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Abstract 

In this thesis we present a finite sample approximation for the marginal densities 

of a multivariate Af-^otimator. The result is particularly useful in robust statistics 

where an estimator usually is defined implicitly and does not have a closed form, and 

for small sample problems where the asymptotic results may not be reliable. 

Precisely, let Y\,...,Yn be independent m-dimensional random observations such 

that each observation has a density function which is parameterized by a p-dimensional 

parameter 77. Let r) be an M-estimator of r/, the solution of the system 

-E*ii(tf,$Ho, i « i P. 
n / = i 

Our primary objective is to derive an approximation for the marginal densities of a 

component in fj under r/ = T/0. The result is then extended to a real-valued function 

p(fj), p : ffi —> 3t, and finally to a real-valued vector p(rj) = {pi(fj),.. .,pk(rj)}, 

p : W -+ 9ft*, it < p. 

We begin with an overview of tiie general problem and some background infor­

mation. Then we derive the main results and discuss the relationship among our 

approach and some existing techniques for the problem. In addition, we implement 

the approximations for several location-scale and multiple regression examples. Fi­

nally, we discuss the limitation and some potential applications of our results. 
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Chapter 1 

Introduction 

1.1 Overview 

The objective of this thesis h to develop an approximation for the marginal 

density function of a multivariate M-estimator. The result is particularly useful in 

robust statistics and for small sample applications. 

Generally speaking, an estimator is a function defined by a set of random obser­

vations, which can be used to reveal a certain characteristic of a population. To use it 

in practice, we must know its random behaviour. Also, the knowledge is needed if we 

want to compare different classes of estimators. This leads us to think of a common 

source of the information, the distribution function. 

When an explicit distribution function is available, we can use it to obtain the 

information that we need, otherwise, we have to compute it numerically. However, 

except for some simple functions of the random observations, computation of the 

exact distribution could be intractable. In fact, an estimator may only be defined 

implicitly and does not have a closed form. Unfortunately, most of the robust estima­

tors are in this last category. Therefore, an approximation, or precisely, an accurate 

1 
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approximation for the distribution is clearly needed. 

In the classical theory, ihe computation of a distribution function may not be 

difficult. Under the assumption of normality, very nice and complete results under 

different settings have been found. Most of the statistics used in practice have very 

well known distributions, and even if they do not, asymptotic results are usually 

available to provide satisfactory alternatives. 

However, the situation has been changing as robustness of classical results has 

become a concern to statisticians. We now realize that the arithmetic mean of a 

random sample is highly non-robust in the sense that a single outlier can cause the 

estimate to break down. As a result, different robust procedures have been devel­

oped in the last few decades. In particular, a general class of robust estimators was 

proposed by Huber (1964). The estimators are known as the M-estimators. In brief, 

an M-estimator is defined implicitly as the solution of a system of equations. Huber 

showed in the same paper that the new class of estimators possesses very desirable 

quantitative and qualitative properties. 

Since they were introduced, the Af-estimators have been the basis of new de­

velopments in robust procedures. Various modifications and extensions have been 

proposed, and their sampling behaviours, mostly in the asymptotic senr ^ave been 

explored. Since robust estimators usually cannot be computed analytically, it is dif­

ficult to study their finite sample properties, and therefore statistical inferences have 

to rely on asymptotic results. 

Although asymptotic results usually are available in cases of interest, they may be 

inadequate for practical purposes. For instance, when an estimator is asymptotically 

normally distributed, we could use this result to approximate the true distribution. 
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Although the asymptotic normality is a very nice feature for an estimator, it does 

not always produce reasonable approximations unless the sample size is large enough. 

Even worse, we do not know how large is large enough in an individual case. We 

observe from numerical examples that a moderate size is possibly too risky. Nonethe­

less, the normal approximation tends to be quite reasonable around the center but it 

can be very inaccurate in the tails of the distribution. 

Different techniques have been developed to provide more accurate approxima­

tions. In general, one can try to improve the asymptotic results or to approximate 

directly the finite sample distributions. In the latter c?se, there are options such as 

approximating the estimator itself or the distribution of the estimator. In particu­

lar, Field (1982) had successfully derived a very accurate approximation for the joint 

density function of a multivariate A/-estimator. An important step in his approach 

is the use of the saddlepoint technique. 

In a pioneering paper, Daniels in 1954 applied the saddlepoint technique and 

derived a very accurate approximation for the distribution of an arithmetic mean. In 

the last forty years, the technique has been proven to be very useful in small sample 

asymptotics, a name coined by Hampel. The name reflects the aim of obtaining 

asymptotic expansions which give accurate approximations for small samples. 

For those problems where the marginal densities of a component in a multivariate 

estimator are needed, one may use the results in Field (1982) to approximate the 

joint densities of the components, and then integrate out the nuisance variables. This 

approach was demonstrated by Field in the same paper for a two-dimensional problem 

and gave very good results. However, the process involves substantial computational 

effort and becomes impractical when the dimension exceeds two. 
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Tingley and Field (1990) manipulated results in Field (1982) to derive a linear 

approximation to a real-valued function of the components. The problem is then 

reduced to one-dimension and the computation becomes feasible. The approximation 

was used as the basis for constructing robust confidence intervals in Tingley and 

Field (1^90) and Tingley (1992). In spite of its simplicity, we see later that this single 

linear approximation may not provide satisfactory approximations in the tail regions 

of most interest. 

In the present work, we develop an approximation which is reliable even well out 

into the tails. The work is motivated partly by the good performance of the linear 

approximation around the expected value of the estimator. Our approximation is 

applied to several robust multiple regression problems and yields very good results 

for small samples. This enables us to study the finite sample behaviour of an esti­

mator and to compare it with the asymptotic results. From that, we can determine 

when asymptotic approximations are sensible for use in practice, or compare different 

estimators on the basis of their finite sample properties. 

The remainder of this chapter contains background information on our work. The 

next section gives a brief review of M-estimators. The exponential tilt plays a central 

role in our approximation and is discussed in Section 1.3 Section 1.4 presents a 

normal approximation which is needed for local approximations in the development. 

Finally in the last section, we summarize the discussion and outline the content of 

the subsequent chapters. 
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1.2 M-estimator 

The M-estimator is undoubtedly one of the more influential ideas in statistics 

within the last few decades. Numerous robust procedures have been inspired by it 

and developed based on it. In this section, we state the definition and two asymptotic 

properties of the estimator. The theoretical details are skipped in the discussion and 

can be found in Huber (1981). 

In his paper in 1964, Huber introduced a general class of estimators which he 

called M-estimators. The proposed estimator was defined first as the solution of a 

minimization problem and then extended to more general situations. We now set 

some notation for this section and give the definition of the estimator. 

Let Yi,...,Yn be a sample of size n, where each of the VJ's has a distribution 

function Fi(yi) parameterized by n = (r/i,... ,T/P). The true value of n is r/0. The 

density function, when it exists, is denoted by fi(yi). 

Definition 1.1 (Huber, 1981, page 43) 

An M-estimator of TJ € fi C 9ftp is defined as the solution fj = (T)I , . . . ,fjp) of the 

minimization problem 

£ > ( M ) = min! (1.1) 
/=i 

over the parameter space tt, or implicitly as the solution of the system of p equations 

where 

5>i(V!,$) = 0, (1.2) 
/=1 

* / (^ r 7 ) = ^ ^ = {*w(^r /) , . . . ,*p /(r , ,T /)}, / = l , . . . , n , 

are called the score functions. 
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Note that it is not assumed in the definition, but we require that the random 

observations to be independent in our development. 

It was pointed out by Huber himself that the functional version of (1.1) may 

cause problems. For instance, the median T of a random s?*nple from a common 

distribution F corresponds to 

Tl(YhT) = \Y,-Tl / = l , - . . , n , 

but we cannot define it to be an estimator of t that minimizes 

/ \yi-t\dF(y,) 
Jyi 

unless Yi has a finite first absolute moment. On the other hand, the definition in 

(1.2) may lead to multiple solutions which correspond to local minima of (1.1). For 

the above example, the score functions are 

^Y^^-signiYt-T}, / = l , . . . , n , 

and we know that the corresponding solution T of (1.2) is not unique. 

In many situations, there exist conjugate pairs (1.1) and (1.2) such that their 

solutions are equivalent. However, a system that has the form of (1.2) does not 

necessarily correspond to a minimization problem as defined in (1.1). With some 

regularity conditions which will be stated in Chapter 3, we focus on the solution 

of a system that has the form of (1.2). Our choice is not arbitrary since specific 

assumptions on the score functions are required in our approximation. 

The M-estimator is also known as the generalized maximum likelihood estimator. 

The name corses from the fact that if we choose 
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r i(^,r/) = -log{/,(r,,r /)}, / = 1 , . . . , » , 

or equivalently, 

fi(Yi,V) on 

the corresponding M-estimator can be the ordinary ma dmurn likelihood estimator. 

In other words, the M-estimator is a general class of estimators which includes some 

maximum likelihood estimators as special cases. We want to know if the general 

estimator possesses the nice properties of the special one. 

Suppose that Y\,...,Yn are independent and identically distributed, r)n is any 

sequence of functions such that 

^ £ > i W , 7 . ) - » 0 (1.3) 

almost surely (or in probability), where $i ;=••• = tyn. Huber gave sufficient con­

ditions for the following two results to hold. The conditions generally require that 

the function ^\{Yi,n) satisfies certain continuity properties, and the expected value 

£'[^i(yi,»;)] exists for all n 6 £1 and has a unique zero at n = r/o. 

Theorem 1.1 (Huber, 1981, page 132) Every sequence fjn satisfying (1.3) converges 

to J]o almost surely. An analogous statement is true for convergence in probability. 

Theorem 1.2 (Huber, 1981, page 133) y/n{r)n — rjo) is asymptotically normal with 

mean 0 and covariance matrix A~xC{AT)~l, where A is the nonsingular derivative 

matrix of E[&i(Y\,ri)] at rj = J/0 and C is the covariance matrix of tyi(Yi,rj0). 
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The above results have been extended to various situations and in particular to 

regression problems where the random observations are not identically distributed. 

We are not going to restate them here. However, specific results will be given when 

we use them in the examples. 

In addition to the asymptotic results above, the M-estimator has other important 

features. In practice, we want our estimators to be robust in some sense. The 

flexibility in the choice of the score function for an M-estimator allows us to define 

an estimator which satisfies some prescribed properties. We illustrate the idea through 

a simple location problem from Huber (1964). 

Let Y\,...,Yn be independent and share a common density function / ^ ( y ) . Sup­

pose that we want to define an estimator for the location parameter po, which resists 

outliers but at the same time retains a high efficiency. We can choose Huber's score 

function with a specific c, 

tyc(r) — max{—c,min{c,r}}, 

and solve the equation 

$>cW-£) = o. 
1=1 

Huber showed that 

. KT( Ef[*l(r)] \ 

where '~>' means 'is asymptotically distributed as' and r = Yi — p0. Note that the 

estimator includes the sample mean (c = oo) and the sample median (c = 0) as 

the limiting cases. Huber also showed that the estimator has many desired robust 
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properties. The trade off between as3'mptotic efficiency and the resistance to outliers 

is regulated by the choice of c. For instance, when the population is normally dis­

tributed, the asymptotic efficiency ranges from 1 for c = oo to .64 for c = 0. A typical 

choice for c is 1.345 which corresponds to a .95 asymptotic efficiency at the normal. 

Another advantage of the M-estimator over other classes of estimators is that its 

definition can easily be extended from one-parameter to multi-parameter and from 

univarate to multivariate problems. On the contrary, an estimator based on the rank 

or the order statistics generally suffers from the difficulty in ordering for multivariate 

cases. 

We make a final remark even though it is not particularly tied to the M-estimators. 

For applications in robust statistics, the score functions are generally bounded in order 

to limit the influence of individual observations. It turns out that the boundedness 

has an additional advantage for our approximation. In brief, we will require the 

existence of some moment generating functions for our applications. Having bounded 

score functions guarantees the existence of the moment generating functions. 
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1.3 Exponential tilt 

A key to our approximation is the idea of recentering. In brief, we need to trans­

form a density function such that the new density function satisfies some prescribed 

conditions. A typical condition in statistical applications is to enforce a certain ex­

pectation under the new density function. The details of this will be presented in 

Chapter 3. In this section, we introduce a technique called the exponential tilt that 

we use for the recentering. 

The exponential tilt has widely been used in statistics and especially in the area of 

small sample asymptotics (see Field and Ronchetti, 1990). In particular, Field (1982) 

derived an approximation for the joint density function of a multivariate M-estimator 

by applying an exponential tilt at each point where the density is to be approximated. 

More examples of its applications will be given in the next chapter. 

To develop the ideas, let f(y) be the density function of a. random variable Y. 

The moment generating function of Y under / is defined by 

Mf(a) = Ef[exp{aY}] = / exp{ay) f(y) dy, 

where a is real. We know that M/(a) does not exist for all a and Y, which can occur 

even when Y has a commonly used distribution such as a t distribution. This indeed 

causes some problems in applying the exponential tilt. Nevertheless, the existence of 

the moment generating function is guaranteed when Y is bounded. In our applica­

tions, the role of Y is taken by a score function, which is generally bounded for robust 

M-estimatois and the existence problem disappears. 

When Mj(a) exists for a given a0, a conjugate or exponentially tilted density 

function of Y for the given ao is defined by 
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h(y) = c(a0) exp{a0y) f{y), 

where 

e_1(a0) = / exp{ct0y) f(y) dy = M/(a0). 

We will call h(y) the a0-conjugate density function of f(y). It follows from the 

definitions of the moment generating function and the a0-conjugate density function 

that 

Mf{aQ) 

In addition, we have the following simple but heuristic result. 

Lemma 1.1 h(y) is the ao-conjugate density function of f(y) if and only if f(y) is 

the (—ao)-conjugate density function ofh(y). 

Proof Let h(y) be the a0-conjugate density function of /(y), and g(y) be the (—a0)-

conjugate density function of h(y). By definition, 

g(y) = d(-a0) <-.xp{~acy} h(y) - d(-a0) c(a0) f{y), 

where 

<2_1(-ao) = / c(a0) f(y) dy = c(a0). 

Therefore we have g(y) = f(y). This proves the 'only if part, the 'if part is similar 

and is omitted. 

D 



12 

We notice that a moment generating function does not always exist. However, 

if it exists, the moment generating function is unique and completely determines 

the distribution of the random variable (see Hogg and Craig, 1978, page 50). In 

other words, we can study the characteristics of a random variable via its moment 

generating function. The above lrmma implies that if h(y) is the a0-conjugate density 

function of f(y), then 

This suggests an indirect, alternative approach to understanding the properties 

of a random variable under its original density function. That is, we can study its 

behaviour under a conjugate density function and transform the result back through 

the connection of the two moment generating functions. The idea had been applied 

in Field (1982). We will utilize it into a more general situation. 

We have discussed an existence problem of the conjugate density functions. In 

addition to the existence of h(y), we need the next two results from Daniels in order 

to satisfy some required conditions in our approximation. 

Let F(y) be the distribution function of Y, and define K(a) = log(M(a)). Note 

that K{ct) is called the cumulant generating function of Y. 

Theorem 1.3 (Daniels, 1954) F(y) = 0 for y < a, and F(y) = 1 for y > b if and 

only if K(a) exists for all real a and K'(a) = t has no real root whenever t < a or 

t>b. 

a 

Theorem 1.4 (Daniels, 1954) Let F(y) = 0 for y < a, 0 < F(y) < 1 for a < y < b, 

F{y) — 1 for y > b, where - oo < a < b < oo. Then for every t0 in a < t0 < b there 
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is a unique simple real root cto of K'{cto) — to. As a increases from —oo to oo, K'{a) 

increases continuously from t = a to t = 6. 

• 

For our approximation, recentering and manipulating a connection between the 

moment generating functions Mh(y) and M/(y) are the two major tools. The expo­

nential tilt allows us to recenter the original density function f{y) to a new density 

function h{y) that satisfies some required conditions. Moreover, it supports a nice 

relationship between Mh(y) and Mj(y) and eventually the density function of an 

estimator under h{y) and that under f(y). We will see in Chapter 3 how the expo­

nential tilt enables us to focus our problem on the approximation of the density at the 

expected value of an estimator. Thi < is important since the Edgeworth approxima­

tion for densities (see Section 1.4) generally provides very accurate numerical results 

around the expected value. 

The primary advantage of using the exponential tilt in our approximation comes 

perhaps not from its theoretical properties but rather from the functional form of a 

conjugate density function. It is the exponential form in its definition that allows us 

to derive a relationship between the two density functions of an estimator under h(y) 

and f(y). In addition, we will see in the development that the form also allows us to 

simplify the relationship by eliminating a messy conc'icional expectation. 

Nevertheless, there are theoretical justifications for the exponential tilt. For in­

stance, Tingley and Field (1990) discussed the issue based on the results in Kullback 

(1959), and concluded that the exponential tilt forces h(y) to satisfy some prescribed 

conditions while altering f(y) as little as possible in the Kullback-Leibler distance. 

However, this is not essential to our approximation and we will not go into the details. 
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1.4 Approximation of the mean 

In our approximation, we are required to approximate the density at the expected 

value of the arithmetic mean of n ino°pendent functions, where the functions are 

not necessarily identically distributed. To achieve that, we apply a local normal 

approximation. In this section, we give the approximation and state c«me results 

which ensure the accuracy of the approximation. 

Let Sn be the sum of n independent random variables Yi,...,Yn. Discussions 

on the conditions for Sn to be asymptotically normally distributed can be found in 

numerous works. In particular, we state a result due to l.iapunov (see Prakasa Rao, 

1987, page 22) for which the conditions are similar to those of Theorem 1.6 that we 

need. 

Theorem 1.5 (Liapunov) / / {Ki,n > 1} are independent random variables with 

E[Yn] = 0 and if 

- ^ £ £ | y j | 5 ^ 0 as n-^oo (1.4) 

for some S > 2, where T£ = a\ -\ Y o\ and a\ — E[Y*] < oo, then 

|MJV(O,I). 

D 

As we mentioned earlier, the roles of VJ's are taken by the score functions which 

are generally bounded in our approximation. Therefore the following special case is 

particularly useful for us. 

Corollary 1.1 If {Yn,n > 1} are independent random variables with E[Yn] = 0 and 

if there exist positive numbers e and £$ such that 
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0 < e < of < oo and E\Y{\
S < es, / = 1, . . . , n, 

for some 8 > 2, then 

1 n 

Proof Since the boundedness implies that 

n 

T* > ne and ]T E\Y,\S < ncs, 
i=i 

we have 

'nfel (ne)» 

a s n - * oo. Therefore the condition (1.4) is sat;«fied and the result follows. 

D 

Suppose that Sn is asymptotically normal. Then, when the exact distribution of 

Sn is not available, one may want to use the asymptotic result and hope that it will 

give a reasonable approximation to the exact distribution. To measure the quality 

of such an approximation, we neeu to know the error induced by the approximation. 

For this purpose, we have the following result. 

Theorem 1.6 (Esseen, 1945, page 43) Let Y\, Y2,..., Yn be a sequence of independent 

random variables such that each variable Yi has mean value zero and the finite absolute 

moment fai of given order 8, 2 < 8 < 3. Then 
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where 

fan = —Ti Bin = ~z2 &'> 

cs is a finite positive constant depending only on 8, and <&(•) is the standard normal 

cumulative distribution function. 

D 

We observe that the error bound of the normal approximation is of order O I n " J 

and cannot be improved in general. Different approaches have been proposed to 

increase the accuracy. We shall see some of them in the next chapter. Now, we 

discuss the idea that we use in our approximation. 

We realize that the normal approximation generally works well around the ex­

pected value of an arithmetic mean and can be very inaccurate in the tails. Our 

philosophy is simply to use only the best! With an application of the exponential tilt, 

we will see that all we need is a good approximation at the expected value, the place 

where a normal approximation generally gives satisfactory results. This idea can be 

verified by a formal Edgeworth expansion. We state a result of Feller. 

Theorem 1.7 (Feller, 1971, page 535, see also Field and Ronchetti, 1990, page 11) 

Let Y\,.. .,Yn be n independent and identically distributed random variables with dis­

tribution function F and characteristic function 4>. Let 

E[Yi] = pi = 0, var{Yt) = a2 < oo, i = l , . . . , n , 

and 

^"'B^H 
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with density /„(£)• Suppose that the moments p3,...,Pk exist and that |V>|" is inte-

grable for some v > 1. Then, /„ exists for n > u and as n —> oo, 

Ut) - V{t) -v{t)J:^ = o ( - I T ) , (i .5) 

uniformly in t. Here Pr is a real polynomial of degree 3(T* — 2) depending only on 

p,i,.,.,pT but not on n and k {or otherwise on F), and if is the standard normal 

density function. 

a 

The expansion (1.5) is called the Edgeworth expansion of /„. When k — 4, Feller 

showed that 

/n(0 - V{t) - -^P3{tMt) - -P4{tMt) = o(1-), 
y/n n \n/ 

where 

p - ^ H P - ^ H i rH-te* „ 
6cr3 °' * 72o6 D 24o 

and 

H3{t) = t3- 3t, H4{t) = t* - 6t2 + 3, and H6{t) = t6 - 15*4 + 45*2 - 15 

are the Hermite polynomials of order 3, 4, and 6 respectively. Again, the one-term 

normal approximation gives an error of order O [n~*)- However, when t = 0, H3{t) = 

0 and we obtain 

This result is a key to the high accuracy of our approximation. 



18 

Since the first time Edgeworth (1905) derived the expansion, similar expansions 

have been developed under various conditions such as V/'s not being identically dis­

tributed or being multivariate random variables. A basic result on multivariate Edge-

worth expansions is given in Bhattacharya and Ghosh (1978). More results and ref­

erences can Le found in Hall (1992). 

For our development in Chapter 3, we use a local approximation from the result 

in (1.6). Precisely, let Y = (Y\,..., V̂ i) be an independent random sample such that 

E[Yi] = 0 and 0 < var{Yi) < oo. Define Y to be the sample mean. To approximate 

the density of Y at zero, we use the normal approximation 

where ay is the variance of Y. Note that a general result for a multivariate mean is 

also available (see HcCullagh, 1987, page 150). We will state the general result when 

it is needed in Chapter 5. 
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1.5 Summary 

The purpose of the present work is to derive an accurate approximation for the 

marginal densities of a multivariate M-estimator. The result is particularly useful in 

robust statistics where an estimator usually does not have a closed form, and for small 

sample applications where the asymptotic results may not be reliable. We summarize 

the general problem as follows. 

Let Y = {Yi,..., Yn) be an independent random sample, where each of the VJ's has 

a density function fi{yi) that is parameterized by r/ = (r/i , . . . , r/p). Let fj = (r)i,. . . , r)p) 

be an M-estimator of rj € fi C 3£p, that is, the solution of a system of p equations 

-i>(M)=o, ni=i 

where ty = {^1/,... , ^ p / } . Our primary objective is to derive an approximation 

for the marginal density of a component in rj under n = r/o- The result is then 

extended to a real-valued function p{i)), p : ffl —• 3ft, and finally to a real-valued 

vector p{i)) = {/>i(r}),... ,pk(r))}, p : 3ftp -»3ftfc, k < p. 

In this chapter, we have given an overview to the general problem. In particular, 

we have discussed the importance of the M-estimator and the need of an accurate 

approximation for its finite sample behaviour. We have derived the basic philosophy 

for our approximation and introduced the exponential tilt and a local density approx­

imation. The discussion is accompanied by the theoretical results which are needed 

in our development. 

Since the M-estimator was proposed by Huber in 1964, different techniques have 

been developed directly or indirectly to approximate its distribution. In the next 

chapter, we give a brief account on some of the recent work which is closely related to 
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our approximation. Our main results and their derivations are presented in Chapter 

3. In Chapter 4, we apply our results to several linear regression problems, and some 

numerical results are generated for comparison. Chapter 5 extends the results to 

a real-valued vector and gives numerical examples to verify the accuracy. Finally in 

Chapter 6 we summarize our results and give some concluding remarks. The technical 

details for the computation of our approximation are given in the appendices. 



Chapter 2 

Related techniques 

2.1 Overview 

In Chapter 1, we defined the general problem of interest. We now begin to find 

a solution for it. In this chapter, we review several existing techniques which are 

related to our problem and discuss some of their features. 

To approximate the marginal distribution of an M-estimator, we have basically 

two different approaches which can be referred to as the large sample and the small 

sample methods. The former one solves the problem via some asymptotic results while 

the latter one works directly on the finite sample behaviour. Generally speaking, the 

first approach is simpler but the second one is more accurate. 

When the asymptotic distribution of an estimator is known, we can use it to 

approximate the finite sample distribution. If the accuracy is not good enough, an 

option is to modify the asymptotic result to improve the approximation. On the 

other hand, when such a result is not available or its performance for a small sample 

is unclear, an alternative is to derive directly a finite sample approximation. For the 

finite sample approach, there exist at least two immediate options. The first is to 

21 
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work on the distribution function and the second is to approximate the estimator 

itself. 

