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Abstract

The problem of estimating a (non-negative) density function, given a finite number of
its moments, arises in numerous practical applications. By introducing an entropy-
like objective function, we are able to treat this problem as an infinite-dimensional
convex programming problem.

The convergence of our estimate to the underlying density is dependent on the
choice of the objective. In this thesis, I studied the most commonly used classes of
objectives, which include the Boltzmann-Shannon entropy, the Fermi-Dirac entropy,
the truncated L,-entropy. First, I discussed the duality properties of the convex
program (P,), which involves only n moments, and gave theorems tc estimate the
bounds of the duai gaps. After proving a general necessary optimality condition and
giving rates of rorm convergence, I set up a set of uniform convergence theorems
for certain choices of entropies, previded that the moment functions are algebraic or
trigonometric polynomials.

In Chapter 4, 1 used Newton’s method to solve the dual problem. I compared
she computational results of the problem with various choices of entropies. For the
problem with the Boltzmann-Shannon entropy, using a special structure among the
moments, [ have developed a set of very efficient algorithm. By using some additional
moments, within 1auch less time, we can find a very good estimate function to the
underlying density by solving just a couple of linear systems. The algorithms have
been implemented in Fortran. Some 2- and 3- dimensional examples have been tested.
Since the algorithm is heuristic instead of iterative, some 1elated error analysis has

also been performed.
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Chapter 1

Introduction and Preliminaries

1.1 Introduction

We study moment problems which estimate an unknown density function z, typically
nonnegative, on the basis of a series of known moments. Such problems arise in a
wide variety of settings. In constrained approximation, we need to reconstruct an
unknown function from a set of known values of certain linear functionals (see, for
example, [61], [83]). In spectral estimation, which has a lot of applications in speech
processing, geophysics, radio asironomy, sonar and radar and many other areas, we
are asked to estimate a power spectral density from certain known correlations (see,
for instance, [6], [43], [44], [56], [71], [74], [75], [91], [92], [100]). An interesting class
of problems in crystallography is to find out the electronic density of a given crystal
on the basis of finitely many known measurements (see, for example, [41]). Many
other applications in physics and engineering (such as tomography, signal process
and restoration) can be found, for instance, in [31], [45], [57], [58], [70], [76], [82]. For
a survey of the wide range of approaches to moment problem and its application, see
(2], {73].

Mathematically, the problem we will study in this thesis can be stated as: find

a function & (usvally nonnegative or between some lower and/or upper bounds) in



o

Ly(T, ) defined on a set T, satisfying

/Pa,-(t):i(t)dﬂ(t) = b, i=1,2,---,n, (1.1)

where the a;’s are moment functions, normally in Ly (T, p¢). For given (usually finitely
many) moments, this problem is an underdetermined inverse problem (for existence
of a solution see, for example, [3], [8], [111]). When a solution does exist, it is by
no means unique. Introducing an objective function, the maximum entrcpy method

seeks an optimal solution of a mathematical program with linear coustraints ([72],

[101], [103], [104)):

max fp —$(z()du(t),
st [pa;(t)z(t)du(t) = b;, i=1,2,---,n, (1.2)
z(t) > 0, forallte T,

where ¢ is the Boltzmann-Shannon entropy defined by

logu —u, u>0,
¢(u) =4 0, u =0, (1';)
400, u < 0.

Under reasonable conditions on the moments, the optimal solution of problem (1.2)
exists and is unique. In this paper, however, we prefer to minimize the corresponding

information measure, which has a general integral form of

J #=®)dut

for a convex integrand function ¢. This approach has been widely used in arcas such
as parameter spectral estimation (see, for example, [32], [80]).

In using this approach, various entropy-like objectives ¢ have been tried. Among
them, the most popular ones are the Boltzmann-Shannon entropy (1.3) (suggested
by Jaynes in [64], also discussed in [67]), Burg’s entropy (suggested by Burg in [33]
and [34]), the Fermi-Dirac entropy (see, for example, [24]), and the Ly or L,-entropy
(see {5], [55], [69]). We will discuss them in the later chapters. We will also try some

other entropies. For some other choices, such as the cross entropy, see [85], [90], [94].



In most practical sciences, the moment functions a;’s are typically trigonometric
(Fourier) and algebraic (Hausdorff, power) polynomials, usually multidimensional.

A very important question arising in this optimization approach is: how will the
estimates converge to the underlying measure as the number of given moments grows?
This question has been discussed in many papers (see, for example, [40], [50], [52], [54],
[82], [107], for a recent survey see [21]). Several concepts of convergence have then
been used, such as, weak*-convergence and weak convergence ([18]), convergence in
measure ([22], [79]), norm convergence ([16], [23], [79], [107]), and uniform convergence
([16], [28]), which will be further studied later in this thesis.

To numerically solve the problem, which is infinite dimensional, convex duality
theory plays an important role. Using duality theorems, instead of considering the
primal problem, we study its dual, which is a finite dimensional (often vziconstrained)
maximization problem. For a complete study of this duality theory, see Borwein and
Lewis’ papers (for example, [17], [19], [20]). Dual algorithms seem to be the most
popular methods in published papers (see, for example, [4], [29], [41] and [102]).

In Chapter 2, we will discuss a class of entropy-like objectives. We will first
give some lower and upper bounds on duality gaps, which will help us to prove
norm convergence results. The main results proved in Chapter 3 are general versions
of uniform convergence theorems for moment problems with entropy-like objectives
under our assumptions, which include many well known entropies as special cases.

In Chapter 4, we will study numerical methods for moment problems. We first
implement Newton’s method with line search (for a detailed method description,
see [12]), and compute the numerical solutions for several test problems in 2 and 3
dimensions with algebraic and trigonometric moment functions. We also compare the
numerical results for various choices of entropies.

It the second part of Chapter 4, we will establish a class of heuristic algorithms
for problems with the Boltzmann-Shannon entropy and algebraic or trigonometric
polynomial moments. These algorithms provide surprisingly good estimates to Z by

just solving a set of linear systems. Numerical computations show our heuristics to



be accurate and very fast although theoretical convergence is still an open problem.

In the rest of tais chapter, some preliminary definitions are recalled and known
results in convex analysis, mathematical programming and approximation theory are
stated in the precise form which we are going to use in later chapters. The standard

functional analytic terminology used throughout the thesis can mostly be found in

[99).

1.2 Convex functions and normal convex integrands

Most of the statements in this section can be found in [39], [47], [60], [93], [95], [96],
[97] and [98].
Let X be a real Banach space. A functional f: X — (—o0,+00] is said to be

convex, if for all z,y € X, A € [0,1],

[0 + (1= Ny) <A@ + (1= D)), (14)

The domain of f, dom(f), is the set of all points z € X where f is finite. We
say f is proper if its domain is nonempty. When X = IR™, we know that a convex
function f is continuous on the interior of its domain (see [97]).

Let X* be the topological dual space of X. The set of subgradients of f at z, €
dom(f) is defined to be

Of(zo) 2 {z* € X* | (z", 2 — zo) < f(z) — f(zo), forall z € X}. (1.5)
It has the following properties.

Proposition 1.2.1 (Phelps, [93]) If a convez function f is continuous al zy €

dom(f), then 3 f(xo) is @ nonempty, conver, and weak™-compact subset in X*.

Proposition 1.2.2 (Phelps, [93]) A continuvous convez function [ on a noncmpty

open subset D C X has a global minimum at zo € D if and only if 0 € 3 (o).



