG (left).

The control annotated operation in case “factorial 1:1” should have been annotated with a Ter-

68

culates its factorial. The label (@) on the root of the ask operation in Figure 3-7 represents the
input to the factorial method and will be used throughout this discussion. The OCG for the
factorial method is shown in the left side of Figure 3-7. Labels placed on the nodes in the OCG

correspond to the operation labels in the program, as shown in Figure 3-7.

Consider the test suite shown in Table 3-1. The first three test cases in the test suite are node-
adequate; however, they are not edge-adequate because edge (9, 10) is not traversed. After run-
ning the test suite under the all-branches criterion, the operation labelled 79 will be colored
half green and half red. No amount of further testing will result in 100% edge-coverage, and
the red part of the operation labeled 79 will persist. Aside from indicating that the program
contains an error, the red part of the operation labeled 79 helps locate the error in the visual
code. The fact that the test was node-adequate and not edge adequate illustrates that, analogous

to imperative languages, All-branches subsumes All-nodes coverage in dataflow languages.

Table 3-1. A test suite for the dataflow program shown in Figure 3-2.

a output | nodes % edges %
[.I |invalid 1,2,3,15 16,17, 18 388 |[(3.15), 16.6
domain
-1 |invalid 1,2,3,4,5/1516,17,18 500 |(34) (5, 15), 500
domain
2 2 1,2,3,4,5,6,7,8,9, 100.0 | (3,4). (5,6),(9.d) 833
a0, 11,12, 13,14
3 {3"wrong |1,2,3,4,56,7,89, 100.0](3,4),(5,6), (5. d) 833
result” |d10, 1, 12,13, 14

Now suppose we modify the factorial method so that the factorial locallooks like Figure 3-8.
The program now contains a different kind of error. Notice that although the operation
labelled #9is now corrected, the data link connecting the zerminalon the “-1” primitive is now

connected to the second 700t on the Input Bar. This is indeed a fault.

69

=— [1:1 factorial FEEEEENE

])
T 7777 1 2

[|
=
EID

Figure 3-8. Modified Factorial Local.

Running the same test suite described above on the modified factorial program will result in
the same output; however, after running the test suite, both edge and node testedness would
be reported as 100%, but the fault would not have been detected. This is an example of a fault
which may go undetected under all-nodes or all-branches testing. To help catch errors of this
type, a more rigorous testing technique is required. More on this can be found in Chapter

Four.

3.6 Findings Summary and New Directions

We have described issues in, and strategies for, the testing of visual dataflow programs, and pre-
sented test adequacy criteria that are based on the control flow of those programs. We have
shown ways to apply both All-nodes and All-branches testing criteria to visual dataflow lan-
guages. The All-branches criterion can provide important error detection ability, and subsumes

the All-nodes criterion, as is the case in imperative languages.

However, as we have seen in the example, there can still be errors which will not be detected
by either the All-branches or All-nodes criteria. Thus, to help catch such common errors in
Prograph, a more rigorous testing approach is needed. Data-flow testing criteria have proven
more effective in uncovering errors than control-flow test adequacy criteria [27]

[28][31][32][67]. Dataflow testing criteria analyze the definition and use of data elements in a

70

program [26]. These definition and use associations are commonly called def-use relationships.
Dataflow analysis focuses on how variables are bound to values, and how these variables are to
be used. So rather than selecting program paths based on the control structure of a program,
data-flow criteria select paths based on tracing input variables through a program, until they

are ultimately used to produce output values.

In adapting data-flow test adequacy criteria to dataflow languages, we run into some difficulty
that stems from the lack of explicit variable definitions in Prograph. One possible approach is
to treat each root as a variable definition and each terminal as a variable use, but exactly how
this can be used to apply data-flow testing criteria to dataflow languages is the topic of discus-

sion of Chapter Four.

71

4 A Data-flow Testing
Methodology for Visual
Dataflow Languages

4.1 Introduction

Data-flow test adequacy criteria for imperative languages relate test coverage to interactions
between occurrences of variables in the source code. Variable occurrences can be either defini-
tions or uses, depending on whether those occurrences store values in, or fetch values from the
memory, respectively. Intraprocedural data-flow analysis for imperative languages considers
the flow of data within a procedure, while assuming some approximation about definitions and
uses of reference parameters and global variables at call sites. Interprocedural data-flow analysis

considers the flow of data in a program as whole.

In contrast to imperative languages, variable definitions in visual dataflow languages such as
Prograph are not explicit. A rooz in Prograph implicitly defines a variable, whereas a terminal
implicitly uses or references that variable, provided that there is a datalink between the ooz and
the terminal. Thus, interactions between occurrences of variables in visual dataflow languages
are modeled as datalinks from roots to terminals. Testing these datalinks or visual interactions
is the purpose of this Chapter. We discuss differences between imperative languages and the
dataflow aspect of Prograph. Our findings reveal an opportunity to adapt code-based data-flow
testing to visual dataflow languages. The adapted code-based data-flow testing is subsequently
used to achieve both intraprocedural and interprocedural data-flow test adequacy criteria for
visual dataflow languages, in particular the “All-du-paths”. The remainder of this Chapter is
organized as follows: in Section 4.2, we give an overview of the visual dataflow aspect of
Prograph, and discuss how code-based du-associations are adapted to visual dataflow lan-

guages. In Section 4.3, we present our data-flow testing methodology for testing intraproce-

72

dural du-associations in visual dataflow languages, followed by an example and its empirical
results. The latter revealed that data-flow testing for visual dataflow languages provide a more
inclusive coverage than those obtained by either All-nodes or All-branches criteria introduced
for visual dataflow languages in Chapter 3. In Section 4.4, we discuss issues relating to the anal-
ysis and collection of interprocedural du-associations in Prograph. We then give an example to
illustrate the usefulness of interprocedural data-flow testing for dataflow languages; in particu-

lar the detection of errors resulting from interfacing with loop annotated methods.

4.2 The Procedural Aspect of Dataflow Languages

The data interaction model in visual dataflow languages, although visual, is analogous to that
of imperative languages. In imperative languages, data interaction between variables is made
by explicitly defining and referencing the names of variables in a procedure. For example, the
statement s: x = 3 explicitly defines x and writes to its memory location, whereas the statement
s,y = x+3 explicitly uses or references x by reading from its memory location. In visual dataflow

languages, variables cannot be explicitly defined.

Variable interactions are modeled as datalinks connecting operations’ 700t to other operations’
terminals. In this interaction model, roots serve as variable definitions and zerminals connected
to those 7o0ts serve as variable uses. When a ro0z 7, on an operation o; is connected to a terminal
ron an operation o; (and j > 1), we say that zin o; references 7in o, In other word, ris used
in 0; As with imperative languages, we recognize two types of variable uses in visual dataflow
languages: c-use or computational use; and p-use or predicate use. A c-use occurs when a
datalink connects a 700z 7in 0, to a terminal ¢ that exists on a non-control annotated operation
0;. A p-use occurs when a datalink connects a 700z ron an operation o, to a terminal ¢ that exists
on a control annotated operation o; (£and /> 1). For example, in Figure 4-1, the 700z labeled
r1is c-used in the primirive operation show, whereas the oot labeled 72 is p-used in the control

annotated match “2°.

73

ask ask
r1 r2
t1 t2
zshow ’é 2 l_ﬂ

print(ri) if(r2 == 2)

Figure 4-1. An example of a c-use and a p-use in Prograph.

Given a procedure p in a visual dataflow program P, let O = {0}, 0,..., 0,} be the set of opera-
tions in pand R = {r}, 75....,7,} be the set of roots on an operation 0, € O, such that 1 <7< n.
Also, let T'= {t}, £5...,2,} be the st of terminals on an operation o,€ O, such that 1 <j<n A
root r€ Rin o;is c-used in o, iff thereisa daralink from rto a terminal t€ Tin o;such that, i
<j<mnand ojis a non control-annotated operation. A root r€ Rin opwhere (1 < k< #) is p-
used in o;where (1 < /< n), iff there is a datalink from 7to z€ T'in o4 such that #< /< nand

0;is a control-annotated operation.

4.2.1 The Method Structure in Prograph

The basic structure of a Prograph universal method is similar to a procedure in imperative lan-
guages. The ro0ts on the Input Bar of a universal represent the method’s input, and correspond
to reference parameters in imperative languages. The terminals on the Output Bar of a universal
represent the method’s output, and correspond to variables “returned” in imperative languages.
The reader should note that Prograph, unlike imperative languages, allows more than one rooz
on the Output Bar. When a universal method has more than one case, 700ts on the Input Bar
of each case are essentially the same “variables”. A similar situation exist for terminals on the
Output Bar. For example, in Figure 4-2, the roozson the Input Bars of cases “1:2B”and “1:2B”

are the same. Likewise the terminals on the Output Bars are also the same.

74

72 12 B =REE=NEENE= 2 12 B =REEERE

i1
&z 2. T2

A L T
i

Figure 4-2. Method input and output in Prograph cases.

Operations in the body of a universal that are connected to 700%s on the universal’s Input Bar,
get their values from the 7005 which are connected to the rerminalsat the call site. For example,
in Figure 4-3, the reference parameter labeled 1 in “1:1B” gets its value from the root labeled
rl in “I:1A” As with imperative languages, reference parameters and actual parameters in
visual dataflow languages are bound at call sites. Thus, we say that the reference parameter or

ilin “I:1B’ is bound to the actual parameter or 1 in “I:1A".

1:1 A EE=e& 11 B =@EE=E:
e o o e o o o S A T Y) A 7L, e

il or reference
parameter

r1 is an actual
parameter

| A A A 7 A

EID

KIE

Figure 4-3. The binding an actual parameter to a reference parameter at a call site.

A local operation is similar in structure to a universal method; however, the roozs on the locals
Input Bar are not considered reference parameters; rather, they correspond to the 7oozs to which
the local operation’s terminals are connected. For example, in Figure 4-4, the roor on the Input
Bar of case “I:2 aLocal’ corresponds to the root labeled 71 on the ask primitive in method
“1:1B”. The terminals on a local’s Output Bar carry the values of the roozs to which they are
connected, and through an assignment at the Output Bar assign those values to the loca/ oper-

ations’ 7oots. To illustrate, consider the local operation “I:2 alocal” in Figure 4-4. In the latter,

75

the erminallabeled £5 carries the value of the rootlabeled r4, and through the 72 = 75 assign-
ment at the Output Bar, assigns the value of 74 to 72in “1:1B”. A similar assignment takes place

on the Output Bar of case “2:2 aLocal’ operation.

=3 1:1B = 1:2 alocat 2.2 alocal
O 74
ri
6
rS=ri-1,;

t7
g A, 7 7 722]
] rz=rS o

KiL KiL

Figure 4-4. Variable interactions in the structure of a local operation in Prograph.

Roots corresponding to formal parameters cannot be redefined in the procedural aspect of
Prograph. On the other hand, roots corresponding to actual parameters can be redefined only
when they are used as loop roots. To illustrate, consider the looped /ocal operation “I:1 aLoop 7
in Figure 4-5. In the latter, the assignments “72 = r/”and 2 = r4” occur at the at the loop
rootin “1:1A” and Output Bar of the “I:1 aLoop”, respectively. The first assignment 72 =r1”
is necessary to carry the flow of data in case the flow of execution breaks before it reaches the

Output Bar of “I:I aLoop”. The second assignment is necessary to increment the index of the

loop or 72.

T2 1:1 A =R
i 7 A (1)

1:1 aloop

il

& ///0/;/ 7. PSS IS Y (nd)
r

r2 =r1 before any
iteration

(n%) iftr2 > r3)
show (r2); t3
PR (n10) | m) I
— r2=r4 -
- h 4
B T4]»

Figure 4-5. An example of a looped annotated local operation in Progragh.

76

Every universal method contains implicit variables that are maintained by the editing environ-
ment of Prograph. These implicit variables are associated with each case in the method and each
control annotated operation present in the body of each case. The purpose of these implicit
variables is to control the flow of execution of operations in each case of the method. For exam-
ple, in Figure 4-5, when the control annotated operation “>” in the looped local “1:1 aLoop”
executes, the implicit control variable associated with it is checked against the implicit control
variable associated with the “ 1:1 aLoop” case. If the value received at #4in the control annotated
operation “>” is greater then 5, then the value of the implicit control variable associated with
the control annotated operation “>” is changed, and is compared to the value of the implicit
variable of the case. This comparison reveals that the iteration should stop. If the value received
at t4 is less than 5, the value of the implicit control variable associated with the control anno-
tated operation “>” remains unchanged, and thus once compared with the implicit control
variable of the case, reveal that the iteration can continue. The values of implicit control vari-
ables are particularly useful during data-flow testing. For example, in an OCG representing a
looped local, the value of an implicit control variable associated with an operation that is anno-
tated with Terminate on success inside the loop, is required to determine whether the edge rep-
resenting the iteration of the loop should be traversed. More on this can be found in

Section 4.3.

4.2.2 Definition-use Association for Dataflow Languages

Adapting the approach in [17], a du-association in a visual dataflow program links a roorwith
terminals that the root or definition can reach. We consider two types: a definition-c-use asso-
ciation; and definition-p-use association. Given a procedure p in a visual dataflow program P,
let O ={0}, 0js..., 0,} be the set of operations in p, and IV be the set of blocks or nodes in an
OCG representing p. Let R = {r}, 75...,1;} be the set of roots on an operation o;, where 1 < i<
n. Also, let T'= {z, t2,...,t),} be the set of terminals on an operation % where 1 7 < j < n. A def-
c-use association is a triple ((#; np (r, 9), such that, »;and n;are nodes or blocks in NV repre-
senting operations 0, Oand 0;€ O respectively, 7€ Rin o, re T'in o, there is a datalink
between rand # o, is a non-control annotated operation, and there exists an assignment of

J
values to p’s input, in which , reaches 7. For example, the def-c-use with respect to 74 at n6

77

and its c-use at the Output Bar in the “I:1 aloop” of Figure 4-5 is ((n6, n8, (4, t3)). A defini-
tion-p-use association is a triple (n; (), np), (. 9), such that, 7, n; and n;are nodes or blocks

in OCG representing the subset of operations {0 0, o5 € O, re Rin o, te Tin o, thereisa

j)
datalink between rand o;is a control annotated operation, and there exists an assignment of
values to ps input, in which 7, reaches 7, and causes the predicate associated with #;to be eval-
uated such that 7, is the next node to be reached. For example, the def-p-use with respect to
r4 at n6 and its p-use at n7 in the “I:1 aloop ” of Figure 4-5 is: {((n6, (n7, n8), (r4, t4)), ((n6,

(n7, n3,), (r4, t9)}, where n3, is the exit node of the OCG of “1:1 aloop”.

Visual dataflow languages are like their imperative counterpart in that they are both error prone
to infeasible or dead code. Thus, we preserve the applicability of data-flow adequacy criteria by
specifying only executable du-associations. That is, du-associations for which there exists some
input that causes the definition to reach the use. Analogous to imperative languages, determin-
ing whether a du-association — in a visual dataflow program — is executable, is however, a dif-
ficult problem [17]. Algorithms for calculating du-associations that exist in an imperative
program consetvatively approximate them by collecting the du-associations that appear (stati-

cally) to exist in the code.

In this work we use the same approach, that is, we define a data-flow test adequacy criterion in
terms of du-associations that appear to exist under static analysis. With imperative languages,
we can require All/some definitions reach All/some of their associated c-uses/p-uses, via all/
some of these paths over which the definitions can possibly reach those uses [76]. Many of
these criteria can be adapted to visual dataflow languages; however, in this thesis we focus on
the All-du-path criterion since it has been shown in imperative languages to subsume all other
code-based testing criteria [32][93]. Let Q be the set of complete execution paths in an OCG.
We say that a test suite A is All-du-adequate for a visual dataflow program p if and only if, for

each root rin an operation o, all du-associations with respect to rare included in Q.
The presence of dynamically determined addressing such as dynamic array indexing or pointer

access complicates the data-flow analysis for imperative languages. These complications,

although they have been addressed [39], still result in some imprecision during the data-flow

78

analysis. With visual dataflow languages, such as the one we are considering for this work,

pointers and dynamic arrays are not considered.

4.3 Implementation

To provide a truly visual testing and validating environment when testing du-associations
related to datalinks in visual dataflow languages, we have developed a testing methodology that

provides the following functionalities:

o The ability to collect the static analysis of du-associations.
e The ability to track the dynamic analysis of du-associations.

e The ability to visually communicate the testedness of each daralink, which in turn helps

locate faults in the visual code.

Testing and communicating results is an integrated process within the Prograph environment.
We extend the DFTT that was introduced in Chapter 3, to allow the user to chose a data-flow
testing criterion such as All-du-paths. This testing methodology allows the tester to visually
observe the testedness of du-associations and their associated datalinks. A datalink represents a
def-c-use association iff the former links a 700z to a zerminal on a non-control annotated oper-
ation. To reflect the testedness of a datalink that represent a def-c-use association, our testing
environment tracks the datalink in the visual code and colors it green if it is traversed, or red
otherwise. On the other hand, a datalink represents a def-p-use association iff the former links
A rootto a terminalon a control annotated operation. To reflect the testedness of a datalink that
represent a def-p-use association, our testing environment tracks the datalink in the visual code
and colors it green if both outcomes of the evaluated predicate are traversed, half green and half

red if only one outcome of the evaluated predicate is traversed, and red otherwise.

Task|: Collecting static du-associations.

For imperative languages, a wide range of analysis techniques for computing du-chains for

individual procedures are well known Aho [1] (pp. 632-633) are well known and have been

79

used in various tools, including data-flow testers introduced by: F rankl and Weyuker [33][34];
Harrold and Soffa [44]; and Korel and Laski [57]. These techniques propagate definitions
along control flow paths to conservatively identify executable du-associations before they
encounter a redefinition or a “kill”. In visual dataflow languages, we could adapt the imperative
approach to compute du-chains; however, there is one attribute of visual dataflow languages
that requires a simpler approach. In general, a 700t in visual dataflow languages such as
Prograph cannot be redefined. With the presence of loops in Prograph however, rooss associ-
ated with a loop or logp-roots are first defined at the local’slooped 7007 and then implicitly rede-
fined at the Output Bar of each case in the looped Jocal. For example, as depicted in Figure 4-
5, the loop-root 2 first defined at the local operation, and subsequently redefined at the oper-
ation labeled 78 with the implicit statement 72 = r4”. Thus, the du-associations of a root r that
are not associated with a logp-rootis the set of all datalinks connecting rto a set of terminak {¢;,
£3-..» t,}. For example, the definition of 72 on the operation labeled #4in Figure 4-5 has a def-
c-use on the operation labeled 77 and a def-p-use on the operation labeled 76. On the other
hand, the du-associations related to a loop-root Irare divided into two sets. One set that satisfies
the du-associations with regards to the definition of /ron the looped /ocal, and a second set that
satisfies the du-associations with regards to the implicit redefinition of /ron the Output Bar of
the looped /ocal. The first set is collected by computing the du-associations with regards to the
definition of / that is connected or has uses, via wrap-around datalinks, to operations inside
the looped /ocal. For example, the definition of the logp-root 72 on the operation labeled 73 in
Figure 4-5 has a c-use on the operation labeled 76. The second set is collected by computing
the du-associations with regards to the implicit redefinition of /r (at the Output Bar) that has
uses on operations inside the looped /ocal. For example, the implicit redefinition of the loop-
root r2 at the operation labeled 78 has a c-use on the operation labeled 76. Since the implicit
redefinition of a loop-root always occur at the Output Bar of the looped cases, collecting the du-
associations associated with a /oop-root before the implicit redefinition, can be resolved stati-
cally by relying on the automatic collection of the dataflow information provided by the edit-

ing environment during the visual coding phase.