In the past three decades, various results using the different approaches have 

been derived. For instance, Huber (1964, 1973) obtained many results describing the 

asymptotic behaviour of M-estimators under several different conditions and gave 

sufficient conditions for the results to hold. Field (1982) developed an approximation 

for the joint density function of a multivariate M-estimator, and Tingley and Field 

(1990) derived a linear approximation for a real-valued function of a multivariate 

M-estimator. 

In the next section, we introduce two models and two estimators to illustrate our 

discussion. They will be employed in different sections of this chapter. Section 2.3 

piesents some asymptotic results for the estimators. Sections 2.4 and 2.5 discuss the 

work of Field (1982) and Tingley and Field (1990) respectively. In particular, the work 

by Field requires a multi-dimensional integration to obtain a marginal distribution. 

At this point, DiCiccio and Martin (1991) provide a useful approximation which 

allows us to avoid a numerical integration. Their approximation is given in Section 

2.6. Finally in Section 2.7 we summarize and compare the different techniques. 

Before beginning the next section, we make several remarks on our discussion in 

Sections 2.3 to 2.6. For the different techniques, we will state only the main results. 

The notation is unified for convenient comparison. The developments and under­

lying assumptions will not be reproduced unless they are related to our discussion. 

Nevertheless, references will always be given for the details. 
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2.2 Two models and their estimators 

In this section we define two statistical models, and two M-estimators fj for 

their parameters //. They are not directly related to the techniques that we are 

going to discuss, but it is useful to have them in the discussion. In particular, the 

asymptotic results that we will present in the next section are based on these models 

and estimators. Moreover, they will help us to adopt the general notation in our 

approximation, and will be the basis of the examples in Chapters 4 and 5. However, 

one should realize that the applications of the different techniques in our discussion 

are not restricted to these models and estimators. 

To begin, let V = (Y^,..., Yn) be an independent random sample of size n. 

The first model is a location-scale model, that is, 

Yi — 9 + <T£/, / = l , . . . , n , 

where 9 is a location parameter, a > 0 is a scale parameter, and e/'s are independent 

and identically distributed random errors having the common density function fe. 

Therefore we have rj = {9, <r), and independent and identically distributed V/'s with 

the common density function 

For an estimator of ?/, we choose Huber's proposal 2 (Huber, 1964) in which the 

score functions are 

*«(«, v) = *c i^r) and ** w. -n) = *' (~r) - & 

l = 1, . . . ,n, where $ c is the Huber's score function defined in Section 1.2, and /3 is 

a constant to be specified. 
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The second model is a multiple regression model, that is, 

Y = X9 + ere, 

where X is an n by p — 1 fixed design, 9 = (#i , . . . , 0p_i), cr > 0 is a scale parameter, 

and z is an n-vector of independent and identically distributed random errors. In this 

model, n = {9, cr) is p-dimensional, and the random observations V/'s are independent 

but not necessarily identically distributed. We denote the density functions of Yi and 

£/ by // and fe respectively. Hence, 

The joint density function of V/'s is denoted by / , that is, 

f(y) = flMyi)-
1=1 

To estimate the parameter »/, we use Huber-type score functions 

M K , 9 ) = * c ( ^ ~ * / r ' ) X f a - , j = l , . . . , p - l , 

and 

•H<»!,»)-»:(^2 ) -A 

/ = 1 , . . . , n, where ^ c is the Huber's score function and /? is a constant. Note that 

the least squares estimator is the limiting case corresponding to c = oo. 

The two models are chosen mainly because of their popularity in practice. We 

realize that the first model is in fact included in the second one. However, the 

location-scale model has its own importance for identically distributed variables and 
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a simpler notation. For both models, we assume that the true value of the parameter 

is r/o = (0o, ob). 

The Huber-type estimators for the two models are denoted by rj — {9, a) with 

the difference being that 9 is a scalar for the location-scale model and a (p — 1)-

vector for the regression model. We use them in our discussion for several reasons. 

The Huber-type estimator has been central to many recent developments of robust 

procedures for the two models, and has some desired properties. For instance, it is 

asymptotically normal under some general conditions, so we are able to compute a 

large sample approximation for comparisons. Furthermore, the Huber-type estimator 

satisfies the natural invariance requirements for estimators in a regression context. 

The idea of location-scale equivariance and invariance for an estimator appears in 

numerous works (see Lawless, 1982, page 538; Staudte and Sheather, 1990, page 101). 

For the multiple regression model the following definition gives the natural invariance 

requirements. Note that we put additional subscripts to emphasize the dependence 

on the parameters. 

Definition 2.1 Consider a multiple regression model Yifiy„ = Xf9+oei, I = 1 , . . . , n, 

where 9 is a {p — \)-vector and a > 0. Denote the joint distribution function of 

Y\,e,o- 's by Fg,a. Suppose that {9gy0.,ag<0-) is an estimator of the p-dimensional parameter 

{9, a) under Fg<a. The estimator p{9e,a,crgi„) of a parametric function p{9gia,agi0) is 
r\ A 

called location equivariant if p{9g+bit,,<jg+\^) = p{9gt„,agitr) + b, or location invariant 

if p{9g+0<(ricTg+f„tr) = p{9e,ot^$ia), for a^ (p — l)-vectors b. It is called scale equivariant 

if p{9ag,ao-,<ra9,ao-) = ap{9gi<T,agi0)) or scale invariant if p{9ag<aa,bag<aa) = p{96i„,ffgi<r), 

for all a > 0. 

D 
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Theorem 2.1 The Huber-type estimators (9gl0-,crgt(T) defined for our models are scale 

equivariant. In addition, 9gt„ is location equivariant, and agi<r is location invariant. 

Proof We need only to consider the multiple regression estimator. Recall that the 

score functions of the Huber-type estimator are in the form of 

W ^ ^ ) ^ i i ( ^ / ' ^ i = l P, /=l,...,n, 
^ ^ A 

for any design matrix X. Therefore by the definition of (O$.a,0ot<,), we have 

Yltg<(r - X( 9gt0 £*>< (-
/=i \ 

O~0,o ) • 

A 

Let {9ae+b,arj,<Ta0+b,a<r) be the estimator under Fag+b,a„. Then 

Ylia0+b,ao- — Xt 9ag+b,a<r ) 

1=1 \ 
0. 

<?a0+b,a<T 

Since 

Y,,ag+b,ao- = Xj{a9 + b) + acrei = aY,t$t, + Xfb, 

(2.1) 

(2.2) 

the system (2.2) implies that 

/ = i 

/ 

Yi,o,o- ~ %i • 
0off+6,oa — b 

O~a0+b,a 

= 0. (2.3) 

Comparing (2.1) and (2.3) gives 

9,a 
9a0+b,ao- ~ b <Ta0+b,atr 

and o-gia = , 

which imply in particular that 

A A A A 

9a9,aa = a9o,e, <Tae,a<r = a&O,ai 9g+b<t7 = 9gi<r + 6, Cg+bta = ^9,o 



27 

Corollary 2.1 The function 

p(9e,<,,V0,<,) = P\~ ) 

is location and scale invariant, or simply location-scale invariant. 

Proof It follows from Theorem 2.1 that 

,a - \ (9ag+b,a<r - {a9 + b)\ 
P[^a0+b,ac,O-ae+b,ao) = P\ 7 J 

\ O-aO+b.ao ) 

na9g<0. + b)-{a9 + b)\ 
\ ah,* ) 

= p{9gt„,agt„). 

D 

The last result is practically useful because it allows us to create location-scale 

invariant statistics for inferential purposes. This idea will be elaborated in Chapter 

4. From now on, the extra subscripts on the estimators will be dropped. Unless 

specified otherwise, the settings of these models and estimators will be clear from the 

discussion. 



28 

2.3 Asymptotic distributions 

When a new class of estimators is proposed, its general behaviour should be 

investigated. Very often, the asymptotic distribution is relatively easy to derive 

through, possibly, a central limit theorem. We can then use the result to obtain 

some asymptotic properties of the estimator, and when the finite sample distribution 

is not available, use it as a natural approximation. 

We discussed in Chapter 1 several asymptotic results for the M-estimator. In 

particular, Huber showed that under some general conditions (Huber, 1981, pages 

131, 132), the estimator is asymptotically normally distributed. We here demonstrate 

the results through a particular application. 

Consider the Huber-type estimator for our location-scale model. Define 

Yi-9 
ri ~ . 

a 

Recall that the score function for the estimator is defined as 

I *20-i)-/? J 
Therefore the matrices A and C in Theorem 1.2 are given by 

= E, 

1 
0-c 

"a* liYuv) 
drf 

-E, 
> 

Ic{ei 

. 2eilc{ 

n=vo. 

) 

ei) 

eilc(ei) 

2e?/e(d) . 

and 

C = Ej^Y^oW^rio)] 

= Ef 
tfc

2(£l) • c ( e i ) ( * f c i ) - f l 
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where 

UX) = 
f 1, if 

i 0, ot 
x\ < c 

otherwise 

If we assume that the random errors are symmetrically distributed about zero, 

the two matrices simplify to 

' E,[Uex)] 
= - ! ( 

(To [ 0 ° 1 
2Ej[e\Ic{ei)} J 

and 

{ * 
[•2(d)] o 

0 Ff[W{ci)-P)2} I 
So we have 

T\-l A-1 = {A1 T1 = -cro 
[ {Ej[Ic{ei)}}-' 0 1 

\ 0 {2Ef[e]Ic{si)}}-' J 

and 

A-AC{A1)-1=CTI{ 
{EAUei)}}2 

0 EAW{^)-P?\ 
4{E/[e?/c(£l)]}

2 

It follows from Theorem 1.2 that the location and the scale estimators are asymp­

totically independent. In addition, the asymptotic distribution of the location esti-
A 

mator 9 is given by 

For the multiple regression model, numerous asymptotic results exist for the M-

estimators under different conditions (see Huber, 1973, Yohai and Maronna, 1979, and 

Maronna and Yohai, 1981). In particular, Yohai and Maronna (1979) show that under 
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some general conditions our Huber-type estimator 9 has the asymptotic multivariate 

normal distribution 

6-N{^wB§ixTx)A- (2-5) 
As we can expect from the definition of the estimator, when c is set to infinity, 

the above distribution simplifies to 

N(90,*
2var{£l){XTX)-1), 

the asymptotic distribution of the least squares estimator. 

The two results (2.4) and (2.5) will be used in the numerical examples for com­

parisons. In addition, classical results suggest the possibility of replacing the normal 

distribution by a t distribution for a better small sample approximation. We will try 

this in our examples. 
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2.4 Approximation for joint densities 

Approximating the finite sample behaviour of a general M-estimator is not a 

trivial task. The boundedness of a score function improves the robustness of an 

estimator but at the same time makes it impossible to solve the problem analytically. 

Different approaches have been attempted to approximate the exact distribution. In 

particular, an important result was found by Field (1982) which we now present. 

Suppose that Yi,... ,Yn are independent and identically distributed random obser­

vations from an underlying density function /,,, where n is a p-dimensional parameter, 

F/'s may be univariate or multivariate. Field derived an approximation for the joint 

density function of a multivariate M-estimator r) of n under some regularity con­

ditions. Note that the conditions will be generalized to non-identically distributed 

variables in Chapter 3. 

Theorem 2.2 (Field, 1982) Ifr) represents the solution of 

f>,(r,,r))=0, j = 1 p, 
/=i 

then an asymptotic expansion for the density of r), say gri^o)) is 

9T(to) = ( £ ) 2 c-( to) {\det A\\det C\A + O ( £ ) } , 

where 

c_1(*o) = y exp\ *52<X](to)Vj(yu to)\f(yi)dyi, 

a ( M = {«i(<o),« • • >0p(M} IS the solution of 

J *j(yi , 'o) e xPJ5Z a j ( 'o)*j(»i» 'o)?/(»i)<i»i = 0 for j = l , . . . , p , 
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1<J1.J2<P 

c = {^J1(r1,<0)^2(y1,M]}1<JllJ2<P, 

and all expectations are with respect to the conjugate density 

% i ) = c{t0) exp < J3a,(<o)*j(yi,*o) \ f(yi)-

The error term holds uniformly for all to in a compact set. 

D 

The joint density approximation was applied to several cases in Field (1982) with 

excellent results. In particular, it was shown that when the approximation is applied 

to a multivariate mean, that is, 

*,(V/,»7) = ^ - % , 

for Yi = (V/i,. . . , Yip), the approximation is exact if the underlying density fv is 

multivariate normal, and is exact up to a constant if VJ's have a common Wishart 

density. 

The original arguments in the derivation of this joint density approximation re­

quire that the random observations to be independent and identically distributed. 

Field and Ronchetti extended the result to non-identically distributed observations. 

Specifically, they applied the approximation to a simple regression problem with un­

known scale parameter (Field and Ronchetti, 1990, page 72). As a special case, they 

showed that for the least squares estimator under a univariate normal density, the 

approximation agrees with the exact density up to the constant of integration. 

A= IE 
{• t)=«0. 
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The ideas in this technique motivate our present work in several aspects. However, 

for the reasons that we will discuss in Section 2.7, we are not going to implement this 

approximation for numerical comparisons. Instead, we summarize the approach into 

the following three-step procedure for general comparisons to our work. 

Consider the joint density of r) at tQ under fv. 

Step 1: A conjugate density function hto of fv is computed such that rj is centered 

at to in expectation under hto. 

Step 2: A multivariate Edgeworth expansion at zero is used to approximate the 

joint density of a Taylor series expansion of 17 — tQ under ht0. 

Step 3: The joint density approximation of 17 at to under hto is transformed to an 

approximation under fv. 
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2.5 Approximation for estimators 

In the last two sections, both a large sample and a small sample approach were 

given as techniques to solve our problem. In brief, the asymptotic distribution gives 

a simple but unreliable solution for the Huber-type estimator, while the small sample 

joint density approximation provides a better solution to the problem, but one which 

is much more complicated. In fact, the complications generate some computational 

problems which we will discuss later. 

While the accuracy of the joint density approximation encourages us to work on 

the finite sample behaviour, the computational difficulties suggest that we try to 

approximate directly the marginal distribution. In fact, there is a solution which has 

combined these two ideas. In this section, we present the work by Tingley and Field 

(1990) in which a linear approximation of a general M-estimator is given. 

Suppose that we have an independent and identically distributed sample Y\,.. .,Yn 

of m-dimensional observations drawn from a population with distribution Fv involving 

a p-dimensional parameter ri. The parameter rj has true value r)0. Let fj be an M-

estimator of rjQ, which is the solution of 

where the score function $ is p-dimensional. Note that the last system differs from 

the previous definitions by a factor of n_ 1 on the left hand side, which makes no 

difference at all to the solution. 

Under conditions similar to those in Field (1982), Tingley and Field (1990) showed 

that 

{V - m)k = Y, BkjVj + op I — ) , k= l , . . . ,p , 
i=i \ V n / 
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where 

«i = -E* i (y« ,W. ) . B = {fly} = -A" 1 , 
Ul=l 

and 

4 = £ fl«(K,i?) 
a?/1 

v=vo 

In addition, they showed in the same paper that for a general real-valued function 

p{fj), a linear approximation is 

f>«) - />(*) = G + "f BO • 
where 

1 n 

n / = i 

and 

G, = G(«,W,) = * T ( H . % ) B T ^ 
r/=T)o 

Therefore, we may use the distribution of G to approximate the exact distribution 

of p{rj). For example, consider p{rj) = 9 in our location-scale problem. Suppose that 

the random errors are symmetrically distributed about zero. Then from Section 2.3 

we have 

/ {E,[Ie(ei)])-* 0 
D = —A = (TQ \ 

\ 0 {2Ef[e]Ic{el)])-i 

Hence, 
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In particular, when c = oo, 9 is the arithmetic mean Y and G simplifies to Y — &o. 

So the approximation is exact. The derivation of the linear approximation for the 

regression estimator is similar. Details are given in the examples. 

In Tingley and Field (1990), the linear approximation is used as a basis for cor-

structing robust confidence intervals. The intervals for p{n) are obtained by inverting 

a test for the hypothesis H : p{n) = p0. Since r)o is generally unknown, they used 

the observed value rj0ba from the sample and compute an initial approximation GVoba 

of p{fj) under FVobi), and then apply an exponential tilt to force GT)oba to satisfy the 

hypothesis H. An application of this idea to our approximation will be discussed in 

Chapter 6. 

The linear approximation is originally derived for an identically distributed ran­

dom sample. Tingley (1992) extended the result to a general linear regression model 

and showed that the error of the approximation is o„(rc~2"). The result is useful to 

our present work. 
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2.6 Approximation for tail probabilities 

When the joint density function of a multivariate estimator exists in a closed 

form and we are interested in the marginal distribution of one of its components, a 

possibility is to integrate out the unwanted variables. We agree that this can be very 

accurate but it could be computationally difficult even for a low dimensional problem. 

An alternative is to approximate the multiple integral and avoid high dimensional 

integration. 

An example of the latter approach is given in DiCiccio, Field, and Fraser (1990). 

In that paper, an approximation for the marginal tail probability of a component in 

a random vector was derived. Later, DiCiccio and Martin (1991) applied the result 

to an approximation of a marginal density introduced by Tierney, Kass, and Kadane 

(1989), and developed an approximation to a real-valued function of the components. 

We now present the main result in DiCiccio and Martin (1991). 

Consider a continuous random vector rj = (fj\, . . . ,fjp) having probability density 

function of the form 

9${t) = c9At) exp{</2(0}» < = (tu • • •, tp). 

Suppose that the funcion g2 attains its maximum value at t = t.nax and that 

fl—tmax is Op{n~2) as some parameter n, usually the sample size, increases indefinitely. 

For each fixed t, assume that g2{t) and its partial derivatives are 0{n) and that gi{t) 

is 0(1). Now consider a real-valued variable p(fj), where the function p has continuous 

gradient that is nonzero at tmax. 

To calculate the marginal tail probability P(p{fj) < po), let tmax\po be the value 

of t that maximizes g2{t) subject to the constraint p{t) = p0. Moreover, let pmax — 
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p(tmax), so that p{fj) - pmax is Op{n 2) and tmax\Pmax = tmax. 

Consider the function 

r{p0) = sign{p0 - pmax) {2[g2{tmax) - 92(tmax\P0)]}
1, 

which is assumed to be monotonic increasing. 

An approximation to the distribution function of p{fj) based on normal approxi­

mations to the distribution of ft = r{p{fj)) is as follows, provided that p0 — pmax is 

0(n-*), 

P(p(v)<Po) = P(R<r0) 

= <&(r„) + 0(n-2) , 

where ro = r{po) and $ is the standard normal distribution function. 

DiCiccio and Martin proposed an adjustment to the approximation, which im-

proves the error to order 0(ra~5). Details can be found in their paper (1991). In 

addition, they showed that the approximation applies even if the joint density of rj is 

replaced by an approximation such that 

g^{t) = cexp{g2(t)}{\ + 0{n-2)} 

when t — tmax is 0{n~*), where c is a normalizing constant such that c exp{g2{t)} 

integrates to 1 + 0(n~2). 

Therefore, given the joint density approximation by Field (1982), we may apply 

this marginal tail area approximation to obtain the required probability. In Chapter 

3, we will elaborate this idea and establish a connection to our approximation. 
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2.7 Discussion 

In this chapter, we have introduced two models and two estimators for discus­

sion. The models and estimators will be seen again in our numerical examples. We 

have then presented several asymptotic results for the estimators, and the work on 

approximations by Field (1982), Tingley and Field (1990), and DiCiccio and Martin 

(1991), We now compare briefly the different techniques. 

When the asymptotic distribution of an estimator is available, it is possibly the 

simplest approximation for use. In some simple applications, for example the arith­

metic mean, the approximation indeed gives very reasonable results. However, the 

asymptotic results can be very disappointing in more complicated situations. We 

will give some examples in Chapter 4. In those cases, the approximation could be 

improved, for example, by some mean and variance adjustments, provided that the 

moments can be obtained. In general, the normal approximation works very well 

around the expected value of the estimator, and the rate of convergence of the esti­

mator is of order Op(n2"). 

On the other hand, the joint density approximation developed by Field has been 

shown in many situations to give very accurate results. The major obstacle in apply­

ing this technique is its computational requirements. At each point where the joint 

density is needed, a system of p non-linear equations must be solved, and a multiple 

integration is needed to obtain the required marginal distribution. While this is still 

manageable for low dimensional problems, it becomes impractical when the dimension 

is moderate or high. 

The technique developed by DiCiccio and Martin is not by itself a solution to 

our problem. However, when the joint density function or a good approximation of 
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it is available, the technique becomes a useful device to avoid the multi-dimensional 

numerical integration. Daniels and Young (1991) found that a direct application of 

Laplace's method in an integration could be unacceptably inaccurate, but this tail 

area approximation, while it has applied the Laplace method, gives very accurate 

results. Therefore, a good co-operation of this technique with the joint density ap­

proximation by Field may lead to a simple and accurate result. 

The linear approximation derived by Tingley and Field is clearly a nice result. It 

allows us to work directly on our marginal distribution problem. Numerical results 

show that in many cases it improves the asymptotic approximations. However, its 

distribution tends to be more 'normal' than the true distribution. This may be related 

to its nature as a mean of independent functions. Generally, the approximation 

provides very good approximation around the expected value of an estimator and 

becomes inadequate in the tails. 

To summarize, the normal approximation is simple to use and works well around 

the expected value. A linear approximation improves it but is still inadequate in 

the tails. The joint density approximation suggests that we work on the density of 

individual points but is too computationally demanding. Combining all these remarks 

is exactly the idea of our approach which we are going to present next. 



Chapter 3 

Approximation for marginal 

densities 

3.1 Overview 

In this chapter we derive an approximation for the marginal density of a compo­

nent in a general multivariate M-estimator. The result is generalized to a real-valued 

function of the estimator. Our approach is partly motivated by the results in Field 

(1982), and Tingley and Field (1990) (see Chapter 2). We now explain the back­

ground relationship among the three procedures. The technical connection will be 

clear in the development of our approximation. 

Our approach originated in Field (1982) where a very accurate approximation for 

the joint density function of a multivariate M-estimator r) is given. Although one 

may integrate the density approximation numerically to obtain the required marginal 

density, the substantial computational requirement makes it impractical even for a 

small dimensional problem. Tingley and Field (1990) used results in Field (1982) and 

derived a linear approximation G to a real-valued function of the estimator, say p(rj). 
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The problem is then reduced to one dimension and the computation becomes feasible. 

In spite of its simplicity, we will see in Chapter 4 that this single linear approximation 

may not provide a satisfactory approximation for the parts of the tail distribution of 

practical interest. Nevertheless, numerical results show that the distributions of p{fj) 

and G agree well near the expected value of p{fj). This motivates us to use G only for 

approximating the marginal density at the expected value rather than for the whole 

distribution of the function. We summarize our procedure as follows. 

Consider the marginal density of p{fj) at p0 under the joint density / . 

Step 1: An exponential tilt is applied to / such that under the joint conjugate 

density h, r) is centered at t0 in expectation and p{to) = po for some chosen t0. 

Step 2: A linear funct.on G = po + G of the score function $ is used to approxi­

mate p{rj) and give the marginal density of p{fj) at po under h. 

Step 3: The approximation of the marginal density under h is transformed to an 

approximation under / . 

In the next section, we define some general notation and state the regularity 

assumptions for our approximation. The main result is derived in Section 3.3. We 

discuss the errors of the approximation in Section 3.4, and propose some finite sample 

adjustments in Section 3.5. Finally in Section 3.6 we summarize the result and 

compare it with the techniques which were discussed in Chapter 2. In particular, 

we establish a technical connection between our approach and the tail probability 

approximation by DiCiccio and Martin (1991). 
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3.2 General notation and regularity conditions 

In this section we define some basic notation for our approximation and state 

the regularity assumptions for the development. We begin with a brief review of the 

general problem. 

Consider an independent random sample Y = (Vi, . . . , Yn), where V), / = 1, . . . , n, 

is m-dimensional and has a density function fi{yi) that is parameterized by t] = 

(//i,... ,7/p) € 0, C 3ftp. Denote the joint density function of V by /(j/), so 

/ ( v ) = n /»(»')• 
/=i 

Let rj = {rji,... ,rjp) be a multivariate M-estimator of r/, that is, rj solves the p-

dimensional system 

- £ > ( V i , r / ) = 0, (3.1) 

where ty = {^u,... , ^ P / ) , I = l , . . . , n . Note that in our location-scale model, W/'s 

are the same for all /, and in our multiple regression model, ty/ depends on / through 

the Ith row of the design matrix. 

