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Abstract

This thesis addresses the problem of assessing segregation of a quantita-
tive trait under a mixed model of inheritance in non experimental popu-
lations, when the trait is linked to some monitored marker. There are two
main approaches to the linkage problem in non experimental populations,
the difference among them being the kind of information about the model
of inheritance which is used in making inferences. Sib-pair methods are
based only on identity by descent, i.e., they use partial information about
the model, and their inference is conditioned on the identity by descent
status of the markers. The alternative approach uses the full model infor-
mation and, traditionally, the inference for these methods is done through
the unconditional analysis of cosegregation, usually requiring Monte Carlo
methods to evaluate the likelihood. This thesis presents an extension to
one of the techniques (the Morton-MacLean integral) to compute the ‘ex-
act’ likelihood under mixed models of inheritance when the data is at the
bottom of the pedigree, regardless the complexity of such pedigree. With
the same arguments used to derive this extension, a Monte Carlo sampling
scheme in blocks of sibships is proposed. The idea of making linkage anal-
ysis conditional on the marker inheritance vector is also explored, together
with some issues related to the computation of the conditional likelihood.



Chapter 1

Introduction

The identification of chromosome regions containing specific genes re-
sponsible for significant variation of a quantitative trait is one of the cur-
rent problems of interest in genetic analysis. One effective way of address-
ing this problem is by linkage methods, which have been successfully used
in the study of qualitative traits. For quantitative traits, a degree of suc-
cess has been attained using linkage analysis with experimental crosses.
Obviously, to approach the problem by using inbred lines in not always
feasible, often, but not always, due to the nature of the species. Further-
more, it is often of interest to study the segregation of quantitative traits
within non-inbred populations.

When experimental crosses are not possible or are not available, the
problem is far more difficult. Several methods for the detection of linkage
to quantitative traits in humans have been proposed; the Haseman-Elston
sib—pair regression method, its variants and extensions [21, 32], and dif-
ferent flavors of variance components analysis and regression [37, 72] with
maximum likelihood estimation [4, 25, 76, 88, 90]. Most of these methods
are based on the presumption of unrelated nuclear families or zero loop
pedigrees, a presumption that may be not appropriate for many ‘natu-
ral’ populations. To overcome this inconvenience some modifications have
been proposed. However, the derived methods are much less efficient than



the original methods or those methods in use with experimental crosses,
and in many cases, the modifications require a large set of implicit as-
sumptions which may damage the inference.

Exclusion is in some sense the dual problem to linkage. The goal of
exclusion analysis is the identification of regions of the genome where the
putative gene or genes are unlikely to be located. While exclusion analy-
sis has long been established for qualitative traits [67), it is only recently
under development for quantitative traits. Traditionally, exclusion analysis
for quantitative traits has been just an appendix to linkage analysis, and
there are few works to study the adequacy of linkage methods to assess
exclusion.

The likelihood approach to linkage analysis began in the 1930's, begin-
ning with the classical works of Haldane [30] and Fisher [19, 20]. Developed
in the context of large size samples, the original likelihood methods were
abandoned in the fifties mainly because of concerns about applicability
to small samples and difficulties with computing the scores for matings of
known phase. However, the basic statistical framework remains. Of course,
many contributions have been made since then. Likelihood estimation of
the recombinant fraction in man was introduced in two papers by Haldane
and Smith [31] and Smith [79]. Haldane and Smith were the first to use the
LOD (logarithm of odds) in the analysis of linkage, an approach that was
further developed by Morton [60], who brought the whole machinery of se-
quential analysis to linkage. These works envisioned how inferences could
be drawn.

Sib-pair analysis also began in the 1930’s, pioneered by Penrose [71, 72].
His essential contribution was to provide a single generation data method,
efficient in terms of information per unit of resource, to declare linkage.
This approach did not become popular because, among some other incon-
veniences, it neglects information in the parents and other relatives, and
does not give an estimate of recombinant fraction with acceptable pre-
cision. However, sib-pair methods have been revived after the work of



Haseman and Elston [32] and proved to be successful in complex inheri-
tance problems [61].

At the beginning of the 1970’s, Elston and Stewart [17] developed a re-
cursive algorithm for the computation of probabilities on zero-loop pedi-
grees and discussed its application to the problem of inferring genetic
models. Years later, the method was generalized, at least in theory, to
pedigrees of arbitrary size and complexity [9, 52|. However, the imple-
mentation of that generalization when the model of inheritance considered
is not monogenic is still hard to achieve, even for pedigrees of moderate
size. That is a strong limitation of the Elston-Stewart algorithm. Morton
and MacLean [62] proposed an alternative way to evaluate the segregation
probabilities with mixed models of inheritance for nuclear families which
has some computational advantages over the Flston and Stewart formula-
tion. Also, as an alternative to the Elston and Stewart algorithm, Lander and
Green [49] introduced inheritance vectors and hidden Markov model theory
as a device for inference in linkage analysis of qualitative traits. This ap-
proach is still a very active area of research [38, 47, 48]. The last decade has
seen an explosion in the usage of computer intensive techniques, particu-
larly Monte Carlo methods, in segregation and linkage analysis of quanti-
tative traits for complex pedigrees [82, 83|.

The outline of the remainder of this thesis is as follows. In section 1.1
the distribution of a quantitative phenotypic trait is derived under the
assumption that the phenotype consists of contributions from a discrete
quantitative trait locus (QTL), a continuous polygenic component, and an
environmental component. The ultimate goal is to assess the presence of
the QTL, and its proximity to one or more marker genes which are mon-
itored together with the phenotype. Models of inheritance of the discrete
and continuous components are discussed in section 1.2, leading to the
formulation of the phenotypic density as a mixture distribution. In mono-
genic models, the Elston-Stewart algorithm allows for a simplification of
the mixture structure, providing a form suitable for direct computation.



For mixed models of inheritance the Morton-McLean algorithm is dis-
cussed. This result is generalized in chapter four.

As mentioned, the principle goal of this thesis is the development of
methods to assess the proximity of a QTL to a marker gene. Linkage, as
represented by co-segregation of the QTL and marker, is discussed in sec-
ton 1.3 together with the recombinant fraction p, which parameterizes the
linkage distance between marker and QTL. With this parameterization the
problem of assessing proximity of QTL to marker becomes a problem in
parametric inference, and the rest of the thesis is focused on the develop-
ment of methods for estimating p.

Traditional methods for linkage analysis and estimation of recombinant
frequency have utilized controlled crosses of pure genetic lines, which is
the subject of chapter 2. The object of such crosses has often been point
and interval estimation of recombinant fraction, and is usually based on
the LOD (log-of-odds) score. Potential problems with LOD based interval
estimates have been discussed by several authors, the difficulties often be-
ing based on an incorrect specification of the asymptotic distribution of the
LOD score. A conservative interval estimate of p is proposed here. Some
commonly used linear model methods for controlled crosses are discussed,
and a number of problems with the underlying distributional assumptions
are pointed out. A statistically valid permutation based approach to testing
is proposed. As the remainder of the thesis is not concerned with experi-
mental crosses, the methods proposed in chapter two will not be consid-
ered in further detail. The most important point identified in the chapter
is that in all of the popular methods for linkage analysis with experimental
crosses, the inference is conditioned on marker information.

In non experimental populations, linkage between a quantitative trait
and marker becomes a more challenging problem and is the subject of
much current research. Chapter 3 surveys linkage methods based on the
concept of gene identity by descent. While sib—pair methods are in wide use
by the genetics community, their inefficiency is unquestioned, having been



mentioned since Penrose’s time [61]. In this chapter the Haseman-Elston
regression is presented in brief, and a convincing formal argument to show
one cause of its inefficiency is set down. Several other inconveniences as-
sociated with Haseman-Elston regression are noted, including the fact that
the method is a detection only procedure. The variance components ap-
proach based on identity by descent is reviewed in section 3.3. Arguments
are given to point out that a full likelihood analysis in the sib-pair frame-
work is equally as complex as a full likelihood analysis in a model-based
framework.

Modern methods for likelihood analysis of data collected on a pedigree
are discussed in chapter 4. One principle tool is the Elston-Stewart al-
gorithm, which decomposes complex likelihoods into tractable pieces. A
generalization of this algorithm, known as peeling, is the basis of many
current methods for likelihood analysis, and is discussed in the context of
a particular example. Peeling algorithms are highly successful with mod-
els which incorporate only an oligogenic, or only a polygenic, component.
However, for polygenic models, methods from linear algebra are highly
efficient as well, and are preferred in many cases. A recursive matrix al-
gorithm for the Cholesky factorization of the inverse covariance matrix of
the polygenic effect is derived in section 4.2. The algorithm turns out to
be equivalent to previously published methods for calculating the inverse
covariance matrix.

In section 4.4 an extension to the Morton-MacLean algorithm for like-
lihood evaluation with mixed models of inheritance is developed for the
case of a nuclear family at the bottom of an arbitrarily complex pedigree.
This is the principle contribution of this thesis. The extension allows for
likelihood estimation with arbitrary known pedigree, complete observa-
tion of putative trait and marker data on all offspring at the bottom of the
pedigree, i.e. all individuals without progeny, full or partial observations
on quantitative trait and marker data of their parents, and full or partial



observations of markers in the remainder of the pedigree. This generaliza—
tion of the Morton-MacLean algorithm provides a deterministic evaluation
of the likelihood which is exact, apart from quadrature approximations
to integrals. Specifications are also given for several stochastic methods
of likelihood approximation, including gene dropping, the Gibbs sampler,
and the Hastings-Metropolis method.

Much of the recent effort in evaluating joint likelihoods on pedigrees
with observed marker and quantitative trait data is based on the analysis
of their joint segregation. In these cases the computational requirements
grow enormously when the markers are highly polymorphic. On the other
hand, highly polymorphic markers will typically be essential for accurate
assessment of recombinant fraction. An alternative approach, which has
been successfully utilized in the study of qualitative traits, is to use inher-
itance vectors or segregation indicators (which identify the parental origin
of marker alleles) in the place of the markers themselves. The methods are
reviewed in chapter 5, and provide an enormous computational simplifi-
cation for methods of likelihood evaluation in the present context.

In chapter 6 the extended Morton-MacLean algorithm is applied to the
estimation of recombinant fraction in several small simulated datasets with
relatively complex underlying pedigrees. Gene drop methods and the Gibbs
sampler are also applied to these data in an attempt to assess their perfor-
mance in relation to the method of choice - the extended Morton-MacLean
algorithm. While the estimation of recombinant fraction is a problem of
major import to the identification of quantitative trait loci, most of the ex-
amples of such estimates in the statistical genetics literature are restricted
to evaluation of likelihood ratios in the vicinity of the object of interest
itself, the unknown value of p. Therefore, one contribution of this thesis
is the aggregate collection of algorithms and methods which underly the
likelihood evaluation and approximations for these simulations.

The thesis concludes with a discussion of results and suggestions for
further work.



1.1 The problem

The analysis of quantitative trait data with a major gene involved is usually
done under the assumption that the value of the quantitative trait for one
individual, the ith say, can be written as

Yi=u+li+ni+e (1.1)

where 4 is an unknown constant, {; is the effect of a single major gene
for which segregation with a marker is being monitored, #; is the residual
polygenic effect, and e;, the environmental effects. These three random
variables are assumed to have null expectation. If gametic phase equilib-
rium holds, the variance of Y; is

Var(Y;) = 6} + 02 + 0% (1.2)

To know the covariance between a pair of individuals, it is necessary to
introduce the concept of identity by descent.

Two alleles are said to be identical by descent, IBD, if they are copies
coming from the same ancestor allele. Two individuals can have zero, one,
or both alleles IBD at some particular locus. For example, let us consider
the genotypic configurations from the mating type Q;Q: x Q3Q4. There
are four possible offspring genotypes, each with an equal frequency. The
genotype array for these is

FU% : zQ% ¢ ;0G5 G
Denote by 7;; the proportion of alleles IBD shared by the individuals i and
J. Whenever we observe the pair of sibs (Q;Qs, Q:Q3), we draw the con-
clusion that both individuals have received exactly the same alleles from
their parents, so x;; is 1; technically, the pair behaves as twins for this lo-
cus. Likewise, z;; is % for the pair (Q:Qs, Q1Q4) since they have one allele,
Q:, coming form the same parental allele and 7;; is zero for (Q:Qs, QQq),



with similar arguments applying to the remaining seven pairs. So, condi-
tioned on 7;; at the putative quantitative locus, the covariance between the
individual i and j is

Cov(Y, Y;|my) = 0’57&] + 0"21[[,”:1[ + 20’,% Vij (1.3)

where g2 and o3, the additive and dominance components of genetic vari-
ance are based in the decomposition ¢ = 03 + 03, and y;; is Malécot’s
coefficient of parenté [39, 59] between i and j, defined as the probability
that a gene selected randomly from i and a gene selected randomly from
the same autosomal locus of j are identical by descent. In cases where
a shared environment is modeled, it may also be necessary to split ¢2 as
o2 +0%, where g2, the variance attributable to shared environment is added
to the first term of (1.3) for appropriately related pairs. By definition of y;;,
it follows that

E(mi;) = 2y (1.4)

Knowledge of the pedigree is enough to determine y;;, but not for =;;,
because in addition to the pedigree component, r;; involves Mendelian
sampling. A single observation of x;; contains little information about y;;
and vice versa. One knows that y;; = 0 implies 7;; = 0 and 7;; # O implies
wi; # 0, but no too much more can be said.

An interesting fact related to (1.3) is that
E(Y|m)=EY) and  Var(%|m;) = Var(¥) (L.5)

In fact, for any pair of individuals ¥; and Y; with a proportion z;; of shared
alleles IBD at the putative trait, the marginal distributions of ¥; given x;;
and Y; given m;; are the same as the unconditional ones. To see this, it
is enough to consider only the joint distribution of the genotypes at the
putative trait for both individuals. Table 1.1 contains this joint conditional



a 4q; 0

Q QQ pt
QQ Qq| 2p3(1-p) Pl -Dp)
Q qq| p*(1-p)? 0
Q@ Q| 2p%1-p) P(l-p) O
Q9 Qq|4P*(1-p)? p(1-p) 2p(1-p)
Qa qq| 2p(1-p)® p(1-p)? 0
qqa Q| p*(1-p)? 0 0
q9 Qq| 2p(1-p)* p(1-p)? 0

@ qq| (1-p* (1-pP (1-p)p?
Notice: p is the relative frequency of the allele Q.

g, Nl""'g

1
P
0
0

Table 1.1: Joint distribution of the genotypes of two individuals at the
putative locus given the IBD sharing proportion.

distribution for the model with two alleles at the quantitative trait locus.

