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Abstract

In order to investigate the photon transport in inhomogeneous clouds, a Monte Carlo cloud
model with internal variation of optical properties is developed. The data for cloud vertical
internal inhomogeneity are chosen from published observations. Parameterization of the
solar radiative properties of clouds is used in the form of the liquid water content and
the effective radius of cloud droplet. The Monte Carlo simulations shov  :t for overcast
stratocumulus clouds, the differences in reflectance between the vertica. inhomogeneous
clouds and their plane-parallel counterpart are very small (only about 1%). These differences
can be enhanced up to 10% for large solar zenith angles, when the overcast clouds are
separated into broken cloud fields. If the cloud coverage is large, the vertical inhomogeneity
of clouds can cause about 7% increase in cloud absorption, which may help to explain the
cloud absorption anomaly. Also, the parameterization of effective cloud amount for cloud
absorption is discussed.

For a vertical homogeneous plane-parallel layer with horizontal cosinusoidal periodic
variations of the extinction coefficient, the first order perturbation solution of the three
dimensional radiative transfer equation has been obtained. There exists a correspondence
between the distribution of the extinction coefficient and the distribution of the upwelling
intensity. However, under certain conditions, the distribution of the upwelling intensity is
opposite to the distribution of the extinction coefficient. If the solar zenith angle is large,
shifts in the configurations of the distribution of the upwelling intensity may appear. The
single scattering parameters can influence the distribution of the diffuse radiative intensity.
The distribution of the heating rate inside the cloud and the distribution of the extinction
coefficient are nearly coincident with each other.

The perturbation solution can be extended to second order multi-mode case. The calcu-
lations show that the perturbation solution series is convergent. The cloud albedo changes
from the unperturbed value when the second order perturbation correction is applied. The
change of albedo can be negative as well as positive. The albedo changes du. to the geo-
metric factors and scattering factors are discussed. Alse, the radiative transfer in a medium
with an internal variation other than the cosinusoidal type is investigated.

Monte Carlo simulation is used again to investigate the horizontal irradiance distribution
in clouds, to verify the results of the analytical solution. Also the impact of geometric
variation to the distribution of irradiance has been discussed.

xii
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Chapter 1

Introduction

1.1 Background

Climatic change and stabilit’ are intimately related to the Earth’s radiation bud-
get, which itself is strongly influenced by clouds. In turn, clouds are governed by
the Earth’s radiation budget and thus by climate. For example, simple energy bal-
ance conservations imply that 5% change in cloud amount will result in an estimated
change around of 2 degrees in the surface temperature. The potential importance of
this feedback has initiated a large research effort to understand the cloud-radiation
interaction. Clouds are one of the most crucial and least understood components of
the climate system. The basic lack of understanding stems from our inability both
to realistically describe the various life cycle processes of clouds and to effectively
determine the radiative properties of realistic clouds. A process that is likely to play
a central role in the evolution of clouds and clouu systems is the interaction of radia-
tion with the atmospheric environment both in and around clouds. This interaction
depends on the cloud geometric structure and cloud ‘nternal optical properties, which
are highly nonlinear. However, in present climate models the plane-parallel approxi-
mation is generally used. Plane-parallel clouds are idealized flat, homogeneous slabs
of infinite horizontal extent. The finite cloud geometry and cloud internal inhomo-

geneity are generally ignored. Such simple cloud models can hardly describe correctly



the cloud-radiation interaction. Therefore efforts are being made to improve radiative
transfer methods to account for clouds with more realistic forms..

One approach to the problem is to simulate photon transport in cloud fields using
the Monte Carlo model. In early work, Monte Carlo simulation was used to ex-
amine photon transport in homogenecus isolated clouds of definite shapes (Busygin
et al., 1973; McKee and Cox, 1974; Davies, 1978). The large scale cloud fields were
simplified to be regular arrays, in which all clouds are of the same shape and the
distance between any two neighbouring cloud centers is the same. The importance
of cloud shape and cloud field arrangement for radiative transfer process has been
investigated by several groups (Busygin et al., 1973; Aida, 1973; Welch and Wielicki,
1984). Kobayashi (1988) extended the regular array field to a cloud field composed of
various sizes of clouds in a random distribution. Recently, Barker and Davies (1992)
studied solar radiative transfer in a realistic broken cloud field with a scaling power
law, motivated by observations showing that a cloud field on mesoscopic scale exhibits
“scaling” or spatial autocorrelation structure (Cahalan and Snider, 1989).

A number of works have focused on the parameterization of Monte Carlo calcula-
tion results (Harshvardhan and Weinman, 1982; Weinman and Harshvardhan, 1982;
Harshvardhan and Thomas, 1984; Schmetz, 1984; Welch and Wielicki, 1985; Breon,
1992). In order to describe more accurately radiative transfer processes in climate
models by incorporating the Monte Carlo simulation findings, a successful parameter-
ization is necessary, since a direct Monte Carlo simulation is not practical in climate
models.

Realistic photon transport processes are simulated in Monte Carlo methods and
computation of irradiance is fairly easy for any specified cloud geometry. However,
since the number density of incoming photons (number per square meter) used in
Monte Carlo simulations is much smaller than that of the real solar beam, the dis-
tribution of radiance is hard to be obtained using a Monte Carlo method. Also, the

Monte Carlo simulatica requires an excessive computer time.



Another approach to the radiative transfer problem is to solve the multi-
dimensional radiative transfer equation. Davies (1978), Brandley (1981), Preisendor-
fer and Stephens (1984), and Stephens and Preisendorfer (1984) have derived solutions
that describe the radiance fields of an isolated homogeneous cubwidal cloud. For more
complicated geometric cloud shapes, such a method is generally not applicable.

For both of the above approaches, the study of radiative transfer has been mostly
restricted to the effect of cloud geometry with the cloud still taken as internally ho-
mogeneous. However, in addition to having complicated geometric structures, clouds
generally have internal inhomogeneity. For example, in cumulus clouds the liquid
water content (LWC) and the effective rarius increase with height. Such an increase
of LWC with height is not observed in cirrus clouds. Horizontally the clouds are
also inhomogeneous; the central core regions (updraft regions) in cumulus cloud have
larger LWC and the boundary regions (downdraft regions) have smaller LWC. The
impact of the internal inhomogeneity on the radiative transfer process has seldom
been investigated either by Monte Carlo simulation or by any analytical method.

Recently Kabayashi (1991) and Evans (1993) have considered photon transport in
internally inhomogeneous clouds using a numerical model (space grid method). Just
as in the Monte Carlo simulations, such numerical models are generally very time
consuming. However, since the direct solar beam term has been treated very approx-
imately in their works, these works did not observe all of the physical phenomena

shown in the following chapters.

1.2 Purpose and outline of study

The purpose of this thesis is to explore the impact of the cloud internal inhomogeneity
on the radiative transfer process in clouds and our attention has been concentrated
on this cloud internal inhomogeneity. An analytical method for solving the three
dimensional radiative transfer equation and the Monte Carlo simulation method are
both used in the study.



In the second chapter the cloud internal vertical inhomogeneity is investigated.
In order to deal with the cloud internal variations, we develop a new Monte Carlo
simulation scheme in which the cloud internal optical properties can be taken into
account. There exist observations of the vertical variation of the LWC and droplet
effective radius and all the observations show that the vertical variation of LWC is
quite similar for cumulus (strat:)cumulus) clouds. Therefore, in calculations we can
take the cloud vertical variation from observations and use a parameterization to
obtain the internal optical properties from the observed liquid water content (LWC)
and effective radius. Flat clouds and broken clouds are investigated. Cloud absorption
was seldom considered before in Monte Carlo models, but cloud absorption is an
important aspect in our study.

We find that an analytical solution can be obtained for radiative transfer in a
medium with internal inhomogeneity using a peiturbation method. In chapter 3,
the first order perturbation solution of radiative transfer in a cloud with internal
cosinusoidal periodic variation is obtained. The distribution of the upwelling intensity
and cloud internal heating rate are discussed.

In chapter 4, the analytical solution is extended to the multi-mode case and to
second order perturbation expansion. An arbitrary form of cloud internal inhomo-
geneity can then be investigated. When the second order perturbation is considered,
a change in cloud albedo results due to inhomogeneity, which will be extensively
studied in that chapter.

The Monte Carlo simulation is used again in chapter 5 to explore radiative transfer
in clouds with internal horizontal variation. One purpose of this study is to verify
numerically results obtained in chapter 3 and 4.

Physical explanations for the phenomena explored are always emphasized in fol-

lowing chapters.



Chapter 2

Solar Radiative Transfer In
Clouds With Vertical Internal

Inhomogeneity

In the last twenty years Monte Carlo simulation of solar photon trans_.ort in cloud
fields has been extensively investigated. Although most of the reported Monte Carlo
simulation works have improved on the plane-parallel assumption by considering cloud
(cloud field) geometry structures, the improvements are more qualitative than quan-
titative. In most of these Monte Carlo simulations, the attention has only been paid
to cloud geometry. The internal variations of cloud optical properties have not been
considered and the clouds are taken as internally homogeueous.

It is established from observations that a cumulus (stratocumulus) cloud is inho-
mogeneous in both horizontal and vertical direction. (Mason, 1971; Paltridge, 1974;
Platt, 1976; Slingo et al.,, 1982a; Slingo et al., 1982b; Noonkester, 1984). For in-
stance, inside a cumulus (stratocumulus) cloud the liquid water content (LWC) and
the cloud droplet size distribution vary with height (Mason, 1971), which leads to
the single scattering properties of cloud droplets being variable in the vertical direc-
tion. Therefore, the radiative transfer in a cloud would be influenced by the cloud

inhomogeneity.



To what degree can the inhomogeneity of clouds affect the Monte Carlo simula-
tion of radiative transfer in broken clouds? By consideration of the vertical internal
inhomogeneity, will the cloud albedo differenc> between a broken cloud and its plane-
parallel counterpart be enhanced or red.1ced? What is the influence on the cloud solar
absorption? These questions are important for both the study of radiative transfer
in the realistic cloud field itself and the parameterization of Monte Carlo results in
climate modeling.

In order to study the internal inhomogeneity of clouds, the sp tial variation of
cloud optical properties has to be considered in a Monte Carlo cloud model. In this
model the length scales of homogeneous cells constituting a cloud will be taken to be
small, close to the mean free path of photons in the cloud. Consequently on average,
a photon will scatter only once as it passes through each cell. The -patial variation
is taken into account properly in the photon transport process. In this chapter, the

cloud vertical internal inhomogeneity will be investigated first.

2.1 Vertical profiles of LWC and r. in stratocu-
mulus clouds

In the last 40 years, there have been a lot of aircraft observations of the droplet distri-
bution in cumulus (stratocumulus) clouds (Mason, 1971; Paltridge, 1974; Platt, 1976;
Slingo et al., 1982a; Slingo et al., 1982b; Noonkester, 1984). All the observational
results showed that inside a cumulus (stratocumulus) cloud, the LWC and the droplet
radius increase with height above the cloud base. This phenomenon is attributed to
the water vapor condensation process.

In the following, we use the observational results of Noonkester (1984). In his
observations, besides the vertical profile of LV/C, the vertical distribution of cross
sectional areas of droplets are also presented. Fig.2.1a and 2.1b show the profiles
of LWC and cross sectional area of the droplet in stratocumulus clouds measured

for actual marine clouds. The two curves 1epresent the two aircraft observational
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results of August 18 (A18) and May 29 (M29) near San Diego in 1981. The droplet
spectrometer probes are used in rneasurements. The vertical profiles of LWC and
cross sectional area are calculated from droplet spectrum in different height. The
clouds of A18 and M29 are pure water clouds.

From the cloud base to tkL: positions near the cloud top (200 m on A18, 280 m on
M29), the LWC increases almost linearly. Noonkester gave the approximate formulae

for the vertical variations of LWC in these regions from the observation results
Al8: W =0.0074 + 0.0016z (g m™?), (2.1)

M29 : W = 0.019 + 0.0012z (g m™?) , (2.2)

where z is the height in meters from the cloud base. Noonkester also presented the

approximate formulae for droplet cross sectional areas in these regions,
Al8: A =54 4192 (em™*m™?) (2.3)
M29 : A =50 + 1.3z (em™*m™?) (2.4)

Above these linear regions to the tops of clouds, LWC increases slowly (on M29) or
decreases (on A18), which is due to the turret structures in the top of stratocumulus
clouds. Above a cloud top the LWC decreases sharply.

The cloud effective radius can be obtained by given liquid water content and

droplet crcss section

_3W
re = LA 10" (pm) , (2.5)

where p(gm~3) is the liquid wa'er density. Fig.l (c) shows the vertical profiles of
re for clouds of A18 and M29. In radiative transfer processes, the LWC and. r, are
the most important integrated quantities derived from the micro-physical structure

of clouds, since LWC and r. are associated with the cloud internal optical properties.

2.2 Monte Carlo models

We consider the Monte Carlo method because the solutions of the radiative transfer

equation in non-planar inhomogeneous clouds through analytical methods are very
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cumbersome and also limited in their applicability. The Monte Carlo simulation of
photon transport offers a different quantitative approach for studying the radiative
transfer process in realistic clouds. In Monte Carlo simulations, the irradiances can

be computed fairly easily for general cloud shape and internal inhomogeneity.

2.2.1 Physical principle of Monte Carlo simulations

The fundamental blocks of the Monte Carlo mcdel are homogeneous cubes filled with
scattering and absorbing particles. All particles are assumed to be spherical cloud
droplets. A cloud or cloud field is simulated by a chosen number of elemental cubes of
geometric size I, I, and [/, in z, y and z Cartesian coordinates. Each cube is assigned
a volume extinction coefficient k(l,m,n), where the [, m and n indices, specify the
cell.

To establish the Monte Carlo algorithm, it is convenient to simulate the distance
travelled by a photon between successive collisions. In accordance with Beer’s law,
the probability that a photon has travelled an optical pathlength r between successive
collisions is taken to be the fraction of radiation transmitted through that pathlength,
that is

Pr[r]=¢€" (2.6)

Choose a random number RN€(0,1) to represent Pr[r] in Eq.(2.6). If in the process
the photon has passed through N cells with optical depth 7/ (7' < 7),

N
RN <™ = exp[-}_ filk(l,m,n)];] (2.7)

i=1
where f; and [k(l,m,n)]; are the geometric pathlength through and the associated
extinction coefficient of the j** cell traversed by the photon, respectively. The updated

position of the pk-ton is

N
XN+1 = Xo + 8 E fi (2.8)

j=1
where X, is the initial position of the photon and 8 is the unit vector in the direction

of the photon path.
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Assume the residual pathlength which remains before scattering or absorption is

—In(RN) - Z?Ll filk(l,m,n)],
[k(la m, n)]N-H

where [k(l, m,n)]n41 is the extinction coefficient of the cell containing the photon. If

fres = (2.9)

the number of the cell containing Xn4; equals the number of the cell containing

X = XN41 + §fres (2.10)

there is a scattering or absorption event at x for the required optical pathlength has
ther been obtained. If this condition is not satisfied, then f,., is discarded and the
updating process is again repeated.

