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ABSTRACT

A one-dimensional system consisting of ¢ "ual numbers of two types of bosons undergoing
interactions through delta function potentials is examined. All particles have the same mass
but each boson catries a “charge” that distinguishes one boson type from the other. The
interactions are such that like particles repel and unlike attract. The amount of attraction
and/or repulsion is determined by two adjustable parameters so that the amount of

repulsion is not necessarily equal to that of attraction.

Analysis of the behavior of itie system is determined by using the Bogoliubov
approximation method to reduce the original Hamiitonian to an approximate form that is
solvable. Although the approximation method does restrict the parameter space that can be
analyzed, it turns out this limitation fortuitously still allows the determination of some
inieresting thermodynamic properties of the sysiem. Among these properties is the feature
of having a system length which exhibits thermodynamic stab.lity provided the temperature
is below some finite temperature. This stable length can be quite simply related to the
number of particles in the system but this simple relationship is quitc diiferent for periodic

boundary conditions as compared to Dirichlet boundary conditions.



LIST OF SYMBOLS

Below is given a list of symbols used. If the symbol can be defined easily with a few words
than those words are given. Otherwise the equation number in which the symbol first
appears is given. The meaning of the symbol is usually defined in the text immediately;
before or after the ~quation. Most of the symbols used in Chapter 1 are not included in this
list since they are not used in ocher than the introductory material where work of other

authors, and thus their symbols, is called upon frequently. The symbols are arranged in

order of their first appearance.

H a Hamiltonian

G g e (1)

N number of particles in a particular system

/] mumentum

= grand canonical partition function

a', a creation and annihilation operators for a type of particle

b b creation and annihilation operators for 2 type of particle

B inverse of temperature (Units such that Boltzmann constant = 1)
temperature

& single particle kinetic energy

y7, chemical potential

I Riemann zeta function



N,

N

length

number of particles in the Bose-Einstein condensate
number of particles not in Bose-Einstzin conden....te
pressure

energy of a system of pz-ticles

entropy

(41)

density of particles, N/L

slp

(41) and (44)

(62)

(63)

(63)

QY

(72)

(74)

)

(78)

(82)

a particular length of a systein, its stable length or minimum length
Hamiltorian when g = 0



Zn

Herag;
G(x-y)
Gy(x-y)
8aa(x - )
8o(%-y)
8ap(x - )
€,5e,

10

P

J(cpB, g/c)

F

(102)

ground state caergy when g = 0

single particle density function, type a particle, (107)
single particle density function, type b particle

pair correlation function, two type a particles, (110)
pair correlation function, two type b particles

pair correlation function, type a and type & particle, (112)
(113)

(113)

(113)

specific heat

energy of g = 0 system

pressurs of g = 0 system

entropy of g = 0 system

specific heat of g = 0 system

number of particles not in condensate in g = 0 system

(137

Helmbholtz potential
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. INTRODUCTION

The Primary Focus

The priinary focus of what is to follow will be a one-dimensional asserablage of spinless
bosons. All the particles present in the system have identical masses but there are two types
of particies. The particles of a given type are jientical in all respects. Each toson cafrics
what will be called a “charge” for lack of a better word and it is this “charge” that
distinguishes one type of boson from the other. As with electrical charge the “charge”
causes an interaction between likes that is different from the interaction between unlikes. In
contrast with electrical charge that has an infinite range over which to interact, the “charge”
on these bosons has a range of interaction that is at the other extreme of distance. Namely,
if these bosons were considered as classical macroscopic particles, they would only interact
with each other on contact. Unlike clussical particles, these bosons may penetrate or pass
through each other. An additional difference between this interaction and the Coulomb one
is that the repulsion between like need not be of the same magnitude as the attraction

between unlike.

Picture this system of bosons -3 a string of particles laid out along the only dimension
available in its one-dimensional world. Calling this directicn the x-axis, at some point in
time each particle can be viewed as occupying some position x,. In the most general

approach to describing this system’s properties there would be nc reason to restrict the



2
range of x; along the x-axis but it will be required by the approximation method to be used

that the system be confined to some finite size. The Hamiltonian that will be used to fit the

description of the system of bosons described above is

N 2 N
H(c,g,N):—Z—a—-—z-+2Z(g+ce,eJ)$(x,—xj) (1)

f=1 a ] 1€)=1

[ +liflsisy—
Whme,: N 2 .
-1 if —5‘+1SiSN

The units have been chosen 8o as to have /i=1 and, where m is the mass of each boson,
2m = 1. The form of the delta function not only indicates the point ke nature of the
interactions but also that all interactions are between pairs only. The second summation
symbol is a shortened form to convey that the sum is to include all possible pairs. Here the
system is assumed to have equal numbers of the two types of bosons (1 to N/2 for one
group and N/2 + 1 to N for the other). Thus the e, determine that the strength of the
contact potential is g + ¢ between hke particles and g — ¢ between unlike particles. In the
new work that is to be presented here the values of the parameters g and c are restricted so
that there is repulsion between like particles and attraction between unlikes, that is

O0<g<eo.

A) Why only one-dimension

The first point about this system of bosons to be considered is its restriction to only one-

dimension. As the sensible world about oneself is apparently three-dimensional, then the


file:///-lif
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advantage in analyzing a one-dimensional system should be addressed. The interest in one-
dimensional systems has been present for a long time. If one were to go back in time more
than twenty-five or thirty years, then the rationale for studying such a system would have a
difierent emphasis than now. However, the past twenty-five years have shown that there
are systems that have fewer than three-dimensions. Various surfaces and layers have
shown themselves to be two-dimensional in nature and the study of their properties has
produced a large amount of interest. An effective one-dimensional system can be realized
by restricting the width of a tvwo-dimensional system to small values. An easily visualized
example of this process would be the making of a one-dimensional gate in a
semiconducting material by the appropriate deposition of various layers. It may also be that
the physical properties of a two-dimensional system have a strongly directional nature
which would make it effectively one-dimensional. For example, a conducting polymer
might have a very low resistivity in one direction compared to another. As a final example,
some materials such as Bechgaard salts have shown themselves to possess quasi one-

dimensional properties.

Another comment to be made conceming the merit of one-dimensional systems is the
argument that one never can predict what useful consequences might follow. Consider the
Ising model. It started out in 1925 as a one-dimensional model of a ferromagnet with
seemingly only theoretical application but with the passage of time has certainly grown in a
major way in its applications to research. The Hamiltonian in (1) may not be destined for

the same level of interest and usefulness as the Ising model but, as has happened before,



one never knows at the beginning of research how many new areas will open up. In
support of this idea it is interesting to point out that although one~-dimensional systems with
contact potentials 1ave been studied for many years, the interest in (1) has arisen recently
from work in two-dimensional systems. Superficially these systems would scem to have no
connection with a one-dimensional system of bosons. A more in depth look will now be

taken to show how the connection can be made.

B) The Source of the Recent Interest in This Hamiltonian

The illusirative example of the recent interest in Hamilionians derived from (1) finds its
source in the study of disordered, or random, systems. To help in the explanation of how
random system studies lead to one-dimensional systems of bosons, a digression will now be
taken in order to give an overview of some of the results in this field. For the purposes of
illustration the work of M. Kardar' will be used. Although the example chosen will use
terms applied to the boundary between two domains in a two-dimensional random-bond
Ising model, it could just as well be used on a model system for a polymer on a disordered
substrate’. Indeed the mathematical development of coherent wave propagation through
randomly disordered media® turns out to be very similar as well. Although the
aforementioned models can be applicd to other than two-dimensional systems, it is only the
two-dimensional form that will be considered here. Also, as the intent of this digression is
to show that there is a field of current interest where knowledge of the solutions of the
Hamiltonian (1) would be useful, the full mathematical development will not be reproduced



here. Rather, the outline will hopefully illustrate by highlighting in a step to step fashion
why and how the transition from such two-dimensional models to a one-dimension boson

system can occur.

The basic approach used in these models is to follow a path through the system under
study. The path may represent the boundary between domains in a magnetic material or
along some polymer on a random substrate, for example. Since the system has randomness
built into it, the direction of the path is influenced by the randomness within the material.
For the domains and polymer models some form of impurity is added at random sites
resulting in randomness in the strength of the bonds present. The path is not that of a
random walk but rather a self-avoiding random walk. The self-avoiding random walk
prevents self intersections in the path which is useful in the domain wall case, for example,
if you want to limit consideration to the simpler interface between only two domains rather
than three or more. Since the length of a true self-avoiding random walk is unpredictable, a
weighted or preferred direction is assigned to the models to allow for paths of whatever
length may be required. In the parlance of the ficld such paths are called “directed paths”

or “directed polymers”.

To be more specific, picture a two-dimensional square lattice as in Figure 1. Starting at
point (0,0) the path goes one step in the preferred direction which in the figure is to the
right. The step need not go to the point (1,0) but could also take a transverse step to one of

this point’s neighbors, that is either to (1,1) or (1,-1). Continuing this process would mean



Preferred direction —___>

Figure 1 - An example of a directed path

that after » steps the end of the
path is at one of 21 + 1 possible
positions. (For the case of a
polymer one could produce such
a shape as the directed path by
applying sufficient tension to the
ends of the polymer to prevent
self-crossings. The interactions of
the random bonds between the
substrate and the polymer would

produce “sideways” deflections

that would have different statistical properties from the thermally produced ones of the

pure material.) One of the things that is of interest in this field is how the amount of

deflection, from the straight line direction, of the end of the path is dependent on the

r.umber of steps taker.

Kardar sets up his random-bond Ising model so that the spin sites are on a two-

dimensional lattice in the x-¢ plane with ¢ being in the preferred direction mentioned above.

The random-bond Ising model has a Hamiltonian of the form

H:—;J,,a,a,
17)

In the common Ising model the interaction energy or sarength of bonds between

Q.
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neighboring spins is a constant J but here bonds can be chosen to have random values. The
boundary or interface between two domains runs from (0,0) and roughly follows the 7-axis
secking a path that tries to balance the demands of keeping the boundary length minimum
and passing through sites of locally low energy. If no impurities were present and the
temperature was zero the interface would go along the axis. The presence of impurities
causes the interface to be distorted even at zero temperature because of the centers of
relative attraction they create. For simplicity the bonds between ncarest neighbor spin sites
in the x-direction are assumed to be equal. Moreover these bonds are made strong enough
to make the t-direction the preferred direction in the random path selection process. The

random bonds of the model are in the /~direction and are assumed to be independent of
each other. Although random, these bonds (x,:, are selected to have a gaussian
distribution of mean [4] and standard deviation of ¢. Kardar uses the square brackets, |...]

to indicate that an averaging over a sampling of random arrangements of impurities has

been carried out.

Starting at (0,0), the beginning of the interface, Kardar generates the possible directed
paths to (x,?) where ¢ is predetermined and considered the independent variable. Each of
the paths would represent a possible interface between domains and he assigns a
probability or weight, W(x,t), to each path. The set of weights can then be used to generate
a partition function. His method of determining W(x,t) is through the use of transfer
matrices, ('), evaluated at each step along the path . He in:dicates that these transfer

matrices become, in the continuous limit in the x direction,
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(x|3(e Y =) = exp(—;(x,t')+ 2y + 7%} 3).

Here v is determined by the bonds perpendicular to the interface and is a constant

Boltzmann weighting factor. Then setting

W(x,1) = (0I3(0)(1)...3(¢ - 1)lx) O]
and going to the continuous limit in the ¢ direction he arrives at

aw 8?

e —(p(x,t)— 2y-—yax2)W (5).

If one views the ¢ variable as an “imaginary time™ then the operator in brackets determines
the time evolution of # and thus could be considered a Hamiltonian. The equation could
then be written with a time dependent Hamiltonian as in

44
5, =-HOwW (6).

By examining the asympiotic behavior of the equation Kardar is able to determine that
W(x,t) « exp{-[f]t-—g(t—':—)}. The /] is the averaged interface free energy and v, in

the function g( ). determines how the deflection of the end of the path in the x-direction
scales with the number of steps taken along the s-direction. After a large number of steps
the average magnitude cf the x position of the path end will be proportional to t'. As will
be pointed out in more detail below, there is disagreement among some authors as to the
comrect value of the scaling propertics cf some models, not this one of Kardar, when the
t — oo limit is applied. Some aspects of this scaling controversy will be considered later in



the new work to be presented.

The difficulty with impurity averaged quantities like [f] being in the exponent is that it
requires the determination of [In W] rather than [¥]. To overcome this problem Kardar

utilizes what is known as the replica method. The replica method is based on the

mathematical identity

InX =lim(X i '1) .
n=0 n

Interpreting W ” as being the product of » versions, or replicas, of # then

n

[inw]= ’g([w T- IJ (®).

The replica method or, as some authors call it, replica trick is not novel or unique to the
work of Kardar being discussed here. For example, it has also been used in spin glass

studies* ad random lattice work®,

Referring to (3) one can sec that if an interface (path) crosses the bond x(x, 1), a
contribution of a factor of exp(— ) is made to . Then in any collection of interfaces
(paths), W", the same bond would be crossed by m interfaces ().aths) with the restriction
0< m< n and would contribute a factor of exp(—mu). On av. :aging over different

selections of randomness Kardar gives the result as

[exp(—mp)] = exp{—([ ul-to)m+ Lo mm- l)} ).
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The important feature of this result is the interpretation Kardar gjves it. The m interfaces
that cross a bond, if considered two at a time, could be viewed as making up 3 m{(m - 1)
different pairs. Since this same factor appears in the last term in the exponent .1 (9), he
ascribes this occurrence to the idea that there must be a connection between pairs of
interfaces. In the context of (9) each member of one of these pairs is interacting with the
other member via an attraction of stoength 7*. In addition, as only the factor m is involved
and not n, these interfaces only interact on contact with each other. So, in this case,
application of the replica method replaces a single interface (path) problem with »-
interfaces (paths) that are regarded as interacting with each other in a pair-wise fashion but

only at the points of contact.

Where in the single interface model the transfer matrices of (4) could be used, here in the
n-interface replica model the transfer matrices must be of an n-body type. The time
dependent Hamiltonian found in (5) is now replaced by

n 2

T Y

pr
Thus by invoking the replica method Kardar is able to go from the two-dimensional
operator (or the “time” dependent Hamiltonian) found in (5) to the one~-dimensional (or
“time” independent) (10). However, in a “congervation of difficulty” fashion, the one-
dimensional Hamiltonian is an »-body one. As it turns out, this particular Hamiltonian has a

known exact solution (whose form will be given later). Having an exact solution makes
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casy the limiting process »# — 0 required by the replica method.

For our purposes here the analysis of this work of Kardar has now gone far enough. The
whole rationale for the analysis is summarized by that part of (10) enclosed in the curly

braces. A comparison of this part with (1) will show that it is of the same type of

2
Hamiltonian but with ¢ = 0 and gz—aé},. As all the factors outside the curly braces are

constants, knowing the cigenvalues of the Hamiltonian represented within the braces makes

it straightforward to find the eigenvalues of (10).

In order to introduce another Hamiltonian of the form of (1), a variation or extension of
Kardar’s model discussed above will be used. As already mentioned the model used by
Kardar belongs to a class referred to as directed paths, or directed polymers, in random
media. Following a weighted but random path through the system results in the acquisition
of random amplitudes at sites along the path. For the nexi model to be considered each
step along the directed path results in the gaining of random phases rather than amplitudes.
Some authors refer to this model as a complex directed path, or a complex directed
polymer, in a random medium where the “comgles” arises from the need for complex
numbers when dealing with phases. This model has proved useful in work on
ma_netoconductance and conduction in insulators or semiconductors when the
phenomenon of electron hopping is involved. As the name of the model suggests, it can be
applied in low dimensional situati ms with random impurity distributions. Under these

conditions the electron that will take part in conduction can be well localized at an impurity
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location but at even small finite temperatures may tunnel or hop to another location. It can
be shown® that at low temperatures the temperature dependence of the conductivity is
proportional to

1

o « exp[(—%;)m} (11)

where 7, is a constant and d is the dimension of the system. Materials that have a
conductivity of the form of (11) exhibit Mott variable range hopping conduction. The
clectron is not confined to hop to an adjacent impurity site. The average hopping distance
may exceed the average distance between impurities. It is then assumed that the conduction

could take place along a directed path.

With the above as background we will now turn to an overview of the work of Blum,
Shapir and Koltun’ and Blum and Goldschmidt®, There is 1 close parallel between their
work and the work of Kardar already described. One of their assumptions is that the
electrons are so highly localized that only directed paths need be considered in the hopping
conduction process. This feature combined with their use of Feynman path integrals rather
than transfer matrices leads to the phrase “directed Feynman paths” as a description of
their approach. Again using 7 as the distance along the directed axis and x as the distance
perpendicular to the directed axis, a wavefunction or transmission amplitude for the

electron along the path connecting (0,0) to (x,?) is given as

¥(x,t)= (::)):bxexp{—‘.: [}(%)2 +i®(x(t),t))} (12).
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Here ®(x(t),?) is the random variable giving the random phase acquired at each site. As in
(5) the “time” development can be viewed as being determined by a “time” dependent
Hamiltonian as in

é"l’

(1®(x(t),t) + ——-) (13).

Although the conductance is proportional to W™V, because they have to average over
different realizations of the disorder in the systcm, it turns out they must average over
log(¥"¥). To accomplish this averaging they turn as Kardar did to the replica method. In
this case the n “replicas” cause ¥ to contribute 7 interacting paths and ¥' to contribute a
further » paths. Each group of » paths has a repulsion between pairs as the interaction
whereas there is an attraction between any pairing involving the two groups. Here again
there appears a one-dimensional Hamiltonian as in (10) bui, if the randomness is

uncorrelated, with the form

2 a s e.e,8(x,-x,) (14).

If the Hamiiltonian in (1) has g = 0 and N = 2n then it is the same as (14). Unfortunately
this form does not have a known exact solution which makes the limiting process » -+ 0 of
the replica method problematic. As it turns out though, determir.ing the large » behavior of

the ground state energy of (14) offers a way around the difficulty.

