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ABSTRACT 

A one-dimensional system consisting of e-jual numbers of two types of bosons undergoing 

interactions through delta function potentials is examined. AH particles have the same mass 

but each boson cairies a "charge" that distinguishes one boson type from the other. The 

interactions are such that like particles repel and unlike attract. The amount of attraction 

and/or repulsion is determined by two adjustable parameters so that the amount of 

repulsion is not necessarily equal to that of attraction. 

Analysis of the behavior of the system is determined by using the Bogoliubov 

approximation method to reduce the original Hamihonian to an approximate form that is 

solvable. Although the approximation method does restrict the parameter space that can be 

analyzed, it turns out this limitation fortuitously still allows the determination of some 

interesting thermodynamic properties of the system. Among these properties is the feature 

of having a system length which exhibits thermodynamic stability provided the temperature 

is below some finite temperature. This stable length can be quite simply related to the 

number of particles in the system but this simple relationship is quite different for periodic 

boundary conditions as compared to Dirichlet boundary conditions. 
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LIST OF SYMBOLS 

Below is given a list of symbols used. If the symbol can be defined easily with a few words 

than those words are given. Otherwise the equation number in which ths symbol first 

appears is given. The meaning of the symbol is usually defined in the text unmediately 

before or after the equation. Most of the symbols used in Chapter 1 are not included in this 

list since they are not used in other than the introductory material where work of other 

authors, and thus their symbols, is called upon frequently. The symbols are arranged in 

order of their first appearance. 
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I. INTRODUCTION 

The Primary Focus 

The ^rimaiy focus of what is to follow will be a one-dimensional assemblage of spinless 

bosons. All the particles present in the system have identical masses but there are two types 

of particles. The particles of a given type are Hentical in all respects. Each boson carries 

what will be called a "charge" for lack of a better word and it is this "charge" that 

distinguishes one type of boson from the other. As with electrical charge the "charge" 

causes an interaction between likes that is different from the interaction between unlikes. In 

contrast with electrical charge mat has an infinite range over which to interact, the "charge" 

on these bosons has a range of interaction that is at the other extreme of distance. Namely, 

if these bosons were considered as classical macroscopic particles, they would only interact 

with each other on contact. Unlike cLssical particles, these bosons may penetrate or pass 

through each other. An additional difference between this interaction and the Coulomb one 

is that the repulsion between like need not be of the same magnitude as the attraction 

between unlike. 

Picture tins system of bosons rs a string of particles laid out along the only ctimension 

available in its one-dimensional world. Calling mis direction the x-axis, at some point in 

time each particle can be viewed as occupying some position x,. In the most general 

approach to describing this system's properties mere would be no reason to restrict the 

1 



range of x, along the x-axis but it will be required by the approximation method to be used 

mat the system be confined to some finite size. The Haimltonian mat wfll be used to fit the 

description of the system of bosons described above is 

H{c,g,N)=-ft^ + 2fi(g + celeJ)s(xi-xJ) (1) 
(=1 oxx lKj-i 

I +1 if l < / ^ y 
where e , = j N

 2 . 
\-lif —+lmN 

The units have been chosen so as to have h = 1 and, where m is the mass of each boson, 

2m = 1. The form of the delta function not only indicates the point !ike nature of the 

interactions but also that all interactions are between pairs only. The second summation 

symbol is a shortened form to convey that the sum is to include all possible pairs. Here the 

system is assumed to have equal numbers of the two types of bosons (1 to N/2 for one 

group and N/2 + 1 to N for the other). Thus the e, determine mat the strength of the 

contact potential is g + c between like particles and g-c between unlike particles. In the 

new work that is to be presented here the values of the parameters g and c are restricted so 

that mere is repulsion between like particles and attraction between unlikes, mat is 

0$g<c. 

A) Why only one-dimension 

The first point about mis system of bosons to be considered is its restriction to only one-

dimension. As the sensible world about oneself is apparently three-dimensional, then the 

file:///-lif
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advantage in analyzing a one-dimensional system should be addressed. The interest in one-

dimensional systems has been present for a long time. If one were to go back in time more 

than twenty-five or thirty years, then the rationale for studying such a system would have a 

different emphasis than now. However, the past twenty-five years have shown mat mere 

are systems mat have fewer than three-dimensions. Various surfaces and layers have 

shown themselves to be two-dimensional in nature and the study of their properties has 

produced a large amount of interest. An effective one-dimensional system can be realized 

by restricting the width of a two dimensional system to small values. An easily visualized 

example of mis process would be the making of a one-dimensional gate in a 

semiconducting material by the appropriate deposition of various layers. It may also be mat 

the physical properties of a two-dimensional system have a strongly directional nature 

which would make it effectively one-dimensional. For example, a conducting polymer 

might have a very low resistivity in one direction compared to another. As a final example, 

some materials such as Bechgaard salts have shown themselves to possess quasi one-

dimensional properties. 

Another comment to be made concerning the merit of one-dimensional systems is the 

argument mat one never can predict what useful consequences might follow. Consider the 

Ising model. It started out in 1925 as a one-dimensional model of a ferromagnet with 

seemingly only theoretical application but with the passage of time has certainly grown in a 

major way in its applications to research. The Hamiltonian in (1) may not be destined for 

the same level of interest and usefulness as the Ising model but, as has happened before, 



one never knows at the beginning of research how many new areas will open up. In 

support of this idea it is interesting to point out mat although one-dimensional systems with 

contact potentials laave been studied for many years, the interest in (1) has arisen recently 

from work in two-dimensional systems. Superficially these systems would seem to have no 

connection with a one-dimensional system of bosons. A more in depth look will now be 

taken to show how the connection can be made. 

B) The Source of the Recent Interest in This Hamiltonian 

The illustrative example of the recent interest in Hamiltonians derived from (1) finds its 

source in the study of disordered, or random, systems. To help in the explanation of how 

random system studies lead to one-dimensional systems of bosons, a digression will now be 

taken in order to give an overview of some of the results in mis field. For the purposes of 

illustration the work of M. Kardar1 will be used. Although the example chosen win use 

terms applied to the boundary between two domains in a two-dimensional random-bond 

Ising model, it could just as wefl be used on a model system for a polymer on a disordered 

substrate2. Indeed the mathematical development of coherent wave propagation through 

randomly disordered media3 turns out to be very similar as well. Although the 

aforementioned models can be applied to other man two-dimensional systems, it is only the 

two-dimensional form that wfll be considered here. Also, as the intent of this digression is 

to show that there is a field of current interest where knowledge of the solutions of the 

Hamiltonian (1) would be useful the fufl mamematical development wifl not be reproduced 
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here. Rather, the outline wfll hopefully illustrate by highlighting in a stop to step fashion 

why and how the transition from such two-dimensional models to a one-dimension boson 

system can occur. 

The basic approach used in these models is to follow a path through tiie system under 

study. The path may represent tiie boundary between domains in a magnetic material or 

along some polymer on a random substrate, for example. Since tiie system has randomness 

built into it, the direction of the path is influenced by the randomness within tiie material. 

For tiie domains and polymer models some form of impurity is added at random sites 

resulting in randomness in the strength of tiie bonds present. The path is not that of a 

random watte but rather a self-avoiding random watte The self-avoiding random walk 

prevents self intersections in tiie path which is useful in tiie domain wall case, for example, 

if you want to limit consideration to tiie simpler interface between only two domains rather 

titan three or more. Since the length of a true self-avoiding random watte is unpredictable, a 

weighted or preferred direction is assigned to the models to allow for paths of whatever 

length may be required. In the parlance of the field such paths are catted "directed paths" 

or "directed polymers". 

To be more specific, picture a two-dimensional cquare lattice as in Figure 1. Starting at 

point (0,0) the path goes one step in the preferred direction which in tiie figure is to the 

right The step need not go to tiie point (1,0) but could also take a transverse step to one of 

tins point's neighbors, that is either to (1,1) or (1,-1). Continuing tins process would mean 



that after n steps tiie end of the 

path is at one of 2n + 1 possible 

positions. (For tiie case of a 

polymer one could produce such 

a shape as the directed path by 

applying sufficient tension to the 

ends of the polymer to prevent 

self-crossings. The interactions of 

the random bonds between tiie 

substrate <*nd the polymer would 

produce "sideways" deflections 

tiiat would have different statistical properties from the tiiermally produced ones of tiie 

pure material) One of the tilings tiiat is of interest in tins field is how die amount of 

deflection, from tiie straight line direction, of the end of tiie path is dependent on tiie 

Lumber of steps taken. 

/ 

/ 
mm 

\ s s s 

Preferred direction \ 

Figure 1 - An example of a directed path 

Kardar sets up his random-bond Ising model so tiiat tiie spin sites are on a two-

dimensional lattice in the x-t plane with t being in tiie preferred direction mentioned above. 

The random-bond Ising model has a Hamiltonian of tiie form 

H = -YJiJeTterJ (2). 

In tiie common Ising model tiie interaction energy or strength of bonds between 
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neighboring spins is a constant 7 but here bonds can be chosen to have random values. The 

boundary or interface between two domains runs from (0,0) and roughly fottows tiie /-axis 

seeking a path tiiat tries to balance tiie demands of keeping tiie boundary length minimum 

and passing through sites of locally low energy. If no impurities were present and tiie 

temperature was zero the interface would go along the axis. The presence of impurities 

causes the interface to be distorted even at zero temperature because of tiie centers of 

relative attraction they create. For simplicity the bonds between nearest neighbor spin sites 

in tiie x-direction are assumed to be equal Moreover these bonds are made strong enough 

to make tiie /-direction the preferred direction in tiie random path selection process. The 

random bonds of tiie model are in the /-direction and are assumed to be independent of 

each other. Although random, these bonds //(x, i) are selected to have a gaussian 

distribution of mean [//] and standard deviation of a. Kardar uses the square brackets, [...] 

to indicate tiiat an averaging over a sampling of random arrangements of impurities has 

been carried out. 

Starting at (0,0), tiie beginning of the interface, Kardar generates the possible directed 

paths to (x,/) where / is predetermined and considered the independent variable. Each of 

tiie paths would represent a possible interface between domains and he assigns a 

probability or weight, W(x,t), to each path. The set of weights can then be used to generate 

a partition function. His method of determining W(x,t) is through tiie use of transfer 

matrices, 3(/'), evaluated at each step along the path. He indicates tiiat these transfer 

matrices become, in tiie continuous limit in tiie x direction, 



( s%\ 
(x|3(/')|x')*exp -^(«tr')+2y + y - T (3). 

V ox J 

Here y is determined by tiie bonds perpendicular to tiie interface and is a constant 

Boltzmann weighting factor. Then setting 

W[xtt) = <0|3(0)3(1)...3(/- l)|x> (4) 

and going to the continuous limit in the / direction he arrives at 

dW 
= -(^:,,)-2,-,|i) , t - - • - " " ' ( 5 )-

If one views the / variable as an imaginary time" then tiie operator in brackets determines 

the time evohition of Wand thus could be considered a Hamiltonian. The equation could 

then be written with a time dependent Hamiltonian as in 

- j - = -H(t)W (6). 
o t 

By examining the asymptotic behavior of tiie equation Kardar is able to determine tiiat 

W[x,t) oc expj - [ / ] / - g\ — If. The [/] is the averaged interface free energy and v, in 

tiie function g{), determines how the deflection of tiie end of tiie path in the x-direction 

scales with tiie number of steps taken along tiie /-direction. After a large number of steps 

tiie average magnitude cf tiie x position of the path end will be proportional to tv. As will 

be pointed out in more detail below, there is disagreement among some authors as to the 

correct value of the scaling properties cf some models, not tins one of Kardar, when the 

/ -* oo limit is applied. Some aspects of tins scaling controversy will be considered later in 



tiie new work to be presented. 

9 

The difficulty with impurity averaged quantities like \f\ being in the exponent is that it 

requires the determination of [In W\ ratiier than [W\. To overcome this problem Kardar 

utilizes what is known as the replica metiiod. The replica method is based on tiie 

mathematical identity 

(xn-i\ 
lnX = lim 

n-*0 \ n 
(7). 

Interpreting W as being the product of n versions, or replicas, of If then 

f fir-1-0 
[lnPF] = lim 

n-»0 " J 
(8). 

The replica metiiod or, as some autiiors catt it, replica trick is not novel or unique to the 

work of Kardar being discussed here. For example, it has also been used in spin glass 

studies4 ard random lattice work3. 

Referring to (3) one can see that if an interface (path) crosses tiie bond fi{x, t), a 

contribution of a factor of exp(- p) is made to W. Then in any collection of interfaces 

(paths), W\ tiie same bond would be crossed by m interfaces 0/atiis) with the restriction 

0<,m<,n and would contribute a factor of expf-mju). On av raging over different 

selections of randomness Kardar gives tiie result as 

[expi-mfi)] = exp{-([//]- ltr2)w+ Wm{m-\)) (9). 
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The important feature of this result is tiie interpretation Kardar gives it. The m interfaces 

that cross a bond, if considered two at a time, could be viewed as making up jmim-l) 

different pairs. Since this same factor appears in the last term in tiie exponent hi (9), he 

ascribes this occurrence to the idea tiiat there must be a connection between pairs of 

interfaces. In tiie context of (9) each member of one of these pairs is interacting with die 

otiier member via an attraction of strength a-2, hi addition, as only die factor m is involved 

and not n, these interfaces only interact on contact with each other. So, in tiiis case, 

application of die replica metiiod replaces a single interface (path) problem with n-

interfaces (paths) that are regarded as interacting with each other in a pair-wise fashion but 

only at the points of contact 

Where in tiie single interface model tiie transfer matrices of (4) could be used, here in the 

n-interface replica model the transfer matrices must be of an n-body type. The time 

dependent Hamiltonian found in (5) is now replaced by 

d' 
a=\CXa J trtfl 

(10). 

Thus by invoking die replica metiiod Kardar is able to go from die two-dimenaonal 

operator (or die "time" dependent Hamiltonian) found in (5) to the one-dimensional (or 

"time" independent) (10). However, in a "conservation of difficulty" fashion, the one-

dimensional Hamiltonian is an n-body one. As it turns out, this particular Hamiltonian has a 

known exact solution (whose form will be given later). Having an exact solution makes 
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easy tiie limiting process « -> 0 required by the replica method. 

For our purposes here tiie analysis of this work of Kardar has now gone far enough. The 

whole rationale for tiie analysis is summarized by tiiat part of (10) enclosed in the curly 

braces. A comparison of tiiis part with (1) witt show that it is of the same type oi 

Hamiltonian but with c = 0 and g = - Ay. As all tiie factors outside tiie curry braces are 

constants, knowing the eigenvalues of the Hamiltonian represented witiiin the braces makes 

it straightforward to find die eigenvalues of (10). 

In order to introduce another Hamiltonian of the form of (1), a variation or extension of 

Kardar's model discussed above will be used. As already mentioned the model used by 

Kardar belongs to a class referred to as directed paths, or directed polymers, in random 

media. Following a weighted but random path through the system results in the acquisition 

of random amplitudes at sites along the path. For the next model to be considered each 

step along the directed path results in the gaining of random phases ratiier than amplitudes. 

Some autiiors refer to tins model as a complex directed path, or a complex directed 

polymer, in a random medium where tiie "complex" arises from tiie need for complex 

numbers when dealing with phases. This model has proved useful in work on 

ma^netoconductance and conduction in insulators or semiconductors when tiie 

phenomenon of electron hopping is involved. As the name of the model suggests, it can be 

applied in low dimensional situati ms with random impurity distributions. Under these 

conditions the electron that witt take part in conduction can be wett localized at an impurity 
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location but at even small finite temperatures may tunnel or hop to another location. It can 

be shown6 tiiat at low temperatures the temperature dependence of the conductivity is 

proportional to 

a cc exp - — 
\ 

TJ 

d+i 

(11) 

where 7̂  is a constant and dis the dimension of die system. Materials that have a 

conductivity of tiie form of (11) exhibit Mott variable range hopping conduction. The 

electron is not confined to hop to an adjacent impurity site. The average hopping distance 

may exceed tiie average distance between impurities. It is then assumed that the conduction 

could take place along a directed path. 

With the above as background we witt now turn to an overview of the work of Blum, 

Staph* and Koltun7 and Blum and Goldschmidt8. There is a close parallel between their 

work and die work of Kardar already described. One of their assumptions is that the 

electrons are so highly localized tiiat only directed patiis need be considered in tiie hopping 

conduction process. This feature combined with their use of Feynman path integrals ratiier 

than transfer matrices leads to the phrase "directed Feynman patiis" as a description of 

their approach. Again using / as tiie distance along die directed axis and x as tiie distance 

perpendicular to the directed axis, a wavefunction or transmission amplitude for the 

electron along the path connecting (0,0) to (x,t) is given as 

*(-•') ̂ o^-rter^'V) (12). 
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Here ®(x(/), /) is tiie random variable giving tiie random phase acquired at each site. As in 

(5) tiie "time" development can be viewed as being determined by a "time" dependent 

Hamiltonian as in 

dV ( „, , , v 0* ^ 
H<®M<V) + 3rT T (13). 

dt \ v v p ' dxJ) 

Ahhough the conductance is proportional to Y*Y, because they have to average over 

different realizations of the disorder in the system, it turns out they must average over 

log(Y*Y). To accomplish this averaging they turn as Kardar did to the replica method, hi 

this case the n "replicas" cause Y to contribute n interacting patiis and 4/* to contribute a 

further n patiis. Each group of n paths has a repulsion between pairs as tiie interaction 

whereas there is an attraction between any pairing involving the two groups. Here again 

there appears a one-dimensional Hamiltonian as in (10) but, if the randomness is 

uncorrelaced, with die form 

H = -t^T + 2cte,eJS(xl-xJ) (14). 

If me Hamiltonian in (1) has g = 0 and N=2n then it is tiie same as (14). Unfortunately 

this form does not have a known exact sohition which makes tiie limiting process n -+ 0 of 

tiie replica metiiod problematic. As it turns out though, determining tiie large n behavior of 

the ground state energy of (14) offers a way around the difficulty. 

As indicated by Blum and Goldschmidt8 when / is large the x positions of tiie ends of many 

paths, when averaged over realizations of tiie randomness, have a distribution such tiiat 
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(x2(/)) = At2v. However, the value of v in tiie exponent was cause for some disagreement. 

On carrying out numerical simulations on finite two-dimensional lattices, Medina, Kardar, 

Shapir and Wang9 obtained v = 0.68 ± 0.05 and proposed that for large / the value should 

be v = 2/3. Zhang10 also did numerical simulations but arrived at v = 0.74 ±0.01 with a 

conjectured large / value of 3/4. Backing up for the moment to tiie directed polymer 

described already, if one assumes that continuum elastic theory can be used to calculate \ * 

polymer free energy, it can be shown that the free energy difference between two polymers 

d2 

scales as — . Here d is the distance between die ends of the two polymers after / steps. In 

addition d scales as V and tiie free energy difference scales as t". Tying these 

relationships together gives 

2 v - l = fi> (15). 

This connection between exponents can be shown to hold in tiie exactly solvable directed 

polymer case. It is assumed to hold in the complex directed polymer case. Also, die ground 

state energy of the Hanultonian (14) is postulated to be of tiie form8 

£ » =-<V - £,« (16) 

where n is tiie number of patiis in die context of die replica metiiod or, in terms of 

particles, the number of particles in a system of interacting bosons. The basis for assuming 

tiie ground state energy to have tins form arises from the known exact solution of (1) when 

c = 0andg<0 

2 

* » = - ^ ( » 3 - » ) (17). 



The rationale for considering die ground state energy into the picture is based on two 

tilings. First, Kardar used die idea that in the large n regime it is only the largest eigenvalue 

of die transfer matrix that is important. The largest eigenvalue *s the groundstate energy. 