If Y; were normally distributed, the mean and variance would be enough
to characterize the statistical problem. Sadly, it is unlikely that this will
be the case, simply because {;, the effect of a major gene, has a discrete
distribution, usually with only a few points of support. For example, if
there are n, alleles for the quantitative trait in question, there are not more
than 1n,(n, + 1) different values for {;. A standard assumption is that

m+ei~W(O,a§+o‘§)

and consequently the distribution of Y; is the mixture

Ng
fv() =) Py PV ——{y) (1.6)
J=1
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where

pis = Pr(Ci = {g,)

and (g, is the genetic value associated with the g; genotype.

We do not observe the genotypes g;; so, the mixing proportions p;; are
unknown. Different ways of dealing with this problem have been proposed;
most of them derive from the pioneering works of Elston and Stewart [17]
and Morton and MacLean [62]. One special case arises when a quantita-
tive trait has been monitored jointly with some marker gene. The central
idea is that if the marker is close enough to the position of a major QTL in
the chromosome, they should segregate together and one can make infer-
ences about the p;;s using the marker information. The linkage-exclusion
problem is to determine whether or not a major QTL is associated with the
marker. Moreover, the goal is to estimate both the size of the effect of the
major QTL, and its distance from the marker.

1.2 Models of inheritance

There are a minimum of four ingredients of a genetic model for segregation
analysis [15]. The first is the description of the type or types of genetic
effects including the genetic basis of variation in the population; the second
ingredient is the statistical model which relates those genetic effects to the
trait values; the third describes the mechanism which explains how the
variation is passed through generations; the last describes the way in which
a group of individuals is sampled from the population for study.

The model of inheritance from one generation to the next can be sum-
marized mathematically by the genotypic distribution of the offspring con-
ditioned on the two parental genotypes. There are three fundamental mod-
els of inheritance for quantitative traits: oligogenic, polygenic, and a mix—
ture of oligogenic and polygenic models. An oligogenic model assumes
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that the genetic component in a quantitative trait is explained in terms of
a few loci, which means that the genetic component is a discrete random
variable; monogenic models are a special case of oligogenic ones where the
genetic variation is attributed to just one gene. No matter how many loci
are involved in the model, the main characteristic is that the oligogenic
component of the quantitative trait can be considered as a discrete ran-
dom variable. The polygenic model, on the other hand, assumes that the
genetic component for some measurable quantitative trait is the sum of
effects of a vast number of genes whose individual contributions are very
small. The polygenic assumption has the effect of shifting likelihood com-
putation problems from the domain of combinatorics to the domain the
linear algebra [26].

In general, the density of the observations y can be written as

f(y)=> f(v|g) Pr(g) (1.7)
g
- [tv12) dF@) (L8)
-Y [B@fyig a) dFalg) (19)
g a

where the latent variables g and a have some associated genetic meaning,
for example, major gene genotypes and polygenic effect. Other expressions
may be appropriate for some particular analyses. Which expression is the
best for computations depends very much on the complexity of pedigree
and the inheritance model assumed.

Modern segregation analysis starts with the works of Hilden [36] and
Elston and Stewart {17]. For linkage analysis the second paper is particu-
larly relevant since it provided the first systematic method for computing
likelihoods using entire pedigrees. In the context of quantitative traits,
the Elston-Stewart algorithm has had overwhelming success for oligogenic
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models, especially monogenic, on general pedigrees. Also, it shows ac-
ceptable performance for polygenic models but it is still computationally
prohibitive for mixed models of inheritance [8, 69]. Some time later, Mor-
ton and MacLean [62] presented an algorithm which is a better choice for
mixed models of inheritance on nuclear families. The difference between
these algorithms is the decomposition of the joint probabilities used [7].
Let us have a closer look at these different representations on a nuclear
family with parents m and f, n; children, and phenotypes

Y= (Yfr Yme Yie ooy Ynk),
= Ym V)

wherey* = (yi, ..., ¥n)'-

Monogenic inheritance. Assume the model y ={+e with y|§ ~ ~(E, o21).
The Elston-Stewart algorithm is based in the decomposition

fy) =)D > Pr(Cr Cms--er Gn) [0 (vs =) (1.10)
o Gn lm J=f

=35 3Py Gn) [T P& 1 om)
J=1

G Gn i

0o (Yr ~LF) Po2(Ym —Cm) [[ 002 (vs = &) (1.11)

Jj=1

=Y "Pr) 02 (V= C1) S_Pr(Gn | &F) @oz (Vi — )
(f m

ﬁZPr@ncn Cm) P02 (¥s — 1) (1.12)

J=1 §

The calculations in (1.11) increase exponentially with the family size, while
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with (1.12) the increase is approximately linear.

The step from (1.11) to (1.12) is a special case of the following resulit.
Suppose f(-,-) is a bivariate density, then

> S tanx) = Y- X [T, xf)zf1<g1,xo

gn a j=1 gn g2 j=2
—-fxl(Xl)Z ZHfj(gjr XJ)ZfZ(QZ: (1.13)
an (2] j=3
= fo](x_[)
J=1

Note that the application of (1.13) to (1.11) requires the phenotypes of
two sibs to be independent once their genotypes are given, a restriction
that excludes the possibility of non-genetic covariation as, for example,
shared environment.

Polygenic (additive) inheritance. Without loss of generality, assume a
model y = n + e with  accounting for only additive genetic effects; n
and e independent; e ~ (0, ¢2I) and N ~ W (0, a,%A) where A € R™+2 and

20 v
A=ilo2 v
11 I+11)

i.e., a family with unrelated, non-inbred parents (1 is a vector of 1’s). The
decomposition on which the Elston-Stewart algorithm is based for this
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case, obtained similarly as for (1.12), is

£(y) = /” 010 01 ~17) [ 05il1m) 0xm=rm) (114
4 m

ny
H /" Piaz (n5— 3¢ +Nm)) Po2(Ys — ;) dnj dnmdn;
J=171m

As before, the calculations are linear in the family size, although in this
case the integral can be explicitly evaluated.

Mixed (monogenic and polygenic-additive) inheritance. With the ad-
dition of a polygenic component to the oligogenic model, i.e, the model
y = { + 1 + e with the same assumptions on 7z and e as in the polygenic
model, the Elston-Stewart formulation for writing down the density in this
case is

() = S PCr) | o) 02 (ve—Cr=n1) (1.15)
& s

ZPI’((m) " Po2(Mm) Po2 (Ym = &m = Nm)
(m m

[I>_Pe(Gii¢r ) | @11~ $0rr + 1)

J=t {

0oz (Y5 — &5 —ny) dpy dnmdny

The expression (1.15) is similar to (1.11) but cannot be written in the form
(1.12) due to the integral over 77, 7. Because of this, the Elston-Stewart
algorithm is impractical even for relatively small pedigrees [7, 69].

In order to deal with this problem, a different decomposition of the
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density is needed. As starting point, one can think of something like

= £Vrs Yim) / £ | Yt Vs @) F(@ | Y2 Yim) (1.16)

The idea is to pick an a such that the computations can be carried out in
an efficient way.

Define §* = ({1, ..., {»,)’, then, in the case of unrelated and non-inbred
parents,

E(Y' 1S Y Ym) =8 + 102V = L + Yim — Gl (1.17)
Var(y* |&, Y5, Ym) = 307 (1 - h"') 11 + (%aﬁ + az)l (1.18)

where #* = ;‘i—z. Because the joint conditional distribution of y given §
is normal, thef distribution of y* given {, yy, and y,, is also normal and, in
the presence of (1.18), it is invariant under permutation as well, i.e., con-
ditioned on {, yr, and y.,, y* is a set of exchangeable random variables [10].
These properties allow us to choose a so that

£y 18 ¥er Yoo @) = [[ £ 1§ Veo Yoo @) (1.19)
J=t
and this expression together with
Pr(&" | & Gm) = [T Pr(&s 1 v Gm) (1.20)
J=1

can be worked through (1.13) to obtain a more manageable expression
than (1.15). While F in (1.16) is a normal distribution, different choices
for its mean are possible, subject to the constraints imposed by (1.16) and
(1.17). A reasonable choice is to pick a distribution for which subsequent
computations are simplified.
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It is known that a random vector x of normal variables with covariance
col+ ¢ 11’ can be written as X = Xo+X; 1, where X, is a vector of independent
normal variables, all of them having variance ¢,, and X; a normal random
variable, independent of x,, for which variance and covariances with the
elements of X, are all equal to ¢;. With this in mind, a quick inspection
of (1.18) reveals that the variance of a must be %a,%(l — H%). In fact, the
computations are simplified if a is taken as

an~ W(%z(}'f‘Cf+Ym —Cm), %0;(1 - hz))

This choice also provides some free genetic interpretation for a: it is the
parental contribution to the polygenic component, the breeding value, of
the children’s trait given the phenotypes and oligogenotypes of their par-
ents.

After the application of (1.13), (1.16) becomes

£(y) =) Pr(r) Pozeae (Vs — $7) (1.21)
¢

Z Pr({m) Po2+o2 (YM - Cm)
Cm

/a Oyoia-ity (A= EVr =L+ Vm—Gom)

ny

11D _Pr(&1¢r Gm) @yoie(vs—C5—a) da

J=1 {

Morton and MacLean [62] derived an expression similar to (1.21), but based
on a stronger set of assumptions and genetic arguments than those used
here. Because of that, this equation is referred as the Morton-MacLean
algorithm. In most non-trivial situations there is no analytical solution to
the integral in (1.21). It must be integrated numerically, but is of the form
suitable for accurate evaluation using quadrature. In spite of its required
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numerical integration, the Morton-MacLean algorithm is still economically
acceptable because it is linear in the number of family members.

Actually, Morton and MacLean’s model also included an environmen-
tal component common to all the members of the same sibship. This is
equivalent to specifying the covariance between (yy, ym)’ and y* to remain
as before, while requiring that 6211’ be added to Var(y*) in order to account
for the variance of the environment common to sibs, i.e., it can be written

Var(y*) = 307 (I+11') + 0211’ + 6°1 (1.22)

Despite this consideration, the elements of y* remain equicorrelated. The
model is again derivable from the exchangeability argument. Taking (1.22)
into account, ¢2 11’ must be added to (1.18) to include the common envi-
ronment. With this addition, the variance of a has to be 50,%(1 -h)+02in
order to meet (1.19), i.e., the natural choice for a must be

an N(Er =Lt +Ym—Gn)r 462 (1= 1) +03)

Therefore, ¢§a§(l-h2)(') must be replaced by qo_:iag(l_,,z)w‘zv(-) in (1.21), to
get the same expression as in Morton and MacLean’s original paper. Us-
ing this same principle, as part of this work, an extension to the Morton-
MacLean algorithm which allows the parents to be inbred and related will
be presented in chapter 4.

Incidentally, this has touched on another crucial point, that being the
common environment for the sibship. In a polygenic model of inheritance
this effect can be accounted for without additional computational compli-
cation, while in the oligogenic model the inclusion of this effect drastically
changes the computational strategy because the conditional independence
needed to move from (1.11) to (1.12) does not hold.
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1.3 Linkage

Linkage is the phenomenon by which two genes on the same chromo-
some stick, or segregate, together at meiosis. Two genes are unlinked if
they are ‘sampled’ independently through a pedigree path. Loci on non-
homologous chromosomes segregate independently during the meiosis pro-
cess; so, genes on these loci are unlinked. In contrast, a pair of genes on
the same chromosome tend to remain together during the formation of
gametes. The physically closer the loci lie, the higher the chance that the
genes remain coupled and segregate as a unit; the more distant, the more
independent they become. In general, linkage is one of the most important
forces in retarding the rate of decay of gametic phase disequilibrium from
generation to generation [14].

Crossing-over is the phenomenon that disrupts linkage. At meiosis,
each member of a pair of homologous chromosomes replicates to form
two sister chromosomes called chromatids. These chromatids align per-
fectly to form a bundle of four chromatids, after which crossing-over may
occur at points known as chiasmata. At each chiasma, one sister chromatid
from each pair may be randomly chosen and cut at a cross-over point. The
cell rejoins the partial paternal and maternal chromatids, exchanging the
genetic material beyond the cut point so that two hybrid chromatids are
formed. In absence of chromatidal interference, two chromatids are cho-
sen independently, and after crossing-over and two binary divisions, the
recombinant chromatids go to the four gametes.

If one thinks of both chiasma formation and crossing over as processes
occurring on a fixed interval of the real line, the number and positions of
the chiasmata along the chromosome bundle can be modeled as a point
process [12]. Without chromatidal interference, each crossover process is
created from the chiasma process by random thinning of chiasmata. This
random thinning determines whether or not the gamete participates in the
underlying cross-over at each chiasma point; because of the symmetry of
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the process, both choices have the same probability [S0].

If the haplotype of an individual contains two alleles coming from the
same grandparent, recombination at the parental level has not occurred.
An offspring is termed recombinant or non-recombinant depending on
whether or not the offspring indicates that a recombination has occurred in
one of the parents [67]. For two unlinked genes on the same chromosome,
the same proportion of recombinants and non-recombinants is expected.
The recombinant fraction p between two loci at positions a and b is con-
nected to Ny, 5, the number of chiasmata occurring on the interval {a, b}, by
Mather’s formula

Pla.by = 3 Pr(Nia,py > 0) (1.23)

To prove Mather’s formula define r, as
rn = Pr(the gamete is recombinant|Nj ; = n)

so that

Pl =D _Tn Pr(Nap = n)

n=0

Clearly rp =0 and for n >0
=1 1
tn=stn-1+ 3(1 = 1)

since the gamete is recombinant if it is after n — 1 cross-overs and does
not participate in the nth cross-over, or if it is not recombinant after n— 1
cross-overs and participates in the nth cross-over. The solution to the
previous equation is r, = 1 for all n > 0, which completes the proof.
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The genetic map distance y, j is defined in terms of the expected num-
ber of chiasmata on [a, b] per gamete as

Yiabt = 3 E(Na, ) (1.24)

The term map function is used indistinctly to denote p, the recombinant
fraction, expressed as a function of y, the map distance, in Morgans and
the opposite, to represent y in terms of p. Under Haldane's model of inde-
pendence between numbers of chiasmata falling on disjoint intervals, the
chiasma process is an homogeneous Poisson process; so, its map function
is

p=Li(1-e?) (1.25)
with inverse
y=-tlog(1-2p) 0<p<i (1.26)

Since most of our understanding of the chiasma process is merely phe-
nomenological, many map functions have been proposed to account for
chromatidal interference, finite numbers of chiasmata, etc. For example,
Karlin’s model assumes at most N crossovers, independently distributed
on the interval [a, b], and following a binomial distribution; its map func-
tion is

p=1(1-a -2 (1.27)
with inverse
y=14N(1-(1-2p)"") (1.28)

Kosambi’s model [46], intended to deal with chromatidal interference, pos-
tulates that the chiasma process is determined by a stationary renewal
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model with map function

p=4tanh(2y) and y=ltanh™'(2p) (1.29)

It seems clear now why in addition to the ‘size’ of the effect of the
trait, the inference about linkage between a quantitative trait and a marker
depends on the distance between loci, expressed in genetic map distance
units or as recombinant fraction.