As indicated by Blum and Goldschmidt® when ¢ is large the x positions of the ends of many

paths, when averaged over realizations of the randomness, have a distribution such that
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(x*(1)) = A1*". However, the value of v in the exponer: was cause for some disagreement.
On carrying out numerical simulations on finite twc-dimensional lattices, Medina, Kardar,
Shapir and Wang’ obtained v = 068+ 005 and proposed that for large ¢ the value should
be v=2/3. Zhang" also did numerical simulatios but arrived at v = 0.74+ 001 with a
conjectured large ¢ value of 3/4. Backing up for the moment to the directed polymer
described already, if one assumes that continuum elastic theory can be used to calculate ! ~

polymer free energy, it can be shown that the free energy difference between two polymers

2

scales as —‘-lt— . Here d is the distance between the ends of the two polymers after ¢ steps. In

addition d scales as ¢* and the tree energy difference scales as ¢”. Tying these
relationships together gives

2v-l1=o (15).
This connection between exponents can be shown to hold in the exactly solvable directed
polymer case. It is assumed to hold in the complex directed polymer case. Aiso, the ground
state energy of the Hamiltonian (14) is postulated to be of the form®

E(n)=-&nf -&4n (16)
where 7 is the number of paths in the context of the replica method or, in terms of
particles, the number of particles in a system of interacting bosons. The basis for assuming
the ground state energy to have this form arises from the known exact solution of (1) when

c=0andg<0

gz
E,(n)=-3={n"~n) (.
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The rationaie for considering the ground state energy into the nicture is based on two
things. First, Kardar used the idea that in the large » regime it is only the largest eigenvalue

of the transfer matrix that is important. The largest eigenvalue is the groundstate energy.
Second, there is a relationship o = % when 7 is lorge. This equality which was derived by

Zhang"' means that (15) can now be written as

1
2v—1=— 13).
Y P (18)

This relationship implies that knowing the large » behavior of (16) would enable the
determination of B and then v could be determined from (18). It was with this approach in
mind that led Blum, Koltun and Shapir'? to consider the ground rtate energy scaling of n

not only for the Hamiltonian of (14) but for the more general form (1).

As indicated above, the foundation for the complex directed polymer model is based on
some assumptions carried over from the directed polymer work. However, the work on the
directed polymer model is not without its criticisms. Bouchaud and Orland"™, for example,
bring up a number of points but the most directly important one for here is their criticism
of the use of the ground state energy eigenvalue. They point out that this use of the ground
state would only be valid if there was a gap in the energy spectrum of the Hamiltonian.
They feel, since the center of mass energy of the system of particles can be made arbitrarily
small, that there is no gap. However, as the stated point of this overview was not to get
heavily involved in the merits (or demerits) of this work on random media, this aside will

be closed now that it has been shown knowledge of a one-dimensional Hamiltonian of the



form of (1) is of current interest.
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il. SOME PARTICULAR SOLUTIONS

initial comments

Now that motivation for considering a one-dimensional system has been established it is the
intent in this section to review some of the work that has been done on systems whose
Hamiltonian is some variation of the form presented in the previous section. Various
interactions have been used other than the pair potential V(x, - X, ): J(x, - xj) already

mentioned. For example, B. Sutherland has solved the Hamiltonian for an N-body system

of identical bosons where V(x, -x ___g__T not only for the ground state'* but also

)= (x,-x,)
for its thermodynamics'®. F. Calogero™® has found solutions for the more complex form

V(x -x ): & . c(x, -x, )2. However, unless the interaction has some direct

Y (x"xl)z

bearing on the delta function version it will not be considered here.

What will be considered is the consequence of varying the parameters g and ¢ that
determine the strength of the delta function interactions. The goal is to determine
something about the system behavior when ¢ # 0 so the development will focus primarily
on those features of the rest of the g, c parameter space that support this thrust. If an exact
solution for the Hamiltonian were known it would not be necessary to seck such support.

At this point there i8 no exact solution known 80 an approximation technique will be used

17



18
and it is support for this approximation that is being sought. With these points in mind the
first case to be considered is the free Bose gas.

Theg=c=0case

Setting g = ¢ = 0 tuins off the interactions between particles and one is left with an ideal
Bose gas. The three-dimensional ideal Bose gas is dealt with in many texts on statistical
mechanics and so its properties have been broadly treated. Here, in contrast, the ideal Bose
gas is not only one-dimensional but also consists of two types of particles. In consequence
this gas has some properties that differ from the more familiar three-dimensional one. A
number of these differences will be brought out in some detai .1ere so that they are at hand
and can be referred to when needed. The approximation method that is to be presented
later will be applied to sysiems with interactions but where the interactions will be
considered as being relatively weak. If the interactions are weak then it seems reasonable to
expect the behavior of such systems to bear some form of resemblance to the ideal Bose
gas. As a check on the possible validity of the method it is also useful to turn off the
interactions, that is to set g = ¢ = 0, in the resulting equations to see if the equations then fit

the ideal Bose gas.

In addition to the requirement of weak interactions, the approximation method also requires
that there be a “large” number of the system particles in the p = 0 state. The primary focus
of the development of the one~dimensional Bose gas that will follow here will then be

mostly on the parameter space where there is a Bose condensate present. In the three-
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dimensional case when the Bose condensate is present the chemical potential is so amafl
that it is usually set to zero for the purposes of simplicity. Although an excellent
approximation in large three-dimensional systems, the setting of the chemical potential to
zero in finite one-dimensional systems should not be done without some circumspection as

will be brought out in the following.

When the one-dimensional system has g = ¢ = 0 the grand canonical partition function

from statistical mechanics is
E= Tr(e‘”(”"‘-”°"'*‘°°)J (19).

Here, and throughout what is to follow, the units have been adjusted so that the Boltzmann
constant has a magnitude of 1 (ks = 1). Also to be used is the symbol 8= 1/T. Although
there are no interactions between the particles, the system is still made up of two types of

bosons - here referred to as type a and type b. The Hamiltonian is

H=Yc.ala, +Y bl (20)
r=0 =0
and the number operators are
N,=Y ala, and N, = Y b!b, 1)
r=0 =0

Thke o', a,, b,!, and b, are the creation and annihilation operators for the two types of
bosons and & (or &) is the kinetic energy of the », (or n,) particles in a given state that
occupy the »* (s™) energy level. As the system particles are bosons, the occupation

numbers 7, (n;) can be any value from 0 to N, (or N, ) subject to the constraint,
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2.n =N, (Zn, = Nb).

Using these forms of the ope-ators (19) becomes

(1]

I

T{exp —ﬁZ(s - #,)ala, - ﬁZ(e ,ub)bb))

r=0

22).
'ﬂz('r ~Hy )‘r @ -ﬁZ('; “Hy )'a

From here the calculation of the grand partition function is much the same as found in
many texts on statistical mechanics where the single component free Bose gas is analyzed.
(See Huaug'’, page 186, for example.). The difference is the appearance of the extra factor

due to the presence of two types of particles. To trace through the effect of the extra factor

the calculation goes as follows:
=- Heo-r) Yo [ ,-Bo-2)\* o f - Keo-sm) Y [ ,-Bla-sm) P
G N 9

= 3(‘0"/‘.)) i(e'ﬂ('r ‘#-))"’ ves i(e'ﬂfu'ﬂb))"n e '2;(,*&‘. 'Ilo))"' Ve

=0 n,=0

(23).

/——\’—\

Z( ¢ Ale-na ) )M (Z( 'ﬂ(ﬂ‘,’l‘b))n)
(l e-p(.,—u.)) g(l_ e—ﬂ(«,—n.,))“

H

&:8 g:a iMB .%N"

Now that the grand partition function is available one can readily use it to generate the

expression
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V=Nt ﬁ(dm )) *l(@)

aﬂa ﬁ aﬂb 1A
= ;o eﬂ(c. ~Ha) Z ﬂ(l.*m) (24).
-3 2
5=0 eﬁ" -”) 1

The last step is taken because there are equal numbers of the two types of particles present.
This fact, in combination with their identical dynamic properties, means the two types of
particles must have the same chemical potential. In appearance this form is identical to that
for a two component three-dimensional free Bose gas with equal numbers of particles for
both components. For example, as in the three-dimensional case, i cannot be greater than
zero so as to avoid the non-physical negative occupation numbers for single particle kinetic
energy states. In addition the magnitude of » must decrease as the temperature decreases in
order for N to be constant. In the three-dimensional system it is well known that there can
be a large scale or macroscopic occupation number in the p = 0 state. However, when
considering the feature of this so called Bose-Einstein condensation, there is an important
difference between the one-and three-dimensiona! systems and what this difference is will
now be developed.

Using periodic boundary conditions and a one-dimensional “box” of length L, then, in

2zns
terms of momentum p, = <

£,=pi+pt (25).

Now (24) can be written as
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2 - 4
Py T e e 0 @

The first tezm on the right yields the occupation number in the p = 0 state. In order to have
the Bose-Einstein condensation, this term must yicld a substantial proportion of N when the
temperature i8 sufficiently low. This requirement also means the magnitude of the chemical

potential must be small enough so that the product - Bu is small. Then, using the

approximation ¢ ~ 1+ 8|u|, one can say

2
N as T-0 e2))
"17 B Iﬂl
or, for small 7,
2T
|~ == (28).

Now going back to (26) and writing the summation in the continuous form by making the
substitution 3’ —» L T dp we have
2z

2 L j- 4dp

————t [ —— 29).
-pp_l 2”oeﬂ(p2-”)—l ( )

N=

The first term in (29) gives the number of particles in the p = 0 state and the second term
the number of particles in excited states. This form is analogous to the three-disnensional
form. In the three-dimensional case it is usually pointed out that replacing the summation
with an integration can be justified if one goes to the thermodynamic limit. (See Scharf '®
for a discussion of this point for the three-dimensional case.) Evaluating the integral in (29)

in the M/L form necessary for going to the thermodynamic limit gives



1 r 4dp 2 J-“’ e-m’z-p)dp

2z APy mh | _ A

2 ¢ -f(F-n)sn AP -
=;L ! ﬂ)mzwe oo -4) 4
,o — (30).
_2 Budm) [ -Blm1)p?-
= ”"Z:oe j'o e dp

1 [ e ﬂ[‘(ﬂl"l)

=\/E,§o\/;z+l

As stated above the primary area of interest here is in the region of parameter space where

there is a significant occupation number in the p = 0 state. In the three-dimensional case the
chemical potential is 50 small at temperatures below the Bose condensation temperature
that the integral corresponding to the one above is computed by setting = 0 for

mathematical convenience. However, in the one-dimensional case with this value of u the

integral in (30) evaluates to and, as the Riemann zeta function ¢ diverges, the

1 1
J;B ’;( 2)
integral diverges for all temperatures except I’ = 0. For (30) to converge the magnitude of
4 must be larger than zero even in the process of going to the thermodynamic limit. The

result of (28) suggests that in the thermodynamic limit, that is

N3 wo, L-wo, %z constant , the limit value of the chemical potential is » = 0. This
limit value of u is not achievable in the allowed values of the chemical potential. This
limitation does not preclude dealing with very large systems as the condition for

convergence of the summation in (30) is only that 4 < 0. (This convergence condition can

be determined by the application of the ratio test to the infinite series in (30)). Thus, as
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(28) indicates, this restriction does not put any practical limitation on the size of N but it

certainly does provide a mathematical inconvenience.

To better see why one can set 4= 0 in the three-dimensional system and not in the one-
dimensional system, one can go back to (29) and reexamine the process of going to the
continuous limit. In a somewhat more rigorous form the equation could be written for the

thermodynamic limit as

N 2
T hm*,ﬁ‘i"@f_ A

(31).
It is the lower limit of the iniegral in (31) that is the source of the “problem”. To take a

simpler form for the purposes of illustration, consider the three-dimensional integral
. oprdVo L . . : . ldx .

hm“' — . It iz £nite but its one-dimensional analog hmf — isnot. . The one-
R04R » a—0da

dimensional system of bosons does not have the same phase space available to it as does

the three-dimensional case.

Nothing in the one-dimensional development to this point suggests the presence of a Bose-
Einstein condensation temperature so the next thing to be examined is the presence of a
condensate in the thermodynamic limit. Again the requirement for what is to follow is that
the p = 0 state must be occupied by a substantial fraction of the total particles in the

system. Going to the therrnodynamic limit is also very useful not only for enhancing the

reliability of the thermodynamic results (Fluctuations are usualy proportional to 1/vVN ,
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for example.) but it is only in this limit ¢hat a truc phase transition will show up. (The
reason for requiring the thermodynamic limit in order to see a phase transition was first put

forward by Yang and Lee".) For large N and L, with M/ constant one has, using (28),

(29) and (30)
2
N o __ e""‘ — l 2\/;.p
N_ L et L )
J;BZJE+1 A=
(32).
N /%8
® ("E) < P
m+1

As N is made larger the summation in the denominator becomes larger due to the
corresponding dzcrease in the chemical potential. So the result in (32) can be made small
showing that there is no Bose condensation in the thermodynamic limit.. Obviously an
approximation method that depends on the presence of a Bose condensate cannot be

applied to “infinite” one-dimensional systems.

The nexi step of the development is then to show that there can be a Bose-Einstein
condensate present in a finite one-dimensional system of free bosons. To do this we will go
back to (26) and look at a numerical approach. Let us look at the summation in (26) and
ignore the first term for the moment. This summation gives the number of particles that are
not in the p = 0 state. Choosing the specific system values of N = 10°, L = 10, and

T = 100, the object is to now calculate numerically the value of this summation. The
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difficulty in evaluating the summation lies in not knowing the value of the chemical
potential. An casy way around this problem is to assume the chemical potential is zero.
(Setting i« to zero mauy seem counter to the argument given above that 4 could not be zero
but it is the term that has been neglected that causes the problem of non convergence. The
infinite series now under consideration does converge when uis zero.) The actual value of
M s not zero and assuming it is will have the result of making the summation give a larger
result than the correct one. When this summation is carried out the answer is 1.6x10°. Even
though this number is not correct, it does tell us that more than 99.8% of the particlcs are
in the p = 0 state for the values of the system parameters chosen. Evidently then there is
some parameter space available in which the number of particles in the p = 0 state is a
significant portion of the total number of particles. The approximation method referred to
above will be used not in analyzing the free Bose gas but rather a gas in which there are
interactions between particles. Knowing that the p = 0 state can have macroscopic
occupation in the free case lends some credence to the assumption that this state ca still
have such significant occupation levels in an interacting gas providing the interactions are

weak.

Showing that the p = 0 state has significantly large occupation number at a single poin. in
parameter space does not make a strong case for the presence of a “condensate” in general
80 now a more extensive analysis will be made. Again going back to (26) but this time
solving for N,, the number of particles in the p = 0 state, by using numerical methods one

can detenmine that a condensate exists for various sets of parameters. The computer code



27

used to do this calculation

can be for'nd in the

appendix.

The results of analyzing a

system of L = 100 and ' | o “
s & & 8

methods is given graphically | Temperature Jl

b
i

N = 10° using numerical i §

in Figure 2. The correct 5
i
fiigure 2 - Ny/N for finite 1-d free Bose gas

value of 1 has been

determined in the numerical

process and used in generating the graph. The graph shows how the relative occupation
level of the p = 0 state is related to the temperature. Unlike the three-dimensional case,
there is no Bose-Einstein condensation temperature to mark a relatively sudden trensition to
large scale occupation of the p = 0 state. In the one-dimensional case the occupation
number decreases smoothly with temperature. This effect is again the result of the greater
density of energy states in three-dimensions compared to the situation in one-dimension.
Mills® has shown that this same form of occupancy in the p = 0 state can be present in a
three-dimensional system. He found that if the “box” containing the system had two of its
dimensions reduced, keeping the third fixed, that a point would be reached where the
ground-state occupancy would behave like the one-dimensional system described above.
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In addition to its dependence on
temperature, Ny is also dependent

on the value of L chosen for the

system as in shown in Figure 3.
Two additional lengths of 70 and 85
have been added to the one of 100

already shown. The implication is
clearly that system length and

temperature are inversely related to

Temperature

the occupation number N,. These Figure 3 - Free Bose gas, length dependence

dependencies put limitations on the

approximation method but in principle all that has to be done is to check that N, is suitable
large for the parameter space being examined. However, determining N, even
approximately in the one dimens.onal system presents a difficulty not encountered in the

three-dimensional case.

In three-dimensions at temperatures below the Bose-Einstein condensation temperature,
the chemical potential for a free Bose gas is so small that it is usually assumed to be zero.
This assumption for the large systems that are usually being considered is quite legjtimate
and simplifies calculations. In the one-dimensional free Bose gas of finite size one cannot
assume that = 0 without circumspection. In the three-dimensional large system version of

(29) if the requirement is to determine the value of N, at temperatures below the
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condensation temperature then one uses the idea that the number of particles not in the
ground state is adequately determined by the integral. One then ignores the first term on
the right and evaluates the integral after setting 1 = 0 to get the number of excited particles
E,. Then the required result is casily arrived at be using N, = N - E,. As already pointed
out, this process does not work for the one-dimensional case as the integral in question

diverges under these conditions.

As an illustration of the type of difficulty that can be encountered a few specific
numerically derived examples will now be given. Instea! of using integration to find the
number of excited particles, the summation is carried out dircctly as the systems to be dealt
with are to be finite. When setting 1= 0, as pointed out above, it is the number of excited
particles that must be determined as the term involving N, diverges. Then N, is found from

N,=N-E,.

Figure 4 shows the results for the summation when carried out on a system of L = 100
both with = 0 and the system u as determined numerically. Note that N, can become
negative which is a feature of the fact that each term in the £, summation is larger than the
correct value when setting i = 0. As can be seen in the graph this error is not very large for
some L but as uincreases with L there is a point reached where the error can no longer be
ignored. A three-dimensional system does not suffer from this problem because there is a

finite “condensation temperature” which means the graph of N/N vs T does not approach
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the temperature axis asymptotically

with increasing 7.

Figure 5 shows the results for a
system with the same number of
particles but whose length has been
reduced to 50. Figure 6 shows the
effect of changing the number of
particles in the system. These
Figures iflustrate that the 4= 0
calculation produces an accurate
result as long as the ground state
occupation level is 75% or more of
the total system particles. Even at
this point the error in the estimate is

Iess than 2%.

The point that is to be brought
forward here is, as already
mentioned, the approximation
method to be used later in analyzing

an interacting Bose gas relies for its
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Figure 6 - System with L = 100, N = 10*
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validity on the presence of a large
number of particles in the p = 0
state. For the calculations that are
done a check is made to ascertain
that indeed the number of particles
in the condensate is large.
However, the check on condensate
occupation is carried out under the
assumption that setting 4 =01is a

reasonable approximation. One can

reasonably expect a large N, to be present if the interactions are weak and the calculations

are carried out in the parameter space where the free Bose gas has a large N,.