Second, there is a relationship <o = — when n is luge. This equality which was derived by 
p 

Zhang" means tiiat (15) can now be written as 

2v-l=4r (!«)• 
P 

This relationship implies that knowing the large n behavior of (16) would enable the 

determination of p and then v could be determined from (18). It was with this approach in 

mind that led Blum, Koltun and Shapir12 to consider die ground Plate energy scaling of n 

not only for die Hamiltonian of (14) but for the more general form (1). 

As indicated above, tiie foundation for the complex directed polymer model is based on 

some assumptions carried over from tiie directed polymer work. However, the work on the 

directed polymer model is not without its criticisms. Bouchaud and Orland13, for example, 

bring up a number of points but the most directly important one for here is their criticism 

of tiie use of the ground state energy eigenvalue. They point out that tiiis use of the ground 

state would only be valid if there was a gap in the energy spectrum of the Hamiltonian. 

They feel, since the center of mass energy of the system of particles can be made arbitrarily 

small, tiiat there is no gap. However, as tiie stated point of tiiis overview was not to get 

heavily involved in the merits (or demerits) of this work on random media, this aside will 

be closed now that it has been shown knowledge of a one-dimensional Hamiltonian of die 
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form of (1) is of current interest. 



II. SOME PARTICULAR SOLUTIONS 

Initial comments 

Now tiiat motivation for considering a one-dimensional system has been established it is the 

intent in mis section to review some of tiie work that has been done on systems whose 

Hamiltonian is some variation of the form presented in the previous section. Various 

interactions have been used other than the pair potential V\xx - x\ = six, - x J already 

mentioned. For example, B. Sutherland has solved tiie Hamiltonian for an JV-body system 

of identical bosons where v(x, - x ) = —^ not only for tiie ground state" but also 

for its thermodynamics13. F. Calogero16 has found solutions for the more complex form 

v(x, - Xj) = -—-—j + c(xt -Xj) . However, unless the interaction has some direct 

bearing on the delta function version it will not be considered here. 

What witt be considered is the consequence of varying die parameters g and c that 

determine tiie strength of the delta function interactions. The goal is to determine 

something about tiie system behavior when c * 0 so the development witt focus primarily 

on those features of the rest of die g, c parameter space diat support this thrust. If an exact 

solution for tiie Hamiltonian were known it would not be necessary to seek such support. 

At mis point there is no exact sohition known so an approximation technique witt be used 

17 
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and it is support for this approximation that is being sought. With these points in mind tiie 

first case to be considered is the free Bose gas. 

The g s c & 0 case 

Setting g ~ c = 0 turns off the interactions between particles and one is left with an ideal 

Bose gas. The three-dimensional ideal Bose gas is dealt with in many texts on statistical 

mechanics and so its properties have been broadly treated. Here, in contrast, the ideal Bose 

gas is not only one-dimensional but also consists of two types of particles. In consequence 

this gas has some properties tiiat differ from tiie more familiar three-dimensional one. A 

number of these differences witt be brought out in some detail uere so tiiat they are at hand 

and can be referred to when needed. The approximation method that is to be presented 

later witt be applied to systems with mteractions but where the mteractions witt be 

considered as being relatively weak. If die interactions are weak then it seems reasonable to 

expect tiie behavior of such systems to bear some form of resemblance to the ideal Bose 

gas. As a check on the possible validity of the method it is also useful to turn off the 

interactions, tiiat is to set g = c = 0, in the resulting equations to see if the equations then fit 

tiie ideal Bose gas. 

In addition to the requirement of weak interactions, the approximation method also requires 

that there be a "large" number of tiie system particles in the p = 0 state. The primary focus 

of die development of die one-dimensional Bose gas that will follow here will then be 

mostly on tiie parameter space where there is a Bose condensate present. In die three-
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dimensional case when tiie Bose condensate is present die chemical potential is so small 

that it is usually set to zero for tiie purposes of simplicity. Although an excellent 

approximation in large three-dimensional systems, the setting of tiie chemical potential to 

zero in finite one-dimensional systems should not be done witiiout some circumspection as 

witt be brought out in tiie following. 

When the one-dimensional system has g = c = 0 the grand canonical partition function 

from statistical mechanics is 

S ^ r ^ * - ^ - * ^ ) (19). 

Here, and throughout what is to fottow, tiie units have been adjusted so that the Boltzmann 

constant has a magnitude of 1 (&B = 1)- Also to be used is tiie symbol /?= \IT. Although 

there are no interactions between the particles, die system is still made up of two types of 

bosons - here referred to as type a and type b. The Hamiltonian is 

£=£».*&+i>Af*. (20) 
r=0 t=0 

and tiie number operators are 

# . = ZX«r and/V6 = f>J&, (21). 
r=0 »=0 

The <v, an b,T, and b, are die creation and annihilation operators for the two types of 

bosons and $ (or %) is die kinetic energy of tiie nr (or ns) particles in a given state tiiat 

occupy tiie r* (/*) energy level. As tiie system particles are bosons, the occupation 

numbers nr (»,) can be any value from 0 to ATa (or JVb) subject to the constraint, 
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Using diese forms of the operators (19) becomes 

S= Trfexpf-^f (s, - M.)a}a, - / £ ( * , - / / t ) ^ 
V V r=0 3=0 ' 

(22). 

Af.=0 atfn, JVOatfn. 

From here the calculation of tiie grand partition function is much the same as found in 

many texts on statistical mechanics where the single component free Bose gas is analyzed. 

(See Huaag17, page 186, for example.). The difference is die appearance of die extra factor 

due to tiie presence of two types of particles. To trace through the effect of die extra factor 

die calculation goes as fottows: 

s= 2(«-**-*)),*(«-*-*>r... £it'*+-»)yL-**-»)y... 
alln, atln, 

%=0 n,=0 »%=0 - - " 

-n(i(.-*-*»)r)n(i(.-i^)" 
r=0 Vn=0 ' s=0 ^n=0 ' 

n.+ *=o n-o «,=o ( 2 3 ) 

r=0 «=0 

Now that die grand partition function is available one can readfly use it to generate die 

expression 
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N=Na + Nb = ±-
P ^ to Kfi+^ to 'ut 

CO | 00 | 

a, -

= y ± 

The last step is taken because there are equal numbers of the two types of particles present. 

This fact, in combination with their identical dynamic properties, means the two types of 

particles must have the same chemical potential. In appearance this form is identical to that 

for a two component three-dimensional free Bose gas with equal numbers of particles for 

both components. For example, as in the three-dimensional case, n cannot be greater than 

zero so as to avoid the non-physical negative occupation numbers for single particle kinetic 

energy states. In addition the magnitude of // must decrease as tiie temperature decreases in 

order for N to be constant In tiie three-dimensional system it is wett known that there can 

be a large scale or macroscopic occupation number in the p = 0 state. However, when 

considering the feature of tins so called Bose-Einstein condensation, there is an important 

difference between the one-and three-dimensional systems and what tiiis difference is witt 

now be developed. 

Using periodic boundary conditions and a one-dimensional "box" of length L, men, in 

terms of momentum p . = , 

SS = P) + P\ (25). 

Now (24) can be written as 
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2 2 4 (26). 

The first term on the right yields the occupation number in the p = 0 state. In order to have 

the Bose-Einstein condensation, tins term must yield a substantial proportion of N when the 

temperature is sufficiently low. This requirement also means the magnitude of tile chemical 

potentM must be sniatteno^di so that the product-y9//is small Then, using tiie 

approximation e"* «1 + fi \p\, one can say 

7-h*ju^N " T-*° (27) 

or, for small T, 

H * ~ (28). 

Now going back to (26) and writing the summation in die continuous form by making die 

substitution 2 ~*—\dp we have 
Lit „ 

The first term in (29) gives the number of particles in the p - 0 state and the second term 

me number of particles in excited states. This form is analogous to die three-dimensional 

form. In the three-dimensional case it is usually pointed out diat replacing the summation 

with an integration can be justified if one goes to the thermodynamic limit (See Scharf18 

for a discussion of this point for die three-dimensional case.) Evahiating tiie integral in (29) 

in tiie NIL form necessary for going to die thermodynamic limit gives 
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2n:° gty-^-i *Jo i_e-"(pi-f) 

M=0 (30). 
l£t-v-*f/**-*+ 

ir^a Jo ^«=0 

1 a> M**l) 

;Z 

As stated above tiie primary area of interest here is in die region of parameter space where 

there is a significant occupation number in the p = 0 state. In the three-dimensional case the 

chemical potential is so small at temperatures below the Bose condensation temperature 

that die integral corresponding to die one above is computed by setting /J = 0 for 

mathematical convenience. However, in tiie one-dimensional case with this value of//the 

integral in (30) evaluates to -j=g(\) and, as tiie Riemann zeta function ^diverges, tiie 

integral diverges for all temperatures except T=0. For (30) to converge the magnitude of 

H must be larger than zero even in the process of going to die thermodynamic limit. The 

result of (28) suggests that in the thermodynamic limit, tiiat is 

N 
iV-»°o, L-*oo, — = constant, the limit value of die chemical potential is / /=0 . This 

limit value of ft is not achievable in tiie allowed values of the chemical potential. This 

limitation does not preclude dealing with very large systems as the condition for 

convergence of die summation in (30) is only tiiat // < 0. (This convergence condition can 

be determined by the application of die ratio test to die infinite series in (30)). Thus, as 
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(28) indicates, this restriction does not put any practical limitation on tiie size of AT but it 

certainly does provide a mathematical inconvenience. 

To better see why one can set / /= 0 in the three-dimensional system and not in die one-

dimensional system, one can go back to (29) and reexamine die process of going to die 

continuous limit, hi a somewhat more rigorous form die equation could be written for the 

thermodynamic limit as 

N ,. 2 2 , . f dp „ , x 

— =hm—T—; r + - h m L . , .— (31). 
L *•• l(«-* - l ) ff^Jf^-^j 

It is the lower limit of the integral in (31) diat is die source of die "problem". To take a 

simpler form for the purposes of illustration, consider die three-dimensional integral 

lim f — . It is finite but its one-dimensional analog lim f — is n o t . The one-
R-tOJR f a-tOJa jp 

dimensional system of bosons does not have die same phase space available to it as does 

tiie tivee-dimensional case. 

Nodiing in the one-dim&isional development to mis point suggests die presence of a Bose-

Einstein condensation temperature so die next thing to be examined is die presence of a 

condensate in the diermodynamic limit Again the requirement for what is to fottow is tiiat 

die p = 0 state must be occupied by a substantial fraction of tiie total particles in tiie 

system. Going to die diermodynamic limit is also very useful not only for enhancing the 

reliability of die thermodynamic results (Fluctuations are usually proportional to l/ViV, 
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for example.) but it is only in this limit mat a true phase transition will show up. (The 

reason for requiring the thermodynamic limit in order to see a phase transition was first put 

forward by Yang and Lee19.) For large N and L, with NIL constant one has, using (28), 

(29) and (30) 

2 

Jiifi -Jm+l Vm+T 
(32). 

-g ififi 

g/*m*) 

V y/m + lJ 

As Nis made larger the summation in tiie denominator becomes larger due to tiie 

corresponding decrease in the chemical potential. So die result in (32) can be made small 

showing that there is no Bose condensation in the thermodynamic limit.. Obviously an 

approximation method that depends on die presence of a Bose condensate cannot be 

applied to "infinite" one-dimensional systems. 

The next step of the development is then to show that there can be a Bose-Einstein 

condensate present in a finite one-dimensional system of free bosons. To do this we witt go 

back to (26) and look at a numerical approach. Let us look at tiie summation in (26) and 

ignore the first term for die moment This summation gives tiie number of particles diat are 

not in die p = 0 state. Choosing the specific system values ofN= 10s, L = 10, and 

T = 100, die object is to now calculate numerically die value of tins summation. The 
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difficulty in evaluating the summation lies in not knowing tiie value of die chemical 

potential An easy way around tiiis problem is to assume the chemical potential is zero. 

(Setting // to zero may seem counter to the argument given above tiiat // could not be zero 

but it is tiie term tiiat has been neglected that causes die problem of non convergence. The 

infinite series now under consideration does converge when // is zero.) The actual value of 

//is not zero and assuming it is witt have the result of making die summation give a larger 

result tiian tiie correct one. When this summation is carried out tiie answer is 1.6x10s. Even 

though this number is not correct, it does tell us tiiat more than 99.8% of tiie particles are 

in tiie p = 0 state for die values of die system parameters chosen. Evidently then there is 

some parameter space available in which the number of particles in the p = 0 state is a 

significant portion of the total number of particles. The approximation metiiod referred to 

above will be used not in analyzing die free Bose gas but rather a gas in which there are 

interactions between particles. Knowing tiiat die p = 0 state can have macroscopic 

occupation in tiie free case lends some credence to tiie assumption that tiiis state ca» still 

have such significant occupation levels in an interacting gas providing tiie interactions are 

weak. 

Showing diat the/? = 0 state has significantly large occupation number at a single pom, in 

parameter space does not make a strong case for tiie presence of a "condensate" in general 

so now a more extensive analysis will be made. Again going back to (26) but this time 

solving for A^ the number of particles in the/? = 0 state, by using numerical methods one 

can determine diat a condensate exists for various sets of parameters. The computer code 
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Temperature 

Figure 2 - No/NTor finite 1-d free Bose gas 

used to do tiiis calculation 

can be fovnd in the 

appendix. 

The results of analyzing a 

system of L = 100 and 

N = 10* using numerical 

methods is given graphically 

in Figure 2. The correct 

value of//has been 

determined in tiie numerical 

process and used in generating the graph. The graph shows how the relative occupation 

level of die p = 0 state is related to die temperature. Unlike die three-dimensional case, 

there is no Bose-Einstein condensation temperature to mark a relatively sudden transition to 

large scale occupation of the p = 0 state. In the one-dimensional case the occupation 

number decreases smoothly with temperature. This effect is again the result of the greater 

density of energy states in three-dimensions compared to the situation in one-dimension. 

Mills20 has shown that tiiis same form of occupancy in tiie p = 0 state can be present in a 

three-dimensional system. He found tiiat if die "box" containing die system had two of its 

dimensions reduced, keeping die third fixed, that a point would be reached where die 

ground-state occupancy would behave like die one-dimensional system described above. 
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In addition to its dependence on 

temperature, N0 is also dependent 

on die value of £ chosen for die 

system as in shown in Figure 3. 

Two additional lengths of 70 and 85 

have been added to die one of 100 

already shown. The implication is 

clearly that system length and 

temperature are inversely related to 

the occupation number N0. These 

dependencies put limitations on the 

Temperature 

Figure 3 - Free Bose gas, length dependence 

approximation metiiod but in principle att that has to be done is to check diat N0 is suitable 

large for the parameter space being examined. However, determining N0 even 

approximately in the one dimensional system presents a difficulty not encountered in the 

three-dimensional case. 

In three-dimensions at temperatures below the Bose-Einstein condensation temperature, 

tiie chemical potential for a free Bose gas is so small that it is usually assumed to be zero. 

This assumption for tiie large systems tiiat are usually being considered is quite legitimate 

and simplifies calculations. In die one-dimensional free Bose gas of finite size one cannot 

assume that // = 0 without circumspection. In die three-dimensional large system version of 

(29) if die requirement is to determine die value of N0 at temperatures below die 
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condensation temperature then one uses the idea diat die number of particles not in die 

ground state is adequately determined by die integral. One then ignores tiie first term on 

die right and evaluates the integral after setting // = 0 to get tiie number of excited particles 

Ex. Then die required result is easily arrived at be using N0 = N- Ex. As already pointed 

out, this process does not work for the one-dimensional case as tiie integral in question 

diverges under these conditions. 

As an illustration of the type of difficulty that can be encountered a few specific 

numerically derived examples witt now be given. Instead of using integration to find the 

number of excited particles, the summation is carried out directly as die systems to be deah 

with are to be finite. When setting // = 0, as pointed out above, it is the number of excited 

particles that must be determined as the term involving N0 diverges. Then N0 is found from 

N0=N-EX. 

Figure 4 shows the results for the summation when carried out on a system of L = 100 

both with // = 0 and die system // as determined numerically. Note that N0 can become 

negative which is a feature of the fact that each term in tiie Ex summation is larger than the 

correct value when setting // = 0. As can be seen in tiie graph tins error is not very large for 

some £ but as //increases with L there is a point reached where the error can no longer be 

ignored. A three-dimensional system doet> not suffer from tins problem because there is a 

finite "condensation temperature" which means the graph ofNJNva T does not approach 
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die temperature axis asymptotically 

with increasing T. 
1 

0.8 

0.6 
No/N 

0.4 

0.2 

0 

-0.2 

Temperature 

Figure 4 - Summation using // = 0, L = 100 

Figure 5 -Summation using //= 0, L = 50 

Figure 5 shows die results for a 

system with the same number of 

particles but whose length has been 

reduced to 50. Figure 6 shows the 

effect of changing tiie number of 

particles in the system. These 

Figures illustrate diat the //= 0 

calculation produces an accurate 

result as long as tiie ground state 

occupation level is 75% or more of 

the total system particles. Even at 

tins point die error in the estimate is 

less than 2%. 

The point that is to be brought 

forward here is, as already 

mentioned, the approximation 

metiiod to be used later in analyzing 

an interacting Bose gas relies for its 
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validity on tiie presence of a large 

number of particles in the p - 0 

state. For the calculations that are 

done a check is made to ascertain 

tiiat indeed the number of particles 

in the condensate is large. 

However, the check on condensate 

occupation is carried out under the 

assumption that setting // = 0 is a 

reasonable approximation. One can 

reasonably expect a large N0 to be present if die interactions are weak and the calculations 

are carried out in the parameter space where die free Bose gas has a large N0. 

** <N W 

Temperature 
«n 

Figure 6 - System with L = 100, Ar= 10 = i n 8 

A more flexible way to view the reliability can be taken from the looking at die Figures 

presented above from a somewhat different perspective. As pointed out above in the free 

Bose system, any calculation with // = 0 that yields an N0 that is larger tiian 75% of the 

total particles present is a quite accurate measure of the number of particles in the 

condensate. In the interacting system, since the interactions are assumed to be weak, it witt 

be assumed that this same "rule of thumb" can be applied, namely, if tiie estimate produces 

an N0 of 90% or more than it is reasonably accurate reflection of tiie actual number. The 

90% level is arbitrary but is chosen to be well on the conservative side. 
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Otiier system properties that will receive attention when die interactions are present are tiie 

energy, pressure, and entropy. Each of these can be calculated from the partition function 

and for ease of reference tiie logarithm of the partition function in terms of momentum is 

given here from (23) and (25) as 

lnS=-2Jln(l e^)+2^m{l-e'^-M))\ (33). 

The expression for pressure can now be written as 

A BL )UL i ^ - ' U (34)-

If this result is written in tiie continuous hmit form 

4 r p2dp 1 " e*^ 4 *» nldrt 1 " eW*'> 

it can be seen that convergence occurs for all // < 0 . In the thermodynamic limit when // is 

effectively zero and zero can be inserted in (35) which then becomes 

P = ^ L - (36). 

This form could be viewed as the one-dimensional analogue of the three-dimensional 

equation of state for an ideal Bose gas below the Bose-Einstein condensation temperature. 

(See Huang17, page 290 for the three-dimensional form and background.) Under these 

conditions pressure is a function of temperature only but in the three-dimensional system 

tiiis type of temperature dependence occurs below die finite Bose-Einstein condensation 
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temperature. Here, unlike die three-dimensional case, however, mere is no finite 

condensation temperature and (36) would remain a valid approximation as long as the 

temperature is kept low enough to keep the chemical potential small. 

Figure 7 illustrates the 

isothermal behavior for a 

system of N = 106 at a 

temperature of 10. As the 

lengtii of tiie system is 

increased the pressure 

asymptotically approaches 

die value given by (36). 

However, in spite of what 

die graph indicates, the 

system is not behaving in tiie 

fashion indicated. The 
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Figure 7 - P vs L for T= 10, N* 10* 

minimum shown in die graph occurs at L - 1. According to (26) die number of particles in 

the first excited state, which would be the most populous of the excited states, is only about 

0.08. Clearly what is happening is continuous equations are being applied to a situation 

where die discreteness of the system is not wett approximated by continuous equations. 

