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Abstract

In this thesis we present a finite sample approximation for the marginal densities
of a multivariate M-¢stimator. The result is particularly useful in robust statistics
where an estimator usually is defined implicitly and does not have a closed form, and
for small sample problems where the asymptotic results may not be reliable.

Precisely, let Y,...,Y, be independent m-dimensional random observations such
that each observation has a density function which is parameterizcd by a p-dimensional

parameter 5. Let /) be an M-estimator of 7, the solution of the system

'l‘iq’j[(}/[,ﬁ) =0, 7=1,...,p

=1
Our primary objective is to derive an approximation for the marginal densities of a
component in 7 under 5 = 7. The result is then extended to a real-valued function
p(#), p: R — R, and finally to a real-valued vector p(4) = {p(%),...,pe()},
p:R? o RE k<p.

We begin with an overview of tne general problem and some background infor-

mation. Then we derive the main results and discuss the relationship among our
approach and some existing techniques for the problem. (n addition, we implement

the approximations for several location-scale and multiple regression examples. Fi-

nally, we discuss the limitation and some potential applications of our results.

viii
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Chapter 1

Introduction

1.1 Overview

The objective of this thesis iz to develop an approximation for the marginal
density function of a multivariate M-estimator. The result is particularly useful iu
robust statistics and for small sample applications.

Generally speaking, an estimator is a function defined by a set of random obser-
vations, which can be used to reveal a certain characteristic of a population. To use it
in practice, we must know its random behaviour. Also, the knowledge is needed if we
want to compare different classes of estimators. This ieads us to think of a common
source of the .nformation, the distribution function.

When an explicit distribution function is available, we can use it to obtain the
information that we need, otherwise, we have to compute it numerically. However,
except for some simple functions of the random observations, computation of the
exact distribution could be intractable. In fact, an cstimator may only be defined
implicitly and does not have a closed form. Unfortunately, most of the robust estima-

tors are in this last category. Therefore, an approximation, or precisely, an accurate



approximation for the distribution is clearly needed.

In the classical theory, \he computation of a distribution function may not be
difficult. Undaer the assumption of normality, very nice and complete results under
different settings have been found. Most of the statistics used in practice have very
well known distributions, and even if they do not, asymptotic results are usually
available to provide satisfactory alternatives.

However, the situation has been changing as robustness of classical results has
become a concern to statisticians. We now realize that the arithmetic mean of a
random sample is highly non-robust in the sense that a single outlier can caus= the
estimate to break down. As a result, different robust procedures have been devel-
oped in the last few decades. In particular, a general class of robust estimators was
proposed by Huber (1964). The estimators are known as the M-estimators. In brief,
an M-estimator is defined implicitly as the solution of a system of equatiors. Huber
showed in the same paper that the new class of estimators possesses very desirable
quantitative and qualitative properties.

Since they were introduced, the M-estimators have been the basis of new de-
velopments in robust procedures. Various modifications and extensions have been
proposed, and their sampling behaviours, mostly in the asymptotic senr bave been
explored. Since robust estimators usually cannot be computed analytically, it is dif-
ficult to study their finite sample properties, and therefore statistical inferences have
to rely on asymptotic results.

Although asymptotic results usually are available in cases of interest, they may be
inadequate for practical purposes. For instance, when an estimator is asymptotically

normally distributed, we could use this result to approximate the true distribution.



Although the asymptotic normality is a very nice feature for an estimator, it does
not always produce reasonable approximations unless the sample size is large enough.
Even worse, we do not know how large is large enough in an individual case. We
observe from numerical examples that a moderate size is possibly too risky. Nonethe-
less, the normal approximation tends to be quite reasonable around the center but it
can be very inaccurate in the tails of the distribution.

Different techniques have been developed to provide more accurate approxima-
tions. In general, one can try to improve the asymptotic results or to approximate
directly the finite sample distributions. In the latter cese, there are options such as
approximating the estimator itself or the distribution of the estimator. In particu-
lar, Field (1982) had successfully derived a very accurate approximation for the joint
density function of a multivariate M-estimator. An important step in his approach
is the use of the saddlepoint technique.

In a pioneering paper, Daniels in 1954 applied the saddlepoint technique and
derived a very accurate approximation for the distribution of an arithmetic mean. In
the last forty years, the technique has been proven to be very useful in small sample
asymptotics, a name coined by Hampel. The name reflects the aim of obtaining
asymptotic expansions which give accurate approximations for small samples.

For those problems where the marginal densities of a component in a multivariate
estimator are needed, one may use the results in Field (1982) to approximate the
joint densities of the components, and then integrate out the nuisance variables. This
approach was demonstrated by Field in the same paper for a two-dimensional problem
and gave very good results. However, the process involves substantial computational

effort and becomes impractical when the dimension exceeds two.



Tingley and Field (1990) manipulated results in Field (1982) to derive a linear
approximation to a real-valued function of the components. The problem is then
reduced to one-dimension and the computation becomes feasible. The approximation
was used as the basis for constructing robust confidence intervals in Tingley and
Field (1490) and Tingley (1992). In spite of its simplicity, we see later that this single
linear approximation may not provide satisfactory approximations in the tail regions
of most interest.

In the present work, we develop an approximation which is reliable even well out
into the tails. The work is motivated partly by the good performance of the linear
approximation around the expected value of the estimator. Qur approximation is
applied to several robust multiple regression problems and yields very good results
for small samples. This enables us to study the finite sample behaviour of an esti-
mator and to compare it with the asymptotic results. From that, we can determine
when asymptotic approximations are sensible for use in practice, or compare different
estimators on the basis of their finite sample properties.

The remainder of this chapter contains background information on our work. The
next section gives a brief review of M-estimators. The exponential tilt plays a central
role in our approximation and is discussed in Section 1.3 Section 1.4 presents a
normal approximation which is needed for local approximations in the development.
Finally in the last section, we summarize the discussion and outline the content of

the subsequent chapters.



o]

1.2 M-estimator

The M-estimator is undoubtedly one of the more influential ideas in statistics
within the last few decades. Numerous robust procedures have been inspired by it
and developed based on it. In this section, we state the definition and two asymptotic
properties of the estimator. The theoretical details are skipped in the discussion and
can be found in Huber {1981).

In his paper in 1964, Huber introduced a general class of estimators which he
called M-estimators. The proposed estimator was defined first as the solution of a
minimization problem and then extended to more general situations. We now set
some notation for this section and give the definition of the estimator.

Let Yj,...,Y, be a sample of size n, where each of the Y;’s has a distribution
function Fi(y;) parameterized by = (m,...,7). The true value of 7 is 9. The

density function, when it exists, is denoted by fi(yi).

Definition 1.1 (Huber, 1981, page 43)
An M-estimator of 1 € Q C R? is defined as the solution §) = (1,...,7,) of the

minimization problem
n

Y n(Y:,4) = min! (L.1)

=1

over the parameter space 2, or implicitly as the solution of the system of p equations

n

> WY, ) =0, (1.2)

I=1

where

_ aTl(Yl)n)

‘I’l(Yla"’) = _'—a_n__' = {\Illl(yla 77)’ . ,‘I’,,[(Y[,T])}, I = l,...,n,

are called the score functions.



Note that it is not assumed in the definition, but we require that the random
observations to be independent in our development.

It was pointed out by Huber himself that the functional version of (1.1) may
cause problems. For instance, the median T' of a random sauple from a common

distribution F' corresponds to
(Y, T)=|Y1-T|. l=1,...,n,
but we cannot define it to be an estimator of ¢ that minimizes

|y —t| dF(y)
Y

unless Y; has a finite first absolute moment. On the other hand, the definition in
(1.2) may lead to multiple solutions which correspond to local minima of (1.1). For

the above example, the score functions are
U(Y,T) = —sign{¥i =T}, I=1,...,n,

and we know that the corresponding solution T of (1.2) is not unique.

In many situations, there exist conjugate pairs (1.1) and (1.2) such that their
solutions are equivalent. However, a system that has the form of (1.2) does not
necessarily correspond to a minimization problem as defined in (1.1). With some
regularity conditions which will be stated in Chapter 3, we focus on the solution
of a system that has the form of (1.2). Our choice is not arbitrary since specific
assumptions on the score functions are required in our approximation.

The M-estimator is also known as the generalized maximum likelihood estimator.

The name cores from the fact that if we choose



Tl()/l, 77) = —log{fl()’;, 77)}» l= la ceey Ny
or equivalently,

iYym)  op 7

the corresponding M-estimator can be the ordinary ma timum likelihood estimator.

‘I’I(YI,U) = -

=1,...,n,

In other words, the M-estimator is a general class of estimators v/hich includes some
maximum likelihood estimators as special cases. We want to know if the gencral
estimator possesses the nice properties of the special one.

Suppose that Yj,...,Y; are independent and identically distributed, 7, is any
sequence of functions such that
1
2 2= WilYisin) =0 (13)
almost surely (or in probability), where ¥y = --- = W¥,.. Huber gave sufficient con-
ditions for the following two results to hold. The conditions generally require that
the function ¥,(Y),7n) satisfies certain continuity properties, and the expected value

E[¥1(Y1,7n)] exists for all n € 2 and has a unique zero at 5 = 7.

Theorem 1.1 (Huber, 1981, page 132) Every sequence 7, satisfying (1.3) converges

to no almost surely. An analogous statement is true for convergence in probability.

a

Theorem 1.2 (Huber, 1981, page 133) v/n(%, — n0) is asymptotically normal with
mean 0 and covariance matriz A"'C(AT)™}, where A is the nonsingular derivative

matriz of E[¥1(Y1,1)] at n = no and C is the covariance matriz of ¥;(Y}, o).



The above results have been extended to various situations and in particular to
regression problems where the random observations are not identically distributed.
We are not going to restate them here. However, specific results will be given when

we use them in the examples.

In addition to the asymptotic results above, the M-estimator has other important
features. In practice, we want our estimators to be robust in some sense. The
flexibility in the choice of the score function for an M-estimator allows us to define
an estimator which satisfies some prescribed properties. We illustrate the idea through
a simple location problem from Huber (1964).

Let Y,...,Y, be independent and share a common density function f,,(y). Sup-
pose that we want to define an estimator for the location parameter po, which resists
outliers but at the same time retains a high efficiency. We can choose Huber’s score

function with a specific c,
V. (r) = maz{—c, min{c,r}},
and solve the equation
> (¥~ 7) =0

Huber showed that

- E,[W3(r)]
poa ("“’ n{Ef(w;(r)m)’

where ‘~»’ means ‘is asymptotically distributed as’ and r = ¥; — po. Note that the

estimator includes the sample mean (¢ = o0) and the sample median (¢ = 0) as

the limiting cases. Huber also showed that the estimator has many desired robust



properties. The trade off between asymptotic efficiency and the resistance to outliers
is regulated by the choice of ¢. For instance. when the population is normally dis-
tributed, the asymptotic efficiency ranges from 1 for ¢ = oo to .64 for ¢ = 0. A typical
choice for ¢ is 1.345 which corresponds to a .95 asymptotic efficiency at the normal.

Another advantage of the M-estimator over other classes of estimators is that its
definition can easily be extended from one-parameter to multi-parameter and from
univarate to multivariate problems. On the contrary, an estimator based on the rank
or the order statistics generally suffers from the difficulty in ordering for multivariate
cases.

We make a final remark even though it is not particularly tied to the M-estimators.
For applications in robust statistics, the score functions are generally bounded in order
to limit the influence of individual observations. It turns out that the boundedness
has an additional advantage for our approximation. In brief, we will require the
existence of some moment generating functions for our applications. Having bounded

score functions guarantees the existence of the moment generating functions.
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1.3 Exponential tilt

A key to our approximation is the idea of recentering. in brief, we need to trans-
form a density function such that the new density function satisfies some prescribed
conditions. A typical condition in statistical applications is to enforce a certain ex-
pectation under the new density function. The details of this will be presented in
Chapter 3. In this section, we introduce a technique called the exponential tilt that
we use for the recentering.

The exponential tilt has widely been used in statistics and especially in the area of
small sample asymptotics (see Field and Ronchetti, 1990). In particular, Field (1982)
derived an approximation for the joint density function of a multivariate M-estimator
by applying an exponential tilt at each pnint where the density is to be approximated.
More examples of its applications will be given in the next chapter.

To develop the ideas, let f(y) be the density function of a random variable Y.

The moment generating function of Y under f is defined by

My(a) = Eflezp{aY}] = /y ezp{ay} f(y) dy,

where a is real. We know that My(a) does not exist for all a and Y, which can occur
even when Y has a commonly used distribution such as a t distribution. This indeed
causes some problems in applying the exponential tilt. Nevertheless, the existence of
the moment generating function is guaranteed when Y is bounded. In our applica-
tions, the role of Y is taken by a score function, which is generally bounded for robust
M-estimators and the existence problem disappears.

When M/(a) exists for a given ap, a conjugate or exponentially tilted density

function of Y for the given ap is defined by
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h(y) = c(ao) ezp{aoy} f(y),

where

¢ ao) = /y explaoy} f(y) dy = My (o).

We will call h(y) the ap-conjugate density function of f(y). It follows from the
definitions of the moment generating functinn and the ap-conjugate density function

that

In addition, we have the following simple but heuristic result.

Lemma 1.1 A(y) is the ap-conjugate density function of f(y) if and only if f(y) is

the (—ao)-conjugate density function of h(y).

Proof Let h(y) be the aq-conjugate density function of f(y), and g(y) be the (—aq)-

conjugate density function of h(y). By definition,

9(y) = d(—ao) czp{~acy} h(y) = d(-ao) c(ao) f(y),

where

¢ (=a0) = | (ao) f(y) dy = e(en).

Yy
Therefore we have g(y) = f(y)- This proves the ‘only if’ part, the ‘if’ part is similar

and is omitted.

a
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We notice that a moment generating function does not always exist. However,
if it exists, the moment generating function is unique and completely determines
the distribution of the random variable (see Hogg and Craig, 1978, page 50). In
other words, we can study the characteristics of a random variable via its moment
generating function. The above lemma implies that if h(y) is the ap-conjugate density

function of f(y), then

Mh(a -— ao)
Mh(—ao) '

M/(a) =
This suggests an indirect alternative approach to understanding the properties
of a random variable under its original density function. That is, we can study its
behaviour under a conjugate density function and iransform the result back through
the connection of the two moment generating functions. The idea had been applied
in Field (1982). We will utilize it into a more general situation.
We have discussed an existence problem of the conjugate density functions. In
addition to the existence of A(y), we need the next two results from Daniels in order
to satisfy some required conditions in our approximation.

Let F(y) be the distribution function of Y, and define K(a) = log(M(a)). Note

that K(a) is called the cumulant generating function of Y.

Theorem 1.3 (Daniels, 1954) F(y) = 0 for u < a, and F(y) =1 for y > b if and
only if K(a) ezists for all real o and K'(a) =t has no real root whenever t < a or

t>b.

0

Theorem 1.4 (Daniels, 1954) Let F(y) =0 fory <a,0< F(y) <1 fora <y < b,

F(y) =1 fory > b, where —00 < a < b < 00. Then for every ty in a < to < b there
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is a unique simple real root ap of K'(ag) = to. As a increases from —oo to 0o, K'(«)

increases continuously fromt =a tot = b.

a

For our approximation, recentering and manipulating a connection between the
moment generating functions My(y) and M;(y) are the two major tools. The expo-
nential tilt allows us to recenter the original density function f(y) to a new density
function h(y) that satisfies some required conditions. Mcreover, it supports a nice
relationship between M;(y) and M/(y) and eventually the density function of an
estimator under h(y) and that under f(y). We will see in Chapter 3 how the expo-
nential tilt enables us to focus our problem on the approximation of the density at the
expected value of an estimator. Thi: is important since the Edgeworth approxima-
tion for densities (see Section 1.4) generally provides very accurate numerical results
around the expected value.

The primary advantage of using the exponential tilt in our approximation comes
perhaps not from its theoretical properties but rather from the functional form of a
conjugate density function. It is the exponential form in its definition that allows us
to derive a relationship between the two density functions of an estimator under h(y)
and f(y). In addition, we will see in the development that the form also allows us to
simplify the relationship by eliminating a messy concicional expectation.

Nevertheless, there are theoretical justifications for the exponential tilt. For in-
stance, Tingley and Field (1990) discussed the issue based on the results in Kullback
(1959), and concluded that the exponential tilt forces h(y) to satisfy some prescribed
conditions while altering f(y) as little as possible in the Kullback-Leibler distance.

However, this is not essential to our approximation and we will not go into the details.
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1.4 Approximation of the mean

In our approximation, we are required to approximate the density at the expected
value of the arithmetic mean of n ina=pendent functions, where the functions are
not necessarily identically distributed. To achieve that, we apply a local normal
approximation. In this section, we give the approximation and state <nme results
which ensure the accuracy of the approximation.

Let S, be the sum of n independent random variables Y;,...,Y,. Discussions
on the conditions for S, to be asymptotically normally distributed can be found in
numerous works. In particular, we state a result due to Liapunov (see Prakasa Rao,
1987, page 22) for which the conditions are similar to those of Theorem 1.6 that we

need.

Theorem 1.5 (Liapunov) If {Y,,n > 1} are independent random variables with
ElY,] =0 and if

l n

WZEIYIV*O as n — oo (1.4)

n =1

for some § > 2, where T2 = g% + ... + 0% and 0% = E[Y?] < o0, then

L N(0,1).

Bl

As we mentioned earlier, the roles of Y)’s are taken by the score functions which
are generally bounded in our approximation. Therefore the following special case is

particularly useful for us.

Corollary 1.1 If {Y,,n > 1} are independent random variables with E[Y,] =0 and

if there exist positive numbers € and 5 such ‘hat
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0<e<ol<oo and ElYiff<e, I=1,...,n,
for some § > 2, then

L N(0,1).

alls

Proof Since the boundedness implies that

n
T2>ne and Y E|Y < nes,

=1

we have

| =

i nés

62E|Y:|5< ~— 0

0<

=]

I=1 (ne)z
as n — o0o. Therefore the condition (1.4) is sati<fied and the result follows.
0

Suppose that S, is asymptotically normal. Then, when the exact distribution of
Sy is not available, one may want to use the asymptotic result and hope that it will
give a reasonable approximation to the exact distribution. To measure the quality
of such an approximation, we neeu to know the error induced by the approximation.

For this purpose, we have the following result.

Theorem 1.6 (Esseen, 1945, page 43) Let Y1, Yz, ..., Y, be a sequence of independent
random variables such that each variable Y; has mean value zero and the finite absolute
moment s of given order §, 2 < § < 3. Then

74
P {2 <u) -0t < e | Stz + 5]

1
ni3 n2
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where
Bs 1 &
6611 = _gly Bsn = — Eﬁ&la
: =

cs is a finite positive constant depending only on 6, and ®(.) is the standard normal

cumulative distribution function.

a

We observe that the error bound of the normal approximation is of order O (n'%)
and cannot be improved in general. Different approaches have been proposed to
increase the accuracy. We shall see some of them in the next chapter. Now, we
discuss the idea that we use in our approximation.

We realize that the normal approximation generally works well around the ex-
pected value of an arithmetic mean and can be very inaccurate in the tails. Our
philosophy is simply to use only the best! With an application of the exponential tilt,
we will see that all we need is a good approximation at the expected value, the place
where a normal approximation generally gives satisfactory results. This idea can be

verified by a formal Edgeworth expansion. We state a result of Feller.

Theorem 1.7 (Feller, 1971, page 535, see also Field and Ronchetti, 1990, page 11)
LetY,,...,Y, be n independent and identically distributed random variables with dis-

tribution function F' and charecteristic function 1. Let
EY]=wm =0, var(Y}) =0’ < o0, I=1,...,n,

and
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with density f,(t). Suppose that the moments us,...,u. exist and that ||* is inte-

grable for some v > 1. Then, f, ezists forn > v and as n — oo,

fult) = () = ¢(t) i T "O(MI_I) (1.5)

uniformly in t. Here P, is a real polynomial of degree 3(r — 2) depending only on
Py -y tr but not on n and k (or otherwise on F), and ¢ is the standard normal

density function.

]
The expansion (1.5) is called the Edgeworth expansion of ;. When k = 4, Feller
showed that

Fult) = plt) = Z=Pr(Blp(t) = T Pu(Bp(t) = o 1)

n

where

a4
Py=2H;, Py= b3 He + &4 30

6 603 7206 2404 Ha,

and
Hi(t) =13 —3t, Hy(t)=t*—6t>+3, and He(t) = t® — 15t* + 4512 — 15

are the Hermite polynomials of order 3, 4, and 6 respectively. Again, the one-term
normal approximation gives an error of order O (n'%). However, when t = 0, H3(t) =

0 and we obtain
1 1

0= —==0(). (1.6)

This result is a key to the high accuracy of our approximation.
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Since the first time Edgeworth (1905) derived the expansion, similar expansions
have been developed under various conditions such as ¥’s not being identically dis-
tributed or being multivariate random variables. A basic result on multivariate Edge-
worth expansions is given in Bhattacharya and Ghosh (1978). More results and ref-
erences can Le found in Hall (1992).

For our development in Chapter 3, we use a local approximation from the result
in (1.6). Precisely, let Y = (Y},...,Y,) be an independent random sample such that
E[Y] = 0 and 0 < var(¥}) < co. Define Y to be the sample mean. To approximate

the density of Y at zero, we use the normal approximation

1 1
f_' 0) = + 0] ('—) ’
0) == +0(;
where a%— is the variance of Y. Note that a general result for a multivariate mean is

also available (see 11cCullagh, 1987, page 150). We will state the general result when

it is needed in Chapter 5.
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1.5 Summary

The purpose of the present work is to derive an accurate approximation for the
marginal densities of a multivariate M-estimator. The result is particularly useful in
robust statistics where an estimator usually does not have a closed form, and for small
sample applications where the asymptotic results may not be reliable. We summarize
the general problem as follows.

Let Y = (Y),...,Y,) be an independent random saumple, where each of the Y;’s has
a density function fi(y;) that is parameterized by n = (m,...,9,). Let § = (1,..., %)

be an M-estimator of € 2 C R?, that is, the solution of a system of p equations

12 .
_E‘I’l()/h") = 0’
Nz

where ¥; = {V¥y,...,¥y}. Our primary objective is to derive an approximation
for the marginal density of a component in % under 5 = 7. The result is then
extended to a real-valued function p(7), p : R — R, and finally to a real-valued
vector p(#)) = {p1(A), ..., px(A)}, p: R* = R, k < p.

In this chapter, we have given an overview to the general problem. In particular,
we have discussed the importance of the M-estimator and the need of an accurate
approximation for its finite sample behaviour. We have derived the basic philosophy
for our approximation and introduced the exponential tilt and a local density approx-
imation. The discussion is accompanied by the theoretical results which are needed
in our development.

Since the M-estimator was proposed by Huber in 1964, different techniques have
been developed directly or indirectly to approximate its distribution. In the next

chapter, we give a brief account on some of the recent work which is closely related to
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our approximation. Our main results and their derivations are presented in Chapter
3. In Chapter 4, we apply our results to several linear regression problems, and some
numerical results are generated for comparison. Chapter 5 extends the results to
a real-valued vector and gives numerical examples to verify the accuracy. Finally in
Chapter 6 we summarize our results and give some concluding remarks. The technical

details for the computation of our approximation are given in the appendices.



Chapter 2

Related techniques

2.1 Overview

In Chapter 1, we defined the general problem of interest. We now begin to find
a solution for it. In this chapter, we review several existing techniques which are
related to our problem and discuss some of their features.

To approximate the marginal distribution of an M-estimator, we have basically
two different approaches which can be referred to as the large sample and the small
sample methods. The former one solves the problem via some asymptotic results while
the latter one works directly on the finite sample behaviour. Generally speaking, the
first approach is simpler but the second one is more accurate.