For a proper convex function f, the convex conjugate of f is defined as the func-

tional f*: X* — (—o00, +00] given by

[ (z") = Su£{<z’$*) - f(z)}. ‘ (1.6)

z€
Note that each item inside the “sup” is continuous linear functional on X, and

hence f* is always convex and lower semicontinuous. If we similarly write

[™(z) = sup {(z,2") — [*(z")}, (1.7)

*eX*

for z € X, then it is easy to see that
S (1.8)
Moreover, we have

Proposition 1.2.3 (Ekeland and Turnbull, {47]) The conjugate function f* is always
conver and lower semicontinuous on X*. If f is proper conver and lower semicon-

tinuous, then we have

= (1.9)

The Fenchel-Young inequality states that for any ¢ € X and z* € X*,

[z + f(z) > (z,z"), (1.10)

and the equality holds exactly for * € df(z).
For z € dom(f), h € X, if the limit

6F(z;h) = lim é[F(m + ah) - F(z)] (L.11)

exists, it is called the Gateaux differential of F at x with increment h. If the above limit
exists for each h € X, then F is said to be Gateaux differentiable at x [81].
If 6F(z;-): X > R is linear and continuous such that

i NE(2+h) - F(z) - §F(z; b))
im =
(Ll 1]l

0, (1.12)
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then F is said to be Fréchet differentiable at x.

It is obvious that the Fréchet differentiability implies the Gateaux differentiability
but not usually vice versa. For a lower semicontinuous convex function on a Banach
space, the Gateaux differential is always linear and continuous. We denote it by ()

since it lies in X*. Also we have
OF(z) = {F'(x)}. (1.13)
In this case, the Fenchel-Young inequality becomes
(F'(z).z) = F(z) + F*(F'(z)). (1.14)

We will use this property frequently in proving theorems in later chapters. When
we consider a convex integrand ¢ defined on IR™, we will be interested in having these
functions be “smooth” and “convex” enough. A proper convex function f : IR* —
(—00, +00] is said to be essentially smooth if it satisfies the following three conditions:

(a) int(dom(f)) # 0;

(b) f is continuously differentiable on int( dom(f));

(¢) limjne | V7 flzi)] = 400, whenever {z;} converges to a boundary point of

dom(f).
Dually, f is said to be essentially strictly convex if f is strictly convex on cvery

convex subset of
dom(3f) £ {z € X | df(z) # 0}. (1.15)

Proposition 1.2.4 (Rockafellar, [97]) A proper conver and lower semiconlinuous
function f : R™ — (—o00, +00]| is essentially strictly convez if and only if its conjugale

f* is essentially smooth.

We now introduce the normal convex integral defined and studied by Rockafellar
in [96] and [98]. Let T denote a complete measure space with a o-finite measure
dt, and let L be a particular space of measurable functions u from T to R. In

later use, we often assume L to be Ly(T), for i < p < oo. By a convex integrand



J:T x IR — (—00,+00|, we mean the function f(t,-) to be convex {or each ¢t € T'.

We can then define

I;(u) = /T f(tu(t))dt,  foruelL. (1.16)
The function f is called a normal convex ii.tegrand if

(a) for each fixed ¢, the function f is proper convex and lower semicontinuous in the

second variable;

(b) there exists a countable collection U of measurable functions u on L having the

following properties:

e for each u € U, f(-,u(-)) is measurable;

e for each t, U, U D, is dense in D,, where
A A n
Uy = {ut) |ue U}, D, = {z e R" | f(t,z) < +o0}.

Some easier-to-check conditions for f to be a normal convex integrand have also

been given in [96] and [98], such as:

Theorem 1.2.5 (Rockafellar, 1968, [96]) A function f is a normal convez integrand
if one of the following is true:
(a) For a lower semicontinuous proper convez function F on IR, f(t,z) = F(z).
(b) For each fized z, f(-,x) is measurable. For each fized t, f(t,-) is lower semi-

continuous, conver and the interior of its domain is nonempty.

In discussing Fenchel duality, we need to know the expression of the conjugate of
I; defined in (1.16). For a function space L, we say it is decomposable if it satisfies
the following conditions:

(a) for each bounded measurable function u on T' which vanishes outside a set of
finite measure, we have u € L;

(b) if u € L and E is a set of finite measure in 7', then ¢z - u € L, where ¢ is the

characteristic function of F.



It has already been proved in [96] that C(T) and L,(T), for 1 < p < o0 are
decomposable, where T is a o-finite measure space. Now the following theorem gives

the form of the convex conjugate of I;.

Theorem 1.2.6 {Rockafellar, 1968, [96]) Suppose L and L* are decomposable. Let f
be a normal convez integrand such that f(-,u(-)) is summable for at least one « € L,
and f*(-,u*(-)) is summable for at least one u* € L*. Alternatively, [ is of the form
f(t,z) = F(z), where F is a lower semicontinuous proper conver function on IR*.

Then I; on L and Iy on L* are proper convex functions conjugate to each other.

In this thesis, we will study the convex program in the following form:

min F(z),
(CP) st. Az =0, (1.17)
z € C CX,

where X is a real normed space, F' : X — (—00,+00] is a convex functional, A : X —
IR" is linear, b € IR", and C is a convex subset in X.

We will be particularly interested in cases where:
o X = Ly(T,p) for a complete finite measure space (T, y);

o F' takes the form of
F(a)= [ ft,2(0)du(t)

for a normal convex integrand f;

o A: X — IR" is of the form

(Az) = /Ta:(t)ak(t)dp(t), k=1,2,---,n
for ax € Loo (T, p);

o ( is a convex set in X.



1.3 Results in approximation theory

In proving our uniform convergence theorems in Chapter 3, we will need some uni-
form/best approximation results of a function f on IR™ by algebraic or trigonometric
polynomials. Most of the results recalled below can be found in the recent survey
paper [108].

The modulus of continuity of a function f(z) defined on [a, b] is the function

w(f,6) & sup 1f(z') — f(2")]. (1.18)

o',z €la,b) o'~ z"|<6

It is obvious that if f is continuous on a finite interval [a, b}, then
w(f,6) — 0, as 6 — 0. (1.19)

Moreover, if f is a-Lipschitz, 0 < a < 1, i.e. f satisfies the Lipschitzian (or Holder)

condition of order a:
If(a") = f(=z")| £ L|2' — 2"}°, for all z’,z" € [a, ], (1.20)
where L is called the a-Lipschitz constant, then
w(f,8) < Lé~, (1.21)

The modulus of continuity of order k of a function f(z) defined on IR or [a,b] is

denoted by

k
= sup | 3 (-1)"C f(z + mb)|, (1.22)

z€[a,b),Jh|<S,z4+mh€ad] m=0

wi (S, 6)

where
k!
ml(k —m)!’
We can see that for k = 2, f € C[a.}],
w8 = s |f(&)=2f(a+h)+ F(z+20)

z€[a,b),|h|<8,x4+2h€E[a,b)

S su ! wl _ w” h
xE!a.b].lhls6g+2h6[a.b] If( )= I )“ |
(for some &' € [z,z + h] and =" € [z + h,z + 2A]

o

cpr (1.23)

by the mean value theorem), (1.24)



and hence

wa(f, 8) S w(f',8)é = o(8). (1.25)
Furthermore, if f € C?[a,b], using the mean value theorem once again in the above
inequality, we then have

wy(f,8) < sup |f'(2)]|R]* = O(8?). (1.26)

z€[a,b)

First introduced by Tchebycheff [106], the best approximation of a function f(x),
continuous on [a,b], in the metric of C[a,b] by algebraic polynomials of degree at

most n is defined as

E.(f) € min | f(z) = pu(2) oo, (1.27)

where the minimum is take over all polynomials p,(z) = Yp_o M2k, for Ay € R, k =
0,1,---,n. Weierstrass’s theorem states that if f is continuous on [a, §] then B, (f) —
0.