If xn41 is within the correct cell, then either a scattering or absorption event takes
place. Assume the single scattering albedo of droplet is w. At each events, before the
scattering angles are determined, a uniform random number RN€(0,1) is generated.
If RN> w the photon is taken to be absorbed and its trajectory is terminated. If RN
< w, a scattering event takes place.

When a scattering events occurs, the scattering angle, 6,, is computed in the
Monte Carlo code by solving

1

1
RN = 3 ) P(p)dp , (2.11)

where P(u) is the phase function. For simplicity the Henyey-Greenstein phase func-
tion Pyg(p) is used. It is given as
1-¢°

[1+g% —2gupr?”’ (2.12)

Pug(p) =

where g is the asymmetry factor. By Egs.(2.11) and (2.12) the scattering angle, 0,,

can be determined. The azimuthal angle of scattering is to be
s = 27(RN) , (2.13)

Once 6, and ¢, are obtained then the new photon traverse direction is known.
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2.2.2 Monte Carlo Cloud model with internal variation of
optical properties

As we have pointed out, most of Monte Carlo models used so far have focused on
cloud geometric shape and cloud field arrangement. The internal variaticns of cloud
optical properties have not been considered. In these models the size of spatial cells
in cloud fields generally has a length scale of about 1 km. If we take account of cloud
internal inhomogeneity on the radiative transfer process, the spatial cells of clouds
must be much smaller. The photon mean free path iength in a typical stratocumulus
cloud is about 20 m (for an extinction coefficient of 50 km™=!). Therefore, the spatial
extent of cells in the cloud field should be chosen with a size length of about 20 m
or less. In previous Monte Carlo models, the asymmetry factor and single scattering
albedo have been taken to be constant for all cells. This must be improved in order
to show the spatial correlation of the three optical parameters.

The Monte Carlo cloud models with cells of this size can be used in practical simu-
lations of isolated clouds with internal variation of optical properties. The calculations
can also be extended to an overcast cloud field (planar cloud with an infinite horizon-
tal extent) or a cloud field with a regular array, since the computational requirements
of such cloud fields can be much reduced by the cyclic boundary conditions. However,
the mesoscale studies are not feasible in the present model, since at least 10!° spatial
cells are needed to describe the mesoscale cloud field, and such sizes are too large.

The radiative transfer processes in a cloud-are not directly associated with cloud
LWC and r., but are related to the cloud droplet single scattering properties, which
are the extinction coefficient, single scattering albedo and asymmetry factor. By a
suitable parameterization of solar radiative properties of water cloud (Slingo, 1989),
the relation between the LWC and r. and the single scattering properties of cloud
droplets are established.

We choose the 4 band parameterization scheme developed by Slingo (1989). For
a given spectral interval ¢, the single scattering properties of cloud droplets are pa-

rameterized in terms of the liquid water path (LWP) and the effective radius of the
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size distribution.

b;
r; = LWP(a; + ;—) ’ (2.14)
wi=1-¢; —dir., (2.15)
g = e+ fire, (2.16)

where 7; is the cloud optical path, w; is the single scattering albedo and g¢; is the
asymmetry factor. The LWP is defined as

cloud top
LWP = LWC ds (2.17)

cloud base

where ds is the differential geometric length along the transfer path. The values of
the coefficients in Egs.(2.14), (2.15) and (2.16) are listed in Table 2.1. The ‘weight’ is
the fraction of solar irradiance at the top of the atmosphere in each spectral band. In
our calculations, the average single scattering properties are obtained for each band
(using Slingo’s parameterization) and one Monte Carlo simulation is performed for
each spectral band.

In the Monte Carlo model, each cell is homogeneous in micro-physical quantities.
We denote LWC and r. for each cloud cell as LWC({, m,n) and r.(I,m,n), where [, m
and i are the cell numbers in the z, y and z direction, respectively. From this the

optical path is

T = Z ki(lams n) s(l,m,n) (2‘18)

where the sum is over the cells along the optical path, s(I,m,n) is the geometric path
length through the cell ({,m,n), and

k.'(l, m, n) = LWC(I, m, n)(a,- + m) (219)
is the volume averaged extinction coefficient for the cell (I, m,n) . Similarly,
wi(lym,n) =1~ ¢; ~ dire(l,m,n) , (2.20)

gi(la m, n) =€+ fa're(l, m, n) (221)
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Gy b, dy h
i (um) (10=2m?/g) | (umm2/g) & (um=1) e 103 /um) | weight
1 | 0.25-0.69 2.817 1.305 -5.62¢-8 | 1.63e-7 | 0.829 2.482 0.459760
2 | 0.69-1.19 2.682 1.346 -6.94e-6 | 2.35e-5 | 0.794 4.226 0.326158
3 | 1.19-2.38 2.264 1.454 4.64e-4 1.24e-3 0.754 8.560 0.180608
4 | 2.38-4.00 1.281 K . 0.033474

Table 2.1: Coefficients in Eqs. (2.14), (2.15) and (2.16) according to the pa-
rameterization of Slingo (1989)). Although the significance of all given decimal
places is doubtful, a discussion of error bars is not given in this reference.

are the volume averaged single scattering albedo and asymmetry factor in cell (I, m, n).

The vertical distributions of k;, w; and g; for the cloud case of A18 are presented
in Fig.2.2.

2.2.3 Error analysis ¢f Monte Carlo models

The Monte Carlo simulation is based on statistical methods and a finite number of
photons should lead to a quasi-random unbiased error in flux estimates. Here we
use a simple method for estimating errors in Monte Carlo calculations of radiation
flux. We consider a planar cloud type of A18 with internal inhomogeneity. The solar
zenith angle is chosen to be 0°. Statistical fluctuations in the Monte Carlo simulations
resuli from a change of the initial RN seed. In Fig.2.3, the upward flux at cloud top
corresponds to the different RN initialization. The total number of photons used are
different in Fig.2.3 a, b and c. The statistical fluctuations decrease with an increase
in the number of photons used. We can obtain the standard deviation from
_ L - ~\211/2
o= [m—lg(m -,
where M is the total number of calculations with different RN seed initialization, p

(2.22)

is the flux corresponding to the k** different RN seed initialization. The averaged
value is

1 M
P=13f 2P (2.23)
k=1
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Figure 2.2: Vertical profiles of the single scattering properties of the cloud A1S. The
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By Eq.(2.22) the standard deviations can be obtained for different numbers of
total photon used, N. In Fig.2.4, the standard deviation is plotted versus 1/N'/2. We
find that all the values of o are under the dotted line. This shows that the standard
deviation is smaller than tae 1/N'/2, This is consistent with the theoretical »xpression

of standard deviation,

N
Therefore, an upper bound on the standard deviation may be taken to be 1/N'/? with

g = [i’(l - ﬁ)]1/2 . (224)

reliability. In following Monte Carlo simulations in this chapter, 10 photons will be

always used. Therefore, the standard deviation is smaller than 0.001.

2.3 Photon transport in vertically internally in-

homogeneous clouds

We will take the cloud case of Al8 in section 2 as an example to show the influences
of the cloud vertical internal inhomogeneity on the radiative transfer in clouds. A18
is a typical stratocumulus cloud; its vertically averaged extinction coefficient is about
50 km~! (McKee and Cox, 1974). The case of A18 is simple since the linear results
of LWC and droplet cross section cover nearly all the vertical cloud region. The
uppermost part of the cloud above the linear region is small, and can be ignored. We
have pointed out that it is a common observational conclusion that the linear region
can nearly cover the full cloud height except the cloud top turrets (Mason, 1971,
Paltridge, 1974; Platt, 1976; Slingo et al., 1982a; Slingo et al., 1982b).

2.3.1 Overcast cloud field with vertical inhomogeneity

Radiative transfer is dependent on the cloud geometry effects as well as on the cloud
single scattering variables (extinction coefficient, single scattering albedo and asym-

metry factor). The extinction coefficient is the sum of the scattering coefficient and
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the absorption coefficient. The larger the extinction coefficient, the larger the prob-
ability that a photon is scattered or absorbed in the transport process. The single
scattering albedo represents the probability of a photon not being absorbed when a
scattering event occurs. The asymmetry factor represents a average forward ~ompo-
nent of the scattering flux.

From Fig.2.2, along the vertical direction inside the cloud (A18), the changes in
the extinction coefficient. are large for each spectral interval, but the changes of the
single scattering albedos and asymmetry factors are relatively small. Especially for
single scattering albedos, there is nearly no change for the first three bands. However,
the radiative transfer process is very sensitive to the changes of w and g. Let us
consider a case of overcast cloud layer. Then the radiative transfer reduces to the one
dimensional case. We keep w and g constant in the whole vertical region, but let k&
vary with the height. This corresponds to the situation that all cloud droplets are of
the same radius; the change of k is due to the spatial variation of the volume density
of the cloud droplets. In this case the cloud reflectance is the same for taking & to
have vertical variation or taking k as its vertically averaged value. If w and g are
constants, the cloud reflectance is determined by 7(zp) only, where the total optical
depth is

r(z0) = ~ /0 () de' (2.25)

and zp is the cloud vertical geometric depth. The results are only dependent on the
total vertical optical depth of the cloud, not associated with the vertical variation of
k(z). Therefore, the result is the same as for replacing k(z) by its vertically averaged

value

k= /0 * k() d2' /20 (2.26)

in all space. This can be verified by Monte Carlo simulations.

In a real cloud, the spatial variation of k is usually accompanied by spatial varia-
tion of g and w. Therefore a change in cloud reflectance is expected. Let us take the
real cloud A18 as an example. The reflectances of solar radiation for an overcast cloud

(A18) with an infinite horizontal extent are shown in Fig.2.5. T"/0 values of surface
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albedos have been taken into account. The real cloud (A18) has vertical variations
of single scattering properties as shown in Fig.2.2. Its counterpart (<A18>) corre-
sponds to the plane-parallel case, with vertically averaged single scattering variables

k, §, and @. k is given in Eq.(2.26), while & and §, are defined by
2
&= /0 w(2) d2' [z0 (2.27)

§= /0 ® 9(2) d2' [z - (2.28)

In Fig.2.5, we find tFat the inhomogeneous real cloud has a smaller solar re-
flectance in compericcn wisk that of the homogeneous plane-parallel counterpart (rel-
ative reduction is «tut 1%). Though small, the differences in reflectance between
the real cloud and its vertically averaged counterpart are larger than the standard
deviation. The results in Fig.2.5 are consistent with the common belief that the cloud
inhomogeneity leads to reduction in cloud reflectance (Stephens and Tsay, 1990). Al-
though we are not aware of a rigorous proof, a physical explanation for the changes
of solar reflectance can be given, taking into account the scattering properties.

For cloud A18, the extinction coefficient and the asymmetry factor increase with
the height (above cloud base); the single scattering albedo decreuses with height
(Fig.2.2). Since the downward directed transport of solar photon number decreases
exponentially inside the clouds, the larger extinction coefficient at the upper part of
a cloud leads to more scattering events for the downward directed solar photons. The
larger asymmetry factor in this region leads to the scattered photons having a larger
tendency to go downward, thus contributing less to the reflectance. In addition, the
smaller single scattering albedo in this region of more scattering events results in
more photons being absorbed, which also reduces the cloud reflectance.

A« mentioned above, for an overcast cloud, if we keep w and g constant, the vertical
variation of k does not make any difference for the cloud reflectance. Differences
in reflectance only appear when the region of more scattering events has a larger
asymmetry factor or a smaller single scattering albedo. These two processes both

contribute in a real stratocumulus cloud case.
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Figure 2.5: Vertical Reflectances for overcast clouds with different surface albedos.
A18 is the real cloud, and <A18> is the vertically averaged counterpart.
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In Fig.2.5, the reductions of the solar reflectance due to the cloud internal inho-
mogeneity are small, and the reductions are not obviously dependent on the solar
zenith angle and the surface albedo. Since the considered cloud case is a typical
stratocumulus cloud, we conclude that for an overcast stratocumulus cloud the influ-
ence of internal inhomogeneity on thc radiative transfer is not important for cloud
albedo. The homogeneous plane-parallel assumption is a good approximation for a

horizontally infinite overcast stratocumulus cloud field.

2.3.2 Broken cloud field with vertical internal inkomogene-
ity

For overcast clouds, the inhomogeneity in the micro-physical quantities of the cloud

leads to a slightly reduced cloud albedo in comparison with that of the plane-parallel

counterpart. However, the stratocumulus cloud field is not usually of overcast form.
Therefore, the investigation of the internal inhomogeneity should be extended to the
broken cloud field.

In order to compare broken cloud field results with the results of the overcast
clouds, A18 is chosen as a real cloud case. Noonkester (1984) did not show the
cloud size distribution of the stratocumulus cloud field; he concentrated on the micro-
physical quantities. Therefore, the cloud ficld arrangement must be specified. An
idealized broken cloud field is taken in the form of an extended regular array of
cubes. Denote the side length of a cubic cloud by D, the height of a cubic cloud by
H, and the distance between two neighbouring cloud centers by S. The aspect ratio
a = H/D. The distance ratio R = S/D and the cloud amount N = R~2. Consider a
regular array of clouds of aspect ratio @ = 1. The cubic clouds have a side length of
200 m. The change of the distance ratio corresponds to the change of cloud amount.
The cloud vertical internal inhomogeneity of optical properties are also determined by
Fig.2.2, the cloud latera! variation of optical properties due to entrainment is ignored.

For the cloud field consisting of cubic clouds, the results of the radiative transfer

is dependent on the azimuthal angle. Since the clouds in a real cloud field do not
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show a specific orientation, the azimuthally averaged case may be interpreted as more
realistic from a climatological point of view (Barker and Davies, 1992). Therefore, in
the following, most of results are azimuthally averaged.

In Fig.2.6, the cloud reflectances of the regular cloud array (A18) with different
distance ratios are presented. The ground surface albedo is assumed to be zero. If
the surface albedo is not zero, the reflectance is dependent on the cloud base height.
In Fig.2.6 when R = 1.2, the difference between the two curves of A18 and its
verticali, averaged counterpart <A18> is still small. As the distance ratio increases,
the differences in the reflectances of A18 and <A18> for a large solar zenith angle
are enhanced. However, this enhancement is only up to a certain value. From R =3
to B = 5, the relative enhancements in the reflectances are not much different for
different distance ratios.

When an overcast cloud field is separated into a broken cloud field with a regular
array, and if the solar zenith angle is not zero, the lateral sides of the cubic clouds
would increase the illuminated area. Consider a photon entering the higher part of
a lateral side of the cubic cloud with vertical internal inhomogeneity. Such a region
corresponds to a larger extinction coefficient, a larger asymmetry factor and a smaller
single scattering albedo, in comparison with its vertically averaged counterpart. Then
the photon would have a larger tendency to go downward or to be absorbed, and
reflectance will decrease. The physics is the same as that discussed for the overcast
cloud in the last subsection.