The problem is to find an approximation for a marginal density of rj. We focus 

in this chapter on the derivation of an approximation for a real-valued function p 

of fj under // = r/o. The result includes p{rj) = fjk as a special case. In Chapter 5, 

we will extend the technique to approximate the joint density of a real-valued vector 

p(v) = {pAv),---,pk(fj)), k<P-

Define hitto to be a conjugate density of //, that is, 

hi,t0(yi) = ci{t0) exp I ^ajtyjAytito) \ f{{y,), I = 1 , . . . ,n, 

where 



44 

''(*o) = J explJ2a^jt{yht0)}fi{yi) dyu 

and o = ( a i , . . . , ap) is chosen so that for some fixed tQ = {t0i,..., top), 

Ehta -X>W,'o) 
n 1=1 

= o, (3.2) 

where hto is the joint conjugate density function o<" Y given by 

n 
ht0(y) = Tlhu0(yi)-

i=i 

Note that the dependence on t0 will be suppressed on both hi<to and hto. The choice 

of <0 is crucial to our approximation and will be discussed in the next section. 

Let 

8V 
jOl -Jo ) 

and 

*rj"(vi,v) = 

, o i - j . ) ( ^ ) = 

#7JI • • • #9* 

dr]n ... dn3v 

•^i(yhV) 

p(v) 

for 1 < j u . . . ,jv < p, / = 1, . . . ,n, and 

^ = 1 J J = I P 

By convention, we define 

« ! ° W ) = *i(yi,i/), *!,1-J")(y/,M=^"'Jw)(^,'/)| , , 

We now make eight regularity assumptions about the functions ty and p for our 

approximation. The assumptions are similar to those in Tingley and Field (1990) 
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with some minor changes and some adjustments in notation to accommodate our 

non-identical V/'s. A more general form and justifications of these assumptions can 

be found in Field and Ronchetti (1990). 

Al The system (3.1) has a unique solution rj. 

A2 The system (3.2) has a unique solution a for each to G fl. 

A3 The joint density of {S, rj) exists and has Fourier transforms which are absolutely 

integrable both under / and h. 

A4 For the m-dimensional V/'s, there is an open subset U C 3ftm such that for each 

?/ € H and / = 1, . . . ,n, 

(a) fuMyi)dyi = li 

(b) The derivatives 

M3l)(yi,i), Y ^ W , *!J,J2J3)G/M/) 

exist for 1 <ji,j2,j3 < P-

A5 For each compact K. C fi and / = 1 , . . . , n, 

(a) for 0 < j i , j 2 <P , 

sup% 0 [ (* i J l j 2 ) ( ^Mo) ) 4 ]<oo , 

(b) there exists a 8 > 0 such that for 1 < ji,j2,jz < p, 

sup Ehik 
|»)-eo|<0 

< 0 0 . 



A6 For each »/€*!, the matrices 

A(V) = {E^±*%){YUV) } 
1<J1.J2<P 

and 

CM = Ekb (l±ny„i))(l±m) 
are non-singular. 

A7 The functions A{rj) and 

Ei h\v (lp^\Y,,r,))(ipr\r,,v)) 
0 < ji,J2,ii,i2 < Pi ji -r J2 > 1, H + &2 > 1, are continuous on Q. 

A8 For each compact K C ft, 

(a) for 0 < i i , j 2 , i 3 < P , 

supb> i 2 j 3 )(7?) |<oo, 
»J6/C 

(b) for each t0 € /C, there exists a 8 > 0 such that 

inf uarfc)(0 
h-«o|<« ' 

•fili.,)(*-(,))'$S& dr/ 
>0, / = l , . . . ,n . 
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3.3 Derivation of the approximation 

In this section we derive our main result which is an approximation for the 

marginal density function of a real-valued function p of a multi-dimensional M-

estimator r). We follow the three-step procedure as outlined in Section 3.1. 

Assume that a centered conjugate density h is chosen under the requirement in 

Step 1. Note that the to in the condition is not specified yet. The choice of to is an 

important key to our approximation and will be discussed later in the development. 

The next step is to derive linear approximations for rj and p{fj). The construction 

parallels that in Field (1982) and Tingley and Field (1990). 

For 1 < j,ji,j2 < p and / = 1, . . . ,n, define 

*,/ = *J/(V
r,,*0), p3, = Eh[*3,}, * , = - £ > , / , p3-=Eh[^3], 

n /=i 

n 1=1 

*t»»> = *Jj"»>(tf,*o), p\3il32) = £ k [ ¥ j r t 

n i=i 

Recall from the condition (3.2) that for a given to, a is chosen such that p3 = 0 for 

j = l , . . . , p . Let 

* = (*„...,¥„), 

*0) = (*SJ),...,^)), ^> = ( r f ) , . . , # ) , 

*(nn) = {U[nl2\...,*P
JU2)), p ^ = {p\1,32),...,pv

n}% 

r = (*,*(1),...,*(p),*(n),...,*M), 
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yr = EhW\ = (o, P{i), • • •, P{PK P,UK • • •, PM). 

A two-term Taylor series expansion of (3.1) about to is given by 

o = -£>(*/,*/) nt=i 

= * + t(v - «o)i^°') + ^ E E « - MA « - <o);2 *
(iU2) + Op\fj - tQ\3. 

j=i i i = i j 2 = i 

The approximation we obtain is actually for p{T), where T = {Ti,...,Tp) is the 

solution of 

* + E ( T - Mi*(i) + j E E ( r - M* (r - t0)h*
ihh) = o, 

i = i z i i = i i 2 = i 

rather than for p{rj). 

At any fixed point Y = y = {yu...,yn), let t^/ = ^{yi,t0) for j = l , . . . , p , 

/ = 1 , . . . , n, and so on. Consider the system of equations 

q{V,t) =? + £ (<- toJi^ + J E E C - «o)i,(* - to)^Uih). 
j=i i i= iJ2=i 

Now, q maps 3ftp*+p into 3ftp where p* = p + p2 + p3. Since v4(£o) is non-singular by 

assumption A6 and 

q{p\ to) = 0 + JT{U ~ to)jP{3) + | E D o - to)h (to ~ to)hP
Uli2) = 0, 

J=l J!=1J2=1 

the implicit function theorem can be applied to prove the existence of a unique dif­

ferentiate function H{xj> ) , H : 9ftp* —* 3ftp, such that qffi, H{t[>*)) = 0 for rp* in a 

neighbourhood of p* and H{rp ) in a neighbourhood of to. It follows that T — H(W*) 

and 

q(T,H(T)) = T+ £(#(**)-Mi*01 + 



Jtt(^)-'oU//(*VM/ f t ) 

= o. 

We can now give a linear approximation for T. 

Lemma 3.1 

Tk = tok + £ * , £ * , + Op|«* - p*\2, k = 1,... ,p, 
J=I 

where B = {Bfcj}i<*:,.,<p = —/l-1(<o) fflW<^ ̂ e first term in the error is given by 

t™ = E E E * ; 1 ( * ! : L * ) ) \ ^ + 
J l = l J 2 = l J 3 = l 

5 t t*A t Bk33 t t BMJa^
H)Bnjl. 

13=1 J 2 = l 33=1 J « = l JS = 1 

Proof Expanding i/fc(Y ) in a Taylor series expansion about p* yields 

H„(T) 

= aw) + B * " - ^ ^ + 
J= l a*3 

\ E E (f - ».•)» <r - <)» ̂ & + oPi*- - „• p 
Jl =1 .72=1 31 32 

- * . < , • > + £ * , 5 ^ + ££<*?•-#« + 
J = l " * • » J l = l J2=l < * * „ 

5 E E £ E(*!f' - /.JrW - ' ! : " ) J S T + 
Z J , = l j 2 = l l , =1» 2 =1 d W j , CW t l 
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1 V V* Y^ V V^ V^* (- ,"3 ) _ i,(j2j3h/'W('2,3) _ ,.fo'3)\ " "k{p*) 
o 2^, 2^ l^ Z^ l^ 2 ^ V J I ht A * , , - PU ; a _ ( j 2 J 3 ) a _( , 2 , 3 ) 1-

J j = l J2 = l .73=1 » l = l »2=1 »3 = 1 

EEE^ ' -^ I^G + 

o ^ v ^ 2 J 3 ; o ^ V 

J = l «1=1 »2=1 

p p p p 

a*,d*!;2) 

EEEE(*7- *)(*!r' - ̂ (:2,3))f^2) + 
j = l « i = l t 2 = l «3=1 dv3dvl'2'3) 

J l = l J 2 = l «1=1 »2 = 1 «3=1 

o,\V-?\3, 
fltfjf'a*;, 

where 

5//fc(//*) a^*(**) 
dtf! dlT * =/!' 

and similar interpretations for the other partial derivatives. Recall from (3.3) that 

iO) 1 p p 
Ti70iJ2) 

J = l ^ J l = l j 2 = l 

r = 1, . . . ,p. We evaluate the partial derivatives as follows. For 1 < j < p, 

d% + ti 9Hk dH3 

implies that 

where I{T=3) 

simplifies to 

'<«,> + t Hk) + t(» - M . * H | f = 0, (3.4) 
1 if r = j and 0 otherwise. At {^f*,H) = (p*,t0) the system (3.4) 

{I<r=3)Ul p + { ^ } l < r , f c < p ^ ^ = 0 , 1 < j < P. 
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Recall that A = {/4^}i<r,fc<P
 a n d define B = — A ' . Solving the last system for the 

partial derivatives we obtain 

- w - -{-A }k3-Bk3. 

In a similar manner, it can be shown that the other first order partial derivatives van­

ish. Now, consider the second order partial derivatives. For 1 < j \ < p, differentiating 

the system (3.4) with respect to tyj2, j 2 = 1, . . . ,p, yields 

y ly™L^>k) BL + Jtf*> + f iH - to) *(3k)\ -£^h-\ = o 

At (*t ,H) = {p*,t0) the above system simplifies to 

YIYB u(sk)B, +u{k)d2Hk^\=0 
h\h S32"T fcJ,+/v d*3xd*J 

or equivalently, 

Wit )l<J3,fe<P \ tt Ofl f — — 1 2w 2 - ^J4J2 ^ 3 ^JBJI ( 
lOV3lUV32)k=l p ^ s = l , 4 = l Jj3 = l,..,p 

Solving the last system for the partial derivatives gives 

d2Hk(p*) _ A p p
 # >;s )o 

aTE AW ~ *-" kn *~> 2^ DiiK 0 3 DJSJI • 
" ^ J l " ^ J3 = l J4=U5=1 

Similarly, differentiating the system (3.4) with respect to W33 , 1 < j 2 , j 3 < p, yields 

I{~32} w;t
 + 

At (ty ,H) = {p*,t0) the last system simplifies to 
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{A'=J2}£*>Ji}r=l p + {/4fc)}l<r,fc<p —i33) = 0. 

Solving the last system for the partial derivatives gives 

d2Hk(p*) _ 

In a similar manner, it can be shown that all the other second order partial derivatives 

vanish. The result follows. 

D 

Note that the error term ej corrects some typographical errors in equation (5) in 

Field (1982). Now, consider the one-term Taylor series expansion of p{T) about t0 

p{T) = p{to) + (T - tQ)T{p'k\to)}k=i,...,P + Op\T -10\
2. (3.5) 

Applying Lemma 3.1 to approximate the difference T — t0 in (3.5) we obtain an 

approximation of p{T) i<$ 

p(T) « p(to)-r\ib%Bk3\ {p{k)(to)}k=i p 

= P(to) + ^-J:tlEP{k)(to)Bk3^3i(YiM- (3-6) 
n 1=1 3=1 fc=l 

We define G to be the right hand side of (3.6). A one-term Edgeworth approxi­

mation to the marginal density of G at po under h is given by 

9a\h{po) = 
\ 

1 (3-7) 
2™G\h 

where a^ is the variance of G under h, and the error is of order 0(n~5) (Esseen, 

1945, page 44). In order to improve the normal approximation, we center p{T) at p0 
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and therefore choose a such that 

Eh 
l-j:%(Yi,to) 
nj=t 

= 0 and p{to) = po- (3.8) 

It follows from the expansion (3.5) and Lemma 3.1 that 

P(T) - Po = lj:%Bk} + 0P\T - p*\2) {p{h)(to)}k=i P + Op\T - t0\
2. 

u = 1 J fc=i p 

Taking expectations on both sides under h, the sum in the right hand side expression 

vanishes, so that we have Eh[p{T)] = po up to the first order. It remains to choose 

t0 and to carry out Step 3 in the approximating procedure. The following centering 

lemma is required. 

Lemma 3.2 The marginal density of p{fj) at p0 under f and that under h are related 

by 

9APO) = | I I ci(to) \ Eh \exp j - £ a3S3 \ Piv) = Po 9hiPo), 

where 

S = {Si,...,Sp) = {J2*J'(Yi,t0)) 
^'=i J i = i P 

Proof Denote the joint density of {S, rj) under / and that under h by g/{s,t) and 

gh(s,t) respectively. Writing 

S = {Si{Y),...,Sp{Y)) and i) = {ih(Y),...yi)p(Y)), 

the moment generating function of {S, rj) under / can be written as 

Mj{u,v) = / exp\Y^ u383{y) + Y,v3t3{y) \f[fi(yi)dy 
Jy b=i i=i J /=i 

- ( P n v \ n 

= I explY, ui zZ *i'(w» to) + zZ vMy) \ U Mvi) dy-
Jy \j=i t=i j=i ) i=\ 
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'JE«i*i'(vi»<o)| 

- l 

Mfc(«7,«A), 

Recall that 

bi{yi) = c,{t0) exp I Y, «i*i/(y/»*o) > fi(yi), 

therefore by choosing (u, v) = (a 4- ry, iA) for some constants a we have 

Mj{a + 27, iA) 

= fexpl J > + 17),- £ *,7(yi, *o) + E i'A,-*i(y) 1 ft /<(y/) <fy 
Jy [3=1 1=1 i=i J f=i 

= ( f t c/(«o)| / exp I £ i 7 i £ *dVh to) + £ iA^ifo) 1 f[ h,(yi) dy 
l/=i J ^ b=i '=1 •»=! J '=1 

= j]W°)} 
where M/,(^7, iA) is the moment generating function of {S, fj) under h. Since both 

Mf and Mh are absolutely integrable by assumption A3, we can apply the Fourier 

inversion formula to obtain 

5/^' ̂  = ? 2 ^ jvL
exp\~7^UjSj ~ ? ^ I M/^U'u)rfu du' 

where the components of u and v are integrated along the path from w—ioo to w+ioo 

for some w. Choosing {u,v) = {a + ^7,iA) yields 

9^S'^ = T2^JxJ
exp\~2Z(a + i7)isJ-2ZiXA3\MAa + 

= \T[ci(to)\ expl-^ctjsA 

(27rW JX / exp I ~ ? i 7 j S j ~ ? i A j i j ' I M^'7'iX^ dl 

X 
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Integrating both sides of the last equality along p{t) = p0 gives 

9AS, Po) = \ I I c'(*o) > exp I - £ <*3S3 \ gh{s, p0). 

Integrating both sides again with respect to s, we obtain 

9Apo) = | I I c'(*o) | J exP \ ~ £ «J S J | 9k{s\po) ds gh{p0) 

and the result follows. 

D 

Note that we may encounter a situation in which the linear approximation for the 

estimator is exact. An example can be found in the next section. In that case, the 

joint density of {S, fj) degenerates and a slight modification is needed in the proof. To 

illustrate the idea, we assume that the linear approximation for (171,... ,rjq) is exact. 

Define S* = (S,+i>..., Sp). Applying an analogous argument we obtain 

gf{s*,t) = I j j c,{t0) > exp I - £ a3s3 \ gh{s*, t). 

It follows that 

gf{s,t) = lYlci{t0)\ expl-^ctjSj \gh{s,t) 

and we can proceed as before. 

Now, combining Lemmas 3.1 and 3.2 with the Edgeworth approximation in (3.7) 

yields an approximation to the marginal density of p{r)) under / , that is, 

- 1 

9f(Po) « if[Q(<o)} EK 
3=1 

P(T) = Po 
\ 

1 

1™G\h 

However, a direct evaluation of the conditional expectation in the approximation is 

not very attractive. We now show that some suitable choices of a and t0 will make 

the evaluation straightforward. 
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We need a total of 2p constraints to define the conjugate density h, that is, p for the 

a and p for the t0. The conditions in (3.8) specify p + 1 of them. For the relationship 

in Lemma 3.2, a desired situation would be when the conditional expectation 

Eh 

This is trivial if 

exP \ ~ L P(v) = Po = 1. 

j^ctjSj oc p{fj)-p0. (3.9) 
i=i 

Using G to approximate p{r)) and the definition of S, the proportionality (3.9) becomes 

n p n p p 

E E ^ ^ ^ . M « EEEp{k)(to)Bk^AY,M, 
1=1 j=l 1=1 j=l k=\ 

which is true if 

«i, £ P(k\to)Bkn = ah £ P(k\to)Bkjl (3.10) 
fc=l k=l 

for 1 < ji,j2 < p, which accounts for p — 1 constraints. 

We assume that at each point p{fj) = p0, the 2p constraints in (3.8) and (3.10) 

for choosing a and to lead to a unique solution, that is, the joint conjugate density 

function h exists and is unique. Justifications of the assumption will be given in 

Section 3.6. Now, putting the results together, we have the following. 

Theorem 3.1 Let p{fj) be a real-valued function of a multivariate M-estimator r) = 

{rji,..., fjp) which solves the system of equations 

-^X>(v^) = o, n1=1 

where ty/ = {^u,..., ^pi), and the V/'s are independent with densities fi{yi). If 

assumptions Al - A8 are satisfied, an approximation for the marginal density of p{rj) 
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at po under the joint density function f = fl/ fi l5 given by 

*M-{JWM} JsJ. 
where 

ci X(*o) = y ^ exp | £ ctjVjiijuM \ fi{yi) dy,, 

crG,h is the variance of 

G = ,(t0) + l t t t P(fc)(«o)̂ *„(*i, «o) 
n /= i , = i fc=i 

under the joint conjugate density function h = l\ihi, 

hi{yi) = ct{t0) exp 

a and to are chosen such that 

5>^<(sMo)| /»(»/)» 

Eh 
l-£HY,,t0) 
u 1=1 

0, p{to) = Po, 

^Ep{k)(to)Bk}2 = aj2J2pW{t0)Bk3i, l < j „ j 2 < P , 
k=\ fc=i 

and 

B=-A~l{t0), A{t0) = Eh 
lffl*i(^) 
n ^ ch/1 

T) = t0_ 

(3.11) 

In general, the approximation gp in (3.11) has to be normalized to give a total 

probability u1 one. Numerical results show that the normalization gives more accurate 

approximations. We define Gp to be the approximation for which the density at po is 

the normalized gP{po)-
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3.4 Errors in the approximation 

We have derived gp for approximating the marginal density gj of p{fj). In this 

section, we discuss the errors which are induced in the development and give some 

remarks on their overall effects. 

In the derivation of gp, we have basically applied two approximations. The first 

and perhaps n. ^re important one is to use the linear approximation G for the function 

P = P(v)- Writing 

Pn = Gn + Rn 

with the subscripts to emphasize the dependence to the sample size, Tingley and Field 

(1990) have shown that the error Rn is of order op{n~i) for identically distributed 

VVs, and Tingley (1992) has shown that the same result holds for multiple regression 

problems. We need to understand how the error affects the density approximation. 

Recall from Lemma 3.2 that 

- l 

9APo) = | ] W o ) } Eh exp < — ffiSn Pn = PO 9h(po) • 

In evaluating the conditional expectation and the marginal density gh(po), we have 

applied Gn twice. 

We first consider the conditional expectation. With the conditions in Theorem 

3.1 for choosing a and t0, we can write 

p 

5 3 ^ 5 , =dn{Gn- po), 
3=1 

where 

dn = na,-
n ELi P(kKto)Bkj 

, j = i , . . . , p . 
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Therefore 

Eh ^P { - 2^ CtjOj > Pn = po = Eh [exp{-dn{Gn - p0)}\ Gn + R* = p0] 

= Eh [exp{dnRn}\ pn = po] 

= Eh [ 1 + dnRn + 0 P ( d X ) | A» = Po] 

= l + Eh .°pS) Pn = PO • 

Writing 

9h(po) =9Gn\h(po){l +e„} , 

where gG„\k is the density of Gn at po under h, we obtain 

0/(Po) = j l l c ' ( * 0 ) f | l + f̂c O p ( - r ) p n = Po >9Gn\k(po){l+en}-

Unfortunately, the convergence of pn — Gn in probability generally does not give 

us a clue to determine the order of the expectation and en. The overall rate of 

error is still under investigation. However, for the limiting case with c = oo in our 

multiple regression model, we have the following result. (Note that in this case, the 

estimator rj is the least squares estimator and 9 is a linear combination of the random 

observations.) 

Proposition 3.1 For the least squares estimator 9k, k — 1 , . . . ,p— 1, of our multiple 

regression model, the linear approximation G is exact. 

Proof Let 

t \ Yl ~ x7d i i 
n(i?) = , / = l , . . . , n . 



The least squares estimator corresponds to the score functions 

^AYi,r]) = r,{n)Xi3, j = l,...,p-l, 

*AYhn) = r2{v)-f3 

Therefore to is the solution of 

1 ^ 

n 
5 3 ^ ( ^ 0 ) 1 ^ = 0, j = i , . . . , p - i , 
1=1 

-£Eh[r?{to)}-/3 = 0. 
ni=i 

Let r0 = (ri(^o), • • •, rn{to))- By definition we have 

A = 
1 

nt 
•Eh 

Op 

1 

nt, Op 

XTX XTr0 

2rQ
rX 2r^ro 

where the 'ast equality follows from the definition of t0, and 

ntQp{XTX)^ 0 

XTX 0 

0 2n/? 

B = 
0 tOp 

Let Gg = (Gi,. . .,Gp_i) be the approximation for 9 = {9\,...,9P 

{toi,.. .,top-\). For k = 1, . . . ,p — 1, we have 

n p 

n G* = <ot + - E E B * ; W - i o ) 
/ = ! J=l 

n /=1 J=l V f°P / 

or equivalently, 

Gg = t9 -r {XTX)~iXT{Y - Xtg) = {XTX)-lXTY 
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which is exact. 

• 

It follows that the proportionality (3.9) is exact under our choice of (a, t0) and 

therefore 

={n^o)}l 
gAtok) = \ U C'(M \ 9G\h{tok) 

from Lemma 3.2. 

We use linear approximations in the development and can expect the approxima­

tion to perform the best when p{rj) can be expressed as a linear combination of the 

score functions. The above result is a good demonstration. However, we mav also 

want to know what happens when the estimator is not a linear combination of the 

score functions. We now give an example to illustrate it. Consider the least squares 

estimator 

M-' ~ ^ • 
We have p(p)(*o) = 2t0p and therefore 

^ ^AYt-Xftg)2 

n/9 

which is simply a one-term Taylor series expansion of the true function and has an 

error of order op(n
-2") as expected. 

Besides using the linear function G in the development of qp, we use a one-term 

Edgeworth approximation for the density of G at p0, that is, 

9G\h(po) 
\ | 2™G\h 

1 
-f error . 
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We know from the discussion in Section 1.4 that the error is generally of order 

0(n"5). When the approximation is evaluated at the expected value, which is in our 

case, the error is improved to order of <9(n-1). This enables us to approximate the 

density accurately. For instance, applying a one-term Edgeworth approximation for 

the least squares estimator 9k yields 

,,(M = {ncKM)~'{g + o(i)}. 
Nevertheless, we need to point out that the density approximation for go\h(Po) is 

independent of the other steps in the process. Therefore if there exists a better 

approximation in a specific case, we can always replace the Edgeworth approximation 

with it. 



63 

3.5 Adjustments to the approximation 

In our approximation the centering procedure plays a very important role. Wc 

exploit the good performance of G around the center of T and use an Edgeworth 

expansion to approximate the density at the expected value. In Lemma 3.1, T is 

expanded aboti its mean Eh[T] under h. We approximate Eh[T] by to which is 

correct up to the first order in the expansion, but the result should be improved if to 

is replaced by a better approximation of the mean. 

Recall from Lemma 3.1 that a Taylor series expansion of Tk is in the form 

p 

Tk = tok + J2 q3Bkj + eTk + • • •, k = 1,... ,p, 
i=i 

where eTk is a function of BhJ2, p^h\ ^ ¥ J 2 and *,•, (tf£3) -/ijf]), 1 < ii,j2, j 3 < P-

Currently we approximate Tk — tok by ]Cj ̂ jBkj. A natural choice would be to replace 

t0 by 

ttt = to + Eh[eT]. (3.12) 

To implement the adjustment J^/Jey], we need to compute Bjl32 and the expected 

values 

E A ^ l Eh[*A] and E ^ ^ - ^)]. 

Since the random observations are independent by assumption and the expected value 

of ^jj equals zero by the condition (3.8), it follows that 

E * [ * J I * A ] = ^Eh 
n2 £(* i i* i - Nih) E(*ja<9 - N2I2) 

/ i = i ; 2 = i 

= Ai;^[(*i./-wi/)(*»/-Mi2/)] n2 
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n 1=1 

and similarly, 

Ekfo^ - p£])\ = -2 E{^[«i1i«S>] - ^ f i ' } -
n 1=1 

Note that B,U2 , p3i and / ^ , are required for our basic approximation, t' erefore to 

compute the adjustment, additional computations are needed to evaluate 

pjff3\ £?*[*;,,¥*!] and £?fc[*ili*g})], 1 < j i . ja . j s < P , / = l , . . . , n . 