More generally, we consider a sequence of sets of functions { {a;(t); i € L},n =
0,1,--- }, where a; € Cla, b] for each i, I,,’s are finite index sets satisfying [, C l4.
forn =0,1,---. Usually, we also suppose that {a;,: € U2, I} is taken to be dense in
Cla,b]. In the one dimensional algebraic polynomial case, we take I, = {0,1,--- ,n}
and a;(t) = t'. In the trigonometric polynomial case, we take I,, = {0,1,--+,2n} and
ao(t) = 1, age-1(t) = cos(kt), ag, = sin(kt), for k=1,2,---,n.

Using the same notation, We define for each n,

E(f)Emin{|If = 3 Maillo | e € R, k€ L.}, (1.28)
i€l,

We now give some upper bounds for E,.(f) when f is smooth enough.
Theorem 1.3.1 (Jackson,1911, [62]) Let [a,b] be a bounded interval on IR, and let

{ai,i € I} be algebraic polynomials of the form: 1, t, 13, ---, 1™, or trigonomelric

polynomials of the form: 1, cost, sint, ---, cosnt, sinnt. If f € C"[a,b], forr >0
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(while in the trigonometric case, we also assume that f is periodic with period 27),

then for some constant A independent of n, we have
A 1
< () o), )
E(f) € Sw(/®, ) (1.29)
A corollary follows directly.

Corollary 1.3.2 Under the assumptions of Theorem 1.3.1, we have

1. If f € C[a,b],r > 1, then

Eu(f) = o(=). (1.30)

nT

2. If f € C"[a,b],r >0, and f) is a-Lipschitz on [a,b], for & > 0, then

Ef) = O(=) (1.31)

For an analytic function f on [a, b], the corresponding result becomes (proved by

Bernstein, 1911, in [9]):
E.(f) < A%, (1.32)

for some constants 0 < ¢ < 1, A > 0, independent of n. Some similar inequalities
related to higher order moduli of continuity are stated in [1] and [105]. For multi-
dimensional functions, the best approximation defined analogously has the following

properties.

Theorem 1.3.3 (Bernstein, [10],[11], Nikol’skii, [86],[87]) Let f(z1,z2, -, z) be a
periodic function defined on IR™ with period 2m in each variable. For some integer
p, we suppose 0° f[dx}, exists. Further suppose for each k = 1,2,---,m, 0°f/9z}
is continuous in variable xi. Then the best approzimation of f by trigonometric
polynomials of degree at most n in each variable satisfies:

Ba(f) = o). (1.33)

nf



Theorem 1.3.4 (Timan, 1963,[109]) Let f(z1, 22, , &) be an m-variable function
defined on a closed bounded parallelpiped T. Assume for some integer p and each
k=1,2.--,m, 0°f/0z exists and is continuous in variable xzx. Then the best
approzimation of f by algebraic polynomials of degrze at most n in cach variable

satisfies:

En(f) = o). (1.34)

n’
Since our uniform convergence results in Chapter 3 will be mostly based on L,-
norm convergence theorems, we need to investigate the relationships between the

different norms of an algebraic or trigonometric polynomial.

Theorem 1.3.5 (Jackson, Nikol’skii, [63],(87], [89]) Let T = [—m,x]™,1 <p < q <
00. Let Pn; g ,einm (L1, L2, Zm) be a trigonometric polynomial of degree al inost n,

in Ty, Ng IN Ty, *++, Ny 0 Ty Then the following inequality is lrue:

1
1 ar
q”p"ly"2:"‘v"m||l’? (I‘J‘))

< -

|Ipnlvn2r"'|"m Ilq S A(n inz-:- nm)
yur some constant A independent of ny,nz, -, Ny

In particular, if p, is a trigonometric polynemial of degree at most n in each

variable, that is ny = ngy = --- = n,, = n, then
m(L-1) ag
[Pall < AR™ 74| pal|,. (1.36)
The most interesting case is when ¢ = oo, and p = 2, where we have

Ipalleo < AR [Ipufe. (1.37)

If instead we consider p, to be an algebraic polynomial of degree at most n in

each variable, then we have

Theorem 1.3.6 ([77], [88]) Let T be a bounded domain in IR™ with pieccwise C'
boundary, and let | < p < q < oco. Assume that p, is an algebraic polynomial of tolal

degree at most n :

81 .8 s
pn(ml,zz,. .. ,zm) = Z aaxllxzz . ..m";"’
lsj<n
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where s = (81,82, ,5m) € L7, 5, >0,:=1,2,--m, |s| =s1 4+ 32+ - +5n. Then
? ] b 4 ?

11
Ipalla < A7 py ]y, (1.38)
Jor same constant A independent of n. In particular, for ¢ = +o0o and p = 2, we have
IPnllo < An|pnll2. (1.39)

For a polynomial p, of degree at most n in each variable, the total degree is at
most mn. So the inequality (1.38) and hence (1.39) holds except we take a different
constant A’.

We will also need some Remez-type inequalities of the following forms in later

discussions.

Theorem 1.3.7 (Remez, [27]) Let p, be an arbitrary trigonometric polynomial of
degree at most n on T = [—7,7| C IR, dt be a Lebesgue measure, p > 0. Let A be an
arbitrary subset of T, with u(A) > . Then there ezxists a constant C, such that

[ ety < (14 oGy [ 1p, @)t (1.40)
-7 A

Theorem 1.3.8 (Remez, [27]) Let p,, be an arbitrary algebraic polynomial of degree
at most n on [a,b] C R, dt be a Lebesgue measure, p > 0. Let A be an arbitrary
subset of [a,b], with p(A) > (b— a)/2. Then there exists a constant C, such that

b
J it < (1 4+ VA [ (1)t (1.41)
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Chapter 2

Some Estimation Theorems for
Sequential Convex Programs with

Linear Constraints

2.1 Introduction

In this chapter, we will define our class of entropy-like objectives, which include many
frequently used entropies. For a general choice of the objective, we first estimate the
upper bound of duality gaps. Then we will apply the results to some important
entropies. Although we always have the strong duality theorem (see, for example,
[12], [15], [17], [19], [20!, [23], [46]) which guarantees that the duality gap is zcro
under some reasonable constraint qualification (see, for instance, [26], [65], [66], [78]),
it is useful to get an upper bound on how well our estimated density, a solution of the
convex program with finitely many moments, approximates to the underlying density
in the entropic value. Using these inequalities, we will be able to prove some theorems
on norm convergence. The results proved in Sections 2.3., 2.4. and 2.5. will let us
establish uniform convergence results in Chapter 3.

We will introduce assumptions that will be used throughout the thesis. An index

of these assumptions can be found in Appendix A.