When the asymptotic distribution of an estimator is known, we can use it to
approximate the finite sample distribution. If the accuracy is not good enough, an
option is to modity the asymptotic result to improve the approximation. On the
other hand, when such a result is not available or its performance for a small sample
is unclear, an alternative is to derive directly a finite sample approximation. For the

finite sample approach, there exist at least two immediate options. The first is to

21
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work on the distribution function and the second is to approximate the estimator
itself.

In the past three decades, various results using the different approaches have
been derived. For instance, Huber (1964, 1973) obtained many results describing the
asymptotic behaviour of M-estimators under several different conditions and gave
sufficient conditions for the results to hold. Field (1982) developed an approximation
for the joint density function of a multivariate M-estimator, and Tingley and Field
(1990) derived a linear approximation for a real-valued function of a multivariate
M-estimator.

In the next section, we introduce two models and two estimators to illustrate our
discussion. They will be employed in different sections of this chapter. Section 2.3
piesents some asymptotic results for the estimators. Sections 2.4 and 2.5 discuss the
work of Field (1982) and Tingley and Field (1990) respectively. In particular, the work
by Field requires a multi-dimensional integration to obtain a marginal distribution.
At this point, DiCiccio and Martin (1991) provide a useful approximation which
allows us to avoid a numerical integration. Their approximation is given in Section
2.6. Finally in Section 2.7 we summarize and compare the different techniques.

Before beginning the next section, we make several remarks on our discussion in
Sections 2.3 to 2.6. For the different techniques, we will state only the main results.
The notation is unified for convenient comparison. The developments and under-
lying assumptions will not be reproduced unless they are related to our discussion.

Nevertheless, references will always be given for the details.
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2.2 Two models and their estimators

In this section we define two statistical models, and two M-estimators 7 for
their parameters . They are not directly related to the techniques that we are
going to discuss, but it is useful to have them in the discussion. In particular, the
asymptotic results that we will present in the next section are based on these models
and estimators. Moreover, they will help us to adopt the general notation in our
approximation, and will be the basis of the examples in Chapters 4 and 5. However,
one should realize that the applications of the different techniques in our discussion
are not restricted to these models and estimators.

To begin, let Y = (Y3,...,Y,) be an independent random sample of size n.

The first model is a location-scale model, that is,
Yi=0+o0¢, Il=1,...,n,

where @ is a location parameter, & > 0 is a scale parameter, and ¢;’s are independent
and identically distributed random errors having the common density function f,.
Therefore we have = (0, ¢), and independent and identically distributed Y’s with

the common density function

fy) = %f: (y'; 0) :

For an estimator of 5, we choose Huber’s proposal 2 (Huber, 1964) in which the

score functions are

YI-6 Y,-0
\I’ll(ny 77) = \I’c (_l_a.——) and \1!21(},[7 77) = \1'3 (_l;'—) - ﬁ,

l=1,...,n, where ¥, is the Huber’s score function defined in Section 1.2, and J is

a constant to be specified.
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The second model is a multiple regression model, that is,
Y = X0 + o¢,

where X is an n by r — 1 fixed design, 6 = (6,,...,0,-1), 0 > 0 is a scale parameter,
and ¢ is an n-vector of independent and identically distributed random errors. In this
model, n = (0, ¢) is p-dimensional, and the random observations Y;’s are independent
but not necessarily identically distributed. We denote the density functions of Y; and
g; by fi and f, respectively. Hence,

yl*-XzT”)

c

st = 24

The joint density function of Y’s is denoted by f, that is,
f(y) =TI flw).

=1

To estimate the parameter 7, we use Huber-type score functions

Y, — XT6 .
\I’jl(yivn) = ‘I’c (J—O'—’—) lea J= 17 Y la

and
Y, - XTI
\Ilpl()/l’") Z\I’g( I p l ) —ﬂa
[=1,...,n, where ¥, is the Huber’s score function and 3 is a constant. Note that

the least squares estimator is the limiting case corresponding to ¢ = oo.
The two models are chosen mainly because of their popularity in practice. We
realize that the first model is in fact included in the second one. However, the

location-scale model has its own importance for identically distributed variables and
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a simpler notation. For both models, we assume that the true value of the parameter
is 70 = (o, 00).

The Huber-type estimators for the two models are denoted by = (é,&) with
the difference being that 8 is a scalar for the location-scale model and a (p — 1)-
vector for the regression model. We use them in our discussion for several reasons.
The Huber-type estimator has been central to many recent developments of robust
procedures for the two models, and has some desired properties. For instance, it is
asymptotically normal under some general conditions, so we are able to compute a
large sample approximation for comparisons. Furthermore, the Huber-type estimator
satisfies the natural invariance requirements for estimators in a regression coniext.

The idea of location-scale equivariance and invariance for an estimator appears in
numerous works (see Lawless, 1982, page 538; Staudte and Sheather, 1990, page 101).
For the multiple regression model the following definition gives the natural invariance
requirements. Note that we put additional subscripts to emphasize the dependence

on the parameters.

Definition 2.1 Consider a multiple regression model Y15, = XT0+0¢, 1 =1,...,n,
where 8 is a (p — 1)-vector and o > 0. Denote the joint distribution function of
Yio. s by Fy .. Suppose that (éo,,, G9,0) is an estimator of the p-dimensional parameter
(0,0) under ¥y,. The estimator p(ég'a,&o_a) of a parametric function p(0pq,09,) is
called location equivariant if p(fg4s,4,6641.0) = p(0s.0,690) + b, or location invariant
if p(Op4,0160460) = p(05,0,50,0), for all (p—1)-vectors b. It is called scale equivariant
if P(8at a0, Gat,00) = ap(06,0,50,), or scale invariant if p(fapas, 5a00) = P00, 50,0),

for all a > 0.

0
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Theorem 2.1 The Huber-type estimators (éa,,,&g,,) defined for our models are scale

eguivariant. In addition, 0, is location equivariant, and G4, is location invariant.

Proof We need only to consider the multiple regression estimator. Recall that the
score functions of the Huber-type estimator are in the form of

Y;,O,a - XlTo

. ), ji=1..,p l=1,...,n,

V(Yi90,0,0)=V; (

for any design matrix X. Therefore by the definition of (85.,, 54, ), we have

n Yiso — XT05,
Z\I’jl( Lo, L % ) =0. (2.1)
=1 98,0
Let (éag+b,,,,, Fad+b,a0) be the estimator under Fig4p40. Then
= Y a aoc — X Téa ao
Z‘I’jz( Lafbdas — DL abih ) =0. (2.2)
=1 Oaf4b,a0

Since
)/l,a9+b,aa = XlT(ao + b) + aoeg; = aYl,@,a + XlTba

the system (2.2) implies that

A

oa ac b
Yig, — XF—20tbee — 7
n a
> Vi =0. (2.3)
=1 a'¢19+b,aa
a
Comparing (2.1) and (2.3) gives
A é,, a0 — b Aa ac
0o = Zobthao 7 7 and &g, = Jabibas ,
a a

which imply in particular that

aao.aa = aoo,w &aﬂ.aa = a&O.oy 00+b,a = 09,« + b, &0+b.a =0 0,0+
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Covcollary 2.1 The function

. 0y, — 0
mmmaw)=p(% )

09,0

is location and scale invariant, or simply location-scale invariant.

Proof It follows from Theorem 2.1 that

A p(&uma—mo+m)

P(0at+b,001 Oattbac) = =
Oaf+buac

_, ((aéa,, +b) — (af + b))

aég,,

= p(éo|¢77 &0,0)'

The last result is practically useful because it allows us to create location-scale
invariant statistics for inferential purposes. This idea will be elaborated in Chapter
4. From now on, the extra subscripts on the estimators will be diopped. Unless
specified otherwise, the settings of these models and estimators wili be clear from the

discussion.
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2.3 Asymptotic distributions

When a new class of estimators is proposed, its general behaviour should be
investigated. Very often, the asymptotic distribution is relatively easy to erive
through, possibly, a central limit theorem. We can theu use the result to obtain
some asymptotic properties of the estimator, and when the finite sample distribution
is not available, use it as a natural approximation.

We discussed in Chapter 1 several asymptotic results for the M-estimator. In
particular, Huber showed that under some general conditions (Huber, 1981, pages
131, 132), the estimator is asymptotically normally distributed. We here demonstrate
the results through a particular application.

Consider the Huber-type estimator for our location-scale model. Lefine

Y,-0
™ = p .

Recall that the score function for the estimator is defined as

\ylm,n)={ Ve(ri) }

Vi(r) -8
Therefore the matrices A and C in Theorem 1.2 are given by
3\1’1(},1, 77)

A = E

n=no]

_ —iE I.(e1) e1lc(e1)
J0 ! 2631,;(61) 2€¥Ic(51)

onT

and
C = E; WY, 170)\1"11‘(1/1, 7o)]

E![ V(1) wc(el)(wz(e,)—ﬂ)}
V() (Vo) = B)  (¥3(er) - B |
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where

0, otherwise

1, if <
,cm:{ if Jol <e

If we assume that the random errors are symmetrically distributed about zero,

the two matrices simplify to

A=_L{mem 0 }

70 0 2E[ellc(er)]
and
c={ﬁwwm 0 }

0 Ef[(W2(e1) - B)?]

So we have
ATl = (AT) = —0’0{ {EqIe)]}™ 0 }
0 {(2E4[eH(e))]}!
and
E;[W2(e4)] )
{Es(I(e1)]}?

E/[(¥(er) — B)’]
HE[ell(1)l}* |

It follows from Theorem 1.2 that the location and the scale estimators are asymp-

totically independent. In addition, the asymptotic distribution of the location esti-

mator 0 is given by

i, oy Ef[¥i(e1)]
i (00 2 ) e

For the multiple regression model, numerous asymptotic results exist for the M-
estimators under different conditions (see Huber, 1973, Yohai and Maronna, 1979, and

Maronna and Yohai, 1981). In particular, Yohai and Maronna (1979) show that under



30

some general conditions our Huber-type estimator 0 has the asymptotic multivariate

normal distribution

J ol LHGY) T yy-1
0 N(Go, o_—_——{Ef[IC(€1)]}2(X X) ) (2.5)

As we can expect from the definition of the estimator, when ¢ is set to infinity,

the above distribution siraplifies to
N (0o, ovar(e1)(X" X)),

the asymptotic distribution of the least squares estimator.

The two results (2.4) and (2.5) will be used in the numerical examples for com-
parisons. In addition, classical results suggest the possibility of replacing the normal
distribution by a t distribution for a better small sample approximation. We will try

this in our examples.
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2.4 Approximation for joint densities

Approximating the finite sample behaviour of a general M-estimator is not a
trivial task. The boundedness of a score function improves the robustness of an
estimator but at the same time makes it impossible to solve the problem analytically.
Different approaches have been attempted to approximate the exact distribution. In
particular, an important result was found by Field (1982) which we now present.

Suppose that Y;, ..., Y, are independent and identically distributed random obser-
vations from an underlying density function f,, where 7 is a p-dimensional parameter,
Y/’s may be univariate or multivariate. Field derived an approximation for the joint
density function of a multivariate M-estimator 7 of 5 under some regularity con-
ditions. Note that the conditions will be generalized to non-identically distributed

variables in Chapter 3.

Theorem 2.2 (Field, 1982) If j represents the solution of

E‘I’J(Yl’ﬁ) =0, ] =1,...,p,
=1
then an asymptotic expansion for the density of 7, say gr(to), is
P

gr(to) = (%) " & (to) {Idet Al|ldet C|75 + O (-:;)} ,

where

¢ (to) = /w exp {ij a,(to) ¥;(y1, to)} f(n) dy,

i=1

a(te) = {a1(to), - . -, ap(to)} is the solution of

4
/,, ¥,(y1,20) exp {Zaz(tO)‘I’a(yhto)}f(yx) dy=0 for j=1,...,p,
1

i=1
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A= {E [a\l’.’l(}/l?n)
Oy,

b
"=‘“] }1511 J28p

C = {E[¥,(V1,t0) ¥, (M1, to)l ey, oso

and all expectations are with respect to the conjugate density
r
h(y) = c(to) exp § D y(t0) ¥, (31, to) ¢ f(11).
=1

The error term holds uniformly for all ty in a compact set.

O
The joint density approximation was applied to several cases in Field (1982) with
excellent results. In particular, it was shown that when the approximation is applied

to a multivariate mean, that is,

‘I’J(yl, 77) =Y, —ny,

for Y} = (Yau,...,Yy), the approximation is exact if the underlying density f, is
multivariate normal, and is exact up to a constant if ¥;’s have a common Wishart
density.

The original arguments in the derivation of this joint density approximation re-
quire that the random observations to be independent and identically distributed.
Field and Ronchetti extended the result to non-identically distributed observations.
Specifically, they applied the approximation to a simple regression problem with un-
known scale parameter (Field and Ronchetti, 1990, page 72). As a special case, they
showed that for the least squares estimator under a univariate normal density, the

approximation agrees with the exact density up to the constant of integration.
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The ideas in this technique motivate our present work in several aspects. However,
for the reasons that we will discuss in Section 2.7, we are not going to implement this
approximation for numerical comparisons. Instead, we summarize the approach into
the following three-step procedure for general comparisons to our work.

Consider the joint density of 7 at ¢y under f,.

Step 1: A conjugate density function h,, of f, is computed such that s is centered
at to in expectation under h,,.

Step 2: A multivariate Edgeworth expansion at zerc is used to approximate the
joint density of a Taylor series expansion of 7} — to under hy,.

Step 3: The joint density approximation of 4 at ¢, under h,, is transformed to an

approximation under f,.
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2.5 Approximation for estimators

In the last two sections, both a large sample and a small sample approach were
given as techniques to solve our problem. In brief, the asymptotic distribution gives
a simple but unreliable solution for the Huber-type estimator, while the small sample
joint density approximation provides a better solution to the problem, but one which
is much more complicated. In fact, the complications generate some computational
problems which we will discuss later.

While the accuracy of the joint density approximation encourages us to work on
the finite sample behaviour, the computational difficulties suggest that we try to
approximate directly the marginal distribution. In fact, there is a solution which has
combined these two ideas. In this section, we present the work by Tingley and Field
(1990) in which a linear approximation of a general M-estimator is given.

Suppose that we have an independent and identically distributed sample Y3,...,Y,
of m-dimensional observations drawn from a population with distribution F,, involving
a p-dimensional parameter 7. The parameter 5 has true value 79. Let 7} be an M-
estimator of 7o, which is the solution of

1 & R
;E‘I’(Yl’n) = 0»

=1

where the score function ¥ is p-dimensional. Note that the last system differs from
the previous definitions by a factor of n~! on the left hand side, which makes no
difference at all to the solution.

Under conditions similar to those in Field (1982), Tingley and Field (1990) showed
that

R Ld — 1
(7’—7]0)k=ZBkj‘I’j+0p ("‘,—_), k=1,...,p,

i=1 v n



35

where
%‘; i(Yim), B={By}=-A",
and
A= p |20 ]
onT =mo

In addition, they showed in the same paper that for a general real-valued function

p(), a linear approximation is

Pi) = pl1o) = T 0y (=)

where
G=1 z";
n 1=1
and
0
Gi = G(¥i o) = W7 (¥, o) BT 221
n =
n=7o
Therefore, we may use the distribution of G to approximate the exact distribution
of p(#}). For example, consider p(f) = 0 in our locaticn-scale problem. Suppose that
the random errors are symmetrically distributed about zero. Then from Section 2.3
we have

B=-A"'= o’o{ {Es{Ielen)]} 0 } |
0 {2E et le(e)]}

Hence,
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In particular, when ¢ = oo, 0 is the arithmetic mean Y and G simplifies to ¥ — 6.
So the approximation is exact. The derivation of the linear approximation for the
regression estimator is similar. Details are givep in the examples.

In Tingley and Field (1990), the linear approximation is used as a basis for cor-
structing robust confidence intervals. The intervals for p(5) are obtained by inverting
a test for the hypothesis H : p(n) = po. Since 1o is generally unknown, they used
the observed value 7,5, from the sample and compute an initial approximation G,,,,
of p(#) under F, ,, and then apply an exponential tilt to force G, ,, to satisfy the
hypothesis H. An application of this idea to our approximation will be discussed in
Chapter 6.

The linear approximation is originally derived for an identically distributed ran-
dom sample. Tingley (1992) extended the result to a general linear regression model
and showed that the error of the approxiriation is o_..(n‘%). The result is useful to

our present work.
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2.6 Approximation for tail probabilities

When the joint density function of a multivariate estimator exists in a closed
form and we are interested in the marginal distribution of one of its components, a
possibility is to integrate out the unwanted variables. We agree that this can be very
accurate but it could be computationally difficult even for a low dimensional problem.
An alternative is to approximate the multiple integral and avoid high dimensional
integration.

An example of the latter approach is given in DiCiccio, Field, and Fraser (1990).
In that paper, an approximation for the marginal tail probability of a component in
a random vector was derived. Later, DiCiccio and Martin (1991) applied the result
to an approximation of a marginal density introduced by Tierney, Kass, and Kadane
(1989), and developed an approximation to a real-valued function of the components.
We now present the main result in DiCiccio and Martin (1991).

Consider a continuous random vector 7 = (7, ..., 7,) having probability density

function of the form

9i(t) = c i(t) exp{ga(t)}, t = (trs... 1),

Suppose that the funcion g, attains its maximum value at ¢t = {,,,, and that
N—tmaz 18 Op(n‘%) as some parameter n, usually the sample size, increases indefinitely.
For each fixed ¢, assume that g,(¢) and its partial derivatives are O(n) and that ¢,(t)
is O(1). Now consider a real-valued variable p(7), where the function p has continuous
gradient that is nonzero at ¢,,4;.

To calculate the marginal tail probability P(p(7}) < po), let tmaz)o, be the value

of ¢ that maximizes g,(t) subject to the constraint p(t) = po. Moreover, let ppas =
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P(tmaz), so that p(i}) — pmas is Op(n_%) and tnazjpmas = tmas-

Consider the function

1

r(po) = sign(po — Prmaz) {2[92(tm¢w) - 92(tmazlpo)]}§a

which is assumed to be monotonic increasing.
An approximation to the distribution function of p(%) based on normal approxi-
mations to the distribution of R = r(p(7})) is as follows, provided that po — pmqy is

O(n~3),

P(p(7) < po) = P(R <o)
= ®(ro) + O(n"7),

where ro = r(po) and @ is the standard normal distribution function.

DiCiccio and Martin proposed an adjustment to the approximation, which im-
proves the error to order O(n“%). Details can be found in their paper (1991). In
addition, they showed that the approximation applies even if the joint density of 7 is

replaced by an approximation such that

94(t) = ¢ exp{ga(8)} {1 + O(n"%)}

when ¢ — tpaz is O(n™%), where ¢ is a normalizing constant such that ¢ exp{gs(t)}
integrates to 1 + O(n"%).

Therefore, given the joint density approximation by Field (1982), we may apply
this marginal tail area approximation to obtain the required probability. In Chapter

3, we will elaborate this idea and establish a connection to our approximation.
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2.7 Discussion

In this chapter, we have introduced two models and two estimators for discus-
sion. The models and estimators will be seen again in our numerical examples. We
have then presented several asymptotic results for the estimators, and the work on
approximations by Field (1982), Tingley and Field (1990), and DiCiccio and Martin
(1991), We now compare briefly the different techniques.

When the asymptotic distribution of an estimator is available, it is possibly the
simplest approximation for use. In some simple applications, for example the arith-
metic mean, the approximation indeed gives very reasonable results. However, the
asymptotic results can be very disappointing in more complicated situations. We
will give some examples in Chapter 4. In those cases, the approximation could be
improved, for example, by some mean and variance adjustments, provided that the
moments can be obtained. In general, the normal approximation works very well
around the expected value of the estimator, and the rate of convergence of the esti-
mator is of order O,,(n% )-

On the other hand, the joint density approximation developed by Field has been
shown in many situations to give very accurate results. The major obstacle in apply-
ing this technique is its computational requirements. At each point where the joint
density is needed, a system of p non-linear equations must be solved, and a multiple
integration is needed to obtain the required marginal distribution. While this is still
manageable for low dimensional problems, it becomes impractical when the dimension
is moderate or high.

The technique developed by DiCiccio and Martin is not by itself a solution to

our problem. However, when the joint density function or a good approximation of
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it is available, the technique becomes a useful device to avoid the multi-dimensional
numerical integration. Daniels and Young (1991) found that a direct application of
Laplace’s method in an integration could be unacceptably inaccurate, but this tail
area approximation, while it has applied the Laplace method, gives very accurate
results. Therefore, a good co-operation of this technique with the joint density ap-
proximation by Field may lead to a simple and accurate result.

The linear approximation derived by Tingley and Field is clearly a nice result. It
allows us to work directly on our marginal distribution problem. Numerical results
show that in many cases it improves the asymptotic approximations. However, its
distribution tends to be more ‘normal’ than the true distribution. This may be related
to its nature as a mean of independent functions. Generally, the approximation
provides very good approximation around the expected value of an estimator and
becomes inadequate in the tails.

To summarize, the normal approximation is simple to use and works well around
the expected value. A linear approximation improves it but is still inadequate in
the tails. The joint density approximation suggests that we work on the density of
individual points but is too computationally demanding. Combining all these remarks

is exactly the idea of our approach which we are going to present next.



Chapter 3

Approximation for marginal

densities

3.1 Overview

In this chapter we derive an approximation for the marginal density of a compo-
nent in a general multivariate M-estimator. The result is generalized to a real-valued
function of the estimator. Our approach is partly motivated by the results in Field
(1982), and Tingley and Field (1990) (see Chapter 2). We now explain the back-
ground relationship among the three procedures. The technical connection will be
clear in the development of our approximation.

Our approach originated in Field (1982) where a very accurate approximation for
the joint density function of a multivariate M-estimator 7 is given. Although one
may integrate the density approximation numerically to obtain the required marginal
density, the substantial computational requirement makes it impractical even for a
small dimensional problem. Tingley and Field (1990) used results in Field (1982) and

derived a linear approximation G to a real-valued function of the estimator, say p(3).

41
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The problem is then reduced to one dimension and the computation becomes feasible.
In spite of its simplicity, we will see in Chapter 4 that this single linear approximation
may not provide a satisfactory approximation for the parts of the tail distribution of
practical interest. Nevertheless, numerical results show that the distributions of p(7)
and G agree well near the expected value of p(7}). This motivates us to use G only for
approximating the marginal density at the expected value rather than for the whole
distribution of the function. We summarize our procedure as follows.

Consider the marginal density of p(7}) at po under the joint density f.

Step 1: An exponential tilt is applied to f such that under the joint conjugate
density h, 1 is centered at ¢y in expectation and p(to) = po for some chosen .

Step 2: A linear funct.on G = py + G of the score function ¥ is used to approxi-
mate p(7) and give the marginal density of p(7}) at po under h.

Step 3: The approximation of the marginal density under 4 is transformed to an
approximation under f.

In the next section, we define some general notation and state the regularity
assumptions for our approximation. The main result is derived in Section 3.3. We
discuss the errors of the approximation in Section 3.4, and propose some finite sample
adjustments in Section 3.5. Finally in Section 3.6 we summarize the result and
compare it with the techniques which were discussed in Chapter 2. In particular,
we establish a technical connection between our approach and the tail probability

approximation by DiCiccio and Martin (1991).
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3.2 General notation and regularity conditions

In this section we define some basic notation for our approximation and state
the regularity assumptions for the development. We begin with a brief review of the
general problem.

Consider an independent random sample Y = (Y;,...,Y,), where Y;, I = 1,...,n,
is m-dimensional and has a density function fi(y;) that is parameterized by n =

(my--.,mp) € Q C RP. Denote the joint density function of Y by f(y), so

fy) = I filw).
=1
Let 7 = (%1,...,%p) be a multivariate M-estimator of 7, that is, 7j solves the p-

dimensional system

1 & . ,
— > WY, 5) =0, (3.1)
n =1

where ¥; = (Uyy,...,¥Yp), I = 1,...,n. Note that in our location-scaie model, ¥;’s

are the same for all [, and in our multiple regression model, ¥; depends on [ through
the I** row of the design matrix.