Given a procedure p in a visual dataflow program P, let O ={o}, 0,,..., 0,} be the set of opera-

tions in p, and B = {6}, b»..., b,} be the set of blocks or nodes in the OCG representing p, such

80

that there is a one-to-one mapping between Oand B. For each pin P, we scan the data structure
that host ps visual code representation, and attach to every block b€ B(1 < i< n) correspond-
ing to every operation o;& O the st of terminals V() where each element £;€ V() contains the
set of connected roots V(er), such that each element cr;e V{(er) contains information about the
operation where #s connected ro0¢is defined. Using the information attached to each block &;
e B, we linearly traverse B and determine for each 7ot r defined in a block b its appropriate
def-c-uses and def-p-uses. To efficiently keep track of each roof's traversed du-associations, we
maintain one boolean variable for each root’s def-c-use association, and two boolean variables
for each root’s def-p-use associations. The boolean variable associated with a roor’s def-c-use
association is toggled to true when the path associated with that def-c-use association is tra-
versed, and false otherwise. The boolean variables associated with each ro07s def-p-use associ-
ations are both toggled to true when both outcome of the predicate are traversed, one toggled
to true and the other to false when one of the predicate outcome is traversed, and both to false
when none of the predicate outcome are traversed. For each datalink, we also maintain two
pointers, one for the ooz and the other for the terminal connected to the rooz. These pointers
are used during the validation phase to reflect the testedness of a datalink. More on this can be

found in Task 3.

Task 2:Tracking execution traces.

The conventional way of probing the source code in imperative languages for testing purposes
does not directly apply to visual dataflow languages. Thus, in this work, as mentioned in Chap-
ter 3, we extend a PrographToJava translator in a way that allows us to probe a textual repre-
sentation of the visual code. Whenever an operation in Prograph is executed, the probe records
the execution of its corresponding textual Java representation. The information collected
during the execution of the textual Java allow us to compare the static and executed du-associ-

ations so as to determine the testedness of the visual dataflow function.

Task 3:Visually representing executed DU association outputs

In imperative languages, testing results are often communicated back to the “tester” in the form

of a log file. The visual environment and the lack of explicit variables in visual data-flow lan-

81

guages suggest a different approach when communicating the dataflow testing results back to
the user. In visual dataflow languages, we use the information collected in Task 1 and Task 2
to allow the user to visually inspect whether a particular datalink that is related to a particular
du-association has been executed. To communicate the testing result in a way that comple-
ments environment of visual dataflow languages, and the nature of its du-associations, we rep-
resent the validated results in two different ways. After a test suite is executed, the static and
dynamic du-associations are compared. Based on this comparison, the percentage of traversed
du-associations is inserted under the method name. The second method is similar to what we
have introduced for node and branch coverage. That is, when a datalink is associated with a
def-c-use association it is colored green when the boolean variable is toggled to true, and red
otherwise. When a datalink is associated with a def-p-use association it is colored green when
both boolean variables are toggled to true, half green and half red when one of the boolean vari-
ables is toggled to true, and red otherwise. For those wrap-around datalinks or datalinks asso-
ciated with loop roozs, we construct links from the loop rooss to the terminals where they are

used inside the loop case. The validation process of constructed links is similar to that of

datalinks.

4.3.1 An Example

To illustrate what we have described thus far, consider the Factorial example and its OCG in
Figure 4-6. In the latter, the iterative method reads an input, and that input is passed to the
factorial local method which computes its factorial. Labels on the roozs, terminals, and opera-
tions in the factorial example are also represented on the appropriate nodes in the OCG, and
will be used throughout the rest of this discussion. The locallooped factorialin the example of
Figure 4-G contains an error. The datalink between 75 an 29 should have been constructed

between 74 and 9.

82

| [r— I 1:2 iterative |

o
=
=

3

[}

12 iterative =R EEEREF
A A A A A A I S T (I‘l1)

1 (ng)
v

F

3=1
1:1 factorial
7

X ; 72 L7L rerative
4=1l; .
:S = ;3; ¢ I rrrrZiZd (n1'5)

@ 4]

Sorry, number mus... (,(¢)

2:2 iterative

]

T (n18)

KL

10 = string;

1:1 factorial

print (r10);

r9=r5-1 r8=r4Xrd
ti0

11
O a2 (i 2)
r4=r9 r5=r8

<« |

KiL

mLexie I T

Figure 4-6. The iterative Factorial method containing an error (right), and its OCG (left).

Consider the test suite in Table 4-1. The first three test cases in the test suite are both All-nodes
and All-edges adequate; however, all four test cases are not All-du-paths adequate because: (a)
the implicit redefinition of 74 in 712 did not reach its uses at terminals t7 and ¢8, in nl1I; (b)
the implicit redefinition of 75 in n12 did not reach its uses at zerminals t9in n10; and (c) the

implicit redefinition of 74 in n7, or the entry node of the looped case n7 reached only one of

83

its uses on the predicate operation 79. In (a) and (b), 74 and 75 in 712 did not reach their uses
since there exists no input that would cause the path which includes the loop edge that starts
at 712 and subsequently reaches #I0and n11. In (c) 74 in n7,did not reach the true use in 79
since 74 in could never receive the value “0”, and thus 74 could never be tested against “0” or
the true outcome of the predicate statement in #9. This is an example of an infeasible du-asso-

ciation.

Table 4-1. Exercised du-associations' and edges2 of the program in Figure 4-6.

rl | output Traversed def-use associations All-du% Traversed edges All-edges%
LI linvalid [(02, (n3,n15), (rl,t1)); (n16,n17), 1992 (n3,n15), 16.6
domain | (r10,t13)). '
-1 invalid (n2, (n3,n4), (rl, t1)); (n4, (n5, né), 22.7 (n3,n4),(n5,nl5), 1500

domain [(r2,13)); (n2, (n5,n15), (rl, t2));
((n16,n17),(r10,t13)).

2 2 (n2, (n3,n4), (rl, t1)); (4, (n5, né), 772 (n3,n4), (N5, né), 100.0
(r2,13)); (N2, (N5, n6), (r1,12)); ((né, (n9,n10), (N9, nx)
n7), (r3.15)); ((n2,n7g), (r1, t4)):
(n76,(n9,n10)(r4,16)); (n7¢,n10),
(r5,19)); ("7 n 1 1), (r4,17)); (N7,
nl 1), (r5,18)) ((n10,n12), (r9,t10));
(n1Hn12), (8,11 1)); (N7e, (n9,nl2),
(r4,16)); (n12,n13), (r5,t12)).

3 3"wrong | (n2, (n3,n4), (1, t1)); (n4, (n5, né), 772 (n3,n4), (n5,né), 100.0
result” (r2,13)); (n2, (n5, né), (r1, 12)); ((n6, (n%,ny)
n7e), (r3,15)): ((n2,n7¢), (rl, t4)):;
(n7,(n9, n10)(r4, 16)); (n7¢, n10),
(r5,19)); (N7 01 1), (r4,17)); (N7
nl 1), (r5,18)): (n10,n12), (r9,t10));
((n11,n12), (r8,t1 1)) (n7¢, (N9, n12),
(r4,16)); ((n12,n13), (r5,t12)).

Since any input value > 2 will cause the value received at 79 during the second iteration of the

looped localto be “0”, no further testing will result in traversing the du-associations of (a), (b),

|. The notation associated with the traversed du-associations can be divided into a def-c-use association notation and a
def-p-use association notation. The notation of a def-c-use association is: (m, ny (n1)) such that, n; is the node where the
root or variable r is defined; n; is the node where ris c-used; and t is the terminal that exists on the operation represented
by nj and to which r is connected. The notation of a def-p-use association is: ((m,). Ny, (1 1)) such that, n; is the node
where the root or variable r is defined; n; is the node where r is p-used; ny is the node that is reached when the condition
associated with ny is evaluated, and t is the terminal that exists on the operation represented by and to which ris con-

nected.

2. The notation associated with the traversed edges simply indicates which edges in the CFG of Figure 4-6 have been tra-
versed.

84

and (c), and thus they are flagged as potential errors. To reflect the untested du-associations of
(a) and (b), we construct, as depicted in Figure 4-7, three red links and one half red/half green
link. The red links are constructed as follows: a red link between the loop oot 74 and ¢7in nl1;
a red link between the loop 700t 75 and #9in 710; and a red link between r5and #8in n11. The
half red/half green link is constructed between the loop-root r4 and #6 at 9. To reflect the

untested du-association of (c) we color the datalink between 74 at #n8 and 6 at n9 half green

and half red.

Now suppose we fixed the error in the factorial method so that the factorial local looks like
Figure 4-8. Running the same test suite desctibed above on the modified factorial program will
result in a correct output and only 95.45% All-du-paths testedness. Since the definition of r4
in 77, could never be assigned a value that is less than 1, r4 could never be tested against “0”
on the predicate operation 79. Thus, the du-association (n7,, (75, n7,), (r4, t6)) cannot be exe-
cuted. Only when the value of the operation that is labeled 74 is changed from 1 to 0 and a
value of “0” is added to the test suite of Table 4-1, that the previously mentioned infeasible du-

association can be traversed.

EO==== 2 1.0 iterative

e e rrevreseeed (n1)

SE=— 1) ‘N1 factorial
G Ry R, X

R e P e g o P o
\ O

o o o A A

5
M (ni1)
r9=r3-1 r8=r4*r5
t10 11
T (n12)
r4 =r9 rS =8

Figure 4-7. The inspected iterative procedure.

85

e 121 factorial FHEEEEEE

&z ///1 7 . d(ns)

Figure 4-8. The corrected factorial looped local.

4.4 Interprocedural Data-flow Testing for Dataflow
Languages

The dataflow testing methodology discussed thus far for visual dataflow languages, has been
restricted to testing only du-associations that exist within a procedure or a universal method.
As with imperative languages, visual dataflow languages encourage a high degree of modularity.
This means that a visual dataflow program would normally consist of at least two or more inter-
acting procedures. As mentioned in Section 4.2.1, roots on the Input Bar of a method # cor-
respond to ms formal parameters, whereas roots defined anywhere else in 7 correspond m’s
actual parameters. Throughout the discussion of this Section, we will simply refer to a
method’s Input Bar rooss as formal parameters, and roozs defined anywhere else in a method as
actual parameters. When testing du-chains that exist among these interacting visual dataflow
procedures, actual parameters that are connected to call sites of calling procedures are bound
to formal parameters in called procedures. A call site in visual dataflow languages is an opera-
tion that invokes a procedure. For example, in Figure 4-9, the operation that is labeled 73 is a
call site. Due to procedure calls, uses of a bound formal parameter in the called procedure
become part of the interprocedural du-chains of its corresponding actual parameter in the call-
ing procedure. To account for those interprocedural uses, interprocedural data-flow analysis is
required. Next we discuss some of the issues related to interprocedural data-flow analysis and

testing of visual dataflow languages.

86

EO=@2 1:1 Main =RITEE=RE 1:1 A
T A (n6)
”
[t rrZZZZa (nS) [T T (ni0) | v
; e RN KILC
12 B 2B
G (1) T 72773 (n15)
i
tz |
Vo1 g n16)
(n12) [r2=j+1
- (17 |
[P77 (n14) s -
| ezz=z 7z ez (n8) [
T4 [4]»

Figure 4-9. A Prograph example illustrating both direct and indirect data dependencies.

4.4.1 Issues in Collecting The Interprocedural Dataflow Analysis in Dataflow
Languages

Given a visual dataflow program P= {p, pa..., p,}, we say that interprocedural data-flow anal-
ysis in P is concerned with accounting for data dependencies that extend beyond procedure
boundaries. We identify two types of interprocedural data dependencies in 2 direct data
dependency; and indirect data dependency. A direct data dependency is a du-association whose
definition occurs in visual dataflow procedure 4, and use occurs in a directly called visual data-
flow procedure B of A. The condition for such a dependency exists only when: (1) a actual
parameter in A is connected to a terminal ¢; on an operation o; representing a call to B; (2) Zis
a formal parameter in B; and (3) #is connected to terminal t,on an operation 0,in B. For exam-
ple, in Figure 4-9, the root labeled r/ in “1:1 Main ”has a direct uses in operations #7 and »8

in procedure “I:1 A”.

87

With imperative languages, as mentioned in Section 2.7.1, another condition that satisfies the
existence of a direct data dependency states that a definition of a formal parameter in a called
procedure reaches a use of the corresponding actual parameter at a return site. This condition

does not hold in visual dataflow languages since a formal parameter cannot be redefined.

An indirect data dependency is a du-association whose rooz is created in procedure A and use
occurs in an indirectly called procedure Bof A. Such a dependency exists when a formal param-
eter is passed as an actual parameter at a call site. For example, in Figure 4-9, the rooz labeled
»1in Mainis bounded to formal parameter iin 4, and £in turn is passed as an actual parameter
to Bin A. Thus, 71 in Main has indirect uses in operations 72, n13in “1:2 B”and in operation
labeled 716 in “2:2 B”. Given the above conditions under which either a direct or indirect data
dependency may occur, we can say that interprocedural data-flow testing for visual dataflow

languages is concerned with testing both direct and indirect data dependencies.

In this Section, we discuss issues concerning the identification of interprocedural dependencies
in a visual dataflow program. Consider the example in Figure 4-10 that depicts a Prograph pro-
gram consisting of three universals: Main; 4; and B. The OCG for each universal is also shown
in Figure 4-10. To simplify the interprocedural dependency discussion, we: (1) represent a call
site by a single basic block, shown as a dashed box; (2) representa call path with an arrow whose
source are a filled circle @——>; (3) represent a return path with a simple arrow; and (4) asso-

ciate a node number with each node or block in the OCG(s).

There are two main issues related to interprocedural du-chain analysis in visual dataflow lan-
guages: preserving the calling context; and dealing with aliases. Each issue will be discussed

next.

88

S=W11A

1:1 Main =ERERE

s (n1)

12 b —REE=

SIS, 7773 (n12)

I 7 ez (n15)

[LZT] ’ Ii‘;,ﬂ,

& 7 777777 (n16)

Pz (n19)

Return path

— hal
: X Call site

Call path

Figure 4-10. Procedures Main, A, and B and its corresponding OCG sub-graphs.

o Preserving the calling context of called procedures. Preserving the calling context of called
procedures is important during the computation of interprocedural du-chains. To preserve the
calling context, only those paths in the program that agree with the call and return sequences

should be traversed. To illustrate, consider, in Figure 4-10 the definition of 71 in #2 that is con-

89

nected to the call site of procedure B in the operation labeled #5. Since there are two calls to
B, there are two return paths from procedure B: one that returns directly to Main; and the other
that returns indirectly to Main through A. These return paths are illustrated as two simple
arrows starting at the exit node of Band into dashed boxes 75 and #8. If we don’t follow the
correct path that agree with the call and return sequences of the call to B from Main, we could
follow the return path from the exit node of Binto dashed box #8. By so doing, we are sug-
gesting that 71, on the call to B from Main, has interprocedural uses in the operation labeled
n9 in 4 however, a closer inspection of control paths through the program reveals that 77
reaches the end of B and subsequently back into Main, only when it is called directly from
Main. Preserving the calling context requires a technique to account for the call and return

sequences. More on this in Section 4.4.1.

* Dealing with aliases. Aliases can occur in visual dataflow languages when a root is connected
to two or more terminals on an operation that represents a procedure call or call site. For exam-
ple, in Figure 4-11, the actual parameter 71 is connected to ¢ and #2 on the operation labeled
73. On this call to A4 (the operation labeled #3), formal parameters 7and jin 75 are aliases of
each other in A. Then, on the call to B, (the operation labeled 76) this alias is propagated to
procedure B since 7 and j are passed as actual parameters, causing 7 and 7 to be aliased in B.
The interprocedural du-chains of 71 in Main is then the union of the uses of {4 7} in 4, and {m,
7} in B. Section 4.4.3 offers an in depth look at how our interprocedural data-flow analysis

deals with aliases.

With imperative languages, as mentioned in Section 2.7.1, the issue of “maybe” preserving a
variable over a procedure call has to be taken into consideration when dealing with interproce-
dural data-flow analysis. Given two imperative procedures P and Q such that, x is an actual
parameter in P, y is a formal parameter in Q, x is passed to a call site that invokes Q; and x is
bound to yin P. We say that x may be preserved over the procedure call to Q since we don’t
know if y can reach, unchanged, the end of Q. With visual dataflow languages however, this

issue does not apply since a formal parameter cannot be redefined on any path in the program.

90

121 Main EEE——]7Z R H .\

[B (n1)

ot 777 A, =2 (ni3) |-

= 7 v, 7 (n18)

]

[«]¥ [«]*

Figure 4-11. An example of an alias introduced at a call site.

4.4.2 Constructing The Interprocedural Operation Case Graph

Given a visual dataflow program P = {p}, p...., p,}» where each procedure p;e P, (1 i< 1),
is represented with an Interprocedural Operation Case Graph (IOCG) sub-graph, denoted
10CGy. The collection of all the JOCG sub-graphs, when properly connected together over
call and return paths, is denoted JOCG{p. The IOCG;p represents the control-flow of the pro-
gram as whole. When constructing an /OCG,, we could collect interprocedural data-flow
information by either (1) incorporating information about called procedures ar call sites during
the analysis of the calling procedure, or (2) estimating information about called procedures
during the initial analysis of the calling procedure and update that information when more
accurate data-flow information is determined about the called procedure. With the first
approach, information about called procedures has to be available. This puts a restriction on
the order in which procedures must be processed. Thus, in this work we use the second

approach.

91

Adapting the approach in [19], our algorithm for constructing an JOCG{p is divided into four
Tasks. In the first Task, we process each procedure p in Pin any order and build its JOCG,
In each JOCGyy), we construct, when appropriate, the following nodes: Entry, Exit, Call, and
Returnnodes. An Entrynode represents the point prior to the entry into the procedure, whereas
an Exit node represents the point after the end of the procedure. An Entry node and an Exit
node will be constructed for each oot corresponding to a formal parameter. A Call node rep-
resents the point prior to the procedure call, whereas a Rerurn node represents the point after
the return from a procedure call. A Call node and a Return node will be constructed for each
root (formal or actual parameter) that is connected to a call site. Entry, Exit, Call, and Return
nodes represent the four interprocedural events or control points of: procedure entry; proce-

dure exit; procedure call; and procedure return, respectively.