14
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2.2 Problems and examples

We nced to estimate an unknown density Z on T', admitting a finite number of linear
constraints (moments), and bounded by two functions af(-) and §(-) defined also on T
(the problem first proposed in [24]). Introducing an entropy-like objective function,

we may consider the following program:

[inf fr¢(2(t))du(t),

J st. Jra()z(t)du(t)=b;, € I,
z € Ly(T, p),

a(t) < z(t) < B(t), a.e. on T.

(P) (2.1)

\

where b; can be considered as given by b; = [, a;(t)Z(t)du(t) for i € I,.

We make the following assumptions:
Al): (T is a complete finite measure space;
' M

(A2): a; linearly independent functions in Loo(T, ), for all i € I,,. I.’s are finite

index sets satisfying:
]n C ]n+13 n= 011,"',
and we denote by k(n) the number of indices in I,,;

(A3): ¢ : IR — (—o00,+00] is a proper, lower semicontinuous, convex function with

its domain dom(¢) satisfying:
(a,b) C dom(¢) C [a,b], for some — o0 < a<b< +oo,
le. a = inf( dom(9) ), b = sup(dom(¢));
(A4): ¢ is essentially smooth and essentially strictly convex on (a, b);

(A9): a(-), B(-) are extended real valued g-measurable functions defined on T, with

a < aft) < B(t) <D, a.e. on T} (2.2)
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(A6): «,f, ¢ are chosen such that

essinf(a) = a implies ¢'(a) 2 lim+ #'(u) = —oo, (2.3)
and
esssup(f3) = b implies #'(b) £ lil})\_ ¢'(u) = +oo0. (2.4)

At the end of this section, we will give some concrete examples, where we choose
¢ to satisfy these conditions.

Extending the function ¢, we define q~$ : T x IR — (—o00,+00] as

~ a ) #(u), oft) <u<pB(), 55
#tw) = { +o00, otherwise. (25)
We write
(@) 2 [ 4(a(t) )du(t) (26)
and

Iy(2) 2 [ (t,0(0)dut). (2.7)

Then (P,) in (2.1) is equivalent to

B inf [(z),
(Pn) st frai()z)du(t) =b;, i€ I, (2.8)
S L] (T,[t)

We now compute the convex conjugate of é and then I;.

Proposition 2.2.1 Let (A1)-(A6) hold. Then for almast allt € T,

1. the convezr conjugate function of$ is finite everywhcre and of the form:

~

3*(t,v) = sup{(u,v) — (t,u)}

a(t)v — ¢(at)), v < ¢'(alt)),

¢*(v), #a(t)) <v< (A1), (29
B(t)v = ¢(B(t)), v > ¢'(A(t)),
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(at the boundary point. of dom(¢), we agree to use the left or right directional

derivalives);

2. (Z‘(t, v) is conlinuously differentiable in variable v on IR, with

~ ait), v d(alt)),
(3Nsltro) =1 47(0), #(a(t)) <v < H(BE)), (2.10)
B v AW

3. (q~$*)2(t,v) is strictly convez in variable v on ( ¢'(a(t)),d'(B(2)));

4. the convez conjugate function of ¢ and the derivative of ¢ are inverse functions

of each other in the sense of



S Nt0) = F(#)(t)
¢'(a(t)), v < ¢(a(t)),

= { v, #a(t)) <v< F(Bt)), (211)
#'(B()), v ¢(B(1)),

and
(872t 5t u)) = 6"(#'(w)) = v, (2.12)
whenever a(t) < u < ().

Proof: See [24] or [25]. Note that (A5) and (A6) are required to guarantec that ¢*

is everywhere finite.

Proposition 2.2.2 Under the ascumptions (A1)-(A6), the extended function ¢ is a

normal conver integrand. Hence the conver conjugate of IEI is given by: (l,},“)* = Ig,.
Proof: See [24] or [25]. ]

Although the functional I3 is everywhere nondifferentiable, in the next proposition
we will see that the conjugate I‘;, is very well behaved.

For two extended real numbers a and b, we write
aV b2 max{a, b}, a A b2 min{a,b}.

Proposition 2.2.3 Under Assumptions (A1)-(A6), the conjugate (I.}T)‘ of I is Fréchet
differentiable at every z € Loo(T). In fact, for z € Loo(T),

(I3Y(z) = max{ a(t),min(B(t),(¢*)(=(t))) }
= a(t)V (¢")((t)) A B(L). (2.13)
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Proof: See [24] or [25]. =

We can write the dual problem of (P,) (or equivalently, (P,) ) to be of the form:

wﬂ{mn O(A) 2 [E(t) Ticr, Miai(t) — $*(t, Tier, Miai(t))}du(t), (2.14)

s.t. A€ IRH™,

A constraint qualification condition (CQ) (first given in [19]) which guarantees the
strong duality result is of the form (see also [25]):

[ there exists z € Ly(T, p), such that
a(t) < & < f(t), a.e. on T,
o #(4,5(2) dult) < oo, and

| Jrai(t)E(t)du(t) = b, i€ I,.

It has been proved that under this constraint qualification the following strong

duality theorem holds (see also [17], [20], [24] or [78]).

(2.15)

Theorem 2.2.4 (Borwein and Lewis, 1990) Under (CQ) of the form in (2.15), the
optimal values of (E ) and (D,) are equal with dual attainment. Moreover, if X €
IRM™ is an optimal solution of (D,), then the unique solution of (P,) is of the form:
za(t) = ($7)3(t Y Aiai(t)). (2.16)

i€l,
Proof: See [17). Note thal the uniqueness follows from the strict convexity of ¢,

given in (A4). |

The following a1e some typical choices of ¢, @ and 8. All except Burg’s entropy
satisfly Assumptions (A1)-(A6). We will give ¢ and ¢ and then compute the conjugates
¢* and 5‘.

Example 2.2.5 (Boltzmann-Shannon entropy)

ulogu —u, u>0,
$(t,u) = d(u) = 0, w=0, (2.17)
+00, u <0,



with
aft)=a=0, B(t)=b=+oo.
Then
3 (t,v) = ¢*(v) = €. (2.18)

Example 2.2.6 (Generalized Fermi-Dirac entropy)

r (u — ag) log(u — ap)
~ +(fBo — u)log(fo — u), o < u < fo,
o(t,u) = ¢(u) = ¢ 2.19)
(Bo — o) log(fBo — axo), u = ao, or fo, (
| +oo, otherwise,

a(ty=a=ay, B(t)=b=Po (where — oo < @ < Pp < +00).

Then
1+e¥
ﬁo — (Y

In particular, ag = 0,80 = 1 gives the classical Fermi-Dirac entropy.

¢*(t,v) = ¢"(v) = v + (o — axo) log( ). (2.20)

Example 2.2.7 (L,-entropy, 1 < p < +00)
1

¢(u) = ;lu]”, (2.21)

where we can see a = —00, b = +00. In most applications we set o(t) =0, (L) =

+00, and consider the truncated L,-entropy:

~ Lyp >0
=47 "7 (2.22)
400, u<0.
In this case
~ 1yt v >0,
Fao)y={ 7 "= (2.23)
0, wv<Q,
where 1/p + 1/q = 1. Note that without the truncation, we would have
1
¢*(v) = alvl"- (2.24)
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Example 2.2.8 (Burg entropy)

Burg’s entropy considers:

. ~logu, u>0,
tu)= é(u) = 2.25)
#(t,u) = ¢(u) { too,  u<o, (
with a =0, b = +0o. The conjugate function is
cers v e -1 —log(—v), v <0, .
¢@w=¢00={ (2.26)
+o00, u > 0.