Recall that the conjugate density /i depends on to so that a different adjustment is 

made for each to. This clearly increases substantially the computational requirement 

for the approximation. 

An alternative is to use a constant adjustment so that the adjustment needs to 

be computed only once for all to. For this alternative, a simple choice would be 

tfl = tQ + EI[eT}. (3.13) 

We will see that this constant adjustment is very useful in some situations. 

The above replacements are expected to give better approximations for the expec­

tations Eh[T] and Eh\p{T)\. The aim is to improve the approximation £M for i^[T] 

and also the approximation Eh[T] for £&[??]. A desired situation is when the differ­

ences Eh[T] — tp and Eh[rj] — Eh[T] are as small as possible. Since the expectations of 

T and rj under h are not yet available for small sample problems, a sensible approach 

would be to reduce the errors introduced in each step of the development. 

In the derivation, we applied Taylor series approximations which involve, directly 

or indirectly, expansions of the score functions. In general, the technique yields a very 
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good approximation around the point of expansion but not necessarily otherwise. To 

illustrate our point, consider an expansion of the Huber's score function for a simple 

location problem 

Vc{Y-0) « <l!c{Y-to) + 

d9 +'„_,.,, «^-»> 
* * 2 * ' ** o=tQ 

where tyc(r) = max{—c,min{c,r}}. The approximation on the right hand side is 

exact if \Y —10\ < c and |K — 9\ < c, and equals csign{Y - t0} if \Y — tQ\ > c. In the 

latter case the discrepancy between the approximation and the true value is 

csign{Y-to}-*c{Y-0) 

which has a maximum value of 2c. In order to obtain a better approximation for the 

expected value of the score function, we want to keep the expansion unchanged when 

it is exact and reduce the discrepancy wherever possible. With this objective in mind, 

we propose the following refinement for our examples. Consider ej — ti{^lc, ty'c, ty"). 

Let 

t, = to + Eh[eT(yjc, *'e/c, *: ' / , )] , (3.14) 

where Ic{x) = 1 if |x| < c and 0 otherwise. Therefore the expansion vanishes and the 

maximum discrepancy reduces to 

max\0-Vc{Y -9)\ = c 

in the region \Y — to\ > c. Note that this proposal is equivalent to the adjustment 

(3.12) when c is taken to be infinity. 

The adjustments (3.12), (3.13), and (3.14) will be implemented and compared in 

the numerical examples in the next chapter. Note that when to is replaced by t^, the 
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centering constraint p{t0) = po is changed to p{t».) = po and 

Mh) p{T)-pQ « (T-*„)- drf 

The details of their computation are given in Appendix A. 

Besides mean adjustment, one may also think of the possibility of reparameteri-

zation to improve the approximation. However, before considering this approach, we 

state an invariant property of our approximation. 

Proposition 3.2 Let rj* be a one-to-one reparameterization ofrj. Define 

%i = *AYhti), *;, = *,*(>!,•?(»?*)), j = l , . . . , P , Z = l , . . . , » , 

p = p(v), p* = p(n(v*))-

Denoted by fj and rj* the solutions of 

[ip"-0} and tiP" = 0} 
K ' = 1 '3=1 P *> ' = 1 ' ]=\ P 

respectively. Let p = p{rj), p* = piviv*))) and @ an^ @* be the linear approximations 

for p and p* respectively. At any point p* = po, we have 

9*P{po) = <?P(po), 

where g* and gp are the density approximations based on G* and G respectively. 

Proof The density of p at po is approximated by using 

G - * + *Vg 
T)=t0 
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where the expectations are computed with the conjugate density h and the (a, t0) 

satisfies the centering conditions stated in Theorem 3.1. We need to show that the 

G* for p* at po under h* is the same as the G for p at po under h. Choosing («*,<5) = 

(a,7?*(£o))i we show that h* satisfies the centering conditions. For j = 1,.. . ,p and 

/ = l , . . . , n , 

It follows that 

and 

* : 
V — 'o 

Eh* 
1 n 

. " /=1 •»•=«?. 
= £fc 

1 n 

»)=*0. 

= 0, 

P* l„.=e» = p(v(v*))v(v')=to = Po-

For the proportionalities, we have 

&lt J=t % ^ £i % A?* 

which implies that 

A* = E 

and 

av 
dr}* 

= E 
a * dr] 
dr) dr}* 

= AD 

- l _ rv-l 5* =-A*~' = D~lB, 

where 

D = 
dr} 

drf 
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Therefore 

^ dP{n) 
°J3J2 — a32 Z-* »„ 

r>=t0 J3=l U'lto 

B 3331 
7]=t0 

is equivalent to 

n V* dP^) 
;^i dr>33 

which can be simplified to 

P MV(V')) 

Z^-KjBkj2 -a32 2^ 
, ,=t 0fc=l "'/fc ,3 f̂ l Hs ^fcjAS" Bk» 

°*£ H Bk]2 = «» z . dn. 
„•=« /t=i ^ «l'=«S 

Bk3t-

This implies that (a, r}*{t0)) satisfies the required centering conditions. Hence, the 

uniqueness of h* allows us to conclude that h* = h. To complete the proof, we can 

write 

*7*D.T0P* G* = » + •*• tA* = po + VB'D T ^ D ^ n - l ^ / , , 

^ 

= G 

by realizing that 

DT7T or} = M dp\ 
dr} 

1)=to 

dp* 
dr}* v'=t' 

The result now follows. 

D 

Hence, any attempt to improve the approximation by reparameterizations will not 

be successful. On the other hand, if a reparameterization simplifies the computation, 

we can always apply it without worrying about the cost in the accuracy. 
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3.6 Discussion 

In this chapter, we have derived an approximation Gp for the general problem as 

stated in Section 3.2. We have shown how the approximation is technically related 

to the work by Field (1982) and Tingley and Field (1990). We now give a general 

comparison of the three approaches. 

Since both G and Gp originated in the work of Field, we will not be surprised to 

see that they share many similarities. In fact, the initial developments of the three 

approaches are almost the same. The first step is to approximate an M-estimator rj 

via a Taylor series expansion of the system where rj is implicitly defined. After that, 

the three procedures are developed differently. 

Tingley and Field use the first term of the expansion to construct robust confidence 

intervals. The objective of their work is not to approximate the marginal density of 

an estimator. Nevertheless, they derived a linear approximation G for a real-valued 

function p{rj) and showed that the error is of order op(n~2"). Their idea will be 

discussed further in Chapter 6. 

Field established the critical link between the joint density under / and that under 

a centered h. This allows him to focus on the central density approximation. His 

work involves the second term in the Taylor series expansion. The performance of the 

approximation has been shown in various applications to give very accurate results 

(see Field, 1982, Field and Ronchetti, 1990). 

Our work is partly motivated by the link derived by Field. We found that a similar 

link exists between the marginal densities under / and a carefully chosen h. We can 

then enjoy the good performance of a central density approximation and at the same 

time reduce a multi-dimensional problem to one dimension. 
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In terms of computational effort, the approach using G is the simplest one. The 

major effort goes into the evaluation of its distribution. For this purpose, Tingley and 

Field applied a dev'ce by Lugannani and Rice (1980) and obtained very satisfactory 

results. On the other hand, the work of Field requires a high dimensional integration. 

At each point where the joint density is computed, the expectations of some first and 

second order partial derivatives are needed and a system of p non-linear equations 

must be solved. Our work does not require the expectation of any higher order partial 

derivative. In addition, we reduce the problem to one dimension. However, at each 

point where the marginal density is to be approximated, a system of 2p non-linear 

equations must be solved. Compared to the approach by Field, our approach reduces 

the dimension of integration but increases the size of the non-linear system. This 

trade off will be discussed further in Chapter 5. 

To conclude this chapter, we present a connection with the probability approxi­

mation derived by DiCiccio and Martin (1991). When the joint density function of 

a multivariate M-estimator is available, we can use results of DiCiccio and Martin 

to obtain a marginal distribution approximation. We now establish a relationship 

between the two approaches. Denoting by g${to) the joint density function of fj, Di­

Ciccio and Martin (1991) have derived an asymptotic approximation of P{p{r)) < po) 

when 

9f\{to) oc0i(*o) exp{g2{t0)} 

satisfies some general conditions. In their approximation it is required to locate the 

maximum of g2{t0) subject to the constraint p{t0) = po- Taking gr{to) in Theorem 

2.2 as an approximation of ^(<o)» the part of the approximation corresponding to 

g2{to) would be 
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i=i 

Define the Lagrangian 

5><7{cr,(*0)}. 

Wo, A) = £ log {c^{t0)} + \{p{t0) - Po) = 0. 
/=i 

Differentiating L with respect to to yields 

dL{t0,\) 
^o~~ " S C ' ( 0 ) i l " ^ 0 ~ * ( j / " < 0 ) + dt0

 a{to)jX 

exp{ar{to)^{yhto)}fl{yl) dy, + X ^ -

= 0. 

Applying the definition of h, the last equation simplifies to 

nAT{to)a{tQ) + A ^ l = 0 

which is equivalent to our conditions for the proportionality stated in Theorem 3.1. In 

other words, the two approaches are using the same piece of information. In addition, 

it shows that our assumption of the existence of a unique h is equivalent to that g2{to) 

is conditionally unimodal subject to the constraint p{t0) = po-



Chapter 4 

Some applications 

4.1 Overview 

In this chapter, we demonstrate the performance of Gp through some numerical 

examples. Specifically, we apply the approximation to the models and estimators 

which are defined in Section 2.2. 

The distributions of Gp for p = p{rj) are eva'uated by numerical integrations of the 

density approximation given in (3.11). In the multiple regression example, the three 

adjustments proposed in Section 3.5 are implemented. Replacing ô by t^ in (3.12), 

(3.13) and (3.14) for the expectation Eh[T], we denote the adjusted approximations 

by Cpi, GP2 and Gp$ respectively. 

For comparison, we simulate the true distributions and compute the asymptotic 

distributions of the function p. In addition, we examine how a linear approximation 

for p performs. Specifically, we consider the distributions of the linear function G 

under / . The asymptotic approximation and the linear approximation are denoted 

by pasy and Gj respectively. In our examples, the distributions of p and Gj are based 

on 100,000 simulations. 

72 
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Basically, we examine the performances of the approximations for the location-

sea!," and the multiple regression problems under four error distributions, namely, 

the standard normal {Z), the standard t with three degrees of freedom (£3), a con­

taminated normal {CN = -9Z + .lAf(0,100)) and the standard Cauchy {t\). These 

represent a wide range of distributions from both theoretical and practical point of 

view. 

To generate the numerical results, we rely on two computer libraries, namely, NAG 

and ROBETH. Specifically, for the simulations, we call the subroutines G05CAF, 

G05DDF, and G05DJF in NAG to generate uniform, normal, and t random numbers 

respectively, and then the subroutines LYHALG and RYNALG in ROBETH to solve 

for the location-scale and the multiple regression estimates respectively. For our Gp, 

we basically use the subroutine C05NBF in NAG to solve the non-linear system for 

the required a and t0, and the subroutine D01AJF, also in NAG, for one-dimensional 

integrations. 

In Sections 4.2 and 4.3, we derive specific formulae for the approximations for the 

location-scale and the multiple regression problems respectively, and comment on the 

individual results. A general discussion on the approximations is given in Section 4.4. 

The discussion includes an application of Gp to a Mallows-type estimator. The result 

can be used as an indicator for further studies. Finally, Section 4.5 summarizes the 

numerical results which are generated in Sections 4.2, 4.3 and 4.4. 
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4.2 Case 1: Location-scale 

This section considers the location-scale problem which is defined in Section 2.2. 

Recall that the location-scale model is 

Yi = 9 + <T£/, / = 1, . . . ,n, 

and the score functions are 

¥«w, v) = *c ( ^ ) , *2/(vi, v) = *2 (p-r) - P-

Due to the equivariance and the invariance of the estimators, the choice of rjo is 

not important. In the simulation, we take {9o,a3) = (0,1). Therefore, the asymptotic 

result of 9 in (2.4) gives 

where /c(x) equals 1 if |a;| < c, and 0 otherwise. For the reason we will see immediately, 

we choose c = 1.345. With this choice of c, the asymptotic variance of 9 is 

/ . 

EAn^i)} 
{EAh{ei)\}2 

Z £3 Cyv ^i 

1.0526 1.5565 1.4351 2.8425 

and therefore the asymptotic efficiency of 9 relative to the arithmetic mean Y under 

Z is .9500. Denoting the standard normal distribution and density functions by $ 

and if respectively, we choose 

p = J°° *2(r) d${r) = 1 - 2 {c<p{c) + (1 - c2) $ ( - c ) } 

so that 
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Ev[*c(Yi)]=0 and EM(Yi)-(3} = 0, 

and therefore the estimator rj = {9,a) is Fisher consistent (see Hampel et al., 1986, 

page 102). In addition, when c = oo, we have /? = 1, and 

a2 = ^±{Y,-Y)2 

nl=l 

is the maximum likelihood estimator of a2 under Z. For our examples, we have 

^ = .7102 withe =1.345. 

We have p = 2 parameters to be estimated. To demonstrate the performance of 

the approximations for small samples, we take sample sizes n of 10 and 20, which 

give the ratio p : n of 1 : 5 and 1 : 10 respectively. 

With the above setting, we evaluate the quantiles for the estimators 9, a and their 

approximations pasy, Gj and Gp. Recall that the basis of Gj and Gp is the linear 

function G = p{t0) + G for some chosen t0. Details for G can be found in Section 2.5. 

For our present setting, we have 

g / ^ L / / / M*c(r/) for p = 9 n j=? EAh{rA\ 

and 

where r; = t~lYi and t0 = {tg,ta) = {0,ta) satisfies the condition (3.8) under / . Note 

that ta does not equal to CJQ in general. Numerical results are reported in Tables 4.1a 

and 4.1b for 9, Tables 4.2a. 4.2b and Figures 4.1a, 4.1b for a in Section 4.5. We use 

different vertical scales for Figures 4.1a and 4.1b to give better comparisons between 

Gj and Gv under different error distributions. 
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A 

Consider the performance for 9. The three approximations show basically no 

difference when the data are normally distributed. Table 4.1a shows that all three 

approximations give excellent results under Z even when the sample size is just 10. 

When n is increased to 20, the approximations, except for very small discrepancies 

found in Gj, match the true distribution perfectly. 

The situation is slightly changed under £3. Generally, 9asy and Gj behave more 

or less the same. When n = 10, they both give good approximations up to about the 

ninety-ninth percentile but show larger inaccuracies farther out in the tails. When 

the sample size is doubled, the two approximations are improving, but some signs 

of inadequacy can still be found. On the other hand, Gp provides very accurate 

approximations when n = 10 and is almost perfect when n = 20. Nevertheless, the 

overall differences among the three approximations are not yet very significant. 

When we go to Table 4.1b, the difference becomes obvious. The numerical results 

under C/v show that 9asy and Gj are very much alike. They work reasonably well 

up to the ninety-fifth percentile and the discrepancy grows dramatically thereafter. 

Increasing sample size does help and makes the two approximations more acceptable. 

With such a strong contaminated distribution, Gp still works very well even in the 

tails. There are slight discrepancies found in the far ends of Gp, but the approximation 

is still satisfactory. 

Finally, from the results under t\, the performances of all three approximations 

become distinguishable. The inadequacy of 9asy shows up in the interquartile range 

and never catches up to the true distribution. Gj on the other hand is very accurate 

at least within the interquartile range when n = 10 and up to the ninetieth percentile 

when n = 20. On the other hand, the performance of Gp is consistently good and 
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very similar to that under CV 

We now consider the performances of the approximations for b. We have demon­

strated the performance of the asymptotic approximation for a symmetric estimator, 

9. For an asymmetric estimator such as b, we do not expect that the asymptotic 

normality will be able to compete well. In fact, the numerical results show that the 

true distributions of b are generally highly skewed to the right and are nowhere close 

to a normal distribution. In addition, Gj has shown its superiority over 9aay. For 

these reasons, we consider only the performance of Gj and Gp. 

From the results in Tables 4.2a and 4.2b, we can see that the performance of Gj 

and Gp for b is very similar to that for 9. Rather than give detailed comments for 

each density, we summarize the overall results and make some general comments on 

the approximations. 

We observe that the distributions of b are increasingly asymmetric in the order 

of the underlying distributions Z, t3, CN and t\. Both Gj and Gp give very good 

results under Z. In addition, Gp provides consistent approximations under all four 

error distributions. 

Generally, G< works well around the center but tends to generate more symmet­

ric and shorter distributions than b. In the extreme case when the error is under 

t\, Gj has approximately one percent of distribution located on the negative region. 

This is possibly caused by using only the linear term in a Taylor series expansion for 

approximation. Gv generally improves a lot from Gj and from n = 10 to n = 20. Nev­

ertheless, we observe that there are some discrepancies between the approximations 

and the true distribution. We use some diagrams to illustrate the situation. 

Figures 4.1a and 4.1b consist of some QQ-plots for QG,, QGP
 and Q„, the quantiles 
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of Gj, Gp and b respectively. Specifically, it gives QQ} — Q& versus Q& and QQP — Q$ 

versus Q& when n = 10. In brief, Gj captures the shape around the center and Gp 

gives in addition consistent approximations up to at least the median. The consistent 

discrepancy between the distributions of b and Gp suggests that a small adjustment 

to the centering constraints may be useful. We postpone such an adjustment to the 

next example. 
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4.3 Case 2: Multiple regression 

We have demonstrated the performance of Gp and other approximations in a 

location-scale problem, we now consider a non-identically distributed situation. Recall 

from Section 2.2 that the multiple regression model is 

Yt = Xj9 + aei, / = \,...,n, 

where X is an n by p — 1 fixed design, and the score functions are 

* , ! ( * , * ) = * c ( * ~ * , T ' JXij, j = l,...,p- 1, 

For this example, we arbitrarily take 90 = (1,1,-1,2) and aQ = 1. In addition, 

we set n = 20 and p = 5, which gives the ratio of n to p of 4. The design matrix 

X = Af2ox4 is generated from a uniform distribution U{0,1) except for the first column 

which equals l's such that 

diag {{XTX)~1} = (.56, .62, .61, .51) 

and 

diag{x{XTX)~lXT} = (.19, .20, .31,.17,.15,.12,.17,.16, .22, .32, 

.22, .22, .07, .24, .11, .27, .24, .23, .19, .22). 

By using the rule of thumb 2(p — l)/n (see Hoaglin and Welsch, 1978), which equals 

.4 in our case, we do not have any obvious potential influence points in the design. 

Lastly, with similar reasons as in the last example, we choose c = 1.345 and 
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n J-oo 
5681. 

From the asymptotic result of 9 in (2.5) and the diagonal A {XTX)~X above, we 

see that the asymptotic behaviours of 9k, k = 1, . . . ,4, are very similar. Numerical 

comparisons are based on the estimators 93 and b. In particular, we have 

9. 3asy N („ Ejmei)} /yTyi-A 
r°'{^[/c(£i)]}2( )33J' 

where Ic{x) equals 1 if |x| < c, and 0 otherwise, and the variance of 93asy is given by 

fe 

£/[*2(ei)] ( Y T Y ) - I 

{Es[Ic{e,)])2 

Z 

.6435 

3̂ CN U 

.9516 .8774 1.7378 

For the distributions of Gj and Gp, we need the linear approximation G. The 

construction of it is similar to that for the location-scale problem. For instance, 

consider the approximation Gj for $3. Under our setting, to = {9o,t,j) that satisfies 

the condition (3.8) under / , 

1 
A = 

nta 
-Et 

XTDX XTDr 

2rTDX 2rTDr 

1 
nta 

XTEf[D]X 0 

0 2Ef[rTDr] 

anc 

B = nt„ 
{XTEJ[D]X}-1 0 

0 {2Ef[rTDr]}-1 

where r = ( r 1 ? . . . , r„), D is an n by n diagonal matrix with diagonal elements Ic{ri), 

^ - Xf9o 
n = 

:, / = !,. ,n. 

Therefore we have 
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Gj = 03O + £ : 5 > {XTES[D]X}~] *c{r,)X,3, 
i=i j=i 3 

Table 4.3 summarizes the numerical results for 93 — 93o- In general, the situation is 

very similar to, but slightly more contrasting than that in the location-scale problem. 

All three approximations 93asy, Gj and Gp give excellent results under Z. Gj and 

93aay behave very much alike under t3 and CN- Basically, both of them provide very 

good approximations under £3 except in the tails, but quite unacceptable results under 

CN and t\. Nevertheless, Gj seems to be marginally better than 93aay. In addition, 

Gj presents some definite advantages over 93aay around the center under t\. 

On the other hand, Gp works consistently well under ^3. Under the last two 

distributions where Gj deviates substantially from the true distribution, Gp reduces 

the discrepancy by approximately two thirds and generally gives us a fair idea of the 

true situation. We realize that there is room for Gp to be improved. For the next two 

estimators, we implement the proposed adjustments from Section 3.5 and determine 

if they are helpful. 

Tables 4.4a and 4.4b summarize the quantiles of the true distribution and the 

approximations Gj, Gp, Gp\, Gp2 and GP3 for b. Basically, Gj and Gp behave more 

or less the same as their counterparts in the location-scale problem. G'pi impioves 

the approximation around the center but distorts in the tails. Gp2 works extremely 

well under Z and very well under £3. It improves the approximation a bit on one end 

and distorts it a bit on the other end under CN and t\. Compared to Gp2, Gp3 is 

more consistent. It always improves the low end and distorts the other end. Based 

on these results, we do not claim to have found a reasonable adjustment in general. 

Nevertheless, the benefit of using these adjustments is clear in the following practical 
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situation. 

Recall that we have shown in Section 2.2 that the function 

,«•> /#3--03o\ 

P(V) = P [ — — J 
is location-scale invariant. Therefore, a statistic of this form can be used for inferential 

purposes. For instance, a commonly used non-linear function of this form for making 

statistical inferences on 93 is a studentized version of 93, that is, 

where 72 is the variance of 93asy. Now paay has the standard normal distribution. In 

addition, we may expect from the classical theory that a t distribution will give better 

approximations than paay. We evaluate the t distribution with sixteen degrees of 

freedom and denote it by ptl6 for comparison. For our Gp, the derivation of the linear 

approximation G for the non-linear ratio is similar to the previous constructions. We 

leave the details to the next section where a more general situation will be considered. 

Tables 4.5a and 4.5b report the tail areas for the function p and the approxima­

tions. In brief, paay gives fair approximations under Z and conservative results under 

other distributions. In contrast with what we think, ptl6 gives an improvement over 

paay only for the case under Z. In general, it gives even more conservative results than 

paay. Field (1982) observed that the t distribution with a reduced degree of freedom 

can give a better agreement with the true distribution. 

For the performance of Gp, it generally gives rough but consistent approxima­

tions. Gp\ improves the approximation around the center. Gp2 works very well under 

Z, improves the approximation around the center under t3 and CN, but is getting 

worse under t\. Gp3 consistently improves the approximations under all four error 

distributions. 
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Figures 4.2a and 4.2b plot Lapprox — Lexact versus Lexact for the distributions from 

Tables 4.5a and 4.5b in logistic scale. This provides a better picture of their perfor­

mances in the tails. In brief, the plots show the general inadequacy of the asymptotic 

results and the overall accuracy of Gp and its variations. 

Comparing the performance of Gp for b and that for the studentized J-ratio, it 

seems quite clear that the unknown scale is a major problem and supports our effort 

for improving the approximations for b. Moreover, it is probably more important to 

get b correct in the lower tail. 

To conclude, if we use the studentized ratio for testing a hypothesis under Z, 

Gp2 is the simplest one and gives the best approximation among the three variations. 

However, if our objective is to study the behaviour of the ratio, Gp3 would be a 

sensible choice since it gives more stable approximations. 
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4.4 Discussion 

From the numerical results of the two examples, we find that 9aay is an excellent 

approximation under Z and reasonably accurate under £3. Gj is at least as good as 

9aay and in some situations demonstrates its superiority over the latter one. In the 

worst case, that is under t\, Gj still provides a very accurate approximation around 

the expected value, which is exactly what our Gp is built upon. Gp provides excellent 

approximations for 9 under all four error distributions and no adjustment is needed 

at all. For the studentized t-v&tio, the t distribution works very well under Z but it 

becomes inadequate under the other distributions. Gp is consistent but the numerical 

approximations deteriorate as we move out into the tail. We have proposed some 

adjustments and have demonstrated their usefulness. 

To summarize, when the distribution of a simple estimator such as 9 under Z is 

needed, the asymptotic result is undoubtedly the best choice. It is simple and accu­

rate. Otherwise, if only the central distribution is what we need, such as constructing 

a confidence interval with a moderate level, say 80% or 90%, Gj can be used to give 

reliable results over various underlying distributions. However, if the tail distribution 

is our main concern, or if we need to study and compare the behaviours of different 

estimators, Gp is clearly the best alternative among the three. 