Now consider a photon entering the lower part of a lateral side of the cubic cloud.
In contrast to the vertically averaged case, this region corresponds to a smaller ex-
tinction coefficient, a smaller asymmetry factor and a larger single scattering albedo.
The smaller asymmetry factor leads to the photon deviating more from its original
path direction, so the distribution of the scattered photons becomes more isotropic,
which would increase the reflectance. The larger single scattering albedo means that

the photons are less likely to be absorbed in this region, and the reflectance would
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increase. However, the smaller extinction coefficient in this region results in less scat-
tering. Therefore the downward directed solar photons would undergo less scattering
events and pass through the cloud more easily. This effect would compensate for the
increase of reflectance due to smaller asymmetry factors and larger single scattering
albedos in this region. Taking into account the two regions, for a large solar zenith
angle, the net result is that the difference in reflectance is enhanced (Fig.2.6).

For a large solar zenith angle, as the distance ratio increases, the exposed lateral
sides intercept more photons. Then the differences in reflectance between A18 and
<A18> are enhanced (from R = 1.2 to R = 2, in Fig.2.6). However, beyond a certain
value, further increase in the distance ratio does not lead to an increase of intercepted
photons by the lateral sides. The differences between A18 and <A18> are not further
enhanced (R = 3 and R = 5 in Fig.2.6).

For all cases in Fig.2.6, when the solar zenith angle is very small the situation is
reversed. The reflectance of A18 becomes larger than that of <A18> (the differences
are larger than the standard deviation), which suggests that in a broken cloud field
case the heterogereity does not always lead to a reduced cloud reflectance.

The physical explanation for this anomalcus phenomenon is that the scattered
photons of the direct downward solar beam have a larger chance to leak through the
lateral sidc boundary if the asymmetry factor is smaller. Some of the leaked photons
can be absorbed by the surface directly. In the upper part of a real cumulus cloud the
asymmetry factor is larger, in comparison with the vertically averaged counterpart
case. Since the photon number of the direct solar beam decays exponentially as the
beam transports downward, the effect of photons leaking through the lateral sides is
more dependent on the situation of the upper part of the cloud. On the other hand,
since the solar zenith angle is very small, the cloud lateral effect discussed above is
very weak.

This argument can be verified by a test. Usually when a cloud becomes “aged”, or
in a precipitation state, the droplets with larger radii are in the lower part of the cloud

and the smaller droplets are in the upper part of the cloud. The situation is opposite
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to that of growing cumulus clouds. Considering the photon transport in a “aged”
cloud, for simplicity and comparison, we assume that variations with the height of
single scattering properties are opposite to that of cloud A18, i.e. the LWC and cross
sectional area linearly decrease with height (denote as A18). The calculated results
are shown in Fig.2.7. In comparison with that of <A18>, the asymmetry factor is
smaller in the upper part of cloud A18. At a very small zenith angle, the reflectance of
<A18> exceeds that of A18, since the photons have a better chance to leak through
the lateral boundary when the asymmetry factor is smaller in the upper part of the
cloud A18.

2.3.3 Cloud absorption

Cloud solar heating rate plays an important role in the local energy balance. Stud-
ies show that the solar heating rate also has a considerable effect on cloud droplet
(ice crystal) growth (Stephens, 1983; Ramaswamy and Detwiler, 1986). The cloud
absorption anomaly has been one of the challenging problems in atmospheric science
for many years (Stephens and Tsay, 1990).

In Fig.2.8, the cloud absorptions corresponding to different distance ratios are
plotted. The distance ratio R = 1 represents the overcast cloud. In Fig.2.8 shows
that the cloud absorption is enhanced for the overcast cloud with a realistic vertical
inhomogeneity, in comparison with that of the homogeneous counterpart. The cloud
absorption anomaly refers to the fact that measurements of cloud solar absorption
tends to exceed theoretical estimates. However the theoretical estimates are based on
the plane-parallel assumption (Stephens and Tsay, 1990) and the cloud inhomogeneity
has been ignored. Therefore, Fig.2.8 (R = 1) suggests that the cloud absorption
anomaly might be partly attributed to the cloud vertical inhomogeneity. The physical
explanation of the enhancement of absorption has been given in subsection 2.3.1. The
region with larger k corresponds to smaller w; more scattering events occur in higher
absorption regions.

When the distance ratio R = 1.2, cloud absorptions are sharply reduced for small



S
/
/
d

Absorptance (%)
w
7
7
%
/

(6]
¢
£
T

0.2 0.4 0.6 0.8 1
Cosine Of Solar Zenith Angle

Figure 2.8: Cloud absorptance for different distance ratios.
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zenith angles. Since many photons directly penetrate through the intervals between
the clouds, less photons have been trapped by the clouds. As the distance ratio
increases further, the absorption by clouds is decreased, and the differences in ab-
sorption between the real clouds and their vertically averaged counterparts are re-
duced. As discussed in subsection 2.3.2, the lower part of real stratocumulus clc ';
has smaller k and larger w, in comparison with its vertically averaged counterpart.
Photons which enter the lower parts of the lateral sides pass more easily through
the cloud with less probability of being absorbed. This is opposite to the effect of
larger absorption at the upper part of the cloud, and results in the reduction of the

difference in absorptions of A18 and <A18> (R = 1.5 and R =2 in Fig.2.8).

2.3.4 Effective cloud amount for cloud absorption

The cloud absorption is plotted as a function of the cloud coverage in Fig.2.9. Besides
the inhomogeneous broken cloud and its vertically averaged counterpart, the cor-
responding plane-parallel case is also presented. The plane-parallel cloud absorp-
tion at the same value of cloud coverage is Abs,(N) = Abs,y(100%)N , where the
Abspp(100%) is the absorption for a plane-parallel cloud and N is the cloud amount.

When 6, = 0%, the absorption of fractionally covered plane-parallel cloud exceeds
the absorptions of broken clouds for most vilues of the cloud amount. This is due to
the boundary leak of photons in broken cloud cases. Also, Fig.2.9(a) shows that the
absorgtion of the inhomogeneous cloud is larger than its averaged counterpart.

When 6, = 60°, the absorptions of both cases of the broken cloud dramatically
exceed that of the plane-parallel cloud for all values of the cloud arﬂount. This is
because more photons have been intercepted by the lateral sides. In the large cloud
amount regions, the absorption of inhomogeneous cloud is larger than its homogeneous
counterpart.

For a large solar zenith angle, the substantial increase of cloud absorption by
broken clouds (A18 or <A18>) in comparison with the plane-parallel case seems to

show that the variability of cloud absorption is mostly associated with cloud geometry
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rather than micro-physical variation in this case.

Fig.2.10 shows the cloud amount dependence of cloud absorption for A18 with
a = 0.2. The rectangular slab clouds have a side length of 1000 m. In comparison
with Fig.2.9, for the cloud with larger side length, the differences in cloud absorption
between broken cloud (A18 or <A18>) and the plane-parallel case are reduced espe-
cially for the case of a small value of cloud amount. The cloud lateral side area per
unit cloud amount is proportional to DH/S? = NH/D. For a given cloud amount,
the cloud lateral side area per unit cloud amount is in inversc proportion to the
cloud side length. Thus the number of photons trapped by lateral side is less for a
cloud array containing clouds with larger side lengths. Hence the differences in cloud
absorption between broken cloud and plane-parallel case are reduced.

From above, it can be found that using only the cloud amount to describe the
geometry of broken cloud is incomplet., and the parameterization of effective cloud
amount is necessary. In earlier parameterizations of effective cloud amount for cloud
absorption (Harshvardhan and Thomas, 1984), only the cloud geometry factor was
considered. In some cases, especially for thin clouds or small zenith angles, the
increase of illuminated cloud area would not enhance the cloud reflectance. The
cloud internal optical properties are also important and should be taken into account
in the parameterization of effective cloud amount. This was realized by Welch and
Wielicki (1985). Besides cloud geometry factors, the cloud optical depth also plays
an important role in the Welch and Wielicki (WW) parameterization. The effective
cloud amount N, in the WW parametrization is given by

N./N = { ::_a fj; t:n:‘;v—_ z”i(lc;of)_ N9 IA\E x (2.29)
where a is the aspect ratio, po = cosfly, N, = (1 + atanbp)~?, f and C are
f ={In[1.05 + 0.045(In7)?*] + 0.05(p5 % — 1)[1 — (7/70)?]
~ 0.0015u5* — 0.25(so — p)(7/50)%}(1 + N?), (2.30)

C = 0.25 — 0.13r2 — 0.05(r/50)2, (2.31)
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where p, = cos72.5°, and 7 is cloud vertical optical depth. The WW parametrization
is determined from cloud reflectance. It is unknown if this parameterization can
be extended to broken cloud absorption. Similar to reflectance, the effective cloud
amount for broken clouds A18 and its vertically averaged counterpart <A18> in cloud

absorption case are defined as

Abs,ug = Abs,,,,(lOO%)Ne Al189 (2.32)

Abs<,us> = Abs,,,(lOO%)Ne <A18>) (233)

where N, 418 and N, c418> are effective cloud amounts for A18 and <A18> respec-
tively.

N, s18/N (N. <a185/N) represents the ratio of the cloud absorption for a broken
cloud field (its vertically averaged counterpart) to that of the plane-parallel cloud
case. N, a18/N, N, ca1s5/N and N./N by the WW parametrization for three values
of zenith angle are plotted in Fig.2.11. The aspect ratio a = 1. The cloud vertical
optical depth obtained by band fractional weighted mean is 9.37 for A18. In this case
the azimuthal angle ¢ = 0°, since the WW parameterization is for fixed azimuthal
angle. Fig.2.11 shows that the WW parametrization nearly agrees with the Monte
Carlo simulation in small zenith angle cases. The change tendencies for Monte Carlo
simulation and parametrization are quite similar. However, in large zenith angle cases
the WW parameterization underestimates the effective cloud amount. This defect is
due to the different physical processes of reflectance and absorption. In Fig.2.11 also
it can be found that the cloud vertical inhomogeneity is not a negligible factor in
determining the effective cloud amount. Cloud vertical internal inhomogeneity can
cause about a 10% difference in effective cloud amount.

In the above calculations, only one real cloud case has been considered. Here we
briefly consider another real cloud case of M29 in (Noonkester, 1984). The formulae
of Eqgs.(2.2) and (2.4) do not cover the whole vertical cloud region, the values of LWC
and r. for the upper part of the cloud are obtained from Fig.2.1 directly. Fig.2.12

shows the calculation results for a = 1; R = 1 and 1.5. The surface albedo is zero.
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We find the results are quite similar to that of the corresponding cases in A18. Our
conclusions therefore appear to have some general validity for the considered type of

cloud.

2.4 Summary

In contrast to previous Monte Carlo cloud simulations, the cloud micro-physics of
spatially varying single scattering properties has been introduced into our model.
The relations between the observable physical quantities (LWC and r,) and the single
scattering properties are determined by the parameterization of shortwave radiative
properties of water clouds. Then, the real process of photon transport in clouds is
simulated. The cloud examples were chosen from observational results; they were
typical stratocumulus clouds with average extinction coefficient of about 50 km™!.

In overcast clouds, the reflectance was reduced for a real cloud with internal
vertical inhomogeneity in comparison with the vertical averaged counterpart. Gen-
erally the reductions were small. However, in broken cloud cases, the difference in
reflectances for the inhomogeneous clouds and their averaged counterparts were en-
hanced at large solar zenith angles.

In broken cloud fields, it is not always true that a heterogeneous cloud leads to the
reduction of cloud reflectance. The radiative transfer in clouds is dependent on the
cloud geometry and the mutual relationship between three single scattering variables.
Simplified arguments can not predict the change of reflectance.

When cloud amount is large, inhomogeneous clouds lead to an increase of cloud
absorption, which is one factor that should be taken into account in the cloud absorp-
tion anomaly problem. In general, the difference in cloud absorption due to cloud
vertical internal inhomogeneity is smaller than that due to cloud geometry. The
parametrization of effective cloud amount determined from cloud reflectance can be

used approximately for cloud absorption, especially in the case of a small zenith angle.



Chapter 3

Perturbation Solution For 3-D
Radiative Transfer In A

Horizontally Periodic

Inhomogeneous Cloud Field

In this chapter we turn our interest to clouds with horizontal inhomogeneity. Wein-
man and Swarztrauber (1967) considered radiative transfer in plane-parallel layers
with the horizontal inhomogeneity of volume extinction coefficient k = ko + kycos(ix).
Even under the assumption of isotropic scattering, they were only able to solve
the problem numerically. Recently Kobayashi (1991) applied the discrete-ordinate
method to an inhomogeneous cloud with volume extinction coefficient of one di-
mensional variation a« = B + Hjcos(mraz/L;) + Hycos(mbz/L;). The direct use of
the discrete-ordinate method to the radiative transfer equation in an inhomogeneous
medium results in the mixture of different modes. The analytical solution becomes
complicated due to formulation in the form of the inverse matrix for the eigenvalue
problem. The solution can be obtained only numerically. Evans (1993) purposed
a 2D numerical model for radiative transfer in clouds with internal inhomogeneity.

What we are interested in is an analytical method.