A more flexible way to view the reliability can be taken from the looking at the Figures

presented above from a somewhat different perspective. As pointed out above in the free

Bose system, any calculation with 4= 0 that yields an N, that is larger than 75% of the

total particles present is a quite accurate measure of the number of particies in the

condensate. In the interacting system, since the interactions are assumed to be weak, it will

be assumed that this same “rule of thumb” can be applicd, namely, if the estimate produces

an N, of 90% or more than it is reasonably accurate reflection of the actual number. The

90% level is arbitrary but is chosen to be well on the conservative side.
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Other system properties that will receive attention when the interactions are present are the
energy, pressure, and entropy. Each of these can be calculated from the partition function
and for ease of reference the logarithm of the partition function in terms of momentum is

given here from (23) and (25) as

InE= —Z{In(l o)+ 23 tn{1- A7 "‘))} (33).
g=1

The expression for pressure can now be written as

1 5(lnE)) 8 P
P=—| | O3 _Fe 34).
ﬁ[ AL - L% eﬂ(rf-ﬂ)_l (34)

If this result is written in the continuous limit form

4 Pzdp 1 = eﬁp(nﬂ)
P=— ; = 5 35
”I:eﬂ{p oy \[’;n=°(ﬂ\n+l))7

it can be seen that convergence occurs for all 4 < 0. In the thermodynamic limit when uis

effectively zero and zero can be inserted in (35) which then becomes
3 T%
N (36)

This form could be: viewed as the one-dimensional analogue of the three-dimensional
equation of state for an ideal Bose gas below the Bose-Einstein condensation temperature.
(See Huang’, page 290 for the three-dimensional form and background.) Under these
conditions pressure is a function of temperature only but in the three-dimensional system

this type of temperature dependence occurs below the finite Bose-Einstein condensation
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temperature. Here, unlike the three-dimensional case, however, there is no finite
condensation temperature and (36) would remain a valid approximation as long as the

temperature is kept low enough to keep the chemical potential small..

Figure 7 illustrates the

isothermal behavior for a %

system of N= 10°at a T

temperature of 10. As the 30 1

length of the system is i 20 +

increased the pressure 10 +

asymptotically approaches o L
the value given by (36). 0 10 20 30 40 50
However, in spite of what Length

the graph indicates, the

system is not behaving in the |Figure 7 - Pvs L for T= 10, N= 10*

fashion indicated. The
minimum shown in the graph occurs at L = 1. According to (26) the number of particles in
the first excited state, which would be the most populous of the excited states, is only about
0.08. Clearly what is happening is continuous equations are being applicd to a situation
where the discreteness of the system is not well approximated by continuous equations.
Effectively only one or two particles are not in the p = 0 state. As the length of the system

increases, more particles enter excited states making the use of statistical methods
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employing continuous values of density more reasonable. Under conditions of fairly
numerous e¢xcited particles, the steep positive slope of the isotherm is not present. The
slight positive slope present for larger values of L is still a remnant of the finiteness of the
system. Licb™ states that one can expect this sort of result in a finite system and the more
physicaily acceptable slopes will be present in infinite systems. The caution to be taken
from this is not to attempt to treat systems with very small numbers of excited particles in

this fashion.

The energy, as determined from the partition function, is

5’(1“'5-)) > pi-p
E=- =4y = T 3.
( op L ,,Z,: eﬂ(”""‘) -1 ©7
In similar fashion, the entropy is
g2 __(ti(TlnE))
ar L
2 (38).
. g\ 2Pu e 2 Aleis) ﬂ(P: - .”)
21n(l e ) 1—ef + 4§ {h{eﬁ(p.’ -) _1 + eﬂ(h’-u) 1

Neither energy or pressure depend directly on the number of particles in the p = 0 state
and, when the chemical potential is small, calcuiating either one by setting 1 = 0 produces
almost the same result as when using the correct value of 4. Entropy, like the calculation of
N done above, does have connections with the p = 0 state and setting & = 0 causcs

problems with the first term in (38). However, for finite systems with small 4 the
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contribution to the entropy from
3000
J the first two terms of (38) is
2000 1 ~ 4-0 relatively smail. So the simple
2 1000 + expedient ot dropping the first two
)
G 04 b4 terms and setting 4 = 0 in the
S S
L N % 8 sumznation terms will be employed.
-1000 - \_
p0 The entropy value produced by this
-2000
method is not lasgely different from
Length largely
the correct value.
Figure 8 - Gibbs energy vs L, T= 100
| To more clearly show the

difference in entropy values graphically the Gibbs free energy versus L is plotted in Figure
8 for 7" = 100. Since the Gibbs function contains a factcr 7S the entropy difference is
magnified by 100. As is obvious from the figure, the two graphs indicate a distinct
difference but compare the shapes of the two. For both Helmkoltz and Gibbs functions the
shape of the curves is similar whether one computes using the correct i or 4= 0. Thig
feature of shapes will prove useful later on when curves portraying the Helmholtz free
energy in particular will be used in an examination of the stability of the system under
consideration. For the stability considerations it is more the shape than the magnitudes that

is important.
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The g <0, c =0case
If just two particles were present in the system then the solution of the Schrédinger
equation is relatively straightforward. One converts to the center of mass coordinates and
arrives at a single particle with delta function potential Schrodinger equation. This equation
can then be solved by integration. Interestingly, for our purposes here, there tumns out to be
only one bound state. (A more complete treatment of tihe handling of the delta function

potential in the bound state scenario is given by Atkinson and Crater®.)

For three particles in a bound state (in one dimension of course) the same general theme of
attack can be used. Namely, one changes coordinates to convert the problem from a three
body one to an effective one body in two dimensions. Such a coordinate transformation is
given by Amado and Coelho™ in their work on K harmonics, for example. In contrast with
the two body case which can be solved for whatever the masses of the two bodies happen
to be, the three body story is more difficult because, in the general case, not only can the
masses differ but interactions between different paire may differ. Kiang and Niégawa®
building on the work of McGuire™® establish conditions under which some exact solutions
can be found. However, if the particles all have equal mass and the delta interactions are all
equal, the symmetries introduced make the problem solvable not only for three particles but
for W particles. It was the work of McGuire cited above that fully exploited these

symmetries and in so doing came up with an exact solution to the N body problem.

Some of the results of McGuire’s wiork that apply directly to an N body system of bosons
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will now be considered for their consequences on what is to follow. There is only one
bound state. The energy of this bound state is

E=-4g*N(N*-1) (39).

As a result of this NV dependence the system cannot be considered in the thermodynamic
limit, that is, £/N docs not have a finite size in this limit. As a consequence of there being
only one bound state, McGuire points out that regardless of temperaturs the system has to
collapse to this state and so it would not make sense to apply statistical mechanics to this
system. McGuire also pointed out that no two particles in the bound state can have zero
relative velocity. Therefore, the approximation scheme to be used later cannot be applied to

this system as it depends on there being a large number of particles in the p = 0 state.

The g >0, ¢ = 0 case

It was Licb and Liniger” that first solved this problem. Since they give explicit equations
for determining the ground state energy in their work it is this aspect that will be considered
briefly here. Material for the thermodynamics of the system will be drawn from another
source later. The Licb and Liniger approach was to assume that since the particles in the
system only interact on “contact” the phase space available to the system could be divided
into segments according to the ordering of the particles. Within each segment the particles
are “free” and this suggests using planes waves in the makeup of the wavefunction of the
system. Employing what has become known as the Bethe ansatz they set their N particle

wave function to be
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Han) = SAPIP exp(ig k,x,) 40)

where the summation over permutations is over all possible permutations of the “momenta”
k& and the a(P) are coefficients dependent on the permutation P. Then they matched ¥ at
the boundary between segments with the appropriate boundary conditions - continuity for
¥ and the jump in the derivative of ¥ that is dependent on the strength of the delta
interaction. (It should be pointed out here that Lieb and Liniger were consideiing the
gystem to consist of NV identical particles and not equal numbers of two types.) By matching
all the boundary conditions and meeting all the symmetry conditions on permutations of the
identical particles they are able to come up with all the cigenfunctions of the system. The £,
tum out to be real with no two equal but the set {k;} contains both %, and -k, The largest k;
then provides the bounds, -K and X, for the set. The spacing of the £, is not equal but is

partly dependent on the value of g, the strength of the delta interactions.

In determining the ground state energy they start from general dimensional considerations
to show that this energy must have the functional form

E, = Np'e(y) with p=N/L and y=g/p (41).
They then choose the values of the internal quantum numbers they have determined in
such a way as to minimize the &, Going to the thermodynamic limit so that they can pass to
continuous forms of their discrete equations they derive three coupled integral equations
that enable the numerical determination of the ground state energy. These equations are as
follows:
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I x)dc
1424 DU ___, 2
+ "ﬂz+(x—y)z zh(y) (42),
y [ Hx)ds = 4 @3),
and
3
e(y)= %-,- [ Hxyea 44)

where g = KA. The solution scheme is to pick a value of A and then use (42) to compute
h(y) for a particular y. Using this scheme the integral in (43) can be gvaluated to solve for
# Next (44) can be solved for (). With this solution the ground state energy can be
computed from (41) bearing in mind, being in the thermodynamic limit, it is £,/N that

would be sought.

Lieb and Liniger also show that the above process will produce a 4(y,7) and an ¢(») that are
analytic functions of y except at the point = 0. They are unable to determine the exact
nature, or cause, of this singularity. It does seem rather strange that this point, e(0), should
cause problems because this is then the free particle system and so it must be that e(0) = 0.
Nevertheless the numerical solution for ¢(3) proceeds quite well until the value of y begins
to approach zero closely. A graph of ¢(7) versus ywill be presented later when it will be

used as a comparison with the results of the approximation method that will be introduced.

C. N. Yang and C. P. Yang” were able to extend the work of Lieb and Liniger to

determine the thermodynamics of the system of bosons. They show that the Bethe ansatz
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produces all the states of the Hamiltonian and the &; for all states are real with no two &, for
a given state being the same. For the ground state, as already pointed out above, Licb and
Liniger had shown that the &, form a nonuniform distribution between a maximum X and a
minimum -X. Excited states are characterized by having %, outside the X limits and “holes”
left behind. The Yangs are able to develep an expression for the entropy of the system in

terms of the density of holes, p, , and the density of k, , p. Using the constraints on energy

and particle density

5w LA “
and
X[ Ary (46)

respectively, they maximize the contribution of a given state to the partition function to
arrive at the integral equation

U

7).

Here uis the chemical potential and the ratio of the density of holes to the density of the %,

is embodied in

Pr _ gxpl 28
P exp[ T ] (48).

Now, by manipulating (47) and combining the result with their expression for entropy they



41

arrive at an equation giving the Helmbholtz free energy. Then using P = -—(%1—3 they
LN

are ultimately able to reach the expression for pressure

_Te _z(k)
P= o Ldkn{n ex;{ T (49).

The solution scheme to arrive at the thermodynamic properties of the boson system is to
solve (47) with a given 4 and T and then to use these results of get the pressure from (49).
Knowing the pressure as a function of z and T enables one to determine other

thermodynamic quantities from

S N
P= _d —d .
d L T+ I 7 (50).

Unfortunately the Yang results can not be used here to support the results of the
approximation method to be introduced. The difficulty in solving (47) numerically is the
stumbling block. The limits of integration are c and numerically one replaces this value
with some “large enough” number in the hope that the region .hus left out of the
integration is small. Here one can get the limit K (and -K ) for the ground state from the
work of Lieb and Liniger. Presumably one should set the limit somewhat higher for finite
temperatures. However, even using K proves to be too high. Yang and Yang show that
(47) can be solved by iteration. They “sced” their iteration proof with £(k)= -+ k* but
when this value, as suiting the system parameters that will be used, is placed in that part of

(47) containing exp(— £(k)/T) it does not take all that large a value of & to give a value
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smaller than the 10”* available in a standard computing environment. This problem could
be overcome if » was much larger but this would require a strongly interacting system of

bosons and the approximation technique would not be applicable.



lil. The Approximate Solution of the Hamlitonlan

The Bogoliubov approximation

The approximation method to be employed here was first introduced by N. Bogoliubov**
when he presented work to show how superfluity could be explained on the basis of
degeneracy in a non-perfect Bose gas. The fundamental requirement in applying this
approximation scheme is that there be a relatively large number of particles in the
condensate state of the systen. The term “condensate™ here being used in the sense of the
Bose-Einstein condensate. Since the explanation of the technique is most easily coached in
terms of particle numbers, it will be convenient at this point to convert the previously

introduced Hamiltonian

N 52 N
H{c,g,N)= -—ZE;+2 Z(g+ ce,.ej)i(x,. —-xj)
1=1 1

1€)=1

-3 % Zr+lgve) Tofn-x) (51)

to a Fock space. For this purpose a “box™ of length L will be assumed and the space will be

exp(ip,x)
JL

constructed using single particle wi.ve functions, , constrained by periodic

27xn

boundary conditions ( Py = < n=--2,-10,1,2, ) . The prescription for carrying
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this procedure out is standard and can be found in many texts such as the one by L. E.
Ballentinc® (page 359). Using a' and a as the creation and anrihilation operators for one

type of boson and similarly 5' and b for the other type of boson leads to the form

. % t gtc t 1 tpt
H= Zp’(a;ap + bpbp)+( I3 ) Z(ap.ah a,a, +b,b,b. b, )Jp.*p;;p;*p.
p=—@ p:-m
(52).

2g-0)
+ —Z'— Z a; b;z anbm Jn *p1ipr+Pa

p=-@

If the temperature is low enough there is a condensate present in the free Bose gas. It is
reasonable to assume that if interactions between the particles are introduced the
condensate would still be present providing the interactions are weak. Of course, it would
be expected that there would be fewer particles in the condensate with interactions present
than with no interactions but the number could still be much larger than the occupation
number of any other higher single particle energy state. This assumption of macroscopic
occupation of the Bose-Einstein condensate when the interactions are weak (and
temperatures low enough) forms the basis for the validity of the Bogoliubov

approximation.

On the assumption, then, that the number of particles N, in the condensate is not only large
but also much larger than the number of particles in any other single particle momentum
statc, ihe following approximations are reasonable for the numbers drawn out by the

annihilation and creation operators:
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a, —)"%9——1 & 1’-212,—0—

& N (53).
al —)J——o-+lz J-—‘l

2 2

Of course this same approximation can be applied to the annihilation and creatior

operators for the second type of boson present. In addition these approximations,

(54),

p*0
can be applied to both particle types. Effectively one substitutes the numbers of (53) for

their corresponding operators in (52) subject to the additional approximations of (54).

Carrying out the above process for terms involving four p = 0 operators gives

2

alala,a, - L NY ala, (55),
4 770
N? ;
and
N* N N
agbgaobo - —— -—-Za;ap - ——Eb;bp (57).
4 2 70 203

Terms involving three p = 0 operators are excluded by the factor 6, , ..., Which

imposes the conservation of momentum constraint on particles interactions. Picking out,



from the interaction terms, those terms involving only two p = 0 operators gives

N
Yalala,a,6,., . —Z—Z(a;a_',, +a,a._, + 4a,',ap) (58),
pr0 p=0
Yb1b1b, b, 5 > (b1, +b,b., + 4b13,) (59)
] A Py PPy pytpy;pyip, ) - PP i PP 4

and

N
1
Z,;, @B b B i n ;o(a;b_tp +ab.,+ala, +alb, +bla, +blb,)  (60).
P p

Any terms within the interaction terms that involve one or no p = 0 operators are now

dropped on the assumption that their contribution is small compared to those terms dealt

with above.

If all of the above approximations are carried out in (52) the resulting approximate

Hamiltonian can be written as
2
Hng
e'+e 0 e —e e'—e a, 61)
212e’+e) e'+e e —e e'—el al
+ Z (aP aIP bP btp d 12( ) [ [] ?
770 e -e e'—e e'+e 0 b,p
e'—e e'-e p'+2e'+e) e'+el\ b
where
N (62).
e= —

2L
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The square matrix in (61) is not symmetric but it is block symmetric. To take advantage of

this feature the following canonical opsrators are introduced:

a, +b
d - P P
P 2 (63)
and
_9% _bp

In terms of these newly introduced operators (61) can now be written as

2
H=%
L
{ 2¢’ e'—e 0 0 -p (65)
2+3¢'+e  2¢ 0 0o | 4
d. dl Ak P
+p2=o(p -p fp f“P 0 0 2e e—ée' f_,
0 0 plre’+3e 2 Nf]
or, in preparation for the next step,
gN? T)( 2e’ e'—e)(d_p)
H= d, d
L +§0(P PApt+3e'+e 2¢' \d}
(66).

2e e-e'\ /.,
+§o(f" f}p{pz+e'+3e 2e ](f,f)

b
Each of the two square matrices in (66) is of the general form (Z a) 8o the next step is

to introduce the following transformation:

(cosl.‘@ —sinha)(a b)( coshé —sinhﬁ)_(o k,) 67
—sinh® coshd \c¢ a/\-sinh@ coshd) \l, 0 '
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In order to satisfy the requirements of (67) the parameters must have the values

e [T
k, = —asinh26 + g—(coshw+ )+ g(cosh20- 1) (69),
and

l, = —asinh26+ —;—(coshw— 1)+(cosh26+1) (70).

With the above background in mind another set of cononical operators is now introduced

through Bogoliubov transformations. These new operators are defined using the

parameters 6 = 8{|p|) and ¢ = ¢(|p]) as

(d,)_(coshe —sinhe)(ﬂ,) .
dl,) \-sinhd cosho \B!, Q)
and

1, coshg —sinhg) a

(fi)=(—sinh¢ cosh¢)(a':) (72).

When 6 and ¢ are set to satisfy the requirements of (68) then (66) becomes

LR AT YTRNA () (=d 15 YORPRN bl Gy

_5%2_+Z{k B p +l)+laﬁ7 +k¢(a a,+1 +I,a’a } (73)

gIZ’+zf:{_p -2~ 2e+—(,i +o )}+22(}~pa ap+w,ﬁl,ﬁ,,)
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where
A,= Ipl\/p2 +8e (74)
and

o, =| p[,/ p* +8e’ (75).

The results of satisfying the requirements of (66) are

, 2 '
_uff_ (76)

exp26= ‘ l
P
and
p* +8e
exp2¢ = |P| an.

As a resuit of the approximations and transformations outlined above the Hamiltonian (73)
that is the final product can be seen to describe a system made up of two types of bosons
that do not interact with each other. This boson, or quasiparticle, system is like a system of
photons rather than particles in that there is no fixed number of them. Unlike the photon
system, if there are no quasiparticles present the system still has a finite energy providing ¢
and g are not both zero. Interestingly, when «onsidering the two interaction parameters g
and ¢, the energy of the one type of quaciparticle depends on g only whereas the energy of
the ciaer type of quasiparticle is dependent on ¢ only. Ind-:=d, except for the leading term,

g and ¢ play completely symmetric roles in (73).
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The ground state

Using the approach that the ground state of a system is the state of minimum energy then
for (73) that condition would be achieved by having no quasiparticles present. Thus the

ground state energy of the system is; by this Bogoliubov approach,

Hy

{ 2_2e —2e+2(/1 +@ )} (78).

p»0
To get some sense of how reasonable this result for the ground state energy is let us first

set ¢ = 0 and then take the resulting form of (78) to its continuous limit form. This process

gives

g[\r2 _J. {_p __+_(p +p’p +4§LI\_f|} (19).

Using the symbols introduced with (41) the result of (79) can be written as

4 3
H_(c=0)= Np’(y—a;yzj (80).