To conclude this chapter, we give a simple example to demonstrate the consistent 

performance of Gp in a more general problem. The problem is similar to our second 

example. We replace the Huber-type score functions by the Mallows-type ones using 

the optimal standardized weight Wi (see Hampel et al., 1986, page 321), / = 1 , . . . , n. 

The score functions are 
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VAYhV) = *c (Y' f ' 6 ) X,3Wi, j = l , . . . , p - 1, 

%i{Y,,r,) = * Y-X[f Wi-fl. 

Consider Gj for the studentized i-ratio. For the construction of G, we have basi­

cally the same matrices A and B as for the Huber-type estimators, except that the 

diagonal elements of D are now replaced by /c(ri) 147/, / = 1 , . . . , n. Since 

f 

we obtain 

dp 
d93 

1 dp 
do-

93o — 9, 30 — P30 

»)=(o 1*1 
= 0, 

n p -1 

7 /=i J = i 

We compute the distributions of the ratio under Z for two designs. The first 

design has 

diag{X{XTX)~lXT) = (.25, .28, .24, .23,.19,.17, .25,.18,.12,.15, 

.18,.19,.21,.09,.36,.10,.16,.23, .24, .19). 

The second design replaces the first two points in the first design to produce influence 

points and has 

diag {X{XTX)~1 XT) = (.88, .12, .24, .24, .06, .11, .34, .06, .07, .15, 

.11, .07, .17, .09, .46, .10, .17, .27, .08, .20). 

The weights corresponding to the first and the second designs are 

W = (.84, .85, .97, .95,1,1, .89,1,1,1,1,1,1,1, .71,1,1, .97,1,1) 
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and 

W = (.10, .31, .85, .75,1,1, .64,1,1,1,1,1, .88,1, .55,1,1, .75,1, .97) 

respectively. 

Numerical result- are summarized in Table 4.6. Basically, the performances of 

the approximations are very similar to those for the Huber's case. In other words, 

the asymptotic results are still inadequate, and Gp and its variations still perform 

consistently well. Auding influence points does not seem to have too much effect on 

their performances. This encourages us to study the approximations further. 
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4.5 Numerical results 

Table 4.1a 
A 

Location-scale: Quantiles for 9 

n = 10 n = 20 

F_ 9 9aay Gj Gp 9 9aay Gj Gp 

Z 

.22 

.42 

.53 

.63 

.75 

.83 

.89 

.97 

.22 

.41 

.53 

.63 

.75 

.83 

.91 

1.00 

.15 

.29 

.38 

.45 

.53 

.59 

.64 

.71 

.15 

.29 

.38 

.45 

.53 

.59 

.64 

.71 

.15 

.29 

.38 

.45 

.53 

.58 

.64 

.70 

.15 

.29 

.38 

.45 

.53 

.59 

.64 

.71 

is 
.75 

.9 

.95 

.975 

.99 

.995 

.9975 

.999 

.27 

.53 

.68 

.83 

1.01 

1.15 

1.28 

1.44 

.27 

.51 

.65 

.77 

.92 

1.02 

1.11 

1.22 

.27 

.52 

.66 

.79 

.93 

1.02 

1.10 

1.20 

.27 

.52 

.67 

.82 

.99 

1.12 

1.25 

1.42 

.19 

.37 

.48 

.57 

.69 

.77 

.85 

.94 

.19 

.36 

.46 

.55 

.65 

.72 

.78 

.86 

.19 

.36 

.47 

.56 

.66 

.73 

.79 

.88 

.19 

.37 

.47 

.57 

.68 

.76 

.84 

.94 

.75 

.9 

.95 

.975 

.99 

.995 

.9975 

.999 

.22 

.41 

.53 

.63 

.75 

.83 

.90 

.99 

.22 

.42 

.53 

.64 

.75 

.84 

.91 

1.00 
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Table 4.1b 
A 

Location-scale: Quantiles for 9 

n = 10 n = 20 
F_ 9 9asy Gj Gp 9 9asy Gj Gp 

CN 

.75 

.9 

.95 

.975 

.99 

.995 

.9975 

.999 

.26 

.51 

.67 

.83 

1.06 

1.35 

1.91 

2.77 

.26 

.49 

.62 

.74 

.88 

.98 

1.06 

1.17 

.26 

.49 

.63 

.74 

.88 

.97 

1.05 

1.14 

.25 

.49 

.64 

.78 

1.03 

1.36 

1.82 

2.54 

.18 

.35 

.45 

.55 

.67 

.76 

.85 

.99 

.18 

.34 

.44 

.53 

.62 

.69 

.75 

.83 

.18 

.35 

.45 

.53 

.62 

.69 

.75 

.82 

.18 

.34 

.45 

.54 

.65 

.73 

.81 

.94 

u 
.75 

.9 

.95 

.975 

.99 

.995 

.9975 

.999 

.42 

.90 

1.28 

1.71 

2.41 

3.08 

3.95 

5.28 

.36 

.68 

.88 

1.04 

1.24 

1.37 

1.50 

1.65 

.43 

.81 

1.03 

1.22 

1.44 

1.59 

1.72 

1.88 

.42 

.90 

1.28 

1.70 

2.38 

3.00 

3.75 

4.99 

.30 

.60 

.81 

1.03 

1.32 

1.55 

1.80 

2.15 

.25 

.48 

.62 

.74 

.88 

.97 

1.06 

1.17 

.30 

.57 

.73 

.87 

1.03 

1.14 

1.23 

1.36 

.30 

.60 

.81 

1.02 

1.30 

1.54 

1.78 

2.14 



Table 4.2a 
Location-scale: Quantiles tor b 

n=10 n=20 
F b Gj Gp b Gp 

_ 

.30 

.39 

.44 

.58 

.66 

.99 

1.35 

1.46 

1.67 

1.75 

1.92 

.43 

.51 

.55 

.66 

.72 

.96 

1.22 

1.29 

1.44 

1.49 

1.61 

.46 

.54 

.58 

.69 

.76 

.99 

1.25 

1.32 

1.47 

1.52 

1.64 

t3 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.28 

.37 

.43 

.59 

.69 

1.11 

1.71 

1.91 

2.37 

2.56 

3.03 

.17 

.28 

.36 

.57 

.69 

1.18 

1.71 

1.86 

2.14 

2.24 

2.45 

.33 

.43 

.48 

.64 

.74 

1.17 

1.76 

1.96 

2.42 

2.61 

3.06 

.49 

.58 

.62 

76 

.83 

1.15 

1.55 

1.68 

1.96 

2.08 

2.34 

.51 

.60 

.65 

.78 

.86 

1.18 

1.57 

1.71 

1.98 

2.09 

2.33 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.25 

.34 

.38 

.51 

.60 

.92 

1.29 

1.40 

1.61 

1.69 

1.87 

.27 

.36 

.41 

.56 

.65 

.99 

1.36 

1.47 

1.67 

1.74 

1.89 



Table 4.2b 
Location-scale: Quantiles for b 

n=!0 n=20 

F 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

b 

.28 

.37 

.42 

.57 

.67 

1.07 

1.66 

1.93 

3.07 

4.17 

6.47 

.34 

.46 

.53 

.76 

.90 

1.69 

3.36 

4.20 

6.91 

8.54 

13.60 

Gj 

.21 

.32 

.39 

.58 

.69 

1.14 

1.61 

1.75 

2.01 

2.11 

2.30 

-.42 

-.16 

-.01 

.42 

.70 

1.71 

2.83 

3.16 

3.77 

3.97 

4.41 

Gp 

CN 

.33 

.43 

.48 

.64 

.74 

1.13 

1.68 

1.90 

2.61 

3.15 

5.30 

U 
.39 

.51 

.58 

.80 

.95 

1.72 

3.28 

4.02 

6.14 

7.28 

10.64 

b 

.49 

.57 

.61 

.74 

.81 

1.11 

1.49 

1.62 

1.95 

2.12 

2.68 

.60 

.72 

.78 

.99 

1.12 

1.73 

2.75 

3.17 

4.22 

4.72 

6.08 

Gp 

.51 

.60 

.64 

.77 

.84 

1.14 

1.50 

1.62 

1.91 

2.05 

2.43 

.62 

.74 

.81 

1.01 

1.13 

1.73 

2.71 

3.10 

4.07 

4.52 

5.68 
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Table 4.3 
A 

Regression (Huber's): Quantiles for #3 

F_ ft? 93aay Gj Gp 93 93aay Gj Gp 

Z t3 

.75 

.9 

.95 

.975 

.99 

.995 

.9975 

.999 

.53 

1.01 

1.31 

1.56 

1.86 

2.05 

2.24 

2.46 

.54 

1.03 

1.32 

1.57 

1.87 

2.07 

2.25 

2.48 

.54 

1.01 

1.30 

1.56 

1.83 

2.02 

2,20 

2.41 

.53 

1.01 

1.30 

1.55 

1.84 

2.04 

2.22 

2.45 

.70 
1.34 

1.75 

2.14 

2.58 

2.91 

3.23 

3.63 

.66 

1.25 

1.60 

1.91 

2.27 

2.51 

2.74 

3.01 

.68 

1.30 

1.66 

1.99 

2.36 

2.60 

2.81 

3.09 

.68 

1.31 

1.70 

2.05 

2.48 

2.79 

3.09 

3.47 

CN h 
.75 

.9 

.95 

.975 

.99 

.995 

.9975 

.999 

.70 

1.37 

1.83 

2.31 

3.09 

3.83 

4.73 

6.10 

.63 

1.20 

1.54 

1.84 

2.18 

2.41 

2.63 

2.89 

.65 

1.24 

1.59 

1.89 

2.23 

2.47 

2.69 

2.95 

.64 

1.24 

1.63 

1.99 

2.51 

2.98 

3.59 

4.66 

1.28 

2.66 

3.70 

4.83 

6.52 

8.04 

9.88 

12.45 

.89 

1.69 

2.17 

2.58 

3.07 

3.40 

3.70 

4.07 

1.17 

2.22 

2.85 

3.39 

4.03 

4.44 

4.84 

5.29 

1.17 

2.39 

3.28 

4.21 

5.55 

6.69 

7.96 

9.89 



Table 4.4a 
Regression (Huber's): Quantiles for b 

F a Gj Gp <jpi uP2 Gp3 

Z 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.45 

.54 

.58 

.71 

.78 

1.04 

1.33 

1.41 

1.58 

1.64 

1.76 

.62 

.70 

.74 

.86 

.93 

1.19 

1.49 

1.57 

1.74 

1.79 

1.93 

.60 

.68 

.73 

.85 

.92 

1.19 

1.48 

1.56 

1.72 

1.78 

1.90 

.59 

.66 

.69 

.79 

.84 

1.04 

i.26 

1.33 

1.45 

1.49 

1.59 

.45 

.54 

.58 

.71 

.78 

1.04 

1.33 

1.41 

1.57 

1.63 

1.76 

.52 

.60 

.63 

.75 

.81 

1.05 

1.30 

1.38 

1.52 

1.57 

1.68 

*3 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.54 

.64 

.69 

.84 

.94 

1.32 

1.81 

1.98 

2.34 

2.50 

2.85 

.59 

.69 

.76 

.94 

1.05 

1.47 

1.92 

2.06 

2.32 

2.41 

2.63 

.67 

.77 

.82 

.99 

1.08 

1.46 

1.95 

2.11 

2.46 

2.60 

2.92 

.67 

.76 

.81 

.95 

1.03 

1.35 

1.76 

1.89 

2.16 

2.27 

2.51 

.55 

.66 

.71 

.87 

.97 

1.35 

1.84 

2.00 

2.35 

2.49 

2.81 

.58 

.67 

.72 

.86 

.94 

1.27 

1.70 

1.84 

2.13 

2.25 

2.53 



Table 4.4b 
Regression (Huber's): Quantiles for b 

F b Gj GP Gp\ Gp2 Gp3 

CN 

.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.52 

.62 

.67 

.82 

.91 

1.28 

1.90 

2.25 

3.50 

4.12 

5.61 

.58 

.70 

.75 

.92 

1.02 

1.4C 

1.82 

1.95 

2.19 

2.27 

2.47 

.66 

.76 

.81 

.96 

1.05 

1.40 

1.88 

2.07 

2.62 

2.95 

4.11 

.68 

.76 

.81 

.94 

1.02 

1.39 

2.19 

2.66 

3.90 

4.36 

5.03 

.57 

.67 

.72 

.87 

.96 

1.30 

1.78 

1.98 

2.53 

2.86 

4.01 

.57 

.66 

.71 

.84 

.91 

1.22 

1.62 

1.77 

2.20 

2.45 

3.31 

u 
.001 

.005 

.01 

.05 

.1 

.5 

.9 

.95 

.99 

.995 

.999 

.70 

.87 

.95 

1.23 

1.40 

2.31 

4.07 

4.90 

7.18 

8.37 

12.00 

.13 

.40 

.55 

1.02 

1.30 

2.34 

3.48 

3.82 

4.45 

4.68 

5.20 

.83 

.98 

1.07 

1.33 

1.50 

2.33 

3.80 

4.43 

6.03 

6.80 

8.86 

.90 

1.06 

1.14 

1.42 

1.60 

2.51 

4.11 

4.76 

6.31 

6.99 

8.52 

1.00 

1.15 

1.23 

1.50 

1.67 

2.50 

3.97 

4.59 

6.19 

6.96 

9.03 

.71 

.85 

.92 

1.15 

1.29 

1.99 

3.22 

3.73 

5.03 

5.65 

7.30 
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Table 4.5a 
Regression (Huber's): Tail probabilities for p = ga~ft« 

1 — F std. err. paay ptl6 Gp Gp\ Gp2 GpJ 

Z 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.2593 

.1055 

.0489 

.0216 

.0066 

.0024 

.0007 

.0001 

.2639 

.1145 

.0586 

.0302 

.0124 

.0061 

.0029 

.0010 

.2225 

.0745 

.0312 

X'133 

.0043 

.0018 

.0007 

.0002 

.2431 

.0916 

.0411 

.0183 

.0061 

.0025 

.0010 

.0003 

.2518 

.1032 

.0513 

.0260 

.0108 

.0055 

.0027 

.0011 

.2501 

.1003 

.0483 

.0235 

.0090 

.0043 

.0019 

.0007 

t3 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.2927 

.1467 

.0851 

.0473 

.0211 

.0103 

.0048 

.0015 

.2965 

.1545 

.0945 

.0570 

.0295 

.0171 

.0099 

.0045 

.2239 

.0743 

.0313 

.0127 

.0040 

.0016 

.0006 

.0002 

.2428 

.0904 

.0410 

.0176 

.0056 

.0021 

.0008 

.0002 

.2419 

.0915 

.0431 

.0199 

.0073 

.0033 

.0015 

.0005 

.2505 

.0996 

.0486 

.0229 

.0086 

.0038 

.0017 

.0006 



Table 4.5b 
Regression (Huber's): Tail probabilities for p = 93~ft" 

1 — F std. err. paay ptl6 Gp Gp\ Gp2 Gp3 

CN 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.2798 

.1320 

.0740 

.0411 

.0176 

.0085 

.0037 

.0013 

.2839 

.1402 

.0836 

.0508 

.0257 

.0148 

.0083 

.0042 

.2168 

.0698 

.0296 

.0129 

.0042 

.U017 

.0007 

.0002 

.2380 

.0860 

.0386 

.0172 

.0055 

.0022 

.0008 

.0002 

.2327 

.0842 

.0394 

.0189 

.0071 

.0033 

.0015 

.0006 

.2433 

.0940 

.0460 

.0229 

.0088 

.0041 

.0019 

.0007 

h 
.25 
.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.3350 

.2087 

.1497 

.1086 

.0705 

.0489 

.0345 

.0199 

.3378 

.2147 

.1574 

.1175 

.0802 

.0586 

.0439 

.0283 

.2233 

.0721 

.0302 

.0127 

.0039 

.0015 

.0006 

.0002 

.2408 

.0865 

.0386 

.0168 

.0052 

.0019 

.0007 

.0001 

.2071 

.0585 

.0219 

.0082 

.0022 

.0007 

.0003 

.0001 

.2497 

.0974 

.0476 

.0232 

.0087 

.0039 

.0019 

.0006 



Table 4.6 
Regression (Mallow's): Tail probabilities for p = ga~ft"> under Z 

1 — F std. err. Paay Pti6 Gp Gp\ Gp2 Gp3 

Design 1 

.2604 .2649 .2237 .2443 .2525 .2510 

.1045 .1135 .0738 .0908 .1019 .0991 

.0498 .0595 .0318 .0420 .0518 .0489 

.0216 .0302 .0133 .0184 .0259 .0234 

.0061 .0117 .0041 .0057 .0101 .0085 

.0021 .0057 .0017 .0023 .0051 .0040 

.0006 .0027 .0007 .0009 .0025 .0018 

.0002 .0012 .0003 .0003 .0012 .0008 

Design 2 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.2639 

.1070 

.0513 

.0226 

.0070 

.0025 

.0009 

.0002 

.2683 

.1160 

.0610 

.0312 

.0129 

.0064 

.0034 

.0012 

.2271 

.0760 

.0331 

.0142 

.0048 

.0021 

.0010 

.0003 

.2434 

.0892 

.0408 

.0179 

.0060 

.0025 

.0011 

.0003 

.2514 

.0998 

.0500 

.0248 

.0102 

.0051 

.0028 

.0011 

.2508 

.0981 

.0482 

.0232 

.0090 

.0043 

.0022 

.0008 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 
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Figure 4.1a 
Location-scale: QQ-plots for b 
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Figure 4.1b 
Location-scale: QQ-plots for a 
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F; igure 4.2a 
Regression (Huber's): Distributions for p = &-~V 
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Figure 4.2b 
Regression (Huber's): Distributions for p = ^4^ 
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Chapter 5 

Approximation for joint densities 

5.1 Overview 

Up to this point, we have limited our discussion to the approximation for the 

marginal densities of a single estimator. We have derived Gp for a real-valued function 

p of a multivariate M-estimator 17 in Chapter 3 and have demonstrated its accuracy 

in Chapter 4. We now generalize the result to an approximation for the joint densities 

of a fc-dimensional real-valued function. 

The result that we have obtained is useful for many practical purposes, from 

studying the random behaviour of an estimator to testing a hypothesis. However, 

there are still many applications in which an understanding of the joint behaviour of 

two or more estimators is necessary. For instance, we know that the least squares 

estimator is a special case of the Huber-type estimator in the multiple regression 
A 

problem, and the estimators 9 and b are independent when the underlying distribution 

is normal. We may want to study the dependence or some conditional properties of 

the Huber-type estimator in general by taking c < 00 in the Huber's score function 

101 
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Suppose that we want to compute the joint densities of k components in a p-

dimensional M-estimator rj, where k < p. The problem can be solved, at least 

theoretically, by any one of the three techniques that we have discussed in Sections 

2.3 to 2.5. Recall that the techniques include using the asymptotic distribution, an 

approximation for the joint density function of rj, and a linear approximation for the 

estimator. We give a brief discussion of these alternatives. 

When the asymptotic joint distribution of a multivariate estimator is known, it 

is definitely the simplest approximation to apply. For the M-estimators of prac­

tical interest the result is generally available. Wa have demonstrated in several 

one-dimensional applications (see Chapter 4) that this alternative gives very good 

approximation for a symmetrically distributed estimator when the underlying distri­

bution is normal or close to normal. Otherwise, the approximation could be very 

inaccurate. We expect that the situation is similar for the joint densities in a multi­

dimensional problem. Another shortcoming of this approximation is that the finite 

sample behaviour of an estimator could be arbitrarily far from the asymptotic result. 
A 

For instance, while the Huber-type estimators 9 and b are generally dependent in a 

finite sample problem, they may be asymptotically independent. To obtain a sense 

of its performance, this approach will be applied in an example in Section 5.3. 

The second alternative requires the availability of the joint density function of rj or 

a good approximation for it. For an M-estimator, we have the approximation derived 

by Field (1982). However, the technique requires us to solve a system of p non-linear 

equations at each point where the p-dimensional density is to be approximated. In 

addition, solving the problem with k < p may involve a high dimensional integration. 

Although this may give us a more accurate approximation, the solution becomes 
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impractical when p is larger than 2 and k is relatively small. Further comments on 

this approach will be given in Section 5.4. 

For the third alternative, we can derive a linear approximation G to each of the 

k components and use the joint densities of the linear functions as approximations 

for the true ones. We have examined the performance of a single Gj for approximat­

ing marginal densities. It generally improves over the asymptotic result but is still 

inadequate under some long-tailed distributions. Another concern for the approach 

is that we need an efficient way to compute accurately the joint distributions of the 

linear functions. Since the linear approximation G is just a mean, we may write it 

as the solution of a ^-dimensional system and apply the result of Field (1982) to 

approximate the joint densities. 

We have shown that our Gp is generally more accurate than the asymptotic result 

and the linear function Gj. In addition, Gp approximates the required densities 

directly so that we do not need the additional high dimensional integration. This 

seems to have solved most of the difficulties encountered in the other techniques. It 

remains to show how the Gp can be generalized to an approximation for the joint 

densities of k components, where k > 1. 

In Section 5.2, we extend the approximation Gp for the joint densities of k com­

ponents in a multi-dimensional rj. In fact, we consider a more general problem, that 

is, we derive an approximation for the joint densities of k real-valued functions of 77. 

The result is applied to two examples in Section 5.3. Section 5.4 gives some general 

remarks on the generalization. Lastly in Section 5.5, we summarize the numerical 

results and the plots which are generated in Section 5.3. 
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5.2 Derivation of the approximation 

In this section we extend our Gp to an approximation for the joint densities of a 

fc-dimensional real-valued function of a p-dimensio^al M-estimator rj, where k < p. 

The notation and assumptions for the derivation in this section are basically the same 

as those which are defined in Chapter 3. Some minor changes on the notation for the 

current problem will be stated when they are needed. 

Let p{rj) = {pi{rj),.. .,pk{fj)) be a real-valued vector. Our objective is to derive 

an approximation for the joint density of p{rj) at the point po = (pio, • • •, Pku) under 

/ . The development of the approximation parallels that for the marginal density in 

Section 3.3. We now present the modifications. 

To begin, we need the following modified centering lemma. 

Lemma 5.1 The joint density of p{fj) at p0 under f and that under h are related by 

0/(po)={nc/(*o)} Eh 

where 

exp\-J2a3S3 
J=I 

p(v) = Po 9h{po), 

S = {Si,...,Sp) = \J2*AYi,to)) 
t '= l }3=1 p 

Proof Recall from the derivation of Lemma 3.2 that the joint density function of 

{S, fj) under / and that under h are related by 

9f(s, t) = I J ] c'(to) } exp < - 2 <*3S3 [ 9his, t). 

Integrating both sides of the equality over p{t) = po yields 

9As,Po) = JIIC ' (*O)|
 exP\-lLa3s3\9h(s,po) 

= \Uci(to)> expl-J2as3\gh{s\p0)gh(po). 
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Integrating both sides of the last equality with respect to s, the result follows. 

D 

The next step is to simplify the relationship of the two joint density functions by 

eliminating the conditional expectation. We want to apply similar proportionality 

arguments as for the one-dimensional case, but there is a problem. Recall that we 

currently need 2p constraints to define the conjugate density h, that is, p for the a 

and p for the to- To proceed with the arguments, we realize that 

Eh 

if 

exp < — {-ia,s>} p{h) = Po = 1 

P k 

Y,<*3S3 x £{Pr(»/)-Pro}. (5.1) 
3=1 r= l 

Note that the particular choice of proportionality in (5.1) is not important, but that 

this simple choice will illustrate the difficulties in a situation where we need to satisfy 

just one proportionality. 

We use 

= {G1,...,Gk) = {pro + -ttEpit)(to)Bt3^AYhto)\ 
I n /=! 7=1 .=1 J r = 1 k 

to approximate p{fj). From the definition of S, the proportionality (5.1) becomes 

£,£<*>* AYi,t0) a i:£ititpM(to)B,3*AYi,to), 
.=1 J= l r = l /=1 ]=1 .=1 

which is true if 

r = l . = 1 r = l t = l 

for 1 < ji,j2 < p. This accounts for p - 1 conditions. Together with the p + k 

centering conditions 
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Eh ^£*(K,,*o) 
n /=i 

-- 0 and p{t0) — po, 

we have a total of 2p + k — 1 conditions, which exceeds the 2p constraints that we 

need unless k = 1. Therefore for any k > 1, we generally cannot find a suitable h 

which satisfies all the conditions. 

To tackle the problem, we have to match the number of constraints that we need 

and the number of conditions that we have. For our technique, it seems unlikely 

that we can reduce the number of conditions since the p + k centering conditions 

are necessary and p — 1 equalities are needed to satisfy one single proportionality. 

An alternative is to increase the number of constraints, and possibly the number of 

conditions for a balance. We proceed as follows. 

