o l* National Library of Canada

_CANADIAN 'I{HESES ON MICROFICHE

]

THESES CAN:Z\DIENNES SUR MICROFICHE

v

Collections Development Sranch

Canadian Theses on

- Microfiche Service sur microfiche

Ottawa, Canada ’ o )
K1A ON4

‘NOTICE Co

The quality of this microfiche is heavily dependent_

upon the quality of the original thesis submitted for
microfilming. Every effort has been made to ensure
the highest quality of reproduction poss&ue.

If pages are missing, contact the university which
granted the degree,

-

Some pages may have indistinct print especially
if the original pages were typed with a poor typewriter
ribbon or if the university sent us a poor photocopy.

.

Previously copyrighted materials (journal articles,
published tests, etc.) are not filmed.

Reproduction in full or in part of this film is gov-
erned by the Canadian Copyright Act, R.S.C. 1970,
c. C-30. Please read the authorization forms which
accompany this thesis.

)

. THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

NL-339 {r. B82/GB)

Bibliothéque natonale dif Canada )
Direction du deveicppemem des colischidns ¢

La qualité de cette microfiche dépend grandenient de

Service des theses canadiennes . .

AVIS

-

la qualité de la thése soumise au microfilmage. Nous
avons tout fait pour assurer une qualité supérieure
de reproduction. .

St manque des pages, veunllez commumquer
avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut
laisser a désirer, surtout si les pages originales ont été
Jactylographiées & I'aide d’un ruban usé ou si I'univer-
sité nous a fait parvenir une photocopie de mauvaise
qualité.

Les documents qui font déja l'objet d'un droit
" d'auteur (articles de revue, examens publiés, etc.) ne
sont pas microfilmés. :

[}

La reproduction, méme partielle, de ce microfilm
est soumise a la Loi canadienne sur le droit d'auteur,
SRC 1970, c. C-30. Veuillez prendre connaissance des
formules d‘autorisation qui accompagnent cette thése.

i

LA THESE A ETE '
* ~ MICROFILMEE TELLE QUE
NOUS L'AVONS RECUE

- Canadi

+



a0

o)

% ' o ,
. Continental Topography and Gravity
V4 ’ o
. by .

{

#

Randell Alexander Stephenson, M.Sc.

3

)

- A thesis submitted
in partial fulfilment of the requirements
for the Degree of Doctor of Philosophy

-

Department of Geology

Dalhousie University
Halifax, Canada .
10 "September 1981

|~‘\ N

P2

(=3

ey

23



o

%o

& e

° T . T

. J Chapter 1. Intreductio

s
¥

v w N ’ . 1.1 Lithos were_and Isostasy
’ . 1.2 JIsostglic Response Functiomnc :
o 1.3 Aimgfanil Qutline

? - 3
3 a3 Y "

o,

. . . ¢ -7 ‘.

.  Chapter 2. Data Sources and Redudtion

[ ’

. > " u,;\ Selection of Data o
4! . ) ’ 2.1.1 Intfoduction <
. . 2,112 Study areas .

: ’ . . ) // 3.1 Introditction
N M ' -

0 o s

- ~.2 Spectral Analy81s ’

o &

R - " PR ° 2,2.1 Mopping and dlgltlzatlon
o L v 2022 Computatioh of raw spectral dhata
v o .
LS Lt ’ 2.2.3 Spectral ‘characteristies
b ~ " 242.4 Estimotion of transfer functions
f . - oo ¢ R 2 .
' < =T, -, 2.3 Analysis of Synthetic Data
‘ e i - . 2.3.1- Introductdon ch . - '
LI Cp U " '2.3.2 Resylts and discussion
° “- a_ 68 N
I e - 2.4 Summary
" o : . i 5 g ?
< - N ' I 9 . . . 3 0_ . . . -
¢ o~ Chapter 3. Time-invariant Iscstatic Response of Continents.
‘ ; ’ y -:. ¢ ) o t N

3.1.1 Thin elastic plate lithosphere

N

< - . . - 3.1.2 Elastlc plate isostatic response.
‘3\ ) . ~ , analysis - .
o ' . -" 3.2 The I$ostatic Response of a Thin Elastic’
o - . e Plate ‘
T ) ) A SN ° 3.2.1 .Deformation of a thin elastic plate_
, . , “by a harmonic load ‘
. : ' . . 3.2.2 Theoretical isostatic response
: \ - ° function :
- ) v 3.2.3 Local isost§tié response .
¢ v 3.3 North American Isostatic Response Functions
N > 3.3.1 Observations
, “ % . 3.3.2 General characteristics of the elastic

. plate model of isbstatic response:

3.3.3 Resglts

.

62

63
a6

70
70

77
81



[ =Y

o%

3.4 Discussion
3.4.1 Acceptability of reoultc -
3.4.2 Tectonic age variatioms and observed
*  igostatic response Yunctions

3.5 Summaff;// . / °

Chapter 4.' A Lipea® Model.of Continental Erosion
. ] ‘ LN )
X , "4.1 Introduction - .
. \ .

Chapter 5.

ﬁ.é Summary -

4.2 The Erosion Model  °
4,2,1 Erosion of spectral topography
® 4.,2.2 The erosion model in.space and the
 effects ogégea level changes
4.3 Indirectly Testing the Erosion Model
4.3.1 Introduction
4.3.2, A model of tectonic uplift and
topography ’
4.3.3 Calculation of the uplift rate-
topography transfer function for
. South Island, New Zealand
4.3.4 Results and disqgussion
4,3.5 Constraints on parameters

? e
L

-]

Eroding Topography and Isostatic Response

of Continents -

5.1 Introduction ) -

5.2 Isostatmc Response of Eroding Loads
3.2.1 Deformation of a thin viscoelastic
plate by a harmohic load
5.2.2 ZErosion and the gffective plate load
5.2.3 Solution for a Lload which doesg -
: not erode’
.2.4 Solution £6r' a load which erodes: - -

5
\3\ Model 1
"72.5 Solution for a load resulting from
. erosion: Model 2-
5.2.6 Theoretical isostatic-response
functions

121
124
%29

L1328

136
136
138

138
140

141
145
152

163



t P ; - ’ ¥ Page
;- 5.3 North American Topography and Model X
o Predictions 164
3.3.1 Introduction - 164
o o 5.3.2 Topography power:spectra o, 165
) N 5.3.3 Agé of North American topography 175
° + . 5.,3.4 Observed topography decay functiops - 179
. 5.3.5 General, characteristies of model
° predictions 186
5.3,6 Results . 198-
“ . 5.3.7 Confidence in results ° . 215
o P § 5.4 1Isostatie Resgonse Funptlons *22p
5.4.1 Introduction ; . 220
’ “5.4.2 Model I results . i 222
5.4.3 Mbdel 2 results 226
5.5 Dlscus51on - 235
o - 5.5. l Continental isostatic response 0
’ functions 235
° N 5.5.2 Early topographic evolution \ 238
i - 5.5.3 Erosion model parameters . 248
. . 5.5.4 Viscoelastic continental lithospherg\ 249 -
5.5 Summary , 253
Chapter 6; ~The Effects’of Small Scale Convection in the Uppel
:t o Mantle on Isostatic Response Functions - 257
. iy 6.1 Introduction e 257
. 6.1.1 Surface topography and gravity and °~ '
Lo » small scale mantle convection 257
- . 6. 1.2 A test for-the presence of small .
- . Sc¢ale convection . . 263
' 6.2 CanadianxsShield Observations- * 267
g ) ' 6.2.1 Isostatic réesponse functions and *
" coherence - 267
) 6.2.2 " Power spectra o 281
6.2.3 Residual gravity Bnomal?es o 284
\ v AR R ]
’ 6.3 Discussion °© i . 290
i A 6.3.1 Rotation of data ° 290
. . 6. 3 2 ﬁnisotropy of the observed‘isqstatic
L i 2 response and small scale convectionn 291
V4 ¢ «
6.4 Summary 4 ’ 295
a & - o " t " ,

@



e~

{Chapter 7.

Summarv and Prospectus °

’

o

a

References

7.2 Evolution of Continental Topography -

»
¢ o 2

7.1 Continental Isostatic Response Functions

£

7.3 Prospectus: Geodynamic Modelling of
. 01d Continental Regions -

+ ’

57

@

3g



List of Figures o

-3

2-1.
2-2,
2-3.
2-4,
2-5.

° 2-6.

%

9

B
. \; B [

P

Generalized tectonic map of Noérth America showing the
locations of the study areas

Topography and Bouguer gravity field of the

Cordilleran study area

-

Topography and Bouguer gravity field of the
Appalachian study area -

aQ

fTopography andgBouguer gravity £ield of the
Canadian: Shield study'area

Topogtaphy and Bouguer gravity field of the
Grenville province study area

Topography and Bouguer gravity field of the .
Churchill province st?dy area -

Topography and Bouguer gravity field of the
Superior province study area

x

The two-dimensional wavenumber domain

Estimated and\known synthetic power spectra

~

Estjmated and known transfer functions
v .

@ ¢
°

Elastic plate model of a layered lithosphere

Airy model of local isostatic compensation.

* Observed isostatic response functions

L

& ~

Theoretical isostatic response functions of the
elastic plate model

v

One-norm misfits between isostatic response
observations and models

Observed isostatic response functions compared to
models

o’y s

Summary of best-fitting elastic plate model parameters

4

B

- e b e e i

(23S

i

24

27

29

31

38
‘AQ

49

88

100

@

2



o

. 4-1. Uplift rate map of Seuth Island, New, Zealand 113

’ ,] 4-2.  General form of the theoretical uplift rate- ) ’
. " topography transfer fumetion 119

. 4--3, Uplift rate map andy topography of the South Island :
study area . . 122

, e 4-4; Observed“uplift,rate—topoé;aphyatransfer function .
of the South Island study area ‘ . . 125
» £ -

w4—5. Erosion model parameter space ' N 131 .

a 0® n

- 5-1, Schematic illustration of Model 1 _ 142

5-2. Linear filter network describing Model 1 146

5-3. Schematic illustration of Model 2 . 156

5-4.- Linear filter network describing Model 2 ‘ 158

5-5. Obsefged topography power spectra as functions of A 166
e =7

. 5~6. Observed topégraphy ijzghélécnra as functions of ]ﬁ] L 173
5-7. Qbsegéed tépography decay dat% coqpared to models ’00 180
’ 5-8. ﬁlastic Model 1 ox 2,topography decay curves . 188
5-9. Viscoelastic Model 1 topography decay curves . i91
5;10. Viscoelastic Model 2 topography decay curves , . 195
5~11. ZErosion time constant spectrum based on linear
regression of observed topography decay data 200

)

5-12. Misfit between topography decay data and Model 1 as
- a function of model parameters . 205

" - -
—_

5-13. Misfii‘ﬂétween topography decay data and Model 2 as
\ a function of model parameters 209
5-14. Erosion time constant spectrum based on Model 2

o-criterion results 213




5-17.

5-18 .

5-19,

5-20 -

5-21.

6_10

6-2.

6_30
6—40

-

.

- ., \ L.
Misfit between extreme topography decay data and
Model 2 as a fubction of model parameters i

Misfit between éxtreme topography dgcay data and
Model 2 as a function of model parameters

v .-
-~

Theoretical timg—deﬁendent isostatic response
functions. of viscoelastic Model 1

Theoretical time-dependent isostatic response
functions of viscoelastic Model 1
Theoretical time-dependent isostatic response
functions of low rigidity elastic Model 2

Theoretical time-dependent isostatic response
functions "of medium rigidity elastic and
viscoelastic Model 2

Observed topogrgphy decay data showing linear
regressior model not passing through the origin

' . ’ 1Y
Schematic drawing of sub-lithospheric-small scale -
convection fcells *

observed isostatic response data,

Linear models employed in the interpr;fifion of
1

* Location of study areas

Free-air gravity field of the Canadian- Shleld -
study area I

Observed coherence squared and 1sostatic response
.as functions of |k| for study area I : 0

Observed isostatic response amplitude, hypothesis
probabllity, and coherence squared as functions
of k for study area 1

Observed isostatic response amplitude, hypothesis’

probability, and coherence squared as functions
of 'k for study area II °

Topography an¢*free-air gravity power spectra as
functions of k for study area

’

227,

230

233

244

261

264

268
271

» 274
277

279

282



s e e

?

6""'9' i

O

bl
~
©

Residual [non~isostatic]: free—alr grav1ty field of
the Canadian Shield st:udy area I . @

>, %.

6-10, °Residual fgee—air—gravity spectrum as a function

7"'1 ]

7=4. .

7"'5 .

far study area I

! L]
[
)
v -

Generalized tectonic map of North America shéwing the
lovations of fold-thrust zones and Bouguer grav1ty
profiles . -

i .

Schematic drawing of the formation of foreland basins

Observed Bouguer gravity profiles compared to brnken
elastic plate models

”~

Broken elastic plate model of a layered lithosphere

. 1

Summary of broken elastic plate model parametefs |,

»

¢



¥

List of Tables
2-1. Study area characteristics : . - 16
. ) Y
3-1. 1Isostatic response observations - 74
4-1. Uplift rate-topography transfer function observations 127
" ’ .
i o L
> = - s
= - ’
!
B 3}
) .
M N -~
u i ¢
/ . ) d
e
. - - . A Y !
4
ES .. - K ‘
- ' .
4 ) ’
. ) . .. g .
\ ¢
- ‘ ]
/ L5
. : T - !
[Py . - ,
'«\' r'd
N - . 2
J - . 7' . "
7o ’ » ‘ ‘ Q
% 3 . R v

Fa



Abstract

-
- v

The long term rheolbdgical behaviour of the contiﬁental‘litho-
sphere is investigated by means of isosfatig-;esponse functions d(k),
gravity normalized by topography in the wavenumber k doméin, and by the
erosional decay of continental topography. -

Q(k) has been modelled in the past assuming time-independent
toPographic leoads and lithospheric rheology. New models are devéloped
which “describe the response of a thin, [Maﬁbelll viscodihstic plate litho-
sphere to topography which erodes. The rate of eroszon is assfimed to be
linearly proport10na1 to the topography remaénlng at any given time. Model

parameters are D, the plate' s flexural rigidity; T, 1ts viscoelastic re-

laxation time constant, and o, the erosion tim¢ ‘const
graphy. Model” predictlons of time-dependent Q(K,t) and}' qr spectra of
continental topography are compa?ed to, calculatidns of e{ for several
North American tectonic provinces. '

The results show that a viscoelastic 1ithosphé ¢ with T as small
as 1-10 Ma %?n support the’'remmant topography of very old reg}ons such as
the Canadian Shield. In general,” viscoelastic models provide better agree-—
ment than elastic models with the observed topography decay data. The
results do not tightly”constfhin parameters D and T but possible values
are comparable with those based_o other studies. ¢ appears to be wave~
number deﬁendent, lying in the rdnge 200-400 Ma for topographic wavelengths
in the range 100-1000 km. . . ’ y

The observed response functions Q(k) suggest that strésseé‘iq—
duced by erosion through time are almost completely relaxed at the present,
a result which precludes pure elast1c1ty as a viable lithosphere rheology.
The €ffects of erosion on Q(k) can explain why previous analyses have re-
turned values of D lower than those based on other kinds of data. )

) One feature of the Canadian Shield Q(k) not explicable innterms
of the rheological models is its directional anisotropy. A model in which
the lithosphere is loaded at its base by forces associated with small scale
upper mantle convection as well as by surface topography is prqposed as a

possible explanation.

S
4
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Chapter 1. Introduction

1.1 ZLithosphere and Isostasy

& 0
@

A

The Earth's mechdnical behaviour in response to small ‘stresses

a

at high strain rates is revealed by its seismic wave response. The

3

Co A
strength of the EBarth's .crust and manfle in such a mode, that is, its

2
-

ability to suStain short period shearing stresses, appears to be very

-y "

great. On the other hand, the ability of the Earth to resist permanent

deformation by shear stresses applied over much longer lengths of time
N
is certainly much less. Similarly, the méchanics of the deformation

induced by such stresses will likely be much different. The strain

o -~

rates. of interest in this thesis pertain to processes which occur over
N

millions of years; such processes are sometimes referred to, in the

temporal sense, ‘as "geological® processes. TFor example, the strain

o
»

rates representative of detectable geological phenomena such as litho-
sphere accretion at nmid-oceanic ridges and consumption at trenches are

charadcteristic of lengths of time in the range 1-1000 Ma. \

<

"Historically, studies of the "geological" state of stress and
mechanical behaviour of ‘the Earth have been based on the existence of
gravity anomalies [e.g. Jeffreys 1976]. Gravity anomalies are indica—,
tors of lateral mas; heterogeneities, and therefore non~hydrostatic
stresses, in the Earth's interior. Long wavelength gravity anomalies
may be related to geodynamic processes such as‘thermal convection in

the mantle [e.g. McKenzie 1967], itself perhaps the mechanism of

I}

°

ANY
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lithosphere’ plate moyements le.g. Davies and Runcorm, eds. 1980] and

N I 4 o
the ultimate source of the tectonic forces responsible for mountain-,
+ hY

a

< Evd
building. In turn, the crustal topogrgphy and internal demsity *

4 r dﬂ &
anomalies formed during mountain-building episodes are responsible for

* . 3

much of the higher frequency grayitational variation observed across
o o ]

v

continental regions. Having been established by tectonic forces, such

<y
a

. . . ’
gravity anomalies,™wd their implicit crustal ‘mass heterogeneities,
{ %
9
apparently persist in geologicdally very old regions such as the

¢

Precambrian Canadian Shield. This ‘observation has sometimes been used

.

to'argue that the outermost portion of the Earth must possess a finite

“
% ¢ -

<btréngth, at leadt within such a time, frame, only above whicH 'can

>
» ¢ <

deviatoric stresses induce mechanical failure. This apparently rigid

part of the Earth, consisting of the crust and perhaps some of the
° &
. upper mantle, is conformable with the plate tectonic concept of a rigid

lithosphere, with>its continental 1bads, passively drifting across the

Earth's surgace above an effectively inviscid, convecting mantle, Such

a medhanically-definéd lithosphere may be different, particulagly in
o B -
terms of its apparent thickness, than "lithospheres' modelled on the

® ®
basis of seismological or thermal observations. -

~ -

DThe existence of the lithosphere's surfa;;\szography Qrobably
represents the Earth's greatest departure from a state of hydrostatic
%qq?librium. The way in which the attendang non~hydrostatic stresses
are redistributed beneath the topography leads to the concept of
isostasy. I; is the mechanism by which excess topographic masses at
the surface of the Earth are comﬁensated by mass deficiencies within

the Earth such that all stresses are presumed to be hydrostatic helow

some constant depth of compensation., Thus, the concept of isostasy

o



o

has been traditionali§ kept separate from considerations of mantle
‘,;' n @ - P -

‘convection and the possibly resulting dynamic uplift of surface topo-

graphy. Rather, isbitasy has been conqgrnéd,with load8 on the surface

R 1

. .
of theﬁlithosphere,acﬁﬁng downwazds. . -

2

.
o Ky « * 3

Topographiccloading of a ,mechanically rigid lithosphere
9] Il

’

(8} @& [}

AJ < . & a
induces flexural deformation betause of the lithosphere's ability to

o
o » !

sustain horizontal shear stresses. The compensating mass is therefore

o a

o 1
distributed below and around, the site of the excess surface topography

N a

resulting in a condition known as regional isostatic compensation. -
+ el 2

2

© -

The theoretical foundation of the regional’isostatic model wag estab-

"
3

lished by Vening Meinesz in 1931. s s
\ ! S o .
In contrast with regional isostasy are the classical models

4y

of local isostatic compensation of Pratt [1855] and‘Airy [1855]. They
. 2
are referred to as local models because in both cases the mass

?
N .

deficiefcy which effects the isostatic compensation of the surface
’ »

topography lies immediately below the topography itself. Each model

is conceived in terms 6f vertical crhstal columns of equal mass lying
above- the gompensation depth. In order to achieve isostatic ,compens—
ation iﬁ such a scheme, Pratt considered that the densities of adjacent
columns varied while Airy maintained a single column density but
allowed the depth of the base of each to éhaﬁge according to the height
of the topography above. Such models do not require the specification
of a deformational process, whether brittle or ductile in character,

by which the isostatic compensation is achieved. They therefore do not

lead to inferences about the méchanics of the Earth. The Pratt model,

for example, requires that a change in the topographic height, perhaps



2

-

a

due to erosion, is compensated by a density change occurring upiformly

v 4 -

throughout a vextical column. The mechanism by which this would occur ~
., a ,~ - B .t [ N v

e 'l - 9

is proHlematic. Alternatively, the Air& model would require vertical

o

movements of entire columns in response to small changes in topography

°

. /,A% .
thereby dimplying the inability of the lithosphere to sustain shear

&stresses of any magnitude. Thus, Airy isostasy can be considered to

L N -

be a special case of the regional model in which the lithosphere has ~

no flexural strength. °

-
-
-
.

q

a -

1.2 1Isostatic Response Functions . -

I
€

In the absence of dynamic forces the Earth's top&graphy'

-

~ 4.,
generally approaches a state of isostatie equilibrium [Heiskanen .and
Veding Meinesz 1958]. Dorman and Lewis [1970] showed that the extrinsic
character of the isostatic response could be determined directly from

observational data rather than by making a priori assumptions about

o

particular isostatic models such as those of Pratt and Airy. oﬁormann

¥ s ° S 4
and Lewis assumed that the Earth is linear in its response to topo-

graphic loading and that the gravity observed at.some field poi&i could
therefore be represented as a two-dimensional convolution of the sur—
rounding topography with some unknown function which they referred t;
as the isostatic response function; the isostatic response function is

\ -

here designatea as q(?) where §$3§+j§ and 1 and 3 are unit orthogonal

s

. vectors. Thus, ’ ‘



- > o ° ¢
g(?o) = f f q(rOQ;) h(r) dzxdy + n(?Q) , (1~1)
¢ s ) ' :,

. s . } s &
where s represents a two-dimensional surface, g and h represent gravity

and topography respectively, and n, denoting "noise", ‘refers to that

portion of the gravity anomaly not caused by the isostatic compensation

o

of h. Dorman and Lewis assumed that the noise component, due primarily

3

to tectonically-emplaced crustal density heterogeneities, would be small

@

compared to the isostatic component and, in particulgr, thdt it.-would

« not be correlated with the topography. Neidell [1963] had also con~-

sidered the Earth's isostatic response as a convolution of topography
¢

and gravity. He had atteﬁpted to empirically determine spatigg domain® -

coefficients of the convolution filter but was hampered by lack of data

’

and computational difficulties. Dorman and Lewis [1970], on the other
hand, considered the frequency or wavenumber domain équivalent of °
Equation (1-1), found by taking its two-dimensional Fourier transform.

- > .
Fourier transforming a spatial function £(r) allows it to be represented

in terms of its spectral components and is defified as

” . FHE@Y=F@® = [ [ £@) expl[-2mik-T] dxdy : (1-21)

RN
»

where -+ represents the scalar product and K:k(x)§4k(y)f is the wave~

number; the inverse Fourier transform is defined as
s

+ [}
*

FLHF@} = £@) = § [ F&) expl2nik-T] ey dle (1-24i).

-
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_Note that the wavelength of a periodic function of wavenumber x| is

defined here as |§[hl. )

The transform of Equation (1-1) can be found using (1-2i) and

* taking into account the convolution theorem of Fourier transforms which

states that a convolution in one domain transforms into a multiplication
o
®in the other. Equation (1-1) transford;d is therefore
( s
G -

1
Y

ek = Q® HE + N ,
or - . ‘ b )
L
o = L0 =N | (1-3).
H(K) .

*

e

: . . . >
In this form, the tnansformtof the isostatic response function, Q(k),
represents the transfer function of a linear filter, consisting of a
lithosphere of unspecified mechanical properties, .subject to an imput

function Hxﬁ) and having output G(ﬁ). The term "isostatic responsé

qr

fuiction" is now commonly reserved to apply only to Q(f) rather than
9
- el
to its space-domain transfoim counterpart, q(r), as it was origﬁ@ally
o oy -

introduced by Dorman and Lewis [1970]. *®

I

+

\ Dorman and Lewis were interested in inverting observed response

functions in order to reveal”changes in the density structure of the
crust related to topographic uplift. They did so [Lewis and Dorman 1970,

Dorman and Lewis 1972], using United States gravity and topography data,

»

in terms of a generalized local compensation model, Later, their data

iy -

were reconsidered in terms of a regional isostatic compensation model

©
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by Banks et al. f1977] who developed a method of geophysical inv;;sion
,based on linear programming techniques. Similar techniques and models
were used by Banks a;d Swain [1978], McNutt and Parker [1978],
Stephens;n [1978], and McNutt [1980] to respectively interpret isostatic

Fesponse functions from East Africa, Australia, the Canadian Shield,

and the Phanerozoic orogens of the United’ States. The basic techniques

*

1 AN

orig;nally deVeloéed By Dorman and Lewis haYe also been extensivély
applied to data from océanic‘;egioﬁs og various ages and tectonic .
character [McKenzie and Bowin 1976, Watts 1978, Cochran 1979, Detrick
and Watts 1979, McNutt 1979, -Sandwell and Poehls 1980, Louden 1981;
Louden and Forsyth in press, SiAha et al. in press].

o . I

AN
1.3 Aims and Outline [ 4

The fundamental questions to he addressed in the present

study pertain to the rheology, in the geological time frame, of the

mechanical lithosphere. There are four general classes pf rheological
L J

models in terms of which the lithosphere can be considered. They are

[

as follows. u'

(1) The lithosphere is elastic and will-indefinitely sustain

shearing stresses with no apparent time-dependent effects.

(2) The lithosphere is characterized by an elastic-plastit
rheology. This type of rheoid possesses a finite yield strength which
may be depth-~dependent. The upper part of the lithosphere likely

deforms cataclastically when the yield strengtl, is surpassed whereas

]

i
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‘significant. relaxation to take place within the upper .bound of the oo

e
-
-

<

El
. -

the lower part likely deforms ductilely. The demarcation'between the

4 » . 3

&
two failure regimes would' be reldted to confining or lithostatic
o 0 - A - “ :. ‘) ’ »
pressure [Turcotte et al. 1978, Beaumont 1979]. The purely elastic -
model (1) caf be considered to be a special case of the eléétic;blastic

-
o

class of 'models which has a yield stfength whiﬁh is never execeeded

a
- -

~ - <& -
during the geological processes under consideration:
8, a

Ly 1
3 - e -

>

(3) The mechanical lithosphere is characterized by linear
a’ .

> -

viscoelastic tMaxwell] rheology.” A Maxwell body deforms in response

s
N , ; ’ . b
to an instantaneous stress change such that there is. immediate elastic

~ a
© ' M -

strain foliowgd by viscous flow at a constant rate. There is no yield

° 3
b3

strength below which ‘the viscous relaxation fails to occur. In this

1]

respect, the viscoelastic class, of models is fundamentally different

>
. I3

from the elastic-plastic class. The elastic model (1) can beiconsidered

- x

2

3

to be one case of the vigcoelastic class of models in which ;hé'time

o~ .

constant characterizing the.viscous relaxation is too great to allow

)

N

- o

geological time 5rame [~1000 Mal. .

' -
1

(4) THQ,lithsphere‘is a non-linear rheoid which has depth

n N

R

[pressur®] and temperature dependent properties.

- - a

N

The true imtrinsic rheblggical structure of the mechanical

%

Jlithosphere. almost certainly falls into class (4) at least with respect

to pressure and tehperature dependence. Nevértheless, geophysical .

applicatiohs of, models in' classes (1), (2), and (3) havé been numerous

‘} \ N .

and successful [cf. Forsyth 1979] wheéreas thoge in class (4) are analy-

o

tically difficult to apply. There is, however, no general agreement

on which of the three former, more analytically tractable types of .

v

a ® -
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-

-

-

X

n

o .
rheologies best represents the large scale deformational behaviour of

the mechanical lithosphere.

-

The problem of the rheology of the lithosphere is addressed

in this thesis by considering variations in the topography and gravity

>~

-

of continental geolegical proviﬁces having vastly different tectonic
ages. Consequently, the role of erosion of topograph§ and its isostatic

effects are bf fundamental importance. Explicit analytical modelling

-

o a ° -
is carried out in terms of, the third, or viscoelastic,.cdlass of rheo-

logical models of which the purgly elastic class is a subset. 7Particu-

- .

- - \
lar emphasis is plgced oif whether or not the results support or refute

the presence of viscous relaxation of elastic stresses and by implica-
tion the existence of a finite yield strength in the lithosphére

during geologically obser@able 1engths of time: 'One limitation of the

a v A
v a

present .approach, in ghlch contlnental isostatic evolution is considered

a
v A e

is that the reSults may apply only to the contlnental portion of the
‘ (4'4 o
Earth's lithosphere. The presence of a sialic crust as a componént of

continental lithpsphéré’indiéates that it may be «to some degree

rheologically different than its oceanic counterpart.

A
* ¥ k] e
-~

R [

The observational basis of the work is the transfer ' function

LR

technique developed by Dorman and Lewis [1970]. .The isostatic respdﬂse

Iy !

functfons of six tectonically distinet’ regions of North.America have

g

. o
§ a N

been computed uﬁiﬁg the met?odology péeSented in Chapter 2. These new

]

data are interpreted and discussed first [Cﬁapter.B] in terms of the

commonly employed°elastic isostatic response model developed by.Banks

et al. [1977]. A consequence of the elastic model is that the flexural

13
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stresses induced by a persistent topographic load cam be sustained by

IS

Eheulithosphere throughout geological lengths of time. FErosion does

.

- : - . P :
not affect such g model because elastic strain is instantansously

o

0
recovered as the load is removed. Thus, the isostatic compensation

M .
existing at any given moment pertains only to the topography which is

o

present at that moment. >

a s *

The isostatic Yesponse function characteristic of a visco-,

elastic lithosphere, ﬂowever, will vary depending on the age of tﬁé s

topographic load and will be strongly affected by the foim of the -

1

erosion of the topography. In oxder to facilitate the development of

= * » i » £ ¥ M -
models which can predict the isostatic effects of erosion, some gquanti-

v < o

tative model of large scale continental erosion is necessarily adopted.

R 4

1

A mathematically suitable erosion model is postulated in Chapter 4 and
is discussed in terms of the recent topographic evolution of South

Island, New Zealand, a continental region undergoing rapid tectonic’

-

uplift and massive erosion.

-
o > > < i

In Chapter 5 general médels of-the deformational and isostatiec

}esponse’pf a viscoelastic lithosphere loaded by eroding topography

3

are presented. The models can be used not only to calculate the time

dependent isostatic response function of the viscoelastic lithosphere

0

but also the form of the decay of continental topography.through
geological time® spans. The results are compared to the observed

spectral topography of the sampled geological provinces.and are dis—

@

(8] *
. cussed in the light of the predicted and observed isostatic response

v

functions. - " ‘

©

)

d .
- e e



Chapter 6 is concerned with those parts of the gravity and

topography measured,at the Earth's surface which may be related to

ks

upward flexure of the lithosphere'by forces derived from uppeg mantle

convection. These effects are strictly speaking not isostatic in

al
o L

origin but information about them may reside in observed isostatic

o ¢

response’ functions. A method hy which such information may be detected

in respoqsé“functions obgerved in regions of low topographic relief is

~

AR

outlined and is applied to the Canadian Shield. N

o a . -

The results of the preceding chapters and their geophysical
X, o

2
o -~

implications are compiled and lsummarized in Chapter 7. Thesthesis is

concluded With an examination of the most prominent individual gravity

LY

.anomalies found in North America. ‘Acbreliminary geodynamic model

©

- \ .
which may explain them is proposed and is briefly discussed in terms

v

of a potential application of some of the techniques developed earlier.

v
“a e =
i .
f

o

a *s
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Chapter 2. Data Sources, and Reduction ;
fv LY

2.1 Selection of Data \

-

2.1.1 Introduction. The information which is #ought in the

+

present study pertains to isostatic processes and the rheology of '

continental lithosphere and is assumed to réside in observable geo-

.physical and physical properties of continents, specificaliy gravity
anomalies and topography. Because of the complex his?ory of continental
crust, both in terms of its origin and its post-tectonic modification,
however, other irrelevant or intractable information, deemeg to be

o

"noise', is also present in these observations. The level of the noise,
-

especially in the gravity observagions, is enhanced by measurement

error. Consequently, the analysis of the observations is a séatistical

exercise and, for meaningful results using noisy dat;, large data sets

are required. In qpe present case, the two-dimensional spectral

relationship of continental gravity and topography is analyzed. The

&

* wavelengths of interest are in the rahge 100-1000 km. Therefore, data

!

sets need to be derived from continéﬁtal regions of at least these_
dimenéions. Study areas of suitable size must also have extensive
gravity measurement coverage. Another constraint is imposed by the
desire to confine data sets to tectonically homogeneous geological

provinces so that the topography and isostatic response functions of

continental lithosphere of different ages can be compared.

B W =
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a

2,1.2 Study areas. TFive large geographic regions of North

Americd were selécted for study [cf. Figure 2-1]: Cordilleran and

»

Appalachian regions, and three structurally distinct provinces‘of the

=4

Precambrian Canadian Shield, the Grenville, Churchill, and Superior

provinces. Eéch region is roughly uniform in terms of its geological
make-up. A sixth study area covers much of the Canadian Shield, over-
]

lapping the three, smaller Grenville, Churchill, and Superior regions

-

[Figure 2-1]. Attributes of the six data sets deriving from these '

regions are listed in Table 2-1.

Gravity data, corrected for terrain effects where appropriate,

-

for Canadian continental and adjacent marine areas were provided by the
Gravity Data Centre, Earth Physics Branch,rbttawa [updated to September

1979] and for the conterminous United States by the National Geophysical®

\

aﬁd Solar-Terrestrial Data Center [NGSDC], National Oceanic and Atmos—

pheric Administration, Boulder, Colorado [as of Autumn 1978]. Associated

i

station elevations are provided for all individual Bouguer gravity data °~
but, as a measure of regional topography, may be biased by preferential
selection of gravity observation locations [i.e., hilltops for aierrne
surveys, roadways in valleys for landbased surveys]. The raw topographic
data used in the spectral analysis, except for some marine areas where
they are not available, therefore have been derived from a file of 5
minute by 5 minute average elevations for North A;erica p}o;ided by
NGSDC [1980]. Where thesg data are not available the ﬁvations s
assbciated with the gravity observations have been used. In limited
areas where no data were available linear interpolation or extrapola-

®

tion of adjacent data has been performed to provide continuity. S

E
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Figure 2-1. Generalized tectonic map of North America [after
King and Edmonston 1972] showing the main geological provinces
and chosen study areas. The corner Iletters refer to the study
areas as follows: [W] Cordilleran, [A] Appalachian, [f] Cgpézian

Shield, [G] Gremville, [C] Churchill, and [S] Superior.
K

Leg%nd: (1) Phanerozoic orogens: Ap — Appadlachian,

Cé - Cordilleran; (2) Canadian Shield structural provinces:

Ch - Churchill, Gr — Grenville, Nn - Nain, Sp - Superior,

a

Sv - 8lave; (3) cv - regions of Phanerozoic and}?roterozoic

sedimentary cover,
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Table 2-1. Attributes of the chosen study areas. The bracketed letters refer to their location as shown

b

n Figure 2-1,

Geological ' Dimensions Area Number of Mean Mean Mean free-— Mean
province ) gravity data elevation GEM8 geoid air anomaly Bouguer
' 6. 2 - , anomaly -
’ [km] [10 k"] [m] : [mGal] [mGal] [mGal]
. U
[W]Cordilleran 1200 x 2400 2.88 108397 1350 5 ~10 -152
[AlAppalachian 3000 x 1000 3 118000 175 -1 6 - 10
[T]Canadian ’ , _ :
Shield . 3200 x 1600 5.12 91513 261 =24 0 - 28
f
[G]Grenville 2000 x 600 1.2 23294 355 -15 -4 - 39
[C]Churchill 1600 x 1600 2.56 47495 167 =28 —~ 0 - 18
[S]Superior 2000 x 1500 3 84125 199 -24 1 - 221
v .,A‘. —

9T



2.2 Spectral Analysis .

2.2.1 Mapping and digitization. Dorman and Lewis [1970]

(.

originally formulated isostatic response functions in terms of both
spherical and planar coordinates. However, the depth of the isostatic

compensation of topograhy is expected to be very small relative to the

Farth's radius. Dorman and Lewis estimated that as a result the

<

present in the data.

e
o

The g:gvity and topography data donsidered here{‘from the areas
of North America shown in ‘Figure 2-1, weYe mapped onto a:plane uging a
Lambert conformal conic projection with/ standard pardliels chosen
appropriate to each study area. The distance distortion introduced by
the transformation is very small, not greatg; than 17 for the largest
of the study areas [cf. Richardus and Adler 1972, p. 95] ané less for
the others. It should also be note&, howevery th;t directional relation—- °

ships are not correctly represented by the Lambert’ conformal projection;

parallel lines, for example, do not map spherical great circles.

°

The mapped data were averaged within equidimensional cells to

produce a grid of discrete function values suitable for two-dimensional

o
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Fourier transformation. ) Cell averages of the Goddard Earth Model 8
[Wagneniég_gl. 19f7] sphericgl harmonic representation of the Earth's
grévity field to d;gree and orde{ 16 were subtracted from the gridded
data in order to detrend it pf gravity anomalies having wavelengths of
the orde; of the grid dimensions. The mean value of the GEM8 gravity
field for each of the study areas are listed in Table 2-1. It can be
assumed that such long wavelength gravity anomalies are derived from

sources beneath the lithosphere and are not related to the compensation

of surface topography.

Bouguer anomalies are used in the computation of the isostatic

a

response functions because they have been corrected for terrain effects

&

and because their usage is consistent with, previous studies. Contour
maps of the detrended Bouguer gravity Eield and the topography based on
the digitized data of each of the six study areas are presented in
Figures 2-2 through 2-7. It can be seen in thede figures that there is
in general'a relationship between positive topographic relief and

negative Bouguer anomalies, a result of the isostatic compensation of

the topography.

©

.