This is the result that Lieb and Liniger®® arrived at when they used the Bogoliubov
approximation method. For our purposes here this agreement shows that the method used
does reproduce previously known results when ¢ = 0 as one would hope it would. Lieb and
Liniger used the Bogoliubov approach because they had the exact answer to the ground

state energy and wanted to see how valid this approximation approach would be in
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Figure 9 - Comparison of Bogoliubov solution with correct one

comparison. Again referring back to (41) one can see that such a comparison can be
carried out using e(y), as computed using the coupled integral equations (42), (43), and
*44), and the factor in brackets in (80). Figure 9 shows the results of the comparison when
the calculations just described are carried out. The graphs shown in the figure are in
agreement with those given by Lieb and Liniger. From this comparison Lieb and Liniger

feit that the results of the Bogoliubov approximation were quite valid for y < 2.

Indeed Lieb and Liniger were able to show that the first term in the Bogoliubov result is
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exact and, from the good agreement shown in Figure 9 for small y, felt that the second
term was probably also exact. More weight to the correctness of the second term was given
by M. Gaudin™ who arrived at these same two terms by using another method. Having
these two leading terms allowed Blum, Koltun and Shapir'” to make an estimate of the

ground state of the system when ¢ > 0 by using the method of variation. Their trial wave
function was of the Hartree type, |a)|b), where |a) is the exact solution as found by Lieb

and Liniger if only type a bosons were present and similarly for |5). In Fock space the

Lieb-Liniger solution is
Hllla {Zp a a, +" Ea apzanamapl*h pm’.}la) (81)
p=-® p-—m
=E,|a)

where E, is as given in (41). Utilizing this result and using the Hamiltonian of (52) gives

the ground state energy, Esxs, arrived at by Blum, Koltun and Shapir

w = (bl(alH]a)b)
= (bl(alH:.|a)e) + (BalH 2| a)lb)

287 1) 5 0l bh b e ) 8.
p:-@
2g-c)(NY’
=2 A L ("2')

Here the E, of (41) is modified to reflect the fact that only half the system particles are of
each type (N — N/2) and the parameter determining the amount of repulsion is

g —» g + ¢ . In terms of these parameters one has
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_ Ac+g)L
y==——y (83)
and corresponding to the £, of (41)
N(NY
5 -5(2) 0
Using (83) and (84) E s can be written as
2
EBKS = N{(g;zc) e(},)_’_ _g_zi?i} (85)

which is in a form that will prove to be useful later. The drawback to this form is that it
must be solve numerically so Blum, Koltun and Shapir chose to use the Bogoliubov form

introduced in (80), namely

3

4 3
e(y)~y- P4 (86).

With the introduction of the Bogoliubov form the ground state energy estimate becomes

_ &V 3‘/—2_-(g+ o) % @7).

E —
s L 3z

As has been stated above, the Bogoliubov form is an approximation whose validity is good

for y< 2. Therefore, Epys should be valid for (g+¢)L <N .

Going back to (78) and writing that equation in its continuous limit form gives
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From this it can be seen that H,,, is much the same result as Eggs. Therefore it seems
reasonable to assume that the results of the approximation technique being used are valid at
least when describing the ground state. So far no restriction has been given on the range
the parameters can vary over. A systematic way of determining numerically whether a

given set of parameters can be used will be developed later.

Blum, Koltun and Shapir were interested in determining how the ground state energy

scaled with N and viewing L as a variational parameter in (87) they minimized E s with

respect to L to get
2. 2
Lo(c,gsN)‘—‘ on £ 3N (89)
2Ac+g)
and thus
2 (c+g)'N
E &N, L=L)}=-——""— .
ss(e: 8 L)=-3-3 . (90)

Since they were working with problems involving the replica approach, as described earlier,

the N dependence of the ground state energy was of keen interest. In a similar manner,

minimizing H,,, with respect to L will yield
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9”232
L(c,gsN)=———=2—=N 1)
e
with
o (e
H,(cgN,L=L,)=~ N 92).

or? g
It is easily seen from the above that both Epys and H,,4 are directly proportional to N at

L = L,. It is also clear from both (90) and (92) that the case of g = 0 is not handled by the
treatment above. Going back to (87) and (88) it is easy to see that on setting g = 0 the
minimum energy i8 reached at 2 system length of L = 0 - that is, the system would collapse.
It should also be noted that mathematically the minimum in the ground state energy given
in (92) is achievable whether g is greater or less than ¢. Physically the requirement for the

bound state is that g < ¢ and this restriction will be applied here.

Initially one might question whether the system would in fact collapse if g = 0 or whether
the collapse was only implied because both approximation methods have only two terms
present with smaller ones being dropped. Perhaps these smaller terms could prevent the
coliapse. For the H,,, case this question remains unanswered. However one can look more
closely at the Es derivation by going back to (85) and taking the derivative of that

expression with respect to L,
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OBy _Ag+c) {(g+c{f_i(_’f_)_3’1’l))_(g_c)} (93).

dL y? ay 14

The condition for an extremum here is

ae()’) - 22(7’)+ g—¢ (94).
dy 4 g+c

This equation can be solved numerically but there is enough information about the
behavior of e(7) from the Lieb-Liniger work to determine some general features of the
solution. The Bogoliubov results can be used to deal with the region ¥ < 2 and they give an
algebraic expression for e(7) that is valid for large . Indeed they claim their large y results
are good to within 1% for y as small as 10. The range of 2 < ¥ < 10 that is not covered in

the form needed here by their work was dealt with numerically.

The left hand side of (94) has a value of 1 at ¥= 0 and decreases monotonically and
asymptotically to zero as y approaches . The ratio of e(3) to y appearing on the right side
of the equation has a value of 1 at y= 0 and decreases monotonically and asymptotically to
zero as y approaches co. Thus the right side of (94) has a value of 2+ (g-¢)/(g+¢) at
7= 0 and diminishes monotonically to the asymptote (g — ¢)/(g + ¢) as y approaches o It
was also apparent when we carried out the numerical work mentioned above in the region
2 < y<10 that 2¢(y)/y is always larger than Je(y)/Fy for these intermediate values of 3

As already mentioned above, both of these terms are equal at y= 0. Again, from the work
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Figure 10 - Example of a numerical solution to (94).

of Lieb and Liniger it is easy to show that this relative relationship remains true for both

small and large values of

Now to help in putting together the intent of giving all the description of the components of
(94) Figure 10 shows an example of a numerical solution to the equation. For the example
given in the figure both the left and right sides of the equation are plotted as functions of y
with (g - ¢)/(g+c)=-05. Had g been set equal to ¢ then the two curves would not have
intersected because, as pointed out above, the left side term of the equation is always less
than the resultin;, right side. If g > ¢ there can be no solution as the asymptote for the right

side of the equation is then greater than zero. If g = ¢ then the solution is the limit point

m
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y=  and this implics a system particle density of zero as y =2(g +c¢)/p.For0<g<c¢
there is one and only one value of ythat will solve the equation and Figure 10 illustrates
this feature. For such a solution (that is, y = constant) it readily follows that L «c N. As g
is made to approach zero, then so does y approach zero and the density of the system will
also increase. At g = 0 the solution is ¥ = 0 and to achieve this the system would have to
have infinite dens . In summary, the only physically meaningful solutions for a bound

system have 0 <g <candalength L o« N.

The g = 0 cese

The implication from the above discussion is that setting g = O requires some special
consideration. For Blum, Koltun and Shapir it was important to know the N dependence of
E, under this condition on g so they introduced the term z> N/L? into their expression for
the ground state energy when g = 0. This term represents the zero point energy of N free

particles in a “box” of length L when Dirichlet boundary conditions are used. The

introduction of this term avoids the tendency of the system to collapse and it also gives a
A
distinctly different L, behavior than the previcusly derived one, namely L, o« N ? which

5
in tumn leads to E, oc N3. This seemingly arbitrary tool to get around a problem lead

Craig, Kiang and Niégawa™ to examine the effect of both periodic and Dirichlet boundary

conditions using the Bogoliubov approximation technique for the apparently distinct cases
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of g > 0 and g = 0. The case of periodic boundary conditions with g > 0 has already been
developed above and more on it is to come. The Dirichlet boundary case (g > 0) lead to
the necessity of introducing a boson transformation which could only be carried out at the
expense of degrading the accuracy of the Bogoliubov technique. Since no basically new
results came out of this treatment, it will not be pursued further here. As has already been
noted in the development above, the g = 0 case with periodic boundary conditions implies
system collapse. The fourth scenario, g = 0 with Dirichlet bounaary conditions, will be

considered now in a little more detail.

Rather than insert the zero point free particle kinetic energy term as Blum, Koltun and
Shapir did, it seemed more reasonable to start with Dirichlet boundary conditions and see if
this term did arise naturally in the treatment of an interacting system. On going to a Fock
space, with g = 0, one arrives at
H=7 p}(ala,+b}b,)

n=1

(95).
=== X fuwnrlatala,a, +b1b1b,b, ~2a"bla,b,)
2L m'pn'ma
The difficulty with this expression, compared to the corresponding one in the periodic

boundary case, is the relative complexity of the Kronecker delta, namely

‘nmn 5 -n'tm-n + am'-n'-ufu + sm’ﬁn’-m—n - 6n’-n‘0m*n
fmnmn _6". 5 5 (96)

‘en'-m-n Cmtn'tm-n ~ Ym'tn'-men

In invoking the Bogoliubov approximation where one picks out terms involving four or two

lowest single particle momentum modes, the Kronecker delta combination introduces
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coupling between single particle modes n and » + 2. In the Craig, Kiang, and Niégawa
work mentioned above a trial wave function was introduced and a switch made to the
variational method. The ground state energy found as a consequence showed no
cependence on the mode coupling and showed that the same result would have been
achieved if, in following the Bogoliubov method, the Kronecker delta had been assumed to
consist of the first three terms on the right side of (96) only. It will be assumed here that

this ignoring of coupling is reasonable in developing the approximate Hamiltonian.

With the reduction in the complexity of the Kronecker delta form the carrying out of the
Bogoliubov approximation scheme follows the same general development scheme as
already described in the periodic boundary case. An examination of (95} shows that the
sum of all terms containing four lowest mode, or p = 1, operators will produce a zero.
Removing the p = 1 cpera*ors from the first summation in (95) will yield z*N/[* as

p, = #fL. This term: was previously mentioned as being introduced by Blum, Koltun and
Shapir in their treatment of the g = 0 case. Now it can be seen that this term can naturally
arise, at least in a weakly interacting system, when Dirichlet boundary conditions are

invoked. The approximate Hamiltonian is now

e 0 -e -—ella,

N & pl+2e e -e —ellal
H = +Y(a a' b B} " 97).
(] Lz E( n n ” n —e —e e o bn ( )

-e -e p*+2e e /\b!

On using the operators introduced in (63) and (64) the Hamiltonian becomes
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2. = ”;.N * i(d dt{p,,o+ e )(d') ¥ i(f ft(p;f&: 2‘:)(;3) ©8).

n=2 n=

As can now be seen, the terms in the first summation are of the required form but those in
the second summation have to undergo a transformation of the Bogoliubov type as given in
(67) and meeting the conditions outlined in (68), (69), and (70). Then carrying out the

transformation

f,) _( coshp -sinhg)a,
(f,.‘j—(-ainlm cosmp)(a;) (99)

yields, on meeting the conditions for g,

S ) (v ‘:J(Z;%J

o 0
t 2 a")
+’§(a,, a, Pm+( +2e) . (a,‘,
2
Simplifying this expression leads to
+—i( ~de+ A )+i( 2dtd. +}.,,ala,,) (101)
n=2 n=2
where

A, =Pt +8e (102).

Like the Hamiltonian in (73), the Hamiitonian in (100) describes a system consisting of two

types of none interacting bosons. Again there is no fixed number of bosons, or
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quasiparticles, specified. Note that one of the two types of quasiparticles has the same
energy spectrum as one of the real bosons making up the system would have if it were a
free particle. The ground state of this system

N 1&
Hoyo =+ 5 Z(-pi - 4e+ 4,) (103)

n=2
has as its first term the free particle kinetic energy but it appears as ;: natural consequence
of the method used rather than the more ad hoc insertion used by Blum, Koltun and

Shapir. If this ground state energy is put in its continuous form

1
N 4 (N):}
o= T3 -5 M )

(104)
and then minimized with respect to L the result is similar to that given by Blum, Koitun and

A 3
Shapir, namely L, c N ? and H,, (L = L,) c N*. However the actual value of this

minimum ground state energy
3
c!N3
Hyyo(L=L,)=-= (105)
33 2t

is lower than that of Blum, Koltun and Shapir.

The one particle density matrix and pair correlation function

In the next chapter the approximate Hamiltonian wiil be used to examine its predictions on
the thermodynamics of the system. Before launching into the macroscopic behavior of the
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system we will have a brief look at what the approximate Hamiltonian has to say about the
microscopic behavior of the ground state. To carry this out we will use the onc-particle

density matrix and the pair correlation function.

The single particle density matrix, (See G. Baym®™, for example.) can be written as
G,(x-y)={2¥ *)¥.(¥)2) (106)

where ¥, (x) is the field operator that removes a type “a” particle from position x and

! (x) adds a type “a” at position x. Of course, the same formulation could be made up

for type “b” particles. | z) is the ground state vector.

In momentum terminology, using the previously defined operators a' and a, we have

x-3)= (L el 3 Fald

p=-@
Ee"”(’ N xlala,|z) (107).
p..-m
1 1 -X
= la, += Ze” (xlap o)
p*O

(Note the long range order in the condensate implied by the first term.) The first term is
now replaced by its exact value rather than using the approximation from the first equation

of (54). On so doing, the single particle density matrix becomes

N 1 ip(y-x /
G,(x-y)= -+ o(e P 1) glala,| ) (108).
p*

Next converting to the quasiparticle operators of (71) and (72) the result is



G,(x-y)m X+ L3 (%) - 1)(z]cosh? e, + sinh® § @}

2L 2L 5
+cosh’opf/3 +sinh’ 8 8, B! | x) (109).

N @, p

= — 1.__ £ P & _

2L+4LZ(cosp(y x) )( +1p+p2+w, J

Not surprisingly, for the other type of particle present, Gy(x - ) = Gu(x - y).

The next graph, Figure 11, shows the numerical results when only the |x - y| dependent part
of (109) is plotted for the values of the parameters given in the figure caption. For this

particular length of the system over 95% of the particles are in the condensate. (How the

a0 + "

30 -

ionde |

amp

20 -

{x - y| dependent part of

10 +

'
—
o

X~

Figure 11 -Single particle density matrix for ground state. Parameters are L = 10,
g =2 x 10% ¢ = 0.1, and N = 10°. Condensate occupancy exceeds 95%. Note that

it is only the |x - | dependent part that is plotted.
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percentage of particles in the condensate is calculated will be given in Chapter 4.) It should
be noted that the relatively large, but constant, part of (109) that is not included in the plot
is the contribution from the particles in the condensate. This contribution has a magnitude
of N,/(2L) where N, is the number of particles in the condensate. The symmetry of the
graph about a vertical line drawn through the point |x - y| = 5 is attributable to the periodic
boundary conditions. If the inferactions between particles were “turned off” then the graph
would be a straight line along the horizontal axis which would indicate 4 homogeneous
distribution of particles. With the interactions present there is a large homogeneous
“background” due to most particles being in the condensate but the moving particles are

apparently not uniformly distributed.

Taking the interpretation of the single particle density matrix as the amplitude of being able
to remove a particle from one position and put it back in another, then the graph shows
that this amplitude is greatest if the particle is replaced in the same position it is removed
from. This amplitude diminishes with increased distance between point of removal and
point of replacement until a minimum is reached at L/2. Since the removed particle must
have the same momentum as the inserted particle then the implication is that particles
which are not in the condensate but with the same momentum have a tendency to be near

each other or move as a group.



[x - y| dependent part of amplitud:

li Percentage of |x - y|

Figure 12 - Comparison of |x - y| dependent part of single particle density
matrix for system lengths of 10 and 50. Here g = 2 x 10”, ¢ = 0.1, and

N = 10°. Note horizontal axis is percentage of |x - y|.

Figure 12 shows the effect of changing the length of the system. Note the horizontal axis
gives the percentage of |x - y| so that the two graphs can be compared for shape. Increasing

the length diminishes the tendency of particles of the same momentum to be near each
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other.

Figure 13 shows the dependence of the |x - y| part of the single particle density matrix on

N. Here again the general shape of the curve is much the same as in the other plots of ihis

function. Increasing the parameters g and/or ¢ will also produce effects like increasing N

120

i00 +

-]
(=

£23
L=
1

Ix - y| dependent part of amplitudc
N
S

Figure 13 - |x - y| dependent part of single particle density matrix for two different

values of N. Other parameters are L = 10, g = 2 x 10, ¢ = 0.1.
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but agsin there is no basic change in the over all shape.

The pair correlation function ( See Baym™, for example.) can be written as
. 2 2
8u(x-3)=(2) (L)) a10)

A similar definition would apply to the “b” type particles and g,,(x - ¥)= g,,(x—»).
Now carrying out the same basic process as for the single particle density matrix where the

goal was to transform to the quasiparticle operators to get

AR 1 ~
(3 eule=9)= 1T e ekl 0

—-+—-Zco8p(x yXzlaja,| x)

VIR
NZ
= ZZZ—+ —Zcosp(x y {mnh2 6 + sinh? ¢}

N? A, P 7
.___2 4LZZcospx y){-p——+7+—z- P 4}

(111).

p P
Here use of the approximations in (54) was made and, in keeping with the Bogoliubov
approximation method, terms containing one or no p = 0 indexed operators were dropped

as being small. Note that the functional form of the |x - y| dependent part is identical to

that of the single particle density matrix in (109).

One can also define two pair correlation functions involving both types of particles as
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8- 9)=(2) (eI OIR0)2.(2)

N

sule- )= (2] (IO

(112).

The first of these two forms, which can be interpreted as removing an “a* and a “b* type
particle and then replacing them in the same locations as their removal, produces a constant
for the result. More interesting is the second form which can be interpreted as removing
one each of the two types of particles and then replacing them in exchanged positions. This

second form becomes

N’ Py -pa)x
(Y sute3)= (el el 0,

p=-®

N2 A, (113).
P9 p

=2 ETIT L 2 s SN

4L2 +4L2 ;o(cosp(x y) )[p +1 p2 +wp )

Note that once again the functional form of the |x— y| dependent part of this expression is

the same as that of the single particle density matrix (109).

Going back to (111) and writing out the expansion is a different way will give

2
(‘g) 8.(x-¥)= 4L2 Z{2a aa a,,+2(008p(x y))a'aa a } (114).

Here, as has been the usual practice, the rest of the terms have been dropped as being
small. The reason for writing the form in this way is that it is somewhat more useful to see
what is going on to produce the final form. The first term in the expression comes from

pair exchanges involving particles in the condensate only. This term is by far the largest
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contributor to the magnitude of the result because of the large number of particles in the

condensate and it is also constant which indicates a uniform distribution of these particles.