Our aim is to generate more constraints. However, we need the relationship in 

Lemma 5.1 and cannot change its basic format. To achieve both objectives, a possi­

bility is to split the or,'s. Writing a3 = ajX -) 1- a3k, j = 1, . . . ,p, the conditional 

expectation in Lemma 5.1 now becomes 

Eh exp< — I -S? a j rM Pi(rj) = pio, • • •, Pkifl) - pko = 1, 

which is trivial if 

^ct]rS3 oc pr(»7)-Pro, r = \,...,k. 
J=I 

Using G to approximate p{fj) and the definition of S, the last set of proportional­

ities becomes 

n p n p p 

EZa>r*AYl,tQ) OC E E E ^ H M ^ M ^ M , V = l,...,k, 
1=1 3=1 1=13=1«=1 
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which is true if 

^rJ2P{r](to)Bt32 = a - . E ^ W ^ 
1 = 1 » = 1 

for 1 < ji,J2 < P? f — 1 > k. This accounts for k{p — 1) conditions. Together with 

the p+k centering conditions, we have now a total of (&+l)p conditions. This matches 

the number of constraints that we need, that is, kp for ajr, j — 1 , . . . ,p, r = 1 , . . . , k, 

and p for to. It follows from Lemma 5.1 that with the conjugate density function h 

in which the parameters a and to are chosen such that the {k -f l)p conditions are 

satisfied, we can approximate the joint density of p{r)) at po under / by 

| l l c ' (M[ 9h{po)-

For the above approximation to be useful, we need to evaluate the joint density 

9h{po)- We have derived a linear approximation G for the random vector p{fj). An 

obvious choice would be to use <jto|/i(po), the density of G at po under h, as an approx­

imation for 9h{po)- Recall that po is the expected value of G under h. Therefore to 

approximate the joint density gG\h{po), a one-term Edgeworth approximation gives 

9G\APO) = (27r)-t|S|-5 + o ( i ) , (5.2) 

where |S | is the determinant of the covariance matrix E of the fc-dimensional G (Mc-

Cullagh, 1987, page 150). As for the marginal density approximation, this Edgeworth 

approximation can be replaced when there exists a better alternative. 

Putting the results in this section together, we obtain a multivariate density ap­

proximation as follows. 

Theorem 5.1 Let p{rj) = {pi{rj),.. .,pk{rj)) be a real-valued function of a multivari­

ate M-estimator rj = {rji,... ,T}P) which solves the system of equations 
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nt=1 
where k < p, ty = {^u,. . . ,$ p i ) , / = l , . . . , n , and the Yt's *re independent with 

densities fi{y\). If the assumptions Al - A8 in Section 3.2 are satisfied, an approx­

imation for the joint density of p{fj) at po = (p:o» • • •, Pfco) under the joint density 

function f = J]/ // is given by 

9P(Po) = iflct{to)\ (2TT ) " | E | " , (5.3) 

where 

ci \t0) = j exp l^ctjVAvtiio) | Ii(yi) dyu 

|E| is the determinant of the covariance matrix E of 

G = { pAto) + -
n 
tttpi^B^AYuto)) 

under the joint conjugate density function h — f]/ hi, 

hi{yi) = ci{t0) exp { V a3^3i{yh to)} fi(yi), \ita>vAyhto)\ 

a3 ~ a3\ + • • • + ct3k, j = 1, • • •, P 'iiid to = (<io, • • •, £Po) are chosen such that 

Eh -X>'W,*o) n TZ 
i=i 

= 0, p{t0) = po, 

r r 
a3irEPr](to)Bi32 = a32T £p{A(to)B tJl, 1 < j\,j2 < p, r=l,...,k, 

t=l t - - l 

and 

B = {Bx3)i<x,3<v = -A {U), A{t0) = Eh 
l fW,(J i l 9 ) 
nf=? dr n=h. 
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D 

We define Gp to be the approximation for which the joint density at po is the 

normalized <jfp(po) in (5.3), that is, 

In the next section, we will apply the multivariate Gp to some numerical examples. 

The error and the computational aspect of the approximation will be discussed in 

Section 5.4. It is clear from their definitions that the marginal density approximation 

developed in Chapter 3 is simply a special case of the multivariate result with k = 1. 

We will compare the two Crp's numerically in an example in Section 5.3 and will make 

some general comparison between them in Section 5.4. 
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5.3 Some examples 

In this section, we implement the multivariate Gp for two numerical examples 

which are based on the multiple regression model and the Huber-type estimator de­

fined in Section 2.2. Unless specified otherwise, we adopt the notation and the settings 

that are defined in Chapter 4. 

The main objective of these examples is to demonstrate the accuracy obtained 

by our Gp. Nevertheless, we will compute an asymptotic joint distribution in the 

first example and will implement an adjustment to the Gp in the second one for 

comparison. The performance of the approximations is examined under the error 

distributions Z and t3. 

The joint distributions of Gv are computed by numerical integration of the joint 

density Approximation given in (5.3), and the joint distributions of the multivariate 

estimator p = p{rj) are based on 100,000 simulations. In addition tu the computer 

subroutines that are mentioned in Chapter 4, we also ne„d the subroutine D01DAF 

in NAG for multi-dimensional integrations. Numerical results and some contour plots 

are summarized in Section 5.5. 

Example 1: 

Our first example examines the joint behaviour of the two-dimensional estimator 
A A 

P = (#3, #4)5 that is, k = 2. We have experienced the good performance of both the 
A 

asymptotic approximation and the Gp for the marginal densities of #3. We hope that 

their performance is similar for joint density approximation. In addition, we expect 

that the approximations would perform the best under normal distribution and when 

the scale parameter is known. For this reason, we assume that <r0 = 1 is known in the 
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estimation of this example. Therefore the multiple regression model and the score 

functions for the estimator simplify to 

Y, = X?6 + eh Z= l , . . . , n , 

and 

^AYi,r}) = ^c{Yl-Xf9)Xli, j = l,...,p, 

respectively. Note that we now have p : n — 4 : 20. 

In the simulation, we take 9o = 0 for simplicity. The asymptotic joint distribution 

of p from (2.5) is given by 

Paay ~ N (i ;(XTXY 
• ) • 

where Ic(x) equals 1 if |a:| < c, and 0 otherwise, {XTX)~1 is the lower-right corner of 

{XTX)~1 of order 2 x 2 , and 

/ . 

{Ej[Ic{ex)))
2 

Z 

.6435 

-.0094 

-.0094 

.5363 

*3 

.9516 

-.0139 

-.0139 

.7930 

For the linear approximation G, we have 

A = --Eh[XTDX] and B = n {xTEh[D]X}~1, 

where D is an n by n diagonal matrix with diagonal elements Ic{ri), r/ = VJ — Xfto, 

1= l , . . . ,n. Therefore 

G = {G3,G4)=\tio + ££{xTEh[D)X}-1*c{rl)Xh) , 
i ' = 1 i = 1 %i J,=3,4 
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and the one-term Edgeworth approximation (5.2) of its joint density at the expected 

value is given by 

/ x l 

9G\h{t3o,t4o) = -—/ 2 2 ~2 • 
'vyJ<TGi\h?Gi\h - °G3G«|/i 

where aG ,h and aG ih
 a r e th e variances of G3 and G4 under h respectively, and o-G3Gi\h 

is the covariance of G3 and G4 under h. 

Numerical results are given in Tables 5.1a and 5.1b. As we expected, the situation 

is very similar to that of the one-dimensional problems. In particular, both paay and 

Gp generate excellent approximations under Z. Gp seems to be slightly better than 

paay, but the improvement is hardly significant. For the case under i3, it is clear that 

Gp provides very good results for both marginal distributions. 

To obtain a better picture of the overall performance of the approximations, Fig­

ures 5.1a and 5.1b plot two contour maps based on the results in Tables 5.1a and 

5.1b respectively. In brief, p, paay and Gp suow almost no difference under Z, and 

both approximations paay and Gp give very good results around the center under t3. 

Moreover, Gp gives consistently good approximation over the entire region. 

Example 2: 

We have encountered some problems in the approximation for the marginal densi­

ties of b. We now apply the multivariate Gp for the joint densities of p = {93, b). The 

setting is exactly the same as those are defined in Sections 2.2 and 4.3. A derivation 

of the linear function G and other details for the current approximation can be found 

in the two sections. In addition to the basic Gp, we also evaluate Gp2 to obiain a sense 

of adjustment. Recall that Gp2 is basically the same as Gv except that a constant 

adjustment is applied in the computation of G. Details of the adjustment are given 
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in Appendix A. 

Numerical results are summarized in Tables 5.2a and 5.2b and are plotted in 

Figures 5.2a and 5.2b. It is clear from the two tables that the multivariate Gp performs 

basically the same as the univariate Gp does for the marginal distributions of 93 and 

b, except that the former one is now doing both jobs simultaneously. It gives very 

good approximations for the marginal distributions of 93 and at the same time suffers 

a similar pro'dem for the approximation of b. 

We observe from the plots some general performance of the approximations. In 

addition to the marginal behaviour, the plots show that Gp has provided a fair ap­

proximation to the shape of the joint distributions. However, the approximation is 

shifted to the right in the direction of b. This causes the conditional approximation 

for 93 to become very inaccurate when b is small. 

Based on this observation, a constant adjustment in the centering procedure seems 

adequate for an improvement. For this reason, we compute the adjusted approxima­

tion Gp2. It is clear from the results that the constant adjustment improves signif­

icantly from the basic Gp over the entire domain. Our objective is not trying to 

find the best adjustment for this example. However, Gp2 is clearly good enough to 

illustrate the effect of an adjustment. 

Lastly, we demonstrate another possible application of the joint density approxi­

mation. In Section 4.3, we use the univariate Gp to approximate the marginal densities 
A 

of a studentized t -ratio. With the joint density approximation of 93 and b, we can 

evaluate the marginal densities of the ratio by numerical integration. We compute 

the marginal approximations by using the multivariate Gp and Gp2 and summarize 

the results into Table 5.3. For comparison, we restate their counterparts by using the 



114 

univariate Gp and Gp2 in the same table. 

Generally, the approximation from the multivariate Gp improves slightly over that 

from the univariate Gp. The improvement possibly comes from the fact that we do 

not need to approximate the non-linear ratio by a linear function. When a constant 

adjustment is applied, the approximations are clearly improved with both univariate 

and multivariate approaches. However, the degrees of improvement are slightly dif­

ferent. While the multivariate approach seems to be better than the univariate one 

under t3, the situation reverses under Z. 
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5.4 Discussion 

In this chapter, we have derived an approximation for the joint densities of a 

multivariate function of an M-estimator. The approximation is an extension of the 

marginal density approximation developed in Chapter 3. The multivariate approxi­

mation is applied to several examples. We now give some general comments on the 

results. 

With this extension, we can study the joint and the conditional behaviour of a 

multivariate estimator. In addition, since the multivariate Gp is developed under 

the same assumptions as for the univariate one, we can always apply it to provide 

an alternative for the marginal densities of an estimator. We have demonstrated 

such a possibility in an example. When no adjustment is applied, it still improves 

the univariate approximation by eliminating the error induced in the linearization of 

a non-linear function. For a more complicated function, this alternative would be 

proven more beneficial. 

When we compare the performance of the multivariate Gp and the univariate 

Gp, in particular on the marginal distribution approximation, we can see that the 

two approaches generally possess very similar characteristics. This is not unexpected 

since we have used basically the same arguments to derive both Crp's. In fact, we can 

expect that the error of both approximations are of the same order. 

Consider the development of the two Gp's. We use the linear function G for an 

approximation of the density at the expected value of p under h, apply G and similar 

proportionality arguments to simplify the conditional expectation, and use a one-term 

Edgeworth approximation for the density at the expected value of G. All these give 

the same order of error on both Gp's. A major difference in the derivations is that 
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we have k proportionalities instead of one for the multivariate Gp, but this does not 

affect the order of error. 

Concerning the computational effort, we see that at each point the joint density 

is to be approximated, a system of {k + l)p non-linear equations needs to be solved. 

This may cause some problems when k and p are both large. Comparatively, the joint 

density approximation derived by Field (1982) would become more attractive when k 

is close to p and p is large, in which case a p-dimensional non-linear system needs to 

be solved at each point the p-dimensional joint density approximation is computed, 

and a (p — fc)-fold numerical integration is needed. Our Gp does not require the last 

integration. In addition, we have another advantage that we do not need to worry 

about the region of integration. If we use the joint density approximation gr(to) of 

Field (1982) (see Section 2.4) to approximate gp{po), we need to integrate gr{to) over 

the region p{t0) = Po- Unless the region can be expressed in a closed form, we need 

to determine it numerically. 
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5.5 Numerical results 

Table 5.1a 
Regression (Huber's with a known scale): Joint distributions for p = {93,94) 

94 93 

-3 - 2 - 1 0 1 

p -3 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 
-2 .0000 .0000 .0003 .0014 .0026 .0029 .0030 .0030 
-1 .0000 .0004 .0083 .0417 .0755 .0840 .0846 .0846 
0 .0000 .0029 .0513 .2464 .4463 .4958 .4990 .4990 
1 .0001 .0056 .0951 .4556 .8205 .9098 .9154 .9154 
2 .0001 .0062 .1046 .4977 .8940 .9911 .9972 .9973 
3 .0001 .0063 .1049 .4990 .8963 .9938 .9999 1.0000 

paay -3 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

-2 .0000 .0000 .0003 .0015 .0028 .0031 .0032 .0032 

-1 .0000 .0005 .0087 .0420 .0764 .0855 .0860 .0860 

0 .0000 .0031 .0520 .2475 .4^7 .4967 .5000 .5000 

1 .0001 .0057 .0967 .4560 .8164 .9082 .9139 .9140 

2 .0001 .0063 .1059 .4984 .8909 .9906 .9968 .9969 

3 .0001 .0063 .1063 .5000 .8938 .9937 .9999 1.0000 

Gp -3 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 

-2 .0000 .0000 .0003 .0015 .0027 .0031 .0031 .0031 

-1 .0000 .0005 .0086 .0416 .0758 .0847 .0853 .0853 

0 .0000 .0030 .0516 .2474 .4461 .4968 .5000 .5000 

1 .0001 .0056 .0960 .4564 .8178 .9090 .9147 .9147 

2 .0001 .0062 .1051 .4984 .8917 .9907 .9968 .9969 

3 .0001 .0062 .1055 .5000 .8945 .9938 .9999 1.0000 
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. Table 5.1b 
Regression (Huber's with a known scale): Joint distributions for p — ($3, $4) 

h 
A A 

94 93 

- 3 - 2 - 1 0 1 2 3 4 

-3 
-2 

-1 

0 

1 

2 

3 
4 

.0001 

.0002 

.0006 

.0015 

.0023 

.0028 

.0030 

.0030 

.0002 

.0011 

.0045 

.0135 

.0231 

.0273 

.0282 

.0284 

.0004 

.0035 

.0233 

.0790 

.1358 

.1579 

.1615 

.1618 

.0008 

.0092 

.0690 

.2486 

.4289 

.4919 

.5006 

.5013 

.0012 

.0150 

.1151 

.4172 

.7215 

.8241 

.8382 

.8393 

.0014 

.0179 

.1350 

.4836 

.8339 

.9539 

.9705 

.9718 

.0014 

.0188 

.1393 

.4966 

.8545 

.9780 

.9953 

.9967 

.0014 

.0189 

.1399 

.4981 

.8569 

.9808 

.9982 

.9997 

-3 
-2 

-1 

0 

1 

2 

3 

4 

.0000 

.0000 

.0001 

.0005 

.0009 

.0010 

.0011 

.0011 

.0000 

.0002 

.0025 

.0098 

.0174 

.0199 

.0202 

.0202 

.0001 

.0018 

.0192 

.0748 

.1319 

.1506 

.1526 

.1527 

.0002 

.0060 

.0640 

.2475 

.4333 

.4936 

.4998 

.5000 

.0003 

.0103 

.1100 

.4222 

.7358 

.8368 

.8471 

.8474 

.0004 

.0121 

.1279 

.4896 

.8516 

.9678 

.9795 

.9799 

.0004 

.0123 

.1306 

.4995 

.8684 

.9867 

.9986 

.9990 

.0004 

.0124 

.1307 

.5000 

.8693 

.9877 

.9997 

1.0000 

-3 
-2 

-1 

0 

1 

2 

3 

4 

.0000 

.0002 

.0005 

.0012 

.0019 

.0023 

.0024 

.0025 

.0001 

.0008 

.0042 

.0123 

.0205 

.0240 

.0248 

.0249 

.0003 

.0032 

.0224 

.0771 

.1329 

.1532 

.1564 

.1567 

.0006 

.0081 

.0663 

.2475 

.4310 

.4914 

.4994 

.5000 

.0009 

.0131 

.1115 

.4203 

.7303 

.8298 

.8423 

.8432 

.0011 

.0158 

.1309 

.4874 

.8440 

.9592 

.9740 

.9750 

.0012 

.0165 

.1348 

.4988 

.8627 

.9810 

.9963 

.9975 

.0012 

.0167 

.1353 

.4999 

.8645 

.9832 

.9986 

.9997 
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Table 5.2a 
Regression (Huber's): Joint distributions for p — {93, b) 

93 
-3 - 2 - 1 0 1 

0.5 .0000 .0000 .0003 .0014 .0023 .0026 .0026 .0026 
1.0 .0000 .0025 .0448 .2116 .3803 .4224 .4249 .4249 
1.5 .0001 .0057 .1015 .4885 .8777 .9718 .9776 .9777 
2.0 .0001 .0059 .1039 .4996 .8975 .9941 .9999 1.0000 
2.5 .0001 .0059 .1039 .4996 .8975 .9941 .9999 1.0000 

Gp 0.5 .0000 .0000 .0000 .0001 .0002 .0002 .0002 .0002 
1.0 .0000 .0014 .0237 .1133 .2030 .2253 .2266 .2267 
1.5 .0001 .0054 .0968 .4681 .8393 .9307 .9361 .9362 
2.0 .0001 .0058 .1033 .4999 .8965 .9940 .9998 .9998 
2.5 .0001 .0058 .1034 .5000 .8966 .9942 .9999 1.0000 

Gp2 0.5 .0000 .0000 .0005 .0023 .0041 .0046 .0046 .0046 
1.0 .0000 .0028 .0499 .2399 .4299 .4770 .4798 .4799 
1.5 .0001 .0057 .1018 .4921 .8825 .9785 .9842 .9843 
2.0 .0001 .0058 .1034 .5000 .8966 .9942 .9999 1.0000 
2.5 .0001 .0058 .1034 .5000 .8966 .9942 .9999 1.0000 
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Table 5.2b 
Regression (Huber's): Joint distributions for p — {93, b) 

h 

b 93 

- 3 - 2 - 1 0 1 2 : 

0.5 .0000 .0000 .0001 .0003 .0004 .0005 .0005 .0005 

1.0 .0001 .0022 .0193 .0746 .1289 .1462 .1481 .1482 

1.5 .0013 .0156 .1067 .3488 .5914 .6804 .6947 .6960 

2.0 .0030 .0280 .1582 .4779 .7980 .9258 .9506 .9537 

2.5 .0037 .0316 .1686 .4986 .8293 .9638 .9911 .9947 

3.0 .0040 .0322 .1700 .5009 .8325 .9676 .9953 .9991 

3.5 .0040 .0323 .1701 .5011 .8329 .9680 .9958 .9996 

Gp 0.5 .0000 .0000 .0000 .0000 .0001 .0001 .0001 .0001 

1.0 .0000 .0007 .0083 .0353 .0623 .0699 .0706 .0706 

1.5 .0006 .0104 .0825 .2890 .4955 .5676 .5773 .5779 

2.0 .0021 .0234 .1469 .4637 .7804 .9039 .9252 .9272 

2.5 .0030 .0279 .1619 .4963 .8308 .9647 .9897 .9924 

3.0 .0032 .0287 .1637 .4997 .8357 .9707 .9961 .9991 

3.5 .0033 .0288 .1639 .5000 .8361 .9712 .9967 .9996 

Gp2 0.5 .0000 .0000 .0001 .0003 .0006 .0006 .0006 .0006 

1.0 .0001 .0017 .0180 .0731 .1282 .1446 .1462 .1462 

1.5 .0009 .0138 .1023 .3471 .5918 .6803 .6932 .6941 

2.0 .0024 .0251 .1530 .4776 .8022 .9300 .9527 .9550 

2.5 .0031 .0283 .1627 .4979 .8331 .9675 .9927 .9955 

3.0 .0032 .0287 .1638 .4998 .8359 .9709 .9964 .9993 

3.5 .0033 .0288 .1639 .5000 .8361 .9712 .9967 .9997 



Table 5.3 
Regression (Huber's): Tail probabilities for p = ea~ft° 

(3.11) (5.3) 

1 - F std. err. Gp Gp2 Gp Gp2 

Z 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.2225 

.0745 

.0312 

.0133 

.0043 

.0018 

.0007 

.0002 

.2518 

.1032 

.0513 

.0260 

.0108 

.0055 

.0027 

.0011 

.2253 

.0773 

.0331 

.0145 

.0049 

.0021 

.0009 

.0003 

.2550 

.1069 

.0543 

.0282 

.0121 

.0064 

.0032 

.0014 

t3 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 

.0014 

.0009 

.0007 

.0005 

.0003 

.0002 

.0002 

.0001 

.2239 

.0743 

.0313 

.0127 

.0040 

.0016 

.0006 

.0002 

.2419 

.0915 

.0431 

.0199 

.0073 

.0033 

.0015 

.0005 

.2282 

.0782 

.0339 

.0143 

.0047 

.0019 

.0008 

.0002 

.2463 

.0961 

.0465 

.0220 

.0085 

.0039 

.0019 

.0007 

.25 

.1 

.05 

.025 

.01 

.005 

.0025 

.001 
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Figure 5.1a 
Regression (Huber's with a known scale): Contour plots for p = {93,04) 

94 4 
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Figure 5.1b 
Regression (Huber's with a known scale): Contour plots for p = {93,94) 
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Figure 5.2a 
Regression (Huber's): Contour plots for p = (93,b) 

b 3- .001 .01 .1 .25 .5 .75 .9 .99 .999 

2-

" G 
P2 
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Figure 5.2b 
Regression (Huber's): Contour plots for p = {93,b) 

b 3-

2-



Chapter 6 

Conclusion 

6.1 Summary 

In this thesis, we have developed a technique to approximate the marginal den­

sities of a multivariate M-estimator rj, the solution of a non-linear system 

-E*AY,,T})=O, j = i,...,P, 
ni=i 

where V/'s are independent m-dimensional random observations from the densities 

/i's involving an unknown p-dimensional parameter rj. The general problem and 

some background information are given in Chapter 1. 

Under some regularity conditions, our primary result for a real-valued function of 

17 is derived in Chapter 3. We then generalize the result and derive a joint density 

approximation for a A:-dimensional function of the estimator in Chapter 5. The basic 

idea of our approach can be summarized as follows. 

To approximate the density of the function p = p{fj) at p0 under / , we first recenter 

/ to a conjugate density h such that Eh[p] = po, then approximate the density of p 

at the expected value under h, and finally transform the approximation under h to 

126 
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an approximation under / . 

We implement the approximation for several examples in Chapters 4 and 5. The 

numerical results show that the approximation is generally accurate over a wide range 

of underlying distributions, from normal to Cauchy. Nevertheless, some adjustments 

seem necessary when a scale estimator is part of the statistic for which the density 

is to be approximated. We propose several adjustments in Chapter 3 and obtain 

satisfactory improvements in the approximations from them. 

We review some existing techniques including the work of Field (1982), Tingley 

and Field (1990), and DiCiccio and Martin (1991) for our problem in Chapter 2 and 

try to relate the different approaches in Chapter 3. Specifically, we discuss the close 

relationship among our approach and the approaches of Field, and Tingley and Field, 

and establish some formal connections between our result and the work of DiCiccio 

and Martin. 

A practical issue for the different approximations concerns their computational 

requirements. Basically, the linear approximation for p derived by Tingley and Field 

is the simplest and requires the least computational effort, but it generally becomes 

inadequate in the tails. On the other hand, the joint density approximation developed 

by Field provides very accurate approximations but it requires substantial computa­

tion. Our technique can be viewed as a solution to balance the accuracy and the 

computational requirement. 

Consider a general ^-dimensional function of the estimator. For the estimator 

approach, once a linear approximation is derived for each of the components of the 

fc-vector, the major effort goes into the evaluation of the joint distribution of the 

linear functions. The approximation by Field computes the joint densities of rj and 
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requires additional integrations to obtain the fc-dimensional densities, and at each 

point where the joint density is needed, a p-dimensional non-linear system must be 

solved. On the other hand, our technique approximates the fc-dimensional densities so 

that no additional integration is required. However, at each point the approximation 

is computed, a {k+ l)p-dimensional non-linear system must be solved. It is clear that 

our approach is particularly useful when p is large and k is small. 

Another aspect of our density approximation is about its error. We obtain some 

results in Chapter 3 but fail to derive the order of the error in general. In particular, we 

show that the approximation is exact for the least squares estimators of the regressors. 