36
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Due to convection, turbulence and other factors, clouds are generally inhomoge-
neous in both horizontal and vertical directions. For instance, stratocumulus clouds
are horizontally inhomogeneous. The updraft regions have larger liquid water con-
tent (larger extinction coefficient) than surrounding downdraft regic \s. We can sim-
ply simulate such horizontal inhomogeneity as a two dimensional variation in the

extinction coefficient,

k = ko{1 + €[cos(az) + cos(by)]} , (3.1)

where ko, ¢,a,b are constants, and ¢ < 0.5. The cloud layer will still be taken as
plane-parallel, the inhomogeneity refers to the interior of the cloud. To solve the
three dimensional radiative transfer equation directly in an inhomogeneous medium
such as that of Eq.(3.1) is difficult, since the equation is equivalent to a set of par-
tial differential equations with non-constant coefficients. Generally, exact solutions
are not known. However one way to avoid this difficulty is through a perturbation
method. The perturbation method for solving differential equations is commonly used
in many branches of physics. Using the perturbation method, a complicated differ-
ential equation is replaced by a series of differential equations of simpler form. The
perturbation method for the three dimensicnal radiative transfer equation in a cloud
with cosinusoidal extinction coefficient was considered by Romanova (1975); however
the explicit solution for the radiance (irradiance) was not obtained. The case of one
dimensional radiative transfer was considered by Box et al. (1989). In the pertur-
bation method, the lowest order solution should be obtained; then the higher order
solutions may be obtained by recurrence relations. In radiative transfer problems, the
lowest order solution is the solution for the plane-parallel homogeneous case, which
has already been obtained. The solution of the plane-parallel homogeneous case is
then the starting point to develop the higher order perturbation calculations. Usually
in perturbation methods, the higher order calculations are cumbersome. However, if
the perturbation coefficient € in Eq.(3.1) is much smaller than one, i.e. the inhomo-
geneity of the cloud is small, we can obtain very accurate results even to the first

order of the perturbation calculation.
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3.1 The lowest order solution for plane parallel
case

The three dimensional radiative transfer equation with external source term is

a_ K(=I+J+J), (3.2)
ds
with d d i d
T = veosp——+ vsing o +Hug (3.3)

where u = cos, v = sinf, 0 is the local zenith angle, ¢ is the local azimuth angle,
k' is the scaled extinction coefficient, I(s,8,¢) is the diffuse radiance in the direction
0, at distance s, J is the source term due to internal multiple scattering and J is
the source term due to single scattering with the direct solar beam. Expanding the

phase function to the first order of Legendre polynomials, we have (Davies, 1978)

_ i, o 0 [T ’ ! ’ oA v /
=2 o d¢/0 {14 3¢'[up’ + vv'cos(p — )M (s,0,¢")d6' ,  (3.4)
wl
Jo = {1+ 3¢'[uo + vuocos(v — wo) ]} F (s, 00, o) , (3.5)
and
F(S,OQ, 900) = WFQC-TO . (36)

where g and v are the cosine and sine of solar zenith angle respectively, ¢’ is the
scaled asymmetry factor, w’ is the scaled single scattering albedo, and 7 F; is the

incident solar irradiance. The optical depth for the direct solar beam is defined as
m:/ya. (3.7)

The relationship of the scattering factors to the scaled scattering factors are de-
termined by considering the separation of the forward scattering peak from the phase
function (Joseph et al.,1976):

K = k(1 - wg?), (3.8)


file:///pito
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W' =w(l-g")/(1-wg?), (3.9)

In the plane-parallel homogeneous case, the medium is homogeneous (k and &' are
constants) and horizontally infinite. Therefore the radiative field has no horizontal
variability, and it is a function of the vertical variable only. Using the Eddington

approximation, we expand the radiance
I%(2,0, ) = I3(2) + IXz)vcosyp + I3(z)vsing + 12(2)p (3.11)

where we append the superscript ‘0’ to describe the radiance in the lowest order for
the plane-parallel case. Also, we denote the k' by kj for the lowest order case, since

the extinction coefficient is a constant. From Egs.(3.4) and (3.5)

J? = W{I3(2) + ¢'lI2(z)veosp + I)(z)vsing + L2(z)ul} (3.12)

7
Jo = %{1 + 3¢’ [1p0 + vvocos(p — po)]} Foe ¥4 (3.13)

Integrating Eq.(3.2) in turn over 47 steradians with respect to dudp, vcospdudyp,
vsinpdudy, pdpdyp yields respectively (Davies, 1978),

% = —3kh(1 - I + gk,’,w'Foe"‘éz/“ : (3.14)
0= —ki(1-uw'g"I?+ %k&w’g’uocoscpoFoe"‘()’/“” , (3.15)
0=~ky(1 —w'g"I + Z-k(’,w'g'uosin%Foe'%’/ Ho (3.16)

%g)‘) = ~ko(1 —'¢") 7 + %k{)w’g'#oFoe-k"’z/m : (3.17)

where I? and I are given by Eqs.(3.15) and (3.16) directly. From Eqs.(3.14) and
(3.17) we obtain (Shettle and Weinman, 1971)

I = Ce™* + De** — ae~ko?/vo (3.18)
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I° = W(Ce™* — D) — BeFor/mo | (3.19)
where
A= [3k2(1 - )1 - gw)]E, (3.20)
= 31 —w)(1 - g}, (3.21)
3
a = Thyw' upFoll + ¢'(1 — )]/ (kg - ugX?) , (3.22)
and 3
= Tho'w'soFoll + 3¢'ug(1 — )]/ (kg — #o)?) - (3.23)

The constants C and D ars determined by the boundary conditions. For simplicity, we
assume there is no downward directed diffuse irradiance at the top of the cloud layer.
Also, we take the surface albedo to be zero (the ground is taken to be blackbody), so
there is no upward directed diffuse irradiance at the bottom of the cloud layer. We

will therefore require

FOY0) = x[1(0) + 2I°((‘)] =0, (3.20)

FY(20) = =[I3(20) — -—Io(zo)] = (3.25)

where z, is the vertical geometric length of the cloud layer. From Egs.(3.24) and
(3.25) we can obtain C and D. We have only considered the nonconservative case
(w # 1), the discussion is similar for the conservative case.

Finally we point out that I and I may be neglected if only the upwelling (p =
—1) and downwelling radiances (¢ = 1) or upward and downward irradiances are

required.

3.2 Perturbation solution

Now we discuss the radiative transfer in an inhomogeneous cloud. We consider the
extinction coefficient given in Eq.(3.1) with two dimensional horizontally periodic

variations, and replace the k and ko with the scaled variables. The € in Eq.(3.1) is
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taken to be much smaller than one so that terms of higher order in powers of ¢ can
be neglected. The solar beam flux F(s,,0) = 7Foe~™, and the optical depth for

the direct solar beam is
To = /k{,{l + €[cos(az) + cos(by)]} ds = kys + eH (s, 0y, o) , (3.26)
where the geometric path length s = z/yo and J
H = / k[cos(az) + cos(by)) ds

!

= %{sin(am)[l — cos(nz)] + cos(az)sin(nz)}

+ ;%')E{sin(by)[l — cos({z)] + cos(by)sin(¢z)} , (3.27)

where 7 = avgcosyo/ o and { = brpsingg/po. As g — 0, H — kp[cos(az) + cos(by))z,
therefore [ k' as = k'z.
H is finite fer a finite optical depth and, from Eq.(3.27), upper and low bounds
are given by
—2kls < H < 2)s . (3.28)

Taking &} ~ 0.014m ™! for typical stratocumulus clouds, and € = 0.1, then even for s

of several hundred meters we have 2ekys < 1. Therefore we can expand
wFoe R0~ H o (1 — eH)nFye~%0? (3.29)

Of course, if s is too large, the inequality of 2ekys < 1 is no longer valid. How-
ever, when s is large, the factor e~%0* approaches zero and the absolute error for the

expansion is small. From Eq.(3.28) and Eq.(3.27
WFoe_k‘l”_‘H < WFoe—k{,H-Zek{,s ) (330)

In Fig.3.1 we plot the maximum limit (H = —2k{s) of the incident solar flux and

its approximate expansion by Eq.(3.20). We find that for a large geometric path
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the contribution of the direct solar beam to the diffuse radiative transfer becomes
negligible, and the approximate expansion is always accurate.

In terms of the expansion in Eq.(3.29), Jp can be written as
Jo=Jg +edp, (3.31)
‘where J¢ is given in Eq.(3.13), and
Jy = —%’{1 + 39" [0 + vvocos(p — o)|} H Foe~*o%/mo (3.32)

To use the perturbation method to solve the radiative transfer equation we expand

the radiance I in powers of €. To the first order, we retain only the first two terms
I=1°+¢lt, (3.33)

where I° is the lowest order of the radiance discussed in the last section, and I is

the first order correction. Therefore, the radiative transfer equation becomes
d
;l-;(Io-{-eI‘) = ky{1+¢[cos(az)+cos(by)]}~(I°+el')+(J+eJV)+(Jg+eJ3)] . (3.34)

Regrouping the terms in Eq.(3.34) with the same order of ¢ yields,

dr° ! 0 0 0 .

e ko(—=1"+ J° + Jy) , (3.35)
dIl / 1 1 1 ! 0 0 0 .
T = ko(=I' + J' + Jy) + kg[cos(az) + cos(by)](=1°+ J° + Jp) - (3.36)

The lowest order solution for Eq.(3.35) has been given in the last section by the
Eddington approximation. Eq.(3.36) is an inhomogeneous partial differential equation
with constant coefficients. We again use the Eddington expansion to first order of

the perturbation solution
I'(s,0,¢) = I(s) + I3 (s)vcosp + I}(s)vsing + I}(s)u . (3.37)

By a process similar to that for the lowest order solution, we obtain

orr arl an ) /
3.': + 6; + 622 = —3kgy(1 — w') Iy + 3ky[cos(az)+
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’
' 3 '
+ cos(by)][-(1 - w')I2 + %Foe"“”/“] - Tk HFoe %/ | (3.38)
61(}__1 1 N7l §I I —kbz/uo
b = ko(l — w'gNI; — 4kow g'vocospoH Foe~"0*/40 | (3.39)
61(}__1 IPRAN 31 30 v ~kgz/po
T ko(1 - w'g')I, ~ Zkow g'vosingo H Foe™ 0%/ | (3.40)
aI(} R Y) 'l ' 1 1\ 70
90 k(1 =g + Kieos(az) + con(m)][~(1 ~ /g [0+
+ %w'g'quoe'k(’" o] — %k{,w’g'uoH Fye~Fo3/wa (3.41)

Differentiating Eq.(3.39) with respect to z, Eq.(3.40) with respect to y and Eq.(3.41)
with respect to z, and using Eqgs.(3.14) and (3.38) yields

V212 — A1} = [cos(ax) + cos(by)][2A2IS — 2he~k0*/m0] 4 hHe ko™ ko (3.42)

where h = 3(1+ ¢’ —w'g" )Wk Fo. Eq.(3.42) is solved (see Appendix A) to obtain Ig,
and then I}, I} ana I} con be derived from Eqgs.(3.39),(3.40) and (3.41) respectively.

z) "y

The total downward and upward diffuse irradiances are given to first order in ¢ by

2
F' = FO 4 eFY = z[I{(z,y,0) + §If(x,y,0)] + en[I5(z,y,0) + glg(m, y,0)], (3.43)

F'= FOU 4 eF'" = w([I(2,y, 20) — glg(l'ay,%)] + en(Ig(2, ¥, 20) — %I:(a:,y,zo)] -

(3.44)

The required boundary conditions are that the downward directed diffuse irradiance

at the top of the cloud layer is zero and that the upward directed diffuse irradiance at

the bottom of the cloud layer is zero. Taking into account the boundary conditions for

the plane-parallel approximation (Eqs.(3.24) and (3.25)), we require from Eqs.(3.43)
and (3.44) that:

I;(z,y,0) + ;I,’(x, y,0)=0, (3.45)

(@4, 70) = 213(z9,7) = 0. (3.46)
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Since cos(azx),cos(by),sin(ez) and sin(by) are orthogonal to each other, Eqs.(3.45)
and (3.46) yield four groups of conditions which determine the constants Cy, Dy; C,,
Dy; Cs, D3; and Cy, D4 (see Appendix A).

The net diffuse irradiance vector (Goody and Yung, 1989) is

F = Frex + Fyey + Fiey , (3.47)

where F; = §n(I3 + el}), F, = §n(I0 + ell), and F, = $x(I? + €l}).

The net direct solar irradiance vector is
F! = Flex + Fley + Fle,, (3.48)

where F? = yocospom Foe™" =~ (1 — eH )vgcospom Foe~ 0%/ 4o,
F3 2 (1 — eH )vosingom Foe ™%/ and F? = (1 — eH)pom Foe=*o/m0,

Therefore the heating rate is given by

oT 1 dy _ 1 NI TO —kgz/vo
-67—- *c;v'(F'i-F)—Zp—l;ﬂ(l—w)k[4lo+Foe o ]
+ zf;n(l — W )KA[AI} — H Fpe~*o/m] | (3.49)

where ¢, is the specific heat and p is the air density. Eq.(3.49) gives the distributions

of the heating rate inside the cloud layer.

3.3 Results and discussions

We have derived the diffuse radiance for a horizontal periodic inhomogeneous medium
using the first order perturbation method. If the perturbation coefficient ¢ is small
enough, the errors due to the higher order contributions are very small.

The reflection for solar irradiance (cloud albedo) is defined as
= FT(O)//JQWFO . (350)

The solution shows that the slight horizontal periodic variation of the extinction coef-

ficient makes the radiance also a periodic function, although the periodic form of the
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radiance is more complicated than that of the extinction coefficient. Therefore, the
horizontally averaged cloud albedo is the same as for the plane-parallel homogeneous
case, since the horizontal average of the periodic form of the first order perturbation
correction is zero. In our solution, no approximation has been used except that of
Eddington and the perturbation method itself, but because the perturbation is only
up to the first order, the results can not be considered as exact. However, since the
higher order corrections are usually very small for a small perturbation coefficient,
we conclude that the plane-parallel is a good approximation for the horizontally av-
eraged cloud albedo regardless of the consideration of the small internal horizontal
inhomogeneity of clouds.

The zero change in the horizontally averaged cloud albedo compared to the plane-
paralle] homogeneous case does not mean that the first order perturbation solution
is without significance. The local spatial distribution of radiance field may affect the
local and even the large scale climate system. The cloud radiation interaction is an
important factor for the nonlinearity of climate, which contains chaotic tendencies.
In a nonlinear chaotic system, small scale variability can modulate significantly the
overall state of the system. Locally, the distributions of solar radiance field and
heating rate play an important role for the local energy balance. They influence the
infrared radiation and the thermal circulation. The spatial distribution of radiance is
also important for remote sensing, since the observation image of a cloud is determined
by the distribution of the diffuse radiance field.

Consider a layer of a typical stratocumulus cloud with extinction coefficient ko ~
50 km™1, and cloud droplet asymmetry factor g ~ 0.86. The single scattering albedo
is largely dependent on the solar wavelength; in the following we choose w between
0.98-0.993.

We first examine the horizontal distribution of the extinction coefficient &' =

o{1 + €[cos(az) + cos(by)]}. Let a = b= 2x/L, where L is the length of a period of
the cosinusoidal cloud field. Taking € = 0.1, g = 0.86, w = 0.999 and ko = 50 km ™!,
the scaled kj is determined by Eq.(3.8). In Fig.3.2 the two dimensional distribution
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of the scaled extinction coefficient is shown for one period.
In the following, the behaviours of radiance field and cloud heating rate related

to the horizontally inhomogeneous cloud field shown in Fig.3.2 will be investigated.

3.3.1 The distribution of the radiance field

Fig.3.3 gives the distributions of upwelling radiative intensities (I(# = —1)) at the
top of a cloud corresponding to the extinction coefficient shown in Fig.3.2. The solar
zenith angle 8y = 0°, the cloud thickness zp = 500m, and the scattering factors are
the same as those in Fig.3.2. From Fig.3.3a to 3.3c, different values of cloud periodic
length L are considered.

In Fig.3.3, although the cloud scattering properties and cloud depth are the same,
the distributions of the upwelling radiative intensities are quite different for different
cloud periodic lengths. Comparing Fig.3.2 with Fig.3.3a, there exists an explicit
correlation in the distributions of the extinction coefficient and the upwelling intensity
with the configuration of the distribution of the upwelling intensity being similar to
the configuration of the distribution of the extinction coefficient. This is as expected.
The smaller the extinction coefficient, the smaller the cloud reflection, since it is
easier for the photons to pass through the cloud. We call the distribution of upweliing
intensity in Fig.3.3a a correlated distribution.

Comparing Fig.3.2 with Fig.3.3b and 3.3c there also exist clear correlations be-
tween the distributions of the extinction coefficient and the upwelling intensities.
However, the configurations of the distributions of the upwelling intensities are op-
posite to the configuration of the distribution of the extinction coefficient. We call
these distributions of upwelling intensities anti-correlated distributions.