Naively, constructing a genetic linkage map is just a matter of counting
recombinants and non recombinants. While this may be approximately
correct whenever geneticists have the ability of arranging crosses to avoid
or resolve potential ambiguities, with non-experimental populations it may
be impossible simply to ‘count recombinants’ in a cross, due to the lack
of information to identify unambiguously where recombinant events have
occurred [49]. That is the goal of linkage analysis.



Chapter 2
Linkage in controlled crosses

This thesis is concerned with methods of analysis for non-experimental
populations. Nevertheless, a quick review of some of the standard meth-
ods for linkage analysis appropriate to controlled crosses of inbred lines
is an appropriate way to commence a study of linkage analysis in non ex-
perimental populations. This chapter points out some of the problems
arising in linkage analysis with controlled crosses. A key point identified
in the chapter is that that the currently most popular approaches to linkage
analysis for controlled crosses all condition on marker information.

Traditionally, the studies of linkage between a quantitative trait and
marker in controlled crosses have been carried out through the observa-
tion of recombinants within families. The principle is very simple: if there
exists association between marker type and trait value, it is likely that the
major trait locus is close to the marker locus.

The simplest approach uses the markers as classification variables for
analysis of variance, regression, t-tests, or some such analysis. Another
approach is to construct the likelihood using the joint segregation of the
quantitative trait gene and the marker [56, 57]. To appreciate the basic
ideas, consider a two-allele model with co-dominant marker, recombinant
fraction p, and parental genotypes MQ/MQ and mq/mq as in the figure 2.1. All
of the individuals from the F; generation have the same genotype, and they

22
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Figure 2.1: An example to illustrate linkage analysis with controlled crosses
and known phase

produce gametes with frequencies

1-p . 1-p . P . P
-Z—MQ : 5—mq Mg : 2mQ

If R is back-crossed with the parental genotype P, only the genotypes
QQ and Qq are obtained on the quantitative trait locus under scrutiny. Simi-
larly, the back-cross on B produces only qq and Qq on the major quantita-
tive trait locus. The joint segregation for B;, the back-cross on the parent
P, can be obtained from table 2.1. For B,, the back-cross on the other
parental genotype, the same table can be used after replacing the homozy-
gotes QQ and MM by qq and mm, respectively.

Pr q
XM 00 7 aq | fum

M 1d-p) p
Mm p (1-p)

m

Ny N~

Table 2.1: B, segregation proportions for a quantitative trait locus condi-
tional on a linked codominant marker.

The joint segregation for F, the product of randomly crossing the F
individuals among themselves, can be obtained from the table 2.2

Assuming normality, if the quantitative trait expected values given the
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Fo@im| o Cga qq_ | fu(m)
MM | (1-p)? 2p(1-p) p?

m Mm |[p(I1-p) (L-pP+p*> p(l-p)
mm p? 2p(L-p) (1-p)?

el N dafe-

Table 2.2: F, segregation proportions for a quantitative trait locus condi-
tional on a linked codominant marker.

putative quantitative locus genotypes QQ, Qq, and qq are qq, taq, and sqq,
respectively, and if the variance for all of the marker-QTL classes is the
same, the likelihood for the ith observation, Y;, conditioned on the marker
information is

b= ZPrp(qj | M) 9,2(Yi - pg,) (2.1)
J

and the full likelihood, ¢, is the product of the individual likelihoods.

The hypothesis of no linkage can be tested with the likelihood ratio
statistic

max £

_ p=05
1= (2.2)

If the regularity conditions were met, the likelihood ratio test statistic un-
der the hypothesis of no linkage would have asymptotically a X(ZI) distri-
bution. However, the fact that in the reduced model some parameters are
fixed in the boundary of the parameter space (for example, if some the
mixing proportions in (2.1) are not strictly positive, some y;’s are mean-
ingless) and the requirement of absence of chromatidal interference [43],
i.e.,, the assumption that 0 < p < 1, tell us that regularity conditions are
not met. Despite these considerations it is not uncommon to assume that
—2log A 5 ;((21) under the hypothesis of no linkage. Another practice is to
replace the likelihood ratio statistic (2.2) by a scaled version, the LOD score
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and use some bound for the distribution of this statistic. The lod-score is
defined as

i
lod r =log;, vl (2.3)
p=05
and its maximum
LOD = max lod r (2.4)
= —logo4 (2.5)

Large positive values of Tod provide evidence of linkage, and negative val-
ues support its exclusion. Originally proposed in the context of sequential
testing, the lod is nowadays applied almost invariably in a non-sequential
framework. Currently, the lod-score criterion in human genetics studies is
to declare linkage if LOD > 3 and exclude the possibility of linkage between
the marker and some quantitative trait locus whenever the recombinant
fraction p lies in {p : lod p < —2}. The basis for these criteria is given by
Markov’s inequality. Under the hypothesis of non linkage E (1-!) = 1 which
implies

Pr,(LOD >log,clp=1) <c! (2.6)

regardless the distribution of LOD. Then, declaring linkage when LOD > 3 is
equivalent to saying that the p-value for the hypothesis of non-linkage is
smaller that 0.001.

There exists an alternative definition for the lod-score as

max £

lod" r =logy, 1;01: a;( 5 (2.7)
no QTL
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where ‘no QTL' means ‘there is not a quantitative trait locus’ or equiva-
lently that ‘the trait expectations, given the quantitative trait genotypes,
are equal’. Clearly, if there is no segregating quantitative trait, nothing can
be linked to it; so, the parameter p is meaningless. In this sense, ‘no QTL’
implies ‘no linkage’. This variant of the lod-score is more powerful for
declaring linkage when the rule LOD* > 3 is used regardless of any other
consideration, as follows from the fact that

max £ > max £ (2.8)

p=05 no QTL
It is interesting to note that the relationship between the rule LOD > 3 and
the likelihood test with 4 as the test statistic is quite different from the re-
lationship between the rule LOD® > 3 and its corresponding likelihood ratio
test, where LOD* = max, lod" r. Remember that LOD is just a scaled version
of 1 which implies the existence of an unique p-value for the likelihood
ratio test such that both methods lead to the same conclusion, since under
the mentioned regularity conditions 4 always has an asymptotic X(ZI) dis-
tribution. The asymptotic distribution of LOD* under the same regularity
conditions changes with the number of nuisance parameters in the likeli-
hood. For example, for B it is X(ZZ) while for E it is )((23). So, to generate the
same conclusion, the p-value of the likelihood ratio test has to be modified
as the asymptotic distribution of its test statistic changes.

The computation of the so-called support intervals is another impor-
tant scenario where both variants of the lod-score can be applied. Many
ways to assess the accuracy of the estimates of p have been suggested. One
of these is through confidence regions, confidence intervals preferentially.
From a statistical viewpoint, a sensible approach is to invert the acceptance
region of the likelihood ratio test for the hypothesis p = r versus the two
sided alternative p # r. For the hypothesis in question, the likelihood ratio
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statistic can be written as

max £

Ar) == (2.9)

The figure (2.2) shows an artificial example of how the likelihood intervals
may look. With present computational resources, inverting the acceptance
region determined by the distribution of (2.9) does not represent a difficult
numerical task. However, in spite of their known good statistical prop-
erties, likelihood intervals are rarely used; the so-called LOD-one-down
intervals being much more popular.

A(p)

""'acceptance region '

- confidence intarval !

Figure 2.2: Confidence interval obtained by inversion of the acceptance
region of the likelihood ratio test

Figure (2.3) illustrates how the LOD-one-down support intervals are ob-
tained. After plotting lod p and drawing a line at LOD — 1, the support
interval is obtained by projecting over the p-axis the two points where the
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graph of lod p is intersected by that line. Narrower support intervals may
be attained by using 1od” instead of 1od.

—— e v v - — v o ———— — — ————_—— - ——
v e e oy o e —— > —— v ————y— Yo >

support interval

Figure 2.3: Typical LOD-one-down support interval

The LOD-one-down support intervals may be numerically convenient,
but are by no means equivalent to likelihood based intervals. Moreover,
the determination of the coverage of the LOD-one-down intervals may be
more difficult than inverting the likelihood ratio acceptance region because

Tod r = log;oA(r) —log;o4 (2.10)
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i.e, lod r is a linear combination of two non-independent random vari-
ables with different marginal distributions, and only one of them can be
asymptotically proportional to the distribution X(Zl) as the hypotheses un-
derlying A(r) and A cannot be simultaneously true. While the likelihood
intervals are coherent and parsimonious, there is no guarantee that LOD-
one-down support intervals are going to yield logically consistent regions
no matter which hypothesis is accepted as true or how high the LOD has to
be before the intervals are computed. Examples of those logical inconsis-
tencies are mentioned by Ott [67].

Nevertheless, given support intervals, it is feasible to compute at least a
bound of the probability coverage, i.e., the probability that the support in-
terval covers the true recombinant fraction, through Bonferroni’s inequal-
ity. To do so, just observe that the intersection between any pair of upper
and lower bounds for p is a confidence interval for the parameter. In the
likelihood framework, the confidence bounds come from inverting the ac-
ceptance regions of two one-side tests. Bonferroni’s inequality guarantees
that the intersection of those bounds yields a confidence region whose
confidence coefficient is not less than 1 — p; — p», where p; and p, are the
p-values for the one-sided tests. Since the extremes of a support interval
can be taken as the values of upper and lower confidence bounds, there
are two one-side likelihood ratio tests related to those bounds with known
p-values that can be used to obtain a reasonable approximation for the
coverage probability.

The likelihood approach is not the only one, and is certainly not the
most popular among experimental cross scientists. In typical studies of
linkage on controlled crosses, individuals are separated into marker classes
and those classes are compared. Given some value m for the marker in any
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individual, the expected value of the putative trait is
Um=E(Y|m)
=Y E(Y|q;, m) Pry(q;| m)
J
=Y E(Y|4qy) Pry(q;| m)
J

=) Ha, Pry(q; | m) (2.11)
J

since given q;, the distribution of the quantitative trait does not depend
on the marker. That is the expectation for the marker class m. Also, if the
variance given g, is the same for all j, say 42, then

0% =E((Y - m)’ | m)

=y (Var(Y| d;) + (Uq, —,um)z) Pr,(q; | m)
J

=02+ (g, — #tm)" Pro(dy| m) (2.12)
J

For the B, design, the means for the marker classes are
pwm = (1 — p) ttoq + P ltaq
P = P tigq + (1 — p) taq
and the variances are

O =062 +p(1 — p) (g — Haq)®
= Ofy
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The difference between marker class means is

s — foum = (1 — 2p) (Uoq — Haq) (2.13)

which differs from zero only when p < ; and figq # Hqq, a fact that can be
used to test for linkage through the t-statistic

Y — Fn (2.14)

L
s (m+%)

t=

where the y's are marker class averages, and s® is the pooled variance
within marker classes {56, 57]. The likelihood ratio statistic for the B, de-

sign is

lz max e(ﬂMM:,uMm: Uztp = %)
max e(ﬂMMy HUvim, O'Z'P)

(2.15)

Of course (2.14) is not equivalent to (2.15), since they are testing different
hypotheses. In this respect the t-statistic is closer to

= 02X € (wn, , 07, D) (2.16)

with —2logl* = ;((22); however, as before, the two tests are not equivalent
in the sense that they do not have to lead to the same conclusion. In fact, i*
allows only the declaration of existence of genetic control through a major
gene by showing that it is linked to the marker, since as for the t-test case,
size of the trait effect and its position are confused.
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For the E design the marker means are

tim = (1 = p)’pieq + 2p(1 — p)ttag + P?Htaq
tvm = p(1 — plteq + (P° + (1 = p)?) ptaq + (1 ~ p)*iqq
Hum = p°Haq + 2p(1 — p)ptaq + (1 — p)taq

and the variances are

O = 0% + 2p(L - p) ((taq — Haa) — P (Hioq — 2taq + Haq))®
+p*(1 - p)?(pq — 2Maq + Haq)?

G = 0 +p(1 —p) ((thoq — tiaa)” + (ftaq = Fi20)’ )
+p*(1 = p)*(itaq — 2Maq + Haq)?

O = 0% +2p(1 ~ ) ((Haq — taq) — P (Haa — 2Haq + fq))?
+p%(1 = p)*(ttaq — 2Maq + Haa)®

This differs substantially from the B, case, as these variances are equal
only under a non-dominance model, i.e., only if

+
lioq = Ha : Hag

Two contrasts of interest are

Hws — Hom = (Eaq — Hqa) (1 — 2p)
Hm — -(.Um + ) = (Haq — %C“QQ +Hqq)) (1 — 2p)

and under the non-dominance model

A — Lo
=2(1-2
oy (1-2p)
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In classical studies of linkage with F, hypothesis testing is carried out
with analysis of variance techniques, since in the absence of linkage the
three marker classes have the same mean, regardless of the penetrance
model. However, that analysis may not be appropriate when the model
includes a dominance term because of the heterogeneity of variances in
the marker classes. As in the B; case, for B, the likelihood ratio approach
that uses (2.2) is not equivalent to the analysis of variance.

No matter what the testing procedure, the underlying idea is that no
linkage implies that the marker does not contain information about the
trait. This suggests an alternative testing strategy, namely permutation.
If there is no linkage between marker and the quantitative trait, the test
statistic should not be affected if the marker genotypes are held fixed and
the trait values shuffled. A set of test statistic values obtained by resam-
pling after random permutation of the trait values yields an empirical dis-
tribution for the statistic. The hypothesis of no linkage is rejected when-
ever the observed value of the test statistic lies among the most extreme
values generated by permutation [13]. In a similar fashion, confidence re-
gions for the recombinant fraction can be obtained by parametric boot-
strap [87].

Because in experimental populations the crosses are designed to exhibit
and contrast the genetic values of the quantitative trait, they can produce
reasonably accurate estimates. In general, regression techniques, t-tests,
and maximum likelihood inference give more or less equivalent answers
for declaring linkage between marker and the major gene loci. As regards
position, i.e., the recombinant fraction, the likelihood approach tends to be
superior.

The point must be stressed that all of the inferences for experimental
crosses described here are conditioned on the marker information. The
markers are not important by themselves; they only matter as far as the
content of the information about the segregation of the putative quantita-
tive trait locus.



Chapter 3

Linkage methods based on
identity by descent

For quantitative traits, the processes that determine the model of inher-
itance may be unknown. But how can one assess linkage when the ge-
netic model is unknown?. This chapter describes several ‘modern’ methods
which have attempted to answer this question. The proposals are known
generically as robust methods, and while their genetic foundation resides
in the concept of identity by descent, statistically they are quite simple
and ordinary: regression and variance components analysis [4, 25, 32, 70].
With the IBD based methods there exists a compromise between simplic-
ity and efficiency. In the recent past, some likelihood approaches to the
analysis based on IBD have been proposed. However, the specification of
the likelihood function is highly dependent on the genetic model and the
desired simplicity disappears. Moreover, the computations under any sen—
sible likelihood approach are as complex as the likelihood approach which
uses the whole model.