The problem is to find an approximation for a marginal density of 7. We focus
in this chapter on the derivation of an approximation for s real-valued function p
of /7 under 5 = ng. The result includes p(77) = 7, as a special case. In Chapter 5,
we will extend the technique to approximate the joint density of a real-valued vector
p(1) = (p1(), -, pe(1))), k < p.

Define k., to be a conjugate density of fi, that is,

hio(y1) = ci(to) exp {zp:laj‘yjl(:'/lato)} flw), 1=1,...,m,
=

where
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¢ (to) = /w exp {z’: a:‘l’gl(yl,to)} Ji(wi) dyi,

=1

and a = (o,...,q,) is chosen so that for some fixed to = (to1,. .., %0op),
1 n
En, [; Sy, to)] =0, (3.2)
=1

where h,, is the joint conjugate density function of Y given by

heo(y) = [ huo ).
=1

Note that the dependence on o will be suppressed on both &;¢, and h,,. The choice
of ¢ is crucial to our approximation and will be discussed in the next section.

Let

v

‘Il}];...]v)(yl,n) - 57——3”‘1’1(?/1,'7)
TRER Jv

and
av
(meao)p)y = ——
P (n) F— a%p(n)

for 1 <j31,...,7s<p,l=1,...,n,and

S=(S,...,8,) = {i‘l’i’(n’to)} o

=1 1esesP

By convention, we define

\Pfo)(yl,n) = Ui(yi, ), \I'f"""")(yz,to) = \Ilf“'"’")(y:,n)l

b
n=to

pO(n) = p(n), PV (ta) = p)(n)|

n=to
We now make eight regularity assumptions about the functions ¥ and p for our

approximation. The assumptions are similar to those in Tingley and Field (1990)



with some minor changes and some adjustments in notation to accommodate our
non-identical ¥;'s. A more general form and justifications of these assumptions can

be found in Field and Ronchetti (1990).

Al The system (3.1) has a unique solution 7.
A2 The system (3.2) has a unique solution « for each ¢y € Q.

A3 The joint density of (.S, ) exists and has Fourier transforms which are absolutely

integrable both under f and h.

A4 For the m-dimensional Y}’s, there is an open subset U C R™ such that for each

n€Nandl=1,...,n,

(a) Ju fily) dyr =1,

(b) The derivatives

U (), WP ), W ()
exist for 1 S jl’j2aj3 S p-
A5 For each compact K C Q and [ =1,...,n,

(a) for 0 < j1,52 < p,

sup Ehlto [(\Ilf”’z)()/,,to))4] < 00,

toEX

(b) there exists a § > 0 such that for 1 < j;,72,73 <p,

sup Epyg, [ max I\I’f"”m(yl,ﬂ)ls] <.
to€K <6

In—to



A6 For each 5 € 9, the matrices

A{n) = {Ehln[ Z‘ﬁf? Yz,ﬂ]}
1<n.025p

and

Ofn) = Buy [(12)1’ i) (2 Zwlm,vn)T]

=1

are non-singular.

A7 The functions A(n) and

En, [(% z w,‘"”’(n,n)) (;ll- )> ‘I’l("'z)(yz,ﬂ)) T] ,

=1 i=1

0 <j1,J2,%,02 < p, 1 +J2 21, i1 +12 2 1, are continuous on ().

A8 For each compact K C 0,

(a) for 0 S j17j27j3 S P,
sup |p(11jz.73)(,7)| < 00,
nek

(b) for each to € K, there exists a § > 0 such that

In—tol<é

inf varp,, [\I!, (Yi,n )( ~1(n )) (’771)] >0, I=1,...

46
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3.3 Derivation of the approximation

In this section we derive our main result which is an approximation for the
marginal density function of a real-valued function p of a multi-dimensional M-
estimator 7. We follow the three-step procedure as outlined in Section 3.1.

Assume that a centered conjugate density h is chosen under the requirement in
Step 1. Note that the to in the condition is not specified yet. The choice of to is an
important key to our approximation and will be discussed later in the development.
The next step is to derive linear approximations for 7 and p(). The construction
parallels that in Field (1982) and Tingley and Field (1990).

For1<j,51,72 <pandl=1,...,n, define

— 1 & —
\I’Jl = ‘I’,[(Y{,to), Hat = Eh[q’]l]v "I’J = ; Z\I’le By = Eh[q’J],
=1

‘I,(Jl) ‘I’(Jl)(yl,to) “g.;l) E;, [W(Jl)], “ijl) —ZW(“)’ u;.h) EL[T [—(Jx)],

no

\I,(.mz) \II(J”’)(Y + ), ”gm) E, [\I,(Jm)]

(Juz) E‘I’(Jm)’ Mgmz) E'h[-\FEJ”’)].

Recall from the condition (3.2) that for a given ¢y, a is chosen such that g, = 0 for
j=1,...,p. Let
W = (-\Fl, e ,—\FP),
T = @, ), w9 = (), u),

\I,(Jm) (\Il(‘"") . ""I,‘:’Jlfz)), ”(1112) - (ugﬂh), L ’”;’mz)),

¥ = (W,-\Tfm, o ’W(P)"\I—,(ll)’ o ’W(w))’
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ut = Ba[T] = (0,4, .., u®, 400, u)),

A two-term Taylor series expansion of (3.1) about ¢ is given by

1 & .
0 = _Z\I’I(YI,")
L

4
= T30t T 4155 55— o) (1 — 10T + Ol — toP

.11——1 J2=1

The approximation we obtain is actually for p(T), where T = (Th,...,T}) is the
solution of

¥+ E(T — tg); T 4 - Z S (T — o), (T = 1), 9 =0,

2/ S
rather than for p(7}).
At any fixed point Y = y = (y1,...,yn), let ¥; = U(y, o) for j = 1,...,p,

l=1,...,n, and so on. Consider the system of equations

oot =T+ 20— B0 45 5 3 (o)t~ )T,

=t 2 S

Now, ¢ maps R?"*? into R? where p* = p + p? + p°. Since A(to) is non-singular by
assumption A6 and

ﬂ' tO) 0 + Z 0 - tO)]#(J) + = E Z to)_n to - to) ﬂ(‘“n) = 0

.11"1 J2=1

the implicit function theorem can be applied to prove the existence of a unique dif-
ferentiable function H(¥), H : R*" — R?, such that ¢(¥", H(®")) = 0 for ¥" in a
neighbourhood of #* and H(¥") in a neighbourhood of to. It follows that T = H(T")

and

— 3) — —f
T+ S (HT) - 1),T9 +

i=1

q(V, H(V"))
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1 P P ( )
'2_ E H(\I’ JI(H(q’ )_t )Ja‘l"J”2

n=1y=1
= 0. (3.3)
We can now give a linear approximation for T'.
Lemma 3.1
P o
Tk = tox + Z‘I’JBkJ + OPI\I’ - ”"|2’ k= la- Y

=1

where B = {Bi, i<k <o = —A7(to) and the first term in the error is given by

P P P
5 ()
€Tk = Z E Z\[’Jx(q’gf l‘ga))BknBJan"'

12 101 P P p )
2 Z Z Z Z Jml‘J; * Biyy,-

Proof Expanding Hi(¥") in a Taylor series expansion about p* yields

= %

H(¥")
3> 21(?—”*),,(@*—#*)],%%% b O~ P
= Hi(p") + Zw aH"(" * }: Z("‘"’ ‘“’-‘?i’-_’%;l
a=1 n=1p=1 oV,

(12.11 )

»p P P P P 2 .
E EZ(-\I;sza) (ms))aHk( B) % *Z'\‘I;J'\Ea_’_lk(li) +

1 KN & —‘I‘;(Jz) (12) \y(‘i’) (‘2) _..______")
5 Z Z E E( n Hy )( ) (Jz)aw('z)
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LI I I N N U _ r)y ) _ ) 0% Hi (")
52 2 2 E E Z 2 = W ™) P e o)
..—. = n )]

1=172=1 53=1 31 =1

el

|4 P 14 2
= =—(2)  (12)y O He(p")
22 LW -y ) 5%,90

p P P P . 32]_1( )
(23) (tgta) k
Zz Z Z(‘]’J"I‘J)(‘I’n =l )6‘1’ a\I’(.m) +

14 14 14 14 14 2
PO _ e ) _ o) O*Hi(p")
z Z 2 Z E(\I;J':"‘ _”sz )(‘I’nzs ) —(Jz)a\l,('zia) +

OHi(p") _ OHW(T")
oV v’

J J U=y

and similar interpretations for the other partial derivatives. Recall from (3.3) that
=V, +Z(H_t0 ‘I,(J)+ Z Z(H to)n-‘l—’?m) =0,

11‘1 72=1

r = 1,...,p. We evaluate the partial derivatives as follows. For 1 < j < p,

aqr aqr aHk
+ Z “ OH, 87,

implies that
sk
Ip=p) + Z {‘I’( '+ Z to)s‘l’( )} F (3.4)
J

s=1

where Ij,—;) = 1 if r = j and 0 otherwise. At (U",H) = (u*,1o) the system (3.4)

simplifies to

OH(p* .
{Ir=py}r=t,p + {l‘gc)}lsr,kSp 3—(\17” ) =0, 1<7<p
J




Recall that A = {uM},<, k<, and define B = —A~'. Solving the last system for the

partial derivatives we obtain

OH(n")

— [_ a1 — .
a_‘l?, —{ A }kJ BkJ

In a similar manner, it can be shown that the other first order partial derivatives van-
ish. Now, consider the second order partial derivatives. For 1 < j; < p, differentiating

the system (3.4) with respect to U,,, j, = 1,...,p, yields

OH, ok OHy { (k) (ak)} 9*H; }
7, +90, 4+ D (H —to), ¥ =0.
kgl {sz-:l a‘ll.n a‘I’Jl Z( 6‘1’11 dq’]ﬁ

s=1

At (U7, H) = (u*,1o) the above system simplifies to

p 14 82H (#-)
B; B (k)—:k—:..—- =0
E {; 72 ur ka + p’r a\I,J‘ aq’n

or equivalently,

15=1 14=1

0*Hy(p* .
{Il }l<]3,k<p {"a‘—-_%(%'—}‘} {E z 31412 /‘(] J!’)B.m.n} .
\I,Jl 32 J k=1,..,p 13=1, \p

Solving the last system for the partial derivatives gives

62H
6 ‘I’ Z Bk]s z Z B,1412 /‘(J‘JS)Ban
n 22

13=1 J4=1 =1
Similarly, differentiating the system (3.4) with respect to _\'1723) , 1 72,73 < p, yields
OH
I r= -—=J'3-
{r=2} a\I,:“ +

P )&~ OH, —(sk) OH, {—(k) P —-(ak)} 9% H,
\I’ N + \I’r + (H - t )3 ‘I’r —7 =
2 {Z-:l g T 0V, R 5%, 5%,

At (W°, H) = (p*, o) the last system simplifies to
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0H(p*)

— = 0.
)
0%, 0%,

{]{T-Jz}BJaJx}r=l. w2t {ﬂ$ )}1<r k<p

Solving the last system for the partial derivatives gives

0% Hy(p*)

9T, 00" = Bro B
In a similar manner, it can be shown that all the other second order partial derivatives

vanish. The result follows.
0
Note that the error term er corrects some typographical errors in equation (5) in

Field (1982). Now, consider the one-term Taylor series expansion of p(T") about ¢
p(T) = plto) + (T — to)" {¢ ™ (to) }u=t,...o + Op|T — tof’. (3.5)

Applying Lemma 3.1 to approximate the difference T' — t5 in (3.5) we obtain an

approximation of p(T') s

T
p(T) =~ p(to) + Z‘_I’-JB"J} {p)(to) }e=t, ..o

7=1 k=1,...,p

P

= plt)) + LY 6B (t0) By ¥ (Vi to). (3.6)

n =1 3=1 k=1
We define G to be the right hand side of (3.6). A one-term Edgeworth approxi-

mation to the marginal density of G at po under & is given by

1

2 ’
2nogy,

9G1n(po) = (3.7

where afm is the variance of G under h, and the error is of order O(n=3) (Esseen,

1945, page 44). In order to improve the normal approximation, we center p(T') at po



and therefore choose « such that

E; [—lei \Il,(Yl,to)] =0 and p(to) = po. (3.8)

I=1

It follows from the expausion (3.5) and Lemma 3.1 that

i=1

T
P
p(T) = po = {E U, By; + 0,[¥" ~ lflz} {p(to) biztp + OpIT — tof.

k=1,...,p

Taking expectations on both sides under h, the sum in the right hand side expression
vanishes, so that we have E,[p(T)] = po up to the first order. It remains to choose
to and to carry out Step 3 in the approximating procedure. The following centering

lemma is required.

Lemma 3.2 The marginal density of o(7}) at po under f and that under h are related

9s(pa) = {ﬁ Ct(to)}_1 By [%P { - Ep: aij}

=1

p(h) = po] gr{po),

where

S=(Sl,...,5p) - {E\I’jl(yl,to)} .
j=1,..,p

=1
Proof Denote the joint density of (S,7) under f and that under k by gs(s,t) and
gnis, t) respectively. Writing

S =(5(Y),...,5(Y)) and = H(Y),...,5(Y)),

the moment generating function of (S,7) under f can be written as

My(u,v) = /,, exp {i u;8;(y) + i vjtj(y)} II_EI Sily) dy

Jj=1 =1

/exp{i uji‘l’jl(yl,to) + ; vjtj(y)} ﬁfl(yl) dy.
y 1 =1

i=1 =1 i=
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Recall that

hi(y1) = cilto) ezp {i o; ¥y, to)} Jilw),

i=1

therefore by choosing (u,v) = (a + tv,1)) for some constants a we have
My(a +1y,i))

= /emp{Z(a-i-i‘Y E‘I’Jz(y:,to +Zz)\t )}i[fl(yl) dy

J=1

= {iI Cl(to)}_ /!; exrp {i i"}’j z": ‘I’jl(yl,to) + i iAjtj(y)} I]j: h[(yg) dy

=1 =1 j=1

n -1
= {H Cl(tO)} Mh(iv,i)),
=1
where Mj(iv,7)) is the moment generating function of (S, %) under h. Since both

M; and M), are absolutely integrable by assumption A3, we can apply the Fourier

inversion formula to obtain
gs(s,t) = o 2p//exp{ Zu]s, Zv, }Mfuv)dudv
j=1

where the components of u and v are integrated along the path from w—z00 to w+i00

for some w. Choosing (u,v) = (a + 17,1]) yields

14 P
gs(s,t) = 2” v / / exp{ Z a+1y);8; — Zi/\jtj} Ms(a+ ty,i)) dy dA

= {:I:11 Ct(to)}—l ezp {—jZ::laij} X

P

21r % // :L'p{ ;85 — Zi)\jtj} My (37,iX) dy dA

j=1 j=1

{II:{ Cl(tO)}_l exp {— Zp: a,-s,-} an(s,1).

1=1
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Integrating both sides of the last equality along p(t) = po gives

(85 po) {Hcl(tﬂ)} ewp{—ia,sj}gh(s, po)-

1=1

Integrating both sides again with respect to s, we obtain

9s(po) = {H a(to } /semp{— EP:QJSJ}Q’&(-S‘PO) ds gn(po)

=1

and the result follows.
a

Note that we may encounter a situation in which the linear approximation for the
estimator is exact. An example can be found in the next section. In that case, the
joint density of (.5, 1) degenerates and a slight modification is needed in the proof. To
illustrate the idea, we assume that the linear approximation for (7;,...,%,) is exact.

Define S* = (Sg+1,...,S5p). Applying an analogous argument we obtain

gs(s*,t) {Hc;(to)} exp{—Zj:aJsJ}gh(s‘,t).

It follows that

gr(s,t) = {Hc, to)} ea:p{—f:a_,s]}gh(s,t)

J=1

and we can proceed as before.
Now, combining Lemmas 3.1 and 3.2 with the Edgeworth approximation in (3.7)

yields an approximation to the marginal density of p(7) under f, that is,

po) = {ﬁcl(to)}— E, [emp{—f:a,sj} oT) = po] L
i=1 = Glh

However, a direct evaluation of the conditional expectation in the approximation is

not very attractive. We now show that some suitable choices of a and ¢, will make

the evaluation straightforward.
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We need a total of 2p constraints to define the conjugate density h, that is, p for the
a and p for the to. The conditions in (3.8) specify p + 1 of them. For the relationship

in Lemma 3.2, a desired situation would be when the conditional expectation

(1) =P0}=1-

S aiS; x (i) = po. (39)

i=1
Using G to approximate p(7) and the definition of S, the proportionality (3.9) becomes

B l,,{ S0 }

7=1

This is trivial if

n o p n p pr
Ezajq’j((}/[,to) o ZZZP( ) tO Bk] ]l()fhtO)

=1 j=1 =1 3=1 k=1
which is true if

P P
aj, 3 p® (o) By, = aj, 3 p*)(20) Bisy (3.10)

k=1 k=1

for 1 < jy,72 < p, which accounts for p — 1 constraints.

We assume that at each point p(7}) = po, the 2p constraints in (3.8) and (3.10)
for choosing a and ty lead to a unique solution, that is, the joint conjugate density
function h exists and is unique. Justifications of the assumption will be given in

Section 3.6. Now, putting the results together, we have the following.

Theorem 3.1 Let p(7)) be a real-valued function of a multivariate M -estimator i =

~

(1. .,7p) which solves the system of equations

1 n
=) W(Y,n) =
where V) = (Vy,...,¥y), and the Yi’s are independent with densities fi(y). If

assumptions A1 - A8 are satisfied, an approzimation for the marginal density of p(7})
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at po under the joint density function f =], fi is given by

gp(PO)':{ﬁcl(to)}- 217;2 ) (3.11)
=1 Glh

where

¢ (to) = /_(: exp {zl’: a]\I’]l(yhtO)} fily)) dy,,

3=1
2 . .
T U the variance of

n

PP
0) + EZPH (to) B, ¥ 5u( V1, to)

1=1 3=1 k=1

S|

under the joint conjugate density function h =[], hy,

=1

hi(yr) = ci(to) exp {i a, Uy, to)} fiwi)s

a and ty are chosen such that

1>
Ey [;’: § :\I’l(}/],to)] =0, p(tO) = Po,
=1

14 |4
ajy Ep(k)(tO)Bkn = Oy, Ep(k)(tO)Bkha 1< jhj2 < D

k=1 k=1
ﬂ—lo]

In general, the approximation g, in (3.11) has to be normalized to give a total

and

B=-A"t), A {;I;Z on ,:/' z
I=1

probability «' one. Numerical results show that the normalization gives more accurate
approximations. We define G, to be the approximation for which the density at py is

the normalized g,(po).
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3.4 Errors in the approximation

We have derived g, for approximating the marginal density g; of p(7}). In this

section, we discuss the errors which are induced in the development and give some

remarks on their overall effects.
In the derivation of g,, we have basically applied two approximations. The first

and perhaps . ~re important one is to use the linear approximation G for the function

p = p(7}). Writing
ﬁn = Gn + R,

with the subscripts to emphasize the dependence to the sample size, Tingley and Field

(1990) have shown that the error R, is of order o,(n~%) for identically distributed
1’s, and Tingley (1992) has shown that the same result holds for multiple regression

preblems. We need to understand how the error affects the density approximation.

Recall from Lemma 3.2 that

n -1 P
gf(ﬂo)={'1:ICl(to)} E ewp{—z:ajsj}

In evaluating the conditional expectation and the marginal density g,(po), we have

P = Po} gr(po) -

applied G, twice.
We first consider the conditional expectation. With the conditions in Theorem
3.1 for choosing a and tg, we can write
P
Z @;5; = du(Gn — po),
=t
where

naj

d, = ,
ka1 BN (o) By;

Jj=1...,p.
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Therefore
N
Ey, {exp{ — Zajsjj ﬁn = po = E, [czp{—'dn(Gn - Po)}| Gn+ R, = PO]
i=1
= Ey [emp{an,.H pn = PO]
= E [l +dnRn + Op(d;"‘Rﬁ)lﬁ,, = PO]
d.\]|. '
= 14+ E, [Op(-j) Pn=Po]-
n2
Writing

9r(po) = ga.n(po){1 + ex},

where gg,|» 1s the density of G, at po under h, we obtain

95(p0) = {flq(to)}— {1 + B, [ (i’—)
=1 n:

Unfortunately, the convergence of g, — G, in probability generally does not give

pn = po] } 96 n(po){1 + €.}

us a clue to determine the order of the expectation and e,. The overall rate of
error is still under investigation. However, for the limiting case with ¢ = oo in our
multiple regression model, we have the following result. (Note that in this case, the
estimator 7 is the least squares estimator and § is a linear combination of the random

observations.)

Proposition 3.1 For the least squares estimator O, k= 1,..., p—1, of our multiple

regression model, the linear approzimation G is ezact.

Proof Let
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The least squares estimator corresponds to the score functions
‘I’:l(yh'l) = 'I‘(('I])XIJ, J=hL..,p-1,

u(Yi,) = ri(n) - .

Therefore tg is the solution of

—ZEh[TI(tO)]XIJ = 0 ] = 1 P 1,
’..

_ZEh[rl to]-—ﬂ 0.

=
Let 7o = (r1(t0),...,7a(t0)). By definition we have

1 [xfx me] 1 [XTX 0 ]

A= ——K,
ntgp 2rt X 2rdrg 0 2ng

- nto,,
where the 'ast equality follows from the definition of ¢y, and

nto,(XTX)™1 0
B= 0 top
28

Let Gy = (Gy,...,Gp-1) be the approximation for 0 = (él,...,é,,_l), and t =

(tory-..,top-1). For k=1,...,p -1, we have

Gy = tor+— ZZB/” 4(Yi,t0)

l_l =1
1 &2 - X7t
= lop +— Z E ntop(XTX) (-—'—l—ﬁ) X[],
M =1 =1 top

or equivalently,

Go =to + (XTX)'XT(Y - Xt5) = (XTX) ' XTY
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which is exact.
(W]

It follows that the proportionality (3.9) is exact under our choice of (a,ty) and

therefore

95(tox) = {Hcl(tO)}— gGlh(tOk)

=1

from Lemma 3.2.

We use linear approximations in the development and can expect the approxima-
tion to perform the best when p(7) can be expressed as a linear combination of the
score functions. The above result is a good demonstration. However, we mav also
want to know what happens when the estimator is not a linear combination of the
score functions. We now give an example to illustrate it. Consider the least squares

estimator

o e T (Yi— XT0)
p(h)=6"= py? :

We have p(P)(t5) = 2top and therefore

t Y - XTt,\?
G = lyp+y Z2t°”20[; {( l oy 0) _ﬂ}
p

2?:1(“ - Xtho)z
ng

which is simply a one-term Taylor series expansion of the true function and has an

error of order o,(n~7) as expected.
Besides using the linear function G in the development of g,, we use a one-term

Edgeworth approximation for the density of G at py, that is,

| 1
gclh(Po) = 271_0% " + error.
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We know from the discussion in Section 1.4 that the error is generally of order
O(n‘%). When the approximation is evaluated at the expected value, which is in our
case, the error is improved to order of O(n~!). This enables us to approximate the
density accurately. For instance, applying a one-term Edgeworth approximation for

the least squares estimator 6 yields

o= {flso} " {{zmi; +o ()}

Nevertheless, we need to point out that the density approximation for ggu(po) is

independent of the other steps in the process. Therefore if there exists a better
approximation in a specific case, we can always replace the Edgeworth approximation

with it.
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3.5 Adjustments to the approximation

In our approximation the centering procedure plays a very important role. We
exploit the good performance of G around the center of T' and use an Edgeworth
expansion to approximate the density at the expected value. In Lemma 3.1, T is
expanded abo.. its mean E,[T] under h. We approximate E,[T] by to which is
correct up to the first order in the expansion, but the result should be improved if ¢o
is replaced by a belter approximation of the mean.