This is a very important entropy and has received a lot of attention. But for this
entropy, (A6) does not hold and hence the conjugate function is not everywhere finite

as we saw in (2.26). We may set a truncation 5(t) = By > 0, and consider

7 -1 ’ 0< S ’
Htuy={ TIBW OSush (2.27)
+00, otherwise.
Now the conjugate function is
~ -1 —log(~v), v< -1,
F(tv) = o8(~) v S g, (225)
vho+logfo, v>—g,
which is finite everywhere on IR.
Example 2.2.9 (Burg-type entropy)
In the spirit of Burg’s entropy, we consider
—logu —log(l —u), 0<u<l,
#lu) = { . (2.29)
+00, otherwise,
witha=0=a, 8=1=0>. Then after some computation, we obtain
. . 1 VoIt 4 -2
F(t0) = $(0)= 50 -2+ VAT D) + 1og(—'%2——). (2.30)
Example 2.2.10 (Hellinger-type entropy)
—V2uK —u?, 0<u<?2K,
$(u) = { _ (2.31)
+00, otherwise.

Here a =0=a, =2K =b. Then
F*(t,v) = ¢*(v) = K(v + Vo2 + 1). (2.32)
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2.3 Estimates on duality gaps

In this section, we will impose Assumptions (A1)-(A6) throughout. We also assume

that Z is feasible for (P,) in the sense that

(7 € Ly(T, ),

| rasauty = b, iel,
aft) < i(z) < B(1), ae.on T,

| 1 8(2(0) )dult) < +oo.

(2.33)

Given each n, f € Lo(T,p), for our convenience, the best approximation of f by
{a;,7 € I,} is defined by
E (f) 2inf { | 3 Xiai = flloo | A € RH™ }. (2.34)
i€ln
Note that the number of elements in /,, may not be exactly n. For a given choice

of ¢, and a feasible z, we write

g8 { E(¢(3)), if $(Z) € LeoT, p), (2.35)

+o00, otherwise.

For problems (P,) and (D,) given in (2.8) and (2.13), we can directly prove the

following inequalities.

Lemma 2.3.1 (Weak duality) Denote by V(E,), V(D,) the optimal values of prob-
lems (P,) and (D,), respectively. Then

V(P.) 2 V(Dy). (2.36)

Proof: This follows directly from the convexity of ¢ and the Fenchel-Young incquality
(1.10). |
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Theorem 2.3.2 Let E, < +00, then

Iy(z) 2 V(P,)2V(Dn) 2 Iy(z) -
(zllx + lledls v 167(8'(2) — Ea)lls
HIBll v I¢7(8'(2) + En)ll1) En- (2.37)
Moreover, if both o, € Li(T,p), then

I4(2) 2 V(P) 2 V(D) 2 15(2) = (2l + lledh + 118ll1) En. (2.38)

Proof: Since E,, < 00, ¢'(Z) is almost everywhere finite. From the Fenchel-Young
inequality (1.14), for almost all t € T where ¢'( Z(t) ) is finite, we have

#(2(t)) + 6°(¢'(2(2)) ) = 2(t)¢'(2(t))- (2.39)

Also, the feasibility of £ and the monotonicity and continuous differentiability of ¢’
imply

¢'(a(t)) < ¢'(2(2)) < #'(B(2)), (2.40)

By the continuity of ¢* and q~5*, we then have

#(#(5))) = #(6,(2(0) ). (241)
By the convexity of $*(t, 1), for any A € RF™),
& (1, ¢(2(1))) - 6(t, 2 Nailt) 2 (1, 1 M) (#(2(t)) — D Niai(t)),
. t€l, iel, i€l,
and hence by (2.41),
$(¢'(2(2))) — ¢"(t, 3 Niai(?))

i€l,

> ¢t Y M) (@(2() - 3 Mai(2)). (2.42)

il 1€l,

Now for each n, we can find A" € IR*"), such that

I3 Atai = ¢(@)lloo = En. (2.43)

i€l,
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By weak duality (Lemma 2.3.1), we only need to check the last inequality. For A"
given in (2.43), using (2.39), (2.42), and (2.43), we have

1) - V(D) < [ [4(20)) - 22 ; alt) + 87, X2 Nas() (0
- / [2(2)¢ #(# (1) - 3) T e
+é%(t, Z /\:-‘a,-(t))]du (1) ( by (2.39))
iel,
< /T(-i(t) — ($a(t, 2; Aait) )(¢'(2(1)) - }; Nai(t))du(2)
(by (2.42))
< Eq||z(t) — (¢*)4(t, Z] Atai(t)|h, ( by (2.43) ). (2.44)

Also from (2.43), we have
¢(2(t)) = En < Y ANai(t) < ¢'(2(t)) + En, ae.on T. (2.45)
i€l

Then using the expression for (¢*), in (2.10) and the convexity of ¢*, we can sce that
g P 2

max {a(t), 6*(#'(E(t)) — E.) }
S CHA( EI A ai(t))

< min{ B(t), 6" (¢'(2(1)) + E.) }, a.e. onT. (2.46)

This implies

1€ln

(5 (t z A a. ”1
< el VI7(8'(Z) = Bl + 118l V H167(¢'(Z) + Eu)lh-

Then we deduce

T — (¢*)3(t, D Ata)lh

1617;

12l + 187508, Y, Arai)lls

Ieln

< Nzl + lledla v 1I¢7(8'(2) = Bl + 118l V 1I7(4'() + En)lls- - (2.47)

IN
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The inequality (2.37) follows.
Furthermore, if both «, 8 € Ly(T), 1), simplifying (2.46), we have

a(t) < (8%)5(, 3 Arau(t)) < B(2) a.e. on T.

el
Then
2t 3 Aa(®)h < llall + 1811,
el
which leads to our simplified inequality (2.38). [

We can see that we made an overestimnation in deducing (2.47). The results can
be easily improved by assuming the differentiability of ¢*. In the previous section, we
saw that ¢*(t,-) is continuously differentiable for almost all ¢ € T', hence (¢*)}(t, ) is
continuous for those t € T. We now assume that (¢*)}(¢,-) is locally 4- Lipschitzian
for fixed t, where the Lipschitzian “constant” can be a function of ¢.

We will say that (¢*)}(t,v) is locally y-Lipschitzian (y > 0) with respect to v on
T, if for small > 0, there exists a measurable function Lip(-,9, Z) such that for each

teT,

(8)2(t,01) = (§)a(t,02)| < Lip(t, m, &)[vr — ", (2.48)

whenever

v1, vz € [¢(Z()) - n, ¢'(2(2)) + ).

Note that we have defined this concept only for small . The reason is that we
will explicitly assume E, — 0 when we prove uniform convergence. The inequality
(2.48) only needs to be checked around ¢'(&(t)) for fixed t.

