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Abstract 

The problem of estimating a (non-negative) density function, given a finite number of 

its moments, arises in numerous practical applications. By introducing an entropy­

like objective function, we are able to treat this problem as an infinite-dimensional 

convex programming problem. 

The convergence of our estimate to the underlying density is dependent on the 

choice of the objective. In this thesis, I studied the most commonly used classes of 

objectives, which include the Boltzmann-Shannon entropy, the Fermi-Dirac entropy, 

the truncated Lp-entropy. First, I discussed the duality properties of the convex 

program (Pn), which involves only n moments, and gave theorems to estimate the 

bounds of the dua! gaps. After proving a general necessary optimality condition and 

giving rates of r,orm convergence, I set up a set of uniform convergence theorems 

for certain choices of entropies, provided that the moment functions are algebraic or 

trigonometric polynomials. 

In Chapter 4, I used Newton's method to solve the dual problem. I compared 

ohc computational results of the problem with various choices of entropies. For the 

problem with the Boltzmann-Shannon entropy, using a special structure among the 

moments, I have developed a set of very efficient algorithm. By using some additional 

moments, within much less time, we can find a very good estimate function to the 

underlying density by solving just a couple of linear systems. The algorithms have 

been implemented in Fortran. Some 2- and 3- dimensional examples have been tested. 

Since the algorithm is heuristic instead of iterative, some related error analysis has 

also been performed. 
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Chapter 1 

Introduction and Preliminaries 

1.1 Introduction 

We study moment problems which estimate an unknown density function x, typically 

nonnegative, on the basis of a series of known moments. Such problems arise in a 

wide variety of settings. In constrained approximation, we need to reconstruct an 

unknown function from a set of known values of certain linear functionals (see, for 

example, [61], [83]). In spectral estimation, which has a lot of applications in speech 

processing, geophysics, radio astronomy, sonar and radar and many other areas, we 

are asked to estimate a power spectral density from certain known correlations (see, 

for instance, [6], [43], [44], [56], [71], [74], [75], [91], [92], [100]). An interesting class 

of problems in crystallography is to find out the electronic density of a given crystal 

on Uie basis of finitely many known measurements (see, for example, [41]). Many 

other applications in physics avid engineering (such as tomography, signal process 

and restoration) can be found, for instance, in [31], [45], [57], [58], [70], [76], [82]. For 

a survey of the wide range of approaches to moment problem and its application, see 

[2], [73]. 

Mathematically, the problem we will study in this thesis can be stated as: find 

a function x (usually nonnegative or between some lower and/or upper bounds) in 

1 
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Li(T,fi) defined on a set T, satisfying 

ai(t)x(t)dfi(t) = b„ i = 1 ,2 , • • - , » » , (1 .1) X IT 

where the a,'s are moment functions, normally in /^(T,/<). For given (usually finitely 

many) moments, this problem is an underdetermined inverse problem (for existence 

of a solution see, for example, [3], [8], [111]). When a solution does exist, it is by 

no means unique. Introducing an objective function, the maximum entropy method 

seeks an optimal solution of a mathematical program with linear constraints ([72], 

[101], [103], [104]): 

max fT —<f>(x(t))dn(t), 

s.t. fT ai(t)x(t)d{i(t) = b{, i = 1,2, • • • ,n, (1.2) 

[ x(t) > 0, for all t G T, 

where <f> is the Boltzmann-Shannon entropy defined by 

log u — u, u > 0, 

# « ) = ] 0, u = 0, 0-3) 
+oo, u < 0. 

Under reasonable conditions on the moments, the optimal solution of problem (1.2) 

exists and is unique. In this paper, however, we prefer to minimize the corresponding 

information measure, which has a general integral form of 

I Tt(x(t))dn{t) 

for a convex integrand function <j>. This approach has been widely used in areas such 

as parameter spectral estimation (see, for example, [32], [80]). 

In using this approach, various entropy-like objectives (j> have been tried. Among 

them, the most popular ones are the Boltzmann-Shannon entropy (1.3) (suggested 

by Jaynes in [64], also discussed in [67]), Burg's entropy (suggested by Burg in [33] 

and [34]), the Fermi-Dirac entropy (see, for example, [24]), and the L% or /.^-entropy 

(see [5], [55], [69]). We will discuss them in the later chapters. We will also try some 

other entropies. For some other choices, such as the cross entropy, see [85], [90], [94]. 
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In most practical sciences, the moment functions a,'s are typically trigonometric 

(Fourier) and algebraic (Hausdorff, power) polynomials, usually multidimensional. 

A very important question arising in this optimization approach is: how will the 

estimates converge to the underlying measure as the number of given moments grows? 

This question has been discussed in many papers (see, for example, [40], [50], [52], [54], 

[82], [107], for a recent survey see [21]). Several concepts of convergence have then 

been used, such as, weak*-convergence and weak convergence ([18]), convergence in 

measure ([22], [79]), norm convergence ([16], [23], [79], [107]), and uniform convergence 

([16], [28]), which will be further studied later in this thesis. 

To numerically solve the problem, which is infinite dimensional, convex duality 

theory plays an important role. Using duality theorems, instead of considering the 

primal problem, we study its dual, which is a finite dimensional (often unconstrained) 

maximization problem. For a complete study of this duality theory, see Borwein and 

Lewis' papers (for example, [17], [19], [20]). Dual algorithms seem to be the most 

popular methods in published papers (see, for example, [4], [29], [41] and [102]). 

In Chapter 2, we will discuss a class of entropy-like objectives. We will first 

give some lower and upper bounds on duality gaps, which will help us to prove 

norm convergence results. The main results proved in Chapter 3 are general versions 

of uniform convergence theorems for moment problems with entropy-like objectives 

under our assumptions, which include many well known entropies as special cases. 

In Chapter 4, we will study numerical methods for moment problems. We first 

implement Newton's method with line search (for a detailed method description, 

see [-12]), and compute the numerical solutions for several test problems in 2 and 3 

dimensions with algebraic and trigonometric moment functions. We also compare the 

numerical results for various choices of entropies. 

hi the second part of Chapter 4, we will establish a class of heuristic algorithms 

for problems with the Boltzmann-Shannon entropy and algebraic or trigonometric 

polynomial moments. These algorithms provide surprisingly good estimates to x by 

just solving a set of linear systems. Numerical computations show our heuristics to 
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be accurate and very fast although theoretical convergence is still an open problem. 

In the rest of this chapter, some preliminary definitions are recalled and known 

results in convex analysis, mathematical programming and approximation theory are 

stated in the precise form which we are going to use in later chapters. The standard 

functional analytic terminology used throughout the thesis can mostly be found in 

[99]. 

1.2 Convex functions and normal convex integrands 

Most of the statements in this section can be found in [39], [47], [60], [93], [95], [96], 

[97] and [98]. 

Let X be a real Banach space. A functional / : X —> (—oo, +oo] is said to be 

convex, if for all x, y G X, A G [0,1], 

f(Xx + (1 - A)y) < A/(x) + (1 - A)/(y). (1.4) 

The domain of / , dom(/), is the set of all points x G X where / is finite. We 

say / is proper if its domain is nonempty. When X = JFCn, we know that a convex 

function / is continuous on the interior of its domain (see [97]). 

Let X* be the topological dual space of X. The set of subgradients of / at x0 G 

dom(/) is defined to be 

df(x0) = {x*€X'\{x*,x-x0)<f{x)-f(xQ), for all a; e X } . (1.5) 

It has the following properties. 

Proposition 1.2.1 (Phelps, [93]) / / a convex function f is continuous at xo G 

dom(/), then df(xo) is a nonempty, convex, and weak*-compact subset in X*. 

Proposition 1.2.2 (Phelps, [93]) A continuous convex function f on a nonempty 

open subset D C X has a global minimum at xQ € D if and only ifO G df(x0). 
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For a proper convex function / , the convex conjugate of / is defined as the func­

tional /* : X* —» (—00, +00] given by 

/•(*•) = sup{(x,**>-/(*)}. (1.6) 
xex 

Note that each item inside the "sup" is continuous linear functional on X, and 

hence /* is always convex and lower semicontinuous. If we similarly write 

/**(*)= sup { (* ,* • ) - / • (* • )} , (1.7) 
x'ex' 

for x G X, then it is easy to see that 

r < /• (1.8) 

Moreover, we have 

Proposition 1.2.3 (Ekeland and Turnbull, [47]) The conjugate function f* is always 

convex and lower semicontinuous on X*. If f is proper convex and lower semicon­

tinuous, then we have 

r = /• (1.9) 

The Fenchel-Young inequality states that for any x G X and x* G X*, 

r(x*) + f(x)>(x,x*), (1.10) 

and the equality holds exactly for x* G df(x). 

For x G dom(/), h G X, if the limit 

SF(x; h) = lim -[Fix + ah) - Fix)} (1.11) 
a—>0 ct 

exists, it is called the Gateaux differential of F at x with increment h. If the above limit 

exists for each h G X, then F is said to be Gateaux difFerentiable at x [81]. 

If SF(x] •): X —* R is linear and continuous such that 

'"""F(X + A ) ~S '~* f ( * ; f e > l l =0 . (1-12) 
|IMI-»o I m i ' K ' 
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then F is said to be Frechet differentiable at x. 

It is obvious that the Frechet differentiability implies the Gateaux differentiability 

but not usually vice versa. For a lower semicontinuous convex function on a Banach 

space, the Gateaux differential is always linear and continuous. We denote it by F'(x) 

since it lies in X*. Also we have 

dF(x) = {F'(x)}. (1.13) 

In this case, the Fenchel-Young inequality becomes 

{F'(x):x) = F(x) + F*(F'(x)). (1.14) 

We will use this property frequently in proving theorems in later chapters. When 

we consider a convex integrand <j> defined on Rm, we will be interested in having these 

functions be "smooth" and "convex" enough. A proper convex function / : RK —• 

(—oo, -fee] is said to be essentially smooth if it satisfies the following three conditions: 

• (a) int{ dom(/)) ^ 0; 

(b) / is continuously differentiable on int(dom(f)); 

(c) lim,-_*oo | V/(x t ' ) | = +co, whenever {a;,-} converges to a boundary point of 

dom(/). 

Dually, / is said to be essentially strictly convex if / is strictly convex on every 

convex subset of 

dom(df) * {*eX\ df(x) ± 0}. (1.15) 

Proposition 1.2.4 (Rockafellar, [97]) A proper convex and lower semicontinuous 

function f : Mm —> (—oo, +oo] is essentially strictly convex if and only if its conjugate 

f* is essentially smooth. 

We now introduce the normal convex integral defined and studied by Rockafellar 

in [96] and [98]. Let T denote a complete measure space with a <7-finite measure 

dt, and let L be a particular space of measurable functions u from T to fft. In 

later use, we often assume L to be LP(T), for 1 < p < oo. By a convex integrand 
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/ :T x R —» (—00, + 00J, we mean the function /(£, •) to be convex for each t €T. 

We can then define 

I}(u) = / f{t,u(t) )dt, for u G L. (1.16) 

The function / is called a normal convex integrand if 

(a) for each fixed /, the function / is proper convex and lower semicontinuous in the 

second variable; 

(b) there exists a countable collection U of measurable functions u on L having the 

following properties: 

• for each u G U, f( •, u(-)) is measurable; 

• for each 2, Ut U Dt is dense in Dt, where 

Ut = {u(t) \u<EU}, Dt = {x£Rn\ f{t, x) < +00}. 

Some easier-to-check conditions for / to be a normal convex integrand have also 

been given in [96] and [98], such as: 

Theorem 1.2.5 (Rockafellar, 1968, [96]) A function f is a normal convex integrand 

if one of the following is true: 

(a) For a lower semicontinuous proper convex function F on R, f(t,x) = F(x). 

(b) For each fixed x, f(',x) is measurable. For each fixed t, f(t, •) is lower semi-

continuous, convex and the interior of its domain is nonempty. 

In discussing Fenchel duality, we need to know the expression of the conjugate of 

// defined in (1.16). For a function space L, we say it is decomposable if it satisfies 

the following conditions: 

(a) for each bounded measurable function u on T which vanishes outside a set of 

finite measure, we have « 6 L ; 

(b) if u G L and E is a set of finite measure in T, then tjs • u G L, where t# is the 

characteristic function of E. 
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It has already been proved in [96] that C(T) and LP(T), for 1 < p < +oo are 

decomposable, where T is a (T-finite measure space. Now the following theorem gives 

the form of the convex conjugate of / / . 

Theorem 1.2.6 (Rockafellar, 1968, [96]) Suppose L and L* are decomposable. Let f 

be a normal convex integrand such that /(•,«(•)) is summable for at least one u G L, 

and /*(.,«*(•)) is summable for at least one u* G L*. Alternatively, f is of the form 

f(t,x) = F(x), where F is a lower semicontinuous proper convex function on Hi". 

Then If on L and If on L* are proper convex functions conjugate to each other. 

In this thesis, we will study the convex program in the following form: 

(CP) 

min F(x), 

s.t. Ax = b, (1.17) 

x G C C X, 

where X is a real normed space, F : X —> (—oo, +oo] is a convex functional, A : X 

Rn is linear, b G R11, and C is a convex subset in X. 

We will be particularly interested in cases where: 

• X = L\(T,n) for a complete finite measure space (T,fi); 

• F takes the form of 

F(x)= [ f(t,x(t))d»(t) 
JT 

for a normal convex integrand / ; 

• A : X -> Rn is of the form 

(Ax)k = / x(t)ah{t)dn(t), k = 1,2, • • •, 

forafc G Z/oo(r,//); 

• C is a convex set in X. 

n 
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1.3 Results in approximation theory 

In proving our uniform convergence theorems in Chapter 3, we will need some uni­

form/best approximation results of a function / on Rm by algebraic or trigonometric 

polynomials. Most of the results recalled below can be found in the recent survey 

paper [108]. 

The modulus of continuity of a function /(x) defined on [a, b] is the function 

« ( / , * ) = sup \f(x')-f(x")\. (1.18) 
x',x"e[a,b],W-x"\<S 

It is obvious that if f is continuous on a finite interval [a, b], then 

w(/ ,«)-»0, as6-+0. (1.19) 

Moreover, if/ is a-Lipschitz, 0 < a < 1, i.e. / satisfies the Lipschitzian (or Holder) 

condition of order a: 

\f(x')-f{x")\<L\x'-x'f, forallx',x"G[a,6], (1.20) 

where L is called the a-Lipschitz constant, then 

u(f,6)<L6a. (1.21) 

The modulus of continuity of order k of a function f(x) defined on R or [a,b] is 

denoted by 

uk(f,S)£ sup |£( - l ) m Cr/(* + m*)|> I1'22) 
x6[a,6],|/i|<5,a;+mfce[o,6] m=0 

where 

c? = —-^—-. (i.23) 

We can see that for k = 2, / G C^a.6], 

U2(f,6) = sup \f{x)-2f(x + h) + f(x + 2h)\ 
xe[a,b],W<S,x+2h.€[a,b] 

< sup \f'(x')-f'(x»)\\h\ 
x€la,b],\h\<6,x+2he[a,b] 

(for some x' G [x, x -f h] and x" G [x + h, x + 2h] 

by the mean value theorem), (1-24) 
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and hence 

u2(f,6)<u(f',6)6 = o(8). (1.25) 

Furthermore, if / G C2[a, b], using the mean value theorem once again in the above 

inequality, we then have 

u2(f,6) < sup \r(x)\\h\* = 0(S'2). (1.26) 
i£[a,b] 

First introduced by Tchebycheff [106], the best approximation of a function f(x), 

continuous on [a, 6], in the metric of C[a, b] by algebraic polynomials of degree at 

most n is defined as 

£ „ ( / ) £ m i n | | / ( s ) - ^ ( * ) I U (1.27) 

where the minimum is take over all polynomials pn(x) = ]C!t=o ̂ kxk, for A*, G R, k = 

0,1, • • •, n. Weierstrass's theorem states that if / is continuous on [a, b] then En(f) —> 

0. 

More generally, we consider a sequence of sets of functions { {«:(<)> * *= Ai}in = 

0,1, • • • }, where a,- G C[a, b] for each i, /n 's are finite index sets satisfying /„ C ln+\ 

for n = 0,1, • • •. Usually, we also suppose that {a,, i G U£Lo In) iS taken to be dense in 

C[a, b]. In the one dimensional algebraic polynomial case, we take /„ = {0,1, • • •, n} 

and a{(t) = t\ In the trigonometric polynomial case, we take /„ = {0,1, • • •, 2n) and 

aQ(t) = 1, a2k-i(t) — cos(Atf), aik = sin(A;<), for k = 1,2,• • • ,n. 

Using the same notation, We define for each n, 

En(f) £ min {||/ - £ A.-a.-IU | Xk G K, A; G /„}. (1.28) 
«e/„ 

We now give some upper bounds for En(f) when / is smooth enough. 

Theorem 1.3.1 (Jackson,1911, [62]) Let [a,b] be a bounded interval on R, and let 

{ai,i G In} be algebraic polynomials of the form: 1, t, t2, •••, tn, or trigonometric 

polynomials of the form: 1, cost, s'mt, •••, cosnt, smnt. If f G CT[a,b], for r > 0 
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(while in the trigonometric case, we also assume that f is periodic with period 2K), 

then for some constant A independent of n, we have 

End) < ^U(r\1-)- (1-29) 

A corollary follows directly. 

Corollary 1.3.2 Under the assumptions of Theorem 1.3.1, we have 

1. IffeCT[a,b],r> I, then 

EnU) = o(^). (1-30) 

2. If f G Cr[a, b],r > 0, and f^ is a-Lipschitz on [a, b], for a > 0, then 

E«(f) = 0(-^). (1.31) 

For an analytic function / on [a, b], the corresponding result becomes (proved by 

Bernstein, 1911, in [9]): 

£„( / ) < Aqn, (1.32) 

for some constants 0 < </ < 1, A > 0, independent of n. Some similar inequalities 

related to higher order moduli of continuity are stated in [1] and [105]. For multi­

dimensional functions, the best approximation defined analogously has the following 

properties. 

Theorem 1.3.3 (Bernstein, [10],[11], Nikol'skii, [86],[87]) Let / (x l 5 x 2 , • • • ,xm) be a 

periodic function defined on Rm with period 2x in each variable. For some integer 

p, we suppose dpf/dxk exists. Further suppose for each k = 1,2,••• ,m, dpf/dxp
k 

is continuous in variable xk. Then the best approximation of f by trigonometric 

polynomials of degree at most n in each variable satisfies: 

*W) = °(i)- (1-33) 
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Theorem 1.3.4 (Timan, 1963,[109]) Let f(x\, x2, • • •, xm) be an m-variable function 

defined on a closed bounded parallelpiped T. Assume for some integer p and each 

k = 1,2, •••,m, dpf/dxP
: exists and is continuous in variable xk. Then the best 

approximation of f by algebraic polynomials of degree at most n in each variable 

satisfies: 

£n(/) = o ( l ) . (1.34) 

Since our uniform convergence results in Chapter 3 will be mostly based on Lv-

norm convergence theorems, we need to investigate the relationships between the 

different norms of an algebraic or trigonometric polynomial. 

Theorem 1.3.5 (Jackson, Nikol'skii, [63],[87], [89]) Let T = [-7r,7r]m,l <p < q < 

oo. Let pni,n2,-,nm{xi,x2, • • •, xm) be a trigonometric polynomial of degree at most nt 

in x\, n2 in x2, • • -, nm in xm. Then the following inequality is true: 

llPm.na,...,^!!, < >l(ni»»2---nm) l : ~' | |p W l l n J l . . . ,n m | |p , (1-35) 

jar some constant A independent of n\,n2, • • • ,nm . 

In particular, if pn is a trigonometric polynomial of degree at most n in each 

variable, that is n\ = n2 = • • • = nm = n, then 

| | P n | | , < ^ n ^ - ^ | | P n | | p . (1.36) 

The most interesting case is when q = oo, and p = 2, where we have 

| | P n | U < ; 4 n % n ; j 2 . (1.37) 

If instead we consider pn to be an algebraic polynomial of degree at most n in 

each variable, then we have 

Theorem 1.3.6 ([77], [88]) Let T be a bounded domain in Rm with pieccwisc (71 

boundary, and let I < p < q < oo. Assume that pn is an algebraic polynomial of total 

degree at most n : 

Pn\xli a;2) ' ' ' •> xm) = / , fl«Xj X2 • • • Xm , 
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where s = (si,s2, • • • ,sm) G Z™; 5,- > 0, i = 1,2, • • • m, \s\ = Si + s2-\ [-sm. Then 

llft.ll, < i4na(*-i) | |pn | |p, (1.38) 

/or same constant A independent ofn. In particular, for q = -f-oo and p = 2, we have 

llPnlU < ^4n||pn||2. (1.39) 

For a polynomial pn of degree at most n in each variable, the total degree is at 

most mn. So the inequality (1.38) and hence (1.39) holds except we take a different 

constant A'. 

We will also need some Remez-type inequalities of the following forms in later 

discussions. 

Theorem 1.3.7 (Remez, [27]) Let pn be an arbitrary trigonometric polynomial of 

degree at most n on T = [—7r,7r] C R, dt be a Lebesgue measure, p > 0. Let A be an 

arbitrary subset ofT, with p(A) > TC. Then there exists a constant C, such that 

fV \Pn(t)\pdt < (1 + e ^ ( 2 - « W ) ) / \pn(t)\*dt. (1.40) 
J—v J A 

Theorem 1.3.8 (Remez, [27]) Let pn be an arbitrary algebraic polynomial of degree 

at most n on [a, b] C R, dt be a Lebesgue measure, p > 0. Let A be an arbitrary 

subset of [a,b], with p(A) > (b — a)/2. Then there exists a constant C, such that 

t \Pn(t)\pdl < (1 + c<W(»-«>-"W) / \Pn(t)\>>dt. (1.41) 
Ja J A 

http://llft.ll


Chapter 2 

Some Estimation Theorems for 

Sequential Convex Programs with 

Linear Constraints 

2.1 Introduction 

In this chapter, we will define our class of entropy-like objectives, which include many 

frequently used entropies. For a general choice of the objective, we first estimate the 

upper bound of duality gaps. Then we will apply the results to some important 

entropies. Although we always have the strong duality theorem (see, for example, 

[12], [15], [17], [19], [20], [23], [46]) which guarantees that the duality gap is zero 

under some reasonable constraint qualification (see, for instance, [26], [65], [66], [78]), 

it is useful to get an upper bound on how well our estimated density, a solution of the 

convex program with finitely many moments, approximates to the underlying density 

in the entropic value. Using these inequalities, we will be able to prove some theorems 

on norm convergence. The results proved in Sections 2.3., 2.4. and 2.5. will let us 

establish uniform convergence results in Chapter 3. 

We will introduce assumptions that will be used throughout the thesis. An index 

of these assumptions can be found in Appendix A. 

14 
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2.2 Problems and examples 

We need to estimate an unknown density x on T, admitting a finite number of linear 

constraints (moments), and bounded by two functions a(-) and /?(•) defined also on T 

(the problem first proposed in [24]). Introducing an entropy-like objective function, 

we may consider the following program: 

(Pn) 

inf fT(j)(x(t))dp(t), 

s.t. fT ai(t)x(t)dp(t) = 6,-, i G /„ , 

xG L i ( l » , 

a(t) < x(t) < P(t), a.e. on T. 