Recall from Lemma 3.1 that a Taylor series expansion of T} is in the form
D
Tk=t0k+j;wj3kj+eTk+"', k=1,...,p,
where ery, is a function of B;;,, ,uf,m“) U;,¥;, and U, (\Ilg-“) —,ug")) 1 < J1,72,J3 < p.
Currently we approximate Tj —tor by ¥.; ¥; Bi;j. A natural choice would Le to replace
to by
t, = to + Epler). (3.12)

To implement the adjustment Ej[er], we need to compute Bj,;, and the expected

values

EA[T%™), B[, ;] and E,fT;, (T - u)),

Since the random observations are independent by assumption and the expected value
of ¥;, equals zero by the condition (3.8), it follows that
o n

En[V; 0] = —Eh Z(‘I’ml pity) D (Wit = tsanty)

l1=1 la=1

= ZE’I[ Jl — Ml )( J2l — /"izl)]
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1 n
= = Y B30 5] — mirittiat},
=1

and similarly,
_ i . 1 n . .
[0 (W5 — wi)] = = S (B0 050 ] — i)}
=1
Note that Bj,;,, gt and ;zgz,) are required for our basic approximation, t' erefore to

compute the adjustment, additional computations are needed to evaluate

pb38) B (W, 0, and Ex[U;,0%)), 1< 1,00 <p, I=1,...,m.

J2l
Recall that the conjugate density h depends on to so that a different adjustment is
made for each ty. This clearly increases substantially the computational requirement
for the approximation.
An alternative is to use a constant adjustment so that the adjustment needs to

be computed only once for all ¢,. For this alternative, a simple choice would be
t, =1t + Ef[e'_r]. (3.13)

We will see that this constant adjustment is very useful in some situations.

The above replacements are expected to give better approximations for the expec-
tations E4[T)] and Ei[p(T)]. The aim is to improve the approximation t, for E,[T
and also the approximation E,[T] for E4[j]. A desired situation is when the differ-
ences E4[T] —1t, and Ex[] — E4[T] are as small as possible. Since the expectations of
T and % under h are not yet available for small sample problems, a sensible approach
would be to reduce the errors introduced in each step of the development.

In the derivation, we applied Taylor series approximations which involve, directly

or indirectly, expansions of the score functions. In general, the technique yields a very
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good approximation around the point of expansion but not necessarily otherwise. To
illustrate our point, consider an expansion of the Huber’s score function for a simple

location problem

(Y —0) ~ W (Y —to)+
A dV (Y — 6) s, (Y —0)
(0—to) —7—| +5(0-t) 7D :

0=to O=tq

where ¥ (r) = maz{—c,min{c,r}}. The approximation on the right hand side is
exact if |[Y —to| < cand |Y — 0| < ¢, and equals esign{Y = to} if |Y —to| > ¢. In the

latter case the discrepancy between the approximation and the true value is
csign{Y —to} — W (Y — é)

which has a maximum value of 2¢. In order to obtain a better approximation for the
expected value of the score function, we want to keep the expansion unchanged when
it is exact and reduce the discrepancy wherever possible. With this objective in mind,
we propose the following refinement for our examples. Consider ep = ep(V., V', ¥7).
Let

t, =to+ Epler(V. 1, V.1, V1), (3.14)

where I.(z) = 1 if |z] < ¢ and 0 otherwise. Therefore the expansion vanishes and the

maximum discrepancy reduces to
maz|0— V(Y - )| =c

in the region |Y — ¢5| > c. Note that this proposal is equivalent to the adjustment
(3.12) when c is taken to be infinity.
The adjustments (3.12), (3.13), and (3.14) will be implemented and compared in

the numerical examples in the next chapter. Note that when ¢, is replaced by t,, the
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centering constraint p(to) = po is changed to p(1,) = py and

p(T) —pPo = (T - t#) 67]

= 13T Wi te)Bu(to) 2.

1=t k=1
The details of their computation are given in Appendix A.
Besides mean adjustment, one may also think of the possibility of reparameteri-
zation to improve the approximation. However, before considering this approach, we

state an invariant property of our approximation.

Proposition 3.2 Let n* be a one-to-one reparameterization of . Define
\I’Jl = \I’Jl()/hn)’ ‘I’;l = \I’Jl(Y;a 77(77‘)), .7 = la' Ry [ = 1,' ceg Yy

p=pn), p"=p(n(n”)).

Denoted by 1 and #* the solutions of

(rEwmop o (2w
Ly 1=l,e0p = 1=lup

respectively. Let p = p(7), p* = p(n(7*)), and G and G* be the linear approzimations

for p and p* respectively. At any point p* = po, we have

95(Po) = 9p(po),
where g; and g, are the density approzimations based on G* and G respectively.
Proof The density of g at po is approximated by using

G= Po +—\I-’-TBT ?_P_
an

n=to
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where the expectations are computed with the conjugate density h and the (a,tp)
satisfies the centering conditions stated in Theorem 3.1. We need to show that the
G* for p* at po under h* is the same as the G for p at pp under h. Choosing (a*,t3) =
(a,n*(to)), we show that h* satisfies the centering conditions. For j = 1,...,p and
l=1,...,n,

»
2

=V, (Y, 77(’f))‘n(n°)=to = \I’Jl|n=¢o'

n=to

P*ln'=z; = P(n(n*))n(n‘)ﬂo = po-

n‘:ta

It follows that

1 n
Eho l:- E\I’;’
n =1

1 n
n* =ty ™=

and

For the proportionalities, we have

a\l';', _ P 5‘11;, an,
a"’; =1 an' anlc

. (k) _ Va0 _ g~y 9n
Yo Z T DAL

which implies that

A = E ov - E 3_\11 on — AD
87'* n‘:ta an a”* n‘:t;
and
B* = -A*"1 = D_IB,
where

o "
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Therefore

BJ:m

n=to

2L 9p(n
B,y = ay Z L

n=tg ga=1 95

o Y %

13=1 6”]3

is equivalent to

9p(n)

9p(n)
Z 677.13

73=1

377
Z 13 kn

n=to =0

Iy,
E mBsz— 122 a

’7—t0 13=1 "Ja

which can be simplified to

14 a ®
an Y p(n(n))

£, 9p(n(n*))
B =« —_—
Fimed a,,’; J2 Z *

n*=t] = O

n‘:ta
This implies that (o, n*(t)) satisfies the required centering conditions. Hence, the

uniqueness of h* allows us to conclude that A* = h. To complete the proof, we can

write
— » _ a *
G* = p+¥' BT a—"; = po+UBTD 5”7 G
an n.=ta 7’ O_.t;
by realizing that
T *®
pr 9 { an } 9p dp
317 n=to on” an n=to on* n*=tg

The result now follows.
a

Hence, any attempt to improve the approximation by reparameterizations will not
be successful. On the other hand, if a reparameterization simplifies the computation,

we can always apply it without worrying about the cost in the accuracy.
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3.6 Discussion

In this chapter, we have derived an approximation G, for the general problem as
stated in Section 3.2. We have shown how the approximation is technically related
to the work by Field (1982) and Tingley and Field (1990). We now give a general
comparison of the three approaches.

Since both G and G, originated in the work of Field, we will not be surprised to
see that they share many similarities. In fact, the initial developments of the three
approaches are almost the same. The first step is to approximate an M-estimator %
via a Taylor series expansion of the system where 7 is implicitly defined. After that,
the three procedures are developed differently.

Tingley and Field use the first term of the expansion to construct robust confidence
intervals. The objective of their work is not to approximate the marginal density of
an estimator. Nevertheless, they derived a linear approximation G for a real-valued
function p(7j) and showed that the error is of order op(n‘%). Their idea will be
discussed further in Chapter 6.

Field established the critical link between the joint density under f and that under
a centered h. This allows him to focus on the central density approximation. His
work involves the second term in the Taylor series expansion. The performance of the
approximation has been shown in various applications to give very accurate results
(see Field, 1982, Field and Ronchetti, 1990).

Our work is partly motivated by the link derived by Field. We found that a similar
link exists between the marginal densities under f and a carefully chosen h. We can
then enjoy the good performance of a central density approximation and at the same

time reduce a multi-dimensional problem to one dimension.
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In terms of computational effort, the approach using G is the simplest one. The
major effort goes into the evaluation of its distribution. For this purpose, Tingley and
Field applied a device by Lugannani and Rice (1980) and obtained very satisfactory
results. On the other hand, the work of Field requires a high dimensional integration.
At each point where the joint density is computed, the expectations of some first and
second order partial derivatives are needed and a system of p non-linear equations
must be solved. Our work does not require the expectation of any higher order partial
derivative. In addition, we reduce the problem to one dimension. However, at each
point where the marginal density is to be approximated, a system of 2p nen-linear
equations must be solved. Compared to the approach by Field, our approach reduces
the dimension of integration but increases the size of the non-linear system. This
trade off will be discussed further in Chapter 5.

To conclude this chapter, we present a connection with the probability approxi-
mation derived by DiCiccio and Martin (1991). When the joint density function of
a multivariate M-estimator is available, we can use results of DiCiccio and Martin
to obtain a marginal distribution approximation. We now establish a relationship
between the two approaches. Denoting by g4(fo) the joint density function of 4, Di-
Ciccio and Martin (1991) have derived an asymptotic approximation of P(p(7}) < po)

when

9i(to) o g1(to) ezp{g2(to)}

satisfies some general conditions. In their approximation it is required to locate the
maximum of gz(to) subject to the constraint p(to) = po. Taking gr(fo) in Theorem
2.2 as an approximation of g;(to), the part of the approximation corresponding to

g2(to) would be
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,‘2‘ log {c," (to)} .

Define the Lagrangian
L(to, A) Zlog {c, (to) }-{- A(p(to) — po) = 0.
1=1

Differentiating L with respect to t, yields

aL(to,/\) _ z 8aT(to) ov (y[,to)
o - gc’(t“)/,,,{_?to_“w(y"t“HT (to)} X

Op(t
ewp{aT(to yz,to)}fz (y) dyr + A—— g(to)

= 0.

Applying the definition of h, the last equation simplifies to

dp(to)

aty ~ C

nAT (to)a(te) + A2

which is equivalent to our conditions for the proportionality stated in Theorem 3.1. In
other words, the two approaches are using the same piece of information. In addition,
it shows that our assumption of the existence of a unique h is equivalent to that g,(to)

is conditionally unimodal subject to the constraint p(to) = po.



Chapter 4

Some applications

4.1 Overview

In this chapter, we demonstrate the performance of G, through some numerical
examples. Specifically, we apply the approximation to the models and estimators
which arc defined in Section 2.2.

The distributions of G, for p = p(7) are evaluated by numerical integrations of the
density approximation given in (3.11). In the multiple regression example, the three
adjustments proposed in Section 3.5 are iinplemented. Replacing ¢y by ¢, in (3.12),
(3.13) and (3.14) for the expectation E,[T'], we denote the adjusted approximations
by G,1, Gp2 and G5 respectively.

For comparison, we simulate the true distributions and compute the asymptotic
distributions of the function p. In addition, we examine how a linear approximation
for p performs. Specifically, we consider the distributions of the linear function G
under f. The asymptotic approximation and the linear approximation are denoted
by fasy and Gy respectively. In our examples, the distributions of p and G are based

on 100,000 simulations.
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Basically, we examine the performances of the approximations for the location-
sca!> and the multiple regression problems under four error distributions, namely,
the standard normal (Z), the standard ¢ with three degrees of freedom (t3), a con-
taminated normal (Cy = .92 + .1N(0,100)) and the standard Cauchy (¢;). These
represent a wide range of distributions from both theoretical and practical point of
view.

To generate the numerical results, we rely on two computer libraries, namely, NAG
and ROBETH. Specifically, for the simulations, we call the subroutines GO5CAF,
GO05DDF, and GO5DJF in NAG to generate uniform, normal, and t random numbers
respectively, and then the subroutines LYHALG and RYNALG in ROBETH to solve
for the location-scale and the multiple regression estimates respectively. For our Gy,
we basically use the subroutine COSNBF in NAG to solve the non-linear system for
the required « and o, and the subroutine DO1AJF, also in NAG, for one-dimensional
integrations.

In Sections 4.2 and 4.3, we derive specific formulae for the approximations for the
location-scale and the multiple regression problems respectively, and comment on the
individual results. A general discussion on the approximations is given in Section 4.4.
The discussion includes an application of G, to a Mallows-type estimator. The result

can be used as an indicator for further studies. Finally, Section 4.5 summarizes the

numerical results which are generated in Sections 4.2, 4.3 and 4.4.

P,

Fut?
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4.2 Case {: Location-scale

This section considers the location-scale problem which is defined in Section 2.2.

Recall that the location-scale model is
Y=0+0¢, I=1,...,n,

and the score functions are

Y -6 Y, -0
Vu(Yi,n) =V, (—‘U—) (Y, m) = W (—’-&—) _s

Due to the equivariance and the invariance of the estimators, the choice of 7o is
not important. In the simulation, we take (6o, 7) = (0,1). Therefore, the asymptotic

result of § in (2.4) gives

1 Ef[Wi(er)] )
"nA{Eg[l(en)]}?)’

where I.(z) equals 1 if |z| < ¢, and 0 otherwise. For the reason we will see immediately,

&W~N(

we choose ¢ = 1.345. With this choice of ¢, the asymptotic variance of 0 is
fe l Z t3 CN tl

E;[¥i(e1)]
{Efl1(e1)]}?

1.0526 1.5565 1.4351 2.8425

and therefore the asymptotic efficiency of 0 relative to the arithmetic mean Y under
Z is .9500. Denoting the standard normal distribution and density functicns by @

and ¢ respectively, we choose

8= /_: W(r) do(r) = 1 —2{cp(c) + (1 - ) §(—c)}

so that



E,[¥(V1)] =0 and E,[¥i(V1)-p]=0,

and therefore the estimator 4 = (6, 5) is Fisher consistent (see Hampel et al., 1986,

page 102). In addition, when ¢ = oo, we have 8 = 1, and

# = SV~ V)
=1
is the maximum likelihood estimator of o under Z. For our examples, we have
B = .7102 with ¢ = 1.345.

We have p = 2 parameters to be estimated. To demonstrate the performance of
the approximations for small samples, we take sample sizes n of 10 and 20, which
give the ratio p: n of 1 : 5 and 1 : 10 respectively.

With the above setting, we evaluate the quantiles for the estimators (j, o and their
approximations p,sy, Gy and G,. Recall that the basis of G; and G, is the linear
function G = p(to) + G for some chosen #,. Details for G can be found in Section 2.5.

For our present setting, we have

1 & ls A

Gi=—) ——=V. for p=0
J n g EI[IC(TI)] (Tl) or p

and

I \ .
Gr=to+ nng,[rflc(n)] {¥2r) - B} for p=0,

where r; = ;Y] and ¢y = (tg,t,) = (0,1,) satisfies the condition (3.8) under f. Note
that ¢, does not equal to o¢ in general. Numerical results are reported in Tables 4.1a
and 4.1b for é, Tables 4.2a. 4.2b and Figures 4.1a, 4.1b for & in Section 4.5. We use

different vertical scales for Figures 4.1a and 4.1b to give better comparisons between

G and G, under different error distributions.
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Consider the performance for f. The three approximations show basically no
difference when the data are normally distributed. Table 4.1a shows that all three
approximations give excellent results under Z even when the sample size is just 10.
When n is increased to 20, the approximations, except for very small discrepancies
found in Gy, match the true distribution perfectly.

The situation is slightly changed under t3. Generally, éasy and Gy behave more
or less the same. When n = 10, they both give good approximations up to about the
ninety-ninth percentile but show larger inaccuracies farther out in the tails. When
the sample size is doubled, the two approximations are improving, but some signs
of inadequacy can still be found. On the other hand, G, provides very accurate
approximations when n = 10 and is almost perfect when n = 20. Nevertheless, the
overall differences among the three approximations are not yet very significant.

When we go to Table 4.1b, the difference becomes obvious. The numerical results
under Cy show that éusy and G; are very much alike. They work reasonably well
up to the ninety-fifth percentile and the discrepancy grows dramatically thereafter.
Increasing sample size does help and makes the two approximations more acceptable.
With such a strong contaminated distribution, G, still works very well even in the
tails. There are slight discrepancies found in the far ends of G, but the approximation
is still satisfactory.

Finally, from the results under ¢;, the performances of all three approximations
become distinguishable. The inadequacy of éasy shows up in the interquartile range
and never catches up to the true distribution. Gy on the other hand is very accurate
at least within the interquartile range when n = 10 and up to the ninetieth percentile

when n = 20. On the other hand, the performance of G, is consistently good and
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very similar to that under Cy.

We now consider the performances of the approximations for 4. We have demon-
strated the performance of the asymptotic approximation for a symmetric estimator,
0. For an asymmetric estimator such as &, we do not expect that the asymptotic
normality will be able to compete well. In fact, the numerical results show that the
true distributions of & are generally highly skewed to the right and are nowhere close
to a normal distribution. In addition, Gy has shown its superiority over (;a,y. For
these reasons, we consider only the performance of Gy and G,.

From the results in Tables 4.2a and 4.2b, we can see that the performance of G}
and G, for & is very similar to that for f. Rather than give detailed comments for
each density, we summarize the overall results and make some general comments on
the approximations.

We observe that the distributions of & are increasingly asymmetric in the order
of the underlying distributions Z, t3, Cy and ¢;. Both Gy and G, give very good
results under Z. In addition, G, provides consistent approximations under all four
error distributions.

Generally, G+ works well around the center but tends to generate more symmet-
ric and shorter distributions than 6. In the extreme case when the error is under
t1, Gy has approximately one percent of distribution located on the negative region.
This is possibly caused by using only the linear term in a Taylor series expansion for
approximation. G, generally improves a lot from Gy and fromn = 10 ton = 20. Nev-
ertheless, we observe that there are some discrepancies between the approximations
and the true distribution. We use some diagrams to illustrate the situation.

Figures 4.1a and 4.1b consist of some QQ-plots for Qg,, Qc, and @5, the quantiles
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of Gy, G, and & respectively. Specifically, it gives Qg, — Q5 versus @5 and Qg, — Qs
versus Qs when n = 10. In brief, Gy captures the shape around the center and G,
gives in addition consistent approximations up to at least the median. The consistent
discrepancy between the distributions of & and G, suggests that a small adjustment
to the centering constraints may be useful. We postpone such an adjustment to the

next example.
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4.3 Case 2: Multiple regression

We have demonstrated the performance of G, and other approximations in a
location-scale problem, we now consider a non-identically distributed situation. Recall

from Section 2.2 that the multiple regression model is
Yi=XT0+0e, 1=1,...,n,
where X is an n by p — 1 fixed design, and the score functions are

Y, — X7 ,
‘I’Jl()/hn) =V, (l_a_—'{'—> le Jj=hL.,p-1,

Y, - XT6
‘I’pl(}/lvn) = ‘I’z (I—O_—L_) - IB

For this example, we arbitrarily take 6y = (1,1,—1,2) and o9 = 1. In addition,
we set n = 20 and p = 5, which gives the ratio of n to p of 4. The design matrix
X = Xj0x4 is generated from a uniform distribution U(0, 1) except for the first column

which equals 1’s such that
diag {(XTX)™'} = (.56,.62, .61, .51)
and

diag {X(XTX)1XT} = (19,.20,.31,.17,.15,.12, .17,.16, .22, .32,

22,.22,.07,.24,.11,.27,.24, .23, .19, .22).

By using the rule of thumb 2(p — 1)/n (see Hoaglin and Welsch, 1978), which equals
4 in our case, we do not have any obvious potential influence points in the design.

Lastly, with similar reasons as in the last example, we choose ¢ = 1.345 and
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g = ".:%il 7 wr) der) = 5681,

From the asymptotic result of 6 in (2.5) and the diagona: +f (X7 X)~! above, we
see that the asymptotic behaviours of ék, k=1,...,4, are very similar. Numerical

comparisons are based on the estimators 63 and 4. In particular, we have

(o Bl
0305y ~ N (030’ {E;[I.(e1)])?

where I (z) equals 1 if |z| < ¢, and 0 otherwise, and the variance of égaw is given by

(XTX);;) ,

I |2 & ov n
E,[0? '
(%3 (e1)] (XTX)z | 6435 .9516 .8774 1.7378
{EslI(e1)]}?

For the distributions of Gy and G, we need the linear approximation G. The
construction of it is similar to that for the location-scale problem. For instance,
consider the approximation G for 93. Under our setting, to = (fo,t,) that satisfies

the condition (3.8) under f,

A= 1 E XTDX XTDr | 1 | XTE(DIX 0
nt, ' | 2TDX %TDr nt, 0 2E,[TDr]
and
XTE;[D)X}! 0
5o [ XTEADIX) |
0 {2E;[rTDr]}!
where r = (ry,...,m,), D is an n by n diagonal matrix with diagonal elements I.(r;),
Y, — T
r;=—l—-—t—)—(l—€9, I=1,..,n.

Therefore we have



81

Gy =65+ lf:jz_::t {XTE[DIX} | w.(r)Xi;.

Table 4.3 summarizes the numerical results for ég —039. In general, the situation is
very similar to, but slightly more contrasting than that in the location-scale problem.
All three approximations éaasy, Gy and G, give excellent results under Z. G, and
éSasy behave very much alike under ¢3 and Cy. Basically, both of them provide very
good approximations under ¢3 except in the taiis, but quite unacceptable results under
Cn and ty. Nevertheless, Gy seems to be marginally better than ésasy. In addition,
Gy presents some definite advantages over égasy around the center under ¢;.

On the other hand, G, works consistently well under ¢3. Under the last two
distributions where Gy deviates substantially from the true distribution, G, reduces
the discrepancy by approximately two thirds and generally gives us a fair idea of the
true situation. We realize that there is room for G}, to be improved. For the next two
estimators, we implement the proposed adjustments from Section 3.5 and determine
if they are helpful.

Tables 4.4a and 4.4b summarize the quantiles of the true distribution and the
approximations Gy, Gp, Gp1, Gp2 and Gy; for 6. Basically, G; and G, behave more
or less the same as their counterparts in the location-scale problem. G, impioves
the approximation around the center but distorts in the tails. G,; works extremely
well under Z and very well under ¢3. It improves the approximation a bit on one end
ana distorts it a bit on the other end under Cy and t;. Compared to Gz, Gp3 is
more consistent. [t always improves the low end and distorts the other end. Based
on these results, we do not claim to have found a reasonable adjustment in general.

Nevertheless, the benefit of using these adjustments is clear in the following practical
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situation.

Recall that we have shown in Section 2.2 that the function

o) = p [ 20
o

is location-scale invariant. Therefore, a statistic of this form can be used for inferential

purposes. For instance, a commonly used non-linear function of this form for making

statistical inferences on 05 is a studentized version of 63, that is,
W O:—-10
p(h) = 3733,

where 42 is the variance of égasy. Now pqsy has the standard normal distribution. In
addition, we may expect from the classical theory that a ¢ distribution will give better
approximations than p,. We evaluate the ¢t distribution with sixteen degrees of
freedom and denote it by g, for comparison. For our G,, the derivation of the linear
approximation G for the non-linear ratio is similar to the previous constructions. We
leave the details to the next section where a more general situation will be considered.

Tables 4.5a and 4.5b report the tail areas for the function p and the approxima-
tions. In brief, 45y gives fair approximations under Z and conservative results under
other distributions. In contrast with what we think, p;, gives an improvement over
Pasy only for the case under Z. In general, it gives even more conservative results than
Pasy- Field (1982) observed that the ¢ distribution with a reduced degree of freedom
can give a better agreement with the true distribution.