The pristine work for the problem of detecting linkage between a quan—
titative trait and a marker was based on sib pair data, and is due to Pen-
rose [72]. Haseman and Elston developed a similar idea and proposed the
modern version of sib pair analysis, the Haseman-Elston regression [32],

34
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which is the topic of section 3.1. Interval and multipoint mapping, dis-
cussed in section 3.2, provide extensions of Haseman-Elston regression,
and the ‘robust’ variance components approach is summarized in sec-
tion 3.3.

3.1 The Haseman-Elston regression

Haseman and Elston addressed the linkage analysis problem by taking n
pairs of relatives of the same kind and regressing the squared difference of
their genetic values on the proportion of alleles IBD. Applied to the model
(1.1)-(1.3), the rationale goes as follows: assume a diallelic model for the
quantitative trait on a zero-loop pedigree and suppose the individuals in
the pair (2i—1, 2i) are relatives with parenté coefficient y, and that this pair
shares x; alleles IBD at the quantitative trait locus. Define Z; = (Y;; - Y51_;)
and notice that the model implies

E(Yzs| ;) = E(Yz))

Var(Ys; | ;) = Var(Yz)

Moreover, because E(Y3;) = E(Y2;_;) and Var(Ys;) = Var(Yz;_1) by hypothesis,
it follows that

E(Z?|m;) = 2 (Var(Yzs) — Cov(Yay, Yar1 | 1))
=2 (03(1 - ) + 3 Ly + 31— 29) + )
=04 — 2057 — 203z
- i~ 20Em+ ol 61

where 6% =2 (af- +(1-2y)o7 + 0'2) . Since the variances are non-negative,
it is evident that the difference in genetic value between two relatives is
expected to decrease as they share more alleles identical by descent at the
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quantitative trait locus.

Under a non-dominance model, 43 is null and (3.1) becomes
E(Z|m) =2 (0}(L —m) + 02(1 - 2y) +0°)
=03 - 20¢m; (3.2)

and so only when af. > 0 does the regression of Z? on z; have negative
slope. Thus if the identities by descent at the trait locus were known for
each individual and a simple linear regression model of Z? on =; fitted, the
usual least squares estimator of the slope would be an unbiased estimator
of —2¢} whenever (3.2) holds. With non additivity, it is fortunate that if
the simple linear regression is carried out for sib pairs, ,B, the least squares
estimator of the slope under the model (3.1) has expectation given by

- > (mi-7) E(ZF | m)
E(BIm) = £ .
Y (m-7)

i=1

n

—20'42— Zn’,—(n’,— - ﬁ.’) + 0"21 Z I[m=:le(n’; - ﬁ.’)
=1

i=1

Y (m-w)?
i=1

n
D ey (mi =)
=1
n

> (mi-#)?

i=1

= —20} + 03

and because

n
- n
glgrr_.g(m —) = ﬁ(no —np)
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with n; being the number of individuals with j alleles IBD, it follows that in
sib pair analysis, ,B will be asymptotically unbiased even when dominance
is present, since by symmetry no and n, tend to equality as the sample size
increases.

Of course, linkage analysis would be fatuous if z; were known; the fact
that it cannot be observed makes the problem more interesting. Condi-
tioning on z7, the proportion of IBD alleles at some marker locus, instead
of on x;, the expectation (3.1) can be rephrased as

E(Z} |x}) = ) _E(Z} |my, a}) Pr(z; | #f) (3.3)
Ty
As long as there are no pleiotropic effects between trait and marker loci,

i.e., one trait does not interfere in the expression of the other, it follows
that

E(Z} |a}) =) E(Z}|m) Pr(m | ) (34)

When joint Hardy-Weinberg equilibrium at quantitative trait and marker
loci holds, the term Pr(m;| z) accounts for the type of genetic relationship
between the pair of individuals under consideration and the recombinant
fraction between trait and marker loci, but it does not depend upon what
is observed at the marker locus [2]. Pr(x;]z™") for some different types of
relationship have been published [2, 32]. Table 3.1 contains this conditional
distribution for sib-ships.

Using table (3.1) and the equation (3.1) for siblings (3.4) yields

E(Z¢ | ) = o +2 (20} + o(1 - 0)03)
+2(1- 29)“%“? +(1- 29)20'51[1#;1
=Po+pn} + B2 lpa_y (3:3)
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Pl | i 1
2
0 0 o(1 - o) (1-p00?
m 3 |20(1-0 1-20(1-9) 20(1-0)
I | (1-p) o(1-o) 0
g=p*+(1-p)?

Table 3.1: Probability of the IBD sharing proportions at the trait locus con-
ditioned on the IBD sharing proportions at the marker in siblings.

The regression coefficients in (3.5) comprise the information about the
variance components and recombinant fraction available in Z; and #7. Be-
cause (1 —2p) = —(1 — 2p)?, negative values of 8, provide evidence of link-
age. Analogous linear relationships have been established for other types
of relationship, and in those cases also, 5, is negative only if there is link-
age [2]. For example,

,—2( 1 - 2p)352 half-sibs
-2(1 -2p)o3 grandparent-grandchild
fi= =2(1 - 2p)%(1 - p)o? avuncular
| —2(1-2p)*(1 - 3p +3p?)0% first-cousins

What Haseman and Elston proposed was to not condition on the marker
IBD sharing proportions, but instead on %,;, the marker information. For
example, if the marker is fully informative then the marker information is
the marker. If one parent is homozygous and the other heterozygous for
the marker, then the marker provides only partial information on linkage,
while in the case that both parents are homozygous, the markers are com-
pletely uninformative. Conditioning on the marker information, it follows
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that
E(Ziz l]mi) = ZE(ZiZ lﬂlinr ]mi) Pr(”'in l ]mi)
¢
=Y E(Z*|m) Pr(zi | x7) Pr(af | Jui) (3.6)
o

an expression that can be reparameterized as
E(Z} | Jw) = Bo + il + B Pr(at = § | ) (3.7)
where

P =Pr(af = 1| Ju) + 3 Pr(af = } | i) (3.8)

With full marker information for the pair and the individuals connecting
them in the pedigree, Pr(z? | %) can be determined from the data. However,
when the marker provides only partial information for linkage, Pr(z® | %)
becomes a quantity which depends also on the marker allele proportions
in the population. Haseman and Elston’s approach was to throw away S,
to replace 77 by its expectation #%, to carry out a simple linear regression
of ZZ on &}, and to declare linkage between marker and quantitative trait
whenever f#; was found to be significantly less than zero. That rule is still
in use.

There is an alternate reparameterization to (3.7) which is useful in many
of the extensions to the Haseman-Elston regression, which requires

E(Z? | Ju) = Y E(Z?| 7)) Pr(m: | Joe)

L

=05 — 20w + 65 Pr(m = L | Je) (3.9)
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where
Pr(7; | Jor) = Y _ Pr(m; | #) Pr(al | Jos) (3.10)
L
and
71_{"‘ =Pr(mi=1|%) + %Pl'(m = % | ]mi) (3.11)

While (3.7) seems more convenient from a computational viewpoint, (3.9)
can be easily adapted to situations with more than one marker. In fact, if
o3 is dropped from consideration, a parameterization equivalent to (3.9)
has been used extensively in interval mapping [21] and multipoint interval
mapping (21, 23, 47].

The Haseman-Elston regression has many advantages: it allows multi-
ple allelism in the marker, it does not require an accurate knowledge of the
genetic mechanism underlying the trait, even when it was derived under a
two allele model; it is unbiased, provided that there is not dominance at the
trait locus or the bias is small for large samples; and many more [2, 6, 32].
But, the biggest asset of the Haseman-Elston regression is its simplicity.
Modifications to the original formulation have taken advantage of infor-
mative marker data by using reweighted least squares or carrying out the
regression through the EM algorithm, but these modifications suffer a sub-
stantial loss of simplicity [3, 47, 89].

There are several caveats with the Haseman-Elston regression. It is a
‘detection only’ procedure since the linkage parameter and the variance
component for the quantitative trait are confounded. It uses only pairs
of individuals with the same type of relationship, although this inconve-
nience can be overcome using iteratively reweighted least squares [66, 65].
Other potential problems are related to heteroscedasticity of the errors
(but not under the null hypothesis) and the lack of independence among
different pairs as far as individuals belonging to the same family and/or
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the pairs have an ancestor in common. A more recent criticism is that the
Haseman-Elston regression wastes information. In the early 80’s it was ac-
cepted that non-normality was not an issue with samples of moderate size
and the usual t-test was said to be satisfactory [6]. Recently, this drawback
has been challenged as the adoption of maximum likelihood methods has
become matter of course. The fact that Z?> does not have a normal distri-
bution implies that linear regression does not yield maximum likelihood
estimates. After pointing this out, Kruglyak and Lander suggested use of
the likelihood

e=1[> ry 9:2(2)) (3.12)
i

where o} = 0§ — 62, 03 = 0} — 0%, and p;; = Pr(m; = §), j = 0,1,2 with
estimation of the three variances through the EM algorithm [47]. While this
approach may be superior to the traditional Haseman-Elston regression,
the offered solution seems to be the wrong answer to the right question.
First of all, underlying (3.12) there is a strong assumption that conditional
on m; = 4, Z; ~ (0, 63), which obviously does not hold. Recall that the
distribution of Y; is a mixture of normals, so the distribution of Z; has to
be a mixture as well. For example, the density of Z; conditioned on x; for

T
P (i) 0 ! 1
0 P +4pq+q* P +4q° 1
oo — aq 4p3q 2rq 0
“ ot  4pa 2pa? 0
oo —Caq 2p*q? 0 0

Table 3.2: Coefficients for evaluating the density of Z; given x; for sib-pairs
(p is the proportion of alleles Q in the population, 4 =1 — p).
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sib pairs is
f(zi | m) =Y ps(m) Poziace (12 — 115) (3.13)
J

where the coefficients x; and p j(;) come from table 3.2. Then, conditioned
on %, the density of Z; is

f(zi | ) =D ) £(zi | mi) Pr(a | &) Pr(al | o)

5w

= (2| ) Pr(m; | o) (3.14)

Secondly, as Fulker and Cherny [22] indicated, the use of sib-pair differ-
ences does not lead to an optimal maximum likelihood approach for quan-
titative sib-pair data, which are in bivariate form. In fact, the Haseman-
Elston regression wastes information as shown in the following argument.
DefineZ, =Y -Y>and Z, = Y] + 15, then

fh, Yo |m) =£(Z, | m)E(Z2 | 7) (3.15)

i.e., using only Z, throws away the information contained in Z,. Moreover,
it has been shown that

and it is straightforward to show that

E(Z2|m) = Var(Z|m) + 4
= 4p® +2Var(Y) + 207w — 031y

which implies that

—E(Z|7) =+ +ﬁZI[1r=§] (3.17)
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where 8, and B, are as in (3.16). That means the regression of the squared
sum pair on x is parallel to the regression of the squared difference, which
means the sum contains as much information about linkage as the dif-
ference does. So, the simple combination of both regressions must do a
better job. Fulker and Cherny advocate using the bivariate form by testing
the difference between observed and expected covariance matrices based
on the Whishart distribution; unfortunately, this approach also requires
normality for Y;.

3.2 Interval and multipoint mapping

With two alleles at the marker locus the number of informative combina-
tions is small. When only two-allele markers are available, an increase in
the number of markers may be a method of increasing the IBD information
at the trait locus. On the other hand, no matter how informative a marker
can be, for the traditional Haseman-Elston regression, the size of the ef-
fect and position are confounded. With two or more markers both size and
position can be determined. Fulker and Cardon [21] developed an exten-
sion to the Haseman-Elston regression, known as interval mapping, which
employs the information on two flanking markers separated by a known
map distance to locate the quantitative trait gene and estimate the size
of its effects. Later on, this approach was further extended to multipoint
mapping, which is nothing but the inclusion of more markers [23].

The idea behind interval and multipoint mapping is to take (3.2) and to
approximate 7; as a linear function of the IBD sharing proportions in the
markers. To do so, it was proposed to use the best linear mean square pre-
dictor. To derive this consider that, given the relationship, the expectation
and variance of IBD sharing proportions are the same for any locus, and
the correlation between the IBD proportions for any pair of loci depends
only on the recombinant fraction, which is known provided the map dis-
tance is known. Table 3.3 contains these constants for some selected pair



types. The proposed approximation for 7 can be written as
T =ay+an" (3.18)
where
a = Cov(r, &) Var(n™) " oo = E(m) (1 — a'1)

nt" is the vector of markers linked to the quantitative trait. E(x) and the
expectation of the IBD proportions for any other pair of loci on the same
pair of individuals is 2y, as was mentioned before. The matrix Var(n")
can be evaluated because the map distances between markers are known;
in contrast, the row vector Cov(r, ") = Var(z) Corr(r, #") depends on the
unknown recombinant fractions between each marker with the quantitative
trait. To overcome this inconvenience, the chromosome is divided into a
number of intervals and sequentially, a point ¢ inside each interval is cho-
sen, and the assumption made that the quantitative trait lies at that point
(usually, the middle of each interval). Once this is done, the map distance
between each £ and the position of all of the markers can be transformed
into recombinant fractions to be plugged into Covg (7, #") so that x; can
be computed. Afterwards, as in Haseman-Elston regression, a simple lin-
ear regression of Z? on each =; is carried out. The estimate of position
for the quantitative trait is that & for which the residual sum of squares is

3.3 The robust variance components approach

The approach to the problem of a major quantitative trait which seems to
be becoming most popular is the IBD based variance components linkage
method. Based on the work of Golgar [25] and Schork [76], Amos [4] made
the first formal proposal of such methods. The problem that Golgar and
Schork addressed was to estimate the genetic variance due to the additive
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Pair type | Distribution of 2r  Corr(r, 7*)
full-sibs Bin(2, }) (1 -2p*)?
half-sibs Ber(}) (1 -2p*)?
grandparent-grandchild Ber(}) (1-2p°)
avuncular Ber(}) (1 =2p%)%(1 - p*)
first-cousins Ber(}) (1-2p")%(1 - 3p* + 2p?)
half-avuncular Ber(}) (1=2p")(1 -2p" +3p*?)

! p* represents the recombinant fraction between the loci whose IBD proportions are 7 and z*.

Table 3.3: Distribution of IBD counts and correlation between any two IBD
proportions for some pair types.

effects of one or more loci located in a segment of the chromosome defined
by two flanking markers. Amos [4] took the same problem addressed by
Haseman and Elston [32] but from a mixed effects variance components
approach and it can be easily extended to interval and multipoint mapping
by the same strategy used to extend the Haseman-Elston regression [1, 90}.

The model (1.1) in matrix notation is

y=p+C+n+e (3.19)

with p holding the family means and any other fixed effects. If one splits
the major gene effect, £, into additive and dominance effects and assumes
that the polygenic effect is only additive, then we have

y=p+a+d+n+e (3.20)



46

with
Ey|/D)=p (3.21)
=E(y)
and
Var(y |II) = 02 1 + 03A + 262 ¥ + 02R
=0zl - Jo3A* +202'¥ + 02R (3.22)
=X;

where 7; = 1 and 7;; is the IBD sharing proportion between the ith and jth
individuals, dy; = [z, -y, 07y = I, =4 ¥ the Malécot’s parenté matrix, and R
may be an identity matrix or something else to model shared environment
among families.