Effectively only one or two particles are not in tiie p = 0 state. As die lengdi of the system 

increases, more particles enter excited states making tiie use of statistical methods 
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employing continuous values of density more reasonable. Under conditions of fairly 

numerous excited particles, the steep positive slope of tiie isotherm is not present. The 

slight positive slope present for larger values of £ is still a remnant of the finheness of the 

system. Lieb21 states tiiat one can expect tins sort of result in a finite system and the more 

physically acceptable slopes witt be present in infinite systems. The caution to be taken 

from dus is not to attempt to treat systems with very smatt numbers of excited particles in 

this fashion. 

The energy, as determined from die partition function, is 

E-A ' ^ S l _,£ P]-P 4 2 " fM-p) 
L,0M s=1 e K ' -1 

(37). 

In similar fashion, the entropy is 

f^rinE)) 
s = -- ST 

L,H 

-21n( l - • * ) - = 
2/7//e 0M 

+ 42 
f ( /*-') 1 

m d 1 \ — +MzA 
fi[pi-M) _ • 

(38). 

Neither energy or pressure depend directly on tiie number of particles in tiie p = 0 state 

and, when the chemical potential is smatt, calculating either one by setting // = 0 produces 

almost die same result as when using die correct value of / i Entropy, like die calculation of 

AT done above, does have connections with the/? = 0 state and setting // = 0 causes 

problems with die first term in (38). However, for finite systems with small // the 
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3 

Length 

Figure 8 - Gibbs energy vs £, T- 100 

contribution to the entropy from 

the first two terms of (38) is 

relatively smatt. So the simple 

expedient of dropping die first two 

terms and setting // = 0 in the 

summation terms will be employed. 

The entropy value produced by tins 

metiiod is not largely different from 

the correct value. 

To more clearly show the 

difference in entropy values graphically die Gibbs free energy versus L is plotted in Figure 

8 for T = 100. Since the Gibbs function contains a factor TS the entropy difference is 

magnified by 100. As is obvious from the figure, tiie two graphs indicate a distinct 

difference but compare the shapes of die two. For both Hehnholtz and Gibbs functions tiie 

shape of the curves is similar whether one computes using the correct//or// = 0. This 

feature of shapes witt prove useful later on when curves portraying die Hehnholtz free 

energy in particular witt be used in an examination of die stability of the system under 

consideration. For die stability considerations it is more tiie shape tiian die magnitudes that 

is important 
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The g<0,c = 0 case 

If just two particles were present in die system then the solution of die Schrddinger 

equation is relatively straightforward. One converts to the center of mass coordinates and 

arrives at a single particle with delta function potential Schrddinger equation. This equation 

can then be solved by integration. Interestingly, for our purposes here, there turns out to be 

only one bound state. (A more complete treatment of the handling of the delta function 

potential in tiie bound state scenario is given by Atkinson and Crater".) 

For tiiree particles in a bound state (in one dimension of course) die same general theme of 

attack can be used. Namely, one changes coordinates to convert die problem from a three 

body one to an effective one body in two dimensions. Such a coordinate trarisformation is 

given by Amado and Coelho23 in their work on K harmonics, for example, hi contrast with 

the two body case which can be solved for whatever die masses of the two bodies happen 

to be, die three body story is more difficult because, in tiie general case, not only can die 

masses differ but interactions between different pain> may differ. Kiang and Niegawa24 

building on tiie work of McGuire29 establish conditions under which some exact solutions 

can be found. However, if the particles all have equal mass and the delta interactions are all 

equal, the symmetries introduced make the problem solvable not only for tiiree particles but 

fir AT particles. It was die work of McGuire cited above that fully exploited these 

symmetries and in so doing came up with an exact solution to the AT body problem. 

Some of the results of McGuire's work tiiat apply directly to an AT body system of bosons 
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will now be considered for their consequences on what is to fottow. There is only one 

bound state. The energy of dus bound state is 

E = -±g2N(N2-l) (39). 

As a result of this AT dependence die system cannot be considered in the diermodynamic 

limit, that is, EIN does not have a finite size in tiiis limit. As a consequence of tiiere being 

only one bound state, McGuire points out tiiat regardless of temperature the system has to 

collapse to this state and so it would not make sense to apply statistical mechanics to tins 

system. McGuire also pointed out tiiat no two particles in die bound state can have zero 

relative velocity. Therefore, the approximation scheme to be used later cannot be applied to 

tins system as it depends on there being a large number of particles in the/>r- 0 state. 

The g>0,c-0 case 

It was Lieb and Lirriger26 that first solved this problem Since they give explicit equations 

for detenrrining the ground state energy in their work it is this aspect diat witt be considered 

briefly here. Material for die thermodynamics of die system will be drawn from another 

source later. The Li /o and Iiniger approach was to assume diat since the particles in the 

system only interact on "contact" the phase space available to die system could be divided 

into segments according to die ordering of the particles. Within each segment the particles 

are "free" and this suggests using planes waves in tiie makeup of the wavefunction of die 

system. Employing what has become known as die Bethe ansatz they set their N particle 

wave function to be 
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( N \ 

%-*if)sZWH WSJ (40) 

P \ >=i / 

where die summation over permutations is over all possible permutations of die "momenta" 

kj and the a(P) are coefficients dependent on die permutation P. Then they matched Y at 

the boundary between segments with the appropriate boundary conditions - continuity for 

Y and the jump in the derivative of ¥ that is dependent on the strength of the delta 

interaction, (ft should be pointed out here tiiat lieb and Lunger were considering the 

system to consist of N identical particles and not equal numbers of two types.) By matching 

att die boundary conditions and meeting all die symmetry conditions on permutations of the 

identical particles they are able to come up with att the eigenfunctions of die system. The k} 

turn out to be real with no two equal but die set {kj} contains both kj and -kj. The largest k} 

then provides tiie bounds, -K and K, for the set. The spacing of the A, is not equal but is 

partly dependent on die value of g, the strength of die delta mteractions. 

In determining tiie ground state energy they start from general dimensional considerations 

to show that this energy must have tiie functional form 

E0 = Np2e(r) with p= N/L and y = g/p (41). 

They then choose the values of die internal quantum numbers they have determined in 

such a way as to minimize the k}. Going to die diermodynamic limit so that they can pass to 

continuous forms of their discrete equations they derive three coupled integral equations 

that enable tiie numerical determination of the ground state energy. These equations are as 

follows: 
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JlA+{x-y) 

y £ * ( x ) * = A (43X 

and 

<r)=j>LK*V*< (44) 

where g = KX. The solution scheme is to pick a value of X and then use (42) to compute 

h(y) for a particular y. Using tins scheme tiie integral in (43) can be evaluated to solve for 

y. Next (44) can be solved for e(y). With tins solution tiie ground state energy can be 

computed from (41) bearing in mind, being in die thermodynamic limit, it is EJNtixA 

would be sought. 

lieb and Liniger also show that die above process will produce a h(y,fi and an e(j) tiiat are 

analytic functions of yexcept at die point y=Q. They are unable to determine die exact 

nature, or cause, of this singularity. It does seem ratiier strange that tins point, e(0), should 

cause problems because this is dten die free particle system and so it must be tiiat e(0) = 0. 

Nevertheless die numerical solution for e(fi proceeds quite well until the value of /begins 

to approach zero closely. A graph of e(y) versus y will be presented later when it will be 

used as a comparison with the results of the approximation method Out will be introduced. 

C. N. Yang and C. P. Yang27 were able to extend die work of Lieb and Iimger to 

determine tiie thermodynamics of the system of bosons. They show tiiat the Bethe ansatz 
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produces att die states of the Hamiltonian and the kj for att states are real with no two kj for 

a given state being die same. For die ground state, as already pointed out above, Lieb and 

Iiniger had shown tiiat the A, form a nonuniform distribution between a maximum AT and a 

minimum -K. Excited states are characterized by having kj outside tiie K limits and "holes" 

left behind. The Yangs are able to develop an expression for the entropy of die system in 

terms of the density of holes, L% , and tiie density ofk,, p. Using tiie constraints on energy 

and particle density 

and 

j = [mfi(k)dk (46) 

respectively, they maximize the contribution of a given state to the partition function to 

arrive at tiie integral equation 

e(k) =-ft + k2- — L - * ~~ rjJ2— (47). 
"*-" g2 +{k-q) 

Here // is tiie chemical potential and the ratio of tiie density of holes to the density of die k} 

is embodied in 

A r*(*) 
& = exp - L i (48). 

Now, by manipulating (47) and combining the result with their expression for entropy they 
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'0F^ 
arrive at an equation giving tiie Hehnholtz free energy. Then using P = - — they 

are ultimately able to reach tiie expression for pressure 

£j>ln(uexp[-P = ^-\ <&ln|l + e x p | - ^ (49). 

The solution scheme to arrive at the thermodynamic properties of the boson system is to 

solve (47) with a given // and T and then to use tiiese results of get the pressure from (49). 

Knowing the pressure as a function of // and T enables one to determine other 

thermodynamic quantities from 

5 N 
dP = -dT+—dft (50). 

Li La 

Unfortunately the Yang results can not be used here to support the results of tiie 

approximation metiiod to be introduced. The difficulty in solving (47) numerically is the 

stumbling block. The limits of integration are <» and numerically one replaces tins value 

with some "large enough" number in the hope that the region Jius left out of the 

integration is small. Here one can get die limit K (and -K) for the ground state from tiie 

work of lieb and Liniger. Presumably one should set die Emit somewhat higher for finite 

temperatures. However, even using K proves to be too high. Yang and Yang show tiiat 

(47) can be solved by iteration. They "seed" their iteration proof with e(k) ~-fi+k2 but 

when tiiis value, as suiting the system parameters diat will be used, is placed in diat part of 

(47) containing exp(- e(k)/T) it does not take att diat large a value of k to give a value 



smaller tiian the 10 available in a standard computing environment This problem could 

be overcome if // was much larger but tins would require a strongly interacting system of 

bosons and the approximation technique would not be applicable. 



III. The Approximate Solution of the Hamiltonian 

The Bogollubov approximation 

The approximation method to be employed here was first introduced by N. Bogoliubov2* 

when he presented work to show how superfluity could be explained on the basis of 

degeneracy in a non-perfect Bose gas. The fundamental requirement in applying this 

approximation scheme is that there be a relatively large number of particles in the 

condensate state of the system. The term "condensate" here being used in the sense of the 

Bose-Einstein condensate. Since the explanation of the technique is most easily coached in 

terms of particle numbers, it witt be convenient at tins point to convert tiie previously 

introduced Hamiltonian 

^^^)=-S|4H-2Z(^^K^-^) 
1=1 ° x \ i</=i 

N JV 
2 a2 N s2 2 / ^ 

-z£?-l|3+(i+«)H*-*, ("> 
~i 

N 

n „ <=l W„ 

to a Fock space. For tins purpose a "box" of lengdi L will be assumed and the space will be 

constructed using single particle w^ve functions, — ^ " , constrained by periodic 
\L 

boundary conditions (p„ = - ^ , n = •• -2,-1,0,1,2, • • • I. The prescription for carrying 

43 
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dus procedure out is standard and can be found in many texts such as the one by L. E. 

Battentine29 (page 359). Using a1 and a as tiie creation and annihilation operators for one 

type of boson and similarly b1 and b for the other type of boson leads to die form 

r 2aaP\ Pi°P\ P* P\+Pi\P 
L' p=-a> 

l\Pi*P* 

If die temperature is low enough tiiere is a condensate present in the free Bose gas. It is 

reasonable to assume that if interactions between tiie particles are introduced the 

condensate would stitt be present providing die interactions are weak. Of course, it would 

be expected that tiiere would be fewer particles in tiie condensate with interactions present 

than with no interactions but the number could still be much larger tiian the occupation 

number of any otiier higher single particle energy state. This assumption of macroscopic 

occupation of tiie Bose-Einstein condensate when the interactions are weak (and 

temperatures low enough) forms the basis for die validity of the Bogoliubov 

approximation. 

On tiie assumption, then, that the number of particles N0 in die condensate is not only large 

but also much larger tiian the number of particles in any otiier single particle momentum 

state, die following approximations are reasonable for die numbers drawn out by the 

annihilation and creation operators: 
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(53). 

Of course tiiis same approximation can be applied to the annihilation and creatior 

operators for tiie second type of boson present. In addition these approximations, 

NQ N v t AT 
—- = > ala„ « — 
2 2 % p p 2 
No\ _ 

2 r xr \ 2 

Af N2 

S a\a„ » N"Ya\a 
p*0 

(54), 

2 p*o J 

can be applied to both particle types. Effectively one substitutes the numbers of (53) for 

their corresponding operators in (52) subject to die additional approximations of (54). 

Carrying out the above process for terms involving four p = 0 operators gives 

N2 

alaoaoao -* —T ~ ^ Z alap (55)' 
4 pro 

Hb0%b6 -+~- N^ty, (56), 
4 pro 

and 

«M«A -> ~ T Z « X - T 2 % (57>-

Terms involving three p = 0 operators are excluded by the factor 6 +n;A+n which 

imposes the conservation of momentum constraint on particles interactions. Picking out, 
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from the interaction terms, those terms involving only two/? = 0 operators gives 

^Z(aK+aPa-P + 4a>P) W. Z a a a a 8 PI ft ftup« ft 
p*0 

*PiiPi*p* 
p*0 

YjblblbJb^S 4 . ->—T.(blb!D+bBb_D + 4bX) 
L* P\ ft ft ft Pi*p,;p3*p4 ^ ^ * \ ? * P ? P P / 
p*0 *• p*0 

(59), 

and 

Zal*ifliAA*w 
p*0 

ft+P4 TZW*-F+«A,+aX+«&+blaP+blbp) w-
^ p*0 

Any terms witiiin the interaction terms tiiat involve one or nop = 0 operators are now 

dropped on the assumption tiiat their contribution is small compared to those terms deah 

with above. 

If all of tiie above approximations are carried out in (52) the resulting approximate 

Hamiltonian can be written as 

H» 
gN2 

+ z k < K *;) 
p*0 

e' + e 0 e'-e e'-e^ 

p2 + 2(e' + e) e' + e e'-e e'-e 

e'-e e'-e e' + e 0 

V e'-e e'-e p%+2[e' + e) e' + e} 

(a ^ 
-p 

p 

(61) 

where 

2L 

e = 
cN 

21 

(62). 
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The square matrix in (61) is not symmetric but it is block symmetric. To take advantage of 

tiiis feature tiie following canonical operators are introduced: 

an +6. 
d =JL-ZL 

" J2 

and 

f ar~be 
Jp~ V2 

In terms of these newly introduced operators (61) can now be written as 

gN2 

H 

+ZK < /, A) 
pfO 

or, in preparation for the next step, 

2e' 

p2 +3e' + e 

0 

e'-e 

2e' 

0 

0 

0 

2e 

0 

0 ^ 

0 

e-e 

0 p2 + e' + 3e 2e 

us 

e'-e -*-g(«, <,X+ , (d \ 

•WP f-p\p*+e> + 

>-e'\(f. 
3e 2e , <fP . 

(63) 

(64). 

(65) 

(66). 

Each of die two square matrices in (66) is of tiie general form 
fa b\ 

KC a) 
so die next step is 

to introduce the following transformation: 

'cosL0 -sinhflYa b\(eosn$ - s inh^ 

^-sinh0 coshd he a)\-s\nnO coshdj 
0 k; 

Je 0 , 
(67). 
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hi order to satisfy the requirements of (67) the parameters must have tiie values 

^ ' \b + c-2t 
c 

2a 

b c 
k9 = -asinh20+ -(cosh20+ i) + -(cosh20-1) 

and 

l6 = -«siim20+-(cosh20-l)+-(cosli20+l) 

(68X 

(69), 

(70). 

With the above background in mind another set of cononical operators is now introduced 

through Bogoliubov transformations. These new operators are defined using die 

parameters 0= 0(|/?|) and <j>- |̂/>|) as 

' dp\ fcoshfl -sinh^ 

Kd\)\-&nnQ coshtfj 

and 

'fF\ 
\-

cosh^ -sinh^ 
cosh^ 

iV aP 

When 0 and # are set to satisfy die requirements of (68) then (66) becomes 

4^W^+I)+,^+tKa
f
+1)+/x« f) 

= ̂  + 2z{V-2.'-2, + i(Ap+^)} + 2Z(Vp«P^P^p) 

(71) 

(72). 

(73) 



where 

^ = l/>lvV+8e 

and 

(op = \p\{pT7ie~' 

The results of satisfying tiie requirements of (66) are 

e x p 2*=£L+E 
\p\ 

an J 

e x p 2 ^ = - ^ - n — 
\P\ 

As a result of tiie approximations and transformations outiined above tiie Hamiltonian (73) 

that is the final product can be seen to describe a system made up of two types of bosons 

that do not interact with each other. This boson, or quasiparticle, system is like a system of 

photons rather than particles in tiiat there is no fixed number of them. Unlike the photon 

system, if there are no quasiparticles present tiie system still has a finite energy providing c 

and g are not both zero. Interestingly, when considering the two interaction parameters g 

and c, the energy of the one type of quasiparticle depends on g only whereas tiie energy of 

die ether type of quasiparticle is dependent on c only. Ind °d, except for the leading term, 

g and c play completely symmetric roles hi (73). 
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(74) 

(75). 

(76) 

(77). 
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The ground state 

Using the approach diat the ground state of a system is the state of minimum energy then 

for (73) that condition would be achieved by having no quasiparticles present. Thus tiie 

ground state energy of tiie system is, by tins Bogoliubov approach, 

^ = ^ + 2 Z { V - 2 e ' - 2 , + I(Ap+fl,p)l (78). 

To get some sense of how reasonable this result for die ground state energy is let us first 

set c = 0 and then take the resulting form of (78) to its continuous limit form. This process 

gives 

.2 ^ + I 
L 2 

P2+pJf' +4 
gN) 
L ) 

">=o)=^+2ZfV-
L P H > 1 

_gN\Lr [ , gN if 2 n\n2^AgN) 
= —r- + -\ndp<-p -—- + - p + pJp +4 — 

L n* L 2\ V L ) 
(7% 

L 3>r V L 

Using the symbols introduced with (41) the result of (79) can be written as 

Hgld{c=0)=Np2 
( 4 p 

Y~YnY (80). 

This is the result diat Lieb and Liniger26 arrived at when they used the Bogoliubov 

approximation method. For our purposes here this agreement shows diat the method used 

doeu reproduce previously known results when c = 0 as one would hope it would. Lieb and 

Liniger used the Bogoliubov approach because they had die exact answer to die ground 

state energy and wanted to see how valid tiiis approximation approach would be in 
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Figure 9 - Comparison of Bogoliubov solution with correct one 

comparison. Again referring back to (41) one can see that such a comparison can be 

carried out using e{y), as computed using tiie coupled integral equations (42), (43), and 

' 44), and tiie factor in brackets in (80). Figure 9 shows tiie results of tiie comparison when 

the calculations just described are carried out. The graphs shown in tiie figure are in 

agreement with those given by Lieb and Liniger. From tins comparison Lieb and Liniger 

felt diat the results of the Bogoliubov approximation were quite valid for y< 2. 