For the performance of G,, it generally gives rough but consistent approxima-
tions. G improves the approximation around the center. G, works very well under
Z, improves the approximation around the center under ¢3 and Cy, but is getting

worse under t;. Gp3 consistently improves the approximations under all four error

distributions.
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Figures 4.2a and 4.2b plot Lupyroz — Lesact Versus Legqoe for the distributions from
Tables 4.5a and 4.5b in logistic scale. This provides a better picture of their perfor-
mances in the tails. In brief, the plots show the general inadequacy of the asymptotic
results and the overall accuracy of GG, and its variations.

Comparing the performance of G, for ¢ and that for the studentized t-ratio, it
seems quite clear that the unknown scale is a major problem and supports our effort
for improving the approximations for 4. Moreover, it is probably more important to
get & correct in the lower tail.

To conclude, if we use the studentized ratio for testing a hypothesis under Z,
Gp; is the simplest one and gives the best approximation among the three variations.
However, if our objective is to study the behaviour of the ratio, G,3 would be a

sensible choice since it gives more stable approximations.
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4.4 Discussion

From the numerical results of the two examples, we find that éuay is an excellent
approximation under Z and reasonably accurate under t3. Gy is at least as good as
éaay and in some situations demonstrates its superiority over the latter one. In the
worst case, that is under ¢,, G; still provides a very accurate approximation around
the expected value, which is exactly what our G is built upon. G, provides excellent
approximations for 0 under all four error distributions and no adjustment is needed
at all. For the studentized ¢-ratio, the ¢ distribution works very well under Z but it
becomes inadequate under the other distributions. G, is consistent but the numerical
approximations deteriorate as we move out into the tail. We have proposed some
adjustments and have demonstrated their usefulness.

To summarize, when the distribution of a simple estimator such as 0 under Z is
needed, the asymptotic result is undoubtedly the best choice. It is simple and accu-
rate. Otherwise, if only the central distribution is what we need, such as constructing
a confidence interval with a moderate level, say 80% or 90%, G can be used to give
reliable results over various underlying distributions. However, if the tail distribution
is our main concern, or if we need to study and compare the behaviours of different
estimators, G, is clearly the best alternative among the three.

To conclude this chapter, we give a simple example to demonstrate the consistent
performance of G, in a more general problem. The problem is similar to our second
example. We replace the Huber-type score functions by the Mallows-type ones using
the optimal standardized weight W, (see Hampel et al., 1986, page 321), I =1,...,n.

The score functions are



Y, — XTo .
q’)l(Yivn) = ‘I’c (’l—o__l—') lele J = ls"'»p - 1$

Uin) = 02 (220w,
Consider Gy for the studentized t-ratio. For the construction of G, we have basi-
cally the same matrices A and B as for the Huber-type estimators, except that the
diagonal elements of D are now replaced by I.(r)Wi, I =1,...,n. Since

p
! 903

1 dp
neto Yo Jdo

030 B 030

- 2
n=to 7ta

=0,

we obtain

n

1 &2 -1
Gy = ; DY {XTE,[D]X}SJ U (r) X, Wi .

=1 3=1
We compute the distributions of the ratio under Z for two designs. The first

design has

diag {X(XTX)'XT} = (.25,.28,.24,.23,.19,.17,.25,.18, .12, 15,

18,.19,.21,.09, .36, .10, .16, .23, .24, .19).

The second design replaces the first two points in the first design to produce influence

points and has

diag {X(XTX)7'XT} = (.88,.12,.24,.24, .06, .11, .34,.06, .07, .15,

11,.07,.17,.09, .46, .10, .17,.27, .08, .20).
The weights corresponding to the first and the second designs are

W = (.84, .85,.97,.95,1,1,.89,1,1,1,1,1,1,1,.71,1,1,.97,1, 1)
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and
W = (.10,.31, .85,.75,1,1,.64,1,1,1,1,1, .88,1,.55, 1, 1, .75, 1,.97)

respectively.

Numerical result- are summarized in Table 4.6. Basically, the performances of
the approximations are very similar to those for the Huber’s case. In other words,
the asymptotic results are still inadequate, and G, and its variations still perform
consistently well. Auding influence points does not seem to have too much effect on

their performances. This encourages us to study the approximations further.



4.5 Numerical results

Table 4.1a R
Location-scale: Quantiles for 6

n=10 n =20
F 0 6., G; G, 0 0., G; G,
Z
.75 22 22 22 .22 A5 18 15 .15
.9 41 42 42 41 29 .29 29 .29
.95 53 .53 .53 .53 38 .38 .38 .38
975 63 .64 .63 .63 45 45 45 45
.99 g5 75 7575 53 .53 .53 .53
.995 83 .84 .83 .83 .59 .58 .58 .59
9975 90 91 89 .91 .64 .64 .64 .64
.999 99 1.00 .97 1.00 Jq1.71 .70 .71
l3
15 27T 21 21 .27 Jd9 .19 .19 .19
9 AS3 51 52 52 37 36 .36 .37
95 .68 .65 .66 .67 48 46 47 47
975 83 11 .19 .82 DT .55 .56 .57
.99 1.01 92 93 .99 .69 .65 .66 .68
.995 1.15 1.02 1.02 1.12 a1 .12 .13 .76
9975 1.28 1.11 110 1.25 85 .18 .19 .84
.999 1.44 122 1.20 1.42 94 .86 .88 %4
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Location-scale: Quantiles for 6

Table 4.1b

n =10 n =20
F § 6., G; G, 0 b., G, G,

Cn
75 26 26 .26 .25 18 .18 .18 .18
9 51 49 49 .49 35 34 .35 .34
95 67 .62 .63 .64 45 44 45 45
975 83 74 14 .78 55 53 .53 54
99 1.06 .88 .88 1.03 67 62 .62 .65
995 1.35 .98 .97 1.36 776 69 .69 .73
9975 1.91 1.06 1.05 1.82 85 .75 .15 8l
999 277 117 1.14 2.54 99 83 .82 .94

12 _
75 42 36 43 .42 30 25 .30 .30
9 90 .68 .81 .90 60 48 .57 .60
.95 1.28 .88 1.03 1.28 81 62 .13 .8l
975 171 1.04 1.22 1.70 103 .74 .87 1.02
99 241 124 144 238 132 .88 1.03 1.30
995 3.08 1.37 159 3.00 1.55 .97 1.14 1.54
9975 3.95 150 1.72 3.75 1.80 1.06 1.23 1.78
999 528 1.65 1.88 4.9 2.15 117 136 2.14

88



Tuble 4.2a

Location-scale: (uantiles tor &

n=10 n=20
F g Gy Gy g G,
Z
.001 25 .21 .30 43 .46
.005 34 36 .39 Sl .54
.01 38 41 44 b5 .58
.05 51 .56 .58 .66 .69
1 .60 65 .66 12 .76
B 92 99 .99 96 .99
9 1.29 136 1.35 1.22 1.25
.95 140 147 1.46 1.29 1.32
99 1.61 1.67 1.67 1.44 147
.995 1.69 1.74 1.75 1.49 1.52
.999 1.87 1.89 1.92 1.61 1.64
i3
.001 28 17 .33 49 .51
.005 37 .28 43 A8 .60
.01 43 36 48 62 .65
.05 b9 8T .64 76 .78
A 69 69 .74 83 .86
Rl 1.11 118 1.17 1.15 1.18
9 1.71 171 1.76 1.55 1.87
95 191 1.86 1.96 1.68 1.71
99 237 214 242 1.96 1.98
.995 256 2.24 2.61 2.08 2.09
.999 3.03 245 3.06 2.34 233
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Table 4.2b

Location-scale: Quantiles for &

n=10 n=20
F & Gy G, &g Gy
Cn
.001 28 .21 .33 49 .51
.005 370 .32 43 b7 .60
.01 42 .39 A48 61 .64
.05 b7 .58 .64 14T
1 67 .69 74 81 .84
5 1.07 1.14 113 .11 1.14
.9 1.66 1.61 1.68 1.49 1.50
.95 1.93 1.75 1.90 1.62 1.62
.99 3.07 2.01 26! 1.95 1.91
.995 417 211 3.15 2.12 2.05
.999 6.47 230 5.30 2.68 2.43
t
.001 34 -.42 .39 60 .62
.005 46 -.16 51 T2 .14
.01 53 -.01 .58 78 .81
.05 76 .42 .80 99 1.01
1 90 .70 .95 1.12 1.13
.5 1.69 1.71 1.72 173 1.713
9 3.36 2.83 3.28 2.75 2.71
.95 420 3.16 4.02 3.17 3.10
.99 6.91 3.77 6.14 4.22 4.07
.995 854 3.97 7.28 4,72 4.52
.999 13.60 4.41 10.24 6.08 5.68
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Table 4.3

Regression (Huber’s): Quantiles for 03

A

A

F 03 0300y G; G, s 030, Gy G,
Z ta
75 53 .54 .54 .53 70 .66 .68 .68
9 1.01 1.03 1.01 1.01 1.34 125 130 1.31
95 131 1.32 1.30 1.30 1.75 1.60 1.66 1.70
975 156 1.57 1.56 1.55 2.4 191 199 2.05
99 1.86 1.87 1.83 1.84 2.58 227 236 2.48
995 205 2.07 2.02 2.04 291 251 260 2.79
9975 224 225 220 222 323 274 281 3.09
999 246 248 241 245 3.63 3.01 3.09 347
Cn 4
75 70 63 65 .64 1.28 .80 1.17 117
9 1.37 1.20 1.24 1.24 2.66 1.69 222 239
95 1.83 1.54 1.59 1.63 3.70 217 2.85 3.28
975 231 1.84 1.89 1.99 4.83 2.58 3.39 4.21
99 3.09 218 223 251 6.52 3.07 4.03 5.55
995 3.83 241 247 2.98 8.04 3.40 444 6.69
9975 473 263 2.69 3.39 9.88 3.70 4.84 7.96
999 6.10 2.89 2.95 4.66 12.45  4.07 5.29 9.89
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Regression (Huber’s): Quantiles for &

Table 4.4a

F 6 Gy G, Gy Gp G
Z
.001 45 62 60 59 45 .52
.005 b4 70 .68 .66 .54 .60
.01 S8 .74 73 .69 .58 .63
.05 71 86 .8 .79 .71 .75
1 J8 93 92 84 .78 .81
.5 1.04 1.19 1.19 1.04 1.04 1.05
9 1.33 149 148 126 1.33 1.30
.95 1.41 1,57 1.56 133 141 1.38
.99 1.58 1.74 1.72 145 1.57 1.52
995 1.64 1.79 1.78 149 1.63 1.57
999 1.76 193 190 1.59 1.76 1.68
i3
.001 S4 59 67 .67 .55 .58
.005 64 69 77 76 .66 .67
.01 69 .76 .82 .81 .71 .72
.05 84 94 99 95 8T .86
1 94 1.05 1.08 1.03 97 9
.9 1.32 147 146 135 135 1.27
9 1.81 192 195 1.76 1.84 1.70
.95 1.98 2.06 2.11 189 2.00 1.84
.99 234 232 246 216 235 2.13
.995 2.50 241 2.60 227 2.49 225
999 285 2.63 292 251 2.81 2.53
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Regression (Huber’s): Quantiles for &

Table 4.4b

F o Gy G, G Gp2 Gy
Cn
.001 b2 58 66 .68 .57 .57
005 62 70 .76 .76 .67 .66
.01 67 75 81 81 .72 .71
.05 82 92 96 .94 87T .84
.1 91 1.02 1.05 1.02 .96 .91
.5 128 14C 140 1.39 130 1.22
9 1.90 1.82 1.88 2.19 1.78 1.62
.95 225 1.95 207 266 1.98 1.77
99 3.50 2.19 262 3.90 253 2.20
995 4.12 227 295 4.36 2.86 2.45
999 5.61 2.47 4.11 5.03 4.01 3.31
4
.001 .70 12 .83 .90 1.00 .71
.005 87 40 98 1.06 1.15 .85
.01 95 55 1.07 114 123 .92
.05 1.23 1.02 133 142 1.50 1.15
1 1.40 130 150 1.60 1.67 1.29
9 231 234 233 251 250 1.99
9 4.07 3.48 3.80 4.11 3.97 3.22
.95 490 3.82 443 4.76 4.59 3.73
.99 7.18 445 6.03 6.31 6.19 5.03
.995 8.37 4.68 6.80 6.99 6.96 5.65
.999 1200 520 8.86 852 9.03 7.30
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Table 4.5a

Regression (Huber’s): Tail probabilities for o = éﬂ;—gm

1~ F std. err. Pasy  Ptie G, Cn G Gy
zZ
.25 .0014 2593 2639 .2225 .2431 .2518 .2501
1 .0009 1055 1145 .0745 .0916 .1032 .1003
05 .0007 0489 .0586 .0312 .0411 .0513 .0483
.025 .0005 0216 .0302 .C*33 .0183 .0260 .0235
.01 .0003 .0066 .0124 .0043 .0061 .0108 .0090
.005 .0002 .0024 .0061 .0018 .0025 .0055 .0043
.0025 .0002 .0007 .0029 .0007 .0010 .0027 .6019
.001 .0001 .0001 .0010 .0002 .0003 .0011 .0007
ta
.25 0014 2927 2965 .2239 .2428 .2419 .2505
1 .0009 1467 1545 .0743 .0904 .0915 .0996
.05 .0007 0851 .0945 .0313 .0410 .0431 .0486
.025 .0005 .0473 .0570 .0127 .0176 .0199 .0229
J1 .0003 0211 .0295 .0040 .0056 .0073 .0086
005 0002 0103 0171 .0016 .0021 .0033 .0038
.0025 .0002 .0048 .0099 .0006 .0008 .0015 .0017

.001 .0001 .0015 .0045 .0002 .0002 .0005 .0006




Table 4.5b .
Regression (Huber’s): Tail probabilities for p = Qﬁ—;gm
1-F std. err. Pasy Pty G, Gu Gp Gp
Cn
.25 0014 2798 .2839 .2168 .2380 .2327 .2433
1 .0009 1320 .1402 .0698 .0860 .0842 .0940
.05 .0007 0740 .0836 .0296 .0386 .0394 .0460
.025 .0005 0411 .0508 .0129 .0172 .0189 .0229
.01 .0003 0176 .0257 .0042 .0055 .0071 .0083
.005 .0002 .0085 .0148 .0017 .0022 .0033 .0041
.0025 .0002 .0037 .0083 .0007 .0008 .0015 .0019
001 .0001 .0013 .0042 .0002 .0002 .0006 .0007
t

.25 .0014 3350 3378 .2233 .2408 .2071 .2497
1 .0009 2087 .2147 .0721 .0865 .0585 .0974
.05 .0007 1497 .1574 .0302 .0386 .0219 .047¢
.025 .0005 .1086 .1175 .0127 .0168 .0082 .0232
.01 .0003 0705 .0802 .0039 .0052 .0022 .0087
.005 .0002 .0489 .0586 .0015 .0019 .0007 .0039
.0025 .0002 .0345 .0439 .0006 .0007 .0003 .0019
.001 .0001 .0199 .0283 .0002 .0001 .0001 .0006

95



Table 4.6

Regression (Mallow’s): Tail probabilities for g = é"ﬁg‘m under Z

1-F std. err. Pasy Py G, Gm Gp Gpg
Design 1
.25 .0014 2604 .2649 .2237 .2443 .2825 .2510
1 .0009 1045 1135 .0738 .0908 .1019 .0991
.05 .0007 0498 .0595 .0318 .0420 .0518 .0489
025 .0005 0216 .0302 .0133 .0184 .0259 .0234
01 .0003 .0061 .0117 .0041 .0057 .0101 .0085
.005 .0002 .0021 .0057 .0017 .0023 .0051 .0040
.0025 .0002 .0006 .0027 .0007 .0009 .0025 .0018
.001 .0001 .0002 .0012 .0003 .0003 .0012 .0008
Design 2
.25 .0014 2639 .2683 .2271 .2434 .2514 .2508
1 .0009 1070 .1160 .0760 .0892 .0998 .0981
.05 .0007 .0513 .0610 .0331 .0408 .0500 .0482
025 .0005 0226 .0312 .0142 .0179 .0248 .0232
.01 .0003 .0070 .0129 .0048 .0060 .0102 .0090
.005 .0002 .0025 .0064 .0021 .0025 .0051 .0043
.0025 .0002 .0009 .0034 .0010 .0011 .0028 .0022
.001 .G001 .0002 .0012 .0003 .0003 .0011 .0008
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Figure 4.1a
Location-scale: QQ-plots for &
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Figure 4.1b
Location-scale: QQ-plots for &
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Figure 4.2a
Regression (Huber’s): Distributions for p =
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Figure 4.2b
Regression (Huber’s): Distributions for p = Qﬂ-ﬁm
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Chapter 5

Approximation for joint densities

5.1 Overview

Up to this point, we have limited our discussion to the approximation for the
marginal densities of a single estimator. We have derived G, for a real-valued function
p of a multivariate M-estimator 7 in Chapter 3 and have demonstrated its accuracy
in Chapter 4. We now generalize the result to an approximation for the joint densities
of a k-dimensional real-valued function.

The result that we have obtained is useful for many practical purposes, from
studying the random behaviour of an estimator to testing a hypothesis. However,
there are still many applications in which an understanding of the joint behaviour of
two or more estimators is necessary. For instance, we know that the least squares
estimator is a special case of the Huber-type estimator in the multiple regression
problem, and the estimators 6 and  are independent when the underlying distribution
is normal. We may want to study the dependence or some conditional properties of
the Huber-type estimator in general by taking ¢ < oo in the Huber’s score function

V..
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Suppose that we want to compute the joint densities of k£ components in a p-
dimensional M-estimator 7, where £ < p. The problem can be solved, at least
theoretically, by any one of the three techniques that we have discussed in Sections
2.3 to 2.5. Recall that the techniques include using the asymptotic distribution, an
approximation for the joint density function of 1, and a linear approximation for the
estimator. We give a brief discussion of these alternatives.

When the asymptotic joint distribution of a multivariate estimator is known, it
is definitely the simplest approximation to apply. For the M-estimators of prac-
tical interest the result is generally available. Wa have demonstrated in several
one-dimensional applications (see Chapter 4) that this alternative gives very good
approximation for a symmetrically distributed estimator when the underlying distri-
bution is normal or close to normal. Otherwise, the approximation could be very
inaccurate. We expect that the situation is similar for the joint densities in a multi-
dimensional problem. Another shortcoming of this approximation is that the finite
sample behaviour of an estimator could be arbitrarily far from the asymptotic result.
For instance, while the Huber-type estimators 0 and & are generally dependent in a
finite sample problem, they may be asymptotically independent. To obtain a sense
of its performance, this approach will be applied in an example in Section 5.3.

The second alternative requires the availability of the joint density function of 7 or
a good approximation for it. For an M-estimator, we have the approximation derived
by Field (1982). However, the technique requires us to solve a system of p non-linear
equations at each point where the p-dimensional density is to be approximated. In
addition, solving the problem with k < p may involve a high dimensional integration.

Although this may give us a more accurate approximation, the solution becomes
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impractical when p is larger than 2 and k is relatively small. Further comments on
this approach will be given in Section 5.4.

For the third alternative, we can derive a linear approximation G to each of the
k components and use the joint densities of the linear functions as approximations
for the true ones. We have examined the performance of a single G for approximat-
ing marginal densities. It generally improves over the asymptotic result but is still
inadequate under some long-tailed distributions. Another concern for the approach
is that we need an efficient way to compute accurately the joint distributions of the
linear functions. Since the linear approximation G is just a mean, we may write it
as the solution of a k-dimensional system and apply the result of Field (1982} to
approximate the joint densities.

We have shown that our G, is generally more accurate than the asymptotic result
and the linear function G;. In addition, G, approximates the required densities
directly so that we do not need the additional high dimensional integration. This
seems to have solved most of the difficulties encountered in the other techniques. It
remains to show how the G, can be generalized to an approximation for the joint
densities of k components, where k > 1.

In Section 5.2, we extend the approximation G, for the joint densities of k¥ com-
ponents in a multi-dimensional 7. In fact, we consider a more general problem, that
is, we derive an approximation for the joint densities of k real-valued functions of 7.
The result is applied to two examples in Section 5.3. Section 5.4 gives some general
remarks on the generalization. Lastly in Section 5.5, we summarize the numerical

results and the plots which are generated in Section 5.3.
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5.2 Derivation of the approximation

In this section we extend our G, to an approximation for the joint densities of a
k-dimensional real-valued function of a p-dimensioral M-estimator 7}, where k < p.
The notation and assumptions for the derivation in this section are basically the same
as those which are defined in Chapter 3. Some minor changes on the notation for the
current problem will be stated when they are needed.

Let p(7) = (p1(%), - .-, pr(7)) be a real-valued vector. Our objective is to derive
an approximation for the joint density of p(7}) at the point po = (pio,. .., pru) under
f. The development of the approximation parallels that for the marginal density in
Section 3.3. We now present the modifications.

To begin, we need the following modified centering lemma.

Lemma 5.1 [lhe joint density of p(}) at po under f and that under h are related by

.‘]f(PO):{iICI(to)}- Ey, ewp{—iaJS]}

p(1) = po] gr(po),

where

S = (S],. ‘e ,Sp) = {i‘l’]l(nat())}

=1 1=1,.p

Proof Recall from the derivation of Lemma 3.2 that the joint density function of
(S,7) under f and that under h are related by

n -1 p
05(s,0) = {yc:(to)} ezp{—-za]sj}ms,t).

=1

Integrating both sides of the equality over p(t) = py yields

gs(s,p0) = {lﬁq(to)}_ ezp{—i%sz}gh(&ﬂo)
=1

7=1

= {ﬁ Cl(to)}_ exp {"' i a S]} gh(3|P0)gh(P0)'

=1 =1
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Integrating both sides of the last equality with respect to s, the result follows.
]

The next step is te simplify the relationship of the two joint density functions by
eliminating the conditional expectation. We want to apply similar proportionality
arguments as for the one-dimensional case, but there is a problem. Recall vhat we
currently need 2p constraints to define the conjugate density A, that is, p for the a

and p for the ty. To proceed with the arguments, we realize that

Al o)

P k
EaJSJ & Z{Pr(ﬁ)'—PTO}' (5.1)

1=1 r=1

p(h) = }=1

if

Note that the particular choice of proportionality in (5.1) is not important, but that
this simple choice will illustrate the difficulties in a situation where we need to satisfy
just one proportionality.

We use

1 n p p
G = (G],. . .,G {p,o + - - Zzzp(') tO)B,]\I’JI(Y;,to)}
r=1l,..,k

=1 3=11=1

to approximate p(7}). From the definition of S, the proportionality (5.1) becomes

n p k n p

ZZ“J\I’JI(Yhto) x Z Ei:ﬂ )(to)B'J‘IlJl (Y1, o),

=1 =1 r=11=1 j=11=1

which is true if

k p k p
Qay, Z Z Ps.)(tO)Bm = Qy, Z Z P?)(to)Bm

r=1 =1 r=11=1

for 1 < 1,52 < p. This accounts for p — 1 conditions. Together with the p + &

centering conditions
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1 n
E, [;Z‘I’(Yuto)] =0 and p(to) = po,

I=1
we have a total of 2p + k — 1 conditions, which exceeds the 2p constraints that we
need unless k = 1. Therefore for any & > 1, we generally cannot find a suitable h
which satisfies all the conditions.

To tackle the problem, we have to match the number of constraints that we need
and the number of conditions that we have. For our technique, it seems unlikely
that we can reduce the number of conditions since the p + k centering conditions
are necessary and p — 1 equalities are needed to satisfy one single proportionality.
An alternative is to increase the number of constraints, and possibly the number of
conditions for a balance. We proceed as follows.