2.2.2 Computation of raw spectral data, (i) Fourier trans-—

form. The discretized gravity and topography arrays [subsection 2.2.1]
were transformed to the wavenumber domain using a Fast Fourier Trans-—
form_[FFT] algorithm [Brenner11968]. The FFT is used to efficiently
compute the Fourier transform F(ﬁ) [Equation (1~2i)] of a finite digital
series assumed to be infinitely repeating itself. By Fourier's Integral
Theorem [e.g. Rayner 1971] a repeating series cangbe exactly represented

by a sum of cosine and sine waves, the amplitudes of which are the

— - - I R R T



Figure 2-%. (a)tTopography and (b) Bougder gravity field of the
Cordilleran study . area [W] bgsed on*digitized data [éf. subsection
2.2.1]. Gravity has been detrended of the GEM8 [16 x 16] field;
regions of positive Bougueg anomalies are stiﬁpled. Contour
intervals are (a) 400 m and (b) 50 mGal."Tectonic legend is the
same as Figure 2-1; dimensions of the study area are 1200 km by '

2400 km.
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Figufe 2-3. <«a) Topography and (b) Bouguer gravity field of the
Appalachian study area [A] based on digitized data [d¥. subsection ..
- - . . . LS

2.2.1]. Gravity has been detrended of the GEM8 [16 x 16] field;

regions of positive Bouguer anomalies are stippled. Contour o

- dntervals are (a)- 200 m and (b) 20 mGal. Tectonic legend is the - °*

. e v
same as Figure 2-1; dimensions of the study area are 3000 km by
‘ . o ‘ |
* 1000 ‘km, ) T
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Figure 2=4. (a) Topography and (b) Bouguer gravity field of the
' . @
Canadian Shield study area [T] based on digitized data [cf. sub-

© ’ °

section 2.2.1]. Gravity has been detrended df the GEM8 [16 x 16]

field; regions of ppesitive Bouguer anomalies are stippled.

-

Contour intervals are (2) 200 m and (b).ZO mGal. Tectonic legend
a

@

is the same as Figute 2-1; dimensions of the study area are

a '
©
3200 km by 1600 km. o ’
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Figure 2-5. (a) Topography and (b) Bouguer gravity field of the
Grenville province study area [G] based on digitized data [cE.
subsection 2.2.1]. Gravity has been detrended of the GEMS

[16 x 16] field; regions of positive Bouguer anomalies are

: stippled. Contour intervals are (a) 200 m and 20 mGal. Tectonic

legend is the same as Figure 2-1; dimensions of the study area

are 2000 km by 600 km,

¢
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Figure 2-6. (a) Topography éﬁd (b) Bouguer gravity field of the
-Churchill province study ;rea [C] based on digitized data [ef,
subsection 2.2.1]. Gravity has been-dﬁtrendéd of the GEMS8

[16 x 16] }ieldf'regions of positive Bouguer anom%lies_are
stippled. Contour intervals are (a) 200 m and (b) 20 mGal.

Tectonic legend is the same as Figure 2-1; dimensions of the

study area are 1600 km by 1600 km.

.
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Figure 2-7. (a) Topography and (b) Bouguer gravity field of the
Superior province study area [S] based on digitized data [cf.

subsection 2.2.1]. Gravity has been detrénded of the GEMS8

) o -
~

A’; N
[16 x lé] field; regions of positive Bouguer anomalles are
stippled. Contour %ntervals are (a) 200 m and (b) 20 mGal.
Tectonic legend is the same as Figure 2-1; dimensions of the

study atea are 2000 km by 1500 km.
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direct output of the FFT. To completely describe the spectral configur-

o s
ation of a repeating, discrete data series requires a finite number of
pairs of cosine and sine terms in each dimension with frequencies [or

wavenumbers ]

k = %; no= 0,+1,%2,....4M/2 (2-1)

where T is the length of Fhe series :and Eris‘the number of data [the
digitization interval is théréfore T/M=A] in that dimension. The kn
are known as the harmonic frequencies. The discrete Fourier transform -
is found by normalizing the cosine and sine coefﬁ;cient pairs by the
calculated frequency bandwidth which is constaﬁt and is,.from (2-1),
equal to T_l. hThe normalized coefficients resﬁéctivg}y represent th;
real ahd imaginary parts of the complex Fourier transform, ‘the moduli

of which comprise the raw estimates of the amplitude spectrum IF(K)[

for finite discrete k.=k.n in each éi?ension. In turn, the raw‘pﬁ?se
spectrum is determined by the complex angles i&éicated by the relative

magnitudes of the real and imaginary coefficients. Raw power and cross
s [ 3

¥#gpectral estimates are given by [e.g. Rayner 1971]

L& = -%—F(im*(%) : (2-2)

and " . ’

‘ ' Yp B = TEOFD . (2-3)
0 .

for finite discrete k.'—=k.n in each dimension, where F(ﬁ) and Fo(i) are
)

the discrete Fourier transforms, as described above, for digital spatial

3
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' A . . - v ‘.
data series f£(r) and fOC;), and * indicates cémplex conjugate. For two- |

-

dimensianal f(%) whiere gﬁiz+yf, and 1 and ?‘afe orthogonal unit vectors,
A
having Fourier transform F(k) where krk( )I+k( )J, the constituent .
VRS
harmonic sinusoids and therefore raw spectral est:unates have wavenuymbers
2 ]1/2
(y)n (y)n

14 - ). - o -
the x coordinate axis. Harmonic wavenumbers in two dimensions with

PR

of moduli [k(x)n+k directed at angles taq' [k /k(x)n] from

<

. > .
these attributes are referred to as k . o .

(ii) Aliasing. The highest freiugncy‘or wavenumber for which , |

% I -
an estimate of the discrete Fourier transform, and therefore an estimate -

o [
of the power or cross spectrum, is available is known as the Nyquist

a

Y » K -

frequency kM and is,.from Equation (2-1),, ’

(¥4
[+]

ot
* a ?

. .
ky ="3x o (2-4),
, , : A

-]

- =
v

noting that T=MA. If there exists in the signal appreciable variance

of wavelength less than 2A it will not be adequately sampled and,.as a
result, any calculated spectrum will be contaminated by what is known

as aliasing error [cf. Jenkins and Watts 1968]. 1In the present analysis

of two-dimensional gravity and topography data, aliasing is mot con~-

L3 ™

? A
sidered to be a significant problem. The cell averaging procedure by

which the array values were found is effectively a smoothing- operation
which, given a random s%mpling f observations within each cell, filters

the overall field of signals with frequency greater than kM.

(iii) Finiteness of daga. The Fourier transform calculated by’
the FFT refers to a data series donﬁisting of a finite sequence of

observations assumed to he infinitely repeafed. A potential consequence

11

»
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of this artifact are discontinuities at the edges of 'the data. As a
N .

result, tlhe calculated power and cxoss spectra may be contaminated by -«

high frequency elements required to reproduce the discontinuities. A |

° -

common way:to deal with this phenoméﬁon [e.g. Rayner 1971, Tukey 1967]

is to taper the edges of the observed series in order to-smooth the

a

interpolation between opposite edges. s ‘ N
'y ° ° -
Lewis and Dorman [1970], in their spectral analysis of United Q.

. -

States topography and gravity, tapered data in the north-south direction

and reflected them about the western edge. The Fourier transfbrm of a .

r

function which is real and symmetric about its origin is also real and »

LY ¢ '

symmetric. Thus, reflec;ion of a data set prior to transformation has °

- ~

the effect of reducing the inherent phase and directional information.

McNutt [1978], analyzing Australian data, added border ramps to the

topography array, predicted using Lewis and Dorman's calculated

isostatic response function the wavenumber domain gravity associated .

, o

with the modified topography data, transformed back to the space domain,

3
and used the predictions to border the original gravity array. This
method does not necessarily remove edge discontinuities in the gravity .

data although tests on'artificial data seem to indicate that it is

reliable [McNutt 1980, pers. comm.]. However, the statistical

properties of spectra produced in this fashion are not well known. In
" H

the present caSe, therefore, edge discontinuities simply have been

smoothed ,using a Gaussian shaped taper function applied to 20~307% of
! ' X . ’
the observations following -Tukey [1967]. Prior to smoothing the averages
. . . .9
of the data sets were removed in order to reduce as much as possible the

amplitude of the taper function,
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. 2.2,3 Spectral characteristics. The fundamental assumptions:

N
a - [

which .govern spectral analysis are that the time ‘series,-or in the ce
[ N '

present case space series, under consideration is the result of a

°

o

stationary, stochastic process such that the observed series is one -

-

‘normally distributed, réndomj(y chosen realization of-all possible sets

- .

n

I s ° N L. @
of observations, and that the resulting calculated pairs of Fourier

\_serfes coefficients are independent of one another. In such circum- . -

®

stances, it is a well known result [e.g. Jenkins ‘and Watts 1968, Rayner. .

4
-

1971] that a calculated rgv power spectral estimate S (k ) has a, -
probabi;ljity distribution, with respect’to its true value S (k )» propor-—

tion to a x? probability distributiop function with degrees of

£ reedom df : ‘

I3
”

>
- af Bk 2
gr];(in) dfn‘ : s

]

-
oo

K The number of degrees of freedom dfn is 2, one for- each of the attendant

- )

Fourier series coefficients from which EF(_I:H) has been calcu.‘tsteg, A

~

consequence of this propoerty is that the standard deviat:i;orf of an
< 1 -

-
! .

3

estimate g (’12 ) is of the same order of ?mégnitude .as the estimate itsélf -

[e.g. Jenk:tns and Watt*s 1968, Rayner 1971]. Some form of spectral

' ‘

smoothing, or windowing, is therefore regquired- to “overcome this

unacceptable attribute of calculated spectral estimates. One method °

%

. commonly used to :Improve the statistical properties of estimated spectra,

and wh:tch :l.s ‘bart:i.cularly suitable when spectra are copputed ‘ectly

using the Fagt Fourier Transform, is simply to average the raw spectral

,gtimates gF cii) within wavenumber bands'which are greater in width than

.
<
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-

-

'

3

the elementary discrete wavenumber interval 'I.‘-l [ef. Equation (2-1)}.

.

tmates of the smoothed pdwer*spectrum, represented by
g = o

-

-, 7

which the raw est ates were averaged, For a given band r having mean

> ’ ~ s
wavenumber kr’ the -smoothed spectral estimate SF(kf) is referred to as

o

, .an ensemble average on the grounds that the constituent taw spectral
&

9
a

. N -
data comprise an ensemble of random estimates.of -the power of the data

- <

. ‘ R > .
seriés at wavenumber kr' . -

€

£l . ¢ .
7
-

Two—dlmen51onal smoothed spectra S (k) where k k( )i}k )3 are

LIS

. calculated not only on the basis of chosen wavenumber bands, to which

L -

the wavenumber moduli of the raw spectral data qre‘referred, but also

- o Py

on the basis of chosen angular limits to which their directions are

referred as, illustrated in Figure 2-8.  Note that for real observed
’ ‘ 0 ‘\I‘b > j i e
data, gravity ‘and topography in the preseéent case, only two quadrants of

the resulting array of raw spectral data cofitain independéqﬁ’information

- -

‘since there is no spectral distinction-between directions which are 180°

divergent. Thus, the number of ‘degrees of freeaom dfr assocjated with

[l

. any smoothed estimate Sp (ﬁ ) defive from raw estimates’in one direction

5

only, there are two for eachJof these‘aris1ng from the attendant sine

-~

and cos1ne Fourier series coefflclénts [cf. subsection 2.2.2(i)]. How-

&
ever, "tapering of the original data s&rigs-to suppress edge effects

[ef. subsection 2.2.2(1ii)] reduces dfr by a factor estimated to be

‘equivalent to the fraction of the-dafa not affected by tapering [Tukey

-

19675 Rayner ;971, ép. 86, 118}. Thus, g
a . ’.,: , .o . M'
. dfr e 2mr[1 - ﬁrﬂ (2-6)

[res

"

9

@

.
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'Figure 2-8. The two-dimensional wavenumber domaiy. Circles

¢

indicate the locations of raw spectral estimates at harmonic

wavenumbers; open circles are complex conjugates of their

s

filled counterparts. °“Only two quadrants' contain independent
s N\

. aata.e An ensemble of data, providing a smoothed spectral

-

estimate at ﬁr’ is contained by the thick solid lines in the

first quadrant. An ensemble of data, providing a smoothed

9

. . . . = . -
isotropic transfer Function estimate at [krl, is contained by .

¥

the thin solid lines in the first and second quadrants.

k]
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_where m is the number of raw estimates in ensemble ¥, M is the number

o
of data in the original data series, and M' is the number of data in

the original series modified by the tapering function. Tﬂzulﬂo[l—a]%
confidence limits associated with a smoothed spectral estimate SF(§%>’

using dfr as provided by (2-6), can be calculated from Equation (2-5)

and resulé in

af S (%)
2 _xr Fr’ 2 _ - 1 -
Pr {x af (a/2)< ST(ﬁ X < X% (1 a/Z)J 1-a.
r ¥ - r

]

‘ , ‘

This expression is written more conveniently as

df_ S_(k )
Pr{ r Fr z =1-a .« (2-7).

df S.(E.)
" ﬁ'SF(Kr) 5___2;_2__5;_}
X dfr(l:"alz)

x2qp (0/2)
r

o

2.2.4 BEstimation of transfer functions. The isostatic

response function Q(i) was idefined in Chapter 1 as the transfer function,
or admittance, relating an input, the Fourier transform of continental
topography H(ﬁ), to an output, the Fourier transform of gravity

anomalies G(ﬁ) resulting solely from topography, less random noise N(ﬁ):

G(x) - N®
H(K)

: . k) (1-3).

0

Because of the noise iﬁherent in observed gravity anomalies, an observa-
tion of Q(ﬁ) cannot simbly’be made by normalizing observed G(ﬁ) by

© >
observed H(k). In the present case the noise is assumed to derive from

7

- - o Y RGBT BT Tl peearwe =
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tectonically—emplaced lateral hensity variations in the Earth's ﬁpper

crust. If these density variations occur rafdomly, that is, they are

3

o

not correlated with the observéd topography, then the best estimate of

the‘isp%tatic response function, is provided by [Munk and Cartwrdight

5

1966, p. 5431 ,

4
3

o) = S0 /5B : (29

where SGH(ip is a smoothed estimate of the cross spectrum of the gravity

»
3
o

and topography, ‘baséd on raw spectral estimates formulated by °

Ya

Equation (2-3), and SH(fD is a smoothed estimdte of the power ‘spectrum
o N . o

of the topography, based on raw estimates by (Z:E). It is the smoothing,

“

accomplished by ensemble averaging [subsection 2.2.3], which minimizes
o e

.the random noise.- The estimated isostatic response function Q may be

°

assumed to be real and, in 4 space, directionally isostropic given the
-

analogous assumption that the response of the lithosphere to a point

load, in,; space, is concentrically symmetric and centred at the location
"&§%f éhe load, Because of the assumed isptropy of 8(@), the ensemble of
raw spectral data which is ave;aged to find it comprises all of those {
data Whi&h fall within a given wavenumber band or gnnulus, symmetricx )
about the & space origin [Figure 2-8]. Thus, a is estimated as a

function of wavenumber modulus Iﬁ[=kF[k%x)+K%y)]l/2

unlike two-
dimensional power spectrum estimates which are referred also to the’

, wavenumber direction [subsection 2.2.33 Figure 2-8]. Since Q(k) is o
assumed to be real: the imaginary component of the estimated ispstaéic
response, Iﬁ[a(k)], is expected to be sméll and may be considered to be '’

an indication of noise in the observations. .
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The estimate of &(kr) from noisy data [Equation (2-8)] is based
on least squares minimization of residuals in which it was assumeé all
of thé variance associated with Q &erived from variance asséciated with
the observed gravity anomalies. °In turn, the variance of the gravity

o e
. observations was assumed to-be entirely due to geological noise N(k),

&
@
<

where
NE) = ed® - @ HE ,

5
9 s

from Equation (1-3). McNutt [1978, 'pp. 177-178] shows that the standard

error dQ(kr) characterizing a given Q(kr) estimate under these circum-

a

* o

stance$ can be determined by considering the residuals between the
o .
constituent raw gravity spectral estimates SG(kn) and those predicted

by the product Q(kr) gﬁ(gt) and is provided by

o o

® . S, (k) )
Q) = gFg e {ReallQ(k)1} - 2-9)
; SH(kr)

o

o

where SG(kr) is the-smoothed ensemble estimate of the power spectrum of

=3

the gravity anomalies. McNutt's expression for dQ(kr) 4is 'modified here

to the extent that the number of degrees of freedom dfr associated with

L

’ an estimate Q(kr) should reflect the effects of tapering of the original

data series according to Equé%ion (2-6). ‘

¢

A statistical measure of the portion of observed gravity
~ anom#élies attributable to topography for any kr is the coherence squared

o o
Yz(kr), an estimate of which, in the presence of noise, is provided by

" [Munk and Cartwright 1966, p. 580]

~ <
“ ke -

.
, - sy [ - ~ ¢ -~ - e oW e m ma e e
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;Ztk ) = mr[SGH(kr)S*GH(kr)/SG(kr)SH(kr)] ~ 1
. T i

(2-10)
m, - 1 ’

o

S
-

where *’indicates complex conjugate and m is the number of raw data in
\ 7 ° 4 < N
ensemble r centred at kr' L

4 LY
AN d

a

2.3 Analysis of Synthetic Data

a

2.3.1 Introduction. One considerapion‘in calculating a

smoothed estimate of the power spectra of continental topography and

-gravity is.that the true spectra are expected to be "red": that is,

power at low frequencies is expected to be several orders of magnitude
greater than power at the highest observable frequencies. Fozr example,

-

Lewis and Dorman [1976, Fig.” 7] found that gravity and topography.
spﬁctra of the United States varied by approximately 1 and 2 -orders
respectively in the wavelength range 2000-100 km. If, because of
spectral redness, raw spectral estimates are rapidly varying in a non-
lineéar fashion within a chosen anenumbgr ensemble band x, the aieraged

ensemble estimate SH(kr) may be biased somewhat toward higher values.

' Secondly, recall that the observed data sets ‘have been

multiplied by a Gaussian-shaped tapering function in order to suppress

artificial high frequency spectral power related to discontinuities at
. “ \ ﬁ? ,
the edges of the data [subsection 2.2.2]. This operation is equivalent

»

to the convolution of the Fourier transforms of the untapered data and

Y

the tapering function., -Thus, while the power spectrum of the tapering

s [



o

»
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function would be expected to be strongly red, it is necessarily more
so than the spectrum of the observationss otherwise,‘Ehe‘convolution

operation would serve to blur 'the high power at 1OW'f:::§§ncies into

&

the high frequency raw estimates of the calculated spectrum. The

'grtificial high frequency power related to edge discontinuities would

L -

therefore be enhanced rather than suppressed.

hd '

©

- Thirdly, the convoluted effects of the tapéring cannot be

e«

. separated from the calculated trangferyfunction. In particular, the

o
s £l

application of the same tap;ring function to both topography and gravity

.

data sets may result in artificial coherence between gravity and topo-
@
graphy at wavelengths characteristic of the ‘taper length. If this

~

RN : o
between them may be prejudiced.

-

¢

°
LY

: In. order to investigate these potential problems of the data

°

re&uctionaﬁéggbq deseribed in section 2.2 a synthetic two-dimensional

o gravity and” topography data°set was‘°constructed. Topography on a

-

32 x 64 grid, with digitization interval of 50 km in each dimension,
(1} . 19‘ .
was synthesized il the space dgmain by summation of a finite series of
. o ¢ A
© ¢cosine waves with amplitudes compatible with those of the expected

topography spectra and with random phase. The frequencies of the

Uconstituent cosine waves r;ndomly distributed about the harmdnic fre~
'duencigs so tgat the'FFT would be affected by edge discontinuities. .
The synthetic gravity field was similarly constructed, the amplitudes
. of, its component waves éeiﬁé determine& by the product of those of the
\J ° 7. !

topograﬁhy and an isotropic, real transfer function, chosen to be

similar to expected Q(k) for continental lithosphere. °

.
° e

44

effect is significant then the statistically extracted transfer function
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2.3.2 Results and discussion. Figure 2~9 shows the true power

spectrum of tht synthesized topography compared to ensemble estimates
§H(kr) [calculated at constant wavenumber intervals of 0.001 km_l] with
associated 95%Z confidence limits. Filled squares and open circles
indicate calculated gﬁ(kr) with and without tapering of the original
synthetic data. Also shown is the computed power spectrum of the taper-
ing funcfion used to producge gﬁ(k). The known transfer function between
topography and gra;ity is compared to its es?imate a(k), wit@ and without
tapering, in Figure 2-10., The tapering function used in calculating the
illustrated results, the power spectrum of which is.shown in Figure 2-9,
was applied to three rows or columns on eath edge of the original

32 x 64 data grids [267 of the data]. Tapers of other lengths were also
examined, though the results are not reproduced here, and those which
affected 20~40% of the data,.a range consistent with that suggested by
Tukey [1967], were found to be satisfactory, their effects not beirg

gignificantly different from one another.

It can be seen in Figure 2~9 that tapering suppresses high
frequency contamination by edge discontinuities'very effectively with
minimal spectral blurring. Blurring, rather than averaging bias, is
probably responsible for the systematic slight underestimation of éH(k) '
but this effect is very minor; moreover, the topography and, especially,
gravity spectra of the study areas are likely to be less red than tﬁe
synthetic spectrum chosen here [cf. s;ction 5.3] sé that,. regardless of
its source, this effect‘wéll likely be reduced usiﬁg the real daéa.

The spectrum of the tapering function is noted to be significantly

redder than the synthetic spectrum.

- o
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«+ Figure 2-9, Comparison.df a known synthegic topography power

sSpectrum SH(k) with two sets of estimates;SH(kJ [showing 957 °
confidence intervals] found using tapered and untapered data
+ [left-hand scale] and with the estimated power sPéctruﬁ of the .

3

tapering function SF(k) [right-hand scale].

L8]

o
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Similar results prevail in ‘the casg of the transfer function

estimation [Figuyre Z-iO]. Tapering appears to provide reliable results;
there is no apparent introduction of spurious coherence xela£ed to the
wavelength of the taper based on results using tapérs of different
lengths. The slight overestimation of a(k) for intermediate k is
proﬁably due to averaging bias; if so, the effect is exaggerated because
the synthetic transfer function considered here falls off more rapidly
than those expected using real\data [cf. sectidn 3.3]. Moreover, the

observed offset is negligible compared to the expected effects of super-

imposed geological and measurement noise.

The crucigl assumption‘regarding geologicaldﬁoise is that it
?s random in the sense of being uncorrelated with topoéraphy.° No such
noise was included in the synthetic data analysis because it is known
theoretically that it will have no effect on the extraction of the
correct transfer function as long as there are sufficient data [Munk
and Cartwright 1966]. The synthetic da%a analysis was directed specifi-
cally at determining tge effects of "noise" derived from the finite
nature of the data and the need for tapering. For this reason no ad hoc

3

synthetic analysis of correlated geological noise was performed.

a

2.4 Summary

In this chapter the raw gravity and topography data to he used

in subsequent analyses have been presented. The source regions of the
. "

-

data are much more tectonically homogeneous than those used in previous

studies of continental isostatic response functions [Dorman and Lewis

€

o I w . w4 i by - -
c - p. R R
v F gt »
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‘Figure 2-10. -Comparison of a known éynthetic transfer function

Q(k) with its estimates Q(k) found using tapered and untapered

» [

data; error bars correspond in length to two standard errors.

<

-
-
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1970, McNutt and Parker 1978, McNutt 1980]. Moreover, the data them—

selves are probably more reliable, particularly in respect to using

’

original digitized topography data rather 'than those meaSured’at gravity

stations.

I
The standard spectral analysis techniques with which the iso-

static response functions and topography p;wer speé%ra of the study .
regions are to be computed from the' raw data have been briefly reviewed.
There h%s been no uniformity among previous continental response
function studies regarding the treatment of discontinuities at the

edges of finite data sets. In the present case it was &ecided to simply

'taper the edges of the data following Tukey [1967]. The tapering method

was applied to a ‘synthetic data set in order to test its reliabiliéy

and was found to produce no discernible artifacts.
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Chapter 3. Time-invariant Isostatic Response of Continents

. 3.1 Intrpduction .

-

K

3.1.1 Thin elastic plate lithosphere. Given that adequate

2 @

topography and gravity data exist to calculate the isostatic response

functions of segments of the continental lithosphere, they can be

™

compared to theoretical functions based on simple models in order to

‘better understand the rheological and structural properties of the

lithosphere. 1In this chapter, the observed isostatic response functions

¢ 14

- la$}
of various geological.provinces of North America are considered in terms
of the elastic class of rheological models of the lithosphere introduced

in Chapter 1. Specifically the mechanical lithosphere is modelled as a.

I3

thin elastic piate,,oge which has a small thickness compared ,to the r

[t
Al

“ ' - .°
s - wavelength of its deformation. The deformation w at a point r=x§4y§,‘

9. .y ’ {

where 1 and'§ are orthogonal unit véctors, produced by a load p(?)

<Y

+ [dimensionally a force per unit area] on a thin elastic plate overlying )

a fluid substratum is given by the solution of [Nadai 1963]
. xqr /
vt w@ = P& (3414)

-

+

v 3

2 E}
€

. where D is the plate's flexural rigidity, a function of its thickness

TL and the elastic modﬁai of its ‘constituent material, Young's modulus

E and Poisson's.ratio v: :

., - »
.

ET] .
D = 5 ' (3-1i1),
' . 12(1-v™)

W?.mhm -

e - —
N - w moa # [ v e W A,

u
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therefore
- AL

V@ = ()@ = S s 2 w@®.
ox? Bgz .

v

The thin plate model of the lithosphere is illustrated iﬂ

Figure 3-1. Note that the total load p(;)yconsists of (1) forces acting

® s

on the surface of the plate because of overlying material of demnsity o
and height z(?) and (2) buoyancy forces acting on the base of the plate

caused by the displacement of the fluid substratum of density P by the

o
' &3

plate deflection ﬁ(;). Thus,

b

q

p(f) = -p g £(¥) - o_g w(¥) (3-2)

where g is the gravitational acceleration and z is positive downwards.

Therefore, for a positive, downward-directed load g(?) and resulting'

deflection w(%), 2(;) is a negative quantity.

»”

Appligations of thinlplate theory to‘geophyéical problems of.
crustal nr"lithosph;ric defo;matioquﬁévé‘beqn.ﬁ;ﬁirbusiwithdegrly con—-
tributions by gunna[1243a,b; lQﬁZT Vhonconsideré&, in particﬁlér,'the
loading response of the lithosphere and gravity effect of the Hawaiian

Islands.. More recent use of thin plate theory in geophysical modelling

El

ﬂbegaﬁ‘with Walcott's [1970a] study of crustal deformation associated
“ - A Y

&

L

with a number of individual continental and oceanic loads. These

inclided North American Pleistocene lakes and the Hawaiian Islands.

€
-

) . -
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Figure 3-1. Elastic plate ﬁgdel of a layered lithosphere of thick-~
ness TL loaded by a topog;aphic bl;ck [diagonally lined] of height
% centred at T isostatically compensated by lithospheric flexure.
Buoyancy forces, proportio&al to the plate deflection w, load the
base of the plate. Gravity anomalies are ggnerated in the cross-
hatched regions, produced by the deflecfion of the Mohorovicic
discontinuity. The density contrast at the Moho is Ap=pmfpo.‘There
is no density contrast at the base of the lithosphere. Measurable

El

topography h remains above sea level [z=0].
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Flastic plate models of the lithosphere have also been applied to the
analysis of other oceanic islands [Watts and Cochran 1974, Watts'jgiggg.
1975], sedimentary basins [Walcott 1972, Cochran 1973, Haxby et al.
19761, and the outer‘topqgfaphic rises associated with Pacific Ocean
subduction zones [Walcott 197Qa,1§pnks 197%, Watts'and Talwani 1974, .
Parsons and Molnar 1976, Caldwall et al. 1976]. A model of the isostatic
response function charaéferistic'of a'thin elastic plate was first
derived by Walcott [1976]. Aumo£e rigorous formulation was provided by
Banks égijgg.°[l977] who used it to invert the United States isostatic

response data of Lewis and Dorman [1970]. -

In the present contegf of elastic pldte theory, local isostatic

2

compensation [of the Airy type] can be accommodated by the ideal case in

W

which the elastic plate has zero thickness or nobflexufél sffength. In
physical terms this may correspond to isostatic adjustment by vertical
faulting of rigid 1ithosphére, The response to changes inﬂthe topo-
graphic load, for example as a result of erosi§n¢~would be essentially
instantaneous and the;efore time~invariant. d; the“other hand, local .
compensation of gopography may also be achieved by means of some form

of ductile deformatién in which case it represents a final isostatic
condition prior to which the characteristic isostatic response function
of the lithosphere would have varied depending on thg age of the load 2
and the style of the deformation. In such a ;ase, the effects of erosion
of topography must be explicitly considered. A model .of this kin& in

which elastic stresses are relaxed by linear vikcous flow is considered-

a
-

in Chapter 5.

s b e e © e g
. T T e
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31.2 Elastic plate isostatic re%ponse analvsis. Estimates of
the flexural rigidity of éontinental lighOSPhere based on thin elastic
plate models of isostatic response functions [Banks ggﬁéy. 1977, Banks
and Swain 1978, McNutt and Parker i978, McNutt 1980] are wup to four
ordérs of magnitude less than those based on models of thelisostatic
compensation of indi;idual continent;i‘features [e.g. Walcott 19f0a,
Haxby et al. 1976]. Major ;rfticisms of the response function method of
isostatic analysis [Forsyth 1979, Cochran 1980] have in part been based
on these'anomalous results. It should be noted, however, that flexural
studies of individual continental Jdoads are few, owing to lack of suit-

able data, and are ;hemsélves ambiguous in their results, perhaps due

to sensitivity to local changes in crustal structure [e.g. Walcott 1970a].

The response function technique was designed to overcome these problems

[Dérman and Lewis 1970] but has.encountered other, major, problems of
3
its own. The main problems .related to continental lithospheric studies

using isostatic response functions fall intc three categories which are

o

discussed below. .

v b

* l a °
(i) Geological heterogeneity. The regions for whgch isostatic

a

response functions have been dbmput@d, primarily the Uq;ted States

[Lewis and Dorman 1970] and Australia [McNutt 1978}, are geologically

an

complex but were chosen because of the need to sample large regions in

order to minimlze the geological noise related to non—isostatlc upper
# . \
crustal lateral density variations [c¢f. section 2.1]. Allied to this

general probfem of noisy data are methodological problems. First,
isostatic response computatlons are somewhat sensitive to data reduction

techﬁiqﬁes [for example, ta%Fring of data as opposed to reflecting data

&
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to suppress edge effects] so that the direct comparison of response

functions calculated using different methods, a common practice in the

qk

literature, should be avoided.” The sensitivity of the results to

changes in methodology is probably enhanced by the degree of noisiness

~

o

of the raw data. Secondly, the degree of moisiness of the data is such
that coherence bétween topography and gravi€§ [ef, subsection 2.2.4] is
often so low, for much of. the sampled spectral range, that the validity

of any computed.transfer function between them may be questionable.

Y

(ii) The complex tectonic origin of continental topography
and its subsequent evolution. Both Forsyth [1979] and Cochran [1980]
,have pointed out that the model of topography being loaded onto a

flexurally competent lithosphere is probably an unrealistic one; in

general, continental crust and presumably its topography are generated
in thermally weakened zones of orogenesis. Both authors suggest that
low values of flexural rigidity based on analyses of continental

isostatic response functions reflect the strength of the lithosphere

during the tectonically active stage when topography was formed. In
such a model, consideration of the effects of Egpographic erosion

occurring after the time at which the lithosphere achieved some greater
AN

flexural strength is inescapable, The deeply eroded nature of cratonic

regions gdggests that thé amount of subsequent erosion has exceeded the

“original topography.

(iii) Isostatic compensation of topography by means other
than elastic flexure. For example, fauiting Sﬁ the upper crust may

provide partial isostatic compensation to some ﬁigh amplitude topo-

©y
o - ‘ - - -
“graphic features. Any compenmsation mechanism such as t@;s giving rise

° R .
Y o - ° Q
v
'
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»to gravity anomalies will result in artificially low flexural rigidities

determined by means of a plate model. Similar effects might be expected

v

if the thin elastic plate is an inadéquate model of the lithasphere.

First, use of thin plate the;ry may not be appropriate for the
analysis of the load§ under considération. That is, the smallest wave~
lengths of the observed isostatic response function may be too small in
comparisonm with the thickness of the plate. Calculations by McKenzie -

and Bowin [1976] and Courtney [1981, pers. comm.] indicate this to be
w W :

the case when-the plate thickness exceeds approximately half the wave~
length of the imposed load. Isostatic response functions calculated
from United States [Lewis and Dorman 1970}- and Australian [McNutt 1978]

data take into account topographic loads of less than 60 km and 40 km )

[Z8N

wavelength respectively.. On the other hand, estimates of.the.flexural

rigidity of contipental lithosphere based on studies of individual loads

»

indicate platé’thicknesses, using Equation (3~1ii), in the range 35-60\km‘
[as summarized by Cocﬂran 1980]. Short wavelength estimates form only
a 'small portion of the United States and Australian response data and

any problemr resulting from the invalidity of the thin plate assumption

may also be small; nevertheless, if_remaips that the effects of any °

y @

incorrect application of a thin plate model would be.-to force the model

toward artificially low flexural strength. This follows from calcula—

tions by McKenzie and Bowin [1976, Fig. 14] and Walcott [1976, Fig. 1;

@
”

citing Foucher (1974, pers. comm.)] which show that "thick" plate

a

def?rmational*response to surface loading would be greater in amplitude

than that prediéﬁed by thin plate theory. . .

-

Secondly, the assumpﬁioﬁ of purely elastdc ‘behaviour may be in

-

» error. For example;wsome studies of the flexural characteristics of the

&
4 3

YFa o
. &
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continental lithosphere during the formation of foreland sedimentary
basins [B?aumd%t 1981] indicate that s;ratigraphic relations within
such‘bgsins are most simply modelled by a viscoelastic lithosphere, one
witich can relax elastic stresses by linear viscous flow. As mentioned

in dubsection 3.1.1 the state of local Airy isostatic compensation of

-

° surface loads may be a°consequence of such a process. Other more com-

@

plicated mechanisms of stress relaxation also £all into category.(iii).

-

In any case, the isostatlc response of such a lithosphere, observed at

<

aéy given time, %ill be a function of its loading history, a matter in
which eresion of topography is important as well as 1ithospberé‘rheolagy.
Whether the interpretation of the isostatic response of such a 1itho—.
sphere in terms of a thin glastic plate would always return artificially
low flexural rigiditigs is difficult to predict. On the other hand éhe

isostatic response function of such a lithosphere might Jbe expected to
- 7
vary in some consistent fashion with the age of the topographic load,
4 -

\
-
b

Thé three categories” of problems involved in the interpretation

of continental isostatic response functions in terms Qf ‘elastic thin
L 4

plate theory, listed above, can be summarized as jhose resulting from

’
o (1) inadequate data and methodology, (ii) an in rrectly assumed or

9 .

ugtenable loading hlstory, and (iii) an incor ct modgl of lithospheric

response to loading. In this chapter, the analysis of continental

3
a

isostatic response functions based on elastic thin plate theory is
. . performed with problems deriving from category (i) minimized as much as
poséible. Response functions have heen eomputed fd% geological regions

which are as tegtonically homogeneous as possible; each has heen found

using the same methodology; the methodology was sucéessfully tested by



<

analyzing synthetic data [section 2.3]; and the minimum topographic

wavelength considered for each is greater than 100 km [ef. section 2.2]
so that the thin plate modelling approximation is suitable. Thus, the

results of the present analysis can bé interpreted in terms of the
" A

problems discussed in categories (dii) and (iii) only. The model of
continental isostatic response which is being tested is one in which

the lithosphere behaves elastically with elastic properties which do

@ -’

not change with age and in which the load, as measured by the isostatic
! #

»’

response function, is truly that due to topography existing at the

present. For such a model, the isostatic response functions of

[}

different tectonic regions should be the same unless variations exist
between regions in the depths to major density discontinuities in the
lithosphere such as the Mohorovicic discontinuity. The choice of
depths to major density discontinuities 1s constrained by other geo-
physical data such as those provided by seismic refraction studies.
If, within the uncertainties of such constraints, this model of
continental isostatic response cannot be rejected, them, in turn, the

flexural rigidity of the continental lithosphere so determined cannot

be rejected even if it is significantly different from those found using

’ k]

other kinds of data. S ,

If, on the. other hand, such a model can be rejected on the

bagsis of wvariations in the observed isostatic response functions of;»

different geological»pEgyinces, then the progerties and/or loading

history of the lithosphere must be assumed to be such that the %itho-

. -

sphere's characteristic isostatic response function varies depending

~+

on its tectonmic age. Any model in this class of models will be )

v
F N ¢
o

A
Kl
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difficult to interpret in terms of a thin elastic plate lithosphere,
the isostatic response of which is forced only by modern topography,
because it will depend oh the load history, as giscussed in problem
categories (ii) and (iii) listed above. 1In the absence of a quantita-
tive model in whiéh the effects of erosion are explicitly considered,
it is speculative to suggest that observed isostatic resyéﬁse functions
indicating increaifng flexural-rigidity of continental lithosphere as
the age of the topography increases supports a model of cooling and
thickeping lithosphere [Stephenson 1978] or that i:dications of the
reverse phenoménon imply visé;us relaxatiop of continental lithosphere
[McNutt and Parker 1978]. Mbdelg which include topographic erosion and

which can account for time-~dependence of isostatic response functions

are developed and applied to observations in Chapfer 5.

3.2 The Isostatic Response of a Thin Elastic Plate ”

3.2.1 Deformation of a thin elastic plate by a harmonic load.

The plate load p(;) in Equation' (3-1i) is expressed in terms of its
harmonic components by its two—-dimensional Fourler transform

F{p(;)} = P(t), where the wavenumber iﬁk(x)14k(y)3, given by -
Equation (1-2i). The déformati&n of the plate in response to P(ﬁ) is
therefore found by Fourler transforming Equation (3-1i}:

9

piznk]* w@) = p@) ' \ (3-3)
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if D is mot a function of position and noting that [Sneddon 1951, p. 27] .

n

F [—‘fﬁﬁ-} - [2mk]® FE)
dx ’

e * &;
. R . .
where F{f(?)}’;’F(ﬁ), assuming that the first [n-1] derivatives of\f(;)

vanish as |7| + .

S

S _The Fourier transform’ of Equation (3-2), in which p(;) was

decomposed into surface and buoyancy forces, is

)

- BE) = -p gL(k) - o gW(K) (3-5).
Equations (3~3) and (3-4) combined result in . ‘ -
P DQ = .
Wk) = - — y(k) L(k) . (3-51)
p
m + B
where . .
1=l o .
‘ T ) = [1 +~%] ) (3-511)
m

and Y(k) is called the flexural response function [after Whlcoét 19761}1.