In each JOCG;), we construct, when appropriate, Interreaching and Reaching edges. An Inter-
reaching edge is constructed between Calland Resurn nodes that are associated with the same
variable. The purpose of Interreaching edges will be explained during the propagation phase of

Task 3. A Reaching edge is constructed as follows:

« A Reaching edge is constructed from an Entry node that is associated with of a formal param-
eter to a Call node that is associated with the same formal parameter. For example, a Reaching
edge from an Entry node to a Call node indicates that the formal parameter is connected to a

call site where it is used as an actual parameter.

* A Reaching edge is constructed from an Ensry node that is associated with of a formal param-
eter to the Exit node that is associated with the same formal parameter, if the latter is not con-

nected to any call sites.

e A Reaching edge is constructed from a Rerurn node to either a Call node or an Exiz node. A
Reaching edge is constructed from a Return node to a Call node if the parameter that is associ-
ated with the Resurn node is also associated with another call site. For example, if a root r is
connected to two universal operations, a Reaching edge is constructed from the Return node

that is associated with 7 to the Call node that is also associated with 7. A Reaching edge is con-

92

structed from a Return node that is associated with a formal parameter to the Exit node that is
associated with the same formal parameter. These Reaching edges summarize the control flow

structure of [OCG(P)

After constructing the aforementioned nodes and edges, we abstract DEF sets for every Call
and Exitnode, and UPCON sets for every Entryand Return node. The definition of the actual
parameter that is connected to a call site constitutes the DEF set for a Callnode. The DEF set
for an Exit node that is associated with a formal parameter is equal to @ since a formal param-
eter cannot be redefined. The UPCON set for an Entry node that is associated with a formal
parameter is the set of the du-associations related to all the datalinks connecting the formal
parameter to other operations. The UPCON set of a Rezurn node that is associated with an
actual parameter, is the set of du-associations of all operations, other than the one responsible

for the call site, that are connected to the actual parameter.

In the second Task, we construct Binding edges to connect the JOCG sub-graphs. Binding
edges are divided into Call-Bindingand Rerurn Bindingedges. The Call Binding edges are con-
structed from Cal/nodes to Entry nodes, while Return- Binding edges are constructed from Exit
nodes to Returnnodes. Call-Bindingand Return-binding edges are constructed based on the call

structure of the program, and they cotrespond to the binding of formal and actual parameters.

In the third Task, we update the UPCON sets that were obtained in Task 2, by propagating
information about other procedures over call and return paths in the JOCG(p, to obtain the
interprocedural data-flow information. Finally, in Task four, we collect, for each actual param-
eter that is connected to a call site its interprocedural du-chain associations. Next we explain

each Task in the context of the program that is depicted in Figure 4-10.

Task |: Constructing the IOCG sub-graphs

For every formal parameter € p, where p is a visual dataflow procedure, we construct an Entry
node and an Exiz node in the JOCG,. For example, as depicted in Figure 4-12, nodes E1(;
and X1, are created in JOCGy) for the formal parameter 7 in procedure A. Similarly, nodes

E2() and X2 are created in JOCGp, for the formal parameter jin procedure A.

93

[

1:1 Main =REEER

I 10CG 1y

Main A B
ent; ent
E2)

e rere7zd ()

77z (n19) %
EMEE=RE

ZZZZ (n12)

. = =

IOCG (Main) 10CG gy

211 A

e et (1) |-

4] e |

Figure 4-12. Creating the Entry and Exit Nodes for procedures A and B.

An Entry node represents the point prior to the entry into the procedure, whereas an Exitnode
represents the point after the end of the procedure. Note that since Main does not have any

formal parameters, neither Entry nor Exit nodes will be constructed in JOCG(p14ir).

procedure ComputelnterDu-Chains (P) /* P is a collection of procedures pl, p2,...*/

{

DECLARATION/
NODES nodeSet[]; % A set of nodes to process */
EDGES edgeSet[]; A set of edges to process */
DUC duc[]; % Array of definition-use chains */

/*Task |:sub-graph construction for each procedure */
for each p € Pdo{
for each root € p do {/*rooty represents a formal parameter®/

Construct an Entry node and an Exit node;

94

for each root,) € p that is connected to a call site do {/*root,) represents an actual parameter*/

Construct Call node and Return node;

Using the data flow information provided by the editing environment

Construct Reaching edges for p;

Construct Interreaching edges;

Extract DEF[X] such that X € nodeSet of {Call, Exit}; /* X is a node in IOCG g, */

Extract UPCONIY] such thatY € nodeSet of {Entry, Return}; /*Y is a node in IOCG(p) */
}

/*Task 2: connecting the IOCG-sub-graphs */
Construct Call-Binding edges among the |IOCG-sub-graphs;
Construct Return-Binding edges among the IOCG-sub-graphs;

*Task 3: propagation of local information to obtain global information */
for each node N € IOCGp) do { /* initialization N € nodeSet of {Entry, Exit Call, Return} nodes*/

IN[N] = UPCON[NJ;
OUT[IN] =g

} /* phase 1 */
nodeSet = {Entry, Call, Return} /* nodes in IOCGp) */
edgeSet = {all edges in IOCGp)}
Propagate (nodeSet, edgeSet);
/* phase 2 */
nodeSet: = {all nodes in IOCGp)}
edgeSet: = {Return-Binding, Reaching, Interreaching} /* edges in IOCGp) */
Propagate (nodeSet, edgeSet)

*Task 4: interprocedural definition-use chains computation */
for each p € P do{
for each interprocedural definition of a root rin P do {
DUC][r]:= @;
if (r is in DEF[Call]) DUC[r]:= DUC[r] U OUT, . [Call];
if (r is in DEF[Exit]) DUC[r]:= DUCI[r] U OUT,[Exit];
}

} /* end of ComputeChains */
Figure 4-13. The algorithm to construct the IOCGpy of a visual dataflow program R

95

For every parameter € p that is connected to a terminal t on a universal operation o, we con-

struct a Call node and a Return node. For example, as depicted in Figure 4-14, nodes C1,;

and R,y are constructed in JOCG 1,y for the actual parameter 71 that is connected to the

universal operation A in Main. Also, nodes C2,7y and R2,) are constructed in JOCG{ 1, for

71 since it is connected to the universal operation B in Main. Similarly, nodes C3(, and R3,

are constructed in JOCG) for the formal parameter iin 77 that is connected to £5 on the oper-

ation labeled 78 which represents a call to B from A. Note that since B does not contain call

sites, neither Call nor Return nodes will be constructed in /OCG g,

EOEE 74 1:1 Main ==RRERE

& 2 e (Y)

B it |

21 (n19)

D Call/Return node
D Entry/Exit node

| 10CG
Main I A I B
[Laiiiie Shc
Cleny
C3(i)
C241y
R3)
Rl(rl)
Ry
=
IOCG (Main) 10CG 4,

¥

7ZrZZ (n11)
KR

Figure 4-14. Creating the Call and Return Nodes for procedures A and B.

96

Next, we construct Reaching edges. For every formal parameter fe p that is connected to a call
site, we construct a Reaching edge from the Entrynode that is associated with fto the Ca//node
that is also associated with f Since E1(; is the Entry node that is associated with formal param-
eter iand C3;) is the Call node that is also associated with 4 the Reaching edge (El(,, C3(;),
as depicted in Figure 4-15 is constructed from E1(, to C3;) in [OCGy).

[occ,,, | EE== (2 1:1 Main =RIEIEE

ariin, 773 (1)

Main & I B
<ng [eciid Sou

Clen)

=07 11 B =EAEE=

C3()

7777 (n16)

C2(41)

R3¢y

R1 (1)

[T (1 9)
R2%e1)

I0CG (Main) 10CG 4,

D Call/Return node
D Entry/Exit node

—

9
R (1) | |
D

Figure 4-15. Reaching edges for procedures Main, A, and B.

For every formal parameter fthat is not connected to any call site, we construct a Reaching edge
from the Entry node that is associated with fto the Exit node that is also associated with £ Since

formal parameter jis not connected to any call site, the Reaching edge (E2(j, X2(;), as depicted

97

in Figure 4-15 is constructed in / OCGp from EZ(]), the Entry node associated with j to X2(7),

the Exit node associated with j.

=0 111 Main=

9)
Q
(2]
&
T

Cl(ey)

- I Main

re

C3()

R2¢r1) |

/

enti

E2 0}

] ¢] B
11l |jfe——————————

_E

1 exit
| =<1 | | === :
IOCG) i

%

TOCG (Main) 10CGy)

—————3p [Interreaching Edge [

— — == Reaching Edge

Call/Return node

[

Entry/Exit node

Figure 4-16. Interreaching edges for procedures Main,A, and B in Figure 4-10

D11 A—

2
u)

A s o o 7 N)

11)

D

A Reaching edge is constructed from the Reurn node to either a Cal/node or an Exit node. For

every formal parameter fin p that is associated with a Rezurn node, we construct a Reaching

edge from the Resurn node to the Exit node that is associated with f. For example, as depicted

in Figure 4-15, the Reachingedge (R3, X1 ;) is constructed in JOCG 4)from R3;, the Return

node that is associated with 7 to XI(,, the Exit node that is associated with i For every actual

parameter 4 that is associated with a Rezurn node, we construct a Reaching edge from the Return

98

node to the Call node that is associated with 4. For example, as depicted in Figure 4-15, the
Reaching edge (R1(,p, C2(,p) is constructed in JOCG sy, from R,), the Return node that
is associated with 71, to C2(,), the Callnode that is associated with 7J. This completes the con-

struction process of all the Reaching edges for the JOCG sub-graphs of Main, 4, and B.

With imperative languages, [19] the construction process of Reaching edges starts by solving
the standard data flow problem of a reaching definition. That is, a definition of a variable x
reaches a point pnzin a subroutine S if there is an execution path from the definition to pns
along which x is not redefined or killed. In imperative languages, a point pnz is said to exist
before and after each statement sin a block 4. In visual dataflow languages, we rely on the infor-

mation collected by the editing environment to construct Reaching edges. .

For Calland Return nodes that are associated with either a formal or actual parameter, we con-
struct an Interreaching edge between the Call node and the Return node. Thus, as depicted in
Figure 4-16, we construct Interreaching edges: (Cl(,z, Rl(,p) and (C2(,1), R241) for 71 in
I0CG p14np and (C3, R3(y) for iin JOCGy). The main purpose of Interreaching edges is to
facilitate the propagation of the UPCON sets to the Call and Entry nodes without traversing
the Call-Binding edges. More on this in Phasel and phase2 in Task3.

Table 4-2. The DEF and UPCON sets for the IOCG sub-graphs nodes of Figure 4-16.

IOCG nodes | DEF set UPCON set

Cleny {r1} @

Rign @ {(n2,n4, (rl,12)); (2, n5, (rl,13))}

Ceny {r1} @

R2(9) @ 2

Elg {i} {(n7,n8, (i, t4)); (n7,n9, (i, t5))}

C3p {i} @

R3) @ @

Xl @ @

E2 {} {(n12,n13,(,t)) (n12,nl4, (,t2)):
(n12,ni4,(,t2)); (n16,n17,(, 13))}

X2 @

99

We next extract the DEF[X] and UPCONI] sets, where X = {Call, Exig nodes of I OCG(],,),
and Y = {Entry, Return} nodes of [OCG(PZ). The DEEF set for either a Call or Exit node is anal-
ogous to the DEF sets in imperative languages. The DEF set for a Call node that is associated
with an actual parameter is equal to the rooz that is connected to the call site. For example,
DEF[C](,p] in Figure 4-16 is equal to {r1}. On the other hand, the DEF set for an Exit node
that is associated with a formal parameter is equal @ since a formal parameter cannot be rede-

fined. For example, DEF[X/(;] in Figure 4-17 is equal to .

[oce] FT= 1 1:1 Main ==RTEEEHE

- = =1 | LA2S I A(n1)
mm [{ .

Clgey

C2(;1)

f
/

g
R2r1) |<f

I0CG (Main)

IOCG(A)

i

1:1A EEEEEE
Z(n7)

Gl

=_—p Interreaching Edge |.:
——————p Binding Edge

— — —p» Reaching Edge

R R R

Call/Return node

D Entry/Exit node

Figure 4-17. The connected IOCG sub-graphs for procedures Main, A, and B in.

100

The UPCON set for either an Entry or @ Return node is analogous to the upward exposed set
(1] in imperative languages. The UPCON set of an Entry node that corresponds to a formal
parameter is the set of du-associations related to all the datalinks from the formal parameter to
other operations. For example, the UPCON([E]y] = {(n7, n8, (3, t4); (n7, n9, (3, £5))}. The
UPCON set of an Rezurn node is the set of du-associations of all operations, other than the one
responsible for the call site, and to which the o0z or parameter is connected. For example, the
UPCONI[RI(,p] = {(n2, n4, (11, 2)); (n2, n5, (r1, £3))}. The DEF set for Calland Exit nodes,
and the UPCON sets for Entryand Return nodes of Figure 4-17 are represented in Table 4-2.

Task 2: Connecting the IOCG-sub-graphs of P = {Main,A, B}

After all the sub-graphs have been processed in Task 1, we now connect all the IOCG-sub-
graphs. To do that, we construct Call-Binding edges from Call nodes to Entry nodes, and
Return-Binding edges from Exit node to Return nodes. A Call-Binding edge is an edge whose
source is at a Call node and sink is at the Enry node. For example, as depicted in Figure 4-17,
(Cli,py Elgy), (C2rys E2), (C3y, EZp) are Call- Binding edges. A Return-Binding edge is an
edge whose source is at the Exiz node and sink is at the Refurn node. For example, as depicted
in Figure 4-17, (XI(,z), RI(,p), (X2(), R3(y), and (X2, R2, 1) are Return-Binding edges.
Binding edges depend only on the call structure of the program, and not the internal structure
of any universal method. This concludes the construction process of the JOCGp of Figure 4-

17 whose program was originally depicted in Figure 4-10.
Task 3: propagating local information throughout the |IOCGp

After the first two tasks are completed, local (to each JOCG sub-graph) information such as
DEF[N] and UPCON[M] is now available for each node Ne IOCG(p,. In this task, we prop-
agate the UPCON([/V] sets backward throughout the JOCGp as far as they can be reached to
obtain the interprocedural reachable uses. With imperative languages, the interprocedural
reachable use problem is formulated as a simple distributive data-flow problem [55] which is

solved by using procedure Propagate of Figure 4-18.

101

procedure Propagate (N, E)
{

input N set of node types to be processed
E: set of edge types to be processed
while dataflow changes do {
for each node n of type N do
for each nodes that is a successor over E of n do
OUTe[n]= INyse[n] U INyses]
INyse[n] = INyse[n] W UPEXP[n] // UPCONIJn] is substituted here
} * end for */
} /* end for ¥/
} * end while ¥/

} I* end Propagate */

Figure 4-18. The procedure used to propagate the interprocedural uses information.

To adapt the Propagate algorithm described in Figure 4-18, we define for every node N e
I0CG p, two sets: INyo [V]; and OUT [V]. These sets denote the interprocedural uses that
are reachable before and after the control points of procedure entry, procedure exit, procedure
call, and procedure return. Before propagating, we initialize IN, [V and OUT [N by
assigning In,[V] to UPCON[NV], and OUT, [V to . At this point in Task 3, every node
N e I0CG(p now has the following sets defined for it: DEF[N], In[/V], OUT[M], and
UPCON/[N]. After initializing each node Ne JOCGp, we adapt the Propagate algorithm of
Figure 4-18 by substituting the UPEXP set with the UPCON set. Using the adapted Propagate
algorithm of Figure 4-18, we can now propagate the UPCON([N] backward throughout the
IOCGp,. The propagation in Task 3 is divided into two phases. In each phase, the call to Prop-
agate iterates over a selected set of the nodes and edges in the JOCGp) until the data-flow sets

stabilize.

To explain the reason behind using a two-phase propagation technique, consider the backward
propagation of the UPCON set for R1(,; in Figure 4-17. The UPCON[R/(,] consists of the
use of root r1 in operations labeled 73, n4, and 75. If UPCON[R/(,] is propagated backward
in the JOCGp, of Figure 4-17, it would reach, among other, nodes X1, R3(y, X2, E2(j, and
C2. However, this path does not match the return context. The problem occurs when this

use is propagated backward over the Call- Binding edge (E2(), C2(,)), since this edge does not

102

match the return context. The use however must be propagated, after it reaches £2(), to nodes

C3(,1» 1y, and CI(,p, since this path does match the return context.

To solve this problem, the propagation is performed in two phases. In phase-1, information
propagating to the Exit node is not computed, but all other information is allowed to flow
across the Call-Binding edges. In phase-2, information reaching the Exit node is furcher prop-
agated using the Interreaching edge, but no information is propagated over the Call Binding
edges. This two-phase propagation preserves the calling context of called procedures and
ensures that only possible control paths in the program are considered. Therefore, we first pro-
cess only the Entry, Call, and Returnnodes, and propagate the uses that can be reached in called
procedures over the Call-Binding edges, Reaching edges, and Interreaching edges. Thus, in
phase-1 of the propagation, successors of a node NV consist of the immediate successors of N
that are Entry, Call, or Return nodes. Next, we propagate the uses that can be reached in calling
procedures over the Return-Binding edges, Reaching edges, and Interreaching edges. The prop-
agation must be restricted to these edges to prevent traversal of paths through the JOCG(p, that
do not represent control paths through P. Thus, in phase-2, successors of a node N consist of
the immediate successors of IV over all edges except the Call-Binding edges. Thus, processing
includes all nodes, but no information is propagated over the Call- Binding edges. To incorpo-
rate the results of phase-1 computation during phase-2, the OUT [N] computed in phase-1 is

used in computing the new OUT . [V].

Cycles can occur in an JOCG|p) within a sub-graph or among sub-graphs. In particular, cycles
occur (1) in the interconnections of sub-graphs because the return from one procedure reaches
the call to another, and (2) in programs with recursive procedures. Cycles of type (1) result in
a Reaching edge from the Return node to the Cal/node. Although there is a cycle in the JOCG,
the subset of JOCG nodes and edges processed by procedure Propagate in cither phasel or
phase2 is cycle free. To illustrate this type of cycle, consider the program and its JOCG given
in Figure 4-17. The path in the JOCGp through nodes C2,,, E2), X2(, R3(,1» X1(j> Rl (r1),
and C2,;) is an example of a cycle of this type. However, phase-1 does not include nodes X2
or X1, or edges (X2, R3(,1)> (R3(,1), X1(y) or (X1(y, Rl(,p), and consequently, no cycle is
processed by procedure Propagate. Since edge (C2(,1), E2() is not included in the processing

103

of phase-2, no cycle exists among the subset of nodes and edges, and thus, no iteration is
required for Propagate. The presence of recursive procedures may cause cycles of type (2)
during the propagation of phasel. In this case, iteration is required in the procedure Propagate
to compute the data sets. To avoid infinite number of iteration, we associate the Call-Binding

edge of every recursive call with a flag to ensure that it is traversed only once.
Task 4: Computing the du-chains throughout the IOCGp)

The reachable use information that was computed in Task 3 for the JOCG|p), will now be used
with local DEF sets to compute the interprocedural definition-use chains. Interprocedural def-
inition-use chains are computed by considering DEF sets for Ca/l and Exiz nodes associated
with each procedure. If a 700z r € DEF[V], where Nis a Call node, then the interprocedural
du-chain of r consists of the elements in OUT [V]. If re DEF[N] for more than one Nasso-
ciated with the procedure, then the interprocedural du-chain is the union of the OUT . sets
for all N where DEF[N] contains 7. Consider the example of Figure 4-10 whose completed
IOCGp, is shown in Figure 4-17. In that example, the interprocedural du-chains of the defi-

nition of rin #2 s the set of uses that can be reached from node Cl,)or {n8, n9, n13, nl4,

nl7}.

