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Abstract

Multi-dimensional spacetimes have recently been the source of many approaches to-
wards the construction of a unified field theory. In this thesis, higher-dimensional
cosmological models are discussed. In particular, 5-dimensional noncompactified vac-
uum solutions of Einstein’s field equations are investigated. The possibility that the
4-dimensional properties of matter may be geometric in origin is discussed by studying
whether the 5-dimensional vacuum fields equations reduce to Einstein’s 4-dimensional
theory with nonzero energy-momentum tensor constitut}ng the material source. It is
known that the 5-dimensional vacuum Einstein field equations (in which the metric
is independent of the fifth dimension) give rise to the familiar radiation FRW cosmo-
logical model. However, it is of interest to study models with more general forms of
matter. A variety of different higher-dimensional vacuum solutions have been found

and these are discussed.
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Chapter 1

Introduction

1.1 General relativity and Cosmology

The aim of cosmology is to determine the large-scale structure of the physical universe.
The General Theory of Relativity opened new ways of approaching the solution to
problems related to the properties of the universe on a cosmic scale. In General Rela-
tivity (GR), the force of gravity is represented by the curvature of a four-dimensional
Lorentzian manifold M endowed with a metric g,,. The Einstein field equations,

which relate curvature and the matter content of the universe are,
G = 8T,

where G, is the Einstein tensor derived from the metric tensor, and T, is the energy-
momentum tensor which represents the energy and matter contributions and which
has dependence on the metric coefficients as well. The first cosmological solution of
Einstein’s equations which was in good agreement with experimental observation was
found by Friedmann, Robertson and Walker. This solution represents an expand-
ing isotropic and homogeneous universe filled with a uniform distribution of matter.
There have been many alternative attempts to explain the structure of the universe.
Among these are Bianchi models within GR [1], models within Brans-Dicke scalar-
tensor theory (variable-G) (2] and inflationary models [3]. None of these alternatives,

however, has been able to replace the phenomenal success of relativity theory in
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satisfying most of the available observational tests. Less radical, but perhaps more
enlightening, have been the extensions of General Relativity to higher dimensions [4]
(eg. Kaluza-Klein models, supersymmetry theories and superstring theories). All of
these theories exist in an attempt to unify the fundamental forces of nature. In addi-
tion, all of these higher-dimensional cosmologies rely on the compactification of the
additional dimensions [4], which we will describe in the next section. We shall also
provide some background on the original Kaluza-Klein theory and higher-dimensional

vacuum cosmologies in general, paying particular attention to the theory of Wesson.

1.2 Kaluza-Klein Theory

1.2.1 Historical Overview

In 1919, Theodor Kaluza [5] proposed a generalization of general relativity from 4D
to 5D in an attempt to unify the interactions of relativistic gravitation and electrody-
namics. This was achieved via a weak-field approximation of an extended 5D metric
tensor. However, the idea of higher-dimensional unification was not new. In 1912,
the Finnish physicist Nordstrdm [6] had developed a relativistic theory of gravity
based on scalar fields. In 1914, before the final form of GR emerged, he utilized an
extra spatial dimension to form a flat 5D spacetime with a 5-vector electromagnetic
potential to extend maxwell’s electrodynamics and found that the fifth component
was equivalent to his scalar gravitational field. His scalar gravity theory couldn’t
explain the bending of light near the sun and was soon overtaken by the new GR. An
early rival of Kaluza’s theory was that of Weyl [7] who relaxed the parallel transport
property of general relativity and allowed a “gauge” scaling of space and time in
an attempt to have both gravity and electromagnetism arising from the geometry of
4D spacetime. However, electric charge is not conserved in Weyl's theory and thus
it was eliminated as a candidate for a viable unified theory. In 1920, Oskar Klein
[8, 9] showed that Kaluza's theory reduced rigorously to 4D Einstein-Maxwell theory
in a full relativistic analysis[8]. He also supposed that the fifth dimension must be
compact, to be curled up unobservably small, and found that this led naturally to



the quantization of electric charge.

1.2.2 Kaluza-Klein Ansatz and the Transformation Law of
the Fifth Dimension

We consider a generalization of 4D gravitation to a 50 spacetime, whose coordinates
denoted by {z?} = {z*#,z°} where A, B, ...={0,1,2,3,5}, p, v ...= {0,1,2,3}, and
the 5D line element is denoted as

d3? = gapdridc®

The extra dimension must be space-like to avoid causality violation due to the exis-

tence of closed time-like curves [10].

We partition the 5D general coordinate transformation z#* — zA(z*) by regarding
it as two-index array that we display in matrix form and a similar partition of the

symmetric metric tensor §4p to obtain

A 4 zﬁ(xuw .,L.S) - g g S
= (220 e (2
z>(z*, z°) gsv  gss
To account for the observed 4D character of spacetime, Kaluza introduced the cylinder

condition:

“All components of the 5D metric and the first four coordinates z* must be
independent of the fifth coordinate z®, so that Jsgap and Osz* vanish identically.
Straightforward analysis using this condition shows that the most general transfor-
mation of the fifth coordinate is thus of the form z°® — z° = z5 + f(z*), where f is

an arbitrary function.”

1.2.3 Five-dimensional metric

In stationary 4D spacetime (where 8og,, = 0), the line element ds? = g,,dz*dz” may
be split into
d32 = good/\2 + dlz
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where

d) = dz° + P04k
goo

and

dl* = (g — gkodto )dz*dz!
oo

Klein [8] noted that the line element between two events in 5D spacetime, d3?, may
be similarly split as a result of the cylinder condition into the invariant quantities
dA = dz® + T2 dz#
Gss

and

di? = (G — 25958V dridz”
gss

Since the cylinder condition guarantees that gss is a scalar quantity, we may define
Jss = ¢ (a dimensionless scalar field) and §,s = koA, with k a constant. Taking this

into account the above splittings become
d)\ = dz° + kA, dz*

di? = §,, — K*dAL A, dz*dz" .

Now di? is independent of z° and is the 4D line element ds? = g, dz#*dz if we make

the identification
v = Juv — k2¢AMAu -

Thus the 5D metric d3% can be written as
d§? = gy, dz*dz” + p(kAudz* + dz®)? |
which yields the partitioned 5D metric

" Guv + "‘72¢AMAV K¢Au
gaB =
KPA, ¢

which is now expressed totally in terms of the 4D metric, g,, and the fields A, and
&.



Consequently, after the identification §,s = kA,¢ and definition F),, = 9,4, —
d,A,, let us consider the 5D identity arising from the symmetries of the Riemann

tensor, namely,:
3p(Fasc + Taca + Tcas) = 3alcps + 08T apc + 8clapa
Taking (ABC D) = (pvA35) and making the substitution
20y, = K($Fu + Audd — ABu9)
we find that
aqu\u"‘aqua\"'aAFup =0 )

which is the electromagnetic Bianchi identity. Under the coordinate transformation
% = 1% + f(z*), gus = koA, transforms by

9as = Gus + G550a9
or

A; = A, —k7'o.f

which may be recognized as a gauge transformation of the vector field A,. This
demonstrates one of the most powerful results of Kaluza’s Ansatz, namely, that the
gauge freedom of A,, previously considered “internal” in some sense, arises naturally

here as a geometric freedom in the extra dimension.

To simplify subsequent calculations we set ¢ = 1 as it plays no important part
in this introductory description of the Kaluza-Klein theory. By analogy with the 4D

variational principle, we consider the generalization of the Einstein-Hilbert action

. 1 — .
S= 167ré/dsz‘/:;R

where

R=R- %k’F‘“’Fw

is calculated from gap and § = [gas| = |guw| = g, which is independent of z°. The
dimension of G must be of (Gx length). By separating the integral into a 4D part

and an integration over z° (one should assume that the fifth dimension is compact to
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avoid meaningless infinities), the 5D action becomes

== G/d“x\/—(R——F F.) .

Thus our 5D action, S , is indistinguishable from a Sgrquity+em action. Standard
variational procedures yield Einstein’s equations with an electromagnetic source and
the vacuum Maxwell’s equations 9,F*” = 0. This is the essence of Kaluza-Klein
ansatz. This extension to 5D in order to unify electromagnetism and gravity closely
parallels the Minkowski extension of 3D space to 4D spacetime in special relativity
to unify E= {cF*} and B= {1¥*™Fi,n} in the Faraday tensor F,.

1.3 Higher-dimensional vacuum cosmology and in-

duced matter theory

Multidimensional spacetime has recently been the subject of many approaches to-
wards the construction of a unified field theory. Indeed, it is generally believed that
higher dimensions must play a significant role in the early universe. There are several
mechanisms known which incorporate a natural splitting of the physical and inter-
nal (higher) dimensions, including the Freund-Rubin mechanism [11], the Casimir
effect associated with matter fields [12], and the effect of higher derivative terms in
the gravitational action [13, 14]. Theories of this type are motivated by the original
Kaluza-Klein theory [5, 9], described in previous subsections, in which the extra de-
grees of freedom in a five-dimensional theory were associated with an electromagnetic
potential and the resulting Einstein equations mimicked the Einstein-Maxwell equa-
tions in four dimensions. Modern theories of this type include supergravity theory
[15], and superstrings [16, 17].

In this thesis, we shall study the structure of vacuum Kaluza-Klein-type cosmolog-
ical models. For the most part, we shall keep the discussion general so that it consti-

tutes an analysis of the general mathematical structure of vacuum Kaluza-Klein-type



solutions. We shall be particularly interested in the question of whether the prop-
erties of matter are contained in a purely geometric Kaluza-Klein-type extension of

general relativity and whether matter can be completely geometric in nature.

We shall also be specifically interested in the five-dimensional Kaluza-Klein-type
theory of Wesson and its physical interpretation. In Wesson’s space-time-matter
theory of gravity [18, 19, 20] the fifth coordinate (usually treated as spacelike to
avoid the existence of closed timelike curves) is associated with a mass, m. The
main idea is that, since Gmc™? has the dimensions of length (where G' and c are
regarded as constants), it could be taken as an independent coordinate in the same
way that ct is taken as a coordinate in spacetime. The resulting five-dimensional
space-time-matter theory is thus a Kaluza-Klein-type extension of general relativity
with a variable mass (or equivalently, since Gm is varying, a theory with a variable
G); there is some astrophysical justification for studying such a theory [21]; see also
(18, 19, 20, 22].

The physical identification of the fifth coordinate in a five-dimensional Kaluza-
Klein-type theory is of paramount importance. For the most part, we shall not make
any such identification (and regard it as a general Kaluza-Klein parameter); indeed,
we shall not assume a priori that the fifth coordinate is is either unrestricted, or
restricted to some interval [0, L], or periodic. In the space-time-mass theory, which is
of special interest, this fifth coordinate is identified with mass. However, the precise
mass (e.g., an inertial or gravitational mass) is not necessarily specified a priori and

is, to some extent, left open to interpretation [18, 19, 20].

One interpretation that may lead to important consequences (suggested indepen-
dently by Coley, Ponce de Leon, and Wesson) is that the correct field equations for
the theory are the vacuum field equations,’G,, = 0, [20]. The idea is that the extra
terms present in the five-dimensional vacuum equations may play the role of matter
terms that appear on the right-hand sides of the embedded four-dimensional Einstein
field equations with matter. One of the aims of the present thesis is to study whether
the four-dimensional properties of matter can be induced from the five-dimensional
geometry in this way . Although this approach, in which the vacuum Kaluza-Klein-

type equations actually contain the same physics as the four- dimensional Einstein

7



equations with matter is new, the idea that the properties of matter might have a
geometrical origin is not new and is in the spirit of the original Kaluza-Klein-type
theory. It must be realized that the type of matter that can be described by a general
theory of this type, and in particular in a purely gravitational theory such as one in
which mass is geometrized as a fifth coordinate (whence only gravitational interac-
tions are included), must be simple. Therefore, in general the induced matter will
have no nuclear or electromagnetic structure (and more complex matter structure can

only be contained within a more sophisticated theory).

Let us consider the D = 4 + N dimensiopnal metric in the form
ds? = gapdz?dz® = gopdr®dz® + gapdy®dy®, (1.1)

where ds? = —g,,dr*dz" is given by the Robertson-Walker form, viz.,

dr?

T + r2(d8? + sin%6de?)| , (1.2)

ds? = —dt? + R%(t) [

where k is the normalized (i.e., & = 0,%1) curvature constant. For a perfect-fluid

source with energy-momentum tensor,

Top = (i + P)Uats + PYas, (1.3)

where y and p are the energy density and pressure, respectively, and u* is the (comov-
ing) fluid four-velocity, the four-dimensional Einstein equations (with matter) then

vield

p= %(k + R?) (1.4)
p= -2% - %(k + R?) (1.5)

We shall be primarily concerned with cosmological models with matter of simple
perfect-fluid type. The phenomenological x4 and p are to be interpreted in terms of

more fundamental geometrical quantities. We note that two issues that are usually of

8



concern in the study of Kaluza-Klein cosmological models are that of compactification
of the extra dimensions and that of dimensional reduction (i.e., the question of why a
multidimensional space reduces to the product of a physical four-dimensional space-
time and a static or nearly static compact [internal] space of additional dimensions
of characteristic size comparable to the Planck length, thereby rendering the extra
dimensions unobservable). We shall not be primarily interested in these issues here
(and will not assume a priori that the extra dimensions are compact), but comments
will be made in the text where appropriate. The alternative point of view (to consid-
ering the vacuum equations) in Kaluza-Klein-type cosmology, albeit contrary to the
spirit of the original Kaluza-Klein theory, is to assume a higher dimensional energy-
momentum tensor; indeed, in the majority of Kaluza-Klein-type cosmological models
obtained, the source is assumed to be a higher dimensional comoving perfect fluid,
although the pressure(s) in the higher dimensions is (are) assumed to have a variety
of forms [23]. (This arises from the problem in this approach that there is no unique
higher dimensional energy-momentum tensor that reduces to a given four-dimensional
energy- momentum tensor; this ambiguity in the choice of higher dimensional energy-

momentum tensor is clearly not present in the vacuum field equations formulation.)

Perhaps the fifth coordinate m should be identified with a gravitational mass;
therefore, a constant m would only arise in the absence of a gravitational field, whence
there would be no source for the four-dimensional Einstein tensor (and the above
comment would not apply). Moreover, as noted above, the induced matter arising
from a purely gravitational space-time-matter theory must be particularly structurally
simple. Although Wesson [22] has shown that there are examples of five-dimensional
vacuum equations which give rise to familiar four-dimensional cosmological models
with very simple matter sources (see below), this simple matter is not necessarily
consistent with a form of matter which is solely made up from the rest mass of its
constituents. In Wesson and Ponce de Leon [24], coordinates were chosen so that the

five-dimensional metric is given by
ds?® = g, dr#dz” + $*dy® (1.6)

where z5 = y and gss = ¢* (and differentiation with respect to y is denoted by an

asterisk)and (here) the metric, g,,, and ¢ are allowed to depend on z* and y. It

9



was then shown that the five-dimensional Ricci tensor ® R, (in terms of g,5) can be
written in terms of the four-dimensional Ricci tensor *Rap (in terms of gog) in the

following way:

o - - - 1 v -
*Rop =" Rap — 2 =2 + 2( 9og — Gap +6" 9arIs, —=9" 9uIas) (1.7)
3 "3 2
= VouPap (18)
s l\ﬁu I\B (; « A8 1 «u0 -
Ry = —¢0¢ + ( 98 —9 g,\a p) 9 g— > g g“ gmg,“,) (1.9)

where ¢, = ¢, and O¢ = g**@,,,. The tensor P§ is defined by

P} =
¢ 2\/94a

The five-dimensional vacuum Einstein field equations now decompose into 4D Ein-

g‘,c Yoa _5 g‘w guu) (1-10)

stein’s field equations,
4 1y 4 -
Rap — 5 "Rgas =" Tas = (1.11)

-

S R S S N T R L -
+ 27,2{(5 Jap — Jap +9"* Jards, —59" 9uIap +79a8(9 G +(g" 9.)1}

¢

where “TB .3 = 0 follows from the four-dimensional contracted Bianchi identities, and

the constraints
P2, =0, (1.12)

which have the form of conservation laws, and a generalized wave equation

ig*" 9xs) =0 . (1.13)

«AB -

1
—¢0¢ + (—-2'9 9rs —g™ 9as

10



Also, we note that
1 =V

‘R= 500 G+ 9uw)?] - (1.14)
In particular, in the case that there is no explicit z5 dependence, the above equations
become
‘Gap = %@.zﬂ =Tap , (1.15)
and
Op=0=T . (1.16)

We note that for a perfect-fluid energy-momentum tensor, (1.16) implies a radiative
equation of state (between x and p) and that equations (1.15) have a formal inter-
pretation in terms of a scalar field. In the case that the four-dimensional metric has

the zero-curvature Robertson-Walker form and with ¢ = L(%); e.g.
ds? = ds. + L*(t)dy* (1.17)
in (1.1), where ds% is the flat 4D FRW line element, Wesson [22] obtained

R? RL
R R [ _RL
P —2—é “"m- L + 272_5 ’ (1.19)
p=3p , (1.20)
1

which has solution R = # and L =

that
p= z-t‘z : (1.21)
l
p=gt7", (1.22)

and the familiar (zero-curvature) radiation Friedmann-Robertson-Walker (FRW) model
is derived. So, at least in this case, the five-dimensional vacuum field equations yield
the familiar four-dimensional cosmological model, with the added bonus that the
properties of the matter are also prescribed by the five-dimensional geometry. Other
physical properties of this model, and those of similar five-dimensional models, are
discussed in Wesson [22]. This model has given rise to a very simple form for the

matter (as expected and noted earlier). We note that the phenomenological equation
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of state u = 3p has been deduced directly from the geometry of the five-dimensional
universe through the exact cosmological solution. However, this simple equation of
state is the appropriate one for cosmological models of the early universe. So, in this
sense, the analysis has given a reasonable answer. Indeed, it turns out that for any
four-geometry that is independent of the fifth dimension the state of matter must
be radiation (i.e., independent of whether the four-geometry is anisotropic or inho-
mogeneous). This result is physically sensible, and it is of interest to note that the
(radiation) FRW models play a central role in cosmology in the very early universe.
Therefore, it will be of interest to investigate whether models exist with more general
forms of matter. There are various approaches that will achieve this, one of which
is to allow the metric functions g,, to depend on y. For example, Ponce de Leon
[25] found a class of solutions of the D = 5 vacuum Einstein field equations in which
the (spatially homogeneous and isotropic) metric components are separable functions
of t and y and which can be interpreted as four-dimensional perfect-fluid solutions
of Einstein’s equations with p = (v — 1)u (v constant), where u = u(t,y). Fukui
[26] has also studied vacuum solutions of the space-time-matter theory in which the
metric components depend on both the time and fifth (mass) coordinates, which can
be interpreted as four-dimensional solutions of the perfect-fluid Einstein equations
with a more general (than radiative) equation of state (depending on both ¢ and m)

relating p and p.

1.3.1 The induced matter theory of Wesson

One of the motivations for research on induced matter theory concerns the fact that
the geometrical aspects of the theory (as embodied in the Einstein tensor G;;) remain
distinct from the physical aspects of the theory (as embodied in the energy-momentum
tensor T;;). Einstein is reputed to have spent considerable effort in trying to transmute
the “base wood” of the T;; on the right-hand side of his field equations into the
“marble” of the G;; on the left-hand side. This old conceptual problem is one we have
become used to in 4D general relativity. But it is still a matter of concern because it
is the source of ambiguities in the definition of the energy-momentum tensor in five-

and higher-dimensional Kaluza-Klein theory. Wesson and others suggested that this
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ambiguity might be resolved if it were the case that the 5D empty field equations
G;; = 0 actually contain the same physics as the Einstein equations G;; = T;; (4D),
provided appropriate definitions are made for important physical quantities. Wesson
and his coworkers show that we can always go from 5D without matter to 4D with
matter, provided we use a 4D energy-momentum tensor defined by (1.11). Therefore,
the Kaluza-Klein theory is used not to unify the interactions of physics but to unify

geometry and matter.