The next term, the sum of the a'a_ala_, is also a constant and it involves pair exchanges

0%o%ptpr
in which only one of the pair is in the condensate. In these exchanges the particles are
returned to their original positions. The final part again involves pair exchanges in which
only one of the pair is from the condensate but the position of the particles also gets
interchanged. However, because the particles in the condensate are so numerous and
uniformly distributed, this type of exchange amounts to essentially the same type of
exchange as the single particle density matrix calculation. Thus no basically new

information is brought forward by the pair correlation function.

One other feature of the results of the single particle density matrix (and pair cosrelation
function) that deserves some mention is the symmetry in the occurrence of the interaction
parameters g and ¢. This symmetry also will come up in some of the thermodynamic
functions to be derived in the next chapter and it is surprising considering that this
symmetry is not present in the original Hamiltonian. If one goes back to (114) and does not
use the approximations of (54), the resulting form can be diagonalized using operator
transformations exactly of the forms as were used in arriving at the approximate
Hamiltonian (73). The resulting approximate Hamiltonian under these conditions has the

form



n

2
R e L wi)}* 22 (%,a}a, +038,8,) (115)
p>0

L p>0

where

_EIYi l_i_Ng 0 _ ’ ’
e, = Y3 el = o7 ,XP—J(p2+4e°Xp2+8eo+4eo), 16,

and @) = \/(p2 +4e‘jXp2 + 12e;)

The difficulty with this form is in the occurrence of N, which is an unknown. However, it
can be determined by using N, = N — (N, ). As has already been mentioned
parenthetically an expression for N, will be derived in the next chapter. This expression for
N contains N and not N so it is convenient. An equivalent expression for N, can also be

derived in terms based on the elements in (116) but in this form N, can be solved for by
using N, = N - (N, ) in a self consistent manner. Both methods give approximately the

same resuit.

Now in terms of this second formulation of an approximate Hamiltonian we have
2
(%) gaa(x_y)=

117).
_N_:z+ N; Z(l+cosp(x—y)){ o
YEANYZE-,

o

y L 2 ' @ 2 P
P 4 +4ea+ PP +4eo__4}

+
2 0 2 ’ 4
p° +4e] A% p- +4e, o),

This form produces the same results as the previous one to a good approximation o, in
that respect, it is not particularly interesting. However, what is of scme interest is that it

produces the same results without being symmetric in the occurience of the interaction
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parameters g and ¢ as can be seen by referring back to the definitions in (116) when
looking at the structure of (117). However, the symmetry still must be there and the source
of this symmetry must be N,. N, is dependent on g and ¢ but this feature is buricd out of
sight in the original formulation of the approximate Hamiltonian. It is through the second
of the approximations in (54) that this connection is made. Thus the symmetry between ¢
and g exists through this interconnection at least in tne parameter range where this

Bogoliubov approximation method is valid.



IV. The Thermcdynamics of the System

The partition function

In developing the examination of the thermodynamic properties of the boson system when
both g and c are greater than zero the first step in the process will be the calculation of the

partition function from

== Tr{exp(—ﬂH)} (118).
One feature of the partition function that should be dealt with first is the lack of mention of
a chemical potential. The Hamiltonian that will be used in developing the partition function
is not the original Hamiltonian but rather the approximate Hamiltonian (73) derived from
it. This approximate Hamiltonian, as already mentioned, describes a system consisting of
two types of bosons (the quasiparticles) whose number is not fixed. The number of real
particles in any state of the original system is, of course, fixed at the constant value N. A
quasiparticle requires the presence of excitations which do not exist in the ground state of
the system. As Callen™, page 412, points out the chemical potentiai of a nonconserved
Bose system is zero. So here, as the number of quasiparticles is not fixed, the grand

canonical formalism will be used after first setting the chemical potential to zero.

As a check on the reasonabieness of using the partition function of (118) with the
approximate Hamiltonian one can rotate back to real particle space by setting g and c to

zero. On so doing, the partition function has the appearance of a system of free real

73
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particles with a chemical potential of zero. (See (19) and (20)). Such a system of free real
bosons does not in fact have a chemical potential of zero but as has been pointed out here,
in the development following (19), the setting of the chemical potential to zero does

produce quite reasonable approximations when the number of particles in the condensate is
macroscopic. The dropping of terms, as being small, in the derivation of the approximate

Hamiltonian has reproduced this argument in a more indirect way.

Inserting the approximate Hamiltonian in (118) gives

g(B,L,N)= Tr{exp[—ﬂHg,,, - ﬂZ(ﬂpaLaP + mpﬂ;‘,ﬁp))}
p=0

= exp(— . g )Tr{exp[—ﬂz;’(l ala, +o, PP, ))} (119).
p‘

= exp(-BH .y )g[l - expi_ pA)1- exp(l-ﬂw,)]

Here the H,,, i8 as given in (78).

Some of the thermodynamic: functions

With form (119) of the pasiition function it is now reasonably straightforward to calculate

the thermodynamic measures of the system. A number of those measures will now be

determined, the first of which being the energy. Using £ = —(-‘%lni) gives

L
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E=H, 22( 4, De ] (120)
+ + .
p>0 exp(ﬁl ) 1 exp(ﬂa);)—l
. 1{ 2 .
For the pressure, using P = —| —InZ| , one arrives at
B\2L 2
2 2
p
~2e— @, -2
éH | 7 Y P
p=-Tle 4 P4 e (121)

where
SH H s 2 2 LI
~-—g'5'-=id——32p2 -1 l’__+_i2’.+£_+_;;) (122).
AL L L& 4\, p° o, p
. . ... L J(TInE) .
The entropy is also derivable from the partition function using S = — >7 to give
L

) )

(B2, p,
+2,,Z>o[exp(ﬂ}lp)— 1 * exqﬁﬂp)— l]

(123).

Another thermodynamic property of the system that will be considered is its specific heat

which can be evaluated using
_(8E) _ 22 exp(p2, ) o’ exp(po, )
Ce= (arj . 4 :[f"[[exp(ﬂ}. 1] [mp(ﬂm ] ] (42
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A valldity check
Until now no concrete way has been specified that would test whether a specific calculation
met the requirements of the appioximation method.. At this point it would seem
appropriate to develop such a strategy. Since the very foundation of the Bogoliubov
method as is being used here is the assumption that there is a large number of the system’s
constituent particles in the p = 0 mode, then a method of estimating the occupation level of

the condensate will now be developed.

The average number of particles in excited modes, (N, ), can be found from

(N,)= iadl (125).

It will be assumed here that the approximate Hamiltonian will be adequate to make an
estimate of this result. That being the case, then using the relationships between operators

given in (63), (64), (71) and (72) one can write

® 2 2' l 2 @ 1
ta +bb )= Y{-2+| £~ _J.’.J(_ t ) (1’_ _L)(- t ) 126).
;(apap p p) ;o{ +[AP + 7 2+apap + o, + P 2+ﬁpﬂp (126)

Now using

Tr(e”"" ﬂ;ﬂp) _ 1 Tr*(e"m )
Tr(e"" ) e™r 1 Tr(e'”T)

and similar results for the other type of quasiparticle operator leads to the expression

(127)
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- l)} (128).

The thermodynamic functions for the g = 0 case
The thermodynamic functions derived above can also be determined for the g = 0 case.
The development of these expressions is so similar to that already done above that only the

final results will be listed here. These resulis are:

E(o)(ﬂ) L; N) = €X] —mgni(o) )l-!{l exp( @‘) 1- exp(—ﬂ,{ )) (129),
E,= 5> — (130),
(o) gld(o ~ ( ) 1 exp(ﬂ},n)- 1
{ 2
D
A, ~-2e-"
P - _ a}{g’d(o) p: + ﬂ'u (131)’
) JL L o exp(ﬂp,,) 1 exp(pi,)-1
ﬁHm(o) 1 ® ( 1 )
op = T He0 Z; { Tt (132),

ol ( ew(pe?) } exp(i1,) By g1,
S“’"Z;i exp(Bp2)-1 +l'{exp(ﬂit ]+exp(ﬂpn) 1" exp(74,)-1 (1335

2| Plexp(Brl) A exp(BA,)
Cyn=B8 o+ - (134),
= 2 on{per)-1] ootn)-1

To complete the paralicl development with the g ;¢ 0 case, the expression for the number of




78

particles in excited modes is
IR I U S [ X P_)(l ———‘———]
(Na>(o)'§{ 2+exp(pp3)-1+2(p:+/1,, 2+exp(ﬁ1,,)-1 (133).

A graphical description of the thermodynamics

The thermodynamic relationships given above were first presented by Craig, Kiang, and
Niégawa™. As was done there, a description of the thermodynamic behavior of the system
will now be given. The given equations for energy, entropy, pressure and specific heat are
rather complicated as they now stand, so the purpose now is to see some of the features

that might be buried under this layer of complexity.

As a first step the continuous form of these equations will be examined. The continuous

timit form of the logarithm of the partition function (119) is
InE= -BH,y - = [, dpfin{1- oxp(~4)) + In(1- cxp(- o) (136).

With the goal of seeking functional forms, let us first extract part of (136) for further

consideration, namely

% N dp{ll\(l - oxp(-5 Pﬁm)) ¥ '"(l B exp(—ﬂpm))} _
oA A
‘/civ [ dx{ 1:.(1 - exp(~cpBxx’ +4 )) * '"(l ) exp[_c”ﬂx@)]}
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= JaNL J(cpﬁ, -ﬁ-) a37.

As the chemical potential of the quasiparticles is zero then the Helmholtz free energy, F,

can be determined from the logarithm of the partition function and (88) which gives

B TSV P v B P |- PO g
F= ﬂln_ N;{cp+ cp{ 3”[1+J:]+cpﬂ.l(cpﬂ,c)}] (138).

From this functional form of the logarithm of the partition function the continuous form of

(120) becomes

T R

The continuous limit version of (121) is

P=—(—?—IZL = gp* +{[¢;{—§2;[l+\[%}+Wa(:’ﬂ)l:\/éﬂ.](cpﬂ,%)}} (140).

For the entropy the continuous version of (123) is

Ne 2 0
S=RE-F)= 2% : 141).
AE-F) Jep (oef) d(c ﬂ)[cpﬂ ( i )} (40
Finally, the continuous form of the specific heat (124) is
AE Ne 2 & a8
C, = [ ar) Tg—;("ﬂ/}) W-’(bﬂﬂ, c) (142).

Examining the above continuous forms will show that the energy, entropy and specific heat
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are all proportional to NV as extensive functions should be. Pressure, being intensive, is not
proportional to N. All of the functions, E/N ,S/N,C, /N, and P have the general
functional form of f(p,¢,£,cpP). One other interesting feature that can be picked out is
that the temperature dependence appears through cpf2 Before movin,, «.a it should be
pointed out is that the above method of going to the continuous limit form can be applied
to the thermodynamic functions derived for the g = 0 case. Doing so produces the same

results as given above if g is set equal to zero in the results.

Next an examination of the characteristics of the thermodynamic functions will be made
using numerical iechniques. To do this specific values of the parameters have to be chosen.
After each calculation a check will be made to ensure that the occupation level of the
condensate is large for the particular selection of parameters. As the numerical results will
be presented graphically, each graph will be marked at the points where calculations show
95% of the system’s particles are still in the condensate. If not marked, then all points on
the graph have condensate occupation levels exceeding 95%. The parameters g and ¢ that
determine the strength of the interactions enter the calculation (128) of the number of
particles not in the p = 0 mode in a symmetrical fashion. However, the original
Ramiltonian (1) does not show this same symmetry as g + c is the strength of the
interactions between like particles and g - c is the strength of the interactions between
unlike. Referring back to the condition for the validity of Ep.s after (87) which was derived

from the work of Lieb and Liniger, namely (g + ¢)L < N, and inserting L, from (91) leads
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to the relationship between g and ¢ of

2 3 3
o (£.41)(2) <4[1+(.s.) +(.s.)=] a6
(4 (4 c c
This condition will be met if g/c < 0.2. Now it could be argued that choosing a smaller

value of L than that of L, would ease this restriction on the magnitude of g. Indeed L could

be so chosen as to make g many times larger than c.

There are two reasons for not taking this approach here. First, unless g << ¢, the leading
term in the expression for L ,th £ and P which is gN? /L dominates the calculated values
to such an extent that the effects of temperature variations are suppressed. In order to get
the effects of increased temperatures to show up the condensate must be depleted beyond
the point at which the approximation method is considered valid. Not being able to see the
effects of temperature makes for uninteresting thermodynamics. The second reason hinges
on the fact that if g > ¢ then there are no attractions between particles, only repulsions as
determined by g + ¢ and g - c. Nevertheless the mathematical form of Hy,, is such that a
minimum can be achieved even if g > c. So the physics requires g < ¢ if Hyy is to be

applicable and the desire to see interesting thermodynamic effects requires g <<c.

The firet function to be deait with numerically will be pressure. Mathematically for large L

the expression for pressure given in (121) becomes, in the limit,
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3
8 P 4 P )T 144
P= prexp(ﬂpz)—l - no exp(ﬂpz)—l- Jr (144

The pressure in the g = 0 case also becomes this value in the limit of large L. For small

enough L the pressure for both g # 0 and g = 0 is positive. For the ground state F=E

where F is the Helmholtz potential and, as P = —(g—i) , then the zero for pressure will be

T
at the point where there is a minimum in the ground state energy. This point, L,, has
already been shown to exist. With these features a plot of an isotherm for the ground state
would be expected to have positive pressure values for small L which would diminish with
increasing L to zero pressure at L,. Since for large L the pressure curve approaches the
value zero (for the ground state as 7 = 0), then the pressure curve must approach this zero
from negative values - there being only one extremum in the ground state energy. With an
increase in temperature the asymptotic approach to the positive value of the pressure for
large L as given in (144) would require the pressure curve to cut the P = 0 axis at two

points at least for temperatures low enough and hence close to the ground state.
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Figure 14 - Plot of pressure and Helmholtz free energy versus length for 7' = 0.
Other parameters are g = 2 x 10, ¢ = 0.1, and N = 10°. The condensate

occupation level exceeds 95% at all points in the plot.

In Figure 14 the results of plotting the ground state isotherm show the features of the

pressure graph as described above. The pressure curve is asymptotically approaching the
horizontal axis from below at the larger values of L in the plot. Larger values of L would

have to be used before the occupation level of the condensate dropped below the 95%

level. At the temperature chosen, T = 0, the Helmholiz potential is the ground state energy
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Figure 15 - Plot of pressure and Helmholtz free energy versus length at 77 = 100.

Other parameters are g = 2 x 10”, ¢ = 0.1, and N = 10°,

so the plot could just as well be considered to be of the ground state energy.

The next plot, Figure 185, 18 again one of pressure and the Helmholtz potential but this time
at a temperature of T = 100. The graphs do not look very different from those in the
previous plot but note that the condensate occupation level is now less than 95% for

lengths larger than about L = 75. For a given g and ¢ the occupation level of the
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Figure 16 - Plot of pressure and Helmholtz free energy versus L at T = 500. Other

condensate is inversely related to L and 7.

The higher temperature of Figure 16 shows in a more readily apparent fashion the effect of

temperature. To the eye it is as if the pressure curve has been moved higher up the vertical

axis with its shape basically the same as for lower temperaturcs. The feature of the pressure

curve crossing the horizontal axis in two places i also shown. Note that the Helmholtz



potential has two extrema, one at each of the points where P = (. Uf course, since

(9F [3L), = - P, the extrema should occur at these points. However, the fact that the

numerical results show the correct general behavior implies that the approximation has

produced the correct shape for the function F = E - TS in spite of the insensitivity to the
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entropy of the condensate.
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Figure 17 - Plot of pressure and Helmholtz free energy versus L for T = 975. Other
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If the temperature is increased even further then the situation shown in Figure 17 will be

reached. Here there is only one point of contact between the pressure curve and the
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Figure 18 - Plot of pressure and Helmholtz free energy versus L for T = 1100.

Other parameters are g = 2 x 10%, ¢ =0.1, and N = 10°.

horizontal axis. Note that the Helmholtz potential correctly reflects this situation by having



an inflection point at the length where (JF /5L), = 0.

Increasing the temperature even further does continue to move the pressure curve upward
so that eventually, as shown if Figure 18, the pressure curve does not cui the horizontal
axis at all. As is also shown in the figure the Helmholiz potential continues to behave as it
should in showing no point with a horizontal slope. In those plots ot pressure versus
temperature where the Helmhoitz potential shows a minimum, this minimum indicates a
point of stability for the system. The length at which this minimum occurs would be the
size the system could “support” itself at without the need of constraints. For the ground
state this length was referred to as L, but now the meaning of L, will be extended to cover
the stable length at other temperatures. The maximum in the Helmholtz potential indicates

that the other length at which P = 0 is not thermodynamically stable. Of course, the section

of the pressure curves where (5P /SL),. > 0 indicates thermodynamic instability and more

will be said about this region later.

So far no plot has given the behavior of C;. Figure 19 is such a plot. Three different values
of L are used and, for the range of temperatures chosen, no point has a condensate
occupation level of less than 95%. Nothing in the shape of the graphs suggests any unusual
features in the system. The graph for L = 20 is of the same basic form as those for the
other two lengths in spite of the fact that L = 20 is in the thermodynamic unstable region of

the isotherm. The requirement that C: > 0 for stability is met by all points on the graphs.
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Figure 19 - Plot of C; versus I for three values of L. Other parameters are ¢ = 0.1,
g =2 x10®, and N = 10°. No points are below the 95% condensate occupation

level.

All the plots to this point have had the number of particles set to N = 10°. This parameter
value was chosen, as were the values for g and ¢, because it allows the showing of the
features of the isotherms while staying within the restrictions required by the approximation
method. In addition to this aspect is that the choice of parameter values also kept the
computing time down to convenient leveis. An examination of (128) will show that if the

value of N was increased by some factor and at the same time the values of g and ¢ were
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decreased by the same factor then N, would not be affected. However, the percentage of
particles in excited states would diminish because of the increase in N. Such new values of
g, ¢, and N would aiso not change the values of entropy and specific heat. However, both
pressure and entropy have leading terms of gN? /L. and would thus not remain at the same

values with the new parameters. On the other hand, since the chosen value of g in the plots
is so much smaller than ¢, the effect of g in the summations is dominated by the ¢ terms.
Thus if g was reduced not by the factor that N was increased by but by that factor squared
then the leading term in both energy and pressure calculations would be unchanged.
Carrying out such a process would enable the increasing of N to larger values and produce
plots that are visually identically to the ones so 1ar presented. The decrease in the
percentage of excited particles at a given length would enable the plots to meet the “cutoff”
at greater values of L but there is little value in this as the plots already presented have the

95% cutoff well into the thermodynamically unstable region.

Figure 20 shows the general effect on the shape of the isotherms of varying the parameter
8- The 95% cutoff is at about the same value of L for all three graphs. The vatue of L,
decreases with a decrease in g but this behavior is quite consistent with the L, already
determined for the ground state in the continuous limit. For the periodic boundary value
case the decrease in L, continues as g is decreased until the system goes into collapse at

g = 0. As already mentioned this collapse at g = 0 can be prevented with the introduction

of Dirichlet boundary conditions and some plots illustrating this feature will be given
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Figure 20 -Plot to show the effect on the isotherms when g is varied. Other

parameters are ¢ = 0.1, T = 100, and N = 1¢°.

shortly.