To understand why the anti-correlated distributions happen, we have plotted in
Fig.3.4 the one dimensional cross sections (y = 0) of the distributions of the upwelling
intensities at different heights inside the cloud. The periodic lengths of L = 200m
and L = 1000m are considered. At the height of z = 100m (down from the top

of the cloud), the distributions of the upwelling intensities are quite similar for both
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Figure 3.2: Two dimensional distribution of the scaled extinction coefficient in a
periodic region with the periodic length L. kg = 50 km™!, ¢ = 0.86 and w = 0.999.
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the cases of L = 200m and L = 1000m. The upwelling intensities are less in the
central region. This is because, the smaller the extinction coeflicient, the smaller
the probability of a photon being scattered or absorbed, resulting in fewer reflected
photons in this region. As the reflected photons travel upward through the cloud,
more rising diffuse photons produced by the scattering of the direct solar beam are
added, increasing the upwelling intensity (see Fig.3.4).

Since the cloud droplet asymmetry factor is about 0.86, it is possible that a photon
would deviate from its transport direction after a scattering event. If the upward
travelling photons enter the central region from the side regions (see Fig.3.4), because
of the smaller absorption and fewer scattering events in the central region, photons
are more easily transported upward. On the other hand, if the upward travelling
photons enter the side regions from the central region, because of the larger absorption
and more scatterings in the side regions, the photons are more likely to be trapped
or to be scattered into a new direction. Then the probability of going downward
is enhanced. Therefore, the diffuse photons travelling upward have the tendency
of "leaking” horizontally in the cloud from regions of higher extinction coefficient
to regions of lower extinction coefficient. This is demonstrated in Fig.3.4a, from
z = 250m to ¢ = Om (top of the cloud), the upwelling intensities in the central
region increase faster than that in the side regions.

If the length of the horizontal period of cloud is large. the interaction between
the regions of different extinction coefficients is weak. The number of the horizon-
tally "leaking” photons is not enough to completely change the configuration of the
distribution of the upwelling intensity. Therefore, the correlated distribution appears
(Fig.3.3a). For Fig.3.3b the number of the horizoutal “leaking” photons is just large
enough to reverse the correlated distribution. The configuration of the distribution
is very smooth.

In order to describe succinctly the dependence of the upwelling intensity at the

top of the cloud on the various cloud parameters, we define a relative fluctuation for
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the distribution of upwelling intensity as

Liu=-1)=I{u=-1)
(L = —1) + h(a = -1))

where I,(p = —1) is the upwelling intensity at the top of the cloud with the maximum

P=g (3.51)
2

vertical optical depth (such as the point (z = 0,y = 0) in Fig.3.2), and I(p = ~1) is
the upwelling intensity at the top of the cloud with minimum vertical optical depth
(such as the central point (z = %,y = £) in Fig.3.2). P > 0 represents a correlated
distribution and P < 0 represents an anti-correlated distribution.

Fig.3.5a shows P as a function of the periodic length L. The other parameters
are all the same as those in Fig.3.3. For large values of L, P increases slowly with the
increase of L to a limit value. The value of P is very close to zero for L near 600 m.
This is the case illustrated in Fig.3.3b, in which the distribution is very smooth. The
minimum value of P is near L = 200 m. This is the case illustrated in Fig.3.3c, in
which the anti-correlated distribution has a large amplitude of fluctuation. Then, if L
decreases further, P increases again. When the horizontal periodic length of the cloud
field :: close to the free path length of photons, the photons can travel through an
entire pericd of the cloud field between two scattering events. Therefore the regional
differer.ce decreases for the diffuse photons, and the relative fluctuation is reduced.

We fiid that the correlated or anti-correlated distribution is also sensitive to the
cloud depth. Fig.3.5b shows the variation of P with the cloud depth z;. The other
parameters are all the same as those used in Fig.3.3b. As cloud depth increases,
P decreases. This is because the average geometric path length that the reflected
photons undergo is larger for a thick cloud than for a shallow one. Therefore the
interaction between different regions is stronger, and photons have a larger chance
to “leak” from a region with a larger extinction coefficient to a region with a smaller
extinction coefficient. The anti-correlated distributions are more likely to occur.

Fig.3.5¢ shows P as the function of the extinction coefficient. The other parame-
ters are all the same as those used in Fig.3.3a. We find the anti-correlated distribution
is more likely to occur with smaller extinction coefficients. The smaller the extinction

coefficient, the larger the mean path length. Therefore, the diffuse photons are easier
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to transport through regions with different extinction coefficients. The inveraction

between different regions becomes stronger and the “leaking” effect becomes larger.

3.3.2 Shift phenomenon

Reconsider the configurations of distribution of upwelling intensity in Fig.3.3 but
with the solar zenith angle changed to 8, = 60°, and let ¢y = 0, keeping the other
parameters the same as those in Fig.3.3. Then the resuiting distributions of the
upwelling intensities are shown in Fig.3.6. We find that all of he configurations of
the distribution for upwelling reflected intensity are distorted from those in Fig.3.3.
In Fig.3.3 the upwelling intensities are symmetric with respect to the central points in
z and y directions. However, from Fig.3.6a to 3.6¢c the symmetry in z direction is lost.
Upwelling intensities are larger on the right hand side of the regions. For example
in Fig.3.6c the raised region of the upwelling intensity is shifted to the positive
direction. In the y direction the symmetric distribution is preserved.

To show clearly the shift of the raised region in the distribution of the upwelling
intensity, the one dimensional cross sections (y = 0) of the intensity are shown in
Fig.3.7, for zenith angles 6 = 30° 45° and 60°. The other parameters are the
same as those in Fig.3.6¢c. The raised regions of the distribution for the upwelling
intensity are shifte! towards the positive r direction, and the shift increases with
increasing solar zenith angle. The direction of the shift is always along the direct
solar beam direction. If we keep 8o = 60°, and switch the azimuth angle to ¢, = 90°,
the shift direction would be towards the positive y direction. A similar shift in the
distribution of intensity occurs in other directions. Later we will discuss the situation
of downwelling intensity.

It is seen from Fig.3.7 that the shift is proportional to the solar zenith angle
and is always along the direct solar beam direction. Therefore, the declination of
the direct solar beam is naturally thought to be an important factor for the shift
phenomenon. In Fig.3.8, one dimensional distributions (y = 0) of the vertical direct

solar fluxes (F? = (1 — eH)uom Foe~0?/#0) at different heights are shown, taking
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7Fp = 340 W/m™? and the other parameters as in Fig.3.6c. Near the top of the cloud
(2 = 10 m, down from the top), the distribution of the direct solar flux is larger in the
central region, which is due to Beer’s law, and the distribution is nearly symmetric
in the z direction. As the depth z increases, the shift in the distribution of the direct
solar flux increases. Since the incident solar beam is now inclined towards larger values
of z, for any two points symmetric to the center point (z = 100m) with the same
height, the optical paths for the two points are different. Therefore the symmetric
distribution is lost. From the geometric consideration, for 6y = 60°, po = 0, and
L = 200 m, the largest shift should happen at the height of z = L/2tandy = 57.7m.
Then, as z increases further, the shift would decrease. In Fig.3.8, for z = 100 m, the
distribution becomes nearly completely homogeneous. When z = L/tanfy = 115m,
each ray has passed one period in variation of the extinction coefficient, and there is
no difference in the optical path for each ray.

The regional asymmetric distribution for the direct solar beam will then make
the distribution of the diffuse photons produced by the scatterings of the direct solar
beam also regionally asymmetrical. The multiple scattering process acts to suppress
the inhomogeneous distribution of such diffuse photons. Since more scatterings would
happen in the region with more diffuse photons, this would allow the photons to have
a greater chance of leaving this region. However, if the diffuse photons do not undergo
a large number of multiple scatterings, the regional inhomogeneous distribution can
be largely preserved in the outgoing diffuse photons. The shift phenomenon appears.
Therefore, the shift effect is due to the interrelation between the diffuse photons and
the direct solar beam.

Next, we consider the influences of the scattering factors on the distributions of
the diffuse radiative intensities. In Fig.3.9, the upwelling intensities are plotted for
different values of the asymmetry factor. All other parameters are the same as those
used in Fig.3.6c. We find the shift is smaller with a larger asymmetry factor. In the
case of a larger asymmetry factor, the scattering is concentrated in a more narrow

angle in the forward direction of the incident photons, in comparison with the case
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of a smaller asymmetry factor. Therefore the diffuse photons produced by the first
scattering with the solar beam have a larger tendency to go downward. Then the
final reflected diffuse photons must have undergone more multiple scatterings. The
spatially asymmetric distribution for the diffuse photons is more largely suppressed
by the multiple scattering processes, and the shift is reduced.

We can explore this point further by considering the distribution of downwelling
intensity. Fig.3.10 presents the distributions of downwelling intensities with different
values of asymmetry factor. All parameters for the cloud are the same as those used
in Fig.3.6c except for the cloud depth which is taken to be 120m. In Fig.3.10, the
distribution of the downwelling intensity is opposite to that of the upwelling intensity
in Fig.3.9. The shift effect is larger for a larger asymmetry factor. As we discussed
above the larger asymmetry factor makes the diffuse photons more likely to pass
through the bottom of the cloud, and suffer less multiple scattering. The regional
inhomogeneous distribution is preserved more in the final transmitted diffuse photons.
For this discussion of downwelling intensity, the cloud depth was taken to be only
120 m, since the shift phenomenon would disappear for a very thick cloud. The mean
path lengih of a photon is 20m for the extinction coefficient ko = 50km™='. In the
case of Fig.3.10, if the cloud depth is 500 m, on average a photen should be scattered
at least 50 tirnes by cloud droplets before it passes through the cloud base. This large
number of scatterings results in the regional asymmetric distribution of the diffuse
photons being completely lost.

The cloud diffuse reflection intensity is very sensitive to the value of the single
scattering albedo. In Fig.3.11, the distributions of upwelling intensities are plotted
with different single scattering albedos, keeping the other parameters the same as
those in Fig.3.6c. The diffuse upwelling intensity is larger for a larger single scat-
tering albedo. The relative fluctuation of the distribution of upwelling intensity also
increases as the single scattering albedo increases, and the shift effect is larger with
a smaller single scattering albedo.

If a photon has undergone n scattering events, the probability of being absorbed by
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cloud droplets is 1 —w". For a smaller single scattering albedo, the photons that have
undergone a large number of scatterings are more likely to be absorbed; therefore, on
average the reflected diffuse photons have suffered a less number of scattering events
in comparison with the case of a larger single scattering albedo. Thus the regional
asymmetric distribution of the diffuse photons is more largely preserved.

Although we have only investigated the shift phenomenon in the anti-correlated
distribution cases, the discussion can be extended to the correlated distribution cases.
In Fig.3.6a, the lowered region is shifted to the negative z direction relative to
Fig.3.3a. The distribution of the upwelling intensity is anti-correlated in Fig.3.3b.
However, it becomes correlated in Fig.3.6b. The delicate balance in regional distri-
bution of the diffuse photons is easy lost for a large solar zenith angle. Also, the

intensity distribution is shifted.

3.3.3 Distribution of cloud heating rate

The heating rate inside the cloud layer is given by Eq.(3.49). With parameters stated
in Fig.3.6c and 7F, = 340 Wm™2, we calculated the heating rates inside the cloud
at different heights down from the cloud top. In Fig.3.12 only the one d.mensional
distributions (y = 0) are shown. Besides the case of zenith angle 8, = 60° (Fig.3.12a),
zenith angle 6y = 45° is also considered (Fig.3.12b). In comparing with Fig.3.2, the
correspondence in the distributions of the heating rates and the extinction coefficient
is clear. There are no anti-correlated distributions in the cloud heating rates. If the
cloud layer is homogeneous, the local cloud solar heating rate is proportional to the
extinction coefficient. In the case of horizontally inhomogeneous cloud, the local cloud
heating rate is also proportional to the local extinction coefficient (the first term in
Eq.(3.49)); however another term is added due to the inhomogeneity of the cloud.
The cloud heating rate is dominated by the first term, since the second term is a
pure perturbation term. Because of the existence of the second term, the deviation
from the distribution extinction coefficient is expected to appear in the distribution

of cloud heating rate for a large solar zenith angle.
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Figure 3.11: Upwelling intensities on the line (y = 0) with different single scattering
albedos. Solar zenith angle 8y = 60°. The intensities are normalized with respect to

poFo.
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As illustrated in Fig.3.8, for the vertical direct solar flux, the distribution is quite
symmetric near the top of the cloud. The strong shifts happen near z = 50 m. The
distribution of the direct solar flux would affect the distribution of the diffuse photons.
Since the heating rate is dependent on the local difference (divergence) of the total net
flux, not directly associated with the total net flux, we find in Fig.3.12 the shifts in
the distributions of the local heating rate are much reduced in comparison with that
in Fig.3.8. For 6y = 45°, the maximam shift in the distribution of the vertical direct
solar flux should happens at the height of z = 100m. In Fig.3.12b, the maximum
shift in the distribution of heating rate also happens at the height of z = 100m.

The heating rate is the source term of the infrared radiation. Therefore, for a
large solar zenith angle, inside the cloud and especially in the upper part of the
cloud, the solar irradiance and the infrared irradiance are different in distribution.
To balance the energy flow, the cloud would undergo thermal circulation. This effect
may contribute to the small scale convection and turbulence in the upper part of

clouds.

3.4 Summary

Using the first order perturbation method, an analytical solution of the 3-D radia-
tive transfer equation in a horizontally inhomogeneous medium with a cosinusoidai
distribution of extinction coeflicient has been obtained. The solution shows that the
horizontally averaged cloud albedo is equal to the plane-parallel results. This is a
special feature of first order perturbation solution. However, even the first order per-
turbation calculation of the spatial distribution of diffuse inteusity contains valuable
information not previously available. Our study has been restricted to the cosinu-
soidal pericdic variation of the extinction coefficieni. However, we can conclude that
for other forms of periodically weakly inhomogeneous cloud, the hc.izontally aver-
aged results are close to that of the plane-parallel, since any periodic function can be

expande. 1n a series of cosinusoidal functions with different modes. Our solution is
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just for & single mode case. The solution for multi-mode is similar, provided that the
first order perturbation approach is valid. The perturbation method can be extended
to more inhomogeneous cloud fields, if higher order calculations are considered.

The most interesting results in our work are the anti-correlated distribution of
the diffuse radiative intensity and the horizontal shift in the distribution of diffuse
radiative intensity, relative to the extinction coefficient. These phenomena may have
significant implications for the interpretation of aircraft soundings of solar radiation.
The anti-correlated distribution of the diffuse radiative intensity is due to the hori-
zontal "leaking” of photons through regions of larger extinction coefficient to regions
of smaller extinction coefficient. The shift effect is caused by the external solar source
term. When the solar zenith angle is large, the asymmetry in the regional distribution
of the diffuse photons produced by scattering with the direct solar beam results in
a shift in the distribution of the outgoing diffuse photons. This argument has been
verified by the examination of the dependence of the distribution of the diffuse inten-
sity on the scattering factors. The heating rate is mostly characterized by the local

>xtinction coefficient and does not exhibit any anti-corzelated distributions.