Dropping 0"21, the previous expression becomes
Var(y |II) = g + 207 ¥ + 62R (3.23)

Then, following similar steps as in the Haseman-Elston regression, it can
be shown that

Var(y | II") = o7 (1" - 2%¥) « B + 2(0% + 62) ¥ + 02R (3.24)
=X

where +’ denotes Hadamard product and the elements of the matrix 8% are
given by Bg) = Corr,, (m;, xfy), i.e. they depend on the recombinant fraction
between trait and marker loci and the type of relationship between the ith
and jth individuals. For some selected types of kinship, the correlations
between two IBD proportions are shown in table 3.3; a more complete table
can be found in Almasy and Blangero [1].
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Taking (3.21) and (3.24) as a base, it is common to propose for y the
following log-likelihood

~3log(27) — 310g [ | — 3y — WY EL (Y - 1) (3.25)

where n is the dimension of y, i.e., the number of individuals in the pedi-
gree. This ignores two key facts: y is not normal and X.» is a conditional
variance. Xu (88] pointed out the latter fact and proposed to use the like-
lihood conditioned on the marker information, given by

S Pr(Il | Jn) pr (Y — 1) (3.26)
IT

This assumes that conditioned on the IBD status at the quantitative trait,
the distribution of y is M (1, X;), i.e., it implies that { has a normal distribu-
tion, which is obviously inaccurate. While this formulation may be superior
to (3.25), it is still unjustified. In fact, conditioned on I, the density of y
looks like

fly | II) = ZPT(CK | ) (02a,§'l'+a$k(Y -p-8) (3.27)
Ct

where (T is a vector { compatible with IT, by example, 7;; = 1 <= {F = .
So, the likelihood conditioned on the marker information must look like

Y Pr(Il | %) f(y | ) (3.28)
1

There are some considerations to be pointed out:

¢ To assume normality of { may be convenient but is not realistic in
most practical situations.

e Even if the number of alleles coding for each {; is large, only a few
genotypes will be heavily represented in the population, a situation in
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which it would be unwise to invoke the Central Limit Theorem for the
distribution of the quantitative trait values.

¢ Itis well known that a ‘non-degenerate’ finite mixture of normals can-
not be normal [85].

In light of these facts, it is questionable whether sensible answers re-
garding linkage can be obtained under the assumption of normality.



Chapter 4

Likelihood evaluation

In this chapter several methods for evaluating likelihoods for quantitative
trait data are discussed. For simple models which include only a monogenic
or only a polygenic component, there are a collection of so-called peeling
algorithms which allow for decomposition of the likelihood into tractable
components. Two such algorithms are discussed in sections 4.1 and 4.2.
The mixed model described in section 4.3, which includes both major gene
and polygenic effects, cannot be peeled, and requires other techniques for
likelihood evaluation. A generalization of the Morton-MacLean algorithm
is derived in section 4.4 which allows for exact computation, up to numer-
ical quadrature, of likelihoods in cases where phenotypic data is available
for the nuclear families at the bottom of the pedigree, and possibly for the
parents of those families. An arbitrary pedigree structure for the parents’
ancestors is allowed. In many situations there will be phenotypic observa-
tions throughout the pedigree. In such cases, a suite of methods have been
developed for Monte Carlo approximation of the likelihood. Several such
methods are discussed in section 4.5, including gene dropping, the Gibbs
sampler, and the Hastings-Metropolis algorithm. The performance of these
methods on some simulated data sets will be discussed in chapter 6.

49
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4.1 Peeling monogenic models.

Earlier we made mention of the Elston-Stewart algorithm in the context of
the likelihood for nuclear families. In fact, this algorithm is much more
general. Originally intended for simple pedigrees without loops, the algo-
rithm has been extended considerably by Ott [68], Lange and Elston [52],
and Cannings et al. [9] among many others. The main idea behind the al-
gorithm is that instead of dealing with all of the genotypes at the same
time, the computations are broken down into many pieces, each involving
a small number of individuals. In a pedigree, the phenotypes and/or geno-
types of related individuals may be dependent upon each other. However,
a decomposition is possible because the phenotypes of some individuals
will be independent conditioned on the genotypes of some others. For ex-
ample, in a pedigree without loops, the relationship of an individual to its
ancestors comes through its parents; hence, knowing the genotype of the
parents, any knowledge of the genotype of the other ancestors does not
yield further information. Another example is the genotype of a group of
full sibs. As a consequence of Mendel’s first law, which for diploid organ-
isms establishes that the genotype at a given locus is determined by ran-
dom sampling of parental gametes, one has that given the genotype of the
parents, the genotypes of their children are independent, in the absence of
a family effect.

The spirit of the algorithm is best explained by working through an ex-
ample. Consider the pedigree given in figure 4.1 which is a typical example
of a pedigree without loops. Let us evaluate the likelihood under a mono-
genicmodel y=( +e.

In agreement with (1.7), the likelihood can be written as

13
fy) =33 --- > [IPr(&) ts1 &) (4.1)
a & Gz J=1

While it is straightforward to evaluate the product in the previous equation,
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O] G-

S

Figure 4.1: Pedigree without loops

the sum over all {'s may not be needed. On pedigrees of limited size, it
may be possible to enumerate all of the configurations for { and to then
compute the sums; however, in general this approach will be impractical
for most cases. Elston and Stewart [17] proposed a recursive algorithm that
points out the sequence in which sums and products are to be performed
in order to efficiently evaluate (4.1). This sequential process is known as
peeling. In our example, such a sequence can be described as follows.

i). For each possible pair ({s, {7), evaluate

f(vio 145, &7) = ZPI'(CLO [ &5, &7) £0010 | 10)

1o

and

fOoru 1 &5, &) =ZP1'(C11 | &5, &7) £ | Su)
a1

then, compute

f(vi0, Y 1 6. &7) =E0010 | G5 &) £ | G, )



iv).

. For each possible {7, evaluate

£(y7187) =£(¥s, ¥7, Yio, Yu | &7)
=f(y7 | {7) ZPI'(CS) £(vs | &5) £0v0s Vi1 | G50 &7)

then, compute

£(y7 161 &2) = ) Pr(&r 16, &) £(y3 1¢7)
¢z

for all possible pairs ({3, {3).

. For each possible {; evaluate

f(Y!.)' 4'9) = f(Y3r Ya, Yo, éz))
=f(ys | (o) ZPI'(Q) £(s | &3)
€

> Pr(C) £(ya 1 &) Pr(do | G, )
2

After computing f(yi3 | {s, {o), for each possible s, evaluate

£(vs, ¢6) = £(¥s, Yo, V13, G6)
=Pr(ls) £(¥s | &) Z £(ys, &) £(13 | L6, o)
$o

. Compute f(y12 | {s, {s) and after that, for each possible (3, evaluate

Pr(y: | {8) =£(s, 8, Vi2 | (3)
[

52
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then, for all possible pairs ({;, {), compute

f(vs 1€, &) = Pr(&s 1€, &) £(¥3 1)
&

vi). Compute

E(y7. vs 161, &2) =£(y7 IC1, &) (v 1€, &)

and, finally,

Pr(y) = Y Pr(G) £ 1G) Yo Pr(Ge) £0v2 | &) Pe(y3, 3 1G1r G2)
G €

The key feature of the algorithm is to look at the edges of the pedi-
gree for points where the computations should start, in order to limit the
number of genotypes that must be considered simultaneously. A pedigree
without loops can be seen as a sequence of nuclear families with neighbors
connected by a single individual, the pivot. Conditioning on the pivot, the
computation for non-pivot members of a peripheral family can be carried
out, and the summation over those non-pivot members leads to a function
of only pivot genotypes, and thereby gets rid of the non-pivot members.
The process is repeated successively for each family, incorporating previ-
ous contributions through the pivots, until the pedigree is exhausted. At
the end, the likelihood for the pedigree is obtained. The specification of
the order of pivots in which the computations are carried out is known as
the peeling sequence, and in many situations the efficiency of the algorithm
may be affected by the choice of such sequence [45].

The Elston-Stewart algorithm is not the only one to compute ‘exact’
likelihoods for oligogenic models. Heuch and Li [35] proposed another
recursive algorithm. There are also iterative algorithms intended to deal
with large pedigrees without loops and others than can be implemented
recursive or iteratively {18, 51, 64, 73, 86].



54

4.2 Peeling polygenic models

Elston and Stewart [17] have shown that the peeling algorithm for comput-
ing likelihoods in the simple additive polygenic model with independent
errors, i.e., no underlying environmental effect associated with sibship, is
essentially the same algorithm as the one for oligogenotypes, with inte-
grals instead of sums. Additionally, in the polygenic case the integrals can
be explicitly evaluated since

/ e~ IWBW gy — /_zzﬁ e~ w(B bbb )w- (4.2)

w* B* b
= d B=
() = e (V )
This property has been used extensively to compute the likelihood for
polygenic models [27, 84].

where

While peeling polygenic models may be a ‘natural’ thing from the ge-
netics viewpoint, the assumption of normality for trait values y allows
computations to be shifted from the domain of combinatorics to linear
algebra, where the classical apparatus of multivariate analysis can be in-
voked, thereby making the computations, up to numerical considerations,
straightforward. For example, the additive polygenic model can be param-
eterized as

Y=R+N+e (4.3)
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where p is a vector of parameters, and 1 and e are genetic and environ-

mental effects, respectively, with

y B
Elqn|=|0
e 0
and
Yy ;A +aZR diA iR
Var| | = oA dlA 0
e o?R 0 oR

where A = 2y. The log-likelihood for this model is
¢ = -%log(2x) - log[V| - 3(y — XB)V~'(y — XB)

where

and

V1= LR-! _LR-1(R-!4 % A-1 "R-l
2 C

o

(4.4)

(4.5)

(4.6)

It can be seen that computing A and its inverse becomes an important
part of the computations. Let y;; be the coefficient of parenté between
the ith and jth individuals, and (qa,qz) and (q;1,q,2) be their respective

gametes. Then, by definition,

iy =1 (Pr(qn Zan) +Pr(an Zap) +Pr(ae £ an) +Pr(ae £ qu))

b . . y s .
where * 2 ’ means ‘identical by descent to’. It is straightforward to show
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that

Vij= % ('/’ir.lr + Wipjm + Vimjy + Wimin) (4.7)
=3 (Wij, + Vism) (4.8)

where y; 5, is the coefficient of parenté between the fathers of the ith and
Jth individuals, and so on. Then, the elements of A can be computed
recursively [59]. However, computing the inverse of A may not be as direct.
Without loss of generality, it can be assumed that each individual in the
pedigree is a founder, or both of its parents are in the pedigree. Let Fbe
the set of indices of founder individuals and suppose also that founders
precede non-founders. Define ns = ||, the number of founders. Now,
rewrite the recursive computations for A as

)
L1 I <ng

Apr =9 A, Ak (4.9)

[>ng

KA; 1+F,

- where k; is a vector with % in the positions f and m, the indices for the par-
ents of the (i+1)-th individual, and zeroes elsewhere; F,, is the inbreeding
coefficient of the (i + 1)-th individual, i.e, Fyy = 3afm.

From the previous representation and the fact that
1 1
KAK; = 5+ Fpr + I (Fr+ Ep) (4.10)
it follows that

1 [ <ng
Ag] = (4.11)
Al (3 — §(Fr+En)) i2ng
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Now, since A is a p.d. matrix, it can be written as A = LL’ where L is a

lower triangular matrix which can also be computed recursively as

Liyy = ¢

r
i1 [<ng

L; 0
i[> ng

(\ KL /4 - L(F +Ep)

and
(IH-[ i < Ng
-1 _
L= 4 Li-l 0
i>n
-k 1 ="F
L\ Vi-3(F+Fn)  /3}-1(F+Fn)
so that,
r -
Ii-«-l I < ng
A-l = 1
f+1 A{ 0 1 k.k, —kf
+ 1T i>ng
3~ 1(Fr+Fm)
0 0 -k 1
\

(4.12)

(4.13)

(4.14)

The expressions (4.12)-(4.14) are essentially Henderson’s rules to compute
the inverse of A reworked through partitioned matrix algebra [33, 34, 74].

4.3 The mixed model

When both oligogenic and polygenic contributions to the quantitative trait
are considered, the distribution of the trait for each individual, as we saw
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before, is a discrete mixture of normals, and since the individuals are not
independent of one another the whole model is a mixture of multivariate
normals, with as many components as the number of feasible configura-
tions for , the vector of genotypes in the pedigree. The simplest mixed
model, a model with only a major gene effect, additive polygenic effect,
and independent environmental effects, can be written as

y=0+n+e (4.15)

where the conditional distribution of y given § is & (C, oA + aﬁR). That
makes the density of y

ty) =% /'l Pr(8) f(y | m, §) dE() (4.16)
g

Because (4.16) is neither normal nor discrete, the mixed model cannot be
peeled, and other methods are required for likelihood evaluation.

4.4 The Generalized Morton-MacLean Algorithm

We have seen that with nuclear family data, (4.16) can be efficiently eval-
uated by the Morton-MacLean algorithm [62, 63]. As was mentioned in
chapter one, the Morton-MacLean algorithm can be extended to the case
when one has a pedigree with quantitative trait records only for a nuclear
family at the bottom of the pedigree, no matter how complex this pedigree
may look. The key fact which supports the extension follows from the next
argument. Let y;, and y, be the records of one sibship and the records of
any set of non-descendant relatives of the individuals with record in y;.
Then the covariance matrix for y; given y, and § can be written as

L2 =Kk11 + 10l (4.17)
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and because the conditional distribution of y; given y, and { is normal, the
same argument used for (1.16)-(1.21) applies, i.e., there exists an a such
that

flyi 1 y2 ) = / oe(a—pa) [T D Pr(&i1¢r Gm) o (v — & —a) da
a JeCrm
’ (4.18)

for some appropriately chosen y,. Here f and m are the indices of the
parents of the children with records in y; and Cyp, is the set of indices of
those children.

To prove (4.17), note that the conditional variance of y, and y, given {

can be written as
Zh I
(4.19)
ct’ 222

for some vector ¢, because any pair of individuals in a sibship have exactly
the same ‘degree’ of relationship with any other individual in the pedigree.
Therefore, the covariance between y; and the kth individual in y, has to be
ci1. This implies that

Var(yi|yz, §) = Zi - 1cZzct’ (4.20)
which can be expressed in the form indicated by (4.17) because
Iu =02An + 0311 + 0%l
and

Au=0G+L(F+E)+F)11' + (1 - L(FF+En)I (4.21)

The generalization of the Morton-MacLean integral (4.18) may be use-
ful in segregation studies, particularly when one is interested in a set of
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unrelated nuclear families with most of their data at the bottom of the
pedigree. Also, because the evaluation f(y) is ‘exact’, this generalization
provide a good reference point for checking the accuracy of some other
computational techniques.