Our aim is to generate more constraints. However, we need the relationship in
Lemma 5.1 and cannot change its basic format. To achieve both objectives, a possi-
bility is to split the a,’s. Writing a, = a;; +---+ a, j = 1,...,p, the conditional

expectation in Lemma 5.1 now becomes

k p
Ey [exp{—zzaarsa} p1(7) = proy- -, k() = pro| =1,

r=1 ;=1

which is trivial if
P
;aﬁSJ x pe() = pro, T=1,...,k.
Using G to approximate p(7) and the definition of S, the last set of proportional-
ities becomes
n P

P 14
> ¥u(Yiyto) o 330 Y p(to) By Wau(Yisto), T =1,...,k,

=1 =1 1=11=1

K

I
i
-
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which is true if

ahrzpr to 1 = 2’2”(1)(&’ 1

=1

for 1 < j1,j2 <p, r=1....,k. This accounts for k(p — 1) conditions. Together with
the p+k centering conditions, we have now a total of (k+1)p conditions. This matches
the number of constraints that we need, that is, kp for a,,, 7 = 1,...,p,r=1,...,k,
and p for ty. It follows from Lemma 5.1 that with the conjugate density function h
in which the parameters a and to are chosen such that the (k 4+ 1)p conditions are

satisfied, we can approximate the joint density of p(7) at po under f by

{H a(to } 9n(po)-

For the above approximation to be useful, we need to evaluate the joint density
gn(po). We have derived a linear approximation G for the random vector p(7j). An
obvious choice would be to use ggjn(po), the density of G at po under k, as an approx-
imation for gx(po). Recall that po is the expected value of G under h. Therefore to

approximate the joint density ggn(po), a one-term Edgeworth approximation gives

gan(eo) = (21)H1=H 40 (1)), (5.2

where |X| is the determinant of the covariance matrix ¥ of the k-dimensional G (Mc-
Cullagh, 1987, page 150). As for the marginal density approximation, this Edgeworth
approximation can be replaced when there exists a better alternative.

Putting the results in this secticn together, we obtain a multivariate density ap-

proximation as follows.

Theorem 5.1 Let p(3) = (p1(),- .., pe(7})) be a real-valued function of a multivari-

ate M-estimator ij = (%1, ...,7,) which solves the system of equations
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where k < p, ¥ = (Vqy,...,¥u), I = 1,...,n, and the V}’s are independent with

densities fi(y). If the assumptions Al - A8 in Section 3.2 are salisfied, an appror-

imation for the joint density of p(7) at po = (pioy-..,Pr0) under the joint density

function f =TI, fi is grven by

9p(po) = {II;'L[lc,(t(,)}—l (2m)" 3|5 F

where

i'to) = [ eap {Z a,w,l(yl,to)} filw) dy,

1=1

|E| is the determinant of the covariance matriz ¥ of

G= {Pr(to) + En: S_-pj ipﬁ’)(to)Bu‘l’ﬂ(W, tﬂ)}

r=1, ,k

under the joint conjugate density function h =[], hy,

hi(y1) = ci(to) exp {i oy Wi (y, to)} filw),

1=1
a,=ay+- o j=1,....p 1€ to = (to,---,tp) are chosen such that

-

1.
Ey [; Y 'v”z(yl,to)] =0, p(to) = po,

=1

p 4
O,y Z psi)(tO)Bc'n = O,y zpy(-‘)(to)Bm y 1< jl’jZ ..<_ p, r= 17 ceey kr

=1 11
and
1
fl=¢oJ

1 & av(Y,
B = {B,hacp = —A"(t), Alto) = Ex [; ) ""__':9(,,; )
=1

(5.3)
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We define G, to be the approximation for which the joint density at po is the

normalized gy(po) in (5.3), that is,

_ gp(PO)
9G,(po) = o) &z’

In the next section, we will apply the multivariate G, to some numerical examples.
The error and the computational aspect of the approximation will be discussed in
Section 5.4. It is clear from their definitions that the marginal density approximation
developed in Chapter 3 is simply a special case of the multivariate result with k = 1.
We will compare the two G,’s numerically in an example in Section 5.3 and will make

some general comparison between them in Section 5.4.
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5.3 Some examples

In this section, we implement the multivariate G, for two numerical examples
which are based on the multiple regression model and the Huber-type estimator de-
fined in Section 2.2. Unless specified otherwise, we adopt the notation and the settings
that are defined in Chapter 4.

The main objective of these examples is to demonstrate the accuracy obtained
by our G,. Nevertheless, we will compute an asymptotic joint distribution in the
first example and will implement an adjustment to the G, in the second one for
comparison. The performance of the approximations is examined under the error
distributions Z and t,.

The joint distributions of G, are computed by numerical integration of the joint
density approximation given in (5.3), and the joint distributions of the multivariate
estimator p = p(7}) are based on 100,000 simulations. In addition tv the computer
subroutines that are mentioned in Chapter 4, we also ne_d the subroutine DOIDAF
in NAG for multi-dimensional integrations. Numerical results and some contour plots

are summarized in Section 5.5.

Example 1:

Our first example examines the joint behaviour of the two-dimensional estimator
p= (93,(54), that is, k = 2. We have experienced the good performance of both the
asymptotic approximation and the G, for the marginal densities of 03. We hope that
their performance is similar for joint density approximation. In addition, we expect
that the approximations would perform the best under normal distribution and when

the scale parameter is known. For this reason, we assume that o9 = 1 is known in the

N
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estimation of this example. Therefore the multiple regression model and the score

functions for the estimator simplify to
Yi=XT6+e, 1=1,...,n,
and
Vi(Yi,n) = W(Yi— X[ 0) Xy, j=1,...,p,

respectively. Note that we now have p:n =4:20.

In the simulation, we take 6y = 0 for simplicity. The asymptotic joint distribution

of p from (2.5) is given by

s El[‘l’z(el)] T yvy—1
Pasy ~ N (“’ e X )

where I,(z) equals 1 if |z| < c, and 0 otherwise, (X7 X)>! is the lower-right corner of

(XTX)~! of order 2 x 2, and

fe , Z ) t3
E;[¥3(e4)] (XTX):" 6435 —.0094 9516  —.0139
{E;l(e1)]}? * | —.0094 5363 | —.0139 7930

For the linear approximation G, we have
1 T T -1
A=—~E[X"DX] and B= n{XTEDIX}",

where D is an n by n diagonal matrix with diagonal elements I.(r;), r; = ¥; — X[to,

{=1,...,n. Therefure

G = (G3,Gq) = {t.‘o + z": z”: {XTEh[D]X};.1 ‘I’c(rl)le} ’

=1 3=1
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and the one-term Edgeworth approximation (5.2) of its joint density at the expected

value is given by

1
gcin(tao, tao) = - .

2 2 2
27*\/%3".‘70.". ~ O0GGualh

where aéalh and a?;, | are the variances of G3 and G4 under h respectively, and og,g,|n
is the covariance of G3 and G4 under h.

Numerical results are given in Tables 5.1a and 5.1b. As we expected, the situation
is very similar to that of the one-dimensional problems. In particular, both p,,, and
G, generate excellent approximations under Z. G, seems to be slightly better than
Pasy, but the *mprovement is hardly significant. For the case under {3, it is clear that
G, provides very goou results for both marginal dis.ributions.

To obtain a better picture of the overall performance of the apgroximations, Fig-
ures 5.1a and 5.1b plot two coutour maps based on the results in Tables 5.1a and
5.1b respectively. In brief, jp, fasy and G, saow almost no difference under Z, and
both approximations p,,, and G, give very good results around the center under 3.

Moreover, G, gives consistently good approximation over the entire region.

Example 2:

We have encountered some problems in the approximation for the marginal densi-
ties of 6. We now apply the multivariate G, for the joint densities of p = (53, g). The
setting is exactly the same as those are defined in Sections 2.2 and 4.3. A derivation
of the linear function G and other details for the current approximation can be found
in the two sections. In addition to the basic G, we also evaluate G, to obiain a sense
of adjustment. Recall that G,; is basically the same as G, except that a constant

adjustment is applied in the computation of G. Details of the adjustment are given
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in Appendix A.

Numerical results are summarized in Tables 5.2a and 5.2b and are plotted in
Figures 5.2a and 5.2b. It is clear from the two tables that the multivariate G, performs
basically the same as the univariate G, does for the marginal distributions of 05 and
&, except that the former one is now doing both jobs simultaneously. It gives very
good approximations for the marginal distributions of 05 and at the same time suffers
a simiiar protlem for the approximation of 4.

We observe from the plots some general performance of the approximations. In
addition to the marginal behaviour, the plots show that G, has provided a fair ap-
proximation to the shape of the joint distributions. However, the approximation is
shifted to the right in the direction of &. This causes the conditional approximation
for 65 to become very inaccurate when & is small.

Based on this observation, a constant adjustment in the centering procedure seems
adequate for an improvement. For this reason, we compute the adjusted approxima-
tion Gpy. It is clear from the results that the constant adjustment improves signif-
icantly from the basic G, over the entire domain. Qur objective is not trying to
find the best adjustment for this example. However, G, is clearly good enough to
illustrate the effect of an adjustment.

Lastly, we demonstrate another possible application of the joint density approxi-
mation. In Section 4.3, we use the univariate G, to approximate the marginal densities
of a studentized t-ratio. With the joint density approximation of 0 and g, we can
evaluate the marginal densities of the ratio by numerical integration. We compute
the marginal approximations by using the multivariate G, and G,; and summarize

the results into Table 5.3. For comparison, we restate their counterparts by using the
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univariate G, and Gy in the same table.

Generally, the approximation from the multivariate G, improves slightly over that
from the univariate G,. The improvement possibly comes from the fact that we do
not need to approximate the non-linear ratio by a linear function. When a constant
adjustment is applied, the approximations are clearly improved with both univariate
and multivariate approaches. However, the degrees of improvement are slightly dif-
ferent. While the multivariate approach seems to be better than the univariate one

under (3, the situation reverses under Z.
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5.4 Discussion

In this chapter, we have derived an approximation for the joint densities of a
multivariate function of an M-estimator. The approximation is an extension of the
marginal density approximation developed in Chapter 3. The multivariate approxi-
mation is applied to several examples. We now give some general comments on the
results.

With this extension, we can study the joint and the conditional behaviour of a
multivariate estimator. In addition, since the multivariate G, is developed under
the same assumptions as for the univariate one, we can always apply it to provide
an alternative for the marginal densities of an estimator. We have demonstrated
such a possibility in an example. When no adjustment is applied, it still improves
the univariate approximation by eliminating the error induced in the linearization of
a non-linear function. For a more complicated function, this alternative would be
proven more beneficial.

When we compare the performance of the multivariate G, and the univariate
Gy, in particular on the marginal distribution approximation, we can see that the
two approaches generally possess very similar characteristics. This is not unexpected
since we have used basically the same arguments to derive both G,’s. In fact, we can
expect that the error of both approximations are of the same order.

Consider the development of the two G,’s. We use the linear function G for an
approximation of the density at the expected value of p under h, apply G and similar
proportionality arguments to simplify the conditional expectation, and use a one-term
Edgeworth approximation for the density at the expected value of G. All these give

the same order of error on both G,’s. A major difference in the derivations is that
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we have k proportionalities instead of one for the multivariate G, but this does not
affect the order of error.

Concerning the computational effort, we see that at each point the joint density
is to be approximated, a system of (k + 1)p non-linear equations needs to be solved.
This may cause some problems when k and p are both large. Comparatively, the joint
density approximation derived by Field (1982) would become more attractive when k
is close to p and p is large, in which case a p-dimensional non-linear system needs to
be solved at each point the p-dimensional joint density approximation is computed,
and a (p — k)-fold numerical integration is needed. Our G, does not require the last
integration. In addition, we have another advantage that we do not need to worry
about the region of integration. If we use the joint density approximation gr(o) of
Field (1982) (see Section 2.4) to approximate g,(po), we need to integrate gr(ty) over
the region p(Z9) = po. Unless the region can be expressed in a closed form, we need

to determine it numerically.



5.5 Numerical results

Regression (Huber’s with a known scale): Joint distributions for p = (05, 8,)

Table 5.1a

A

Pasy

04 65

-3 -2 -1 0 1 2 3 4
-3 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-2 .0000 .0000 .0003 .0014 .0026 .0029 .0030 .0030
-1 .0000 .0004 .0083 .0417 .0755 .0840 .0846 .0846
0 .0000 .0029 .0513 .2464 .4463 .4958 .4990 .4990
1 .0001 .0056 .0951 .4556 .8205 .9098 .9154 .9154
2 .0001 .0062 .1046 .4977 .8940 .9911 .9972 .9973
3 .0001 .0063 .1049 .4990 .8963 .9938 .9999 1.0000
-3 .0000 .000D .0000 .0000 .0000 .0000 .0000 .0000
-2 .0000 .0000 .0003 .0015 .0028 .0031 .0032 .0032
-1 .0000 .0005 .0087 .0420 .07¢4 .0855 .0860 .0860
0 .0000 .0031 .0520 .2475 .4457 4967 .5000 .5000
1 .0001 .0057 .0967 .4560 .8164 .9082 .9139 .9140
2 0001 .0063 .1059 .4984 .8909 .9906 .9968  .9969
3 0001 .0063 .1063 .5000 .8938 .9937 .9999 1.0000
-3 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
-2 .0000 .0000 .0003 .0015 .0027 .0031 .0031 .0031
-1 .0000 .0005 .0086 .0416 .0758 .0847 .0853  .0853
0 0000 .0030 .0516 .2474 .4461 .4968 .5000 .5000
1 0001 .0056 .0960 .4564 .8178 .9090 .9147 .9147
2 .0001 .0062 .1051 .4984 .8917 .9907 .9968  .9969
3 .0001 .0062 .1055 .5000 .8945 .9938 .9999 1.0000
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Regression {Huber’s with a known scale): Joint distributions for j = (63, 6,)

Table 5.1b

i3

04 b
3 2 -1 0 1 2 3 4
p -3 .0001 .0002 .0004 .0008 .0012 .0014 .0014 .0014
-2 .0002 .0011 .0035 .0092 .0150 .0179 .0188 .0189
-1 .0006 .0045 .0233 .0690 .1151 .1350 .1393 .1399
0 0015 .0135 .0790 .2486 .4172 .4836 .4966 .4981
1 0023 .0231 .1358 .4289 .7215 .8339 .8545 .8569
2 0028 .0273 .1579 .4919 .8241 .9539 .9780 .9808
3 .0030 .0282 .1615 .5006 .8382 .9705 .9953 .9982
4 .0030 .0284 .1618 .5013 .8393 .9718 .9967  .9997
Pasy -3 .0000 .0000 .0001 .0002 .0003 .0004 .0004 .0004
-2 .0000 .0002 .0018 .0060 .0103 .0121 .0123 .0124
-1 .0001 .0025 .0192 .0640 .1100 .1279 .1306 .1307
0 0005 .0098 .0748 .2475 .4222 .4896 .4995 .5000
1 0009 .0174 .1319 4333 .7358 .8516 .8684 .8693
2 .0010 .0199 .1506 .4936 .8368 .9678 .9867 .9877
3 0011 .0202 .1526 .4998 .8471 .9795 .9986  .9997
4 0011 .0202 .1527 .5000 .8474 .9799 .9990 1.0000
G, -3 .0000 .0001 .0003 .0006 .0009 .001%1 .0012 .0012
-2 .0002 .0008 .0032 .008t .0131 .0158 .0165 .0167
-1 0005 .0042 .0224 .0663 .1115 .1309 .1348 .1353
0 0012 .0123 .0771 .2475 .4203 .4874 .4988  .4999
1 0019 .0205 .1329 .4310 .7303 .8440 .8627 .8645
2 .0023 .0240 .1532 .4914 .8298 .9592 .9810 .9832
3 .0024 .0248 .1564 .4994 .8423 .9740 .9963 .9986
4 0025 .0249 .1567 .5000 .8432 .9750 .9975 .9997
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Table 5.2a
Regression (Huber’s): Joint distributions for g = (6s,5)

A~

i 03

3 -2 0 1 2 3 4
0.5  .000C .0000 .0003 .0014 .0023 .0026 .0026 .0026
1.0 .0000 .0025 .0448 .2116 .3803 .4224 .4249  .4249
1.5 .0001 .0057 .1015 .4885 .8777 .9718 .9776 .9777
2.0  .0001 .0059 .1039 .4996 .8975 .9941 .9999 1.0000
2.5  .0001 .0059 .1039 .4996 .8975 .9941 .9999 1.0000
0.5  .0000 .0000 .0000 .0001 .0002 .0002 .0002 .0002
1.0 .0000 .0014 .0237 .1133 .2030 .2253 .2266 .2267
1.5  .0001 .0054 .0968 .4681 .8393 .9307 .9361 .9362
2.0  .0001 .0058 .1033 .4999 .8965 .9940 .9998  .9998
2.5  .0001 .0058 .1034 .5000 .8966 .9942 .9999 1.0000
0.5  .0000 .0000 .0005 .0023 .0041 .0046 .0046 .0046
1.0 .0000 .0028 .0499 .2399 .4299 .4770 .4798 .4799
1.5 .0001 .0057 .1018 .4921 .8825 .9785 .9842 .9843
2.0  .0001 .0058 .1034 .5000 .8966 .9942 .9999 1.0000
2.5  .0001 .0058 .1034 .5000 .8966 .9942 .9999 1.0000




Regression (Huber’s):

Table 5.2b )
Joint distributions for g = (63, 6)

t3
o

-3 2 -1 0 1 2 3 4

p 0.5 .0000 .0000 .0001 .0003 .0004 .0005 .0005 .0005
1.0 .0001 .0022 .0193 .0746 .1289 .1462 .1481 .1482

1.5 0013 .0156 .1067 .3488 .5914 .6804 .6947 .6960

2.0 0030 .0280 .1582 .4779 .7980 .9258 .9506 .9537

2.5 0037 .0316 .1686 .4986 .8293 .9638 .9911 .9947

3.0 0040 .0322 .1700 .5009 .8325 .9676 .9953 .9991

35  .0040 .0323 .1701 .5011 .8320 .9680 .9958 .9996

Gy 0.5 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001
1.0 .0000 .0007 .0083 .0353 .0623 .0699 .0706 .0706

1.5 .0006 .0104 .0825 .2890 .4955 .5676 .5773 .5779

2.0 0021 .0234 .1469 .4637 .7804 .9039 .9252 .9272

2.5 0030 .0279 .1619 .4963 .8308 .9647 .9897 .9924

3.0 0032 .0287 .1637 .4997 .8357 .9707 .9961 .9991

3.5 .0033 .0288 .1639 .5000 .8361 .9712 .9967 .9996

G2 0.5 .0000 .0000 .0001 .0003 .0006 .0006 .0006 .0006
1.0 0001 .0017 .0180 .0731 .1282 .1446 .1462 .1462

1.5 0009 .0138 .1023 .3471 .5918 .6803 .6932 .6941

2.0 0024 .0251 .1530 .4776 .8022 .9300 .9527 .9550

2.5 0031 .0283 .1627 .4979 .8331 .9675 .9927 .9955

3.0 0032 .0287 .1638 .4998 .8359 .9709 .9964 .9993

3.5 .0033 .0288 .1639 .5000 .8361 .9712 .9967 .9997
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Table 5.3 )
Regression (Huber’s): Tail probabilities for p = gﬂig‘m
(3.11) (5.3)
1—-F std. err. G, Gpn G, Gp
Z
.25 .0014 2225 2518 2253 2550
1 .0009 .0745 .1032 0773 .1069
.05 .0007 0312 .0513 0331 .0543
.025 .0005 .0133 .0260 .0145 .0282
.01 .0003 0043 .0108 .0049 .0121
.005 .0002 .0018 .0055 .0021 .0064
.0025 .0002 .0007 .0027 .0009 .0032
.001 .0001 .0002 .0011 .0003 .0014
t3
.25 .0014 2239 2419 2282 .2463
1 .0009 0743 .0915 0782 .0961
.05 .0007 0313 .0431 0339 .0465
.025 .0005 0127 .0199 0143 .0220
.01 .0003 .0040 .0073 .0047 .0085
005 .0002 .0016 .0033 .0019 .0039
.0025 .0002 .0006 .0015 .0008 .0019
.001 .0001 .0002 .0005 .0002 .0007
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Figure 5.1a
Regression (Huber’s with a known scale): Contour plots for p = (03,04)
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Figure 5.1b
Regression (Huber’s with a known scale): Contour plots for p = (63, ,)
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Figure 5.2a
Regression (Huber's): Contour plots for p = (63, )
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Figure 5.2b
Regression (Huber’s): Contour plots for p = (53, o)
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Chapter 6

Conclusion

6.1 Summary

In this thesis, we have developed a technique to approximate the marginal den-

sities of a multivariate M-estimator 7, the solution of a non-linear system

i—gwﬂ(n,ﬁ) =0, j=1,.0p,

where Y)’s are independent m-dimensional random observations from the densities
fi's involving an unknown p-dimensional parameter . The general problem and
some background information are given in Chapter 1.

Under some regularity conditions, our primary result for a real-valued function of
7 is derived in Chapter 3. We then generalize the result and derive a joint density
approximation for a k-dimensional function of the estimator in Chapter 5. The basic
idea of our approach can be summarized as follows.

To approximate the density of the function p = p(1}) at pp under f, we first recenter

f to a conjugate density h such that E,[p] = po, then approximate the density of p

at the expected value under h, and finally transform the approximation under A to
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an approximation under f.

We implement the approximation for several examples in Chapters 4 and 5. The
numerical results show that the approximation is generally accurate over a wide range
of underlying distributions, from normal to Cauchy. Nevertheless, some adjustments
seem necessary when a scale estimator is part of the statistic for which the density
is to be approximated. We propose several adjustments in Chapter 3 and obtain
satisfact..,~7 improvements in the approximations from them.

We review some existing techniques including the work of Field (1982), Tingley
and Field (1990), and DiCiccio and Martin (1991) for our problem in Chapter 2 and
try to relate the different approaches in Chapter 3. Specifically, we discuss the close
relationship among our approach and the approaches of Field, and Tingley and Field,
and establish some formal connections between our result and the work of DiCiccio
and Martin.

A practical issue for the different approximations concerns their computational
requirements. Basically, the linear approximation for p derived by Tingley and Field
is the simplest and requires the least computational effort, but it generally becomes
inadequate in the tails. On the other hand, the joint density approximation developed
by Field provides very accurate approximations but it requires substantial computa-
tion. Our technique can be viewed as a solution to balance the accuracy and the
computational requirement.

Consider a general k-dimensional function of the estimator. For the estimator
approach, once a linear approximation is derived for each of the components of the
k-vector, the major effort goes into the evaluation of the joint distribution of the

linear funciions. The approximation by Field computes the joint densities of # and
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requires additional integrations to obtain the k-dimensional densities, and at each
point where the joint density is needed, a p-dimensional non-linear system must be
solved. On the other hand, our technique approximates the k-dimensional densities so
that no additional integration is required. However, at each point the approximation
is computed, a (k+ 1)p-dimensional non-linear system must be solved. It is clear that
our approach is particularly useful when p is large and k is small.

Another aspect of our density approximation is about its error. We obtain some
results in Chapter 3 but fail to derive the order of the error in general. In particular, we
show that the approximation is exact for the least squares estimators of the regressors.
Although we may not need an approximation for a least squares estimator, a good

approximation should possess this property.



129

6.2 Concluding remarks

For our density approximation, two questions are not completely answered. The
first one is about the overall rate of error. A general solution to this problem is difficult
to obtain. An answer possibly requires additional assumptions on the density function
of the estimator. The second question is about the adjustment. Although we suggest
some approaches to the problem, it remains unclear which approach is the best in
individual cases. We consider these two questions to be fundamentally important and
are still working on the answers.

We demonstrate that the approximation behaves consistently in a simple Mallows
problem. A large scale numerical study will be conducted to understand the behaviour
of the approximation over different classes of estimators and different underlying
distributions. In addition, we have discussed some related techniques in the thesis.
Numerical comparisons would be helpful for understanding their relative performance.
Note that the computer programs that we write in the development are quite general
and their efficiency is not our main concern. Two sample programs are included in
Appendix C. For any practical purposes and large scale computation, some tailor-
made programs may be needed.