3.2.2 Theoretical isostatic respons; functions. Ig the thin
pi;te model of the lithosphere grav1t§ angmalies g(;) are as!gmed to

Qe gfnerated entirely by the density perturbation resulting from plate
dé%lectio; wf;) in response to surface loading 1(;) [Figure 3-~1]. The
iso;tatic response function is defined as the Fourier transform of the
gravit} normali;ed by the Fourier transform of tlfe measurable topography

[Equation (1~3)]. Figure 3-1 i1llustrates that the measurable topography "

L4

N

3vﬂ—uu—---u:ﬁ.iﬁiﬁnmnmuumnu—--~u-u- ;
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h(?) consists of only that portion of the surface -load 2(;{-") remaining

\ C.
. abové the undeformed plate surface; i.e.} \ i
k L@ = h@ -w@® , \ i
. ’ 8 . " 13
“ the Fourier transform of which is - )
X, ) . ,
L&) = HE) - WE . (3-6).
- ‘ ' ) - “
In consideration to (3~6), Equations (3-5) become © T ,
. o, . o, .
I Wk = - =2 3 (k) HED) * ‘ (3-71)
“« e S
where . 7 \ . )
- » "L" .‘l * .
p'(k) = [1 + -L——-]—~—zzk D] - " (3-741)
-, BPg .
. . - -
) T ®
¢ ) ) o U
and Ap = pm —-;o. » . |
. . . T
The Fourier transform of the gravity anomaly produced by the
density perturbation p'(;.,z) is{ [Parker 1973} - ;"” - o
. - . - T" J ‘ h .
\ " L ) Al »
G(k) = 2nT [ P'(%,z) exp [-2nkz] dz . (3-8)
. " ‘ X
where’ F{p'(;,z)} = Pr(%,z) and T is the gravitational ‘constant. -Bapks ,
et al. [1977] show that a vertical displacement ‘w(;} in a 'medium of
density p(?,z) produces thg perturbation . / {
. R . . ) p'(‘r’,’z)‘ - "(;) -g% ' w (3-9)
- , ~ ' ’ * - ‘, )
< <



h

y ~and Equation (3-11) reduces to

»

1f the normal density distribution of the plate is assumeé to be a
N >

function of z only and if the medium is assumed to be incompressible.
The Fourier transform of (3-9),

2
Pik,z) = W

s

=, 0 - .
@ 5=
substituted into Equagion (3-8) gives
c®) = 20T W)

—————

3

O 8

BZ exp [-2rkz] dz + R, (3-10)
\
which, used in conjunction with Equations (3-7), gives an expression for

the theoretical isostatic response of a thin elastic plate,

I3
.

o TL ép y ’
= e —— ' s —
Qe(k) 2nT o v (k) { 35 SXP [-21kz] dz

(t.
. Since the isostatic compensation of the topography, and resulting

A
gravity anomalies, are associated completely with the deformation of

e .

) thecplatE, the integration of the density gradient in Equation (3-11)

[

ig finite, proceeding only to the normal depth of the base of the plate,
TL,ft§e pl§te thickness.

¥

Note that in the case k=0% ¢'(k) and exp [-27

3 ¢ v
Tz] become unity
§

iﬁ-
-
. T, + F
-Q e(k-O)‘ = -3ur Po "
L] L4 ‘ " [y )
since ' " Ve
) B ~ ) TL R . g ]TL ) : ] - ,
- g_%dz el Q"c pm;Po.‘.'"Ap' "

65
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3.2.3 Local isostatic response. (i) Thin plate case.

Figure 3—% schematically illustrates a topographic block of height & and
density Py loaded onto a layered crust at a point ? compensated locally
by the Airy isostatic compensatien mechanism. The blockt"floats" on the
crust passivgéy deforming it to produce a compensating root lying‘
iqmediately below. The relationship between the height of the block £
and the size of the root w can be determined by eqna?ing the excess mass,

lying above z=0 with the mass of the zones of deficient compensating

density below:

[£@) +w@] oy = —w@ pg-p,] - w(®) [ -p;] (3-124)
or simply
-~ po ¥ ~
w(r) = - . %(x) (3-1241)
m - ,

for Airy compensation. Making the substitution #=h~w and Fourier trans-

forming gives. 3

. _ .
wE) = --Eg-uci) (3-13)

¥

where Ap"ém—po. Equation (3-13) i; analogous to the thin plate equation
(3-71) and shows that Airy compensation is the spec;al caqf of t@in
plate compensation with y'(k)=1, a consequencé eit@er'of a flate with '
.zero flexural éigidity or a load with a wavenumber approaching zero.

The isostatic response fun;tion produced by Airy coqgensation is there-

fore simply Equation (3~11) with ¢'(k)=1l: .




n.

‘Figure 3-2. A" topographic block [diagonally lined] of height &

«

centred at * is locally compensated by a layered lithosphere.

Gravity anomalies are generated in the cross-hatched regions
\
with density contrasts Apl and Apz.» The measurable topography

h remains above sea level [z=0]. The hase of the lithosphere

’

is not shown.

V*
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T
T - ® ‘ pc‘
Qz(k) = w2l —

Ap oz

O Yt

gﬂ-exé [:Zwkz] dz (3~14)

. «
¢ »

<

[or, if preferred;JEquation (3-13) inﬁérted into (37{0)}.

(ii) General case. Dorman and’Lewis [1970] formulated a
. < el i .
general local compensagion model in terms of a linear relation betwéen

»

a compensating density sfructure pc(;,z) lying jmmediately below topo-

v 2
graphy h(?), e ) . . S

i
4

> - i . ‘
. ‘ p.(rs2) = p(z) h(r) o (3-15)

where p(z) is the compensating density associated with a unit topographic /

IS

load. For complete compensation of topography of density ° occurring

above a depth T, ot ’

: LA : .

. TL > R - t .

, J o (,2) dz = -p_ h(x) “ : . (3-16)
o J

L]

4
&

which, in the case of the Airy model, is exactly equivalent to *the

column mass equality statement of Equation (3-121) [where h=f+w]. The
theoretical isostatic respoﬁse of the general model given by (3-15) 1
just the Fourier transform of the gravi%&,anomaly produced by the

vertical line source described by the normalized compensating densit

.Q_(Z)' [})ormap and Lewis 1970, McNutt 1978]: ) ‘ / o
. . TL ) . /.
Q (kY = .2nT [ p(z) exp [~2nkz] dz (3-17).
- o’ ‘
. N L .
L4 ’\ N .
. ¢ .

.
el
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Alternatively, Equation (3-17) can be derived by direct substitution of

the Fourier transform of (3-15) into Parker's [1973] harmonic gravity

N e

equation (3-8) mnoting that pc(;,z) is equivalent to the density pertur-—
(o

bation p'(;,z). Tt is obvious from the comparison of Equations (3-14)

and (3—17) that the generalized compensation density per'unit topography
[

p(z) equals the Airy compensating density gradient [—p /Ap]{aplsz]

[
t

3.3 North American Isostatic Response Functilons

¢ n

- E3
< s A

"3.3.1 Observations. Figures 3-3(a,b) show observed isostatic

. response functions Q(k) for the six study areas outlined in subsection

2.1.2 [illustrated in Figure 2-1]. For each, ensemble estimates Q(kr)

were calculated at constant wavenumber intervals based on the dimensions

[ *

of the study area. Fewer ensembles are possible as the dimensions of
the study area decrease. Note, for example, only three Q(kr) are pro-

vided for the small [600 km x 2000 km] Grenville province study area.

2

These three estimates are, moreover, associated with large standard
> - ~

errors, also a consequence of the small number of raw data. As k

- )

K}
i

increases, topographic power decreasea resulting in a reduction in the
signql to noiFe raﬁio [ef. Eéuag;on (1-3)]. This effect is offset by
the parallel increase in the number of raw data available per en!émbla
with increasing kr [cf. Figure 2-8]. Conqequéntly,‘atandard errors
da(k)‘assoc{ated with a(k) remain aﬁproximately cogétant Fhrcughout the
spectral range. Note that the smallest.errors are those associated with

L :
the isoafhtic response functi®ns of the Cordilleran region where the

‘gopographic aignil is greatest. The errors aqpqgiated‘i‘th r;sponae ’

L L e ]

=z

frh

1

. b “
N o

-
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Figure 3-3. 'Comparison of isostatic responsi functions d(k) from

and (b) the Grenville, Churchill, and Superior province study

areas; error bars correspond in length to two standard errors.
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Table 3-1. Results: ensemble wavenumber [kr]’ wavelength [kr_l

1,
numbey of ensemble raw spectral data [mr], isostatic response

estimate [Q(kr)], standard error of Q(kr)[dQ(kr)}, unbiased coherence
~ /
squared estimate [Yz(kr)]. ) .

o
12

o

kD0 kel 0 om,  QGk)mCalw R dQek)  vR(k)

.

(a) Cordilleran région.

m " -

0 - i 0 -0.113 . - -
0.0013 . 800 10 -0.105 0.008 0.93
0.0025 | 400 28 ~0.097 0.009 0.85
0.0037 . 267 36 -0.092 0.009 0.78
0.0050 200 59 -0.060 0.008 0.57
0.0063 160 62 ~0.044 05010 0.21
0.0075 ¢ 133 91 -0.010 0.009" 0.02
0.0087 114 9Q -0.001 0.007 0
(b) Appalachian region.

0 - 1 -0.055 - ‘-
0.0015 - 667 14 -0.113 0.020 . 0.64
0.0030 333 38 ~0.079 0.013 0.42
0.0045 222 ., 58 . -0.054 0.021 » 0.07
0.0060 167 - 80 ~0.005 0.018 0
0.0075 133 98 0.021 0.018 -  0.01

\‘o.oogo o111 124 0.007 0.015 0
(c)‘ Canadian Shield. ﬁ;

0 - 1 -0.108 - - -
0.0009 1067 l 10 - -0.093 0.009 0.90
0.0019 533 28 ~0.077 0.013 - 0.46
0.0028 356 42 -0.071 0.020 0.16
0.0037 267 60 ~0.043 0«£016 °~ °0.09
0.0047 - 213 62 -0.055 ©0.023 0.05
0.0056 . 178 91 -0.029 0.018 0.01
0.0066 152 ‘.90 ~0.010 0.018 0
0.0075 - 133 111 <0.031 0.017 0.01
'0.0084 119 124  ~0.,004 0.019 0
0.0093 - 107 141 0.021 - 0.018 0:

\ k]
ww L] W—“ " *:v' n ‘:;r yes "‘.Y? - Wa o
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Tablée 3-1, continued.
k™ k"l ka m_ Q(k)[mGal m ] Q) 12
iy T fa T T o
(d) Grenville province. )
- a ” *

0 . - 1 -0.106 - - -
0.0025 . 400 15 -0.079 * 0.021 0.55
0.0050 200 44 -0.070 0.021 0.17

_0.0075 133 60 ~0.037 0.022 - 0.04
(e) Churchill province. .
Ay & —

0 - 1 . =0.107 : - -
0.0009, 1067 10 -0.083 0.013 0.79
0.0019 533 12 . =0.054 0.025 0.18
0.0028 356 - 26 ~0.067 : 0.029 0.10
0.0037 267 26 © .-0.016 - 0.026 0
0.0047 . 213 ° 40 . 0.012 0.022 0
0.0056 178 42 0.022 0.021 0.02
0.0066 .. 152 58 0.009 0.019 0
0.0075 »° . 133 48 0.046 0.020 0.06
0.0084 119 74 0.013 0.015 0.01
0.0093 107 64 0.004 0.020 0

T v N .
“ (f) Superior province. N

0 - ‘1 -0.106 .- -
0.0010 1000 11 -0.082 0,010 0.82
0.0020 500 20 * ~0.065 - 0.023 .19
0.0030 333 30 -0.086 0.027 0519
0.0040 * 250 - 40 -0.046 0.029 0.02
0.0050 200 44 -0.023 » 0.035 0
0.0060 167 57 . 0:008 -+ 0.039 0
0.0070 %43 66 0.025 0.036 0
0.0080 . 125 75 -0.008 0.033 0

0.00%0 111 86 -0.061 0.041 0.01




functions of the Canadian Shield, where the topographic signal is
smallest, are, on the other hand, very laréé. The Canadian Shield
study area. isostatic response function [Figure 3-3(a)], which is, in .
most part, based on gravity.and topography data also used to calculate
the individuaf reéponse functions of the Grenville, Churchill, and
Superior structural provinces [cf. Figure 2-1], would be expected to

have features similar to those of the three smaller study areas. This

is the case for estimates at small wavenumbers, k<0.004‘km_1; for .

*

larger k the Churchill and Superior observations are exceptionally

.

noisy, and within the bounds of the indicated standard errors are

generally not different from zero. The observed isostatic response'of
the iarger Canadiqg Shield study area, in cbntrast, falls off to zero
less rapidly and lies between the Cﬁurcgill/Superior data and those of
the Grenville province. The data illusgrateﬁ in Flgures 3—3gh,b) are

enumerated in Tables 3~1(a-f); small values of the unbilased coherenc;

squared v2(k) tegtify to the high noise levels of tHe Bouguer gravity

data. Alsq listed in Tables 3-1(a~-f) are k=0 estimates of the observed
isostatic response based on the average Bouguer anomaly [geold removed;

¢f. subsection 2.2.1] and topographic height of each region.’

The general character of all of the calcylated Q(k) are similar.

* (1) As k0, Q(k)+~.11 mGal which equals ~2wrpo, the valuoe predicﬁfg//

+

by the theoretical isostatic response of a qhiﬁ é}aﬁfic\plate uation
» # ° — -

(3-11)]. T is the gravitational constant and pj = 2700 kg m.3, the

density of the topography. Large negative valyes of Q(E§’for small k

are a consequence of the gravity effect of JYow density-trustal “roots¥

providing complete or nearly complete isostatic compeggation of topo-

-

graphy at these wavelengths. The.contrasting gravitational attraction
. 4

’
.

Pl
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of th; topography itself has been removed by means of the B&uguer
gravity reduction. The actual k=0 estimates of a listed in Table 3-1 (7[
are not considered' in the interpretation of the response functions, inu
coﬁtrast with Banks et al. [1977], on the grounds that they can provide
no information' about the density and rhéolagical‘structure of the
lithosphere. (2) As k increases, a(k)+0, which also corré§ponds to

the theoretical resu¥f [Equation (3-11)]. This happens if there is
little or no isostatic compensation of topography of short wavelengths
either because the flexural strength 8f the lithosphere is too great or
because the gravity effects of any existing compensating density

vy

. structures, measured at the Earth's surface, have been attenuated .

v

because of their depths.

3.3.2 General characteristics of the elasticvplate model of

isostatic response. The theoretical isostatic response of a thin

elastic ?1ate Qe(k)} described B& Equation (3-11), 1s a function of the
integration” to the base of thé lithosphere TL of the vertical density

gradient 5b/3z of the lithosphere. If 3p/9z comprises a serles of

‘discrete density jumps rather than a continuous function, then (3-11)

can be rewritten as N
- pO 1 NL &
Qe(k) = ~2nT E;—w (k)ifl Py exp [—2nkzi] & (3~-18)

where NL is the number of vertical density discontinuities in-the
lithosphere and Ap~pm~po, the difference between the lithosphere sub-
stratum and topographic dengitiéh: Note that, to maintain internal

consiastency, it is necessary that

I3




p, = Ap (3=19)/

ﬁ=l such that surface

topdgraphy is isostafically compensated by the deformatdon of a single

A simple and’commonvassumption is.that N

density interfade.presumed to be the Mohorovicic discontinuity, found
at the base of the crust. K Its exisgence is baseg on deep structural
seismic nefraétion studies [e.g.-Goodacre 1972], Thus, Equation (3-18)

reduces to the form o .

¢ -

Qe(k) = =277 0, Wi (k) exp [-Zwkzm] (3-20)

5
L]

where z_ is the depth of the compensation density structure. Clearly,

8

the imelusion of the effects of other major demsity interfaces, such as
the mid—-crustal Conrad or Riel discontinuity which is believed to exist
within the crust of the Canadian Shield and west-central Canada fe.g.

Thomas &t al. 1978, Green et 2l. 1979], can be easily accommodated.
-~ .

L)

+ The shape of the theoretical isostatic response function of a

8

thin elastic plate, as it varies with k, depends strongly on the choice

¢

of z, as well as on the chosen flexural rigidity D of the plate and

o 4

' these dependencies are illustrated in Figure 3-4. Recall that ¢'(k)
[in Equation (3-20)], which varies in the range 0 to 1, increases as

D dec;eases [cf. Equation 3-4ii)] and .is unity when D=0 such that
topbgraphy is in a state of local isostatic compensation [subsection
312.3]. In such g case, as shown in Figure 3-4, the respbnse function

@
hehaves as a simple exponentially decaying curve, the decay rate of

¥

° s

=y
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P
8

Figure 3-4. Theoretical isostatic response functions Qe(k) of

°

*the thin elastic plate model; model parameters as shown.
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a , 2

1

which is determined by the compensation depth CH As D increases, so

* that“isostatié compensation is regional rather@than local,,QG(k) falls -
off at smaller k in a fdshion which is characteristically ngn-—exponential.

L4 -
L4 3
P4 ~ o a

. ¢ ) "The ambiguity inherent to the interpretation of observed.
:; - feogtatic respopse functions because of the co-dependence of the ‘
N . ' theoretdical gurveg_og compensation depth and flexural rigidity has beexn
o ‘ discussed by Cochran [1980] ond McN9tt [1980]1. Tor cxample, Cochraﬁ

argues that United'States [Levis and Doriman 1970] and Australian

[McNutt and Parker 1978] isostatic response data can be intefbreted to
show that D for each region is similar rith as much justification as

N ' MeNutt dand Parker’s [1978] interpretation that Australion D was olg~

N L]

’ nificantly lower. Cochrxan, in hig analysis, emphasized adjustments

5

, of zmnwithin reasonably expected bounds of crustal thichkneas. ° Melutg

.

[1980],.dh the other hand, argues‘that congideration of the nature of

the curvature of observed Q(k) im the middle wavelength fall-off region "

o [

‘ . is most important in determining flemural rigidity.

> . \4'(‘ .
. G
. ' 3¢3.3 DResults. Visval ipspection of the observed ifsostatic
T R ® . v N
résponsé functions tFigures 373 A,b)] suggests that there may be
. systematic’ changes in ¢ character as the age of the gedlogical

N

proviﬁc%foom which they aze,derived variés. With respect to the ‘
Cordillerafi, Appalachian, and Churghill'province‘Eespogse funetions,

"fhe olderathe peology, the more rapidly Q(k5 falls off to zero values,

3

Greater errors dQ(k) and smaller coherences v2(k) accompany the enhanced

s n o @ «
fall-off of Q(k) as age increaces. The coherence between gravity and

topography, at all but the smallest wavenumbers, in all reglons except
' the Cordilleran region,.is very cmall [ef. Table 3-1] although no

o
§



2

’

3

»

¢

' ,been agoumed that Po and pn are 2700 and 3300 kg mw3

ac for values of D in the range 10

smaller tgan that xeported for Australia [McNutt 1978, p. 106] .or
& . “ :
presumably -that of the United States [unreported]. The possibilities

that the fall-off of oboerved iaostqtic regponse functions, the

o »

N

character® of vhich is crucial to thedr interpretation, iy controlled

2

by the geological noise in the gravity data relative to the pouer of

the topographic signal, ond that the true ?ﬁ%static regponse functlon ®

)
1

in such a case is not ragolvable, cannot be dismissed. -
/

-

/ a
Thip cautiqy;notvithstanding, observed Q(k) have been compared
; .

to model predictions in terms' of the one-norm misfit between them. The

4

13
One~noTM micfit is a_measure of micfit which takes into account the

-

error associated with the bbservations, and is defined as LT
‘ ~ < L]
N Q (& )-Q(k) .
M o= 3 |2 E T (3-21)

Q r=1l¢ dé (kr)‘ ’

.G’

W e
i

<&

vhere N, is the number of observed cmcemble estimates in Q(k). QHQ is

1
plotted as a fumction of flexurmli%igiéity D and various compengation

depths z_, for each of the oix othdy areas, in Figures 3-5(a=f);

RAd
4 1y

theoretieal Qe(k) are caleulated using BEquation (3220) in which it hag -

. N ¢ @

° d ¢ [

These densities are im the ranges of those customarilf ascigned §o,@pper

~

cxustal and mantle material; moreover, Banko égﬂglo [1977] have chowm
i . '

that the. results of" comparicons of icostatie response data to those

‘o

. derived from the elastic, plate model axe not. cemsitive to the choice of :

- .

Po and o provided the choices are within geophysicadly reasonabl

@

. bounds. Misfito M, were evaluated for each otudy arca for D=0 ag well

¥ » a

18~1028 o imérementing by powers

g v

»am ,
respectiely. » ° &
S 7

-

S

g



%

&

E5

Flgure 3-5. One#norm miofits M, between icostatie responoe

. Q
oboexrvations and models [Equation (5-21)] having the indicated

v

-

‘parameteﬁgwalues for the. (a) Cordillcran, (b) Appalachiaﬂ,
(e) Canag%qﬁ Shﬁéld, (d) Gremville, (c) Churchill, and
- } ' ’

(f) Superior study oreags.
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& % »
of 10. The compensation depth z  was varied En the range 5-60 dem

]

incrementing by 5 km. Resulic for several sample values of I within
this range, including the value of 2. wvhich provided the overall
. ninimum MQ’ are incorparafed into Fippres 3-5(a~f). The t@éqretical‘

isostotic response functiqns Qe(k) of the thin elastic Piate model,
° cglculﬁted for the minimm misfit [Dszm] pairsg‘as illustrated in
P
Figures 3-5(a-f) for cach study area, are plotted in Figures 3-6(a=f)

where they can be compared to the observed Q(k). . ‘ %§ ~

Examination of Tigures 3-5(a~f) reveals that, for all data
sets, as z becomes deeper the maximun flexural vigidity at which the

smallest M occurs decreases by about one order of magnitude. Con- T

R Q
1 currently, as compensation depth increases, the misfit veslilts become
v progressively less sensitive to clicice of D. The reason for this
7 1

feature of the results can be seen in Figure 3-4, in which theoretical

‘ . isostatic response functidns are plotted: ‘there is relatively greater

-+, displacement of the theoretical z =20 Im curve than the zmzao km curve

o 4
as D increases from 0 to 102*

o i%ﬁless ability to .distinguish among D.

Nm fom each. -Thus, as 2. increases there

The misfit results of Figures 3-5(a~f), taken as a whole, -
§ N

indicate that the reproduction of isostatic response observations by

the thin elastic plate model is controlled more by the choice of the

| plate's flexural rigidity D than by its compensation depth z " Con=

o

S

‘ ‘ gidering, for example, the Churchill province results [Figure 3-5(e)],
"\' o ,
a lithospheric flexural rigidity in this region of 1022-=1C123 Nm is X
] : @ .

) H

indicated regardless of° the choice of 2, while, conversely, there is

Pel

little reason to choose among am. Other sets of results,.such as those
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Figure 3-6. Comparison of observed isostatic response functions
Q(k) with response fupctions Qe(k@ of the elastic plate model for
the (a) Cordillerzn, (b) Appalachian, (c} Canadiag‘Shield9 .

(d) Grenville, (e) Churchill, and (f) Superior study arcas;

model parameters as shown; choice of parameters explained im the ~

texts ~ e .

i



U

W,

wy G =“Z ‘WN0l=0
wy G2 =¥z ‘wN 0=0
un 0g 0l = WZ ‘wN 301 =a

d uwy Gl = wz twN 201=0

o

fi'!

oooooooooooooooooooo

upJ|Ipso () >

Oy,

€0’

mmo....

al-

v

(1)°0 [-w 10ow] (1)D



S

[mGal m-1] Qe(k).

N

Q(k)

T

<

k! [km)

1000 "~ 500400300

-

@o (b) priiulachian

»

D = i022Nm ;
. Zm=10.km

o B
.

=3

002

k[km™]

©

004"

LY : o ?

Fe)



¢
¢

€

06—

k[km] -

o a " (¢) Canadian Shiéld
D102 Nm; Zm=35 km

%

-~

100~ 500 400 300

"0

03—

-k [km]

| ]
002

-

i
{
|
!
l
i
i
!
|
{
i
i
|
i
|
4

 emm——ee=- D=10%2Nm; Zy=10,30km

16 s



92

.w\ ¢
* u - B
: . \Q\ /0 -
/ - ' = H_lexu &
oj0° ° 800 900 00 200° 0
. “ 1 1 1 —1 ] ] “ 1 0 .
00l . ® oSl 002 00£00b 00S_ 00Q! .
+ ) | [wy] % ,
//,1%/(\ - —C0- ')
z
=
-3
-120- &
. .3
) & iy & : ° .
uy 0g'g="Z ‘wN |;01=Q ~------- ", —fe0- £
wy G2 ="Z ‘wN 0=@ S ¢ : =
| ajjiaua19 (p)
« ) ’ yp = N o—

&

al-



e ) m.xna oy w..“
o . : —€0
[} ]
4 200 0
) — Y 0
00k 00S 0001
o [uw )iy
m » —e0-
. _ wO...
=T w09 =WZ :
’ ‘WN 5501 =@ . -160-
) HiYyaanyd (9)
: . e ) : dzp-
s a

(%)°0 [w 1pow] (%)Y



9

. R -
7
¢ a » ] o,h.
, , . ¢ | —£0
. ) .— T [1-u] ¥
0l0 800 00 200 o
i = — . Y —t I 05
= 001 00g OOt 00S 000!
(4] -
— MOI
© F —{90-
uy Op*g =Z {WNzz0l=q -~-—--=-
T mw,...sw ‘wN 501=0 , &%
, - ~douadng ( })
~ L i
- ° —i12l-

@

~



v
[
A

©

of the Corxdilleran regiop, shou increased sensi?ixé:f to choice of z
but never so much as to require changes in D greater-than one order of

3 -~

magnitude. s

- This feature of the xesuigf\fuggests that comparisons of the

. observations to theoretical functions based on models in vhich more

c}complex &ensity structures are assumed to exist will not yield

significantly different best-fitting choices of D. This proved to be

the case for the observations considered in the light of models in

* which a mid-crustal Conrad density discontinuity @aé incorporated. No

such modgl could&producg)a misfit as small‘as those already available
from the single layer models and in all cases best fits were obtained
for D falling within the ramge of wvalues indicated by the single layer
models. On the other hand; the acceptance or rejection of a“two-\l
layered model as opposed to one with a single compensation depth can be
crucia%'in‘determining whether the isostatice response within a given
region is achieved by means gf regional, or flezural, compené;tion as
opposed to local compenaat?’n Such a result is intuitdive for’reglons
for which the single layer misfit data [Figures 3-5(a-f)] indicate a’

distinct regional, response for shallow z, but one which is not

significantly better than that provided by local compensation at com—

9

pensation depths a%proaching normal crustal thickness [~30-50 km]. A1l

of the data sets under consideration have this characteristic with the
exception of those of the Churchill ‘and, to a slightly lesser extent,
the Appalachian s;udy areas. The misfits, as they vary with D, for
arbitrarily cho en sample two layer models for each of the other four
study areas are indicated by the dashed li&es in the appropriate

diagrams of Figure 3-5; the best-fitting theoretical isostatic response

1

3

]

o



v -
functions of these two layer models are plotted usingwdaéhed lines where °
g

appropriate in Figures 3-6. It should be-.noted that additional model
’ Y

complexities sucli as the two layer modification are not justified in the .

v

case of the Grenville data-from which only three response estimates vere
&

o
°

i M
available. . . .

.3.4 Discussion . N ¢ »
< : . : )

N

3.4.1 Acceﬁpahility‘of results. The acceptability of the thin

elastic plate model of isostatic response, in which the plate is loaded '

‘o

only by modern‘topography; can be judged on the pasis of the existence

9

.t i P ¢ .
of systematic, rather than random, deviations between the observations
. Ve

. o , . 2
and their best-fittiig modelled isostaégk response functions. %;19wing :

@
~ ¢

for errors associated with each of the observations, no strongf? '

evidenced systeméfic lack of fit, with the exception of the Cordilleran

¥

results, is apparent from visual inspection of Figures 3~6(a-f). )

A

In the case of the Cordilleran daﬁ?, non-random effects do
occur: at low wavenumbers the observations are consistently under~

estimated by tﬁe theoretical response of the best-fitting model while

o

at the highest wavenumbers the reverse occurs. Moreover, mo clastic

v

plate model, ‘vegardless of its chosen parameters or compensation
depth(g) overcomes this systematic lack of fit. To illustrate this

®

fact, also plotted in Figure 3-6(a), using dotted and dashed-dotted

lines yespectively, are the theoretical isostatic recponse functiops of

°
2

elastic plates which are mudh y%aker [D=0 ¥m, so that topographic is0~-

static compensation fs local] and much stronger ID:1023 Nm]gthdﬁ those
o '

g
. N e
- <y
“
L e
.

ce
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(3 A ) Y
i%%icated byﬁghebb@stnfitting one and two layer models [D31021 Nm].

2 L

s Each model is single layered and the chosen compensation depths, 25 km

and 5 km pespéctively, are those which produced the finimum misfits.
That no satisfactory fit to the Cordilleran observations can be obtained
. by modification of the model parometers D and suggests that a thin

- O -

elastic plate may be an inadequace model of the lithosphere in this

g
,<n

=

region or that the loading of the.tithogphere, the effects of which are

being measured by the isostatic response function, is more complex here:
. * - » M

) than that r%éultiné from the contémporary topography only. With respec%
£ the latter hypothesié, it is noted that much.of the Uéited States
port;on 6é§the Cordillerag&study érea is’ghand!terizgg by anomaloﬁsiy
high‘heat flow [Sglater %E.§l° 1980] implying th possible existence of
thermal loading atﬂgﬁe‘base of the lithosphere. Therefore, the failure

of the present model to reproduce the character’of the Cordilleran

results is not taken as sufficient reason to rejéct the modél.

>

§

. 3.4.2 Tectogic age variations and observed isostatic response

funciions. As noted In subsection 3.3.3, there are substantial

differences between the ohserved isosta;ic response functions of the

) various geological provincescsampled. The model being tested in the
present chéﬁter is oné im which observed isostatic response functions
&(k) are assumed to bewbhe result of a thin elastic plare, of time-
invariant properties, being loaded by modern topography. ‘There are two

‘unkngwn model parameters: compensation depth 2 and thg fleural
rigidity of the plate D. §ince, under the terms of the model, D ghould
not vary between geological provinces, the proposed test of the model

u

was that differences between the observed response functions should

Y -
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[4

best be explained by variations in 20 and t%at the indiégted zo should
be geophysically reasonable. The implications of the results of two
layer models are discussed fivst after which one layer models are s

-

considered. 5

(i) Two layer models. The ambiguity inherént to the inter-

s

pretation of 'isostatic vesponse functions in terms of the elastic plate”

o+

model was anticipated 'in subsection 3.3.2 in which the geneial char-
acteristics of the model predictions were analyzed and in subsection
3.3.3 in which two layer crustal moéels, vhich provided misfits with~
the observations not ‘substantially greater than thgse provided by the
best-fitting one layer mgdels, were présente}i° Nevertheless, as noted
in subsection 3.3.3, other than allowingoall of the observed dgta to
benreproduced‘éy models with reasonable compensation deptgs and flexural
rigiditiés~clear1y favouring regional rather £han local isostatic com-
pensation of tépography [cf. Figures 3—5(a,c;d,f)], the consideration

of two layer models did got greatly chénge the one layer reéults in

terms of the mirimum range of values of.D required to model the response

functions of all study areas. “ .

The choice of compensation depths in two layer models, within
the domain of geophysically reasonable choices, is necessarily arbitrary.
Seismic refraction reéﬁlts [e.g. Goodacre 1972] provide estimates which
pertain only to iocal areag of each geological province and capnot
justifiably be used to adopt particular crustal density configurations;
moreover, they are themgelVes only madelé of the true denegity structure
of the crust. The results of Backus-Gilbert inversion of isestatic

response, functions do not resolve major dencity interfaces, assuming

Q



o

>

+

bl [ 4 ° oy
» R ¥ A . ‘ N
they exiot, and are not realistic because they predictrsignificant

a

density inversions below the crusti[Banks‘Eﬂ;égg. 1977, McNutt 1978].
Inversion of response functio%g_using a linear programming method in
which* the density gradient ié condtrained to be Positive capnot mathe-
matically provide colutdons more comglex than those with a siné}e

~ ,
"Mohorovicic" density discontinuity [Banks_gg_gl._%Q??, Banks and Swain

¢

1978, McNutt 1978]. 1In this sense, it.is nothing more than a very

efficient method of finding best-fitting one layer "forward" models

&

,such as those preceanted In gubsection 3.3.3.
. f T

° -

a <8

-

i¢]

It follows from the nonwuniq%enegs inherent to the inteépreté— o
tion of gravity anomalies, of which isostatic response functions are

| «
derivative, that, for edch of the data cetsy any wmbed of well-fitting
models based on progressively more complex lithosphoric density config-
urations could be found. The maximun choices of flexural rigidiFies

o

allowed by cuch models can be juaged on the bagis of the misfit data

]

. presented iIn Figures 3-5(a-f) and they vary from about 51:1021 Nm for

24

the Grenville province to perhaps 5x10° Nm £or the Churchill.® The

minimum, with the poasible exception of the Churchill province, is 0 Nm.

(i1i) One layer models. It is likely that the aumber of avail-
able observations does not justify the supposition of complex density
‘models. It ig therxefore grebably be§t to consider the data simply in
terms of the best-fitting ono layer g@dels, tﬁé‘indicated parametefs of
which,. for each @f the study areas, are summarized in Figure 3-7. Any

pairs of parameters [D,z ] which produced misfits within 107 of the
)

minimum misfit ave included omong those providing the best—fitting

-
] v

ls

models. ‘ .

-
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Figure 3-7.

R

v

Summarf of ;érgmgfefs; Flexural rigidity D and

compensation depth 2 for the best-fitting elastic plate

u models,

e
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Figure 3-7 is comstructed according to increasing relative

a o ¢

tectonic ages of the study areas from top tb bottom;-note, however, that .
on Q

the Canadian Shield results are a hybrid of those of the Grenville,
[ &

Churchill, dnd Superior regions and that the Grenville results are based
1

on only three Q(k) estimates. It can be seen ‘in Figufe 3-7 that there -

-
-

is no systematic pattern of variation of the flexural rigidity D among

A

the sampled geological provinces. If D is assumed to be constant its

value presumably falls within the range 1020—1022 Nm. However, flexural

isostatic compensation of topography is strongly indicated for the

Cordilleran, Appalachian, and Churchill regions vhereas local compénsg—

¢
v

tion is acceptable ﬁithin the Grenville and Superior provinces. On this
i . d
basis, it is arguable that thé flexural rigidity of the lithosphere
€ » * >
measured in terms of the present modél does vary depending on the

lithosphere's tectoniclage but that the dependence.is not systematic.

wy
t . ¥

On the other hand, Figure 3-7 shows that there is a_distincé tendency

a

of z > 88 determined by the best-fitting single layer elastic models, to
increase as the age of the lithosphere increases. This may be fortuitous;
the measured isostatic response of the Cordilleram region may be con-

© [y

taminated by thermal effects as noted in subsection 3.4.1 whereas the ©

-

shallow compensation depth returned for the Appalachian region, since

much of its southern portiom is characterized by shallow, compressional
' 1

tectonies, may be indicative of a demsity contrast existing between

mainly sedimentary supracrustal rocks and the denser orogenic. basement

4

complex. Otherwise, the systematic incyrease in z, with age may itself

be evidence of geodynamic processes such as (1) the downward migration .

3

of phase change houndaries as cooling of the lithosphere occurs and/or

(2) the sinking of geochemical/petrological houndaries as elastic

I
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- , ‘ .
. flexural stresses within the lithosphere are relaxed by some time—

’ dependent deformation mechanism or simply (3) the effects of erosion

stripping away upper crustal demnsity discontinuities. Processes (1) .

and (2) would apparé;tly deny the elastic plate model under considexr-—

o

I

.ation, . e

N s
« -
q . &
’ Can 3

3.5 Summary

It has been shown that the interpretation of isostatic response

functions, even in terms of th® simplest model available, is very

7/

difficult- despite using a tested merhodology and probably the best data

. . available, subdivided into as geologically homogeneous units as practical.

This is mainly a comsequence of the non-uniqueness of gravity anomalies, )

t

A forward modelling approach was used but the results.are no less

o

general than the linear programming inversion technique applied by
g

Banks et al. [1977], Banks and Swain [1978], McNutt and Par%gr [1978],
= .o
‘ and McNutt [1980]. ¥%

’

4 o

{
The elastic plate model under comsideration is characterized

- 1

by two parameters: the flexural rigidity D and the’density gradient of

)

the lithosphere, simply represented by one or two major discontinuities. *

Theoretical considerations as well as misfit analyses of individual
.o ‘ »

obsexrved response functions indicate that the results are slightly more

o O
B
“ A

sensitive to the choice of D, as argued by McNutt [1980], rather than

Ed

. to the assumed density structure. In terms of best-fitting models the

' qualitative differences between the ohsérved'isostatic"resﬁonse functions

[

2

are accommodated mainly by changes in the demsity structure [Figure 3-7].

“ °
1 s
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These two observatioﬁs could be construed to indicate that the flexural

&

rigidity of the lithosphere in all of the study areas is the same within

22

the range 1020—10 Nm. Whether the difference in parameter sensiti-
I

' 3

t . .
vities is great enough to be significant in the interpretation of the ° t

overall resultd is equivocal [cf. Cochran 1980]. Rather, the fact that
the modelled flexural rigfditids vary at, least over two orders of
. o .

magﬁitude’ia\considered to be good reason to reject the time-invariant

elastic plate model.

v

The rejection of this model is supported by the
Cordilleran results which do pot acceptably conform to model predictions

and by the systematic dependence of tfie mpdelie& compensation depths on ’

tectonic age [Figure 3-7]. '

1

Of the general classes of rheological models of the # thosphere
. ]

introduced in Chapter I, the time-invariant elastic plate model is the

]

only one which has an isostatic function which reacts passively-to .

massive erosion of topography such as that observed in old continental .

regions. If the elastic model is rejected as being umsuitable then more

e

[

complex models are required and explicit consideration of the effects of ’

erosion is inescapable. An analytically tractable erosion.model is

n

discussed next.
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v o Chapter 4. A Linear Model éﬁ‘Continental Erosion ¥

o
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e
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- . , 4.1 .Introduction . -
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- L] m‘[‘, . . . . . - . » o + ) o .
& . 3
§ Continental topography obviously erodes, If the lithosphere

o Yo a

. . behaves as an elastic plate; the case discusséd®in.Chapter 3, and is
S . -, loaded by’ero&;ng.topogﬁaﬁﬁg; then'éts isbstdatic response [ﬁquation
' ) n w R ° ° )

- a
-

- r a® o
(3~11)] is not a functioF§of time; the reaction td erosion is instan- -

.

o taneous.: At any observation time it is the remaining topography,alone
. ’ ‘ . 3 ,
" «which is being fdexurally compensated. Should the elastic properties of

o .
[

2~
3

o7 ¢ 7 . ey - . -

o 7 - the plate change through time then, transient effects may occur but’ these
- \\‘ ;"n - . ! ' ‘-'h o
{ . would not be' the result of the age,pf the load, and its erosion but, .
. Anted -he ¢

o k3

¢ - rather, presumably of the age and changing properties of the plate.
[ ' . - -«

o ' ° N
s “

‘e o ° "If the rheology of the 1ithospﬁ§re falls into one of the other i

. - three general classes of rheological models introduced in‘Chapter 1
.o »

, .
” ’ [elagtic-plas‘t;ic, viscoelastic, and mon~linear depth dependent], then it

'

. , is necessary in comsidering the isostatic response of continents to

2 v

[ . : ' .
. incorporate the influence of the progressive decrease in the topographic

/ . -

»

* "load resulting from erosion.