Wesson has shown that this new approach works surprisingly well for some classes
of problems in gravitational physics. In recent work Wesson and his coworkers have
examined a class of time-dependent soliton solutions and suggest some physical ap-

plications in particle physics and cosmology (see references under Wesson).

In particular, these soliton solutions represent an astrophysical application of
induced matter theory. Because of the violation of Birkhoff’s theorem in higher-
dimensions, solutions of the 5D vacuum Einstein field equations that are spherically
symmetric depend in general on a number of parameters (such as electric and scalar
charge) besides mass, and in some cases these solutions are time-dependent and also
non-singular. Such localized solutions of finite energy are called “solitons”. Kaluza-
Klein solitons were noted as early as 1951 (for a complete review of previous work
see [4]). Later work showed that solitons are generic to the Kaluza-Klein theory in
the same way that black holes are to ordinary general relativity. Further study of
these objects reveals that Kaluza-Klein solitons must be classified as naked singu-
larities. Wesson and his coworkers have generalized the soliton metrics to include
time-dependence. In this thesis we shall present a further time-dependent generaliza-
tion of these solutions (see chapter 3). These solitons were then suggested as possible

dark matter candidates.

Further recent work on astrophysical applications and cosmological solutions by
Wesson and coworkers have been summarized in Overduin and Wesson [4]. The
observational predictions of higher-dimensional models have been studied (see [4]).
The relationship between higher-dimensional gravity and scalar-tensor theory has
been discussed by many authors (cf. Billyard and Coley [27]). More fundamental

issues and questions of interpretation have been discussed in [4] and in Billyard and
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Coley [27].

1.3.2 Outhline

This thesis investigates more general cases than those studied by Wesson and others.
As mentioned above, assuming metric dependence on the extra coordinate in general
may produce a more general equation of state than radiation. Also, as pointed out
earlier, we will make no assumptions on the compactness of the extra dimension. We
will follow the main idea of taking the vacuum field equations ® R, = 0 as the correct
field equations. The content of the second chapter in this thesis is to analyze possible
solutions of ®Rp.q4 = 0 for a 5D spherically symmetric metric. One reason for doing
so is that the Riemann-flat solutions can be used as an aid to find the Ricci-flat
solutions. Although one could argue that these are not as interesting as Ricci-flat
solutions, one has no problem in interpreting the source field. The field equations
SRa = 0 is 5D-curved with an unknown source if one follows the spirit of GR. Indeed
several well-known 5D solutions are in fact Riemann-flat [28]. Chapter two is divided

into four possible cases, and each case is studied in its entirety.

Chapter three investigates the Ricci-flat solutions by extending the Riemann-flat
solutions found in chapter one. This chapter also studies the relevant field equations
under some simplifying but reasonable ansatzes. Some known solutions are recov-
ered and qualitative analysis is applied for determining the properties of other new
solutions. Chapter four uses an ansatz broad enough to encompass both the static
spherically symmetric solutions, originally discussed by Gross and Perry [29] and by
Davidson and Owen [30], and the cosmological solutions considered by Wesson and
his co-workers. And in chapter five we seek some new power-law solutions which
are not Riemann-flat. Finally, chapter six extends the idea of induced matter to
Einstein-Yang-Mills theory, either Abelian or non-Abelian gauge theory, as well as to
supergravity. Throughout the whole thesis, equations of state are derived wherever

possible.
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Chapter 2

Five Dimensional Spherically
Symmetric Riemann-Flat

Space-times

2.1 Preliminaries

Based on the idea presented in the introduction we wish to find solutions to °R;; = 0

for the general 5D spherically symmetric metric, which is given by

d82 = _e'zf(t,r,y)dtZ + eZg(t.r.y)(drz + r2dQ2) + e2k(t.r,y)dy2 , (21)

where y is the fifth coordinate.

Equations *R;; = 0 involve 7 coupled partial differential equations for f,g and
h and the solutions in general are hard to find due to non-linearity. One possible
strategy is to first find the solution for 5D Riemann flat case and and try to generalize
the obtained solutions to satisfy the Ricci-flat equations. This seems to be more
promising since °R;j;u = 0 involve many more equations than R;; = 0. It is worth
noting that the general solutions of the Riemann-flat equations are the same as 5D
Minkowski space up to a diffeomorphism. That is to say, for any given solutions
for f,g and h, there is always a diffeomorphism t' = #'(¢,r,y), ' = r'(¢,r,y) and
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One reason for studying the Ricci-flat solutions of metric (2.1) is of mathematical
interest; i.e., it is natural to ask what are the implications of generalizing the solution
given by [29] or [30] to a metric depending not only on the r coordinate, but also
on time and the extra coordinate. Apart from the mathematical interest of solutions
of this kind, there is also a physical motivation. In the context of induced matter
theory, it can be shown that metrics independent of the extra coordinate always
imply a radiation-like equation of state. In order to include more general types of
equations of state, like dust, vacuum and stiff matter, it is necessary to study the most
general spherically symmetric metric with metric coefficients depending on radius,
time and the extra coordinate. Therefore, we wish to determine all metrics of the
form (2.1) that are Riemann-flat. In principle, the problem is trivial since locally all
solutions are Minkowski space-time; however, one has to implement various nontrivial
diffeomorphisms of the form z* — z*(z®) and y — §(y). Thus, by restricting the

permissible diffeomorphisms we ensure that the 40 intrinsic metric
ds® = gap(z”, Y)ly=conse dz° dz”

are not necessarily Riemann-flat, even though the 5D metrics are Riemann-flat. Wes-
son [31] has investigated the above problem but has found the solutions only in the

special case where f, g and h are separable functions of ¢, r and y.

As previously mentioned, there are 12 independent non-zero components of ° R;ji; =
0 for the above metric (See Appendix A). Among those, the equations Ri323 = 0 and
Ry335 = 0 are the most promising ones since they break the problem into a finite

number of cases. More explicitly,
Rizzs = (—gre + g fr)r’e*® =0 (2.2)

R2335 = (—'gry + gykr)rzezg =0 (2.3)

where subscripts for the functions f, g and k denote partial derivatives with respect to
the specified variables. If g; # 0 then (2.2) results ef = eP(*¥) g, where h is an arbitrary
function of ¢ and y. If g, # 0 then (2.3) can be integrated resulting in e* = e/*¥)g,
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where [(t,y) is an arbitrary function to be found. Therefore, the problem of finding

the general solutions R;;jx; = 0 can be broken up to the following four natural cases:

case(I): g =0 and g, =0;

case(Il): g =0 and g, #0;

case(Ill): g # 0 and g, = 0;

case(IV): g #0 and g, #0.

In the next sections we will study each case separately.

2.2 Casel [g,=0 and g; =0]

In this case the metric has the following form:
ds? = —e2ftrvlds? | 290)(dr? 4 12d02) + 2K(Ervldy?, (2.4)
Now, Ri313 = 0 has the following form (see Appendix A):
rfe(rg. +1)e* =0,

which suggests that either f = f(¢t,y) or rg, + 1 = 0. The latter can be integrated
resulting in
d
o(r) = In(5), (25)
where d is a constant. Also, R3323 = 0 has the form
re’(rg,, +g.) = 0. (2.6)

The general solution for rg,, + g- =0 is

g(r) = In(ar®) , (2.7)
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where a # 0 is a constant and can be set equal to one. Now (2.5) and (2.6) together
imply that ¢ = —1 ; i.e. €29 = a?/r? (a # 0). Plugging this expression for g back
into the equations ®R;;i; = 0 reveals that

R34z = a*sinb?
which is non-zero (since a # 0) and hence this case is not possible.

To summarize, we thus obtain g(r) = In(ar) with ¢ # —1 and f = f(¢,y). Taking

this into account, R3434 becomes
Ragzq = a*cr®***2sin?9(—c —2) =0
which results in either ¢ = 0 or ¢ = —2. In addition,
Raszs = —k,.ez"r(c +1)=0

implies that k. = 0, or k = k(t,y), since c+ 1 # 0. When ¢ = —2 we arrive at the
metric

(132 — _e2f(t,y)dt'2 + l“(dTZ + 7'2(192) + e‘lk(t.y)dy‘l’ (2.8)
r

where R;s;5 = 0 and the only non-trivially vanishing component of ® R;;xr leads to the
following differential relation between f and k :

fyyezf + fy2€2f + ftk¢62k — kye?* — kgzezk - fykye“ =0 . (2.9)

To simplify, let R = —> and e?/®¥ = F(,y) and e®®%) = K[z, y), which then ren-
r

ders the metric as
ds® = —F2dt* + (dR? + R*d0?) + K%dy? (2.10)

and (2.9) becomes
oF BK

This metric is clearly 4D ﬂa.t over each slice y = const.

(2.11)

When ¢ = 0 we arrive at exactly the same metric (2.10) with the equation (2.11)

after an appropriate coordinate transformation.
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23 CaselIl [¢:=0 and g, #0]

As we saw earlier in this chapter, in this case ef = gye", and the metric has the form
ds? = —e2fEr¥de? | 2909 (dr? 4 r2dQ?) + gRe?ht¥)dy? (2.12)

Now, the equation Rj2s = —gyh.ezg = 0 readily gives he = 0, or h = h(y), since

gy # 0. Having taken this into account, we arrive at the following equations:
R2323 =0= rger + gz + re2g—2h =0 ’ (213)

Ry =0=>r1rg? +2g, + 1?92 =0 . (2.14)

Subtracting (2.14) from (2.13) gives
Tqrr — Tgf -9 =0 . (2.15)

Now, g, # 0, since g, = 0 contradicts(2.14), and therefore this relation can be written
as

Jrr 1

I g —-==0,

gr I r

which can be easily integrated giving
g =rF(y)e? (2.16)

where F(y) is an arbitrary function. Substituting this back into relation (2.14) results

in
—2F(y)
29(ry) _
e = ZF(y) + B0 (2.17)
In addition,
R1212 = 0 = frrgy + f,-zgy - frgrgy + fyez(g—h) = O ’ (2'18)
1
Rins=0 = f,=-et9g,f(g +-)=0. (2.19)
Substituting (2.19) into (2.18) yields
1
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Now, if f, = 0, then (2.19) shows that f, must vanish as well. Hence f = f(t) which

can be set equal to zero by applying a time transformation resulting in gy; = —1. If
fr #0, then (2.20) can be written as
rr 1
L = _fr+2gr+_’
fr r

which can be integrated giving
fe=re7le®i(t,y) , (2.21)

where J(¢,y) is an arbitrary function. Equation (2.21) can again be integrated to
give

ef = J(t,y)/rez-"dr + q(t,y), (2.22)
where q(t,y) is another arbitrary function. By using (2.17) we arrive at

rF? J(t,y)
e =4J(t,9) [ Crpmroam HabY) = ) e taty) - (229)

Using the expressions found for g and f in the set of equations °R;ji = 0, we ob-
serve that they all have a power series expansion form with respect to r. In particular,

SRi212 = 0 has the form:

r{(JFUF,e™ — 2F%,) + r*(2J F?F, — 2F%Jh, — 2F°J, — 4F°q,e™") +

r°(JFye™® —2F Jhye ™ —2F Je™?* — 2Fq.e™*") =0, (2.24)
which, since each term in r?" must be separately zero, gives rise to the following
system:

JF,e* —2Fq, = 0, (2.25)
JFy— FJhy— FJ,—2Fqe™*" =0, (2.26)
JF,—2FJh, —2FJ, — 2Fqe~ % = 0. (2.27)

Using (2.25) and (2.27) we get J, = Jh,, which can be integrated, resulting in

J(t,y) = l(t)e™® .
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Substituting this back into (2.25) yields
I(t)F,ef =2¢,F ,

and after integrating

1 rF
q(t.y) =3 Fyehdy + p(t).

Hence the final form of the metric (2.12) for the solution of Riemann-flat equations

is:

—h 2
2 _ e "l(t) 1 Fy 4 2
= [r2F2(y)+e’2"(y) +310) [ Fetdy+p00)|
2
4F%(y) (dr2+r2dﬂz)

r2F2(y) + e—2h()

(r’FF, — Fye'”‘ — 2Fh,e~%")?

2
(r2F? + e-2h)2F2 dy”. (2.28)

This solution includes the solution g;; = —1 when /(¢) = 0 and p(t) = 1. The above
metric is also non-separable. On any slice y = const with the choice of { = 0 and
h =0 and F = 1, this 4D metric is nothing but a static FRW metric with positive
constant curvature(x = +1); i.e.

dr? + r2dQ?

2=_t2 ..
ds dt® + Tt

24 CaselIIl [¢:#0 and g, =0]

As seen earlier, we have ef = g;"*¥) with the metric,
ds? = —eX g2 4 290 (dr? 4 12d02) 4 2k(ErY)dy? (2.29)
Having all the components of ®R;ji; calculated shows that (See Appendix A)
r?Ri295 = Ryass = —gihye®r? = 0, (2.30)

which implies that h, = 0, or h = h(t), since g(¢) # 0 in this case. Having this taken

into account, Ry323 = 0 gives

TGrr + gr — refe=h) = 0, (231)
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rg? +2g, —re?e™M =¢ . (2.32)

Subtracting (2.32) from (2.31) can be written as
rr 1
rr _ gr—=-=0,

gr
since gr # 0 (g = 0 is impossible due to (2.32)).

This relation can be easily integrated to give

I _ F¢), (2.33)

red
where F(t) # 0 is an arbitrary function. Substituting (2.33) back into (2.32) gives

the following expression for g:

eg(r,t) _ —2F(t)

T p2F2 _ e—2h(t) (2.34)

Now, using the above expression for g results in the following forms for R3s3s and

Rasas:
R3sas = 0 = re®k, = Tkrg,-ggez" + krgtezh , (2.35)
Ryszs = 0 = €k, = —K2qie®® + kee® + grgek, e . (2.36)
Substituting k; into (2.36) from (2.35) yields
k., 1
— =k +2¢.+- . (2.37)
k. r

In (2.37) we assumed k, # 0. If k. # 0, then k, = 0 due to (2.35), which implies
k = k(y) and hence which can be set to zero by a diffeomorphism y = F(y). This case
will result in a special case of the general case. Now, (2.37) can be easily integrated

giving;:
9
ar
where J(t,y) is an arbitrary function. By substituting €? from (2.34) into (2.38) and

(e¥) = rJ(t,y)e¥ , (2.38)

then integrating with respect to r, we get

J(ty)
k(t,r, ) — Y
€ V= r2F2(t) — e-2h(0) +q(t,y) - (2.39)

Now, substituting (2.39) into (2.35) give rises to a power series expansion for R3s3s = 0
with respect to r, and putting the corresponding coefficients identically to zero results

in the following system of equations:
JF.e** +2Fq =0, (2.40)
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—2JF, +2FJhy + 2F J, — 4Fqe™%* = 0, (2.41)
JF, —2FJh, — 2F J, + 2F qe™*" = 0. (2.42)
Adding (2.41) and (2.42) yields

JF, = 2Fqe™ %", (2.43)

and substituting J F; from (2.43) in (2.40) results in q(¢,y) = 0, since F' # 0. Equa-
tion (2.40) now breaks into two cases, either J(¢,y) =0 or F; = 0. If J = 0, then the
gas component of the metric becomes a function of y alone, which in turn could be
absorbed by a y -coordinate transformation. The 5D Riemann-flat metric can then

be written as

ezh(t)(r2F2F2 + Fte—2h + 2the—2h)2
ds® = — F;(e‘z" — i F dt? (2.44)

(dr? + r*dQ?) + dy® .

4F?

(e-Zh — r2F2)2

On each hypersurface y = const, the above 5D flat metric is also 4D flat and thus

+

uninteresting from an induced matter theory viewpoint. On the other hand, if F, =0,

i.e., F = Fy = constant, then (2.42) yields
Jhe+Je =0 . (2.45)
which can be integrated again resulting in
J(t.y) = p(y)e™) |

where p(y) is a non-zero, arbitrary function (p(y) = O results in J = 0 which has
already been studied). With this expression for J, we get another metric for the 5D

Riemann-flat case:

. 4h2e—2h(t) . 4
2= 4 2 2 2 102
ds* = ~ (e rng)ﬁdt + R e_2,,)2(dr + r2dQ?)
ply)e™™?
+( 1(702 — = + (), (2.46)

where Fy is a constant. On each hypersurface y = constant, the above 5D flat metric
is also a 4D flat, but unlike the previous case (since d,g;x # 0, due to F # 0) it

doesn’t include FRW positive constant curvature as a special case.
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2.5 CaselIV [¢:#0 and g, #0]

In this case the metric has the following form
ds? = —eh(tw) gfdtz + e‘la(t,r,y)(dr2 + r’dQ") + e2’("y)g:dy2. (2.47)

Now, R334 = 0 and Rj323 = 0 imply, respectively,

rg? +2g, +re®¥(e¥ —e ) =0 (2.48)
rGer + gy +re¥9 (e ¥ —e) =0 . (2.49)

Subtracting (2.49) from (2.48) results in
Tger —T9r —gr =0 , (2.50)

If g # 0 then (2.50) can be integrated giving (refer to solution in case II)

I~ F(t,y) . (2.51)

red
Substituting back (2.51) into (2.48) gives the following expression for g(¢,r,y):

r2F2 4 -2l _ g—2h

ed =

(2.52)

Using this expression in R;jx = 0 will leave us with two independent non-trivial
components, namely, Ri22s and R;s15, with power series form with respect to r as

follows:

Rins =
—Giy + GGy — hyge — ligy = r*[F*(Fy + Fihy + LF)]
+r{e”?*(—2F Fihy + 2F*ih, — 2F*h;hy + 2F*hy — 2F Fyh, — 2F, F})
+e #(2F?Ll, — 2F?ly — 2F?hyl, + 2F F l, + 2FF)l, + 2F,F})| = 0 .
(2.53)

Vanishing of expansion coeficients gives rise to the following partial differential equa-
tions:

Fp+ Fhy+ Fl, =0 | (2.54)
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e X (F?ly — Fly — F*hyly + FFdy + FFl + F,F) -

e~ (F2h,h, — F2h, — F*hyhy + FFihy + FF,h + F,F,) =0.  (2.55)

The equation Rjs5 = 0 has a large number of terms including third order derivative

terms like gy,. Once again, R;z;s has the form
—Gyt + GeGy — hyge — legy, =0 . (2.56)

By taking derivatives with respect to t and y from the above equation, g, can be

expressed in terms of second order derivatives, namely

Gy = Gugy t+ 9;2 9y — hygz2 — 2l,gyge — heyg:
-hygu - lttgy —lugy + lthygt + l;zgy . (2.57)

With substitution of (2.57) into (2.56) we obtain

RISIS = 62(g+h)[gtgy - ltgy - lty - lthy + lylt - gtly] +
62(g+l)[—gtgy + hygt + hyg — lghy - hthy + gyht] +
ez(h+l)gr¢gry . (2‘58)

Now, by substituting (2.52) into (2.58), Risi1s is expressed by the following power

series expansion with respect to r as

Risis = ri{aF4e®(—Lhy — [uF* + 1, + FI,F, + FlL.F, + F.F,) +
e?(F*hy + lihy — hiehy — FhF, — Fh,F, — F,F,))|} +
r}(8F?)[e*P~)(—F?l,h, — F?l, + F?ll, + FFl, + FI,F, + F.F,) +
e2 =R (_F?h, + F?hh, — F2L,hy + FhyF, + FhFy + F,F,) +
(=F?hohy, + F2hy + F?ly + 2F by — 1L F? -
FFyh, — FFh, — FFl, — FL,F, —2F,F,) +r°(T)=0 , (2.59)

where

r°(T) - 4( _e(-zh) +e(-2l) )2 (l, F? hy e(2l—8h) _ Fﬂhye(zl‘s") + F? h‘y e(—t:‘.l)
_ 4F2 hly e(—2!1—4[) _ th Fye(Zl—Sh) _ GE the(—4h—2l)

25



—6F h F,el=th=20) 4 F2,| (2h=81) L F|, F,el~6h)
— F‘Fye(u—sh) - IOF}Fye("”““) +5F, Fye(—eh) —lyy F?e(2h-81)
+ F, F,el?"80) _5F, F,el=%1) 4 41,  F?el~8)) 1 6 F21,1,e(~2h=4!)
_ 61y, F?el=2h=40) [ F2el=6h) _ 4| F F,el-6!)
— 10 F? I, hy et =24 L 4 F, Fh,el=%%) £ 5 F% [, h,el 8D
- 5F21¢hye(‘6"’ +4F2h,hye(‘”““) +4F%h, hye(_s")
+10F, F,el~2h=40) 4 F[, F,e(2h-81) L 4 F h, F,e(~5")
—Fh Fel=®") —4F1, F,e~) £ 4 F b, F,el~2h=4h)
+4F, Fhyel2h=20) L |, F2e(-S%) _p 1, F2 o(2h-81)
+ 10 F2 L by el =**=2) — F, Fhyel=%) — 41,1, F? (74720
— F2h h,el=81) 41, F F,e(2h-80) _ p2p _p, e(21-8h)
+ 61, F Fel=2h=41) _ 41 [, F?el~%D) 4 | F F,e(~5")
—4F| Fye(_‘“"“) - 4lyFF¢e(_4h‘2” — 6 F? h,hye("”‘"“)
+ 41, F2el=th=20) L g F2p, el=4h=2l) 4 P2p, e(21-8H)
~4F2hyel=5h) 1 6 F I, F,el2h-40)
All coefficients of this expansion vanish on account of (2.54) and (2.55). As seen, the

vanishing of R;s;5 was by no means trivial.