Finally, the effect on the general shape of the isotherm when the parameter c is varied is
given in Figure 21. Again from the knowledge of L, for the ground state, it is no. surprising
to see that there is an inverse relationship between L, and c. As in Figure 20, the decrease

in L, is accompanied by a deeper minimum in the isotherm and a steeper siope to the
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Figure 21 - The effect of varying c on the shape of the isotherm. Other parameters

are g =2 x 10°, T'=100, and N = 10°.

isotherm in the region I, < L.

The behavior of the g = 0 systera with Dirichlet boundary conditions is very similar to that
of the g # 0 (periodic boundary conditions) already portrayed in the graphs given to this
point. Figure 22 gives the isotherm for two different values of T for the g = 0 system. The

main difference for the parameters chosen is the greater “insensitivity” to temperature
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Figure 22 - Isotherms for g = 0. Other parameters are ¢ = 0.1 and N = 1¢°. No

points on the T = 0 plot have less that 95% condensate occupancy.

compared to the previous plots.

One other comparison of interest can be done between the two systems, g =0and g = 0,
and that is how L, is affected by V. In the ground state discussion the L, dependence was
determined by going to the continuous limit forms of the ground state energy. In Figure 23
it is shown that the same behavior perists when using the summation forms, solved

numerically, and at finite temperatures. It is to be restated that the different behaviors
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Figure 23 - Log-log plot of system size ' P = 0 as a function of V. Other
parameters are ¢ = 0.1 and 7 = 100. No points in plot have condensate

occupancy of less than 95%.

between the two systems is boundary condition dependent.
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CONCLUDING REMARKS

The focus of interest here has p2en an effort to gain some insight into the physicai behavior

of the one dimensional system of bosons governed by “ae¢ Hamiltonian

H(c,g,N):—i-g;T+2ﬁ(g+ce,e])5(x, —xj) (145).

1=l 1 1<y=1

This Hamiltonian and its parameters are described in Chaypter 1. That chapter is also used
to put forward the motivation for examining this particular Hamiltonian. After having
established some rationale for pursuing the topic then the second chapter was used to
review some of the previous work of others on various fonns of this Hamiltonian. The
third and fourth chapter then presented the material (hat is new and provides the rationale

for this thesis. At this point it is worthwhile to present a brief summary of the new material.

Working in the parameter space 0 < g << ¢ an approximate Hamiltonian was developed
based on the Bogoliubov perturbation method. Using this new approximate Hamiltonian i
was then straightforward to develop a new expression for the ground state energy. This
ground state energy approximation was shown to be consistent with the approximation,

based on the variational method, of Blum, Koltun and Shapir.

One of the features of the ground state was the prediction of system collapse when g = 0.
To show that this prediction was probably not a result of a limitation in the approximation

method the same variational method setting of Blum, Koltun and Shapir was used.
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Whereas Blum, Koltun 2ad Shapir had built their resuit on an approximation of the work

of Lieb and Liniger, we used the exact results of the Lieb and Liniger work.

To prevent the collapse of their g = O system Blum, Koltun and Shapir had introduced in
an ad hoc manner the term 7> N/L* . By modifying the boundary conditions under which
the approximate Hamiltonian was derived from periodic to Dirichlet boundary conditions
we were able to show that this term, z?N/I?, was & natural consequence of the Dirichlet
boundary conditicas. Then having two forms of the approximate Hamiltonian, one from
using periodic boundary conditions and the other from Dirichlet boundary conditions, we
developed the thermodynamics of the two systems - the one to apply to the g > 0 situation

and the other to the g = 0.

Since the method of solution presented has been an approximation method it seemed
important to establish some legitimacy to the results. Chapter 2 contains some important
material from which the argument for the reasonableness of the solution can be built. With
this intent in mind let us return: for the moment to the free boson system. The Hamiltonian
reduces to the free particle system if the strength of interaction parameters are reduced to
zero. It would be expected that any solution to the Hamiltonian would contain a description
of the fres particle system simply by setting g =c = 0. The expresrions for energy, pressure,
etc., derived using the approximation will produce agreement with the free case at a

temperature of zero but not at firite temperatures.
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The source of the disagreement is the chemical potential. In the thermodynamic
development of the approximation in Chapter 4 the point of view used was since the
approximate Hamiltonian (73) is in terms of quasiparticles, whose chemical potential is
zero, then the derivation of the grand partition function could be based on this point. This
quasiparticle point of view may provide some rationale for setiing 4 to zero but, in the end,
it still does not provide the correct answer. Working from the point of view of the real
particles the /4 - uN factor in the partition function proved more than nettlesome unless one
assumed that 4 was small enough to be ignored. Of course, even so, one is still forced to
use the approximate Hamiltonian. Whichever of the two points of view is taken leads to the
same requirement for getting a solution - the cf:>mical potential is small enough to be
ignored. Some of the material of Chapter 2 was directed toward substantiating the idea
that, at least for the non interacting boson gas, ignoring 1 produced a good approximation

under suitable conditions.

Another important foundation store for ‘the approximation method was the required
presence of a Bose-Einstein condensate. Again material in Chapter 2 was presenied to
show that, here again for a non-interacting gas, there is such a condensate but again under
suitable conditions. Thus the argument is that if a free Bose gas can have a condensate and
be well approximated as having 1 = 0, then turning on weak interactions should not chat.ee
these features. The restrictions that arise out of this are that the temperature must be low
and the system size must be finite. It is pointed out in Chapter 4 that finite size does not

necessarily mean small size for a way of arranging parameters to give large systems while
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reiraining within the scope of reliability ¢ f the approximation is given there.

By switching boundary conditions a very different behavior in the dopendence of ground
siate size L, on N is cstablished as given in Figure 23. Since Blum, Koltun and Shapic were
doing work involving the directed Feynman paths as described in Chapter 1, they were

interested in the large N behavior of the system when g = 0. However, the 72 N/I? term is

not immune to collapse in the thermodynamic limit.

Ar.other feature of interest involving the g and ¢ parameters is their symmetric role in #:¢
expressions for entropy (123), specific heat (124), (N,,) (128), and G,(x - y) in (109).
Such symmetry is not present in the Hamiltonian but an ¢xplanation for it can be found in
the aliernate derivation of an approximate Hamiltonian that led to (112). It can be noted
from (i13) that, unlike the 4, of (74), the 27, of (113) is dependent on both g and c. The
factors in 1°, appear in the expressions for entropy, specific heat, etc., derived in this
alternate formulaticn, in such a way that the symmetry between g and c is no longer

apparent from a visual examination of the equations. For example the specific heat

expression is

ez - oprp| ) oolA) (03] exe{py)

7o [esp(p2,)-1]  [exp(go;)-1]

which, although it has the same general form as the specific heat expression of (124), is not

(146)

symmetric in g and c. However, both 1%, and w; are dependent on N, which in tumn is
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dependent on g and c. The end result of these relationships is that the numerical calculation
of specific heat, and for that matter the cther functions as well, produces essentially the
sam= numerical results especially in the region where the condensate occupancy exceeds
90%. This agreement shows that the source of the apparent symmetry between g and c lies
in the interconnection between N, and the parameters g and c. In the parameter range
where the approximations of (54) are valid this symmetry would be present. However, as

the requirement here is g << ¢, this symmetry is mathematical and not physical.

The isotherms plotted in several of the Figures in Chapter 4 indicated some interesting
aspects of the system behavior. It was shown, at least for the parameter space g << ¢, that
the system has a stable size L, if the temperature is low enough. However, a perplexing
aspect of the isotherm is the region where (9P /S L), > 0. Pethaps the first thing that
springs to mind is a phase change and the Maxwell construction but the shape of the curve
is not correct for this approach. Nor can this region be attributable to the assumption of

4 =0 in the partition function because the ground state also has this region.

Attributing the shape of the curve in the unstable region to the dropping of terms in the
approximation also seems unlikely. Going to the expression for the ground state energy
derived by Blum, Koltun and Shapir (85) with the Bogoliubov approximation form (86)
one can show that their ground state isotherm also has a similar region where

(oP/SL), >0 for
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82 g2

L>
(c+ g)’

N (147),

Here g and ¢ can be chosen in such a way as to put the Bogoliubov form (86) into the
region of Figure 9 where the approximation is very accurate. Thus it would seem that this

region of instability is characteristic of the system.

As to what the nature of this instability is remains unknown. The equilibrium
thermodynamics used offers no answers. This instability does not show up in the specific
heat as (134), the expression for specific heat, contains only positive terms and thus C; can
never be negative. The single particle density function and the pair correlation function of
Chapter 3 also did not show any change that would point to entering a region of instability
when the parameter L was increased to take the system from a region of stability to one of
instability. The com.>ination of the peculiarities of one-dimensional systems in general and
the finite system size used here are felt to be at the root of this interesting behavior.
However, the method used here does not seem to be able to substantiate this speculation

and it will need a different approach in the future to sort it out.



APPENDIX

Comments on the numerical work

The computer program used to generate the numerical results was written using the
Borland® C", Version 2, programming platform. As the computer used for executing the
program was of the IBM® clone variety, then some of the library functions used in the
program are only suitable for this computing environment. Almost all of the program uses

features that are of the C programming language with very little taken from C*.

The listing of the computer program that is to follow is divided into five sections but only
for reasons of economy of time in recompiling as the program grew and for cutting down
paper consumption as new listings were sent to hard copy. As the program is the end
product of a project that not only grew with time but also had many edits as various
avenues were explored, the listing will show some vestigial and some “left over” areas.
These areas could have been revised and polished but since it was a single user program
and time was precious the attitude of “If it ain’t broken, don’t fix it.” was taken to avoid the

strong possibility of introducing bugs that occurs whenever software is altered.

Some additional results
In Chapter 3 an alternative way of developing the Bogoliubov approximation was presented

in developing the results for the pair correlation functions. The resulting Hamiltonian was
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given in (115) and (116) and the form of the specific heat was given in (146). Since
routines will be presented that compute other functions in this alternaie version then, to be

complete, the remainder of these forms will now be given.

E* H°,d+22{ Y % } (148)
& exp(ﬁ)l") 1 exp(ﬂw;)—l

, ek, (2,+e)p+4e)
. é?H;,d PUpttdel X,
i § exp(64;,) -1

(149)
. C®, (3e;)(p2 + 4e’)

p* +4e! 0°

P
p>0 exP(ﬂﬂ’op) -1

gl )
gl S

exp(ﬂ/l",, )—- 1 exp(ﬂa);) -1

(150)

o\ _ Plrde, @, |1 1
(Na>“§o{ 2*( o’ pz+%’](2+exp(M;)~lJ}

(151)




, _8N:

=T

+22°

p>0

{

—p*~2e, -6+~

2

(4 +03))

A list of the functions in the program

Function name

ener
press
entropy

spht

herd

ratio

spdf
nzero

hgrdno

energyno

pressureno

entropyno

lieb

nex, chem

Applicable equation
120 and 130

121 and 131

123 and 133

124 and 134

78 and 103

128 and 135

109

151

152

148

149

150

151

42,43, and 4

26

34

(152)
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frecenergy 37
freecntropy 38
First section of program

This section controls the input and output from the program. For most options the output is

sent to a file from where it is picked up by the commercial software Microsofi® Excel for

plotting purposes.

#include <conio.h>
#include <stdio.h>
#include <math.h>

double c,g,temp, bign;
double pi,pi2,n2;
int gflag errcodes=3,error_no[8]={0,0,0,0,0,0,0,0};

double ener(double ell),

double press (double cll);

double entropy {(double ell);

double ratic (double eil);

double spht (double efl);

double hgrd (double ell);

int spdf (double ell, double step);

void probcheck(int flag);

void setwindow(int ulc,int ulr,int Irc,int brr);
void restoresc(int flag);

double nzero(double ell,double trial);
double hgrdno(double ell,double num);



double pressureno(doubie ell, double num);

double energyno(double ell, double num);

double entropyno(double ell,double num);

void licb(double lamda,int n,double *gamma,double *egamma);
double nex(double tp,double mu,doubie ell);

double chem(double tp,double ell);

double frecpress(double tp,double ell, double mu),

double frecenergy(double tp,double ¢ll, double mu);

double freeentropy(double tp,double ell, double mu);

double fresgibbs(double tp,double ell,double mu);

int error_check(int signal)
{int flag,n;

flag = 0;
for(n=0;r<errcodes;n++)
{if{error_no[n]!=0)
{flag++;
if{!signal)
{cprintf{"\r\nError code %d",n);
error_nofn] = 0;}
}
}
if((flag) && (lsignal))
{cprintf{"\r\nPress any key to continue.");
getch();}
retum flag;
}

main()
{double x,y,zxx,xxx,¢ll.ell_1,¢ll_2,pp,t,tf, tp,tinc,num,gib,gibo;
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int again,again_1,j,k,m,n,ni,nf tni,nf.f flag flag,c_flag;
char choice;
FILE *f ptr;

pi=3.141592653589793,;

pi2=pi*pi

t2=sqrt(2.0);

again=1;

¢=0.1;

£=0.00002;

gilag=1;

temp=100.0;

bign=1.0e6;

textmode(C80);

textbackground(BLUE);

textcolor(YELLOW);

while (again)
{clrscr();
cprintf("\r\n 1 g = %]10.5¢, ¢ = %10.5¢",g,¢);
cprintf{"™r\n 2 T = %7.4f, N = %10.2¢",temp,bign);
cprintf{™\r\n 3 Pressure");
cprintf("\r\n 4 Specific heat and entropy");
cprintf{"\r\n $ General (N)");
cprintf("\r\n 6 General (No)");
cprintf("\r\n 7 No");
cprintf("\r\n 8 Single particle density");

cprintf{"\r\n 9 Lieb energy");

cprintf{("r'\n 0 Free Bose gas - No");
cprint™r\n A Free Bose gas - Po");
cprintf{"\r\n B Exit\r\n");
choice=getch();
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switch (choice)
{case "1":again_1=1;
while (again_1)
{clrscr();
cprintf{"1 Change g from %!10.5¢\r\r\n",g);
cprintf{"2 Change c from %10.5¢\r\r\n",c);
cprintf("3 Exit\rr\n");
cl.oice=getch();
switch(choice)
{case '1'":cprintf("Enter new value forg. ");
scanf ("%le",&g);

break;
case '2".cprintf{"Enter new value forc. ");
scanf ("%le", &c);
break;
case '3"if (g==0.0) gflag=0;
else gflag = 1;
again_1=0;
break;
}
}
break;
case '2":again_1=1;
while (again_1)
{clrser();

cprintf{"1 Chsnge T from %7.4f\r\r\n", temp);
cprintf{"2 Change N from %10.2¢\r\r\n", bign);
cprintf{"3 Exit\r\r\n"),
choice=getch();
switch(choice)

{case'l":cprintf{"Enter new value for T. ");
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scanf ("%le",&temp);

break;

case'2" :.cprintf{"Enter new value for N. ");
scanf ("%le",&bign),
break;

case'3".again_1=0;
break;

3

}
break;

case "3":cprintf{" Pressure startinys at L. = ");
scanf{"%le",&ell);
cprintf(" Ending at L = ");
scanf{"%le",&ell_1);
cprintf{" .ncrement = ");
scanf("%le", &ell_2);
fINULL==(f_ptr=fopen("c:\\dad\\pressure.dat","w-+t"})) error_no[0]=1;
if{error_check(0)) break;
setwindow(45,1,79,25);
f flag=0;
num = bign;
while (ell<=¢ll_1)
{xxx = press{ci};
num = nzerof el num);
if{error_check(0)) break;
xx = pressureno(eil, num);

fprintRf ptr,"%12.5f  %12.5¢ 9%12.Se\n", ell, x00x Xx);
cprintf("\r\n%12.5f %12.5¢",ell,xx),

cl+=ell_2;

if(kbhit())

{f_flag =1;
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fclose(f_ptr);

restorescrn(f_flag);

break;

case '4".cprintf("Enter start value for L. ");

scanf{"%le", &ell);

x=temp,

cprintf("Enter initial value for T. *);

scanf{("%le",&temp);

cprintf{"Enter increment for T. ");

scanf("%le",&ell 1);

cprintf{"Enter final value for T. ");

scanf{"%le",&ell_2),

if{(f_ptr=fopen("C:\\dad\\thermal4.dat","w+1")==NULL) error_no{0}=1,

if{error_check(0)) break;

while (temp<=ell_2)
{fprintRf _ptr,"%10.2f %12. 5" temp,entropy(ell));
fprintf{f_ptr,"%]12.5f\n",spht(cll));
cprintf{("%10.2f\r\n", temp);
temp+=ell_1;
}

fclose(f_ptr);

temp=xx;

cprintf{"Finished\r\n");

choice=getch();

break;