L4
k]

.

s P

. Erosion can be thought of as. a .feeédback mechanism. There are

.
o a ’ -
- ‘ ’

v
two competing isostatic effects to-consider. (1) It is known from
geological [e.g. Ambrose 1964] and geomorphological observatiomns , .

2 [e.g. Adams 1980] that regioﬁs of high topographic relief erode more

«

rapidly than‘regions of low relief, But it is recognized, from the .

: existence of pediplains [e.g."Pugh 1955] and from tectonic basin analysis -

PN
‘-* v b Ny

Cy o «

e g i e e =
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2
[e.g. Fralick 1981], that é%oded regions arg isostatically rejuvenated.

>

That is, as topography is worn away and the rate of erosion diminishes,

the .action of isostasy is one of uplift and enhanced erosion. (Zl:If
the rheology of the lithosphere allows-the stresses resulting from

i\ .
topographic loads to be relaxed in some time-dependent manmer, then

» \ ' - M
topographic height will decrease through time- independently of erosion

= as a result of "sinking" into the relaxing lithosphere. The action of

~

this aspect of isostasy is one of .reduced erosion rate. .

The notion of erosion acting as a kind of feedback suggests
that %Es isostatic effect;‘may be quantitatively modelled in terms of a
. Tinear filtgr network in which the feedback cdmponent processes measured
,topography into an eroded remnant. The foreward compoﬁent of the net-
work would descfﬁbé the deformational response of the lithosphere to the
initial topography {éss the fedback é;osion. The development of such a
|

‘ \ . .
model in whicF the ‘isostatic behaviour of a viscoelastic lithosphere is

congidered will be pursued in dhapter 5. In this chapter [section 4,27

. a simple quantitative-linear relationship between erosion rate and topo-

graphy is hypothesized. Since it is convenient to consider the isostatic

o

s - n \ .
response of lithosphere in the wavenumber demain the erosion model is
L) }‘ ‘r"ﬁ

4 D

also developed in the wavenumber domain. The parameters of the erosion
model are discussed in section 4.3 in the light of the tépogrgphy of

South Island, New Zealand, a continental region undergoing rapid .tectonic

[

1
i}
uplift and massive egosion. fo o
. ey

-

o

Vi



+

4,2 The Erosion Model .

3

&

t 4,2.1 Erosion of speétral topography. 1t is assumed that

3

3

'tgpography in the spectral domain erodes at a, rate which is pfpportional

'y

3
t¢ its height. Thus,

E,e) = B H(E,6) + N (&t) (4-11)

o
[N

”

where ﬁ(ﬁ,t) is the erosidn rate of topography H(ﬁ,t)‘at'time t and the

o | .
"noise" term Ne(k,t) accounts for the effects on E(k,t) related to local

°
1

changes .in lithology, vegetation, and climate. 'The proportionality

h%

-

factor B(k) can be more comveniently written as
) "

~- o ~ I3
i

B() = - [o(0)]™F (4-111)

where o(k) has dimensions of time. The negative sign in (4-1ii) arises

¥

from the fact that the loading effects of erosion are opposite to those

Py

of topography. It has‘been assumed that o(k) is not a function of time

a

and that it is independent of wavenumber direction. Furthermore, if
1

erosion is a linear process in which each harmonic of topography can be
considered independently, it is expected that the rate of érosion will
bé proportional to the maximum gradient of that harmonic and therefore

At}

to its wavenumber. Thus,

o(k) = wk © 3 o(k)>0 . (4~2)

@

©
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\ .
where w and € are constant and neither is negative. As k+0, the case
of no harmonic topographic gradient, ¢ + « , implying that no erosion

occurs,

o(k) is referred to as the erosion time constant [for a given
wavenumber ], terminolog§ which is derived from the solution of the
simple differential equation embodied by Equations (4-1) in the case

where there is no isostatic adjustment to erosion. That is,

aik,t) = chi) +“§\(§,t) . (4-3)

where H;YE) represents the initial topography, prior to erosion,uand the

sign convention of (4-3) is cogsist;nt with that of Equation (Z—lii).

@

The solution to (4-1i) can be found, for example, uéing the Laplace
transform .

N
~

° L{F(e)} = F(s) = f F(t)’exp [-st]dt (4-41)
o - 0

N

‘and its inverse >

° - °

A

THES = B®) = g § T(s) exp [stldr (4-hit)
[

9
s

)

where ¢ is the Bromwich contour in the compf%x plane. : Equations (4-1),

ignoring the effects of Ne(k), and¢ (4~3) Laplace transform as

a e

H

sE(k,s) - B(E,0) = 3—(—1—{3— H(k,s) (4=5)

"
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and

HE,s) = ls-Ho(It) + TE,s) (4=6) .

Given that ﬁ(ﬁit)qis the rate pf erosion ofﬂtopography of wavenumber ﬁ
at time t, the function E(i){,t)9 the Laplace transform of which is Ekﬁas),
represents the amount of erosion at & which has occuxred since the
system began at, say, t=0, E(ﬁ,O) is theéefore Zero and,;ombining (4~5)
and (4-6) to eliminate E{ﬁ,s) gives

=>

o HE,s) = [s+ L/o(k)]E 1) (4-7).

1

o

The inverse Laplace transform of (4-7) provides a solution for H(ﬁ,t),

8

a0 = B @) exp [-t/0(k)] (4-8), .

and it is seen that the erosion results in the simple eXpomential decay

»

) ¢
Y

+\
of Ho(k) with erosion time constant o(k).

°

4:2.2 The erosion model in space and the effects of sea level

changes. The ability to deal explicitly with the effects of sea level
changes [e.g. Turcotte and Burke 1978] on erosion rates in terms of the
hypothesized model is‘sacrificed to the convenience of working in the

Fourier domain. Consider Equation (4-11i); its space domain equivalent is

(¥ ,t) = fsf b(f -1) b (7,t) dxdy + n_(F ,t) (4-9)



° . 110

e

vhere s is the, surface vhich contributes to the erosion. Equation (4-9)

&

shows that the védriation of erosion rate é(?gt), over a geographic

region at time t, is assumed o be linearly determined by the distribu-
> -

tion of the regiomal topography at that time h(r,t) measured relative

to some constant datum surface. The noise term, as in the wvavenumber

t

o .
domain, accommodates that part of the erosion rate not caused by b and

3 ’

related to factors such as local climate and lithological variations.
Equation (4-9) is analogous to ﬁquation (1-1) in vhich the gravity
anomzly at any point was wri?ten as the_ two-dimensional convolution of
q, the invagse Tourier transform of the isostatic respdnse func;ion Q,
and the toébgraphy, If (4-9) is recast gﬁhh that it is the height of
topograbhy h(?,t) above sea {evgl hs(g,t) vhiech is cpnvolved with b

instead of simply the height of the topography above a constant datum

surface, then the sea level corrected erosion rate is given by

]

e ,t) = [[bE D) [h@F,¢) - b (7,t)]dxdy

{i

[f G -0) n(E,t) dudy

- ff b(go';) hs(?,t) dxdy (4~10).

D v

The Fourier transform of Equaation (4-10) is

E(k,t) = BOOE(E,t) - BOOH (K,£) »
. where, since sea level may be assumed to be constant as a function of

¢

position ?,Hs(ﬁ,t) is’ non-zero only when %=0. However, it has already

L
been assumed that B(0)=0 [Equation (4-2)] since there is no topographic

1N \

o
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gradient vhen k=0. Under such circumstances Equation (4-11) reduces -

v

to (4~1i). Thus, it is seen that erosion rates, determined by the

convolution equation (4-1i), are relative to one another just as

[}

gravity anomolies, determined by the analogous convolution equation

(1-1), are, of course, relative measurements. This characteristic of

~3

the erosion model is acceptable if the topography under consideration

7

has remained above sea level, and ‘therefore has continuously eroded,

~
throughout its history.

- Whether or not this criterion can be met and, if not, wvhether
P Y

it has serious consequences, will necessarily have to be assessed when

s

the model is compared to observations. It remains that the linear model

can be judged only on the success or failure of its applicationm.

4,3 Yndirectly Testing the Erosion Model

v

Y
¢« 433.1 Introduction. The proposed erosion model [Equations

(4-1) 1 expresses erosion rate, in the wavenumber 4 domain, as the
product of’ a transfer function, B(k) = -[c(k)]—l, and the spectral

/ 3
topography. It is desired to test this model and, before applying it

to isostatic models, to try to determine numerically the time constant

-:

spectrum o(k).

[

-

Estimates of regional srosion rates, historically made on the

basis of estuarine and deltaic sedimentation rates [e.g. Gordon 1979,
Menard 1961], dissolved and suspended stream loads [e.g. Owens, and

Watson 1979], or paleobarometry and radio-isotope dates [e.g. Dallmeyer

@
-

[N
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., 1975, Doherty and Lyons 1980], canmnot by themselves be directly applied

to the problem at hand. England and Richardson [1980] considered

k]

average denudation rates of young orogenic belts based on paléobaro- °

*

.metric observations in conjunction with crustal thicknesses beneath

present-day mountain ranges and suggested that the erosion of orogens .

takgs plaée vith a time constant in the range 50-200 Ma. The relation-
ship between this estimate of an erosion time comstant and o(k), however,
is not obvious. TFirst, it implicitly includes the amplificatiéﬂ of .
erosion which may occur as a result of isostatic réadjustment; secondly,
~Englaﬁd and Richardson’s time constant of erosion refers to topography

-

consisting of many spectral components.

Ideallg; to numerically determine o(k), prior to developing a
complete model incorporating the iso;tatic response of erosion, it is
necésgary to figd a larg‘?regionB in a manoer analogogg to the calcula-
tion of isostatic response functions, for which topography and erosion
rate data are available and from these data to calculate the transfer
fgnction B(k) = —[c(k)]-l.' To the Futhgr's knowledg;, however, there

are no such large regions where erosion rate has been observed as a

geographic function and therefore an alternative approach is required.

Knowledge of the uplift rate of South Island,'New Zealand, as
a functioﬁ of position suggests an indirect method of testing the
erosion rglatign éostulated"in section 4.2. Wellman [1979] has de%er—
mined the variation in uplif; rate across South Island on the basis of
geomorphological observations such as th% character of mountain summits
and the tilt of stranded shorelimes of glacial lakes. His upliffr raté

¢

map is reproduced in Tigure 4-1. The rapid uplift of Séutthsland is

14



©
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Figure 4-1. Uplift rate map of,South Island, Nev Zealand,
gshoving major geological faults [from Wellman 19791 uplift

Ed
rates in mm yr_l.

3
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tecténic in oéigiﬁ [e.g. ﬁgl&man 1979, C.J.D. Adams 1979], related to
vertical displacement along the Alpine Fault, a major structural feature
vhich forms part of the béundar& between the Indian and é;cific plates.
In conjunct%on wiFh this tectonic uplift, South Island is undergoing

raplid erosion which may be in approximate balance with the uplift

[J. Adams 1980].

The proposed iﬁdirept test of the hypothesized erosion
relation [Equations (4rl)} assumes that the character.of the currently
obgerved topography of South Island is producgd by th;i&nteraction
between the tectonic uplift and the erosion [J. Adams 1980]. The form
of the e;osion 1s assumed to be that of the model described by Equations
(4-1) and discussed in.section 4.2. In this section, a model of the

linear transfer function between uplift rate %nd topography based on

the sbove premises ig developed and compared to South Island observations.

4.3.2 A model of tectonie uplift and thpography; In a region

undergoing rapid tectonic uplift and massive erosiog the observed topo-

graphy h(?,t) at some time t is assumed here to be the result of the

total uplift w(?,t) to date modified by the erosion e(?,t):

“

W0 = b @)+ e, + el (4-12)
where ho(?) represents the topography which pre-existed the ongoing
phase of uplift. Equation (4-12) obviously describes a general model
of topography for any region regardless of the &echanism of uplife. If
tectonic activity has ceased then W(?,t) may be purely a result of

ispstatic readjustment. In the present case it is assumed that any

t

u
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>

L4 !«')’ - .
isostatic component in w(r,t) is very small compared to the tectonic

compofient. g . .
- 3 v -

-
-

The’total uplift which Has occurred by some t can be written .-

-«

w(?,t) = ¢t %t(¥) (4-13)

[ - .
where wt(r) is the uplift rate at the observatiom time t and c is a ) :
constant; c=1 if the wplift rate has not varied during its history. If

o the'present uplift rate is greater than the past average then c<l and

@

{
i
I
|
s -+
f vice versa. Note that c is assumed not to be a function of r, an accept-
| o
f able assumption provided the entire episode of uplift has been the
E
{
!
{
t

1

result of a single tectonic regime. Equations (4-12) and (4-13) apd

-

combined and. Fourier transformed to yield

| » . ’ '

: , H(K,t) = HO(K>/+ ct r?wt(it) + E(X,t) (4-14).

I f -

| e

Unless the uplift has been purely isostatic H(ﬁ,t)'and Ho(ﬁ) are not

necessarily in phase spatially. The Laplace transform, defined by

Equation (4-4i), of (4;14) is

i HEe) = S @) +
which, combined with the Laplace transform of the hypothesized erosion
model relating topography to erosion rate [section 4.2], .
-l’ —

O‘(k) H(k,S) ' (4"‘5): . g

, sE(k,s) - B(K,0) =
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gives . . 4
=T 1 o = c .« > - .
H(k,s) W Ho(k) + m Wt(k) (4-15)

iy

where it has beenwassumed that>EC§,O)?0. The inverse Laplace transform

of (4—13), with the terms rearranged, is

N ° Q
\\ «
v?rt(ii) = z(k,t) H(,t) - exp [~t/o(k)] Z(k,t) no(i?) (4-161)
© / ' . 1
where °
: Z(k,t)* = [co(k) {1'= exp [-t/o()]} L . (4-16i1), .

@ -~

- &

¢

LS (& < 2
Because o(k) was assumed to be independent of the direction of the WaQEN&

- number k [subsection 4.2.1], so also is Z(k,t). If, by time t, uplift .

v - a

has exceeded erosion, that is,

.- et t?rt(i?) + E(k,t) 2 0

A -

o '

[regalling that’ in the present frame of reference uplift is negative], .

¢

th%? tbpogréphy has grown in amplitude and, .from (4-14), [H(ﬁ,t)I)lHo(ﬁ)l.

Thus, the second term of the righp—hénd'side of Equation (4-16i) is

“

absolutely smaller than the first; it is further reduced by the effects ™
of the eﬁponential term. If geologicai evidence shows that it is likely

that [Hb(ﬁ)l<<|ﬁ(k,t)l, as in the case of South Island [C.J.D. Adams.

-

1979, Hurley et al. 1962], then the second term may be small enough such -

that' it can be considered as noise. Thus, Z(k,t) would define the
“ 'S\n\,-%

. 0 °
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theoretical transfer function, or admittance, uader the given conditions,

s «

N H

between topography and uplift rate.

-

The gene'l"al shape of Z(k,t) is illustrated in Figure 4-2.

Replacing o(k) in Equation (4-16ii) by Wk € [Equation (4-2);. section

'4,2] gives

<

.

Z(k,t) = [cmk-8 {1 - exp [—tkefw]}]_l (4-17),

~
1

¢ - ‘ v

the asymptotic behaviour of which, as tka/m becomes large, is oﬁ the
< 1y FRYd

form [ef. Figure 4-2] °
] 3 ‘ ‘&

’ &

a

., its k=0 intercept, Z(0,t) = ([ct]—]", is found from the Taylor series

a

expansion of (4-17): o

14
_ct?k® | ce¥k?®
, 2ty 312

¢ o

» %
v 0

> C Z(k,t) = [et

©

Figure 4-2 shows that parameter c has a scaling effect only; t acts as

’ ) N

a scaling factor as well as determining, in conjunction with parametérs
o %

L

B

e and w, the rate at which Z(k,t) becomes asymptotic.

v

It is hoped to constrain these parameters-of Z(k,t) and, in

doing so, test the fundamental ‘rosion relation postulated in section

o

4,2 i)y coméuting the observed transfer function between uﬁlift _rate and

topography for South Island, New Zealand, using Wellman's [1979] uplift®

rate map and fhe methodology described in subsection 2.2.4.

1 o

”

v

Z(k,t) = k%/cw (4-18) ; -

3
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@

Figure 4-2. The general form of the theoretical uplift rate-
. “ I "o
- topography transfer function Z(k,t); ¢ and, w are the parameters

of the postulated erosion relation [§ection 4.2%; scaliﬁg

1

factor c depénds on whether the observed uplift rate was

greater or smaller prior to observation time t. Z(k,t) assumes
its asymptotic form at wavenumbers greater than approximately
45wty e,

* - . .

0
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4.3.3 Calculation of the uplift rqtevtopography transfer

function for South Island, New Zealand. A theoretical transfer functiom -

Z(k,t) between tectonic uplift rate and topcgrap%y was formulated in
subsection 4.3.2. Ansestimate of Z(k,t) is found here using the uplift
rate data reported by Wellman [1559]5 Wellman's map [Figure é—l] was
digitized by visual averaging within 20\¥m square cells over a region

of total dimensions 720 km by 180 km [Fié&res 4~3(a,b)]. Topography

was derived from 1:500,000 scale topogtaphic maps, contour interval
1000 feet [New Zealand 1976, Sheets 3 and 4], visually digitized at

longitudinal and latitudinal intervals each of 10 minutes. These

o L} b

estimated :10 minute by 10 minute)tqpographic means were then averaged
into the 324 [36 by 9] cells of thé cartesian gr%d for which:wuplift

rates had been determined. The contoured cell averages for each data

°

I v
4

set are shown in Figures 4-3(a,b).

£, e
b

The admittance between these two two-dimensional discrete

= I3

functions was then estimated in the manner described in section 2.2

°
v A

with one modification: because of the short data length 'in one dimension
[9 points only] and th? consehuent large perceﬁt?ge of the grid which .
would be affected by tapering of the edges [subsegtion 2.2.2], the

o !
36 by 9 grid was interpolated by means of a bicubic spline [Swain 1976]
into ofle with dimensions 80 by 20 and digitization interval 8 km. Thus,
a taper apPlied to the three outermost columns and rows of the data,
for example, would affect far less of the total array. The reduction.
inSthe digitization interval results in additional high frequency
spectral estimates [the Nyquist freggency, Equation (2-4), becomes

grefiter] which ‘are not supported by the actual observations and which

a
©
o

©

°]
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* Figure 4-3. Contout maps of the 20 Y by 20 km digitized
(2) uplift rate data [Wellman 19793 cf. Figure 4-1] and

y (b) topography [New Zealand 1976] of .the South Island, New

1

Zealand study area; units are (z) mm yr — and (b) 100 m.

s

Digensions of .the study area are 180 kmtﬁy 720 km.

a
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are probably affected by aliasing [subsection 2.2.2]. Tor this reason,
the additional part of the calculated transfer function is not con-
sidered in the subsequent analysis. Estimates at smaller wavenumbers .
are unlikely to have been affected by the grid interpolation.

09ge

5,3.4 Results and discussion. The results of the transfer

v

function calculations are presented. in Table 4~1; the admittance
estimates é(k,t) are plotted with their associated standard errors in
Figure 4-4. The ratio of the means of the topography and uplift rate
data sets is plotted as é k=0 estimate of the admittance. Tha mean
unbiased coherence squared ;2(k) of the three admittance estimates in
the range k<0.0104 km71 [wavelength > 96 km] is 0.50 and their minimum
is 6.40. No adﬁittapce estimate at any higher wavenumber has ;2>0.31

3

and most are much less.

It is not surprising that the calculated transfer function

3

Jbetween the uplift rate and topography of South Island is as incoherent

as it is. One reason is that the noise component in the data is

probably Very large relative to the amount of data which is available.

v

“ For example, Wellman [1979, p. 13} considers the uplift rate data

"nowhere ... to be less than 25% in error." ‘The smoSthing of discon-
tinuities along geological faults during the digitization of the uplift

rates [ef. Figures 4-1, 4-2(a)] contributes more error,

More serious problems may arise out of the theoretical basis

@

of the uplift rate~topography transfer function. Fiﬁét, the methodology

-

used to estimate Z(k,t) [subsection 2.2.4] relies §?>the assumption that

the noise associated with the output is not correlated with the input.
. ?‘ N

Q

o
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' Tigure 4-4. Observed uplift rate-topography tranéﬁgr function
Z(k,t) of South Island, New Zealand; filled circles represent

estimates with Y2>0-30; ertor bars correspond in length to two

standard errors. .

1
&
A



126

[1-wy] A"

.- GO0

@

S

]
0Sl 002 _ 00S

(+'%)Z

o]




1)

Table 4-1% Results: ensemble wavenumber [kﬁ], wavelength [kr~

L,

number of ensemble. raw spectral data [mr], uplift rate—topograéhy

unbiased coherence squared estimate [yz(kr,t)]°

kr[kmnl]

0
0.0035
0.0069
0.0104
0.0139
0.'0172
0.0208

0.0244

0,

kr_l[km] m,
- 1
288 3
144 12
96 14

72 19

58 26

48 24

41 42

~

v

ickr,t)[Ma]

1.819
2.273
3.126
1.408%
-0.505
1.695
1.490

1,160

\

dz(kr,t)

1.800
0.737
0.924
1.068
0.619
0.649

0.796

. trapsfer function estimate'[z(k,r,t)]9 standard error [dZ(kr,t)],
- P

~2
vk _,t)

0.60

0.40

0049‘

0.01
0.31
0.09

0.05
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In the present case, lhe output and input are uplift rate énd topo~
graphy respectively. The assumption that topography aﬁd noise are
uncorrelated may not be valid if a significant component of the
currently existing topography of South Island derives from that predat—

ing th§ﬁpresent phase of uplift [cf. initial topography Ho(ﬁ) in-

Equation (4-161)}]. The observatioﬁal bagis of Z(k,t) requires that .

<

1 (K) be negligibly small.

Secondly, the postulated erosion relation [Equations (4-1);

-

section 4.2], -on which the-uplift rate-topography transfer function

Z(k,t) is founded, may not be valid. The erosion relation does not

take into account lithological and climatic variations, the effects of

which become increasingly important as wavenumber becomgswlarger. On
South Island there is an observable relationship hetween efosion vate
and rainfall distribution [Wellman 1979, J. Adams 1980] and, in turn,

[} )\

rainfall distribution is probably strongly affected by topography.
s g
Thus, "noise" due to rainfall would be highly correlated.

¢ 1

The uplift model was originally designed in order to provide
a test of the suitability of the postulated evosion relation. The

primary application of the erosion relation is toward the modelling of
\
isostatic response functions and continental topography at wavenumbers
) 2

less than 0.0l km Y. In this respect, it is perhaps significant that

L

the coherence of observed Z(k,t) is as great as it is [Y2>0.31J°for
1 .

a

k<0.01 km . Althoﬁg% the coherence is not large by statistical

standaggg, it does indicate that the models can at least not he rejected ~

_when ks0.01 En L,

QU
&3]

]



[ sl

o

s

There is no suggestion that i(k,t) increases with k in this
#avehumber rangg but this feature of the results is not incongistent with
theoretical Z(k,t) [Figure 4-2] which may be slowly varying dependi;g
on t and the model parameters € and w. The k=0 intercept of i(k,t)
appears to be in the range 1-3 Ma and, if the models are correct, should
'equal the theoretical intercept [ct]-l [Equation (4—153]. Variable t,
the lengthkof time during which uplift hds occurred to produce the °
observed ébpography, is reasonably well known. The topographic charac-
ter of South Island is dominated by the Southern Alps mountain range
which began to be uplifted approximately 4 Ma ago [e.g. Wellma; 1979,
CiJ.D,vAdams 1979], an event which can be related to southern Pacific
plate motions [Walcott 1979, Wellman 1979]. fhe obseyved intercept
implies that the uplift rate of South Island is greater at the present
than during the previous féur million years if it is assumed ‘that t%4 Ma.
Geological and tectonic considerations tend to support this consequence
of the model: Walcott [1979, p. 5] 'states that the relative motion
between the Pacifjc and Indian plates, the compresg;onal component of
which istprimarily responsible for the uplift of South Island, is
"faster today than at any time in the Tertiary." Mbreoyer, radio- @
isotope sfugies have shown that the total lateICenozoic uplift has been
about 5 km [é.J:D. Adams 1979]; present uplift rates, which reach a

maximum of about 20 mm a-l [cf. Figure 4-1], would account for a total

yplift of up to 80 km if extrapolated over the given four million years.

- 4.3.5 Constraints on parameters. It is unlikely that the

observations can provide any resolution of the model parameters € and .

w. The genefal shape of the theoretical transfer function Z(k,t) shown

°
&
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in Figure 4~2 indicates that it would be }elatively easier to determine
- Do”"‘ -

model parameters by regression of data if the data are observed at wave-
numbers in the asymptotic segment of Z(k,t) than if they are not. In

the asymptotic range Z(k,t) has the relatively simple form °

}
]

. Z(,t) = k¥cw . (4-18)

with the scaling factor already determined by the k=0 intercept. At

S

smaller wavenumbers the form of Z(k,t) is too -complex [Equation (4-17)]

to provide a profitable regression model for noisy and sparse data.

The maximum wavenumber at which a reasonably coherent estimate
of Z(k,t) is observed from the South Island data is approximately

0.01 km * [cf. Table 4-1]. Reliable observations of Z(k,t) at higher

y
wavenumbers are unlikely because of the breakdown of the fundamental
erosion relation [Equationé (4-1)]. Therefore, in order tohprovide a
profitable regresiggyﬂmodel\for the observed daéa, it is necessary that
i(k,t) acquires its asymptotic form at a wavenumber less than or equal
to 0.0L km L. Figure 4-2 shows that its ability to do so depends on the

values of parameters ¢ and w and on the age of the uplift t; the wave-

number at which asymptotic behaviour begins is approximately

a4

I
o

° - l/E .
K = [f*—g«-“’] . (20).

‘
o~ @ ¢

For South Island, t is assumed to be 4 Ma., Fipure 4-5 illustrates the
resulting lack of constraint of the South Island observations on ¢ and w.
The solid line represents the k=0,01 kmfl cogtour of Equation (4120) in

e~ space; ¢ and w must have values on the shaded side of the comtouxr

©

>

szy_'
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Figure 4~5. e~w parameter space showing the 0.0l km ™ contour .
1.1/e

of the minimum asymptotic wayenumber k=[4.5mt ] assuming

’

t=4 Ma [solid line] and the 10 Ma contour of the erosion time
3

’ bt >4 . .
constant o=wk for harmonic topography having wavenumber . v

o

k=0.01 km-l [dashed 1ine]; Parameters ¢ and w are eii?ected
to lie within the upper right-hand shaded region but can, only
be determined by the *uplift-—topo'graphy analysis’if they lie

ae 4

in the lower left-hand shaded region [cf. text]. - . \
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. o if Z(k,t) is to have asymptotic behaviour in th? range of reliably * °

. \

- obsér¥able wavenumbers., -

~ v &

a
s

However, it is

unlikely that € and w have values in the

| : .

] " ° ‘ » - »
o . indicated region. It was postulated in section 4,2 that harmonic topo-

& o graphy erodes with an erosion time constant o(k) such that LV

° » . ~

.

Y
Iy a

» o) = uk ®; o(k)>0, . (4-2). -

¢ » - + Al

Ve " - =

€ ° 4 TR Y

It is anticipated, on thgsbasis of the continental "average" erosion

~ e 5 A4

time constant of.50-200 Ma suggested on geological grounds by England

and Richardson [1980], that o for topography of wavenumber 0.01 kal .

- £

is at least of the order of 10 Ma. The ddshed line in.Figure 4-5

L [

’ k=0.01 km-l topography. If 10 Ma’is assumed to be a minimum bound (on
o at this wavenumber then € and o must have values within ?he shaded

¢ upper right-hand region. These values are well-removed from those in
.

¢ the lower lefts~hand shaded region which are theqretipally';esolvable by

o’ -]

. _ the South Island tectonic uplift analysis as explained above. Thus,

. ‘thel uplift rate-topography model developed in this sectidn cannot be

used to determine the parameteég“e and w of the postulated erosion

.~

relation as it was hoped. -
o : -

[ i

. represents the o0=10 Ma cohtour of Equqtionl(A—Z) in"e-w space for -
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4.4 Summary, .

’

¢ o a o

<

v

In order to investigate the isostatic response of continental

regions using time—depen&ent models of the lithosphere% a quantitative

model of topographic erosion isorequired. Iy this chapter, a model in
) e . L

which harmonic topography erodes at a rate which is proportional to its

amplitude was_postulated. It was assumed that erosion is a linear
s "& . -

process in which each harmonic ef topography could be considered inde-

1 ’

pendently and would be characterized by an erosion time constant o
dependent upon the harmonic wavenumber. The model does not take into
account the effects on erosion of local changes in 1ityology, climate,
and vegetation. These effects are expected to be unimporgant when éon-
'sideiing lengths of time of the order of hundreds of millions“of years

and topography of wavelengths greater than 100 km.

The postulated ervsion model was indirectly tested by consider-
ing the topography and tectonic uplift of South Island, New Zealand.
The éheoretical linear transfer functioﬁ\relating topography and :
tectonic dblift was formulated on the premise that the observed form of
the topography is produced solely by the interaction of the uplift and
‘erosion. The form of the erosion was assumed to be that of the“postuw‘
lated harmonic erosion model. The observed transfer function between
topography and uplift rate on South Island is characterized by a yeason-
able level of coherence at wavenumbers less than 0.01 km—l only. 1In
this ragaéfihe calculated transfer function has a form compatible with
that predicted by the uplift-topography model and implies, in terms of

.

the model, that the present day uplift of South Tsland is greater than

)}
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b4 ’ " ° . » . .
. in the past, a result which is consistent with .geological observationms.

L] oo

| .
For these reasons, it is concluded that the postulated harmonic erosion

Q

relatian, fundamental to the uylift—topoéraphy analysis, cannot be

. rejected at wavenumbers less than or’ equal to (.01 km-l. It was shown,

héwever, that.the South Islénd analysis could not be expected to

-

k)

constrain the parameters of the erosion relation., °‘The erosion relation

= N he @ v

is therefore applied to the development of general models of contimental

“q

isostatic response without imposing a priori parameter constraints. The

formulation and application of these models is pursued in Chapter 5.

©



w

136

- A

5.1 Introduction
‘/

In this chapter the isostatic response of the continemtgl
/o~

lithosphere is modelled in terms of a thin plate characterized by

/
linear viscoelastic [Maxwell] rheology.//A Maxwell viscoelastic body
deforms such that there is instantaneoys elastic strain followed by
viscous flow at a constant rate. There is ho yileld strength below

which viscous relaxation fails to occur. . .

»”

The time derivative Jf the deformation, %Cg,t), produced by
a load p(g,t) on a thin Maxwell viscoelastic plate overlying an incom-
pressible %;gid substratum is given by the solution of [Nadai 1963] °
/

L 7' w(E,t) = p(E,E) +Ip@E,0) - (5-14)

where ﬁ(?,t) is the time derivative of p(?,t), D is the plate's elastic
<

flexural rigidity, defined in Chapter 3 [Equation (3-1i)], and t is the

viscous relaxation time constant of the plate. If the plate is assumed

to be incompressible, then

A '

) T = ?%/E (5~-1ii)

where n and E are the Newtonian viscosity and Young's modulus respec~

tively, Ip the limit as np»e [5nd therefore t»«], Equation (5-1i) is

) [l



) b
clearly equivalent to the elastic thin plate equation (3-1i).-

The isostatic response function Q(k,t) characteristic of a

2

viscoelastic lithosphere, because the lithosphere relaxes stresses at
; rate determined by 1, is time~dependent. Noting this fact, McNutt
iand Parker [1978] explained the differences in the observed isostatic
response functions of the United States and Australia in terms of the
age of the predominant  topography of each region. They ‘concluded that
the rheology of the continental lithosphere was viscoelagtic and
estimated its time constant of relaxation t to be 4% Ma. MéNutt and
Parker did not, howaQér, address the problem of the erosion of the
topography. The effects of'erosion are poténtially very important
because the time-dependent deformational response of a }oaded visco-
. elastic lithosphere will vary according to the history of the 1pad.

. . .
. Moréover, erosion of topography results in isostatic uplift, an effect

’ :opposite to that of the pre-existing and contemporary topography which

, "would be to "sink" into the relaxing lithosphere.
b

13

Here, erosion is incorporated into general viscoelastic iso-

o

static models formulated in terms of linear filter networks. The form

~of the erosion is assumed to be that hypothesizef”gg;—;iscussed in

» 3

Chapter 4. The use of linear systems theory results in mathematical -

simplicity but limits the choice of rheological and erosional models

o

to those which are, linear. Whether more complex models are required

to satisfactorily reproduce the observed isostatie behaviour of ‘the
lithosphere can be determined by the success ox failure of the linear

. approach. One important question which can be investigated by the

" viscoelastic analysis is- whether the continental lithosphere necessarily

a 7
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L
s o r

possesses a finite yield stremgth as required by elastic~plastic

models.,

o
s

9 ~ [

5.2. Isostatic Response of Eroding Loads

- a
¢

a

5.2.1 Deformation of a thin viscoelastic plate by a harmonic

load, The Fourier transform pfquation (1-2i}] of the thin viscoelastic

i
o o

plate eq&ation (Slli)a h ‘e

° ¢

L] & o <;“
©, ., oizmlt w@Ee = p@Ee +ipe (5-2),

(4]

°
Ed

_expresses deforflation in terms of harmonic loading P(ﬁ,t) and, as in
the élastic plate analysis, the load is assumed to consist of (1) sur-~
face forces resulting from overlying material of density o, and thick=-

ness distribution L(@,t), where L includes that portion of the overly~

~

ing material occupying depressions in the plate due to its loading .
response, and (2) buoyancy forces acting on the base of the plate .
caused by the displacement of the fluid substratum, density 0, by the

plate deflection. Thus,

-~
[

‘I p .
Wk, e) + 9 u@,e) -2 yao [L(Tﬁ,m +z L(ié,u]' (5-3)
m

0

o

where Y(k), the flexural response function, is defined as before:

4 b4 1

4
¥(k) = 1+~[2‘—g%—2 " (3-5ii).



A

The deformatlional response of a thin viscoelastic plate to a

harmenic load defined by Equation (5-3) describes a linear system in

.which an input function L(-I:,t) produces an output signal W ('L?,t);. The

1

transfer function of the system can be found by taking the Laplace

transform [Equation (4-4i)] of (5-3): °

sik;e) - wdk,ohy + BB G
IR VRN, P
= - 20 [sLE,e) - 4,0 + ¢ L(k,S)]
m o~ ' ' ' o
. (5-4)

lim
0
W(’IE,O—P), and” (k) and T*alp:e assumed to be independent of time. The

for -a plate loaded when t>0 and L(l'z,0+) = L(l_z,t), similarly for

response of the viscoelastic plate at t=0+ may be considered to be

purely elastic, there having been insufficient time for viscous “flow,

14

anzi, therefore, from Equation (3-5i),

p -
wEH = -2 ym LoD ’
m <

thus, Equation (5-4) simplifies to

B ¢

TE,e) = T(ks) L) (5-51)

: o

14 4
.

whete ° . . ‘ . -
h} s . 1 s

s+ 1/x o g
['s + w(k)/'c] . (5-5i1)

. "‘pO .
Tyles) =52 400

‘o
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(5]

=]
=

and TI(k,s) is the transfer function describing the deformational effect

.

on a thin viscoelastic plate of a surface harmonic load.

5.2,2 -Erosion and the effective plate foad. The effective

~

surface load on the viscoelastic plate at any time“t, L(ﬁ,t), may be °

2]

thought of as equal to some assumed applied loading function Lo(z,t)

modified by erosion such that ) . ¢

Lk,t) = L (&) + Bt " ~ (5-6)

& «

=y —r ‘ K
where E(k,t) represents, as in seétion 4.2, the. amount of erosion by
~ - -5

time t of harmonic topography of wavenumber k. In turn, L(ﬁ,t), in a

2

manner analogous to Equation (3-6) of the elastic analysis, consists
of (1) a portion remaining above the undeformed plate surface, measur-

able as topography H(K,t) at the time of observation and (2) a portion

>

whieh occupies the plate deflection WCﬁ,t) at that time: o

Lik,t) = HE,t) - Wk,t) . (5-7);

L]
[y

therefore, from Equations (5-6, 7), .

El

L (&,t) = HE,£) ~ WE.£) ~ E(X,t) (5-81).

v

T \

If the plate is assumed to be suddenly loaded at t=0, subsequent to
which the topography is modified only by erosion, then Lofﬁ,t) has the®

form of a Heaviside step function: \

1}
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. “ 0 ; t<0
\ CL ) = (5-811).
» L ()" t20 .
N 8]

Thus, when t20, (5-8i) is adalogous to the Fourieretrapsform of
‘ Equatfcn (4112), used dﬁring the analysis of the New Zealand uplift -

data, except that Lhe deformation W(k,t) in the present case is due to
3 . 13
isostatlc adjustments rather than to a superlmposed regime of tectonic
- v ' o L 4
& "forCQSn ' ! P h & - v a »

s ~

) Equation (5-81) is schematically illustrated in Figure 5-1;

o a ¢

<o

s s - N . 0 [ H
it shows that eroded material does not continue to load the plate in
' ’ - o e ‘) ’n
, sqme reéyrangéd fashion but rather is removed from the gyatem and

- 9' deposmted elsewhera, presumably at the contlnental margin [cf

i Menard 1961] . .
0 , (&3 . a
o 0 " “ !h
[ f ®a 3 ;
[ U

[4
°5.2. 3 Solutlon,for a, 1oad whlch dges not erode. If there

o w . L\v o n

is no erosion of topogfaphy then E(k t) 0 and the effective piate {oad

L(k t)=L (k t)’ by'Equation (5-6). But L (k,t) has the form of a o
. |() I3

? et Heav131de step functlon [EQuatlon‘(S*Bil)] and therefore the Laplace

N2

\ ‘transform of-the effective load is [ef, Equation (4-4i)1

¥ l ‘) -
3 / ) @ o )

v

o L, sy = L gk,s)

mlH
d"\
Y
L
~~
w
I
O
ne”

[>Y - . y
. N l H

b Equation (5-9) substituted into (5=51i) gives, ,

o pl n,
A L} 154 . v

‘ « WK, s) - & Tl(k,s) L (’} o (5-10)

G g

) L1}
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.

Figure 5-1. Schematic drawing of the erosion E of harmonic
topography H occurring between to and t1 showing the resulting
reboun; of the flexural deformation W of the lithosphere
[Model 1; subsection 5.2.4]; the lithosphere is stippled. The

effective surface load at any time consists of H-W [Equation

(5-7)1; the sum H-W-E is constant in time [Equations (5-83]. .
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the inverse Laplace tramsform of which is directly obtainablef[e.g.
Roberts and Kaufman 1966, p. 181l] and provides the solution of the

deformation of a thin viscoelastic plate as a function of time which

is produced by a_constant harmonic load:

Po

W(ﬁ,t) = - E-—-[l + [v(k) - 1]'exp[~tw(k)/r]] Lo(ﬁ) (5-11).
o .