(2.1) 

where 6, can be considered as given by bj = fT ai(t)x(t)dfi(t) for i G In. 

We make the following assumptions: 

(Al): (T, p.) is a complete finite measure space; 

(A2): a,- linearly independent functions in Loo(T,p,), for all i G In- InS are finite 

index sets satisfying: 

/ n C / n + i , n = 0 , l , - - - , 

and we denote by k(n) the number of indices in In; 

(A3): (j> : if? -+ (—oo,-|-oo] is a proper, lower semicontinuous, convex function with 

its domain dom(</>) satisfying: 

(a, 6) C dom(<^) C [a, 6], for some — oo < a < b < +00, 

i.e. a = inf(dom(^)) , b = sup( dom(f^)); 

(A4): (̂  is essentially smooth and essentially strictly convex on (a, b); 

(A5): o(-), /?(•) are extended real valued /i-measurable functions defined on T, with 

« < a(t) < (3(t) < b, a.e. on T; (2.2) 
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(A6): a, f3, <f> are chosen such that 

essinf(a) = a implies (f)'(a) = lim <f>'(u) = —oo, (2.3) 

and 

A 
esssup(/9) = b implies <j>'(b) = lim <j>'(u) = +00. (2.4) 

u—tb~ 

At the end of this section, we will give some concrete examples, where we choose. 

(j> to satisfy these conditions. 

Extending the function tf>, we define <j>: T x R —> (—oo, +oo] as 

We write 

and 

~ A J cf>(u), a(t) <u< /?(/), 

I -foo, otherwise. 

U{x)t J^{x(t))d^t), 

I^x)t fj(t,x(t))dp(t). 

Then (Pn) in (2.1) is equivalent to 

(2.5) 

(2.6) 

(2.7) 

(Pn) 

inf I fa), 

s.t. fT ai(t)x(t)dp,(t) = bi, i G /„, 

xeLi{T,p). 

(2.8) 

We now compute the convex conjugate of <f> and then h. 

Proposition 2.2.1 Let (A1)-(A6) hold. Then for almost all t G T, 

1. the convex conjugate function of <f> is finite everywhere and of the form: 

fr(t,v) = sup{(u,v) - $(t,u)} 

a(t)v - <f>(a(t)), v < <f>'(a(t)), 

= < <j>*{v), 4r{a(t))<v<4t{fi{t)), (2.9) 

fi{t)»-KP(*))> v>#W)), 
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(at the boundary point; of dom(<f>), we agree to use the left or right directional 

derivatives); 

2. <j)*{t,v) is continuously differentiable in variable v on R, with 

(*7aM = 
a(t), v<<f>'(a{t)), 

F{v), 4>'(a(t))<v<<j>'((3(t)), 

p(t), v>4F(fi(t)>, 

(2.10) 

3. {(j>*)2{t,v) is strictly convex in variable v on (<f)'{a[t) ),<f>'(/3(t))); 

4- the convex conjugate function of (j> and the derivative of <f> are inverse functions 

of each other in the sense of 
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ft(<,(^m«)) = '̂((**)i(<,«)) 
^(a(t)), v<<j>>(a(t)), 

cf>'(a(t))<v <cf>'{/?(*)), (2.11) 

<f>>((3(t)), «>^( /? (<) ) , 

and 

tfm&(*,«)) = W(«))==«, (2.i2) 

whenever a(t) < u < fl(t). 

Proof: See [24] or [25]. Note that (A5) and (A6) are required to guarantee that </>* 

is everywhere finite. • 

Proposition 2.2.2 Under the assumptions (Al)-(A6), the extended function <j> is a 

normal convex integrand. Hence the convex conjugate of Ir is given by: (Ir)* — h,. 

Proof: See [24] or [25]. • 

Although the functional Ir is everywhere nondifferentiable, in the next proposition 

we will see that the conjugate Ir, is very well behaved. 

For two extended real numbers a and 6, we write 

a V b = max{a,6}, a A b — min{a,6}. 

Proposition 2.2.3 Under Assumptions (A1)-(A6), the conjugate (Ir)* of Ir is Frechet 

differentiable at every x G Loo(T). In fact, for x G L^T), 

(I})'(x) = m a x { o ( 0 , m i n ( / 9 ( t ) , ( ^ y ( x ( 0 ) ) } 

= a(t) V (<f>*)'(x(t)) A 0(t). (2.13) 
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Proof: See [24] or [25]. • 

We can write the dual problem of (Pn) (or equivalently, (Pn) ) to be of the form: 

f max *(A) = fT[x(t) E, e / n A,-a,-(<) - ^ ( t , E,e /n A,-a,-(<))]^(0, ( 2 u ) 

\ a./. XeRk{n). 

A constraint qualification condition (CQ) (first given in [19]) which guarantees the 

strong duality result is of the form (see also [25]): 

there exists x G L\(T,p), such that 

a(t)<x<P(t), a.e. on T, 
< (2.15J 

fT<j>(t,x(t))dp,(t) < -{-oo, and 

/T a,(*)x(<)d/i(£) = b{, i G /n-

It has been proved that under this constraint qualification the following strong 

duality theorem holds (see also [17], [20], [24] or [78]). 

Theorem 2.2.4 (Borwein and Lewis, 1990) Under (CQ) of the form in (2.15), the 

optimal values of (Pn) and (Dn) are equal with dual attainment. Moreover, if A G 

RkW is an optimal solution of(Dn), then the unique solution of (Pn) is of the form: 

*n(<) = (̂ )'a(<> £ W ) ) - (2-16) 

Proof: See [17]. Note that the uniqueness follows from the strict convexity of <f>, 

given in (A4). • 

The following aie some typical choices of (f>, a and /?. All except Burg's entropy 

satisfy Assumptions (Al)-(A6). We will give <j> and (f> and then compute the conjugates 

(ft* a n d (j>*. 

Example 2.2.5 (Boltzmann-Shannon entropy) 

ulogu — u, u > 0, 

4{t,u) = <p(u)={ 0, « = 0, (2.17) 

+oo, u < 0, 
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with 

a(t) = a = 0, 0(t) = b = +00. 

Then 

4>*(t,v) = <j>*(v) = e\ 

Example 2.2.6 (Generalized Fermi-Dirac entropy) 

(u - a0) log(u - a0) 

4>(t,u) = <f)(u) = < 
+(0o ~ u) log(/?0 - «), «o < tx < 0Q, 

(0o - a0) log(^0 - a0), u = a0, or 0O, 

+00, otherwise, 

Then 

a(t) = a — a0, 0(t) = b = 0o (where — 00 < aQ < 0O < +00). 

f{t, v) ~ <f>*(v) = aQv + (0o - 00) log(^-±^- ) 
"0o- <V 

In particular, ao — 0,0o = 1 gives </ie classical Fermi-Dirac entropy. 

Example 2.2.7 (Z,p-entropy, 1 < p < +00) 

1. ,„ 
*(u) u 

(2.18) 

(2.19) 

(2.20) 

w/iere we can see a = —00, b — +00. /n most applications we set a(t) 

+00, and consider the truncated Lp-entropy: 

(j>(t,u) 

In this case 

f(t,v) 

iup, u > 0, 

-foo, u < 0. 

V , u>0, 
a 1 — ' 

0, v < 0, 

w/iere 1/p + 1/qr = 1. Â ô e tf/m2 without the truncation, we would have 

<j>*(v) = -\v\'1. 

(2.21) 

0, m = 

(2.22) 

(2.23) 

(2.24) 
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Example 2.2.8 (Burg entropy) 

Burg's entropy considers: 

* ! , „ ) = * , , = { " ' " • " " ' ^ (2.25) 
I -foo, u < 0, 

with a = 0, b = -foo. The conjugate function is 

- log(-v), v < 0, f(t,v) = f(v)={ 1 
(2.26) 

u > 0 . 

This is a very important entropy and has received a lot of attention. But for this 

dntropy, (A6) does not hold and hence the conjugate function is not everywhere finite 

as we saw in (2.26). We may set a truncation 0(t) = 0O > 0, and consider 

It* \ J ~ logM' 0 < u ^ # > ' r o W 
<p(t,u)=( (2.27) 

( -foo, otherwise. 
Now the conjugate function is 

^ ( M ) = ( " 1 " l 0 S ( " V ) ' V ' ~ h (2-28) 
{ v0o + \og0o, w > - ^ , 

which is finite everywhere on R. 

Example 2.2.9 (Burg-type entropy) 

In the spirit of Burg's entropy, we consider 

^ J - ' 0 * " - 1 0 ^ - " ' ' ° < U < 1 ' (2.29) 
( -foo, otherwise, 

with a = 0 = a, 0 = 1 = b. Then after some computation, we obtain 

4>*(t,v) = <f>*(v) = l(v-2 + V ^ + 4 ) + l o g ( ^ ± l _ ^ ) . 

Example 2.2.10 (Hellinger-type entropy) 

(2.30) 

( u ) = | M={ ^ ~ ~. (2.31) 
-foo, otherwise. 

Here a = O = a,0 = 2K = b. Then 

f(t, v) = <j>*(v) = K(v + v V - f 1). (2.32) 
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2.3 Estimates on duality gaps 

In this section, we will impose Assumptions (A1)-(A6) throughout. We also assume 

that x is feasible for (Pn) in the sense that 

x G Li(T,p,), 

fTai(t)x(t)dfi(t) = bu i G /„, 

a(t) < x(x) < 0(t), a.e. on T, 

fT<f>(x(t))dp,(t) < -foo. 

Given each n, f G Loo(T,fi), for our convenience, the best approximation of / by 

{a,-, i G In} is defined by 

En(f) = inf { || E A.«« " /Hoc I A G iR*(n) }• (2.34) 
i€ln 

Note that the number of elements in In may not be exactly n. For a given choice 

of <f>, and a feasible x, we write 

„ A J En(cf>'(x)), if^(x)G£oo(T,/i), 
£„ = ^ . (2.35) 

[ -foo, otherwise. 

For problems (Pn) and (i5n) given in (2.8) and (2.13), we can directly prove the 

following inequalities. 

Lemma 2.3.1 (Weak duality) Denote by V(Pn), V(Ai) the optimal values of prob­

lems (Pn) and (Dn), respectively. Then 

V(Pn) > V(Dn). (2.36) 

Proof: This follows directly from the convexity of <̂  and the Fenchel-Young inequality 

(1.10). • 
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Theorem 2.3.2 Let En < +00, then 

h(x) > V(Pn)>V(Dn)>I4>(x)-

(llxii,-f|H| lV||r(^)-^)||i 
+ | | / ? | | l V | | r ( ^ ) + ^n)||l)^n. (2.37) 

Moreover, if both a, 0 G L\(T,p), then 

W) > V(Pn) > V(Dn) > I+{x) - (\\x\U + \\a\U + \\0\U)En. (2.38) 

Proof: Since En < +00, <f>'(x) is almost everywhere finite. From the Fenchel-Young 

inequality (1.14), for almost all / G T where (f>'(x(t)) is finite, we have 

<t>( x ( t ) ) + <f>*( <f>'( x ( t ) ) ) = x(t)<t>'( x ( t ) ) . (2.39) 

Also, the feasibility of x and the monotonicity and continuous differentiability of </>' 

imply 

*'(«(*) )<* ' (* (< ) )<*W)) , (2-40) 

By the continuity of <f>* and ^*, we then have 

<j>*(nm)) = n^'(x(t))). (2.«) 

By the convexity of <j>*(t, •), for any A G Rk(n\ 

Pi t, n x(t))) - p(t, E A,-a,-(0) > r% E *Mt)){<f>'( *(*)) - E W*)) . 
•e/n ie/n »'€/n 

and hence by (2.41), 

f(f(^)))-f(^U(*)) 
l'6/n 

> f'(t, E A,«,(<))(̂ '( x(t)) - E W*)) . (2.42) 
»'€/n «'€/» 

Now for each n, we can find A" G Rk^n\ such that 

|| E K»i - *'(*)IU = En. (2.43) 
ie/n 

file:////x/U
file:////a/U
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By weak duality (Lemma 2.3.1), we only need to check the last inequality. For A" 

given in (2.43), using (2.39), (2.42), and (2.43), we have 

/,(*) - v(Dn) < l [H m) - X(t) E \>i(t) + i% E A?«.-(0)R*(0 
T iein iein 

= I [x(tw{x(t)) - nwm) - m E *?«••(*) 
JT .e/„ 
+4>V, E K«i(i))]Mi) ( ^ (2.39) ) 

t€/n 

< /'(s(*)-(*72(«.EA"«.-(«)))(^(*(<))- E A > , ( 0 > W 

( by (2.42) ) 

< £n||x(*) - (^)'a(t, E Ar«,-(*))||i, ( by (2.43) ). (2.44) 
iein 

Also from (2.43), we have 

<j>'( x(t) )-En<YJ A?a,-(t) < <j>'( x(i)) + En, a.e. on T. (2.45) 

Then using the expression for (< *̂)2 in (2.10) and the convexity of cj>*, we can see that 

max {a(t), <J>*'(<j>'(x(t) )-Ea)} 

< (*•)£(*, E AF«.(0) 
«'ef„ 

< min { /?(*), < W ( *(<) ) + En) }, a.e. on T. (2.46) 

This implies 

ll(*72(<.E*?«(0)lli 

< Hay, V ||rW'(S) " ^n)||i + ||/?||i V \\Wix) -f &)||,. 

Then we deduce 

ll*-(Wa(<,EA?a,-)||, 
ie/n 

< Piii + ii(«wEAr«,)iii 

< ||*||i + IMIi V W'l<i>'(x) - En)h + Wfih V WW® + En)\\t. (2.47) 

file:////Wix
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The inequality (2.37) follows. 

Furthermore, if both a,0 G L\(T,p), simplifying (2.46), we have 

a(t) < (f)'2(t, E K<t)) < P(i) a.e. on T. 

Then 

\\(mt,Ex>M\U<\Hi + \\0h, 
iein 

which leads to our simplified inequality (2.38). • 

We can see that we made an overestimation in deducing (2.47). The results can 

be easily improved by assuming the differentiability of ^*. In the previous section, we 

saw that (f>*(t, •) is continuously differentiable for almost all t G T, hence (4>*)'2(t, •) is 

continuous for those t G T. We now assume that (<j>*)'2(t, •) is locally 7- Lipschitzian 

for fixed t, where the Lipschitzian "constant" can be a function of t. 

We will say that (<j>*)'2(t,v) is locally 7-Lipschitzian (7 > 0) with respect to v on 

T, if for small n > 0, there exists a measurable function Lip(-, n, x) such that for each 

teT, 

{(n^vr) - (]>*)'2(t,v2)\ < Lip^x^-vtf, (2.48) 

whenever 

VuV2€[ip'(x(t))-ri,<f/(x(t))-rri\. 

Note that we have defined this concept only for small n. The reason is that we 

will explicitly assume En —> 0 when we prove uniform convergence. The inequality 

(2.48) only needs to be checked abound (j>'(x(t)) for fixed t. 

Corollary 2.3.3 Let Q>*)'2(t, v) be locally 7-Lipschitzian in v. Suppose that En is 

small enough and that Lip(-,En,x) G L\(T,pi). We have 

h(x) > V(Pn)>V(Dn) 

> I+(x)-\\Lip(t,En,x)\UEl+\ (2.49) 
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Proof: Continuing from (2.44) i- the proof of Theorem 2.3.2, for some A" G Rk^n\ 

we have 

h(x) - V(Dn) < f (x(t) - (i*)2(t, E A > , ( * ) ) ) ( < W ) ) - E K<n)Mt) 
JT •€/„ .6/,. 

< En / | x(t) - (f)'2(t, E A>,(*)) \dp(t) 
JT i6/„ 

< En j Lip(t,En,x)\<f>'(x(t))- E A>,(0Prf/i(/) 
, / T .6/,. 

(by assumption (2.48) and Proposition 2.2.1 ) 

< \\Lip(t,En,x)\UEl+\ 

We can further improve the above estimate by using a bound for <j>*". When (j>* is 

twice differentiable, we will say <f>*(t, v) has a bounded second derivative in variable v, 

if for small rj, there exists a measurable function J(-,n,x), such that for each t G T 

and v G [<j>'(x(t)) - n, <j>'(x(t)) + n], 

(f)'2\t,v) < J(t,n,x). (2.50) 

Corollary 2.3.4 Suppose (j>* has a bounded second derivative with respect to v m the 

sense of (2.50). Also assume En is small enough that 

J(t,En,x)eL,(T,n). (2.51) 

Then 

h(x) > V(Pn) > V(DV) (2.52) 

> I+(x)-\\J(t,En,x)\\iEl (2.53) 

In particular, when En —* 0, as n —• oo, (2.52) is true for large n. 

Proof: As in the proof of Corollary 2.3.3, for some An G Rk(n\ we have 

/,(*) - V(Dn) < f(x(t) - (4>*)'2(t, E A>,(*)))(>'(x(<)) - E K\(t))dfi(t) 
JT iein .e/„ 
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< En I \x(t)-(P)2(t,Y,Kam\Mi) 

= En I K**)a(t, nm) - (H(t, E K<t)) \MV 
JT tein 

(by Proposition 2.2.1 ) 

= Enj \(t*)'2(t,v(t))(<t>Xx(t)) - E \y^))W(t) 

(for some v(t) G (<!>'(x(t)), E,e/n A>,(<)), 

using the mean value theorem ) 

< En [ J(t,En,x)\cj>'(x(t))- E %a%(i)\dii(t) 

(by assumption (2.50) ) 

< 11^,^,5)11,^. 

• 

Note that in Corollaries 2.3.3 and 2.3.4, we do not require a or 0 to be in L\(T). 

We now apply the above estimates to some choices of <j>. Remember that we have 

assumed En < -foo, and the interesting case is when En —> 0 . 

Proposition 2.3 5 For the Boltzmann-Shannon entropy cf> defined in (2.17), we have 

1M > V{Pn) > V(Dn) > U(z) - \\x\\^BnEl 

Proof: Noting that 

(py2
,(t,v) = r'(v) = e\ 

we may take 

J(t,rhx) = sup{eu |<^(x(*)) - rj < u < cj>'(x(t)) + *?} = e''<*<'))+" = x(t)e\ 

since <j>'(x(t)) = logx(<). Then apply Corollary 2.3.4. • 

This recovers a result that was proved in [16]. We note that eEnE2 —• 0 with En 

and that asymptotically it behaves like E%. 
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Proposition 2.3.6 For the Fermi-Dirac entropy with arbitrary constant bounds given 

in (2.19), we have 

h(x) > V(Pn) > V(Dn) > k(x) - \(0O - a0),i(T)El (2.51) 

In particular, when ao = 0,0o = 1, we have 

h(x) > V(Pn) > V(Dn) > I+(x) - [-p(T)Eu. (2.55) 

Proof: Again, we use Corollary 2.3.4, noting that for t 6 T, 

• 

The following lemma is needed to deal with the truncated L,,-entropy case. 

Lemma 2.3.7 For any real numbers A, B > 0, 0 < a < \, we have 

\Aa - Ba\ <\A- B\a. (2.57) 

Proof: Define a function 

f(t) = (1 - if - 1 + r, 0 < t < 1. (2.58) 

Since 

f"(t) = a(a - 1)[(1 - tf-2 -f t"-2] < 0, (2.59) 

/ is concave on [0,1]. Then 

/(0) = / ( l ) = 0, implies f(t) > 0, for all t G [0,1]. 

Now setting t = A/B if A < B or t = D/A, if A > B, we obtain (2.57). • 

Proposition 2.3.8 For the truncated Lp-entropy defined in (2.22), we have: 
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/. Whenp>2, 

h(x) > V(Pn) > V(Dn) > h(x) - n(T)E'n. (2.60) 

2. When 1 < p < 2, 

h(x) > V(Pn)>V(Dn) 

> Vi)-(,-l)(||i||^ + ̂ )'-V(r)^, (2-61) 

where 1/p -f l/q = 1. 

Proof: 

1. Note that p > 2 implies q < 2. Using Lemma 2.3.7, we obtain 

m2(t,v,)-(py2(t,v2)\ < K - 1 - ^ - 1 ! 

< k+ -^+ r i<h-^r i . (2.62) 

Then we may apply Corollary 2.3.3 for 7 = q — 1 and Lip(t,rj,x) = 1. 

2. Note that we have 

(f)'2\t, v) = (g- 1K~2 < (<7 - i X ^ r 1 + i/)'"2, (2-63) 

for v G [x(<)p_1 - n,x(t)p-x + n}. Corollary 2.3.4 applies for J(t,n,x) = 

(q-l)(x(t)p-Uv)q-2-

Proposition 2.3.9 For the bounded Burg entropy of the form in (2.27) for 0O > 0, 

we have 

Ux) > V(Pn) > V(Dn) > k(x) - (||x||, -f 0o)En. (2.64) 

Proof: Apply Theorem 2.3.2, (2.38), for a = 0,0 = 0O. • 
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Proposition 2.3.10 For the Burg-type entropy defined in (2.29), we have 

U(x) > V(Pn) > V(Dn) > r+(x) - lfi(T)En. (2.65) 

Proof: Apply Corollary 2.3.4 for 

(n(t,v) = r(t,v) = y/^}z}<\. 
u V v + 4 o 

Proposition 2.3.11 For the Hellinger-type entropy defined in (2.31), we have 

IM > V(Pn) > V(Dn) > U(x) - Kp(T)El (2.66) 

Proof: Apply Corollary 2.3.4 for 

r(v) = —^-r < K. 
( r - t - 1 ) 2 

• 

Remark: The strong duality theorem guarantees that for problems (Pn) (or (Pn)) 

and (Dn), the duality gap is zero under reasonable constraint qualifications. Even 

without a constraint qualification, the above theorems give us the explicit bounds not 

only for 

V(Pn)-V(Dn) 

but also more importantly for 

V(Pn)-h(x) and V(Dn)-f+{x), 

which tell us how well V(Pn) (or V(Dn)) approximates to I^(x). 
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2.4 Necessary optimality conditions 

Consider the following general convex programming problem: 

(CP) inf{F(x) ,xGC}, (2.67) 

where X is a Banach space, F : X —• (—oo, -foo] is convex, C C X is a closed convex 

set, as discussed in Section 1.4. 

A classical necessary condition for xo G C to be an optimal solution of (CP) is 

(<7,x-x0) > 0 , (2.68) 

for some g G dF(x0) and all x G C. 

Now in our problems, we can take X = L\(T,p), F = 1$, and 

C = {x€Lx(T,fi) | / ai(t)(x(t) - x(t))dfi(t) = 0,i G rn, 

a(t) < x(t) < 0(t), a.e. on T}. (2.69) 

Then the necessary optimality condition for our problem can be stated as: 

Theorem 2.4.1 Suppose xn is the optimal solution of (Pn). Let x be any feasible 

solution for (Pn), then 

i <j>'( Xn(t) )( i(t) - Xn(t) )dfl(t) > U. (2.70) 

In particular, we have 

I $'( xn(t))(x(t) - xn(t) )dfx(t) > 0. (2.71) 

If we further assume a(t) = a, 0(t) = b, and (CQ) holds, i.e. 

there exists x G L\(T,p), such that 

a < x < b, a.e. on T, 
(2.72) 

fT <f>( t, x(t) )dp.(t) < -f oo, and 

fT ai(t)x(i)dn(t) - hi, i G 7n, 

then equality holds in (2.70) and (2.71). 