To summarize, the Riemann-flat solution for this case reduces to a system of two
partial differential equations for three unknown functions, F'(¢,y), A(t,y) and {(¢,y),

and in general these equations do not have unique solutions.

Finally, in the particular subcase where g, = 0 (i.e., [ = h from (2.48)) then the
only non-trivial independent equation is Rj312 = 0, which reduces to the following
partial differential equation for the two unknowns g(¢,y) and A(t,y):

9ty — Gyhe — hyge — gy =0 ,
which again has no unique solution. 4D slices y = constant in this case (IV) are not

flat in general. In particular, in the subcase g, = 0 the 4D slices are Riemann-curved.

To conclude, in this chapter we have comprehensively studied all the possible

Riemann-flat solutions of the metric (2.1).
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Chapter 3

Attempts towards finding the
general Ricci-flat solutions of 5D
spherically symmetric

Kaluza-Klein theories

3.1 An ansatz

As discussed in the introduction, following [31] we are interested in finding solutions
of %G;; = 0 and therefore, *R;; = 0. We assume the same 5D spherically symmetric

metric as before
ds? = —Hbrge? 200V (dr? 4 r2dO2%) 4 2k dy?, (3.1)

Calculation of ®R;; shows that there are only seven independent non-trivial Ricci
tensor components [see Appendix B]. Unlike the Riemann-flat case, we have less
hope of breaking the equations into natural subcases for two reasoms; first, they
are highly coupled and second, the number of relevant equations are less than in the
Riemann-flat case. As mentioned before, one possible approach would be to generalize
the Riemann-flat solutions to obtain Ricci-flat solutions. One way to do this is by

replacing any separated forms like f;(¢)f2(y) with a general function f5(¢,y) or any
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term r to be replaced by a function of r.

One promising ansatz, based on the Riemann-flat solutions, is the metric of the

form
212 2\2
B = R T e+ Gy ey (4 1)
AW+ BOP? o o

(r2F2 + e—2h(v))?
This metric is only one possible generalization of the Riemann-flat metric in the case
in which g, = 0 and g, # 0 (see equation (2.28)). Of course, assuming F = F(t,y),
L = L(t,y), A = A(t,y) and B = B(t,y) would be even more general, but the

corresponding °R;; = 0 have proved to be too complicated to solve.
g ¥ P

There are seven non-trivial Ricci tensor components corresponding to metric (3.2).
Each one is a power series expansion (with respect to ), and putting all the coefficients
equal to zero gives rise to 23 coupled partial differential equations for the unknown
functions C,J, F,L, A and B. Most of the equations have a huge number of terms
(some over 60 terms). Upon examination of the equations, we find that Rys = 0
contains the smallest number of terms and these involve only first order derivatives.

R,s is given by

Rys = +2r2Jel=2RV [ AF - 24r*Ch,el"2") LBF
—4r2Cyel PN LBF + 412 J, el 2P LAF
—4F, el AJF - 4rSF*LF,BJ
—~4ALF el C+8r* AL, F?T
—2rtJel-2R L BF+4F AL, e 7?P)C
~12r2JF, e BF 4+ 2r°F*ALL,J
—4F*Cyel 2"V B 14 F?J, el 2R 4
—24r* Jhyel PN LBF —6F,el 2" AJ L+?
—24F2Chyel? P B _rtJel R [ AL
+r"F*CL,BL—-4r*F*C,LB—-4r*F*‘C,B
~24r*JF,LAF*—*F*C,[*B+4r*F*J,LA
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—12F*CF,A+4r*F*CF,B—-6r*FCF,[*A
—6r*Chyel M 2B _riC,el 2P [2B

+ri el 2 [2A_6r5JF,L?AF
—6r5Jhyel 2PV [2B _ 2412 JF%h,el-2h) B
~3r8Jel PN L, BL+1°F%J,[* A

~ 1672 JF*F,A-10r*JF,el2*) B
—2r*F?CF,BL-22*F*CF,LA

—2r*Bel R L, C—-8r2 B2 LF,C
—8FBel*M F,C+4r* F*J,A+3r*F2CL, AL
+4r*LyBF*J+6r*FP°CL,B+10r*F*CL,A

The following method is used to reduce our problem to a finite number of possible
cases. The coefficient of r in the power series expansion defines J, in terms of Cy,
F,, L, and h,. The vanishing of the r® coefficient defines Ak, in terms of L, and F,.
Now, the vanishing of the coefficients for r° and r’ (with the expressions for J, and

h, taken into account) will give rise to the following simple equation:

oL LOF

5 " Foy 33
Now, we recognize 2 cases: either L = 0, or (3.3) can be integrated resulting in

L(y) = cF(y) ,

where ¢ is a constant. The case L = 0 can be included in the case ¢ = 0. If cis

nonzero it can be set equal to 1 for the following reason. If L = cF then

F(1 + cr?)dr
Vonir = S en

Now if r — 7 and F — F such that rF = 7F, then if # = Ar then F = }F . After
this transformation A 2)
1+ 57) ,_
Vondr = oy e dr
and if A is taken as A = /¢ ( ¢ > 0), then

F(1 + 7)dr
dry/gz = 722 4 -2k

If ¢ <0, wetake A = \/—c . Therefore a transformation can be made to set ¢ = +1.
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e Case L=F

The calculations below are only highlights of the whole calculation. The second order
derivatives Cyy,, Fyy, Ly, and J,, can be defined by the r° coefficient of Ra3 and the
r'® coefficient of R;;. Now the r'* coefficient of Rss with the above expressions for

the second derivatives and with L = F give rise to
F*BF,(-3JF,+ J,F) =0. (3.4)

Since F, # 0 (F must remain as a function of y as a generalization of Riemann-flat
case), the solution of (3.4) is either B = 0 (which turns out not to be possible) or
J = F3w(t) , where w is an arbitrary function. Since w = 0 results in J = 0 (which is

not desired), we have that w # 0, and so w can be absorbed by a time transformation.

Thus, we have

J=F3.
Then the r!® coefficient of R,; gives
—FF,,B+ BF?+ FB,F, =\, (3.5)
which can be easily integrated to give
F,
= k=, .
Bly) = k2 (36)

where k is a constant. Given the above expression for B, the coefficient of r* minus

the coefficient of r for R;s = 0 give the result

ehC(t,y)(F3A + 2kh,Fe™* + kF,e ") = F(F3A 4+ 2khy Fe " + kF,e?).

If F3A+2kh,Fe~* 4 kF,e " # 0 (the vanishing case will actually lead to the same
result), then
Clt,y) = Fy)e ™ =C(y) , (3.7)

which implies C is only a function of y. Taking (3.7) taken into account, the r°
coefficient of R;; yields

FF,A, —3AF? — FAF,, — 4AFF, =0,
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which in turn can be easily integrated to give
A(y) = qF3F, e**, (3.8)
where q is a constant. Considering this, the r* coeflicient of R,; yields
qF%e*(F, + Fh,) = ke **(F, + Fh,) . (3.9)
If F,+ Fh, =0 then integration with respect to y gives

h(y) = ln(%y) ; (3.10)

where p is another constant that can be set to unity from the vanishing of the r°
coefficient of Ry;. On the other hand, if Fy, + Fh, # 0 then (3.9) also leads to (3.10).
With the expressions obtained for J(¢,y), C(t,y), A(y), B(y) and h(y), the Ricci-flat

solution is given by

1, F?
Fz(y)(dr2+r2dﬂz)+—ﬁ%dy2 . (3.11)

The above metric is Ricci-flat but not Riemann-flat. It is of course 4D flat on each

ds® = —F*(y)dt* +

slice y = const. The metric (3.11) can be taken to a simpler form by making the

transformation y — ¥ where y = ———, whence we obtain

F2(y)

ds?* = —y~dt? + (dr? + ridQ?) + dy? . (3.12)
Assuming a metric of the general form
ds?. = _4‘/)'2pdt2 + ¢2qdz'2 + w?rdyZ + w'ladzZ + ¢2ud¢2’ (313)

metric (3.12) has the form of (3.13) with

=L _ 1 r—l s---l u=20
p= 27 q—27 —29 —27 -
The above parameters satisfy the relations
p+q+r+s+u=1 (3.14)
P+ +ri+st+ul=1. (3.15)
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Metric (3.13) with relations (3.14) is a generalized Kasner solution [23]. Kasner
solutions have been used to demonstrate why the fifth dimension # is so small; imagine
an ever expanding universe with p, ¢, 7, s all positive, then because of (3.14) u must

be negative and hence, the fifth dimension is contracting.
e case L =-F

This case turns out to give rise the same result as L = F. We shall omit the details

since the steps essentially follow the same path as in the previous case.
ecase L =0

Even in this case, the number of equations, as well as the number of terms in each
equation, are stil! very large. The strategy here is as before; i.e., solving equations for
first order derivatives, say J,, from the first order PDEs. Substituting this expression
back into the other first order PDEs results in

(é — F?e?h)(F,F*Ae*" + 2h, BF + F,B) =0 . (3.16)

Vanishing of either factors will both lead to
J(t,y) = C(t,y)F?(y)e™ . (3.17)
Using (3.17), the other PDEs yield
A(y) = —%"gi (3.18)
B(y) = FF,e" . (3.19)

Substituting (3.17) - (3.19) into the remaining equations will yield the non-trivial
PDE:

4JF) — 3FF}J, + 2FF}hyJ + FyJy F* — F*FyhyJ, — J,FpQF? =0 . (3.20)
In order to solve (3.20) for J(¢,y) we make the simplification

J(t,y) = F*(y)¢(t,y) , (3:21)
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where ¢(%,y) is an unknown function (¢ # 0 and ¢, # 0) to be found by (3.20).
Substituting (3.21) into (3.20) yields

F ¢, — FFhyp, — FF by + FFyby =0 . (3.22)

Equation (3.22) can be integrated after dividing both sides by FF,¢, (F, is nonzero

due to the ansatz we have chosen), resulting in

, F,

by = z(t)Fye" , (3.23)
where [(t) is an arbitrary function. Another integration results

olt,) = 1(t) [ T2t +pl) | (3.24)

where p(t) is another arbitrary function. Using (3.19) - (3.24), we find that the 5D
Riemann tensor is zero and we arrive at the same Riemann-flat metric we found in

case II of chapter two (see (2.28)) .

3.2 Another Ansatz for finding Ricci-flat solutions

The ansatz here is made so that the field equations become integrable. The 5D

spherically symmetric metric is again assumed to be
ds* = —f3(t.r,y)dt* + g*(t,r, y)(dr? + r2dQ?) + K*(t,r, y)dy?

As mentioned before, there are seven non-trivial components of >R;; = 0 and they
cannot be integrated in general. We note that R;5 = 0 has the least number of terms,

and can be written as

39yt + 39e9y — 3fyg — 3keg, =0 . (3.25)

Now, assuming that ¢¢ = 0 and g, = 0, then this equation is trivially satisfied
and makes for much simplification. In this case, the most natural generalization of
the Riemann-flat solution obtained (case II, see (2.28)) with the above simplifying

condition is hence
ds® = —fz(t, T, y)dt'2 + g2(1~)(dr2 + rzdﬂz) + kz(r, y)dy2 . (3.26)
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Now, Rjs = 0 implies (see Appendix B for ’R;; =0 )
furk = Fike =0, (3.27)

which can be readily integrated (assuming f, # 0) giving
fy = kp(t,y), (3.28)

where 1 is an arbitrary function. Taking this into account, R3z = 0 can be integrated
to give

rkf.g. + fogk + 30,k + rfkger + fro.ke + ki fg =0 . (3.29)
Dividing (3.29) by r fgk and rearranging terms gives

&.;.E &.{..1.): a function of r .
g r

f k
If g + gr~' =0, i.e,, g(r) = %, then R3s = —1 which is not possible. Now, since
gr + gr~! # 0, integrating (3.29) yields

f(t,ry) = F(r,y)G(t,y) , (3.30)

where F is a certain functions of g and k£ and G(t,y) is an arbitrary function. With
(E.8) plugged into the remaining equations, Rsz = 0 yields

rkF.g, + F.gk + 3Fkg, + rFkg,, + rFg.k, + Fgk, =0 ,
which can be integrated (after dividing both sides by Fk) to
F(r,y)k(r,y) = A(r)B(y) , (3.31)

where A is a certain function of g, g, and g, and B(y) is an arbitrary function. Now
Rj; = 0 and (3.31) imply that k(r,y) = R(r)¢(y) , where ¢ can be set equal unity by

a y-coordinate transformation, therefore

k(r,y) = k(r) .

Because of (3.31), F(r,y) is now separable where the y-dependence can be absorbed

into G(t,y) and hence
f(t,ry) = F(r)G(t,y) . (3.32)
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With (3.32), Rys = 0 leads to
—~Gy(—kF. + k. F)=0 , (3.33)

leaving two possibilities: either G, = 0 or F' = ck (or after normalizing to set ¢ = 1,
since F # 0, F = k). In the case G = G(t), we have goo = G(t)F(r) where G(t) can
be absorbed by a time coordinate transformation. Hence all three metric functions
are only functions of the r-coordinate. Such a case has been investigated by [29] and
also [30] which gives the Ricci-flat solution

ds* = —A%(r)dt® + B*(r)(dr® + r2dQ?) + C*(r)dy? (3.34)
where

_ar—1 4

A(r) = (= n )" (3.35)
N (ar + 1):(k-l)+l

B(7 ) = (127'2((17' _ 1)e(k-l)—l ’ (3.36)
Cr) = Co(EE Ly (3.37)

ar —1

and ¢ and k are related through

2R -k+1)=1 .

To investigate the second case F' = k, we first note that R;; = 0 has the form

rk(r)g(r)G(t, y)ker + TE(r)G(2, y)k:gr + 2k(r)g(r)G(t, y)k-

+1g(r)°Gyy +rg(r)G(t. y)k? =0 (3.38)
which is of the following form
Gy(t,y) _ —
Glty) - R(ry=C . (3.39)

Since the left-hand side is a function of ¢ and y while the right-hand side is a function

only of r, then both must be a constant; i.e., C is constant. The equation G,, = CG
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has the following solutions

Y(t)siny + ¢(t) cosy fC<0
G(t,y) =14 y+o(t) ifC=0
¥(t)sinhy + ¢(t)coshy if C >0

case C =0

In this case, R;; = 0 has the following form
rkkerg + rkg-k, + 2kk.g + rgk? =0 |
and it may be integrated giving
k.kgr? = n = constant . (3.40)
Now Ra; = 0, with (3.40), can be written as
2 a2 +2m =0,

or

_Ll( ﬁ)
g"k‘l( 2tE) (341)

where u is another integration constant. Substituting (3.40) and (3.41) back into
R, = 0 now yields ,
317 ,.2 _ 52
g(r) = R (3.42)

Using (3.42) in (3.40) gives expressions for f(r), g(r) and k(r) as follows:

P
) = k() = #+n\/§r> ?
f(r) = k(r) (#—n\/?_»r (3.43)
3P — g (VB \ 5
g(r) = 57, (—#+n \/§r) . (3.44)

. 2 . .
Taking m = —“—-, the Ricci-flat metric becomes
V3n
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)

2 -5 7 2 142 m . (1=35 1EFV3) 2 2 1002
ds®* = - 3 (y+v@)d® +(1+ =)' | —& (dr? + r2dQ?) +
2r 1+;

] —m\*%
( '2') dy® . (3.45)

The metric (3.45) is, in one sense, a subcase of the one-parameter family of solu-
tions given by [29] (where @ = /3 and 8 = 1 in [29] ) and [30] (where k = —1 and
€= 715), except for the fact that we have the extra term (y + ¥(¢))? in goo which
cannot be transformed away, and so in another sense it is a more general solution
(depending on the arbitrary function 1(¢)). This solution is also very much like that
given by [32] except that ours is more general due to the term y + % (t). The solution
obtained above is a new solution depending on an arbitrary function ¥(t). However,
on each hypersurface y = constant the induced matter has the same form as for the
metric given by [29] without the term (y + ¥(¢))? i.e., p = P+ 2P, . An interesting
astrophysical implication of the metric (3.45) is that since it is non-static it shows
that Birkhoff’s theorem is no longer valid in Kaluza-Klein theory. In ordinary 4D GR,
Birkhoff’s theorem states that the Schwarzschild metric, which is static, is the unique
spherically symmetric asymptotically flat solution of the Einstein field equations. In
addition, unlike the 4D Schwarzschild metric, (3.45) is singular at r = m /2. This can
be seen by investigating the Kretschmann scalar Rgp4R®? (which is a complicated

function of r alone) which turns out to diverge at r = m/2.
case C #0 : Qualitative Analysis
In this case

Gy, =CG , (Cis a non-zero constant) (3.46)

and the remaining non-trivial ODEs are:

rgkk,, + rkk.g, + 2kgk, +rgk? + Crg* =0 (3.47)
rg*k,, — rgk,g. — rkg? + kgg, + rkgg,r =0 (3.48)
2rk. g, + 2gk, + 3kg, + rkg,r =0 . (3.49)
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Finding solutions for the above system of ODEs is a hard task, so instead we inves-
tigate the asymptotic behavior of above system using a qualitative analysis. Once

again, the metric concerned in this case is
ds® = —(k(r)G(t,y))*dt* + g*(r)(dr® + r*dQ?) + k*(r)dy?, (3.50)

where k(r) and g(r) and G(t, y) satisfy (3.46) - (3.49). By making the transformation
p=lnr,L =lngand N =lnk, (3.47) - (3.49) take the following forms (after having
grr 1solated from (3.49) and substituting it back to (3.47) and (3.48)):

L,=—-L—2N,L,—2N,-2L, , (3.51)
Ny =—N2+3N,L,+ L2 +2L, +3N, , (3.52)
AN,L, + L} +2L, + 4N, + N? + Celm3N+2L420) = ¢ (3.53)

Now, differentiating (3.53) with respect to p and substituting L,, and N,, into
the expression obtained results in the same equation (3.53), which means that (3.53)
is the first integral of equations (3.51) and (3.52). Equations (3.51) and (3.52) are
an autonomous system (i.e., independent of p explicitly) and we shall investigate it

below. Note that if we assume that
N=L+p , (3.54)
in the above, equations (3.51) and (3.52) become, respectively,
Ly, =-3L2—-6L,—2 ,
Lyp=3L3+6L,+2 ,

which results in L,, = 0 or L, = 8 = constant and also N, =1+ L, = a = const.
Integrating L, = 3 gives L = p3 where the constant of integration is absorbed. With
(3.54) the constraint equation (3.53) gives the following quadratic equation:

68°+128+(5+C)=0 ,

with solutions 8 = -1 + 3% anda=1+p8= i’%. Having obtained these we

get the following power-law solutions:
T—
o(r) = eb = e = efinr — B _ YR
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and

k(r) = P25

Substituting the above solutions back into the field equations reveals that the constant
C in the constraint equation must be —1 for the assumption we made above to be
valid. These special solutions will appear below as the fixed point solutions of the
above autonomous system which we are now going to study by using the geometric

techniques of dynamical systems (see Appendix D).

d
By defining L, = ! and N, = n and taking -= &’ equations (3.51) and (3.52)
reduce to the two-dimensional dynamical system

[=—2nl—1?—-2n-2 (3.55)
n=3nl+0-n*+20+3n (3.56)

The system (3.55) and (3.56) has 4 fixed points at finite (r,!) and 6 at infinity. They

are classified as follows:

This solution corresponds to g(r) = constant and k(r) = constant, and in order
for this to be a solution of the system (3.55) and (3.56) C' must be zero and the

corresponding metric would be:

ds® = —(y + o(t))2dt* + (dr® + r2dQ?) + dy* . (3.57)

This is clearly the asymptotic solution when r — oo of the metric (3.45). This metric
is 5D flat and on any slice y = constant is 4D flat. Linear analysis around this point
shows that it is of saddle-type with eigenvalues A = 2 and —1. Therefore the set of

solutions having this solution as an asymptote is of measure zero.

e B: ({=-2,n=0)
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This solution corresponds to g(r) = ,.1_2 and k(r) = constant with C = 0, and the

. . 1.
corresponding metric, after making the transformation R = —=,is the same as (3.57).