Indeed Lieb and Liniger were able to show tiiat the first term in the Bogoliubov result is 

4 

Y 
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exact and, from die good agreement shown in Figure 9 for small y, felt that die second 

term was probably also exact More weight to die correctness of die second term was given 

by M. Gaudin30 who arrived at tiiese same two terms by using another method. Having 

these two leading terms allowed Blum, Koltun and Shapir12 to make an estimate of die 

ground state of die system when c > 0 by using die method of variation. Their trial wave 

function was of die Hartree type, \a)\b), where \a) is the exact solution as found by lieb 

and Liniger if only type a bosons were present and similarly for \b). In Fock space the 

Ueb-Liniger solution is 

flrul«)=|Zii»
1«K+f J&^a»aH******Via) (81) 

= * » 

where E0 is as given in (41). Utilizing tins result and using the Hamiltonian of (52) gives 

the ground state energy, EBtas> arrived at by Blum, Koltun and Shapir 

EBKS=(b\(a\H\a)\b) 

= (b\(a\HlL\a)\b) + (b\(a^b
u\a)\b) 

+3~^*K«IZ-i*i-aMM^a.l-)l») <82> 

Here the E0 of (41) is modified to reflect die fact that only half die system particles are of 

each type {N -> N/2) and the parameter determining the amount of repulsion is 

g~* g + c.m terms of these parameters one has 
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7[c+g)L 
N 

(83) 

and corresponding to the E0 of (41) 

_N(N 
*' ~ ~2\2L 

(84). 

Using (83) and (84) EBBS can be written as 

EBa = N (g + c)\f..\. g2~cZ 
-e(y) + (85) 

which is in a form that witt prove to be useful later. The drawback to this form is that it 

must be solve numerically so Blum, Koltun and Shapir chose to use the Bogoliubov form 

introduced in (80), namely 

*(Y)*Y-—Y2 

5JS 

(86). 

With the introduction of die Bogoliubov form the ground state energy estimate becomes 

gN2 2V2\ »A" 
'BUS 

3n vT 
(87). 

As has been stated above, die Bogoliubov form is an approximation whose validity is good 

for y< 2. Therefore, EBKs should be valid for (g + c)L < N. 

Going back to (78) and writing that equation in its continuous limit form gives 
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gN2 L f . f 2 gN cN l( \ 2 4gN i 2 4dV> 

3 (88). 

s 2 +c2 1-5 
3;r 

From tins it can be seen that Hgrd is much the same result as EBKS- Therefore it seems 

reasonable to assume that the results of the approximation technique being used are valid at 

least when describing tiie ground state. So far no restriction has been given on the range 

tiie parameters can vary over. A systematic way of detennining numerically whether a 

given set of parameters can be used will be developed later. 

Blum, Koltun and Shapir were interested in determining how tiie ground state energy 

scaled with N and viewing L as a variational parameter in (87) they minimized EBKS witii 

respect to £ to get 

9ir2 o2 

Lo{c>g^h-zr~j» ( » ) 

2(c+g) 

and thus 
Em{cig,N,L = L„) = - ^ (f_+«)_V 

9x* g 

Since they were working witii problems involving the replica approach, as described earlier, 

the N dependence of tiie ground state energy was of keen interest hi a similar manner, 

minimizing Hgrd with respect to L will yield 
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a » (91) 

with 

(c^+g^J 
Hgtd(c,g,N,L = L > - ~ V -̂Af (92). 

9/r g 

It is easily seen from the above that both EBKS and Hgnt are directly proportional to N at 

L = L0. It is also clear from both (90) and (92) that the case of g = 0 is not handled by the 

treatment above. Going back to (87) and (88) it is easy to see that on setting g = 0 the 

minimum energy is reached at a system lengtii of L = 0 - diat is, the system would cottapse. 

It should also be noted tiiat mathematically the minimum in the ground state energy given 

in (92) is achievable whether g is greater or less than c. Physically the requirement for the 

bound state is that g<c and tiiis restriction witt be applied here. 

Initially one might question whether tiie system would in fact collapse if g = 0 or whether 

the cottapse was only implied because both approximation methods have only two terms 

present witii smaller ones being dropped. Perhaps tiiese smaller terms could prevent tiie 

collapse. For die Hgrd case this question remains unanswered. However one can look more 

closely at the EBKS derivation by going back to (85) and taking the derivative of that 

expression with respect to L, 
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^BKS %g + c)2 ' ' {de{y) 2e(y)\ ' 
3L y2 

The condition for an extremum here is 

(93). 

£ffc) = ?i^+£Z_£ (94). 
0y y g+c 

This equation can be solved numerically but tiiere is enough information about tiie 

behavior ofe(y) from die Ueb-Iiniger work to determine some general features of the 

solution. The Bogoliubov results can be used to deal with the region y< 2 and they give an 

algebraic expression for e(y) that is valid for large y. Indeed they claim their large /results 

are good to witiiin 1% for yas smatt as 10. The range of 2 < y< 10 that is not covered in 

the form needed here by their work was dealt with numerically. 

The left hand side of (94) has a value of 1 at /= 0 and decreases monotonicatty and 

asymptotically to zero as /approaches QO. The ratio of e(y) to /appearing on die right side 

of die equation has a value of 1 at /= 0 and decreases monotonicatty and asymptotically to 

zero as /approaches %>. Thus tiie right side of (94) has a value of 2 + (g - c)/(g+c) at 

/= 0 and diminishes monotonicatty to die asymptote (g - c)/(g + c) as /approaches <». It 

was also apparent when we carried out die numerical work mentioned above in tiie region 

2 < /<10 tiiat 2e(/)// is always larger tiian de(y)l<?y for these intermediate values of /. 

As already mentioned above, both of tiiese terms are equal at /= 0. Again, from the work 
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Figure 10 - Example of a numerical solution to (94). 

of l ieb and Liniger it is easy to show that this relative relationship remains true for both 

smatt and large values of /. 

Now to help in putting togetiier die intent of giving att die description of die components of 

(94) Figure 10 shows an example of a numerical solution to tiie equation. For tiie example 

given in the figure both the left and right sides of the equation are plotted as functions of / 

with (g - c)/(g +c) = -05. Had g been set equal to c then die two curves would not have 

intersected because, as pointed out above, die left side term of die equation is always less 

than the resultinc right side. If g > c tiiere can be no solution as the asymptote for the right 

side of die equation is then greater titan zero. If g = c then the solution is die limit point 

Right side of equation 

Left side of equation 

> 10 
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/ = oo and tiiis implies a system particle density of zero as / = 2(g + c)jp. For 0 < g < c 

tiiere is one and only one value of /tiiat wfll solve tiie equation and Figure 10 illustrates 

this feature. For such a solution (tiiat is, / = constant) it readily fottows that L0<*N. Asg 

is made to approach zero, then so does /approach zero and die density of the system will 

also increase. At g = 0 the solution is / = 0 and to achieve tins the system would have to 

have infinite dens;*y. In summary, the only physically meaningful solutions for a bound 

system have 0 < g < c and a length L0 <* N. 

The g = 0 case 

The implication from the above discussion is diat setting g = 0 requires some special 

consideration. For Bhun, Koltun and Shapir it was important to know die N dependence of 

E0 under this condition on g so they introduced die term n2NJL2 into their expression for 

the ground state energy when g = 0. This term represents tiie zero point energy of N free 

particles in a "box" of length L when Dirichlet boundary conditions are used. The 

introduction of this term avoids die tendency of tiie system to collapse and it also gives a 

_i 

distinctly different L0 behavior than die previously derived one, namely L0 « N ' which 

3 

in turn leads to E0 oc N*. This seemingly arbitrary tool to get around a problem lead 

Craig, Kiang and Niegawa31 to examine the effect of both periodic and Dirichlet boundary 

conditions using die Bogoliubov approximation technique for die apparently disfhct cases 
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of g > 0 and g = 0. The case of periodic boundary conditions witii g > 0 has already been 

developed above and more on it is to come. The Dirichlet boundary case (g > 0) lead to 

tiie necessity of introducing a boson transfoimation which could only be carried out at die 

expense of degrading die accuracy of the Bogoliubov technique. Since no basically new 

results came out of dus treatment, it will not be pursued further here. As has already been 

noted in tiie development above, the g = 0 case with periodic boundary conditions implies 

system cottapse. The fourth scenario, g = 0 with Dirichlet boundary conditions, witt be 

considered now in a little more detail. 

Rather than insert tiie zero point free particle kinetic energy term as Blum, Koltun and 

Shapir did, it seemed more reasonable to start with Dirichlet boundary conditions and see if 

this term did arise naturally in the treatment of an interacting system. On going to a Fock 

space, with g = 0, one arrives at 

tf=Zrf(flk+*&) 
n=1 (95). 
c Yfm-^n(alal.aman+bl,blbb - 2 a » ( f l 6 n ) 

4 ^ J m /i jr yt\ m n m n m n m n m n m n § 21 . 

The difficulty with tins expression, compared to the corresponding one in the periodic 

boundary case, is tiie relative complexity of the Kronecker delta, namely 

/
_ S , £ , 2 _ S 

m'n'mn m'-n'+m-n m''-»'-m+n m'+n'-m-n m' -ri +m*n /Q/J\ 

—8 —8—8 
m'-n'-m-n m'*n'*m-n m'*ri-m*n 

In invoking tiie Bogoliubov approximation where one picks out terms involving four or two 

lowest single particle momentum modes, the Kronecker delta combination introduces 
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coupling between single particle modes n and n + 2. In the Craig, Kiang, and Niegawa 

work mentioned above a trial wave function was introduced and a switch made to the 

variational metiiod. The ground state energy found as a consequence showed no 

dependence on the mode coupling and showed that die same result would have been 

achieved if, in fottowing die Bogoliubov method, die Kronecker delta had been assumed to 

consist of the first tiiree terms on the right side of (96) only. It witt be assumed here that 

this ignoring of coupling is reasonable in developing die approximate Hamiltonian. 

With the reduction in the complexity of the Kronecker delta form die carrying out of the 

Bogoliubov approximation scheme fottows the same general development scheme as 

already described in the periodic boundary case. An examination of (95) shows that tiie 

sum of att terms containing four lowest mode, orp = 1, operators will produce a zero. 

Removing tiie p = 1 operators from the first summation in (95) witt yield n2NJL2 as 

/>i = njL. V&s tern; was previously mentioned as being introduced by Blum, Koltun and 

Shapir in their treatment of the g = 0 case. Now it can be seen that tiiis term can naturally 

arise, at least in a weakly interacting system, when Dirichlet boundary conditions are 

invoked. The approximate Hamiltonian is now 

>-• n=2 

0 -e -e\(a \ 

p2+2ee -e -e 

-e -e e 0 

\ -e -e p\ + 2e e) 

a. 
a: 

w. 
(97). 

On using die operators introduced in (63) and (64) die Hamiltonian becomes 
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-.-#•£«. <U\. HS^ 4 A LIS ~ 
As can now be seen, die terms in the first summation are of die required form but those in 

die second summation have to undergo a transformation of tiie Bogoliubov type as given in 

(67) and meeting tiie conditions outiined in (68), (69), and (70). Then carrying out die 

transformation 

fA (co$h<p -sinh^A 

l/rtV l-s inhp coshpAorJ 

yields, on meeting the conditions for <p, 

o 
+ Z ( a » al) I 2 a I 2 „ \ 
£ v ' pJp2+Se+(p2

n+2e) 

p1Jp2+Se-(p2+2ejy 

2 

0 

(99) 

(100). 

Simplifying this expression leads to 

n=2 

where 

K=Pn<Jp2n+*e 

(101) 

(102). 

like die Hamiltonian in (73), die Hamiltonian in (100) describes a system consisting of two 

types of none interacting bosons. Again there is no fixed number of bosons, or 
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quastparticles, specified. Note tiiat one of the two types of quasiparticles has the same 

energy spectrum as one of tiie real bosons making up die system would have if it were a 

free particle. The ground state of this system 

has as its first term die free particle kinetic energy but it appears as & natural consequence 

of tiie method used ratiier than the more ad hoc insertion used by Bhun, Koltun and 

Shapir. If tiiis ground state energy is put in its continuous form 

and then minimized witii respect to L the result is similar to that given by Bhun, Koltun and 

-I •? 
Shapir, namely L0 « N ' and Hgnl,JL = L0)« N*. However the actual value of tiiis 

minimum ground state energy 

»8«{o)(L = L0) = -C^- (105) 

3 5 * 2 

is lower than tiiat of Bhun, Koltun and Shapir. 

The one particle density matrix and pair correlation function 

In die next chapter die approximate Hamiltonian will be used to examine its predictions on 

the diermodynamics of die system. Before launching into the macroscopic behavior of the 



63 

system we witt have a brief look at what the approximate Hamiltonian has to say about the 

microscopic behavior of the ground state. To carry this out we will use the one-particle 

density matrix and the pair correlation function. 

The single particle density matrix, (See G. Baym32, for example.) can be written as 

G.{x-y)=(z\*a\*y*Mz) (106) 

where *Fa(x) is the field operator that removes a type V particle from position x and 

^}(x) adds a type V at position x. Of course, the same formulation could be made up 

for type "6" particles. \x) is the ground state vector. 

In momentum terminology, using the previously defined operators a* and a, we have 

G. 
e-'ftx » e'Piy 

•(*-.v)=(*IZ ~jrap\ 2 -tyM 
p,=-a> -\IJ P2= - t D »-k 

= jjreip^(X\alap\X) (107). 
Lp-_. 

= \ala0+\^iP{y'X)W^P\x) 
p*0 

(Note die long range order in the condensate implied by the first term.) The first term is 

now replaced by its exact value rather than using the approximation from the first equation 

of (54). On so doing, the single particle density matrix becomes 

N 1 
G°(x ~ * ) = 2T+llUeiP[y 'X)" Ok W f l 'W <108>-

Next converting to the quasiparticle operators of (71) and (72) the result is 



2L ZL p̂ o x 

^ + _ L Y ( < W V - X ) - I ) 
21 4l£j l ^ ' ' 

+ cosh200lfip + sinh200p0l\x) 

(A. 
-pfp 
,2 

P f top P2 ? 
P + *L_ + _ \ - + £- 4 

*>p J 
KP1 Ap P 
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(109). 

Not surprisingly, for die other type of particle present, Gb(x-y) = Ga(x - v). 

The next graph, Figure 11, shows the numerical results when only die |x - v| dependent part 

of (109) is plotted for the values of tiie parameters given in the figure caption. For this 

particular lengdi of die system over 95% of the particles are in die condensate. (How die 

-+-H—I—\ 

|x-y| 

Figure 11 -Single particle density matrix for ground slate. Parameters are L - 10, 

g = 2 x 10"5, c = 0.1, and N = 104. Condensate occupancy exceeds 95%. Note tiiat 

it is only tiie |x - v| dependent part tiiat is plotted. 
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percentage of particles in the condensate is calculated will be given in Chapter 4.) It should 

be noted that the relatively large, but constant, part of (109) tiiat is not included in die plot 

is the contribution from tiie particles in the condensate. This contribution has a magnitude 

of NjilL) where N0 is tiie number of particles in tiie condensate. The symmetry of the 

graph about a vertical line drawn through tiie point |x - v| = 5 is attributable to tiie periodic 

boundary conditions. If the interactions between particles were "turned off" then die graph 

would be a straight fine along the horizontal axis which would indicate a homogeneous 

distribution of particles. Witii the interactions present there is a large homogeneous 

"background" due to most particles being in the condensate but the moving particles are 

apparently not uniformly distributed. 

Taking the interpretation of tiie single particle density matrix as the amplitude of being able 

to remove a particle from one position and put it back in another, then die graph shows 

that this amplitude is greatest if the particle is replaced in tiie same position it is removed 

from. This amplitude diminishes with increased distance between point of removal and 

point of replacement until a minimum is reached at L/2. Since the removed particle must 

have the same momentum as die inserted particle then the implication is that particles 

which are not in tiie condensate but witii the same momentum have a tendency to be near 

each other or move as a group. 
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40 

-10 

L = 10 

L = 50 

H * 

Percentage of |x-y) 

Figure 12 - Comparison of |x - v| dependent part of single particle density 

matrix for system lengths of 10 and 50. Here g = 2 x 10'5, c = 0.1, and 

N = 106. Note horizontal axis is percentage of |x - v|. 

Figure 12 shows tiie effect of changing the length of die system. Note the horizontal axis 

gives die percentage of (x - y| so that die two graphs can be compared for shape. Increasing 

the lengdi diminishes the tendency of particles of the same momentum to be near each 



otiier. 

Figure 13 shows tiie dependence of the |x - y| part of die single particle density matrix on 

N. Here again the general shape of the curve is much the same as in die other plots of diis 

function. Increasing the parameters g and/or c witt also produce effects like increasing N 
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but again there is no basic change in die over att shape. 

The pair correlation function ( See Baym32, for example.) can be written as 

*«(* -y)=(f) bW(*WW*.(yK(*U) (no). 

A similar definition would apply to the "b" type particles and gbb(x - v) = gaa(x - v) . 

Now carrying out the same basic process as for the single particle density matrix where the 

goal was to transform to the quasiparticle operators to get 

AT2 

/ Li ,\\ „ 

N2 N ^ , w , t i \ 
lji+ji\Zw*p{x-y)(x\alap\x) 

(in). 
= 77i + 7i 2 " ' M * ~ ^){sinh2 6 + sinh2 ^} 

Nx N ~ , SXP p2 (op p2 . 
4I 2 4 L 2 & n ' V AF ' »F 

Here use of the approximations in (54) was made and, in keeping witii the Bogoliubov 

approximation metiiod, terms containing one or no p = 0 indexed operators were dropped 

as being smatt. Note that the functional form of the |x - y\ dependent part is identical to 

that of the single particle density matrix in (109). 

One can also define two pair correlation functions involving both types of particles as 



(112). 
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The first of these two forms, which can be interpreted as removing an "a" and a "6" type 

particle and then replacing them in die same locations as their removal, produces a constant 

for die result. More interesting is tiie second form which can be interpreted as removing 

one each of the two types of particles and then replacing them in exchanged positions. This 

second form becomes 

f) S^-y^JTizlie^'-'K^'Mx) 
pa-ID 

N2 N ^, , , JX, p2 (0p p2 \ 
-~ + — + —£- + — - 4 

(113). 

_ + _g (cos/,(x-,)-l) 
P>O {P2 A p p 2 a>p ) 

Note that once again the functional form of the |x - y\ dependent part of tiiis expression is 

the same as that of the single particle density matrix (109). 

Going back to (111) and writing out the expansion is a different way will give 

~] ga*{*-y)*j£+ ^ Z { 2 a * V p * P + 2(cosp[x-y))a}a0alap} (114). 
p*Q 

Here, as has been the usual practice, tiie rest of tiie terms have been dropped as being 

small The reason for writing die form in tins way is that it is somewhat more useful to see 

what is going on to produce tiie final form. The first term in the expression conies from 

pair exchanges involving particles in the condensate only. This term is by far the largest 



70 

contributor to tiie magnitude of tiie result because of die large number of particles in die 

condensate and it is also constant which indicates a uniform distribution of tiiese particles. 

The next term, tiie sum of die a\a0ap
tap, is also a constant and it involves pair exchanges 

in which only one of the pair is in die condensate. In these exchanges tiie particles are 

returned to their original positions. The final part again involves pair exchanges in which 

only one of the pair is from the condensate but tiie position of the particles also gets 

interchanged. However, because the particles in the condensate are so numerous and 

uniformly distributed, this type of exchange amounts to essentially the same type of 

exchange as tiie single particle density matrix calculation. Thus no basically new 

information is brought forward by the pair correlation function. 

One other feature of the results of the single particle density matrix (and pair correlation 

function) that deserves some mention is the symmetry in the occurrence of the interaction 

parameters g and c. This symmetry also will come up in some of die diermodynamic 

functions to be derived in die next chapter and it is surprising considering that this 

symmetry is not present in the original Hamiltonian. If one goes back to (114) and does not 

use tiie approximations of (54), tiie resulting form can be diagonatized using operator 

transformations exactly of the forms as were used in arriving at the approximate 

Hamiltonian (73). The resulting approximate Hamiltonian under these conditions has the 

form 
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H° = ^L + 2z{ - f 2 - «•: - 2e0 + Ux% + «;)} + 2Z(A;«ia, + *>;#/?,) (115) 
L< p>0 I ^ J p>0 

where 

". °̂p = J(p2+4*'0lp
2+%e0 + Ae'0), 2L 21 - '- -" ' (ii6). 

anA(o°p = ^(p2 +4e'0\p
2 + \2e'0) 

The difficulty with this form is in the occurrence of N0 which is an unknown. However, it 

can be determined by using N0= N- {Na). As has already been mentioned 

parenthetically an expression for Na witt be derived in tiie next chapter. This expression for 

Nex contains N and not N0 so it is convenient An equivalent expression for Na can also be 

derived in terms based on the elements in (116) but in this form N0 can be solved for by 

using N0 = N- (Na) in a self consistent manner. Both methods give approximately the 

same result. 