Although we may not need an approximation for a least squares estimator, a good 

approximation should possess this property. 
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6.2 Concluding remarks 

For our density approximation, two questions are not completely answered. The 

first one is about the overall rate of error. A general solution to this problem is difficult 

to obtain. An answer possibly requires additional assumptions on the density function 

of the estimator. The second question is about the adjustment. Although we suggest 

some approaches to the problem, it remains unclear which approach is the best in 

individual cases. We consider these two questions to be fundamentally important and 

are still working on the answers. 

We demonstrate that the approximation behaves consistently in a simple Mallows 

problem. A large scale numerical study will be conducted to understand the behaviour 

of the approximation over different classes of estimators and different underlying 

distributions. In addition, we have discussed some related techniques in the thesis. 

Numerical comparisons would be helpful for understanding their relative performance. 

Note that the computer programs that we write in the development are quite general 

and their efficiency is not our main concern. Two sample programs are included in 

Appendix C. For any practical purposes and large scale computation, some tailor-

made programs may be needed. 

Besides using the approximation to study the behaviour of an estimator, another 

application is to use it for statistical inferences. We illustrate the possibility through 

a simple testing problem. However, the true value of the parameter is generally 

unknown and a location-scale invariant test statistic may not be available. In those 

situations, the idea of Tingley and Field (1990) may be useful. In brief, when p is 

used as a test statistic, the density gj\Vo of p is first approximated by gj\r)oba, where 

fjoba is the observed value of 17. An exponential tilt is then applied to force gj^^ 
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to satisfy the hypothesis under testing. The details of this possibility are still being 

worked out. 

We aim to approximate the marginal densities of the M-estimators and believe 

that we have found a partial solution to the problem. However, the examples that 

we use are limited to the functions which are asymptotically normal. We attempt 

to apply the approximation to a situation where the asymptotic distribution is non-

normal. Specifically, we tried to implement our technique to the r-test proposed 

by Ronchetti (see Hampel et al., 1986, Chapter 7) and have not yet obtained a 

satisfactory approximation. Details of the problem is given in Appendix B. It would 

be interesting to see if some modifications can be applied to make our technique useful 

in the situation. 

Finally, it is pointed out that the density of an M-estimator may not exist in some 

situations. Our objective is not to justify when it will exist. However, even if it does 

not, the density of the linear approximation G at the expected value can exist and 

may be used to approximate the distribution of the estimator. This seems promising 

but careful investigation of the behaviour of the approximation in those situations is 

needed. 



Appendix A 

Computation of adjustments 

A.l General remarks 

In Section 3.5 we propose three adjustments to improve our density approximation 

and discuss the motivation of the adjustments. The central idea of the proposals is 

to replace the linear approximation 

G = p(to) + ± E E E *iiW. to)Bkj{to)^-
n 1=1]=1 k=l o n k 

by 

G = Pit,) + i E E E *»(Yi> to)Bkj(to)^, 
n 1=1 j=l k=l OTlk 

where t^ incorporates adjustments to to related to the expected value of the error 

term 

«T = Ittt^.-NAi^-P^B^B^-r 
\3l=l 32=1 33=1 

\ t E(*i. -Ph)(*h -HA E Bkk E E Bjd2^Bhj] 
' rs—i,.,,,P 

131 



132 

We now present the three proposals for t^. 

Proposal 1: tfl = t0 + Eh[er\-

This requires us to compute a different adjustment E/,[er] at each point the den­

sity is to be approximated. Note that the adjustment is a function of Jo and its 

computation must be integrated into the procedure of solving the non-linear system 

for a and to. In addition, it follows from the discussion in Section 3.5 that 

Eh[eTk] 

= i E E E E {EA^n^l} - PniP^BknB^ + 
" i=i n=i n=i J3=i 

i E E E {£*[«„/*»'] - MJ:/PJ2/} E Bk}3 E E BHnp\^]BMX, 
i n /=ij,=ij2=i i3=i ;4=l*>=» 

k = 1 , . . . ,p. Therefore to implement the adjustment, we need to evaluate 

Note that the first three quantities are needed no matter if an adjustment is imple­

mented or not, so that the additional computation for the adjustment is to evaluate 

the last three quantities. 

Proposal 2: t, = to + Ej[er\. 

This simplifies Proposal 1 by taking a constant adjustment over t0. The adjust­

ment is computed only once under / and essentially does not increase the computa­

tional effort of the approximation. Note that / is simply the special case of h with 

a — 0, the computation of the adjustment is basically the same as that in the first 

proposal. 

The third adjustment is proposed particularly for an estimator that is defined via 

the Huber's score function tyc. We first give a brief review of the score function and 
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define some notation for further discussions. 

Define ^ c(r) = max{—c,min{c,r}}, where c is a real constant. Then the first 

two derivatives of tyc(r) are 

«'e(r) = Ic{r), *»(r) = S.c{r) - 6c{r) = 6*{r), 

where Ic{r) equals 1 if \r\ < c, and 0 otherwise, 8c{r) is the Dirac delta function and 

may be defined by the relation 

/ Sc{r)u{r)dr = u{c) (A.l) 

for any continuous function u (see Kukin, 1989, page 41). 

Define 

*trc(r) = * c(r)/ e(r) = rlc{r), 

M r ) = Ic(r)Ic{r) = Ic{r), StTC{r) = *»(r)/c(r) = 0, 

and in general, for any u = u{^c, Ic, 6$), 

Hire = « ( * / > « ItTC,b~trc)-

The third adjustment is as follows. 

Proposal 3: t)l = t0-r Eh[tTtrc]-

This is a refinement of the first proposal such that for 1 < k < p, 

Eh[eTktrc] 

V P P 

Eh E E E^htc- HrtrAi^L- pUc)BkhBJ3h + 
j , = l j 2 = l j3=l 

\ £ E(*h<'c-p,n<rc)(*j2tTC-p-J2trc) £ BkJ3 £ £ B
Uhp^Bkh 
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= ^ £ £ £ £ {Eh[*nitrM3;L} - ^ttrc^tABknB^ + 
1=1 3\=1 32=1 33=1 

1 n P P 

^ £ £ £{^ [*J in r c* j 2 a r C ] -P j , / t r C p J 2 / « r c} X 
LU / = 1 J I = 1 J 2 = 1 

P P P 

2-i Bk33 2-i 2-f "u32pJ33trc "jsji • 
J 3 = l J 4 = l J5 = l 

To implement the adjustment, we need to evaluate 

B]1}2, P3ltrc, P<f,L, P{/Xt Eh[*nltrc*32ttrc], £*[« J l l . re*SU 

The computational requirement for these quantities are similar to that for the first 

proposal. We postpone the discussion to the next section. 
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A.2 Adjustments for Huber-type estimators 

We now derive the adjustments proposed in Section A.l for the Huber-type 

estimators. The derivation is based on the regression model of Section 2.2. 

Recall that the p-dimensional score functions for the estimators are 

*Art)Xn 

*/(n) = 
* c ( r j ) * i p - i 

*2(r/)-0 
L *2(n) - P i < i < p - i 

where 

n = 
Yi - XJ9 

I — 1,... ,n. Note that the last matrix representation is adopted in the discussion in 

this section. To evaluate the adjustments, we also need the following matrices. 

1. The first order partial derivatives of the score functions. 

1 < J 1 I J 2 < P - 1 

0tf»(rj) __ 1 

dr}T a 

1 
<T 

*'c(ri)*<;,*(* *'e(n)ri Xih 

2Ve(r,)*e{r,)X,ja 2*/
c(n)*c(r,)r, . 

h{rl)Xl3\Xl32 *<rc(n)^j'i 

. 2Vtrc{r,)XlJ2 2*^(r,) 

i < . 

i<ii>j2<p-i 

2. The second order partial derivatives of the score functions. 

d2*hl{n) 
drjdr}1 

K(ri)XlhXlhXlh {9»(r,)r, + %{n))XlhXlh 

L {*?(ri)n + ^ ( r , ) } * ^ {*?(r,)rf + 2%{rl)rl}Xlh 
1<J2 .J3<P-1 

{8An)ri + / . ( r i ) } ^ , JT«, {SAri)rf -r 2Vtrc{rl)}Xljl J ' 
1 S J 2 I J 3 < P - 1 
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jx = l , . . . , p - 1, and 

d2*Ari) 
drjdr}1 

2_ {^(ri)^An) + ^}Xh2Xh3 

°2 [ {^{r^^h + ̂ r ^ + ^r^^r^X^ 

{*H
e(r,)*e(r,)r, + tf'c

2(r,)r/ + *'c(r,)*c(r,)}X0, 

*i'(r/)*c(r,)r/
3 + %2{r,)rf + 2Y^(r,)¥c(r,)r, 

1<J2J3<P-1 

a* 

{Mn)*c(r,) + /c(r/)}X,j2X,j3 

{««(rj)*c(n)r, + 2*tre(r,)}Xo, 

{*«(n)*c(ri)r, + 2*,rc(n)}X,w 

Mri)*e(r,)r? + 3*k(r,) 
1<J2.J3<P-

3. The product of the score functions. 

*/(r,)*?(n) = 
^Arm\{rx)-^Xh2 {*2(r,)-/3}a 

1<J|.J2<P—1 

4. The product of the score functions and the first order partial derivatives. 

*»/(n) 
fl*t(r/) 

dr] 
*c(n)X/„ Ic{ri)X,32X,33 *trc(r,)Xin 

2*trc{ri)Xh3 2*?pe(r,) 

1_ 
a 

ytTc{ri)Xhl Xi32 Xh3 *L(n) Xtn Xt32 

1 < J 2 I J 3 < P - 1 

1 < J 2 I M < P - 1 

jx = l , . . . , p - 1, and 

k0¥,(r,) 
*pi(r / ) -

9J/ 

\I/2 
^ c (ri) - 0 

<T 

1 
<T 

Ic{ri)Xi32Xln * t rc(r l )^02 

. 2* t r c ( r , )^ 3 2*?rc(r,) . 

' *?rc(n)Ar/j2X03 *lc{r,)Xl32 ' 

. 2*?rc( ri)Xl33 2#ie(r,) . 
1 <*.„ . . < 

• < J 2 I J 3 < P - 1 

+ 
1<« .J3<P-1 

a dr} 
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Taking expectation on these matrices at 7/ = t0 gives us the quantities to compute 

the adjustments of Proposals 1 and 2. For the third proposal, we replace (¥c , Jc,&ir) 

by {Wtrc, /c,0) in the matrices to obtain the required quantities. 

We conclude this section with the following comments. 

1. To compute the expectations of the matrices, we basically need to evaluate the 

expected values of 

**(n), * = i , . . . , 4 , 

and the probabilities 

P{-c < ri < c), P{ri < -c) and P{rt > c) 

under h. 

2. The evaluation of the seven quantities in the first comment can be done numer­

ically. For a better efficiency and in most situations, the quantities can be simplified 

algebrically before the implementation for an application. 

3. The computational requirement of Proposal 3 is slightly less than that of 

Proposal 1. In particular, we have 

p j t = p j j ) and EWrttrcV^^Ekpnfltf]. 

For the other expectations, note that in general we have 

£?fc[*!l = £?*[#* J 4 {~c)kP{r, < - c ) + ckP{r, > c). 

4. For those functions involving 6$, the expectations follow from the definition 

(A.l) of 8C. For example, 

Eh *(^)] • LH^A*^))™* 
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and generally 

= ta I {d_c(r,) - 8c{r,)} ht{r,t„ + Xjtg) dr, 
Jr, 

= ia{h,{-cta + Xjtg) - hi{cta + Xjtg)), 

= t„ \ {8-c{r{) - 8c{rt)} u{r,) h,{r,ta + Xjtg) dr, 

Jr, 

= t„{u{-c) hi{-cU + Xjtg) - U{c) h,{cta + Xjtg)}. 

Eh 



Appendix B 

Ronchetti's r-test 

B.l Definition and asymptotic distribution 

For simplicity, consider the linear model of Section 2.2 with a = 1 and 9 being 

p-dimensional. Suppose that we want to test the hypothesis 

H : 9q+x = • • • = 0P = 0, 0 < q < p, 

Ronchetti (see Hampel et al., 1986, page 346) proposes the following class of tests 

that can be viewed as an extension of the log-likelihood ratio test for linear models. 

Definition B. l Define the corresponding M-estimators 9p and 9R in the full and 

reduced model, respectively, by 

T{9F) = min{r(0)|0 € 0}, T($R) = min{r(0)|0 € 0*}, 

where QR is the subspace of the parameter space 0 obtained by imposing the condition 

H and 

r{9) = £r{XhY,-Xj9}. 
i=i 
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A r-test is a test based on the test statistic 

Tr = —-{T{9R)-r(§F)}. 
p — qn 

a 

In addition, Ronchetti (see Hampel et al., 1986, page 352) derives the asymp­

totic distribution of nTr when .V/'s are independent and identically distributed. For 

instance, the asymptotic distribution under the hypothesis H is the distribution of 

— £ x>rt 

where x2's are independent standard x2 random variables with one degree of freedom, 

and Aj's are the p — q positive eigenvalues of Q(M - 1 — MR), 

M = EJ 

*->\{*&* 
d2r{Xx,ex)\ 

i 
e1=Yl-Xfe0) 

XxXj 

XxXj Mo = 
Mfi1 0 

0 0 

Mn being the upper-left corner of M of order q by q. To compute the tail prob­

abilities of the asymptotic distribution, we can apply the approximation for linear 

combinations of x2 random variables by Field (1993). 
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B.2 An unsolved problem 

To illustrate the problem that we encounter in applying our density approximation 

to the T-test, we consider the Huber-type estimator for the model in Section B.l. We 

now have 

r[Xh r,{9)) = l-*c{r,{9)){2r,{9) - *c{r,{9))}, I = 1 , . . . , n, 

where r,{9) = Y, — Xj9 and Yc is the Huber's score function, so that 

Let XR be the first q columns of X. The M-estimators are defined as the solutions 

of 

- £ *e(r,(fc.))X<, = 0, i = l , . . . , p , (B.l) 
71 7=1 

- £ * c ( r , ( ^ ) ) V f i O = 0, j = l,...,g. (B.2) 
n / = i 

By convention, we define r;(0o) = Y, — XR, 9R. 

Now, consider the approximation of the densities of TT. Note that TT is a function 

involving the random observations, we cannot directly apply the density approxima­

tion. To tackle the problem, we define TT as the solution of 

^ £ { r ~ M X , , r , { 9 R ) ) - r(X,,r,(0F))} - Tr) = 0 (B.3) 
n t=i (P Q J 

and consider rj = {9F,9R,TT) as the simultaneous solution of the (p + q + l)-system 

consisting of (B.l), (B.2) and (B.3). To approximate r), we have 

h{ri{9F))X,Xj 0 0 

0 UT^R^XRXXR,7 0 

-2{p-q)-^e{r,{9F))Xj 2{p-q)-^c{r,{9R))XRl
T 1 

1 " 
A = --^Eh 

v=t0, 
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1 n 

n 1=1 

Eh[Ic(r,{tF))}X,Xj 0 0 

0 EhUc^tR^XmXR,7 0 

0 0 1 

The last equality follows from the conditions for choosing to = {tF,tR,tT). Therefore 

n{U=iEh{Ic(r,{tF))}X,Xj}"X 0 0 

«{£?=i Ehmr^tR^XRiXR,7}'1 0 B = 0 

0 

and the linear approximation 

G = tT + -r + - E (—{r(X„r , (* H ) ) ~ r{X,, r,{tF))) - tT) 

2 l£{T{X,,r,{tR)) - r{X,,r,{tF))} 
P-ani=i 

which is simply the first term of a Taylor series expansion for TT. 

Our problem is that when G is evaluated under / , we have 90 = {9RQ,0), tF = 90, 

tR = 9RQ and therefore 

G = - ^ - - £ { r ( X / , r , ( M ) - T{X,,r,{90))} 
p-qnt=i 

which vanishes. This violates our assumption A8 in Section 3.2 and we cannot proceed 

to obtain an approximation. In fact, by expanding r{X,, r,{9R)) — T{X,, r,{9F)) about 

0o, we can easily see that the difference is determined by the second term and up and 

the first term approximation is always zero. 
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B.3 A potential solution 

In a recent conversation, Ronchetti suggested that we approximate the densities 

of a quadratic term in an expansion of TT rather than the densities of the test statistic 

itself. Precisely, he shows in Hampel et al. (1986, page 352) that 

( p - q)nTT = VT{90) (M"1 - MR) V{90) + • • •, 

where 

V{9o) = -r£,*c{r,{90))Xt. 
vn 1=1 

Note that the quadratic term is the basis used by Ronchetti (see Hampel et al., 

Chapter 7) to derive the asymptotic distribution of TT. 

To approximate the densities of the quadratic term, we suppose that the matrix 

M"1 — MR of rank p — q has non-zero eigenvalues A, and corresponding eigenvectors 

a,', i = 1, . . . ,p — q. Then 

x/ATaf 
M 1 - MR = film • • • fipTqap.q 

yAp_,ap_9 

= LLT. 

Writing 

y/rlLTV{9o) = 
Er=i*e(ri(f lo))(H=i*KW 

£r=i*c(n(0o))OXi */,£.>-,) 

= U, 

we can transform the quadratic term to a sum of squares, that is, 

nVT{90){M~'-MR)V{90) = nVT{90)LLTV{90) = UTU 
p-i 

= £</? 
i = i 
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Since t/,'s are just linear combinations of the score functions, we can apply the 

result in Chapter 5 and expect to obtain accurate approximations of their joint den­

sities. 

To compute the distribution of the r-test from the joint density approximation, we 

require a (p—^-dimensional numerical integration. This may not be very attractive if 

p — q is large. An alternative could be to generate the joint densities of t/2's from that 

of f/,'s and then apply the result of DiCiccio and Martin (1991). Note that a direct 

application of their result to the joint densities of (/,'s has some problems since the 

gradient of the sum of squares vanishes at the maximum (see DiCiccio and Martin, 

1991). The possibility is now under research. 

A final comment to this potential solution is that we approximate the densities 

of a quadratic approximation for TT. The performance is not clear at the moment. 

However, since the asymptotic distribution is derived using the quadratic term, we 

expect our approximation at least to improve over the asymptotic result. 



Appendix C 

Sample programs 

C.l Marginal density approximation using uni­

variate Gp 

c This program generates the numerical results in Tables 4.1a & 4.1b 

c Model : Location-scale 
c Estimator : Huber-type 
c rho(eta) : theta 

c Main program 
c program margdens.for 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
parameter (nitv=450,nsto=300,nftr=l,ditv=l.d-2,dsto=l.d-2) 
dimension px(2,nsto) 
call init_l 

c Computing the density approximation over a grid of points 
do 100 ix = 1, nitv 

call init_2 ( ix, ditv ) 
call compute.us 
call init_3 
call compute.rk 

call compute.px ( ix, px, nsto, nftr ) 
100 continue 

145 
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call store_px ( px, nsto, ditv, dsto ) 
close ( 99 ) 

end 

c General initialization 
subroutine init_l 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
nO = 10 
cO = 1.345 
bO = l - 2 * ( c 0 * dnorm ( cO ) + 

1 ( 1 - cO ** 2 ) * sl5acf ( cO, ifail ) ) 
aO(l) = O.dO 
a0(2) = O.dO 
cp(l) • O.dO 
cp(2) = O.dO 
ta(2) = l.dO 
return 

end 

z Initialization before computing the approximation at each point 
subroutine init_2 ( ix, ditv ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 n0,ir 
dO = l.dO 
ta(l) = ditv * ix 
return 

end 

c Computing alpha and t_0 
subroutine compute.us 

implicit- double precision (a-h,o-z) 

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 nO.ir 

parameter (xtol=l.d-10) 
dimension fp(2),tp(2),wa(19) 
external dpsi 
ifail = 0 
tp(l) = aO(l) 
tp(2) - ta(2) 



call c05nbf ( dpsi, 2, tp, fp, xtol, wa, 19, ifail ) 
a0(l) = tp(l) 
ta(2) = tp(2) 
return 

end 

c quantities for computing the approximation 
subroutine init_3 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
parameter (epsa=l.d-10,epsr=l.d-10,lw=4000,liw=1000) 
dimension w(lw),iw(liw) 
external dhx,all,al2,a21,a22 
ifail = 0 
bd(l) = - cO * ta(2) + ta(l) 
bd(2) = cO * ta(2) + ta(l) 
c2b = cO ** 2 - bO 
phxl = dexp ( - aO(l) * cO + a0(2) * c2b ) * pfx ( bd(l) ) 
phx2 = dexp ( aO(l) * cO + a0(2) * c2b ) * 

1 ( 1 - pfx ( bd(2) ) ) 
call dOlajf ( dhx, bd(l), bd(2), epsa, epsr, fO, abserr, 

1 w, lw, iw, liw, ifail ) 
dO = phxl + f0 + phx2 

c Expectations of the first order partial derivatives 

call dOlajf ( all, bd(l), bd(2), epsa, epsr, fl, abserr, 
1 v, lw, iw, liw, ifail ) 

call dOlajf ( al2, bd(l), bd(2), epsa, epsr, f2, abserr, 
1 w, lw, iw, liw, ifail ) 

call dOlajf ( a21, bd(l), bd(2) epsa, epsr, f3, abserr, 
1 w, lw, iw, liw, ifail ) 

call dOlajf ( a22, bd(l), bd(2), epsa, epsr, f4, abserr, 
1 w, lw, iw, liw, ifail ) 

dt = ta(2) / 2 / ( f1 * f4 - f2 * f3 ) 
c Matrix B 

bt(l,l) = 2 * f4 * dt 
bt(l,2) » - 2 * f3 * dt 
bt(2,l) = - f2 * dt 
bt(2,2) = fl * dt 
gc(l) = gx ( bd(l) ) 
gc(2) = gx ( bd(2) ) 
return 
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end 

c Moments of Gp 
subroutine compute.rk 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
parameter (epsa=l.d-10,epsr=l.d-10,lw=4000,liw=1000) 
dimension w(lw),iw(liw) 
external grhx 
ifail = 0 
c2b = cO ** 2 - bO 
phxl = dexp ( - a0(l) * cO + a0(2) * c2b ) * 

1 pfx ( bd(l) ) / dO 
phx2 = dexp ( aO(l) * cO + a0(2) * c2b ) * 

1 ( 1 - pfx ( bd(2) ) ) / dO 
rk(l) = O.dO 

c do 300 ix a 1,4 
do 300 ix = 1,2 

ir = ix 

call dOlajf ( grhx, bd(l), bd(2), epsa, epsr, fi, abserr, 
1 w, lw, iw, liw, ifail ) 

rk(ir) = ( gc(l) - rk(l) ) ** ir * phxl + fi + 
1 ( gc(2) - rk(l) ) ** ir * phx2 

300 continue 
rk(3) = rk(3) / rk(2) ** 1.5 
rk(4) = rk(4) / rk(2) ** 2 - 3 
return 

end 

c Edgeworth density approximation 
subroutine compute_px ( ix, px, nsto, nftr ) 

implicit double precision (a-h,o-z) 

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 nO.ir 

parameter (pi=3.141592653589793) 
dimension px(2,nsto) 
prl = dsqrt ( nO / 2 / pi / rk(2) ) * dO ** nO 
pr2 = prl * ( 1 + (rk(4) / 8 - 5 * rk(3) ** 2 / 72) / nO ) 
cp(l) = cp(l) + prl 
cp(2) = cp(2) + pr2 
iy = ix / nftr 
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if ( ( iy .le. nsto ) .and. ( ( iy * nftr ) .eq. ix ) ) then 
px(l,iy) = cp(l) 
px(2,iy) = cp(2) 

endif 
return 

end 

c Saving the numerical results 
subroutine store_px ( px, nsto, ditv, dsto ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 n0,ir 
dimension px(2,nsto) 
cp(l) = cp(l) * 2 
cp(2) = cp(2) * 2 
open ( unit = 99, file = 'margdens.o21' ) 
do 200 ix = 1, nsto 

pxl = 5.d-l + px(l,ix) * ditv 
c px2 = 5.d-l + px(2,ix) * ditv 

px3 = 5.d-l + px(l,ix) / cp(l) 
c px4 = 5.d-l + px(2,ix) / cp(2) 

write ( 99, * ) sngl ( dsto * ix ), sngl(pxl), sngl(px3) 
200 continue 

return 
end 

c quantities for the centering constraints 
subroutine dpsi ( np, tp, fp, iflag ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
parameter (epsa=l.d-10,epsr=l.d-10,lw=4000,liw=1000) 
dimension fp(np),tp(np),w(lw),iw(liw) 
external dpsi_l, dpsi_2 
ifail = 0 
a0(l) = tp(l) 
ta(2) = tp(2) 

bd(l) = - cO * ta(2) + ta(l) 
bd(2) • cO * ta(2) + ta(l) 
c2b = cO ** 2 - bO 

c Tail probabilities under h 
phxl = dexp ( - a0(l) * cO + a0(2) * c2b ) * 
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1 pfx ( bd(l) ) / dO 
phx2 = dexp ( aO(l) * cO + a0(2) * c2b ) * 

1 ( 1 - pfx ( bd(2) ) ) / dO 
call dOlajf ( dpsi_l, bd(l), bd(2), epsa, epsr, fl, abserr, 