Besides using the approximation to study the behaviour of an estimator, another
application is to use it for statistical inferences. We illustrate the possibility through
a simple testing problem. However, the true value of the parameter is generally
unknown and a location-scale invariant test statistic may not be available. In those
situations, the idea of Tingley and Field (1990) may be useful. In brief, when / is
used as a test statistic, the density gy, of p is first approximated by gys,,,, where

flobs is the observed value of 7. An exponential tilt is then applied to force gj;,,,
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to satisfy the hypothesis under testing. The details of this possibility are still being
worked out.

We aim to approximate the marginal densities of the M-estimators and believe
that we have found a partial solution to the problem. However, the examples that
we use are limited to the functions which are asymptotically normal. We attempt
to apply the approximation to a situation where the asymptotic distribution is non-
normal. Specifically, we tried to implement our technique to the 7-test proposed
by Ronchetti (see Hampel et al., 1986, Chapter 7) and have not yet obtained a
satisfactory approximation. Details of the problem is given in Appendix B. It would
be interesting to see if some modifications can be applied to make our technique useful
in the situation.

Finally, it is pointed out that the density of an M-estimator may not exist in some
situations. Our objective is not to justify when it will exist. However, even if it does
not, the density of the linear approximation G at the expected value can exist and
may be used to approximate the distribution of the estimator. This seems promising
but careful investigation of the behaviour of the approximation in those situations is

needed.



Appendix A

Computation of adjustments

A.1 General remarks

In Section 3.5 we propose three adjustments to improve our density approximation
and discuss the motivation of the adjustments. The central idea of the proposals is

to replace the linear approximation

1 n p p a t
6 = plto) + 323 3 UVito)Be(to)
nl:l]:lk:l Nk
by
1 n 4 4 a t
G = p(t) 4 2303 3 Wl t0)Bus(t0) 2202,
R =1 j=1 k=1 oy,

where ¢, incorporates adjustments to to related to the expected value of the error

term

X @ > <-(j3) 73)
Z Z Z ( — 5 J(V ja ﬂ;zs )Bk.vz B, 5+

11=1j2=1 j3=1

B | =

P P
El El(‘l’jl - ”J'l)(‘l’n FJz) Z BkJs Z Z BJ4.72P‘(J“5)B1511} .
Nn=1j= k=1,..,p

Ja=1 Ja=1j5=1
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We now present the three proposals for t,.

Proposal 1: t, = to + Ej[er].

This requires us to compute a different adjustment Ej[er] at each point the den-
sity is to be approximated. Note that the adjustment is a function of ¢y and its
computation must be integrated into the procedure of solving the non-linear system

for a and t,. In addition, it follows from the discussion in Section 3.5 that

Eilers]
— i LA AR E N} \I,(Js) B
- Z E Z Z h[ ni le II’JIWJQI } k]z nan T

2
= n=1 =1 7=1

1 n 4 14 14 14 P
Z_—Z 2:1 Zl{Eh[q’Jll"I’nf] - ﬂ];lﬂ]zl} E Bk]s Z Z Bamﬂgm)an
=1 51=1 2=

n=l1 Ja=1 g5l

k=1,...,p. Therefore to implement the adjustment, we need to evaluate

BJ’JZ’ Hats 'ugﬁ)’ ”gm), Eh[‘yhlq’]zl]’ Eh[‘I’Jllq’(”)].

a2l

Note that the first three quantities are needed no matter if an adjustment is imple-
mented or not, so that the additional computation for the adjustment is to evaluate
the last three quantities.

Proposal 2: t, = to + E/ler].

This simplifies Proposal 1 by taking a constant adjustment over 3. The adjust-
ment is computed only once under f and essentially does not increase the computa-
tional effort of the approximation. Note that f is simply the special case of h with
a = 0, the computation of the adjustment is basically the same as that in the first
proposal.

The third adjustment is proposed particularly for an estimator that is defined via

the Huber’s score function V.. We first give a brief review of the score function and
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define some notation for further discussions.
Define ¥.(r) = maz{—c,min{c,r}}, where ¢ is a real constant. Then the first

two derivatives of W (r) are
Wi(r) = Ie(r), Wi(r) =b-c(r) — b.(r) = bu(r),

where I.(r) equals 1 if |r| < ¢, and 0 otherwise, é.(r) is the Dirac delta function and

may be defined by the relation

/, 8o(r)u(r)dr = u(c) (A1)

for any continuous function u (see Kukin, 1989, page 41).

Define
Uepe(r) = We(r)o(r) = rl(r),
Liro(r) = L(r)I(7) = L(r), Se(r) = bu(r)I(r) =0,
and in general, for any u = u(¥,, I, éy),
Ugre = U( Wt oy Tircy Otre)-

The third adjustment is as follows.
Proposal 3: t, = to + Exlerd)-

This is a refinement of the first proposal such that for 1 < k < p,
Eh[eTktrc]

14 P 14
- 571 —=(J3) 7
= Ep Z E Z (\I’ini"c ! tTC)(\I’g'ﬁrc h l‘gﬁf)-c)Bka Bjsj1+

LA A _ P P p .
5 20 & (Wiwee = ttinere) Wiatre = piaere) 3 Bris 3. 3 Biuiabiyins Bisis

n=1j=1 Ja=1 24=1 js=1
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P P P
2 B, Z Z BJm/‘g‘t:i)BJer
To implement the adjustment, we need to evaluate

BJl.727 Hjlire, ”gz;)trc, /‘gzz?c)a Eh[\pjllhc\l’nltrc], Eh[\l’_"ltrcq’_(,';:;)"c]-

The computational requirement for these quantities are similar to that for the first

proposal. We postpone the discussion to the next section.
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A.2 Adjustments for Huber-type estimators

We now derive the adjustments proposed in Section A.l for the Huber-type
estimators. The derivation is based on the regression model of Secticn 2.2.

Recall that the p-dimensional score functions for the estimators are

V. (r)Xn
: V. (r)Xy;
\I’c('rl)XlP"'l \I"-‘(rl) - ’B 1<5<p~1
| V2(r) -8 |
where
Y, - X[o
"=,

o

[ =1,...,n. Note that the last matrix representation is adopted in the discussion in
this section. To evaluate the adjustments, we also need the following matrices.

1. The first order partial derivatives of the score functions.

d(r) _ 1[ W)Xy Xy o Wir)nX,
an” o | 20 (r) W (r) Xy, 29 (r) W (ri)ry

] 1<51,728p—~1

[ L)X X, ‘I’trc(rl)xm]
7| 2Wie(r) Xy,  29%.(r)

1<50, 42 <p1
2. The second order partial derivatives of the score functions.
0*¥;,1(r1)
Onon™

1 [ W (ri) Xujy Xij, Xij { W (ro)r + V(1) } X5, Xaj,
o | {WAr)r + W)Y Xijy Xizy {92 (r)r? + 29 (r)r} X,

] 1<52,73<p~1

_ 1 [ 6w (1) Xuj, Xij, Xz {bw(ri)ri + L(m1)} X5, Xo5,
o | {Sa(r)r+ L(r)} Xiu Xz {8u(ri)rd + 2Wse(r)} X, ,

1<52,5a<p—1
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1i=1,...,p—1, and

PYpi(r) _ 2 {W2(r)We(re) + U2} Xiy, iy
dmon™ o8 | {WEr)We(r)re + WE(ro)r + Wi(r)We(r) } Xy,

{WU(r0)We(r)r + W2(r)r + Wi (r)We(r) } Koy,
V() We(ri)rf + W2 (r)rf + 290 (r) V(i)

1<52,038p~1

02

_2_ [ {6w(r)Ve(re) + I(r)} Xisy Xiys
{8u(ri)Ve(r)r + 2Werc(r1) } Xy

{6!0(7'1)\1’1:(7'1)7'[ + 2\I’trc(rl)}Xng ]
Su(r)We(ro)rf + 39 (n)

1<52,03<p-1

3. The product of the score functions.

Uy (r) VT (ry) = [ W2(re) Xy, Xij U (m){¥2(r) — B} Xy, }

Ve(r){We(r) - B} Xuy, {¥i(r) - B}

1<n,28p-1

4. The product of the score functions and the first order partial derivatives.

3\111(7‘1) \I’C(TI)XI_“ ]c(rl)in X[,s \P,,c(r,)X,,,
V,,:(r1) 3 = ——= )
1 o 2Wiee(r) Xty 2¥5.(11)

1<52,3<p~1

’

_1_ [ \I'trc(rl)xlnxl]leya ‘I’tzrc(rl)XlJl X‘JZ }
Q‘D?rc(rl)X‘Jl X'Js 2\1,?”(”))([]1

g
1<32,93<p~1

h=1...,p—1,and

) l(rl)a\m(rl) — _‘I’Z(Tl) —ﬂ [ lc(rl)xlglegg \I’trc(rl)xln ]
’ 31] a 2‘1’17¢(T{)X[]3 2\I’?rc(rl) 1<)2,73<p—1
— __1_ w?rc(rl)xlnxlm \I’:t;rc(rl)xln + _,B_a\l’[('rl)
o] 2V(r)Xy,  2¥.(m) o 9y

1<32,33<p-1
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Taking expectation on these matrices at ) = o gives us the quantities to compute
the adjustments of Proposals 1 and 2. For the third proposal, we replace (¥,, I.,év)
by (Were, I,0) in the matrices to obtain the required quantities.

We conclude this section with the following comments.

1. To compute the expectations of the matrices, we basically need to evaluate the

expected values of
\Ilf(rl), k=1,...,4,
and the probabilities
P(-c<mrn<e¢), P(ri<—-c) and P(r;>c)

under h.

2. The evaluation of the seven quantities in the first comment can be done numer-
ically. For a better efficiency and in most situations, the quantities can be simplified
algebrically before the implementation for an application.

3. The computational requirement of Proposal 3 is slightly less than that of

Proposal 1. In particular, we have

uﬁlc = #;J) and Eh[\I'Jlltrc\Pgﬁ)trc] = Eh[\l’Jll\I’Ua)].

221

For the other expectations, not= that in general we have
Ep[V¥] = Ey[U5 ] 4 (—¢)*P(ri < —c) + & P(r; > ©).

4. For those functions involving éy, the expectations follow from the definition

(A.1) of 8. For example,

Y, = XTIy _xT _ T
E, |6y i-Xite)| _ / 5. n—-Xity — 6, u—-Xity hi(yr) dy;
ta w ta ta



= to [ {6lr) = 8.0m)} hu(rits + Xte) dy
™

= t,{hi(—cto + XTts) — hi(ct, + XTts)},
and generally

YT _yT
o (M) (5]

. / (8-o(r1) = 8(r)} w(r) ha(rite + XTto) dry

= t.{u(=c) hi(—=ct, + X[ ts) — u(c) hi(ct, + X ts)}.
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Appendix B

Ronchetti’s r-test

B.1 Definition and asymptotic distribution

For simplicity, consider the linear model of Section 2.2 with o = 1 and 0 being

p-dimensional. Suppose that we want to test the hypothesis
H:0pp1=---=0,=0, 0<q<p,

Ronchetti (see Hampel et al., 1986, page 346) proposes the following class of tests

that can be viewed as an extension of the log-likelihood ratio test for linear models.

Definition B.1 Define the corresponding M-estimators Op and O in the full and

reduced model, respectively, by
I['(fr) = min{I'(8)|0 € ©}, T(fr) = min{I'(6)0 € OR},

where OR is the subspace of the parameter space © obtained by imposing the condition

H and

0(8) = 37 {Xi, i ~ X70}.

1=1
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A 7-test is a test based on the test statistic

T, = ;%;%{F(én) _T(br)).

In addition, Ronchetti (see Hampel et al., 1986, page 352) derives the asymp-
totic distribution of nT,. when X’s are independent and identically distributed. For

instance, the asymptotic distribution under the hypothesis H is the distribution of

1 Ld 2
Z ’\J X3
P4 =
where x?'s are independent standard x? random variables with one degree of freedom,

and ),’s are the p — ¢ positive eigenvalues of Q(M~! — Mg),

2
Q=E, {31‘()(1,61) } X, XT
Oer |, oy,-xTe,
M= Ej 621'()(1,61) XIXT ME _ Ml—ll 0
a&-:% a1=Y; _Xiroo ! 0 0 ’

M, being the upper-left corner of M of order ¢ by ¢. To compute the tail prob-
abilities of the asymptotic distribution, we can apply the approximation for linear

combinations of x? randem variables by Field (1993).
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B.2 An unsolved problem

To illustrate the problem that we encounter in applying our density approximation

to the 7-test, we consider the Huber-type estimator for the model in Section B.1. We

now have

1
H(Xir(6)) = 5 ¥elri(6) 2r(0) = Vlr(@), 1=1,...,m,
where r(8) = Y, — X0 and V. is the Huber’s score function, so that

ar( Xy, r(8))

50 = - (r(0))X,.

Let Xgr be the first ¢ columns of X. The M-estimators are defined as the solutions

of
1 & A .
;ZWC(TI(OF))XIJ =0, j= L,...,p, (Bl)
=1
1 A .
—Z\Ilc(r,(()n))XmJ = 0, J= 1,...,q. (B2)

n =1
By convention, we define r,(én) =Y - XRlTéR.

Now, consider the approximation of the densities of T,. Note that T, is a function
involving the random observations, we cannot directly apply the density approxima-

tion. To tackle the problem, we define T, as the soiution of

and consider 7 = (0p,éR,T1) as the simultaneous solution of the (p + g + 1)-system

{T X[,'I‘l(aa)) - T(X{,T‘[(OF))} T } (B3)

consisting of (B.1), (B.2) and (B.3). To approximate 7, we have

]C(Tl(ép))XleT 0 0
A = ——ZEh 0 Ic(rl(én))X}uXmT 0
~2(p ~ ¢)"'e(ri(0p) XTI 2(p — q)""We(ri(BR) Xn" 1

L f=to




142

Eh[]c(rl(tp))]XIXlT 0 0
= n ?.; 0 Eh[lc(rl(tR))]XmeT 0
0 0 1

The last equality follows from the conditions for choosing to = (tr,tgr,t,). Therefore

n{Th Eall(n(te))) X XT} 0 0
b= 0 n{Si Bl XmXnT} 0
0 0 1

and the linear approximation

n

{T X ni(tr)) — 7(Xi,m(tr))} - tr}

f%;;hxwmm~ﬂ&mww

Il

which is simply the first term of a Taylor series expansion for T',.
Our problem is that when G is evaluated under f, we have 0y = (Opo,0), tF = 0y,

= Ogo and therefore

G= ——3—1 zn:{T(Xl,Tl(oRO)) = 7(X1,71(00))}
P—q9n 5

which vanishes. This violates our assumption A8 in Section 3.2 and we cannot proceed
to obtain an approximation. In fact, by expanding (X, r,((jn)) —7(Xy, T((ép)) about,

6o, we can easily see that the difference is determined by the second term and up and

the first term approximation is always zero.
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B.3 A potential solution

In a recent conversation, Ronchetti suggested that we approximate the densities
of a quadratic term in an expansion of T; rather than the densities of the test statistic

itself. Precisely, he shows in Hampel et al. (1986, page 352) that
(p— @)nT> = VT (6o) (M~ — MR) V(60) + -+,

where

V(6o) = \—}ﬁ > We(rlfo) Xi
Note that the quadratic term is the basis used by Ronchetti (see Hampel et al.,
Chapter 7) to derive the asymptotic distribution of 7.

To approximate the densities of the quadratic term, we suppose that the matrix
M~' — Mg of rank p — ¢ has non-zero eigenvalues \; and corresponding eigenvectors
a;,,i=1,...,p—q. Then
vhaf
MMy = M—““ \/;—a] :
Vo-etig

LLT.

Writing
Sie1 Ye(ri(8o)) (Xioy XiiLin)
VrLTV () ;
i1 Vel(ri(00)) (Tizy XiiLip—q) |

= U,
we can transform the quadratic term to a sum of squares, that is,

nVT(0o) (M™' — MR) V() = nVT(6)LLTV(8,) = UTU = pfo,?.

i=1
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Since U,’s are just linear combinations of the score functions, we can apply the
result in Chapter 5 and expect to obtain accurate approximations of their joint den-
sities.

To compute the distribution of the 7-test from the joint density approximation, we
require a (p—¢q)-dimensional numerical integration. This may not be very attractive if
p—q is large. An alternative could be to generate the joint densities of U?’s from that
of U,’s and then apply the result of DiCiccio and Martin (1991). Note that a direct
appiication of their result to the joint densities of U,’s has some problems since the
gradient of the sum of squares vanishes at the maximum (see DiCiccio and Martin,
1991). The possibility is now under research.

A final comment to this potential solution is that we approximate the densities
of a quadratic approximation for 7. The performance is not clear at the moment.
However, since the asymptotic distribution is derived using the quadratic term, we

expect our approximation at least to improve over the asymptotic result.
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Sample programs

C.1 Marginal density approximation using uni-
variate G,

c This program generates the numerical results in Tables 4.1a & 4.1Db

Model : Location-scale

Estimator : Huber-type
rho(eta) : theta

0o 00

¢ Main program
c program margdens.for
implicit double precision (a-h,o0-z)
commor b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 no,ir
parameter (nitv=450,nsto=300,nftr=1,ditv=1.d-2,dsto=1.d-2)
dimension px(2,nsto)
call init_1
¢ Computing the density approximation over a grid of points
do 100 ix = 1, nitv
call init_2 ( ix, ditv )
call compute_us
call init_3
call compute_rk
call compute_px ( ix, px, nsto, nftr )
100 continue
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call store_px ( px, nsto, ditv, dsto )

close (
end

99 )

¢ General initialization
subroutine init_1
implicit double precision (a-h,o0-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4) ,ta(2),

1 no0,ir
n0 = 10
c0 = 1.345
b0 =1-2% (cO*dnorm ( cO ) +
1 (1-c0*2) x sibacf ( c0, ifail ) )
a0(1) = 0.40
a0(2) = 0.40
cp(1) = 0.40
cp(2) = 0.40
ta(2) = 1.40
return
end

¢ Initialization before computing the approximation at each point

subroutire

init_2 ( ix, ditv )

implicit double precision (a-h,o0-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 n0,ir
do = 1.40
ta(l) = ditv * ix
return
end

¢ Computing alpha
subroutine

and t_0
compute_us

implicit double precision (a-h,o0-z)

common b0,c0,d0,20(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 n0,ir

parameter (xtol=1.d-10)

dimension fp(2),tp(2),wa(19)

external dpsi

ifail =
tp(1)
tp(2)

0
a0(1)

ta(2)
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call cO5nbf ( dpsi, 2, tp, fp, xtol, wa, 19, ifail )

a0(1) = tp(1)
ta(2) = tp(2)
return

end

c Quantities for computing the approximation
subroutine init_3
implicit double precision (a-h,o-z)
common b0,c0,d0,a0(2),b5d(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 no,ir
parameter (epsa=1.d-10,epsr=1.d-10,1w=4000,1iw=1000)
dimension w(lw),iw(1liw)
external dhx,all,al2,a21,a22

ifail = 0
bd(1) = - c0 * ta(2) + ta(l)
bd(2) = c0 * ta(2) + ta(l)
c2b = c0 *x 2 - b0
phxi = dexp ( - a0(1) * cO + a0(2) * c2b ) * pfx ( bd(1) )
phx2 = dexp ( a0(1) * cO + a0(2) * c2b ) *
1 (1 -pfx (bd(2) ) )
call dOlajf ( dhx, bd(1), bd(2), epsa, epsr, f0, abserr,
1 w, 1w, iw, liw, ifail )
do = phxl + £f0 + phx2

c Expectations of the first order partial derivatives
call d01ajf ( a11, bd(1), bd(2), epsa, epsr, f1, abserr,

1 w, lw, iw, liw, ifail )

call d01ajf ( al12, bd{1), bd(2), epsa, epsr, f2, abserr,
1 w, lw, iw, liw, ifail )

call d01ajf ( a2i, bd(1), bd(2) epsa, epsr, f3, abserr,
1 w, lw, iw, liw, ifail )

call d01ajf ( a22, bd(1), bd(2), epsa, epsr, f4, abserr,
1 w, lw, iw, liw, ifail )

dt =ta(2) / 2/ (f1 * f4 - £2 * £3 )

c Matrix B

bt(1,1) = 2 * f4 * dt

bt(1,2) = - 2 * £3 * dt

bt(2,1) = - £2 * dt

bt(2,2) = f1 * dt

ge(1) = gx (bd(1) )

ge(2) = gx (bd(2) )

return
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end

¢ Moments of Gp

300

subroutine compute_rk

implicit double precision (a-h,o0-z)

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
n0,ir

parameter (epsa=1.d-10,epsr=1.d-10,1w=4000,1iw=1000)

dimension w(lw),iw(liwy

external grhx

ifail = 0

c2b = c0 ** 2 - b0

phxl = dexp ( - a0(1) * cO + a0(2) * c2b ) *
pfx ( bd(1) ) / do

phx2 = dexp ( a0(1) * cO + a0(2) * c2b ) *
(1-pfx (bd(2) ) ) / do

rk(1) = 0.40

do 300 ix = 1,4

do 300 ix = 1,2

ir = ix

call d01lajf ( grhx, bd(1), bd(2), epsa, epsr, fi, abserr,
w, lw, iw, liw, ifail )
rk(ir) = ( ge(1) - rk(1) ) ** ir * phxl + fi +
( ge(2) - rk(1) ) *»* ir * phx2

continue
rk(3) = rk(3) / rk(2) ** 1.5
rk(4) = rk(4) / rk(2) ** 2 - 3
return

end

¢ Edgeworth density approximation

subroutine compute_px ( ix, px, nsto, nftr )

implicit double precision (a-h,o0-2z)

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
n0,ir

parameter (pi=3.141592653589793)

dimension px(2,nsto)

pri  =dsqrt ( n0 / 2 / pi / rk(2) ) * dO ** n0

pr2 =prl * (1 + (rk(4) / 8 - 6 % rk(3) ** 2 / 72) / n0 )
cp(1) = cp(1) + pri

cp(2) = cp(2) + pr2

iy = ix / nftr
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if ( ( iy .le. nsto ) .and. ( ( iy * nftr ) .eq. ix ) ) then
px(1,iy) = cp(1)
px(2,iy) = cp(2)

endif

return

c Saving the numerical results

200

subroutine store_px ( px, nsto, ditv, dsto )

implicit double precision (a-h,o0-2z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

n0,ir
dimension px(2,nsto)
cp(1) = cp(1) * 2
cp(2) = cp(2) * 2

open ( unit = 99, file = ’margdens.o21’ )
do 200 ix = 1, nsto

pxl = 5.d-1 + px(1,ix) * ditv

px2 = 5.d4-1 + px(2,ix) * ditv

px3 = 5.d-1 + px(1,ix) / cp(1)

px4 = 5.d-1 + px(2,1x) / cp(2)

vrite ( 99, * ) sngl ( dsto * ix ), sngl(pxl), sngl(px3)
continue
return

end

¢ Quantities for the centering constraints

subroutine dpsi ( np, tp, fp, iflag )

implicit double precision (a-h,o0-z)