It is also of saddle-type with eigenvalues A = —2 and 1.

. C:(l=7‘§-1,n=715)

This solution corresponds to g(r) = r%! and k(r) = r¥% with C = —1. The metric

obtained is
ds? = —rA(siny + ¥(£) cosy)2dt? + rXFE "V (dr? + r2dQ2) + r Ady? . (3.58)

This metric is 5D curved and also 4D curved on each slice y = constant. It is not
static (another illustration of the violation of Birkhoff’s theorem in 5D). It does
not necessarily have any time singularity and it does not have an event horizon. The
Kretschmann scalar is independent of (¢) and is given by K = %r‘7‘5 which diverges
at r = 0. The fixed point C is an attracting focus with eigenvalues A; = —32é :I:iﬁé .

e D: (l=—-‘7‘§—1,n=—71§)

This solution corresponds to g(r) = r~%" and k(r) — ™% with C = —1. The
metric is given by

ds? = —r~VA(siny + () cosy)2dt? + r2 AV (dr? 4 r2d0?) + rFdy? . (3.59)
This fixed point if of type repelling focus with eigenvalues A; = 3? + ilé .

The analysis of singular points at infinity of the autonomous system (3.55) and
(3.56) requires the compactification of (/,n) space. Using standard polar coordinates
defined by | = rcosf and n = rsinf, one can transform the system (3.55) and (3.56)

to the following system for the phase-space variables (r,0):

F = —r2cos?0sinf + 3risin®fcosf — ricos?0 — r?sin30 — 2rcos?6 + 3rsinf |

0 = 4rcos?0sinb + rcosfsin?d + 5sinbcosd + rcos?d + 2 .
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To compactify the phase space we make use of the transformations:

_ r
T =
r+1
0=29
dp _
d—_p—(l-f‘)

where r — oo corresponds to the circle ¥ = 1 in the compactified space. In this new

compactified phase space (7,8) the system has the form:

[ dr ey -
d—‘; = (1 — 7)[~T2%cos?8sinb + Ir*sinfcosf — T2cos>0 — 72 sin>0
—27(1 — 7)cos?8 + 37(1 — 7)sin?d ,
4
d8 N T S - S - NeinBoned 4 Fronc3B
& = 4Fcos*0sinf + Tsin*fcosf + 2(1 — F) + 5(1 — 7)sinfcosd + Tcos 8 .
We now look for the fixed points on the circle 7 = 1 which corresponds to r = co.
dF
At 7 =1, o 0, but to have d— = (0 one must solve the trigonometric equation
dp dp

cos(1 + 2sin(20) = 0, which has six distinct solutions:
=n/2 , 3n/2 , n/24+ /12 , 7 —7n/12 , 3n/2+ /12 , 27 —7/12

on the circle ¥ = 1. Each of above rays are the direction of a single trajectory

approaching the fixed point on the circle.

To analyze the type of fixed points at infinity we make the transformation

1 i do _

n y=a dr ~

Ir =

Therefore (3.55) and (3.56) take the form

dz 2
E—.c(—3y—y +1—2yz —3z) ,
dy
dr

At z = 0 (infinity of (n,!)-plane), j—i = 0 automatically, but solutions of

= -y —2ry? — 4y’ —Syr—2z —y .

dy

= =¥ — 4’ -y =0
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give rise to the three fixed points M(z =0,y =0), N(z =0,y = =2 + V3) and
P(xr =0, y = —2 — /3). Using a phase portrait plotter we find out that M is a
saddle, NV is a source and P is a sink. To investigate the asymptotic behavior of the
solut}ons near infinity (r — o) we notice that at the fixed points at infinity we have

y=_-=a= constant, and substituting [ = an into (3.55) and (3.56), we obtain
. 2 -2 ¢
n=(-2-a)n +(7—2)n ,

n=(a*+3a—-1)n*+2a+3)n .

At large values of n (when terms involving n are negligible comparing terms with n?),

we require that a® + 3a — 1 = —2 — «, with solutions a = -2 + V3. Now at large n,
nx(-2-a)n?= ?\/gn'z s

and after integration
11

nxt—m— .

V3p

This in turn determines the asymptotic forms for k(r) and g(r) as follows:

g(r) = (lnr)¥%*! (3.60)
k(r) ~ (lnr)*% (3.61)

In summary, the analysis of singular points at infinity shows that there are six points
at infinity consisting of two sinks, two sources and two saddles. The two sources at
infinity turn out to have asymptotic forms:

g(r) = (lar)” %+

k(r) ~ (lnr) %

so that k(r) — oo and g(r) — 0 (while the 5D volume element— oo) as r — co. The
two sinks at infinity have the asymptotic forms

o(r) =~ (lnr) &+

k(r) ~ (Inr)" %
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The two saddle points are not of primary interest because the set of solutions ap-
proaching them form a set of measure zero. Figure (3.1) gives the phase portrait of
the system (3.55) and (3.56). Finally, here are a few notes on the exact solutions at

finite and infinite values of the phase space.

e The solutions corresponding to the fixed points (0,0), (—2,0) are 4D and 5D
flat, and therefore are asymptotically flat too.

e The solution corresponding to the point (% -1, 715-) is asymptotically flat in
the sense that lim, ,o R =0

1
e Asymptotic functions g(r) =~ (In 7')?':725+l and k(r) ~ (Inr)*"5 corresponding to
the fixed points at infinite values of N, and L, are not exact solutions of the
corresponding Ricci-flat equations, since they are only first order approximation

to the field equations.
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Figure 3.1: The complete phase portrait of the 2-dimensional system of ODEs (3.55)
and (3.56)



3.3 The equation of state

As discussed in the introduction, the idea of induced matter theory is based on the
splitting of the five-dimensional vacuum Einstein field equations *R;; = 0 into

1
(4)}20”{j - §g°ﬁ (4 —(4) Tos .

where the T, terms are functions of all five coordinates and derivatives with respect
to the coordinates (specifically with respect to the fifth coordinate) and these terms
can be interpreted for example as density and pressure of the induced matter. The

metric we are dealing with is
ds? = —k(r)2G(t,y)*dt* + g(r)*(dr® + r2dQ?) + k(r)%dy® ,

where k and g are governed by equations (3.47), (3.48) and (3.49). On the hypersur-

face y = constant we calculate ‘G,z from above metric and we define

o 1 2
-p=Gy = o [-rg; + 499, + 2rgg..] . (3.62)
1 )
= r__ - . 2 2
P, =Gl 90 [2rgg -k, + Tkg? + 2kgg. + 2¢°k.] (3.63)
= = 2 = 3 = ——— —
P=P=G:=G>3 Y [*h.kgg, + rkgg,e + rg*k., —rkg?] . (3.64)

Substituting g,, from (3.49) into (3.48) gives the following equation for k.,
rg’k,, — 3rgk,g, — rkg? — 2kgg, — 2¢°k, =0 . (3.65)

By substituting (3.65) and (3.49) in the expressions for p, P, and P, = P3 we get

1 . .
i (rkg? + 2gkg, + 4rgg. k. + 4¢°k:) |

p =
1
P" = Pl = T'kg4 (27‘gk,.g,. + rkgiz' + 2kggr + 2g2kr) '
1
PL=P=P= @k,(rg,. +g) .

This suggests an anisotropic fluid source with orthogonal pressures. By using the

above equations we easily get the corresponding equation of state as

p=PR+2P , (3.66)
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which simplifies to the radiation equation of state in the perfect fluid case P = P, .

It should be noted that the equation of state for the special solutions (3.58) and
(3.59) is given by

which of course satisfies (3.66). Note that p > 0 and P; > 0 for all r which agrees

with the energy conditions.
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Chapter 4

A Unified Prescription for some
Solutions in Five-dimensional

Einstein Gravity

4.1 An even more general case

Currently, research in higher-dimensional cosmology has focused on examining cos-
mological models and spherically symmetric models. A spacetime is said to be spher-
ically symmetric if its isometry group contains a subgroup isomorphic to the group
SO(8), and the orbits of this subgroup are two-dimensional spheres. In other words,
a spherically symmetric spacetime is one whose metric remains invariant under ro-
tations. The spacetime metric induces a metric on each orbit 2-sphere, which must
be a multiple of metric of a unit 2-sphere. The most general spherically symmetric

metric, which can be written in the form
ds® = —a®(t,r,y) + b3(t,r,y)(dr? + H(t,y)r?dQ?) + &A(t,r, y)dy® , (4.1)

or one of its specializations, is usually taken as the starting point. Extra assumptions
need to be imposed on the form of the functions a, b and ¢, in order to make any

further progress towards solving the 5D vacuum field equations.
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In this chapter we consider the case where metric functions are separable in the
variable r but not necessarily in the variables ‘¢’ and ‘y’. Previously, investigations
have been made by [28] where the case H(¢,y) = 1 was investigated, aiming at
generalizing previous work of Liu [33],Wesson [22] and Ponce de Leon [34]. The
primary concern in these papers was to examine the existence of possible solutions.
The field equations were taken to be the five-dimensional vacuum field equations,
5R;; = 0, corresponding to the metric (4.1) with H(t,y) = 1. Mc Manus (28] observed
that the three pivotal field equations

K,8In(C|/B) = F.3,In(CB?)

F.3,In(A/B) = K, 8,In(AB?)

Bgy = Bgayln(A) + Byagln(C)
divide the problem up into four distinct classes, namely (1) F, = K, = 0; (2)
F,=0, K. #0; (3) F, #0, K, =0and (4)F.K, # 0. The field equations were

solved in all cases, either exactly or the problem was reduced to two coupled ordinary

differential equations (see Appendix E). In particular, the exact solution

2_ a2 ar-{-l:% 5 a2r2—12ar—174§ s 9 m2
ast = 4%t y)( Ty Fa 4 (CL (S 4 a0
2 ar+1 2 ,

t ¥
+C(ty) (1) R dy

(4-2)

was obtained, where A and C satisfy
9,(C'A,) = a,(A™IC,) .

The above metric generalizes the solution found by [35] (in which the case C =1
was examined) and also a solution found by [34] (in which the case 4, = C; = 0 was

examined).

Our starting point in this chapter is the metric ansatz,

ds® = —e*FA%(t,y)dt? + 2V B (¢, y)(dr® + H?(t,y)r’dQ?) + 2K IC2 (8, y)dy?,
(4.3)
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which is in an even more general form than the one studied by Mc Manus [28] in
which it was assumed that H(t,y) = 1. We wish to find all solutions of *R;; = 0
for the metric (4.3), which is the most general spherically symmetric metric with the
given coordinates (¢,r,6, ¢, y) where the dependence on r is separated. Components
of the Ricci tensor for the above metric may be found in Appendix C. The results of
Mc Manus [28] are briefly reviewed in Appendix E.

We observe that all components R;;, Rj;, R3z and Rss have the same following

forms:
¢2F(r) e2F(r)
R; = e—zc(—,)[Tl(r)] + ;m[Tz(tvy)] + [T5(¢,y)] = 0. (4.4)
2F(r) e217(1')
We readily arrive at 2 possible cases: either e%ﬁ'_) = constant or R0 # constant.
2F(r)
e—-uT) = constant, then the separability implies that
e r
Function of (r) = a = constant = Function of (t,y) ,
] eZF(r) . .
and if R0 # constant then this requires T, = a = constant, T3 = 3 = constant
€
with

e2F(r) e2F(r)
e_'lm[T‘(r)] + ma+ﬁ =0 .
Note that if T, = 0, then (4.4) implies that €**~K)T, + T3 = 0 which results in
:—:;% = constant which is not possible by assumption for this case. If
e2F(r)  g2F(r)
12260 < 2K

then this requires

e21:'(r)
SR+ T+ Ts =0
e2F (r)
(c is the constant of proportionality) which implies either ZKe = constant which is

again impossible by assumption, or ¢ + T, = 0 = T3 which is contained in the case
2F(r)

e_u(—(—) # constant.

e r

Due to the coordinate freedom we can rescale the ¢ or y coordinates, and hence

the possible cases are as follows:

49



e F(r)=K(r)

e F(r)# K(r)

where in the latter case we assume F' — K # constant. In the following we shall look

at each case in detail.

4.2 F(r)=K(r)

Wnting Rn =0 as
Function of (r) = a@ = Function of (¢,y)

gives the result

K ezG
K. +2K!+ K,G, +2— =a—5 , (4.5)
r e
as well as “the rest of terms in R;; = 0 involving t and y” = —a. Also, Ry; = 0 yields
. G e
2R,, +2K? — 2K, G, + 2G,r +2— = B—¢ . (4-6)
r €
Now, R33 = 0 has the following form:
) 1 1
w(r) + 9(r)o(t,y) + (1= 75) =0 - (47

where g(r) = :—z; By differentiating with respect to y, we get

1 28,
9(r)éy + S (F) =0 .

Orne possibility is that H, = 0 and ¢, = 0; i.e., H = H(t) and ¢ = ¢(t). Since
H # constant, then (4.7) implies that r2e*“=K) = constant or

tant
(2G-K) _ constan (4.8)

2
Now if H, # 0 and ¢, # 0, the separability condition implies that

—2H,
B¢,

r2g(r) = ¥ = constant =
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which implies that g(r) = % or, in terms of the original variables,

Q2C6-K) —
r2

That is, equation (4.8) is valid in both of these cases. We can now choose v = 1 by

a rescaling in r which briugs us to the following relation for the metric functions:

G(r) = K(r) — In(r) (4.9)

Now differentiating (4.9) with respect to r twice and substituting the result into
(4.5) and (4.6) we get

K,
K. +3K*+ =2 (4.10)
r r
. K. _ B
Kw+—t=5 . (4.11)

Subtracting (4.10) from (4.11) gives the result

K =3 (4.12)

r

where ¢ is a constant. This case splits in two cases: either § = 0 which implies that
K (r) = constant and the constant could be set equal zero by a y-transformation, or
é # 0 which yields

K(r) =In(r?) , (4.13)

where ¢ is a constant and the constant of integration has been absorbed by a y-
transformation. In the following sections we will look at the two cases FF = K =0

and F = K = [n(r") in more detail.

4.3 Simplifying the metric when F(r) = K(r)

When F(r) = K(r) the original metric takes the following form:

ds? = e2F()[— A%(¢, y)dt? + C*(t, y)dy?| + B%(t,y)e*dr? +
B2(t,y) H?(t,y)r?e*¢(Mda? . (4.14)
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Taking L = BH, one can always make a local Lorentz rotation in the (¢,y) plane,
setting dtdy = 0, and simplifying L(¢,y) as L(t,y) = y or L(t,y) = t, depending upon

whether L ; is space-like or time-like, respectively.

Let us first assume that F = K = [n(r?) (o # 0) so that
Ri;=0 = -30cB;,=0 = B;=0

Rys =0 = —-30’By=0 = By=0,

which implies that
B(t,y) = By = constant . (4.15)

where By can be set equal to unity by absorbing it into the function G(r). Now we

investigate the two cases:

Case(a): (BH),; = space — like, which implies that (after a coordinate transfor-

mation) one can write

BH=y ,

or equivalently
H(y)=y .

Now, R;s = 0 implies that —2C; = 0 and hence C = C(y). The equation R;; =0

has the form
~302AC% —2Cb* A, — yb*C Ay, + yb*C A, =0 (4.16)
and Rss = 0 reads
y Ay b2C + 302 AyC® — yA,C,b* — 26*Ac, =0 . (4.17)

Now by adding (4.16) with (4.17) one gets

CA, + AC, =0
which implies that
At,y) = 40, : (4.18)
C(y)
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where ¢(t) can be set equal to unity by a time transformation. Substituting these

results into the R;; = 0 and Rss = 0 equations, which are in fact identical, yields
302yC* — 2CH*C,, + 3yb*(C,)? — yCpry CH* =0 (4.19)
and R33 = 0 yields
302y*C3? — 2yb*C, — B’C? + B*C(y) =0 . (4.20)

By substituting C, from (4.20) into (4.19), the latter is identically satisfied. Therefore,
the only equation left is the following ODE for C(y):

dC(y) _ 3 10%) , 1C()

dy (502)1/6'3'(3/)—2 ” 5y (4.21)

It should be realized that once ¢(t) is set equal to unity by a time transformation,
one is not allowed to rescale C(y) to unity. The differential equation (4.21) can be

written as

4.l )
dy’ vy VY

which can be easily integrated giving the solution for C(y) as

) = (3%’ —1)( N

y
Cly)= . |—FT
(y) e

where x is a constant of integration. With the obtained metric components, the

Ricci-flat metric in this case is

y y— oy  +k
(4.22)

where o is a non-zero constant. It is interesting to notice that if the integration

_ 2.3
st =yt (LTI g e (a4 i) e (g

constant k is zero, the above metric is Riemann-flat. The Kretschmann scalar for

122

metric (4.22) is given by K = s which diverges as r — 0 (for o > 0). Standard

calculations leading to the effective density and pressures result in

p=r"%(x =%
P =r"%(30% — #)

P = P = r-%g2
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where

p=—-P|+P2+P3 . (4.23)

In the case o = 0, after interchanging r and y and taking x = —m? < 0, we obtain

the Schwarzschild metric

2 2
ds® = —(1 - "‘T)dt2 +(1 - 20142 4 r2d0?
r

a

on each hypersurface y = constant. If o # 0, defining R = % and interchanging R

and y results in the following metric

A2 a2 -1
ds® = oy? [_ (R aR3+fc)dt2+(R ch3+n> dR2+R2dﬂz]+dy2 ,

R R
(4.24)

where 0% can be scaled to unity by a further coordinate transformation. This sep-
arable, static spherically symmetric solution was given in Mashhoon et al. [36] and
also derived in [28]. The intrinsic 4- metric on the y = constant hypersurfaces is the

familiar Schwarzschild-de Sitter metric.