4

Note that when f+0 or 1+, Equation (5-11) must reduce to a form equi-

valégt to the elastic plate solution, Equation (3~5i). The measurable

7

topography as a function of time can be found by simply noting that

Hdc*,é)=Lo(iZ,c)+wdi,t) when E(K,t)=0 [Equations (5-8)].

°

Beaumont [1978] derived a more ‘general result for the response
o - \"j‘ o

of a viscoelastic plate under a constant load in terms of space-time

Heaviside-Green functions. MeNutt and Parker [1978] derived an expres-

.

sion for W(ﬁ,t) of a viscoelastic plate but required the measurable -
topography rather than the total effective load to be held constant in

time thus necessitating the assumption that after the formation of

i

-

topography by a mountain-building episode its elevation was "maintained
by subsequent minor rejuvenating pulses" [p. 774]. Their expression
féf’W(ﬁ,t) varies only slightly from Equation (5-11): it is of the

same form but [pmfpo] replaces o wherever the latter is found [includ-

_ing once in each (k) term] in (5-11). However, the notion that the

effective load increases through time is an unrealistic ome.

Vo
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5.2.4 Solution for a loéd which erodes: Model 1. The effect

of erosion on the isostatic deformation of a thin viscoelastic plate

can be solved in terms of the transfer function of a linear system with

erosional feedback, Consider the network illustrated in Figure 5-2

which has input i;(ﬁ,s) and output ﬁ(ﬁ,s) such that

4

HE,s) = N (k,9) L (k,s)

The closed loop network transfer function Nl(k,s) for a network of this

configuration is [Doetsch 1974, p. 85]

Al(k,s)
Ny (kys) = 7 A (k;5) By (k,5)

According to Figure 5-2

-

7

H(K,s) = 4, (k,8) [T (K,8) + ECK,s)]

and

4

. E(k,s) - B, (k;6) H(k,s)

The Laplace transfof%pdg/EQuation (5-7) is
> ~

S

i

-
-

« / LE,s) = HA%,s) - WE,s)
e )

f

(5-12ii).

(5-13)

(5-15)

rd
which/i; used in conjunction with (5-5i) to write the transfer function

/bétween the measured topography ﬁ]ﬁ,s) and the effective load Eki,slz

4
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Figure 5-2. Linear “filter network with feedback describing
Model L. Filter A1 determines the deformational response of
the lithosphere [and ‘therefore the height of topography i

remaining above sea leyei.] to the initial surface load fo . -

rless erosion Ej filter Bl determines the erosion of H.'

-

S

1
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HK,s) = .[1+T(k,8)] L(K,s) . (5-16)
> but f(ﬁ,s)=£;(ﬁ,s)+ﬁf§,s) from the Laplace transform of (5-6) and
I x
therefore, comparing Equations (5-13) and (5“1é}§x

4

.

N\

@ The relationship between erosion rate and topography was hypothesized

to be of the form .

E@,t) = -[o@)]L HCE,t) (4-11,11)

- 9\/

the Laplace transform of which gives, noting that no erosion has taken

place by t=0,

A Ll
L]

; E(k,s) = Ty(k,s) H(k,s) ' ©(5-174)

%

where

TE(k,s) = ~[go(k) ]"l (5~174i); '

o t

’

TE(k,s) is the transfer function describing the erosional effect of

topography. Thus, comparing Equations (5-14) 'and (5-171i),

Bl(k,s) = TE(k,s) . ) ®

N

o
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The network transfer function Nl (k,8) is therefore known and Equation

(5-12i) can be rewritten

1 + TI(k,S) _ :* ,
1 - T;(k,8) T;(k,5) - T,(k,s) L, (kss) (5-19).

H(k,s) =

Making substitutions for TI(k,s), TE(k,s), and Lo(—lz,s) [Equations (5-5ii),.

(5~174i), and (5-9) respectively], (5-18) becomes - Q
_ ' s+ Yo - .
HE,s) = [1 - 9(p /o ] [5—— L & . .  (5-190)

' 18" + as + B -
where % |
N c ‘ ’3‘:% "{*
. - “ .
© 1=y /e .
= o m Yk ; _
o s +5 £  (5-19ii),
. Il =pyle,l Wk : S

[L - o /e,] () ‘
L T (5-1549).

L | s

Solving Equations‘(5-5i,1ii), (5-9), and (5-17i,ii) in terms of the

* " plate deflection W(k,s) gives

s + Yy > ~
- — Lo (k) (5—201?

W(k,s) = -p(k) ¢ /o
ocm s" 4+ as + B

o
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where
YW = 1/t ' (5-204ii) -

N
o

and o and B are defined as before [Equations (5-19ii,iii)]. It can be
immediately confirmed that if no erosion occurs, that is, a(k)+w,‘then
52+as+6+s[s+w(k)lr] s0 that (5-20i) reduces to a form equivalent to

(5-10). *

For an elastic plate 1> and Equations (5-19i) and (5-20i)

°

becom? : o 5
ﬁ—e(ﬁ,S)' = [1- w(k)p;/pm] [s + oc?]:l LO(?) S t (5-211)
and ) | i
W &e = — ¥ foy [s + o 171 (@) N (5-22)
¥ o A\
where' ¥ - ” U
n a; s :gg Polfn + - (5-2141).

1

¢ © »
o

The inverse Laplace transforms of these expressions are [Roberts and

v

Kaufman 1966, p. 189] ‘ .

»

|
©y

- o

H &0 = [1- 90, /o] expla ] L () (5-23)

/

§ @
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and )
: = / -
W (k,t) = - w(k)po/pm exp[-a t] L (k) (5-24) .

Because P(k)sl [cf. Equation (3-51i)] and o P o, is always positive ¢
and therefore as te both H (k t) and W (k t)+0 because\kf erosion.
Note that there is no time &épendence in the ratio We(k,t)/He(k,t)

because the exponeﬁtial terms cancel one another and therefore the

isostatic response [cf. Equations (3-10:;1)] of an elastic plate with

an eroding topographic load will be codstant in time as expected.

L
0

Complete expressions for the eroding topography and resulting

deformation of the viscoelastic plate are given by the inverse Laplace

E

transforms of Equations (5-19i) and (5~201) .[e.g. Roberts and Kaufman

9

1966, p. 200] and are

. . ’ LS
. Y . . S i .
HE,t) = X, (k) L &) ST e (5-251)
.and - \
WEE) = Y (kt) L@ " "~ (5-261)
where [(5-251i)] , Tt G " L,
£ & e\L' " o 4
L 1= W(k)polpmﬂ,[; ' ] : '] . ¥
. S vy = .1 exp[~tr.] = : .
T, -1, J H ':l = 1 v . u

¢ . R . N

X 0,t) =4 f vy -l ek§[~tr2]]; 92 # 48

[1 - 9@k /o ] {1 + vy - a,/zlt] expl-ta/2]; o ="4F

k g " <
v

1 i -

o

o
3 L] T . a
~ 1,

¥
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and [(5-26ii)]

t

~p(k)o_/o ”
(|— O T - - -
e [[YW r, 1 exp[-tr,]
2 1 .
2 2 o
Yl(k,t) =4 [YW - r2] exp[-trz]] s o # 48 )
// . . ) 5 )
\[—w(k)po/pm]'[l + [\xu/ a/2]§l exp[~te/2]; o/ = 48
vhere ~r; arid -r,.are the roots of sz+<xs+8=0 and o and B are given in
eibressions (5-194i,iid). Xl(k,t) and Yl(k,t) are real for real or 47
complex roots ~Ty and “I,3 the latter casé, i.e., a2—48<0, can be con- °
firmed by inspeé%ion of (5-25ii) or (5-26ii) noting that r., and r,, if

1 2°
complex, would be conjugate. That %l(k,t) and Yl(k,t) are real is,

of course,-simply a consequence of the assumption that H(ﬁ,t), W(ﬁ,t), . \»]

PO :
and‘E(ﬁ,t) and therefore LO(K) are spatially in phase, The form of

© .)i" _ a o -
the deformation of a uniform viscoelastic plate in response to eroding % .
harmonic topogrdaphy embadied bynEquations (5~25,26) is referred to as /«
» Model 1, 3 - :
' 5.2.5 Sclution for a-load resulting from erosion: Model 2. ° /

In Model 1 it was assumed that topography is suddeﬁly applied to the

lithospheresat t=0, It is implicit ipn such a’ model that even while

4

tectonic processes are building the topography the gﬁderlying litho-

sphere has a large degree of flexural strength. Tﬁ&s may not be

realistic if orogeny is accompanied by thérmal-weakening of the Litho-
v, o [ P

spherewand if the orogenic processes occur over a period of time which
is likely éhof£°compared to the cooling time of xcontinental lithosphere f
o . & . .

~
-
w e?
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fe.g. Sclater et al. 1980]1. It may be that during this time, aé
\topography is created and modified, the lithosphere is unable to sus—
tain flexural stresses resulting from vertical 1cad§ng of wavelengths
as great as those of interest here. Thus, as the\fectonic regime

‘

responsible for the orogenic episode dissipates, the~topographic load
existing at the end of the orogeny may be locally compensated by low )
density cruftal ToORK. Concurréntly and subsequently, ghe lithosphere
«cools and, ;ltimatei§, will attain flexural competence at the wave-
lengths of interggt. fhe crustal roots compensaf!bg the topography
may in thié;way become "frozé&f intdg the cooled and thickened continen-

o

tal lithosphere as they apparently douin ch;nic lithosphere. In
bceans, surficial topography created at or near ridge crests where tﬂe q
lithosphere is very thin appears al&ays to be locally compensated by

crustal thickening regardless of its age. On the other ha;d, new topo-
graphi; léads applied to old, codéled and th{ckenqd, oceanic lithosphere

result in a flexural isostatic response [Wattg 1978, Cochran 1979,

Detrick and Watts 1979]. Heat flow [Pollack and Chapman 1977, Sclater

* et al. 1980] and seismological data [Kono and Amano 1978] suggest that

continental lithosphere thickens with age in a fashion similar to y

&

ocegnic lithosphere, Ocean crust topography does not significantly . "

1

erode. On continents, however, if a load with "frozen in" local com-

1

pensation is partially eroded after the time at which the lithospﬁgre

acquires flexural competence, the resulting negative load will be

o

»
o

compensated flexurally. Theré is some support for this kind ofbmo&el °
found in the comparison of isostatic response functions calculated for N

§ L]
the Eastern and Western United States [McNutt 1980]. Topography in

the western region, which is tectonically much Yyounger, appears to be -



o

L

more locally compensated than in the older eastern regioan where there

Y

. N .
. is some suggestion that crustal roots are overcompensating the

4 .

"available" topography. v
. .

14
S

This alternative modgl of the evolution of the i;ostatic
‘tharacter of continental 1§thosphere resulting from erosion, referred
to as Model 2, can he quantified by makihg only minor revisions to the
system of equations developed for Model 1 in subsection 5.2.4, Assume
that at a time tc>0 the lithosphere suddenly beéomes competent and that
at tc it supports a 1oc§lly compensated surface load LQ(K); tc is’pra-
sumed to occur a sufficiently long time after orggenesis such thatj
most of the associated thermal anomaly has been dissipated. L&(ﬁb can

" be'partitioned, in the usual manner%,into L measuraﬂlg topograéby
Hz(ﬁ) and (2) the locally comﬁénsatiqg "root" Wg(ﬁ).v It is kpown from
Equation (3-14) that Wg(ﬁ)éLpO/Ap Hz(ﬁ) where Ap is t?e density contrast
at the base of the root [cf. subsection 3.2.3]. Any efpsion occurring

s

« prior to t=tq is inconsequential because it is assumed to have been

[+

* s .
compensated locally. In terms of the subsequent dynamic é®olution of

the lithosphere, Hg(i) may béjthought of as being suddenly applied to

R 4 o Y

. a thin viscoelastic plate at tc. Hz(k) is not a load resulting in

| £flexural stresses, however, because of the low density:compensating
1! S

Toot aigume%’to accompany it. The plate at this time is taken to be
s 3 °

2N ° . o .
in ah undeformed state. Subsequent erosion E(k,t), t>tc, producing

b 3

W
eroded topography H(ﬁ,t), is assumed to result in flexural rebound

W(ﬁ,t). A mads wasting condition, analogous to Equations (5-8) of

- Mbdgifi; may be adpﬁted such that
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)

““ ¢ o> . . > > M 0; t<tc
. H,(c,t) = 0k, t) - WK, t) - B(k,t) = ~ (5-27);

| it is schematically illustrated in Figure 5-3.

® u

Model 2, in a manner similar to Model 1, can be formalized in

terms of the linear system shown in Figure 5~4. The function Hg(ﬁ,t)

o
’

drives the system inasmuch as it is its erosion which results in iso-

a

static plate deformation which in turn modifies the topography being

‘erodéd. Figure 5-4 shows that

H(E,8) = N,(k,8) H, (k,s) R (5-281)

-
t

where the closed loop network transfer function is

\ . By(k,9)
_ \ Ny (k,s) = 7= A, (k,s) B(k,s)

The input ﬁi(ﬁ,s) is given by the Laplace transform of (5-27):

N ) exp[-t s] : .
——5,0  (5-29).

=
(2]
L
1
~~
kg
)
S’
1
”~~
x
)
S
i
o~
&
w
Nt
i

s

The relationship between erosion and topograﬁhy assumed for Mo 1l is

© ¢ e

unchanged [Equations (5-17)]. However, the effective pléte load is now
. * &

agsumed to be the erosion so that Equation (5-51) becomes

@ L
h y N

k') 9 + Y o
: o We) = 1(k,8) E(E,S) L (5-30).

@ ~
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\ Figure 5-3, Schematic drawing of the erosion E of locally com-
t

pensated harmonic topography H between tc and t, according to,

1
\ Model 2; the original, locally compensating lithosphere is

- "
stippled. The effective surface load at any time consists of

E and results in lithospheric deformation ﬁ,[Equation (5-30)1;

the sum H~W-E is constant in time [Equation (5-27)].
J ’

e
e &

el ‘
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Figure 5~4. Linear filter network with feedback describing
Model 2. Filter characteristics are explained in the text

[subsection 5.2.5]. . ®

RN

158



159

(S™M)°V ﬁ ,
(MH D
(S H-- als 5~£A..I.®A|? 5

¢ I°PON



B P

160

According to Figure 5-4

 Hlk,s) = Bzu(k,s; [1712’(’1’5,5) + ﬁ(jﬁ,s}] ’ (5-31)

and

A

\ W) = Ay(ks) Bs) (5-32).
ﬁquatimn (5~171i) can be manipulated to give
s —— a -1 - i
H(k,s) = [1 - Ty(k,)17 [H(K,s) - E(K,8)] (5-33)

but from (5-29) it is known that ﬁfﬁ,s)-ﬁ{ﬁ,s)=ﬁ;(§,s)+ﬁfﬁis) ané,

therefore, comparing Equations (5-31) and.(5-33),

-

o

_ -1
‘ Bz(kys) = [:l - TE(k:S)] C.

<

Combining Equations (5-17i) and (5-30) gives

*

W(k,5) = T,(k,8) &E(k,s) 5T, s) * (5-34)

and it is seen immediately from (5-32) and (5-34) that

-

A, (k) =AM (k,8) Tp(kys) @ .

The Model 2 network transfer function Nz(k,s) is therefore known and .

Equation (5-281) can be rewritten

%3 | ,



|
* x

, |

\ 161
| ..

e

" ]1

| .
. e ' \\ K
’ H(K,s) = [L - T (k,8) Tg(k,8) - T,(k, s)]\l H, (5-35).
A Making the appropriate substitutions results in
:?i'* N : *\\! 7 Y .
3 Tw ‘ " . u
ES + y(k)/t >
H(k 5) = exp[-t s] Hg(k) (5-36)
g” + us + B , '
” . where o and 8 are the same as for Model 1 [Equations| (5~194i,iii)].
‘/ Solving for W(k,s) gives .
- +
' W(E,8) = b0 fo, expl-t sl [o0]™} |2t LT ]y @ (5-31).
‘ v |8[8” + as + \f;]}v
% . q“

If there is no erosion after t ., that is, oge)w; ﬁ(ﬁ,s\}-»(] and,

therefore, W(ﬁ t)+0 as is expected. . S;,milarly, as o (k)»eo, H(k,s) ~

~

+exp{—t 8]/s and therefore H(k t.)-rﬂ (i t) as defined by (5-27)
. ¥

For an, elastic plate,,that :Lsi T+‘°, Equtiops,(§-36) and
. Y
|

A4

(5-37) become’

. L T %
. 4 “\ A%
— . ...1 “l - ? :- N
. _He(i.s) = el sl [s 4017 B0 (5-38)

. N DO « .
\ o » -
.
»

* and , . ) »

. “‘

P RS ST IS e i res SR, R G - o

»

— \\ ’ - "'1 - * .
Ve@,-) - Mk)"ck‘/"‘u exp[-t 8] [o(k)] 1 [s[s + u{l] H, (k) (543?) v

-

. T . N .
M . ‘-. where a, is def;!.ned as betcne' [Equation (5-2111)} Thg/ inverse Laplace
. N ’ ‘transforms-of Equitions (5-39) &nd’ (5-39) can be found from tables
' z‘ . T ’ . b ,. T * ’ : ' - LV
i R » v
H N )



: 162

[Roberts and Kaufman 1966, pp. 181{‘189] and the convolution theorem
% ® &

" of Laplace transforms, -

t
L Fs) Ee)} =  F(w 6(t-u) du
0

[where Lt {F(s)} = F(t) and rt {G(s)} = G(t)]. They are

> >
He(k,t) = exp[jae (t~tc)] Hg(k) (5-40x
and
s p(k)o /o N : .
. We(k,t) =Tz w(k)po/pm [l - exp[-—ae (t~tc)]] Hl(k) (5~-41). .

*e Note, as would be expected because of progressive erosion, that as

-

R He(ﬁ,t)+0 but that a remnant crustal root will persist:

. * (k)o /o
" lim > il o m * y
o om RO T B® (5-42).
3 ‘Complete expressions for H(E,t) and Wk, t) predicted by Model 2
N [Roberts and Kaufman 1966, pp. 183, 199] «are
P BN ¢ " . »
. a .
T, X ,
. ' > -+
G . , . H(k,t) = X,(k,t) H (k) (5-431)
oo . * «
. T, "
“3 and n o
# L] 4 K ‘ ¢ uA
- -* - . A
: W)t L0 B . (5-441)
~ . LI . Q" ..:..‘ -: |
" .
i\ ' g . A - .‘9
« Y [* ?
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-

where [(5‘-431:1) 1

1

[y /v - ;] expl-(t-t )r,1 - (W) /7 ~x,] -

"

~ X, (k,t) =ﬁ > ‘exp[-(t-tc)rzl; o # 48

( exp[-(t-t o/2] [1 - ta/2 + ty(k)/7]; o = 4g

' and [(5~44ii)]
) |

a

( P g [1/r;=t]exp[-(t-t )r;1-[1/r =t]exp[-(t-t )r,] .
Ap : T, - T ?
v . 1
: 2
%06t =4 o £.48
‘ )
‘ 39‘ 1- [-(t-t )a/2][1 + ta/2 -tB"] 5 o = 48
L Fo exp J° o T 3
/ where Ap =P, p‘;; -T; and -, are the quadratic roots of sz+us+6=0

as for Model 1.

5.2.6 Theoretical isostatic response functions. (1) Model 1.

.

The theoretical plate deformation W(_lz,t) and measurable topography,
H(%,t) for Model 1 are provided by Equations (5-25) and (5-26). The
theoretical gravity anomaly G('lz,t) arising from the ‘resultant density
perturbation can be caleulated from W(K,t) using Equatic;n (‘{3-—10);

G(-lz,t) normalized by H(—lz, t) provides the‘ theoretical isostatic response v

Q(k,t), a function of time. ) Although both W(-l:,t) and H(K,t) depend on

Lo(_ﬁ) no knowledge of the latter is required since isostatic response
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1
.

varies with the ratio of the deformation to the topography.

-

(ii) Model 2. The density perturbation contributing to G(i,t) \
in the case of Model 2 is assumed to be directly attriblitable to the

initial locally compénsaiing deformation'Wg(ﬁ) less the-rebound deform-
ation W(ﬁ,t) resulting from erosion [Equations (5-44)]. The net,

5

. - X -
deformation and consequent G(k,t) depend on Hg(ﬁ) since Wz(i) = -ﬂO/AD ¢

Hz(ﬁ). No knowledge is required of HR(E) to calculate Q(k,t) since

H(ﬁ,t} is also dependent on Hz(gy [Equations (5-43)]. Note sthe implica~

[4

tion of Equation (5-41) that an elastic plate in Model 2 predicts an

infinitely large Q(k,t) as £, .

.

5.3 North American Topography and Model Predictions -

[

-

5.3.1 Introduction. Two models, based on’ thin plate : -

theory and an hypothesized linear erosion model, have been described

* which predict the change through time of the amplitudé of' isostatically

compensated e}o¢ing topog}aphyﬂﬁ(ﬁ,t) and its associated isostatic

plate deformation W(ﬁ,t). Assumptions related to the nature of the ’ v

density structure of the lith¥sphere and the generapion‘of gravity

_ anomalies by W(ﬁ,t) [ef. su%séction 3.2.2] allows the calculation of

thé’predicted‘time—depenQent isostatic response function Q(k,t) of each
of the models. Because of these requisite additional assumptions and
4

the inherent noisiness of observed gravity anomalies, the models are -
o

first tested by direct comparison of predicted and observed topography

v a
S o .

‘power spectra.
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*5.3.2 Topography -power spectra., The two-dimeﬂbionalitopo;. o

the io

Grenvilg;? Churchill, ana Superior

i

wavenumber bandwidth of 0. 001 km

graphy power spectra estimates of

computed using ¢

¢

a

5

-

I

1~

T
and a directional arc length‘of 45° ,

rdilleran, Appalachian,

“
(3]

LS )

£

sets [section 2.1] have Been .

2

e methodology described.in section 2.2 for constant

wo ¥

165

Oy

*/7,

with edtimates centred om the x and y axes and the, 45° diagonals., The 7

u

a

four directionally independent spectra calculated thus, for each of the’

five listed stud :areas are presented in'Figures S-S(a—e).

wavenumber at which spectral estimates exist the upper 957 confidence

g

"

For each

-

bound of the laﬂgest and the lower 957 confidence bound on the smallest

of the fpur directional estimates are plotte& [cf Equation (2—7)]

2

The number of raw spectral aata in each directional ensemhle:quadrant

is appnoximatel constant with the. result that the 95% eonfidehce.

interval for.each is also approximately tonstant.

\

L

(3

3 8 v

\

»
)

[

3
.

It can:be seen frop

¢ [

Figures 5-~5 that nowhere among the fivée sets of computed spectra is’a

single spectral estimate for'a given direction with 95% confidente

significantly differeq; from all three of the.other spectral“estimates

By * . A ¢ 3
at thé same wavenumber but‘in different directions.

c L4

¥
K

a

-

.

S

G\
*.
3

-

- In-each geological region more spectral power may be expected -

<

. to reside in the direction perpendiculanr to the’ structural gtain [forl

~

(23

example,\east—west, parallel to the ¥-axisg, in' the case of the

‘

Cordilleran region] than in® the direction parallel to strike.

"y

This

is

somewhat the case in the Appaiachian region [Eigure 5-5(b)1, and to. a

Y

1esser degree iu the Grenville structural proqince [Figure 5—5(c)],

but otherwise does mot strongly prEvail

v

¢

‘t‘

"4

The topographic power of the

Cordilleran region is, quite isotxopic and is actually strongest in the N “Z,

\

e

N
»

@ wd

®s
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. Figure 5-5. The observed topography power specq;atsﬁjof the

o 2 ’

(a) Cordillegan, (B) Appalachian, (c) d?énviile; (d) Churchill,

e § - —)’
- and (e) Superior province study areas as functions of k.

- ) =+ . .
Spoke orientations, e.g. ®, refer to 'k directioms relative to °

v € oo o F . . 4 ‘f
. the orientation of the boupdaries of the Fespective study areas =
[c£. Figure 2-1]. The ﬁpﬁgn and” lower 95% confidence limits
s . « 5 & .

r§fe£ to. the iéfgest and the smai%;st of the four directional

- . o
. P °

spectral estimateswﬁor each observed kr‘ ‘
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strike direction at some of the intermediate wavenumbers [Figure 5-5(a)],

N

a result comparable to the space domain distribution of Cordilleran

topographyﬁil%ustrated in Figure 2-2(a). The structurally complex

. #
Churchill and Superior provinces-are seen to be essentially isotropic

> ’

in their tbpographie character [Figures 5-5(d,e)].

o

The general degree of topographic isotropy of the five study
9

areas was considered sufficient to permit ensemble averaging of the raw

3 1

spectraludata of each through all directions of k with the resulting
aVeragea spectra being considered to be reliable indicators of each
» B

r

region's inherent topographic character. These five annularly averaged

spectra are preégnted in Figure 5-63 55% confidence bounds have been
omitted from' the Grenville and Churchill spectra for the sake of clarity )
but are approximately the same size as the thers. Examination of

Figure 5-6 %howg that, »as would be/gkpected, the power of topography

of various Wa;enumbers k is generally-smaller for regions of relatively
greater tectonic age. The observed %ata for each k are to be separately

o

considerid as functions of time. Thus, the age of the topography of

each sampled geological province needs toﬂﬁe determiq@d. In order to
compare the topography of thé varkous provinces in this way, it is
necessarily ass;med that the spectral configuration of the topography 3
of each was initially approximately the same, the implication of this
being tHat mountain-building processes have noé significantly changed
since the Archean. Because the anigotropy of topography, as discussed

above, 1s not being considered no geographic orientation of the datac

sets is required. >
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Figure 5-6. The observed topography power spectra S, as

H
functions of |k|. For clarity the 95% confidence intervals ,
of the Grenville [G] and Churchill [C] spectra are omitted *

but are approximately the same size as the others.
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5.3.3 Age of North American topography. The prdduction of !
N - . . .

continental crust, or at least the determination of its structure and

o o ©

topography, occurs during successive periods of orogen§ taking place /

over hundreds of millions of years. In terms of the simplg models of

. - -

ppst—orogenic topographic'eVOlutiqg being considered at present, the

¥
rheoclogy and isostatic character of the continental lithosphere during
. - v ¢ ¢

the orogenic phase of its development, -no doubt very complex, is
intféctable. In Model 1, it is implicitly assumed that by the end of

the orogenic phase a competent 1ithos§here exists which underlies the

”

topography produced by the orogeny and that, up until this time), this

topography was supported by the tecténic forces inherent in its con-
<..° o

N

struction, = Thus, the agexbf the topography would be the age of the

last orogenic pulse, after which it is assumed the tectonic forces

P

rapidly dissipéte. In Model 2, on the other hand, the lithosphere is

_assumed to be thermally weakened at this time such that as tectonic

forces vanigh the remnant topography exists in a state of loca}l iso-

static compensation. Then, after some length of time during which L

cooling, as well as erosion, has taken place, the lithosphere acquires

rheologicéleropertfes assumed to persist until the time of observation.

«

Thus, the characteristic age of the topography used in the Model 2

»
\/')

analysis should be less than in Model 1 by an amount related to the, \\\\t

cooling efficiency of the lithosphere. In the present case, however,
) o

ﬁh which the topography being considered, with the exception of that

of the Cofdilleran region, is geologically very old and the timing of

Y

respective termination of orogenesis only approximate, the same ages

of topography will be assumed for both’ models. ,

s ®



»

-

‘ 176

.

,J‘

(1) Cordilleran region. The most receng deformational event

affecting the q%ust of the Cordilleran stud; area W&S\F@e Laraéida

<ﬂngenyzﬂ;;ch began near the Beginning of the Cenozoic era, ~§§ Ma ago.
<

In the Canadian portion of the study axea it hiad, for ,the most part,

1 ]

endeg early in the Oligocene, ~35 Ma ago [Douglas et al. 1970], although

o

. ¢
uplift of the Cdast Mountains, based on mapping of deforiied erosion

I'd

surfaces, persisted ";il theQPliocene,‘;2-7 Ma aéo [Wheeler and

Gabrielse 1972]. The United States portion of the study a{sf is dom~

$

. . .
inated by the Basin and Range province, the present mountain ranges of

which having formed since the éarly Miocene, ~20-25 Ma ago [Hamilton
¢ o

k3

and Myers 1966]. < The relief of the Rocky MOQgéains, east of the Basin
and Range province, was primarily developed during an uplift phase in

the late Pliocene [Stearn et al. 1979]. Volcanic construction of topo-
i '

graphy persists until the present.

1 4

4 2
.

Essentially, the Cordilleran region of North America is one

i

which is currently tectonically active [e.g. Atwater 1970, Hamilton and

o
a

Myers 1966] and, for-the purposes of the present analysis, in which its
topographic character i compared with that of regions very much alder,

it shall’be considered to have not yet entered a period of post-tectonic
8] b
erosional and isostatic evolution. Thus, in terms of Model 1 ox 2,

the observed topography power spectrum of the Cordilleran study area
[oad ~

is assumed'to be egquiyalent to [1—1b(k)p°/pm]2 lLo(ﬁ)fzor IHg(ﬁblz

A}

respectively.

0

(ii) Appalachian region. The most recent orogenic epis&des

affecting the Appalachian structural province were the Acadian in the

°

north during the Devonian perigd, 350--400 Maqhgo; and the Alleghanian
° [ 5
? &

€ Y

a
)3

N

2]
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3
e~

s ”
in te south during the late Paleozoic, 250-300 Ma ago [Stearn et al.

-

[

N *1979]. The differentialatiming of Appalachign deformation was a result

of the progressive clogure of the Iapetus’[Protoatlantic]-Ocean from

o
& v

north to south with.consequent continental collision. There is some

[

question whether the long wavelength featbres of'ﬁppalachian topography
<

2
a

derive mainly from these Paleozoic orogenies or vhether, they wvecre

% .

strongly influenced by events associated with.the rifting of Pqng@a and
Q o

- ¢,
972]. The former shall be assumed here and a median age of "300-350 lla

t Mo
-

assigned to the topography of the Appa%@chianwsthdy arez. Copsiderable
E4 2 3

(the early formation of the Atlantic Ocean during the Mesozoib%[e.g. Kimg.“
1

o
* o

erosion of the, Appalachians had alréhdﬁ occurred by the time of llesozoic

continental rifting [Stearn et al. 1979] and it is assumed that the up-

o

lift assoviated with the thermal origin of the rfﬁtigg was broad.and -2
uniform enough so as not to greatly affect the s%ectrai configuration .

of the pre-existing topography. .v

-

(iii) Canadisn Shield. The topographic character of the

Grenville, Churchill, and Superior structural provinces of the Canadian, =

2

Shield may be-assuméd to derive from the Grenvillian, Hudsonian, and ,

N

Kenoran orogenies da&ing respectively from ~900-1100 Ma, ~1600-1800 Ma,

and ~2400-2600 Ma [Stockwell 1964]. . "

F.o

L) 4

&
-Ambrogse [1964] discusses at length evidence that the present ~

o

n\

erosional topography of the Canadian’ Shield was developed in pre- .

Paledzoic time and that.the Easig draiﬂage pattern of the Shield,"wﬁich

A

may be presumed to exert gignificant control on the .long wavelength
oo > , S -
features of the topography, such as those of interest here, is at least

as old. His ‘study is based for the most part on thg nature of «the 0

o
LIS '
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M °

' -

v
[#3

a - . topography adjocent to and beneath £lat-lying early Paleozoic outliers

" vhich are widely distributed throughout the Shield. Ambrose also N
: states,” baged on the ‘same kinds of observations, that "erosign of bed-

¢
o

rock during Pleistocene gldciation was minor or negligible" [p, 851],

& AN

a position supporteg by many other authors [e.g.  Gravenor 1975,

Sugden 1976, Andrews and Miller 1979] although detractors do exist

A

"
-

[EO g- I‘mite 1972jb . Y

Although the large scale topography of the Canadian Shield

. @ N
gtructural provinces can with reasonable confidence be assumed to be
¢ s

tectonic in-origin and vary in age according to the most recent

effective”orogenic event, the existence of early Paleozoic, mainly

O%dovician;*outliers throughout the Shield, and p§eservation of large
tracts of early Paleozoic. strata beneath Hudson Bay and adjacent areas,

[y

indicates that a widespread erosional hiatus occurred during a périod

of 100-200 tfh ending at the latest ih the Middle.Devonian, approxi-

. Y
L

, mately 375 Ma ago [Ambrose 1964]. In consideration of the models” of

89
. Very long term topographic evolution being examined here, the length

-0of the inferred non-erosional period is relatively short: the erosional 8

Q

hiatus affects no more than 20% of the life span of the Grenville topo-
¥ © R .

"
40

graphy and perhaps as little as 4%/0f that of the Superior. GCeological

5t of the ergsion of the.Canadian Shield

° observations indicate tha

A\

& ° ‘
structural, provinces, as they exist at preseﬁt, occurred prior to thé
. . - ’ A
. Paleozoic erosional hiatus [Ambrose 1964]. It is expected that the
[} [V . 3
results of the models will be compatible with this observation because

it has been assumed in the models that erosion rate at any time is

. .
proportional to-the height of the topography reméining at that time.

I

<



The overall cffect of the hiatus on the ability of the models to
reproduce’ tle crosional and topographic cvolution of the study areas
is therefaée assuned to be negligiﬁ?& small. A rclated probiem is

that ports of the Churthill and Superior study arcas are still cveﬁlain
o Dby Poleogoilb scediments [ef. Figure 2;&]. Houever, in each casé the

o

extent of the cover is less than ~20% and it can be assumed that the

observed topographic power-spectrum of each is dominated by the .
I o ~

cratonic portion of the tqﬁography. That the topographic power of the

younger Churchill study area is gemerally greatef than that of the

4

Superior [cf. Tigure 5~6] is cvidence of the validity of fhis assymp
7, N

&
L' 4
tion, ' e -

K o o s N

¥

@ N @
>

5,3.4 Observed topography decay functions. The ohserved -

Q a

4

topography powef spectrum of the Cordilieran ragion of ‘North America
has been.ggsumed to changcteri!e, in terms of e{tﬁer Model o or 2,

*  the spectral configuration of initial topography [l-¢(k£90/ﬂm]2[Lo(ﬁ)|2

5 = )
or Iﬂm(k)}z existing at t=0 or t=tc respectively. In order to avoid

8

further euplicit consideration of.L;XK) or Hﬁ(ﬁ) the power\spectral
estimates SH(R) of the five study arcas graphed in Figure 5-6 have pegn -
° Y

normalized by the Cordilleran observations. The normalized eatimatés}a e

* . s ° e Y
referred to as Sé(k) are replotted in Tigures 5-7(a-j) as fuiictions of
o ° ’ T e T o

N o® .

@

the assumed age of the topography [cf. subsection 3.3.3] for' each of by

o
a

thé observed spectral wavelengths krfl. ,
. . * . . N
. Examination of Figures 5-7(a-j) schows that, in general, (1). .
[ b . ° g . . ) ’ .
topographic power at a given wavenumber decréases with age and that
‘ L

. most of the réduction occurs during the firct few hundred wmillion years

a
u v . <& a
N

%

a
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Figure 5~7. Normaliz@d topégfé?hy deecay data éﬁ [ef. text], %;
with 95% confidence intervals, obgserved at cpectral wavelengihs
(a) 1300 km, (b) 600 km, (e) ;06 km, (d) 286 km, (e) 222 km,

(£) 182 km, (g) 154 Ka,” (1) 133 km, (1) 118 km, and (j) 105 Lat.

' Choice of time axgg confidence intervals is qualitative. Alsco

va

© -pchoym [except for (a)] ave beat«fitting linear regression lines

paacing Lhrough the origin [solid lines], gample overall boot=9 "
fiLting Model 1' decay curves [D~10 ng =1 1la, o=350 Mn; . ~
plotted with quh%d Lines], paﬁple'overal} ?egéufitting Model 2
decay curves [ﬁ¥;024

coa 8
dots], and Model 2 deccay curves adjuoted accafding to the |

0 o
Nm, {=1 Ma, 0=250.1l; plotted with open

a

, o-critérion [G~300 Mn° cf. text, Migure 5-14; plot&ed whth ®

-

f*lled/ﬁots in (b—f)] - »

P
S
R

o

3

180

=



5.

181
t [Ma]

Q500 1000 1500 2000 2500
OLH! ] : E— s O
-] = |

. B N | .
2} - HH o
je '{:‘l . 1
3 ‘ "{#H | -,
ol
_aL (@) k' = 1300 km -
el
500 1000 1500 - 2000 2500
| ™ 1 l |

\




0- - 500 [000- 1500 52000 2500.

P A
6- t[MaJ 9 /)’""A{}‘

&

0o ] ] | ] )
gl
-2 ‘ o
-3 %o“
R (»)
(c) k! = 400 km
"4" l | ;s

O ' 500 \ 1000 1500 2000. 2500

- t[Ma]

. [
4

e

o
%,
o
, %o
5 v o OOO’
%o
%o
L)

(d) kel=286 km .. . - :

N4
P

BN



In [Sh (ke,1) ]

183

t [Ma]

. Q .. 500 . I000- 1500 2000 2500
OT:L'. I 1 . l u
iy
-2
..3_. o n

b b °°0°° , Y
(e) kel= 222 km %
-4...
\ -t [Ma]
0 500 1000 1500 2000 2500
03‘ i I | i i
720
- - ’%‘"’
Sl
-3k

4



B

184

t [Ma] .
. 02 500 1000 150Q_ -.2000 2500
. ! | | | !

- -l
£ o
X
e 3{1—'
~ 1(q) k! = 154 km
-4l |
t [Ma]
| o, 500 1000 1500 2000 2500
A 1 | -




k‘Q‘:;

&

t [Ma]
0 500, (000 1500

185

2000 2500

)3
fou
“ l
a

ﬁf/ o

¢

In [Sh(kr,ﬂ ]
o

Ay

o
|

(i) ket = 118 km

I

t [Ma]
0. 500 1000 1500

I

2000 2500

T

&
“OLhr ] f
.

In. [Sh (‘k‘r,f)]

‘.l



L4

. - 186
. . “

T .
A} «
after orogenesis and (2) the shorter the topographic wavelength, the

Ll

. *

greater the net power veduction at a given time, attesting to a ~

decreasing erosion time constant o(k) as k increases.