Coroliary 2.3.3 Let (¢*)}(t,v) be locally y-Lipschitzian in v. Suppose that E, is
small enough and that Lip(-, E,,z) € Li(T, ). We have

Iy(z) 2 V(P) 2 V(Dn)
2 14(z) = | Lip(t, En, Z)|L EL. (2.49)
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Proof: Continuing from (2.44) is the proof of Theorem 2.3.2, for some A" € RM™,

we have
148) - V(D) < [ (3t)- (@5 zlxn a(®))(#(2(1) ~ 3 Na(r))du(2)
< B [ 13() - (@t X Mau(t) lau(t
1€l,
< E'n/TLip(t, E'",:i)lqﬁ'(:i(t))—— E)\:‘a,(t)‘qd/t({)
1€l

(by assumption (2.48) and Proposition 2.2.1 )
< IlLip(t’Emi)l|1E7lz+'y'

We can further improve the above estimate by using a bound for ¢*”. When ¢* is
twice differentiable, we will say q;*(t, v) has a bounded second dervative in variable v,

if for small 7, there exists a measurable function J(-,7,%), such that for cach t € I’

and v € [¢'(Z(t)) — n, ¢'(Z(¥)) + 0l
(4)5(t,v) < J(tm,E). (2.50)

Corollary 2.3.4 Suppose ¢* has a bounded second derivative wnth respect to v wn the

sense of (2.50). Also assume E, is small enough that

J(t, Eny 3) € Ly (T, ). (2.51)
Then

I(z) 2 V(P)2V(D,) (2.52)

> 14(3) = ||I(t, En, D)1 By (2.53)

In particular, when E, — 0, as n — oo, (2.52) is true for large n.

Proof: As in the proof of Corollary 2.3.3, for some A" € IR*("), we have

1@ = V(D) < [ (50 - @0t T Na(®))(#(30) = T Nra(t)du()

i€l 1€l
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IN

B, [ 13() - (3N5(t, ¥ Ma) Jdu(t)

= B [ 1003t $E0) — (BNt T W) ldu)
wel,
(by Proposition 2.2.1)
= B [ @5t o@)(#(a) ) - ¥ Na()ldu(t

1€l
(for some v(t) € (#'(2(1)), Lier, Arau(?)),

using the mean value theorem )

By [ J(t, EnD)|8(20) — ¥ Nau(b)ldu(t)

lEIn
(by assumption (2.50) )

”J(ta Em"i)"IEZ‘

IA

IN

Note that in Corollaries 2.3.3 and 2.3.4, we do not require a or  to be in Ly(T).
We now apply the above estimates to some choices of ¢. Remember that we have

assumed E, < 400, and the interesting case is when E, — 0 .
Proposition 2.3 5 For the Boltzmann-Shannon entropy ¢ defined in (2.17), we have
14(®) 2 V(P.) 2 V(D,) 2 Is(3) - ||&]|e™ E2.
Proof: Noting that
(FVi(t0) = 67(0) = &,
we may take
I, 7) = sup{e* | $(5(8)) =1 < u < $(2(1)) + 1) = # O = 5(1)en,
since ¢'( Z(t) ) = log Z(t). Then apply Corollary 2.3.4. n

This recovers a result that was proved in {16]. We note that e®» E2 — 0 with E,

and that asymptotically it behaves like EZ.
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Proposition 2.3.6 For the Fermi-Dirac entropy with arbitrary constant bounds given
in (2.19), we have

pr—

1 .
() 2 V() 2 V(D) 2 14(@) - (o — ao)u(T) L (251)
In particular, when ap = 0,8 = 1, we have
Iy(@) 2 V(P,) 2 V(Dn) > 14(3) — %/L(T)Eﬁ- (2.55)

Proof: Again, we use Corollary 2.3.4, noting that for t € T,

2(tv) = (Bo — ao)e*

<
2 (1+ev)2 —

1
Z(/B() - (_Y()). (25())

]
The following lemma is needed to deal with the truncated L,-entropy case.
Lemma 2.3.7 For any real numbers A, B> 0,0 <« <1, we have
|A% — B¥| < |A — BJ*. (2.57)
Proof: Define a function
SO =Q =t 1417,  0<t<1. (2.58)
Since
(8 = ale - D1 - )* 2+ 127 <0, (2.59)
f is concave on [0,1]. Then
f(0) = f(1) =0, implies f(t) >0, forallt € [0,1].
Now settingt = A/Bil A< Bort= B/A,if A> B, we obtain (2.57). .

Proposition 2.3.8 For the truncated L,-entropy defined in (2.22), we have:



1. Whenp> 2,

14(3) > V(P2) 2 V(Da) > I4(5) — w(T)E.

2. Whenl <p<?2,

v

V(P,) 2 V(D)
I4(z) = (¢ = D)(|12II%" + En)*~*uw(T)Ey,

14(7)

v

where 1/p+1/¢=1.
Proof:
. Note that p > 2 implies ¢ < 2. Using Lemma 2.3.7, we obtain

-~
4

(67)a(t,m) = (B a(tw)] S fouf" = v

S R e ] L

Then we may apply Corollary 2.3.3 for y = ¢ — 1 and Lip(t,5,z) = 1.

2. Note that we have

(8*)5(t,v) = (¢ = 1% < (¢ = DEE) +19)72,

for v € [Z(t)P~! — 5, &(t)P" 4 n]. Corollary 2.3.4 applies for J(¢,7,7)
(9= DEE@)P" +9)72

29

(2.60)

(2.61)

(2.62)

(2.63)

Proposition 2.3.9 For the bounded Burg entropy of the form in (2.27) for o > 0,

we have
14(8) > V(Pa) > V(Dy) > 14(8) = (||3]ls + Bo) En.

Proof: Apply Theorem 2.3.2, (2.38), for a =0, 8 = f.

(2.64)
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Proposition 2.3.10 For the Burg-type entropy defined in (2.29), we have

14(2) 2 V() 2 V(Da) 2 Iy(7) ~ gu(T)E. (2.65)
Proof: Apply Corollary 2.3.4 for
- 244-2 1
Nt v) = (¢ v) = v < 2
(N0) = 6000 = LI < 2
=

Proposition 2.3.11 For the Hellinger-type entropy defined in (2.31), we have
16(3) 2 V(F) 2 V(D) > Iy(2) ~ Ku()E2 (2.66)

Proof: Apply Corollary 2.3.4 for
K

— < K.
(7 + D3

(]5*”(2)) —
]

Remark: The strong duality theorem guarantees that for problems (P,) (or (P,))
and (D), the duality gap is zero under reasonable constraint qualifications. Even
without a constraint qualification, ihe above theorems give us the explicit bounds not
only for

V(Pa) = V(Dy)

but also more importantly for
V(P,) — I4(z) and V(D,) — I4(z),

which tell us how well V(P,) (or V(D,)) approximates to /4(Z).
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2.4 Necessary optimality conditions

Consider the following general convex programming problem:
(CP) inf{F(z),z € C}, (2.67)

where X is a Banach space, F' : X — (—o00,+00] is convex, C C X is a closed convex
set, as discussed in Section 1.4.

A classical necessary condition for zo € C to be an optimal solution of (C'P) is
(9,2 — zo) 20, (2.68)

for some g € 0F(zo) and all z € C.
Now in our problems, we can take X = Ly(T, p), F = I, and

C={zeL(T,p)] /T ai(t)(2(t) — 3(t) )dpu(t) = 0,i € I,
a(t) < z(t) < B(t), ae. on T} (2.69)
Then the necessary optimality condition for our problem can be stated as:

Theorem 2.4.1 Suppose x, is the optimal solution of (P,). Let Z be any feasible
solution for (P,), then

[ #(@u®)(@(t) = 20(t) )du(t) 2 . (2.70)

In particular, we have

/T ¢'(zn(t) )(Z(t) — zn(t) )du(t) > 0. (2.71)
If we further assume o(t) = a, B(t) = b, and (CQ) holds, i.e.