4.4.3 Dealing With Aliases

The technique we have described in Figure 4-13 for collecting interprocedural du-chains in
visual dataflow languages has not yet dealt with the presence of aliases in the visual code. In
this Section, we describe a technique to provide, without altering the algorithm of Figure 4-

13, a safe computation of interprocedural du-chains in the presence of aliases.

| S,

A A AL AL,

1:1 Main =02 1 A==FEE=EE
& ZZA(n1)
[T AL 7 (nd)
KIE
12 B
Z 2 (n0)

72 (n13) T

AL

772 (n18)

KD

KD

104

Figure 4-19. An example of an alias at a call site.

Assuming that alias pairs for reference parameters for a visual dataflow program P= {p, po....,
2,4} has been computed using an algorithm such as the one introduced by Cooper and Kermedy
[22], we adapt a technique by [7] to unalias p in P using a program’s activation tree which cre-
ates a new copy of the procedure for each different alias configuration. Thus, for each proce-
dure p in P containing an alias, another version of procedure p’is created that contains only
one formal parameter named as a linear combination of the names of all the aliased formal
parameters. Then, all occurrences of formal parameters involved in the alias will be replaced
with the new name. For example, in Figure 4-19, another copy of procedure A will be created,
and 7and jwill be replaced with one formal parameter named 7. Thus, as depicted in Figure 4-
20, the JOCG sub-graph of A will contain only one Entry node, E(;). Unaliasing the program
in this way, although results in precise interprocedural du-chains, can be exponential in the
number of parameters passed to a procedure. However, one can argue that the number of

parameters passed to a procedure that result in aliasing is generally small.

105

— [— ’S
Clgy | E(mn)

Cl(j)

—_— Interreaching Edge
—————p Binding Edge

— — —» Reaching Edge

D Call/Return node
R1 .,
® @ Entry/Exit node

| Rl | ‘f Rl(mn) I

I0CG(Main) 10CGy 10CG (\ain)

Figure 4-20. The unaliased IOCG for the program depicted in Figure 4-19.
4.5 An Example

The example in Figure 4-21 differs from that of Figure 4-6 in that the factorial method is not
a local; rather, it is a universal method. This means that the input to facrorial, roots i7 and i8,
are now reference parameters. The example in Figure 4-21 contains an error. The datalinks
connection on the input to method factorialshould have been interchanged. That is, 71 should
have been connected to #4, and 73 should have been connected to #5. As depicted in Figure 4-
21, the call to “factorial” in the method iterative is represented with a dashed box that contains
an entry node or 77, and an exit node or 77,. Since the method call is loop-annotated, there
are two implicit definitions, 74and r5at n7, Next, we (1) show how the algorithm of Figure 4-
13 is applied to collect the interprocedural du-chains of the Factorial program of Figure 4-21,

and (2) show how interprocedural All-du-paths testing can catch the error.

I 1:2 iterative

Hifll
=]

E—— 1:2 iteratrive =—=

BEEHERE

106

S
TR Tz (n9) -
D
22 Yerative
O irrrZZ2) (n10)
Sorry, number mus... (,1()
ré
2:2 iterative | t7
Gsvon) 12 =
=z 7 ey (n13) -
= 1:1 facrorial ——R =R
&z T ZZ22 (n14) 5
i7 =3
18
0 : (n15)
t9 toy, L7
(n16) (n17)
r9 r10
t12 ti13 et
[7 7 75 (n18) -
3
&5

[17]r10 = i8*i7

Figure 4-21. The OCGs (left) for methods iterative and factorials (right).

Task |: Constructing IOCG sub-graphs: {factorial, iterative}

As depicted in Figure 4-22, we build JOCG{4c15ria) by first constructing an Entry node, El(;7,

and an Exitnode, X1 ;», for formal parameter #7. Similarly, we construct an Entry node, E2 ;g

107

and an Exitnode, X2(;g for formal parameter 78. Since neither 7 nor i8 are connected to a call
site, we construct Interreaching edges (El(;7, XI(;») and (E2(;g, X2(;g). Next, we extract the
DEF[X], where X = {Call, Exi# nodes in JOCG{f1oriap> and UPCON[Y], where Y= {Entry,
Return} nodes in JOCG(f10ri)- A previously mentioned, a formal parameter cannot be rede-
fined, and thus reaches, live, the Exit node. Since the DEF set of an Exit node is always o,
DEF[X1(;»] and DEF[X2;g] = 0. To extract the UPCON/[N)], we attach the du-associations
related to each formal parameter (obtained during the intraprocedural analysis) to its Entry
node. Since i7 is connected to #I5 nl6, and nl7, the UPCON set of El(;» or
UPCONI(El ;7] = {(n14, (n15, n,), (i7, 18)); ((n14, (n15, n16), (i7, 18)); (n14, n15, (i7, 19));
(n14, n17, (i8, +11))}. Similasly, since i8 is connected to 717, The UPCON set of E2(;g) or
UPCONI[E2;9] = {((n14, n17, (i8, t11)); The DEF and UPCON sets for the Ensry and Exit

nodes for the factorial procedure are also illustrated in Table 4-3.

As depicted in Figure 4-22, we also construct the JOCG ;a1 Since the implicit definitions
of r4and 75 at n7, reach the call site to factorial, we construct a Callnode, Cl(,4, and an Return
node, RI(,4, for the implicit definition of r4at 7, Similarly, we construct a Callnode, C2,s),
and an Return node, C2,s), for the implicit definition of 75 at n7,. Since the definitions of 74
and 75 at the loop-rootin 17, are connected to the call site (factorial) via the wrap-around link,
we construct a Call node, C3(,4, and an Return node, R34, for the definition of 74 at n7,.
Similarly, we construct a Cal/node, C4(,5), and an Return node, R4,s), for the definition of 75

at n/,

We next construct the following Interreaching edges: (Cl(g, R1(,4)> (C2(;5) R2(;5))> (C3(rg)s
R3(,4) and (C4(,s), R4(,s). Next, we extract the DEF[X], where X = {Call, Exi#} nodes in
I0CG ;s0n4sivey and UPCON[Y], where Y= {Entry, Return} nodes of IOCG;414sipe)- The DEF
set for the implicit definition of 74 at n7, or DEF[CI,4] = {r4. Similarly, the DEF set for the
implicit definition of 75 at n7, ot DEF(CZ(,5)] = {r5}. The DEF set of the definition of the loap-
root r4 at n7, or DEF[C3(,4] = {r4}. Similarly, The DEF set of the definition of the loop-root
r4 at n7, or DEF[C4(,5)] = {r5}. The UPCON set for the Entry node that is associated with
formal parameter i7 or UPCON [E](;»] = {((n14, (15, nx), (i7, 18)); (n14, (nl15, nl6), i7
18)); (n14, nl15, (i7, t9)); (n14, nl17, (8, t11))}. Similarly The UPCON set for the Entry node

108

that is associated with formal parameter 78 or UPCON [E2;9] = {((n14, n17, (8, t11))}. The
UPCON set that is associated with loop-root r5 or UPCON[R4,s5)] = {((n7,, n8), (r5, 16))}

since 75 is also connected to #Gin #8. The UPCON sets of R4, R2(,4, and R3(,4 is o, since

74 is not connected to any other operation beside the one that is responsible for the procedure
call. Table 4-3 summarizes the DEF[V] and UPCONI[V] sets for all the nodes of 7 OCG(ﬁlm_
rial) and J OCG(itemtive)'

S P WA 172 iterative EREIEH=EEEZ
e [Tterative] — Ifac(oria! A S LS AASY, 2772 (n1) :
CBegy I
.
RI(q)
C2;sy
sy |
s o, 73 (n10)
* Sorry, number mus... 1)
X2, ré
R2(r5) 7
[show 7 (n12) <]
» Ttz (n13)]
(r5) PP ——
121 facrorial =R EHEEE
=i l""“exa:] A A AT T (1n14)
IOCG jrerative) 10CGfaceorialy T
- - i7 ig
t8
1} (n15)
f 1oy, A7
(n16) (7
r9 ri0
t1z2 13
e (n18)
ol =r9 02=ri10

=] 4]»

Figure 4-22. Interprocedural du-chains with looped universals.

Task 2: Constructing IOCGp), P = {iterative, factorial}

As depicted in Figure 4-23, we connect the I0CG(jspasivey 20d 10CG (i 101ig) sub-graphs by

constructing a Call-Binding edge between every Call node associated with an actual parameter

109

and every Entry node associated with a formal parameter that is bound to the actual parameter
at a call site. Thus, we construct the following Call-Binding edges: (Cl(,4, El(;7), (C2(,5,
E2(;9)s (C3(,9 El(;), and (C4,s), E2;g)). We also construct a Return-Binding edge between
every Exitnode that is associated with a formal parameter to the every Resurn node that is asso-
ciated with an actual parameter that is bound to the formal parameter at a call site. Thus, we
construct the following Return-Binding edges: (XI(;7, Rl(9), (X1 (;7, R3(4)> (g R2(y5)>
and(X2;g), R4,5)). Figure 4-23 shows the JOCG{fo15rigy a0d L0CG s 1erarive) that correspond to

the factorial and iterative methods, respectively.

Table 4-3. The DEF and UPCON sets for the program in Figure 4-21.

IOCG nodes DEF UPCON

E1(i7) 2. (14, (15, nx), i7 18)); (14, (15, n16), i7 18));
(n14, nl5, (i7,19)); (n14, n17, (8, t11))}.

X (i7)] %]

E2(g) o ("4, nl17, (8, I 1))},

Xz(ig) [%] [%]

Cl (rd) {t’4} %}

Rl (r4) 2. 2.

CZ(,,.S) {I”S} .

RZ(M) a. .

C3(r4) {I"4} [}

R3(r4) @, 2.

C4(r5) {FS} @,

R (s . (n7x,n8, (r5,16))

In Task 3, we use the Propagate algorithm of Figure 4-13 to propagate the UPCON sets as far
as they can be reached. In Task 4, we collect for each implicit or explicit definition that reaches

the call site of factorialall of its interprocedural du-chains.

As previously mentioned, the example in Figure 4-21 contains an error. The datalinks connec-
tion on the input to method factorial should have been interchanged. That is, 7/ should have
been connected to #4, and 73 should have been connected to 5. Consider the intraprocedural

All-du-paths test suite in Table 4-4. In that test suite intraprocedural All-du testing is applied

110

to each procedure in the example of Figure 4-21 separately. The results from third test case in
the test suite of Table 4-4 shows incorrect output; however, the traversed intraprocedural du-
associations for each method is adequate. This indicates that, although the error is recognized
by the tester, it is caught by intraprocedural All-du testing. As illustrated in Table 4-5, testing

the program as whole using interprocedural All-du testing does catch the error.

OCG (Fy ctorial)

[rm— I iterative factorial

{eney | —E::E I—:
o »
e |
|
|

Ry l
N
X1
Rl (c4) N 1 (i7)

C3(r4)

I
Y

X2 .
-(8)
R2(s5) -

: A
|47

C4(r5) L~

'y

chit 1 II exit II
IOCG(i(ﬂ'atiVC) 10CG (factorial)

Figure 4-23. The connected IOCG for the Factorial program.

Consider the test suite of Table 4-5 that illustrates the interprocedural All-du testing for the
Factorial program. In that test suite, the three test cases are not interprocedurally All-du paths
adequate because: (a) the implicit definition of r4in 77, reached only one of its uses at terminal
#8 of the predicate operation 715; (b) the definition of 74 in 77, reached only one of its uses
on the predicate operation 715, and no uses at terminals t9 and £10; and (c) the definition of

75 in 17, did not reach its c-use at terminals t11. In (a), r4 in n7, reached only one of its uses

111

on the predicate operation 79 since 74 in 77, could never receive the value “0”, and thus 4
could never be tested against “0”. This is an example of an interprocedural infeasible du-asso-
ciation. In (b) and (c), 74 and 75 in 77, did not reach their uses since there exists no input that
would cause the path which includes the loop edge to start at #7, and subsequently reaches 716

and nl7.

Table 4-4. [ntraprocedural testedness of factorial and iterative methods.

| ¢ intraprocedural du-associations % intraprocedural du-associations %
rl|outpd iterative ° factorial :
L1 [invalid [(02(n3,n11O)(rl,t1), ((nl 1,nI2)(ré6, 133 |o 0.0
domain [t17)).
-1 Jinvalid [(n2(n3, n4)(rl,t1)), (n4(n5, né)(r2, 266 |@ 00
domain [3)), (N2(n5, n10)(rl,12)), ((n1 t,
nt2)(ré,t7)).
2 42 (n2(n3,n10)(rl, 1)), (n4(n5, n6)(r2, [00.0 | (n14(n15,nl18)(il,8)), ((n14, {000
13)), (n2(n5, né)(r1,12)), (N6, n7)(r3, n16)(i2,19)), (n14,n17)(il, t10)),
t5)), (N2, n7)(r1,t4)), ((n7, n18)(r>5, (14, n17)([2,t11)), (n16,n18)(r7,
16)). t12), (n17,n18)(r8,t13), (n14{nl5,
n(il,18)).
3 |3 (n2(n3,n10)(rl, 1)}, (n4(n5, né)(r2, [00.0 | (n14(n15,nl18)(il, t8)), ((nl4, 100.0
“wrong | t3)), (n2(n5, né)(r1,12)), ((né, n7)(r3, nl6)(i2,19)), (n14,n17)(i1,t10)),
result” [t5)), (N2, n7)(rl, t4)), (7, n18)(r5, ((n14,n17)([i2,t11)), (n16,n18)(r7,
6)). t12)), (n17,n18)(r8,t13), (n14(n!5,
n (i, 18)).

Table 4-5. Interprocedural testedness of the Factorial program in Figure 4-21.

| tout interprocedural du-chains %

ooy for (iterative & factorial) °

LI invalid [(n2(n3,n110)(r},t1), ((nF1,n12)(r6,t17)). 16.6
domain

-1 invalid | ((n2(n3, n4)(r1,t1)), (n4(n5, n6)(r2, t3)), (N2(n5,n10)(r1,12)), 47.0

domain [((n11,n12)(ré,t7)).

2 2 (n2(n3,n10)(rl, t1)), (N4(nS, n6)(r2, 13)), (N2(n5, né)(r1,12)), |780
(N6, n7)(r3,15)), ((n2, n7)(r|, t4)), (N7, n18)(r5,16))(n14(n 5,
nl18)(i1,18)), (n14, n16)(i2,19)), (n14,n17)(il,t10)), ((n14,
nl 72, t1 D), (n16,n18)(r7,t12)), (n17,n18)(r8,113),
(n14(n15,nY(1,18)).

3 3 (n2(n3,n10)(r1,t1)), (n4(n5, n6)(r2, t3)), (N2(n5, né)(r1,t2)), |78.0

“wrong | ((né, n7)(r3,15)), (N2, n7)(r!, t4)), (n7, n18)(r5,t6))(n14(n 15,

result” | n{(8)(il,18)), (n14,n16)(i2,19)), (n14, n17)(il,t10)), (n 14,
nl7)(i2,tI D), (n16,n18)(r7,t12)), (n17,n18)(r8,t13),
(n14{n15,n)(i1,18)).

112

122 irerative FEEERE

Qs ez (n1)

1 _(n&)
—

r3

4 45[rS5=r2

actorial 7] (7

ri rg=r3

t6

3] how (ng)

0 [~|(n3)
9

Figure 4-24. A visual communication of the testedness of the factorial method.

Since any input value > 2 will cause the value received at 15 during the beginning of the
second iteration of the looped universal factorial to be “0”, no further testing will result in tra-
versing the interprocedural du-associations of (a), (b), or (c), and thus they are flagged as poten-
tial errors. To reflect the untested interprocedural du-association of (a) we construct, as
depicted in Figure 4-24, a link between #4 (the loop-terminal) and 9 at n15, and color it half
green and half red. To reflect the untested du-associations of (b) and (c), we construct, as
depicted in Figure 4-24, three red links and one half red/half green link. The red links are con-

structed as follows: a red link between the loop-rooz r4 and ¢9in n16; a red link between the

113

loop-root r5and #10in nl7; and a red link between 75 and #11 in 717. The half red/half green

link is constructed between the loop-root r4 and t8 in nl5.

Now suppose we fixed the error in the factorial method, running the same test suite of Table 4-
4 on the modified “factorial” program will result in a correct output and only 95.45% inte-
procedural All-du-paths testedness. Since the definition of 74 in 77, could never be assigned a
value that is less than 1, 74 could never be tested against “0” on the predicate operation #15.
Thus, the du-association (n7,, (n15, n7,), (r4, £8)) cannot be executed. Only when the value
of the operation labeled 74 is changed from 1 to 0, and the input “0” is added to the test suite

in Table 4-4, that a 100% interprocedural All-du-paths testing is obtained.

4.6 Findings Summary and New Directions

We have described issues in, and adapted techniques for, data-flow testing of visual dataflow
programs. We have shown ways to apply both intraprocedural and interprocedural All-du-
paths testing for visual dataflow languages. We have also demonstrated by example, that the
All-du-paths criterion can provide important error detection ability. Furthermore, as was illus-
trated in the results of Table 4-1, we have shown that, analogous to imperative languages [32],
the All-du-paths criterion subsumes the All-nodes and All-edges criteria that were introduced

in Chapter Three.

Since Prograph is an object oriented language with facilities for defining new datatypes as
classes, testing these classes is essential to increase confidence when these classes are reused.
Indeed, testing the visual object-flow side of Prograph is the topic of discussion of Chapter

Five.