Case(b): (BH),; = time — like, which implies that (in the same fashion as the
previous case)

Hi)=t .
An ODE similar to (4.21) for A(t) is hence obtained:

dA(t) _ (—gaz)tAi‘(t) +

1A3t)  1A(®)
dt 2 t3

2 ¢t 2 ¢t

(4.25)

with a similar solution for A(t) given by

A0 =\ (4.26)

with the following Ricci-flat metric solution:

o-2t3_tt+n v
(4.27)
with a similar equation of state to (4.23). Here again the above metric is Riemann-

flat if and only if K = 0. The Kretschmann scalar for the above metric is given by
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2
K = %, which has a time singularity at ¢ = 0. It should be noted that the above

metric doesn’t compactify.
A final case (c) that we have not considered yet is that in which (BH); = light —
like. In this case, by definition

—2F e—'ZF

.. e . .
g'LiL;=0 = -— (Le)* + ok (L,)>=0 ,
then
CL, = AL,

whence

C(BH), = A(BH), , (4.28)
and since B = By = constant, we get

CH( = AHy .

Although we have managed to simplify the equations somewhat, the remaining field

equations have proven extremely difficult to analyse further.

4.4 K(r)=0= F(r)

In this case equation (4.9) takes the form G(r) = —In(r) (see Appendix C), in which
case all r-dependent equations disappear and the metric functions 4, B, C, and H
satisfy five non-linear coupled partial differential equations in the variables ¢ and y.
This case is in a sense the most general case and it is difficult to make any further
progress. The next step is to investigate if there are any separable solutions of *R;; = 0

for A, B, C and H.
Separability is now assumed as follows:
A(t,y) = a(y)
B(t,y) = b(t)B(y)
C(t,y) = c(?)
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H(t,y) = h(t)n(y),

where the separated ¢-dependence in A has been absorbed by a time transformation,

and the y-dependence in C has been removed by a y-transformation.

Equation R33; = 0 now takes the form

bzhz 2

[( +("W)’+s( )("”)+2("”)2+(ﬂ)<ﬁ)+

/}y My 212
(g)(;)]—bh [( )y + (2 + By

SLOCIC L T )(—)] S=0. )

Writing this expression in the form

b(t)h?(t)
—J T(t)+ Y(y) =
2(1) W +T@E)+Y(y) =0,
results in two cases: either bhc™! = constant which, on taking derivatives with respect
to t, gives rise to % =0, or - # constant which, by differentiating with respect

to ¢, results (after separation of variables) in J(y) = constant and in turn yields

a . .
Y (y) = constant, namely, — = constant. To summarize, the two cases involved are

ns

(z) a(y) = n(y)B(y) (4.30)

or

(i1) c(t) = b(t)h(t) , (4.31)

after some rescaling. Case (ii) where ¢(t) = b(¢)h(t) turns out to be structurally quite
similar to case (i).

In the following, we shall further investigate case (i) in which a(y) = n(y)8(y).
The equation R;, = 0 now implies that

~% —(3ﬂ 420y o . (4.32)
y n
We arrive at the following 5 separate cases to study:

o case(l) b = const and c = const
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e case(2) b = const and 3*n* = const

e case(3) ¢ = const and n = const
o case(4) n = const and B = const
e case(5) n # const, c # const, b# const, 3°n? # const .

In case (5) we immediately obtain

%v. =be
— o — _ 5
3E+2—m—const— -
n c
This can be easily solved to give
b(t) =c(t)™ (4.33)
and
Bly) = )™= | (4.34)

where m is a constant. Then Rss = 0, after rearranging, can be written as

2(m-1

n 5 (4m? — 10m + 4)(%)2 +3(4m + 1)’77“'] =p=

0% _ o7m(Sty? 4 1820 (435)
A c ch
and R;, = 0 becomes
7 (4 = 10m + 4)(E) +3m ~2) ] = g =
—om 4 oLy _ 1gm 3 (430
- c ch

Adding the right-hand sides of (4.35) and (4.36) gives
mp+q=0,

a relation between the three constants m, p and ¢, and subtracting the left-hand side

of (4.36) from (4.35), given that mp = —gq, gives
9(m + 1)’77”” =p(m+1) . (4.37)
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Now, if m # —1, we get 1, = ( g)n, which in turn can be broken into the following
three cases. When p > 0, we then have

n(y) = ae’ + be =L

In the next chapter we shall find that there is no exponential solutions of this type
possible. When p < 0, we get

Ve

n(y) = acos( y+0) .,

and no further progress can be made.

Finally, when p = 0, as seen easily from (4.37), we get

ny)=ay+ec: ,

where ¢; and c; are constants. Meanwhile the right-hand side of (4.36) yields

G _gmS ot g
Ce C h
which can be integrated, giving
cec¥h? =const =1 . (4.38)
Given this, R;; = 0 now yields
—6m(m — 1)c®™ 4+ 2(m — 1)hhic + 2c2R3hy =0 (4.39)
and R33; = 0 implies
(1 = 3m)c**™hy + "™ hR2 + F™R2h + PR =0 . (4.40)

Cancelling hy; from either of above equations and substituting the result into the
other one gives rise a first order ODE which turns out not to be the first integral of
the system of equations (4.39) and (4.40). This means that there are no solutions for
the case (p = 0,m # —1), since one can keep differentiating and each time get a new
ODE for h(t) (which has no common solutions with the rest of the equations). In

other words, the system of equations is not consistent.
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Now we look at the case m = —1. In this case, Ry; = Rss = 0 implies that

h
2(&)217 ~ e _ ¢ = constant = cCy + 3cf + 2ccgf y (4.41)
n n

which gives the following non-linear ODE,
My — 205 + &7 =0 ,

which can be solved by series methods. In the special case where p = 0, we get

1
n(y) = et (4.42)

where u is a constant and the other constant of integration has been transformed

away. The other equation derived from (4.41) with p =0 is
P P (4.43)
which can be integrated giving
cc*h? =const =1 .
Having taken this into account, R;; = 0 has the form
—2hic*h + SPRPhy —6=0 (4.44)
and R33; = 0 takes the form
4hy + c*he + Ph + c*hR2 =0 . (4.45)
Cancelling h;; from the above equations gives the result
6hect — h%c® — cshzhf =0 .

If the above equation is a first integral of (4.44) and (4.45), its first derivative should
result in the same equation; however, instead it gives rise to a different ODE, which
means one can keep differentiating and obtain different equations. Hence, there are no
solutions for the case (5) where 1 # const, c # const,b # const and 3°n? # constant
when p > 0. In the case of p < 0 the remaining equations are intractable. We now

return to the other cases:

59



Case(1) b(t) = constant = 1, and c¢(t) = constant = 1. Ry, = 0 then takes

the following form:
Py gl y
8 n

By

g =0

which can be integrated giving
8,8°n® = constant .
Given this relation, R;; = 0 can now be separated as
htt

— = const = a = some function of (y) ,

h

or

hu = ah.

Now R;; = 0 takes the following form
—drny — 2802 + 208°n* — B0y =0 .
and Rss = 0 has the form

26y n? 3% — 3% Ny + 462 =0 .

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

These equations turn out to be incompatible since by cancelling n,, it can be shown

that the first order ODE obtained is not a first integral. Therefore, case (1) has no

solutions.

Case(2) b= constant and 3°n? = constant. Here Ry; = 0 gives

oy _3lw _
n My

Y

which has the general solution

n(y) =(y+u)? ,

where the other constant of integration is absorbed. The remaining equations are

Ru= 42—,
c h
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h h h 1
Ro= i+ 3o+ GV +E=0 (4.52)
Cet hiee 6 _
Res == 4272~ 5 =0 . (4.53)

By cancelling A, and c; from two of above equations and substituting in the other

equation, we get the following mixed first order ODE

Ll (454

Differentiating (4.54) with respect to time and replacing k. and c; from the other
equations gives rise to the same equation as (4.54), which means (4.54) is a first
integral. Therefore, among equations (4.37), (4.52) and (4.53), only two of these are

independent. Therefore, in this case the solutions are given by the metric

ds? = — dt? + —————(dr? + h(t)r*(y + 1)3dQ?) + 3(t)dy®
s (y+ 1) +r2(y+#)2(r () (y + 1) ) +c(t)dy
where ¢(t) and h(t) satisfy
3+2h7:5=0
c
E .,ﬁ_c_‘. (ﬁ)z.i_i 0
h h c h h2

Case(3) c = constant = 1 and n = constant = 1. In this case Rss = 0 has the
simple form 8, = 0, which has the general solution 3 = y + p where the other

constant of integration is absorbed. The remaining equations are

3hbu - 3bh + 4b¢h¢ + 2bhu = O y (4.55)
—bhby + 3b%h — 2hb? — 2bbh, =0 (4.56)
Sbbghhg + bb“hz + bzhh“ - 362’12 + 2h2bt2 + bzh? + 1 = 0 . (4.57)

As before, cancelling b, and h,, from two of the above equations and substituting into
the third gives
4bhb.h, — 3b*h* 4 3b7R* + B*R2 41 =0 , (4.58)

which is the first integral of the above equations. Therefore, there are only two
independent equations in this case for the functions b(¢) and A(¢), namely equations

(4.55) and (4.56) or (4.55) and (4.58). Therefore, in this case the solution is given by
ds® = —(y+p)dt* + b (t)(y + p)’[dr® + RP()r?dQ°] + dy? | (4.59)
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subject to these two ODEs.

Case(4) here 7 = const =1, 3 = const = 1. In this case Rj; = 0 implies
2b2ch +2b.cbh, +c. bb. h

btl = - bhc b (4'60)
and R55 =0 yields b h
-3¢ —2¢bh
Co = : lbh el ; (4.61)
and Rj; gives
27 2 2
h“=—3thbthg+C+Cb hg +Cgb hh¢ (4,62)

b*he
By substituting (4.60), (4.61) and (4.62) into R;; = 0 one obtains the following first

order equation:
3b2h?c+4bhcb by +3cbh*b, +c+cb®h’ +2cb®hh =0 . (4.63)

Differentiation of (4.63) results in the same equation which means that (4.63) is a first
integral. Therefore, this case ends up with three second order ODEs for the unknown
functions b(%), c(t) and h(t).

To summarize case (i) where a(y) = 1(y)3(y), we have analyzed the field equations
in detail and showed that in each tractable subcase either there are no solutions or the
whole set of field equations is reduced to a system of two (three) coupled non-linear

ordinary differential equations for two (three) unknowns.

In case (ii) in which ¢(t) = h(t)bd(t), the R;5 = 0 equation implies that
By hg ay bg ht _
3 h + a(3b+2h)—0 ,

which has the same structure as (4.32) wherea -+ ¢, » = h, 8 — band y — t.
The rest of the analysis follows the same as that of case (i) and results in similar

conclusions. For example, the analogue of metric (4.59), given by

ds?® = —dt’ + B%(y)(t + p)*[dr® + n(y)*r?dQ°] + (t + p)*dy?

where 3(y) and n(y) satisfy the two ODEs (4.55) and (4.58) (replacing b by 8 and A
by n), is a Ricci-flat solution.
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4.5 Case F # K where F — K # const.

Here, according to the analysis done earlier, R;; = 0 takes the following form:

__p2F 2F 2F
— —(Fu+F*+FG, ,)+a—:71?+ B=0, (4.64)
with i .
B? A B, A A, H,
At -actiaE) T (4.65)
and
) - H H,

where a and 3 are constants. Also, R;; = 0 implies
26 2G

- . 2 e
F.,. + F,.2 - F.G, +2G,, - K,.G, + K,, + K,? + ;Gr - “/'67;: + 5'6—5;‘- =0, (4.67)

where v and § are constants. Now R33 = 0 has the following form:

[G"+G2+FG + K,G, + = G +£+A—

B 2626 Bu AtBt 2 Cng A¢H¢ Hu 2 Cth
r (-)eZF[“f+ 43"(—) TB TAH H (& 7 - Ch
. B, A, B Cc,B H, C H,
HrHE G [ e AR - B T (P - 2
B,H, C,B 1
+5 B"H”— CZB”]+(1——2)=0 , (4.68)
which is of the following general form
f(r)+g(r)L(t,y) + h(r)M(t.y) + N(t,y) = 0, (4.69)
where .
g(r)=r eg_p
e
¢2G
h(’f‘) = Tz‘e—‘qf.
1
ty)=1-—
N(t,y)=1 D
and
F(r) =12 [G,,+G2FG +K.G +° G Fr I‘]

A careful analysis of (4.69) consists of studying the following distinct cases:
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¢ L =c¢ = const, M = c; = constant and N = c3 = constant with f + g +
c;h+c3 = 0. Since N = constant implies H = constant, this is the case studied
by Mc Manus [28] in which H(¢,y) = 1.

o g=c1f +c2, h =c3f + cqy where f # constant (or equivalently g = Ah + u)
with N = L + c4sM and ¢;L + c3M +1 = 0. Here ¢; and c3 cannot be zero

simultaneously.

e f = ¢ = constant, g = c; = constant and h = c3 = constant with ¢; + c;L +
csM + N = 0. Referring to (4.69) this implies that F' — K = const which is in

contradiction with the case we are investigating now.
o N = Ny = constant, g(r) = ch, M = —¢1 L + c; with f + ch + No = 0. This
again leads to the case studied by Mc Manus [28] in which H(¢,y) = 1.

Therefore, assuming H(¢,y) # 1, the only case which has not yet been studied is

the secondcase above in which
g(r) = Ah(r) +p ,

with N = —0L —6M and aL + BM +1 = 0 where A = /3 and p = 0 — ad/3. This

requires

or equivalently

Since A and p are both non-zero (since the cases in which each of these vanishes leads
to a case already studied), we can take g = 1 and A = 1 by rescaling of r and y,

respectively, to obtain

1
2G(r)
e?lr) = r2[e-2F — e—2K]’ (4.70)

With this expression for G taken into account, R;, = 0 takes the following form

F.e *F[2CHB, + HBC,| + F.e"*[-2CHB, — 2CBH, — HBC}] +
K.e *)[+2CBH, + HBC, - HCB,] +
K,e"*[-HBC,+ HCB,] =0, (4.71)
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and R,s = 0 takes the form

F.e*F[2HBA, — HAB, + 2ABH,| + F,e**[-HBA,+ HAB,| +

K,e*K[HBA, +2AHB,] +
K.e *f[-HBA,—-2AHB, —2ABH,]| = 0.

(4.72)

The functional form of (4.71) (and (4.72)) divides the problem into four distinct

cases.

Case (al) none of the terms Fre~%¥, F,e™2*, K,e *K  K,e™*F are proportional.

This case readily implies

2CBH,+ HBC,— HCBt =~
—HBC,+ HCB, =4,

(4.73)
(4.74)
(4.75)

(4.76)

where «, 3.7 and § are arbitrary constants (and similar results follow from (4.72)).

The case « = 3 = v = § = 0 must be treated as a separate case. When they are

non-zero, (4.73) and (4.74) imply
CBH, = constant,

and (4.74) and (4.75) imply
C HB; = constant,

and (4.73) and (4.76) give
HBC, = constant.

Dividing the above equations by each other implies

2 _ B

H B
This can be integrated to give H(¢,y) = B?Y;(y), where Y;(y) is an arbitrary function.
Similarly

¢ _ 5B

c "B



can be integrated to yield C(t,y) = B*Y2(y). Finally,

can be integrated to give H(¢,y) = C*Y3(y).

Now Rjs = 0, with the above conditions, yields
AyHB = constant

B,HA = constant
H,AB = constant.

By similar methods we thus obtain
H(t,y) = BYP(t)
H(t,y) = 4°Q(1
A(t,y) = B¥R(t) .

Now

H(t,y) = B"M(y)
H(t,y) = B*P(t)
implies
B(t,y) = M(y)P(2).

Therefore, all of the functions H, C, A, B, are separable. Separable power-law solu-

tions will be studied in the next chapter.

Case (a2) when a = 8 = v = § = 0, integration of (4.73), (4.74), (4.75) and
(4.76) gives the following relations:

B*C = a(y),
BC~' = B(y),
B*H*C = ¢(y),
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H*CB™ = §(y).

Combining the above relations leads to the fact that all the functions B, C and H
are functions of only y. Repeating the analysis for R;s = 0 in this same case then
implies that H(t,y) = constant, which was studied before by Mc Manus (28].

Case (b) all four terms F,e~?F, F,e X K,e X, K,e™?F are proportional. This

implies
F.e % = qF.e7 %K | (4.77)
F.e = pK,e7*K | (4.78)
F.e % = yK.e % . (4.79)

Equation (4.77) now yields e*(F~X) = constant and hence, after a coordinate redefi-
nition,
F — K = constant .

This case has been studied before under the case FF = K.

Case (c) three of the terms F,e~%F, F.e7?K K,e=?%X, K,e~*F are proportional.
There are four combinations of three terms and all of them lead to the previous case

in which F — K = constant.

Case (d) two of the terms F,e=%F, F,e 2K K,e 2K, K,e *F are proportional.

There are six combinations of two terms which lead to either the previous case in

2F — 2K 4 constant or e~2F =

which F — K = constant, or — = constant, or e

r

e 2K 4 constant. The case where — = constant can be integrated to obtain

K,
F=aK+5b .

With F' = aK (b can be absorbed), R;2 = 0 takes the following form:

e %K[-2¢CHB, — aHBC, + BHC, — HC\] +
6—2K[-2CBHt +
2aCBH, — HBC, +2aCHB, + aHBC, + HCB,] =0 . (4.80)

67



This implies that
—2aCHB¢ - (ZHBC¢ + BHCg - HCBg = 0.

2aCHB,; + aHBC, — BHC, + HCB; + H,CB(2a —-2) =0 .

After simplification, this reduces to
H,CB(2a—-2)=0 .
Since a # 1 [ note that a = 1 implies F = K, which has been studied already ] then
H,=0; H=H(y) .

This in turn implies that,

[-2¢CHB, — aHBC, + BHC, — HCB,] (e7%K _e 2Ky =9 |
and hence

B, C.

Bl-a) (+2a)C
After integration this becomes

B(t.y) = [C(t, ) o(y) -
A similar calculation for R;s = 0 (with F' = aK) results in
H=H(t) .

Therefore we have that H = constant, and this case was studied by McManus [28].
The two other cases € = e** 4+ constant and e~2F = e 2K + constant can be shown

to also lead to the previously studied case H(t,y) = constant in a similar way.

To summarize, in this chapter we have analyzed the most general spherically
symmetric metric (4.3) in 5D where H(t,y) # 1. The problem broke up into two
natural cases; F = K and F # K. In the first case we employed methods to simplify
(such as a separability assumption) the problem further. In most cases the problem
was either reduced to one or a system of two nonlinear ordinary differential equations
for the remaining unknown functions or shown to reduce to a case studied earlier.
In the second case F' # K we showed that all solutions not studied previously are
necessarily separable. In the next chapter we shall study the separable case further.
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Chapter 5
Search for other simple solutions

In this chapter we will search for power-law and exponential solutions of the metric

(4.3), as well as analysing some self-similar solutions in a 5D spherically symmetric

spacetime.