3 ! -

° The 900-1100 Ma spectral estimates, from the Greaville pré—

vince, are based on a data set which is less than half the size of

£

the other data sets used in the analysis [cf. Table 2-1]. Their

generally larger confidence intervals and greater scatﬁer, especially

<

at'longer_wavelengths where raw spectral data are particularly sparse,
can probably be attributed to this fact. In the same way, the

K

generaliy more comnsistent overall patterns of topographic decay evident

3

at the shorter yavelengths is likely related to the availability of

more raw spectral data at these wavelengths. Post-tectonic events

4

affecting topography, such as transiené thermalaupliftk?f the litho~
sphere and/or super-lithospheric ice and water loading, because they
are expected to be regional in scale, are a;go less likely to affect;
thenhigher irequency spectral component’s, g%ésause of the poor confi-

dence associated with the 1300 km wavelength decay function it is not

included in the subsequent analysis of the tgpography pawer observations.

Q
4

a

5.3.5 General characteristics of model predictions.’

Equations (5-25, 43) govern the change of‘FOPQgraphic amplituée H(E,t)
as determined by Models 1 and 2 respectively. The model parameters
common to each are the topogfaphy and plate Substratpmadensities s
and bm, flexural rigi%ity;n, viécou; relaxzation and‘grosion time
constant: T and o(k). Additionallf?“ﬁbdels 1 apa 2 are dependent on

initial topography Lo(ﬁ) and Hl(ﬁ). The model predictions, as for the

©
b]
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case of the elastic plate analysis in Chapter 3, axe not expected to
be very sensitive, within reasonable bounds, to the choi%? of o and pmB

and,’ therefore, to reduce the” number &f unknowns, they are assumed, as

, before, to bé 2700 and 3300 kg mf?.respectively. For purposes of miaking

v
t

P > D )
a general assessment of the behaviour. of.modelled H(k,t).as parameters

e’ V]

v

are varied, changes in % and D‘can be cembined in éhe single parametér
. : ( ) . T ° . [4

. ¥ . o

, 4 1-1

$k) = |1+ 12ZELDE T . (3-5it)

P8

Q It

Q

which varies in’ the range [0,1]: w(k)zo,ig the case in which there is’

L}

- a

no isostatic response-to topography, at short wavelengths or high D;
\ , .
and ¥(k)=1 corresponds to the case of local isostatic compensation [cf.

;subsection 3.2.317. Exapina@ion of the structure of Ehe model equations

N o

~

(5-25,43) reveals that scaling of t in terms of one or other of the

time constants ¢ and t or that scaling of ¢ apd 7 to one another is ngt

o o
" o L

profitable, T,

Y , . . -
Figures 5-8,9,10 shdw examples of the natural logarithm of

topographic power predicﬁe& by Models 1 and 2 for va;ioué model para-
meﬁersh The topographic power is simply the square of the prediéteg
amplitudes as provided‘hy Equati?ns (5-25,43). These res%}ts are
piesented as functions of time normalized so that they are zero when’
t=0.for t=t£ for Model 2] and so that they are comparable tq,the-obser$

vations presented in Figures 5-7(&-j). This means they have been N

normalized by the square of the initial instantaneous elastic deforma-

tion, Hz(k,O)==[1-¢(k)90/pm]21L0(ﬁ)lg or by the iquare‘bf the initially
Yocally cdmpensated topography {Hg(ﬁ)tzufor Model 1 or 2 respectively.

o v
< . 2

¢
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Figure 5-8. Normalized topography decay curves §

e

1

H

for elastic plate Model 1 or 2; y varies as shown:

.

datermined by Equation (5-45). -
1
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.88 Sé(k, ). ’ |

a

These normalized modéi-topography power Spectral predicfions are written T vy
. ]

B The natural logarithm of normalized topographic power ‘
f ~

. . / . :
ln[Sé(kr,t)], for a given wavehumber kr’ in the case of elastic plate .
5 [ * / 8
rheology [i.e., T+*], described by Equations (5-23) and (5-40) for

’

Models 1 and Zmresﬁectivelx, plots as a straight lihe with slope [cf.

RN
LIS e

Equation (5-21ii)} ) L .

1 - b fo]
O‘(R) J o™ (5"45) -

=20 = =2 [
e

within the bounds 0sy(k)sl. This result is illustrated in Figure 5-8°7 .

?
,

Theoretical decay curves are the same for both Models 1 and 2 because
7

of the normalization procedure. Note that changes in ¢ effects onlf a
scaling change in the curves. In the context of Model 1, the reason
topographic decay sloés as ¥ increases is because for greater ¥, as

.
isostatic compensation becomes increasingly local, more of therinitiaL)

load L (K) is "buried" in the Lithosphere's flexural dowmwafp. With

less éxposed topography tHe erosion rate is reduced and the life span

1

" of the topography is enhanced. In the case of Model 2, as V¥ increases, ]

izl ' - -
there is more topographic rebound as, erosion occurs resulting in a

reduction of the rate of decay of the topography.

?
o
[

Theoretical topography decay curves characteristic of a

@

viscoelastic plate are more complex dnd results for Models 1 and 2

° ° ' e
are dlﬁcussed separately. o -

v
¥l

(i) Medel 1. The general features of the Model 1 result&;

considering first Figure 5-9(a) for which 0=100 Ma are as follows.

o N ¢
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9 ° [ r] -~ >
(1) For smill viscous relazation ﬁﬁmg constant, T<<0, e.g. =1 Ma,

- o ¥

) o ¢ £y ®
ethé‘é ic an early-phase of rapid topography reduction, associatéd more

y?th the:relaxaﬁion of the stréﬁaes incurred b§ ghe initial elastic
deformatioq rather than with erosion, after which time the topography
is locally compenséted and decays in a like manner [parallel to the
Y=l or local compensation curve which is daéhed Qntﬁnﬁigurem 5-9(a,b)

for refe%ence]. As ¥ is smaller [cf. the uﬁper and lower diagrams of

Figuré 5-9(a)] this early reduction® phase is cfhanced because the ,

1

"initial elastic flexure was lessened. The timing of this phase, how- -

4

ever, is not signiffcantly affected by changes in @. (2) As =
* ' %@

increases, the plate response becoming "more"

4

elastic and "leas"

°
©

viscous, the early viscous relaxzation phase isqﬂippressed and, rather,
& . '

the decay curve at first mimics the elastic.plate decay curve and then

v a N 4 ° ©

begins to flatten such that a condition of steady-state topography is
almost attained. (3) Figure 5-9(b) illustrates Model 1 results for
the same [Y,t] pairs as Figure Q;Q(a) but with ¢ increased to 500 Ma

3

meaning that the rate of erosion has been considerably reduced. Note

~ o

the change of vertisal scale between (a) and (b)., Examination 'of
Fipures 5»9(atb) reveals that changes in ¢ approximate the effee; of a
o~-scaling factor dlong the time axlis: <as ¢ dncreases, the onset of
"flatteﬁing occurs after a greéter length of time and is favoured by .

larger wvalues of ©. As a result, the period during which the curves

resemble their respective elastic degcay curves is much longer.

(ii) Model 2. Model 2 topography power decay curves for the
same parameters as those of the Model 1 analysis are illustrated in

Figures 5-10(a,b). The major difference between Model 1 and Model 2

1
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Figure 5-10. Normalized Model 2 topography deeay cufbes Sé fox

(E) 0=100 Ma and (b) 0=500 Ma; parameters y and T Yary as shown.
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decay curves is_that the latter set does not display the early viscous

a

relaxatiqp phase of topégraphic decay, characteristic of Model 1,

because the topography is in énlg Eriori state sof local isostatic
compensation. Otherwise, the essential pattern of the respective sets

o ¥ “ 1
of curves is similar, particularly with respect to the onset and degree

L o

A o \
of flattening as it relates to the choice of values of the model time
constants 0 and T. This was to be expected, of course, since the ex- &

ponential éecay of each model [cf. Equations (5-25,43)] is controlled

by equivalent parameters: t oots -1, and -, of sz+as+§=0.

The important feature of the model predictions is that o

1n[8é(kr,t)] for a given wavenumber k_ decays linearly if the litho-
\

sphere behaves elastiéally [or if there is local compensation] xhrough—\

out the term of the evolution of the topography but: that topographic
decay may be significantly suppressed if viscous velaxation is allowed,
potentially to the point at which the topography acquires a steady-

|

a

state chéracéeristic.

5.3:6 Results. A first-order fit to the topography power
specéra decay observations 'can be found by simple linear regression
for each kr. The regression lines are assumed to pass through°the
origin. This set of best-fitting straight lines, piotted onto
Figures 5-7(b~-j) with solid lines, can be interpreted directly in

terms of the Y(k)=0 or 1 {one or the other for all kr] extrema of an

elastic plate‘model corresponding to conditions of no isostatic com-

pensation or complete local compensation. This result is independent

of choice of Model 1 or 2 [subsection 5.3.5]._ In such a case, P(k)=0

or 1, the slopes of the regression lines provide values of the erosion
\

.
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’

time constants o(R) by [Equation (5-45);" these are plotted in Figure
~ by

5-11. Bounds on o(k) estimates in Figure 5-11 were derived from the

, T, :

linear regression of the upper and lower 95% confidence limits of the
%+ ‘t ¢ ‘

topography decay observations in TFigures S-f(b—j), There is some

1/3

suggestion that g is proportional to 1 s, assuming it vanishes as

- ks, an indication that the erosion model [Equations (4-1)] used to

calculate the theoretical decay curves-:of Models 1 and 2, to which

these observations shall be compared, is realistic. Moreover, these

(Y N

results imply that o(k) does not greatly vary in the range of .k for

)
T

which observations exist.

It warrants re—-emphasizing that these best—fitting regression
lines comprise a consistent set of @odel predictions only if Y(k) is
either zero or unity for all ‘observed wavenumbers k. This requirement
can be restated in terms of the flexural rigidity D in light of the

smallest and largest of tﬁe observed wavelengths being considerea,

a

105 and 600 km yespectively. Recall that ,

4 |=1
v = |1+ 12TELD , (3-511).
o & .

Therefore, for y(k)<0.01 when K 1=600 km, D22.9 x 100

19 Nm. While the flexural

Nm; conversely,
for Y(k)20.99 when kK U=105 km, DL.3 x 10
rigidity of continental lithosphere, modellgd in terms of a thin
elastic plate, cannot with certainty be expected to lie within these
bounds, such a result appears to be probable in the light of previous
research [e.g. Waleott 1971a, Banks‘éi_g;. 1977, MéNuﬁt and Parker 1978,
Beaumont 1978, 1981]. Therefore it is unlikely that the model w{gh

¥(k) either zero or unity for all chserved wavenumbers is correct,

n

ey



<3

Figure 5-11. Values of the erosion time coanstant o [filled
circles] based on linear regression of observed topography

decay data; error bars are based on 957 confidence limits of

sy

the observations [cf. text, Figures 5-7(b-j)]. Also shown

Al

[dashed line] is a sample function fitted to the data.

¥
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. of the plate if D lies within the Fange 107

", also resulting in an increase in the hypothetical slope of the topo-

t

= ‘ - 202

o
8

. g
0f course, straight lines fitted to the ohserved data can also
be interpreted in terms of, any elastic plate model [cf. subsection 5.3.5]

with ¢ varyiﬁé as a function of k depending on the ﬁlexufal rigidity D

9-1026 Nm. However, becauge

24 i
of the internal constraint of k dependence of @ imposed on any set of

5 - ! a

predicted results [consisting og topogréghy decay curves for the ent%re

range of observed wavenumbérs], it is unlikely that any such elastic

Q%O ¢ 9
plate model; <in the absence of ad hoc readjustments of o(k) to alter

the slopes of the modelled straight line decay curves, could maintain

the best oVerall fit provided by the linear regression lines. Note that
4 A

as k inéreases, from Equation (3-5ii), ¥(k) decreases, and that the

i
o a

slope of the decay curve, from Eéuation (5-45) would increase.

¢

Similarly, as k increases, o(k) is intuitively expected to decrease,

graphic decay curve. In other words, the two effects are not

compensatory.

L3

The overall misfit betyeen model predictions and the observa-

- L

~

tions is simply definéd as =

4
(S

: N, N
. - r 5 |inlst e )8 4
My = T sillln[sﬂ(k ftS)U/SH(_kr,tS)‘]l (5+46)

>
b

where Nk and Nt are the number of observed wavenumbers and times for

which normalized power spectral estimates S&(k,t) exist. If model

o a

parameters are arvbitrarily chosen such that the predicted normalized

power spectral éstimates Sﬁ(k,t) reproduce those provided by the linearo, .

regression lines shown in Figures 5-7(b-j), then the total overall
L\

o

N

ar
~
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/ o

misfit célculated;gsing (5—36) is 22.5 and is referred to as the linear
/ <

regressibn misfit Mﬁ, ‘ .
! ®
Visual inspection of the observed decay curves and their

~

fitted regression lines shows, without need of statistically rigorous

hypothesis testing, 'that there is a systematic lack of fit between the

- 3

two, It is known from the analysis of the general characteristics of °
* >

: model predictions in subsection 5.3.5, however, that it may be possible
o & .
to better fit the observations, in the context of either Model 1 or 2,

- if-the lithosphere has the facility of viscous relaxation.

e o, .
L] B

% . s

4 " Overall misfits Mﬂ, as defined in Equation (5-46): were cal-
culated, for both Models I and 2, for model parameter triplets [¢,7,D] -
letfing (1) ¢ vary in the range 50-1500 Ma with increment 50 Ma,

(2) t assume values of [0.5,1,10,25,50,100,250,500,»] Ma; and (3) D
vary in the range lOlS-iO27 Nm incrementing in powers of 10. Surface
\ s .
and substratum densities s and p, were assumed to be, as noted earlier,
\ A -

3

- | -
"2700 kg m ~ and 3300 kg m 3 respectively. Tor purposes of preliminary

1 . M o
analysis, ¢ was taken to be constant as a function of k during each

LS

misfit calculation.

|
| |
Figures 5-12(a) and 5-13(a){ for Models 1 and 2 respectively,

y

T i a

show minimum calculated Mﬁ, defined
: : | -
. oMy g . (547,

where MEEZZ.S, the linear regression misfit; thus, the zero contourston

3

~

F&gures 5-12(a) and 5-13(a) enclose regions of 7-D,space for which the

R 7
viscoelastic models provide better reproduction of the data than does

12 ”
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-

the simple linear regression. Figures 5-12(b) and 5~13(b) indicate

which vdlues of ¢ were used to compute the respective minimum misfits

[

Mﬁi In each, the region Mﬁ<0 has been shaded for ecasier reference.

&

Exaiiination of Mﬁ calculated thus, for both Models 1 and 2, reveal :

0

that the Best overall fit of the observations is strongly affected by
3

i
L

the choice of ¢ and is best attained when ¢ falls in the range

. 200~400 Ma, : r o ' .

(i) Model 1: Tigures 5~12. In general the Model 1 Mﬁ are

v =

1 ‘ |
not very sensitive to choice of t. At the smallest values of D th@

predicted decay curves are those produced essentiallxsby local isor

- E

static compensation [y=1], as discussed 'above, with slopes determined

by ¢ which is, in all [1,D] pairs, 250, Ma for all k. The internal\

{
consistency. forced by constant ¢ means, of course, that these predicted
-, .
P=1 sets of decay curves cannot quite reproduce the misfit provided by

arbitrary linear regression and thus Mﬁ}O in this region.

o

Mﬁso when D=1020-1021Nm. The mechanism which effects the
improved misfit in this region of T-D space is the same throughout and}

relates to the initial phase of rapid iopographic decay resulting from

- viscous relaxation rather than from erasion as -discussed in subsection

. 5.3.5. The best repfodﬁction of the obsarvationsf}s provided by models

with D=1021Nm and small values of.T where Mﬁ;—S; in this region the

o

predicted decay curve3<?re insensitive to choice of T. A sample set,

/
using 1=1 Ma and 0=350 Ma, is plotted with dashed lines in Figures 5-7
” . .
(b-j) where they can be compared to the observations. Note that the

(4 .
initial viscous relaxai%on phase is ineffective when kr—12286 km,

21

corresponding to P(k)20.99 for D=10"" Nm. ‘Thenéoodness—of—fit of the

]

¥
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LS gt . - . \
Figure 5-12. (a) Model I normalized minimum misfit Mﬁ

[Equations (5-46,47)] éﬁd (b) value of o

functions of model parameters D and T; sh

o

corresponds to Mﬁ<0 in (a).

g

providing Mﬁ(as

aded region in (b)
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pample curves at \these low wavenumbers isc not 28 good as that provided

based on best-fitting rheological medel parameters T and D for constant

o(k), \is to test what kinds of adjustments to ¢ for various kr improves

ntuitively, and from the ¥(k) extrema results,

Y

the overall fit.
illustraled in Figyre 5-11, it is expected that o degreases as k

increases. Intern 1ly consistent adjustments of this kind [such that
/ <

no c(kl)<c(k2) if k1<k2] serving to maintain oxr improve Mﬁ for a given

[tsD]-set of decay jcurves can be considered a satisfactory result. A
rd )

reverse effect can be taken as unsatisfactory and argues for refutation
of the mo?el. Thig feature of the model predigtioné, for any given
[tsD] pair, shall jbe referred to as the o-criterion. In the case of

Model l,igyerywhe e with}n the best-fitting, Mﬁso, =D space shown in

Figure 5-12(a) the¢ o-criterion is not satisfied.

Model 1 [Figure 5-12((a)] for (1) an elastic plate [t»=], (2) small D
where isostatic response is effected by local compensation, and (3)~ °*
large T and“D where little or no isostatic compensation sccurs. Other~
wise, there are region$s in Model 2 t1-~D space which provide bettefg *
‘overall fit than for Model 1. In general, within the Mésﬂ régééndof
Figure 5-13(a) the misfit is not strongly sensitive to choigg gf % for
any given D; throughput his region, in‘which there are three geparate |
s !
zones with Mﬁ§—5, thé character of th% predicged toﬁography hecay
curves, for each [T,D]/pa r, is somgyhat uniform. Note that the

4

o



1

r

Figure 5-13., (a) Model 2 novmalized minimum misfit M{{’ ‘
[Bquations (5-46,47)] and (b) value of o providing M} 2s
functions of model parameters D and tT; shaded regibn in (b)

corresponds £o M'<0 in (a). .

ar
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N . '
diagonal trend of the IﬁsO zonedof the Model 2 t-D map reflects the
controlling effect of Qhe atio P(k)/T in Equation (5-43ii), which
: gilves H(ﬁ,t), and in o and g [Equations (5-19ii,i1i)], which determine

‘the arguments of the exponéntial functions in (5-43ii). As D gets

larger, for the range of k under consideration, ¥ tends to vary accord-

A

ing to D~L so that the predicted topography decay curves are virtually

unchanged as long as the product of T and D is a constant.

While it is necessarily stressed that no single set of curves
“within this best-fitting region of 1-D space is significantly better
than any of the others, péiticularly nbting the approximate form of
the observations, topogrébhy decay curves predicted for D=~1024 Nm and

=1 Ma, for purposes,of illustration, atre plotted with open dots on

!

«
Figures 5-7(b-j). The erosion time constant o providing the best mis~

fit for this [t,D] pair is 250 Ma [Figure 5-13(h)]. Also biétted,
24

.

J [
using filled dots, are Model 2 predictions, for D=10"" Nm and 1=l Ma,

adjusted according to the o—criteribn, which yvielded satisfactory
results. These adjusted decay curves, with the exception of that for

400 km wavelength topography, are seen to be more closely aligned with

1

the best-fitting regression lines. Values of o used in the adjusted

:

calculations are plotted as a function of kfl in Figure 5-14. Their

\)

distribution suggests that ¢ may be proportional to k-l/4 if it

vanishes as ke,

) The plotted set of predicted topography decay curves is

. . ) .
characterized by a moderately good fit to observations at the small
wavelengths kr7ls}82 km. At larger kfl decay curves are essentially

8
linear [in terms of tye logarithm of S&(k,t)], as was the case for

- q

Y



Figure 5-14, Vélues of the erosion time constant G‘Lfilled
circles] based on best-fitting Model 2 results adjusted accord- ¢
ing to the o-criterion [cf. text]: also shown [dashed 1linel is

a sample function fitted to the adjusted o values.

213
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t €
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Model 1, although, unlike Model 1, the linearity is not a consequencé '

of local isostatic compensation [¢Y=1]. Rather, when‘D'—'lOz4 Nm, as in
the present case, for kr~12222 km, P(k) can be as’small as 0.85. The T
Moo . .

-
3

decay curves in this raange do not really proﬁide an adequate fit ‘to - e
, . ‘ -y
the observations inh the sense that topographic power is consistently

&
s 3 . v S

overestimated at t=325 Ma compared to observed Appalachian topographic

I

power. On the other hand, it should be noted that these linear décay .

- ’
~ . f °

curves, calculated for {t,D] pairs which piovide best misfit Mﬁ'over

all observed vdlues of k, virtually coincidey excé%t for kr—l=400 ko,

3

with the best-fitting straight line found by linear regression., In

¢ » 3 v ‘

o

other words there is some internal consistency in the [1,D] models: .
(U(

"o / £
at smaller k /fhere is good f£it and at larger k l, although t£he phygics

of;godel 2 can provide only a linear decay _curve when the observations@

suggest otherwise, at least the modelsapredlct the best possihle llnear

v‘ _". ’ N é?

decay curve available..
@ » -

\ Eoy

« 5.,3.7 Confidence in results. In the preceding subsection,

-\1

theoretical model predlctlons were compared to statlstlcal estimates

v b ¢

of continental topography power spectra without the beneflt of formal

+w

.

3

étatistical constraints, - Tﬁis approach was considered ‘suitable in the

~

present case because of the many assumptions inherent to the constryc-

tion of the theoretical models and to the reduction of the observations.

t -

In turn, any geophy31cal conclusions arising from the analysis are <y
‘
necessarily non-specific, emphasizing more the fefutation of classes

of models of lithosphere behaviisf rather than the acceptance of parti~-

.

cular geophysical properties -thereof: That the observations provide

14 “ [N . i -

Y . . .
only limited constraint within the gheological parameter space o0f the -

.
1 4
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Tigure 5-15. Model 2 norm%lized minimum misfit Mﬁ, as a
Pl s

-

function of parameters D and T, based on ob§eryéd topography.
s - ‘
decay data normalized by the upper 95% confidence limit of

the Cordilleran topography power spectral estimates.
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Figure 5-16. Model 2 normalized minimum misfit Mg, as a

@

.

function of parameters D.and 7, based on observed topography
? °
decay data normalized by the lower 957 confidence limit of
the Cordilleran topography power spectral estimates,
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°
1

models contributes a posteriori justification for the iﬁformal approach

. [

>

taken ° ) i

Y

The observed data were presented with their respective 95%

~

confidence limits and perhaps the most serious statistical short-cut

f
2

that was taken was the lack of consideration of the variance of the

©
b <

data “within these bounds. In particular, the main source of uncertainty
in this respect are the 95%uconfidence intervals associated with the
Cordilleran estimates which were use& to scale the other spectral data.
It is intuitive, at least retrospectively, from the general nature of
the resuifs that such considefations‘will not greatly affgct their out-—
come. To illustrate this, T-D ,misfit maps for Model 2 are presented
in Figures 5-15 and 5-16 Fespectively based on spectral estimates nor-
malized by the upper and lower 95Z confidence limits of the Cordilleran
data. In each case, the misfits have been cdlculated relative to their
Q appnopr%ate best-fitting set of linear regreésién lines. As would be
gxpectéd, the oétiﬁal erosion time cons&aﬁt o is reduced somewhat in
the first case [to 200-250 Ma from 250-300 Ma], corresponding to the
need for more rapid erosion, and increased in the second case [to

350-400 Ma]. Otherwise, the best-fitting rheological parameter space

of Model 2 is uncﬁanged.l Similar results occur for Model 1.

A

A4

5.4 1Isostatic Response Functions

"
v o

5.4.1 Introduction. The isostatic response functions Q(k) of

the major geological provinces of North America considered in this

<

study were analyzed in terms of a time-invari?nt thin elastic plate

~

=
< {'
P v

~F
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model of continental lithosphere in Chapter 3. The observed response
functions [Figures 3-3(a,b)] are characterized, vergugenerally, by
iﬂ&feasingly rapid fall-off to zero with increasing k as the tectonic
afe of their source regions increases. This feature of the observa-.
tions was not clearly reflected in the results of the analysis because

of uncertainties in data and variability in model parameters, particu-

larly the density structure of the upper lithosphere.

In this section the teﬁboral variation of the response function
observations are considered in terms of time-dependent isostatic models
developed in section 5.2. fhey are Model 1, in which a uniform visco-
elastic thin plate lithosphere is loaded suddenly by topography=Wwhich
subsequently erodes, and Model 2, in which topograpy, formed above'a
‘thermally weakened orogenically active lithosphere and thevefore in a
‘highly compensated igostatic state, erodes subsequent to the 1}thosphere
having cooled and achieved greater flexural compentency. The theoreti-
cal isostatic response functioné Q(k,t) characteristic of these models
can be derived from the theoretical tgpography H(ﬁ,t) and deformation
W(ﬁ,t) functions, defined by Equations (5-23,26) and Equationi (5-43,

44) for Models 1 and 2 respectively, in the mannér described in sub-

section 5.2.6.

°

N\ >
In particular, the theoretical Q(k,t) functions can be judged

ip-the light‘of the results of section 5.3, in which the evolution of

continental topogiaphy, as determined by the topography power apectra

of the studied geological provinces, was compared to that predicted by
k4 "n

the models. The results of section 5.3 indicated that the continental

. lithosphere, in response to topographic loads, may'have the facility

. ¥ -

a4
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of viscous relaxation but did not strongly constrain the choice of

3

rheological model parameters v and D, particularly t. .

A noted above, isogtatic response functions are difficult to

interpret, chiefly because gravity anomalies cannot be’uniquely deter-
mined by a particular density structure. The interpretation.of the

<

topography power spectra was not affected in this way., Therefore, the
theoretical isgétatic response functions are considered mainly in terms -
of their ability to further constmin the range of acceptable mogel ‘

parameters indicated by the topography analysis although their general

attributes will also be discussed. ® °

S

@
@

5.4.2 Model 1 results. Model 1, in the elastic [t>] plate

t

case, is equivalent to the time~invariant model discussed in Chapter 3,
in which the lithosphere at any time responds only to the femnant topo-
graphic load at that time, even as it erodeé. The isostatic response
function characterizing such a model is therefore not time-dependent,

a feature which can be verified by inspecting Equations (5-23) and

(5-24) which resbectively define the topography and lithospheric defor- -

mation as functions of time of the elastic Model 1. Since this model

was discussed at length in Chapter 3 it is not considered here.

The viscoelastic models for which the best f£it to the topo-

graphic data was attained [subsection 5.3.6] are characterized by a

21 . .
Nm and various viscous relaxation constants

\

€25 Ma., Q(k,t) for these models, evaluated for times equal to the

flexural rigidity D=10

tectonic ages assumed for the studied geological provinces [subsection

5.3.3], are presented in Figure 5-17. Other parameters were chosen

~
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a N 2 » ° *
Figure 5-17. Theoretical isostatic response functioms Q(k,t) -

1 « ©

of a sample best-fitting [i.e. topography decay amalysis, .-
subsection 5.3.6] v@scoeiastic Model %; par%qeters and topo—

4
-graphic ages as shown. Local isostatic compensation exists
a D

s

- ¢

for t2325 Ma.
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@

as follows: (1) load and mantle densities °, and o were assumed to be

i

2700 and 3300 kg m'-3 as alwayss; (2) a single compensation depth z, of
35 km, a depth compatible with commonly observed crustal thicknesses

[e.g. Goodacre 1972], was chosen; and (3) the erosion time constant

»

o(k) was teken to be a constant 350 Ma as a function of k, the o(k)

function which characterized the best-fitting topography results.

iy} .
Like their analogous topography decay curves, the calculated .

w

Model 1 isostatic response functions are not sensitive to choice of T,
This result is no£ surprising since both the topography H(ﬁ,t) and.
deformation W(ﬁ,t) functions, with gravity anomalies derived from the
latter [Equation (3-11})], ;re controlled by exponential functions with
equivalent arguments tEquations (5-25,26)]. In addition, Figufé 5-17
shows that there is no temporal variation in the calculated Q(k,t%*for:
t2325,Ma. This result was also signified by the topography decay
analysis: the best-fitting model predictions [Figures 5-7(b~j)] are
characterized by viscous effects only prior to the Appalachian data .
point a%WSZS ﬂa and these eff;cts are due to the relaxation of ;he
initial elastic flexure of the lithosphere which occurs instantaneously
as the topographic load is applied. Subsequent to this initial relax-~
ation, the topography, and its isostatic response evolves as in a

state of local compensation because the time- cGnstant oﬁ«erosio%, o,

4

° AY
is much larger than that of the viscous relaxation, T.

3

It follows that significant time-dependence of Model 1 igo-
static response fungtion g(k;t) wiil cccur only when the Fatio t/t is
small agd will be favoured by small vaiues of o. Temporal effects in
Q(k,t) are also enhanced as D increases because less elastic flexure,

0

b
° Oy [
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resulting fr;m the negative load associated with erosion, will occur ’
as’ the plate increases in stréngfh and therefore '"requires" more viscous
relaxation of th? instantaneous flexure. Tor illustrative purposes, Q
is plotted in Figure 5-18 as it varies in éime for a plate with D==1022 o
Nm, ‘t=500 Ma, and o(k)=350 Ma. Values of T of this order are required
to detect changes in Q(k,t) throughout the very long time range con-
si&ered here. It can be seen, for suitable parameters, that Model 1
predicts that the rebound effects of erosion progreésively 1aglbehind
tlie erosion itself resulting in overcompensation of the remnant topo-
graphy and therefore greater negative values of Q(k,t) as k and t
increase. It is observed that this can result in the reversal of the

k gradient of Q(k,t).

4

+

5.4.3 Model 2 'results. 1In Mpdel 2, low density crustal roots,

resulting in local compensation of initial topography, are assumed to

“

form duyring the early stages of continental evolution whés ghe litho-
sphere i thermally activated apdaflexuraliy weak because qf‘tectonism.
Because these isostatically cogpensating structures are presumed to be
subsequently "frozen" into the cooled and strengthened lithosphere, it
is expected'that the theoreticaf isostatic response functions of Model 2
will be more widely characterized by large negative values indicative
of overcompensation of remnant eroded topography than were those of '
ﬁodel 1. Clearly, the overcompens;tiOn of topography in Model 2 1s

favoured by the same factors as in Model 1, small t/t and ¢ and large D,

but will be more pronounced than in Model®l.
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Figure 5-18. Theoretical isostatic response functions Q(k,t)

of a sample viscoelastic Model 1; parameters and topégraphic

€
.

ages as shown.

&
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The most important difference between the two models occurs ’

in the case of an elastic [T+¥]°litﬁohphere: the isosggt{g/respnnse

function of the Model 2 ;ithbéphere; unlike Model 1, 'will be time- -

deﬁeﬁdent. This result can be verifiéd by inspection of Equations
(5 40) and (5- 41) whlch:respectlvely deflne the theoretical topography

and deformatlon functlons of Model 2 in the elaﬁtlc.pase. In the limit

- o
P il ‘e}‘-' T v,

o

as- t»», topography vanishes but defarmapion, and therefore the gravitfﬁ

T o

anomaly, associated with the initial<¢pcailj;compensated topography

4

does“not entirely do so. ‘Therefere, in such circumstances, the iso-

) e @ ' I3

static response, which is the gravity normalized’'by topography,
supposes that a lithosphere with no flexural strength instantaneously

lecomé§ flexﬁéally compétent ang then maintains its strength uniformly

3

approaches infinity. It should be noted, ;}tho%gh Model 2 specifically

. -through time, that the overcompenséting effects of topographic erosion '

is a general resulg.fo& any lithosphere which cools, thickens, and

[

i

becomes more rigid progressively through time,.whether or not thé

initial state was one of lodal isostasy.- *

“ )

An example of the temporal evolution of Q(k,t) for Model 2 is

N

a

9 q ¢ »
shown in Figure 5-19; the response functions have been calculated for

an elastié plate with flexural rigidity D=1021 Nm, a value chosen to

¢

‘ % %
be compatible with results of the observed response function analysis

Y

o of Chapter 3, but ome which is less than those interpreted from other

s

‘kinds ¢f continental 1cads:[CSéhran 1980; cf. subsection 3.1.2].

°
H

.Densities and compensation depth are as for Model 1 [subsectimq35.4.2];
B b [ .

o is taken to be a constant 400 Mﬁ;'the best choice of ¢ for a

. [y

[D=10"" Nm, ?+m] model on the basis of the observed topographic decay

as

[ef. Figure 5-53(b)]. 01ld eroded. topography is seen to be markedly

.:

i
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Figure 5-19. Theoretical isostatic response functions Q(k,t)
®

of a sample low rigidity [D=1021

#

Nm] elastic Model 2; parameters

o

‘and ﬁobographic ages as shown. Note that at t=0 topography is

g
compensated locally.
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évercompensated; higher choice of D would serve to greatly exaggerate

the observed overcompe?sation. Q " ,/
The overcompe%sating effects of Model 2 evolution can be s %-

stantiallz reduced if éhe lithosphere is allowea viscous relaxation.

Of particular interest are models within the‘bes§~fitting [t,D] para-

meter space deéiyed by the’topggraphic decay analysis [Figure —13(5)].

As before, theoretical results for different parameter pairs in this

?
range are not greatly distinctive. Q(k,t) functions characterizing

models for [t,D]=[1 Ma, 10°* Nm], [10 ¥a, 10°° N], and [100 Ma, 10°* Nn]

parameter pairs are very similar and those for the first pair are

plotted as they vary in time in Figure 5~20. The assum¢d, erosion time
constant o is, as always, that indicated by the best-fitting topography

decay curve and i&, in this case, 250 Ma. Densities 4nd compensation

depth are as before. The interactions of the time c¢nstants o and T
are such that no temporal changes in the theorética response functions
occur whenﬂtzlooo Ma. The effects of isostatic ov rcompensati?n are
observed but are not severe, Viscous relaxation gignificantly attenu-

24 Nm elastic

ates the overcompensation; in coﬂtrast, consider the D=10
Model 2 Q(k,t) functions for the various observations times, also
'plotted, using dashed lines, in Figure 5-20. The erosion time constant
o used for these curves was 400 Ma, the largest value of ¢ which seems.
likely from the topography analysis. Smaller values, of course,lwill
serve to further accentuate the exagéerated state of topographic over-
compensation indicated by“the isostatic response~functions; very large
values of"c greater than 1000 Ma are required in order that the

t=2500 Ma Q(k,t) function has a consistently positive gradient [down- ,

wards in Figure 5-20] 'in the indicated range of k<0.01 km—l- The double

/
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Figure 5-20. Theoretical isostatic response functions Q(k,t)
of a"sample best~fitting. [i.e. topography decay analysis,

subsection 5.3.6] viscoelastic Model 2 [solid lines] and a

2

medium rigidity [D=10 4 Nm] elastic Model 2 [dashed lines]; \)[

-

pgrameters and topographic ages as shown. WNote that at t=0

topography is compensated locally.
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reversal of the gradient of thé t=325 Ma curve is an interes%ing o
feature, characteristic of some pairs of Model 2 parameters; it should

be noted, however, that it is enhanced in fthe present case by the use ’

A 2
4 P

of constant ¢ as a function of wadenumber k. Greater topographic over-

2
2

compensation, indicated by larger negative values of Q(k,t) at the
higher wavenumbers, would be favoured if o decreases with increasing k,

which is physicallﬁ intuitive and is supported by the observed topo~
R

graphy decay curves [e.g. Figures 5-11,14].

4 o

2

5.5 Discussion

@
'

[y

5.5.} Contimental isostatic response functions. The analysis
hd ¢

of the theoretical isostatic response functions of Models 1 and 2

presented in section 5.4 has shown that (1), in the case of both models,

R r
‘even if isostatic response functions were perfectly observable, because
the theoretical response functions®are no more sensitive to model para-

meters than were the theorétical topography decay éﬁrves, they could
i ¢

not help distinguish among the preferred model parameters indicated by
the topography decay results; (2) given the quantitative uncertaintiég
associated with real estimates of continental isogtatic response
funétions, no dependence of response functions on the tectonic ages 6f
source regions would likely beheVFdent if the, lithosphere is charac-
terized by the preferred parameéer sets of either Model 1 or Model 2;.
and (3), given suitable model parameters and enough time, the,tendency

of erosion is to produce large negative values of Q(k,t), indicativg

of overcompensation of the eroded remnant topography, especially as the

a

N
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and McNutt [1980], is its curvature in the 0.001<k<0.005 kT reéion."'ﬂ.r S
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wavenumber of the topography increases.

~

With respect to the latter observation, it is tempting but
probably not justifiable to point io the k=0.009 km a(k,t) estimate
from the §uperior province as evidence of overcompensation [Figure 3-3
(b)]: however, the fact remains that ;o continental isostatic response
function, among those presented here [Cﬂapter 3] or elsewhere [Lewis

and Dorman 1970, Banks a;d Swain 1978, McNutt and Parker 1978, McNutt

v'1980] is clearly characterized by elevated values as k increases to

v
B

and becomes larger than,0.01 ko Y. In fact, in the case of the observed

[

résponse functions of the present study, there is a‘tendency toward more

Q

rapid fall-off as k increases. Of course, variations in compensation

[y

depths between regions cannot be discounted in this respect [subsection

«

3.4.2]; nor can the effq‘ps of increasing geological noise as a percen-

hl 4

tage of the gravity signal, as the topography erodes and the implied

isostatic gravity signal decreases with adwancing tectonic age, be

o~

ignored. o .

°
-

If, for this reason, the reliability of contihental iso;tatic
response function estimates at the higher wavenumbers, say tgose greater
than 0.0075 kmfl, is sufficiently doubtful that they may be ignored;
éhen the erosion of topography, accommodated in té&ms of either Model 1
or 2, easily expléing why low values of lithospheric rigidity D are
returned from response functions interpreted by means of the simple (

o

elastic plate model [Chapter 3]. _The crucial feature of an observed

e

resﬁ%nse function which determines D, as discussed by Cochran [1980]
)

' [}
More rapid fall-off of Q hereqis indicative of higher D [ef. Figure 3-4].

-
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However, Figures 5-17 through 5-20 illustrate that the effect of

©
-

erosion, for sultable model paramefers, is_to elevate rather than
suppress the response function at the crucial wavenuml?erso I? the case
of Model 2, the maximum flexural rigidity which could be returned by
interpreting an observed isostatic response function in terms of the
simple non-erosional elastic plate model would be the flexural rigidity
of the lithosphere in effect at the time of formatioﬁlof the topography.
An extreme case of Model 2 has been assumed here: qhat D was initially
Yzero, resulting in local isostatic compensation, but Mogel ? could he

formulated‘according to any "frozen in" initial. isostatic state as long

as the lithosphere subsequently becomes thicker and stronger.