Because it is trivial to compute the joint probability for the parental {'s
and because the conditional densities are normal, the evaluation of (4.18)
is particularly easy when y, contains nothing or the data for one or both
parents. In these specific cases x; and k; in (4.17) can be determined as
follows:

i). when both parents have data records

E(yil& ¥r Ym) =86 + p0l (4.22)
where

to =t (tr (¥r —Cr) + tm (Vm — Cm))
B = (h‘Z +F,,,) (3 +L1F +F) —2F (1 + LFn+F)

bm= (1" +F) (4 + 4En+F) —2F (s + 1F + F)
gl = (h‘2 + Ff) (h‘2 + Fm) —4F
and, as before

2
2_ %1 _
0% + 02

Also,

Var(vi |5, Yr, Ym) = (clag + aﬁ) 11 + el (4.23)
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where
=1+t (Fr+En)+F—t (¢ (3 +1F+F) +tn (L +1iE,+F))
K2 =(3— 4 (Fr+ Fn) 07 +0°

then k) = (cm,% + a%)

. when phenotypic data for one of the parents is missing, say yy, then

E(Y118 Ym) =82 + 44,1 (4.24)
where
_ W[ 1+E,
=73 (1 +h2Fm)
Var(y1 1§, ym) = (i} +03) 11" + el (4.25)
and
W (1 + E,)?

c'l-_-§+-}(Ff+Fm)+F—4(1+th)
m

with 1 = (c’lag +a§,).

. and, when both parents have missing data records, trivially

E(y116) =& +u51 (4.26)
with x4 =0 and

Var(y: §) = (clo? +63) 11’ + (4.27)
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where
A =3+;F+E)+F

then i = (c{o? +03).

Also, to simplify the computations, x,, the mean of a in (4.18), can be
chosen as u,, 4, or i depending on whether both parents have records,
one is missing a record, or both have missing records, respectively. Note
that if the model includes a constant mean, only y,, 4, and z are affected.

Then, for a nuclear family at the bottom of the pedigree, f(y) can be
evaluated as:

i). when both parents have data,

B(y) =) Prr) @ozro (Vs — &) (4.28)
¢r

Y PG | £F) 0y (Ym = S — sV = P) (Vi | Vv Yo S o)
(m

where
K3 = (1 + Fn — 2k4F)0% + 02
and
__ 2o
“=T+Fo+oe

ii). when the data for one parent, say yy, is missing,

fly) = Zpr((f) ZPI((M [ (f) P, (ynt - Cm) f(YI | Yms Cfr (m) (4.29)
$r m
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where

K5 = (1 + En)o? + 07

iif). and in the case in which data for both parents is missing,

£(y) = Y _Prr) Y Pr(m | &) E(v1 | &Fi )
¢r $m

This specific version of the Morton-MacLean algorithm allows for the
incorporation of all of the information contained in the pedigree for the
nuclear family. This provides a very efficient way of evaluating the like-
lihood of the family under study regardless of how complex the pedigree
may look, and regardless of the size of the family.

4.5 Monte Carlo methods

In this section a number of Monte Carlo methods for approximating mixed
model likelihoods are discussed. As mentioned, (4.16) is unpeelable. How-
ever, Thompson and Guo [84] have shown that for a given 7,

fiylm)=>_ f(yIn, § Pr%) (4.30)
g

may be computed by Mendelian peeling, and that for a given {,
fv19) = [ fyIn,©) dF(m) (431)
n

can be computed by polygenic peeling, or as we have seen, by methods
of linear algebra and multivariate analysis. These expressions allow us to
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rephrase (4.16) as

fy) =3 f(y15) Pr(d) (4.32)
4

- [. E(y |m) dE(n) (4.33)

which can be rewritten as

(E(y15) (4.34)

(f(yIm)) (4.35)

f(y)

]

S T

While exact computation of (4.32) or (4.33) may be computationally pro-
hibitive, the forms of (4.34) and (4.35) suggest that Monte Carlo methods
may provide a successful solution via the sampling of { or n| from an ap-
propriate distribution.

4.5.1 Gene drop

The simplest Monte Carlo evaluation of (4.32) is to sample from Pr() to
obtain {1, ..., '™}, N realizations of {, and, as (4.34) suggests, to esti-
mate the value of the sum by

E(f(m) Zf(YIC“’ (4.36)

To simulate a realization of { is straightforward. Just note that Pr({) can be
factored as

Pr(§) =JIPr (&) [IPr (& 1<k Smy) (4.37)

JeF JEF

where, as before, Fis the set of indices for founders and f; and m; are the
indices of the parents of the jth individual. Therefore, it is only necessary
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to sample the genes to form the founder genotypes, and then drop them
down sequentially through the pedigree following the rules of Mendelian
segregation [58]. This sampling procedure is a special case of the for-
ward sampling studied in probabilistic expert systems and Bayesian net-
works [42, 54]. Under the usual assumptions for a two-allele model, sam-
pling the founder genes is just sampling from the Bernoulli distribution.
With qualitative traits, genotype configurations obtained by dropping may
be inconsistent with the observed data, and should be rejected. Fortu-
nately, this is not an issue in the analysis of quantitative traits, since all
of the configurations obtained by dropping are in principle consistent with
the data. In addition to simplicity, one does not need to worry about issues
of irreducibility and chain-mixing; those properties follow automatically
with the gene drop. Perhaps due to bad experiences with simulating qual-
itative traits in the presence of data, it has been pointed out that most
of the realizations of { will provide only an infinitesimal contribution to
(4.36), and those few genotypic configurations that do provide substantial
a contribution have minuscule probability of being realized, even in a large
sample [69, 84]. However, since for the simulation of quantitative traits
there is no rejection of simulated configurations due to genotype inconsis-
tency with the observed phenotypes, this method may perform reasonably
well provided that the simulated sample is large enough. In fact, it has been
pointed out that the cases where gene dropping happens to be successful
do not involve rejection [77, 78, 80].

Another possible sampling scheme may be backwards gene dropping,
i.e., beginning with the individuals at the bottom of the pedigree, simulate
up to the founders. This approach is not as simple as dropping genes down
the pedigree and, for complex pedigrees with cross generational mating of
relatives, may be very difficult to carry out.

At any rate, it is desirable to have procedures which use available infor-
mation, and a naive way to accomplish forward sampling in the presence
of data is as follows.
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For i € F, sample {; from a distribution proportional to

@202 (Vi — Gt — 1) Pr(&i)

whenever y; is observed, or from Pr({;) if it is missing.

Sampling genotypes for non-founders is not quite as straightforward.
One proposal is to sample from a distribution proportional to

Dxy+x, (yf - G -/‘d) PI'(C[ l (fu (m;)

when y; is observed, or from Pr((; | {f, {m,) if it is missing. Here K, k>, and
Uaq are determined taking into account all of the available phenotypic and
genotypic information about the ancestors of y;.

This forward sampling is a version of posterior gene-dropping (28] which
does not use the conditional covariance structure for sibships, and which
samples the children as if they were independent. It is tempting to instead
sample simultaneously all full sibs from the appropriate distribution, i.e.,
to sample from a distribution proportional to

[ outapa) TT Pr (G167 Gn) 0%~ - @) da

JeCrm

This approach is highly dependent upon the technique used to sample
from the associated multinomial distribution, and in large problems the
repeated evaluation of the integral may be computationally expensive. A
more plausible scheme which avoids the above integral is to condition se-
quentially on the children, shuffling the indices of the sibs before sampling
to prevent outcome dependency on the order in which the computations
are carried out. We refer this approach as forward gene dropping. Details
of its implementation are given in chapter 6.

Posterior gene-dropping has been proposed before in the context of the
mixed model, usually for obtaining initial values for the Gibbs sampler [28,
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29]. In those applications it is implicitly assumed that Var(q) = a,%l, ie.,
the totality of the parenté information is thrown away, and it is perhaps
due to this that the method has received little further attention. However,
posterior gene dropping can be useful in conjunction with some of the
ideas presented in the following subsection.

4.5.2 Importance sampling

To look for an alternative approximation, let Pr. (£) be another density for
¢ with the same support as Pr(§). Then note that f(y) can be expressed as

f(y) = Z Ey19) & é)) Pr.(€)

Pr (£)
(f(vl 9y (C)) (4.38)

which suggests simulating from Pr.(-) and reweighting the realizations.
The generating density Pr.(-) is called the importance density and sam-
pling from it is called importance sampling. An account of the frequentist
properties of importance sampling is given by Gamerman [24].

The effectiveness of importance sampling depends upon the choice of
Pr,(-). Ideally, three additional properties for Pr.(-) are required:

i). realizations of { are easy to simulate from Pr,(-),
ii). £(y|&) Pr(£) has the “same shape” as Pr. (§), and

ifi). at the realized values of &, f(y|{) % can be evaluated without a
great deal of computational effort.

These desiderata are far from being easy to meet [75]. In fact, without the
“same shape” requirement the realizations bear no relation to the observed



68

data whatsoever. Therefore, as in simple gene drop, the majority of the
realizations would make minuscule contributions to

( V19 5@ o (m)

if ¢, ..., {™ were sampled from Pr.,(-).

Importance sampling would work nicely if

Pr.(§) « f(y| &) Pr(§) (4.40)

and since

£(y[8) Pr(§) < £(Ely) (4.41)

this means that any sampling distribution that mimics the integrand must
be close to the conditional distribution of {, the latent variables, given the
data. Direct Monte Carlo sampling from exactly this distribution is point-
less; if the proportionality constant were explicitly known, it would also
be the value of the integral [83, 84]. Nevertheless, (4.41) suggests another
importance sampling scheme,

fy) = (f(YIC) Ty Y) | ) (4.42)
to be estimated as
;f( y159 Pf(rég I)Y) (4.43)

where now {1, ..., £®™ come from Pr,({|y). While this fixes the “same
shape” requirement, it remains questionable as to how easy it is to sam-
ple from that distribution, and posterior gene dropping may be an attrac-
tive option. As we will see below, another alternative is to build a Markov
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chain having the desired stationary distribution by using the Metropolis-
Hastings algorithm or the Gibbs sampler.

It has been pointed out that the previous formulation may be better
suited to the evaluation of likelihood ratios [81, 84]. Suppose that f(y) is
parameterized by 0 and, instead of considering the likelihood £(0) = fy(y),
suppose that one is interested in the likelihood ratio A(9, 6,)

10,6) = ;o>
--fL (fe(YIC) Pfc(lgz,) lv) (4.44)

to be evaluated as

Fo (¥ 157) Pro(5?)
10,6, = N Zl: ;e,(v) fe,(C“’elv)
Fo (Y1 59) Pro(5)
Zfe.,(wcm ) Pre, (0) (443)

fG (Yr C(D
N Z 7 fo,(v. §9)
where the 1), ..., {™ come from fg (§|y). Now, for the special case in

which the difference between 0 and 6, is only in the segregation of the
major gene, then fo(y|{?) =fo,(y|&?) and (4.45) becomes

10,0, = N Z 5:0 ((g?)) (4.46)

That represents a substantial simplification since the explicit evaluation of
the polygenic component is avoided.

Importance sampling also allows us to explore other possibilities: to
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evaluate the the density of y or the likelihood ratio thinking about f(y) as
a multi-normal mixture of discrete distributions, i.e.,

fy,n)
L EmTy) &

f(y,
&5 1%)

f(y) = «\My)

and

fe(Yv 'l)
(6, 8,) = [nf v AR 1)

- (esw7) (48

or, if one wants,

f(y) = Z/ fy. 5 n) dE.G m|y)
4

£Enly)
_ f(y.&n)
oy (f.(z;—n il ") 49

and

A0, 8,) = fof"(g,%’:) dFe, (5 n 1Y)

_ fO (Yr Ct 'l)
(il (50

It should be stressed that these approaches are likely to work well when
0, is in a neighborhood of 0, but otherwise the behavior of the method may
be erratic.
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4.5.3 Metropolis-Hastings algorithm and the Gibbs sam-
pler

The Metropolis-Hastings algorithm is a general tool to generate samples
from some state space § on which a probability measure P is defined. The
idea is to define a Markov chain having stationary distribution with density
f(x) for x € S, the density that one is interested in sampling from. The
algorithm proceeds by simulating a candidate or proposal value z from a
transition distribution 4(-, X). At the next step, X,,; is randomly assigned
to be either z with probability r(z, x;), or x, with probability 1 — r(z, X ),
where

r(z, X;) = min (

f(z) q(x., z)
f(x.) a(z, x;)’ 1)

is the acceptance probability. This chain has transition kernel

r(z, X)q(z, x) ifz#x
QUx —2z) =
1-3"uxr(Z,X)q(Z,x) ifz=x

Whenever Q(x — z) is aperiodic and irreducible, the ergodic theorem
guarantees that

N
%Z g(x;) = Ep(g(x)) as N — o
=1

and by choosing different transition densities g(-, -), one obtains different
Monte Carlo Markov chain algorithms, including the Gibbs sampler.

The Gibbs sampler is a particular version of the Metropolis-Hastings
algorithm in which the elements of a vector of latent variables are updated
one at each stage, without a rejection step. The most common implemen-
tation of the Gibbs sampler for quantitative trait data in human popula-
tions is due to Guo and Thompson [28]. Since their implementation of the
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Gibbs sampler requires conditional independence, both § and 1 must be
simulated, and if R is not diagonal (it typically includes a full-sibs shared
environment component) the model must be reparameterized by splitting
e as e = Wg + ¢, where € ~ (0, 6%I), each element of g, &; ~ W(O, 031),
and W is a matrix relating sibship environmental effect to the individuals,
so that € needs to be simulated as well. Under the traditional scheme the
sampling may be carried out sequentially as

o for { sample each {; from

£ 1, & Y) =Pr(&i | & Mis €fimps Vi) (4.51)
x Pr(é'l [ {ﬁl Cm,) f(}/i l Ql '7!') 3ﬁm;) H Pr(& I Cir (j)
kECU
Je®

e for n sample each 7; from

£ 16 -0, & Y) = £(mi | G Mois Efimys V1) (4.52)
o £(e | 5 Mmy) E(Ve | G Miv €m) [ £0mc | 71 1))
keCy
Jeg

o for & sample each &¢,, from
ferm| &N & pme V) =E(em | {5 Mse Vir J € Chm) (4.53)

where the subscript —i indicates all individuals but i, ¢;; is the index set
for the children of marriage formed by the ith and jth individuals, and @,
is the index set for the partners of the ith individual. The subscript on the
common environmental effect g7, specifies the two parents for the sibship,
and v; defines the neighborhood of the ith individual, which consists of the
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indices of its parents, progeny, and mates. The associated densities are

1 if y missing
fv1¢, n, emm) =
@2(y—pt—{ —n—¢pm) otherwise

£ | np, m) = @302 (1 = 3(NF + 1m))

f(&'fm I {j: Nis Yis j € Cfm) = ¢(['"{mhz)av2v (bz Z (YJ —H —(I -”j))

JECrm
where

2
2 Oy
2 =

=—>* — and np=
nfm6%+0’2 fm ICfml

It can be shown that this approach uses an expression similar to (4.16)
with an additional integration over a latent vector accounting for g, i.e.,
it is sampling from f(C, n, €| y). It has been mentioned for the previous
procedure that even if the Gibbs Markov chain is irreducible, it may show
very poor mixing rates for the genotype states, resulting in difficulties in
achieving convergence and in reaching states with low transition proba-
bilities. To improve mixing rates an alternative may be to apply Gibbs
sampling to sub-vectors, thereby treating those as a block, rather than
by using a complete breakdown of the latent vector into its scalar com-
ponents [41]. This suggests the following proposal for a modified Gibbs
sampling scheme to be applied when only the children at the bottom of the
pedigree have records.