114

5 Testing Visual Object-flow

Languages

5.1 Introduction

One of the most important benefits of Object Oriented Programming (OOP) is the ability to
reuse classes in the development of other applications. Creating well designed and tested classes
is essential to increase confidence when these classes are reused. The basic unit of testing in an
OOP language is a class [40][41]. A class in the OOP paradigm is an information-hiding
module that defines data or instance variables and operations or methods. Without loss of gen-
erality, access to instance variables and methods in a class can be either public or private. Public
instance variables and methods can be accessed by users of the class, private instance variables
and methods can be accessible only within the class. A programmer in an OOP language
instantiates objects that interact with each others via message passing. While OOP languages
may reduce some kinds of errors [12], the object oriented paradigm does not in any way rule
out the basic motivation of software testing. Methods often consist of just few lines of code;
however, coding errors are probably as likely as ever [12]. To help catch these errors structural-
based testing is required. As discussed in Chapters Two and Four, data-flow testing is a struc-
tural-based testing technique used to test the data-flow interactions between variables in a pro-
gram. With OOP languages, data interaction is generally related to instance variable access.
There are three basic actions that can be performed on instance variables: (1) define action; (2)
use action; and (3) kill action. A define action occurs in a message or statement that changes
the concrete state of an instance variable. For example, C.7 = 3 changes the memory location
associated with the instance variable 7 of object C, and subsequently changes the concrete state
of C. A use action occurs in a message or statement that gets the value of an instance variable
without changing it. As with imperative languages [76], two types of uses have been identified,

c-use and p-use. A c-use applies when the memory location associated with an instance variable

115

is fetched. For example, 2 = C.i is a c-use of the instance variable i of C. On the other hand a
p-use occurs when an instance variable is involved in a predicate statement. For example if (C.i
== 3) is a p-use with respect to the instance variable 7 A kill action include any message, state-
ment, or side effects that causes an instance variable to be decollated, released, or undefined.

For example, the following code fragments: foo.se#(x); and ~fo0(); first define the attribute x of

foo then kill it.

With object oriented languages, there are three levels of data-flow testing in a class:
Intramethod: Intermethod: and Intraclass. Intramethod testing tests data-flow interactions
within individual methods in a class. This level of testing is similar to intraprocedural data-flow
testing. Intermethod data-flow testing tests data-flow interactions between methods in a class
that interact via messages. This level of testing is similar to interprocedural data-flow testing.
Intraclass data-flow testing test data-flow interactions that result from sequences of public
methods that can be invoked in an arbitrary way. Since the set of possible public method call
sequences is infinite in large classes, intraclass testing tries to test only a subset of all possible

sequences.

The integration of two or more classes in an object oriented program introduces another level
of data-flow testing. For example, when a class C; sends a message to a class Cj, it is often
desired to test the dataflow interactions between C; and C,. Testing this type of data-flow
interactions between classes is known as Inserclass data-flow testing. Other data-flow interac-
tions that are also of interest are those relevant to essential features of object oriented languages
such as dynamic bindings. With dynamic binding, it is often desired to test data-flow interac-
tions resulting from binding one message to all possible receiving methods. Another essential
object oriented feature is inheritance. With inheritance, derived classes often modify, add, or
delete methods or data inherited from the base class. Although experiments suggest that tests
and testing information originally used to test a base class can be reused to test a derived class
[41], it is often desired however to employ incremental data-flow analysis algorithms to reduce

the cost of data-flow analysis in derived classes.

116

In this chapter, we investigate, from a data-flow testing perspective, differences between code-
based object oriented languages and visual object-flow languages in the context of Prograph.
Our findings reveal that, analogous to code-based object oriented languages, there are three
levels of testing the dataflow interactions in a visual object-flow class. In each level, we show
how code-based data-flow testing techniques can be adapted to collect that level’s appropriate
du-chains. For example, we show how code-based intraprocedural testing techniques can be
adapted to collect the intramethod du-chains in visual object-flow languages such as Prograph.
The rest of this chapter is organized as follows: in Section 5.2, we formally discuss the three
aformentioned levels of data-flow testing for a class in textual object oriented languages, and
briefly discuss some issues related to data-flow testing techniques for special object oriented fea-
tures such as polymorphic binding and inheritance. In Section 5.3, we discuss issues relating
to data-flow interactions between instance variables in Prograph. To that effect, we define two
types of variables interactions: simple variable interactions; and instance variable interactions.
Simple variables and are not part of the class’s data, and are analogous to local variables defined
inside a C++ method. The data-flow interaction associated with simple variables is analogous
to data-flow interactions of atomic variables in visual dataflow languages. Instance variables in
visual object-flow languages such as those found in Prograph’s classes are analogous to instance
variables in a C++ class. In Section 5.5, we show that intramethod and intermethod du-chains
for instance variables in Prograph can be collected by applying code-based intraprocedural and
interprocedural data-flow analysis techniques such as those found in [1] and [44], respectively.
Finally we propose some techniques to visually validate, in Prograph, the data-flow interaction

that stems from special object oriented features such as polymorphism.

5.2 Data-flow Testing for Text-based Object Oriented
Languages

As previously mentioned, there are three levels of data-flow testing for a class Cin an object
oriented program P intramethod testing; intermethod testing; and intraclass testing [40]. In

this section we formally introduce each level.

117

. Intramethod data-flow testing: This technique tests methods individually, and is
equivalent to unit testing of individual procedures in imperative languages. Intramethod data-
flow testing on a class is performed by testing each method in a class separately. Computing
intramethod du-chains for each method separately is analogous to computing procedural du-
chains. The computation of procedural du-chains is obtained by using traditional iterative
dataflow analysis methods [1]. An intramethod du-chain is a chain that starts with the defini-
tion of an instance variable and ends with its use. For example, in the class A of Figure 5-1, the
definition of the instance variable Yat line 15 has uses at lines 16 and 17, respectively. Thus,

the paths {15, 16} and {15, 17} are intramethod du-chains with respect to Y.

Formally, Let 7 be a method in a class Cand S is a statement representing a definition of an
instance variable of Cand S, a statement representing a use of that instance variable. We say
that (S S,) is an intramethod du-chain in M if there exists a program P that calls M such that

in P, (S, S,) is exercised during a single invocation of M.

. Intermethod data-flow testing: This technique tests a public method together with
other methods in its class that it calls directly or indirectly. This level of testing is equivalent to
interprocedural testing in procedural languages. Computing intermethod du-chains is analo-
gous to computing interprocedural du-chains [19][43][44]. Intermethod du-chains occur
when methods within the calling context of a single public method interact, such that a defi-
nition in one method reaches across method boundaries to a use in some method called directly
or indirectly, by the public method. For example, in the class A of Figure 5-1, when the public
method foo is invoked, it calls both foobar and barfoo. Thus, intermethod data-flow testing of
foo involves testing the du-chains of variables inside oo that reach the call sites of both foobar,

and barfoo.

In the example of Figure 5-1, when foo is called, the definition of Yat line 15 is passed to the
call sites of both foobarand barfooat lines 16 and 17, respectively. Since 4, the formal parameter
in foobar that is bound to Yat the call site in line 16, is redefined in line 30, ¥; does not reach,
live, the call site to barfoo at line 17. Thus, the intermethod du-chains with respect to Y over

the method calls to foobar and barfoo are: {15, 30}; and {15, 35}, respectively.

118

Formally, let 72; be a public method in C'such that m;is notin Mand M = <m, my,....m,>is
the set of methods in C called directly or indirectly, when m; is invoked. We say that (5, S,)
is an intermethod du-chain if (1) Sis a statement representing a definition of an instance vari-
able in 7, (2) S, is a statement representing a use of an instance variable in m; € M; and (3)
there exists a program Pthat calls 7;which exercises (S S,) with a single invocation by Pof m;.

class A'{
public:
~AQ { delete A3} e
A (intx, int y){X=xY = y;} b5y
void foo (int i); v
void bar (int j);
void barfoo (int k);
void foobar (int I);

3
4
5
6
i
i8

. 9 private:
:10 intX,Y;
‘il
o :‘12/********************/
11213 void Az:foo(int i) {
14 X > i)
Y=X/2
foobar(Y);
barfoo(-Y)
X ++

1 /*******************/
2 void A::bar(int j){
(Y <j) o
foobar(Y); et |
X—-; :. .
foobar(X);

TN PRIHRRHRAAARKKAAKKAK | =
: 5\29 void A::foobar(int k) { i
11430 k = k*5; :.
1 protf(k);

V33 [RRRRRRARRRR KA, |
:34 void Ax:barfool(int) {
I =1/5*6;
printf(l);

Figure 5-1. The class and its call graph representation.

. Intraclass data-flow testing: This method tests the interactions of public methods
when they are called in various sequences. This level is often problematic because a class is often
destined to be reused in different applications, and the sequence in which its public methods

are invoked and executed can be infinite. Intraclass du-chains occur when sequences of public

119

methods are invoked. Consider for example, in class 4, the sequence <foo, foo>. In the first call
to foo, if Xis > 4, line 18 sets X. In the second call to foo, line 14 fetches the value of X. Thus,
{14, 18} is an intraclass du-chain. As a second example, consider the sequence <foo, bar>. The
method foo sets the value of X at line 18. When bar is called, the value of Xis fetched at line
25. Thus {18, 25} is a intraclass du-chain with regards to X.

Formally, Let 7, be a method in C, and M the set of methods that are called directly or indi-
rectly when ;s invoked. Let 7;be a public method in C(possibly 7= 7), and Nthe set of meth-
ods that are called directly or indirectly when ;s invoked. We say that (S S,) is an intraclass
du-chain if (1)Sis a statement containing a definition in the set A = {m; M}; (2) S, is a state-
ment that contains a use in the set A’ = {mj, N}; (3) there exists a program P that calls 7; and

mj, such that (S §,) is a du-chain in P and (4) S, is executed, and before S, is reached, the

call to m; terminates.

Research on code-based interclass testing has always focused on extracting method sequences.
One approach by Parrish and Boir [72] constructs a graph G from a class C'such that each
public method 2 in Cis represented with a node 7 in G. An edge is constructed from node 7;
representing a method 77; to a node 7; representing a method 2, if the user can invoke ; fol-
lowed by ;. If m; sets a condition ¢ such that when that condition is satisfied, 72; may be
invoked, then the control edge (#; nj) is constructed with a #rue label, else it is a control edge
with a filse label. Given that graph G, test suites can be desiged to cover all nodes and/or edges.
The technique provided by [72] specifies sequences of methods; however, it does not require
any particular interclass code-based coverage to be applied to those sequences. For example,
after a specific sequence of methods have been revealed, dataflow interactions resulting from

those sequnences are not required to be covered.

Another code-based sequence selection technique focused on revealing and testing dataflow
interactions that resulted at the intraclass level [40]. This technique treats a class Cas a single
entry single exit program, and generates a Class Call Garpgh (CCG) for C. The CCG'is a
directed graph whose nodes represent methods, and solid edges represent procedure calls

between methods. To illustrate how the CCG for a class is constructed, consider the class 4 in

120

Figure 5-2. In the latter, since foo calls foobar and barfoo, edges are constructed from the node
representing foo to the nodes representing foobar and barfoo, respectively. Figure 5-2 also
depicts edges, shown as dashed lines, ending at the constructor, destructor, and each public
method. The dashed edges represent messages sent to these public methods from outside the

class.

~A() { delete A3}

4 A (intx, inty){ X=xY = y;}
5 void foo (int i);
6 void bar (int j);
7 void barfoo (int k);
::8 void foobar (int I);

ifX > 1) {
Y=X/2
foobar(Y);
barfoo(-Y)
X ++;
}

i .21 /*******************/

: 1322 void Aubar(int j){
if(Y<j)
foobar(Y);

X
foobar(X);
/

11129 void A:x:foobar(int k) {

11230 k = k*5;

1131 protf(k);

211321

33 / /
34 void A::barfoo(int 1) {

i35 1 = 1/5%6;

printf(l);

11136
11137

Figure 5-2. A class A (left) and its Class Call Graph (right).

To identify all the possible method sequences in a CCG, the CCGis enclosed in a frame to gen-
erate the method sequences. A frame is a driver for the public methods or an abstraction of a

main program Pin which calls to public methods are selected randomly by a switch statement

121

S. For each iteration, a new sequence of calls is generated. As depicted in Figure 5-3, a frame
contains five nodes: frame entry and frame exit, which represent entry and exit from the frame;
frame loop, which facilitates sequencing of methods; and frame call and frame return nodes,
which represent the call to end and return from any public method, respectively. A frame also
contains four edges: (frame entry, frame exit), (frame loop, frame call), (frame loop, frame exit),
and (frame return, frame loop). Once the frame nodes and edges are constructed, each node 7
is replaced with its control-flow graph or CFG. The result is a class control flow graph (CCFG).
For each new sequence generated, relevant du-chains can be collected by applying interproce-

dural data-flow analysis such as the ones found in [43][44].

frame entry
w— - - ’l
- - - |
frame loop _ - frame call [
|
| |
|
| |
A ~A |
| ‘
I foo bar |
|
|
| |
barfoo foobar |
I L
|
Freml — — — |

Figure 5-3. The representation of a Class Call Graph enclosed in a frame.

5.2.1 Other Issues in Data-flow Testing for Text-based OOP Languages.

Dynamic binding and complex inheritance structures create many opportunities for faults due

to unanticipated bindings or misinterpretation of correct usage. Static analysis of source code

122

to identify paths - a common bedrock technique in procedural testing - is of little use when

determining, for example, du-chains resulting from dynamic bindings .

}

void accountActivity (Account*acct) {

I- if (!acct->isOpen())

2- acct->listTranscations();

3- else

4- printf("No Transaction Recorded\n”);

class Account {

virtual void listTransaction ()

I

class Saving: public Account {

virtual void listTransaction ()

class Cheking: public: Account
virtual void listTransaction ()

b

Figure 5-4. An example of a message and a polymorphic server.

. Polymorphic Bindings: Although a polymorphic message is a single statement, it is an

interface to many different methods. Polymorphism and dynamic binding dramatically

increase the number of execution paths. It is argued that exercising data-flow interactions that

result from a single binding of a polymorphic server is “insufficient” [12]. The coverage can be

considered complete when all the du-chains that result from all possible bindings have been

123

exercised. With larger polymorphic servers; however, test cases could be difficult to identify
[12]. To test every possible binding, each polymorphic message must be exersised at least once.
Thus, we expand the CFG of a method, and : (1) determine the number A of candidate bind-
ings for each message; (2) expand the node containing the polymorphic message into A-way
branch graph; and (3) add a node which represents the run-time binding or R7; a sequential
node or S which represents the message send and return, and a Catch-All node or CA which
represents run-time binding error; and (4) construct en edge from each RT(; to each RT(;, y),

and an edge from each RT}; to each §;), and finally an edge from each S; to AC, for 1<i <A.

To illustrate, consider the example of Figure 5-4. In that example, the class hierarchy that con-
tains the class Account and its children Savingand Checking, is a polymorphic serve since each
level in the hierarchy contains a vircual method named /issTransaction. The method named
acountActivity is a polymorphic client because it contains a call to /listTransaction which can
bind at run time to the virtual /ist Transaction method that exists in each class of the hierarchy.
Thus the CFG for the example of Figure 5-4 is expanded as follows: in (1) we determine that
A = 3; in (2) we expand 72 into 3-way branch graph; in (3) we add three RT nodes and three
S nodes and an AC node; and finally in (4) we construct the appropriate edges. Using the
expanded graph of Figure 5-4, dataflow testing techniques can be applied to adequatly test the

data-flow interactions that result from dynamic bindings.

. Inheritance and Incremental Class Testing. The scope of retesting under inheritance
established by Perry [75] is widely, if sometimes reluctantly, accepted [12]. Perry’s result
requires complete testing of derived classes. One technique to reduce the number of method-
specific tests required for a derived classes was introduced by [41]. This technique suggests that
a minimal set of inherited C++ derived class features be automatically determined and tested.
A test suite is applied to each base class, then each derived class is flattened. Required test cases
for derived classes are determined by incrementally updating the class testing history of the par-
ent. Only new attributes or those inherited, affected attributes and their interactions are tested.
The benefit of this technique is that it provides a saving both in time to analyze the class to

determine what must be tested and in the time to execute test cases.

124

Another technique to reduce the cost of testing derived classes is to use incremental data-flow

analysis algorithms to update du-chain information in derived classes.

5.3 The Object-flow in Prograph

As mentioned in Chapter 2, Prograph is an object oriented language with facilities for defining
new datatypes as classes. Classes may contain methods of the same name, and a method may
invoke different methods at different times during execution. Prograph has a single inheritance
model. Methods and their attributes are by default public. There is no explicit way of enforcing
data hiding. The visual code is organized around Sections as depicted in Figure 5-5. Each Sec-

tion contains three parts: Classes; Universals; and Persistents.

Classes

Universals Persistents

Sectioni

Figure 5-5. A pictorial representation of the Section icon in Prograph.

As depicted in Figure 5-5, the Classes part is where classes (attributes or states and methods or
behavior) are declared. This information is visually encapsulated into the icon which is
used for a class declaration. The Universals part is the where universal or procedural methods
are defined, and the Persistents part is where persistent or global variables are defined. In this

wrok we do not conider Persistents or global variables.

5.4 Testing Variable Interactions in Visual Object-flow
Languages

We have thus far ignored the side effect associated with the execution order of data flow lan-

guages. With the presence of visual objects however, we have to address such a side effect and

125

its consequences. In visual object-flow languages such as Prograph, ges Zﬁ? and set
@ methods are used to read and write to instance variables memory locations. When the
order of execution between two operations that write to memory locations is not determined
by neither the data nor the control dependency, two orders of executions are possible. Since
each order could produce different results, we say that there is a potential error (not an actual
error) present in the visual code. To deal with the side effect of such potential error, our testing
environment should draw the user/tester's attention to enforce a synchro between any two set
operations whose order of execution is not determined by neither the data nor the control
dependency. To illustrate, consider the example in Figure 5-6. In that example, the operation
labeled 710 could execute before that of 75 or vice versa. Each execution possibility can result

in a different output.

ri0
{n3)
=r4]
27 %)
rizg=riz rid=r12b 5.3
(n7)

Figure 5-6. An example of get and set methods.

To solve the problem associated with the above mentioned side effect, we place a Guard that

informs the user to enforce a synchro between any sequence of two operations Sin A = {<get,

126

set>; <set, set>; <set, ger>} such that, the order of execution between the elements of Sis set by
neither the data nor the control dependency, and S’s elements are associated with the same
attribute of an object O. Relying on the information provided by the editing environment, the
Guard can determine the presence of a A in the visual code. Once found, the Guard will first
highlight the operations corresponding to the elements of A, and then displays a dialog box
indicating that testing cannot begin before a synchro is enforced between the operations. As
illustrated in Figure 5-7, a synchro is enforced between 75 and n7 (710 in Figure 5-7). This syn-
chro indicates that the order of execution has been adequately determined, and therefore will

eliminate the potential error described earlier.

b_obi

r =r2.b_obj

[r2.a =r4]

Figure 5-7. The example of Figure 5-6 with a synchro enforced between n5 and n8.

A getmethod has two rootsand one terminal, while a set method has two terminalsand one root.
The right-hand side 700z of a get method g; references the appropriate attribute of the object
that is being passed to g; s terminal. The lefe-hand side rooz of g; references the object that is

being passed to g;’s terminal. The root of a set method s, references the object that is being

127

passed to 5 s left-hand side terminal. Also at s, there is an implicit assignment that assigns the

attribute indicated by s; to the value that is being passed to s; s right-hand side terminal.