32 

Proof: The feasibility of x and xn implies the feasibility of xn -f A(x — xn) for any 

AG [0,1]. 

Since xn is the optimal solution of (Pn) and Ifan) < oo, we have 

I+(xn -f A( x - xn)) - I^xn) > 0, for all A G [0,1], (2.73) 

and hence 

\ JT [<!>( xn(t) + A( x(t) - xn(t) ))-<p( xn(t) )]dft(t) > 0, (2.74) 

for all A G (0,1]. For each fixed n, by the convexity of <f>, we have 

«*„(.)+A( m - M«) > > - « « . w ) i , ( Xn(1))(i(t) _ ,n(1) }> (275) 

as A | 0, for all t ET. Note that we agree to use one-sided derivatives when necessary. 

Hence for almost alH G T (where both (j>(x(t)) and (f>(xn(t)) are finite), 

o < « m > - H x „ w > - *( x"(i)+A( m y-(t) »-«'-('» 
A 

t <f>( X(t) ) - <j>( Xn(t) ) ~ <j>'{ Xn(t) )( X(t) - Xn(t) ) . (2.76) 

Let 

fX(t) = *(*(<)) " *(*.(*)) - <f>Mt) + mt)-*n(i)))-<l>(Xn(t)) ^ ??) 
A 

Then 

h(t) T /(<) = <t>( *(') ) ~ <K *»(*) ) ~ <t>'( Xn(t) )( X(t) - Xn(t) ), (2.78) 

with A —• 0. Noting that f\(t) = 0, using Levi's theorem (see [59]), we obtain 

/ <p'( Xn(t) )( X(t) - Xn(t) )dp.(t) > 0. (2.79) 

In particular, by the feasibility of x, we have 

/ <j>'( Xn(t) )( X(t) - Xn(t) )d,l(t) > 0. (2.80) 
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We now assume that (CQ) of (2.15) holds, and a(t) = a, 0(t) = b. By the duality 

results, we have 

*»(*) = ( W , E A.-0.-W) = f (E WO), f°r some A € Rk{n), 
iein iein 

and 

/,(*w) = V(Pn) = V(Dn) 

= I [*(*) E W ) - <^E W0)]*(0> 
JT iein iein 

and 

^'(^n) = E At«t, 

which is finite everywhere. Then 

i <l>'(xn(t))(x(t)-xn(t))dii(t) 
J X 

= / [x(<)^'( *„(0 ) - xn(t)<j>\ xn(t) )]dp(t) 

= / [5W(»n(<))-^*n(0)-^(^M0))]^W 
(convexity of § and (1.14)) 

= / [x(t)<f>'(*»(0) " 5(0 E W O + f ( E W O ) - n <f>'(*«(0) )W(t) 
JT iein iein 

= f fawwo) - E w o ) + ^ (E w o ) - n <i>'(xn(t)) )]dp(t) 
•IT .v- r ; , r ie/n iein 

(feasibility of x and x) 

= 0, ( since <f>'(xn) = E AfOi). 

In particular, 

/ cj>'( xn(t))(x(0 - xn(t) )dp(t) = 0. (2.81) 
JT 
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Corollary 2.4.2 Let xn be the optimal solution of the problem (-P„), let x be any 

feasible solution for (Pn). Then: 

1. For the Boltzmann-Shannon entropy, we have 

[ log x„(0( Hi) - x n(0 )dii(t) > 0. (2.82) 

2. For the Fermi-Dirac entropy, we have 

L log^n-^T^ w - x»w w ) ^ °- <2-83) 
JT Po - Xn(t) 

3. For Burg's entropy, we have 

4- For the truncated Lp-entropy, we have 

J xr\t)(x(t)-xn(t))dn(t) > 0. (2.85) 
JT 

5. For the Burg-type entropy defined in (2.29), we have 

Jr7^^mm-x"{t))Mt)>'°- (2-86) 

6. For the Hellinger-type entropy defined in (2.31),we have 

f *n(t)~K ( t) _ } } } Q (2g7) 

JT yJxJfy(2K - xn(t)y 

Moreover, the equality holds in 1, 2, 3, 5 and 6 under (CQ). 

Proof: Simply compute the derivatives of the corresponding <j>. • 

Note that in the truncated Lp-entropy case, the equality fails since a (0 = 0, while 

a — —oo. 
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2.5 Norm convergence 

In Theorem 2.3.2, Corollaries 2.3.3 and 2.3.4, we gave error bounds for V(Pn)-V(Dn) 

and J fa) — V(Pn). If xn is the optimal solution of (Pn), we thus have the error bounds 

for I fa) - I fan). 

When 

oo 

4>'(x) G span{ai,i G (J /„}, (2.88) 
n = l 

(where the closure is taken in the sense of supreme norm), it is clear that 

En -+ 0, as n -» oo, (2.89) 

which implies 

Ifan) —* Iz(x)i as n —> oo. (2.90) 

Our next goal is to consider norm convergence in the sense that 

IK - *IIP = ( / MO - s(0r<*M0)' -* o, (2.91) 
J 1 

for p > 1. Theorems on norm convergence have been proved in [16], [23], [79] and 

[107] assuming the strict convexity of Ir. Here we wish to relate the rate of norm 

convergence to En recalled in (2.35). We begin by giving lower bounds (in terms of 

the norm error ||x„ — x||p) for the difference between the primal values of xn and x. 

We will then be able to use the results given in Section 2.3 and deduce the norm 

convergence rate, or more precisely estimates. 

First, we impose a strong convexity assumption (Al) for <j> : 

There exists 8 > 0, r > 1, such that 

<f>(u,) - <f>(u2) - cj>'(u2)(u, - u2) > 8\m - u2\
r, (2.92) 

for all Mj,u2 G (essinf(a),esssup(/3)). 
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Theorem 2.5.1 Let (A1) — (A7) be true for some r > 1 and 8 > 0, xn be the optimal 

solution of(Pn). Then 

I fa) - Ifan) > S\\x - xn\\
r
r. (2.93) 

Proof: By Theorem 2.4.1, 

I fa) - Ifan) = / [<j>( X(t) ) - <j>( Xn(t) )]dft(t) 

> f [<f>( X(t) ) - <j>( Xn(t) ) + <f>'( Xn(t))( X„(0 - X(t))]dfl(t) 

> I 8\X(t) - X n ( 0 | X 0 = S\\X - Xn\\r
r. 

• 

Combining with Theorem 2.3.2 or its corollaries, it follows that 

||^ — xn\\r —» 0, as n —> oo, (2.94) 

provided that En —• 0. 

Symmetrically, we can require the strong convexity of the conjugate function (j)*. 

(AT): There exists 8 >Q,r > 1, such that 

<£>i) - <j>*(v2) - <n«2)(t>i - v2) > 8\vt - v2\
T, (2.95) 

for all Vi,v2 G (essinf( <f>'(a) ),esssup( <f>'(0))). 

Theorem 2.5.2 Let (Al) — (A6) and (AT) hold. Let xn be the optimal solution of 

(Pn). Then 

I fa) - I fan) > 8\\<j>'(x) - <j>'(xn)\\
r
r. (2.96) 

Proof: Again from Theorem 2.4.1 and the conjugate property (1.14), 

I fa) - I fan) 

. = J[4(x{t)) - <Hxn{t))]dp{t) 
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> ^ [<!>( X(t) ) - <f>( Xn(t) ) + <f>'( Xn(t) )( Xn(t) - x(t) )]dp(t) 

= / [<!>( X(t) ) - <f>( Xn(t) ) + <f>'( Xn(t) )xn(t) ~ <j>'( Xn(t) )x(t)W(t) 
•J 1 

= j [<f>( x(t)) + <(>*( 4f(Xn(t))) - x ( 0 ^ ' ( x n ( 0 ) ] ^ ( 0 

= / [x(t)<j>( x(0 )-f( #( x(t) )) + </>*( <f>'(xn)(t)) - x(t)<f>'(xn)(t)]dp(t) 
J I 

= JT [W(xn(t))) - <W(*(0)) ~ W(*(0))(^K(0) - 4>'{x{t))j\dp(t) 

> JT6\+'(xn)(t)-4'(x{t))\rdr(t) 

= 8\\4'(X) - iftXn) \l-

Clearly, Assumption (Al) and (AT) are implied by the strict positivity of the 

second derivatives of <j> and <f>*, respectively. We then have the following corollaries. 

Note that the conditions we will invoke in the corollaries below are slightly weaker 

than the uniform boundedness of <f>" or <f>*". 

Corollary 2.5.3 Let <f> be twice continuously differentiable on (a,b). Define for each 

V>0, 

S(n) = {uER\ <f>"(u) > r,). (2.97) 

Let xn be the optimal solution of (Pn), and suppose there exists rjo > 0 such that for 

almost all t ET, 

co{xn(t),x(t)} C S(n0), (2.98) 

then 

I fa) - Ifan) > //op - *n||2. (2.99) 

Proof: As in the proof of Theorem 2.5.1, by the mean value theorem, 

I fa) - Ifan) 
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> JT [<t>(x(t)) - <t>(Xn(t)) + <f>'(Xn(t))(xn(i) - * ( 0 ) R < ( 0 

= JT [f(t(t))Mt) ~ x(t)?]Mt) 

( for some £(t) G co{xn(t),x(t)}) 

> Vol (xn(t) - x(t))2dfi(t) ( by (2.98) ) 
JT 

= »?o|K - xll?,. 

Corollary 2.5.4 Let <f>* be twice continuously differentiable on (cj)'(a),(j)'(b)). For 

each rj > 0, we write 

S*(n) = {vER\<f>*"(v)>V}. (2.100) 

Let xn be the optimal solution of (Pn), and suppose there exists no > 0 such that for 

almost all t ET, 

Zo{^(a r n (0 ) ,^ (2 (0)}C5*M. (2.101) 

Then 

I fa) - Ifan) > TtoM'(x) ~ <£'(*«)||2. (2.102) 

Proof: This is analogous to the proof of Corollary 2.5.3. • 

In combination with the estimates given in Section 2.3, we have not only proved 

\\x — xn|| —> 0 or H^'(x) — <^'(xn)|| —• 0, but also have compared the "rate" of norm 

convergence with that of En —> 0. We can further weaken the conditions (A7) and 

(A7') just to guarantee ||x — xn | | —* 0 or ||^»'(x) — <^'(xn)|| —• 0. We will say that <j) 

satisfies (A8), if for some r > 0, 

<j>(Ul) - <j>(u2) - <l>'(u2)(ux - u2) > H(uu\u, - U 2 | r ) , (2.103) 

where H : (dom^) x R+ —* R+ is monotonic in the first variable, strictly increasing 

and convex in the second variable, and H(u\,0) = 0. 
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Theorem 2.5.5 Let (A8) hold for some function H and r > 0, xn be the optimal 

solution of the problem (Pn)- Then if H is nondecreasing in the first variable, 

I fa) - /,(*„) > H( inf x(0, ||* - xn| |3 . (2.104) 

Correspondingly, if H is nonincreasing in the first variable, 

I fa) - Ifan) > H(supx(t), \\x - xn\\
r
T). (2.105) 

teT 

Proof: Without the loss of generality, we only prove the "inf" case. By Theorem 

2.4.1, 

I fa) - Ifan) 

> I fo(*(0) ~ #*»(0) + i'(xn(t))(xn(t) - X(t))]dfi(t) 
JT 

> JT[H(x(t),\x(t)-Xn(t)\r)dn(t) 

> jT[H(mfx(t),\x(t)-xn(t)\r)dp,(t) 

( by the monotonicity of H in the first variable ) 

> H ( m f i ( 0 , / 1 | S ( 0 - M 0 l r ^ ( 0 ) 

( by the convexity of H in the second variable ) 

= H(Mx(t),\\x(t)-xn(t)Z). 

• 

Together with the theorems in Section 2.3 and strict monotonicity of H in the 

second variable, the inverse of H(\nit^Tx(t), •) exists, and noting that H(u\,0) = 0, 

we have 

| | x - x n | | r - > 0 when Ifan)-Ifa)^0. (2.106) 

Analogously, we will say <f>* satisfy (A8'), if for some r > 0, 

<f>*(vx) - <j>*(v2) - ^ ( U a ) (« , - i*) > H*(v2, h - v2\
r), (2.107) 

where II* : (dom^*) x R+ —* R+ is monotonic in the first variable, strictly increasing 

and convex in the second variable, and H*(vi,0) = 0. 
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Theorem 2.5.6 Let (A8') hold for some function II* and r > 0, and let xn be the 

optimal solution of the problem (Pn)- Then if H* is nondecreasing in the first variable, 

I fa) - Ifan) > H*( inf <f>'(x(t)), U'(x) - ^'(xn)| |;). (2.108) 

Correspondingly, if H* is nonincreasing in the first variable, 

Ifa)-Ifan) > ir(sup^(x(0),| |<A'(*) - </>'(XB)||;). (2.109) 

teT 

Proof: Similar to the proof of Theorem 2.5.2 and 2.5.5. • 

Hence when I fa) — Ifan) —* 0, as has been discussed before, we will have 

H^'(x) — ^'(x„)||j; —> 0, as n —• 0. We now come back to the examples of Section 2.2, 

and combine our lower bounds with the upper bounds given in Section 2.3. 

Proposition 2.5.7 Consider the problem (Pn) in (2.1), where <j> is the Fermi-Dirac 

entropy defined in (2.19). Let xn be the optimal solution of (Pn). Then 

II* - zn||» < ^^y/^T)En. (2.110) 

Proof: Since 

, „ , v 1 . 1 /?o-c*o . 4 
<f>(u) = - f - = - — ->- , 

u - a0 Po -u (u- ao)(0o - u) 0O - a0 

we apply Corollary 2.5.3 and get 

I fa) - Ifan) > T^— \\X - IB||ij. (2.1 I 1) 

Po — a0 

Together with (2.54) in Proposition 2.3.6, we have 

x - X n l l ^ ^ ^ ^ T ) ^ , (2.112) 
0o - « o 

and the desired inequality follows. • 

Proposition 2.5.8 Consider the problem (Pn)> where (j> is the Burg-type entropy 

defined in (2.29). Let xn be the optimal solution of (Pn). Then 

\\x-'Xn\\2<^En. (2.113) 



41 

Proof: Since 

+» = -2+ 7 7 ^ ^ 8 ' ul (1 — uy 

we apply Corollary 2.5.3 and get 

I fa) -Ifan) > 8||x -arB | |j 

On the other hand, we can see 

V ^ T 4 - 2 1 
9 (v) = , < - . 

Then Corollary 2.3.4 tells us 

JJx\ - TJx-\ < I fa) - Ifan) < \E2
H, (2.114) 

and we have 

ll.T - T _ l l o < * - * n | | 2 < ^ n . (2.H5) 

To obtain a corresponding result for the truncated Lp-entropy, we need the fol­

lowing inequalities. 

Lemma 2.5.9 For any real numbers A,B>0, a > 1, we have 

(A + B)a >Aa + Ba. 

Proof: This is obvious when A or B is zero. We assume A, B > 0. Define a function 

/ ( 0 = (l + 0 a - 1 - ' a > < ^ 0 - (2-116) 

Then 

f'(t) = a ( l + 0 a _ 1 - ctta~l = a((l + 0""1 - *a_1) > 0. 

This implies 

f(t) > /(0) = 0, 

and the inequality (2.116) follows when we set t = B/A. m 
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Lemma 2.5.10 For any A, B > 0, q > 2, we have 

-A^-B"-A^B^-U-B\". (2.117) 
p q q 

Proof: This is trivial when A = 0, so we assume A > 0. Let 

f(t) = - + h<-t--\l-t\q, i > 0 . (2.118) 
p q q 

For t < 1, using Lemma 2.5.9, we have 

/'(*) = f 1 - 1 + (i - 0' -1 <(< + i - 0 , _1 ~ i = o . 

For t > 1, we again use Lemma 2.5.9 and get 

/'(*) = / ' - 1 — 1 _ (t — I)*"1 = ( t - l + l ) ' - ' -l-(t-\)''-1 

> (t - l ) ' " 1 -f 19_1 - l - ( t - l ) " - 1 = 0. 

So / attains its minimum at t = 1, i.e. 

f(t) > / ( l ) = 0, t > 0. 

Then (2.117) follows when we set t = J3/A • 

Now we have 

Proposition 2.5.11 Consider problem (Pn), where <f> is the truncated Lp-entropy 

defined in (2.22). Let xn be the optimal solution of (Pn). Then for p > 2, 

\\x - xn\\p < (pp{T))1'E*n-\ (2.119) 

and for p < 2, or equivalently, q > 2, 

PP _ l " <~% < (</('/ - lXINS:1 + ^ r 2 ^ ( T ) ) ^ | . (2.120) 

Proof: First let p > 2 and hence q < 2. From Proposition 2.3.8 (1), we have 

Ifa)-Ifan)<li(T)El (2.121) 
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From Lemma 2.5.10, we have 

<MUl) - vM - ^'(«2)(«l - "2) 

= -u\ up
2-u

p
2~

l(uA-u2) 
p p 

P 1 P P—1 
= -u2 H—u\ — u2 Ui 

q p 

> -\u\ — u2y. 
V 

Then using Theorem 2.5.1, we obtain 

Ifa)-Ifan)>-\\x-xn\\
p

p. (2.122) 
P 

Combining (2.121) and (2.122), we have 

\\x-xn\\p<(pp(T))iET\ (2.123) 

Now we let p < 2 which implies q > 2. From Proposition 2.3.8 (2), we have 

I fa) - / , (*.) <(q- l ) ( | | x | | ^ + En)"-2p,(T)E2
n. (2.124) 

Applying Lemma 2.5.10 in the following way, we see that 

<p'(vi) - <j)*(v2) - <f>*'(v2)(vi - v2) 

= -v\ - -v\ - v\ (vX - v2) 

a 1 q (j—1 
= -v\ -f -vl - vxv2

! 

q p 

> - | « i - u 2 | ' . 

We then apply Theorem 2.5.2 and get 

Wx)-rfan)>±\\x*-l-z>TX (2.125) 

Combining (2.124) and (2.125), we obtain 

P " - 1 " <-'\\q < <l(<l ~ l)(P\W + Enr
2fi(T)E2

n, 

and (2.120) follows. • 
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Proposition 2.5.12 Consider problem (Pn), where <j) is the Boltzmann-Shannon en­

tropy defined in (2.17). Let xn be the optimal solution of (Pn), and for some M > 0, 

||*n||oo < M for all n. Then 

\\x-xn\\2 < ( m a x f M J x I U J p H O M ^ . (2.126) 

Hence for x E Loo(T,p.), we have \\x — xn||2 = 0(En) as *,„ —> 0. 

Proof: Since for some M > 0, Hxnjloo < M, for all n G W. We may take 

,0 = min{irjiiC)-

Then, applying Corollary 2.5.3 and Proposition 2.3.5, we have 

Vo\\x-xn\\
2
2<\\x\UeE»En, 

and (2.126) follows. n 

Note that |jx||oo = oo might occur. Also, to avoid needing the uniform bounded-

ness of {xn}, we may check condition (A8) defined in (2.103). 

Lemma 2.5.13 For the Boltzmann-Shannon entropy defined in (2.17), (A8) holds. 

Proof: For u\,u2 > 0, we first claim 

(£(Ul) - <j)(u2) - <^'(u2)(«i - 1*2) 

> - u j o g ^ - f | u 2 " M l 1 ) + | u a - u , | . (2.127) 

To show (2.127), we only need to check the inequality for u2 — u\ < 0, since the other 

case is clear when we write out <f> and (j)' explicitly. 

Define a function for 0 < 5 < u\, 

s s 
f(s) = -Uj log(l ) - s -f u, log(l -f —) - s 

U\ U | 

= -ux log(ui - 3) -I- ux log(u, -f .3) - 2s. (2.128) 
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Then 

?is) = —±— + -—4 - 2 = - 5 - 4 - 2 > 0, 

since |s| < |ui|. So /(a) > /(0) = 0, and hence (2.127) holds. 

Now in (2.103), for r = 1, we take 

H(x,y) = -xlog(l + ^) + y, x,y>0. (2.129) 
x 

Noting that logx < x — 1 for x > 0, we have 

^(*,y) = iog(-4-) + i - - ^ - < o . 
x + y x + y 

Hence H is nonincreasing in the first variable. On the other hand we see that 

H'y(x,y) = -^->0, y x + y 

for x, y > 0, and equality holds only if y = 0. Also 

x 

W'^-CTW*0 

and hence H is strictly increasing and convex in the second variable on y > 0. Thus 

(A8) holds. • 

Combining Proposition 2.3.5, Theorem 2.5.5, and Lemma 2.5.13, we have 

Proposition 2.5.14 Consider problem (Pn), where <j> is the Boltzmann-Shannon en­

tropy defined in (2.17). Let xn be the optimal solution of (Pn). Further suppose 

supt€Tx(t) < 1/8, for some 8 > 0. Then 

8\\x - xn|{., - log(l + 8\\x - xn||j) < 8\\x\UeE»E2
n. (2.130) 

Therefore if En —* 0, we have 

| |s-a?»||i - > 0 
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This again recovers the result obtained by Borwein and Lewis in [16]. Using (A8'), 

we can even get the similar result for Burg's entropy. 

Lemma 2.5.15 For Burg's entropy defined in (2.25), (A8') holds. 

Proof: For V\,v2 < 0, we claim 

(j>*(vt) - 4>*(v2) - 4>*'(v2)(vx - v2) 

> - l o g ( H - l ^ ^ ! ) - f — \v,-v2\. (2.131) 
-v2 -v2 

For the same reason as in Lemma 2.5.13, we only need to check the last inequality 

for v2 — v\ < 0. 

Define for 0 < s < —v2, 

f(s) = _log(l + - ) + - + log(l + — ) - — 
v2 v2 —v2 —v2 

„ |og(Z?i±i ) + ?£. (2.U2) 

-v2 - s v2 

Then 

1 1 2 

f'(s) = — + + -
—v2 + s —v2 — s v2 

-2v2 2 2s2
 t 

= 4^+vr^^f)>0' (2lM) 

since [̂ | < |u2| and v2 < 0. This implies the inequality (2.131). 

Now in order to check (A8'), for r = 1, we may take 
H*(x,y) = - log(l + l) + l = - log(x -f y) + log(x) + ^ , (2.134) 

X X X for x,y > 0. Noting that 

K'(*,y) = — \ - + l 
x + y x x2 x(x + y) x2 

x x + y x 
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we see that H is nonincreasing in the first variable. On the other hand, we also have 

*.-('.»)=-4+;>°' ">'{x'v)=vn??>"• 
Thus // is strictly increasing and convex in the second variable on y > 0. So (A8') 

holds. • 

Proposition 2.5.16 Consider the problem (Pn), where (f> is Burg's entropy defined 

in (2.25). Let xn be the optimal solution of (Pn). Further suppose En —• 0, and 

0 < -h < x(t) < M < +oo, (2.135) 

for some M > 0. Then 

for large n. This implies 

| r - —||i - • 0, asn^oo. (2.137) 

Proof: Since x(0 < M implies l /x(0 > l/M, we have 

For n large enough such that En < 1/2M, there exists An G RkM with the property 

HEA>,-^IU = £„<2^. 