Now in terms of this second formulation of an approximate Hamiltonian we have 

( 
yj gaa{x-y) = 

r , (117). 

4I2 \L2j£ n y,]\p 2+4e'0 X% p2+4e'0 a>p J 

This form produces the same results as the previous one to a good approximation so, in 

that respect, it is not particularly interesting. However, what is of seme interest is diat it 

produces the same results without being symmetric in tiie occurrence of die interaction 
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parameters g and c as can be seen by referring back to die definitions in (116) when 

looking at the structure of (117). However, tiie symmetry stitt must be there and tiie source 

of tins symmetry must be Â . N0 is dependent on g and c but tins feature is buried out of 

sight ir* the original formulation of the approximate Hamiltonian. It is through die second 

of die approximations in (54) that this connection is made. Thus the symmetry between c 

and g exists through this interconnection at least in the parameter range where this 

Bogoliubov approximation method is valid. 

J 



IV. The Thermodynamics of the System 

The partition function 

In developing tiie examination of die thermodynamic properties of tiie boson system when 

both g and c are greater than zero die first step in die process will be the calculation of the 

partition function from 

S=7r{exp(-/?tf)} (118). 

One feature of the partition function tiiat should be dealt with first is the lack of mention of 

a chemical potential. The Hamiltonian that will be used in developing the partition function 

is not the original Hamiltonian but rather the approximate Hamtttonian (73) derived from 

it. This approximate Hamiltonian, as already mentioned, describes a system consisting of 

two types of bosons (the quasiparticles) whose number is not fixed. The number of real 

particles in any state of the original system is, of course, fixed at tiie constant value N. A 

quasiparticle requires the presence of excitations which do not exist in the ground state of 

the system. As Calien33, page 412, points out die chemical potential of a nonconserved 

Bose system is zero. So here, as die number of quasiparticles is not fixed, the grand 

canonical formalism will be used after first setting tiie chemical potential to zero. 

As a check on the reasonableness of using the partition function of (118) with the 

approximate Hamiltonian one can rotate back to real particle space by setting g and c to 

zero. On so doing, the partition function has the appearance of a system of free real 

73 



74 

particles witii a chemical potential of zero. (See (19) and (20)). Such a system of free real 

bosons does not in fact have a chemical potential of zero but as has been pointed out here, 

in the development fottowing (19), tiie setting of the chemical potential to zero does 

produce quite reasonable approximations when the number of particles in die condensate is 

macroscopic. The dropping of terms, as being smatt, in die derivation of the approximate 

Hamiltonian has reproduced this argument in a more indirect way. 

Inserting tiie approximate Hamiltonian in (118) gives 

Z(0,L,N)= TrlaJ-fiH^ ~ / > Z ( V P " P + «>P#/*P) 

= ex^-pH^Tr expf - /?Z(Vja p ^°>pfi\fip)\ \ (119). 
-

= exp(-/?^)n 
p*0 

p*0 

1 
{l-exp(-0Xp)l-ex^-fio}pl 

Here the Hgrd is as given in (78). 

Some of tiie thermodynamic functions 

With form (119) of the partition function it is now reasonably straightforward to calculate 

tiie thermodynamic measures of die system. A number of those measures will now be 

determined, die first of which being the energy. Using E = -\—InE gives 
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* ^ + 2 Z 
p>0 

(O. 

,exp(^Ap)-l exp(A»p)-l> 

F i . t . W * , P B l ( l | i B ) one arrives at 

(120). 

P = 
3Herd 4 grrf 

8L L TI 

/ 2 2 \ 

Xp-2e£- a>p-2e'?-
X_ p a>_ 

p>0 exp(fiXp)-l exp(/to>p)-l 
(121) 

where 

<?#-, H. ' grd * * Bid *• 

8L U ^ p > 0 

(p2 Ip p2 (»pV 
7- + -T + —+ - f 
. * , P (op P J 

(122). 

The entropy is also derivable from the partition function using S = - V — ; togi 
dT 

grve 

5 = 2Z 
p>0 

pH> 

M f exp(/?;t ) "I ( exp(/top) 
In) — * — ^ _ + m — ^ — £ i _ 

exv(0Xp)-l) {exv(fia}p)-l) 

PK PK 
(123). 

exp(/?Ap)-l exp(/Mp)-l 

Another thermodynamic property of die system that will be considered is its specific heat 

which can be evaluated using 

( - V > 

CL = 
BE 

dT, = 2fi2Z 
p>0 

X2
pexy(fiXp) a>2

pexv(fla>p) 

[exp(/£tp)-l]2 [axv(0(op)-l]\ 
(124). 



76 

A validity check 

Until now no concrete way has been specified that would test whether a specific calculation 

met die requirements of die apptoxhtiation metiiod.. At dus point it would seem 

appropriate to develop such a strategy. Since tiie very foundation of the Bogoliubov 

method as is being used here is the assumption tiiat tiiere is a large number of the system's 

constituent particles in the p - 0 mode, then a method of estimating the occimation level of 

tiie condensate witt now be developed. 

The average number of particles in excited modes, (Na), can be found from 

Tr 

( " « ) • 

'-*T("P«P+*PM 
p'° 

Tr[e#] 
(125). 

It witt be assumed here tiiat the approximate Hamiltonian will be adequate to make an 

estimate of tiiis result. That being die case, then using die relationships between operators 

given in (63), (64), (71) and (72) one can write 

5^**)-5H(f^-xMf?)g^) (126). 

Now using 

(127) 

and similar results for the otiier type of quasipsrticle operator leads to die expression 
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p>0 
-2+ 

( * 

«2 

p J 
r i + ^ v z + ^ n i ) (128, 
^2 e*>-V {(Op p2JK2 e*>-V\ 

The thermodynamic functions for theg = 0 case 

The diermodynamic functions derived above can also be determined for the g = 0 case. 

The development of tiiese expressions is so similar to that already done above that only the 

final results witt be listed here. These results are: 

3^L '">=^-^4(r4^^^, (129), 

E(o) - ^grd(o) + Z 
n=2 

r.2 

Pn 
[exp(/K2)-l a p t * . ) - ! , 

* < . ) = • dL L „=2 

pl 
X-2e 

X 
Pr 

exp(fip2
n)-l + exp(f3Xn)-l 

dH"{') _ 1 rr *2N ^J7(Pn+K) 
~~jr-iH^+ir'jLhPn{[X+^) 

(130), 

(131X 

'(*) T U ^P^ ) i Inf eXp(^n) ) . Ppl . PK 

bi\\exp{fip2)-\) ^exp(pXn)-l) exp(/?/>2)-l exp(^A„)-l 

, 2 ^ [ P4n*XV(fiPl) , « « p ( A t , ) 

^ " ' S j ^ / t f j - l f [exp(^)-l]2 

(132), 

(133), 

(134). 

To complete die parattel development with the g ̂  0 case, the expression for the number of 
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particles in excited modes is 

("«L = Z 
n=2 

1 
2 ex; v(fiP2)-i 

1 
+ -^P2 K-

l 
- + 2 exp(fiX„)-l) 

(135). 

4 graphical description of the thermodynamics 

The thermodynamic relationships given above were first presented by Craig, Kiang, and 

Niegawa34. As was done tiiere, a description of the thermodynamic behavior of the system 

witt now be given. The given equations for energy, entropy, pressure and specific heat are 

rather complicated as they now stand, so the purpose now is to see some of die features 

tiiat might be buried under tiiis layer of complexity. 

As a first step the continuous form of these equations will be examined. The continuous 

omit form of tiie logarithm of the partition function (119) is 

L 
l n S = - ^ / / w - - f dp{\n(l-exp{-fiX)) + \n(l-exp{-fia}))} 

09 

(136). 

With the goal of seeking functional forms, let us first extract part of (136) for further 

consideration, namely 

£ f #{ln(l - exp[-pp4p~2 + AcNlL§+ln(l - exp[-fiP4p2 +4gA^/l))J 

J dx\Injl-exm-cpfixyjx2 + 4))+In 1 -exw -cpfixl 

IcNL 
n 

\x2+\$-



a JcNL J\cpp£\ 
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(137). 

As the chemical potential of the quasiparticles is zero then the Hehnholtz free energy, F, 

can be determined from the logarithm of die partition function and (88) which gives 

F = --k\Z=Nc 
0 

^p+y[cp 
c 

4_ 
3ir 

1 + +-LjLpfi,8-
cpfi V cJ 

(138). 

From this functional form of the logarithm of tiie partition function the continuous form of 

(120) becomes 

£ = -—lnS= Afc 
dp 

( 

P+Vp\-yn l + i * 
+ ̂ V f (139). 

The continuous limit version of (121) is 

P = 
fdF\ 

dL), 
gp2+\[cp _2_ 

3* 
1 + ; <fipft 

d(cpp) .nB \ c Jcpfi 
(140). 

For the entropy the continuous version of (123) is 

Nc S = pXE-F)=™(cp/})2 

ftp d(cpB) 
—LPp£ 
cpp v c 

(141). 

Finally, the continuous form of the specific heat (124) is 

CL 

fd_tf 

dT, 
Nc 

<"#7iza4"*$ L Jc~p~ d(cpp) 
(142). 

Examining the above continuous forms witt show tiiat the energy, entropy and specific heat 
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are att proportional to N as extensive functions should be. Pressure, being intensive, is not 

proportional to N. All of the functions, E/N,S/N,CL/N, and P have tiie general 

functional form of f(p,c,g,cpp). One otiier interesting feature that can be picked out is 

that die temperature dependence appears through cpp Before moving n it should be 

pointed out is that die above metiiod of going to the continuous limit form can be applied 

to the thermodynamic functions derived for the g = 0 case. Doing so produces the same 

results as given above if g is set equal to zero in die results. 

Next an examination of tiie characteristics of die thermodynamic functions witt be made 

using numerical techniques. To do this specific values of die parameters have to be chosen. 

After each calculation a check witt be made to ensure tiiat the occupation level of die 

condensate is large for the particular selection of parameters. As die numerical results witt 

be presented graphically, each graph will be marked at die points where calculations show 

95% of tiie system's particles are still in the condensate. If not marked, then att points on 

tiie graph have condensate occupation levels exceeding 95%. The parameters g and c tiiat 

determine die strength of the interactions enter tiie calculation (128) of the number of 

particles not in die p = 0 mode in a symmetrical fashion. However, die original 

Hamtttonian (1) does not show this same symmetry as g + c is die strength of the 

interactions between like particles and g - c is the strength of the interactions between 

unlike. Referring back to the condition for the validity ofEBKS after (87) which was derived 

from the work of lieb and liniger, namely (g+c)L < N, and inserting L0 from (91) leads 
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to the relationship between g and c of 

^(f4tf<f(fHf)f 
(143). 

This condition will be met if g/c < 0.2. Now it could be argued that choosing a smaller 

value of L tiian that of L0 would ease this restriction on die magnitude of g. Indeed L could 

be so chosen as to make g many times larger than c. 

There are two reasons for not taking dus approach here. First, unless g « c, die leading 

term in the expression for I >th E and P which is gN2 JL dominates die calculated values 

to such an extent that the effects of temperature variations are suppressed. In order to get 

the effects of increased temperatures to show up the condensate must be depleted beyond 

die point at which die approximation metiiod is considered valid. Not being able to see die 

effects of temperature makes for uninteresting thermodynamics. The second reason hinges 

on die fact that if g > c dten there are no attractions between particles, only repulsions as 

determined by g + c and g-c. Nevertheless die mathematical form of HgTd is such tiiat a 

minimum can be achieved even if g > c. So the physics requires g<c ifHgni is to be 

applicable and the desire to see interesting diermodynamic effects requires g « c. 

The first function to be dealt witii numerically will be pressure. Mathematically for large L 

the expression for pressure given in (121) becomes, in die limit, 
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P - l y p1 ^ir PidP _gg& ( 1 4 4 ) 
Lf^exp^Pp2)-! n* exp[Pp2)-\ <fc 

The pressure in tile g = 0 case also becomes this value in the Emit of large L. For small 

enough L the pressure for both g * 0 and g = 0 is positive. For the ground state F = E 

(dF\ 
where F is tiie Hehnholtz potential and, as P = -\ — , then the zero for pressure witt be 

\dLJT 

at die point where there is a irunimum in the ground state energy. This point, L0, has 

already been shown to exist. With these features a plot of an isotherm for the ground state 

would be expected to have positive pressure values for small L which would diminish with 

increasing L to zero pressure at LQ. Since for large L tiie pressure curve approaches the 

value zero (for the ground state as T = 0), then die pressure curve must approach tins zero 

from negative values - there being only one extremum in the ground state energy. With an 

increase in temperature the asymptotic approach to the positive value of the pressure for 

large L as given in (144) would require the pressure curve to cut die P - 0 axis at two 

points at least for temperatures low enough and hence close to the ground state. 
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Figure 14 - Plot of pressure and Hehnholtz free energy versus lengdi for T = 0. 

Other parameters are g = 2 x 10'5, c = 0.1, and N = 10s. The condensate 

occupation level exceeds 95% at all points in tiie plot. 

In Figure 14 tiie results of plotting the ground state isotherm show the features of the 

pressure graph as described above. The pressure curve is asymptoticatty approaching the 

horizontal axis from below at the larger values of I in the plot. Larger values of L would 

have to be used before the occupation level of the condensate dropped below the 95% 

level. At die temperature chosen, T = 0, the Hehnholtz potential is tiie ground state energy 
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Figure 15 - Plot of pressure and Helmhottz free energy versus length at T = 100. 

Other parameters are g = 2 x 10"5, c = 0.1, and N = 106. 

so the plot could just as wett be considered to be of tiie ground state energy. 

The next plot, Figure 15, is again one of pressure and die Helmhottz potential but this time 

at a temperature of T = 100. The graphs do not look very different from those in die 

previous plot but note that the condensate occupation level is now less than 95% for 

lengths larger than about L = 75. For a given g and c die occupation level of die 
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Figure 16 - Plot of pressure and Helmholtz free energy versus Z, at 7/ = 500. Other 

parameters are g = 2 x 10'5, c = 0.1, and N = 106. 

condensate is inversely related to L and T. 

The higher temperature of Figure 16 shows in a more readily apparent fashion the effect of 

temperature. To the eye it is as if the pressure curve has been moved higher up ihe vertical 

axis with its shape basically the same as for lcwer temperatures. The feature of the pressure 

curve crossing the horizontal axis in two places is also shown. Note tiiat tiie Hehnholtz 



potential has two extrema, one at each of the points where P = 0. Of course, smce 

(dF/dL)T = -P, the extrema should occur at ttiese points. However, the fact that the 

numerical results show the correct general behavior implies diat the approximation has 

produced the correct shape for the function F = E-TS'm spite of the insensitivity to the 

entropy of die condensate. 
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Figure 17 - Plot of pressure and Hehnholtz free energy versus L for T = 975. Other 

parameters are g = 2 x 10"5, c = 0.1, and T = 10". 



If die temperature is increased even further then tiie situation shown m Figure 17 will be 

reached. Here tiiere is only one point of contact between the pressure curve and the 
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Figure 18 - Plot of pressure and Hehnholtz free energy versus L for T - 1100. 

Other parameters are g = 2 x 10s, c = 0.1, andN= 10*. 

horizontal axis. Note tiiat die Hehnholtz potential correctly reflects this situation by having 
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an inflection point at the lengtii where (dF/dL) = 0. 

Increasing die temperature even further does continue to move the pressure curve upward 

so tiiat eventually, as shown if Figure 18, the pressure curve does not cut the horizontal 

axis at all. As is also shown in the figure the Hehnholtz potential continues to behave as it 

should in showing no point with a horizontal slope. In those plots ot pressure versus 

temperature where the Hehnholtz potential shows a minimum, dus minimum indicates a 

point of stability for the system. The length at which dus minimum occurs would be the 

size the system could "support" itself at without tiie need of constraints. For the ground 

state this lengdi was referred to as L0 but now die meaning of L0 will be extended to cover 

the stable length at other temperatures. The maximum in the Hehnholtz potential indicates 

tiiat tiie other lengdi at which P = 0 is not thermodynamicatty stable. Of course, die section 

of the pressure curves where (dP/dL)T > 0 indicates thermodynamic instability and more 

witt be said about dus region later. 

So far no plot has given the behavior of CL. Figure 19 is such a plot. Three different values 

of L are used and, for the range of temperatures chosen, no point has a condensate 

occupation level of less titan 95%. Nothing in the shape of die graphs suggests any unusual 

features in the system. The graph for L - 20 is of die same basic form as those for the 

other two lengdis in spite of die fact that L = 20 is in die diermodynamic unstable region of 

die isotherm. The requirement that d > 0 for stability is met by att points on the graphs. 
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All the plots to tiiis point have had die number of particles set to N - 10*. This parameter 

value was chosen, as were die values for g and c, because it allows the showing of the 

features of the isodierms while staying widiin die restrictions required by the approximation 

method. In addition to this aspect is tiiat tiie choice of parameter values also kept the 

computing time down to convenient levels. An examination of (128) will show that if die 

value ofN was increased by some factor and at the same time the vahies of g and c were 

i 
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decreased by the same factor then Afc would not be affected. However, the percentage of 

particles in excited states would diminish because of the increase in N. Such new vahies of 

g, c, and N would also not change the vahies of entropy and specific heat. However, both 

pressure and entropy have leading terms of gN2 JL and would thus not remain at the same 

values with die new parameters. On the otiier hand, since the chosen value of g in the plots 

is so much smaller than c, the effect of g in the summations is dominated by the c terms. 

Thus if g was reduced not by die factor that N was increased by but by that factor squared 

then die leading term in both energy and pressure calculations would be unchanged. 

Carrying out such a process would enable the increasing of N to larger values and produce 

plots that are visually identically to the ones so tar presented. The decrease in the 

percentage of excited particles at a given lengdi would enable the plots to meet tiie "cutoff" 

at greater vahies of L but tiiere is little value in dus as the plots already presented have the 

95% cutoff wett into die theimodynamicatty unstable region. 

Figure 20 shows die general effect on die shape of die isodierms of varying die parameter 

g. The 95% cutoff is at about the same value of L for att three graphs. The value of L0 

decreases with a decrease in g but tins behavior is quite consistent witii the L0 already 

determined for the ground state in the continuous limit For tiie periodic boundary value 

case the decrease in L0 continues as g is decreased until die system goes into collapse at 

g = 0. As already mentioned tins cottapse at g = 0 can be prevented with die introduction 

of Dirichlet boundary conditions and some plots illustrating this feature will be given 
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Figure 20 -Plot to show die effect on the isodierms when g is varied. Other 

parameters are c = 0.1, T= 100, and N= 10*. 

shortly. 

Finally, die effect on die general shape of the isodierm when die parameter c is varied is 

given in Figure 21. Again from the knowledge of L0 for the ground state, it is nov. surprising 

to see that there is an inverse relationship between L0 and c. As in Figure 20, die decrease 

in L0 is accompanied by a deeper minimum in die isodierm and a steeper slope to die 
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Figure 21 - The effect of varying c on die shape of die isodierm. Otiier parameters 

areg= 2 x 105, T= 100, andAr'= 10", 

isodierm in die region L < L0. 