Formally, given a class Cin a visual object-flow program P, such that 7 is any method € C,
and G and S are the sets of get and sez operations, respectively in 7. A get operation g; € m
declares on its left-hand side o0t a reference variable and assigns it to the ooz connected to g;’s
terminal. For example, in Figure 5-7, the statement “r2 = r1” at the ge operation (labeled #3)
declares 72 as a reference parameter to 71. The right-hand side root of g; declares a reference
variable and assigns it to the rooz connected to g;’s terminal. For example, in Figure 5-7, the
statement “r14 = r5.a” at the get operation (labeled 711) declares r14 as a reference parameter
to 75.a. Similarly, the statement “r7 = r2.b_obj” at the operation labeled #6, declares 77 as a

reference parameter to 72.b_obj.

A setmethod 5; € m declares on its 700t a reference variable and assigns it to the 700 connected
to s;sleft-hand side terminal. For example, in Figure 5-7, the statement “r5 = r2” at the oper-
ation labeled 735, declares 75 as a reference parameter to 72. At each sez operation s; € m, there
is also an implicit assignment. This implicit assignment assigns the appropriate attribute of the
root connected to the left-hand side zerminal of s; to the root that is connected to the left-hand
side terminal of s;. For example, in Figure 5-7, the statement “r2.a = r4” at the operation

labeled 75 is a an example of such an implicit statement.

References created by serand get methods that belong to the same object o provide the user with
more flexibility when choosing a 700t (or reference to o) from which to initiate a datalink. Fur-
thermore, the flexibility can be effective in reducing the “spaghetti-like” datalinks in the visual
code. To illustrate, consider the example in Figure 5-7. In that example, 72, r5, 76, 78, and r13
all reference 71. Thus, any operation where either of these referecens is being passed, can be
replaced by a datalink that is initiated from I at »2. This is depicted in the example of
Figure 5-8 which provides an alternative way of visually coding the example of Figure 5-7.
Note that a synchro has been added between 75 and 711 since (1) these operations write and

read the memory location associated with 71.4, respectively, and (2) the order of execution

128

between 75 and 711 is set by neither the data nor the control dependency. Similarly, a synchro

is added between #8 and #9.

o ah)09

r7 =r2.b_obj

n7)

L(u.‘.cccccccccccccc rddd ddddddaddadaddds ddddanddddddqaqaadads

7 c’
YY),

Fi1=r100 §r12=r10b (13 =

Figure 5-8. The alternative way of visually coding the example of Figure 5-7.

To identify all the references, created by the gerand sef operations, and belonging to the same
object, we iteratively scan the data structure that hosts the visual operations, in search of serand
get operations, if we encounter a gez method g; € 7, we (a) remove the assignment that exists
on g/ sleft-hand side ro0#, and store only the name of the roothat is connected to g;'s terminal,
and (b), we remove the assignment that exists on g;’s right-hand side 7007, and store only the
name of the 7oz that is connected to g;’s terminal and its appropriate attribute. For example,
in Figure 5-9 (visual code originally depicted in Figure 5-7), the assignment statements at n6
now reads: “r1” at the left-hand side 7005, and “r1.b_obj” at the right-hand side o0z Similarly,
the assignment statements at 73 now reads: “r1” at the left-hand side 700z, and “rl.a” at the

right-hand side rooz.

129

If we encounter a set operation s; € m, we (a) remove the assignment that exists on s;’s root,
and store only the name of the rooz that is connected to g;’s terminal, and (b) change the
implicit assignment statement that exists at s; by replacing the name of the rooz on the right-
hand side of implicit assignment with the name of the 700z that was replaced in (a). For exam-
ple, in Figure 5-9 (visual code originally depicted in Figure 5-7), the variable shown at the 75’
root now reads: “r1” and the implicit statement reads: “rl.a = r4”. Similarly, the rooz and

implicit assignments at #8 now read: “rl1.b_obj” and “rl.b_obj.b = r1.a”, respectively.

7
L(P‘?;)LCIZCCCCC(CCCCl:CCC(CCCCCl:CCCCCCCCCC(CCCCCCCCCC(CC M (n5)

. rl.a
[r1.a =r4]

Figure 5-9. Modified labels after the scan and replace technique.

5.4.1 Definition-use Association for Object-flow Languages

For instance variable attributes in visual object-flow languages such as Prograph, there are two
basic memory accesses: (1) define action and (2) use action. A define action occurs in opera-
tions that implicitly changes the concrete state of an instance variable. For example, in

Figure 5-9, the implicit statement ‘t1.a = r4” at 75 changes the value of memory location asso-
g p g ry

130

ciated with the attribute 71.4, and subsequently changes the concrete state of 71. A use action
occurs in an operation that fetches the value from the memory location associated with an
attribute without changing the concrete state of its instance variable. For example, in Figure 5-
9, the statement “r4 = rl.a+1” at n4 reads the value of 7.2 without changing the concrete state

of r1.

As with dataflow languages, there are two types of uses in visual object-flow languages: c-use or
computational use and p-use or predicate use. A c-use occurs when the value of an attribute is
used at a non control annotated operation. For example, in Figure 5-9, the attribute “r1.a” that
is defined in 75 is c-used in #8. Note that there is no direct datalink between 75 and #8. This
type of assignment in visual object-flow languages is possible via indirect datalinks. In Figure 5-
9, the datalinks between 75, #3, n6, and 78 are an example of an indirect datalink. A p-use
occurs when the value of an attribute is used at a control annotated operation. For example, in

Figure 5-10, the root labeled 7.6_obj is p-used in the primitive operation “instance?”in n4.

Ei=—=12 12 A/fvo —REE=2"

i rirraderrzd (n1)
5 .
formal parameter i

if{ i.bobj == instance0f())
rirse R (n)

KC

Figure 5-10. A p-use of attributes in visual object-flow languages such as Prograph.

Formally, given a class Cin a visual object-flow program P with any instance variable v of C,
let O={0}, 0..., 0,} be the set of operations in a method m € C, and N the set of blocks in an
OCG representing O of m. A def-c-use association in visual object-flow languages with regards
to an attribute z of vis a triple (7, np (v.4)), such that, 7;and n;are nodes or blocks in N rep-
resenting operations o;€ Oand oj& O respectively, there is either a direct or indirect datalink

between o}, and 0;, 0, is a non-control annotated operation, and there exists an assignment of

131

values to p’s input, in which #; reaches 7;. An example of a direct datalink between the opera-
tion where a definition occurs and the operation where it is c-used is illustrated in the example
of Figure 5-8. In that example there is a direct datalink between the definition of 71.4 in 72
and its c-use in #5. An example of an indirect datalink between the operation where a defini-
tion occurs and the operation where it is c-used is illustrated in the example of Figure 5-9. In

that example there is an indirect datalink (through #1) between r1.4in #5and its c-use in in 78.

A def-p-use association in visual object-flow languages with regards to an attribute z of v is a
triple ((n;, (nj, ny), (v.4)), such that, n, np and #, are nodes or blocks in NV representing oper-

ations o, 0j, and o in O respectively, there is either a direct or indirect datalink between o0;and

9, 0; is a control annotated operation, and there exists an assignment of values to P's input, in

which 7, reaches 7,
the next node to be reached.

and causes the predicate associated with 7; to be evaluated such that 7 is

5.5 Data-flow Testing of Classes in Dataflow Languages

Given a visual object-flow program P, there are three levels of data-flow testing for a class Cin
P intramethod testing; intermethod testing; and intraclass testing. In this section we formally

introduce each level.

5.5.1 Intramethod Data-flow Testing

This technique test methods individually, and is equivalent to unit testing of an individual pro-
cedure in visual dataflow languages. Let 7 be an object-flow method in a class Csuch that O,
is an operation representing an implicit definition of an instance variable » of C'and O, an
operation representing a use of that instance variable. We say that (O, O,) is an intramethod
du-pair in M if there exists a program Pthat calls M such thatin P, (O, O,) is exercised during
a single invocation of M. We apply intramethod data-flow testing to each method 7 in a class
C, by computing 77s intramethod du-chains, and testing those du-chains. Next we discuss the

process of collect the static du-associations in visual object-flow languages.

132

5.5.1.1 Collecting the Intramethod Static du-associations

For imperative languages, a wide range of analysis techniques for computing du-chains for
individual procedures are well known Aho [1] and have been used in various tools, including
data-flow testers introduced by: Frankl and Weyuker [33][34]; Harrold and Soffa [44]; and
Korel and Laski [57]. These techniques propagate definitions along control flow paths to con-
servatively identify du-associations before they encounter a redefinition. To collect the static
du -associations of instance variables attributes in visual object-flow languages, we adapt one
of those aformentioned techniques. That is, intramethod du-chains associated with instance
variables attributes will be collected in a way that is analogous to that of collecting variables du-
chains in imperative languages. Formally, let Cbe a class with an instance variable v, let O =
{0}, 0..., 0,} be the set of operations in a method 7 in C. Also, let IV be the set of blocks or
nodes in an OCG representing O in . For every node ne N, we create the following sets: (1)
DEF[#], the set representing the locally generated v’ attributes of #; (2) USE[#], the set of
locally used #'s attributes in 7; In[#], the set of ¢/s attribute definitions that reach the beginning
of n; and (4) OUT([#], the set of v’ attribute that are alive at the end of 7 Once these sets are
computed for each node 7, the well known [1] dataflow equations for calculating du-chains,

can be used on these sets to obtain the intraprocedural du-chains m in C.

5.5.1.2 Visually Representing Executed du-associations

To communicate the testing result in a way that complements both the environment of visual
object flow languages, and the nature of its du-associations, we represent the validated results
in two different ways. After a test suite is executed, results in the form of the percentage of exer-
cised du-chains is inserted under the method name. The second method is similar to what we
have introduced for du-association coverage for visual dataflow languages. To reflect the test-
edness of attribute’s du-association, we first determine whether there is a direct datalink
between the operation where the definition occurs and the operation where it is used. When a
direct datalink that is associated with a definition c-use exists, it is colored green if exercised or
red otherwise. If the direct datalink is associated with a p-use it is colored green when both out-

come of the predicate are exercised, half green and half red when one of outcome is exercised,

133

and red otherwise. For those du-associations that are not represented with direct datalinks, we
construct links from the operation where the attribute is defined to the operation where it is

used. The validation process of constructed links is similar to that of datalinks.

5.5.2 Intermethod Testing

This level of testing is equivalent to interprocedural testing in procedural languages. It tests a
public method together with other methods in its class that it calls directly or indirectly. An
intermethod du-chain occurs when methods within the calling context of a single public
method interact, such that a definition in one method reaches across method boundaries to a
use in some method called, directly or indirectly, by the public method. To illustrate, consider
the example in Figure 5-11. In that example, method # in class 4 calls method 7 in 4. The
instance variable 1.7 that is defined in the operation labeled 72 has a use in method 7 at the
operation labeled 74, and also a use in method 7 at the operation labeled #9. The static data-
flow analysis of intermethod du-chains associated with simple variables can be computed using
the algorithm we have developed in Chapter Four for computing the interprocedural data-flow
analysis for visual dataflow languages. On the other hand, intermethod static data-flow analysis
associated with instance variables can be computed by adapting techniques developed for com-

puting code-based intermethod static data-flow analysis.

1:4 Afn
it i2
T D (n?)

E=011A/m

A A o A A,
Q

[ttt e (k) P (1)]

T4i

Figure 5-11. Intermethod du-associations in Prograph.

134

Formally, let 7; be a visual object-flow method in a class C'such that 7, is not in M, and M =
<mj, Mmy,....m,> is the set of public methods in C called directly or indirectly, when s, is
invoked. We say that (O, O,) is an intermethod du-chain if (1) Ois an operation that defines
an instance variable v of Cin m;, (2) O, is an operation that uses the memory location of v in
m; € M, (3) there exists a program P that calls 7, which exercises (O, O,) with a single invo-

cation by P of m;

5.5.3 Intraclass Testing

This method tests the interactions of public methods when they are called in various sequences.
This level is often problematic because a class is often destined to be reused in different appli-
cations, and the sequence in which its public method call sequences are invoked and executed
can be infinite. In general, Let m; be a method in Csuch that m; is not in Mand M = <m,,
Mp,....my>, k > I is the set of public methods in C called directly or indirectly, when s is
invoked. Let #; be a public method in C (possibly the same method as m), and let <n;, ny,...,
np» 1> 1 be the set of methods in Ccalled, directly or indirectly, when ; is invoked. Suppose
d is in some method in <m;, m,,....m;>, and #is in some method in <n;, 7,,..., #p, such that

in P, (Oy O,) is a def-use pair, and such that after O is executed and before O, is executed,

the call to ; terminates, then (O 4 O,) is an inter-class def-use pair.

Figure 5-12. The visual representation of a Class Calling Graph.

To test this level of data-flow interaction in dataflow class A, we could build its Class Calling

Graph or CCG, and, analogous to the approach described at the end of Section 5.2 and illus-

135

trated in Figure 5-3, enclose it in a Frame to test as many sequences as possible. To visually
represent the CCG, we could provide a view in the window containing all the methods in a
class with arrows between the icons representing the methods. Each arrow represents the edges
between two methods in the CCG. To illustrate, consider the example in Figure 5-12. In that
example, the CCG of the Prograph representation of the example of class A in Figure 5-2. The

benefit of such view could be to aid the tester to visually keep track of tested sequences.

5.5.4 Polymorphic Testing

Data-flow testing of a polymorphic visual object-flow client method can be accomplished in a
way analogous to that of code-based polymorphic client methods. For example in Prograph,
every OCG representing a method that contains a call to a polymorphic server and can be
bound to a number of methods in that server, can be expanded in a similar way to that of the
list Transcation polymorphic client method of Figure 5-4. To Visually reflect the testedness of
cach possible binding, we add to the operation that represents the call to the polymorphic
server arrows coming out of it. Each arrow represent a binding edge. As depicted in Figure 5-
12, the listTransaction method in Prograph contains three arrows that represent each polymor-
phic binding. When these edges are traversed under a certain structural-based testing criterion,
they are colored green, and red otherwise. This visual feedback helps the user keep track of

which binding did or did not take place.

5.6 Summary and New Directions

In this chapter, we investigated, from a data-flow testing perspective, differences between code-
based object oriented languages and visual object-flow languages in the context of Prograph.
Our findings revealed that, analogous to code-based object oriented languages, there are three
levels of testing the instance variable data-flow interactions in a Prograph class: intramethod,
intermethod, and intraclass data-flow testing. In each level we showed how code-based data-

flow testing techniques can be adapted to collect that level’s appropriate du-chains.

136

In Chapters Three, Four and Five, we have described issues in, and strategies for, testing visual
dataflow and visual object-flow programs in the context of Prograph. We presented test ade-
quacy criteria that are based on both the control-flow and data-flow of Prograph programs. We
have shown, by example, that the testing techniques we have presented can help the visual lan-
guage community in developing a more trusted visual code. In Chapter Six, we introduce our
future work which will shed some light on how to visualize the testedness of both the control

and data-flow in imperative programs.

137

6 Concluding Remarks

6.1 Chapters Summary

Many code-based structural testing techniques have been used, published, and analyzed since
the late 1960s. These techniques call for testing parts of an implementation that must be exer-
cised to satisfy a particular adequacy criteria. Control-flow and data-flow test adequacy criteria
are both structural-based, and have been applied to imperative, declarative, and logical lan-
guages. For visual dataflow languages however, we did not find any structural-based testing
techniques. In visual dataflow languages, a program is represented as a directed graph where
nodes represent operations, and datalinks represent edges through which data flow. Program-
ming in the visual dataflow paradigm involves assembling operation elements that send and
receive data. A visual dataflow language simply specifies data dependencies, and an operation
is executed when all of its input data become available. This model of execution is known as
the dataflow computational model. To allow the user to explicitly add control constructs such
as those found in imperative languages, dataflow languages extended the pure dataflow model
to include the necessary control constructs. Thus, a dataflow program can be characterized by
both its data and control dependencies. Prograph is a representative of both commercial and
research visual dataflow languages, and has been used for the development of a number of com-
mercial applications. The lack of testing tools or structural-based testing techniques for visual
dataflow languages, and our desire to provide dataflow programmers with a methodology to
test their visual code, were the driving force behind the initial research direction of this work.
In pursuit of that, we investigated, from structural testing perspectives, differences between
imperative and dataflow languages. Our investigations revealed opportunities to adapt code-
based structural testing to test dataflow languages. Based on our adaptation of code-based
structural testing, we have developed an integrated Dataflow Testing Tool DFTT and used it

to visually test dataflow programs. We provided a truly visual testing and validating environ-

138

ment in the DFTTby using visual annotations to reflect, based on a certain testing criteria, the
testedness of an operation or a datalink in a dataflow program. The use of visual annotations
was first introduced by the WYSIWYT methodology developed to reflect the testedness of cells
in form-based programs [16]. Although form-based languages have many similarities to the
visual dataflow paradigm, there are some differences, at least as the paradigm exists in
Prograph. We have identified these differences. One difference that we have pointed out is that
Prograph is not responsive. That is, results stemming from changes made to the visual code are
not automatically evaluated and displayed. Some other differences pointed out were Prograph’s
handling device on success/ failure, the case-by-case execution device, and the support for loops.
Prograph also has side effects; however, this is not in the subset supported by the methodology
described in the first part of this work. In the considered subset, we represented a dataflow pro-
gram Pwith an Operation Case Graph or OCG that preserved both s data and control depen-
dencies. Fach block or node 7 in an OCG represents an operation o in P. Edges in an OCG
represent, based on the control constructs, the control flow in P. To test the control-flow in P,
we applied code-based control-flow testing criteria, such as All-nodes and All-branches, to the
OCG. We then built upon the WYSIWYT methodology an approach to reflect, according to
a certain control-flow testing criterion, the testedness of visual constructs in dataflow lan-
guages. For example, when applying the All-branches criterion, a control annotated operation
0 is colored green if both edges emanating from #, the node in the OCG representing o, are

executed, half green and half red if one edge is tested, and red otherwise.

As with imperative languages, we recognized two data-flow testing levels in visual dataflow lan-
guages: intraprocedural data-flow testing; and interprocedural data-flow testing. To compute
and test intraprocedural du-associations, we treated every root 7 in an operation o represented
with a block 7 as a variable definition and every terminal t as a variable use. We defined a
datalink between rand #as a definition-use association or du-association, and recognized two
uses in visual dataflow languages: computational uses or c-uses; and predicate uses or p-uses. A
c-use consisted of an operation o; connected to an operation 0, such that the latter is not con-
trol annotated. On the other hand, a p-use consisted of an operation o, connected to control
annotated operation 0,. A du-association in a visual dataflow program links a rooz with termi-

nals that the root or definition can reach. We considered two types: a definition-c-use associa-

139

tion; and definition-p-use association. We recognized that, apart from loop-related roots which
are always redefined at the Output Bar of a looped case and whose du-association can be stati-
cally resolved, a root or variable in visual dataflow languages cannot be redefined. This means
that the memory location associated with that variable does not change. Thus, to collect static
du-associations of a visual dataflow program B we developed a technique that relied on the
information collected and maintained by the editing environment. Other techniques such as
the traditional data flow analysis techniques could also have been adapted; however, these tech-
niques would have performed redundant and unnecessary computations. To reflect the tested-
ness of a datalink that corresponds to a def-p-use association, our testing environment tracks
the datalink in the visual code and colors it green if both outcomes of the evaluated predicate
are traversed, half green and half red if only one outcome of the evaluated predicate is traversed,

and red otherwise.