Chapter 4

Second Order Perturbation

Solution for Radiative Transfer in
Clouds with a Horizontally

Arbitrary Periodic Inhomogeneity

In chapter 3 we have used a perturbation method for solving the three dimensional
radiative transfer equation in a cloud layer with a horizontal cosinusoidal variation of
extinction coefficient. The most interesting results obtained in chapter 3 are the anti-
correlated distribution of upwelling intensity and the shift phenomenon. These show
that the apparent cloud images may not correspond to the actual distributions of
the cloud internal optical properties. Chapter 3 shows that the perturbation method
opens up a potentially valuable approach to the analytical solution of the 3D radiative
transfer equation in a medium having internal inhomogeneity. The work needs tc be
improved in the following two aspects. First, since only a single mode of cosinusoidal
variation of inhomogeneity has been considered in chapter 3, the work should be
extended for multi-mode case. Thus a more general type of inhomogeneity can be
taken into account. Second, for larger values of the perturbation coefficient ¢ the

higher order perturbation corrections are required. In the first order of perturbation
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theory, there is no change in the horizontally averaged cloud albedo. What happens

when the higher order perturbation corrections are applied?

4.1 Perturbation solution for multi-mode case

For radiative transfer in an inhomogeneous cloud, we consider the extinction coeth-

cient with two-dimensional horizontally periodic variations
K = ki1 + ef(z,9)] (4.1)

where kf is the scaled value of ko by Eq.(3.8) and f(z,y) is an arbitrary two di-
mensional periodic function. We expand the real perturbation function in a complex

exponential Fourier series,
f(xay) = E Lmne""(%x+%y) (42)

where a and b are the half periodic lengths in the x direction and the y direction
respectively, The expansion coefficients L,,, are generally complex quantities. For
convenience in calculation, if there should exist a zero mode in th expansion, it can
be removed by the rescaling of kg(1 + eLoo) — kj and €/(1 + €Lop) — €. Any zero
mode contribution is therefore rearranged into the result of the zero order unperturbed
solution.

The optical depth for the direct solar beam is
To = /k{,[l + ef(x,y)) ds = kys + eH (s, 00, ¢0) , (4.3)

where the geometric path length s = z/ye and
= [Kf@y)ds =~k T Lune (1 - D fpofs,  (44)
mn

where &, = w(tandy cos pom/a + tanbgsin on/b), o and v are the cosine and sine
of solar zenith angle respectively.
Since f(z,y) is expanded in complex exponentials, the corresponding radiative

intensity is similarly expanded. Therefore, in the transfer equation Eq.(3.2) we have
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(I,J,Jo) — (I,J,Jo) for the corresponding quantities with complex expansion co-
efficients. Finally, after the transfer equation being solved, the resultant radiative
intensity is obtained by I = Rel.

The direct solar flux in the external source term can be expanded as
' 1 '
wFpe %~ H (1 —eH + 562H2)1rF0e"‘°’ . (4.5)
The accuracy of this expansion has been discussed in previous chapter.
Substituting the expansion in Eq.(4.5) into Eq.(3.5), Jo therefore can be written
Jo = JO + eJM + I (4.6)
Expanding also the radiance [ in powers of ¢,
F=10 404 2[® (4.7)

Consequently,
J=JO 4+ JU 4 2 (4.8)

which is obtained ‘rom Eq.(3.4). Substituting Eqs.(4.6), (4.7) and (4.8) into Eq.(3.2)

and regrouping the terms with the same order of €, we obtain

4@ . . .

= = BT+ O+ ) (4.9)
S N 20) . 7(0) L 70)
5 = R(=10 + T + 30) + ko fla,y) (=1 + T + 1) (4.10)
dI® @) L @) L 7@ 21y L ) L f()
— = Ey(—1® 4+ JO 4 JBY 4 kb f(z, y) (= TV + JO + JgVy . (4.11)

In the plane-parallel homogeneous case corresponding to Eq.(4.9), the radiative field
does not involve the complex function H. Therefore, I is still a real quantity, and
the solution is the same as that in previous chapter.

Now consider the equation for the first order perturbation correction of Eq.(4.10),
which is an inhomogen=<ous equation with constant coeflicients. We apply the Ed-

dington approximation to this first order correction for the intensity, which now is a
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three-dimensional quantity,
f(l)(s, 0,p) = f((,l)(s) + I:(,‘)(s)u cosp + f,ﬂl)(s)v sinp + fz(l)(s)u . (4.12)

Integrating Eq.(4.10) in turn over 47 steradians with respect to dudy, v cos pdudyp,
v sinpdpdy, ududy yields respectively,

[ eIv 9w ) ,
6;: + a; + 6;; = _3k6(1 _wl)Il()l) - Z‘ké,leFoe'ka/“O+

3k f(2,y)[=(1 = WIS + - Foe™Hi%/be] (4.13)

oI -y 3 )
63: = —kf(1 — w'g") IV - Zk{,w’g'uo cos o H Foe~*o*/mo (4.14)

Ay - 3 y
3y - —ko(1 — w'g") I — 1 1 w'g'vo sin po H Foe~Fo2/k0 (4.15)

(1)
66%- = ~ko(1 = w'g") IV - %k{)wlg'#oHFoe'k"’z/“"'*'
~ 3 /

kof(z,y)=(1 = g ) + Zw'g o Foe™%/v0] . (4.16)

Differentiating Eq.(4.14) with respect to z, Eq.(4.15) with respect to y and Eq.(4.16)
with respect to z, and using Egs.(4.13) we obtain

VD = N IE) = 2f (2, y) NI — he~Ros/m] 4 hHe R0 (4.17)

where b = 3(1 + ¢' — W'g' Wk F,
Let I{V = ¥, e™@=+39 Z0) ' By orthogonality relation of Fourier expansions
(Zauberer, 1983)

92 Yy d ~(0) -kl 2z : k’h Bl | Z - IZ
-é;-z-Z,(,f,)‘-AfnnA,(,}g = Lnn[2A215” —2he™%o0 /M_Z#ogmn(l —e Hmne)g~koz/mo] (4 18)
where A2, = A% + (xrm/a)? + (7n/b)%. The solution of Eq.(4.18) is

Z8) = Qe ™ 4 DQ)e*mn® — Lo (CO% Y + D)+



(Qmn + iﬂm,,)e"‘é"/"“’ — (Amn + iBm,.)e"em"ze"("/“°] , (4.19)

where [ = 202/(A2, — A2),
amn = 2(Na + h)/[(ko/#0)? = Noinls Bmn = [koh/(Hobmn)]/ (Ko Ho)? = Man],
Amn = 2h(ko/po)*/[Ran + (2kémn/k0)?)y Bmn = Rankoh/(ptofmn)/[RE, +
(2kg€mn/ 10)?)
With Rpnn = (45, p0)? = Ehn — Aoin

CW) and DQ) are complex constants determined by boundary conditions. The
I~,(_.1), fél) and fﬁl) can be derived from Eqs.(4.14), (4.15) and (4.16). Just as for the

discussion in the last chapter, we have,
2.
1(z,9,0) + 311(z,,0) =0, (4.20)

I(l)(z, Y,20) — %Il”(z, Y,20) =0, (4.21)
the orthogonality relations between different modes project out the C{}) and D{!) for
each mode.

For the single mode case, the solution of Eq.(4.10) yields the same result as that
of chapter 3. However the calculation process becomes much simpler in the scheme
of a mode expansion in the complex space.

For the second order correction, considering Eq.(4.11) by a process similar to the

first order solution, we obtain

oI AID  HI®
T + Y + Z

= —3k(1 — )i + 3 ko H H Foe™ "8+

Oz oy 0z
+ 38 (@, )= (1~ ) § ~ & HFpee1e], (4.22)
aajiZ) = —ki(1 - 'g) I 4 gk{)w'g'uo cos o H H Foe~*%/#0
+ K f(z,y)[-(1 — ) - %w'guo cos o H Foe~*0*/| (4.23)
oI

By = —ki(1 —W'g )P 4 gk{,w'g'uo sin poH H Foe~%o%/ko0
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+ K, f(z,y)[-(1 = )M - Z—w'guo sin o H Fye~%0%/#0] (4.24)
Jig . )

66(; = —ki(1 - 'g)I® + gk{,w'g'uoHH r\e~koz/ka

+ ko f(2,9)[=(1 - gV - 2w’g’#oH Foe™*e%/] (4.25)

Also, by a process similar to the first order case, we have

of 8I(‘)+§i aIY

20270 ;. e2 1 —k! 2/ o
a5y e L ~h 2 B H)e R

2
(4.26)
Let f((,z) = Yun €757+ 39 Z() | The orthogonality relation between modes gives

V2I(2) A2I(2) 2/\2f161)+

'a?'isz,’. N.Z8 = Y LyLu[®guZy) + NI — he¥elmo
t+khk=m
I+i=n
. 2kh / kiZh /
-3 1 — e ¥mz)g—koz/uo o 0 1 — e~¥u2)(] — e~ *miz)g~koz/no . (4.27

where ®;,1; = 2)% — (7 /a)%k — (n/b)%j1. The solution of Eq.(4.27) is

72 =C@e Mz 4 DR 4 N Ly L~ (0wt + iBuyia)e o7/
t+hk=m
1+l=n

—(Aukl + 'i.B"Jk[)e-tEklzekéZ/#o + (Sukl + Z'T'Jkl)e—u(f.,+£H)zek",z/“o

_ [ Mu(=CiPzem ez 4 DPzeMw) i k| = |kl 15 + 1] = i)
QiJkl(Ckl e~ Mz 4 Ds) eHi?) , others

, { Thu(~COze + DOzeN) i+ k=0,j+1=0 (4.28)

Lyju(C (0)g=-A2 4 D(o)e’\z) , others
The coefficients in Eq.(4.28) are given in Appendix B. I?), I® and i(» can derived
from Eqs.(4.23), (4.24) and (4.25). The complex constants C{2) and D(?) are deter-

mined in a way similar to that for the first order perturbation solution.
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4.2 Numerical results and discussions

The second order perturbation solution to the radiative transfer equation in a medium
with internal inhomogeneity has been derived in the last section. Calculations show
that I®, 7)) and I® are of the same order. The perturbation series is expected to
be convergent with the increase of powers of €. Therefore the configuration of the
distribution of the upwelling intensity is dominated by the first order perturbation
resuit for small perturbation coefficient. To show the second order correction, we
consider a cloud field with an internal single mode variation of extinction coefficient
of Eq.(3.1) as discussed in chapter 3. Take the extinction coefficient to be ko =
50 km™!, cloud droplet asymmetry factor ¢ = 0.86, single scattering albedo w = 0.999,
perturbation coeffi_ient ¢ = 0.2, cloud depth 2o = 500 m, and cloud horizontal periodic
length L = 2a = 2b. Two values of L are considered in Fig.4.1.

Figures.4.1a and 4.1b show the distributions of the upwelling intensities when
only the first order perturbation correction is included; Fig.4.1c and 4.1d are the
corresponding distributions of upwelling intensities with the both first and second
order corrections are included. In Fig.4.1a and 4.1c the solar zenith angle 8, = 0°,
and in Fig.4.1b and 4.1d 6y = 60°, o = 0°. The configurations of the distribution
of the upwelling intensity in Fig.4.1a and 4.1c are consistent with the configuration
of the distribution of the extinction coefficient of Eq.(3.1). These configurations
are called correlated distributions in chapter 3. The configurations in Fig.4.1b and
4.1d are opposite to that of the extinction coefficient; they are called anti-correlated
distributions. Also, there exists the shift phenomenon in Fig.4.1b and 4.1d, since
the solar zenith angle is inclined towards the z direction. We find that there are
only slight differences between the configurations when the second order correction is
included. However, the difference is still noticeable. In Fig.4.1c the central region is
iower and smoother in comparison with Fig.4.1a. The central raised region is higher
in Fig.4.1d in comparison with Fig.4.1b.

In chapter 3 it was shown that there i3 no difference in cloud albedo (the horizon-

tally averaged reflectance) due to the single mode cosinusoidal variation of extinction
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Distribution Of Upwelling Intensity

Figure 4.1: Two dimensional distributions of the upwelling intensities. In (a) and (b),
the perturbation correction is up to the first order. In (c) and (d), the perturbation
correction is up to the second order. Cloud depth 500m. Solar zenith angle g = 0°
in (a) and (b), and 6o = 60,90 = 0° in (b) and (d). The intensities are normalized
with respect to poFo-
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coeflicient, since there is no zero mode correction existing in this case. However, even
for the single mode case, the change of cloud albedo does not vanish if the second order
perturbation is applied, because the horizontal eigenmode expansions are generally
different for I(*) and I®. Since the first order perturbation shows no contribution
to the change of cloud albedo, the change of cloud albedo is proportional to €?, so a
small change of cloud albedo is expected.

Fig.4.2 displays the relative change of cloud albedo (Aa/a) corresponding to
the cloud geometrical factors, where a is the unperturbed value of cloud albedo
for the plane-parallel case and A« is the change of cloud albedo due to the internal
inhomogeneity of the cloud. The single scattering parameters (ko,w,g) as well as ¢
are the same as those in Fig.4.1, and the solar zenith angle is zero. Fig.4.2 shows that
the internal inhomogeneity of cloud always decreases the cloud albedo. This seems
consistent with the common belief that the cloud internal inhomogeneity causes a
reduction in cloud albedo (Stephens and Tsay, 1990). In Fig.4.2a the relative change of
cloud albedo corrzsponding to the cloud depth is shown with two different horizontal
periodic lengths considered. When the cloud is very shallow, the change of cloud
albedo is very small for both lengths of L. As the the cloud depth increases, the
value of the relative change of cloud albedo increases. However the relative change of
cloud albedo reaches a maximum value at a certain value of cloud depth, and then
becomes smaller with the further increase of cloud depth. In Fig.4.2a, for any given
value of cloud depth, the relative change of cloud albedo is always larger for the
smaller horizontal periodic length (L = 200m). The smaller L value represents larger
internal inhomogeneity. Therefore the more inhomogeneous the cloud the larger the
cloud albedo change. However this conclusion is not always true for small horizontal
periodic length. In Fig.4.2b, when L is less than 100m, the value of cloud albedo
change shows no increase as the periodic length decreases, especially for the curve
of zo = 1000m. For a small value of L close to the photon free path length, it
is easy for the diffuse photon to pass through relatively large regions with different

extinction coefficients. From this point of view, the cloud would not become more
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Figure 4.2: The relative change of cloud albedo as a function of: (a) cloud depth zg,
(b) cloud horizontal periodic length L. Solar zenith angle 6, = 0°.
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inhomogeneous as L decreases further, and the change of cloud albedo would not
increase.