5.1 Power-law Solutions

We assume separability and the following forms for the metric functions (some func-

tional dependences have been absorbed by some coordinate transformations)

¢

A(t,y) =

) B(t,y) = t" 8
C(t,y) =t?

| H(t,y) = ty”

The Ricci-flat field equations (in the case where FF = K = 0 and G = —Inr)
are reduced to a set of algebraic equations for the constant exponents a, 3, A, 6, n
and o. The following are the non-trivial set of algebraic equations (corresponding to

the equations Rgo = 0, Ry; = 0, Ryq =0, Rgo = 0, R22 = 0 and Ry = 0, respectively):
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V[B3A2 -3\ + 4 p+ 29 —2n + 3% -0l +
y2*t?(1-P)[_3ad — 200 — a® + o] =0, (5.1)

yz('°+6+l)t2'\[—3/\2 + A - 2/\7] - ﬁ’\] +
y25t2(-"+“+”[a6 + 38 + 260 — 8] =0, 5:2)

t*a® — a + 362 — 36 + 460 + 207 — 20] +
£28,20-a)[_g2 4 3 _ 38X —20y] =0 , (5.3)

yPE+a) 2B+t [3452 4 555 4 202 + (o — 1)(8 + o)
yRmatstet D 20401302 4 50 + 20° + (8 — 1)(A + 7))
- yltz = 0 ’ (5.4)

3Ad — 3aA — 3066 + 2\d + 2ndé + 2no — 2an — 200 =0 . (5.5)

The above equations can be split into four cases:

ea=1&p3=1

Here (5.1) takes the form
3A2 —3XA =38 +4An +2n° — 2 — 20 , (5.6)
also (5.2), (5.3), and (5.5) appear as
3A% +2)n — 36% — 260 (5.7)
362 — 38 — 3\ +4é0 +20% —20 27 , (5.8)
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3AN-32—-30+2Ac+20p0 +2nc —2n —20 =0 . (5.9)

The only non-trivial solution of (5.6), (5.7), (5.8) and (5.9) is
A=2, 6=2, n=0, o=0. (5.10)
This results in a 5D flat solution
ds? = —y?dt? + yitt(dr® + ridQ?) + t3dy® (5.11)

which is, in fact, 4D curved. It should be noted that the solution obtained above
is special case of the solution found by Ponce de Leon [25] (with their free param-
eter equal to 1/2). The corresponding equation of state for this case has the form
P =-2/3p.

ea=1&0#1

This case turns out to be impossible due to the inconsistency of the resulting system

of algebraic equations (which is similar to the system in the previous case).
e a#l& =1

This case also turns out to be impossible.

caAl&pB#1

In this final case the set of algebraic equations to be satisfied are :

IAA—1)+2(n—1)+B(B—1)+ 4\ =0

—a(36+20+a—1)=0
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A(=3A+1-2n-3)=0
d30+20+a—-1)=0
B(=3A+1—-2n—-p3)=0
3(6—-1)+20(c—-1)+ala—1)+4éa=0
36X — 3a)\ — 386 +2\o0 + +2ndé + 2no — 2an — 2Bo0 =0

In addition, there are algebraic relations from the equation Rz, = 0, but we shall

not to consider them yet. Again, there are four cases to consider.
Case(l) 30+20+a—1=0and3X+2p+8—-1=0

Now Ry, = 0 takes the form

yRlotd2@a+3n)(352 | 555 + 202 — (8 + o) (+38 + 20)]
y2Us+39) 2040302 4 5an + 202 — (A +7)(3A +2n)] —y*2 =0 . (5.12)

Since 0 + 8 = 1 with 4A\ + 3 = 0, and 46 + 30 = 1 with A + n = 1 implies that
Rgs = —1, there is no solution in this case. Other possibilities are o + § = 1 with
4\ + 3n = 0 with either 46 + 30 # 1 or A + 1 # 1. These cases turn out to be

impossible as well.
Case(2) a=A=6=08=0

In this case Rg4 = 0 = 2no with R, = 0 = n(n — 1) and R,y = 0 = o(c — 1).
The solutions o = 0 and n = 0 correspond to H = constant, which have been studied
before, and ¢ = 0 and n = 1 give the result that R;; = —2 and hence there is no solu-
tion. When ¢ = 1 and n = 0, there is the new solution (after redefining r coordinate
as R = Inr)

ds? = —dt* + dR? + y*dQ? + dy? . (5.13)

Calculations show that the above Ricci-flat metric is actually Riemann-flat but it is
4D Riemann-curved. It should be noted that the above metric doesn’t compactify.
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Case(3) a=0,5=0and =1-3\—2n.

Here R, = 0 = o(c — 1). When 0 = 0 then Rgg = —1 (i.e. there is no solu-
tion), so o = 1 whence Rz; = 4A +37n —1 =0 and Ry = (2A +1)(A — 1) =0 (i.e.
= —1 or A = 1). We arrive at two new solutions; the first is (A = 1, n = —1),

after redefining r coordinate as R = Inr,

ds? = —dt? + t2dR? + yd0? + dy?, (5.14)

which turns out to be 5D Riemann-flat but 4D curved. The other solution ( A =

—3, 7 =1), again after redefining r the same way,

ds? = —dt? + t7'dR? + ty?dQ? + tdy?, (5.15)

which is Riemann-curved both in 5D and 4D. The Kretschmann scalar for the above

metric is given by A = which indicates that the above metric has a big bang

e
singularity at t = 0 a.nc%ta.lso, since the expansion rate along the fifth dimension
is positive, it implies that the model does not compactify. On each hypersurface

= constant the 4D metric is of type Kantowski-Sachs metric. It is also intersting
to note that by defining R = [n(r) and interchanging R and y in the above metric we

obtain the following Kasner metric:
ds? = —dt* +t (dR* + R*dQ?) +t7'dy? . (5.16)

Standard analysis of induced matter theory gives the following relations for the density

and pressures in this model:

([ ly* -4

p——z 1242

_+1y2—4t

P ey
11

P2 -%?<0

np3=—Zt_2<0

The energy condition p > 0 implies that p; < 0 and they satisfy the false vacuum
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equation of state p = —p; with p; = p3 < 0.

Case(4) A\ =0,=0and a=1-3/—2c

The equation Rge = 0 implies that 7(np — 1) = 0; however, neither of the solutions

n =0 or n =1 lead to a self-consistent solution.

5.2 Exponential Solutions

Exponential solutions of form

A(t,y) = e

| B(t,y) =ete
C(t,y) =

| H(t,y) = ere

have also been investigated. The field equations °R;; = 0 corresponding to metric
(4.3) are again a set of algebraic equations in «, 3, §, n, A and . However, detailed

calculations show that there are no solutions of this form.

5.3 The analysis of some self-similar solutions in
five-dimensional spherically symmetric space-
time

Here we are interested in finding exact self-similar solutions of the five-dimensional

vacuum Einstein equations. The metric of the form

ds? = _ezF(rjt,y/t)dtz + e2G(r/t,y/t)dr2 + e2L(r/t,y/t),r2dQ2 + e2H(r/t.y/t)dy2 , (517)

admits a homothetic vector of the form

£ =(¢r,0,0y) . (5.18)
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The field equations ®R;; = 0 consist of a system of coupled partial differential equa-
r
tions in terms of the variables u = 7 and v = -'lt{ However, these equations are hard

to solve. Therefore, let us focus our attention on the two following special cases:

Case(l): F = F(r/t), G = G(r/t), L = L(r/t) and H = H(r/t). In this case
there is always a coordinate transformation in the (y — t) plane which allows the two
functions L and G to be set equal. Solutions in this case correspond to self-similar
solutions in the Brans-Dicke theory [27] .

Case(2): F, G, L and H are functions of y/t only. Here there is no coordinate
transformation to bring L and G equal. The vector £* = (¢,7,0,0,y) is still a homo-

thetic vector. The system of equations >R;; = 0 are still hard to solve.
In addition, the metric of the form
ds? = —e2Flr/tu/t ge2 | 2G(r/tw/t) .2 4 2L(r/tw/t) 24002 ,.'26‘2H(r/t.y/!)dy'2 ., (5.19)
admits the homothetic vector
£ =(¢,7r,0,0,0) (5.20)

where the g4 term in metric (5.17) has been multiplied by r2. In case (1) the field
equations again become a system of coupled ordinary differential equations; it is still
hard to solve this system in general even in this special case. However, there is an

exact solution due Roberts [37] for this special case which is given by
AN y ; t . t
ds* = (1+ p;)th'[—dtz +dr* + (1 £ p;)dﬂz] +(1 -J:p;)qZVZde2 (5.21)

where p is a constant. It should be mentioned that Roberts’ solution is not the most

general one in this class of models.
Finally, the metric

ds‘l — _e‘ZF(r/t,y/t)dt'l + y2e2G(r/t,y/t)dr2 + y262L(r/t.y/t)r2dQ2 + e2H(r/t.y/t)dy2 , (5.22)
admits a homothetic vector of form

£ =(¢,0,0,0,y) . (5.23)
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Chapter 6

Einstein-Yang-Mills Extensions of

Induced Matter Theory

6.1 Motivation

The aim of this chapter is to extend the idea of induced matter theory to incorporate
a larger class of physical fields and hence obtain more general equation of states.
In higher-dimensional theories (e.g., unifications of gravity with weak and strong
interactions, as well as electromagnetism), when one chooses coordinates such that
the metric’s off-diagonal components are associated with gauge fields, an isometry
group of internal compact manifolds generates a non-Abelian group of gauge trans-
formations which lead to an effective four-dimensional action for Einstein gravity plus
non-Abelian gauge fields. Of course, finding solutions of the resulting field equations
of these theories, in particular in the spatially homogeneous and isotropic case, is
of interest in its own right. Normally, the four-dimensional properties of matter are
investigated by assuming that the higher-dimensional vacuum equations of general
relativity reduce to Einstein’s four-dimensional theory with matter [20, 22|, although
higher-dimensional generalized Lagrangian extensions of general relativity (with the

addition of quadratic curvature invariants to the Einstein-Hilbert action) have also
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been studied [23]. Here we shall investigate whether Einstein’s four-dimensional the-
ory with matter can be embedded in a higher-dimensional theory of Yang-Mills-type,
i.e., whether the correct field equations are the vacuum Einstein-Yang-Mills (EYM)
equations. The idea is that the extra terms present in the higher-dimensional field
equations may play the réle of the matter terms that appear on the right-hand sides
of the embedded four-dimensional Einstein field equations with matter. As noted ear-
lier, the notion that the properties of matter might have a geometric origin has been
developed by many authors [38, 39, 30] and is in the spirit of the original Kaluza-Klein
theory [5, 8, 9].

We shall consider the D = 4 + N dimensional metric in the form
ds® = gapdz®dz® = gapdz®dz” + gapdy?dy®, (6.1)

where ds? = g,sdz®dz® is given by the Friedmann-Robertson-Walker (FRW) form,

dr?
1— kr?

dsi = —dt* + H*(t) [ +r? (01492 + sin20a'¢2)] , (6.2)

where k is the normalized (i.e. k = 0,+£1) curvature constant. In this case the matter
source is a perfect fluid with energy-momentum tensor given by (1.3), where u and p,
the energy density and pressure, respectively, are given by equations (1.4) and (1.5),
viz N
) H 1 )
k + H?), =-2— — —(k+ H?).
(k+H"), p g m kT )

The phenomenological physical quantities u and p are of course to be interpreted in

3
k=

terms of more fundamental geometric quantities.

Recall that the five-dimensional metric given by (1.17), i.e.,
ds? = dsk + L*(t)dy®
in the flat case (k = 0) gives rise to the familiar solution
H=t:, L=t7 , (6.3)

3
p= 3p = Zt—z y (6.4)
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which represents the familiar flat FRW radiation model (see equations (1.18) and
(1.19). In higher dimensions (N > 1) with flat spatial curvature, the familiar gener-
alized Kasner models are derived [23].

Here we wish to examine cosmological models in which Maxwellian and Yang-Mills
terms are added to the standard Einstein Hilbert action
—-R
s= [V
In particular, in section (6.2.1) we augment (6.5) in five dimensions with an Abelian
U(1) field. Next we consider an SO(3) model in D-dimensions in section (6.2.2).
In section (6.2.3) we derive the induced matter from a five-dimensional theory of

(6.5)

supergravity. Section (6.3.1) gives an example of how one could generalize these

examples by considering anisotropy in the three-space.

6.2 Einstein-Yang-Mills Theories

6.2.1 Abelian Gauge Fields

We begin by examining five-dimensional Einstein gravity augmented by a Maxwellian

field, described by the action

S=[dV — ZF,,,,F“”} , (6.6)

where k2 = 47 G and F; is the field tensor of a U(1) Abelian gauge field. This model
has been extensively studied in [40] and [41], in which the Rubin-Freund ansatz

QL

F=—r .
oy dt A dy, (6.7)
has been assumed, and where the metric is given by
2 _ g2 2 2 (102 | 29042 2 2
ds® = —dt* + H*(t) [1-—kr2+r (d€ + sin“0d¢ )]-{-L(t)dy. (6.8)

By varying the action (6.6) one obtains the following relevant field equations:

(6.9)




3— == _ (6.10)
L 2 . 20 GQ?
faindined — 2 —_
+ (H +k) 3 + 6w HS’

where a dot denotes d/dt. In [40] these field equations were used to describe a N-

| ) e
o
t~

(6.11)

dimensional compact internal space with two additional dimensions : one time-like
and one space-like. This particular example then implies that k > 1 in the above field
equations. However, since the internal space is space-like, one could equally view this
as describing a space-time with one time-like dimension, three space-like dimensions

(by setting n = 3) and one internal dimension, and therefore k can be 0 or *1.

The solution to (6.9) for H and L is given by

V2GM [, @ | 2AH°  kH!

H? 24rM = 24GM 2GM’
where M is an integration constant. When A = k = 0, and defining a and 3 by
a = V2GM, 3* = Q%247 M]~', equation (6.12) can be further integrated to yield
(after rescaling of t)

1, 1
ot = =% cosh™ (H/B) + §H\/H2 -, (6.13)

It is straightforward to derive the equation of state in this case, although it is not nec-

B =I%= (6.12)

essarily needed to find H in terms of ¢ to find the forms of 1 and p. By differentiation

with respect to time from (6.12) one gets

-4GM  GQ@?

2H = — s + e HE (6.14)
and the following expressions for x and p,

H* 6GM GQ?

k=SS T A (6.15)
H H 2GM  GQ?
= 25— : :

p (g =" i (6.16)

Now by using the above expression one obtains,

1 4GM  GQ?

3HYP= T T3 (6.17)
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multiplying (6.15) by 4 and (6.17) by 3 and then subtracting results in

1 _ [p=p
H " V4GM - (6.18)

Then, by inserting (6.18) in (6.17), one obtains the equation of state

1 .
(gﬂ—p)=wﬂu—pP~ (6.19)
where .
w2 = ———Qz
(487)2GM3

The late time behavior of these solutions asymptote towards a radiation equation

of state. This becomes apparent by examining (6.13) for large H. We notice that
. cosh-l(%)
m ———x =
H—=oco H\/Hz — (;2

Now for large values of H we get H? =~ 2at, and so p ~ tu = 1t~% by using (6.15).

0

The corresponding line element is
ds? =~ —dt® + 2at(dr?® + r?dQ?) + %dyz,

the four-dimensional component of which is a special case of the Tolman line element.

6.2.2 Yang-Mills fields in Higher-Dimensions

We turn our attention now to non-Abelian fields coupled to higher-dimensional Ein-
stein gravity. As an explicit example, we shall consider an SO(3) Yang-Mills field
coupled to gravity via the six-dimensional action

— 2 (R+2A) E (a) r(a)aB
5_[d6v {— T — 7 FSF (6.20)

(where again x? = 47G), with the metric described by the line interval

dr? + r2dQ)?

d 2 - — 2 2
s dt* + H (t)———(1 T

+ L2(t) [d€* + sin®(€)d(?]
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where y! = € and y?> = ( are the two extra coordinates. We assume also that all

components of the gauge field are zero except

AP = (v—1/e)[~sin(,cos(,0], (6.21)
A(Ca) = (v—1/e)[—cos(cos€siné,sin(cosésin&, 0], (6.22)

where v is an integration constant and e is the field’s charge (see [42]).

The relevant field equations obtained from this action, using the above ansatz for

the metric and gauge field, are

L

3% +27 = %A —aL™ (6.23)
g + 2% + % (H? +k) = %A —aL™ (6.24)
% + 3% + % (i +K) = -;—A +3aL™ (6.25)
6(%—’“) +12—;%+2(L2;K) =2A + 4oL, (6.26)

where o = {(v?e — e7')?. Cremmer and Scherk [42, 17] presented a six-dimensional
Yang-Mills solution similar to the 't Hooft magnetic monopole [43, 44] where L = L
a constant and & = 0 (see also [45]). Their solution is a fixed point of the system
(6.23) for N =2, K =1 and k£ = 0 (see below).

These field equations can be generalized to the (4+N)-dimensional case in a
straightforward manner. In particular, we can exploit the results of Wiltshire [41]
who studied an Abelian gauge field (using the Reubin-Freund ansatz) coupled to
(4+N)-dimensional gravity using the line interval
dr? + r2dQ?

_— 205\ 1.0
(1 + Lkr2)z + L*(t)grsdy dy”.

dst = —dt? + H(t)

Here, the “internal” space is an N-dimensional Einstein space of constant curvature,
K, described by the metric gys; i-e., the Ricci tensor constructed from g;; is defined
by Ry = (N —1)Kgs.

The field equations in [41] are given by

: L
32 4Nt =22

_ _1\7-2N
g NE =g e =1L (6.27)
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H HL 2 ,., 2A _aN

2 N22, 2 = — —1)L 6.28
gt VNELtm (E R =g eV -1 (6.28)
[ _HL N-1,., 2A N

L kel 0 = 29
T3t (L% + k) Nz 3l (6.29)
H +k HL L+ K _aN
6(—21.2—)+6N—ﬁ+N(N—1)< I2 )—2A+(N+2)QL .

(6.30)

Our immediate focus here is with the case of an SO(3) non-Abelian gauge field
in six dimensions. However, we note that the results pertaining to this particular
case follow immediately from the solutions of (6.27)-(6.30) by setting ¥V = 2 (for
more details about the SO(3) model see appendix C). Attempts to solve (6.27)-(6.30)
analytically for the most general solution may prove futile. However, the behavior of
the system for all times may be obtained through qualitative analysis. This can be
accomplished either by a stability analysis of the known solutions using perturbation
methods (see appendix C) or by the the method used by Wiltshire. In his work, he
completed a full phase-plane analysis of equations (6.27), including use of a Poincaré
transformation to compactify the phase space in order to evaluated the system’s
fixed points at infinity (in terms of the dynamic variables used). We only highlight
the solutions obtained in Wiltshire’s work and refer the reader to his paper for full
details of the analysis. Specifically, we will describe the non-saddle fixed points of
(6.27), describe the “induced” equation of state associated with each of these fixed

points and then briefly summarize the behaviour of the solutions.

The field equations (6.27) admit up to seven non-saddle fixed points, although
several of these fixed points are described by the same solution. The first set of fixed
points are the only fixed points at infinity and are represented by the generalized
Kasner solution [23, 41, 46, 47|

H = Hyt™, L= Lot"*, (6.31)

where

—— — 2
my = ——3+N{li~3\/3N -i-ﬁN}< 0 (6.32)
1

- = l 2 }<
ny = 3+N{1:|:N\/3N F6N} 5o, (6.33)
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where two of the fixed points have (m4,n,) and the other two fixed points have
(m_,n_). Although there are two solutions here, the solution with m_ and n_ are
only saddle points and so solutions asymptoting towards or away from this solution
are of measure zero. One of the m, and n, solutions is an attracting node whilst
the other is a repelling node. Here, and throughout the rest of the paper, when the
Kasner solution is mentioned it will be assumed that we are referring to the m, and

n, solution unless otherwise stated.

For both solutions (m4 ), the induced matter has the equation of state (see [23])

o _{2N+3¥\/3N2+6N}
P=%E =" 3L AN2 1 6NV

For the m, solution, o ranges from 1 for ¥ =1 to §(\/3_ —1) for N = oo.

(6.34)

The next two fixed points are obtained for k = K = a = 0 and A > 0, and are

represented by the solutions
H= Hoe“", L= Loeﬂ, (6.35)

where

2A
v= ey (639

The growing mode solution is an attracting node and hence a future attractor, whilst
the decaying mode solution is a repelling node (past attractor). The induced mass-

energy density and pressure for this solution are respectively

R 2A
(N +2)(N +3)

This equation of state corresponds to that of a false vacuum and so we have de

(6.37)

Sitter-like solutions.