To compute and test interprocedural du-associations among interacting procedures for a visual
dataflow program B we processed each procedure p in any order, and extracted du-associations
related to formal and actual parameters. The collected du-associations information correspond-
ing to each procedure was then used to construct an Interprocedural Operation Case Graph
for Por IOCG(p. The IOCG(p, is a collection of connected sub-graphs each of which repre-
sents a procedure or JOCG,) in £ For each control point (procedure entry, exit, call, and
return) in an JOCG,), we computed the appropriate DEF and UPCON sets. We then adapted
a code-based two-phase propagation technique to propagate these sets via the JOCGp to
obtain, for each definition, its interprocedural uses. Our technique supports separate compila-
tion, while taking into account the calling context of called procedures. It also provide safe
analysis in the presence of aliases. Extending our technique to compute interprocedural defini-
tion-use chains for recursive procedures is part of our future work. To reflect an untested inter-
procedural du-chain, we construct a link from the 700¢ on operation in the calling procedure

to the terminal on the operation in the called procedure, and color it red.

For visual object-flow languages, we investigate from a data-flow testing perspective, differ-
ences between code-based object oriented languages and visual object-flow languages in the

context of Prograph. Our findings revealed that, analogous to code-based object oriented lan-

140

guages, there are three levels of testing the instance variable data-flow interactions in a
Prograph’s class: intramethod, intermethod, and intraclass data-flow testing. In each level we
showed how code-based data-flow testing techniques can be adapted to collect that level’s
appropriate du-chains. For example, we showed how code-based intraprocedural testing tech-
niques can be used to collect intramethod du-chains for instance variables in visual object-flow
languages such as Prograph. We also showed how code-based interprocedural data-flow anal-
ysis techniques can also be adapted to collected the intermethod du-chains of instance variables

in Prograph.

We have demonstrated, by example, the effectiveness of our intraprocedural and interproce-
dural data-flow testing methodologies and their role in providing the tester with a mechanism
to locate errors in the visual code. With visual dataflow languages, our intraprocedural data-
flow testing methodology was found to be particularly useful in uncovering faults related to
untraversed du-chains of looped /ocal indexes. Similarly, our interprocedural data-flow testing
methodology was found to be particularly effective in catching interface errors. In visual object-
flow languages such as Prograph, we showed how all three levels of data-flow testing can be
accomplished for a Prograph class. As to the empirical evaluation of each level, we are in the
process of extending our DFTT to enable us to empirically evaluate its effectiveness in catching

coding errors in Prograph’s object oriented programs.

6.2 Visual-based Testing of Imperative Languages

Existing Integrated Development Environments (IDEs) such as those from Metrowerks® and
Borland®, provide integrated tools with visual features for the development and debugging of
the source code; however, they do not provide any visual or non-visual structural-based testing
capabilities. Structural-based testing performed on code developed on existing /DEs is nor-
mally accomplished using third party software testing tools. These structural-based testing
tools are either source-level testers [33][34] or compiler-based testers [38]. Source-level testers
translate a program under test to some intermediate form. On the intermediate form, control-
flow and data-flow analysis are then performed to collect the required testing information.

Such tools duplicate a large part of the computation that is usually performed by a compiler.

141

Aside from performing redundant tasks, the usefulness of a source-level testing tool is limited
to testing programs written in the language for which it is developed. Compiler-based testing
tools use existing compilers to translate the source code to an intermediate form. Since the
information required for data-flow testing is quite similar to that required by compiler optimi-
zation, compiler-based testers make use of the data-flow information gathered by the compiler.
Using a complier-based testing technique can thus (1) avoid costly translation and analysis
required to compute control-flow and data-flow information, and (2) be extended to test other
languages following only moderate changes [46]. Regardless of a tester type in use — source-
level or compiler-based — testing results are normally communicated back to the tester in the
form of a log file. Typically, a log file is a separate entity that makes finding the location of the
construct(s) or variable(s) in the source code responsible for a reported error a time consuming
task. Some attempt was taken to bridge the gap between the log file generated by the testing
tools and the source code. An example of such an attempt is Combat [46]. Combat is a com-
piler - based testing tool that visually represented the control-flow in a CFG. Each node in a
CFG was represented with a box containing the block number and its corresponding source
code statements. Edges in the CFGwere represented with arrows between blocks. Combat did
not visually represent a program’s control-flow information when testing. Furthermore,

Combat did not represent the data-flow information of a program.

In this section we describe our new research direction which is geared towards providing /DE
users with a compiler-based visual testing tools that can (1) represent both the data-flow and
control-flow in a CFG; (2) reflect, based on a certain testing criterion, the testedness of parts
of the implementation; and (3) help testers quickly identify and locate errors in the source code

based on visual reflections.

6.2.1 Integrated Testing and Visual Validating Environment

Since it is fair to assume that most commercial applications are developed using /DEj, it would
be of great benefit to allow the developer/tester to empirically and visually validate programs
from within those ZDEs. As shown in Figure 6-1, our proposed Integrated Testing and Visual

Validating Environment (ITVVE) is a compiler-based system that is added to an existing /DE.

142

L Exist o IDE‘,\’\,\!\.’:,\/:"\’
\f’\f f‘.f -’ ."‘.f‘(’\ ‘X}.S‘l.n‘g‘ N ,\’ ” n".f‘f‘f\f\f
s Fa
:.r:.a Integrated Testing and Visual :f:z
Rt Validating Environment L7
P s
K N e ooy TR A
Faa . 0 . . Fra
L "Admmstratlvc::"'l’r Validation \\“ ..
SENSE BT \/ "
I P,Vlew LView L
L g s
N f % W
P h P
) N ™
Fr ;L
P N . W N
P s
N ™ [~ ™
L P
) ™ ™
Fa P
N I N
Fara s 7
v ™ " ™
s s
N N LY
P s 7
) % N
Faa P
) %
L s
L) " N
s Fa
M ™ % ™

Figure 6-1. The integrated testing and validating environment in the proposed IDE.

The ITVVE consists of two main views, the Administrative View (AV) and the Validation
View (VV). The AV is an environment that allows the user/tester to administer test cases to
program units or components developed in the existing environment. Test cases can be
extracted based on either the specification or the logic of the source code, or manually created
by the tester. The VV offers a visual representation of both the control-flow and data-flow
information of a CFG. Once a program unit has been successfully compiled, visual representa-
tions of the program parts that are of interest for structural testing will be automatically gener-
ated in the VV, The user at this point can switch to the AV and begin a testing session by
choosing a structural-based testing session such as All-branches. Once a chosen test case is run,
the user can switch to the VVand visually monitor the validated branches that were tested and

those that were not.

6.2.2 Proposed System and Method

Consider the example in Figure 6-2 that computes the square root of a number between 0 and
1 to an accuracy ¢, such that 0 < 1. This example contains an error; the statements at lines 20

and 21 should be interchanged.

143

1- int main ()

2-{

3. floacP,E, D, X, C,T;
4 scanf ("%f", &P);

5- scanf ("%f", &E);

6- D=1.0; _ - ~ %
7. X =0.0; @ (read P.E,D=1,X=0,C=2*P)
8 C=2*D; c22 c<2
9. if(C>=2) 1
10- printf ("ERROR\n"); print error @
11- exit (0); exit(0); While (D > E)
12- }
13- while (D> E) { int X
14 D-D/2 prine X (1) D-D/2
15- T=C-(2*X+D); T=C-2*X+D);
c
18-} ’ C=2*C; X=X+D;
= * * .
19- else{ C=2*(C-Q2*X+D))
20- X=X+D;

21- C=2*(C-(2*X+D));
22- 1}

23- 1}

24~ printf ("X=: %f\n", X);

25- return 0;

26- }

Figure 6-2. A C example containing an error (left) and its CFG (right).

Consider the test suite in Table 6-1 that applies the All-nodes and All-edges to the example of
Figure 6-2. The output of the second and third test cases in the test suite report a wrong result;
however, after administering all three test cases, the All-nodes and All-edges report 100% test-
edness. This means that neither one of those criteria has caught the error. To help catch this
error, a more rigorous testing criterion such as the All-du-paths is required. Consider the test
suite in Table 6-2 that applies the All-du-paths testing to the example of Figure 6-2. The
output of the second and third test cases in the test suite report a wrong result; however with
the All-du-paths testing criterion a 98% testedness is reported. The All-du-paths criterion is
not satisfied since the path (b6, 63, b4, 66) is not traversed with regards to the definition of C

in 46, This means that the definition of Cin 66 does not reach it use over the loop edge.

Using existing structural-based testing tools to test this program would reveal that, when All-

du-paths testing is not satisfied, these tools generate a log file with a textual message to convey

144

that a du-association with regards to variable Chas not been traversed. The problem with such

a message is that it does not specifically identify the untested path with regards to Cin the code.

Table 6-1. Node and edges test suite for the C program shown in Figure 6-2.

P |E output | nodes % edges %
I - invalid bi, b2 285 |(bl,b2). 12.5
dormain
091 | 0.0 bl,b3,b7. 285 |(b3,b7). 125
“wrong
result”
0.9 [0.004 [0.625 bl, b3, b4, b6, b3, 100.0 | (bl,b3); (b3, b4); (b4, b5); (bS, b3); (b3, 100.0
“wrong | b4, b5, b3, b4, bs, b4); (b4, bé); (b6, b3); (b3, b4); (b4, b5);
result” b3, b4, b5, b3, b4, (b5, b3); (b3, b4); (b4, b5); (b5, b3); (b3,
b5, b3, b4, b5, b3, b4); (b4, b5); (b5, b3); (b3, b4); (b4, bS5);
b4, b5, b3, b4, b5, (b5, b3); (b3, b4); (b4, b5); (b5, b3); (b3,
b3, b4, b5, b3, b7. b4); (b4, b5); (b5, b3); (b3, b7).

Assuming that the program in Figure 6-2 has been developed using an IDE that incorporates
our proposed /TVVE, we will next illustrate how to visually represent both the control-flow
and data-flow of a CFG in the VV. We will also show how these visual representation can aid
the user in visually catching the untraversed du-association and, quickly and precisely locating

the variable responsible for the untraversed du-association in the textual source code.

Table 6-2. All-du-paths test suite for the C program shown in Figure 6-2.

P |E output | All-du-paths %
I l invalid 2. 0.0
domain
09 |! 0.0 (b1, (©3,b7),D); (bl, (b3,b7),E). 12.0
“wrong \
result”

09 [0004 [0625 | (bl, (63,b4), D); (bl, (b3,b4), E); (b1, b4, D); (bl,b4,C): (b1, b4, X); (b4, [980
“wrong | (b4, b5),T); (b1, b5, C); (b4, (b3, b4), DY; (b1, (b3, b4), E); (b4, (b4, b6),T)
result’” | (b4, b4, D); (b5, b3, C); (b1, b4, X): (b, b6, X); (b4, b6, D); (b5, b6, C);
(b4, (b3, b4), D); (b, (b3, b4), E); (b4, (b4, b5),T); (b6, b5, C); (b4, (b3, b4),
D); (b, (b3, b4), E); (b4, (b4, b5),T); (b6, bS5, C); (b4, (b3,b4), D); (b, (b3,
b4), E); (b4, (b4, b5),T); (b6, b5, C); (b4, (b3, b4), D); (b1, (b3, b4), E); (b4,
(b4, b5),T); (b6, b5, C); (b4, (b3, b4), D); (b1, (b3, b4), E): (b4, (b4, b5),T);
(b6, b5, C); (b4, (b3,b7), D); (b1, (b3, b7), E);

145

Once a program has been successfully compiled, its compiler-based static analysis will be used
to generate visual control-flow and data-flow information in the V'V. The visual representations
of control-flow information of a CFG is constructed as follows: each block in the CFG of a pro-
gram will be represented with a /ocaklike icon and a number. For example the loca/labeled 72
in Figure 6-3 corresponds to the node or block labeled 42 in the CFG of Figure 6-2. Every
predicate block in the CFG is represented with a /ocal annotated with a on its right-hand
side, and with a [x] on its left-hand side, to represent the predicate block's true and false edges,

respectively. For example, the local labeled 71 in Figure 6-3 corresponds to the node labeled
P y p g p

b1 in the CFG of Figure 6-2.

Every loop in a CFG is represented with a looped /local. For example, the looped Jocallabeled
n3 of Figure 6-3 corresponds to the loop that starts at the node labeled 43 in the CFG of
Figure 6-2. This looped /ocal, once doubled clicked opens up. Inside, the looped local contains

the set of locals {#4, 15, n6} that represent, the set {64, 65, b6} of blocks in the CFG of
Figure 6-2, respectively.

ERE————————— 1:1 Main %Eé@é[ﬁg

[b A A AT LI A]

7~
E-F

USElnt]=#
DEFIn1}={C,D,E,P, %}

[@] USE[n2] = &
DEF[n2] = »

cC

USE[n7] = {X}

U DEF[n?] = &

E PATIIY. T A A

Sl

Figure 6-3. The control and data-flow information of the example in Figure 6-2.

The visual representations of data-flow information of a CFG is constructed as follows: Every
formal parameter is represented with a 700f on the Input Bar of the window representing the
method. Every formal parameter that reaches, live, the end of the method is represented with

a terminal on the Output Bar of the window representing the method. Every variable definition

146

in a node of a CFG that reaches, live, the end of the block is represented with a oot on the local.
Every variable definition that reaches, live a use(s) in a block other than the one it was defined
in, is represented with a terminal on the local corresponding to the block where it is used. For
example, in Figure 6-2 variable Xis defined in 47 and reaches live via the path (41, 63, 67) a
use in block &7. Thus, a terminal is created on the local labeled 77 of Figure 6-3. For example,
the definition of Xin node &1 of Figure 6-2, reaches live the end of 41, and thus is represented

with a 700t on the local labeled 71 in Figure 6-3.

To represent the du-associations with respect to each variable in a CFG, we recognize three
types of links between rootsand terminals. direct links; extended links; and wrap-around links.
A direct link is a straight link that connects a root to a terminal. For example, the link between
the rootlabeled X on the locallabeled 71 in Figure 6-3 and the terminal on the locallabeled n7
is a direct link. An extended link is constructed in two cases: (1) a definition inside the body
of loop that reaches, live, a use outside the loop, or (2) a definition outside the loop body that
reaches, live, a use inside the body of the loop. For example, in the first case, the definition of

Xin node b6 of Figure 6-2 reaches, live, a use in node 67 via the path {66, 63 67}.

Thus, an extended link is constructed from the rooz labeled C on the local labeled 76 in
Figure 6-4 to the terminal on the Output Bar of the window labeled 73, and from the third
right-hand side roor on the looped predicate locallabeled 73 in Figure 6-3 to the terminal on
the locallabeled n7. The terminals on the Output Bar of a looped local represent ports through
which definitions of variables inside the loop reach uses either outside the loop or back in the
loop via the loop edge. An example of the second case is the extended link that starts with the
rootlabeled Xat the predicate local labeled 71 in Figure 6-3 to the terminalon the looped pred-
icate local labeled 73 and from the third 700t on the Input Bar of the window labeled #3 in
Figure 6-4 to the third zerminal on the predicate locallabeled 74, and the third right-hand zer-
minal on the local labeled #6. The roots on the Input Bar of a looped /local represent ports
through which definitions either inside or outside the body of the loop reach uses inside the

loop.

147

A wrap-around link is constructed for every variable defined inside the body of a loop, and
reaches, live, uses back in any block inside the loop via the loop edge. We construct a wrap-
around link by: (a) constructing a link from the terminal where the variable is defined to the
appropriate zerminal on the Output Bar of the looped local (b) constructing a loop-link ﬂ
on the link constructed in (a); (c) wrapping the link around the looped /local, and into the
appropriate loop zerminal (d) constructing links from the appropriate ooz on the Input Bar of
the looped local to terminals that are associated with the uses; and (e) constructing loop-links
on the links constructed in (d). If the links that are to be constructed in (d) already exists, we
simply skip the construction process of (d), and apply (e). The loop-link is constructed to dif-
ferentiate between the definition of a variable (outside the body of the loop) that reaches, live,
uses directly inside the loop, and a redefinition of the same variable (inside the loop body) that

reach, live, uses via the loop edge.

e 1IN —REHEERE

C D T %]

L o o o 5 o A 0 4 o A 4 o 704 5 4 S A 4 S v 77]

USEInd4]=1{D,C, %}
DEF[nd] = {D, T}

UseE[nS] = {C}
DEF[n5] = {C}

USE[né] = {C, D, ¥}
DEF[n6] = {C, X}

B« ET

Figure 6-4. The collection of blocks inside the loop labeled n3 of Figure 6-3.

To illustrate, consider the example of Figure 6-2. In that example, the definition of X'in 61
reaches, live, uses in 64, and 66, and thus, as depicted in Figure 6-3 and Figure 6-4, extended
links are created from 71 to #n4 and 76. In that example also, the definition of Xin &6 reaches,
live, via the loop edge, uses in 44, and 66. Thus, as depicted in Figure 6-4, we (a) construct a

wrap-around link from the zerminal that is associated with Xin 6, (b) construct a loop-link

148

on the link that was constructed in (a), (c) wrap the link around the looped local n3, and into
the third right-hand side loop terminal, (d) skip the construction process since the links that
are associated with the uses in 74 and 76 already exist, and (e) construct the appropriate loop-

links on the already constructed links.

6.2.3 Reflecting The Testedness

Under a control-flow testing criterion such as All-branches, these visual annotations will be col-
ored both green to reflect that the two edges which are associated with the two possible out-
comes of a predicate statement are traversed, one green and one red to indicate that only one
edge has been traversed, and red otherwise. For example, after the first test case in the test suite
of Table 6-1 is executed, the All-branches testing criterion will result in coloring all the left and
right visual annotation of blocks 41, 43, and 64 to green indicating that the program has
resulted in a 100% testedness under the All-branches criterion. Under the All-du criterion;
however, no amount of further testing or test cases would result in testing the definition of C
in block 46 that reaches uses in block #4. To reflect this untested du-association, we color red
the loop-links of the wrap-around link that starts at the rooz that is associated with the defini-

tion of Cat 76, and ends at the first right-hand ferminal on the predicate local n4.