case 'S".cprintf{" General (N) - starting at L = "),
scanf{"%le", &ell);
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cprintf{” Increment = ");
scanf{"%le",&ell 1);
cprintf{” Ending at L = ");
scanf{"%le",&ell 2),
if(NULL==(f_ptr=fopen("c:\\dad\\general.dat","w-+t"))) error_no[0}=1;
if{error_check(0)) break;
setwindow(45,1,79,25);
f flag = 0;
whils (ell<=ell 2)
{x = ener(ell);
y = press(ell);
z = entropy(ell);
xx = ratio(ell)*100;
fprintR(f ptr,"%12.2f %]15.6¢ %15.6¢",¢ll,x,y);
fprintf{f_ptr,” %]15.6¢ %8.2f\n", z,xx);
cprintf{"\r\n%12.2f" ell;
ell +=ell _1;
if{kbhit())
{f flag = 1;
getch();
break;
}
}
fclose(f ptr);
restorescrn(f_flag);
break;
case '6".cprintf{(" General (No) - startingat L = ");
scanf{"%le",&ell);
cprintf(" Increment = "),
scanf{"%le",&ell 1),
cprinif(” Ending at L = *);
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scanf("%le",&ell_2);
iffNULL==(f_ptr=fopen("c:\\dad\\genern0.dat","w+t"))) error_no[0]=1;
if{error_check(0)) break;
setwindow(45,1,79,25),
f flag = 0;
num = bign;
while (ell<=¢ll 2)
{num = nzero(cll,num);
if(error_check(0)) break;
x = energyno(ell,num);
y = pressureno(ell,num);
z = entropyno(ell,num);
fprintf(f ptr,"%12.2f %15.6¢ %15 .6¢",¢cllx,y);
fprintf(f ptr,” %15.6¢ %]12.1fe\n", z,num);
cprintf{"\r\n%12.2f" ell);
ell +=ell 1,
if{kbhit())
{f_flag =1;
getch();
break;
}
}
fclose(f_ptr);
restorescrn(f_flag);
break;
case "7":cprintf{" No for L = ");
scanf{"%le",&ell);
cprintf{” Starting at T = "),
scanf{"%le", &ti);
cprintf{” Ending at T = ");
scanf{"%le", &tf);
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cprintf(" Increment = ");
scanf{"%le", &tinc);
if(NULL=={f_pir=fopen("c:\\dad\\nzero.dat","w-+t"))) error_no[0]=1;
if(error_check(0)) break;
setwindow(45,1,79,25);
f flag = 0;
XX = temp,
temp = ti;
num = bign;
while (temp<=tf)
{xxx = nzero(ell,num);
if(error_check(0)) break;
fprintf(f ptr,"%12.2f %10.1f\n",tlemp,xxx);
cpnintf("\r\n%12.2f %10.1{",temn, xxx);
temp += tinc;
num = Xxx;
if(kbhit())
{f_flag =1;
getch();
break;
}
}
fclose(f ptr);
temp = xx;
restorescrn(f_flag);
break;
case '8":cprintf(" Single particle density function.\r\n");
cprintf{" Enter value for L. ");
scanf{"%le", &ell),
cprintf(" Enter number of intervals in L. ");
scanf{"%d",&m);
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ell 1=ell/m;
probcheck(spdfiellell_1));
break;
case '0":.cprintf{"(Licb) Enter value of lamda. ");
scanf("%le",&x);
cprintf{"Enter number of intervals. ");
scanf("%d",&;j);
lieb(x,j, &y, & 2);
cprintf("\r\ngamma = %]15.6f e(gam) = %15.6f",y,z);
getch();
break;
case 'A":
case ‘a".cprintf{"Free Bose gas - enter L. ");
scanf{"%le",&ell);
cprintf(" Starting at T = ");
scanf{"%le", &ti);
cprinif(" Ending at T = ");
scanf("%le", &ftf);
cprintf{" Increment = "),
scanf{"%le",&tinc);
if(NULL==(f_ptr=fopen("c:\\dad\\frecbose.dat","w+t"))) error_no[0]=1;
if(error_check(0)) break;
fprintf(f_ptr,"L N\n%10.1f  %!10.0f\n\n",¢ll, bign);
fprntf{f ptr,"T No No(mmu=0) No+Nex mu\n");
setwindow(45,1,79,25);
f flag =0,
while ((ti<=tf)&&(!f flag))
{xxx = chem(ti,ell);
if{error_check(0)) break;
xx = bign-nex(ti,0.0,ell);
x = 2.0/(exp(-xxx/ti)-1.0);
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y = x+nex(ti,xxx,ell);
fprintRE ptr,"%12.2f %10.1f “ ti,x);
fprintff ptr,"%10.1f  %I10.1f 912.6e\n",XX,y, XXx);
cprintf{"\r\n%12.2f %10.1f",ti,x);
ti += tinc;
if(kbhit())
{f_flag =1;
getch();
break;
}
}
fclose(f ptr),
restorescrn(f_flag);
break;
case B":
case 'b":cprintf{"Free Bose gas - isotherm 0, isochore 1 ");
scanf("%d",&c_flag);
if(fc_flag)
{cprintf("Enter value of T "),
scanf("%le", &tp);
cprintf("Starting at L. = ");
scanf("%le", &ell);
pp=cll
cprintf("Ending at L = "),
scanf("%le", &x);
cprintf{"Incrementin L = ");
scanf("%le", &y);
}
else
{cprintf("Enter value of L "),
scanf("%le", &ell);



oprintf("Starting at T = ")
scanf{"%le",&1p);

PP = tp;

cprintf("Ending at T = ");
scanf{"%le", &x);
cprintf("Increment in T = ");
scanf("%le", &y);

}
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if(NULL==(f_ptr=fopen("C:\\dad\\freepres.dat","w+1"))) error_no{0}=1;

if(error_check(0)) break;
setwindow(45,1,79,25);
f flag =0
fprintf(f_ptr,"N\n%10.0f\n\n",bign);
fprintf{(f ptr,"L T wid Pmu Po ")
fprintf(if ptr,"Emu  Eo Smu So No ")
fprintR{f ptr,"G Go mug mugon"),
while((pp<=x)&&(!f_flag))
{xx = chem(tp,eli);
if{error_check(0)) break;
fprintf(f ptr,"%12.2f  %12.20%12.7" cll,tp,xx);
xxx = freepress(tp, ell,xx);
z = freepress(tp,¢ell, 0.0);
forintf(f ptr,"%12.2f %12.2f", xxx,2);
xxx = frecenergy(ip,ell xx);
z = freeenergy(tp,ell,0.0);
fprintf{f_ptr,"%12.2f %]12.2f" xxx,2);
xox = frecentropy(tp, ell, xx);
z = freeentropy(tp,ell,0.0);
fprintf{f_ptr,"%12.2f %12.2f" ,xxx,7);
xxx = 2.0/(exp(-xx/tp)-1.0);
gib = freegibbs(tp, el xx);



gibo = freegibbs(tp,cll, 0.0);
fprintf{f_ptr,"%12.0f %12.21%12.2f", xxx,gib, gibo);
fprintRf ptr,"%12.6f %12.6f\n",gib/bign,gibo/bign);
cprinif{"\r\n%12.2f %12.2f" ell tp);
if(tc_flag)
{ell +=y;
pp=ell;
}
else
{tp +=y;
PP = 1tp;
}
if{kbhit())
{f flag=1;
getch();
break;
}
}
fclose(f_ptr);
restorescrn(f_flag);
break;
case 'C"
case 'c':again=0;
break;

void probcheck(int flag)

{switch(flag)
{case 1:cprintf{" Could not open file.");
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break;
case 2:cprintf(" Convergence too slow.");
break;
case 3:cprintf(” Could not get memory asked for.");
break;
case 4:cprintf{("\r\nNo has become invalid.");
}
if(flag) getch();
return;
}

Second sectfon of program

#include <math.h>

extern double c,g,bign,pi,pi2,temp,rt2;
extern int gflag;

double hgrd (double elt)

{double a,al,ab,nf,n2,sum sum2,xx;
double alpha,rtalpha,ce,eep,p,p2;
long int n,lim;

if (gflag==0)
{alpha=2.0*pi2/c/bign/cll;
rtalpha=sqrt(alpha);
lim=5qrt(8000.0/alpha);
sum=0.0;
sum2-=pi2/6.0-1.0;
for (n=lim;n>1;n--)

{nf=n;
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n2=nf*nf;
al=alpha*n2;
xx=al+4.0-rtalpha*nf*sqrt(al+8.0);
sum-+=xx;
sum2-=1.0/n2;
H
sum+=8.0/alpha*sum2;
al=bign/ell*(pi2/cli-c*sum/4.0),
retuan (al);
}
else
{alpha=2.0*pi/ell;
lim=sqrt(1000.0*c*bign*ell/pi2);
sum=0.0;
sum2=pi2/6.0;
ee=4.0*c*bign/cll;
eep=4.0*g*bign/ell;
ab=(ect+eep)/4.0;
for(n=1;n<=lim;n++) sum2-=(1.0/n)/n;
for(n=lim;n>0;n--)
{p=alpha*n;
P2=p*p;
sum+=-p2-ab+0.5*p*(sqri(p2-+ee)+sqri(p2-+ecp));
}
sum-=bign*bign*(c*c+g*g)/4.0/pi2*sum2;
al=bign*bign*g/ell+2.0*sum,;
retum (al);
}
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double spht (double ellv)
{double alpha,sum,ee,cep,p,p2,a,b,pa,pb,betapa,betapb,al,a2;
long int nmin lim n;

if (temp==0.0) return (0.0);
alpha=2.0*pi/ellv;
nmin=1.0;
if(gflag==0)
{alpha/=2.0;
nmin=2;
}
sum=0.0;
ee=4.0*c*bign/ellv;
eep=4.0"g*bign/ellv;
a=0.5%(sqri(cep*ecp+5184.0*temp*temp)-cep);
lim=sqrt(a)/alpha;
for(n=lim;n>=nmin;n--)
{p=alpha*n;
P2=p*p;
a=sqrt(p2-+ee);
b=sqri(p2+ecp);
betapa=p*a/temp;
betapb=p*bitemp;
if(betapb>21.0) sum+=betapb*betapb*exp(-betapb);
else
{al=exp(betapb);
a2=al-1.0;
sum+=betapb*betapb*al/a2/a2;
}
if{betapa<36.0)
{if{betapa>21.0) sum+=betapa*betapa*exp(-betapa);



else
{al=cxp(betapa);
a2=al-1.0;
sum+=betapa*betapa*al/a2/a2;
}
}
}

if(gflag==0) retum (sum);
return (2.0*sum);
}

double press (double ell)

{double alpha,al,a,b,ce,cep,e,ep,p,p2,pa,pb;

double sum,sum2,summ, betapa,betapb;
long int n,lim;

sum=0.0;
ee=4.0*c*bign/ell;
e=cc/4.0;
eep=4.0*g*bign/ell;
ep=cep/4.0;
alpha=2.0*pi/ell;
if{gflag==0) alpha/=2.0;
if(temp!=0.0)

{if (cep<ee) b=cep;

else b=ee;

a=0.5*(sqrt(b*b+5184.0*temp*temp)-b);

lim=sqrt(a)/alpha;
if{gflag==0)
{for(n=lim;n>1;n--)
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{p=alpha®n;
p2=p*p;
a=sqri(p2-+ec);
pa=p*a
betapa=pa/temp;
sum+=p2/(exp(p2/temp)-1.0);
if(betapa<36.0) sum+=(pa-c*p/a)/(exp(betapa)-1.0),
}
sum*=2.0/ell;
}
else
{for(n=lim;n>0;n--)
{p=iipha*n;
P2=p*p;
a=sqri(p2-+ee);
b=sqrt(p2+eep);
pa=p*a;
pb=p*b;
betapa=pa/temp;
betapb=pb/temp;
if(betapb<36.0) sum+=(pb-ep*p/b)/(exp(betapb)-1.0);
if(betapa<36.0) sum+=(pa-e*p/a)/(exp(betapa)-1.0);

H
sum*=4.0/ell;
¥

}
summ=0.0;

if (c>g) lim=10.0*sqrt(c*bign*ell);
else lim=10.0*sqrt(g*bign*ell);
if{gflag==0)

{sum2=pi2/6.0-1.0;



122
for(n=2;n<=lim;n++) sum2-=(1.0/n)/n;
for(n=lim;n>1;n--)

{p=alpha*n;

P2=p*p;

a=sqri(p2+ee);

summ-+=p2*(2.0-(a/p+p/a));

}
summ-=4.0/pi2*c*c*bign*bign*sum2;
summ/=4.0%*¢ll;

}
else
{sum2=pi2/6.0;
for(n=1;n<=lim;n++) sum2-=(1.0/n)/n;
for(n=lim;n>0;n--)
{p=alpha*n;
p2=p*p;
a=sqrt(p2-+ee);
b=sqrt(p2+eep);
summ+=p2*(1.0-0.25%(p/a+a/p+p/b+b/p));
}
summ-=bign*bign/4.0/pi2*(c*c+g*g)*sum2;
summ*=2,0/ell;
}
sum-=summ:;
sum+=hgrd(cll)/ell;
if(gflag==0) sum+=pi2*bign/cll/ell/ell;
return (sum),
}

double ener (double ell)



{double alpha,a,b,ce,eep,sum,p,p2,pa, pb, betapa, betapb;
long int lim,n, nmin;

sum=0.0;
if{temp!=0.0)
{alpha=2.0*pi/ell;
if{gflag==0) alpha /=2.0;
ee=4.0*c*bign/ell;
eep=4.0*g*bigr/cll;
if{gflag==0) nmin=2;
else nmin=1;
a=0.5*(sqrt(eep*eep+5184.0*temp*temp)-cep);
lim=sqrt(a)/alpha;
for{n=lim;n>=nmin;n--)
{p=alpha*n;
P2=p*p;
a=sqri(p2+ee);
b=sqrt(p2+eep);
pa=p*a;
pb=p*b;
betapa=pa/temp;
betapb=pb/temp;
if{betapa>36.0) sum+=pb/(exp(betapb)-1.0);
else sum+=pa/(exp(betapa)-1.0)+pb/(exp(betapb)-1.0);
}
}
if{gflag!=0) sum*=2.0;
return (sum+hgrd(ell));
}
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double ratio (double ell)

{double alpha,sum,sum2,ee,eep,p,p2,a,b,xx,yy, betapa, betapb;
double b1,b2,b3,b4,bg,s1,52,53,54,sm,t term, x;

long int lim1,lim2,n,nmin;

if(gflag==0)
{alpha=pi/ell,
nmin=2;

}
clse

{alpha=2 (*gisski:
nmin=1;

}
if (g<c)

{bg=c;
sm=g,

H
clse

{bg=g;
sm=c;

}
x=bg*bign/ell;
b1=2.0*x;
b2=b1*x;
b3=2.0*b2;
b4=4.0%x;
x=sm*bign/ell;
s1=2.0%x;
s2=e1*x;
§3=2.0%52;
84=4.0%x;



lim1=10.0*sqrt(sm*bign*ell/pi2),
1im2=10.0*sqri(bg*bign*ell/pi2);
if (temp==0.0) =1.0¢-40;
else t=temp;
sum=0.0,
ce=4.0*bg*bign/ell;
ecp=4.0*sm*bign/ell;
x=lim2+1;
do
{term= -2.0;
p=alpha*x;
p2=p*p;
xx=2.0+b3/p2/p2*(1.0-bd/p2);
yy=2.0+83/p2/p2*(1.0-s4/p2);
betapa=(p2+b1-b2/p2)/t;
betapb=(p2+s1-s2/p2)/t;
if (betapa>25.0) term += 0.5*xx;
else term += (0.5+1.0/(exp(betapa)-1.0))*xx;
if (betapb>25.9) term += 0.5%yy;
else term += (0.5+1.0/(cxp(betapb)-1.0))*yy;
sum += term;
x += 1.0,
}
while (term > 1.0e-4);
sum2=0.0;
for(n=lim2;n>lim1;n--)
{p=alpha*n;
P2=p*p;
a=sqri(p2+ce);
Xx=a/p+p/a,
yy=2.0+s3/p2/p2*(1.0-s4/p2);
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betapa=p*at;
betapb=(p2+s1-s2/p2)/t;
if(betapa>25.0) sum2 -= 0.5%xx;
else sum2 += (0.5+1.0/(exp(betapa)-1.0))*xx;
if(betapb>25.0) sum2 += 0.5*yy,
else sum2 += (0.5+1.0/(exp(betapb)-1.0))*yy;
}
sum += sum2-2.0*(lim2-lim1);
sum2=0.0;
for(n=lm1;n>=nmin;n—)
{p=alpha*n;
P2=P*P;
a=sqri(p2-+ee);
b=sqri(p2-+eep);
Xx=a/p+p/a;
yy=bip+p/b;
betapa=p*a/t;
betapb=p*b/t;
if(betapa>25.0) sum2 += 0.5%xx;
else sum2 += (0.5+1.0/(exp(betapa)-1.0))*xx;
if{betapb>25.0) sum2 += 0.5*yy,
¢lse sum2 += (0.5+1.0/(exp(betapb)-1.0))*yy;
}
sum?2 -= 2.0*(lim1-nmin+1);
sum += sum2;
iR gflag==0) return (sum/2.0/bign);
return (sum/bign);
}

double entropy (double ell)
{double alpha,sum,p,p2,a,b,pa,pb,betapa,betapb,ee, eep;



long int nmin, lim,n;

if (temp==0.0) return (0.0);
alpha=2.0*pi/ell;
nmin=1.0;
sum=0.0;
=4.0*c*bign/ell,
eep=4.0*g*bign/vll;
if(gfla: =0)
{alpha/=2.0;
nmin=2;
}
a=0.5%(sqrt(eep*eep+5184.0*temp*temp)-cep);
im=sqrt(a)/alpha;
for(n=lim;n>=nmin;n--)
{p=alpha*n;
P2=p*p;
a=sqrt(p2+ee);
b=sqri(p2-+eep);
betapa=p*a/temp;
betapb=p*b/temp;
if(betapb>21.0) sum+=betapb*exp(-betapb);
else
{a=exp(betapb);
b=a-1.0;
sur:+=log(a/b)+betapb/b;
}
ifibetapa<36.0)
{if{betapa>21.0) sum+=betapa*exp(-betapa);
else
{a=exp(betapa),
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b=a-1.0;
sum+=log(a/b)+betapa/b;
}
}
}

if{gflag==0) return (sum);

return (2.0*sum),

}

Third saction of program

#include <math.h>
#include <alloc.h>
#include <conto.h>
#include <stdio.h>

extern double c,g, temp, bign, pi;

void setwindow (int ulc,int ulr,int bre.int brr);
double nzero(double ell, double trial);
void restorescrn(int flag);

int spdf{double ell,double step)
{double alpha,sum,ec,eg,p,p2,a,b,beta,term,sa,sb,pt,pow, diff;
int r,n flag;
double huge *ptr_1;
double huge *pt-_p;
FILE *f_ptr;

alpha = 2.0*pi/ell;
ec = 4.0*c*bign/ell;



eg = 4.0%g*bign/ell;

if{temp==0.0) beta = 1.0¢200

else beta = 0.5/temp;
for (r=0;r<2;r++)
{n=0
do
{n++;
p = alpha*n;
if(r) ptr_p[n] = p;
p2 = p*p;
sa = sqri(p2-+ec);
sb = sqri(p2+eg);
a = sa/p+p/sa;
b = sb/p+p/sh;
pt = p*beta;
pow = pt*sa;

if{pow>36.0) term = a;
else term = a/tanh(pow);

pow = pt*sb;

if(pow>36.0) term += b-4.0;
else term += b/tanh(pow)-4.0;

if(r) ptr_1[n] = term;
}

while ((term > 1.0e-5)&&(n<10000));

if{in==10000) retumn 2;
if{r==0)

{iff NULL==(ptr_1=(double Ywge *)farcalloc(n+1,sizeof{double)))) return 3;
ifNULL==(ptr_p=(double huge *)farcalloc(n+1,sizeof(doutie))))

{farfree(ptr_1);
return 3;

}
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if(NULL==(f ptr=fopen("c:\\dad\\spdf.dat","w+t")))
{farfrec(ptr_1);
farfree(ptr_p);
retumn 1;
}
}
}
setwindow(45,1,79,25);
flag = 0;
diff = 0.0,
do
{sum = 0.0;
for(r=n;>0;r--) sum += cos(ptr_p[r]*diff)*ptr_1{r];
sum /= 4.0%ell;
fprintf{ ptr,"%10.2f %11.4f\n", diff,sum);
cprintf("\r\n%10.2f %11.4f" diff, sum};
if(kbhit()) flag = 1;
diff += step;
}
while((diff<=ell)& &(!flag));
farfree(ptr_1);
farfree(ptr_p);
fclose(f_ptr);
restorescrn(flag);
retum 0;
}