Then 

which implies that ^*(£,6/n A"a,) and <^*'(E.e/„ Ka>) a r e finite. Noting that 

nEA>,)= \na.)2<^\ 
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applying Corollary 2.3.4, we obtain 

I fa) - Ifan) < 4M2
fi(T)E2

n. (2.138) 

On the other hand, using Theorem 2.5.6 and x > 1/Af, 

I fa) - Ifan) 

> H*(\n(9'(x),\\9'(x)-<l>'(xn)h) 

> H*(-M,\\l--~l-\U) 

- -^-s'l-^'-siii-i'- {%m) 

Hence, combining (2.138) and (2.139), we have 

-w-ifiz-±h)-jjiz-±h<*M'«T)ei, (2.MO) 

and the result follows. • 



Chapter 3 

Uniform Convergence Theorems 

3.1 Introduction 

Using a maximum entropy method to solve moment problems requires minimizing 

some measure of entropy/information, a convex integral functional of the density, 

subject to the given moment constraints. In doing this we hope that the estimates 

will converge to the unknown density as the number of known moments increases. 

As proved or stated in many recent papers (see, for example, [21], [18]), we know 

that weak-star convergence hold almost unconditionally ([50], [82], [79]), and weak 

convergence can be guaranteed if the level sets of the objective function are weakly 

compact ([18], [23], [50], [79]). To obtain norm convergence, we require more assump­

tions such as strict convexity ([16], [79], [110]). Also, a uniform convergence theorem 

has been proved for the Boltzmann-Shannon entropy in [16] and generally for analytic 

underlying functions in [28]. 

The main results which will be proved in this chapter are some uniform conver­

gence theorems for moment problems with entropy-like objectives. We will specialize 

these theorems to many well known entropies. 

As observed in Section 2.1, we know that because of the bound constraints a(-) 

and /?(•), <f>* is a piecewise defined function. Under the given (CQ), the optimal 

solution xn of (Pn) has been seen to be truncated at a and 0. However, for entropies 

49 
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such as the Fermi-Dirac entropy, where a and 0 are simply constants, we see that 

<f>'(a) = —oo and <j>'(0) = +00, and then the truncation in the expression of xn 

disappears. So the bound constraints are automatically fulfilled. In the next section, 

we first discuss uniform convergence for this case, which is easier to deal with. In 

Section 3.6, we return to the truncation-type entropy, where we will need to use 

Remez-type inequalities. 

The reader is reminded that an index of assumptions is given in Appendix A. 

3.2 Uniform convergence theorems for FD-type 

entropies 

First we are going to deal with the FD-type entropies, named after the Fermi-Dirac 

entropy which has the form in (2.19). Using this entropy, the bound constraints are 

automatically included in the objective function. The function (j) and its conjugate 

function (f>* are both essentially smooth and essentially strictly convex on R. The 

optimal solution of the problem (Pn) has the form 

*n(o = <nEA.-«.-(0)- (3.1) 

Knowing this makes uniform convergence theorems much easier to prove. 

More generally, we consider the following FD-type problem 

inf fT <(>(x(t))dfi(t), 

(FDPn) \ s.t. fTai(t)(x(t)-x(t))dfi(t) = 0, ieln, (3-2) 

x G Z , i ( 7 » , 

where (T, p) is a complete finite measure space, a, G Loo(T,p), for i G /„, and the 

function <f> : R —• (—00, -foo] is a convex integrand with domain dom(< )̂ satisfying 

(a,b) C dom(< )̂ C [a,b] for finite numbers a and b. We also assume: <p is essentially 

strict convex and essentially smooth on the dom(<^), which implies 

lim <j>'(u) = - c o , lim <j)'(u) = +00. (3.3) 
u—>o+ u-*b~ 



51 

Then the conjugate function <f>* is everywhere finite. It is also essentially strictly 

convex and essentially smooth on R, with the useful property: (/>*' = (<l>')~1. 

The dual problem of (FDPn) is 

(FDD) I SUP -fr[*(0 £••€/„ A,-a,-(0-^(E,-e/nA<a,-(0)]d/i(0, ( 3 4 ) 

\ s.t. A G J2*W. 

The constraint qualification (CQ) takes the form: 

there exists x G L\(T,p), such that 

/T [ai(0(x(0 - *(0)]<M0 = o, i e /n, 
a < x < fc, a.e. on T, and 

fT(j)(x(t))dp(t) < -foo. 

By the duality results, if (CQ) of the form in (3.5) holds, then V(FDPn) = 

V(FDDn), and both optima are attained. Moreover, if A G Rk^ is an optimal 

solution of (FDDn), then the unique solution of (FDPn) is given by 

*» = f '(EA~,«,). (3.6) 
t'6/„ 

Also we have <j>'(xn) G span{ai,i E /„}, which implies 

a < xn(t) < b, a.e. on T. (3.7) 

For given {a,-,i G /«} and each n E IN, p > 1, we define a renorming constant 

An,p = sup{Wp, fEspan{ai,iEln},f^0}. (3.8) 

Noting that 

II/IIP = ( / r 1/(0 W O ) * < ll/llco(/«(r))i > o, 

it is always true that 

Ari>p > (p(T))"r > 0. (3.9) 

To obtain uniform bounds for {x — x n}, we also require (j>* to satisfy the following 

two more assumptions. 
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(AF1): For some 8 > 0, r > 1, 

<p*(Vl) - <f>*(v2) - P'(v2)(v, - v2) > 8\v, - v2\
r, (3.10) 

for all v\,v2 G R. 

(AF2): <f>* is 7-Lipschitzia.11 on R for some 7 > 0, i.e. there exists a constant L, 

such that 

\r\vl)-<f>*,(v2)\<L\vl-v2\'', (3.11) 

for all vi, v2 G R. 

It is obvious that the strict positivity and boundedness of the second derivative 

of (j>* will imply (AF1) and (AF2) for r = 2 and 7 = 1 if we take 

* = min{>*>)}, I = m « { ^ » } . 

Theorem 3.2.1 Consider the FD-type problem (FDPn) defined in (3.2). Suppose 

that <f> satisfies (AF1)-(AF2) for some r > 1, 8 > 0, L > 0, and 7 > 0. Let {xn) be 

the optimal solution of (FDPn), and (CQ) hold. Further assume x G L\(T,p) and 

^'(S)6i/oo(r,/x). Then 

\\<J>'(X) - <f>'(xn)\\oo < 

En + (fl(T))T An,rEn + (\n(T)L) r A n , r En ' . (3.12) 

In the most interesting case, when 7 = 1 and r = 2, we have 

U'(x)-9'(Xn)\\oo = 0(An,2En). 

Proof: For each n , we can choose A" G Rk^n\ so that 

| |^(x)-EA>,| |oo = ^ . (3.13) 
«'€/n 

http://7-Lipschitzia.11
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Then by (3.13) and the definition of An,r in (3.8), we have 

U'{x)-4fM\U 

< ll^'OO - E Ar«.|loo + II E A>,- - <t>'(Xr 
iein *eln 

< |lEA>.-^n)lloo+^n 
iein 

< £rB + AB,r||EA?a<-^(zn)||P 

< En + Anir(||^'(x) - E A?o.-||r + ||^'(x) - ^(xn)||r) 
*'e/n 

< En + &n,r(En(KT))-r + U'(x) - ^'(xn)||r) 
1 

< En + An,r(En(KT))" + h)Hh(x) - /,(xn))*) 

l 1 i i±l 
< En + (p(T))rAnyTEn + (-//(r)L)rAn,r£;nr . 8' 

Again from Assimption (AF2) and 9*' = (y1) x, we have 

\\X - Xn\U = WW*)) ~ <W(*n))||oo < L\\9'(x) - <f>'(x ̂ Wl - (3.14) 

Hence ||x - xn||oo —> 0 is implied by ||^'(x) - ^'(x„)||oo -> 0. 

In the above theorem, we can see that in order to ensure 

\\<f>'(x) - (j>'(xn)\\oo - » 0, as n -> oo, (3.15) 

we first must require En —• 0, which is true if span{ai, i E IXLo <̂ n} ̂  Li(T). More 

than that, we also need 

A„> r^ n->0, and A n i r £„ r -> 0. (3.16) 

In the case where {a,} are algebraic or trigonometric polynomials, (3.16) can be 

fulfilled for smooth enough x. We will give detailed conditions later for these to be 

true. 

When <f>* is twice continuously differentiable, we have a direct corollary. 
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Corollary 3.2.2 Consider the FD-type problem (FDPn) defined in (3.2). Assume, 

that 9* is twice continuously differentiable on R and for some 8Q > 0, 

So < 9*"(v) < -J-, for all vER. (3.17) 

Let xn be the optimal solution of (FDPn), then 

W(x) - ^(xB)||oo < En + (1 + ̂ )(p(T))^An,2En. (3.18) 

Proof: Apply Theorem 3.2.1 where r = 2, 7 = 1, L — \/80 and 8 = 80/2. • 

In case when this corollary applies, we only need 

A„,2£„->0, asrc-»0 (3.19) 

to guarantee uniform convergence. For algebraic or trigonometric polynomial moment 

functions in R™ and a smooth enough underlying function x, this limit can be ensured 

by the theorems recalled in Section 1.5. This was first done in [16] for Boltzmann-

Shannon entropy case, which could not be covered here since a — 0 and b = 00. 

In the next theorem, we will weaken the conditions (3.17) and even (AFl) or 

(AF2) for twice continuously differentiable (f>*. 

Theorem 3.2.3 Consider the FD-type problem (FDPn) defined in (3.2). Assume 

that (j>* is twice continuously differentiable on R and for any M > 0, 

J0(M) = M{<j>*"(v), ve[-M,M}}>0, (3.20) 

and 

L0(M) = sup {(j>*"(v), v G [-M, A/]} < +00. (3.21) 

Then we have 

| | ^W(*n) | | oo 
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Proof: Using Corollary 2.3.4 by choosing 

J(t, En, x) = L0(\\<f>'(x)\\oo + En), (3.23) 

we have 

I fa) - Ifan) < Lo(H'(x)\\oo + En)p(T)E2
n. (3.24) 

On the other hand, applying Corollary 2.5.4 by choosing 

Vo = M\\9'(x)\\oo + U'(x) - *'(zn)||oo), (3.25) 

we obtain 

I fa) ~ Ifan) > MU'(m\oo + | | f (*) - f" (*»)||co)||*'(*) - ?'(xn)\\
2. (3.26) 

Hence 

u(x) ~ *Mh - [u\w(*)u + \\m - ««.)ii-)'£- ( 7) 

Then 

||^(S) - '̂(a:„)||oo < n̂ + | |EA.«.-fK)| |oo 
«€/„ 

< ^ n + A n , 2 | | E A , a i - ^ n ) | | 2 

«'e/n 
< En + AnMrfEn + \\9'(x) - <p'{xn)\\2) 

< En + An,2(EnKT)> 
L0(mmoo+EnHT) i 

Vo(||^(x)||co + | |^(x)-^(Xn)| |oo) ; ^ 

- 114- A ,,(T\h(\ I I U(\\<i>'(x)\\oo + En) .jU, 

- [1 4- A„|2„(7>(1 + (Jo(||^(.)||oo + m s ) _ ̂ W | | o 8 ) ) ' ) ] ^ . 

We can see that this theorem works even if a and/or b is not finite. 

In this theorem we can see, if {||^'(^) ~ ^'(xn)||oo} is bounded, and An,2-En ~* 0, 

then 

||f(x)-^(Xn)Hoo-+0. ( 3 i28) 
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We now give another version of a uniform convergence theorem, in which the 

condition (AF3) looks more complicated but actually is easier to satisfy. 

We will say <j> satisfy (AFl'), if there exist 8 > 0 and 7- > 1, such that 

9(Ul) - 9(u2) - (j>'(u2)(ux - wa) > 8\u, - u2\
r, (3.29) 

for all u\,u2 E (a,b). 

We will say (/>* satisfy (AF3), if for some M > 0, there exists a strictly positive 

and nonincreasing function TM '• R+ —> R+, with 

lim inf TM((){ > 0> (3-30) 

such that 

\<f>*'(u)-f'(v)\>rM(\v\)\u-v\, (3.31) 

for any u,v E R, \u\ < M. 

Before establishing the next theorem, we prove a lemma. 

Lemma 3.2.4 Let <f>* satisfy (AF3), let un,vn G span{a,,E In), and ||'««||oo < M, 

for large enough n. Further suppose for some p > 0, 

ABlP||^'(uB) - <F'(vn)\\p - • 0, as n -> -foo. (3.32) 

Then 

ABiP||un - un||p -» 0, asn —> -foo. (3.33) 

Proof: By (3.31), for almost all t in T, we have 

l^ 'MOW'MO)! 
> rM(K(ODM0-wn(0l 

> M M O I + I k - W«||oo)k(0 - «B(0I 

(since TM is nonincreasing) 

> VM(M + An,p\\un ~ Un||p)|uB(0 - T7n(0l 

(by the definition of A„iP). 
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Then 

An,„||^'(u») ~ f ' M l ? ^ TM(M + AB ,p |k - t;n||p)A„,p|k - w„||p. (3.34) 

Now we claim that {AniP||uB - un||P} is bounded. If not, for some subsequence {n,}, 

we have 

A n . J k , ~ W».IIP -* +°°> as n -+ +00, (3.35) 

so does 

{M + An,Junt-vn,\\p}- (3-36) 

By (3.30;, 

liminfrM(M + A„,tP||Mn, - uB,||p)(M + A„„p |k, - vn,\\P) 
1—»+oo 

>liminfrM(£V>0. (3.37) 

Noting that (3.30) and the monotonicity of Tjv/ imply 

l imrM(0 I 0, (3.38) 

we have 

WmmfVM(M + AnuP\\un, - vni\\p)^n„P\\un, ~ vn,\\p > 0, (3.39) 

which is in contradiction with (3.32) and (3.34). So {A„iP||u„ — vn||p} is bounded, say 

by M. Hence 

TM(M + An,v\\un - vn\\p) > TM(M + M) > 0. (3.40) 

Then in (3.34), we deduce 

A n , P | k -w B | | p -*0 . (3.41) 

Theorem 3.2.5 For the problem given in (3.2), suppose that (AFl'), (AF2) and 

(AF3) are true for some 8,L,-f > 0, r > 1, and TM : R+ —» 1R+. Assume x G 

MT,/iW'0O€MT,fO, and 

An,rEn r _»0, An,rEn^ -* 0, as n-» oo. (3.42) 
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Let xn be the optimal solutions for (FDPn), then 

\\9'(x) - ^'(x„)||oo -» 0, as n -> oo, (3.43) 

and also 

\\x — xn||oo —• 0, as ii —• oo. (3.44) 

Proof: We choose An G jRfc(n), so that 

W(x) - E K<n\\oo < En, (3.45) 
iein 

then 

HEA>.||oo<||^)lloo + ^„. (3.46) 
iein 

From (AFl') and Theorem 2.5.1 

7 ^ ( x ) - ^ ( x n ) > ^ | | x - x n | | ; . (3.47) 

From (AF2) and Corollary 2.3.3, we have 

I fa) - Ifan) < Lp(T)En+\ (3.48) 

Thus from (3.42), 

1 1 A±2 

A B , r | | x - x n | | r < A B , r ( - M r ) ) r i 5 B
r -»0. (3.49) 

Using (3.42), (3.49) and <f>*' = (<£')_1, we now have 

An,r||r(^n))-r(EA>.)llr 
iein 

= AB,r||xn-^'(EA>,)l|r 
iein 

< An,r(|k-x||r + ||x-^'(EA>,)l|r) 
«'e/n 

< An,r(||xn - x||r -f (
l-U'(x) - E Ar«,||^)^) 
0 iein 

(for same 8 > 0 as in (3.47)) 

< ABir(||xn-x||r4-(I(M(r))^En)^) 

= An,r\\Zn-x\\r + S^(KT))'En^Anir 

-+ 0. 
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Since ^'(xB), £ , e / „ A>, G span{a„E / B } , and 

|| E A>.||oo < ||^(*)||oo + En< +0O, 
«e/„ 

(3.50) 

using Lemma 3.2.4, we have 

Hence 

So we have 

An,r||^'(a:n) - E A>t||r -»• 0, as n -> oo. 
»e/„ 

U'(Xn) ~ E A> . | | oo < A B , r | | ^ ( x B ) - E A > , | | r 
iein teln 

(3.51) 

(3.52) 

n^(xB) - ci>'(x)\\oo < w(xn) - E Ara,iioo + ii E A > . - <^)iioo -> o, (3.53) 

and also from (AFl ' ) , 

||*» - X||oo < S—'UXXn) ~ 9'(X)\V™ "> 0, (3.54) 

as n —> 0. 

The mosi interesting case is when r = 2 and 7 = 1. Then we require An<2En —* 0 

ir (?. <2). We will now apply the theorems to important entropies. 

3.3 Application 1: generalized Fermi-Dirac en­

tropy 

As the first application, we consider the Fermi-Dirac entropy 

^(u) = * 

where a and 0 are constants 

(u - a) log(u - a) + (0 - u) log(/? - u), a < u < 0, 

(0 - a) Iog(/3 - a), u = a or 0, 

-foo, otherwise, 

(3.55) 
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We can easily check that all conditions in (3.2) hold. Now 

(j)*(v) = av + (0-a)\og(l+ev)-(0-a)\og(0-a), 

Y K ' 1 -f e" ' 

and 
(0 - g)e» 0 - a 

+ w = 7rT^-~4~' 
which implies (AF2) with L = (0 — a)/4 and 7 = 1. Also we can see that 

.... . 1 1 0 — a 4 , 
V'(u) = -f = ?-;- > , 3.56 

u — a 0 — u (u — a)(0 — u) 0 — a 

and (AFl') follows for 8 = 4/(0 - a) and r = 2. We now need to check (AF3). 

Lemma 3.3.1 For any C > 0, To > 0, the following inequality is true for \t\ < Ta: 

" - ' ' > ,f' „. (.157) C + el - (C + l)(r0 + l) 

Proof: Recall that 

e1 > 1 + <, for all t E R. (3.58) 

For t > 0, 

| l - e ' | e ' - l _ C + l 
C + el C + el C + el 

C + l+t C+i + t - (C+\)(To+\)' 

For t < 0, 

| l - e ' | _ 1 - e' _ C + 1 
C + el ~ C + el ~ C + e* 

> _£±L_1 = __zL_> 
— n i i nt\ 4\ i i — C+T^ C(l-t)+l ~ (C + l ) (J '„-r l ) ' 

Lemma 3.3.2 For <f> defined in (3.55), (AF3) holds. 
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Proof: For any u,v E R, and |u| < M, we have 

.a + 0eu a + 0ev 0 - a ev - eu 

\P'(u)-f(v)\ ' l + e" 1 -f e" 1 + eu' 1 -f ev 

0-at ev~u-\ 0-a \u - v\ 

1 -f e u ' c- t t -f ev~« ' _ 1 + eM (eM + \)(M + \v\ + 1) 

(by Lemma 3.3.1 and \u — v\< M + \v\) 

= TM(\v\)\u-v\. 

It is easy to see that TM is a nonnegative and decreasing function and 

c U m > M O e = = ^ 5 5 J > 0 , (3.59) 

and (AF3) follows. n 

Now we obtain a uniform convergence theorem. 

Theorem 3.3.3 Consider the problem (Pn), with <f> defined in (3.55). Suppose (T,p) 

is a complete finite measure space, rtj G Loo(T,p,),i E ln, x E Li(T,p), log(x—a)/(0— 

x) G Loo(T,p), (or equivalently, there exists £ > 0, such that a + s<x<0 — e, 

a.e. on T). We also suppose that A,ii2En —» 0 ; as n —> oo. Let xn 's be the optimal 

solutions for (Pn), then 

\\xn — x||oo - ^ 0 , as n — • oo. (3.60) 

Proof: Simply apply Theorem 3.2.5 and Lemma 3.3.2 with r = 2 and 7 = 1. • 

If we recall the theorems stated in Section 1.5, we can get uniform convergence 

results for algebraic and trigonometric moments. 

Consider the case where {a,-,i G /B} are algebraic polynomials on T = [A,B]m C 

Rm of degree at most n in each variable. Let x G Cl{A, B]m. Then by Theorem 1.3.6 

and 1.3.4, we have 

AB)2 = 0(n), and En = o(-), (3.61) 
n 
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which implies 

AB,2#„ -» 0, as n -> 0. (3.62) 

If we consider the case where T = [—7r,7r]m G Rm, and {o,, i G /,,} are trigono­

metric polynomials of degree at most n in each variable, then we require the periodic 

function x to be in Cr[—ir,n]m, with r > m/2, to ensure (3.62). 

3.4 Application 2: Burg-type entropy 

We now consider the problem (Pn) where <f> is the Burg-type entropy defined by 

f - l o g u - l o g ( l - u ) , 0 < u < ] , 
9(u) = < (3.63) 

I -foo, otherwise. 

Then 

*'(«) = - - + * 
u 1 — u' 

^ » = -2+7^-T2^8' 
ul (1 — uy 

which implies (AFl'). Through calculation, we obtain 

9*(v) = \(v-2 + V ^ + 4 ) + l o g ( V ^ T " 4 " 2 ) , 
2' 

.„ , v v + Vv2 + 4-2 
9 (v) = — 2v 

9 (v) = 2 mrm - «' 

v2\/vl + 4 8 

which implies (AF2). Again we need to check (AF3). 
Lemma 3.4.1 For (j) defined in (3.63), 9*' satisfies (AF3). 

Proof: For any u,v E R, \u\ < M, we have 

\<f>*'(u)-f(v)\ 



63 

> 

u + y/u2 -f 4 - 2 v + y/v2 + 4 - 2, 

2u 2u 
u y V + 4 - 2u - uvV + 4 + 2u 

2uv 
Vu^\/v^T4~-2y/iF+^-2y/vT+~4 + 4- uv. 

2uv(y/u2 + 4 + y/v2 + 4) \u — v\ 

(y/u2 + 4 - 2)(\/vr+~4 -2)-uv 

2uv(y/u2 + 4 + y/v2 + 4) 
\\u — v\ 

u\ \v\ - (y/u^+l - 2)(v/wTT4 - 2) 

2|w| | u | ( v V T 4 + y V + 4) 
\u — v\ 

(3.64) ( since 0 < y/vJ+~4 - 2 < |u|). 

We can actually check that the function 

uv - (y/vtTl - 2)(v^2~+4 - 2) 

uv(y/u2 + 4 + y/v^+l) 

is nonnegative and monotonic decreasing in each variable u or v for u > 0, v > 0. 

Hence 

(3.65) 

| ^ ( u ) - * » | 

> M |u| - (y/M2 + 4- 2 ) ( v ^ T 4 - 2) 

2M \v\(y/M2 + 4 + yMTA) '" ~ "' 
( by |u| < M) 

= r M ( |u | ) |u - t» | , 

where TM(•) is nonnegative nonincreasing on R+ and 

hminfTM(0t = 2M > 0" 

Thus (AF3) follows. 