The sensitivity of the cloud albedo to the cloud scattering parameters is shown in
Fig.4.3. The cloud depth is 29 = 500 m, vue horizontal periodic length is L = 500m
and the solar zenith angle is §p = 0°. In most cases the relative change of cloud
albedo is negative corresponding to the variation of cloud single scattering factors.
However, in Fig.4.3a and 4.3c there are cases where the relative change of cloud albedo
is positive. Therefore, the conclusion that the cloud internal inhomogeneity always
brings about a decrease of cloud albedo is not a fully general correct statement. One
case of positive change of cloud albedo happens when the extinction coefficient is very
small. In this situation the probability of scattering or absorption of photons is very
small, and the directed solar beam can easily pass through the cloud. Another case
of the increase of cloud albedo happens when the asymmetry factor is close to one. In
this situation the forward scattering dominates, and again it is easy for the directed
solar beam to pass through the cloud. Therefore, the positive change of cloud albedo
due to cloud internal inhomogeneity is likely to happen in the case when the cloud
albedo is very small.

The multi-mode solution allows the calculation of the radiative transfer in a
medium with an arbitrary type of horizontal periodic variation of the extinction
coeflicient, provided that the second order perturbation expansion is valid. Consider
the two examples of the distribution of extinction coefficient shown in Fig.4.4. The
variation in the distribution is only in one dimension which means the cloud field is
homogeneous in the y direction.

Consider the cloud field with internal periodic variation of extinction coefficient
shown in Fig.4.4a. Set the solar zenith angle 6y = 0° , the scattering parameters the
same as those in Fig.4.1, and the cloud depth 2o = 500m. e = 0.2. The calculations
includes second order perturbation terms.

Since only the lowest mode of the local angular part of the radiance is considered in

the Eddington approximation, the discussion of the resultant flux (angular integrated
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Figure 4.4: One dimensional distributions of extinction coefficient in one periodic
region (solid line), and the 16 mode Fourier series fits (dashed line). In the y direction

the distribution is homogeneous.



80

quantity) is more reliable than that of the radiance. Therefore we will consider the
distribution of the upward flux instead of the upwelling intensity in the multi-mode
case. In Fig.4.5 the upward fluxes corresponding to different periodic lengths are
shown. Comparison of Fig.4.5a with Fig.4.4a indicates that the configuration of the
distribution of the upward flux is nearly opposite to the configuration of the distribu-
tion of the extinction coefficient. The regions with larger extinction coefficient are the
regions with the smaller reflected flux. This is called the anti-correlated distribution
and is mostly due to the horizontal leaking of diffuse photons from the regions of
a larger extinction coefficient to the regions of a smaller extinction coefficient. The
more detailed physical explanation was presented in chapter 3.

Similar to the results in chapter 3, the upward flux tends to change from an anti-
correlated distribution to a correlated distribution as the periodic length becomes
larger. In Fig.4.5b the distribution of upward flux becomes larger on the left side and
smaller on the right hand side. In Fig.4.5b we find that the shape of the distribution
of the upward flux is distorted from the shape of distribution of the extinction coef-
ficient. This is a new characteristic for the multi-mode case. For a further increase
in the periodic length to L = 2000m, the upward flux is shown in Fig.4.5c. The
amplitude of fluctuation is increased and the shape of the distribution is more closely
correlated to the distribution of the extinction coefficient. In Fig.4.5b and 4.5c there
are small fluctuations in the distributions of upward fluies, which is mostly due to
the termination of the Fourier series expansion (see Fig.4.4a).

Comparing Fig.4.5b and 4.5¢ with Fig.4.4a, the most distorted regions in distribu-
tion are observed at places with sudden change of extinction coefficient, such as the
point of z = % At —’2‘- there is not a sharp decrease in the distribution of upward flux
as there is in the distribution of extinction coefficient, and a peak appears near !2‘- As
we discussed in chapter 3, the upward diffuse photons have a tendency of transporting
from the regions of a larger extinction coefficient to the regions of a smaller extinction
coefficient. These horizontal leakage of photons mostly occur at the transition regions

of different extinction coefficients. Therefore the configuration of the distribution of
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the upward flux shows a very different shape as compared to that of the extinction
coefficient near the transition regions. The leaking photons have a smaller influence
on the regions far from the boundary. In Fig.4.5b and 4.5c, the distribution of the
upward flux is relatively smooth near z = % and %. Also, from this point of view it
is easy to explain why the anti-correlated distribution happens in the case of small
periodic length (Fig.4.5a).

Turning to the solar zenith angle 6, = 60°, setting the azimuth angle vy = 0°,
and keeping the other parameters at the same values as those in Fig.4.5, the resultant
upward fluxes are shown in Fig.4.6. In comparison with Fig.4.5, the configurations
of the distributions of the upward flux are severely distorted. In the case of the
single mode (see chapter 3), when the zenith angle is large, the raised regions (for
anti-correlated distribution) shift in the direct solar beam direction or the lowered
region (for correlated distribution) shift opposite to the direct solar beam direction.
This is called the shift phenomenon. However, in the multi-mode case of Fig.4.6, one
hardly finds the shift phenomenon any raore. Fig.4.6 shows that the distribution of
the upward flux strongly deviates from the distribution of the cicud internal optical
property variations. The radiative transfer is a complicated process, which depends
on many factors. One of the key points in the determination of the distribution of the
reflectance is the horizontal leaking of diffuse photor:s between regions with different
extinction coefficients. In dealing with radiative transfer in inhomogeneous clouds,
the independent pixel approximation (IPA) is often used (Evans, 1993), in which the
space is divided into each independent regions or pixels in radiative transier processes.
From the above discussion the reliability of IPA is not expected to be high, especially
in the case of large solar zenith angles.

Let us briefly discuss the distributions of the upward flux in Fig.4.7, which cor-
respond to the cloud field of Fig.4.4b. The solar zenith angle, scattering parameters
and the cloud thickness are all the same as those in Fig.4.5. Also, the anti-correlated
distribution of upward flux appears in the case of relatively smaller periodic length

(see Fig.4.7a). In Fig.4.7b and 4.7c, for a larger periodic length, the configuration of
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distribution of the upward flux becomes very close to the corresponding configuration
of the distribution of the extinction coefficient. However in Fig.4.7b and 4.7c the peak
at L has been partly lowered, and the valley at % has been partly filled, especially
in Fig.4.7b, which also can be explained by the net horizontal leaking of photons
from the regions of larger extinction coefficient to the regions of smaller extinction

coeflicient.

4.3 Summary

For radiative transier in a medium with internal variation of optical properties, the
perturbation method is probably the only way to obtain an approximate analytical
solution. In comparison with chapter 3, the expansion of the perturbation function in
the complex exponentials makes the solution simpler, and easier to apply to the higher
order multi-mode case. The numerical convergence properties of the perturbation
series indicates that the perturbation solution is reliable.

Albedo changes only appear in the second order perturbation correction. Hence
the cloud internal inhomogeneity has a much lacger influence on the distribution of the
reflected photons than on the cloud albedo. Contrary to the common but unproven
belief that the cloud internal inhoin~geneity always decreases the cloud albedo, it
was found that in some cases the cloud internal inhomogeneity can increcse the cloud
albedo as well.

The multi-mode case calculations showed that the reflecied upward flux generally
corresponds poorly to the distribution of the internal variation of extinction coefhi-
cient, especially under the circumstance when the solar zenith angle is large. This
probably may be one of the reasons why it is hard to retrieve the cloud internal optical

properties from the cloud reflectance.
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Chapter 5

Distributions of Irradiance, Monte

Carlo Simulations

In this chapter the Monte Carlo simulation is used again to investigate the horizontal
irradiance distribution in clouds. One goal of this work is to verify numerically of the
results of the analytical solution in the last two chapters and to show phenomenon such
as anti-correlated distributions through the realistic simulation of radiative transfer
processes. This would support the physical findings in the last two chapters. Another
goal is to investigate the impact of geometric variations on the distribution of irradi-
ance, which is very hard to obtain through analytical methods. The cloud absorption

anomaly will be discussed again in this chapter.

5.1 The limitations of Monte Carlo simulations

As we pointed out in chapter 2, the irradiance can be computed fairly easily for any
cloud shape with internal inhomogeneity through Monte Carlo simulations. However,
the calculated irradiance is for the total bulk of reflected photons for the whole cloud
field considered. The Monte Carlo method can hardly be used to obtain the space
distribution of reflected radiance (irradiance) at the top of the cloud. The problem is

that the number of photons used in practical Monte Carlc simulations is very small in
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comparison with the corresponding number of photors in the incomning solar beam. At
030 2 1

the top of the atmosphere the flux of photons in the solar beam is about 10°° m~*sec™!.
However, in Monte Carlo simulation, <nly about 10° to 10® photons are spread out
over an area of about 10* to 108 m2 The very small number of photons per unit
area causes large fluctuations in the calculation of the distribution of the reflected
photons. For the radiance the situation is even worse, since the number of photons
entering in a umnit solid angle would be too small for statistically significant results.
Therefore, the use of Monte Carlo simulations is limited and analytical solutions are
necessary in some circumstances.

The cloud surface can be subdivided into regions which are of scale of the inhomo-
geneity. If the cloud internal variation in a certain region is small enough, this region
can be taken to be homogeneous and the distribution of reflection in this region can
be assumed to be the homogeneous as well. Then the reflected flux of this region can
be obtained from the total number of photon refected from this region. Therefore,
the distribution of the reflected photons for the whole cloud can be obtained through
interpolation of the reflectance values for the finite number of subdivided regions. If
the number of the subdivided regions is not too large, the reflected photons in each
region can still be large enough to keep a small standard deviation.

In this method the cloud field is divided into a limited number of homogeneous
regions. The internal variation of the cloud is not continuous, and the distribution
of the upward reflectance is assumed to be homogeneous for each subdivided region.
However, this scheme differs from independent pixel approximation (IPA), since pho-
tons inside the cloud are allowed to be transported through different regions. As we
pointed out, the interaction between the regions with different internal variation is

important to determine the distribution of the cloud reflectance.
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5.2 Horizontal distribution of irradiance

Monte Carlo simulations are used to explore the distributions of cloud upward irradi-
ance. The cloud field has a two dimensional cosinusoidal periodic variation in extinc-
tion coefficient as described in Eq.(3.1). The optical parameters are kg = 0.05m™!,
g = 0.86, and w = 0.999. The cloud depth is zg = 500 m ard the solar zenith angle is
6o = 0°. In the Monte Carlo simulations of Fig.5.1, the cloud field for one period is
horizontally divided into ten by ten subregions each with homogeneous internal opti-
cal parameters. The outgoing photons gathered from eacl: of subregions represent a
point value for the distribution of the upward flux.

The Monte Carlo simulations of the distribution of upward irradiance are pre-
sented in Fig.5.1. It can be found that the anti-correlated distribution appears where
the periodic length is small (L = 200m, Fig.5.1a). Also, the distribution turns to
be correlated as the periodic length becomes larger (Fig.5.1b). The results in Fig.5.1
agree with our perturbation calculations in previous two chapters.

We can not expect the Monte Carlo results to be exactly same as those from an-
alytical calculations. In the perturbation method the §-Eddington approximation is
used, 1n which the higher order angular contributions are ignored. In Monte Carlo
simulations the Henyey-Greenstein phase function is used, in which the forward scat-
tering peak is suppressed in comparison with the Mie scattering results. Alsy, as we
discussed above the internal variation of the cloud fields is not continuous in Monte
Carlo simulations. However, the anti-correlated distribution is still found in Monte
Carlo simulations. In Fig.5.1, the fluctuations in the distribution is due to the limited
number of phcrons used.

For the perturbation method described in the previous two chapters, the asym-
metry factor g and the single scattering albedo w are kept constant as the extinction
coefficient k varies. Generally g and w would also change as we discussed in chapter
2. However, for horizontal variation, there is no measurements to show the correla-
tion of g and w with k. Since the changes in g and w are usually very small, the

perturbation method would also be applicable with a more complicated derivation,
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Figure 5.1: Two dimensional distributions of the upward irradiance FT at different
periodic lengths. (a) L = 200m; (b) L = 1000m. Solar zenith angle 6, = 0°. The
optical parameters ko = 0.05m™?, g = 0.86, and w = 0.999. Cloud depth 2y = 500 m.
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if the relationship between the three parameters is known. However, the sensitivity
of the distribution of the reflectance to the variation of g and w cau be shown easily
using Monte Carlo simulations.

In chapter 2, it was found that even for a large change in k, the corresponding
changes of g and w were very small. This is the reason why a large change in extinction
coefficiemy does not lead to a large change in the reflectance. For overcast cloud the
change in reflectance is only about 1%. In chapter 2, the relation between the liquid
water content W and effective radius r, was obtained through observational data. For

the internal vertical variation there is a parameterization (Fouquart et al..1990)
re =4W + 11, (5.1)

where W is in units of gm™ and r. is in units of gm. If r. is in proportional to
W (in Eq.(5.1)), the density of the droplet number should not change very much in
space, whicl. s commonly observed. Though this approximation is obtained through
the vertical variation, we hope to use it to explore the sensitivity of the variation of
g and w in the horizontal variations since there is no observation data available.

For easy comparison we take the case of a two-dimensional cloud. The cloud fields

have an internal variation of
W = W[l + € cos(az)] (5.2)

where Wy is the unperturbed liquid water content, and the corresponding effective
radius is obtained by the Eq.(5.1). Asin chapter 2, the optical properties of the cloud
can be found through the Slingo parametrization, also the 4 band scheme is used.
In Fig.5.2, the parameters are as following: liquid water content Wy = 0.2gm ™,
e = 0.2, sclar zenith angle 8, = 0°, and periodic length L = 200m. One of the two
curves in Fig.5.2 shows the distribution of upward irradiance with only the spatial
variation of extinction coefficient £, while g and w are taken as their spatially averaged
values. The other curve shows the distribution of upward irradiance when the g and w
change with k according to the relations of Eqgs.(5.1), (5.2), (2.19), (2.20) and (2.21).
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Figure 5.2: One-dimensional distributions of the upward irradiance. The g and w vary
with the change of k (solid line) or constant equal to the averaged values (dashed line).
Solar zenith angle 8, = 0°. The irradiances are normalized with respect to po7 Fo.



Fig.5.2 shows the sensitivity of the distribution of irradiance to the variation of ¢
and w. Similar to the bulk reflectance, the corresponding variations of ¢ and w have

little impact on the distribution of irradiance.

5.3 The anomalous distribution in reflectance for
a cloud field with geometric structure varia-
tion

The above discussions are mostly for clouds with internal variation. The clouds
were taken to have a simple planar geometry so that boundary cond  1s could be
easily satisfied in analytical solutions. In this subsection we consider another kind
of problem where the distribution of cloud reflectance corresponds to the geometric
variation in the cloud top. We take a cloud field with a flat plane on the bottom, but
periodic height variation on the top surface. This is the so called turret structure,
which is commonly observed in stratocumulus clouds. We simply describe the cloud

height variation as

z = zo{1 + €[cos(uz) + cos(by)]} , (5.3)

where zg is the unperturbed cloud height and a = b = 2r /L, L is the periodic length.
The cloud internal optical properties are taken to be constant, since our interest here
is in the geometric factor. The method mentioned in subsection 5.1 is adopted to
obtain the distribution of the irradiance.