Fourth section of program

#include <math.h>
#include <alloc.h>
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#include <conio.h>
#include <stdio.h>

extern double ¢,g,temp, bign, pi;
extern int error_no[];

void setwindow (int ulc,int ulr,int bre,int brr)
{window(ulc,ulr, brc, brr);
textbackground(LIGHTGRAY);
textcolor(BLACK);
clrscr();
return;
}

void restorescrn(int flag)
{cprint{"\r\n");
cireol();
if(flag) cprintR"User break. Press key to continue. ");
else cprintf{"Finished. Press key to continue. ");
getch();
clrscr();
window(1,1,80,25);
textbackground(BLUE),
textcolor(YELLOW);
return;
}

double nzero(double ell,double trial)
{double alpha,el,e2,e3,beta,sum,p,p2,a,b,pow, term, part, bgr;
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int flag;
long int lim, lwrlim n;

flag = 0;
if(temp==0.0) beta = 1.0e200;
else beta = 1.0/temp;
alpha = 2.0*pi/ell;
if(c>g) bar =¢;
else bgr = g;
Iwrlim = 3.0*ell*sqrt(temp)/pi;
do
{el = 2.0*g*trial/ell;
e2 = 3.0%¢l;
€3 = el+4.0*c*trial/ell;
lim = sqri(1500.0*bgr*trial*eil)/pi;
if(lim<iwrlim) im = lwrlim;
sum = 0.0;
for(n=lim;n>0;n--)
{p = alpha*n;
P2 = p*p;
a = sqrt(p2+e2),
b = sqrt(p2+el);
part = beta*b;
pow = part*a;
if(pow>36.0) term = 0.5*(a/b+b/a);
else term = (0.5+1.0/(exp(pow)-1.0))*(a/b+b/a);
a = sqrt(p2+e3);
pow = part*a;
if(pow>36.0) term += 0.5*(a/b+b/a)-2.0;
else term += (0.5+1.0/(exp(pow)-1.0))*(a/b+b/a)-2.0;
sum += term,



}

if{(fabs((bign-sum)/trial-1.0))<1.0e-5) flag = 1;

trial = bign-sum;

}
while((!flag)& &(trial>0.0));
if{trial<0.0) error_no[3] = C;
return (trial);
}

double hgrdno(double ¢ll,double num)

{double alpha,el,e2,¢3,¢4,bgr,sum,sum2,p,p2,a;

long int lim,n;

alpha = 2.0*pi/ell;
el = c*num/ell+3.0%g*num/ell; /* 2e+6¢’ ¥/
€2 = 2.0%g*num/ell; /* 4e' ¥/
e3 = 4.0*c*num/ell+e2; /* 8et+de' ¥/
ed = 3.0%2; /* 12¢' ¥/
if{c>g) ber = ¢;
else bgr = q;
lim = sqrt(1500.0*bgr*num™*ell)/pi;
sum = 0.0;
sum2 = 0.0;
for(n=lim;n>0;n--)
{p = alpha®n;
p2 =p*p;
a = sqri(p2+e2),

sum += 0.5*a%(sqri(p2-+e3) +squi(p2-+e4))-p2-¢1;

sum? -= 1.0/p2;
}
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sum2 /= ell*ell;

sum?2 += 1.0/24.0;

sum -= (g*g+c*c)*num*num*sum2;
a = num*num*g/ell+2.0*sum;
return (a);

}

double pressureno(double ell,double num)
{double alpha,el,e2,e3,c1,c2,c3,beta, betal ;
double bgr,suml,sum2,p,p2,d1,d2,d3,f1,12,£3,14,15,16;
long int lim,n;

alpha = 2.0*pi/ell;
el =2.0%g* num/ell; /* 4¢' ¥/

¢2 = 3.0%l, /*12¢" */

e3 = 4.0%c*num/ell+el; /* 8et+de' ¥/
¢l =¢1/4.0; ™ e ¥

¢2 = 3.0%cl; /* 3¢ ¥

¢3 = ¢*num/ell+cl; /* 2e+e’ ¥/
if(temp==0.0) beta = 1.0e200;
else beta = 1.0/temp;
if(c>g) bgr = ¢;
else bgr = g;
im = sqrt(1500.0*bgr*num*ell)/pi;
suml = 0.0;
sum2 = 0.0;
for(n=lim;n>0;n--)
{p = alpha*n;
P2 =p*p;
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dl = sqri(p2+el);
d2 = sqrt(p2+e2);
d3 = sqrt(p2-+e3);
fl = d1/d2;
2 = 1.0/11;
3 = d1/d3;
f4 = 1.0/13;
suml += p2*(4.0-f1-£2-f3-f4);
5 = d1*d2; /" w
f6 = d1*d3; /* mu ¥/
betal = beta*fs;
if(betal <36.0) sum2 += (f5-c1*f2-c2*f1)/(exp(betal )-1.0);
betal = beta*f6;
if(betal <36.0) sum2 += (f6-c1*f4-c3*f3)/(exp(betal )-1.0);
}
betal = (hgrdno(ell,num)-0.5*sum1+4.0*sum2)/¢ll;
return (betal);
}

double energyno(double ell,double num)

{double alpha,el,e2,e3,sum,p,p2,c1,c2,c3;
double omega,mu,pow;

long int im,n;

if(temp==0.0) return (hgrdno(ell, num));

alpha = 2.0%pi/ell,
el = 2.0*g*num/ell; /* 4¢' ¥
€2 = 3.0%¢l; /* 12¢' %/

€3 = 4.0%c*num/ell+el;  /* Bet+de' ¥/
lim = (9.0*temp*cll-0.5*g*num)*ell;
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if{lim<=0) return (hgrdno(ell,num));
lim = sqrt(lim)/pi;
sum = 0.0;
for(n=lim;n>0;n--)
{p = alpha®n;
P2 = p*p;
cl = sqrt(p2+el);
¢2 = sqri(p2-+¢2),
c3 = sqrt(p2+e3);
omega = cl*c2;
mu = cl1%c3;
sum += omega/(exp(omega/temp)-1.0);
pow = mu/temp;
iflpow<36.0) sum += mw/(exp(pow)-1.0);
}
return (hgrdno(ell,num)+2.0*sum);
}

double entropyno(double ell, double num)
{double alpha,cl,¢2,e3,sum,p,p2,cl,c2,c3;
double pow,x;
long int lim.n;

if{temp==0.0) return (0.0);

alpha = 2.0*pi/ell;

el = 2.0*g*num/ell; /™ 4¢' ¥/
€2 = 3.0%el; * 12¢' %

€3 = 4,0%c*num/ell+¢l; /* 8e+de’ */
fim = (9.0*temp*ell-0.5*g*num)*ell;

if(lim<=0) return (0.0);



137

lim = sqrt(tim)/pi;
sum = 0.0;
for(n=lim;n>0;n--)
{p = alpha*n;
P2 = p*p;
cl = sqri(p2+el);
c2 = sqrt(p2+e2);
¢3 = sqri(p2+€3);
pow = c1*c2/terap;
X = exp(pow);
sum += pow/(x-1.0);
if{(pow<20.0) sum += log(x/(x-1));
pow = c1*c3/temp;
iflpow<36.0)
{x = exp(pow);
sum += pow/(x-1.0);
if(pow<20.0) sum += log(x/(x-1.0));
}

return (2.0*sum),

double nex(double tp,double mu,double ell)
{long int lim,n;
double alpha,sum,p,x;

sum = 0.0;

im = ell/2.0/pi*sqrt(36.0*tp+mu),
alpha = 2.0*pi/ell;
for(n=lim;n>0;n--)



{p = alpha®n;
X = (p*p-mu)/tp;
sum += 1.0/(exp(x)-1.0);
}
return 4.0*sum;

}

double chem(double tp,double cll)
{double mu,mul,mumid, fmid,dmu;

int j,n;

mul = -tp*log(1.0+2.0/bign);
mu = mul;
do
{mu *= 1.1,
fmid = 2.0/(exp(-mu/tp)-1.0)+nex(tp,mu,ell)-bign;
}
while (fmid>0.0);
dmu = mul-mu;
for(j=1;j<=40;j++)
{mumid = mu+(dmu *= 0.5);
fmid = 2.0/(exp(-mumid/tp)-1.0)+nex(tp,mumid,ell)-bign;
if{fmid<0.0) mu = mumid,
if{fabs(fmid)<1.0e-7*bign) return mu;
}
error_no[4] = 1;
return mu;

}

double freepress(double tp,double ell,double mu)
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{double alpha,p,p2,term,sum,;
long int lim,n;

alpha = 2.0%pi/ell;
lim = ell/2.0/pi*sqrt(40.0*tp+mu);
sum = 0.0;
for (n=lim;n>0;n--)
{p = alpha*n;
P2 = p*p;
term = p2/(exp((p2-mu)/tp)-1.0);
sum += term,
}
return 8.0/ell*sum;

}

double frecentropy(double tp,double ell,double mu)
{long int lim,n;
double alpha,sum,p,x,y,term;

alpha = 2.0%pi/ell;
lim = ell/2.0/pi*sqrt(40.0*tp+mu);
sum = 0.0,
for(n=lim;n>0;n--)
{p = alpha®n;
X = (p*p-mu)/tp;
y = exp(x);
term = x/(y-1.0)+log(y/(y-1.0));
sum += term,
}

sum *= 4.0;
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ifimu!=0.0)
{x = mu/tp;
Yy = exp(x);
sum -= 2.0*(log(1-y)+x*y/(1-y));
}

return sum,

}

double freeenergy(double tp,double ell,double mu)
{long int lim,n;
double alpha,sum,p,x;

alpha = 2.0*pi/ell;
lim = ell/2.0/pi*sqrt(40.0*tp+mu);
sum = 0.0;
for(n=lim;n>0;n--)

{p = alpha*n;

X = p*p-muy;

sum += x/(exp(x/tp)-1.0),

3
return (4.0*sum);
}

double freegibbs(double tp,double ell, double mu)
{double alpha,p,pz,x,y,suml,sum?2;
long int lim,n;

alpha = 2.0*pi/ell;
im = ell/2.0/pi*sqrt(36.0*tp+mu);



suml = 0.0;
sum2 = 0.0;
for(n=lim;n>0;n--)

{p = alpha*n;

P2 = p*p;

X = exp((p2-mu)/tp);

suml += log(x/(x-1));

sum2 += p2/(x-1.0);

}
suml *= 4.0%p;
sum2 *= 8.0;
sum2 -= suml;
ifimu = 0.0)

{x = muw/tp;

y = exp(x);

sum?2 += 2.0*%(tp*log(1-y)+mu*y/(1-y));

}
retum sum2;

}

Fifth part of program

This is the section of the prcgram that solves the coupled integral equations taken from
Lieb and Liniger’*, namely equations 42,43,and 44. The method is taken from Press,

Teukolsky, Vetterling and Flannery™ with modifications made to suit the requirements

here.

#include <math.h>
#include <alloc.h>
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#include <stdlib.h>
#include <conio.h>

#define TINY 1.0e-20
#define EPS 3.0e-11

extern double c,g,bign, pi,pi2,temp,1t2;

void fatal(int n)
{switch (n)

{case '1":

case 2"

case '3": cprintf{"Could not allocate memory.\r\n");
break;

case '4": cprintf{"Singular matrix in ludcmp.\r\n");
break;

case 'S"; cprintf("Error in polint.\r\n");
break;

case '6": cprintf("Too many steps in gromb.\r\n");
break;

}

cprintf{"Press key to terminate. ");

getch();

exit(EXIT _FAILURE);

}

double far *vector(int n)
{double far *ptr;

fNULL==(ptr=(double far *)farcalloc(n+1,sizeof{ double)))) fatal(3);
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retum ptr;

double * far *matrix(int m,int n)
{double * far *ptr;

int i;

/* Assumes m by n matrix with first clement (1,1) */
If(INULL==(ptr=(double * far *)calloc(m+1,sizcof(double * far*)))) fatal(3);
ifINULL==(ptr[0}=(double 1ar *)farmalloc(m*n*sizeof{double)))) fatal(3);
ptr{1] = ptr{0]}-1;

for(i=2;i<=m;i++) ptr[i] = ptrfi-1]}+n;

retumn ptr;

»

’

void freematrix(double * far *ptr)
{farfrec(ptr{0]);
free(ptr);
}

int far *ivector(int n)
{int far *ptr;
ifNULL==(ptr=(int far *)farcalloc(n+1,sizeof(int)))) fatal(3);

return ptr;
}

void ludemp(double far **a,int n,int *indx)



{int i,imax,j,k;
double big, dum,sum,temp;
double far *vv;

w = vector(n);
for(i=Li<=n;i++)
{big = 0.0;

for(j=1;j<=mj++) if{(temp=fabs(a[i][j]))>big) big = temp;

if (big == 0.0) fatal(4);
wi] = 1.0/big;
}
for(j=1;j<=n;j++)
{for(i=L;i<j;i++)
{sum = a[i][j};
for(k=1;k<i;k++) sum -= a[i}{k]*a[K][j];
afi]fj] = sum;
}
big = 0.0;
for(i=jii<=n;i++)
{sum = a[i][j};
for(k=1;k<j;k++) sum -= afi][k]*a[k](j};
a[i][j] = sum;
if((dum=vv{i]*fabs(sum)) >= big)
{big = dum;
imax = i;
}
}
if{j = imax)
{for(k=1;k<=nk++)
{dum = a[imax][k];
afimax](k] =a[j](k];
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afjjk] = dum;
}
wlimax] = wij};
}
indx{j] = imax;
if(ali]ij] == 0.0) a[j](j] = TINY;
if{j 1= n)
{dum = L.O/af§}(i];
for(i=j+ L;i<=n;i++) a[i]{j] *= dum;
}

farfree(wv);
feturn;

void lubksb(double far **a,int n,int *indx,dounole b[])
{int i,ii=0,ip,j;
double sum;

for(i=1;i<=n;i++)
{ip = indx(i];
sum = bfip};
blip] = bfi];
if (ii) for (j=tij<=i-1;j++) sum -= afi}{j]*b[i];
else if{sum) ii = i;
b(i] = sum;
}
for(i=n;i>=1;i--)
{sum = bfi];
for(=i+1;j<=nij++) sum -= afi][j)*bj};

145



bli] = sum/afili];
}
}

void gauleg(double x1,double x2,double x[},double w[},int n)
{int m,j,i;
double z1,zxm,xl,pp,p3,p2,pl;

m = (n+1)/2;
xm = 0.5%(x2+x1);
xl = 0.5%(x2-x1);
for(i=1;i<=m;i++)
{z = cos(pi*(i-0.25)/(n+0.5));
do
{pl = 1.0;
P2 =0.0;
for(j=1;j<~n;j++)
{p3 =p2;
pZ=pl;
pl = ((2.0*j-1.0)*z*p2-(~1.0)*p3)/j;
}
PP = n*(2*p1-p2)(z¥2-1.0);
z2l1 =g
z =z1-pY/pp;
}
while(fabs(z-z1)>EPS);
x[i] = xm-xi*z;
xX[n+1-i] = xm+xl*z
wili] = 2.0*xV/((1.0-2*2)*pp*pp);
win+14] = wii;



int fred2(int n,double a,double b, double t[],double f[],double w{],
double (*g)(double),double (*ak)(double,double))

{int ij,far *indx;

double d,* far *omk;

indx = ivector(n);
omk = matrix(n,n);
gauleg(a,b,t,w,n);
for(i=1;i<=nji++)
{for(i=1;j<=n;j++) omk[i][j] = (double)i == j)-(*ak)(t{il.t{s])*wii];
fli] = (*e)lil);
}
ludcmp(omk; n,indx);
lubksb(omk,n,indx,f);
farfree(indx),
freematrix(omk);
return 0;
}

double fredin(double x,int n,double t[],double f{],double w{],
double (*g)double),double (*ak) double,double))

{inti;

double sum = 0.0;

for(i=1;i<=n;i++) sum += (*ak)(x,¢[i])*w[i]*fli];
return (*g)(x)+sum,;
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void polint(double xa[],double ya[],int n, double x,double *y,double *dy)
{int i,m,ns = 1;
double den, dif,dift, ho,hp,w;
double far *; far *d,

dif = fat  x-xa[1]);
¢ = vector(n);
d = vector(n);
for(i=1;i<=m;i++)
{if{(dift=fabs(x-xa[i]))<dif)
fns =1
dif = dift;
}
cfi] = yafil;
dfi] = yafil;
}
*y = ya[ns--J;
for(m=1;m<n;m++)
{for(i=1;i<=n-m;i++)
{ho = xa[i}-x;
hp = xa[i+m}-x;
w = ¢[i+1]-d[i);
if{(den=ho-hp)==0.0) fatal(5);
den = w/den;
dfi] = hp*den;
c[i] = ho*den;
}
*y += (*dy=(2*ns<(n-m) ? c[ns+1] : d{ns--]));



farfree(d);
farfree(c);

double trapzd(doutle (*func)(double),double a, double b, int n)
{double x,tnm,sum,del;
static double s;

long int it,j;

if(n==1) return (s = 0.5%(b-a)*(((*func)(a))+(*func)(b))));
clse

{for(it=1,j=1j<n-1j++) it <<= 1;

tnm = it;

del = (b-a)/tnm,;

X = a+0.5*del;

for(sum=0.0,j=1;j<=it;j++,x += del) sum += (*func)(x);

s = 0.5*(s+(b-a)*sum/tnm);

return s;

}
}

double gromb(double (*func)(double),double a, double b)
{double ss,dss;
double s[22],h[22];
int j;

h1] = 1.0;
for(j=1;j<=20;j++)
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{s[j] = trapzd(func,a,b,j);
ifj>5)
{polint(&h[j-5],&s[j-5],5,0.0,8ss,&dss);
if{fabs(dss)<1.0e-6*fabs(ss)) return ss;
}

s[i+1] = sfj];

h{j+1] = 0.25*h[j};

}
fatal(6);
return 0.0;
}

double lam;
double far *tt,far *ff far *ww;
double (*gg)(double},(*akak)(double,double);

int nn;

double kemel(double t,double s)
{double x,y;

X = 8-t;

y = lam/pi/(lam*lam+x*x);
return y;

}

double gt(double t)
{return 0.5/pi;
}
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double liebg(double x)
{return fredin(x,nn, tt,ff, ww,gg, akak); }

double licbe(double x)
{retum x*x*licbg(x); }

void licb(double lamda,int n,double *gamma,double *egamma)
{double (*gl)(double);
double x;

lam = lamda;

nn = n;

g=g

akak = kernel;

tt = vector(n);

ff = vector(n);

ww = vector(n);
fred2(n,-1.0,1.0,1t, f, ww,gg, akak);

gl = liebg;

*gamma = lamda/qromb(gl,-1.0,1.0);
gl = licbe;

x = *gamma/lamda;

*egamma = x*x*x*qromb(gl,-1.0,1.0);
farfree(ww),

farfree(ff);

farfree(tt);

}
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