(3.66) 

(3.67) 

We now have the exactly same convergence result for the Burg-type entropy as in 

Theorem 3.2.5. This case can also be generalized to arbitrary bounds a and 0. 
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3.5 Application 3: Hellinger-type entropy 

To estimate an unknown density x, bounded by 0 and 2K, we can also consider the 

problem (Pn) with the Hellinger-type entropy given by 

f -\/2uK-u2, 0<u<2K, 
9(u)=\ V 7 7 (3'(>8) 

y -foo, otherwise. 

It is easy to see that 

9'(u) = ^~K
K_u2, 0 < u < 2K\ (3.69) 

and 

^u) = ( < S W- * T< > °' (3-70) 

(u(2K — u))i A 

which implies (AFl'). 

• We obtain through calculation 

<f>*(v) = K(v + y/v^+J), 

f(v) = K(l + -74=), 
y/v1, + 1 

r{v) = r ^ ^ ^ 
(V* + 1)2 

and hence (AF2) follows. As to (AF3), we have 

Lemma 3.5.1 For <j> defined in (3.68), (j)*' satisfies (AF3). 

Proof: For u,v G R, \u\ < M, consider 

W'(u) - 9*'(v)\ = K\-^== - -j4~\. (3.71) 
VM + 1 v « T 1 

For uv < 0, we have 

u I = -JW + v~~TT V~~+T v~~TT v^TT 
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> 

|u|y52Tr+Mv~r+T 
y/u2 + \y/v2 + l 
\u\ + \v\ 

y/uJ+~\y/iF+\ 

. . \u — v\ 
VuJTTyMTT1 ' £ ̂ W1'-!' <3J2> 

For uw > 0, |u| > |u|, 

• u v 

y/uT+l y/v^TT y/uT+T y/v2 + \ 

> T\U — V\ 

- 1>2 + 1)§' ' 
( by the concavity of |x|/Vx2 + 1) 

(M2-f 1)2 

For uv > 0, |«| < |v|, 

1 u v 

v/VTT \M+T 
\v\ \u 

v V + T VvJ+i 
(\v\ - M)y/i~TT- IvKs/v^Tl- y/vJTT) 

\^2TT^^2TT 
\v\-\u\ M(M + M)(M-M) 
y/u^Tl v

/ - 2 T T v / _ r + T ( v ~ 2 T T -f y/uT+T) 

> -J—{l--M=. , H + A! J\u-v\ (3.74) 
~ y/M2 + V y/v^+\ (v~~+T-f y/M2 + l)U ' V ' 

(since (|u| -f \x\)/(y/v2 + 1 + y/x2 + 1) is increasing in |x| for fixed v). 

Combining (3.72), (3.73) and (3.74), 

| f ' (u ) - f '(w)| > TM(\v\)\u - v\, for |u| < M, (3.75) 

where 

file:///v/-/u/
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1 /, t(t + M) 
0- ,-TT, ^^-7^)1 y/M2 +1v
 v /^Ti(vFTl4-v /^~ r :rT) ' 

which is decreasing since each of the items inside the "min" is decreasing. From 

lim 1 = 1 
*!~ y/M2 + l v ^ T T \/A/2 + 1' 

lim r-£ = oo, 
i-+oo(M2 + \)l 

and 

i i m ( 1 _ , « f + " > ^ 
{-~v v /F+~(v^2TT + VM2 4-1); 

lim *' + l + ^ + 1)( +1)-?-tM, 

f. ( ^ + 1)(M2 + 1 ) - ^ + l)U? + 1)(A/2 + 1) + £M - l){ 
= hm .—-—zzz , -

<->oo x/-qrr(v-2-+T + V^~+T)(V(£a 4- 1)(M2 -f 1)+^A/ - l) 

l i m fe2 + l)(M2 + l ) - (£M-l) 2 ]{ 

A - (e + 1 4- \J((2 + l)(M2 + l))(sj(t2 + 1)(M2 + 1) -f (M - 1) 

.. (e + M)2^ 
= hm . . -

{-oo (^2 + ! + ^ 2 + 1 ) ( M 2 + l ) ) ( v / ( ^ 2 + L ) ( M 2 + t) + ^M - l ) 

1 
2M' 

we get 

l im in f r M (0^>0 . (3.76) 
{ - •oo 

Then the analogue result to theorem 3.2.5 for the Hellinger-type entropy follows 

directly. 
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3.6 Uniform convergence theorems for truncation-

type entropies 

In this section, we will consider the problem 

inf fT<f>(x(t))dp(t), 

s.t. fTat(t)(x(t)-x(t))dp(t) = 0, iEln, 

xEL^(T,p), 

a(t) < x(t) < 0(t), a.e. on T, 

where (T,p.) is a complete finite measure space, <f> : R —> (—00,4-00], a, 0 are 

functions which satisfy: 

(TPn) 

(ATI): - co < a < a(t) < 0(t) < b <+00 for all * G T with 

(a, b) C dom((j)) C [a, b]; 

(AT2): (f> is strictly convex and continuously differentiable on (0,6). 

Using the same notations we used before, 

- A J #u), a(t) <u< 0(t), 
[ +00, otherwise, 

and hence (TPn) is equivalent to 

inf fT<j>(t,x(t))dp(t), 

(fPn) I s.t. fTat(t)(x(t) - x(t))dfi(t) = 0, i E ln, 

xEL,(T,n). 

The dual problem is then 

(3.78) 

(3.79) 

(3.80) 

(TDn) 
max / r [x (0E, e / n A,a,(0 - f (*,£,-e/„ A,a,(0)]^(0, 

s.t. A G Rk{n), 
(3.81) 

where $* is finite everywhere and given as in (2.9). We know that for almost all 

t G T, 4>*(t, •) is continuously differentiable on R, with the derivative given in (2.10), 
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and is strictly convex on ((j>'(a(t)),<l>'(0(t))), linear outside this interval. Moreover 

we will frequently use the expressions (2.10) and (2.11). Under (CQ) given in (2.15), 

the duality results tell that, if A G Rk^ is an optimal solution of (TDn), then the. 

optimal solution of (TPn) is of the form 

xn(0 = &'(*, E A.«i(0)- (3-82) 
iein 

By (2.10) and (2.11), we know 

~9'2(t,Xn(t)) 

= ^(max{a(0,min{/?(0, E W O ) } ) 
«'6/„ 

= cj>'(a(t) V E W O A 0(t))- (3.83) 
iein 

Now we give uniform convergence theorems for these truncation-type entropies. 

We assume T = [A, B] C R (or [—7r,7r] in the trigonometric case) and ft is Lebesgue 

measure. We also assume that {a;, i E In} are algebraic (or trigonometric) polyno­

mials so that we can apply Remez' inequalities given in Theorems 1.3.7 and 1.3.8. In 

the next section we apply these results to the Lp-entropy. 

Theorem 3.6.1 Let T = [/4,-fi], {<z,-,i G In) be algebraic polynomials of degree at 

most n. Suppose for some A" G Rk^n\ 

*n = # ( * , E A>.(0) (3-84) 
iein 

is the optimal solution for (TPn). We further assume 

(ATS): for some C > 0, q > 1, 7 > 1, 

||^'(x) - <p\xn)\\\ < CEl, for large n, (3.85) 

(AT4): for some K > 0, r > 0, 

p{t E [A, B] I ̂ '(x(O) - <^W0) < e] < Ke\ (3.86) 
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and 

p{t G [A, B] | <j>'(0(t)) - <j>'(x(t)) < 4 < KeT, (™7) 

for small e > 0. 

(AT5): <j>'(x)ECd(T,p), with 

d>m„{?<r±!l*}m (3.88) 
fr q 

Then </>'(x„) —* <j)'(x), uniformly on [A,B\. 

Proof: For xn given in the form of (3.84) and some A" G JR*<n>, let 

Nn = {tE [A, B\ | E A?a.(0 < «(0}, (3-89) 
iein 

Mn = {tE [A, B] | E A>.(0 > 0(0}. (3-90) 
iein 

anc 

An = [A,B)\{Nn(JMn). (3.91) 

From (ATI) and (3.85), for some C > 0, q > 1,7 > 1, large n and small e > 0, we 

have 

CEl > \\9'(x)-<t>'(xn)\\\ (3.92) 

= / M * ( 0 ) - ^ ( * . ( 0 ) W 0 

> / |^(*(0)-^(»n(0)l'^(0 
JN„ 

> / W(x(t))-4f(a(t))\'dp(t) 
JNn 

> / |^'(x(0) - ^'(a(O)l'^(O 

> eV{^« \ {t€ T\ 9'(x(t)) - 9'(a(t)) < e}} 

> e"(n(Nn) - p({t G T\ <j>'(x(i)) - <f>'(a(t)) < e})) 

> e"(n(Nn) - Ker), (3.93) 
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and hence 

p(Nn) < s-'CEl + KeT. (3.94) 

Since (j>'(x) E C[A, B], En —> 0, as n —• oo, we may choose 

en = Ef -* 0, as n -> oo (3.95) 

in (3.94), and then get 

»(Nn) <(C + K)E^, for large n. (3.96) 

In the same way, we can obtain 

p(Mn) <(C + K)E^, for large n. (3.97) 

In particular, when n is large enough, we have 

p(NnU Mn) <\(B - A). (3.98) 

We will use this inequality to apply Remez' Theorems. 

Now let gB(0 be an algebraic polynomial of degree at most n, such that 

\W(x)-qnU = En. (3.99) 

Then by Remez' inequality (Theorem 1.3.8), and (3.98), for large n, wc have 

IIE x>i -9.115 = L\ E W O - <in(t)\"dp(t) 
iein JT iein 

< (1 + C ° W M ( " » ^ » ) ) / |EA?ai(0-9n(0|V(0» (3.ioo) 
JA" iein 

for some constant C0 > 0. 

Noting that in our assumptions, d > 2(r+q)/'p-, using (3.96), (3.97) and Jackson's 

Theorem (Corollary 1.3.2), we obtain 

ny/fi(Nn U Mn) < (2(C + I<)E?q)*n 

= sj2(C + K)(ndEn)^n-$™ -> 0. (3.101) 
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So for large n, 

I + ec„,n^(/vnuwn) < 3_ (3.102) 

Hence in (3.100) 

HE^-frli; ^ 3 / l£W)-?»(0l'<W0 
.e/n '4n «e/„ 

= 3jf |^M0)-fa(0l%(0 
< 3 | | / ( s n ) -g n | | ' (3-103) 

So 

HEAr«.-?n||, < 3«||^(xn)-M|, 
l'6/n 

< 3*(| |^(xn)-^(x)| | , + | | ^ ( x ) - « B y 

< Z*(C$Ei + En{B-A)*). (3.104) 

Now wc have 

|(f(x7l)-^)IU 
< iiEAr«.--^)iioo 

iein 

< llEAl l«.--«?«l|oo4||<7„ 
•e/n 

(since x and xn are feasible) 

- ^'(i)lloo 

< C,ni|| E A>i - g„||, + En (by Theorem 1.3.6, A„,? < C,n2/') 
ieL 

< Ci3^CwEj:+2(B-A)in2iEn) + En. (3.105) 

We note that 

^2(r + g) ^ 2 . .. 2 7 i 
^ > > _̂  implies <. u, 

7 r 7 • q q 
and (ATS) implies ndEn -» oo from Corollary 1.3.2. Then we have 

n<£,? = (nrf£?B)« • n«"^ -> 0, as ?i -• oo, (3.106) 
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Also from d > 2/q in (AT5), we have 

n*En = (ndEn)n
Z*-d -* 0, as n-> oo. (3.107) 

Then in (3.105) 

W(xn)-<f>'(x)\\oo-^°y asn->oo. (3.108) 

By using Theorems 1.3.3, 1.3.5 and 1.3.7, we can get a similar result for the 

trigonometric case. 

Theorem 3.6.2 Let {a,-, i E In} be trigonometric polynomials on T = [—7r,7r] of 

degree at most n. Let An, xn be the optimal solutions of (Dn) and (Pn), respectively. 

Suppose Assumptions (AT1)-(AT4) hold. Let x be a periodic function on [—7r,7r] with 

period 2ir. Also we assume (AT5'): (j)'(x) E Cd[—7r, X], with 

d > m a x { £ ^ ! , i } . (3.109) 
77- q 

Then (j>'(xn) —• <j>'(x) uniformly on [—7r, x]. 

Proof: Following the proof of Theorem 3.6.1, we make the following changes: 

1. Instead of (3.98), for large n, we have 

p(Nn{jMn)<ir. (3.110) 

2. In (3.100), we use Theorem 1.3.7 and obtain 

ii E *?«,- - 9»n; < a + e ^ ^ - ^ » ) / | E A?«.-(O - <in(t-)\"<m 
ieiu JAn iein 

for some constant Co > 0. 

3. Instead of (3.101) in Theorem 3.6.1, we have 

nn(NnUMn) < 2(C + K)En^n 

= 2(C + K)(ndEn)^<n-:^» -40, (3.111) 

which is implied by d > (r + q)/~jr in (AT5'). 
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4. Then in (3.105), using Theorem 1.3.5, we can similarly deduce 

\\<t>'(Xn) ~ ^'(£)||oo 

< C$i{Cin*Ei + 2(2*)^^ En) + En- (3.112) 

Thus we need 

nijsj = (n'Enfin*-? -> 0, (3.113) 

and 

niEn = (ndEn)n«-d - • 0, (3.114) 

which is guaranteed by (AT5'). 

• 

We know condition (AT3) can be obtained from the results in Sections 2.3 and 

2.5. An interesting case is when q = 2 and 7 = 2. We then require d > 1 4- 2/r in 

Theorem 3.6.1 and d > l/2 + l/r in Theorem 3.6.2. We now discuss condition (AT4). 

It is easy to see that if for some e > 0, 

<j>'(a(t)) + e< 9'(x(t)) < <j>'(0(t)) - e, a.e. on T, (3.115) 

then (AT4) is true, since we can co* sider r to be oo. Another sufficient condition for 

(AT4) arises from the following lemma. 

Lemma 3.6.3 Let f > 0, a.e. on [A,B], let 0 < k < +oo be the highest order of 

any zero of f on [A, B], and f G Ck[A, B]. Then for some M > 0, 

p({t G [A, B\ | f(t) < e}) < Me±, (3.116) 

for small e > 0. 

Proof: Let 

Z = {tE[A,B]\f(t) = 0), (3.117) 



74 

which is compact. If Z = 0, then for some 8 > 0, f(t) > 8, for all t G [A, B]. Hence 

/ i ( {*e [> l , f i ] | / ( 0<e} ) = 0, (3.118) 

for e < 8. The equation (3.116) is trivially true. 

Suppose Z ^ 0. For each fixed t0 E Z, we first assume t0 G (A, B). Let fc0 be the 

order of the zero t0. Noting that / > 0, we have 

/(*o) = 0, •••, fV*-V(t0) = 0, /<*°>(i0) > 0. (3.119) 

From the Taylor expansion formula around to, we have 

/ ( 0 = -^f(ko)(to)(t-to)ko+o((t-t0)
k°). (3.120) 

There exists an open interval 7(t0), with to E I(to), such that 

/ ( o > 2jb/ ( M (*o)(* - *°)fc0' for al1 '-e /(/-o)-
Hence 

/ ( 0 < £ implies \t - t0\ < (J(i^Tj~j)ko • 

So 

M'(M n {/(0 < £}) < 2 ( / ( ^ ) ) i e i = ^ ( « o ) e * . (3.120 

If to = A or 5 , using one-sided derivatives, we get the same inequality as in (3.121). 

Now since 

\Jl(t)DZ, (3.122) 
tez 

and Z is compact, there are only finitely many points, say, t\,t2, • • • ,tm G Z, such 

that 

m 

Z =-• [j I(U) D Z. (3.123) 
;=i 



75 

Since / is strictly positive on the compact set [A,B] \ Z, for some e0 > 0, we have 

f(t) > £0, for al! t E [A, B] \ Z. 

Thus for e < e0, we have 
m 

{t G [A, B) | f(t) < e} = {t E Z | f(t) < e} C U(t G I(U) \ f(t) < e}. 
t= i 

Then for small enough e > 0 (in particular we require e < 1), 
TO 

p({tE[A,B]\f(t)<e}) < X>({* €/(*.) I/(0 < e» 
t= i 

< E M \ t i ) e S < e* E M(*i) = Me*• 
»=i t= i 

Hence we are done. • 

Corollary 3.6.4 LetT = [A,B] (or [—ir,ir] in the trigonometric case). Suppose that 

a(t) < x(t) < 0(t) on T. Let k0 be the highest order of the zeroes of 

A(0 = (<t>'(x(t)) ~ <j>'(*(t)))(<l>'(x(t)) ~ W ( 0 ) ) = 0- (3-124) 

Further we assume 

^(x),^(a),^(0)ECko(T,p). (3.125) 

Then (AT4) holds. 

Proof: Note that a zero of A is a point at which either <j>'(x(t)) = cf>'(a(t)) or 

<^'(x(0) = <f>'(0(t))- Using Lemma 3.6.3 we obtain (AT4). • 

Corollary 3.6.5 Let T = [A, B] ( or [—w, ir]). Assume <f> is real-analytic on [a, b], a, 

0 are constants, with a < a < 0 < b, and x is real-analytic on [A, B], a < x(t) < 0, 

but neither x = a, nor x = 0. Then (ATj) holds for some r > 0. 

In [28], a similar uniform convergence theorem has been proved for an analytic 

density x. Finally we will see that, without the condition (AT4), we can still prove 

uniform convergence on the subset on which x stays strictly away from the constraint 

boundary. 
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Theorem 3.6.6 Let T = [A, B] E R, a(-) be lower semicontinuous, /?(•) be upper 

semicontinuous on T, {a,-,i G In} be algebraic polynomials of degree at most n. Let 

Xn, xn be defined as in (3.84). Assume for some C > 0, q > 1,^ > 1, 

\\9'(xn)-?'(x)\\q
q<CEl, (3.126) 

for large n. Also assume thatx E C[A, B] and 9'(x) G Cd[A, B], with d > max {1/7, !/</}. 

Then for any e > 0, (j>'(xn) —+ 9'(
x) uniformly on the set 

{tET\ a(t) + e< x(t) < 0(t) - e}. (3.127) 

Proof: Let / be any subinterval on [A, B] on which 

a(t) + e < x(t) < 0(t) - e. (3.128) 

Define 

and 

#.(/) = {*€/I E A>.(0 < «(0}, (3-129) 
iein 

Mn(I) = {te 11 E A;-'«.(0 > /?(0}, (3.130) 
iein 

An(I) = l\(Nn(I)uMn(I)). (3.131) 

Then for same reason as we deduce (3.92), 

CEI > \\<t>'(x)-^B)||; = jT\9'(x(t))-<i>'(*n(t))\qdp(i) 

> I m k(*(0) - ^'H0)P<M0 > e>(Nn(l))-

Hence we have 

li(Nn(I))<e-"CEl (3.132) 



Similarly, we also have 

fi(Mn(I)) < e-"CEl (3 

so 

fi(Nn(I) U Mn(I)) < 2e-"CEl (3 

For large enough n, we have 

p(Nn(I)UMn(I))<lp(I). (3 

Now we may choose qn E span{ai,i E In} such that 

| k - ^ ( * ) | | o o = ^n, (3 

then 

I k - E Ar«.IU,(/in) = \\qn - 9'(xn)\\L<l{An) 

< \\qn~ *'{x)\\Wn) + II WO ~ 9'(xn)\\Lq(An) 

< Ikn - 4>'(x)\\ooti(An)^ + \W(X) - 9'(Xn)\\q 

< p(An)^En + CEl 

< p(I)<En + CEl (3 

Now using Remez' inequality and (3.135), for some constant Co > 0,we have 

II E K*i - *n||I,(l) < (1 + e^V^m^nW)^ £ A>; - qn\\lq{Any (3 
iein iein 

Note that we have 

nfp(Nn(I)UMn(I)) < n(2e-* C E^ 2 

2 i_±! = (2e-"C)HndEn)lnl-% 

-> 0, (since d > 2/7 and ndEn -> 0 ) 

file:////qn~


78 

with n. This implies 

1 + eCon9y/v(rfn{I}UMnU)) < 3 ) ^\Z9) 

for n large enough. Then in (3.138) 

ilEA;l«,--<7nirM/) < S I I E A ^ - ^ I U , , , ) 
iein iein 

< Z(p(I)^En + CEl)\ (3.140) 

and hence 

IM*.)-W0IU-<i) 

< ii n^-nm^d) 
iein 

< ||^(S) - «n||io.(/) + Il9n - S A?«.IU-(D 
iein 

< £ln + >l(/)n«|kn-EA?a'llMO 
l'6/r, 

(where A(I) is a constant introduced in Theorem 1.3.6, dependent of /) 

< En + A(l)nh^(p(I)^En + CEl). 

By Corollary 1.3.2, d > 2/q implies 

JEn = (ndEn)n^d -+ 0, (3.141) 

and d > 2/7 implies 

niEZ = (ndEn)^ri^ -» 0. (3.142) 

It follows that 

W(xn) - <j>'(x)\\^{i) -» 0, as n ^ co. (3.143) 

Now if a is lower semicontinuous on T, 0 is upper semicontinuous on T, then for 

any £ > 0, the set 

{tET\a(t) + e<x(t)<0(t)-e} (3.144) 
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is closed, since x is continuous on T. Hence the set 

Z = {t E T | a (0 + e < x(t) < 0(t) - e] (3.145) 

is compact. Now for all t E Z, we can find an interval I(t), such that 

«(*') + \e< x(t') < 0(t') - \e, for all t' E I(t). (3.146) 

By the compactness of Z, there exist a finite number of points t\, t2, • • •, im, such that 
m 

Z C £/(*.•)• (3-147) 
t= i 

By what has been proved above, we know that 

<j>'{xn) -* 4'(x) (3.148) 

uniformly on each l(t{), i = 1,2, • • •, m, and hence 

9'(xn) - 4?{x) (3.149) 

uniformly on Z. • 

For trigonometric polynomials, we have a similar result: 

Theorem 3.6.7 Let T = [—7r,7r],{a,-, i E In} be trigonometric polynomials of degree 

at most n. Let Xn, xn be defined as in (3.84). Assume a(-) is lower semicontinuous 

and 0(-) is upper semicontinuous on T. For some C > 0,q > 1,7 > 1, and large 

enough n, assume that 

\\9'(xn)-</>'(x)\\l<CEl (3.150) 

Further suppose that x E C[—7r,7r] and is periodic with period 2K, <f>'(x) € Cd[—7r,7r], 

with d > max{-, - } . Then for any e > 0, 

9'(xn) -> 4'(x) (3.151) 

uniformly on 

{t€T\ a(t) + e < x(t) < 0(t) - e}. (3.152) 
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From the theorems we have obtained above, it is interesting to note that uniform 

convergence is only guaranteed in the interior of {t \ x(t) > 0}. It seems likely that 

uniform convergence will take place on the interior of {/ | x(t) = 0} (it is true for the 

trival case x = 0), but we have been unable to prove this. 

We can easily release one bound, that is to set a(t) = —oo or 0(t) = 4-oo, and 

get the analogous results. Remember that in any case, (A6) must be satisfied. 