The behavior of the g = 0 system with Dirichlet boundary conditions is very similar to that 

of tiie g * 0 (periodic boundary conditions) already portrayed in the graphs given to this 

point Figure 22 gives die isodierm for two different values of Tfor die g = 0 system. The 

main difference for the parameters chosen is the greater "insensitivity" to temperature 
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Figure 22 - Isodierms for g = 0. Other parameters are c = 0.1 and N = 10*. No 

points on the T = 0 plot have less diat 95% condensate occupancy. 

compared to die previous plots. 

One other comparison of interest can be done between the two systems, g = 0 and g T 0, 

and tiiat is how L0 is affected by Af. In the ground state discussion tiie L0 dependence was 

determined by going to the continuous limit forms of the ground state energy. In Figure 23 

it is shown that die same behavior persists when using die summation forms, solved 

numerically, and at finite temperatures. It is to be restated tiiat die different behaviors 
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Figure 23 - Log-log plot of system size ' P = 0 as a function of N. Other 

parameters are c = 0.1 and T= 100. No points in plot have condensate 

occupancy of less than 95%. 

between die two systems is boundary condition dependent. 



CONCLUDING REMARKS 

The focus of interest here has men an effort to gain some insight into the physical behavior 

of the one dimensional system of bosons governed by 'lie Hamiltonian 

H(c,g,N)~-J:^ + 2Z(g + cele))8(xl-x) (145). 

This Hamiltonian and its parameters are described in Chapter 1. That chapter is also used 

to put forward die motivation for examining this particular Hamiltonian. After having 

established some rationale for pursuing the topic then the second chapter was used to 

review some of the previous work of others on various forms of this Hairiiltonian. The 

third and fourth chapter then presented die material that is new and provides die rationale 

for this thesis. At this point it is wordiwhtte to present a brief summary of die new material. 

Working in the parameter space 0 < g « c an approximate Hamiltonian was developed 

based on the Bogoliubov perturbation method. Using this irsw approximate Hamiltonian it 

was then straightforward to develop a new expression for the ground state energy. This 

ground state energy approximation was shown to be consistent with the approximation, 

based on the variational method, of Blum, Koltun and Shapir. 

One of die features of the ground state was die prediction of system collapse when g = 0. 

To show diat tins prediction was probably not a result of a limitation in die approximation 

metiiod the same variational metiiod setting of Bhun, Koltun and Shapir was used. 

95 
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Whereas Blum, Koltun and Shapir had buttt their result on an approximation of the work 

of Lieb and Liniger, we used tiie exact results of the Lieb and Liniger work. 

To prevent the collapse of their g = 0 system Bhun, Koltun and Shapir had introduced in 

an ad hoc manner the term n2 N/L2. By modifying the boundary conditions undsr which 

die approximate Hamiltonian was derived from periodic to Dirichlet boundary conditions 

we were able to show that this term, n2NJL2, was a natural consequence of the Dirichlet 

boundary conditions. Then having two forms of the approximate Hamiltonian, one from 

using periodic boundary conditions and the other from Dirichlet boundary conditions, we 

developed the thermodynamics of the two systems - die one to apply to the g > 0 situation 

and the otiier to die g = 0. 

Since the method of solution presented has been an approximation method it seemed 

important to establish some legitimacy to the results. Chapter 2 contains some important 

material from which the argument for die reasonableness of die solution can be built. With 

this intent in mind let us return for the moment to the free boson system. The Hamiltonian 

reduces to the free particle system if the strength of interaction parameters are reduced to 

zero. It would be expected that any solution to the Hamiltonian would contain a description 

of die free particle system simply by setting g =c = 0. The expresrions for energy, pressure, 

etc., derived using the approximation witt produce agreement with the free case at a 

temperature of zero but not at finite temperatures. 
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The source of the disagreement is die chemical potential. In the thermodynamic 

development of die approximation in Chapter 4 the point of view used was since the 

approximate Hamiltonian (73) is in terms of quasiparticles, whose chemical potential is 

zero, then the derivation of the grand partition function could be based on this point. This 

quasiparticle point of view may provide some rationale for setting p to zero but, in the end, 

it still does not provide the correct answer. Working from tiie point of view of the real 

particles the H - pN factor in the partition function proved more than netdesome unless one 

assumed that p was smatt enough to be ignored. Of course, even so, one is stitt forced to 

use the approximate Hamiltonian. Whichever of die two points of view is taken leads to the 

same requirement for getting a solution - the cLvsmical potential is small enough to be 

ignored. Some of the material of Chapter 2 was directed toward substantiating the idea 

that, at least for the non interacting boson gas, ignoring p produced a good approximation 

under suitable conditions. 

Another important foundation stone for the approximation method was die required 

presence of a Bose-Einstein condensate. Again material in Chapter 2 was presented to 

show that, here again for a non-interacting gas, there is such a condensate but again under 

suitable conditions. Thus the argument is that if a free Bose gas can have a condensate and 

be wett approximated as having p = 0, then turning on weak interactions should not chau?e 

these features. The restrictions that arise out of dus are that die temperature must be low 

and tiie system she must be finite. It is pointed out in Chapter 4 tiiat finite size does not 

necessarily mean small size for a way of arranging parameters to give large systems while 
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retraining within the scope of reliability cf the approximation is given there. 

By switching boundary conditions a very different behavior in the dependence of ground 

state size L0onNk established as given in Figure 23. Since Blum, Koltun and Shapir were 

doing work involving the directed Feynman paths as described in Chapter I, they were 

interested in the large Af behav'jr of the system when g = 0. However, the n2NJL2 term is 

not immune to collapse in the thermodynamic limit 

Another feature of interest involving the g and c parameters is their symmetric role in the 

expressions for entropy (123), specific heat (124), (Na) (128), and Ga(x - y) in (109). 

Such symmetry is not present in tiie Hamiltonian but an explanation for it can be found in 

the alternate derivation of an approximate Hamtttonian that led to (112). It can be noted 

from (i 13) that, unlike the Xp of (74), the X°p of (113) is dependent on both g and c. The 

factors in X°p appear in the expressions for entropy, specific heat, etc., derived in this 

alternate formulation, in such a way that the symmetry between g and c is no longer 

apparent from a visual examination of the equations. For example the specific heat 

expression is 

C£ = 2/?2Z 
px> 

\rpf exp(px°p) (m;)2 exy(pa>;j 

,[«p(Ai;)-if H^;)-i] 2 

J 

(146) 

which, aldiough it has the same general form as the specific heat expression of (124), is not 

symmetric in g and c. However, both X°p and ca°p are dependent on N0 which in turn is 
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dependent on g and c. The end resuh of these relationship* is that the numerical calculation 

of specific heat, and for that matter the other functions as wett, produces essentially die 

sam? numerical results especially in die region where the condensate occupancy exceeds 

90%. This agreement shows tiiat die source of the apparent symmetry between g and c ties 

in tiie interconnection between N0 and tiie parameters g and c. In die parameter range 

where the approximations of (54) are valid this symmetry would be present. However, as 

the requirement here is g « c, this symmetry is mathematical and not physical. 

The isotherms plotted in several of the Figures in Chapter 4 indicated some interesting 

aspects of the system behavior. It was shown, at least for the parameter space g « c, that 

die system has a stable size Lo if the temperature is low enough. However, a perplexing 

aspect of the isotherm is die region where (dP/dL)T > 0. Perhaps the first thing that 

springs to mind is a phase change and the Maxwett construction but the shape of the curve 

is not correct for this approach. Nor can dus region be attributable to die assumption of 

p = 0 in the partition function because die ground state also has this region. 

Attributing tiie shape of the curve in the unstable region to die dropping of terms in the 

approximation also seems unlikely. Going to the expression for the ground state energy 

derived by Blum, Koltun and Shapir (85) with the Bogoliubov approximation form (86) 

one can show that their ground state isotherm also has a similar region where 

(dP/dL)T > 0 for 
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.2_2 
to^N (147). 

{c+g) 

Here g and c can be chosen in such a way as to put tiie Bogoliubov form (86) into the 

region of Figure 9 where the approximation is very accurate. Thus it would seem that this 

region of instability is characteristic of die system. 

As to what die nature of this instability is remains unknown. The equilibrium 

thermodynamics vvu>4 offers no answers. This instability does not show up in the specific 

heat as (134), the expression for specific heat, contains only positive terms and thus CL can 

never be negative. The single particle density function and die pair correlation function of 

Chapter 3 also did not show any change tiiat would point to entering a region of instability 

when the parameter L was increased to take the system from a region of stability to one of 

instability. The comhination of the peculiarities of one-dimensional systems in general and 

the finite system size used here are felt to be at the root of this interesting behavior. 

However, the method used here does not seem to be able to substantiate this speculation 

and it will need a different approach in tiie future to sort it out. 



APPENDIX 

Comments on the numerical work 

The computer program used to generate die numerical results was written using die 

Borland® C", Version 2, programming platform. As the computer used for executing tiie 

program was of die IBM® clone variety, then some of die library functions used in the 

program are only suitable for tins computing environment. Almost att of the program uses 

features that are of the C programming language with very little taken from C". 

The listing of the computer program that is to fottow is divided into five sections but only 

for reasons of economy of time in recompiling as die program grew and for cutting down 

paper consumption as new listings were sent to hard copy. As the program is the end 

product of a project that not only grew with time but also had many edits as various 

avenues were explored, the listing will show some vestigial and some "left over" areas. 

These areas could have been revised and polished but since it was a single user program 

and time was precious the attitude of "If it ain't broken, don't fix it." was taken to avoid the 

strong possibility of introducing bugs tiiat occurs whenever software is altered. 

Some additional results 

hi Chapter 3 an alternative way of developing tiie Bogoliubov approximation was presented 

in developing die results for die pair correlation functions. The resulting Hamtttonian was 
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given in (115) and (116) and die form of the specific heat was given in (146). Since 

routines witt be presented tiiat compute other functions in tiiis alternate version then, to be 

complete, the remainder of these forms wttl now be given. 

f \ 
E°-H°gni+2Z 

pX> 

<o. 

exp(/£i;)-l + exp(/fc>;)-ly 
(148) 

P° = 
™U 4 

dL + 
^p>0 

A> 

exp(^;)-l 

(o: 
•>% {Se'otp2 + *")) 

p2+4e'0 a. 

exp(#»;)- l 

(149) 

5" = 2Z 
p>0 

-22 
pX) 

f exp(pX°p) ^ f exp(/te>;) 

t e x p ( ^ ; ) - l j l,exp(/fc>;)-lj 

exp(pX%) t exp(pa>°) ' 

,exp(^;)-l + exp(A»F)-ly 

(150) 

(*:)=Z 
pX> 

-2 + /»'+«< »; Y i 
+ —; : ~—r ' 

r 2 w 

<o°p p2 + 4e')[2 exp{p<op)-\) 

+z 
pX> 

( 1 . * , 10 V />'+4< 
/>2+4e'J 

1̂  
2 ex PK)-I 

(151) 



H* = ^r+%{-P2 ~ *. - 6< + \(x,+ 

A//sf of the functions in tiie program 

Function name 

ener 

press 

entropy 

spht 

hgrd 

ratio 

spdf 

nzero 

hgrdno 

energyno 

pressureno 

entropyno 

nzero 

lieb 

nex, chem 

freeprsss 

AppUcable equation 

120 and 130 

121 and 131 

123 and 133 

124 and 134 

78 and 103 

128 and 135 

109 

151 

152 

148 

149 

150 

151 

42, 43, and 44 

26 

34 
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freeenergy 37 

freecntropy 38 

First section of program 

This section controls tiie input and output from the program. For most options the output is 

sent to a file from where it is picked up by the commercial software Microsoft® Excel for 

plotting purposes. 

#inchide <conio.h> 

#include <stdio.h> 

#include <math.h> 

double c,g,temp,bign; 

double pi,pi2,rt2; 

intgflag,errcodes=8,eiTor_no[8]={0,0,0,0,0,0,0,0}; 

double ener(double ell); 

double press (double ell); 

double entropy (double ell); 

double ratio (double ett); 

double spht (double ett); 

double hgrd (double ett); 

int spdf (double ett, double step); 

void probcheck(int flag); 

void setwindow(int ulc.int ulr,int lrc,int br); 

void restorescm(int flag); 

double nzero(double ett,double trial); 

double hgrdno(double ett,double num); 



double pressureno(doubie ett,double num); 

double energyno(double ett,double num); 

double entropyno(double ett, double num); 

void lieb(double lamda,int n,double *gamma,double *egamma); 

double nex(double tp,double mu,double ell); 

double chem(double tp,double ett); 

double freepress(double tp,double ett,double mu); 

double freeenergy(double tp,double ett,double mu); 

double freeentropy(double tp,double ett,double mu); 

double freegtbbs(double tp,double ett,double mu); 

int error_check(int signal) 

{int flag,n; 

flag = 0; 

for(n=0;n<errcodes;n++) 

{if(error_no[n]!=0) 

{ftag++; 

if(!signal) 

{cprintfi["\r\nError code %d",n); 

error no[n] = 0;} 

} 

} 

if((flag) && (Isignal)) 

{cprintf("\r\nPress any key to continue."); 

getehO;* 

return flag; 

> 

matn() 

{double x,y,z,xx,xxx,eU,eU_l,ett 2,pp,titf;to,tmc,num,gib,gibo; 



int again,agam_l J,k,ni,n,ni,nf,tm\tiif;f_f]ag,flag,c_flag; 

char choice; 

FILE *f_ptr, 

pi=3.141592653589793; 

pi2=pi*pi; 

rt2=sqrt(2.0); 

again=l; 

c=0.1; 

g=0.00002; 

gflag=l; 

temp=100.0; 

bign=1.0e6; 

textmode(C80); 

textbackgroundXBLUE); 

textcolor(YELLOW); 

while (again) 

{cbscrO; 

cprintf("\r\n 1 g = %10.5e, c = %10.5e",g,c); 

cprintf("\r\n 2 T = %7.4f, N = %10.2e",temp,bign); 

cprintf("\r\n 3 Pressure"); 

cprintf("\r\n 4 Specific heat and entropy"); 

cprintf("\r\n 5 General (N)"); 

cprintfC\r\n6 General (No)"); 

cprintf("\r\n 7 No"); 

cprintf("\r\n 8 Single particle density"); 

cprintf("\r\n 9 l ieb energy"); 

cprintfl["\r\n 0 Free Bose gas - No"); 

cprintf("\r\n A Free Bose gas - Po"); 

cprintf("\r\nB Exit\r\n"); 

choice-^etch(); 



switch (choice) 

{caseT:again_l=l; 

while (again_l) 

{clrscrO; 

cprintfCl Change g from %10.5e\r\r\n",g); 

cprintft"2 Change c from %10.5e\r\r\n",c); 

cprintf("3 ExifNiW); 

cl.oice=getch(); 

switch(choice) 

{case T:cprintf("Enter new value for g. "); 

scanf("%le",&g); 

break; 

case 7':cprintf("Enter new vahie for c. "); 

scanf("%le",&c); 

brede; 

case 3':if (g==0.0) gflag=0; 

else gflag = 1; 

again_l=0; 

break; 

} 

} 

break; 

case 7':again_l=l; 

while (again_l) 

{clrscrO; 

cprintfCl Cfesnge T from %7.4f\r\r\n",temp); 

cprintf("2 Change N from %10.2e\r\r\n",bign); 

cprintf("3 Exit\r\r\n"); 

choice=getch(); 

switch(choice) 

{case'r:cprintf("Enter new vahie for T. "); 



scanf("%le",&temp); 

break; 

case,2':cprintf("Enter new value for N. "); 

scanf("%le",&bign); 

break; 

case,3':again_l=0; 

break; 

} 

> 

break; 

case '3':cprintf(n Pressure starting at L = "); 

scanf("%le",&ell); 

cprintf(" Ending at L= "); 

scanf(n%le",&en_l); 

cprintf(" Increment ="); 

scanf("%le",&efl_2); 

uXNUU,=^fjtr^open("c:\\d^ 

if(error_check(0)) break; 

setwindow(45,1,79,25); 

f_flag = 0; 

num = bign; 

while (ett<=ell_l) 

{xxx = presa{61}; 

num = nxsiqe^ium); 

if(error_check(0)) break; 

xx - pressureno(ett,num); 

fprintf(f_ptr,"%12.5f %12.5e %12.5e\n",ell,xxx,xx); 

cprintf("\r\n%12.5f %12.5e",elLxx); 

oil += ett_2; 

if(kbrrit()) 

{f_flag-l; 
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geteh(); 

break; 

} 

} 

fclose(fjrtr); 

restorescm(f_flag); 

break; 

case '4':cprintf("Enter start value for L. "); 

scaiifC%le",&ell); 

xx=temp; 

cprintf("Enter initial value, for T."); 

scanf("%le",&temp); 

cprintf("Enter increment for T. "); 

scanf(n%le0,&ell_l); 

cprintf("Enter final value for T."); 

scanf("%le",&en_2); 

if((fj>tr^open("C:\\dad\^^ 

if(error_check(0)) break; 

while (temp<=ell_2) 

{fprintf(fptr,"%10.2f %l?.5r,temp,entropy(ell)); 

fprintf(fplr,"%12.5f\n",spht(ell)); 

cprintf("%10.2f\r\n",temp); 

temp+=ell_l; 

> 

fclose(f_ptr); 

temp=xx; 

cpimtf("Finished\r\n"); 

choice=getch(); 

break; 

case '5':cpiintf(" General (N)- starting at L= "); 

scanf("%le",&en); 



no 

cprintf(" Increment = "); 

scanf("%le",&ell_l); 

cprintf(" Ending at L= "); 

scanf("%le",&ell_2); 

if(NUIX==(fj>ti^op^ 

if(error_check(0)) break; 

setwindow(45,1,79,25); 

f_flag = 0; 

white (ett<=ett_2) 

{x = ener(ell); 

y = press(ett); 

z = entropy(ell); 

xx = ratio(ell)*100; 

fprintf(f_ptr,"%12.2f %15.6e %15.6e",ett,x,y); 

fprintfitfjitr,1 %15.6e %8.2f\n",z,xx); 

cprintfr\r\n%12.2f\ett); 

ell += eH_l; 

if(kbhit()) 

{f_flag=l; 

getch(); 

break; 

} 

} 

fclose(f_ptr); 

restorescm(f flag); 

break; 

case '6':cprintf(" General (No) - starting at L = "); 

scanff%le",&ell); 

cprintf(" Increment = "); 

scanf("%le",&ell_l); 

cprintff Ending at L= "); 



Il l 

scanf<"%le",&ell_2); 

if(NUU.=^fjrti^open(^ 

if(error_check(0)) break; 

setwindow(45,1,79,25); 

fflag = 0; 

num = bign; 

while (eB<=ell_2) 

{num = nzero(en,num); 

if(error_check(0)) break; 

x = energyno(efl,num); 

y = pressureno(ett,num); 

z = entropyno(ell,num); 

fprintf(f_ptr,"%12.2f %15.6e %15 6e",elLx,y); 

fprintf(f_ptr,n %15.6e %12.1fe\n",z,num); 

cprintfC\r\n%12.2f,eIl); 

ett += eH_l; 

if(kbhit()) 

{f_flag=l; 

getch(); 

break; 

} 

) 

fclose(f_ptr); 

restorescrn(f flag); 

break; 

case T:cprintf(" No for L = "); 

scanf(n%le",&ell); 

cprintf(w Starting at T= "); 

scanfT%le",&ti); 

cprintf(" Ending at T = "); 

scanf("%le",&tf); 



cprintf(" Increment ="); 

scanf("%^&tinc); 

if(NUIX==(f^ii^open("c:\\dad\\nzero.dat',,nw+t")))error_no[0] 

if(error_check(0)) break; 

setwindow(45,1,79,25); 

fflag = 0; 

xx = temp; 

temp = ti; 

num = bign; 

while (temp<=tf) 

{xxx = nzero(eU,num); 

if(error_check(0)) break; 

fprintf(f_ptr,n%12.2f %10. lf\n",temp,xxx); 

cprintf("\r\n%12.2f %10. If \tenn,xxx); 

temp += tine; 

num = xxx; 

ifOcbhitO) 