The main idea is to use the random field structure of the pedigree by
extending the scheme for forward sampling in the presence of data pre-
sented earlier to some sort of Gibbs sampler in blocks. More precisely, the
proposal is to sample from Pr({ | y), taking blocks of full sibs simultane-
ously, ie.,
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e sample {j; j € Fwith probability proportional to

Pr(¢;) [ Pr(id &) (4.54)

keG; f
i€®;

and since this is computationally inexpensive, the set {{;; j € F} can
be sampled simultaneously as a block;

o for sampling {;; j € Crm} a plausible alternative may be to use com-
ponent by component updating of the sibship-block {{;; j € Cfm},
where each element is sampled with probability proportional to

Pr(C;1¢r Cm) E(vs1 1 Csr ¥-)) (4.55)

where f(y; | {j, §j, y-;) Is an univariate normal distribution, ¥ (x5, 62)
say, with

15=Ci+pa+s Y (Ve—Ck—a) (4.56)
keCrm
ki f
and variance
02 =1 + K1 (1 - (Ngm — 1) g) (4.57)
where
— k1
8= (Nfm— L) K1 + K2 (4.58)

The constants ki, x», and u, are computed conditioning on all the
available phenotypic and genotypic information outside of the sib-
ship.



Chapter 5
Linkage analysis

This chapter is devoted to the discussion of segregation analysis in the
context of linkage. The chapter begins with an introduction to the tradi-
tional approach to linkage through the analysis of the joint segregation
of the putative trait and marker loci. It is noted that the methods of
chapter four apply without modification to the joint distribution of trait
and marker. Furthermore, under the usual parameterization, the vector of
marker genotypes is ancillary with respect to quantitative trait and link-
age parameters and, in the general case, will be at least partially ancil-
lary. Certain advantages of conditioning are mentioned, without delving
too deeply into the general debate on the merits of conditional versus un-
conditional inference. The chapter ends with the proposal of condition-
ing on the marker inheritance vector rather than the markers themselves,
an approach that allows for highly polymorphic markers without further
complication.

In its simplest form, linkage analysis consists of counting recombinants
and non-recombinants, estimating the recombinant fraction, and testing
whether or not this fraction is significantly less than one half [16]. In a more
integral form, the aim of linkage analysis is to locate the genes contributing
to a trait by analyzing the cosegregation of the trait with the genetic marker

75
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or markers within a pedigree. In this sense, the mathematical model for
linkage is just an extension to the segregation analysis for a one locus
model. However, the model can be represented in different ways. Let us
first see the standard form. Consider a two loci scenario with a gene q and
a marker m. A haplotype is the joint state given by (q‘?, m?), the pair of
alleles that a person gets from the parent i. Hence, each individual has two
haplotypes that together form the ordered genotype. The joint genotype
or composite genotype, as it is also known, is the joint state of the two
haplotypes disregarding order and parental origin. Define g = (q, m), then
we already know that

Pr,(g) = HPrp(gi) le'p(gj | gfs gmj) (5.1)

feF J&F

The marginals Pr,(g;) are usually determined assuming Hardy-Weinberg
equilibrium, and each Pr,(g; | gr,, gm,) is entirely determined by the inher-
itance model. For example, if the individual j has haplotypes

(@ mi""). (o™ m™))

then (qi, m{”), the haplotype of the ith child of the jth individual would
be

(q‘jm, m(jf’)) with probability  1(1 —p)
(q‘jf”, m‘j’"’)) with probability 1p
(@)

(q(mj) (fj)

(q""’) ‘m”) with probability (1 -p)

with probability ip

where p is the recombinant fraction. Note that j = ffor j = m;. It
seems clear that the determination of Pr,(g; | g5, gm,) involves not only the
parental genotypes but also information about the phase, i.e., which of the
grandparents the alleles are coming from, no matter if the genotypes are
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treated as ordered or unordered. It is useful to note that ordered genotypes
preserve knowledge of parental origin of each allele at each participating
locus of the genotype and that ordering is slightly more detailed than or-
dering by phase. Unordered genotypes preserve knowledge of phase, but
not origin [26].

It follows that when one deals with ordered genotypes, Pr,(g; | g5, gm,)
can be computed as

Pr,(gi | 9f,s Gm) = Prp (qgfs)’ mgfc) | gf:) Pr,,(qﬁ.’"", m{"™ | gm:) (5.2)

The traditional approach to the problem is to analyze the joint segrega-
tion of trait and marker(s). Therefore the methods of the previous section
can be applied without modification, just by replacing y by (y, m) where
y contains the trait phenotypes and m the marker observations. Adopting
this approach, Knot and Haley [44] presented the method for computing
the exact likelihood for nuclear families under the oligogenic model with
familial environmental effects, i.e., the method for evaluating f(y, m) when

y=p+{+e
with e accounting for familial effects and residual variation.

When the data to be analyzed come from complex pedigrees with more
than unrelated nuclear families, the Monte Carlo segregation equations are
the natural choice to be employed for both oligogenic models with familial
effects, and mixed models of inheritance. In general, the joint segregation
equation can be written as

f(y, m) =) _f(y, m, §)
3

=Y _f(y, m | &) Pr(¢) (5.3)
g
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When no pleiotropy is assumed, the previous expression becomes

f(y, m) = Zgjf(v | §) Pr(§ | m) Pr(m) (5.4)
= Zg:f(v | §) Pr(m | ) Pr(&) (5.5)

Also
_ Ky, m,{) (5.6)

fly m) = ————
o) Pr(C|y, m)
which means that A(0, 6,) can be rewritten as

f(y, m)
fo, (Y, m)

f(y, m, §)
Z fo (Y, m)

f(y, m, §)
fﬂo (Yr m, C) Proo (g l Y. m)

(0, 6,) =

{
; 0((;’1[5 I;P::,((I:lllggr:((% Pre,(C |y, m) (5.7)

This or analogous expressions are given in different papers 28, 40, 82]. Itis
interesting to note that if @ contains only the set of parameters associated
with the quantitative trait plus the linkage parameter, then

Prg(m) = Pr(m) (5-8)

i.e,, m is ancillary for 0, in which case (5.7) can be reduced to

0,0) =3 e e o P G v, m) 59)
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In general, Pr(m) does not depend on the putative gene location or the
putative trait effects, as long as there are no pleiotropic effects involved.
Lange and Sobel [53] pointed this out in the context of qualitative trait
analysis, and they concluded that inferences about linkage can be equally
well based on either the conditional or unconditional likelihoods. Similar
arguments can be applied to linkage inferences with quantitative trait data,
since in the worst scenario, where Pr(m) is unknown, m would be at least
partially ancillary for linkage and quantitative trait parameters. Even so,
there is not a clear answer to the question of which of these approaches
to the likelihood should be used. It has been mentioned that, in the long
run, conditional inference may be less powerful than unconditional. How-
ever, conditioning, like sufficiency or invariance, leads to a reduction of
the data, and as a result, it often leads to great simplification. One may
argue that conditioning on an ancillary statistic is appropriate because it
makes the inference more relevant to the situation in hand. It is accepted
that likelihood without supplementing it with available ancillary informa-
tion may result in anomalous inference [5, 11, 55]. We have seen that in
the analysis of experimental crosses and in the IBD methods, conditional
inference has been used without further consideration and it is widely ac-
cepted. The remainder of this chapter is devoted to the exposition of some
ideas about how to compute the conditional likelihood in the context of
the mixed model.

In some cases the choice of appropriate latent variables may also sim-
plify computations. For example, nothing changes in our representation of
the conditional distribution f(y | §) if one considers ordered genotypes in-
stead of unordered for the major gene, and to compute Pr({ | m) is simpler
for ordered genotypes. Another possibility is to change the representation
of the linkage model and to describe the model in terms of haplotypes and
inheritance vectors [49, 53] or in terms of haplotypes and vectors of segre-
gation indicators [45, 81]. Both representations are completely equivalent.
Introduced by Lander and Green [49], the idea of using inheritance vectors
has recently been the focus of attention for linkage analysis of qualitative
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traits [38, 47, 48]. For a given haplotype the segregation indicators vec-
tor for non-founder individuals is a bitwise vector indicating the origin
of each allele for each locus, conventionally, the indicator of grandmother
origin, which means that, for each individual haplotype, the dimension of
the segregation indicators vector is twice the number of loci. The inheri-
tance vector is also an indicator of the origin of each allele; the difference
is that there is a vector for each locus. Then, an inheritance vector has di-
mension two times the number of individuals being considered. Let §; and
&n be the inheritance pattern vectors in the (q, m) system. The simplifica-
tion comes by noticing that given the marker inheritance vectors, nothing
in the remaining marker information adds anything about linkage, i.e,

Prp(C & | m, &) =Prp (G, & | &n) (5.10)

This is quite nice, because it implies that the marker can be very poly-
morphic without adding too much computational effort or complexity. In
unconditional cosegregation analysis the computation grows exponentially
with the degree of polymorphism. Moreover, since the computation of
Pr(€| &) does not involve any knowledge about the recombinant fraction,
it can be verified that

Pry(§ & |8) = Pr(5 1 ) Pry (5 1 &) G.11)
= Pr(51 &) pB-Si(L — p)t-eS

no matter if the values for the putative trait genotypes, {, are taken as
ordered or unordered. |§; — &,/ is the Hamming distance between &, and &,,
i.e,, the number of bits where the vectors differ.



Chapter 6

A Simulation Study

A generalization of the Morton-MacLean algorithm was described in chap-
ter four which is appropriate for any pedigree in which the putative trait
data are available only at the bottom. Because it is exact, apart from
quadrature approximation, this is the method of choice for likelihood eval-
uation in such cases. Several Monte Carlo approaches to likelihood approx-
imation were also discussed. In this chapter a simulation study is carried
out to assess the performance of these various methods. It was noted in
chapter five that the likelihood framework applies equally well to the con-
ditional distribution of the putative trait data given markers. Furthermore,
it was indicated that conditioning on either inheritance vectors or segre-
gation indicator vectors is equivalent to conditioning on the marker data
themselves. Therefore, the simulations, which consider a single marker,
assume without loss of generality that the inheritance vectors are given.
Two particular cases were chosen for the simulations, each involving the
mating of inbred parents. The first example has two nuclear families based
in the pedigree shown in figure 4.1. The families were the product of the
marriages 10 x 12 and 11 x 13 with 5 and 3 children, respectively. It was
assumed that only the children had data records. The parameters used to

81
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generate the y’s for this data set were:

o2 = 014 § = 877423y
g, = 02 p = 02
o> = 06 p = 03

where p and 1-p are the QTL allele frequencies; 67, 63, ° are the polygenic,
common environmental and error variances; p is the recombinant fraction;
and { contains the QTL effects.

The data set for this case is shown in table 6.1.

parents | &, Yi

10x 12| (0,1) 7.62947
(1,0) 9.32674
(1,1) 10.0158
(1,0) 8.36626
(0, 1) 3.21165
11 x 13| (0,1) 9.44775
(0,0) 9.11278
(1,1) 9.62598

Table 6.1: Simulated data for case 1.

For the second case, an highly inbred family was considered, with the
objective of challenging the forward gene dropping and Gibbs schemes.
The pedigree for the parents is shown in table 6.2. and the data consists
of records for seven children who are the product of the marriage 9 x 10.
For this case two data sets were considered. The first was generated with
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Table 6.2: Parental pedigree for case 2.

the following parameters:

o; = 0.14 € = (9.77423)
o = 0.2 p = 02
o> = 0.6 p = 0.53
The data set resulting from this choice of parameters is shown in the ta-
ble 6.3.

The second set of parameters used was:

oz = 0.03 ¢ = (2.513.14 2.68)

02 = 001 p = 023
0® = 032 p = 037

and the data set arising from this choice of parameters is shown in ta-
ble 6.4.
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11| (1,1) 7.70787
12 (0,1) 7.72817
13 (0,1) 7.75753
14 | (1,1) 2.64921
15| (1,0) 3.50281
16 | (0,0) 2.72604
17 {(1,1) 2.67313

Table 6.3: Simulated data for case 2, set 1.

Apart from a quadrature approximation the likelihood for the nuclear
family case can be evaluated exactly by the extended Morton-MacLean
algorithm, which was therefore chosen as an ‘exact’ basis for compari-
son. The case with two related families is evaluated by an hybrid Morton-
MacLean integral with summation over the family with less individuals.

For each data set, the likelihood ¢(p) was evaluated, holding everything
else constant. In addition to the Morton-MacLean extended algorithm (the
reference point), two approximations based in the conditional marginal
densities for the nuclear families were also tried. The first one, applicable
only to the data set with two sibships, was to ignore the polygenic covari-
ance between the two sibships, taking the product of conditional marginal
densities for the nuclear families as an approximation to the conditional
density of the children given the parents set. The second one was to use
the Morton-MacLean algorithm assuming independence of the parents just
at the time of computing their joint probability, i.e, the joint probability of
the parental {'s was computed from the allelic proportions without taking
into account the pedigree information and then following the same steps
as in the previous approximation. The Monte Carlo methods used to esti-
mate the likelihood were plain gene dropping, forward sampling (posterior
gene dropping) with sequential conditioning on each block of full sibs, and
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11](1,1) 3.32901
12| (0, 1) 3.30548
13 (0, 1) 3.3047
14 | (1,1) 2.82521
151(1,0) 3.39917
16 | (0,0) 2.82104
17| (1,1) 2.78196

Table 6.4: Simulated data for case 2, set 2.

Gibbs sampling with component-wise update for each sibship.

Finally, a simulation for ten nuclear families with moderate degree of
inbreeding in one parent was tried. This example involved 67 children with
record. In this case the likelihood ¢(p) was obtained by the product of the
familial likelihoods.