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
no,ir

parameter (epsa=1.d-10,epsr=1.d-10,1w=4000,1iw=1000)

dimension fp(np),tp(np),w(lw),iw(liw)

external dpsi_1, dpsi_2

ifail = 0

a0(1) = tp(1)

ta(2) = tp(2)

bd(1) = - c0 * ta(2) + ta(l)
bd(2) = c0 * ta(2) + ta(l)
c2b = c0 **x 2 - b0

¢ Tail probabilities under h

phxt = dexp ( - a0(1) * cO + a0(2) * c2b ) *
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1 pfx ( bd(1) ) / 40

phx2 = dexp ( a0(1) * cO + a0(2) * c2b ) *
1 (1-pfx (bd(2) ) ) / do

call dOlajf ( dpsi_i, bd(1), bd(2), epsa, epsr, f1, abserr,
1 w, lw, iw, liw, ifail )

fp(1) = c0 * ( phx2 - phxl ) + f1
call d01ajf ( dpsi_2, bd(1), bd(2), epsa, epsr, f2, abserr,
1 w, lw, iw, liw, ifail )
fp(2) = c2b * ( phx2 + phxl ) + f2
return
end

c Integrand for the expectation of A_{11}

function all ( x0 )
implicit double precision (a-h,o0-2z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 no0,ir

all = dhx ( x0 )
return

end

c Integrand for the expectation of A_{12}

function al2 ( x0 )
implicit double precision (a-h,o0-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 n0,ir

al2 = dhx ( x0 ) * psi_1 ( x0 )
return

end

c Integrand for the expectation of A_{21}

function a21 ( x0 )
implicit double precision (a-h,o0-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 no,ir

a21 = dhx ( x0 ) * psi_1 ( x0 )
return

end

c Integrand for the expectation of A_{22}
function a22 ( x0 )
implicit double precision (a-h,o-z)
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common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 n0,ir
a22 = dhx ( x0 ) * psi_1 ( x0 ) ** 2
return
end

c Conjugate density h
function dhx ( x0 )
implicit double precision (a-h,o0-2)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 n0,ir
parameter (pi=3.141592653589793)

c dfx = dnorm ( x0 )
c dfx = 0.9 * dnorm ( x0 ) + 0.01 * dnorm ( x0 / 1.d1 )

dfx = 2 / dsqrt (3.d0 ) / pi / (1 + x0 %% 2/ 3 ) *x 2
c dfx =1 / pi / (1 + %0 *x 2 )

dhx = dexp (a0(1) * psi_1 ( x0 ) + a0(2) * psi_2 ( x0 )) *

i dfx / d0
return
end

c Standard normal density

function dnorm ( x0 )
implicit double precision (a-h,o-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

i n0,ir

parameter (pi=3.141592652589793)
dnorm = dexp ( - x0 **x 2 / 2 ) / dsqrt ( 2 * pi )
return

end

¢ Integrand for the expectation of Psi_1

function dpsi_1 ( %0 )
implicit double precision (a-h,o0-2z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 n0,ir

dpsi_1 = dhx ( x0 ) * psi_1 ( x0 )
return

end

¢ Integrand for the expectation of Psi_2
function dpsi_2 ( x0 )



implicit double precision (a-h,o0-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 n0,ir
dpsi_2 = dhx ( x0 ) * psi_2 ( %0 )
return
end

¢ Integrand for the moments of G_p

function grhx ( x0 )
implicit double precision (a-h,o-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 no,ir

grhx = ( gx ( x0 ) - rk(1) ) ** ir * dhx ( %0 )
return

end

c G_p

function gx ( x0 )
implicit double precision (a-h,o0-2)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 n0,ir

gx = psi_1 ( x0 ) * bt(1,1) + psi_2 ( x0 ) * bt(2,1)
return

end

¢ Error distribution
function pfx ( x0 )
implicit double precision (a-h,o0-2)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),

1 n0,ir
parameter (pi=3.141592653589793)
ifail = 0
c pfx = sibabf ( x0, ifail )

pfx 0.9 * s15abf ( x0, ifail ) + 0.1 %
c 1 s15abf ( x0/1.d1, ifail )

0

pfx = gOibaf ( 3, x0, ifail )
c pfx = datan ( x0 ) / pi + 0.5
return
end

c First score function
function psi_1 ( x0 )
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implicit double precision (a-h,0-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
i no,ir
psi_1l = ( x0 - ta(1) ) / ta(2)
return
end

¢ Second score function
function psi_2 ( x0 )
implicit double precision (a-h,o-z)
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2),
1 no,ir
psi_2 = psi_1 ( x0 ) ** 2 - b0
return
end
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C.2 Tail probability approximation using multi-

variate G,

0

This program generates the numerical results in Tables 5.3

0

Model : Multiple regression
Estimator : Huber-type or Mallow-type
rho(eta) : (theta_3, sigma) for studentized t-ratio

o0

(¢}

tailprob.par - variable declaration for tailprob.for
implicit double precision (a-h,o0-z)
parameter (c0=1.345,jp=4,js=jp+1,n0=20,ngrd=1000,
1 mgrd=ngrd/2)
common a0(2,js),axy(ngrd,ngrd,2,js),b0,bc(n0,2),bt(js,js),
by(2),d0(n0),ditv(2),dmin,pc(n0,2),pxy(ngrd,ngrd),
r1(2),ta(js),txy(ngrd,ngrd, js),w0(n0),x0(n0,jp),
xa(n0) ,xcp(n0,4),yp(n0),ik,il,mby(2),nbx(2),
nby(ngrd,2),id_ok

B wWN -

¢ Main program

c program tailprob.for
include ’tailprob.par’
dimension dxy0(ngrd,ngrd)
call init_gen ( igrd_ok, dxyO0 )
call init_grd ( igrd_ok, dxyO0 )
call comp_pxy

end

¢ Computing alpha and t_0
subroutine comp_at ( ig_ok )
include ‘tailprodb.par’
parameter (atmin=.1d-7,xtol=1.d-6,jf=js*3,
1 nwa=jf*(3%j£+13)/2)
dimension fp(jf),tp(jf),wa(nwa)
external recenter
ifail = 0
ig_ok = 1
if ( id_ok .eq. 1 ) then
id_ix = r1(1) / ditv(1)
id_iy = r1(2) / ditv(2)
if ( id_ix * ditv(1) .1t. r1(1) ) id_ix
if ( id_iy * ditv(2) .1t. r1(2) ) id_iy
igx = id_ix + mgrd

id_ix + 1
id_iy + 1



igy = id_iy + mgrd
if ( id_iy .gt. nby(igz,2) ) then

ig_ok = 0
else
do 120 i1 = 1, js
a0(1,i1) = axy(igx,igy,1,i1)
a0(2,i1) = axy(igx,igy,2,il)
ta(il) = txy(igx,igy,il)
120 continue
endif
endif

if ( ig.ok .eq. 1 ) then
do 100 i1 = 1, js

tp(it) = a0(1,i1)

tp(it+js) = a0(2,it)

tp(if+js*2) = ta(it)
100 continue
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call c26nbf (recenter, jf, tp, fp, xtol, wa, nwa, ifail)

do 110 i1 = 1, js

a0(1,i1) = tp(i1)
a0(2,i1) = tp(il+js)
ta(il) = tp(il+js»2)
if ( dabs ( a0(1,i1) ) .1t. atmin ) a0(1,i1) =
if ( dabs ( a0(2,i1) ) .1lt. atmin ) a0(2,i1) =
if ( dabs ( ta(ii) ) .1t. atmin ) ta(il) = 0.d0
110 continue
endif
return
end

¢ Computing the tail probabilities of the t-ratio
subroutine comp_pxy
include ’tailprob.par’
parameter (aacc=1.4~6)
dimension qtle(10),pval(9)
external dxy,phil,phi2

qtle(1) = 0.d0

¢ Quantiles of the t-ratie ( can be stored in a data file )
c2

c qtle(2) = 5.17876d-1

c qtle(3) = 1.00345d0

c qtle(4) = 1.32808d0

¢ qtle(5) = 1.62123d0

c qtle(6) = 1.9873740

.
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c qtle(7) = 2.26441d0
c qtle(8) = 2.55690d0
c qtle(9) = 2.9419340
c t3
qtle(2) = 5.320294-1
qtle(3) = 1.02498d0
qtle(4) = 1.33818d0
qtle(5) = 1.63089d0
qtle(6) = 1.9826440
qtle(7) = 2.25832d0
qtle(8) = 2.5248340
qtle(9) = 2.9037940
qtle(10) = 1.dS
ybnd1 = mby(1) * ditv(2)
ybnd2 = mby(2) * ditv(2)
do 200 iq =1, 9
by(1) = qtle(iq)
by(2) = qtle(iq+l)
call doidaf ( ybndi, ybnd2, phil, phi2, dxy, aacc,
1 pval(iq), npts, ifail )
open ( unit = 98, file = ’tailprob.o21’ )
do 210 ip =1, 9
210 wvrite ( 98, * ) qtle(ip+i), pval(ip)
close ( 98 )
200 continue
return
end

c General initialization
subroutine init_gen ( igrd_ok, dxy0 )
include ’tailprob.par’
dimension dxyO(ngrd,ngrd)

ifail = 0
id_ok = 0

c Design matrix X and weight W
open ( unit = 99, file = ’'tailprob.par’ )
read ( 99, * ) ( ta(ip), ip = 1, jp )

do 300 ix

1, no

read ( 99, * ) ( x0(ix,ip), ip = 1, jp )

w0 (ix)

300 continrue
close ( 99
nbx(1) =0

nbx(2) =

)

1.d40

do 310 ix = 1, ngrd
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nby(ix,1) = 0
nby(ix,2) = 0
do 320 iy = 1, ngrd

pxy(ix,iy) = 0.d0
dxy0(ix,iy) = 0.40
do 330 ij = 1, js
axy(ix,iy,1,ij)
axy(ix,iy,2,1j)
txy(ix,iy,ij)
330 continue
txy(ix,iy,js) = 1.d0
320 continue
310 continue

nouon
[=]
=%
o

1, js
= 0.40
= 0.40
= 0.40
340 continue

ta(js) = 1.d0

b0 (1-2% (cO*dnorm ( cO ) + (1 - cO **x 2 ) %
1 siSacf ( c0, ifail ) ) ) * (n0 - jp ) / no
ditv(1l) = 2.5d4-1
ditv(2) = 2.5d-1
dmin =1.4-6
i’ = 3
igrd ok = 0
open ( unit = 94, file = ’tailprob.t21’ )
970 read ( 94, * ) ix, iy, tp_dxy

12 { ix .1t. 0 ) goto 980
if ( igrd_ok .eq. 0 ) igrd_ok = 1
dxy0(ix,iy) = tp_dxy
read ( 94, * ) ( axy(ix,iy,1,ij), ij
read ( 94, * ) ( axy(ix,iy,2,ij), ij ,
read ( 94, * ) ( txy(ix,iy,ij), ij =1, js )
goto 970

980 continue
close ( 94 )
return

end

[y
-
o .
n n
L

[y

¢ Computing alpha and t_0 over a grid of points
subroutine init_grd ( igrd_ok, dxy0 )
include ’tailprodb.par’
dimension dxyO(ngrd,ngrd)
if ( igrd_ok .eq. 0 )



410

430

440

450

460
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open ( unit = 94, file = ’tailprob.t21’ )

ity = -1
do 400 il =1, 2
ixm =0
iy =2 -1l
iy = iy + ity
igy = iy + mgrd
next_iy = 0
ixm0 = ixm
dxm = 0.d0
itx = -1

do 420 i2 = 1, 2

igx = ixm + mgrd

if (12 .eq. 2

) then

do 430 ij = 1, js

a0(1,1j)

a0(2,1ij)

ta(ij)
continue

axy(igx,igy,1,1j)
axy(igx,igy,2,1j)
txy(igx,igy,1j)

else if ( iy .ne. 0 ) then

do 440 ij =

a0(1,1j)
a0(2,ij)
ta(ij)
continue
endif
ix
ix
igx
nby(igx,it)
if ( igrd_ok .

1, js

= axy(igx,igy-ity,1,1j)
axy(igx,igy-ity,2,1ij)
txy(igx,igy-ity,ij)

ixm + 2 - i2
ix + itx

ix + mgvd

iy

eq. 0 ) then

dxyO(igx,igy) = dxy ( ix * ditv(1), iy * ditv(2) )
do 460 ij = 1, js

axy(igx,

axy(igx,

txy(igx,
continue
write ( 94,
write ( 94,
write ( 94,
write ( 94,
write ( 94,
write ( 94,
write ( 94,

endif

igy,1,ij) = a0(1,1ij)

igy,2,ij) = a0(2,ij)

igy,ij) = ta(ij)

* ) igx, igy, dxyO(igx,igy)

* ) ( axy(igx,igy,1,ij), ij =1, 2)
* ) ( axy(igx,igy,1,ij), ij = 3, js )
* ) ( axy(igx,igy,2,ij), ij =1, 2)
* ) ( axy(igx,igy,2,ij), ij = 3, js )
* ) ( txy(igx,igy,ij), ij =1, 2)

* ) ( txy(igx,igy,ij), ij = 3, js )
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if ( dxyo(igx,igy) .gt. dxm ) then

ixm0 = ix
dxm = dxyO0(igx,igy)
endif

if ( dxyO(igx,igy) .gt. dmin ) then
if ( next_iy .eq. 0 ) next_iy = 1
if ( itx .gt. 0 ) then
goto 450
else
itx = -itx
endif
else
itx = -itx
if ( (i2 .eq. 1) .and. ( nbx(1) .gt. ix ) ) then
nbx(1) = ix
else if ( ( i2 .eq. 2 ) .and. ( nbx(2) .1t. ix ) )
1 then
nbx (2)
endif
endif
if ( iy * ditv(2) .1t. 1.d0 ) next_iy = 1
420 continue
ixm = ixmO
if ( ( next_iy .eq. 1 ) .and. ( ity .gt. 0 ) .and.
1 ( igy .1t. ngrd ) ) goto 410
ity = -ity
mby(i1) = iy
400 continue
if ( igrd_ok .eq. O ) then
write ( 94, * ) -1, -1, -1.40
close ( 94 )
endif
id_ok = 1
return
end

ix

¢ Quantities under h_l for computing the approximation
subroutine para_l ( xipO, xipl, xip2 )
include ’tailprob.par’
parameter (epsa=1.d-6,epsr=1.d-6,1lw=4000,1iwv=1000)
dimension w(lw),iw(liw)
external dhx,dpsi_pil,dpsi_p2

ifail =0
xa(il) = 0.d0
yp(il) = 0.4d0
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500
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do 500 i1 =1, jp
xa(il) = xa(il) + x0(il,i1) * ( a0(1,1i1) + a0(2,i1) )
yp(il) = yp(il) + x0(il,i1) * ta(il)

continue

bc(il,1) = -c0 * ta(js) + yp(il)

bc(il,2) = c0 * ta(js) + yp(il)

call d0iajf ( dhx, bc(il,1), bc(il,2), epsa, epsr, xip0,
aerr, w, lw, iw, liw, ifail )

call d01lajf ( dpsi_pl, be(il,1), bec(il,2), epsa, epsr, xipi,
aerr, w, lw, iw, liw, ifail )

call doiajf ( dpsi_p2, be(il,1), bc(il,2), epsa, epsr, xip2,
aerr, w, lw, iw, liw, ifail )

ac2b = ( a0(1,js) + a0(2,js) ) * (cO**2 * w0(il) - bO)

pc(il,1) = dexp ( -xail) * wO(il) * cO + ac2b ) *
pfx ( be(il,1) )

pc(il,2) = dexp ( xa(il) * w0(il) * cO + ac2b ) *
(1-pfx ( be(il,2) ) )

d0(il) = xip0 + pc(il,2) + pe(il,1)

xcp(il,1) = ( xipl + c0 * ( pc(il,2) - pc(il,1) ) ) / d40(il)

xcp(il,2) = ( xip2 + c0 **x 2 * ( pc(il,2) + pc(il,1) ) ) /
do(il)

xip0 = xip0 / do(il)

xipi = xip1l / d0(il)

xip2 = xip2 / d0(il)

return

end

c Quantities for the centering constraints

610
600

subroutine recenter ( jm, tp, fp, iflag )

include ’tailprob.par’

parameter (lwork=1000)

dimension fp(jm),tp(jm),ipiv(js),work(lwork)
do 600 il = 1, js

a0(1,i1) = tp(il)
a0(2,i1) = tp(it+js)
ta(il) = tp(il+js*2)
fp(i1) = 0.d0
fp(it+js) = 0.d0
fp(it+js*2) = 0.40
do 610 i2 = 1, js
bt(i1,i2) = 0.d0
continue
do 620 ix = 1, no
il = ix

call para_l ( xipO, xipil, xip2 )
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¢ Expectations of the first order partial derivatives and Psi
do 630 i1 = 1, jp
do 631 i2 = 1, jp

631 bt(i1,i2) = bt(i1,i2) + x0(il,i1) * x0(il,i2) *
1 w0(il) * xip0 / ta(js)
bt(il,is) = bt(il,js) + x0(il,i1) * wO(il) * xipl /
1 ta(js)
fp(il) = fp(i1) + x0(il,i1) * w0(il) * xcp(il,1)
630 continue
bt(js,js) = bt(js,js) + 2 * wo(il) * xip2 / ta(js)
fp(js) = fp(js) + xcp(il,2) * w0(il) - bO
620 continue

c Ma*rix B
do 650 i1 = 1, jp
do 660 i2 = 1, jp
660 bt(i1,i2) = bt(i1,i2) / no
bt(il,js) = bt(il,js) / noO
bt(js,il1) = bt(il,js) * 2
650 continue
bt(js,js) = bt(js,js) / no
call f07adf ( js, js, bt, js, ipiv, info )
call f07ajf ( js, bt, js, ipiv, work, lwork, info)
do 670 il = 1, js
if ( i1 .eq. ik ) then
fp(ik+js) = ta(ik) - r1(1)

else
fp(il+js) = a0(1,i1) * bt(ik,ik) -~ a0(1,ik) *
i bt(ik,il1)
endif

if ( i1 .eq. js ) then
c Constant adjustment ( can be replaced by a subroutine )
cZ -1.47302d-1
c t3 -1.117314d-1

fp(js+js*2) = ta(js) - 1.11731d-1 - r1(2)
else
fp(il+js*2) = a0(2,i1) * bt(js,js) - a0(2,js) *
1 bt(js,il)
endif
670 continue
do 680 i1 = 1, jm
680 if ( dabs ( fp(i1) ) .1t. 1.d-15 ) fp(i1) = 0.40
return

end

c Conjugate density h_1
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function dhx ( y0 )
include ’tailprob.par’

parameter (pi=3.141592653589793)

c dfx = dnorm ( yO )
dfx = 2 / dsqrt ( 3.d0 ) / pi
c dfx = 0.9 * dnorm ( yO ) + 0
c dfx =1/ pi/ ( 1+ y0 *x2
20 = psi_c (res_p ( y0) )
dhx = dexp ( xa(il) * w0(il) * 20 + ( a0(1,js) +
1 a0(2,js) ) * ( 20 *x 2 * w0(il) - b0 ) ) * dfx
return
end

c Max ( a, b))
function dmaxi ( tp_1, tp_2 )
include ’tailprob.par’
if ( tp_1 .gt. tp_2 ) then

dmaxi = tp_1
else

dmaxi = tp_2
endif
return

end

c Min ( a, b))
function dmini ( tp_1, tp_2 )
include ’tailprob.par’
if ( tp_1 .1t. tp_2 ) then

dmini = tp_1
else

dmini = tp_2
endif
return

end

c Standard normal density
function dnorm ( z0 )
include ’tailprob.par’

parameter (pi=3.141592653589793)
dnorm = dexp ( - 20 ** 2 / 2 ) / dsqrt ( 2 * pi )

return
end

¢ Integrand for the expectation of Psi_c

function dpsi_p1 ( y0 )

1 +y0 %% 2/ 3 ) »x 2
dnorm ( yO / 1.d1 )
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include ’tailprob.par’
dpsi_pl = dhx ( y0 ) * psi_c ( res_p ( y0O ) )
return

end

c Integrand for the expectation of Psi_c”2
function dpsi_p2 ( yO0 )
include ’tailprob.par’
dpsi_p2 = dhx 0 ) * psi_c (res_p ( y0O ) ) **x 2
return
end

c Integrand for the expectation of Psi_c”3
function dpsi_p3 ( y0 )
include ’tailprob.par’
dpsi_p3 = dhx ( yO ) * psi_c (res_p ( y0O ) ) **x 3
return
end

c Integrand for the expectation of Psi_c"4
function dpsi_p4 ( y0 )
include ’tailprob.par’
dpsi_p4 = dhx ( yO ) * psi_c ( res_p ( y0O ) ) ** 4
return
end

¢ Edgeworth density approximation
function dxy ( x1, y1 )
include ’tailprob.par’
parameter (pi=3.141592653589793)
parameter (epsa=1.d-6,epsr=1.d-6,1w=4000,1iw=1000)
dimension w(lw),iw(liw)
external dpsi_p3,dpsi_p4

ifail = 0
ri(1) = x1
r1(2) = dmaxi ( 5.d-2, y1 )

call comp_at ( ig_ok )
if ( ig_ok .eq. 0 ) then

dxy = 0.4d0
goto 720
endif
var_1 = 0.40
var_2 = 0.d40
cori2 = 0.d40
po = 1.d0
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do 700 ix = 1, n0

il = ix
p0 = p0 * do(il)
call dO1ajf ( dpsi_p3, bc(il,1), be(al,2), epsa, eps:,
1 xip3, aerr, w, lw, iw, liw, ifail )
call dOtajf ( dpsi_p4, bc(il,1), be(il,2), epsa, epsr,
1 xip4, aerr, w, lw, iw, liw, ifail )
xcp(il,3) = ( xip3 + cO ** 3 *
1 ( pe(il,2) - pe(il,1) ) ) / d0(il)
xcp(il,4) = ( xip4 + cO ** 4 *
1 ( pe(il,2) + pc(il,1) ) ) / do{il)
xbk = 0.40
xbs = 0.40

do 710 i1 = 1, jp
xbk = xbk + x0(il,i1) * bt(ik,il1)
xbs = xbs + x0(il,il1) * bt(js,il)
710 continue
xbk = xbk * w0(il)

xbs = xbs * w0(il)

bwk = bt(ik,js} * w0(il)

bws = bt(js,js) * wo(il)

x1_1 = xbk * xcp(il,1) + bwk * xcp(il,?2)

x1_2 = xbk ** 2 * xcp(il,2) + 2 * xbk * bwk *

1 xcp(il,3) + buk ** 2 * xcp(il,4)

x2_1 = xbs * xcp(il,1) + bws * xcp(il,2)
x2_2 = xbs ** 2 * xcp(il,2) + 2 * xbs * bws *
1 xcp(il,3) + bws *#x 2 * xcp(il,4)
x12 = xbk * xbs * xcp(il,2) + ( xbk * bws +
1 bwk * xbs ) * xcp(il,3) + buk * bws * xcp(il.4)
var_1 = var_1 + x1_2 ~ x1_1 ** 2
var_2 = var_2 + x2_2 - x2_1 %% 2
corl2 = cori2 + x12 - x1_1 * x2_1
700 continue
dxy = pO * n0 ** 2 / 2 / pi / dsqrt ( var_1i * var_2 -
1 corl2 **x 2 )
720 continue
return

end

¢ Error distribution
function pfx ( z0 )
include ’tailprob.par’

ifail = 0
C pfx = sibabf ( z0, ifail )
pfx = gOibaf ( 3, z0, ifail )
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c pfx = 0.9 * sibabf ( 20, ifail ) + 0.1 *
c 1 si6abf ( z0 / 1.d1, ifail )
c pfx = gOibaf ( 1, 20, ifail )
return
end

c Lower limit for the double integral
function phit ( pt.y )
include ’tailprob.par’
phil = dmini ( nbx(2) * ditv(1), by(1) * pt_y )
return
end

0

Upper limit for the double integral
function phi2 ( pt.y )
include ’tailprob.par’
phi2 = dmini ( nbx(2) * ditv(1), by(2) * pt_y )
return
end

¢ Huber’s score function
function psi_c ( z0 )
include ’tailprob.par’
psi_c = dmaxi ( -cO, dmini ( cO, 20 ) )
return
end

c Standardized value
function res_p ( y0 )
include ’tailprob.par’
res_p = ( y0 - yp(il) ) / ta(js)
return
end
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