{fflag=l; 

getch(); 

break; 

} 

} 

fclose(f_ptr); 

temp = xx; 

restorescrn(f flag); 

break; 

case '8':cprintf(" Single particle density function.\r\n"); 

cprintf(" Enter value for L. "); 

scanf("%le",&ell); 

cprintf(" Enter number of intervals in L. "); 

scanf("%d",&m); 
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ett_l = ell/m; 

probcheck(spdf(eU,eil 1)); 

break; 

case'0':cprintf("(lieb) Enter vahie of lamda. "); 

scanf("%le",&x); 

cprintf("Enter number of intervals. "); 

scanf(M%d",&j); 

lieb(xj,&y,&z); 

cprintf("\r\ngamina = %15.6f e(gam) = %15.6f,y,z); 

getch(); 

break; 

case 'A': 

case 'a':cprintf("Free Bose gas - enter L. "); 

scanf("%le",&ell); 

cprintf(" Starting at T = "); 

scanf("%le",&ti); 

cprintf(" Ending at T = "); 

scanf("%le",&tf); 

cprintf(" Increment ="); 

scanf("%le",&tinc); 

if(NUIi==(fj)trHfopen("c:\\dad\\freebose.dat","w+t" 

if(error check(O)) break; 

fprintf(f_ptr,"L N\n%10.1f %10.0f\n\n",elLbign); 

fprintf(fj>tr,"T No No(mu=0) No+Nex mu\n"); 

setwindow(45,1,79,25); 

f_flag = 0; 

while ((ti<=tf)&&(!f_flag)) 

{xxx = chem(ti,ett); 

if(error check(O)) break; 

xx = bign-nex(ti,0.0,ell); 

x = 2.0/(exp(-xxx/ti>1.0); 
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y = x+nex(ti,xxx,ett); 

fprmtflfjrtr^n^f %10.1f ",ti,x); 

fprintf(f_ptr,''%10.1f %10.1f %12.6e\n",xx,y,xxx); 

cprintf("\r\n%12.2f %10. lf",ti,x); 

ti += tine; 

if(kbhit()) 

{f_flag=l; 

getch(); 

break; 

} 

} 

fclose(f_ptr); 

restorescrn(f_flag); 

break; 

case "B': 

case V:cprintf("Free Bose gas - isodierm 0, isochore 1 "); 

scanf("%d",&c_flag); 

if(!c_flag) 

{cprintf("Enter value of T "); 

scanfT%len,&tp); 

cprintf(wStartingatL= "); 

scanf("%le",&ell); 

pp = ell; 

cprintf("Ending at L = "); 

scanf("%le,,,&x); 

cprintf("Increment in L = "); 

scanf("%le",&y); 

> 

else 

{cprintf("Enter vahie of L "); 

scanf("%le",&ell); 



cprmtfCStartmg at T = "); 

scaiifC%!e",&tp); 

pp = tp; 

ciirfotfTEndingatT^'); 

scanf(n%leM,&x); 

cprintf("Increment in T ="); 

scanf(M%leM,&y); 

} 

if(NUIi==(fj)ti^open("C:\\u^d\\freeprra 

if(error check(O)) break; 

setwindow(45,1,79,25); 

f_flag = 0-

fprmtf(fj)tr,,,N^i%10.0f\n\nn,bign); 

fprintftrptr.-L T k..u Pmu Po "); 

tprintf(f_ptr,"Emu Eo Smu So No "); 

fprintf(f_ptr,,,G Go mug mugo\n"); 

whtte((pp<=x)&&(!f_flag)) 

{xx = chem(tp,ell); 

if(error_check(0)) break; 

fprintnXptr,''%12.2f %12.2f%12.7r,elLtp,xx); 

xxx = freepress(tp,elLxx); 

z = freepress(tp,ell,0.0); 

fprintf(f_ptr,"%12.2f %12.2f,xxx,z); 

xxx = freeenergy(tp,ell,xx); 

z = freeenergy(tp,ell,0.0); 

fprintf(fj)tr,n%12.2f %12.2f',xxx,z); 

xxx = freeentropy(tp,ell,xx); 

z = freeentropy(tp,ell,0.0); 

fprintf(f_ptr,"%12.2f %12.2f ,xxx,z); 

xxx = 2.0/(exp(-xx/tp)-1.0); 

gib = freegt*bbs(tp,ett,xx); 



gibo = freegibbs(tp,ell,0.0); 

fprintf(f_ptr,"%12.0f %12.2f%12.2P,xxx,gjb,gibo); 

fprintf(f_ptr,"%12.6f %12.6f\n",gib/bign,gibo/bign); 

cprinif("\r\n%12.2f %12.2f\ett,tp); 

if(!c_flag) 

{ell+=y; 

pp = ett; 

} 

else 

{tp+=y; 

PP = tp; 

} 

if(kbhit()) 

{fjflagM; 

getch(); 

break; 

} 

) 

fclose(f_ptr); 

restorescrn(f flag); 

break; 

case'C: 

case 'c':again=0; 

break; 

} 

} 

} 

void probcheck(int flag) 

{switch(flag) 

{case l:cprintf(" Could not open file."); 



break; 

case 2:cprintf(" Convergence too slow."); 

break; 

case 3:cp.intf(" Could not get memory asked for."); 

break; 

case 4:cprintf("\r\nNo has become invalid."); 

} 
if(flag)getch(); 

return; 

} 

Second section of program 

#inchide <math.h> 

extern double c,g,bign,pi,pi2,temp,rt2; 

extern int gflag; 

double hgrd (double ell) 

{double a,al,ab,nf,n2,sum,sum2,xx; 

double alpha,rtalpha,ee,eep,p,p2; 

long int n,lim; 

if(gflag==0) 

{alpha=2.0*pi2/c/bign/eU; 

rtalpha=sqrt(alpha); 

lim=sqrt(8000.0/alpha); 

sum=0.0; 

sum2=pi2/6.0-1.0; 

for (n=hmm>lm--) 

{nf=n; 



n2=nf*nf; 

al=alpha*n2; 

xx=al+4.0-rtalpha*nf,,sqrt(al+8.0); 

sum+=xx; 

sum2-=1.0/n2; 

} 
sum+=8.0/alpha*sum2; 

al=bign/ett*(pi2/ell-c*sum/4.0); 

return (al); 

} 

else 

{alpha=2.0*pi/en; 

i%i=sqrt(1000.0*c*bign*ell/pi2); 

sum=0.0; 

sum2=pi2/6.0; 

ee=4.0*c*bign/ett; 

eep=4.0*g*bign/ett; 

ab=(ee+eep)/4.0; 

foi<n=l;n<=hm;n++) sum2-=(1.0/n)/n; 

for(n=limm>0;n-) 

{p=alpha*n; 

p2=p*p; 

sum+=-p2-ab+0.5*p*(sqrt(p2-r-ee)+sqrt(p2+eep)); 

} 
sum-=bign*bign*(c*c+g*g)/4.0/pi2*suin2; 

al=bign*bign*g/ett+2.0*sum; 

return (al); 

} 



double spht (double ettv) 

{double alpha,sum,ee,eep,p,p2,a,b,pa,pb,betapa,betapb,al,a2; 

long int iunin,]im,n; 

if (temp==0.0) return (0.0); 

atpha=2.0*pi/euV, 

nmin=1.0; 

if(gflag==0) 

{alpha/=2.0; 

nmin=2; 

> 

sum=0.0; 

ee=4.0*c*bign/ettv, 

eep=4.0*g*bign/ettv, 

a=0.5*(sqrt(eep*eep+5184.0*temp+temp)-eep); 

lim=sqrt(a)/alpha; 

foi<n=lim;n>=Tmiinm--) 

{p=alpha*n; 

p2=p*p; 

a=sqrt(p2+ee); 

b=sqrt(p2+eep); 

betapa=p*a/temp; 

betapb=p*b/temp; 

if(betapb>21.0) sum+=betapb*betapb*exp(-betapb); 

else 

{al=exp(betapb); 

a2=al-1.0; 

sum+=betapb*betapb*al/a2/a2; 

) 

if(betapa<36.0) 

{if(betapa>21.0) sum+=betapa*betapa*exp(-betapa); 



else 

{al=exp(betapa); 

a2=al-1.0; 

sum+=betapa*betapa*al/a2/a2; 

} 

} 

} 

if(gflagr=0) return (sum); 

return (2.0*sum); 

} 

double press (double ett) 

{double alpha,al,a,b,ee,eep,e,ep,p,p2,pa,pb; 

double sum,sum2,summ,betapa,betapb; 

long int n,hm; 

sum=0.0; 

ee=4.0*c*bign/ett; 

e=ee/4.0; 

eep=4.0*g*bign/ett; 

ep=eep/4.0; 

ahpha=2.0*pi/ett; 

if(gflag==0) alpha/=2.0; 

if(temp!=0.0) 

{if(eep<ee)b=eep; 

elseb=ee; 

a^.5*(sqrti>*b+5184.0*temp*temp)-b); 

lim=sqrt(a)/alpha; 

if(gflag==0) 

{for(n=lim^>l^i-) 



{p=alpha*n; 

P2=P*P; 

a=sqrt(p2+ee); 

pa=p*a; 

betapa=pa/temp; 

sun»+=p2/(exp(p2/teinp)-l .0); 

if(betapa<36.0) sxun+=(pa-e*p/a)/(exp(betapa)-l .0); 

> 

sum*=2.0/ell; 

} 

else 

{for(n=lim;n>0;n--) 

{p=iJpha*n; 

P2=p*p; 

a=sqrt(p2+ee); 

b=sqrt(p2+eep); 

pa=p*a; 

pb=p*b; 

betapb=pb/temp; 

if(betapb<36.0) sum+=(pb-ep*p/b)/(exp(betapb)-1.0); 

if(betapa<36.0)sum+=(pa-e*p/ay(e'q'(Detapa)-1.0); 

} 

sum*=4.0/ell; 
> 
t 

} 

summ=0.0; 

if (Og) Km=10.0*sqrt(c*bign*ell); 

else lim=10.0*sqrt(g*bign*eli); 

if(gflag==0) 

{sum2=pi2/6.0-1.0; 



for(n=2-̂ i<=hm;n++) sum2-=(1.0/n)/n; 

for(n=lim;n>l;n--) 

{p=alpha*n; 

p2=p*p; 

a=sqrt(p2+ee); 

summ+=p2*(2.0-(a/p+p/a)); 

sunun-:=4.0/pi2*c*c*bign*bign*sum2; 

summ/=4.0*ett; 

} 

else 

{sum2=pi2/6.0; 

for(n=l;n<=lim;n++) sum2-=(1.0/n)/n; 

for(n=lim;n>0;n--) 

{p=alpha*n; 

p2=p*p; 

a=sqrt(p2+ee); 

b=sqrt(p2+eep); 

summ+=p2*(1.0-0.25*(p/a+a/p+p/b+b/p)); 

} 

summ-=bign*bign/4.0/pi2*(c*c+g*g)*sum2; 

summ*=2.0/ell; 

} 

sum-=summ; 

sum+=hgrd(ett)/ell; 

if(gflag==0) sum+=^*bign/ett/ell/ell; 

return (sum); 

} 

double ener (double ett) 



{double alpha, a,b,ee,eep,8um,p,p2,pa,pb,betapa,betapb; 

long int lim,n,nmin; 

sum=0.0; 

if(temp!=0.0) 

{alpha=2.0*pi/ett; 

if(gflag==0) alpha /=2.0; 

ee=4.0*c*bign/ett; 

eep=4.0*g*bign/ett; 

if(gflag===0) nmin=2; 

else nirrin=l; 

aH).5*(sqrt(eep*eep+5184.0*temp*tenip)-eep); 

lim=sqrt(a)/alpha; 

for(n=lim;n>=Tmun;n--) 

{p=alpha*n; 

p2=p*p; 

a=sqrt(p2+ee); 

b=sqrt(p2+eep); 

pa=p*a; 

pb=p*b; 

betapa=pa/temp; 

betapb=pb/temp; 

if(betapa>36.0) sum+=pb/(exp(betapb)-1.0); 

else sum+=pa/(exp(betapa)-1.0)+pb/(exp(betapb)-l 0); 

> 

} 

tf(gflag!=Q) sum*=2.0; 

return (sum+hgrd(ett)); 

) 



double ratio (double ett) 

{double alpha,sum,sum2,ee,eep,p,p2,a,b,xx,yy,betapa,betapb; 

double bl,b2,b3,b4,bg,sl,s2,s3,s4,sm,t,term,x; 

long int liml,lim2,n,nmin; 

if(gflag==0) 

{atpha=pi/ett; 

nmin=2; 

} 

else 

{alpha=2,0*p£.''7ifc 

nmin=l; 

} 

if(g<c) 

{bg=c; 

sm=g; 

} 

else 

{bg=g; 

sm=c; 

} 

x=bg*bign/ett; 

bl=2.0*x; 

b2=bl*x; 

b3=2.0*b2; 

b4=4.0*x; 

x-sm*bign/ett; 

sl=2.0*x; 

s2=sl*x; 

s3=2.0*s2; 

s4=4.0*x; 



Iiml=10.0*sqrt(sm*bign*ell/pi2); 

!im2=10.0*sqrt(bg*bign*ell/pi2); 

if (temp==0.0) t=1.0e-40; 

elset=temp; 

sum=0.0; 

ee=4.0*bg*bign/ett; 

eep=4.0*sm*bign/ett; 

x=lim2+l; 

do 

{term= -2.0; 

p=alpha*x; 

p2=p*p; 

xx=2.0+b3/p2/p2*(l .0-b4/p2); 

yy=2.0-H»3/p2/p2*(l .0-s4/p2); 

betapa=(p2+bl-b2/p2)/t; 

betapb=(p2+sl-s2/p2)/t; 

if (betapa>25.0) term += 0.5*xx; 

else term += (0.5+1.0/(exp(betapa)-1.0))*xx; 

if (betapb>25.0) term += 0.5*yy; 

else term += (0.5+1.0/(exp(betapb)-1.0))*yy; 

sum+= term; 

x += 1.0; 

> 

while (term > 1.0e-4); 

sum2=0.0; 

for(n=lirft2;n>liml ;n~) 

{p=alpha*n; 

p2=p*p; 

a=sqrt(p2+ee); 

xx=a/p+p/a; 

yy=2.0+s3/p2/p2*(1.0-s4/p2); 



betapa=p*a/t; 

betapb=(p2+sl-s2/p2)/t; 

if(betapa>25.0) sum2 -.-= 0.5*xx; 

else sum2 += (0.5+1.0/(exp(betapa>-1.0))*xx; 

if(betapb>25.0) sum2 += 0.5*yy; 

else sum2 += (0.5+1.0/(exp(bctapb)-1.0))*yy; 

> 

sum += sum2-2.0*(lim2-liml); 

sum2=0.0; 

for(n=hml ;n>=nmin^i--) 

{p=alpha*n; 

P2=p*p; 

a=sqrt(p2+ee); 

b=sqrt(p2+eep); 

xx=a/p+p/a; 

yy=b/p+p/b; 

betapa=p*a/t; 

betapb=p*b/t; 

if(betapa>25.0) sum2 += 0.5*xx; 

else sum2 += (0.5+1.0/(exp(betapa)-1.0))*xx; 

if(betapb>25.0) sum2 += 0.5*yy; 

else sum2 += (0.5+1.0/(exp(betapb)-1.0))*yy; 

} 

sum2 -= 2.0*(liml-nmin+l); 

sum += sum2; 

if(gflag==0) return (sum/2.0/bign); 

return (sum/bign); 

} 

double entropy (double ell) 

{double alpha,sum,p,p2,a,b,pa,pb,betapa,betapb,ee,eep; 



long int nmin,lim,n; 

if (temp==0.0) return (0.0); 

alpha=2.0*pi/ett; 

nmin=1.0; 

sum=0.0; 

ee=4.0*c*bign/ell; 

eep=4.0*g*bign/ott; 

if(gfla5 =0) 

{atpha/=2.0; 

nmin=2; 

> 

a=0.5*(sqrt(eep*eep+5184.0*temp*temp)-eep); 

lim=sqrt(a)/alpha; 

for(n=limm>=nmin;n--) 

{p=alpha*n; 

P2=P*P; 

a=sqrt(p2+ee); 

b=sqrt(p2+eep); 

betapa=p*a/temp; 

betapb=p*b/temp; 

if(betapb>21.0) sum+=betapb*exp(-betapb); 

else 

{a=exp(betapb); 

b=a-1.0; 

suir.+=log(a/b)+betapb/b; 

} 

if(betapa<36.0) 

{if(betapa>21.0) sum+=betapa*exp(-betapa); 

else 

{a=exp(betapa); 



b=a-1.0; 

sum+=log(a/b)+betapa/b; 

} 

} 

} 

if(gflag==0) return (sum); 

return (2.0*sum); 

} 

Third section of program 

#inctude <math.h> 

#include <alloc.h> 

#include <conio.h> 

#include <stdio.h> 

extern double c,g,temp,bign,pi; 

void setwindow (int ulc,int ulr,int brc,int brr); 

double nzero(double ett, double trial); 

void restorescrn(int flag); 

int spdf(double ett,double step) 

{double alpha,surn,ec,eg,p,p2,a,b,beta,term,sa,sb,pt,pow,diff; 

int r,n,flag; 

double huge *ptr 1; 

double huge *ptrjp; 

FILE *f_ptr, 

alpha = 2.0*pi/ett; 

ec = 4.0*c*bign/ett; 



eg = 4.0*g*bign/ett; 

if(temp==0.0) beta = 1.0e200; 

else beta = 0.5/temp; 

for (r=0;K2;r++) 

{n = 0; 

do 

{n++; 

p = alpha*n; 

if(r)ptr_p[n] = p; 

p2 = p*p; 

sa = sqrt(p2+ec); 

sb = sqrt(p2+eg); 

a = sa/p+p/sa; 

b = sb/p+p/sb; 

pt = p*beta; 

pow = pt*sa; 

if(pow>36.0) term = a; 

else term = a/tanh(pow); 

pow = pt*sb; 

if(pow>36.0) term += b-4.0; 

else term += b/tanh(pow)-4.0; 

if(r) ptr_l[n] = term; 

} 
while ((term > 1.0e-5)&&(n< 10000)); 

if(n—10000) return 2; 

if(r==0) 

{if(NULL==(ptr_l=(double huge *)farcalloc(n+l,sizeof(double)))) return 3; 

if(>OJL=^frj>=(double huge *)farcalloc(n-i-l,sizeof(doub2e)))) 

{farfree(ptr_l); 

return 3; 

} 



if(>IUlX==(fj)tr=fopen("c:\\dad\\spdf.dat","w+t"))) 

{farfree(ptr_l); 

farfree(ptr_p); 

return 1; 

} 

} 

} 

setwindow(45,1,79,25); 

flag = 0; 

diff=0.0; 

do 

{sum = 0.0; 

for(r=n;r>0;r--) sum += cos(ptr_p[r]*diff)*ptr_l[r]; 

sum /= 4.0*ell; 

fprintf(f_ptr,"%10.2f %11.4f\n",diff,sum); 

cprintf("\r\n%10.2f %11.4f",diff,sum); 

if(kbhit())flag=l; 

diff+=step; 

} 
while((diff<=ell)&&(!flag)); 

farfree(ptr_l); 

farfree(ptr_p); 

fclose(f_ptr); 

restorescrn(flag); 

return 0; 

} 

Fourth section of program 

#include <^nadi.h> 

#mctude <attoc.h> 



#inchide <conio.h> 

#include <stdio.h> 

extern double c,g,temp,bign,pi; 

extern int error_no[]; 

void setwindow (int ulc,int ulr,int brc,int brr) 

{window(ulc,ulr,brc,brr); 

textbackground(UGHTGRAY); 

textcolor(BLACK); 

clrscr(); 

return; 