3.7 Application 4: t runca ted Z,p-entropy 

As a typical example, we consider the problem (Pn), where T = [A, B] ( or [—x,7r]) 

G R, 9(u) = (l/p)|u|p, 1 < p < 2. Define 

*(«) = 

The conjugate function of <$> is 

i*(v) 

where 1/p + l/q = 1. Hence 

and 

r(V) = • 

If xB is the optimal solution for (TPn) where <f> is defined in (3.153), from Propo­

sition 2.5.11, we know that for 1 < p < 2, or equivalently, q > 2, 

U'M - nmi < q(q - l)(PW + En)"-^(T)El, (3.157) 

i«p , u > 0, 

-foo, otherwise, 
(3.153) 

0, v < 0, 

y, v>o, 
(3.154) 

0, v < 0, 

u«-1, v>0, 
(3.155) 

0, v < 0, 

(q - l )u ' - 2 , v > 0. 
(3.156) 
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and hence 

IK - 1 - *p-'\\l < 1{V ~ m*\\Zl + Eny-2p(T)E2
n. (3.158) 

Now we give the final set of uniform convergence theorems for our truncated Lp-

entropy. 

Theorem 3.7.1 Let T — [A,B] E R, {a,-, i E In} be algebraic polynomials of degree 

at most n. Assume x E L\(T,p), and for some M > 0,r > 0, small enough e > 0, 

n({t E [A, B] | xp~a < e}) < Mer. (3.159) 

Also suppose that xn 's are the optimal solutions of (TPn) . Let xp_1 G Cd[A, B], with 

d > 1 4- q/r. Then xp - 1 —* xp_1 uniformly on [A, B\. In particular, if for some e > 0, 

x(t) > e for all t G T, (i.e. r = oo in ( 3.159)) then xp _ 1 —» xp_1 uniformly on 

[A,B], whenever xv~l G C*[A,B]. 

Proof: By (3.158), (AT3) holds for 7 = 2. Then Theorem 3.6.1 applies since q > 2. 

• 

Theorem 3.7.2 Let T - [-ir,n] E R, and (j> defined in (3.153). Let {a,,i G /„} 

be trigonometric polynomials of degree at most n, x be a periodic function on [—ir, TT] 

with period 2n, and xp_1 G Cd[—ir, ir], with d> (1 + q/r)/2. For some M > 0, r > 0, 

we also assume 

/*{<€[-*,*] | x*-1 <£} <Mer, 

for small enough £ > 0. Suppose xn 's are the optimal solutions of (TPn) . Then 

xp - 1 —+ xp_1 uniformly on [—ir,ir]. 

Theorem 3.7.3 Let T = [A,B\ ( or [-*,*]) E R, } defined in (3.153), {a,-,* G In} 

be algebraic (or trigonometric) polynomials of degree at most n, xn's are the optimal 

solutions of (TPn) . Suppose xp_1 G Cl[A,B) ( or C1[--K,'K\ and periodic in the 

trigonometric case). Then for all e > 0, xp_1 —> xp_1 uniformly on the set 

{tET\x(t)>e}. (3.160) 



In the most interesting case when p = q = 2, we have xn —> x unifoiinly if 

0<xECl[A,B). 



Chapter 4 

Numerical Methods 

4.1 Introduction 

Since the moment problem has applications in so many settings, numerical methods 

to solve the problem have been discussed repeatedly (see, for example, [37], [36], [50], 

[57], [73]). 

The maximum entropy method, widely used in spectral estimation and other 

areas, introduces the Boltzmann-Shannon entropy as the objective function and solves 

a constrained convex programming problem. The use of more general entropy-like 

functions is now widespread (see, for instance, [6], [7], [32], [35], [38], [40], [45], [48], 

[49], [51], [53], [68], [72]). 

As we saw in the previous chapters, the problem we study is an infinite dimen­

sional one. The variable is a function defined on some function space. We can solve 

the primal problem directly by discretizing the unknown density function x into an 

unknown vector. It is more interesting to consider the dual problem, which is a finite 

dimensional, unconstrained, concave maximization problem as we saw in Chapter 2. 

By solving it, we can obtain the optimum of the dual problem, and then the opti­

mum of the primal problem can be simply reconstructed. The dual method has been 

discussed in many papers (see, [5], [13],[29], [30], and [41]). As pointed out in [14], 

83 
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there is no difference whether we discretize the primal problem and solve the corre­

sponding dual, or consider the continuous dual problem and (when we numerically 

solve it) discretize the integral in the objective function, if we use a fixed integration 

scheme. But the dual structure Id ds to an appropriate discretization. We also note 

that from the expression of the objective function in the dual problem, the first and 

second derivatives can usually be calculated explicitly, and because of the concavity 

of the objective function, Newton's method (see, for instance, [42], [84]) behaves well 

in this case. 

In the next section, we implement Newton's method in Fortran 77 and examine 

test problems for various choices of entropies. 

For certain entropy functions, such as the Burg entropy and the Boltzmann-

Shannon entropy, using special structure in the integration formula, we can determine 

a finite system of linear equations whose solution produces the dual optimum, or an 

approximation. In [34], such an algorithm for the Burg entropy moment problem 

with one dimensional trigonometric moments has been discussed in detail. In Section 

4.3, we will give heuristic algorithms of this kind to "solve" algebraic or trigonomet­

ric polynomial moment problems in several variables with the Boltzmann-Shannon 

entropy. 

In the final section, we will discuss how the number of nodes in the integration 

scheme interferes the computational errors and time. 

4.2 Dual method - numerical tests 

The dual method solves the dual problem: 

j max E,e/„ A,&, - / T 9*(Zie,n A ,« , (0 )^ (0 , n 

[ n) \ s.t. XERW, [ ] 

which is a finite dimensional, unconstrained, concave maximization problem. 

We write 

*(A) = E U- - / f(E Kai(i))dp(t). (4.2) 
iein JT iein 
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From Proposition 2.2.3, we know that /? = h, is Frechet differentiable at each 

x E Looi/T, p). Now for each A G Rk(n>, we have ]C;e/n A,-a,- G Loo(T,[i), and hence 

/^;, is Frechet differentiable at Yliein Aifl«'- Then by (2.13) and the chain rule, the 

gradients of $ at each A G Rk^ are of the form 

= 6J-/^'(EA,a,(0)ai(0^(0, (4.3) 
- / T <6/„ 

for any j G /B. Moreover, if 9* is twice continuously differentiable and if differentiating 

through integration poses no problem, we can write for lc,l G Jn, 

d2$(X) 

Let 

^ ^ = " I ^ ' ( E A,«,(0)^(0«K0^(0. (4.4) 

G(A) = ( ^ , ; G / B ) T € ^ n ) ( ( , . 5 ) 

and 

J(A) = ( | ^ | , * , / € / » ) € **•>*'<">. (4.6) 

Newton's method with line search gives the following iteration formula: 

XNW = AO/,D - tJ(XoLD)-" {b - G(X0llD)). (4.7) 

Note that the matrix J is always negative definite provided that (CQ) holds and 

{a{,i E In}
 a r e linearly independent in the sense that: for any positive measure set 

A C T, A G ^ ( n ) , 

/ ( E Xiai(t))2dp(t) = 0 implies A = 0 G IRk{n). 
JA iein 

Then the objective function $ is everywhere strictly concave, and hence Newton's 

method works very well. 
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We will try the following six different choices of entropy: 

BS-entropy: <f>\(u) = ulogu — u, u>0 

FD-entropy: 92(u) = u log u + (1 - u)log(l - u) ; 0 < u < 1, 

L2-entropy: <&}(«) = \u2, u > 0, 

Burg entropy: </>4(u) = —logu, u > 0, 

Burg-type entropy : ^s(u) = — logu — log(l — u), 0 < u < 1, 

Hellinger-type entropy: ^(u) = —y/u^u2, 0 < it < 1. 

The reason we include Burg's entropy here is to make a comparison. From the 

numerical results we will give below, we will see that Burg's entropy gives us the worst 

outputs in almost all examples. Also theoretically, we meet the greatest difficulty 

when we deal with this entropy. 

As the first example, we consider the underlying density function x\ defined in 

[0,1] as follows: 

' 0.1, 0 < f < 0.2, 

0.1 + 10(^-0 .2) , 0 . 2 < t < 0 . 2 7 , 

x j (0 = { 0.8, 0.27 < t < 0.42, (4.8) 

0.8 - I0(t - 0.42), 0.42 < t < 0.5, 

0, 0 . 5 < * < 1 . 

We build this function x-[ to be nonsmooth. Although all our convergence theorems 

require the underlying function x to be smooth enough, we can still get a pretty good 

estimate for a nonsmooth function (even for a discontinuous function). 

We first use Newton's method (with line search guarding techniques) to solve 

the dual problem by using 15 algebraic moments. We discretize the integral in the 

dual objective function using a Gauss quadrature integration scheme. In Figure 4.1, 

wc give a visual display of the reconstructions when we use six different choices of 

entropies. The curve labeled " 1 " is the underlying test function xi and the curves 

labeled "2" are estimate functions. 

We can see that the Fermi-Dirac entropy produces a better estimate than some 

other entropies do, as well as the Hellinger-type entropy. Also, the Burg-type entropy 



M • «flW>M • WrirN • 1M>I1 

(a) Boltzmann-Shannon entropy 
• *mt •• • IK • • * 1 

(b) Fermi-Dirac entropy 

(c) Truncated Z/2-entropy (d) Burg entropy 

A ^ 

• M f M • a*»>«« • 4 « M * M t » — m *•••• • MM M • MM «• « ! • « 

(e) Burg-type entropy (f) Hellinger-type Entropy 

Figure 4.1: Visual display to reconstruct x\ using 15 algebraic moments. 
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works better than the pure Burg entropy. Remember that all these entropies are 

belong to the class we called "FD-type entropies". In Section 3.2, we saw that the 

uniform convergence is much easier to prove for this class of entropies. It is reasonable 

to use one of these entropies if we know that the value of the underlying function is 

between certain upper and lower bounds. 

The truncated i/2-entropy is one of the truncation-type entropies we defined in 

Section 3.6. When the underlying function vanishes on one or several subintervals (or 

a positive measure subset of T), this class of entropies will do a better job than those 

untruncated ones, as the truncated L2-entiopy does in Figure 4.1 (c). ^ 

L\ -error 
m=3 
rn=6 
m=10 
m=18 
m=30 

9x 
[Bol-Shan] 

0.26662 
0.09136 
0.06203 
0.03793 
0.01911 

92 
[Fer-Dir] 
0.26855 
0.08219 
0.03005 
0.02122 
0.02045 

<f>3 
[Trun-L2] 
0.26999 
0.09473 
0.03391 
0.02654 
0.03561 

<f>4 
[Burg] 

0.26379 
0.14952 
0.13541 
0.08268 
0.06997 

<f>5 
[B-type] 
0.26615 
0.07744 
0.05720 
0.04044 
0.02184 

96 
[Hellinger] 

0.26786 
0.07807 
0.03782 
0.02465 
0.01538 

Table 4.1: Li-error of the estimate to x\. 

Loo-error 
m=3 
m=6 
m=10 
m=18 
m=30 

[Bol-Shan] 
0.51974 
0.47817 
0.25242 
0.16396 
0.08535 

<t>2 
[Fer-Dir] 
0.52231 
0.31419 
0.12530 
0.11455 
0.08474 

<i>3 

[Trun-L2] 
0.52449 
0.29297 
0.14738 
0.15247 
0.19738 

<f>4 
[Burg] 

0.51599 
0.71715 
0.87777 
1.35101 
0.46666 

95 
[B-type] 
0.51893 
0.45416 
0.25060 
0.15020 
0.11199 

<f>6 
[Hellinger] 
0.52130 
0.35280 
0.12067 
0.09949 
0.074.67 

Table 4.2: Loo-error of the estimate to x\. 

In Table 4.1 and Table 4.2, L\-norm errors and Loo-norm errors of our estimates 

to the underlying function x\ are given. As the number of moments m increases, we 
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t 

can see how fast they decrease for each choice of entropy. Unsurprisingly, we will 

find that the Boltzmann-Shannon entropy, the Fermi-Dirac entropy, the Hellinger-

type entropy, and the truncated £2-eutropy all behave better than Burg's entropy, 

especially in the Z/oo-norm. 

Since our convergence theorems require x to be smooth enough and away from 

the boundaries (which are 0 and 1 in our example here), we now consider a perfectly 

smooth function: 

x 2 (0 = 0.1 + 0.8sin2(80, (4.9) 

and give corresponding numerical results in Figure 4.2, Table 4.3 and 4.4. Our theo­

retical results proved in Chapter 3 have been verified numerically once again in this 

example. 

L\ -error 
m=3 
m=6 
m=10 
m=18 
m=30 

<t>i 
[Bol-Shan] 

0.25534 
0.17585 
0.04460 
0.03197 
0.02204 

92 

[Fer-Dir] 
0.25555 
0.14109 
0.01672 
0.01339 
0.01333 

93 
[Trun-X2] 
0.25553 
0.17328 
0.01231 
0.00028 
0.00157 

(j)A 

[Burg] 
0.25516 
0.18255 
0.08391 
0.07485 
0.05088 

[B-type] 
0.25560 
0.11540 
0.03349 
0.03044 

0.02995 

4>h 
[Hellinger] 

0.25556 
0.13238 
0.04968 
0.04555 
0.04194 

Table 4.3: Li-error of the estimate to x2. 

4.3 Heuristic algorithms for polynomial moment 

problems with Boltzmann-Shannon entropy 

When we use the Boltzmann-Shannon entropy as the objective function in the prob­

lem (Pn) to estimate a nonnegative density x on Rm, given some of its algebraic or 

trigonometric moments, we will find that there is a special structure in the integration 

formula. From it, we will derive a useful linear relationship amonp the moments. A 

I 
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I HH<N l ,Mtl>ir « ««M*M • *Mt>M • MMiM • ^•M *1 

(a) Boltzmann-Shannon entropy 
I 3**K>N • •*•!*•• • UK-M • HCt*** • »«•»*•t 

(b) Fermi-Dir^c entropy 

• M*trf* • ««••*•> • fa«M>M • WH.M • 1 1<M • 4MMI • MK<H • M M I • 1«M»«1 

(c) Truncated i/2-entropy (d) Burg entropy 

I U T I r l l -

• MK*M • aam-tm t «MI*» « w « i N t «Mt*c* • iiN 

(e) Burg-type entropy (f) Hellinger-type Entropy 

Figure 4.2: Visual display to reconstruct x2 using 15 algebraic moments. 
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Loo-error 
m=3 
m=6 
m=10 
m=18 
m=30 

91 
[Bol-Shan] 

0.42777 
1.10057 
0.09958 
0.08496 
0.09535 

92 
[Fer-Dir] 
0.42877 
0.26015 
0.05756 
0.03332 
0.02873 

[Trun-i,2] 
0.42854 
0.57017 
0.07324 
0.00144 
0.01361 

[Burg] 
0.42698 
3.80299 
0.31243 
0.20547 
0.68714 

[B-type] 
0.42800 
0.22301 
0.07170 
0.07418 
0.07190 

9d 
[Hellinger] 
0.42866 
0.24860 
0.02210 
0.01902 
0.01867 

Table 4.4: Loo-error of the estimate to x2. 

simple algorithm then provide;; a fairly good estimate of x by just solving a couple of 

linear systems. 

4.3.1 Algebraic polynomial case on [0,1] 

We first consider a problem of the simplest form: 

(Bsrn) 
inf ti[x(t)\og(x(t)) - x(t)}dt, 

s.t. [Q tlx(t)dt = bi, i — 0,1, • • •, n, 

0<xG/ / i [0 , l ] . 

By the duality results, the optimal solution xn of (BSPn) can be expressed as 

xn(*) = exp(EA,0, (4.10) 
i=0 

where the {A,-, i = 0,1, • • •, n} can be determined by the nonlinear system 

r\ n 
/ exp(E Xif)tkdt = bk, k = 0,1, • • •, n. 

Jo i=o 

We now SUPPOSE that the underlying density x is exactly of the form: 

x(0 = exp(EA,n (4.11) 
t = 0 

! 
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for some n, and we need to find out the arguments A,, i = 0,1, • • • n. If we are lucky 

enough to have known 2n + 1 moments given by 

/•l n . 

bk= exp(E Xitx)tkdt. fc = 0,l ,- . . ,2n, 

integrating by parts, we obtain for k = 0,1, • • •, n, 

bk = f\xp(YiXit
i)tkdt 

= ^Tiexp(EA,t '> f c + 1 | 0 

-T-j-T / ' <fc+1exp(E A,-o t-(0)EtV- ,c« 

or 

(fc 4-1)6* = exp(E A,) - E *^*+i-
i=0 t'=l 

Thus A0, Ai, • • •, An in (4.11) can be obtained by solving a linear system 

b^Br, 

where 

bo 

26, 

+l)ftn. 

, B = 

1 

1 

1 

h 
62 

&n+l 

h2 

b3 

bn+2 

"n-f-1 

^2n 

r = 

ro 

ri 

and 

ro = exp(£?=0A,-) 

rk = -kXk, k = l ,2 , - . . ,n . 

(4.12) 

(4.13) 

(4.14) 

It is not difficult to show that under a mild condition which is implied by (CQ) 

the linear system (4.13) is solvable. 

I 
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Lemma 4.3.1 If there exists a nonzero density x on [0,1], such that bo,b\, • • • ,b2„ 

are given by 

bk= f x(t)tkdt, fc = 0,l,---,2re, 
Jo 

then B is nonsingular. 

Proof-. Note that 

\B\ 

1 

1 

1 

h 
h 

kl+1 

b2 • 

63 • 

bn+2 • 

• K 

• bn+\ 

• • b2n 

bi -b2 b2 — 63 

b2 -b3 b3- 64 

bn ~ 6n+1 

bn+x — bn+2 
\D\ 

bn — bn+\ 6n+i — bn+2 • • • 62n_i — b2n 

For any v = (vt, v2, • • •, vn)
r E Rn, v •/ 0, we have 

n n 

v
TDv = EEv 'ui(&«'+i-i -k+i) 

j=\ t'=i 

= Eibwif nm*'-*-***)* 
,•=1 «=i j° 

= /,*(0(£X>.V+,'-2)*(i-0<" 
J o j=\ 1=1 

= f xMif^Vi&ytil-Qdt 

> 0. 

Hence D is positive definite, \D\ ^ 0, and so \B\ is nonzero. • 

From Lemma 4.3.1 we see that if {bk} are consistent then there is a unique solution 

for the linear system (4.13). Thus the parameters Ao, Ai, • • •, AB can be obtained from 

(4.14). 
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For a density x other than of the form in (4.11), we may use this simple method to 

get a heuristic estimate of x. We can see that in (4.14), r0 is required to be positive, 

which may not be true all the time. But from the first moment 

r\ n .\ n 

b0 = / expfE<M')# = ^ ° / exp(Y Xif)dt, 
Jo fo Jo ,'=1 

we can still "determine" A0 when Ai, A2, • • •, A„ are known. 

Algorithm 4.3.2 Let 2n + 1 moments b0, W, • • •, b2n be given. 

Step 1. Construct: 

Bn = 

1 6, b2 

1 &,, 63 

1 bn bn+i 

bn 

>n+l 

^2n 

bn = 

bo 

(n + l)K 

Step 2. Compute r" G Rn+l which solves thi linear system 

Bnr
n = bn. 

Step 3. Compute Xn E Rn+* as follows: 

\n — —-i h — 1 9 . . . r> 
k' 

b0 

Step 4. Construct 

K " ^exp^LA^W' 

*«(0 = <*P(E *?*'")• 
t'=0 

The following fact is now obvious. 

Theorem 4.3.3 / / the prior density x is of the form (4-11) for some A G Rn, and 

the first 2n + l moments are given, then the estimate density constructed by Algorithm 

4.3.2 is exactly x itself. 
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In Figures 4.3 and 4.4, we can seo that for general positive underlying functions, 

oui algorithm also gives fairly good estimates. We will try to reconstruct the functions 

x 3 ( 0 = 2 | * - 0 . 5 | , (4.15) 

x4(t) = | ( l - < ) s i n l 2 * | . (4.16) 

Figures (a), (c), rind (e) are our heuristic solutions using 7, 17, and 27 moments, 

respectively. This means we are approximating X3,xg,xi3, the optimal solutions of 

(P3) , (P8) and (P13). Figures (b), (d), and (f) aie the optimal solutions of (Pa), (P\K), 

and (P2&), respectively, by using Newton's method to solve the dual problems starting 

from the initial point 

A = (Iog(6o),0, •••,<>), 

(suggested in [24]) and iterating until the stopping criteria 

||VG-(A)||oo < 0.0001 

is satisfied. That is to say, we have used the same number of moments to get each 

pair of estimates: (a) and (b), (c) and (d), (e) and (f). We can also see that there is 

a greater advantage to using our heuristic algorithm when we have enough rnoments 

(or observations). This is a consequence of the cost of computation versus the cost of 

observation. When we have enough data from the moments available, our heuristic 

algorithm can produce a good estimate (almost as good as the optimal solution of 

(Pn)) in much less time (for a time comparison, see Ssction 4.2.5). 

4.3.2 Algorithm generalized to [0, l ] 2 

We now consider T = [0, l ] 2 . For n = (n i ,n 2 ) G Z+, let {a,, i G / B ) be algebraic 

polynomials of degree at most n\ in t-i and n2 in t2, of the form 

t\t2, i = 0 , l , . - - , n i , j = 0 , l , - . . , n 2 . 

If we assume that 

x(t1,<2) = exp(EEA.^i^) , (4-17) 
t=0 j = 0 
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(a) Heuristic solution using 7 moments. (b) Optimal solution of (Pe)-

(c) Heuristic solution using 17 moments. (d) Optimal solution of (Pie). 

(e) Heuristic solution using 27 moments. (f) Optimal solution of (P26). 

Figure 4.3: Heuristic estimates to x3l compared with the optimal solution of (Pn). 
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M 9 M I -I 

• M « * M 

(a) Heuristic solution using 7 moments. (b) Optimal solution of (JV-

• U 1 M I -

ME*!* • 4 M < N • * M r M • N N * H • Iff • . « • » • * • * MK<M» • M U i l f • ,1IM<«I 

(c) Heuristic solution using 17 moments. (d) Optimal solution of (P\r,)-

. .y~NJ 

W M I -

• *«M>M • MM*!* • Iff • MMK*M • , J M M * M • . * * » • • • I ,4«N.M «, •*• ! • • • •,|«M<«1 

(e) Heuristic solution using 27 moments. (f) Optimal solution of (P2ii). 

Figure 4.4: Heuristic estimates to x4, compared with the optimal solution of (Pn). 
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and we know the moments given by 

K,h = j 1 f x(h,t2)t
llt2*dt2dtu (4.18) 

JO Jo 

for /i = 0, l , . - . , 2 n i , l2 = 0, l , - - - , 2n 2 . Then the analogous formula to (4.12) \a 

r\ r\ "1 n2 

b,uh = / / exptEEA.- jWi^M*! 
J° Jo »=0j=0 

= / (/ ^v(H(AY.KA))^dt2)tUh 
Jo Jo ,=0 i=o 

=
 TTI^+1 L exp(E^(EA.^2))42^|t;:0 

M + l J° i=0 j=0 

-i-TT / '"+1W exp(E^(EA.,i4))EK"1EA.-,i4)42^2)^1 
«i 4- Wo Jo ,= 0 j = 0 ,.=l j = 0 
i . j " l "2 i " l "2 

r—T / e x P(E E A,j^)42^2 - T—T E E >A,-,A+.y2+;, (4.19) 

or 

/

l ni »i2 ni ri2 

exp(E E A,J^2)42^2 - E E *A,-.A-H,.2+J> 
i=0 j = 0 :=1 j '=0 

for /T = 0 ,1 , • • •, n i , l2 = 0 ,1 , • • •, n2. Now let 
/ • l " 1 "2 . 

ro,.2 = / e x P ( E E A,j<2)4
2^2, h = 0,1, • • •, n2, 

J0 :=0 «=0 

and 

rh,h — - ^A ( j i / 2 , /5 = 1,2, ••• , n i , /2 = 0, l , . - . , n 2 . 