[ there ezists & € L1(T, ), such that
a<z<b ae onT,
Jré(t, &) )du(t) < +o0, and

| Jrai(t)2(@)du(t) = b, i€,

then equality holds in (2.70) and (2.71).

(2.72)




Proof: The feasibility of Z and z, implies the feasibility of z, + A(Z — =,,) for any
A €[0,1].

Since ., is the optimal solution of (P,) and J4(z,) < 0o, we have
I(an+ M5 — 7)) = Is(xa) 20,  forall A €[0,1], (2.73)
and hence
3 L1920+ A50) ~ 24())) = #la(t) dn(t) 20, (2.14)

for all A € (0,1]. For each fixed n, by the convexity of ¢, we have

¢(zn(t) + A(£() —Awn(t)) ) — $(2a(t)) L' (za() ) () — zat)),  (2.75)

as A | 0, for allt € T'. Note that we agree to use one-sided derivatives when necessary.

Hence for almost all t € T (where both ¢(£(t)) and ¢(z,.(t)) are finite),

0 < W(ED) - o(anlt)) - AEENED —0a8)) = 9lealt))
:

$(£(t)) — ¢(2a(t)) — ¢'(2a(2) )((t) — 2a(t))- (2.76)

Let

fult) = 9(5(0)) ~ (an(ty) ~ LI XEQ =0l = HBD) (5 7

Then

HE) T F(8) S $(E(t)) = d(zalt)) — ¢'(2a(t) )(E(t) = za(t)), (2.78)

with A — 0. Noting that fi(t) =0, using Levi’s theorem (see [59]), we obtain

[ #(2n()(&(0) = 2alt) u(t) 2 0. (2.79)

In particular, by the feasibility of Z, we have

/T & (2a(t))(3(t) = za(t) )du(t) > 0. (2.80)
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We now assume that (CQ) of (2.15) holds, and a(t) = e, 8(t) = b. By the duality

results, we have

za(t) = (‘Z")’z(t» Z Xiai(t)) = ¢ Z Aiai(t)), for some A € IR"("),
i€l
and
Ig(zn) = V(P) = V(Dn)
/ [2(2) 21: Aiai(t 2:‘ Niai(t))]dp(?),
and

&' (zn) E Aiai,

which is finite everywhere. Then

[ #(a()(3(0) = 2a(t) du(t)
/ [::;t ()¢ (za(t))]du(t)
/[zt (£)) = 8°(#(za(t)) ) du(t)
(convex1ty of ¢ and (1.14))
/[z (2at)) - 58) 3 Nies(t) + 85 A1) — ¢ ( ¢/ 2alt) ) )]dus(t)

i€l i€l,
(et GZI iai)) + 672 A1) = 6°( 8 (a(0)) ) st
(feasibility of = and &)

= 0, (‘since ¢'(za) = Y Niai).
i€l

i
S~ 3
g—
&iz
e%.
v

In particular,

JECONCOREXOIOR (281)



Corollary 2.4.2 Let z, be the optimal solution of the problem (P,), let & be any
feasible solution for (P,). Then:

1. For the Boltzmann-Shannon entropy, we have
/T log 2a(t)( (1) — (1) )du(t) = 0. (2.82)
2. For the Fermi-Dirac entropy, we have
/ log -——-)( (t) — () )du(t) > 0. (2.83)

3. For Burg’s entropy, we have

B(t) — za(t) | ,
/T-—————- u(t) > 0. (2.84)

Za(t) ~

4. For the truncated L,-entropy, we have
/T 2PN (E(t) — 2a(t) Ydp(t) > 0. (2.85)

5. For the Burg-type entropy defined in (2.29),we have

2z,(t) -1 <) — & ‘
/T za(t)(1 = mn(t))(x(t) a(t) )dp(t) 2 0. (2.86)

6. For the Hellinger-type entropy defined in (2.31),we have

s 30 w0 20 2.8

Moreover, the equality holds in 1, 2, 3, 5 and 6 under (CQ).
Proof: Simply compute the derivatives of the corresponding ¢. »

Note that in the truncated L,-entropy case, the equality fails since a(t) = 0, while

a = —0Q0,
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2.5 Norm convergence

In Theorem 2.3.2, Corollaries 2.3.3 and 2.3.4, we gave error bounds for V(P,)—V(D,)
and I(2)—V(Py,). If z, is the optimal solution of (P,.), we thus have the error bounds

for I'(z) — I(zx).
When

#(5) € spafaii € | L}, (2.88)

n=1

(where the closure is taken in the sense of supreme norm), it is clear that
E, — 0, as n — 0o, (2.89)
which implies
[(zn) — I3(Z), as n — 0o. (2.90)
Our uext goal is to consider norm convergence in the sense that

e = 3l 2 ( [ loalt) - 2()Pdu(®)) — 0, (291)

for p > 1. Theorems on norm convergence have been proved in [16], [23], [79] and
(107] assuming the strict convexity of I5. Here we wish to relate the rate of norm
convergence to E, recalled in (2.35). We begin by giving lower bounds (in terms of
the norm error ||z, — Z||,) for the difference between the primal values of z, and z.
We will then be able to use the results given in Section 2.3 and deduce the norm
convergence rate, or more precisely estimates.

First, we impose a strong convexity assumption (A7) for ¢ :

There exists § > 0,7 > 1, such that
$(wr1) = $(uz) — ¢'(uz)(wr — ug) = 8lus — ug", (2.92)

for all 1y, u; € (essinf(a), esssup(3)).
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Theorem 2.5.1 Let (A1) — (A7) be true for somer > 1 and § > 0, z,, be the optimal
solution of (P,). Then
I4(2) — Ig(zn) 2 6||Z — =7 (2.93)
Proof: By Theorem 2.4.1,

I(8) = Iy(z) = [ [#(2(1) = 6(walt) ldut)
[ 16(a(6)) = #(n(t)) + ¢ (2n(®)(walt) — 5(0)] (2

v

> [ 8la) - u(®) du(t) = 81z — zall;.
a
Combining with Theorem 2.3.2 or its corollaries, it follows that
|z — z,]|; — 0, as n — o0, (2.94)

provided that E, — 0.

Symmetrically, we can require the strong convexity of the conjugate function ¢*.
(AT'): There exists § > 0,7 > 1, such that

¢*(11) — ¢"(v2) = ¢*'(v2)(v1 — vg) > blvy — va', (2.95)
for all vy, v, € (essinf( ¢'{a) ), esssup( ¢'(8))).

Theorem 2.5.2 Let (A1) — (A6) and (AT') hold. Let z,, be the optimal solution of
(F.). Then

10(3) - L(wa) > 6114/(2) - ¢ ()]l (2.96)
Proof: Again from Theorem 2.4.1 and the conjugate property (1.14),

I4(2) ~ I4(zn)
- /T [6(2(2)) — #(2a(t) )] du(t)
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vV

[ 16(2()) = #l2n(t)) + &' (alt) ) (2n(t) - 2(2))ldu(t)

[ 18(2(0) = 9 za(0) + #(2a()2al®) — # (2a(8) 20} (H)

= [18(3() + #°(#/(@a(t))) - 3(2)6 (2n(t)) Jdu(t)

= [ [E08(3() - #"(#(2()) + 8(#(@a)(1)) - 3(2)8an)(1)]dut)

= [ 156 @) - (#G0) - 67(F @GONS @alt) - #(2(2)]du)
> [ 6l¢'()(t) - #(2(0)] du(t)

= 8#@) - # Gl

Clearly, Assumption (A7) and (AT7') are implied by the strict positivity of the
second derivatives of ¢ and ¢*, respectively. We then have the following corollaries.