The potential unreliability of observed Q(k,t) at high k not-

»

wiéhstanding, the isostatic béhaviour of a Model 2-type lithosphere,

as reflected by the calculated theoretical response functions, appears

to preclude pure elasticity as a viable rheology. Figure 5-20 shows,
| 4

d

for an elastic lithosphere with Dmlo2 Nm; that topography of even the

véry smallé;t ébservable wavenumbers is exceptionally overcompensated
after, at most, 1000 Ma, the age of the Grenville province. As noted
earlier, Model 2 has been formulated in such a way to provi&e extreme
?egplts: particularly, the 1ith?spheré, after orogenesis, will not
become suddenly thick and ﬁlexurélly competent but will donso gradually

depending on its efficiency of cooling. Erosion which ogcurs during

this time will be more easily compensated than the model assumes; how-

"ever, the tdime constant of ergsfﬁhu in the context of the assumed

erosion“mpdel,ais of the order of a few hundred million years, several

times greater.than that characterizing continental lithospheric cooling
o

[Sclater et al. 1980]-and it is therefore expected that overcompensation

P
"
(Y

*
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effects will be strongly maintained. Thus, viscous relaxation in the
continental lithosphere, perhaps Witﬁ a time constan% T\éé small as

1 Ma, is indicated by considerations of observed énd thepretical iso-
static response functions if a Model 2~type evoldtibn of continental

lithosphere is assumed. The classical argument that the maintenance

o

of mediumkscale [of the order of hundreds of kilometres wavelengthl]
. ? N ’ ’
gravity anomalies in old continental regions such'as the Canadian Shield

13

requirés a strong, non-relaxing .crust [e.g. Jeffreys 1976] appears to

N v

be overstated; rathé}, the gravity anomalies which do persist in such,

N

regions are perhaps explicable in terms of ,gecdynamic processes rathern, ~

> ! e . g
than static ones. . v a
13 1" v .
N g . .

#

i 5.5.2 Early topographic evolution. A feature of the theoreti-

cal normallzed topography decay curves [subsection 5.3.6, Figures 5—7

(b-J)] common to both Mbdels 1 and 2 is.their [logarlthmic] llnearity

for the smallest of the observed wavenumbers kr' Although Model 2 at

least predicté 1ipear decay curves which are equivalent [except for
krh1=400 km] to the best-fitting linear regression lines, both models

» ° - A
essentially fail in this respect because the observed data are systema-

tically non-linear [Figures 5-7(b-j)]. In particular, normalized power

Ebectral data derived frem the Appalachian region [t=325 Ma] are con-

“sistently smaller than the models predict. This feature of the results

o

is discussed below in terms of the potential effects of seme of the

inherent model and observational assumptions.

[

(i)wAppalachian data. The Appalachian data may he 1eés reli-
able than data from the other study areas because its source area is

smaller [except for that of the Grenville datal; narrow [and therefore
7

e

-
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particularly suéceptible to affectations due to smoothing during the
dgta reduction process]; and because of its history of involvement with
the opéning of the present Atlantic’chan and with sedimentary basin
development on the c;ntinéntal margin. Tigure 2~1 shows that a con-
siderable portion of the Appalachian study area consists of the Grenville
province or is covered by sediments [including those of the Atlantic
continental shelf]. The topographic signal from these areas could
certainly contribute to a lower level of poyer measured for the entire
study area. The reason the Appalachian study area was made as large as
it ig, at the expense of geoloéical and topographic homogeneity, was to

-

provide more-data for more and statistically better estimates of its

isostatic response function and topography power spectqﬁm.

(ii) Model parameters. The implications of the Appalachian
misfits can be judged on the attributes of the models themselves. Best-
fitéing model barameters were determined on the basis ;f constant para-
meterf o, T, and Q: Wavenumber dependence of ¢ was investigated [the
o-criterion] in sug;ection 5.3.6; although better low k results for
Model 2 were thus provided, no more'satisfactory fit o£ the Appalachian’
data was returne&. Parameters T and D were assumed constant in time and
space, a requisite feature of the models in terms of their physical -
linearity and mathematical development [section 5.2]. 'However, if, in
reality, the rheology of the 1ithosppere is such that it implies th;t
7 and D do possess time and space dependencies, these dependencies may
be reflected in the observations. What kinds of t and k dependencies
of T and D ‘tend ,to improve the misfit of the Appalachian data, or the

early evolution of the models in general, amd are the physical

3



implications of the dependencies reasonable?

First, consider the effects of k dependenciés in terms of the
general model characteristics presented in Figures 5-8,9 ané,lo.

* (1) The mechanism by which Model 1 effects early topographic decay
[subsection 5.3.5, Figures 5-9(a,b)] is wiscous relaxation of the

" +initial elastic flexure associated with the.gpplication of the topo-

‘ graphic load; this fails to occur at small wavénuﬁbers because the |
plate is insufficiently strong to maintain flexure. As a result the
long wavelength topography is immediateiy in a state of local isastatic
equilibrium for the indicated best-fitting choices of © and D. In such
a case T%k) dependence will be inconsequentialj rather, curvature in
the low k decay curves can only be achieved‘by means of greater D such
that initial elastic flexure is sustainable. Shchaa D(k) deg;ndence
is presumably opposite in effect to that expected from a rheologically
non-linear lithosphere in which strain tate would depend on some power
of the applied stress. (2) Figures 5-10 show éhat early topographic
redugtlon effected by Model 2 is favoured either by smaller values of
Y, -leading to larger values of Q, or by 1ar%gr values of t. Thus,
allﬁwing D to vary with k in order to sueéé;sfully model the low k
observations implies a D(k) dependency similar to that of Model 1:

D larger for smaller wavenumbers.- (3) A similar result applies for .
; T(k) in Model 2; again, this is opposed to what might qualitatively h;
expected, that longer wa%elength topography "sees" more deeply into the .
lithosphere where temperatures are higher and viscosity, and therefore —

[

1, is smaller.

-
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Secondly, consider possible forms of functions D(t) and T(t)

which would imRrove the early evolution of the modelled topography.

A

(1) In either Model 1 or 2, as pointed out ﬁany times, it is general

that the rate of topographic reduction is favoured by small values of

°

¥, hence large values of D [Figures 5-8,9,10]. Thus, to control the
slope of the decdy curve by letting D vary as a function of t, such

that the slope would decrease through time and therefore reproduce the

0

general form of the observations, would require dD(t)/dt<0. This result
is incompatible with the probable characteristic of tontinental litho-

sPhei? that it cools and thickens with age [e.g. Sclaferig;_g}, 1980].

.

(2) As noted above, in Model 1, as long as T is small enough to allow

for the early viscous relaxation phase to occur in the requisite amount

of time, it cannot be modified to improve the model's ability to repro-

duce the Appalachian data; thus no obvious t(t) function is implied by
e} v

the misfit. (3) In the case of Model 2, it is difficult to judge the

e

effects of temporal variations in 1 throughout the entire 2500 Ma range

of observed t; however, it remains that larger 7t results in more rapid

v

decay [Figures 5-10(a,b)] and therefore it may be presumed that t(t)

£33

would have to decrease through time in order to better reproduce the
e e

observed early evolutiorn of topography. This result, like the D(t) °
H

v

result, is not compatible with a coeling lithosphere.

Thus, it seems the lack of success of the present:simple linear
viscoelastic uniform plate models to describe the early [”tESOO M&]
- evolution of continental topography, as evidenced by the Cordilleran

and Appalachian observed topography power spectra, cannot he explaineg

in terms of qualitative effects expected of more rheologically and

-
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3

structurally complex mndéls of which the present models are only _ .

¢
2

B

approximations, . o~

However, it is also necessary to consider the éffects of a”

v
v

time-dependent. o function; the result of such a, consideration is less

a
&
equivocal. It seems reasonable that the observed tepography decay data

o

may be better reproduced if o is smdller than the indicated 200-400 Ma .

~

in the early phase of evolution. This may be equivaleﬁt to an erosional
process in which erosion rate is proportional to some power greater than
one of the topographic amplitude ratheér than being linearly proportional
as agsumed in this study in order to allow the analytical formulation g

of the models'to be tractable [Equations (4-1)]. Such a possibility

B ’

’ "cannot be ruled out; in particular, o(k,t) which increases as a function

of time in combination with elastic plate isostatic behaviour could

= Ll

- presumably match the observations." In this context, however, overcom-

’ »

pensation of eroded topography, in terms of a Model 2-type scheme, as

. 3
discussed in subsection 5.5.1, would remain a problem and, because

o

early topography would erode more rapidly, such overcompensation may

become even more significant. It should also be noted, since the visco-

4 2

elastié, linear erosion modelss particularly Model 2, are reasonably

.n - -

successful at high wavenumbers k, that if o time~dependencies, or
equivalently erosion rates which are non-linearly proportional to tapo-

graphic amplitude, do occur, they are themselves k~dependent.

A

(iii): Initial topography. There are other factors, not related

a

to the assumed’ erosion model or to implied variations in the rheological

« ,° model parimeters, which may be contributing to the apparent depressed

level of the Appalachian topography power spectrum. The most important

t .

o
3 «
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of these is the assumption that the present-day topography of the

Cordilleran study area represents the initial state of either of Models
\
1 and 2. There are two aspects td consider. The first is that the

©

spectral ‘amplitudes found in the Cordilleran region are assumed to be
comparable to those which initially existed in the Appalachian region.
In this context, it is noteworthy that the Cordilleran and Appalachian e

mountain~belts consist of similar.gross tectonic elements [Dewey and
o : ~ b

.Bird 1970]. Accordingly, there is no reason to believe that the initial , - ~»

topographic' power of each orogen would be greatly different.

0 .

Secondly, the choice of the present as the initializétti time

t=0 or t@ [for Model 1 or 2] may be premature. With respect to the very
{
long term topographic evolution being considered, an error of *100-200

Ma is unlikely to be significant in terms of the implications of the

-

models [cf. Figures 5-7]. The potential effects of larger errors are

as follows.

.
‘ ¥

For Model 1, the initialization time t=0 can be no later than

the present. The Cordilleran topography exists and it is isogtatically

a

compensated in a fashion not greatly dissimilar to that of older
regions [cf. Chapter 3]. "If t=0 is assumed to be sometime in the past <

2

then the Appalachian misfit is only worsened.

/ On the other hand, in terms of Model 2, the consistent over-
estimation of Appalachian topographic power could be reduced if the ¢
initialization time tc is sometime in the future rather than at the

13

present. Evidence that this may be so, at, least over part of the . /‘\

Cordilleran study area, is provided by anomalously high heat flow

observations [e.g. Sclater et al. 1980]. Figure 5-21 illustrates the

9
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- Figure 5-21. Normalized topography decay data SH’ with 95%
. confidence intervals, observed at spectral wavelength 286 km
v[cf. subsection 5.3.4, Figure 5-7(c)], showing best-fitting

d “ . > » -
linear regression line not forced through the origin. Potential

‘ LY
future notmalized origins fall within the stippled region

¢
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p9ssiblg consequences of a premature choice of té' As an example, the
286 km wavelength topography decay data have been redraughted showing
their best-fitting regression line not forced to pass through the
origin. If it is assumed tlat the power of the Cordilieran topography
will not actually ipcfease in the future, thén the "initial" tcpogréﬁhic.
power le(ﬁ)lz exi§ting when the lithosphere becomes flexurally compe-
tent at some futurg time . will plot within the stiﬁpled region of
Figure 5-21. 1If the degreé of power in the present topography is main-
tained until that time, because of continual tectonic rejuvenation of
eroded terranes, then the origin of the normal%zéd topography power
measured at tc would plot along the future time axis,aé drawn. Alter-
natively, if erosion of Cordilleran topography prior to a future tc*isu
not offset by tectonic uplift, then the fﬁture normalized origin would
plot below the time axis. Any such future initial topography IHz(ﬁ2[2
falling along the extrapolated portion‘of the régreséion line would
allow, the resulting topography decay curve to be ‘modelled successfully

by an elastic lithosphere. S e "
=

I

¢ In.the present case, data at the larger observed wavenumbers

§
are moreé successfully reprodﬁcad by Model 2, in term; of the Appalachian
observations, than those at small Waven;ﬁbers. This feature of the
results may be a cénsequence of the assﬁmption that the lithosphere. :
attains flexural competence suddenly. If the lithosphere actually
coolé and thickens gradually, its acquisition of effeective flexural
stfength may appear .to occur e;rlier at short wavélength§ than it .does

A}

at long wa;elengths. Thus, long wavélengﬁh Cordilleran topography may

i . . £ .
at present be evolving in a pre-Model 2 fashion [that is, its erosion

.
¢ [
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is isostatically compensated locally], whereas short wavelength topo~ o

[4

. - . . \ (.
"+ graphy may alteady He in a state of Model 2-type evolution. -
-

(iv) Models.\ Models 1 and 2 dan be considered to be end-

member® of.a spectrum ¥f models of the evolution of continental topo-

[}
", -

e raphy.w%th the model most closely approximating the real developmental

procesé falling between them. For example, a contributory mechanism
by which Model 2-type topography may initially achieve loéél isostéiie
compensatéon may be the early Model l-type viscous relaxation [of a
thin, flexurally weak uniform viscoei;stic'lithosphergj accompanied by
topographic "sinkiﬁg" [cf. subsection 5.3.5]. is kind of mechanism
can easily account for greater decay of sﬁall wavenumber topography,
as apparently required by the observations, during the first one or
two hgpdred million post-orogenic years depending on the%flexuéal
rigidity D of the lithosphere during this time. [It is necessarily

\\

large.enough that local’isostatic compensation is not essentially
- A

effected by the initial elastic flexure only.] The acquisfition ;f local
compensation by the existing topography would be rapid, in terms of the
concurrent cooling and progressive strengthenfng ff the 1ithosphéré,
if the viscous relaxafion time constant T»was relatively small [say,
<25 Mal. Subseguently,,as éven‘gneater cooling and strengthening of
the lithosphere takeé place, secondary*t;pog;aphic evolution of Model 2~
type would occur. It is probable, in such a scheme, that the primary
Model i-type tapographic development would have heen initiated not by

. the su@ﬁen application of the topography onto the lithosphere but rather

a

by the removal from the system of extrinsic tectonic forces which had
been supporting previously established topography.

1 @

v
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5,5.3 Erosion model parameters. The topography decay.curve
%
misfit analysis presented in subsection 5.3.6 indicated that it is

probable that the erosion time constant function o(k), of the form

postulated in subsection 4.2.1,
o(k) = ok °; w,e>0 (4-2),

where w and’ € are constants, is not strongly deﬁendent upon wavenumber
k. Wavenumber dependence of 0 was investigated by means of the o~
criterion in which an a priori assuméd constant o spectrum was adjusted
y
according to its ability to produce improved overall misfits. Only for
the best-~fitting Model 2 parameters were such adjustments profitable
pro&ideé they were consistent with the form of o(k) described by
Equation (4-2). The results, plétted in Figure 5-14, did not greatly
constrain parameters w and €. NeVertheleséZ it follows ffom ;he obser~
vation of weak wavenumber dependence of o that e<1 and from the observed
best~fitting o v;lues of 200-400 Ma, in the wavelength range
600 kmskflleO km, that w>l M; kmfl. One sample function visually

fitted to the data in Figure 5-~14 indicates w=74 Ma km"1

[

and &=0,25.

These results are not inconsistent with those of the South

Island, New Zealand tectonic uplift-topography analysis presented in
Chapter 4. Figure 4-5 shows that w and € values such as those implied

by North American topographic decay, noted above, are out of the range
AN

~

of those.which would be discernible on the basis of the New Zealand ©

data, .Recall that for this to be so the erosion model must be reliable

E)

and/or the uplift rate-topogfaphy transfer function must be observable

3

A


http://to.be

®

249

up to wavenumbers as great as [4.5m/t]l/€ [Equation (4~20)] where t is
the length of time during which tectonic' uplift has occurred. Thus, '
if the postulated erosion model, Equatione (4-2), is assumed to be valid
for k—1>50 km, and the model parameters w and e are assumed, as above,
to be 74 Ma kmfl and 0.25 respectively, then to be able to extract such
parameters from observed data»using the teéhnique appifgg to South ‘
Island, requires that the length of time of continuous tecéonic uplift
of the test region, maintained byda single ;ectoni& fegime, be 885 Ma,
a tectonically unreasonable le;gth of time. Although the New Zealand
uplift rate~topography transfer function results are not inconsistent -
with those expected on the basis of the theory and therefore do not
reject the fundamental erosion model, it ﬁhy be concluded that such a
technique, applied to other regions, will not provide any further test
of the model or constraint on its parameters.

%

5.5.4 Viscoelastic continental lithosphere. The two theoreti-

o

_cal models of the evolution of continental topography developed in this
. chapter and in terms of which the topography and isostatic response
functions of several ﬁajor geological provinces of North America have
beep discussed are simple approximat}ons of much more complex geodynamic
ﬁrocesses which account for the formation and subsequent modification

of continental topography. The ability of the models to reproduce the
topography and isostatic response data allows neither to be character-
iged by a particular pair of rheological parameters\t and D, It is
likely that the érue post-orogenic developmenq,of continental topography
comprises elements of both of the simple theorétical Models 1 and 2.

Nevertheless, the results of the analyses are éuch that it 1s possible

5

&
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[N

to make general conclusions. - ' .

iV

' Model 2-type topographic evolution of contiﬁents is probably

‘more important than that of Model 1 for the fcllowing reasons. (1) In

- ’

the first case, Model 2 is)intuitively more geqdynamically reasonable.

w
i

It is fairly well-established, on the basis of heat flow [Sclater et al.

1980j and seismological [Kono and Amano 1978, Panza 1980]:observations
that the continenfal lizﬂosphere does cool and"thicéen Qith age. The
is?static evolution of topographic loads on continents may therefore
be analogousowith that of oceanic loads with the important exception
that significant .subsequent erosion of the forme;a!ake; place. (2) The
isostatic rgsponse-functionvog;the éordillergﬁ geological province
[Figure 3~3(a)] supports Model 2. It.is chéfacterized byldistinét

o

curvature and rapid fall-off at wavenumbers larger than the other

J

observed response functions, features which can either be interpreted

0 @

as due to a very low lithospheric flexural rigidity [McNutt 1980] or

to a lack of erosional effects [subsection 5.5.1]. (3) The flexural

<

, rigidity of the lithosphere based on the best fit of Model 1 to the .

21

observed topography decay data is 10" Nm, a value which is substan-

tially_smaller than that suggested by the analysis of individual con~

tinental loads in terms of an elastic lithosphere [1024—1025 Nm;

o

Cochran 1980] and smaller than tbai suggested by the anaglysis of the -

formation of foreland basins in terms of a viscoelastic lithosphere
25

2

[10™" Nm; Beaumont 1981]. (4) The best-fitting Model-l decay curges
predict very little topographic erosion by t=100-200 Ma, the majoriﬁx s
of the effective topographic iecay during this time beiﬂ% accomplished
by viscous relaxation and concurrent "sinking" of topography into a

position of local isostatic equilibrium; similarly, the isostatic

0
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response functions of contlnental reklons would reflect this condition

®

of lacal isostasy after thlS shoﬁt perqu of time, apparently in con-

ot

trast with the observatlons iFmgures 3~3, 3-71. (5) The Model 2 topo-~

9 .

g

»

graphy decay results provide a ;ange“of best—fittingwpaliz of rheologi-

cal, ﬁhrameteré 7 and D [Figure 5~13(a}i\§wong which are i‘cluded

W f

24, 25

;D—:LO Nm, =25 Maj; D=10 Nm, t=0.5 Ma; para-

-

meters which do not’ compare unfavourably wmth those suggested by the

‘Nm, t=1 Ma; and D=10

foreland basin analysis [D~10 &Mivt=27.5 Ma; Beaumont 1981]. (6) The

Model 2 best—fitting topography decay results, unllke those of Model 1,

are’ satlsfactorliy adjusted- accordlng to the G—crmterlon [Figures 5-~7

K

(b—,f) s 5-—141 - :

L4 -

° Py @ t " 3
¢ .
o s

7

< F e ff it can be coneluded thus that Model, 2-typé evolution

.dominates the post—orogenic toﬁographic hevelﬁpment of continents, then

‘the maJor implication of the rgsults is-that the ochurrence ‘of viscous

\““lb N

relaxation of elastic stresses,.wlth a characteristic time constant T

which {s potentially vefy small [~1 Ma], cannot be ruled out in the

n o %

conéinental lithosphere‘ This conérasts with the classical view that

o

L ’B Y

topographic ‘relief of cantinents, should v;écous deformation ogeur, o

. s ¥

would Flow away durlng the observed life spans of cratpnic regions.

bl "‘v T

Rather, it has been shown thﬁ; theninteraétion of the V1scous relaxation
. \-' . S '\‘l » °<‘.°‘l ¢ “ > ~
e 5 T I T :
of elastic deformation associated -with ‘topggraphic and with erosionally-
p w u

L3 N o Y
» -

“ - £ <
induced loadd is such‘thai?a coﬁditiod’of dynaﬁic eduilibriumﬂresulting

@

in steady—state tcpography can almost be achieved [subsection 5.3 5,
N Q Al 4 s
Figures 5-104. The crucial assumptions inherent to this conciusion

5 t @ . " w 2

relate to the requiremeth.(l) that the continental lithosphere coals

7 “

and\sguengthens‘with time after the last tectonic event, that the S

P
‘e LY . © ’

&

ey
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)

topography is ‘initially compensated by a weak lithosphere, and that
this initial compensation is subsequently "frozen into" a thicker,
stronger lithosphere and (2)’that large scale‘efosicn;of continental
topography can be approximated by the model described by Equations (4-~1)
iq which the rate of erosion of spectral topography is linearly pro-
portional to the amplitude of the topography which remains at any

given time.

»

With respect to the second of these assumptions, it has been
noted [subsection 5,5.2] that the effects of non-linearl} proportional

erosion to topographic amplitude combined with elastic plate rheology

may suitably reproduce the character of the ‘observed topography decay

curves, Similarly, the consequences of an incorrect choice of the
a

initial topography power spectrum may be such that the observations
. N t

are compatible with an elastic model [subsection 5.5.2(iii)]. The .
"elastic plate option cannot therefore be dismissed. However, the
presumed form of the isostatic }esponse functions characterizin§ such
a model, as discusséa in subsection 5.5.1, also seems to preclude

A A

purely elastic behaviour during the process of isostatic compensation

AY

of erosion. In this respect, elastic-plastic behaviour of continental

lithosphere cannot be dismissed by the present results. -In such a case,

the stresses induced by erosion, whenever they exceeded the lithosphere's

2
[T ¢

. yield strength, would be relaxed episodically by cataclastic or ductile

plastic flow.

o

<
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+5.6 Summary

Geodynamic models have been develope& which quantitatively
describe the long term erosional decay of continental toéography and
its associated lithospheric flexure. In the models it is assumed that
(1) continental lithosphere is characterized by linear [Maxwell] visco~ '
alastic rheolag& and (2) the rate of erosion of topogr&phz is'linearlyi
‘proportional to its height as discussed'in Chapter 4.- Two general
loading’modelgrhave been considered: Model 1, in which a pniferm
viscoelastic thin plate lithosphere is loaded suddenly by tépography,
which subsequently,erodeé, and Model 2, ipn which topography,_formed
above a thermaily wgaﬁe;;d orégenically active lithosphere and there- -
fore in a state df-locél isostatic compensation, erodes subsequent to

L

, the lithosphere having cooled and achieved greater flexural comﬁetency.

«
u

The models have allowed, for the first time, the investigation

of the rheology of the continental lithosphere in terms of the long

®

term“erdéiqpal déqay of continental topography. The form of the topo-

. graphic deé&ay has %ééng'gtablished by comparing the observed topagraphy

- s
N
F '

N

t

N

‘ power spectra of several North American geological provinces of vastly

7 @

different tectonic ages. e

»

The results of a misfit analysis of model predictions and

[}

observations show that, for both Models 1 and 2, the best overall repro-

€

duction of the observed decay curves is provided by a viscoelastic as,

q

oppesed to pu;ely elastic lithosphere. However, in neither case do

the misfit results strongly constrain the values of the rhealogicaf

»

model parameters, flexural rigidity D and viscous relaxation time

¢
r 3

bl
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A

constant 7. On the other hand, the erosion time constant ¢ characqeris—

v

tic of the wavelengths of topography being considered is relatively A
well-established By the misfit results. They suggest that it falls in

. e range 200-400 Ma and, in the case of Model 2 results, that it

Q

increases siightly with increasing topographic wavelength.-

Q
'

The imp;rtang theoretical result of viscoelastic Models 1 and
2 is that viscous relaxation of elastic stresses arising from past @ &
'toﬁography and/or from past and present erosion can progressively reduce
the réte at which topography decays, The reduction is such that even-~
tually é.condition of steady-state topography can almost bé’achieved:

This feature of the models is in’ general agreement with the form of the .

.
Y

observed decéi curves, However, both models fail to predict sufficient
early topographic decdy as evidenced by the Appalachian data. ‘This may '
be partly due to the geological heterogeneity of the Appalachian study

area. Otherwise, the Appalachian misfits do not seem to be explicable

1

in te;ﬁs of the implied effects of depth~ and time-dependent rheological

model parameters D and 1. However, the potential consequences of

» 8

incorregtsassumptions regarding (1) the linear erogion model and/ox
£

(2) the represe;tation of the~§résent—day Cordil’ ran topography ﬁow;r
spectrum as the initial topography power spectyum may he égmpaéibie
with the Appalachian data., In each case for Model 2 and in"the former
case for Model 1 the implications ar% such that a purely elastic rheo- ,

©

logical model cannot be ruled out, *

Models 1 and 2 are considered to be simple end-members of a

spectrum of more complex models of the post-orogenic. evolution of con~

.

tinental topography with the best model likely comprising elem?#ts of

;
f ' y
.
.
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each., Model 2-type topographic evolution is probably dominant because
heat flc& and seismological observatiqns'syow that the continental
lithosphere apparently does cool and thickeqlwith age. In the present
case, the topographic misfit results of Model 2 are better than those

of Model 1 and the possible values of rheological parameters returned -
by Model 2 are more consistent with those based on other kinds of

analyses than are those returned by Model 1. ) . .
L3

3

The theoretical response functions Q(k,t) of,Mgdels 1 and 2

have also been formulated and represent the first attempt to, quantita-

o

tively determine the effects of erosion on response functions observed

in old continental regions. The purely elastic Model 1 {sostatic

- *

response function is equivalent to the model discussed in Chapter 3.

Otherwise, both Models 1 and 2 predict isostatic overcompensation of

old topography to a degree depending on the chosen model parameters.

a

- The theoretical isostatic response functions of Models 1 and .
2 have been calculated for their best-fitting parameters determined

from the topography decay analysis. In the case of Model 1 the ‘results ¢

-

indicate that the topography of the Appalachian and older:North
American geological provinces should be in a state of local isostatic

» - “
compensation, This contradicts the one-norm misfit results of'

o

Chapter 3 but cannot be ruled out because the standard errors associated |,
® ~ 3 ’ - s N .
with observed Q are so large. In.the case o¢f Model 2 the theoretical

o

response functions indicate that topograph§ in the upper range of
observed wavenumbers of the Appalachian and older regions“;ﬁﬁu;g be

overcompensated. The degree of overcompensation is not great enough

%
e Fl

4

LY
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that it would necessarily be expected to be recognized in the observed
data given their large standard errors, However, it was noted that the
tendency of any detectable erosional effects in Q(k) would be to return

artificially low lithoépheric flexural rigidities if interpreted in

1

terms of the non-erosional elastic model [Chapter 3]. Such results
could be comparable with those of previous studies [Banks et al. 1977,

Banks and Swain 1978, McNutt and Parker 1978, Stephenson 1978, Cochran

o

1980, McNutt 1980.]

b

®*The theoretical isostatic response function of even a weak

21

[D=10"" Nm] elastic Model 2 lithosphere appears to preclude pure

" ‘elasticity as a viable lithosphere rheology. In such a case, erosion

N

results in ek{;eme isostatic overcompensation of remmant topography.
The resulting ‘Stresses caﬁ either be continuously relaxed by viscous
flow as explicitly modelled in the present study or by periodic plastic

failure of the lithosphere.
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Chapter 6. The Effects of Small Scale Convection in the Upper Mantle

on Isostatic Response Functions

e ¢t ~

6.1 Introduction ‘ .

o

. 6.1.1 Surface topography and gravity and small scale mantle

convection. The consensus of most Earth scientists is that the motion

of lithospheric plates is driven by some form of thermal convecdtion

which derives its energy from primordial heat and/or heat pfoducéd by

4

radioactive elements distributed in the mantle, There are, however,

[

few observations to provide independent evidence ‘of the existence ard

nature of the hypothesized mantle circulation. In this respect some

-

attention has been given té long wavelength gravity anémalies and topo=-
graphy of the Earth's surface on the grounds that the topography may be
a result of plate flexural uplift dynamically supported by forces
associated with the mantle convection [e g. McKenzie 1967] Anderson

et al. [1973], for example, showed that differences in bathymetric depth

and gravity-anomalies at active mid-ocean ridges are correlated in a

“

way similar, to that predicted by numerical models of convection in a

Newtonian fluid [McKenzie et al. 1974]. More recent investigations in
th; Nc;rth Atlantic [Sclater et al, 1975] and in the Central Mhicific '
[Watts 19;6] have tended to support the conclusions of Anderson et al.
[1973] Both Sclater et al. and Watts considered two-dimensional data

i

comprising residual bathymetric depth anomalies, those corrected for °

the effects of lithospheric age, and surface derifed gravity observa-

tions, Later, Cochran and Talwani [1977] disputed the existence of a
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. -

consistent direct correlation between long wavele%gth gravity anomalies
and bathymetry throughout the world's oceans. They argued that the

lithosphere must be strongly decoupled from the main body of the

asthenosphere if the gravity anomalies are to have their source beneath

the 1ithqsphere. McKenzie et al, [1980] suggest that Cochran and
Talwani's [1977] failure to detect a global relationship between long
wavelength grag}ty and residual depth was due t& inadequate sampling of

gravity data. .

34

determined systematically in the anenumbeb (k) domain in terms of a

linear tran®fer function [ox admittance] Q(k), referred to previously

as the isostatic response function. McKenzi€,[1977] calculated the
behaviodr of Q(ﬁ) for simple models ésjitﬁdepgnds on the Rayleigh number,

the &egree of internal heating, Qiscasity variations, and‘the;gepth of
- " - o . i g 4

- «

the con%ecting layer. He did not take jinto account the effect .on Q of

the de%lection of ;; abrupt density i;terface.g}thin\the’ﬁithosphefk,
such as the Mohorovici;‘discontinuity,,during its flexure by the forces
derived from-convection%l The ;omparison of obse%;eé to McKenzie's
theoretical- valqgs of Q is furshér complicated by the possihle presence‘

of topography on the ‘surface of the lithosphere not asaociated with
- Lo

deformation caused by underlying convection. McKenzié and Bowin [1976],
¥ ~ .
for example, attempted to detect the effects of convection in observau
Ry

tious of gravity and bathymetry made along two profiles in the Atlantic

Ocean but found-that the ohgfrvgd Q(k) could hest be explained by

. >
R " L f K . N
I
P “
. .
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~

isostatic compensation within the lithosphere to simple surface loading
5 .

by topography. No deformation of the plate by convection was detected.

N

. . Convective flow in the Earth may occur with two distinct
/

, . horizontal length scales: (1) large scale mass circulation of the
’ l1lithosphere plates themselves in combination with some form of return
flow at an as yet undetermined depth in the mantle and (2) small scale
Rayleigh~Benard convection in the upper mantle which provides t
mechanism of heat transport to the base of the lithosphere evifdent un&er
the older parts of oceans .and under continents.‘ It was the eff§ect of
the smaller scale of convection which McKenzie 'and Bowin [1976] attempted
. to detect; its hypothetical existence is based on theoretical analyses
of the efficiency of heat transport in convective sys&ems [Richter 1973,
- McKenzie and Weiss 1975] and on experimental results [Richter and
‘Parsons 1975]. For oceanic regions y;unger than approximately 70 Ma
- mean depph varies as the square root of age, an observation which can
o be satisf;ctorily explained in terms of the oce thosphere béhaving
. ‘ag a simple cooling boundary layer in the large scale convective flow h

regime. In otder regions the mean oceanic depth is less than predicted

. by square root relation suggesting the presence of an efficient heat

a%

transfer to the base of the lithosphere by small scale convection.
n\ N £y L4
a "y Parsone and McKenzie [1978] have modelled the onset of small ‘scale conw.
‘ Py !

o vection in terms of the development:of a thermal instability beneath

oy thF oceanic'li:thosphere, assumed to be a mechanicdlfly rigid houndary
N ;

v s

layer, as it thickens with age. . ! Lo

-

2 R . Depending on the Rayleigh number ;Ra] qf the convecting 1aygr

s » ©

"and the velocity of the upper boundary [the lithospheric plate], theory

*
¢ v
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P
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[Richter 1973] and experiments [Richter and Parsons 1975] demonstrate
th§tﬂthe small scale. circulation may eventually take the form of longi-

tudinal rolls aligned with axes parallel to the direction of shear

-

between the plate and the underlying 1ayér, shown schematically in

Figure 6-1(a). TFor Ra = 106, an estimate based on the results of
numerical mode¥s compared to observations of heat flux [McKenzie gguéi.;
1974], Richter and Parsons [1975] suggest, from scaled experimental

results, that the formation of -longitudinal rolls would take from

?

L

20~50 Ma to several hundred million years for absdlute pigtéqéelocities

in the range 10-2 cm yr_l. More coﬁplex patterns of “small scale conyvec-

¢
4 4

tion cells, such as a bimodal configurationn[%igure 6~1(b)], may be

possible if the age versus plate velocity constraint is not met or if

o

Ra is larger. Similarly, if the horizontal movement of the lithospheric

plgteuis decoupled from that of the mantle below by the presence of a
low viscosity zone beneath the plate [e.g. Richter and McKenzie 1978)
such that the shearing between them is minimized, then<;ongitgdinal
convection rplls are unlikely to be stable beneath even thé fastest'
moving plates [Skilbeck and McKenzie 1979] and any small §cale convec—
tive flow would probably be multi-modal. Such is the"ca;e 'of the
planform of small scale convection, based on the GEOS § determination

of the geoid ané extensive bathymetric data, beneath ;he f;cifig Ocean
presented recently by McKenzie gg_gl;.[lQSb]: The observed geoidal and
baﬁhymetéic'unﬂuiations are, however, elligt?cal in shape with the
elongated direction beliFved by the authors [Mékénzie_gglglﬁllQBOJ to ' A
reflgFt the direction of motion of the Pacific plate relative to a hot _

spot frame of reference.
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Figure 6-1. (a) Schematic drawing of sub-lithospheric convection

w oA &

cells in the form of longitudinal rolls aliéned with axes parallel
tqrthe’shear between the litLospberig plate énd“the underliing
asthenosphefe. () échematic drawing of sub-~lithospheric ‘convec—
tion cells having a 5imodal configuration. The directions of
absolute plate motion and mantle return flow are indicated by the
coe 1arée opeﬁ arrowé but note that these direétiogg are ‘not
pe&essariiy antiparallel; flow in a ve;tical ‘section of one cell

3

is shown by thé smallest arrows; the voleanoes -serve to illustrate

~

. the ‘direction of absolute plate motion and that thé lithosphere
is loaded at its surface as well as its base. Notg that these

schematic drawings. are not drawn o any realistic scale [from

& -

Stephenson and Beaumont 1980]. , .

" 9

¢
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.

6.1.2 A test for the presence of small scale convection. In"a

plate model of the lithosphere, isostatic- compensation to surface loads
is effected by £lexure of the plate as discussad*%y previous chapters.
? [#] ; '
i The form of{ghe compensation is revealed by the wavenumber domain rela-

tionship between the load and deflection, measurable as ghe‘topography

3
~

w & d
HTiﬁ), and its associated gravity signature GT(ﬁ), and can be approxi~

S

. mated by the linear Fransfer function QT(ﬁ) [Figure 6-2(a)] such that

)

‘ ‘ ' G, (&) - N(®)
= I \ (6"1)0

. o0

s [}

=Y
HT(k) ‘

[

Here, QT(K) is equivalent to what has been in previous chaptegs referred
to as the isostatic nesponse functiion Q(ﬁ). It is a special case of the

admittance, mentioned in subsection 6.1.1, between topograpy and

gravity, in which it is assumed the only load causing flexure of the

lithosphere is that of tectonically uplifted surface tdpography.

Recall that in order to estipate QT(ﬁ) [or Q(ﬁ)] it‘has Eeen
normally assumed that the topography can be measured perfectly, whereas
GT(i) is subject to geological noise N(E) tﬁat is mainly caused by
| lateral density variations in the upper crust. Assumingfthe nolse is
uncorrelated with topography, isostatic response functions have been
estimated by a proéess of ensemble averaging [Equation (2-8)]. The
enseﬁﬁles of data which have been averaged comprised all of those which
fell within a given wavenumber band or annulus [Figure 2-9], symmetric
about the origin, on the gssumption ;hat the lithosphere was directionally

isostropic in its response to a point load; estimates of isostatic
al M ’

J\2 Q‘ .
response Q and coherence Y~ were, therefore found as functions of wave-

number modulus |K|. For the same reason, Q(|k|) has been taken to be a



a

[y

Figure 6-2., Linear models employed in the interpretation o%\

observed topographic and gravify data; symbols are explained o

N

» H

in the text. (a) A model in which the lithosphere is loaded

0
3 [
1

only by tectonically induced topography on its surface;

(b) a model in which the 1ithosphére is also‘loaded,at its

2
o

base by forces associated with convection [from Stephenson a

and Beaumont.}SSO]. . ' Y. .
» .
ra L \ ,

o
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¥
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‘

o

real function, though no a priori assumption to this effect was require& )

using Equation (2-8). .

o

However, consider a model in which the 1ithospherg is loadéd at

its base by forfesdassociated with small scale upper maptle convection

°

in addition to surficial topography. This class of model has tyu‘inde—

.~ pendent transfer functions [Figure 6-2(b)], which are assumed to be’

.
L

"o linear, such that the observed admittance is, ‘ e

,
-
L
3

] % o TN oy . e e > +l;_ e
Q(:E) =,GT(k) + 6o (k) T N(k) 5 Q (OB (k) + Qi (K)H (k) - N(K)

- . > 7 > D A -

“ e < }'ii.g‘k} + Hc(k)} [ HO (k) - .

R
0

(6-2).