6.1 Computations

Computationally, the strategy followed was to eliminate as many latent
variables as possible before starting the Monte Carlo evaluation. Therefore,
the first step was to compute the joint distribution of the major genes of
the parents. With an additive polygenic background, the parenté matrix and
the joint distribution of the polygenes condenses all of the information
contained in the pedigree. Note that if there are no marker records for
the ancestors of the parents then the joint distribution in question can be
computed from the parenté matrix. After this point, each technique for
approximating the likelihood was tried. Since in our examples, parents and
ancestors have no records, the expressions were simplified considerably.

For the Morton-MacLean method, each sibship conditional density was
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numerically evaluated through

kal(a-ﬂa) II ZPI'(CJl(f, {m élnj) ¢K2(YJ—CJ—'a) da (6.1)

The constants k, k>, and x, are the ones defined for a nuclear family. After
standardization, 16-point Legendre quadrature over five non-overlapping
intervals was used in this work.

In the case of two related families, the first approximation to the exact
Morton-MacLean method was obtained by multiplying the product of the
two conditional familial densities by the joint probability of the parental
{’s, and adding. The second approximation to the Morton-MacLean method
throws away all of the pedigree information for the parents, and computes
Pr({f, {m) using allele proportions.

For the case with one nuclear family and observations y and &, the com-
putations where carried out in the following way.

Morton-MacLean method. The procedure can be summarized in the fol-
lowing steps:

1. Compute ki, k, and u,.

2. Compute Pr({s, {m) exactly, and using the two approximations de-
scribed above.

3. Evaluate by quadrature methods f(y | {f, {m, §).

4- Evaluate f(y | §) = Y Pr(Cr, &m) £(V | &fv &oms B)-
$rolm

Fore the Monte Carlo methods, f(y | &;) was estimated as follows.
Plain gene dropping. The procedure consists of the following steps:

o. Compute the covariance matrix of y given { and also compute Pr({s, ().
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1. Take a sample from Pr({y, {n)-
2. Sample each child’s {; from

Pr (§;1¢7s Cmy &)

. Compute f(y|£?).

w

. Repeat steps 1 to 3 N times and then compute

B

N
By 18 = & 3 £(¥150)
i=1

Forward sampling. The procedure consists of the following steps:

o. Compute the covariance matrix of y given {, Pr({}, {) and, using the
parameter values in 6, the constants «;, k2, and z,.

1. Take a sample from Pr({F, {m).

2. Take a random permutation of the children, and update {,, {},, ..., by
sequentially sampling them from a distribution proportional to

Pr(Cl S G By ) Pz (Vi — 150)

where
Hk = ng + Ua + gk Z(yfw —4}1" -'I[a)
K<k
and
0',% =Kz +IC1(1 - (k— l)gk)
with

(k-1 +K

gk
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4.

Pry (€1)
Pre,(C0 |y)

Repeat steps 1 to 3 N times and then compute

Compute f(y[£0)

; ; Pro(l;‘)
£y | &) = Zf( 1€9) PraC0 )
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Gibbs sampling. The steps for this procedure can be summarized as:

0.

1.

2.

As in forward sampling.
Obtain a valid initial configuration by gene dropping.

Take a sample for ({¢, {) from a distribution proportional to

Pr((fr (m) HPI'((,( [ (f’ (m: éﬂk)
k=1

. Take a random permutation of the children, and update Chr Chor -

sampling each component from a distribution proportional to

Pr ((j,‘ [ Cer Coms én,k) Po2 (Vi — Hk)

where
He=Cj+la+8 Y Vi — i — Ha)
k#k
and
o2 =1;+kKki (1 —(n—-1)g)
with

K1
(n— 1K1 +12

g:

., by
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Pro (§)
Pre,(E® | y)”

5. Repeat steps 2 to 4 N times and then compute

N (i
y 180 = 5 2 E(7159) ﬁf("g%fl)y—)

4. Compute f(y|£?)

6.2 Results

The results for the data sets considered are shown in appendix A, and are
summarized in figures 6.1-6.5. Except for the ten families example, which
was based in 30,000 iterations, each of the Monte Carlo estimates is based
on 100,000 iterations.

Briefly, one can say that, in the particular case of the first data set, ig-
noring the polygenic covariance between the two sibships does not seem
to substantially affect the computations. However, this may not be true in
general. On the other hand, completely ignoring the pedigree may result
in an over or under estimation of the likelihood. Even if the shape of the
likelihood function is more or less the same as the reference likelihood
based on the extended Morton-MacLean algorithm and the maxima of the
two functions are attained in more or less the same neighborhood, this
practice may lead to a considerable loss of power in the long run.

For all the cases considered, in the neighborhood of 0 the Gibbs scheme
was disastrous. However, this method provide excelent estimates of the
likelihood for non null p. On the other side, forward sampling yields ‘good’
estimates in many cases, but in some others behaves quite suspicious. Both
methods perform better when the other model parameters are close to
their true values (figure 6.1) and both methods err by more or less the same
magnitude when the other parameters are far away from their true values
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(figure 6.2). This is a well known characteristic of importance sampling
methods, and both schemes are used in this context. On the other hand,
since p = 0 for practical proposes implies that the marker marks itself, the
same sorts of reducibility issues will arise with the Gibbs scheme as are
found in qualitative trait analysis [77, 78]. That is, when p is 0, the Gibbs
sampling method may work in principle, but will take an exceedingly long
time to traverse the space of latent variables. Also, when the sibships are
highly correlated and the likelihood is quite flat, the Gibbs sampler does
not yield good approximations to the likelihood in a reasonable number of

iterations (figure 6.4).

In general, plain gene dropping does not work well unless p is null. Ex-
ceptions to this may occur when the parents are highly inbred and related,
as is illustrated in figures 6.3 and 6.4.
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Figure 6.1: Likelihood for data set from table 6.1. (Dashed is —log¢(p)
computed by extended Morton-MacLean algorithm.)
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Figure 6.2: Likelihood for data set from table 6.1 with the variance of poly-
genic effects ten times the ‘true’ value. (Dashed is —log¢(p) computed by

Morton-MacLean algorithm.)
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Figure 6.3: Likelihood for data set from table 6.3. (Dashed is —log¢(p)
computed by extended Morton-MacLean algorithm.)
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Figure 6.4: Likelihood for data set from table 6.4. (Dashed is —log¢(p)
computed by extended Morton-MacLean algorithm.)
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Figure 6.5: Comparison with a ‘large’ data set (ten nuclear families).
(Dashed is the ‘“true’ curve computed by Morton-MacLean integral.)



Chapter 7
Conclusion

The analysis of quantitative traits with an underlying mixed model of in-
heritance presents formidable problems in pedigree analysis. While for oli-
gogenic inheritance models, algorithms and computer programs have pro-
liferated in the last two decades, for mixed models the search for ‘good’
methods is still very active. The problem is that peeling methods, very
successful for oligogenic models, require independence of the childrens’
observations once the parental genotypes for the major gene are given.
That is something that cannot be obtained in the presence of polygenic
covariation or any other kind of covariation that breaks the required con-
ditional independence. Of course, computations may be carried out by
brute force. However, this will only be successful with a very few indi-
viduals. In 1972, Morton and MacLean introduced an integral to compute
the likelihood under the mixed model of inheritance for nuclear families
with unrelated parents. When their result is derived using exchangeability
arguments, it becomes clear that the algorithm can be extended to allow
any kind of relationship between the parents. This extension allows the
computation of ‘exact’ likelihoods for families with phenotypic data at the
bottom of the pedigree, taking into account all of the pedigree informa-
tion. The usefulness of this extension may be fully appreciated in context
of linkage analysis of quantitative traits with mixed models of inheritance
and low penetrance, since in this situation the likelihood is expected to

96
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be flat enough to produce, with small or moderate sample sizes, a really
bad scenario for inference. There are a number of other problems than
can be studied with this tool, as for example assessing the effect that the
misspecification of the pedigree may have on the inference and on power
calculations.

When phenotypic data is available along a complex pedigree, however,
one has to look for alternative methods of likelihood evaluation, or even to
look for alternative methods of inference. Originally thought of as quick
preliminary techniques, the methods based on identity by descent have
become more and more popular because of their simplicity and because of
the belief that those methods do not require model specification. However,
as soon as one attempts to write down the likelihood for such models, it
becomes clear that this function depends on the model and, even in the
simplest cases, the computational problem is as substantial as that which
was intended to be avoided.

Conditional inference is an alternative way to simplify the problem. In
the particular case of linkage analysis we have seen that under a standard
set up, the markers are ancillary for all of the parameters associated with
the quantitative trait and the linkage parameter. When this argument is
used together with the appropriate choice of latent variables, the problem
may become simpler without loss of efficiency. Inheritance vectors have
been proposed in the context of multipoint mapping of human diseases. In
this thesis, we used them as a device to infer about linkage in quantitative
traits and, from a small simulation study, the approach seems to work
reasonably well.

As regards the numerical evaluation of the likelihood, two new Monte
Carlo procedures were considered in this work: forward sampling in blocks
of sibships and a Gibbs sampler blocking in a similar way. With these pro-
posed procedures, only realizations of the major gene are simulated and
the evaluation of the multivariate normal density is done through stan-
dard linear algebra methods instead of Monte Carlo integration. The idea
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behind these procedures is to use the structure of the pedigree to drop
down genes in the presence of data (forward sampling) or to simulate re-
alizations. These procedures turned out to yield more or less equivalent
estimates of the likelihood in most of the situations tried. A possible ex-
planation to this is that both procedures use the same amount of infor-
mation about the target distribution. However, work needs to be done to
compare the relative efficiency and accuracy of both methods.

So far, only the case of one quantitative trait and one marker was con-
sidered. Extension to interval and multipoint mapping problems may be
useful, as well as to multivariate trait analysis.



Appendix A

Morton- Morton-  Morton-  Gibbs Plain Forward
p Maclean MacLlean! MacLean? sampling dropping sampling
0 24.4669 24.4678 24.5571 71.8094 23.4617 24.5123
0.05]16.8731 16.8722 17.5565 16.8502 20.9780 16.8219
0.1 |16.0567 16.0559 16.7347 16.0219 19.6891 15.9757
0.15]15.6623 15.6615 16.3326 15.6281 19.3039 15.5826
0.2 | 154710 154701 16.1298 154321 18.7360 15.3843
0.25|15.4081 154070 16.0484 15.3662 18.6819 15.3295
0.3 |[15.4384 154371 16.0474 15.3955 18.1576 15.3814
0.35] 15.5413 15.5398 16.0961 15.4960 18.1421 15.4726
04 |15.7013 15.6996 16.1641 15.6566 18.1578 15.6416
0.45 | 15.9014 15.8995 16.2187 15.8506 18.1898 15.8029
0.5 }16.1185 16.1165 16.2316 16.0747 18.1423 16.0471

! Extended integral only to compute the marginal for each nuclear family.

2 Traditional algorithm taking parents as if they were unrelated.
Table A.1: —log¢(p) for the data set 6.1 by different methods. (100,000
batches).
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Morton- Morton-  Morton-  Gibbs Plain Forward
p Maclean MacLean! Maclean? sampling dropping sampling
0 19.7937 19.8085 19.8421 50.4390 19.2526 19.8255
0.05]17.4469 174596 18.0093 17.7228 19.2254 17.3541
0.1 |16.8927 16.9047 174759 17.0233 18.9814 16.7559
0.15 | 16.6335 16.6448 17.2135 16.7424 18.7866 16.5217
0.2 |16.5172 16.5278 17.0835 16.6324 18.5707 16.3936
0.25 164919 16.5017 17.0334 16.5946 18.5399 16.3838
0.3 |16.5318 16.5409 17.0335 16.6178 18.3541 16.4384
0.35]16.6206 16.6288 17.0605 16.7420 18.2746 16.4859
04 |16.7438 16.7511 17.0932 16.8690 18.2655 16.6039
0.45 | 16.8857 16.8922 17.1121 17.0372 18.2273 16.7391
0.5 [17.0274 17.0331 17.1038 17.2048 18.1401 16.8954

I Extended integral only to compute the marginal for each nuclear family.

2 Traditional algorithm taking parents as if they were unrelated.

Table A.2: —log¢(p) for the data set 6.1 computed with 0% = 1.4 and every-
thing else as in table A.1. (100,000 batches).



Morton- Morton-  Gibbs Plain Forward
p MacLean Maclean! sampling dropping sampling
0 27.4927 26.9226 46.5035 27.5135 28.8571
0.05]13.5222 13.0123 13.6349 13.5175 12.6520
0.1 |12.9881 12.5343 134087 13.2534 12.6536
0.15]12.7565 12.3551 13.2566 13.1198 12.6479
0.2 |12.6588 12.3065 13.2586 13.1277 12.6561
0.25]12.6433 123372 13.3055 13.1120 12.6708
0.3 |12.6884 124255 133735 13.2990 12.6523
0.35|12.7837 12.5612 13.4660 13.4832 12.6632
04 |12.9248 12.7398 13.5785 13.5651 12.6538
0.45)13.1102 12.9596 13.7276 13.6024 12.6595
0.5 |13.3415 13.2215 139192 13.5774 12.6536

! Traditional method taking parents as if they were unrelated.
Table A.3: —log¢(p) for the data set 6.3 by different methods. (100,000

batches)
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Morton- Morton-  Gibbs Plain Forward
p Maclean Maclean! sampling dropping sampling
0 4.39671 4.33775 6.63411 4.51477 4.76733
0.05 | 4.40668 4.34087 5.89215 4.50530 4.46277
0.1 |[4.41831 4.34671 5.73610 4.49402 4.45938
0.15 | 4.43140 4.35496 5.89733 4.48341 4.45744
0.2 |4.44574 4.36524 5.84469 4.48262 4.44952
0.25 | 4.46111 4.37716 5.72067 4.47632 4.45350
0.3 |4.47728 4.39036 5.79742 447654 4.44975
0.35|4.49406 4.40450 5.71413 4.47586 4.45606
04 |[4.51124 4.41930 5.82731 4.47769 4.45584
0.45| 4.52866 4.43448 5.63339 447695 4.45651
0.5 |4.54616 4.44985 5.57161 447696 4.44938

! Traditional method taking parents as if they were unrelated.
Table A.4: —log¢(p) for the data set 6.4 by different methods. (100,000

batches)

102



Morton- Morton-  Gibbs Plain Forward
p Maclean Maclean! sampling dropping sampling
0 326.825 325.853 447.087 309.177 337.700
0.05 | 162.067 161.929 166.161 203.195 139.696
0.1 |150.316 150.154 152.070 179.894 139.582
0.15 | 144.387 144.197 146.387 159.075 139.537
0.2 |140.823 140.599 143.146 155.971 139.498
0.25 | 138.487 138.225 141.307 153.310 139.502
0.3 [136.872 136.576 140.092 152492 139.502
0.35]135.729 135412 139.464 149910 139.485
0.4 |134.937 134.613 138.847 149.587 139.460
0.45|134.439 134.122 138.501 150.155 139.413
0.5 |134.212 133911 138.576 150.068 139.603

! Traditional method taking parents as if they were unrelated.

Table A.5: —log¢(p) for the simulation of ten nuclear families by different
methods. (30,000 batches)
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