6.2.4 Locating the Error in the Source Code

To help the user locate the variable involved in the untraversed du-chain, the user can simply
double click on the red link, and the environment will take the user into the source code where
the suspected variable will be highlighted in some way. Or, analogous to the work in [46], we
could include the source code statements that are associated with each block. By so doing the
user can correct the above mentioned error directly from the VVby opening the block that the

red link is connected to and observe the highlighted variables.

149

6.2.5 Benefits

The benefit of integrating our proposed visual testing tool in existing IDEs is two fold: one
academic and the other is industrial. In an academic environment this tool can help in teaching
various aspects of structural testing. For example, a student may be required to uncover a
coding error such as the one introduced in the example of Figure 6-2. Such an exercise can help
student develop a better understanding of structural testing criteria such as All-branches or All-
du-paths. From an industrial point of view, the integration of this visual testing tool comple-
ments the cycle of visual development and debugging in existing IDEs. For example, after a
program has been debugged and compiled, programmers can begin testing in the same IDE.
Furthermore, the visual testing feedback provided by this tool allows programmers to intu-

itively identify and correct coding errors.

6.3 Conclusion and Future Work

We have shown that, with visual dataflow languages such as Prograph, visual constructs of the
visual dataflow language can be used to reflect the program’s testedness according to a partic-
ular testing criterion. For example, (1) with All-nodes, a Prograph operation is colored green
when traversed, and red otherwise; (2) with All-branches, the control annotation on an opera-
tion is fully colored green when both outcome of the predicate are traversed, half green half red
when one of the predicate outcome is traversed and fully red otherwise; and (3) with All-du-
paths, a datalink or du associations is fully colored green when both outcome of the predicate
are traversed, half green half red when one of the predicate outcome is traversed, and fully red
otherwise. We believe that the testing methodologies we have provided for visual dataflow lan-
guages can help increase confidence in visual dataflow code, and perhaps provide yet another
incentive for the integration of visual dataflow languages into mainstream programming. As
for our proposed system, we believe that the JTVVE provides a visual testing environment that

facilitates the task of approximating the location of errors in imperative languages.

As for our future work it will involve: (1) establishing a hierarchy of structural testing criteria

for dataflow languages, and compare that with the hierarchy of structural testing criteria for

150

imperative languages, (2) improving the /7VVE to handle structured variables, and pointers,
and (3) develop the Administrative View interface, and further improve that of the Visual Val-
idation. We could also extend the visual testing environment to handle a variety of market-
driven languages such as C++ and Java. Another future direction would be to generalize the

tool so that it could be, with moderate changes, applied to any existing JDE;.

[91

151

Bibliography

Aho, A. V; Sethi, R; Ullman, J. D., Compilers, Principles, Techniques, and Tools. Add-
ison-wesley, Boston, MA, 1986.

Allen, E, E; Cocke J., A Program Data Flow Analysis Procedure. Commun. Ass. Com-
put. Mach, vol. 19, pp. 137-147, Marsh, 1976.

Allen, E E.; Burre, M.; Charles, P; Cytron, R.; Ferrante, J., An Overview of the
PTFL4N Analysis System for Multiprocessing. In Proceedings of Ist International Con-
[ference on Supercomputing. Springer-Verlag, New York, pp.194-211, June1987.

Appleby, D; Vandekopple, J. J., Programming Languages: Paradigm and Practice,
McGraw-Hill Book Computer Science Series, 1997.

Azem, A.; Belli, E; Jack, O., Jedrezejowicz, P, Testing and Reliability of Logic Pro-
grams. In the Forth International Symposium on Software Reliability Engineering, pages
318-327, 1993.

Barth, J. M., A Practical Interprocedural Data Flow Analysis Algorithm. Communica-
tion of ACM 21, 9. Sept.1978. pp. 724-736

Banning, J. P, An Efficient Way to Find the Side Effects of Procedure Calls and Aliases
of Variables. In Sixth Annual ACM Symposium on Principles of Programming Languages
ACM, New York, Jan. 1979.

Belli, E; Jack, O., A Test Coverage Notion for Logic Programming. I the Gth Interna-
tional Symposium on Software Reliability Engineering, pages 133-142, 1995.

Bernini, M, Mosconi, M., Vipers: a Data Flow Visual Programming Environment

Based on the T¢l Language, in Proceeding of AVI'94, ACM Press, 1994.

[10] Berry E. Paton., Sensors, Transducers & LabView, Prentice Hall, 1998.

152

Bieman, J. M.; Schultz, J. L., An Empirical Evaluation (and Specification) of the all-du-
paths Testing Criterion. Software Engineering Journal, Jan. 1992, (43-51).

Binder, Robert, V., Testing Object-Oriented Systems. Models, Patterns, and Tools.
Addison Wesley 1999.

Blostein, D; Schurr, A., Visual Modeling and Programming with Graph Transforma-
tions. 14th IEEE Symposium on Visual Languages. Halifax, NS, Canada, Sept. 1-4,
1998.

Bratko 1., PRLOG, Programming For Artificial Intelligence. Addison Wesley, Second
edition 1990.

Budd, T. A.; Angluin, D., Two Notions of Correctness and Their Relation to Testing.
Acta Inf 18, 31-45.

Burnett, M; Dupuis, C; Li, L; Rothermel, G., What You See Is What You Test: A Meth-
odology for Testing Form-Based Visual Programs. IEEE International Conference on
Software Engineering, pp.198-207 1998.

Burnett, B; Li, L; Rothermel, Gregg., Testing Strategies for Form-Based Visual Pro-
grams. [EEE on Software Reliability Engineering, pp. 96-107, November 1997.

Burnett, M; Djang R. W., Introduction to Visual Programming languages: Scaling-Up
Issues, Tutorial. JEEE Symposium on Visual Languages, 1998.

Callahan, D., The Program Summary Graph and Flow-sensitive Interprocedural Data
Flow Analysis. In Proceeding of SIGPLAN'88 Conference on Programming Language
Design and Implementation. ACM SIGPLAN Not. 23, 7 July,1988.

Clarke, L; Podgurski, A; Richardson, J; Zeil, S., A Formal Evaluation of Data Flow Path
Selection Criteria, [EEE Transaction on Software Engineering, Vol. 15, No. 11, Novem-
ber 1989.

Cox, P; Pietrzykowski, T., Prograph: A Step Towards Liberating the Programmer From
Textual Conditioning. Proceedings of the IEEE Workshop on Visual Languages, pp. 150-
156, 1989.

[22]

153

Cooper,K.; Kennedy, K., Interprocedural Side-effect Analysis in Linear Time. /n Pro-
ceedings of the SIGPLAN'88 Conference on Programming Language Design and Implemen-
tation. ACM SIGPLAN No. 23, 7 July 1988.

Del Frate, E; Grag, P; Mathur, A.; Pasquin, A., On the Correlation Between Code
Coverage and Software Reliability. [n the 6th International Symposium on Software Reli-
ability Engineering, pages 124-132, October 1995.

Duesterwald, E. and Gupta, R. and Soffa, M.L., Rigorous Data Flow Testing Through
Output Influences. Proceedings: 2nd Irvine Software Symposium, March,1992.

D. Ungar, H. Lienberman & C. fry, Debugging and the Experience of Immediacy,
Communication of the ACM April 1997, v40 no 4.

Fosdick, L. D; Osterweil, L. J., Data Flow Analysis in Software Reliability. Comput.
Surveys, vol. 8, pp. 305-330, Sept. 1976.

Frankl, P; Weyuker, E., A Formal Analysis of the Fault-Detecting Ability of Testing
Methods. [EEE Transactions on Software Engineering, Vol. 19, No.3, pp. 202-213,
March 1993.

Frankl, P; Weyuker, E., An Analytical Comparison of the Fault-detecting Ability of
Data Flow Testing Techniques. IEEE Transactions on Software Engineering, October
1993.

Frankl, P; Weyuker, E., An Applicable Family of Data Flow Criteria, JEEE Transactions
on Software Engineering, Vol. 14, No.10, pp. 1483-1498, October 1988.

Frankl, P; Weyuker, E., Provable Improvements on Branch Testing, JEEE Transaction on
Software Engineering. SE-17, 6, pp. 553-564, June, 1991.

Frankl, P; Weiss, S., An Experimental Comparison of the Effectiveness of Branch Test-
ing and Data Flow Testing. JEEE Transaction on Software Engineering, Vol. 19, No. 8,
August 1993.

Frankl, P; Weiss, S., An Experimental Comparison of the Effectiveness of the all-uses
and all-edges Adequacy Criteria. Proceedings of the Symposium on Testing, Analysis, and
Verification, pp. 154-64, October 1991.

154

Frankl, P; Weiss, S; Weyuker, E. J., ASSET: A System to Select and Evaluate Tests. /n
Proceedings of the IEE Conference on software Tools, pp. 72-79, April, 1985.

Frankl, P; Weyuker, E. J., A Data Flow Testing Tool. In ACM Softfair Proceedings Dec.
1985. ACM, New York, 46-53.

Ghezzi, C; Jazayeri, M; Mandrioli, D., Fundamentals of Software Engineering, Pren-
tice Hall, Englewood Cliffs, NJ, 1991.

Glinert, P. Ephraim, Visual Programming Environments Paradigms and Systems. /EEE
Computer Society Press, Los Alamitos, 1990

Goodenough, J. B.; Gerhart, S. L., Towards a theory of Test Data Selection. JEEE
Transaction on Software Engineering, vol. SE-1, pp. 156-173, June 1975.

Hamlet, R. G., Testing Programs with The Aid of a Compiler, IEEE Transactions on
Software Engineering, vol. 3, no 4, pp. 279-290, July 1977.

Hamlet, D.; Gifford, B., and Nikolik, B., Exploring Dataflow Testing of Arrays. Iz pro-
ceeding of 15th ICSE, 118-129, May 1993.

Harrold, M. J; Rothmermel G., Performing Data Flow Testing on Classes, SIGSOFT,
ACM pp. 154-163, 1994.

Harrold, M. J; McGregor, J. D; Fitzpatrick, K. ., Incremental Testing of Object Ori-
ented Class Structures. [proceedings of 14th ICSE, 68-80, May 1992.

Harrold, M. J.; Soffa, M., An Incremental Approach to Unit Testing During Mainte-
nance. [EEE Proceedings of the Conference on Software Maintenance, pp. 362-367, Octo-
ber 1988.

Harrold, M. J.; Soffa, L. M., Interprocedural Data Flow Testing. Proceedings of the Third
Testing, Analysis, and Verification Symposium, pp. 158-167, December 1989.

Harrold, M. J.; Soffa, L. M., Efficient Computation of Interprocedural definition-use
Chains, ACM Transaction on Programming Languages and Systems, 16(2):175-204,
March 1994.

155
Harrold, M. J.; Soffa, L. M.,A, M. L., An incremental Data Flow Testing Tool. /n Pro-

ceedings of the 6th International Conference on Testing Computer Software. Washington D.
C., May 1989.

Harrold, M. J.; Priyadarshan Kolte., Combat: A Compiler Based Data Flow Testing
System,

Herman, P, A Data Flow Analysis Approach to Program Testing. Aust. Compu. J. 8, 3,
(Nov.), 92-96, 1976.

Hetzel, W., The Complete Guide to Software Testing. Collins, 1984.

Hils, D.D., Visual Languages and Computing Survey: Data Flow Programming Lan-
guages, Journal of Visual Languages and Computing, vol. 3, 1992, pp. 69-101.

Horgan, J; London S., Data flow Coverage and the C Language. /n Proceedings of the
Forth Symposium on Testing, Analysis, and Verification, pp.87-97, October 1991.

Horgan, D. M; Strooper, P, Automated Module Testing in Prolog. IEEE Transaction on
Software Engineering, 17-9 (Sept.), 934-943, 1991.

Howden, W. E., Reliability of the Path Analysis Testing Strategy. JEEE Transaction on
Software Engineering, vol. SE-2, no. 3, pp. 208-215, 1976.

Huang,]J. C., Detection of Data Flow Anomaly Through Program Instrumentation,
IEEE Transaction on Software Engineering, vol. SE-5, pp. 226-236, May 1979.

Hutchins, M; Foster, H; Gordia, Experiments on the Effectiveness of Dataflow-and
Control flow-Based Test Adequacy Criteria. [nternational conference on Software engi-
neering, pp. 191-200, May1994.

Kildall, G. A Unified Approach to Global Program Optimization. In ACM Symposium
on Prmclples of Programming Languages. ACM, New York, pp. 194-206, 1973.

Laski, J. W.; Korel, B., A Data Flow Oriented Program Testing Strategy. IEEE Transac-
tions on Software Engineering, Vol. SE-9, No. 3, pp. 347-54, May 1983.

Laski, J. W.; Korel, B., A Tool for Data Flow Oriented Program Testing. /n ACM Sofi-
fair Proceedings. ACM, New York, pp. 35-37, Dec.1985.

[58]

156

Lomet, D. B., Data Flow Analysis in the Presence of Procedure Calls, IBM J. Res. Dev.
21, 6, pp. 559-571, Nov. 1977.

Lou, G.; Bouchmann, G., Sarikaya, B.; Boyer, M., Control-flow based Testing of Pro-
log Programs. In the 3rd International Symposium on Software Reliability Engineering,
pages 104-113, 1992.

McCabe, T. J., Structured Testing. JEEE Computer Society Pres., Los Alamos, CA, 1983.

McCabe, T. J., A Complexity Measure. IEEE Transaction on Software Engineering, SE-2,
4, 308-320, 1976.

McCabe, T.], Schulmeyer, G. G., System testing Aided by Structured Analysis: A prac-
tical Experience. JEEE Transaction on Software Engineering. SE-11(9): 917-921, Sept.,
1985.

M.M Burnett, R W Djang Introduction to Visual Programming languages: Scaling-Up
Issues, Tutorial 1998 IEEE Symposium on Visual Languages.

Myers, G.]., The art of Software Testing. John Wiley and Sons, New York, 1979.

Myers, E. W., A Precise Interprocedural Data Flow Algorithm. [Conference Record of
the 8th Annual ACM Symposium on Principles of Programming Languages. ACM, New
York, pp. 219-230, Jan. 1981.

Nrtafos, S. C., On Required Element Testing. /[EEE Transactions on Software Engineer-
ing, 10(6), Nov., 1984,

Ntafos, S. C., A Comparison of Some Structural Testing Strategies. /EEE Transaction on
Software Engineering, SE-14, pp. 868-874, June 1988.

Ostrand, T, J; Weyuker, E., Data flow-based Test Adequacy Analysis for Languages with
Pointers. 1n Proceedings of SIGSOFT Symposium on Software Testing, and Verification 4,
pp- 74-86, Oct. 1991.

Osterwel, L.]., The detection of Unexecutable Program Paths Through Static Data
Flow analysis. in Proc. IEEE COMPSAC 77, Chicago, IL, pp. 406-413, Dec. 1977.

Paige M. R., Program Graphs, an Algebra, and Their Implication for Programming,
IEEE Transaction on Software Engineering, SE-1 No. 3, pp. 286-291., Sept. 1975.

157

Pandi, H. D; Ryder, B. G; Landi, W., Interprocedural Def-use Associations in C Pro-
grams. [EEE Transactions on Software Engineering, 20(5):385-403, May 1994.

Parrish, A. S; Borie, R. B; Cordes, D. W., Automated Flow Graph-based Testing of
Object-Oriented Software Modules. Journal of Systems Software, 23: pp. 95-109,
November 1993.

Parrish, A; Zweben, S. H., Analysis and Refinement of Software Test Data Adequacy
Properties. [EEE Transactions on Software Engineering. SE-17(6):565-581, June 1991.

Parrish, A; Zweben, S. H., Clarifying Some Fundamental Concepts in Software Testing.
IEEE Transactions on Software Engineering, 19(7):742-746, July, 1993.

Perry, E.; Gail, K. G., Adequate Testing and Object-Oriented Programming. Journal of
Object-Oriented Programming 2(5):13-19, Jan./Feb., 1990.

Rapps, S.; Weyuker, E., Selecting Software Test Data Using Data Flow Information.
IEEE Transactions on Software Engineering, Vol. SE-11, No. 4, pp. 367-375, April 1985.

Roger S. Pressman, Software Engineering: A Practitioner's Approach, McGraw-Hill
Book Company. 1992

Ryder, B. G.; Paull, M. C., Incremental Data Flow Analysis Algorithms. ACM Transac-
tions on Programming Languages and Systems, 10(1):1-50, JAN. 1988.

Schach R. Stephen: Software Engineering with Java, Irwin. 1997.

Shafer Dan, The power of Prograph CPX, The reader Network, 1994.

Sharp, John, A; Data Flow Computing, Ellis Horwood, 1985.

Smedley, J. T.; Cox, T.Cox., Visual Languages for the Design and Development of
Structured Objects*. Journal of Visual Languages and Computing, 8, 57-84, 1997.

Soffa, M. L.; Pallock, L., An Incremental Version of Iterative Data Flow Analysis. IEEE
transaction on Software Engineering, 15(12):1737-1549, Dec. 1989.

Tanimoto, S., VIVA: A Visual Language for Image Processing. Journal of Visual Lan-
guages and Computing, 2(2), 127-139, June 1990.

[88]

158

Ungar, U; Lienberman, H; Fry, C., Debugging and the Experience of Immediacy. Com-
munication of the ACM, Vol.30 No 4, April 1997.

Weyuker E., Axiomatizing Software Test Data Adequacy. IEEE Transactions on Software
Engineering, 12(12):1128-1138, Dec.1986.

Weyuker, E., More Experience with Data Flow Testing. IEEE Transaction on Software
Engineering, Vol. 19, No. 9, September 1993.

Weyuker, E. J., The Cost of Dataflow Testing: An Empirical Study. JEEE Transactions
on Software Engineering, SE-16(2) pp121-128, February 1990.

Weyuker E. J.; Ostrand T. J., Theories of Program Testing and the Application of
Revealing Subdomains. JEEE Transaction on Software Engineering, vol. SE-6. pp. 236-
246, May 1980.

White, L. J; Wiszniewski, B., path testing of computer programs with loops using a tool
for simple loop patterns. Soffware Pract. Exper. 21,(10), Oct. 1991.

Wong, W.; Horgan, J.; London, S.; Mathur, A., Effect of Test Set Size and Block Cover-
age on the Fault Detection Effectiveness. In the Fifth International Symposium on Soft-
ware Reliability Engineering, pages 230-8, Nov. 1994.

Woodward, M R; Hedley, D; Hennel, M. A., Experience With Path Analysis and Test-
ing of programs. [EEE transaction on Software Engineering, SE-6(5):278-286, May,
1980.

Zhu, H., A Formal Analysis of the Subsume Relation Between Software Test Adequacy
Criteria. IEEE Transaction Software Engineering, Vol. 22, No. 4, April 1996.

Zhu, H; Hall, P. A. V., Test Data Adequacy Measurements. Soffware engineering Journal,
8(1):21-30, January, 1993.

Zhu, H; Hall, A. P; May, H. R. J., Software Unit Test Coverage and Adequacy. ACM
Computing Surveys, Vol. 29, 29, No. 4, December 1997.