The next set of fixed points is another set of de Sitter-like solutions for £ = 0,
K =1, A > 0. Although the number of solutions is either two or four depending on
the value of A, they all have the form

H = Hye*®, L = L. (6.38)

This is the form of the solution obtained by Cremmer and Scherk [42]. The integration
constant Lg is not arbitrary, but depends on the values of A and a. In all of these
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cases, the equation of state is again p = —u. If @ = 0, then there are only two
solutions: 62 = A/6 with L;? = 3A. When o # 0, finding § and Lo in closed form
may be quite difficult for arbitrary N. To illustrate, for these solutions the first two
equations of (6.27) both yield (N # 1)
1 2A—4(N +2)é

L3N a(N —=1)(N +2)
which isolates the value for Lo. Using this expression, one then obtains from either
of the last two equations of (6.27)

(N +2)a [20 - 982]" = (N = 1)~ [2A - 3(V +2)87]

which is the condition found in [41]. Unfortunately, one cannot analytically solve this
for arbitrary N. However, to demonstrate that this does lead to either two or four
solutions, we shall consider the case N = 2. We find that A is bounded by A < (6a)~!
for any real solution to exist, so we write A = £/(6a) where ¥ has the range [0, 1].

The solution for § and Lg is hence

. 2 -1+VI—%
2
82 = o (6.39)
1-iSF¥V1I-%
1 _ 3> T , (6.40)
L} 18a?

It is apparent that there are no real solutions for £ > 1 (A > (6a)™'). For A > -Sla-,
we find that the d, solution is an attracting node for § > 0 and a repelling node for
d < 0, and the é§_ solutions are saddle points of the system. For A < %, the 82
solutions are not real and so there are only two fixed points (62) which are saddles

points.

The final fixed-point is given by the solution k = K = a = A = L = H = 0, which

is just an D-dimensional Minkowski spacetime. This fixed point is an attracting node.

From the dynamical systems analysis in [41], or from a straightforward perturba-
tion analysis (see Appendix C), we find the following evolution of this system. With
the exception of solutions of measure zero, all solutions asymptote into the past to
the Kasner solution, or to the decaying de Sitter solution of (6.35), or to the decaying
de Sitter solution for d_ of (6.39) (for the correct values of A). The future behaviour
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of the solutions is that they either recollapse to the Kasner singularity (i.e. the time
reverse solution of (6.31) with m,) or they asymptote towards the growing de Sitter
solution (6.35), or to the growing de Sitter solution of (6.39) for 4, or to a Minkowski

spacetime.

Finally, Wiltshire [41] finds three exact solutions which represent separatrices in
the phase portraits constructed in his analysis. The first is the Kasner solution (6.31)
when k = K = a« = A = 0. The induced matter is characterized by (6.34). The next
two solutions occur for k = K = a = 0. The scale factors H and L for the first of

these solution, which were obtained for A < 0, are

1™ 1 | Mes—m:

H = H, sm(;yt) cos(§~{t) (6.41)
BT

L = L sm(é-'yt) cos(;yt) , (6.42)

where

| N+3
2 __ ¢
7 —2[N+2]IA['

The corresponding mass-energy density and pressure are, respectively,

o Q(T\l//\-ly_z){(j"i‘)cotz(%th(J’u?l)tanz(%vt)+2(N—1)} (6.43)
p = g(%\_:_—m{(jpi!)cot"(%7t)+(j,;l)tanz(—;-'yt)—6(N-3)}, (6.44)

where

2V3N?2 +6N

.’V+3
) N?4+2N +3
Ju = N+3
. 9-—3N?
= TNF3

These solutions initially expand from a Kasner singularity and recollapse back to a
Kasner singularity (see [41]) and so both early time (¢ — 0%) and late time (vt — )

solutions will have the Kasner equation of state (6.34).

The last of the separatrix solutions has A > 0 and has the solution

2
N¥s ™Mt

, (6.45)

mi

H = H, sinh(%'yt) cosh(-;-*/t)
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nt N

L = Lo sinh(%"/t) cosh(%*yt) (6.46)

The corresponding mass-energy density and pressure are, respectively,

po= 2(;\1 ) {(j“ +1) cothz(%‘ﬁ) + (ju F ) tanh?( %77&) —2(N — 1)} (6.47)
p = G(Z\LAL ; {(jp +1) cothz(%‘ﬁ) + (o F1) ta.nhz(_;_fyt) +6(N — 3)} .(6.48)

For early times, ¢ — 0%, the equation of state approaches the Kasner equation of
state, whereas at late times, v¢ >> 1, the equation of state approaches the false

vacuum equation (6.37).

6.2.3 Supergravity

In this section, we study an example from supergravity, in which the fermionic fields
are zero, the Maxwellian potential is given by Ay, = (0,0.0,0,%), and the five-
dimensional line-interval is given by

ds? = —dt* + 2( ) (dr + r2dQ?) + L*(t)dy?
= —Hs(n)dn"+ (’” S (dr? 4 r2d) + (), (6.49)

where the conformal time coordinate is defined by dt = H3dn. As given in [48, 49],
all quantities considered here depend only on the four-dimensional “external” coordi-
nates and so the five-dimensional Lagrangian can be expressed as a four-dimensional

Lagrangian coupled to two scalar fields, ¥ and L? = g, namely
LR
s=[av {-— +2 Dmpw} , (6.50)
where D, is the gauge covariant derivative corresponding to Aj.

The resulting field equations

H H Kk ¢?
E+F+E_E2.’ (6.51)
Bk HL_

H? ° H?  HL 4L¥ (6-52)

86



- H. w?

L+ 3'§L = —E’ (6.53)
. H. L.

—Y=— 6.54
Y+35v =¥ (6.54)

were solved in {48, 49]; the solutions are given by
H = H (6.55)

\/1 — g cos(an)

L = —Lgsin(an) (6.56)
Y = —Lgcos(an), (6.57)

where Hp, Lo and a are integration constants and

q = /1 —4kHg/a2. (6.58)

To ensure that ¢ depends monotonically on 7, one requires that dt/dn = H> > 0,
which can be verified numerically for the range 0 < ¢ < 1. It is apparent that H
oscillates for all time (and therefore p and p will oscillate for all time). When ¢ > 1, ¢
and H then diverge as 1 approaches 1/a cos~!(1/q), as pointed out in [48, 49]. Except
for the trivial case Hy = 0, H never vanishes and so the four-dimensional space-time

can be considered singular-free.

The mass-energy density and the pressure of the induced matter are given by,

respectively,
po= E3—“—2{1 — gcos(an)} [(1 — q) + ¢* sin?(an)] (6.39)
4 HS '

p = -%g{l — qcos(an)} [q cos(an){1l — gcos(an)} — i—qz sin®(an) — ji‘(l - ‘1)] :
(6.60)

We define p = pHSa™? and i = uHSa™? and combine (6.59) and (6.60) and obtain

the “equation of state”

27(2 — p)° -4 35— L2A(E—P)° l s =
[t OO P Gy | P =0 (6

where C =1—-q+¢* > 0.

To help elucidate the nature of this equation of state, we have provided several

figures of p, 1 and p/u as function of n for various values of q. In the calculations

87



used to produce Figures 6.1 to 6.5, we defined ¢ = 0 for n = m/a. In the plots for
g < 1, the value of u and p repeat themselves every 2 /a and so we only plot them
from n = 0 to n = 27 /a. For ¢ > 1, we only plot x and p for the range of n which
corresponds to ¢t € (—o0, 00) (which are marked on the plots by the dashed lines). For
these values of g, the equation of state asymptotes into the past and future towards

the relation p = —3pu.

n/(ar)

Figure 6.1: Energy density and pressure for ¢ < 1/4, where q is defined by (6.58)

6.3 Generalizations

From these examples it is quite apparent that there are many different ways of ob-

taining equations of state different from radiation in the context of induced matter.
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n/(arxc)
Figure 6.2: Energy density and pressure for q=1/4, where ¢ is defined by (6.58)

Indeed. there are more examples and theories found in the literature that may be
used in this manner. In the context of Einstein-Maxwell (EM) theories, Gleiser et al.
[50] have studied ten- and eleven-dimensional spacetimes, and Freund and Rubin [11]
have also found solutions in the eleven-dimensional case in which seven of the eleven
dimensions compactify. Gibbons and Wiltshire [40] studied arbitrary D-dimensional
spacetimes containing an EM gauge field. Similarly, Fabris [51] showed that in order
to obtain a traceless electromagnetic stress-energy tensor in D = 4 + N dimensions,
the electromagnetic potential is required to have a (N — 2)-form, and hence he con-
sidered even-dimensional cosmologies. Fabris [52] also studied a D = 6 anisotropic

model and a D = 8 model which contained an anti-de Sitter space-time as a solution.

In terms of Einstein-Yang-Mills (EYM) higher-dimensional theories, the literature
is extensive. Kubyshin et al. [53] studied higher-dimensional cosmologies containing
SU(5) and SU(2) x U(1) gauge fields with a static compact “internal” space, as well
as considering anisotropic internal spaces. Clements [54] studied a six-dimensional

SO(3) EYM-Higgs model, examining the stability of static solutions. Bertolami et al.
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n/(ax)
Figure 6.3: Energy density and pressure for q=1/2, where q is defined by (6.58)

[55] considered D-dimensional spacetimes in the context of compactification. Luciani
[56] extended the work of Cremmer and Scherk [42, 17] by considering various sym-
metry groups [for example, a (4+2PQ )-dimensional spacetime with group SU(P+Q)
and subgroup SU(P) x SU(Q) x U(1), a (4+ 3(N —1)(NV +2))-dimensional spacetime
with group SU(N) and subgroup SO(N), a (4 + N(N — 1))-dimensional spacetime
with group SO(2N) and subgroup U(NV), and a (4+ PQ)-dimensional spacetime with
group SO(P + Q) and subgroup SO(P) x SO(Q)].

There are several examples of supergravity theories that have been studied. The
five-dimensional supergravity theory has been studied by Balbinot et al. [48, 49] and
by Pimentel [57] (who considered a Bianchi I model for the four-dimensional part
of the space-time). In addition, Duruisseau and Fabris [58] studied five-dimensional
supergravity with Gauss-Bonnet terms in the action. Ten-dimensional supergravity
has also been studied by Gleiser and Stein-Schabes [59], who obtained a de Sitter-type

solution as a late time solution.
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n/(ax)
Figure 6.4: Energy density and pressure for q=3/4, where q is defined by (6.58)

Of course, there are other approaches one could consider. For instance, one could
also propose a generalized Einstein theory of gravity in the context of Lovelock theory
[60, 23]. Another example could be to include anisotropy into any of the aforemen-
tioned works. In all of the examples studied in section two the induced fluids were
perfect; by introducing anisotropy into the three-space we would expect to induce
anisotropies in the pressure and hence dissipative terms into the energy-momentum
tensor. The energy-momentum tensor would be then modified from (1.3) in general

to

Tag = (1t + P)Ualp + PGas + TaB + gatipg + qala (6.62)

where 7,4 is the anisotropic pressure tensor and ¢ is the heat conduction vector,
where 73 = uqm§ = q®uq = 0 [61]. The variable p is now the pressure averaged over
all three directions and the pressure in each direction is then defined as p; = p + «!

(for 2 =1,2,3 with no summation implied).
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n/(ax)
Figure 6.5: Energy density and pressure for ¢ > 1, where g is defined by (6.58)
6.3.1 Anisotropic Generalizations

As an illustration, we consider anisotropy in the supergravity model of section 6.2.3,
which has been previously studied in [48]. The cylindrically symmetric metric is given
by

ds? = — A%(n) B*(n)dn? + A*()dz? + B¥(n)(dy? + d=?) + LA(n)d(z®)%,  (6.63)

where now conformal time, 7, is defined by dt = AB?*dn. The field equations then
give rise to the following set of ordinary differential equations (see [48] for details):

24'B'" (B  [A 2B|L 19y

AB B [IJ’B L 2L? (6.64)
2B" L' 2B'A 3(B) LA _ 1y (6.65)
B L B A B? LA 2Lz )
AII Bu Ln (A/)2 9 (BI)2 Ll Bl _ 1 d)/

At Bt & "B TIB- D (6.66)
A" 2B" 24'B'" 3(B) (4) '

~ _ st =E ( ) _( ) _li (6.67)

A B A B B? A2 22
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L,
T¥' =0 (6.68)

where again two scalar fields ¥ and L? = g,, are coupled to a 4D Lagrangian via

1/)/[ —

(6.50). The general solution of these equations is then given by [48]:

. an : 1
A = o (ma(F) Jeatan
_ an):__L
B = B (ta.n( 2)) T (6.69)
L = Lgsin(an)
= —Lgcos(an),

where the integration constants a, b and c are constrained by 2bc + ¢* = 3a*/4.

Evidently, when b = ¢ = +a/2, the solutions found in section 6.2.3 are recovered.

To calculate the induced matter, we define the comoving fluid four-velocity to be

a_ _ O
© T AmB)
which satisfies u®u, = —1. From (6.62) we then obtain
—pbi2c

p o= TA;F{} [ta.n (%an)] : [2¢ — acos(an)][4b + 2 c — 3a cos(an)]sin(an)

(6.70)
— a 1 -2%t2s 9 ) . sl

P = T242B [ta‘n (5“’7)] [9a cos?(an) — 4(b + 2¢) cos(an) — 3a] sin(an)

(6.71)
= g [t (l )]_2&5_:[” I sin(an) cos(arn) (6.72
* T 3A%B} an\sen c| sin(an) cos(an 72)

1

e (6.73)

Notice that there are no heat conduction terms in this model. It may be verified
that 7§ = —A(n)o§, where o5 is the shear tensor defined from u® [61], and A is the

viscosity coefficient of the fluid, given by
b2

Aln) = —K:Bfg [ta.n(%an)] ) y/sin(an) cos(an) , (6.74)

where the above expression for the viscosity coefficient is only physical for a restricted

range for 7.
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We note that the above quantities either diverge or vanish at n = 0 and n = 7/a,
but which possibility occurs depends on the values of b and ¢, which can be positive
or negative. One finds by integration that the original time variable, defined by
t = [ AB%dn, is monotonic in 7 in the interval [0, 7/a] and so we will consider these
“endpoints” as early-time and late-time limits. Taking the ratio of p/x and using the

constraint 2bc + ¢ = 3a?/4, we obtain

p _ a*cos(an) + 2ac[l — 3 cos®(an)] + 4¢? cos(an)

p 3a[a — 2ccos(an)][a cos(an) — 2¢] |
For early-time (p — 0%) behaviour and for late-time behaviour (p — m/a) we
find that p — i, and hence we see that the constant a plays an important role in

3a

determining the equation of state.

To summarize, in this chapter our main goal has been to investigate the induced
matter theory of Wesson [20] in the context of higher-dimensional Einstein-Yang-Mills
cosmological models. This goal has been achieved either through exact solutions or
by an examination of the asymptotic behaviours of the models by analyzing the
fixed points of the underlying field equations. The appropriate equations of state
were derived. In this chapter we also investigated the induced matter theory in the
context of a 5D supergravity theory. The energy and pressure of the induced matter
in this case exhibit oscillatory behaviour. Finally, by introducing anisotropy into the

4D part of this model we can derive anisotropic pressure and also viscosity.
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Chapter 7

Conclusions

7.1 Summary

The main body of this thesis contains the study and generalization of Kaluza-Klein-
type cosmological models. We have also been interested, in particular, in Wesson’s
five-dimensional space-time-matter type theories [18, 19, 20] and their various exten-
sions. We have also taken as the correct interpretation of these theories that the field
equations are the higher dimensional vacuum field equations. In this thesis a number
of new solutions of the five and six-dimensional vacuum field equations have been

found and the properties of these solutions have been studied.

The possibility that the four-dimensional properties of matter may be completely
geometric in origin has been investigated by studying whether the higher dimensional
vacuum field equations formally reduce to Einstein’s four-dimensional theory with
a non-zero energy-momentum tensor constituting the matter source. The embed-
ding of the four-dimensional space-time in the vacuum five-dimensional space-time
is interpreted as producing an effective four-dimensional stress-energy tensor. Here
the four-dimensional source is taken as a cosmological fluid with energy-momentum

tensor of of the form (6.15).

In chapter two we analyzed Riemann-flat solutions of a class of 5D spherically sym-

metric metrics of the form (2.1) which are natural generalizations of the Schwarzschild
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metric and the FRW metric on each hypersurface y = constant. The purpose of this
chapter was twofold: not only did we find the explicit form for all the Riemann-flat
solutions of the 5D metrics of the form (2.1), but also we employed these solutions to
find new Ricci-flat solutions. In particular, we used our knowledge of the Riemann-
flat solutions as an aid to construct new Ricci-flat solutions. We were able to do so by
breaking down the Riemann-flat field equations into a number of cases and analyzing
each case separately. In the context of induced matter theory we are interested in
those 4D foliations of 5D spacetime which are not flat. Among the four cases stud-
ied, only one explicitly has a curved four-dimensional hypersurface. This metric was
then generalized to a Ricci-flat metric, and we studied this metric in chapter three.
Throughout this thesis we have been concerned with higher-dimensional vacuum Ein-
stein field equations which constitute a set of coupled non-linear partial differential
equations. We have assumed no boundary-initial conditions to solve the system. As
expected, those solutions we have found involve various arbitrary functions, some of
which may be absorbed into the metric in some cases by some coordinate transfor-

madtions.

In chapter three, as mentioned above, we attempted to find Ricci-flat field equa-
tions by employing the Riemann-flat solutions found in chapter one. The Riemann-flat
metrics were used as an aid to construct some Ricci-flat solutions of the metric (2.1)
that are not Riemann-flat. We based our first ansatz on the form of one particular
class of solutions, since the other cases were either physically uninteresting (4D-flat)
or too complicated to analyze. Although the equations involved in this particular
case were also complex to analyze, we were able to break them down into only two
cases each of which then led to known solutions, namely 50D Minkowski space and the
Riemann-flat solution we started with. In chapter three we also examined the ansatz
where three-dimensional spatial metric only depends on the r coordinate while the
other metric coefficients have general dependence on the coordinates. The known so-
lution of Gross and Perry [29] was recovered as well as some new exact solutions, and
some solutions were fully analysed by qualitative methods using dynamical systems
theory. It should be pointed out that the dynamical system studied is not of type

time-evolution but of space-evolution.
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In chapter four we generalized the metric we studied in chapter two to an even more
general one in which the three-dimensional spherical metric has functional dependence
on the coordinates ¢ and y which is not, in general, separable. We also suggest a more
natural way of breaking the problem up into a number of special cases than the one

suggested by McManus [28]. All the cases were investigated in full detail.

Chapter five was concerned with possible power-law solutions of the equations
studied in chapter four. Some new power-law solutions were found as a result of
this investigation, of which one class of solutions turned out to be Riemann-curved.
The ccrresponding expression for the induced energy density turns out to be time-
dependent and positive, although the induced anisotropic pressures are negative. In
addition, we showed that exponential solutions are not possible, and some particular

self-similar solutions were studied. The solutions found are summarized in table (7.1).

Throughout chapters two to five we have given the form of the equation of state
of the induced matter obtained whenever possible. A variety of equations of state
were found for perfect fluid models, and various anisotropic fluid models were also

obtained.

We would like to comment upon some astrophysical and cosmological implications
of the solutions obtained in this thesis. From the cosmological aspect we are basically
concerned with whether or not the 5D solutions found exhibit an initial singularity
in the finite past (big bang) or future (big crunch). Another property which is also
of some concern is whether or not a model compactifies in the extra dimension. This
is mainly of interest in explaining why the fifth dimension is virtually unobservable.
Non-static spherically symmetric 5D solutions are of interest since, as noted in this
thesis, they illustrate that Birkhoff’s theorem is not valid in dimensions more than 4.
Birkhoff’s theorem in higher dimensions has been discussed in [62] and [63]. Ponce de
Leon and Wesson [31] have studied static spherically symmetric solutions which are
separable. A new non-separable static solution has been presented in this thesis (in
which [(¢) = constant and p(t) = constant in metric (2.28)). We are also interested
in determining whether the new exact solutions exhibit any event horizons analogous
to that of the Schwarzschild solution in 4D. Scalar curvature invariants, such as the

Kretschmann scalar, can be used to investigate the properties of such models.