? BN By,
-~

4

kd
Y0 -

Gc(ﬁ) and Hc(ﬁ) are the components of the obsefv;d gravity and topography

9

signals caused by convective forces and-Qc(Kb is their transfer function:)

.
coa 7

Similarl;, QT(ﬁ) relates tgchnic topogtaphy HT(ﬁ) to its induced
' ., Bravity signai GT(K). Hd(ﬁ), the obsérved topography, is obviously the
“sum of Hc(t} and HT(§)° Note that HT(t),‘as in Equation k6—1)3 comprises. ¥

A8}

the topographic load itself as well as a deflection of the lithosphere

P +

in response to that’lo'a'd. " The ‘e:stimate of the admittance, Q(_Iz), lcan be
) derived as before %y Equation (2;8) and shall continue to be referred to
as the isostatic respogae fh;céion even’Eﬂ;;gh there %ay be dynamic
forces suppo;ting the 1ithosphere:“ If the lithosphere responds isotro- - ¢
pically to point 15ads appliedlboth from above and below’both QT(ﬁ) and -
| Qc(i) are real functions but Q(ﬁ) is.comple% gihce‘HCCE)’and HT(i) are
unlikely torhave the same spatial phase and QT(K) i8 unlikely to be equal
to Qé(ﬁ). In genera},'Hc(i)_éill only be nontzer; for tﬁose wavenumbers,
ﬁ; for which convection cells exist. Elsewheng; Hc(i)io and Q(K) will
v k‘Pe a tfue e;timate of di(k) [Equation (6:%)J. Furt@ermoFe,}Ff éonvection
“ ’ . ) - // r

b - /
’ . " ’
.

r
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Y

is in the form of rolls aligned with axes parallel to the shear between

the lithospheric plate and the underi&ing asthenosphere [Figure 6-1(a)]

>

or has a bimodal configuration with similar orientation [Figure 6-1(b)],

-7 °

apparently anomalous values of QTCE) will be observed only in those

directions which'are normal to the modal directions of convective flow.

ki
5

The presence of small scale copvection in the upper mantle can

therefore be tested by examining whether the isostatic responmse function

o

of & contineptal-or.oceanic region is real and isotropic. Its detecfa-
° bility willndgpend on the relative magnitqées of the'HT—HC and GTJCC

Jpairs. Cong?nenxal-regions are of prim;ry interest in the bresent study

and the Canadian Shield has been chosen as a test area becau;e it is

2

tectonically very old and thérefbre has a small HT(ﬁ).

. 9 .
’
PO ° . ~

)

6.2 Canadian Shield 6bser§atibns

L3
3

1 . ' . . ‘
6.2.1 Isostatic response functions and coherence. Two over-

&

-

iapping*but reigtively rotated portions of the Canadian Shield have been
analyzed: ‘one with dimens%ons %20b kﬁ by 1600 km [area I, Figure 6-3;
- the same”regionhstudied in Chapter 3] and the other 3000 km by 1500 km
[area II, Figure 6-3], e;ch containing approximately the same number of

¥ . -
evenly distributed data witich were prepared for analysis in the usual

t

LY . §
manner [subsection 2.2,1], However, the observed’isostatic response

. functions have been computed-using free-air gravity anomalies, rather
v, .
than Bouguer anomalfes as in previous applications in this thesis, and

1 "

are designated as Q'(ﬁ). The free-air gravity field of area I of the

I ¥

"



o

¥
¢+ .
4 « -

.
.- ° °

t " 1} ,\1 ~
Figure 6~3. Location of ‘the regions for which,Q‘(K) and‘yzCﬁ)

were computed; the "A" diredtion of anomalous isostatic respomse

-

.

[see text] is shown by the 'arrows labelled-40% and 60°. The .

parallel diagonal lines are explained in the text-[from Stephenson

Y -
“

and Beaumont 1980]., \ . k ‘

1
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‘for each, Q!(ﬁb and Q(ﬁ) respectively, is very simple: -

) 270

Canadian Shield is shown in Figure 6-4.

The relationship in the spacé domain between free-air and

Bouguer gravity anomalies, gf(;) and gb(?) respectivély, is
g ® = g @ +2r o @D (6-3)

where -2nT p0 h(;), known as the Bouguer correction, represents the
gravitational attraction of an i@finite slab of density p; and height

h(;) above the datum surface; I' is the graviﬁgtional conbtpnt. The

* Fourier transform of (6-3) is

»
¥

' :;Rib - cbcﬁ) +anl o H(K)

and therefore ) . )
a S b ->
c;® 6 ® . @
> = e + 2+T po e 6"4) .
H(k) H(k)

The effects of geological [non-isostatic] nqise on the free-alr and
Bouguer giavity fields are essentially equivalent; thus, Equétion (6-4)

»
indicates that the relationship between isostatic response functions

s

v el

Q'(®) = QCR) + 20T p_

ey

21Tp =0.11 mGal 2t for p <2700 kg n 3,

' &
7 - -

i



Figure 6;4. The gree—air gravity field of area I of the
Canadian Shield [cf. Figure 6-3] detrended of the GEM8 A
[16 x 16] field, Positive valué; are indicated by stippl;ng;
contour interval is 20 mGal., Dimensions-are 3200 km by

1600 km. Tectonic legend: cd - Cord®lleran orogen,

Ch - Churchili province, Gr - Grenville province,

Sp - Superior province, Sv - Slave province; cv - regions

of Phanerozoic gedimentary cover.
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The reason for observing Q'(ﬁ) in the precent analysis is that

oy

free~alr gravity anomalies and surface togééraphy are eéxpected to be
< \
incoherent at thelr observahle intermediate to loﬁg wavelengths where

any effects of snall scale conveection might be most discernible.
- : s

o

[ ° .

IS an 4 .
Q' and yz as functions of lﬁl for area I of the Canadiap Shield

[Figure 6-3] are shown iﬁp%igure 6~5. Note that for the very long wave-

“ »

- Y o, - » s -
lengthg, as |k| approaches zero, so also does Q' indicating tﬁgt\the
] . » ’ IS .

gravity effect 6f long wavelength topography is isostaticallj,comgsn-

v

3 A -
sated by densities at some depth in the lithosphere., Coherence yz(lﬁl)

at’ long wavelengths i; essentiallyfail also implydng efficient isostatic
compen;ation. Conversely, the computed values,of a'(lﬁl) at short wave-
fznéths, as lﬁl increases, approach 0.11 éGal mﬁl, the Bouguer correc-

tion, the gravity effect of the topdgraph§'itself, indicating that there

iz no effective isoséatic\compensatioh of short wavelength topographic

¢

features. Such features are supported by the stégngth of the lithosphere,

Coherence betwéen topogrdphy and gravity at short wavelengths should .

N 5

increase somewhat, either because features are not compensated or

because the compensation lies too deeply in the crust to be detected.

N

= . X
In fact yz repains very small as [kl increases, an indication of the

large amount of the fravity signal not related to the tgpography of the

N

{
region. Q as a function of wavenumber modulus lgl for area II

[Figure 6-3], though not illustrated here, is similar to that for area I.

a 3
©

As was recalled in subsection'l.l.z, observed isostatic

response functions have previdusly been taken to be the real part of

=3

a n -
the admitt§nce betweenqobserved topography and gravity on the grounds
o . [ l& o
that .they measure an isotropic respomse to the impulse of surface loads

o " .

-t
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-Figu
corresponding in' length te &two standard errors, and the amplitude

[squares] of the isostatie response function Qf,. and the

modulus |k| for area I of the Canadian Shiecld.’

re 6"5 ®

~

&

=0y

a

The veal conponcnt [circles], with error bars’

-
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rence squared vz [triangles] as functioms of wavenumber
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+ only. JIn theapresent appllcatlon, in which the effecgs of a second

»
« - ° B A N

source of lithospheric loading axe sgugha, it is not éofrect to make -

~ v . 3 A »

the a priori physical assumption thateg"iéieolelyga real function. °
a Te ) ot
Therefore, the amplitudes of the response function ‘estimates are also

plotted in Figure 6~5. MNote that they .Bre for the most part similar . .

to Real[Q'] testifying to small values. of the imaginary component of .
& - . CeT

Al v -

the adhittance estimates.

a

-
> A -
g - ‘-

) Q' for both areas I and.II of the Canadian Shield has also

-

. r} °' ..)'0. ’. s L]
been computed as a function @£ k by averaging thhln wavenumber annuli

& P

s
through an azimuthal arc 1ength uf 30 [Tlgures 6—5(&) 6—7(a)] These

-

- v ( ° o

s values increase from Zero to more than 0.10 mGal m } from the 1ongest .

+

v

to shortest wavelengths. Associated standard errors are relatively
‘ . B @ - 4 Y
2

& A ' v, A o «
large as shown by the extensive zones [d%agona&ly hatched] in whiéh the °

. #
~ o
¢ o

values aresnot greater than zero by more than one standard error. -

»
ey

However, anomalous values in the area 1abelled A and-B contrastusub-
) a 5

stantially to those at equivalent maveléh%ths in Figpre 6-5. Relatively,

hg\?]v

large imaginary componenta in the estimatesg of the amplltude of Q &y 7

o

\a.

contribute toé the anomalously hlgh values in areas A and B. .To Judge

n ,‘ ¢ @ 2

better the signlficance of these anomalies, which nggeat g directlonally e

o

anisotrapic Q’ (k), the hypothesis H Q" = Q;s was testeduu51ng an

w

F=distributed statistic f6rmylated through the princiﬁlg of Extra sums "

. of sguares [Draper and Smith 1967]. The Q;S,:for annulus r,fégre:com:
puted'from data inﬂthe 30° arc centred on azimuth &3 Q¥ wepe comgé;e&'
from the ensem%le of remaining data in the annulus. For\areas A ani‘é_«

& L 1o a

' of datag set L and area B of data set II [Figures 6»6(b}, 6=7(b)] the _

1

probabiliéy that the piocess which®nduces the isostatie response is

=4

results are comparable to those fcr Q(ikf) Pigure 6-5 insofar as the e

"o

3 o

N
L

-
o
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°
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Figure 6%6. (a) The amplitude of @"in mGal ﬁ‘l; ﬁb)"éhe pro= °
bability that the hypothesis Ho ‘[éée ge.:at] igs true, équﬂivalent I

to the level of signiﬁ%\:ance at which Ho can be rejected; and

¢ < -

~ N ~>_ N
s _(c) 72 ag” functions of k for data in area I. Note that data

a3y
=> 2 - .
along the -kx and k:: axes dre. cymmet¥ic about the origin; the

- v @ N [ 4
> > . 2 .-
k}, and k_ directions are amalogous to the spatial z and A
A ! X ¥y

&

Iy »

‘coordinates [Figure 6-~3]; the amplitude of Q minus its asnoci-
. -~ ] e ¢ ' o P “«
ated standard error’ is zero o less in the.diagonally lined

°

. regidn; features lab&lléd A and B are discussed n'i;n the text

Q

as

"2

- [from Stéph;enson.and Beaumont 198‘0].
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Tigure 6~7.

arcp II- [from Stephenoon and Beaumont 1980].

a

L E

(), (b), cnd (c) Bame as Figure 6-6 but for data in
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the came as in other directions at the appropriate wavelength ic lecs

than 5%. Thé effeets of coherent geclogical-noise of course cannot o

totally be discounted. TFurthermorve, althouéh there is no significant

©

[arbitrarily defined as greater than 0.5] anoimaly in y2 at B in either

©

of the data scte iFigurea 6=6{c), -6-7(c)], the free-air gravity and
@ X ® »

topography signals at A pro exzceptionally coherent, particularly -in

date set I. At similar wavelengtlis, 200-600 lm, coherence predicted

by reasonable rheological models of the lithosphere in responée to

surface loading as well as chown by results shown in Tigure 6-5 and

observations discussed in Chapter 3 is very much smaller or is non-

»

existent. The probability that this increased correlation is caused
by highly correlated random geological noise is <5%, as demonstrated

by the F-test, if the noise is directionally isotropic.

”
[y
Q » ¥

6.2.2 Power,.spectra. Quantitative interpretation of the
o N

individual gravity anqrtopograﬁhﬁ power spectra is difficult because

the gpectra are not expected to be directionally isotropic even in the

) - . )
absence of ;convection and because there is a strong trend to increasing

14

qQ

power at long wavelengihs. The spectra have been detrended by normaliz-
ing each directional spectral estimate by its corresponding annularly
a&eraged estimate; that is, .

h
~ ’ o

l\' ’): - AC'__> A _..:
Sp(k) Sy /sg([k)

and ’
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Pigure 6-8. (&) The normalized [see temnt] topography power spectium
~ » £ s
S'H and (b) the normalized free-air gravity power spectrum S'G as

4

fumctions-of.ﬁ for area I of the Canadian Shield. Q'(ﬁ$§0.10 mGal m

withia the cross-hatched regions [cf. Figure 6-6(z)].

o
©

[

’
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where Sﬁ(ﬁ)’émd Sé(ﬁ) are the normalized todPography and gravity power

spectra respectig?ly. The natural logarithms of Sﬁ(ﬁ) and Sé(@) are

plotted in Figures 6-8(a,b), Thus, positive values indicate regions

a "

where the spettral power is greater than the‘averaée of the power in

N . » a

9
all directions at the corﬂésponding wavenumber. The cross-hatched areas;

- refer to isostatic,reSponé; anomalies A and B, defined by the Q'(ﬁ)‘=

L3
8] 1] 4

0.10 mGal mflacontour in Figure 6—6(3).nuIt should be noted, in terms of

o

the 957 confidence intervals associdted with the directional spectral

]

estimates, that the variatioms in Sé(ﬁ) and Sé{ﬁ) shown in Figures 6-8

(2,b) have little significance. =°

[y

D [ 3 L4
3 For wavenumbers other than those of small magnitude in the

second quadrant there is, in genetal, little evidence in Figures 6-8(a,b)"

L]

° )
of correlatiorn between topogﬂgphy and free-air graéigy. This result is

compggible with ‘the small coherence squared estimates for the Canadian ~
. 1 © =
Shield [Figure 6-6(c)] and indicat%s that little of the free-air gravity

field in the region is due 'to isostatic compensation of surface topo-.

‘ x

graphy. Thére is, however; some suggestion that the anomalous isosgaticé

response at A and B is related to an %pcrease in the power of the gravity

.
+

N <
signal [Figuré 6-8(b)].

* -
- o

2 6.2.3 Residual gravity anomalies. The observed gravity field

& v
can be separated into its isostatic and residual components, the former
being that part of the signal due to the observed topo§raphy and its
4 4 ’ ¢
isostatic compensation, by assuming a particular mode of compensation

mechanism. The results presented in Chapter 3, in which observed Q(IK[)

4]
~

were compared to th?a, theoretical isostatic response of a thin elas% T

N

a0
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plate, showed that local, isostatic compensation, with a compensation

“

depth of 35 km; provided a suitable ﬁﬁdel for the observed response of.

area I of the Canadian Shield [Figure 3-5(c)]. The residual gravity
. N
map presented in Figyre 6-9 has been produced ‘by subtracting the

o

ES

gravity signal“predicted by filtering the observed topography of area’l

with the indicated local response function model Q'(Iﬁ]) from the

> o
observed free-air grav%py field. Filtered results in the horder regiomns

of the study area'are not‘yganingful because of the tapening function

Y °

&
applied to the data prior to Fourier transformations. For this reason

-

' N
they have not been includéd in Figure 6-9. '

Because of the small coherence between the free-air gravity

and the topography of.area I of the Canadian Shield, it is not surpris-
ing that the residual gravity field is very similar to the total field
[cf. Figure 6-4]. A northwest-southeast trending fabric, parallel to

the ditection of the perturbation indicated by anomaly*!?in the
isostatic response data [c¢f. Figure 6-3] is discernible in both t?e

a

gravity maps. It is not.clear whether this'fabric is uncorrelatahle
with the gross geological and physiological structures of the study
N [ ’
érea. A similar trend is quite evident in the latter, their main ®
. . .

pelements being, from southwest to northeast, the contact between

- e A
Phanerozoic cover rocks and exposed Precambrian Shield, Hudson Bay, and
the Superior-Churchill structural boundary. Th‘ie also are some gross
« & R

geological e}ements, primardily the Grenville-Superior, Superior-

Y

‘I}
_Churchill, and Churchill®Slave structural boundaries, which are oriented :
£

approximately parallel to the direction of the anomaly B perturbation

¢

in the dsostatic response results. The internal structural fabric of
' 13 ’ &o F .

'
’ .



Tigure 6-9. The residual free-air gravity field [total field
less that part attributable to local isostatic responsegpf the - 0

surface topdgraphy] of area I of the Canadian Shieldl‘ Positivé
4

values are indicated by stippling; comtour interval is 20 m@al.

Tectonic legend is the same as Figure 6-4. .
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4 a

the Superior énd,Churchill provinces is, in general, similarly oriented

[Price and Douglas, eds., 1972]. -

r

]

e
o Al . .

" . The natural logarithm of the power spectrum of the residual

“

gravity ‘field, normalized in the saﬁ; fashion as the topography'and

_total ggavity field were in snbsecgion-G.ZIZ, is plo;ted as a function °
of E in Tipure 6-10. The results indicate more strgggly than the.total
field resulFs di@ [cf. Figure 6-8(b)] that there i3 a cc?éélation
between anomalous iso8tatic response of the Canadian Shield and

increased gravity spectral power.

¥
)

# ° ] . a

« 6.3 Discussion o, .

o - n
1 s [

-

6.3.1 Rotation of data. The reason for analyzing two over-—
- ' «7 o L)
o lapping data sets was simply to check for internal consistency-of the
" ‘resulte,and ‘to avoid accepting those which were artifacts of the method .

A}

of analysis related to the choice of geometry. Because each data set

~

contains a large subset of the other the results for, each were expected

to be similar, except rotated with respect to the coordinate axes. This

3

is partly the .case: anomaly:A in Q'(ﬁ) for set I, for gxample,” is

centred approximately on the 40% azimuth whereas for set IL [Tigure 6-7

-

(a)] it centres of 60°. -The 20° rotation }s appropriate to the orienta-

o ©
tion’of the two data.sets since the anomaly reflects a spatial perturba-

4

tion normal to its wavenumber domain azimuth [cf. the parallel diagonal
lines in Figu;é 6-3]. , Anomalies A and B, elsewhere in the results of

Q'(ﬁ) and Yzéﬁ)sin the two data ééts; are also located accordingly. The

]
2 ’
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F-test, as it was fo%mulated, howevek, appears not £o0 have been a totally

appropriate statistical judge of the significance of features A and B in

[}

data set IT since feature B is o pervasive at the amomalous wavelengths.
' < .
In this respect it should be noted that the estimates of «the amplitude

of Q”(K) in andmaly B for both data sets are, in fact,'equivaléﬂ%fﬁithin
bounds established by their respective standard errors. More importantly,

in set I, is centred at approximately 200 km

@

the wavelength of ancemaly B

vhereas in set IT it ranges

o

from 200 to ﬁeafly 400 km. ¢This Frequency

shift may be partly because digitized on a cartesian

o

the raw ‘spectra are

grid; since the spatial dimensions of the two data sets are not’ the same

A o

- ? . o
neither are the frequencies for hich spectral estimates egxist. Further-

’

more, the cartesian gridded spectral sstimates for one data set compared

v
R

to the other may be thought of as having been rotated in some cgses

through the pSiar annular boundaries which during a votation remain
« s i

Q

stationary. The wavenumbers of the annuli were chosen tao be the same

¢

for each data set. Mostly, however, the differences in the results for
_the two data sets are attributable to having too few data in each spec-

(&ral estimate to sufficiently reduce the high level of noise which is

a

derived both from the finite nature of the data sets and from variations

in the geology of comtinental crust. _

o
J

6.3.2 Anisotropy of the observed isostatic response and small

]

I3

‘ N '

scale convecticn. On the basis of the seemingly-correct rotations of
Fy &

the salient featurec of Q'(ﬁ) and yz(k) between the two data sets,’ it

. ¢ 4

is concluded that the anomalouz anisotropies in the observations are not

methodological in origin. Whether the results reflect pronocunced effects

3

in the gravity field of dfrectionally non~-random geological 'structures



[cf. subsection 6.2.3] or vwhether they indicate that the isostdtic

» LINEY °

respoﬁse of the Canadian Shield is truly significantly isotropic is

equivocal.

~

& ’ , ax
With respect to the former supposition, however, it remains
that not only is the spectral power of the residual gravity field
apparently greater in the anomalous ‘directions [Figure-6-10] but that

v

thisu"excessg_grgvity signai also has significangly greater coherence

with the topography than elsewhere. Yet, the residual gravity is com-

pletely independent of the gravity effect of the surface topography

itseT¥. Additionally, if the angmalous results are geological in origin

and are therefore related to tie overall structural fabric of the

Canadian Shield study’@rea, their restriction to a particulaf spectral

o

range may be probleufjb Nig Hecause large scale geological

structures usually dimic those pcecurring at a continuum of smaller

scales, ihcluding thos&gt the m

comm, ] ° - o

-
-

On the other hand, a truly anisotropic~isostatic response

croscopic level [S. Hanmer 1980, pera.

function could be the result of a mechanically anisotropic lithosphere,

an interpretation for which there is little or no, supporting evidence,

' @ither obsgrvational ot theoretical; alternatively, it may be indicatdive

of small scale sub-lithospheric convective flow as explained earlier

[subsection 6.1.2].

@

)

If the convection cell model is adopted as a working hypothesis,

the presence of two anomalops directions [features A and B in the esti-

mates. of Q'(ﬁ)] which are approximately perpendicular to one another

suggests that the form of the convection is bimodal [Figure 6=-1(b)].

r
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The dpproximate orlentation of .one of the characteristlc dlrectlons o
[correspondlng¢tn anomaly A in the data] }s showrl by the parallel dia~ .

gonal” llneslin_ﬁigure 6-3; the wavelemgth of both ques of convection
» e ~

cell is in‘the range of 600-200 kin éuggééping that penetration to the

650 m mantle phasg transition probably doeg not occur even’if the cells

o o
A

have a unitary aspect Fatio,

Further interpretation of the results in terms of the proper-
ties of the c65§§ﬁping layer is not p0551ble becanse Qc(k) cannot be
accpraﬁgly estimatgqsunlessLHT(k)<<HQ(ﬁ) [Equation (6-2)], a’condition

that réequires a billiard ball Earth in the absence of convection. Even

a knowledge of QT(E) is not useful because the observed topography

k]
ps]

cannot be partitioned in;p itg'convecﬁiye and tectonic components.
Furthermore, convecéively induced anomalies in Q(K) will almost always
be obscured in data from areas of significant tectonic topogféphy
EEquaEigu 6612)], fhis may explain why the an?maly was less distinct
iﬁ a data seézwhich encompassed a reggon twice as large as the Canadian
Shie}d set I and iﬁbludedbé consideraﬁis portion of the United Statek;:

a

this data set had avrelatiVely large HTC§).

[y

Alternatively, the shear flow between lithosphere and astheno-
sphere is not necessarily uhiformly parallel under any single plate.
Preliminary numerical models of net flow based on the relative motions’

and geometry of plates [Chase 1979] suggest that this may be the case

o

for the North-American plate. Under the Canadian Shield, however, the

mean net flow vectors ca;pulated by Chase are aligned in a direction

° 1

approximately parallel [taking into account differences in map projec-—

tions] to that indicated by the isostatic response data [Figureﬂ6~3].

=

Al
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Shear 'stress vectors at_the base of the lithosphere in the region of

< v

a

the Capadian Shield computed from kinematic models of darge scale mantle /

flot by Hager and 0'Connell [1979] are similarly oriented. It should

%
be noted, however, that in ﬁothqhhese“mudels the directions of the o

a

assumed plate motion and the computed return asthenospheric flow are
L%
not antiparallel beneath the C@nadian Shield and that the consequences

of this type of flow regime on small scale convection are unknown. The

corréépondence of one of the characteristic directions in a himodal

s

configuration of convection with the direction of shear between the
- [s]

~

lithosphere and asthenosphere is, of course, consistent with the tbeory

of small scale conveltion discussed previously. The plqnform of convec~

“ )
g

tion will ‘depend on the proberties of the convecting layer as well as
the velocity of the overlying plate and the duration of the applied

shear [Richter and Parsons 1975]; The age of sea-floor spreading in ghe
Noxth Atlagtic does ndi negessarily provide any insight regarding the ‘
persistence of the direction of the shear flow beneath the éanadian
Shield; therefore the likelfhood of a bimodal configuration of convection
under the Canadian Shield cannot with ce;tainty bé tested agaﬁﬁst the
theoretical predictions. Recently, Yuen et al. [1981] have argued that
the stability of multigodel small scale comvective flow in the upper

n

mantle is strongly dependent upon a pronounced aubulithoéﬁheric low

viscosity zome, the existence of which beneath the Canadian Shield cinnot

be resolved on the basisc of glacio-isostatic observations [Quinlan 1981].
3

"Seismological observations [e.g. Férsyth 1975] suggest, however, that

the mantle low velocity zone, which may be analogous «to the low viscosity

zone, is less evident beneath old lithosphere than it is beneath young.

]
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6.4 Summary o

t

&
&

A new methodology has been advanced to detect the effects of

@

. .© small scale Rayleigh-Benard convection in the upper mantle and has been

&

applied to a portion of the Canadian Shield. It represents the first B

attempt [cf. Stéphenson and Beaumont 1980] to identify small scale con~

o

*  Vection beneath continental lithdggsgre° The theoretical framework of

small scale comvection is not well-constrained and this is particularly

true of convection beneath continents where it is capped by a thicker,

1 -

L]

more sffuct&?ally complex lithosphere than beneath oceans. The mechani~ |
cal behaviour of continental lithosphere itself, and therefore how it )
would respond to forces derived from convection, is not a subject about
which Ehere is geophysicél consensus. Consequently, the resulis of the
,Dresent analys;s, in which the effects of a bimodal scheme of :small

4]# scale convection méy have been recognized, are speculative, This ié

) especilally true bécause the indicated modal direttions are conformable

with tbe gross structural and physiological trends of the éfddy area.

g

It is noteworthy in this respect, however, that one of these directions,

Q

corresponding to ancmaly A in the results, is also conformable with the

-

orientation of shear stress vectors at the base of the lithosphere in

}
the study area based on numerical models of large scale mantle flow.
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Chapter 7. Summary and Prospectus .
j &
¢ ) a
7.1 Continental Isostatic Response Functions ’

Y

It was originally intended that the present study Wouli place

a

greater emphasis than it ultimately .does on what isostatic response

>N °

functions reveal about the rheology and structure of the cohtinental’
b
1if§osphere. When the study was begun the work of Banks et al. [1977]

and McNutt and Parker [1978] had been recently published, Particularly

interesting was McNutt and Parker's result that the apparent flexural ?
rigidfty of the Australian lithosphere was less than that of the

b .
tectonically younger Unitgd States, They interpreted this to be 4§ezto

Y

a vigcoeiastic continental lithosphere but acknowledged that the results

_ R ]
were subject to problems arising from the geological heterogeneity of
&

the study areas and the potential.effects of topographic erosion. It

was hoped in the present study to address these problems and, having
done so, to find evidence to either support or refute the viscoelastic

o : a
model, The idea was to calculate isostatic response functions for each -

v

of the Iarge, essentially homogeneous geological provinces of North

. America, to determine whether their differences, if any, were correlat-

-

’ able with their inferred tectonic ages, and then to Interpret the

2 14
v

changes in terms of a rheological model of the lithbspﬁere. At the
time, no published continental isostatic response function had been
calculated from data derived from a single geologically homogeneous

study area.

N,
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g I In Chaﬁter/; the data used in subsequent énalyses were intro- .
’ . duced and the ﬁethdds of data reduction described. St;;dard techniques
were employed although the method chose; to minimi;e the effects Of,\
using finite data sets difggrs from tho§é of Lewis and Dormaﬁ [1970] and

. McNutt [1978]. Synthetic data were analyzed to prove the method's

} suitability. N '

The calculated isostatic response functions were presented in

3

Chapter 3 and were initially interpreted in terms of the simplest model

AN

. v available, the time-invariant elastic thin plate model of Banks et al.
{1977]. Because of the errors associated with the résponse function

. estimates and because of the inherent non-uniqueness of calculated

o \

gravigy anomalies, it was difficult to place a great deal of confidence

in the results of the interpretation. In general, as the geological

P2

age of the study area increases the observed isostatic response fupction

falls off to zero [implying the existence of either very deep or no

idostatic compensation] at smaller wavenumbers. The results of -a one-

»

norp misfit analysis suggested that the qualitative differences i@ Qshe R

obsetved response functions are controlled more by changes in the depth
of the compensating density discontinuity [i.e., in general becoming
r .

‘ ‘ deeper with increasing tectonic.age] than by changes in 1ithosphefic ’

Af“\\/f}exural'éig*ﬁi;y. Even so, the best-fitting elastic plate models

’ required that the flexural rifiidity varies by at least two orders of ¢
. -
g magnitude between the different sampled gedlogical provinces. It was

concluded on this basis that a single elastic plate model with time-

invdariant physical properties would not suitably characterize all of
12 ‘ . .
- the observed isostatic response functions. Because there is no geo-

o " dynamic reason to believe that the rheological properties of an elastic

B
a 3

M +



+
N < o

lithosphere should vary arbitrarily in some way not related to the

.
~

tectonic age of the lithosphere, the time-invariant elastic model in

s

general was tentatively rejected. Any conclusions based on the
! ’ v ¢ v w
observed isostatic response functions were considered to be only tenta-
. ¢ “ H] < x I

~.

tive because of large errors as%pciated with the dindividual response

"
2 -y

function estimates. o

In Chapter 5 expressions for the theoretical isostatic
-~

response functions of a thin plate viscoelastic [Maxwell] lithosphere

LY

|
loaded by eroding topography were developed, The viscoelastic model

of McNutt and Parker [1978] was not considered because it does account’

for the erosion of tectonically old topography and, in-fact, requires

4

topography to grow through time. Rather, two simple erosion-dependent

loading models were investigated: Model 1, in which the uniform visco-

elastic lithosphere is loaded suddenly by topography which subsequently
eiodes, and Model 2, in which topography, formed dbove a thermally.

o

weakened orogenically active lithpsphere and theréfore in a state of
}ocal isostatic equiliérium, erodes after the 1ithos§here has cooled
and achieved_somé g;eater degree of flexural strength. Models 1 and 2
‘represent the fifét ;ttempts to quantitatively descgibe the long term

“

isostatic evolution of long wavelength eroding continental topography.

n

, The parameters of even the simple time-invariant elastic
isostatic response modei, flexural rigidity D and compensation depth(s)
z s Were too insensitive to be confidently constrained by a careful
analysis of model and observation misfit's. Additional parameters. in
‘the erosional isostatic models are the erosion time constant a, which

is probably-a function of-wavenumber, and the viscous relaxation time

¥

~
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AY
constant T. ‘3ecausenof the additjonal complexity of the erosional
N .
models it was coneluded that a rigorous approéch to their interpreta-

N .
tion, such as a misfit analysis, wopld not.be profitaple.” Rather, only

24 [

© t

general observations were made. y . . .

«
@ -

. In both Models 1 and 2, the géneral effects of erosion through )

b ) .
vtime are those of progressively more pronounced overcompensation of

0 s

<« - < .
'topography as wavenumber increases. This feature of the models con- - .

trdsts with the observed isostatic respomse functions which tend to

-
I N . .

fall off to zero values at smaller wavenumbers as tﬁe geological age

- - e

of th? study area increases. In the absence of systematic .changes in

compensation depths between geological provinces, as discissed in

. . . . . i) .
Chapter 3, there is no way the erosional isostatic models can reprodice
. . >

this apparent time dependency in observed' response functions. In this

"

respect, the best the models can do is to predict essentially unchang-
ing isostatic response functions through time.

.
B v Y o«

In the case of Model 1 this would require either (1) an

v r
s

elastic ﬁlaté rheblogyaaresulting in a model equivalent to that of

4

Bénks ggng%i [1977] discussed?ﬁnd»ééntatively rejected in Chaﬁter 3:

or (2) viscoelastic rheology zity a viscous relaxation comstant T
7 | R
v

relatively small compared to ﬁhg erosion constant o, resulting in local

a

-

\\ =
isostatic compensation of Appalachian and older topography [Figure 5-17],

’

a feature of the observations also not wholly in agreement with the .

-
o

misfit analyseg of Chapter 3. Isostatic evolution of continental

\ (4}

lithosphere solély in terms of Model l—type'deéelopment is therefore

&

v
v *

considered unlikely. . .



" * 30
. * ’ L3 vo
o

. .o In the case of Model 2, the terms of which requikre the litho-

sphere to cool amd thicken through time, astime-invariant theoretical

. Aisostatic response is not strictly possible. Reduction of erosional
) » / ~ o
effects [i.e., isostatic oyercaﬁpensation] through time is favoured by

[}

. . ‘
* - very slow erosion rates [large o] and/or small viscous relaxation time

.
‘ constants 1. Models with parameters D=1022—-1025

-

Nm, t=100-0.5 Ma,
0=250-300 Ma, and zﬁéSS km: result in~isosta£ic response functiong which

. do qgtpvagx gredtly for times greater éhan the age of the Appalachian
region [e.g. Figure 5-20]. This result is notvinconsistent with éﬁe
observations given tﬂeir large standard errars and ELe posqibili%y that

v compensation depth varies from region to regiom:

- . The general implication of the Model 2 results was that the

continental lithosphere is unlikely to have a purély elastic rheology.

¢ "

\
In such a case, part of the crustal root providing local isogtatic
\

s

, |
compensation to initizl topography remains in the lithosphere after
some or all of the toﬁbgraphy has been erqded., This results in‘gérked

dﬁertompensation of remnant topography. Since marked overcompehsation

is not indicated by the isostatic response functions observed in tec-

° . 2
N o - . -

¢ .  tonically old regions of North America, it was conclpded that the  ~

'd

s
" b - @

¢
s

flexural ‘stresses %nduced by erosion are relaxed within geological

L -

¢ ’ e

lengths of time. In this respect, the viability of a viscoelastic

«
LS N

' o model of continental lithosphere: with parameters such as those listed .

.  above, has been explicitly illustrated. It was noted, however, that a *.

possible alternative mode of relaxation’ of the inferfed‘grosi&pal

r
“ .

‘. étresses,onot considéred in thé presgn%vtﬁesis, is p%astic~failure: i
) . 0 - .

3 %n this tontext,' plastic failure may include large sga%§ %éui;iﬂg of .
: y the upper éaru of\tﬁ; l@thosphgfe. N

& o : : . ‘ .

] « N 2
a

& ¢ ¢
]
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« In Chapter 6, it waz shown how obsarved isostatic response

PN

functid%s could be analyzed in order to detect the effects of small .,

scale R@jieigh—Benard convection in the upper-mantle. The postulated
Lo . ,

technique does not require a knowledge of the mechanics of the isostatic

compensation of surface topography and therefore is not subject to the

. b

interpretive difficulties associated with gravity anomalies discussed
in Chapters 3 and 5. Rather, it depends on the interaction of the
igsostatic response function characterizing surface topography and its

compensation and the potentially existing analogous transfer function

characterizing the lithospheric topegraphy and gravity signal produced
by sub—lithospheric convection. A result of any such interaction is

that the observed isostatic response function may not be real and

- 3

directionally isotropic as it is normally assumed. The method was

4

applied to the Canadian Shield data set where the erosionally attenuated

topographic sipnal was an advantage rather than a source:of uncertainty

i ¥

as in the lithosphere rheology and structure investigation. The results

3

of the Canadian Shield analysis, in ﬁhich the effects of a bimodel

)

‘scheme of small scale convection may have been recognized, are specula-

) 4
tive because one of the indicated modal directions i{s conformable with N

the gross structural and physiological trends of the study area. -

"

The postulated detection technique may be used in oceanic as
well as continental regions provided sufficient data exist. However,

(4] a n
its future application is limited by (1) the need for minimal tectomic

v

[surface] topographic signal and (2) theoretical considerations which

o

suggest that small scale/convection may be stable within a narrow range .

v

L

of pﬁEéical conditions. With respect to the second category, the
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theoretical framework of small scale convection in the upper mantle is
not well-constrained and its physical viability continues to be a

subject of debate [¢.g. Yuen et al. 1981]. .

o 4
¢

£y

7.2 Evolution of bontinental Topography -

' Two modes of the evolution of continental topography have been
X

considered in the- present study. The first, presented  in Chapter 4,

pertains to regions undergoing tectonic uplift and is independent of .
0 -~

extrifisic isostatic effects. The theoretical linear transfer function

.

relating topography and tectonic uﬁlift rate was formulated on the

™
1 g

premise that the obsetved form of the topography is produced solely -

.

by the interaction of the uplift and erosion. The techniqﬁe was applied

)

to South Island, New Zealand, for which a map'of uplift rate data was

available [Wellman 1979].°

P -3 . »

' The reason for the South Islahd uplift-topography analysis
was to indirectly test a suggested linear erosion model which postulates
that the erosion rate of harmonic topography is proporticnal to the

amplitude of the topography remaining at any time and that the propor-

o v

14 % -
tionality factor depends on the topographic wavenumber. It was con~

cluded on the basis of the South Island analysis that the postulated

harmonic erosion relation could not be.rejected’at wavenumbers less
than ox equél to 0.01 kmfl. Thus, the non-linear effects on erosion
of local changes in lithology, climate, and vegetation are impliditly

assumed to be significant omnly at éreater wavenumbers and the erosion

9

relation could therefo;e be Euitably applied to longer wévelength

°

v

af
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4

isostatic response problems siich as those summarized in section 7.1.

a
~
[

However, it was pointed out in Chapter 4 that the form of the

theoretical uplift rate~transfer function was such that it could not
: ' &

be expected to comstrain the parameters of the erosion model by con-

+

sidering the South Island data. This result was confirmed in Chapter,s
in terms of the probable parameter values implied by the isostatically
controlled erosion of topography characteristic of North American geo-

1
logical provinces. In the context of the postulated harmonic erosion

.

model, the erosion constant of topography having a wavelength in the

‘range ~100-1000 km is evidently in the range 200-400 Ma.

.
n

In Chapter 5, the post-tectonic evolution of North American

topography was modellad in terms of the thin plate viscoelastic-

LY

[Maxwell] lithosphere isostatic Models 1 and 2 [cf. section 7.1]. The
L .
analysis represents the first attempt to characterize the rheology of

the continental lithosphere by investigating the long tefm erosional ..

decay of continental topography. The form of the topographic decay

was established by comparing the observed topoérath\ppwer spectra of
the studied North.Aﬁerican éeologieal proviqces. Accordingly, it ﬁas
assumed thahatﬁe spectral confiéuration of the topography of each was
initiall& app;oximately the same thus implying the existence of &
sgable continental lithosphere and gimilar modes of mountain-building
in tﬁe Archean as at the presént [e.g. Davies 1979]. The topography
power spectrum of the.tectonically young Cordilleran r;éipn of western

North America was assumed to be representative of initial continental’

topography. Erosion was quantified in terms of-the relation postulated

’ )
° £



o

and discussed in Chapter 4 and was-incorporated into the viscoelastic

. N \- g
lithosphere isostatic deformation models as feedback in a linear filter

~

o

netvork.
N ' . N 3

N [

The results of a misfit analysis of model predictions and

observations showed, for both Mbdgls 1 and 2, that the best overall

t

s . -
reproduction of the observed ‘decay curves is provided by a viscoelastic

as oﬁpoéed to purelylelastic’1i£hosﬁhere. Model 2 provided smaller

o

minimum misfit than Model 1 but neither set of results strongly con-

e A

. rigidity D ahd viscous relaxation time constant T. Possible Model 2

)

parameters dre not inconsistent with those determined by Beaumont !

[1981] from a modél of the stratigraphic evolution.of the Alberta .
\ .o B ° <

Forglaﬁg Basin on 2 stable 