1 w, lw, iw, liw, ifail ) 
fp(l) = cO * ( phx2 - phxl ) + fl 
call dOlajf ( dpsi_2, bd(l), bd(2), epsa, epsr, f2, abserr, 

1 w, lw, iw, liw, ifail ) 
fp(2) = c2b * ( phx2 + phxl ) + f2 
return 

end 

c Integrand for the expectation of A_{11} 
function all ( xO ) 

implicit double precision (a-h,o-z) 

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 nO,ir 

all = dhx ( xO ) 
return 

end 

c Integrand for the expectation of A_{12} 
function al2 ( xO ) 

implicit double precision (a-h,o-z) 

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 nO,ir 

al2 = dhx ( xO ) * psi_l ( xO ) 
return 

end 

c Integrand for the expectation of A_{21} 
function a21 ( xO ) 

implicit double precision (a-h,o-z) 

common bO,cO,dO,aO(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 n0,ir 

a21 = dhx ( xO ) * psi.l ( xO ) 
return 

end 

c Integrand for the expectation of A_{22} 
function a22 ( xO ) 

implicit double precision (a-h,o-z) 
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common bO,cO,dO,aO(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 nO.ir 

a22 = dhx ( xO ) * psi.l ( xO ) ** 2 
return 

end 

c Conjugate density h 
function dhx ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO,ir 
parameter (pi=3.141592653589793) 

c dfx - dnorm ( xO ) 
c dfx = 0.9 * dnorm ( xO ) + 0.01 * dnorm ( xO / l.dl ) 

dfx = 2 / dsqrt ( 3.d0 ) / pi / ( 1 + xO ** 2 / 3 ) ** 2 
c dfx = 1 / pi / ( 1 + xO ** 2 ) 

dhx = dexp (aO(l) * psi.l ( xO ) + a0(2) * psi_2 ( xO )) * 
1 dfx / dO 

return 
end 

c Standard normal density 
function dnorm ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO,ir 
parameter (pi=3.14159265?589793) 
dnorm = dexp ( - x 0 * * 2 / 2 ) / dsqrt ( 2 * pi ) 
return 

end 

c Integrand for the expectation of Psi.l 
function dpsi.l ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
dpsi.l = dhx ( xO ) * psi.l ( xO ) 
return 

end 

c Integrand for the expectation of Psi_2 
function dpsi_2 ( xO ) 
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implicit double precision (a-h,o-z) 

common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 
1 nO,ir 

dpsi.2 = dhx ( xO ) * psi.2 ( xO ) 
return 

end 

c Integrand for the moments of G.p 
function grhx ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
grhx = ( gx ( xO ) - rk(l) ) ** ir * dhx ( xO ) 
return 

end 

c G.p 
function gx ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO,ir 
gx = psi.l ( xO ) * bt(l,l) + psi_2 ( xO ) * bt(2,l) 
return 

end 

c Error distribution 
function pfx ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
parameter (pi=3.141592653589793) 
ifail = 0 

c pfx = sl5abf ( xO, ifail ) 
c pfx = 0.9 * sl5abf ( xO, ifail ) + 0.1 * 
c 1 sl5abf ( xO/l.dl, ifail ) 

pfx = gOlbaf ( 3, xO, ifail ) 
c pfx = datan ( xO ) / pi + 0.5 

return 
end 

c First score function 
function psi.l ( xO ) 
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implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
psi.l = ( xO - ta(l) ) / ta(2) 
return 

end 

c Second score function 
function psi_2 ( xO ) 

implicit double precision (a-h,o-z) 
common b0,c0,d0,a0(2),bd(2),bt(2,2),cp(2),gc(2),rk(4),ta(2), 

1 nO.ir 
psi_2 = psi.l ( xO ) ** 2 - bO 
return 

end 
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C.2 Tail probability approximation using multi­

variate Gp 

c This program generates the numerical results in Tables 5.3 

c Model : Multiple regression 
c Estimator : Huber-type or Mallow-type 
c rho(eta) : (theta_3, sigma) for studentized t-ratio 

c tailprob.par - variable declaration for tailprob.for 
implicit double precision (a-h,o-z) 
parameter (c0=1.345,jp=4,js=jp+l,n0=!20,ngrd=1000, 

1 mgrd=ngrd/2) 
common a0(2,js),axy(ngrd,ngrd,2,js),b0,bc(n0,2),bt(js,js), 

1 by(2),dO(nO),ditv(2),dmin,pc(n0,2),pxy(ngrd,ngrd), 
2 rl(2),ta(js),txy(ngrd,ngrd,js),wO(nO),xO(nO,jp), 
3 xa(nO),xcp(n0,4),yp(nO),ik,il,mby(2),nbx(2), 
4 nby(ngrd,2),id_ok 

c Main program 
c program tailprob.for 

include 'tailprob.par' 
dimension dxyO(ngrd,ngrd) 
call init.gen ( igrd.ok, dxyO ) 
call init.grd ( igrd.ok, dxyO ) 
call comp.pxy 

end 

c Computing alpha and t_0 
subroutine comp.at ( ig.ok ) 

include 'tailprob.par' 
parameter (atmin=.ld-7,xtol=l.d-6,jf=js*3, 

1 nwa=jf*(3*jf+13)/2) 
dimension fp(jf),tp(jf),wa(nwa) 
external recenter 
ifail = 0 
ig.ok = 1 
if ( id.ok .eq. 1 ) then 

id.ix = rl(l) / ditv(l) 
id.iy = rl(2) / ditv(2) 
if ( id.ix * ditv(l) .It. rl(l) ) id.ix • id.ix + 1 
if ( id.iy * ditv(2) .It. rl(2) ) id.iy • id.iy + 1 
igx = id.ix + mgrd 



igy = id_iy + mgrd 
if ( id.iy .gt. nby(igx,2) ) then 

ig.ok - 0 
else 

do 120 il = 1, js 
a0(l,il) = axy(igx,igy,l,il) 
a0(2,il) = axy(igx,igy,2,il) 
ta(il) = txy(igx,igy.il) 

120 continue 
endif 

endif 
if ( ig.ok .eq. 1 ) then 

do 100 il = 1, js 
tp(il) = aO(l.il) 
tp(il+js) = a0(2,il) 
tp(il+js*2) = ta(il) 

100 continue 
call c95nbf (recenter, jf, tp, fp, xtol, wa, nwa, ifail) 
do 110 il = 1, js 

aO(l,il) = tp(il) 
a0(2,il) = tp(il+js) 
ta(il) = tp(il+js*2) 
if ( dabs ( aO(l.il) ) .It. atmin ) aO(l,il) = O.dO 
if ( dabs ( a0(2,il) ) .It. atmin ) a0(2,il) = O.dO 
if ( dabs ( ta(il) ) .It. atmin ) ta(il) * O.dO 

110 continue 
endif 
return 

end 

c Computing the tail probabilities of the t-ratio 
subroutine comp.pxy 

include 'tailprob.par' 
parameter (aacc=l.d-6) 
dimension qtle(lO),pval(9) 
external dxy,phil,phi2 

qtle(l) = O.dO 
c Quantiles of the t-ratio ( can be stored in a data file ) 
c 2 
c qtle(2) * S.17876d-1 
c qtle(3) - 1.00345d0 
c qtle(4) = 1.32808d0 
c qtle(5) = 1.62123d0 
c qtle(6) = 1.98737d0 
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qtle(7) 
qtle(8) 
qtle(9) 

qtle(2) 
qtle(3) 
qtle(4) 
qtle(5) 
qtle(6) 
qtle(7) 
qtle(8) 
qtle(9) 
qtle(lO) 
ybndl 
ybnd2 
do 200 i( 

by(l) 
by(2) 

= 2.26441d0 
= 2.55690d0 
= 2.94193d0 

= 5.32029d-l 
= 1.02498d0 
= 1.33818d0 
= 1.63089d0 
= 1.98264d0 
= 2.25832d0 
= 2.52483d0 
= 2.90379d0 
= l.d5 
= mby(l) * ditv(2) 
= mby(2) * ditv(2) 

I - 1, 9 
= qtle(iq) 
= qtle(iq+l) 

call dOldaf ( ybndl, ybnd2, phil, phi2, dxy, aacc, 
1 pval(iq), npts, ifail ) 

open ( unit = 98, file = 'tailprob.o21' ) 
do 210 ip = 1, 9 

210 write ( 98, * ) qtle(ip+l), pval(ip) 
close ( 98 ) 

200 continue 
return 

end 

c General initialization 
subroutine init.gen ( igrd.ok, dxyO ) 

include 'tailprob.par' 
dimension dxy0(ngrd,ngrd) 
ifail = 0 
id.ok = 0 

c Design matrix X and weight W 
open ( unit = 99, file = 'tailprob.par' ) 
read ( 99, * ) ( ta(ip), ip = 1, jp ) 
do 300 ix = 1, nO 

read ( 99, * ) ( x0(ix,ip), ip • 1, jp ) 
w0(ix) = l.dO 

300 continue 
close ( 99 ) 
nbx(l) = 0 
nbx(2) = 0 
do 310 ix = 1, ngrd 



nby(ix.l) = 0 
nby(ix,2) = 0 
do 320 iy = 1, ngrd 

pxy(ix.iy) = O.dO 
dxyO(ix.iy) = O.dO 
do 330 ij = 1, js 

axy(ix,iy,l,ij) = O.dO 
axy(ix,iy,2,ij) = O.dO 
txy(ix,iy,ij) = O.dO 

330 continue 
txy(ix,iy,js) = l.dO 

320 continue 
310 continue 

do 340 ij = 1, js 
aO(l,ij) = O.dO 
a0(2,ij) = O.dO 
ta(ij) = O.dO 

340 continue 
ta(js) = l.dO 
bO = ( 1 - 2 * ( cO * dnorm ( cO ) + ( 1 - cO ** 2 ) * 

1 sl5acf ( cO, ifail ) ) ) * ( nO - jp ) / nO 
ditv(i) = 2.5d-l 
ditv(2) = 2.5d-l 
dmin = l.d-6 
i': = 3 
igrd ,ok = 0 
open ( unit = 94, file = 'tailprob.t21' ) 

970 read ( 94, * ) ix, iy, tp.dxy 
;f ( iz .It. 0 ) goto 980 
if ( igrd.ok .eq. 0 ) igrd.ok = 1 
dxyO(ix.iy) = tp.dxy 
read ( 94, * ) ( axy(ix,iy,l,ij), ij = 1, js ) 
read ( 94, * ) ( axy(ix,iy,2,ij), ij = 1, js ) 
read ( 94, * ) ( txy(ix,iy,ij), ij = 1, js ) 
goto 970 

980 continue 
close ( 94 
return 

end 

c Computing alpha and t.O over a grid of points 
subroutine init.grd ( igrd.ok, dxyO ) 

include 'tailprob.par' 
dimension dxyO(ngrd,ngrd) 
if ( igrd.ok .eq. 0 ) 



open ( unit = 94, file = 'tailprob.t21' ) 
ity = -1 

410 

430 

440 

450 

460 

do 400 il » 
ixm 
iy 
iy 
igy 
next.iy 
ixmO 
dxm 
itx 
do 420 

igx 
if ( 

* 1, 2 
= 0 
= 2 - il 
= iy + ity 
* iy + mgrd 
= 0 
= ixm 
= O.dO 
= -1 
i2 = 1, 2 
= ixm + mgrd 
i2 .eq. 2 ) then 

do 430 ij = 1, js 
aO(l,ij) = axy(igx,igy,l,ij) 
a0(2,ij) = axy(igx,igy,2,ij) 
ta(ij) = txy(igx,igy,ij) 

continue 
else if ( iy .ne. 0 ) then 

do 440 ij = 1, js 
aO(l,ij) = axy(igx,igy-ity,l,ij) 
a0(2,ij) = axy(igx,igy-ity,2,ij) 
ta(ij) = txy(igx,igy-ity,ij) 

continue 
endif 
ix 
ix 
lgx = 
nby(igx.il) = 
if ( igrd.ok 

ixm + 2 - i2 
ix + itx 
ix + mg*-<i 

iy 
eq. 0 ) then 

dxyO(igx.igy) = dxy ( ix * ditv(l), iy * ditv(2) ) 
do 460 ij = 1, js 

axy(igx,igy,l,ij) = aO(l.ij) 
axy(igx,igy,2,ij) = a0(2,ij) 
txy(igx,igy,ij) = ta(ij) 

continue 
igx, igy, dxyO(igx.igy) 
( axy(igx,igy,l,ij), ij 
( axy(igx,igy,l,ij), ij 
( axy(igx,igy,2,ij), ij 
( axy(igx,igy,2,ij), ij 
( txy(igx,igy,ij), ij • 1, 2 ) 
( txy(igx,igy,ij), ij = 3, js ) 

write ( 94, 
write ( 94, 
write ( 94, 
write ( 94, 
write ( 94, 
write ( 94, 
write ( 94, 

endif 

* ) 
* ) 
* ) 
* ) 
* ) 
* ) 
* ) 

• 1 , 

1, 2 ) 
3, js ) 

2 ) 
3, js ) 



if ( dxyO(igx.igy) .gt. dxm ) then 
ixmO - ix 
dxm = dxyO(igx.igy) 

endif 
if ( dxyO(igx,:gy) .gt. dmin ) then 

if ( next.iy .eq. 0 ) next.iy = 1 
if ( itx .gt. 0 ) then 

goto 450 
else 

itx = -itx 
endif 

else 
itx = -itx 
if ( ( i2 .eq. 1 ) .and. ( nbx(l) .gt. ix ) 

nbx(l) = ix 
else if ( ( i2 .eq. 2 ) .and. ( nbx(2) .It, 

1 then 
nbx(2) = ix 

endif 
endif 
if ( iy * ditv(2) .It. l.dO ) next.iy = 1 

420 continue 
ixm = ixmO 
if ( ( next.iy .eq. 1 ) .and. ( ity .gt. 0 ) .and. 

1 ( igy .It. ngrd ) ) goto 410 
ity = -ity 
mby(il) = iy 

400 continue 
if ( igrd.ok .eq. 0 ) then 

write ( 94, * ) -1, -1, -l.dO 
close ( 94 ) 

endif 
id.ok = 1 
return 

end 

c Quantities under h.l for computing the approximation 
subroutine para.l ( xipO, xipl, xip2 ) 

include 'tailprob.par' 
parameter (epsa=1.d-6,epsr=l.d-6,lw=4000,liw=1000) 
dimension w(lw),iw(liw) 
external dhx,dpsi.pl,dpsi_p2 
ifail = 0 
xa(il) = O.dO 
yp(il) = O.dO 
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do 500 il = i, jp 
xa(il) = xa(il) + xO(il.il) * ( aO(l.il) + a0(2,il) ) 
yp(il) = yp(il) + xO(il.il) * ta(il) 

500 continue 
bc(il,i) = -cO * ta(js) + yp(il) 
bc(il,2) = cO * ta(js) + yp(il) 
call dOlajf ( dhx, bc(il,l), bc(il,2), epsa, epsr, xipO, 

1 aerr, w, lw, iw, liw, ifail ) 
call dOlajf ( dpsi.pl, bc(il,l), bc(il,2), epsa, epsr, xipl, 

1 aerr, w, lw, iw, liw, ifail ) 
call dOlajf ( dpsi_p2, bc(il,l), bc(il,2), epsa, epsr, xip2, 

1 aerr, w, lw, iw, liw, ifail ) 
ac2b = ( aO(l,js) + a0(2,js) ) * (c0**2 * wO(il) - bO) 
pc(il,l) = dexp ( -xa(il) * wO(il) * cO + ac2b ) * 

1 pfx ( bc(il,l) ) 
pc(il,2) = dexp ( xa(il) * wO(il) * cO + ac2b ) * 

1 ( 1 - pfx ( bc(il,2) ) ) 
dO(il) = xipO + pc(il,2) + pc(il,l) 
xcp(il,l) = ( xipl + cO * ( pc(il,2) - pc(il,l) ) ) / dO(il) 
xcp(il,2) = ( xip2 + cO ** 2 * ( pc(il,2) + pc(il,l) ) ) / 

1 dO(il) 
xipO = xipO / dO(il) 
xipl = xipl / dO(il) 
xip2 = xip2 / dO(il) 
return 

end 

c Quantities for the centering constraints 
subroutine recenter ( jm, tp, fp, iflag ) 

include 'tailprob.par' 
parameter (lwork=1000) 
dimension fp(jm),tp(jm),ipiv(js),work(lwork) 
do 600 il = 1, js 

610 
600 

a0(l,il) = tp(il) 
a0(2,il) = tp(il+js) 
ta(il) = tp(il+js*2) 
fp(il) = O.dO 
fp(il+js) = O.dO 
fp(il+js*2) = O.dO 
do 610 i2 = 1, js 

bt(il,i2) = O.dO 
continue 
do 620 ix = 1, nO 

il = ix 
call para.l ( xipO, xipl, xip2 ) 
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c Expectations of the first order partial derivatives and Psi 
do 630 il = 1, jp 

do 631 i2 = 1, jp 
631 bt(il,i2) = bt(il,i2) + xO(il.il) * x0(il,i2) * 

1 wO(il) * xipO / ta(js) 
bt(il.js) = bt(il.js) + xO(il.il) * wO(il) * xipl / 

1 ta(js) 
fp(il) = fp(il) + xO(il,il) * wO(il) * xcp(il,l) 

630 continue 
bt(js.js) = bt(js.js) + 2 * wO(il) * xip2 / ta(js) 
fp(js) = fp(js) + xcp(il,2) * wO(il) - bO 

620 continue 
c Matrix B 

do 650 il = 1, jp 
do 660 i2 = 1, jp 

660 bt(il,i2) = bt(il,i2) / nO 
bt(il.js) = bt(il,js) / nO 
bt(js.il) = bt(il.js) * 2 

650 continue 
bt(js,js) = bt(js,js) / nO 
call f07adf ( js, js, bt, js, ipiv, info ) 
call f07ajf ( js, bt, js, ipiv, work, lwork, info) 
do 670 il = 1, js 

if ( il .eq. ik ) then 
fp(ik+js) = ta(ik) - rl(l) 

else 
fp(il+js) = aO(l,il) * bt(ik.ik) - aO(l,ik) * 

1 bt(ik,il) 
endif 
if ( il .eq. js ) then 

c Constant adjustment ( can be replaced by a subroutine ) 
c Z -1.47302d-l 
c t3 -1.11731d-l 

fp(js+js*2) » ta(js) - 1.11731d-l - rl(2) 
else 

fp(il+js*2) = a0(2,il) * bt(js.js) - a0(2,js) * 
1 bt(js,il) 

endif 
670 continue 

do 680 il = 1, jm 
680 if ( dabs ( fp(il) ) .It. l.d-15 ) fp(il) = O.dO 

return 
end 

c Conjugate density h.l 
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function dhx ( yO ) 
include 'tailprob.par' 
parameter (pi=3.141592653589793) 
dfx = dnorm ( yO ) 
dfx = 2 / dsqrt ( 3.d0 ) / pi / ( 1 + yO ** 2 / 3 ) ** 2 
dfx = 0.9 * dnorm ( yO ) + 0.01 * dnorm ( yO / l.dl ) 
dfx = 1 / pi / ( 1 + yO ** 2 ) 
zO = psi.c ( res.p ( yO ) ) 
dhx = dexp ( xa(il) * wO(il) * zO + ( aO(l.js) + 

1 a0(2,js) ) * ( zO *> 2 * wO(il) - bO ) ) * dfx 
return 

end 

c Max ( a, b ) 
function dmaxi ( tp.l, tp_2 ) 

include 'tailprob.par' 
if ( tp.l .gt. tp_2 ) then 

dmaxi = tp.l 
else 

dmaxi = tp_2 
endif 
return 

end 

c Min ( a, b ) 
function dmini ( tp.l, tp_2 ) 

include 'tailprob.par' 
if ( tp.l .It. tp_2 ) then 

dmini = tp.l 
else 

dmini = tp_2 
endif 
return 

end 

c Standard normal density 
function dnorm ( zO ) 

include 'tailprob.par' 
parameter (pi=3.141592653589793) 
dnorm = dexp ( - zO ** 2 / 2 ) / dsqrt ( 2 * pi ) 
return 

end 

c Integrand for the expectation of Psi.c 
function dpsi.pl ( yO ) 

c 

c 
c 
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include 'tailprob.par' 
dpsi.pl - dhx ( yO ) * psi.c ( res.p ( yO ) ) 
return 

end 

c Integrand for the expectation of Psi_c"2 
function dpsi_p2 ( yO ) 

include 'tailprob.par' 
dpsi.p2 = dhx „0 ) * psi.c ( res.p ( yO ) ) ** 2 
return 

end 

c Integrand for the expectation of Psi_c~3 
function dpsi_p3 ( yO ) 

include 'tailprob.par' 
dpsi_p3 = dhx ( yO ) * psi.c ( res.p ( yO ) ) ** 3 
return 

end 

c Integrand for the expectation of Psi_c~4 
function dpsi_p4 ( yO ) 

include 'tailprob.par' 
dpsi_p4 = dhx ( yO ) * psi.c ( res.p ( yO ) ) ** 4 
return 

end 

c Edgeworth density approximation 
function dxy ( xl, yl ) 

include 'tailprob.par' 
parameter (pi=3.141592653589793) 
parameter (epsa=l.d-6,epsr=l.d-6,lw=4000,liw=1000) 
dimension w(lw),iw(liw) 
external dpsi_p3,dpsi_p4 
ifail = 0 
rl(l) = xl 
rl(2) = dmaxi ( 5.d-2, yl ) 
call comp.at ( ig.ok ) 
if ( ig.ok .eq. 0 ) then 

dxy = O.dO 
goto 720 

endif 
var.l = O.dO 
var_2 = O.dO 
corl2 • O.dO 
pO « l.dO 
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do 700 ix = 1, nO 
il a ix 
pO = pO * dO(il) 
call dOlajf ( dpsi_p3, bc(il,l), bc(il,2), epsa, epsr, 

1 xip3, aerr, w, lw, iw, liw, ifail ) 
call dOlajf ( dpsi_p4, bc(il,l), bc(il,2), epsa, epsr, 

1 xip4, aerr, w, lw, iw, liw, ifail ) 
xcp(il,3) = ( xip3 + cO ** 3 * 

1 ( pc(il,2) - pc(il,l) ) ) / dO(il) 
xcp(il,4) = ( xip4 + cO ** 4 * 

1 ( pc(il,2) + pc(il,l) ) ) / dO(il) 
xbk = O.dO 
xbs a o.dO 
do 710 il = 1, jp 

xbk = xbk + xO(il.il) * bt(ik,il) 
xbs - xbs + xO(il.il) * bt(js.il) 

710 continue 
xbk a Xbk * wO(il) 
xbs a xbs * wO(il) 
bwk = bt(ik,js) * wO(il) 
bws a bt(js.js) * wO(il) 
xl.l = xbk * xcp(il,l) + bwk * xcp(il,2) 
xl_2 = xbk ** 2 * xcp(il,2) + 2 * xbk * bwk * 

1 xcp(il,3) + bwk ** 2 * xcp(il,4) 
x2_l = xbs * xcp(il.l) + bws * xcp(il,2) 
x2_2 a Xbs ** 2 * xcp(il,2) + 2 * xbs * bws * 

1 xcp(il,3) + bws ** 2 * xcp(il,4) 
xl2 = xbk * xbs * xcp(il,2) + ( xbk * bws + 

1 bwk * xbs ) * xcp(il,3) + bwk * bws * xcp(il.4) 
var.l a var.l + xl.2 - xl.l ** 2 
var_2 = var_2 + x2_2 - x2_l ** 2 
corl2 a corl2 + xl2 - xl.l * x2_l 

700 continue 
dxy a po * nO ** 2 / 2 / pi / dsqrt ( var.l * var_2 -

1 corl2 ** 2 ) 
720 continue 

return 
end 

c Error distribution 
function pfx ( zO ) 

include 'tailprob.par' 
ifail = 0 

c pfx a sl5abf ( zO, ifail ) 
pfx a gOlbaf ( 3, zO, ifail ) 



,a< 

c pfx = 0.9 * slSabf ( zO, ifail ) + 0.1 * 
c 1 sl5abf ( zO / l.dl, ifail ) 
c pfx a gOlbaf ( 1, zO, ifail ) 

return 
end 

c Lower limit for the double integral 
function phil ( pt.y ) 

include 'tailprob.par' 
phil = dmini ( nbx(2) * ditv(l), by(l) * pt.y ) 
return 

end 

c Upper limit for the double integral 
function phi2 ( pt.y ) 

include 'tailprob.par' 
phi2 a dmini ( nbx(2) * ditv(l), by(2) * pt.y ) 
return 

end 

c Huber's score function 
function psi.c ( zO ) 

include 'tailprob.par' 
psi.c a dmaxi ( -cO, dmini ( cO, zO ) ) 
return 

end 

c Standardized value 
function res.p ( yO ) 

include 'tailprob.par' 
res.p a ( yo - yp(il) ) / ta(js) 
return 

end 
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