97



Let us make some comments about the Ricci-flat solutions we have found. The
metric (3.45) is a non-static version of (3.35) which does not compactify in the course
of time. It also exhibits a singularity at r = m /2 which is a true irremovable singular-
ity despite the fact that in the 4D counterpart there is a coordinate singularity (and
an event horizon). The spatial metric is time independent so it does not expand; that
is to say no big bang or big crunch occurs in this model. The 5D solution (3.58) is
also non-static, non-singular at r = 0 and does not compactify. The metric (3.12) is
a generalized Kasner solution. Kasner solutions have been used to explain the small-
ness of the fifth dimension; an ever expanding solution requires the fifth dimension to
contract and hence to compactify. The solution (5.15) shows that no event horizon
exists, although a big bang singularity is present at ¢t = 0 (i.e., some of the curvature
tensor components diverge); also since the expansion rate along the fifth dimension
is positive, it implies that the model does not compactify. Finally, the solution (4.27)

does not compactify.

In chapter six we studied Abelian and non-Abelian gauge fields coupled with grav-
ity in 441 and 4+ N dimensions. Our main goal has been to consider induced matter
theory in the context of higher-dimensional Einstein-Yang-Mills cosmological models.
These gauge fields do not come from the metric as in the traditional Kaluza-Klein
theory (i.e., A,  gsu ). In the case of an Abelian Maxwell field the induced matter is
that of a perfect fluid with the equation of state (6.19). At late times this form of mat-
ter asymptotes towards a radiative equation of state. In the case of the non-Abelian
Yang-Mills model, we described the fixed point solutions of the field equations con-
sisting of an autonomous system of ordinary differential equations, and we discussed
the induced equation of state associated with these fixed point solutions. We also
gave the form of the solutions explicitly for two of the fixed points whose existence
was simply noted in Wiltshire’s work [41]. The general behavior of the solutions is
that they evolve either from an anti-de Sitter spacetime or from a Kasner singular-
ity. The solutions asymptote either to another Kasner singularity or to a de Sitter
inflationary phase or to flat D-dimensional Minkowski vacuum at late times. The
induced equation of state for these fixed point solutions is linear and barotropic, but

depends on the number of dimensions considered. We also investigated the induced
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matter theory in the context of a 5-dimensional supergravity theory. The induced
matter obtained is somewhat exotic but still of a perfect fluid form. For suitable
values of the parameters involved, one finds that there are no initial singularities
in the four-dimensional space-time which exhibits a periodic nature. Consequently,
there are no early/late time behaviors for the induced matter. Instead, the energy
density and the pressure have oscillatory behavior, the latter remaining mostly neg-
ative. For other values of the model’s parameters, there are indeed singularities and
the matter asymptotes to p = —%u for early and late times. In these cases there
are times at which the energy density actually becomes negative. Finally, by intro-
ducing anisotropy into the four-dimensional part of the space-time, dissipation terms
are added to the induced matter. Consequently, anisotropic pressures are introduced
which are proportional to the fluid’s shear, and the corresponding viscosity coeffi-
cient was obtained. This viscosity coefficient either diverges or vanishes at early/late
times, depending on the values of the constant parameters in the model. The induced
matter has the asymptotic form p = u/(3a) for early and late times, where a is a

constant.

7.2 Future Work

In this thesis we have found a number of new exact higher-dimensional solutions
and we have studied other models by employing the geometric theory of differential
equations. Although we could apply these methods to generate more new solutions,

this is not our primary goal for future work.

Using new methods of solving the field equations we have shown that by employing
more general higher-dimensional metrics, and perhaps coupling them with a Yang-
Mills field or supergravity, more realistic forms for the induced matter can be derived.
The work in thesis consequently supports the fact that the induced matter theory is
capable of offering new fundamental physical insights.

In addition, the theorem of Campbell [64] asserts that any N-dimensional Rieman-
nian space can be locally embedded in a Ricci-flat N + 1-dimensional Riemannian
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space. This implies that all solutions to the four-dimensional Einstein field equa-
tions with arbitrary energy-momentum tensor can be embedded, at least locally, in
a spacetime that is itself five-dimensional and Ricci-flat. One can always, in prin-
ciple, start off from a known solution of Einstein’s equations with matter in four
dimensions and determine a Ricci-flat spacetime in five dimensions whose induced
matter is that of the four-dimensional energy-momentum tensor. Recently some new
work has been done in this direction. Rippl et al. [65] have generalized Wesson’s
procedure to arbitrary dimensions. In particular, they employ this generalization to
relate the usual (3 + 1)-dimensional vacuum field equations to (2 + 1)-dimensional
field equations with sources. This is of importance in establishing a relationship be-
tween lower-dimensional gravity and the usual 4D general relativity. An outcome of
this correspondence is that the intuitions obtained in (3 + 1) dimensions may not be
automatically transportable to lower dimensions. In further work Lidsey et al. [66]
have investigated an embedding for a class of N-dimensional Einstein spaces and the
local nature of Campbell’s theorem is highlighted by studying the embedding of some

lower-dimensional spaces.

However, there are some fundamental questions that need to be addressed in
the context of induced matter theory. Perhaps the most important one involves the
field equations 3R, = 0, for example, which already represent a curved space-time
(except for Riemann-flat solutions) and there is no mechanism known to explain
how and why the five-dimensional spacetime is curved. This perhaps motivates the
study of Riemann-flat solutions in this thesis. However, as noted above, Ricci-flat
(and curved) spacetimes can always be embedded in a higher-dimensional Riemann-
flat spacetime. This is very important in the interpretation of the induced matter
theory. The Ricci-flat solutions always involve some arbitrary functions or constants
to be interpreted in the theory. This is in analogy with the Schwarzschild solution of
*R,, = 0 which involves an integrating constant C which is interpreted as the central
field point mass. In conventional induced matter theory there is no such physical
interpretation available. In addition, as pointed out in the Introduction, the five-
dimensional analogue of Einstein’s equations with source is ambiguous in the sense

that there is no unique way of defining a higher-dimensional energy-momentum tensor
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that reduces to a given four-dimensional energy-momentum tensor. This, we believe,

is further motivation for studying induced matter theory.

Another issue is that in order to have an intrinsic induced matter theory, a unique
way of foliating 5D spacetime into 4 + 1 slices (or even better a slicing-independent

theory) is necessary.

It is these more fundamental issues that we should like to pursue in future work.
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Appendix A

Riemann tensor components for
the general spherically symmetric
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Appendix B

Ricci tensor components for the
general spherically symmetric 5D

metric
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Appendix C

Perturbation analysis

C.1 (a) The Kasner solution in general SO(N +
1) in 4 + N dimensions for the field equations

(6.27)-(6.30)

We shall investigate first order perturbations of the Kasner solution of (6.27)-
(6.30) of the following form:

H(t) = t+3%(1 + eh(t))

L(t) = t*" N1 + €l(t))

where a = ﬁﬁ and b = @ﬁiﬁ , in order for the zeroth order solution to be of
Kasner-type. By substituting the above in the constraint equation (6.30) and tak-
ing only € terms ( the ¢® terms vanish by taking above values for a and b since it

corresponds to an exact solution), we get

h(t) = [aN(N +2) + 8] 3ktl-2a-3b IN(N - 1)Kt1-2a+-§7
O =~ LEN16) =8 [@aBN+6) =8  [aBN+6) =3

110



1 (N +2)tt-2aN+2 1 (N +2)At

+§ [@(BN +6)—b] = 2a[3(N +6)—b (C.1)

and after integration one obtains

1 3kt2(1—a—3b)
T T LR AR s gy v

h(t) = by +

N(N — 1)R21-a+3) (N 4 2)g21=aN+b) (N 4 2)As?
4l-a+7F) 4(1 — aN +b) 4

b (C.2)

Now from (6.27) one obtains

.-

3SH L A
7 tVp= Wb

which leads to

B(N + 3)(#*] + 2t]) — $A(((a +1)(3N +6) + (5 +2N)]
—gCt2_2aN+2b[lv + 9 + 2b(N + 3)] + gktz_za_?jb

+%(N —1)[3N +2b(3 + N)j>2+**K =0 . (C.3)

Solving the above differential equation for {(t), we obtain

L A, - . . o .
l(t)=4L+ f + &Etz + bCté~ 2N+ ckt?—20—3b 4 JR42-20+Rb

where @, b, & and d have a particular dependence on the constants a, b and N, and [,

and [, are arbitrary constants.

The existence of the term [, t~! doesn’t imply that the unperturbed solution is
unstable to the past. One should actually consider all perturbations to all orders
in order to actually decide if the unperturbed solution is unstable. In fact, further
analysis shows that the Kasner solution is stable by taking all orders of perturbation
into account. This corresponds to the fact that the Kasner solution is a 1-parameter
family of solutions (the parameter can be absorbed in the metric be a change of coor-
dinates) and the term [/, ¢! actually corresponds to the fact that we have perturbed

the solution to another exact Kasner solution.
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C.2 (b) The de Sitter solution in general SO(N +
1) in 4 + N dimensions for the field equation

(6.27)-(6.30)

Here we consider the first order perturbation of the form

H(t) = Hoe™(1 + eh(t))
L(t) = Loe™(1 + €l(t))

where p = ,/2(—32‘_1—\,7. Again by substitution into the field equations, and considering

the first order terms in €, we get

. N. ke  N(N-1) C
h=—-""]— _ —-pt ~ _—-ptN ,
3 " (Nt2p 6(N+2p 6t

and after integration, we obtain

heh N RNE3) L NNAHWV DK, CV+3) _yy

3 TAN+2)C 6A(N +2) 6AN

Now from (6.27) we obtain

j N+3 3k, (N+4(V 1)
V2 N+2 2(N+2)

Solving the above differential equation for [() results in

—pt

pl — gCe_N”' -

I(t) = L+ [26—%\/A(N+3)t _ 3(N + 3)k - /NLQE‘

AN +1)(N +2)
(N +4)(N +3)(N—1)K 5C(N+3) vy 2 o4
2A(N + 1)(N +2) AN(N —3)° (G4

and we then obtain the following expression for h(t):
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N, NI, -
h(t) = by — b — —336

(N +3)(2N + 1)ke-\/3_g,
A(N +1)(N +2)

’ A!I:ﬁs! ¢

where [, and [, are arbitrary constants.

C(2N —1)(N + 3)e_~\/,’=+_§¢ N
2AN(N —3)

N(N = 1)(N +3)K e_\/gt

2AN(N +1)(N +2) ’

(C.5)

The above analysis shows that the de Sit-

ter solution of the field equation (6.27) is late-time stable because of the negative

exponents in the terms in the perturbed functions k(t) and I(¢).
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Appendix D

Dynamical Systems Review

D.1 Preliminary Definitions

This review comes from two primary sources; the set of dynamical systems notes pre-
pared by John Wainwright which appeared in the workshop proceedings Deterministic
Chaos in General Relativity [67] and from the first chapter of Stephen Wiggins’ book
Introduction to Applied Nonlinear Dynamical Systems and Chaos [68].

Definition 1 An equilibrium solution of the DE £ = f(z) is a point T € R™ such
that
f(z)=0.

Once an equilibrium solution is found, it becomes of interest to determine the be-

haviour of solutions of the DE in a neighborhood of the equilibrium solution.

Definition 2 Let £ € R" be an equilibrium point of the DE =z = f(z), and let

u = I — I, then the nonlinear DE & = f(z) has an associated linear DE
u=Df(Z)u

which is called the linearization of the DE z = f(z) at the equilibrium point z.
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Definition 3 Let z be a equilitbrium point of the DE £ = f(z). Then I is called a
hyperbolic equilibrium point if none of eigenvalues of Df(Z) have zero real parts.

D.2 The Flow of a Non-Linear DE

Definition 4 Let z(t) = y,(t) be a solution of the DE t = f(r) with initial condition
z(0) = a. The flow {g'} is defined in terms of the solution function 1,(t) of the DE

by
g a = Yu(t).

Definition 5 The orbit through a, denoted by ~y(a) s defined to be
v(a) = {z € R"|z = g'a, forallte R}

Orbits are classified as point orbits, periodic orbits, and non-periodic orbits.

Definition 6 An w-limit set of a point a, w(a), is the set of points in R™ which are

approached along the orbit through a with increasing time.

Definition 7 Given a DE £ = f(z) in R", a set S C R" is called an invariant
set for the DE if for any point a € S, the orbit through a lies entirely in S, that s
(a) C S.

In order to determine an w-limit set, it is helpful to know that an orbit enters a

bounded set S and never leaves it. Such a set is called a trapping set.

Definition 8 Given a DE z = f(z) in R", with flow {g*}, a subset S C R" is said
to be a trapping set of the DE if it satisfies

1. § is a closed and bounded set,

2. a€ S impliesgtac S for allt > 0.
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The usefulness of trapping sets lies in this result; if S is a trapping set of a DE
& = f(z), then for all @ € S, the w-limit set w(a) is non-empty and is contained in S.

Definition 9

1. The equilibrium point T of a DE & = f(z) is stable if for all neighborhoods U
of I, there ezists a neighborhood V' of T such that ¢'V C U for all t > 0 where
g* is the flow of the DE.

2. The equilibruim point T of a DE t = f(z) ts asymptotically stable if it is stable

and tf, in addition, for all z € V', lim,, ||g’z — Z|| = 0.

Theorem 1 (Lyapunov Stability) Let £ be an equilibrium point of the DE x =
f(z) in R™. Let V: R* - R be ¢ C! function such that V(z) =0, V(z) > 0 for all
r € U — {z}, where U is a neighborhood of z.

1. If V(z) < 0 for all z € U — {Z}, then % is asymptotically stable.

2. If V<0 for all £ € U — {Z}, then % is stable.

3. If V(z) > 0 for all £ € U — {Z}, then % is unstable.

Proof. [See [68].] o

A function V : R® — R which satisfies V(z) = 0, V(z) > 0 for all z € U — {z},
and V(z) < 0 (respectively, < 0) for all £ € U — {z}, is called a Lyapunov function

(respectively, a strict Lyapunov function) for the equilibrium point z.
Theorem 2 (Criterion for Asymptotic Stability) Let £ be an equilibrium point
of the DE £ = f(z) in R". If all eigenvalues of the derivative matriz Df(Z) satisfy

Re(A) < 0, then the equilibrium point T is asymptotically stable.

Proof. [See Wiggins [68], page 13.] a
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D.3 The Hartman-Grobman Theorem

Theorem 3 (Hartman-Grobman) Let z be a hyperbolic equilibrium point of the
DE i = f(z) in R™, where f : R® = R" is of class C'. Then there is a homeomor-
phism which maps orbits of the linear flow e!Pf®) onto orbits of the non-linear flow

g* in a neighborhood of the equilibrium point Z, preserving the parameter t.

Proof. [See Hartman [69], pages 244-250.] |

A hyperbolic fixed point Z, is called a saddle if not all of the eigenvalues of the
associated linearization are of the same sign. z is called a source if the eigenvalues

are all positive, and a sink if they are all negative.

The following theorem follows from the Hartmann-Grobman theorem.

Theorem 4 (Stable Manifold Theorem) Let z be a equilibrium point of £ = f(z)
in R", where f is of class C?, and let E* be the stable subspace of the linearization at

I, that is the subspace spanned by the eigenvectors corresponding to the eigenvalues
with Re(A) < 0. Then there exists a neighborhood U of T such that the local stable
manifold W*(z,U) is a smooth (C ') manifold that is tangent to E* at T.

D.4 Periodic Orbits and Limit Sets in the Plane

Theorem 5 (Dulac’s Criterion) If D C R? is a simply connected open set and
v(Bf) = a%(Bfl)-i- 9 (Bf;) >0, (or < 0) for all £ € D where B is a C! function,

9zy

then the DE £ = f(z) where f € C! has no periodic orbit which is contained in D.

Proof. Based on Green’s Theorem. o

Comment: The function B(z,,z;) is called a Dulac function for the DE in the set D.

The second criterion for excluding periodic orbits, which is valid in R", n > 2, follows
from the observation that if a function V(z) is monotone decreasing along an orbit

of a DE, then that orbit cannot be periodic.
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Theorem 6 Let V : R" — R be a C ! function. If V(z) = VV(z)- f(z) <0 ona
subset D C R", then any periodic orbit of the DE = f(z) which lies in D, belongs
to the subset {.z:|V(.z:) = 0} N D.

Theorem 7 Consider a DE & = f(z) in R?. Let a € R? be an initial point such
that {gtalt > 0} lies in a closed bounded subset K C R?. If K contains only a finite
number of equilibrium points then one of the following holds:

1. w(a) s an equilibrium point
2. w(a) is a periodic orbit
3. w(a) is a cycle graph'.

Proof. The proof is based on the fundamental lemma of w-limit sets in R?. {See Hale
[70], page 230, and Lefshetz [7T1], page 129]. o

Comment: This theorem does not generalize to DEs in R", n > 3, or to DEs on the
2-torus. Indeed, the problem of describing all possible w-limit sets in R", n > 3, is

presently unsolved.

D.5 Bifurcations of Equilibria

Consider a DE in R" of the form z = f(z, u) where p is a real parameter. Bifurcation
theory, as applied to DEs, is the study of how the portrait of the orbits change as p

varies.

Theorem 8 (Hopf) Consider the DE i = f(r,p) in R?, where f € C 3. Suppose
f(0,u) =0 for all p € I C R, and that Df(0,u) has eigenvalues a(u) +:18(p). If

H1: there ezists a po € I such that a(uo) =0, B(uo) # 0, a'(1o) #0

H2: the equilibrium point z = 0 is not a nonlinear center when p = uo

YA cycle graph is a union of two or more whole orbits, e.g., a homoclinic orbit.
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then

C: there ezists a § > 0 such that for each u € (uo, po +9d) or p € (po — 4, o), the DE
has a unique periodic orbit (when restricted to a sufficiently small neighborhood

ofz=0).

Proof. [See Hopf [72, 73], vol. 94 , pages 1-22 and vol. 95, pages 3-22.] a
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Appendix E

Previous work of McManus [28]

Mc Manus’ starting point is the metric ansatz:

ds? = —e*F(r) A%(¢ y)dt? + €*C0) B2(t,y) (dr? + r? dQ?) + K0 O (¢, y) dy?
(E.1)
First, he observed that the pivotal field equations are R;, = R, = R,y = 0, which
yield
K, n(C/B) = F,8,1n(CB?) (E.2)
By = BiO,lnA + B,0:InC , (E.3)
F.3,ln(A/B) = K, d,In(AB?) . (E.4)

Equation (E.2) immediately implies that the solutions can be classified into four cases,
namely (1) F, = K, =0; (2) F, =0,K, #0; (3) F, # 0,K, =0; and (4) F;K, # 0.
Below, we shall only list the new exact solutions found and not the known solutions

nor the reduced system of ODEs obtained.

F.=K,=0

This case has been completely studied previously by Ponce de Leon [25] and Mc
Manus[28].
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F.=0,K, #0

When B, # 0 the exact solution obtained is

ds? = —dt* + ¢* [(32 + 1+ %)“dR’ + R? sz] + 3 (R* +1+ %)dy2 , (E.5)

where a is an arbtrary constant. The above metric is Riemann-flat if and only if

a = 0. If B, = 0, then the field equations reduce to a system of ODEs for two un-
known functions.

F,#0,K, =0

In the case where B; = 0, integration of the field equations results in the metric
2

ds? = —cos®(lar)y?dt? + 312- (dr* + r2d0?) + dy? | (E.6)
T

when g, = 0, where g = G + Inr and s = Inr. In the case when g, # 0 the exact
solution can be written as
-1
ds? = —(1 — R* + -;—2) Yy dt? + y* [(1 - R* + %) dR? + deﬂz] + dy?
(E.7)
where again a is an arbitrary constant. The above metric is Riemann-flat if and only

if a =0. If B, # 0, then the field equations reduce to a system of ODEs for two
unknown functions.

F.K,#0

The following are two related special exact solutions found in this case after a

detailed anlysis of the special case:

ds? = —(=y? +d) " r A d? + (—y? + d) P2 (dr? 412 d0?) +r A dy? , (E.8)
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ds? = —r i di? + (& + d)rF D (& + r2d0?) + (£ + d)'r A dy? , (E9)

where a is a constant.
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