We now obtain a linear system: 

d = Du, (4.20) 
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where 

&0,0 7*0,0 

60 i"2 

d = 

(ni + l)bnuo 

ro,n. 

u 

r n , , 0 

(4,21) 

(ni + !)&„,, 712 

and 

D = 

1 . . . 0 6,,0 ••• &,, 

0 ••• 1 6ilB2 

1 ••• 0 62)0 

0 ••• 1 b %n2 

h 

" 2 

,2n2 

}2,n2 

b2,2n2 

1 ' • • 0 & m + i , o • • • 071,4-1, n 2 

0 ••• 1 &n,+l,r»2 • ' * ^rii+1,: 2 n 2 ' - ' 

1 Hi ,"2 

* n , , 0 

"ni,n2 

""1,»2 

"ni,2ti2 

Oni + 1,0 • ' • «n i+l,Ti2 

«7l l+l ,7 l 2 • • ' «n,+1,2712 

''ZTII.O • • • ' ^ n I ,"2 

^2ni ,7i2 ' ' " "2«1,27t2 

wzhuang Solving it, we can obtain A,-j, for i = 1,2, •••,«>,, j = 0, l , - . - ,n 2 . 

Switching the order of t\ and t2, and integrating by parts in (4.19), we have 

k [h,h I. 

1 , 1 "1 "2 

—7 expEE^iM'* ' 
' l J0 i=oj=o 

1 » i n 2 

'2 + 1 ,= 0 ,=i 
(4.22) 
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Set /i — 0, we have 
1 » i "1 7l2 

Kh = TTT / exp(EEA . ,^'i) ' i fi 
h + Uo *t^i=0 

1 ni 7i2 

- 7—77 E E A d ^,'2+.' J 
'2 + 1 , = 0 j =l 

(4.23) 

which can be used to find A0)J, for j = 1,2, • • •, n2. Finally, from the first moment 

rl /•! "1 n 2 

b0,o= / e x p ( E E ^ ^ 2 ) ^ 2 ^ 1 , 
^0 JO ._n •_„ 

(4.24) 
1=0 j '=0 

we can determine A0,o- We then have the following detailed algorithm. 

Algorithm 4.3.4 Let bhJ, i = 0 ,1 , - • • ,2rij, j = 0, l , - . . , 2 n 2 be given moments in 

(4.18). 

Step I. Construct 

dk 

bk,o 

bk,x 

. Kn2 . 

, Uk = 

rk,o 

rk,i 

. r f c - n 2 . 

k = 0 ,1 , • • • , n ] , 

Dk = 

bk,o 6*,i 6 * , n 2 

^fc,7l2+l 

^fc,7l2 ^fc,7»2+l " " ' &*,2n2 

k = 1,2, • •• ,2ni , 

5/ep £. SWOT the following linear system with (n^ + l)(n2 4-1) variables 

d = Du, 

where 

d = 

do 

2dx 

Uo 

Ul 

u = 

(ni 4- \)dni u n\ 



D = 

I A D2 ••• A , 

/ A .D3 ••• A„+i 

^ Ai ,+1 A n + 2 " ' ^27ii 

Step 3. Compute: 

Ki = ~Triuhi fi = 1,2, •••,«-!, /2 = 0, l , - . . ,J i2 . 
*1 

ffiep ^. Compute: 

Til 712 

fc|2 - (h + l)6o,/a + E E JhiKh+i, h = 0,1, • • •, n2 
i=i j= i 

and so/re £ne linear system 

where 

V = B'u', 

V 

' b'o ' 

K 

A>. 

X = 

" r0 " 

rj 

r' 
. "2 J 

and 

B' = 

1 6tt,l &0,2 ••• &0,„2 

1 &0,2 60 )3 • • • V n 2 + i 

1 ^0,n 2 +l ^0,7i2+2 • * ' &0,2n2 

Step 5. Compute: 

A0,j = --r'j, i = l ,2 , . . - ,n 2 . 

Step 6. Finally we have 

A0,o = log [60,o( / / exp( E kijAfydhdh)'*] 
(«JV(O,O) 
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and 
"1 " 2 

Xn(h,i2) = exp(E E A»,^i^) 
. = 0 j = 0 

is the estimate density. 

Analogously to the Theorem 4.3.11, we have 

Theorem 4.3.5 / / the prior density x is of the form (4-17) for some n\, n2 E Z+ ; 

and we know the first (2n\ + l)(2n2 + 1) moments given by (4-18), then the estimate 

density xn constructed by Algorithm 4-3-4 is exactly x itself. 

We now give some numerical test results of our algorithm in [0, l ] 2 C R2. We will 

try to reconstruct some two variable underlying density functions. In the figures given 

below, pictures labeled (a) give the underlying density functions, pictures labeled 

(b), (c), or (d) give the heuristic estimations generated by Algorithm 4.3.4 using 

49(= 7 x 7), 121(= 11 x 11), or 289(= 17 x 17) algebraic moments, respectively. 

In Figure 4.5, the underlying function x5 is like a helmet, which is smooth but with 

sharp derivative at the center. In Figure 4.6, we give a pyramid function x6, which is 

continuous but nonsmooth. In Figure 4.7, we will reconstruct a forest-like function 

x7, which is perfectly smooth but with a lot of peaks. In Figure 4.8, a discontinuous 

stairway function xg is to be reconstructed. 

Note that our estimate is always a smooth function and is strictly positive. So 

for a nonsmooth or discontinuous underlying function, we should not be surprised to 

see that ihe reconstruction looks like a melting ice cube (as in Figure 4.6(d)), or a 

muddy path (as in Figure 4.8(d) ). 

In the last example, although the estimates do not look as cute as the original 

stairway function, we can still see the steps (especially in (d)) climbing to the top. 

4.3.3 Genera l izat ion to [0, l ] m 

Now we generalized the algorithm to [0, l]m. Let T = [0,1]TO, and write 

n = ( n , , n 2 , . . - , n m ) T G Z+, 
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(a) The underlying function. (b) Using 49 moments. 

(c) Using 121 moments. (d) Using 289 moments. 

Figure 4.5: Heuristic estimates to the function X5. 



104 

a ) T h eu«der \ym g ^ c i i 0 f l -

(b) Using 49moi ,ments. 

(a) 

10 
Using 121 moments. 

Figure 
4.6:Heunstk estimates 

(d) Using 289 moments, 

to the faction H-
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(a) Theunderlyiug^c t ion-

(c) Using 
\2l moments. 

(b) Using 49 moments. 

Figure 4.T: Heuristic es' 

(d) Using 289 mome 

Urates to the functions. 

ittients. 
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(a) The un 
derlymg function-

(b) Using 49 moi roents. 

(c) Using 121™° 

Figure 

ments. 

4 .8 : Heuristic estimates 

(d) Using 289 moments, 

to the function is-



In = {(*l,*2,"-,»m)T € Z + | ij =0 , l , - . . , 7 l j , j = 1,2, • • • , m} 

= {(* € Z? | 1 < » < n}, 

{«,-, i € ln} be algebraic polynomials of the form 

W • * -C» *i - 0,1, • • •,»,-, i = 1,2,-- • ,ra. 

Then we have 

771 

M«)=ri(»i+1)-

Again we assume x is of the form 

11 n 2
 nm 

x(h,t2,---,tm) = exV(j2 E - - - E * . w - M « « a •••*£), 
j a = 0 i 2 = 0 . m = o 

or 

here we denote 

x(*) = e x p ( E A , A 
iein 

t = (h,t2,---,tm)TERm, 

i = (*l,*2,"-,»m) eZ™, 

fi — {ii 4«2 . . . jim 1 — l\l2 l m ) 

and 

Xi — ^« l ,»2 ,—,« 'm> % *= *n-l 

hence 

x = (XiiEin)eRkM. 

Then for /,• = 0,1, • • •, n,-, i = 1,2, • • •, m, the moments are given by 

Kh,-u = [[•••[ x(u,t2,---,tm)t[lt2*---tl™dtldt2---dtri 

Jo Jo Jo 



or 

where 

6, = / x(t)tldt IE ln, 
j[o,\r-

l = (fljfe? • • • , f m ) € Z™, 

dt = dt\dt2- • • dtm. 

Note that for each j = 1,2, • • •, m, integrating by parts, we have for each / € ln, 

b< = Arrl , ,exp( D Mi)' '0 '^)'^) 
a) 

• — — E *î *i+»» 

wh ere 

/«(j) = { i € / n | i i ^ 0 } 

i(j) = (*i7-"i*i-i»^'+i>*,"7*Tn) E Rm~ 

*(i) = («i7---,*j-i ,*j+i,-",*m) e z™ - 1 

a7(j) = tfti • • • dtj-\dtj+\ • • • dtm. 

The algorithm can be stated as follows. 

A lgo r i t hm 4.3.6 Let 6,-,i E hn be the Il^=i(2wfc + 1) moments given in (4-18). 

Step 1. Construct linear system with n™=i(nifc + 1) unknowns: 

ni n2 nm 

^'1,'2,-,'m = r0,.2,-,/m + E E " " E r»'l7-.»m^l+'l,-.«'m+'m7 
t',=l i 2 =0 i'm=0 

where 

dh,h,-,im = (h + 1)biui2,...,im, 

and solve it. Let 
\ ' Mt".|«'m 
Ai\,-,im — • » 

M 
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for 

i\ = I,---,™,, i2 = 0, ••• ,n2,---,im = 0 , - - - ,n m . 

5e«j' = l . 

ffiep #. / / j < m — 1, construct the linear system with U.T=j+\(nk + 1) unknowns: 

n j+ i " J + 2 n m 

% + l , - > ' m = r O , / J + 2 , - , / m + 2~l 2-1 " L~l r»J+l>"'. ,m"0,-.01Ij+l+/J + i," ,!,„+/„,, 
, J + l = 1 , J + 2 = 0 »m=0 

/or 

(7+1 = l j " - »nj+i7 (j+2 = 0, ••• ,n}+2,-- • , /m = 0, •• - , n m , 

tuyere 

%+l- -> 'm = V\?+l + l )"0|- |Oi'j+l--- '"• + 2 - / r»J+l . - . 'm"«l , •,tj,«j+l+0+l,.. ,l ,n+/m-
«i-f--+«,>0 

5Wwe if and let 

Ao,...,o,'j+i,-.'. r-
«j+i 

/or 

(7+1 = !)•••) nj+i» h+2 = 0, • • •, nJ+2, • • •, !m = 0, • • •, nm. 

Set j = j + 1, repeat Step 2. 

Step 3. When j = m, compute: 

A0 , . ,o = log[60 , . ,o( f f - ' f exp ( E A, , , . , , J ' / • • • t*dlx - • • <ftm)-»]. 
->0 JO JO :.,.-r~,. ^n 

rl rf f l 
exp 

« l+«2+-+tm>0 

7%en the estimate density is 

xn(t) = e x p ( E A,*'). 
tein 

4.3.4 Trigonometric polynomial cases 

We first consider the trigonometrical case on the interval [—7r,7r]. 
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(Pn) 

Let /„ = {—n,- •• ,0,- • • ,n}, ak(t) = etkt, k E In, where i = y/—\. Then the 

problem becomes: 

min f%[x(t)\og(x(t))-c:(t)}dt 

s.t. f*„x(t)eikldt----bk, k = -n,---,0,---,n 

0 <x(t) E Xl[-7T,7r]. 

Note that in the one-variable trigonometric case, k(n) = 2n 4-1 . We consider only 

the case where x(t) is real. In this case we have for all A;, 

b-k = h- (4.26) 

Moreover we may again assume x(t) is of the form 

x(t) = exp( E Afce''fci), 
jfc=-n 

and where we have for each k, 

X-k = —Xk, 

since x is assumed to be real. 
As to the integration property, for k ^ 0 we have 

ldt 

(4.27) 

(4.28) 

K = f exp( E V'V* 
J-* l=-n 

= iexp( E W t . ~\f eiktexp( £ V') £ i/A,e'" 
/ = - n / = - n i = - n 

Using the property that X-k = — A\., we have the linear system: 

b = Cf + Br, 

where 

6 = 
-26a i 

f A, 

2A2 

r = 

~nbn nXn 



Ill 

c 

b0 6j 

h 60 

&n-l K_2 

bn-l 

bn-2 

bo 

,B = 

^71+1 "71+2 

^,1+1 

''71 + 2 

'2tt 

Solving this system, we can determine all Â ,., k ^ 0. Finally Ao can be obtained from 

60 = f exp( E hetkt)dt 
J-* k=-n 

= eA° r eKP(^Xke
tkt)dt. 

J-7r fc/o 

We can also express everything above in real form. Let 

71 

x(t) — exp(A0 + E(Afc c o s kt + pk "in kt)), 
fc=i 

and the moments: 

= r x(t)dt, (4.29) 
J—ir 

= r x(t) cos ktdt, k=l,2,--,n (4.30) 
J -n 

bk = f x(t)smktdt, Jb= 1,2,•••,«. (4.31) 
J-1T 

Then for / = 1,2, • • •, n, using trigonometric angle formulae, we have 

/

ir n 

exp(A0 + E(Afc c o s kt + pk sin kt)) cos ltdl 

a0 

ak 

fc=i 

1 ^ 
= TTi E HAk(ai-k ~ "l+k) - Pk(k-k + VH0]> 

21 k=\ 

and 

1 T^ b' - w E *[_Afc(&/+* - bt-k) + pk(ai_k + at+k)]. 
21 fe=i 

Note that x is real, thus for each k, we have 

a-k = a*, 
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and 

b-k = -h, 

The next algorithm then follows after some arithmetic calculation. 

Algorithm 4.3.7 let ak,k 

(4.29). 

Step 1. Construct: 

0,1, • • • ,2n, bk,k = 1,2, •• • ,2n, be given moments in 

a = 

2a, 

4a2 

2nan 

, b = 

26! 

462 

2n6B 

At = 

fl,= 

a0 

a. 

« 7 l - l 

0 

by 

. 6B-l 

a\ ••• a,i-i 

do * • • a n - 2 

an_2 • • • a0 

- 6 | • • • -6B_, 

0 ••• -6 n _ 2 

bn-2 ••• 0 

,A2 = 

,B2 = 

a2 a3 

a3 a4 

• ' • a n+l 

• - ' an+2 

fln+l an+2 " " * a2n 

b2 63 

63 64 

• • • bn+i 

• • • 6B+2 

_ 6n+i 6B+2 ••• 62n 

•>olve the linear system 

' 

Step 2. For i = 1 

in a 

a 

b 

' Ai-A2 -Bi - B2 ' 

Bx - B2 Ai + A2 

r 

s 

2, • • •, n, let 

A - - H 
i 

Si 
Hi = —. 

1 

(4.32) 
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Step 3. Compute: 

t-K n 

A0 = log[ao( / exP(E(A« c o s it + /** SM1 it))dt)~*]. 
J—IT • , 1 = 1 

We now give some numerical test results of Algorithm 4.3.7 for trigonometric 

polynomial moments. We will try to reconstruct the following two functions defined 

on [0,2TT]: 

x9(t) 

0.5, 0 < * < 1 , 

0.5 + 0.5(^-1), 1 <t<2, 

3-t, 2<t<3, 

0.125(* - 3)2, 3 < t < 4, 

0.5, 4 < t < 2?r, 

(4.33) 

and 

x1o(i) = 0.8cos10(100-2') + 0.1 (4.34) 

We give a visual display of our numerical results in Figure 4.9. 

Notice that the function Xio behaves really badly, though it is perfectly smooth. By 

using enough moments, we can get a very accurate reconstruction. (For a possibility 

to use that many moments, see comments at the end of Section 4.3.6.) 

In a similar way, we can generalize this to m-dimensional space Rm. 

Let T = [—7r,7r]m, {ai(t),l E In} be trigonometric polynomials of the form 

0i(ktti+-+kmtm) 
-n ]•> •,ov , n j , 1,2,' .rn. 

Let 

n = (nx,n2,--- ,nm) EZ™, 

k = 0 , ,* 2 , - . . ,A: m ) r ez; \ 

In = {k E Z™ | - n < k < n], 

In(j) = {ie In, ij ? o}, 
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• MfKttf 

t m i i u 

: , , , , U 

--T - r - j » 

/ / \ 

—T 

• mc.M -

tztf-Hn • » i t * * i • 3rn*«i # H X > i i • u « * » i I MK*M • 13«*»1 I 30iC*«1 • 3?7E*H I 5*3E*#> • *3BE*I 

(a) Using 9 moments. (d) Using 25 moments. 

• I H K M 

• .»«••• -

* t M t ' l f 
iK*M • ia*E*«1 * 291E*«1 • 177S*«1 t U3E*«1 • U K ' I 

(b) Using 13 moments. (e) Using 61 moments. 

• BMt**» -

• M M . M • i M ' f i • n i H i • irn*#t • M X * H • *3K.* i • MfC*M • ia*e*ii • 3> IE** I • » » * • . • Mac*** • u « 

(c) Using 25 moments. (f) Using 121 moments. 

Figure 4.9: Heuristic reconstructions to functions x9 and xjo. 
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then 

Assume 

where 

and the moments are 

where 

*(n) = n(2n, + l). 

x(*) = exp(EAfce
U(), 

kein 

t = (ti,t2,---,tm) € Rm, 

A = {Xk, kEln}e C*<">, 

b,= f x(t)e,Hdt, I E ln, 
J[—ir,Tr]m 

dt = dt\dt2 • • • dtm. 

By the integration procedure, we have 

6, = - E 7 kjXkk+k, I E In(l}) j = 1,2, • • •, m. 
fJ kein 

Suppose we know all the moments 6/, / E hn, we can get all Xk, k E In, using the 

following algorithm. 

Algori thm 4.3.8 Let 6/, / E hn be given moments. 

Step 1. Solve the linear equations: 

bi = j E Mfc6/+;t, / € / B ( l ) , 
1 fce/„(i) 

Setj = \. 

Step 2. If j < m, solve 

(7+161- E i]+\Xtbt+i = E *j+iA,6,+/. 
te/n(j+i)n{ti=-=«j=o} ,€/„n{M= • =tJ+i=o} 

Set j = j 4-1, repeat Step 2. 

Step 3. When j = m, compute 

Xo = \og[a0([ exp( E ^e,hl)dt)~1}. 
J\-*,Am

 fc6/n\{o} 
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4.3.5 Further comparison with the dual iteration method 

We have proposed several algorithms in the previous sections and also implemented 

them to solve one and two dimensional best entropy moment problems with algebraic 

or trigonometric moment functions. 

In order to make further comparisons, we will take our heuristic estimate as an 

initial solution and then use the Newton method combined with the Armijo's step 

length search technique to iterate for some more steps. 

The following notations are helpful in reading the tables and figures below. 

• x(t) (or x(tx,t2)): the prior density function. 

• sup-ERR: the supremum norm of x — xn, where xB is the estimate density 

function constructed by the corresponding algorithm. 

• £i-ERR: the Li-norm of x — xn. 

• d-GAP: the duality gap defined by V(Pn) - V(Dn). 

• TIME: execution time (in seconds) used to compute the dual solution A only. 

We first consider a step function 

x11(0 = 0.5x[o,o.5l + 0.1 (4.35) 

on the interval [0,1], and use the first 25 algebraic moments to reconstruct x\\. In each 

table below, ALGl means the Algorithm 4.3.2 given in Section 4.3.1, NEWTON(k) is 

Newton's method starting from our heuristic solution and making k more iterations, 

OPTIMAL means we use Newton's method to solve the problem (P2<i) a n d iterate 

until some termination criterion is satisfied, in our case we use 

||V$(A)|U < £(= 0.0001). 

The optimal solution is then of the form 

E A>,'(<), 
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Figure 4.10: Comparison results for the step function xi 
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ALG 1. 
NEWT0N(5) 
NEWT0N(15) 
OPTIMAL 

sup-ERR 
0.23105 
0.23332 
0.23356 
0.23444 

Lj-ERR 
0.04020 
0.02481 
0.02472 
0.02498 

d-GAP 
0.01286 
0.00407 
0.00122 
0.00008 

TIME 
0.0199 
0.5099 
0.8598 

Table 4.5: Numerical results for the step function i n . 

where An € Rk{n) is obtained from OPTIMAL. 

We also consider a smooth density 

x12(*) = *sin2(10*) (4.36) 

on the interval [0,1], and again use the first 25 algebraic moments and give the 

numerical results in Figure 4.11 and Table 4.6. 

ALG 1. 
NEWTON (5) 
NEWTON(15) 
OPTIMAL 

sup-ERR 
0.12194 
0.10858 
0.11467 
0.11419 

Z/i-ERR 
0.04390 
0.02669 
0.02676 
0.02681 

d-GAP 
0.00841 
0.00656 
0.00255 
0.00047 

TIME 
0.0299 
0.2100 
0.5100 

i 

Table 4.6: Numerical results for continuous function xi2. 

Note that the objective function we used here is the Boltzmann-Shannon entropy, 

it is neither the supremum norm nor the Li-norm. We use these norms here just to 

compare the results and to measure the goodness of our reconstructions. Actually, it 

is the d-GAP which measures our success in getting our numerical estimates close to 

the optimal solution of (Pn). 

We now deal with 2-dimensional functions: first consider a smooth function, 

xi3(tut2) = 0.8M2(sin(6*,)cos(8*2))
2 4-0.1 (4.37) 

on [0, l]2 (see Figure 4.12(a)), and use 225(= 15 x 15) algebraic moments. We again 

use the estimate density generated from our heuristic algorithm as the initial solution 
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(c) After 15 more iterations. (d) Prior and optimum. 

Figure 4.11: Comparison results for continuous function x12. 
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of the Newton method. This saves a lot of time especially in multidimensional cases. 

So NEWTON(k) means that we use the Newton method to make k more iterations 

from the heuristic solution of Algorithm 4.3.4. 

ALG 2. 
NEWTON(5) 

sup-ERR 
0.08851 
0.11897 

L/j-ERR 
0.01319 
0.00792 

TIME 
1.01979 
221.895 

estimat. 
Fig.4.12(b) 
Fig.4.12(c) 

sup-error 
Fig.4.12(d) 
Fig.4.12(e) 

Table 4.7: Numerical results for 2-dimens.\onal smooth function X13. 

As the final example, we consider a maple-leaf function XXA on [0, l]2 (see Fig.4.13(a)), 

which is very discontinuous. For both the heuristic algorithm and Newton's method, 

we use 121(= 11 x 11) algebraic moments. 

ALG 2. 
NEWTON(4) 

sup-ERR 
0.67450 
0.71720 

Li-ERR 
0.05402 
0.04367 

d-GAP 
0.01383 
0.00035 

TIME 
0.42991 
105.248 

estimat. 
Fig.4.13(b) 
Fig.4.13(c) 

sup-error 
Fig.4.13(d) 
Fig.4.13(e) 

Table 4.8: Numerical results for the maple-leaf function X14. 