} 

void restorescrn(int flag) 

{cprintfCVta"); 

clreol(); 

if(flag) cprintf("User break. Press key to continue."); 

else cprintf(HFinished. Press key to continue. "); 

getchO; 

clrscrO; 

window( 1,1,80,25); 

textbackground(BLUE); 

textoolor(YELLOW); 

return; 

} 

double nzero(double ett,double trial) 

{double alpha,el,e2,e3,beta,sum,p,p2,a,b,pow,term,part,bgr, 



int flag; 

long int tim,lwrlirn,n; 

flag = 0; 

if(temp==0.0) beta = 1.0e200; 

else beta = 1.0/temp; 

alpha = 2.0*pi/ett; 

if(Og) bgr = c; 

else bgr = g; 

hvrlim = 3.0*ett*sqrt(temp)/pi; 

do 

{el = 2.0*g*tiial/ell; 

e2 = 3.0*el; 

e3 = el+4.0*c*trial/ell; 

lim = sqrt(1500.0*bgr*trial*eil)/pi; 

if(lim<lwrlim) lim = lwrlim; 

sum = 0.0; 

for(n=lini^i>0;n-) 

{p = alpha*n; 

p2 = p*p; 

a = sqrt(p2+e2); 

b = sqrt(p2+el); 

part = beta*b; 

pow = part*a; 

if(pow>36.0) term = 0.5*(a/b+b/a); 

else term = (0.5+1.0/(exp(pow)-1.0))*(a/b+b/a); 

a = sqrt(p2+e3); 

pow = part*a; 

if(pow>36.0) term += 0.5*(a/b+b/a)-2.0; 

else term += (0.5+1.0/(exp(pow)-1.0))*(a/b+b/a)-2.0; 

sum += term; 



} 

if((fabs((bign-8um)/trial-1.0))<1.0e-5)flag= 1; 

trial = bign-sum; 

} 
whfle((!flag)&&(trial>0.0)); 

if(trial<0.0) error_no[3] = 0; 

return (trial); 

} 

double hgrdno(double ett,double num) 

{double alpha,el,e2,e3,e4,bgr,sum,sum2,p,p2,a; 

long int lim,n; 

alpha = 2.0*pi/ell; 

el = c*num/ell+3.0*g*nuni/en; /* 2e+6e' */ 

e2 = 2.0*g*num/ell; /* 4e' */ 

e3 = 4.0*c*num/ell+e2; /* 8e+4e' */ 

e4 = 3.0*e2; /* 12e' */ 

if(Og) bgr = c; 

else bgr = 3; 

lim = sqrt(1500.0*bgr*num*ell)/pi; 

sum = 0.0; 

sum2 = 0.0; 

for(n=lim;n>0m-) 

{p = alpha*n; 

p2 = P*p; 

a = sqrt(p2+e2); 

sum += 0.5*a*(sqrt(p2+e3)+sqrt(p2+e4))-p2-el; 

sum2 -= 1.0/p2; 

> 



sum2 /= ell*ell; 

sum2 += 1.0/24.0; 

sum -= (g*g+c*c)*num*num*sum2; 

a = num*num*g/ett+2.0*sum; 

return (a); 

} 

double pressureno(double ell, double num) 

{double alpha,el,e2,e3,cl,c2,c3,beta,betal; 

double bgr,suml,sum2,p,p2,dl,d2,d3,fl,f2,f3,f4,f5,f6; 

long int lim,n; 

alpha = 2.0*pi/ell; 

el = 2.0*g*num/ell; /* 4e' */ 

e2 = 3.0*el; /* 12e' */ 

e3 = 4.0*c*num/ett+el; /* 8e+4e' */ 

cl = el/4.0; /* e' */ 

c2 = 3.0*cl; /* 3e' */ 

c3 = c*num/ell+cl; /*2e+e' */ 

if(temp==0.0) beta = 1.0e200; 

eke beta = 1.0/temp; 

if(og) bgr = c; 

else bgr = g; 

hm = sqrt(1500.0*bgr*num*ell)/pi; 

suml = 0.0; 

sum2 = 0.0; 

for(n=lim;n>0;n--) 

{p = alpha*n; 

p2 = p*p; 



dl = sqrt(p2-t-el); 

d2 = sqrt(p2+e2); 

d3 = sqrt(p2+e3); 

fl = dl/d2; 

f2 = 1.0/fl; 

f3 = dl/d3; 

f4 = 1.0/G; 

suml += p2*(4.0-fl-f2-f3-f4); 

f5 = dl*d2; /* w */ 

f6 = dl*d3; /* mu */ 

betal = beta*f5; 

ifihetal<36.0) sum2 += (f5-cl*f2-c2*fl)/(exp(betal)-1.0); 

betal = beta*f6; 

if(betal<36.0) sum2 += (f6-ci*f4-c3*f3)/(exp(betal)-1.0); 

} 

betal = (hgidno(elLnum)-0.5*suml+4.0*sum2)/eil; 

return (betal); 

double energyno(double ett,double num) 

{double alpha,el,e2,e3,sum,p,p2,cl,c2,c3; 

double omega,mu,pow; 

long int hm,n; 

if(temp=:=0.0) return (hgrdno(elLnum)); 

alpha = 2.0*pi/ell; 

el = 2.0*g*nunvell; /* 4e' */ 

e2 = 3.0*el; /* 12e' */ 

e3 = 4.0*c*num/ell+el; /* 8e+4e' */ 

lim = (9.0*templ ell-0.5*g*n»ni)*ell; 



if(lirn<=0) return (hgrdno(elLnum)); 

lim = sqrt(lim)/pi; 

sum = 0.0; 

for(n=lim;n>0;n-) 

{p = alpha*n; 

p2 = p*p; 

cl = sqrt(p2-i-el); 

c2 = sqrt(p2-i-e2); 

c3 = sqrt(p2+e3); 

omega - cl*c2; 

mu = cl*c3; 

sum += omega/(exp(omega/temp)-1.0); 

pow = mu/temp; 

if(pow<36.0) sum += mu/(exp(pow)-1.0); 

} 

return (hgrdno(elLnum)+2.0*sum); 

} 

double entropyno(double ett,double num) 

{double alpha,el,e2,e3,sum,p,p2,cl,c2,c3; 

double pow,x; 

long int lirr?,n; 

if(temp==0.0) return (0.0); 

alpha = 2.0*pi/ell; 

el = 2.0*g*ronvell; /* 4e' */ 

e2 = 3.0*el; /* 12e' */ 

e3 = 4.0*c*num/ett+el; /* 8e+4e' */ 

hm = (9.0*1emp*ett-0.5*g*nron)*ell; 

if(hm<=0) return (0.0); 



Km = sqrt(lim)/pi; 

sum = 0.0; 

for(n=lim^i>0;n--) 

{p = alpha*n; 

p2 = p*p; 

cl = sqrt(p2+el); 

c2 = sqrt(p2+e2); 

c3 = sqrt(p2+e3); 

pow = cl*c2/temp; 

x = exp(pow); 

sum += pow/(x-1.0); 

if(pow<20.0) sum += log(x/(x-l)); 

pow = cl*c3/temp; 

if(pow<36.0) 

{x = exp(pow); 

sum += pow/(x-1.0); 

i%ow<20.0) sum += log(x/(x-1.0)); 

> 

} 

return (2.0*sum); 

} 

double nex(double tp,double mu,double ett) 

{long int lim,n; 

double alpha,sum,p,x; 

sum = 0.0; 

Km = ell/2.0/pi*sqrt(36.0<,tp+mu); 

alpha = 2.0*pi/ett; 

for(n=limm>0m--) 



{p = alpha*n; 

x = (p*p-mu)/tp; 

sum += 1.0/(exp(x)-1.0); 

} 

return 4.0*sum; 

double chem(double tp,double ell) 

{double mu,mul,murnid,frnid,dmu; 

intj,n; 

mul = -tp*log(1.0+2.0/bign); 

mu = mul; 

do 

{mu*=l. l; 

finid = 2.0/(exp(-mu/tp)-1.0)+nex(to,mu,ell)-bign; 

} 

while (fmid>0.0); 

dmu = mul-mu; 

for(j=lj<=40u++) 

{mumid = mu+(dmu *= 0.5); 

finid = 2.0/(exp(-munud/tp)-1.0)+nex(tp,mumid,ell>bign; 

if(finid<0.0) mu = mumid; 

if(fabs(finid)<1.0e-7*bign) return mu; 

} 

error_no[4] = 1; 

return mu; 

> 

double freepress(double to,double ett,double mu) 
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{double alpha,p,p2,term,sum; 

long int lim,n; 

alpha = 2.0*pi/ell; 

lim = ett/2.0/pi*sqrt(40.0*tp+mu); 

sum = 0.0; 

for (n=lim;n>0;n--) 

{p = alpha*n; 

p2 = p*p; 

term = p2/(exp((p2-mu)/tp)-1.0); 

sum += term; 

} 

return 8.0/eU*sum; 

} 

double freeentropy(double tp.double elLdouble mu) 

{long int lim,n; 

double alpha,sum,p,x,y,term; 

alpha = 2.0*pi/ell; 

lim = ell/2.0/pi*sqrt(40.0*tp-»-mu); 

sum = 0.0; 

foi{n=lim;n>0;n--) 

{p = alpha11 ;̂ 

x = (p*p-mu)/tp; 

y = exp(x); 

term = x/(y-1.0)+log(y/(y-1.0)); 

sum += term; 

} 

sum *= 4.0; 



if(mu!=0.0) 

{x = mu/tp; 

y = exp(x); 

sum -= 2.0*0og(l-y)+x*y/(l-y)); 

} 

return sum; 

} 

double freeenergy(double tp,double ett,double mu) 

{long int lim,n; 

double alpha,sum,p,x; 

alpha = 2.0*pi/ell; 

lim = efl/2.0/pi*sqrt(40.0*tp+mu); 

sum = 0.0; 

for(n=lim;n>0;n--) 

{p = alpha*n; 

x = p*p-mu; 

sum += x/(exp(x/tp)-1.0); 

} 

return (4.0*sum); 

} 

double freegibbs(double tp,double ett, double mu) 

{double alpha,p,pi,x,y,suml,sum2; 

long int lim,n; 

alpha = 2.0*pi/ell; 

lim = ett/2.0/pi*sqrt(36.0*tp+mu); 



suml = 0.0; 

sum2 = 0.0; 

for(n=lim;n>0;n--) 

{p = alpha*n; 

p2 = P*P; 

x = exp((p2-mu)/tp); 

suml += log(x/(x-l)); 

sum2 += p2/(x-1.0); 

} 

suml *= 4.0*tp; 

sum2 *= 8.0; 

sum2 -= suml; 

iffoiu != 0.0) 

{x = mu/tp; 

y = exp(x); 

sum2 += 2.0*(tp*log(l-y)+mu*y/(l-y)); 

} 

return sum2; 

} 

Fifth part of program 

This is the section of the program diat solves the coupled mtegral equations taken from 

lieb and Liniger26, namely equations 42,43,and 44. The metiiod is taken from Press, 

Teukolsky, Vetterling and Flanneiy15 with modifications made to suit the requirements 

here. 

^include <math.h> 

#inchide <attoc.h> 



#include <stdttb.h> 

#inctude <conio.h> 

MefineTTNYl.Oe-20 

#defineEPS3.0e-U 

extern double c,g,bign,pi,pi2,temp,rt2; 

void fatal(int n) 

{switch (n) 

{case T: 

case 7': 

case '3': cprintf("Could not attocate memory.\r\nn); 

break; 

case '4': cprmtf("Singular matrix in ludcmp.\r\n"); 

break; 

case '5': cprintf("Error in polint.\r\n"); 

break; 

case '6': cprintf("Too many steps in qromb.\r\n"); 

break; 

} 

cprintf("Press key to terminate. "); 

getch(); 

exit(EXIT_FAILURE); 

} 

double far *vector(int n) 

{double far *ptr, 

if(NULL=-(ptr=(double far *)farcalloc(n+l,sizeof(double)))) fatal(3); 



return ptr; 

r 

double * far *matrix(int m,int n) 

{double * far *ptr, 

int i; 

/* Assumes m by n matrix witii first element (1,1)*/ 

if(NULL==(ptr=(double * far *)cattoc(m+l,sizeof(double * far*)))) fatal(3); 

if(NULL==(ptr[0]=(double lar *)farmattoc(m*n*sizeof(double)))) fatal(3); 

ptr[l] = ptr[OH; 

for(i=2;i<=m;i++) ptr[i] = ptr[i-l]+n; 

return ptr, 
> 
t 

void freematrix(double * far *ptr) 

{farfree(ptr[0]); 

free(ptr); 

> 

int far *ivector(int n) 

{int far *ptr, 

if(NULL==(ptr=(int far *)farcanoc(n+l,sizeof(int)))) fatal(3); 

return ptr, 

} 

void ludcmp(double far **a,int n,int *indx) 



{int i,imaxj,k; 

double big,clum,sum,temp; 

double far *w, 

w = vector(n); 

for(i=l;i<=n;i+-i-) 

{big = 0.0; 

for(j=ly<=rg++) if((temp=fabs(a[i][j]))>big) big = temp; 

if(big==0.0)fatal(4); 

w[i] - 1.0/big; 

} 

forO=ly<=nu++) 

{for(i=l;i<j;if+) 

{sum = a[i]fj]; 

for(k=l;k<r,k++) sum -= a[i][k]*a[k]fj]; 

a[i][j]= s«m; 

} 

big = 0.0; 

for(i=j;i<=n;i++) 

{sum = a[i]fj]; 

for(k=l ;k<j,k-i-»-) sum -= a[i][k]*a[k][jl; 

a[i][j] = sum; 

if((dum=w(i]*fabs(sum)) >= big) 

{big = dum; 

imax = i; 

} 

} 

if(j t=imax) 

{for(k=l;k<=n;k++) 

{dum = a[imax][k]; 

a[imax]rk] =a[j][k]; 



aUflk] = dum; 

} 
w[imax] = wfj]; 

} 

indx{j] = imax; 

if(a01Dl== 0.0) a[jjp] = TINY; 

if i j^n) 

{dum=1.0/a[jttj]; 

for(i=j+lU<=n;i++) a[i][j] *= dum; 

} 

} 

farfree(w); 

return; 

void lubksb(double far **a,int n,int *indx,douole b[j) 

{int i,n=0,ipj; 

double sum; 

for(i=l;i<=n;k+) 

{ip = indx[i]; 

sum = bfipj; 

b[ipl = b[ij; 

if (ii) for 0=«U<=Ma++) sum -= a[i]fj]*b[j]; 

else if(sum) ii = i; 

bfll = sum; 

> 

fiMti=np>=l^--) 

(sum = bfi]; 

for(i=i+ly<=nj++) sum -= a[i]B)*b[j]; 



b[i] = sum/a[i][i]; 

} 

} 

void gauleg(double xl,double x2, double x[],double w[],int n) 

{int mj,i; 

double zl,z,xm,xLpp,p3,p2,pl; 

m = (n+l)/2; 

xm = 0.5*(x2+xl); 

xl = 0.5*(x2-xl); 

for(i=l ̂ <=n^i++) 

{z = cos(pi*(i-0.25)/(n+0.5)); 

do 

{pl = 10; 

p2 = 0.0; 

fortj=lJ<=nu++) 

{P3 = p2; 

p2 = pl; 

pl =((2.0*j-1.0)*z*p2-(j-1.0)*p3)/j; 

} 

pp = n*(z*pl-p2)/(z*z-1.0); 

zl = z; 

z =zl-pl/pp; 

} 

wbile(fabs(z-zl)>EPS); 

x[i] = xm-xl*z; 

x[n+l-i] = xm+xl*z; 

w[i] = 2.0*xl/((1.0-z*z)*pp*pp); 

w[n+l-i] = w[i]; 



} 

} 

int fred2(int redouble a,double b, double t[],double f[],double wQ, 

double (*gXdouble),double (*akXdouble,double)) 

{int ij,far *indx; 

double d,* far *omk; 

indx = ivector(n); 

omk = matrix(n,n); 

gauleg(a,b,t,w,n); 

for(i=l;i<=n;i++) 

{forO=la<=na++) omk[i]|j] = (doubleXi = JH*akXtp],tD])*wfj]; 

m = <WfiDs 
} 

ludcmp(omk,n,indx); 

hibksb(omk,n,indx,f); 

farfree(indx); 

freematrix(omk); 

return 0; 

} 

double fredin(double x,int n,double t[],double f[],double w[], 

double (*gXdouble),double (*akXdouble,double)) 

{inti; 

double sum = 0.0; 

for(i=l;i<=n-,i++) sum += (*akXx,t[i])*w[i]*f[i]; 

return (*gXx)+sum; 



} 

void po!int(double xa[],double ya[],int n, double x,double *y,double *dy) 

{inti,m,ns= 1; 

double den, di£dift,tio,hp,w; 

double far *c,far *d; 

dif=fat **a[l]); 

c = vector(n); 

d = vector(n); 

for(i=l;i<=n;i++) 

{if((dift=fabs(x-xa[i]))<dif) 

{ns = i; 

dif=dift; 

} 

c[ij = ya[i]; 

dW=ya[i]; 

> 

*y = ya[ns—]; 

for(m= 1 ;m<n;m-H-) 

{for(i=l;i<=n-m;i-i--i-) 

{ho = xa[i]-x; 

hp = xa[i+m]-x; 

w = c[i+l]-d[i]; 

if((den=ho-hp)==0.0) fatal(5); 

den = w/den; 

d[i] = hp*den; 

c[i] = ho*den; 

} 

*y += (*dy=(2*ns<(n-m) ? c[ns+l]: d[ns-])); 



} 

farfree(d); 

farfree(c); 

> 

double trapzd(double (*func)(double),double a, double b, int n) 

{double x,tnm,sum,del; 

static double s; 

long int itj; 

if(n==l) return (s = 0.5*(b-a)*(((*func)(a))+((*func)(b)))); 

else 

{for(it=l j=lj<n-la++) it « = 1; 

tnm = it; 

del = (b-a)/tnm; 

x = a+0.5*del; 

for(sum=O.OJ=ly<=itij++,x += del) sum += (*funcXx); 

s = 0.5*(s+(b-a)*sum/tnm); 

returns; 

> 

} 

double qromb(double (*funcXdouble),double a, double b) 

{double ss,dss; 

double s[22],h[22]; 

intj; 

h[l] = 1.0; 

for(j=ly<=20ii++) 



{sfj] = trapzd(func,a,bj); 

if(j>5) 

{polint(&h|j-5],&s|j-5], 5,0.0,&ss,&dss); 

if(fabs(dss)<1.0e-6*fabs(ss)) return ss; 

} 

sD+1] = sD]; 

h[j+l] = 0.25*h[j]; 

} 

fatal(6); 

return 0.0; 

} 

double lam; 

double far *tt,far *ff,far *ww; 

double (*ggXdouble),(*akak)(double,double); 

intnn; 

double kemel(double trouble s) 

{double x,y; 

x = s-t; 

y = lam/pi/(lam*lam+x*x); 

return y; 

J 

double gt(double t) 

{return 0.5/pi; 

} 



double liebg(double x) 

{return fredin(x,nn,tt,ff,ww,gg,akak);} 

double liebe(double x) 

{return x*x*liebg(x);} 

void lieb(double lamda,int redouble *gamma,double *egamma) 

{double (*glXdouble); 

double x; 

lam = lamda; 

nn = n; 

gg = gfc 

akak = kernel; 

tt = vector(n); 

ff =vector(n); 

ww = vector(n); 

fred2(n,-l .0,1.0,tt,ff,ww,gg,akak); 

gl = liebg; 

"'gamma = lamda/qromb(gl,-l.0,1.0); 

gl = liebe; 

x = *gamma/lamda; 

*egamma = x*x*x*qromb(gl,-l.0,1.0); 

farfree(ww); 

farfree(ff); 

farfree(tt); 

} 
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