In Fig.5.3 we have taken the unperturbed cloud depth zo = 500 m, cloud internal
optical factors ko = 0.05m=1, ¢ = 0.86, w = 0.999, solar zenith angle 6, = 0°
and the perturbation coefficient ¢ = 0.2. The cloud field is divided into i2n hy ten
square columns, each with a constant depth. Two values of cioud periodic length
are considered. For the periodic length L = 200m in Fig.5.3a, similar to the case
of internal inhomogeneity in Fig.5.1a, the distribution of the irradiance is larger in

the central region opposite to the distribution of cloud vertical optical depth. This
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distribution is anomalous, since generally a thicker region of cloud should correspond
to a larger reflectance. In comparison of Fig.5.3a with Fig.5.1a, the distribution in
Fig.5.3a is very smooth except in the regions of the corners. When L = 1000m the
distribution is still anti-correlated, and the distribution is quite similar to that of
Fig.5.3a. As the periodic length becomes larger (to L = 2000m in Fig.5.3b), the
distribution becomes more correlated with the geometric distribution of cloud field
with less reflectance is in the central region.

The anomalous distribution is mostly due to multiple scattering inside the cloud.
Photons transported upward from a thicker region to a thinner region can easily
escape from the clouds. When the periodic length is large, the interaction between
regions with different depths is weaker. The horizontally transported photons are not
numerous enough to make an anti-correlated distribution. Therefore the distribution
is likely to be more correlated to the distribution of the cloud depth.

We find in Fig.5.3 that average cloud irradiance is larger for the case of larger
periodic length. The smaller periodic length represents a larger geometric variation.

Therefore, the geometric inhomogeneity reduces the reflectance for the whole cloud
field.

5.4 Again, on the cloud absorption anomaly

Fritz (1951) pointed out that the measurements of cloud absorption tended to exceed
theoretical estimates. The measurements of cloud absorption are difficult and there
is considerable variation in the numerical results. However, discrepancies of 20%
to 50% are common. This is known as cloud absorption anomaly. In chapter 2,
it was pointed out that one of the important factors for the enhancement of cloud
solar absorption is the cloud internal vertical inhomogeneity. The physics is that
more scattering events happen in the region (upper part of the clouds) with larger
absorption (smaller single scattering albedo for cloud droplets). The enhancement

of cloud absorption due to the vertical inhomogeneity of clouds can bhe up to 7% as
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shown in chapter 2. The importance of this effect has not been realized before (see
the review paper by Stephens and Tsay (1990)).

Since realistic radiative transfer processes in clouds are complex, other factors may
also have a contribution, for example the aerosol effects as mentioned by Chylek et al.
(1984) and the water vapor effect (Davies et al., 1984). It is pointed out here that the
geometric effect is another important factor to take into account in considering the
cloud absorption anomaly. Because of limitations in the theoretical calculations, the
cloud anomaly refers only to planar clouds, i.e. the stratocumulus clouds. Therefore
finite cloud size effects could not be considered. However, as we discussed in the
last subsection the stratocumulus clouds always have a turret structure. What is the
impact of such geometric variations cn the clovd absorption?

For a comparison with the results in chapter 2, take cloud type A18 (Noonkester,
1984) as the cloud sample. As in chapter 2, in Fig.5.4 the cloud absorptions of
cloud A18 with internal vertical inhomogeneity and its vertically averaged counterpart
<A18> are considered. Also, the cloud top turret structures are considered by taking
the cloud top height with the variation of Eq.(5.3). The perturbation coefficient is
taken to be € = 0.1 in Fig.5.4. It is shown in Fig.3.4 that besides the existence of a
difference in absorption between the cloud Ai8 and its vertically averaged counterpart
<A18>, the top turret structure of the clouds would also result in further charges
in cloud absorption. In Fig.5.4, several values of periodic length of L have been
considered. For each value of L, the large enhancements of cloud absorption occur
at small solar zenith angles. In Fig.5.4, without considering the cloud top geometric
variation the vertical inhomogeneity can cause an increase of about 7% in cloud
absorption for small zenith angle. However, the increase can be as much as 20%
when the top turret structure effects are included. In Fig.5.4, when the solar beam
is directly overhead, there is no further increase of cloud absorption due to the cloud
turret structure in comparison with the case of vertical inhomogeneous cloud (A18).
However, on average, the cloud top structures make a considerable increase in cloud

absorptions. When the solar zenith angle is large the cloud top turret structure
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can decrease tne local incident angle. Therefore probability of reflection decreases,
and the incoming photons are more like to be to be trapped in the top regions. As
we mentioned in last two chapters the upper part of the clouds is very important
in determination of cloud absorptance and reflectance, since the downward directed
transport of solar photon number decreases exponentially inside the clouds. Fcr small
solar zenith angle the top turret structure would only slightly change the local incident
angle for the incoming solar photons. Thus the change is small in cloud absorption.

The changes in cloud absorption in Fig.5.4 suggests that besides the cloud internal
inhomogeneity the cloud top geometric variation is another factor which must be

considered for an explanation of the cloud absorption anomaly.

5.5 Summary

The application of Monte Carlo simulations is limited due to the fact that the number
of photons used is small in comparison with that of solar radiation. The Monte Carlo
method is even difficult to apply to obtain the distribution of the reflected flux. In our
method, the cloud top surface is separated into a number of regions, the reflectance
for each region is taken to be similar to the plane-parallel case. However, inside the
cloud the photon is allowed to transport from region to region. The interaction of the
regions with different internal optical properties is considered. The anti-correlated
distribution of the reflected photons has been shown in Monte Carlo simulations,
which verifies the correctness of the perturbation theory in the previous two chapters.

The anomalous distribution of the reflectance happens not only for a cloud with
internal inhomogeneity, but also for a cloud with geometric structural variation. The
thicker regions of clouds may correspond to smaller reflectance. Radiative transfer is a
complicated process, there are still a lot of phenomena remaining to be studied. Cloud
top turret structure can also increase the cloud absorption,. This is an additional
important factor that should considered in an explanation of the cloud absorption

anomaly.



Chapter 6

Conclusions and Outlook for
Further Work

The primary objective of this study was to investigate solar radiative transfer through
clouds with internal inhomogeneity. The thesis consists two main components: Monte
Carlo simulations of solar radiative transfer through clouds with vertical inhomogene-
ity; the development of perturbation method to solve analytically the 3D radiative
transfer equation for a cloud field with internal horizontal variation. Moente Carlo sim-
ulations were also used to verify the results obtained through perturbation method.

In the first part, a Monte Carlo model was created to account for spatially vary-
ing cloud micro-physical properties. Calculations were performed to determine the
properties of radiative transfer through clouds with internal inhomogeneity. Although
there are large changes in LWC (extinction coefficient) in stratocumulus clouds, in the
overcast cloud case the reduction in reflectance was found to be very small (around
1%) for a real cloud with internal vertical inhomogeneity in comparison with the
vertical averaged counterpart. This showed that the plane-paraliel approximation is
a good model for planar clouds despite large changes in LWC. However, in breken
cloud cases, the difference in reflectances between the vertically inhomogeneous cloud
and its averaged counterpart was found to increase for large solar zenith angles. The

difference was found to be generally less than 10%.
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The cloud internal inhomogeneity and cloud top turret structures can increase the
cloud absorption. These factors should be considered in an explanation of the cloud
absorption anomaly. The increase in cloud absorption is up to 20% when the two
factors are included.

In the second part of the thesis, an analytical solution of the 3D radiative transfer
equation in a horizontally inhomogeneous medium with an arbitrary periodic variation
in the extinction coefficient was obtained. Although there are some previous works
on radiative transfer through clouds with internal inhomogeneity, the methods are all
numerical or partly analytical. The occurrence of an anti-correlated distribution of
the diffuse radiative intensity and of a horizontal shift in the distribution of diffuse
radiative intensity, relative to the extinction coefficient are interesting new results that
were found from this work. These phenomena show that the retrieved brightness of
cloud images rnay not correspond to the cloud internal optical properties. The anti-
correlated distributions of the reflected photons have been confirmed using the Monte
Carlo simulations. It was found that the anomalous distribution of the reflectance
also occurs in clouds with geometric structural variations. The thicker regions of
clouds might correspond to smaller reflectance.

The solutions show that the cloud internal inhomogeneity has a larger influence
on the distribution of the reflected number of photons than on the cloud albedo.
Changes in the albedo occur only when the second order perturbation correction
is included. Therefore, the change in cloud albedo is one order smaller than that
of the perturbation coefficient. Contrary to the common belief tliat cloud internal
inhomogeneity always decreases the cloud albedo, it was found that in some cases the
cloud internal inhomogeneity can increase the cloud albedo as well.

The new physical findings in the thesis are: 1. Cloud internal inhomogeneity and
cloud top turret structure can increase the cloud absorption. 2. Anti-correlated dis-
tributions of the reflected radiative intensity (flux) can occur for clouds with internal
variations or with top geometric variations. 3. Cloud internal inhomogeneity can

increase cloud albedo in some cases.
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There are several recommendation for future research. First, in above Monte Carlo
simulations, only clouds with internal inhomogeneity in the distribution of its droplets
have been considered. However, the water vapor inside cloud is also a very important
factor to radiative transfer processes. The distribution of water wipor inside clouds
is also inhomogeneous. The inhomogeneous distributions of droplets and water vapor
should be considered in further work. The spectral dependency of the reflectance
and absorptance should be analysed. The cloud anomalous absorption will be better
understood when this work is performed.

Second, the perturbation methiod for 3D radiative transfer in an internally in-
homogeneous cloud will be extended tc inriude the spatial variation of extinction
coefficient asymmetry factor and the single scattering albedo, if the correlation of
the three optical parameters are known. In perturbation solutions, the §-Eddington
approximation has been used in which only the lowest mode of local angular part of
the radiance is considered. For higher accuracy the next order term of the spheri-
cal harmonic expansion will be needed. The corresponding analytical solution will
become much more complicated.

Third, Monte Carlo models or other numerical simulations are very time consum-
ing and are hard to be applied directly to climate models that include cloud-radiative
interactions. Since any analytical solution can be easily included in climate models,
it is hoped that through further improvement the perturbation model presented here

can be applied to climate models.



Appendix A

Eq.(3.42) is an inhomogeneous partial differential equation with four particular solu-
tions. Let I} = Ly + Ly + L, + Ly (Zauberer, 1983), where the functions L; to L,
satisfy

/
V2L, = A2 Ly = cos(az)[2A2I0 — 2he~*os/mo 4 %%sin(nz)e"‘f"’“] , (A.1)

0

2 2 2 —kye/uo . Kol . Kz

V3L; ~ ML, = cos(by)[2A2I) — 2he~Fo%/mo 4 ;—Zsm«z)e o¥/ko] (A.2)

0

2 2 . koh —koz/
VL3 -- M* L3 = sin(az)——[1 — cos(n<)]e " o?/ke | (A.3)
Mo}
2 2 : k(')h ~kjz/
v L4 - /\ L4 = sm(by);—c-[l - COS(CZ)]B 0Z/ko (A.4)
0
By Fourier expansion
Ly = My + ) [Myncos(naz) + Nypsin(naz)) (A.5)
n=1
where
a 21!’/0

Min(y,2) = ;/o Lycos(naz) dz (r=0,1,2,--), (A.6)
Nun )—“/”’“L'( )d =1,2,3 AT
w(y,2)=— | 1sin(nezx) dz (n=1,2,3,---). (A.7)
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Substituting Eq.(A.5) into Eq.(A.1) and using the orthogonality relation of the dif-

ferent modes, we obtain

9? 92 2 270 ~kyz/uo koh . ~kyz/uo
(b? + 5—2-5)M11 - AuMll =2 IO — 2he™™ + msm(nz)e 0 ’ (A.S)
9 9*
(3—3/2 + a—z—i)Mln - ’\anln =0 (n = 01 2v 3’ ot ) ) (Ag)
a? o?
(g7 + 3N = Malin =0 (n=1,23,--). (A.10)

where A}, = A? 4 (na)2.
The Eas.(A.9) and (A.10) are homogeneous differential equations without a source

term, which turn out to have only zero solutions under the required boundary condi-
tions of Eqs.(3.45) and (3.46). The Eq.(A.8) has the solution

My = (e11e™" + cr26'Y)(cr3e ™" + c14€'?) + f(2) , (A.11)

where ¢;; are constants, f(z) is a particular solution, [, anu [, are eigen-wave vector
components in y and z directions determined by boundary conditions, and 2 4 IZ =
A3,. Since the particular solution is a function of z only, and the medium is of infinite

extent in the y direction, we can only choose [, = 0. Therefore

My = Cle"‘" + Dlel\lz - C'yle"\’ - 1)‘)’16Az

— (o1 — A;sin(nz) - Bicos(nz))eko%/ro | (A.12)
where A = A2, = A? + a2, 4, = 20%/a?, oy = 2(\?%a? + h)pld/(kE — pd)?),

Ay = Dk o B, = - 2hlko/ o)’
Q* + (2kon/po)* ’ Q% + (2ko7/o)? ’

with Q = (Ky/o)® — 1% = A2.
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C, and D, are constants determined by boundary conditions. Similarly we let
Ly = cos(by)M2(z), Ls = sin(ax)N3i(z) and Lyg = sin(by)Nau(z), (all modes of zero

solution can be neglected) and we obtain

M21 = Cge"\" + Dze’\’z - C‘)’ge-'\z - D‘)’ze’\z

— [az — Aszsin((z) — Bscos((z)]e~Fo/uo (A.13)

N3, = C3e™1% 4 D3e™” — [—a3 — Bysin(nz) + Ajcos(nz)]e Fo2/mo (A.14)

Nu = Cae™* + Dy — [—ay — Bosin{(z) + Agcos((z)]e~*o2/m0 | (A.15)
where A3 = A2 402, 7, = 202 /b2, ap = 2(N2a® + h)pd [ (kg — 4d)3), a3 = kopoh/n(kg —
paAD), aq = Kopoh/( (kG — p3A3),

Ay = Rkgh/ pol B, = 2h(kjy/ pa)?
R? + (2kgC/ mo)?’ R? + (2k4¢/ po)?

with R = (kj/uo)?—(¢%—)2 . The constants C,, Dy; C3, D3; and Cy, Dy are determined
by the boundary conditions.




Appendix B

The coeflicients in Eq.(4.28) are: A?Jk, = A 4 [r(s + k)/a)? + [x() + 1)/b]%,
Qi = ‘I’ukl/(/\il - ’\?Jkl)v :]kl = ®yyut/(2Ak1),

Turt = (Tu®ogu — A2)/[A = AU Th = (D@m= A2)/(24),
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hkg (& + Eu)/ (1365 6m)
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