Note that these tables allow us to deduce the very steep cost of each Newton step 

as compared to our heuristic. Moreover, earlier Newton steps are even more costly 

because greater work is needed in the line search. 

4.3.6 Notes about error analysis in Ml 

In this section, we give some error estimates in 1-dimensional cases. We consider 

T = [0,1] or [—7r,7r], and {«,(<)} be algebraic or trigonometric polynomials in only 

one variable. As we know, our algorithms 4.3.2 - 4.3.8 are exact when the underlying 

density x can be expressed as an exponential of a polynomial of {GJ, % 6 /„}. Now 
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(a) Prior function. 

(b) The heuristic estimate, 

(C) After 4 more iterations. 

(d) 
Sup-error for heuristic. 

Figure 4.13: Visual 

(e) Sup-error 
after 4 iterations 

results for the maple-leaf function X14. 
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we assume that x is almost of this fom, that is 

x(t) = expfE A,-a,-(/)] 

in some sense, and we wish to determine arguments A,-, i E /„. 

We write 

bk - I exp[E Xiai(t)]ak(t)dt, k E /"„, 
JT .•<-1 iein 

while 

h = / x(t)ak(t)dt, k E In, 

and we denote B and B by the matrices generated in the algorithms using the data 

{6,} and {b,} respectively. 

By the construction of the algorithms, A can be determined by r which solves a 

linear system 

Br = b. 

But from the input data {&,•} and B, we can only obtain f, which solves the linear 

system 

Br = b. 

Since B is nonsingular under mild hypotheses, we can obtain f and hence A . We 

now need to estimate the error bounds of ||A — A|| in some gevin norm. From the 

nonsingularity of the matrix B, it is easy to see that 

f-r = B-\b-Br). (4.38) 

Considering the algebraic case first, we have 

1 6i 62 ••• bn 

1 b2 63 ••• bn+x 
J5 = 

l K + \ *>i +1 °n+2 • 6. 2n 

6 = 

bo 

26, 

. (n + l)bn 
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B = 

We assume 

1 6j 

1 b2 

b2 

63 bn +1 

1 t n + 1 bn+2 ••• k 2n 

6 = 

6o 

26i 

{'•» +1)6» . 

and 

x(<) = e x p [ E A,-*' + en(t)}, 
t=0 

M*)ll°° < *n, 

for n = 0,1,- • •. 

Note that when £„(•) is differentiable on [0,1] 

kdt = fx(t)<' 
Jo 

\ fltk+'x(t)e'n(t)dt. 
i JO * + 

Considering the kth component of (b — Br) in (4.38), we have 

(b-Br)k = (fc + l)6fc + E*A,-6*+.--exp[EA,-] 
i = l t'=0 

= x( l ) ( l -exp[- £ n ( l ) ] -e r / l )x( l ) 

4- f en(t)((k + l)x(t)tk + tk+1x'(t))dt 
JO 

= x(l)[l-e„(l)-exp[-£ n(l)]] 
+ f en(t)((k + \)x(t)tk + tk+lx'(t))dt, 

J 0 

for k = 0 ,1 , • • •, n. 

(4.39) 

(4.40) 

(4.41) 
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Lemma 4.3.9 Suppose x E Cl[0,l] is of the form in (4-39), (a,-(i), i E /„} arc 

algebraic polynomials l,t,- • • ,tn on [0,1]. r, r, B, b arc defined as before. Then 

where 

hence 

where 

pVmax 1 

P-BrU <[(-—• + 2)1151100 + rp'Hooft., 
Umax & 

f>max = m&x{Sn, i - 0, 1, . . . } , 

|r-r||oo < dH^Hoo*,,, 

A pOmax 1 

C1 = ( — - + 2 ) | | x | | O 0 + - | |x ' | |o o . 
"mm " 

Proof: First we recall an inequality ( proved in [ 2, Lemma 4.10 ]), 

e M - l 
\ex-\\<—^-\x\, for |x| < Af. (4.42) 

By (4.41), we have 

\(b-Br)k\ < x( l ) (e*"- l ) - f | £ n ( l ) |x( l ) 

+Sn / |(Jb + l)x(t)tk + tk+lx'(t)\dt 
Jo 

< | | S | U e ' - - l ) + « B p | | o o + ^n(||x||oo+ | | 5 l o o ^ ) , (4.43) 

and hence by (4.42), 

nbmax 1 

\\b-Br\U < [(^— + 2)\\x\\0O + ~\\x'\\00}Sn. 

The result follows now from (4.38) 

From Lemma 4.3.9, we have, for k = 1,2, • • •, n, 

1 
|Afc-Afc| = T k * - r f c | 

< {\\r-?\\~ 

< illfl-'HooC,*,, (4.44) 

file:////b-Br/U
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for a constant C\ depending on x and 8max, but independent of n. 

To estimate |A0 — A0|, we need the following mean value theorem. 

Lemma 4.3.10 If g(t) > 0 is integrable, and f(t) > 0 is continuous on [0,1], then 

there exists t E [0,1], such that 

f f(i)g(t)dt=f(t) f g(t)dt. 
Jo Jo 

We now give the error bound for |AQ — Ao|. From the algorithm, we know that 

eAo = h. 
/ J e x p E ^ i A ^ ] ^ ' 

By (4.39) and Lemma 4.3.10, wc have 

f exp[E A,i*']a7 = f exp[E A,-** + £n(*)]exp[E(At- - A,-)*' - en(t)]dt 
Jo i=i Jo i=i i=i 

= e-Ao jf * x(f)exp[E(A,- - A,)f - en(t)]dt 

= e-A o60exp[E(A,-A,)f , ' -e„(f)] , «=i 

for some i E [0,1]. Thus 

0 A o _ e 
Ao 

exp[Er=i(A,-A,)<«-£„(0] 

and 

|Ao-Ao| = | £(*,--A,)?-e»(*)l 
i = i 
n 

< ElA.'-A.-l + n̂ 
« ' = 1 

< (£\W-r\\oo + 6n 
.=1 l 

< (ClU^IUE^ + l̂ n 
fc=l K 

J - l < (CH^-^jooCl + logn) + l)^n , (4.45) 
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noting that 

n 1 /"" 1 
E T < 1 + / ~dx = 1 + log n. 

We now have 

Theorem 4.3.11 Suppose logx E C f̂O, 1], that the moments are given by 

bk= I x(t)tkdl, k = 0,1,---,11 
Jo 

and that the estimate density xn(t) is computed by Algorithm 4-3.2. Then 

pn-xHoo < ||x||00(exp(2£;n((71||fi-,||00(l + logn) 4 - 1 ) ) - 1), 

where 

En= inf {Hlogx-EA.flU}, 
A 6 R ,=0 

and C\ is a constant dependent only on x. 

Proof: By the definition of En there exists An € iF2"+1 such that 

logx = jrxnt' + en(t) 
1=0 

and 

\\en(t)\\oo<Sn = En. 

Using Algorithm 4.3.2, from (4.44) and (4.45), we have 

|A2-Afc| < l\\B-x\\ooCxEn, 

for k = 1,2, • • • ,n, and 

lAS-Aol < (Cx\\B;l\U\ + logn) + \)En-
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Thus we have 

| |x -x B | | oo < P | | o o | | l - e x p ( E ( A , - A n < , ' - £ n ( i ) ) l l o o 
t = 0 

< ||x|Uexp(E|A,-At"| + ^ ) - l ) 
i=0 

< ||x||00(exp(2£n(C1 | |Bn-1 | |oo(l + l o g n ) 4- 1)) - 1). 

It is clear that En = 0 implies ||x — Xnlloo = 0. 

Similarly, in the trigonometric case, we assume x is of the form 

n 

x(t) = exp(A0 + E(Afc c o s kt + uk sin kt) + £n(t)), 
k=\ 

and 

||£n(0l|oo < *», 

for ii = 0 ,1 , - • •. 

In the same way we proved for Lemma 4.3.9 , using trigonometric angle formulae, 

we note that, 

(ik = I x(t) cos ktdt 
J-TT 

1 1 r* 
= -x(t)s\nkt\%-- x'(t) sin ktdt 

IC K J — TT 

= —- / x(t) sin ^ ( E ( _ i A j sin jt + juj cos jt) + e'n(t))dt 
K J—K - = 1 

= —j I x(t)(^2(—jXj sin jtsmkt + jpjCosjt sin kt) + e'n(t) sin kt)dt 

= 2Jfc EO'AjK-* - ai+k) + juj(bj-k - bj+k)) 

K J— ir 
fn x(t)e'n(t) sin ktdt, (4.46) 

J -n 
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and 

bk = / x(t) sin ktdt 
J—ir 

1 1 r* 
= ~-x(t)coskt\n_ir + - / x'(t) cos ktdt 

K K J—ir 

= - / x(2) cos M ( E ( - J A j sin j< 4- j>j cosj*) 4- e'n(*))<^ 
fc ./—ir _ j 

= — I x(t)(^2(—jXj sin jt cos /rf 4- jpj cos j< cos kt) + e'n(tf) cos M )dt 
A; J—jr . j 

1 n 

= gib X3(~iAi(6*+i - h-j) + jftj(ak-j + ojt+j)) 

4 - - / s(<)eB(i)cosfa(ft, (4.47) 
fc J — IT 

for A; = 1,2, • • •, n. Hence from the periodity of x, 

A " 

(6 - Br)k = 2A.-afc - E ( a i - * ~ ai+k)j^i 
i = i 

n 

+ EMi-* + 6i+t)i/̂  

= - 2 / " x(*)-<(*) si" ktdt 
J—ir 

= 2 / eB(*)(x'(i) sin kt + kx(t) cos A;/.)^, 
J—ir 

and 

(6 - Br)n+k = 2kbk - E ( ( 6 i - t _ bi+k)j^j 

+(o,-_fc + aj+k)jfij) 

= 2 / £(*)<(*) cos fc/<ft 

= - 2 / £n(t)(x'(*) cos A:/ + &x(*) sin &*)</£, 
J - i r 

for k = 1,2, • • • , n. Taking supremum norm, we have 

||6 " firlU < 47r£n(||x'||0o 4- /cHxlU). (4.48) 



From Algorithm 4.3.7, we then have 

2;r, 

anc 

|A* - A*| < •j\\B~i\\oaSn(\\x'\\00+k\\x\\OQ), 

2ir 
Iw, ~ h\ < -j^\{B-1\\0oSn(\\i'\\0o + *||*||oo), 

for k = 1,2, • • • .n, here B b 

' Aj - A2 ~BX - B2 

Bx - B2 At + A2 

constructed in Algorithm 4.3.7. 

As to |AQ — AQ|, note that in the algorithm, we have 

DAo ao 

Since 

UT exp(E"=i Aj cos jt + p.j sin jt)dt 

/ exl>(E Aj cos J* + fij s ln iO^ 
J-" j = i 

fir « 

= / x(<)e~Aoexp(E((Aj - Aj) cos jt + (£,• - //,) sin;'f) - £n(t))dt 
J-* j=x 

n 

= e~Aoexp(E((Aj - Aj) cosj'f + (fij - pj) sin ji) - £n(i))a0 

( by Lemma 4.3.10 for some i 6 (-ir, if)). 

Thus us 

|Ao - A o | = | E((Aj ~ Aj) cos ji + (pj - p,j) sin ji) - £n(i)\ 
i=i 

< E(|Aj-Aj| + | ^ - ^ | ) + 4 . 
y=i 

Combining this with (4.49) and (4.50), we have 

(4 

(4 
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Theorem 4.3.12 Suppose logx E C1[—ir,ir]) x is periodic with the period 2ir. Given 

4n 4-1 moments 

a0 
' - IT 

r x(t)dt 

ak = / x(t) cos ktdt 
J—K 

bk = / x(t) sin ktdt 

k = \,2,---,2n. 

Let xn(t) be the estimate density constructed from the Algorithm 4-3.7. Then 

• |pn - x||oo < ||x||00(exp(87r£;n | |^-1 | |00((l 4- l o g n ) ^ ' ^ + n||x||oo) + 1) - 1), 

where 

En = inf{|| l o g x - Ao- E ( A , cos j i + N «n j<)||oo I (A,/i) G JK2 ' l+ '}. 
j=i 

From the error bounds in Theorem 4.3.11 or 4.3.5 we see that the product 

is an overestimate for the rate of the convergence of xn to x. From approximation 

theory, Jackson's Theorem (see [108]) tells us that if 

l o g x € C r [ 0 , l ] , 

then 

E« = o(~)-

Moreover, if log x is analytic on [0,1], then 

En < Cqn, 

where C is a constant and q < 1. Unfortunately, we haven't found any theoretical 

bound for H-B^Hoo. Numerical results indicate that 

Halloo -+OC, 
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(see Table 4.9. and Table 4.10.). and so that when the number of moments gets 

too large, the computational results may not be reliable due to the accumulation of 

errors. This difficulty accurs in the numerical computation when we use too many 

moments. But for the trigonometric case, when the prior density is smooth enough, 

we can see from Table 4.10. that HZ?"1^ appears to be dominated by a polynomial, 

so that using Jackson's theorems, the convergence of our algorithm for trigonometric 

polynomial moments may follow. Numerically, as we saw in Section 4.3.4, we have 

successfully recontructed a somewhat bizarre function xXQ by using 121 moments. 

I^n 1 loo 
n=2 

3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Fx 

0.320E02 
0.578E03 
0.206E05 
0.608E06 
0.231 E08 
0.594E09 
0.223E11 
0.667E12 
0.233el4 
0.675E15 
0.250E17 
0.758E18 
0.257E20 
0.816E21 
0.289E23 
0.885E24 
0.307E26 
0.989E27 
0.342E29 

F2 

0.469E02 
0.240E04 
0.105E06 
0.450E07 
0.160E09 
0.560E10 
0.209E12 
0.717E13 
0.233E15 
0.844E16 
0.289E18 
0.948E19 
0.326E21 
0.112E23 
0.372E24 
0.124E26 
0.428E27 
0.144E29 
0.470E30 

^ 3 

0.498E02 
0.219E05 
0.121E08 
0.107E11 
0.895E13 
0.746E16 
0.866E19 
0.904E22 
0.110E26 
0.179E29 
0.355E32 
0.965E35 
0.451E38 

— 

— 

— 

— 

— 

— 

F4 

0.477E02 
0.195E04 
0.732E05 
0.363E07 
0.151E09 
0.416E10 
0.152E12 
0.642E13 
0.176E15 
0.840E16 
0.274E18 
0.856E19 
0.326E21 
0.949E22 
0.374E24 
0.123E26 
0.422E27 
0.158E29 
0.477E30 

Table 4.9: HZ '̂Uoo for algebraic moments. 

In Table 4.9, for functions [0,1] 

Fx = 2 |*-0.5 | , 
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iST'Hco 
n=3 

5 
7 
9 
11 
13 
15 
17 
19 
21 
23 
25 
27 
29 
31 
33 
35 
37 

Fx 

0.40166 
0.67313 
0.99875 
1.27501 
1.55475 
1.84964 
2.16509 
2.46792 
2.77001 
3.07217 
3.36068 
3.65724 
3.96081 
4.23835 
4.53221 
4.79253 
5.08312 
5.33845 

F2 

0.63662 
0.63662 
1.90986 
1.90986 
3.81972 
3.81972 
6.36620 
6.36620 
9.54940 
9.54930 
13.36902 
13.36902 
17.82575 
17.82575 
22.91831 
22.91831 
28.64789 
28.64789 

F3 

0.932E00 
0.359E02 
0.311E04 
0.339E06 
0.375E08 
0.443E10 
0.667E12 
0.132E15 
0.229E17 
0.495E19 
0.151E22 
0.599E24 
0.253E27 
0.164E30 
0.194E33 
0.156E34 
0.158E34 
0.107E35 

F4 

0.12861 
0.23679 
0.50826 
0.82539 
0.91805 
1.24088 
1.77943 
2.65173 
2.93955 
3.23528 
4.00094 
5.59461 
6.09011 
6.27491 
7.28279 
9.72277 
10.49603 
10.53350 

Table 4.10: HZ '̂Hoo for trigonometric moments. 

F2 = sin2*, 

F3 = X[0.4,0.6], 

F4 = *sin2(10*), 

we compute the corresponding values of KZ?"1^. In Table 4.10, we compute the 

values of jlZ?"1^ for functions defined on [0,27r] 

Fx = 1.5*, 

F2 = sin2*, 

h = 0.8X[1.4,3.6], 

F4 = *sin2(2*), 

in the trigonometric case. 
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Although the convergence of these algorithms is still unsettled, they often give 

very good estimates for the problem (Pn), and use much less time than Newton's 

method, as we can see in Section 4.3.5. If we use the heuristic solution as an initial 

estimate, then often only a couple of iterations are needed in order to get an almost 

optimal solution to (Pn)-

4.4 Number of nodes in the integration scheme 

We know that one of the most time consuming jobs is to compute numerical integrals. 

Although at each step, we can, and do, evaluate many integrals at the same time, as 

mentioned in [14], the cost (in time) still depends a lot on the number of integration 

nodes used in the Gauss quadrature integration scheme. In all our computations, we 

used 99 nodes for one dimensional cases and 3025 (= 652) nodes for two dimensional 

cases. This large number of nodes is not necessary, and we can reduce it without 

any significant increase in errors. The reason we use this many nodes is to improve 

drawing pictures using NCARG. More nodes give nicer pictures, especially in two 

dimensional cases. 

It is an accepted fact that the more moments involved in the problem the more 

nodes required in the integration scheme. Usually the number of the nodes should 

be at least as many as the number of moments. From our numerical experience, we 

have found that: to keep a reasonable level accuracy, the number of nodes in the 

integration scheme should be around two to four times (in one dimensional cases) the 

number of moments involved in the problem. 

In Table 4.11, we give reconstruction errors for the underlying function xx defined 

in Section 4.2. We use the Newton method to solve the dual problem with the 

Boltzmann-Shannon entropy and algebraic polynomial moments. We use the stopping 

criterion as before or iterate up to 55 steps. Both Lx-novm errors and Loo-norm errors 

are given in the table when we use varying numbers of nodes (n) and moments (m). 

To compare the execution time, we use the classical Newton method in which the 
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step length is set to be 1. The right-most column in Table 4.11 gives the execution 

time (in seconds) per iteration for fixed m = 25 and varying amount of nodes. The 

bottom row shows the execution time (in seconds) for fixed n = 99 and varying 

number of moments. So we can see how the execution time depends on the number of 

nodes in the integration scheme and the number of moments involved in the problem, 

respectively. We can observe that the best choice of the number of nodes in the 

algebraic case is around the double of the number of moments. The Italicized data 

given in the table show unsatisfactory results, while the Bold data show the most 

favorable choices. 

Li-err 
Loo-err 
n=9 

n=13 

n=19 

n=25 

n=37 

n=53 

n=69 

n=87 

n=99 

Time 

m=5 

0.1484 
0.3966 
0.1497 
0.3960 
0.1497 
0.3960 
0.1497 
0.3960 
0.1497 
0.3960 
0.1497 
0.3960 
0.1497 
0.3960 
0.1497 
0.3960 
0.1497 
0.3960 
0.0040 

m=10 

0.1780 
0.9512 

0.0622 
0.2609 
0.0620 
0.2593 
0.0620 
0.2593 
0.0620 
0.2593 
0.0620 
0.2593 
0.0620 
0.2593 
0.0620 
0.2593 
0.0060 

m=16 

0.1777 
0.9421 
0.0620 
0.2593 
0.0243 
0.1346 
0.0275 
0.1062 
0.0362 
0.1507 
0.0284 
0.1106 
0.0375 
0.1691 
0.0120 

m=25 

0.2846 
0.5470 
0.0417 
0.2749 
0.0373 
0.6747 
0.0309 
0.5744 
0.0202 
0.2095 
0.0202 
0.1504 
0.0273 

m=37 

0.2856 
0.5554 
0.0252 
0.1178 
0.0185 
0.1530 
0.0162 
0.0786 
0.0186 
0.0998 
0.0593 

m=50 

"" ' ' 

' 

0.1768 
0.9196 
0.0247 
0.1633 
0.0194 
0.1532 
0.0199 
0.1692 
0.1380 

Time 

~ 

" 

0.0180 

0.0200 

0.0220 

0.0233 

0.0247 

0.0273 

— 

Table 4.11: Number of nodes vs. number of moments (algebraic case). 

In Table 4.12, we give the reconstruction errors for underlying function x9 defined. 
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in Section 4.3.4. We again use the Newton method to solve the dual problem with the 

Boltzmann-Shannon entropy but for trigonometric polynomial moments. We use the 

same stopping criterion as before or iterate up to 55 steps. The right-most column 

gives the execution time (in seconds) per iteration for fixed m = 27 and varying 

amount of nodes. The bottom row shows the execution time (in seconds) for fixed 

n = 199 and varying number of moments. We can see that in this case the best 

choice of the number of nodes should be around two to four times of the number of 

moments. 

Li-err 
Loo-err 

n=9 

n=19 

n=31 

n=45 

n=61 

n=87 

n= l l l 

n=155 

n=199 

Time 

m=5 

0.4771 
0.1806 
0.4586 
0.1625 
0.4586 
0.1625 
0.4586 
0.1625 
0.4586 
0.1625 
0.4586 
0.1625 
0.4586 
0.1625 
0.4586 
0.1625 
0.4586 
0.1625 
0.0280 

m=l l 

0.1586 
0.0962 
0.1338 
0.0784 
0.1337 
0.0783 
0.1337 
0.0783 
0.1337 
0.0783 
0.1337 
0.0783 
0.1337 
0.0783 
0.1337 
0.0783 
0.0447 

m=19 

14.395 
2.7165 
0.0849 
0.0517 
0.0496 
0.0336 
0.0502 
0.0373 
0.0502 
0.0373 
0.0502 
0.0373 
0.0502 
0.0373 
0.0502 
0.0373 
0.1160 

m=27 

14.395 
2.7239 
0.0421 
0.0237 
0.0403 
0.0295 
0.0401 
0.0265 
0.0401 
0.0265 
0.0401 
0.0265 
0.0401 
0.0265 
0.2390 

m=39 

14.395 
2.7247 
0.0251 
0.0156 
0.0246 
0.0162 
0.0243 
0.0160 
0.0243 
0.0160 
0.0243 
0.0160 
0.4759 

m=55 

' 

" 

* 

14.395 
2.7346 
0.0251 
0.0223 
0.0154 
0.0109 
0.0156 
0.0115 
0.0156 
0.0115 
0.9745 

Time 

0.0507 

0.0640 

0.0800 

0.1080 

0.1453 

0.1766 

0.2390 

— 

Table 4.12: Number of nodes vs. number of moments (trigonometric case). 



Appendix A 

Assumptions 

The following assumption are given and used in Chapter 2 and 3. 

(Al), (A2): page 17 

(A3), (A4), (A5), (A6): page 18 

(A7): page 40 

(A7': page 41 

(A8): page 43 

(A8'): page 45 

(AFl), (AF2): page 58 

(AFl'), (AF3): page 63 

(ATI): page 75 

(AT21): page 76 

(AT3), (AT4), (AT5): page 77 

(AT5'): page 81 
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