Note that the conditions we will invoke in the corollaries below are slightly weaker

than the uniform boundedness of ¢" or ¢*".

Corollary 2.5.3 Let ¢ be twice continuously differentiable on (a,b). Define for each
n >0,

S(n) = {ue R|¢"(u) =1} (2.97)

Let x,, be the optimal solution of {P,), and suppose there exists 5o > 0 such that for
almost allt € T,

co{@n(t),2(1)} S S(mo), (2.98)
then
14(z) = Io(zn) 2 mol|Z ~ zal3- (2.99)
Proof: As in the proof of Theorem 2.5.1, by the mean value theorem,

14(2) — Iy(n)
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> [ [6(e0) = an(®) + ¢ @n(®)zat) - 2(0)]d(t)
= [ [5"€0)@n(t) - 2(0))dutt)

( for some £(t) € co{zn(t), E(t)})
> o [ (an(t) ~2(0))%dut)  (by (298))

= 1ollza — i3

Corollary 2.5.4 Let ¢* be twice continuously differentiable on (¢'(a),#'(b)). For

each 1 > 0, we write
S*(n) £ {ve R| ¢™(v) > n)}. (2.100)

Let z,, be the optimal solution of (P,), and suppose there ezists ng > 0 such that for
almost allt € T,

wo{¢'(za(t)), ¢'(2(1))} € 5" (o). (2.101)

Then
14() = Is(2a) = nol|4'(Z) = &' (za)l3- (2.102)
Proof: This is analogous to the proof of Corollary 2.5.3. .

In combination with the estimates given in Section 2.3, we have not only proved
|Z — zn|| — 0 or ||¢'(Z) — ¢'(2x)|| — 0, but also have compared the “rate” of norm
convergence with that of E, — 0. We can further weaken the conditions (A7) and
(AT’) just to guarantee ||T — z,]] — 0 or ||¢'(Z) — ¢'(x,)|| = 0. We will say that ¢
satisfies (A8), if for some r > 0,

B(ur) — Puz) — ¢'(uz)(ur — ua) = H(uy, g — ua|™), (2.103)

where H : (dom¢) x IR; — IR, is monotonic in the first variable, strictly increasing

and convex in the second variable, and H(u;,0) = 0.
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Theorem 2.5.5 Let (A8) hold for some function H and r > 0, z, be the optimal
solution of the problem (P,). Then if H is nondecreasing in the first variable,

14(%) = 14(zn) 2 H(mfz ), IZ = za[7)- (2.104)
Correspondingly, if H is nonincreasing in the first variable,
14(2) = Lo(zn) 2 H(sup (1), |2 ~ 2a7)- (2.105)

Proof: Without the loss of generality, we only prove the “inf” case. By Theorem

2.4.1,
14(2) = I4(zn)
[ 18(30) = ¢lan(®) + 8 @n(®))(al®) - 30)]du(t)
JACIEONEORENCTEO
3(), 18(2) — a(8)")dp(2)

( by the monotonicity of H in the first variable )

H(inf 3(0), [ 15(t) - mu(t)"du()

( by the convexity of H in the second variable )

= H(inf2(0),112(t) - 2a(t)I})-

v

v

IV

3
fua

—
a—‘
QE,
i'i

v

Together with the theorems in Section 2.3 and strict monotonicity of H in the
second variable, the inverse of H(infier (t),) exists, and noting that H(u;,0) = 0,

we have
|z = z.||, = 0 when Ig(z,) — I4(z) — 0. (2.106)
Analogously, we will say ¢* satisfy (A8'), if for some r > 0,
¢*(v1) = ¢"(v2) — 7 (v2)(v1 — v2) 2 H"(vz, Jor = wa]"), (2.107)

where H* : (dom¢*) x IRy — IR, is monotonic in the first variable, strictly increasing

and convex in the second variable, and H*(v,,0) = 0.
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Theorem 2.5.6 Let (A8’) hold for some function H* and r > 0, and let x, be the

optimal solution of the problem (P,). Then if H* is nondecreasing in the first variable,

(@) — Lo(z) 2 H(inf ¢/(2(0), 14/(2) — ¢ (@)1 (2.108)
Correspondingly, if H* is nonincreasing in the first variable,

I(@) = Tolen) 2 H*(sup #(2(0),16(2) - $ @), (2.109)
Proof: Similar to the proof of Theorem 2.5.2 and 2.5.5. .

Hence when I4(Z) — I4(x,) — 0, as has been discussed before, we will have
|¢'(z) — ¢'(x)||. — 0, as n — 0. We now come back to the examples of Section 2.2,

and combine our lower bounds with the upper bounds given in Section 2.3.

Proposition 2.5.7 Consider the problem (P,) in (2.1), where ¢ is the Fermi-Dirac
entropy defined in (2.19). Let x,, be the optimal solution of (P,). Then

2 - aulle < 222 Ju(Ti,. (2.110)

Proof: Since

1 1 ,Bo — Qg 4
1" u) = + — Z ,
¢() u—ay fPo—u (U-ao)(ﬂo—u) Po — o
we apply Corollary 2.5.3 and get
_ 4 - : .
14(@) = Ia(an) > Iz - .l (2.111)
Together with (2.54) in Proposition 2.3.6, we have
e~ zally < 2T 22, (2.112)
Po — o
and the desired inequality follows. [ ]

Proposition 2.5.8 Consider the problem (F,), where ¢ is the Burg-lype entropy
defined in (2.29). Let z,, be the optimal solution of (P,). Then

1
@ - zalls < 5B (2.113)
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Proof: Since

1

n 1
¢(“)=F+m28,

we apply Corollary 2.5.3 and get
14(z) = I4(zn) 2 81|12 — zal3-

On the other hand, we can see

o v244-2 1
#) = e < 5
Then Corollary 2.3.4 tells us
Iy(2) = Iy(zn) < %Ei, (2.114)
and we have
17 — znll2 < %En. (2.115)

|
To obtain a corresponding result for the truncated I,-entropy, we need the fol-
lowing inequalities.
Lemma 2.5.9 For any real numbers A,B > 0, a > 1, we have
(A+ B)* > A"+ B~
Proof: This is obvious when A or B is zero. We assume A, B > 0. Define a function
f)=(14+t)*=1-1°, t>0. (2.116)
Then
SO =a(l+t)* T —at* ' =a((l1 +t)* ' =t*"1) > 0.

This implies

and the inequality (2.116) follows when we set ¢t = B/A. n



Lemma 2.5.10 For any A,B >0, q > 2, we have

1A"+£B"—A"‘132}-|A——B|". (2.117)
p q q

Proof: This is trivial when A == 0, so we assume A > 0. Let

1 1 1
f@y=—+-t"—t——[1—-1)7 t>0. 2,118
( ) p ' q (Il | ’ ( )
For £ <1, using Lemma 2.5.9, we have
SO=t""-14+(1-)""'<E+1-)"~1=0.
For t > 1, we again use Lemma 2.5.9 and get

fi) = 7 =1-(@-1)""=(@t-1+1)"" =1 —(t—1)"
> -1+ 1 -1 - (t-1)"" =0,

So f attains its minimum at ¢ = 1, i.e.
f@)z f(1)=0,t>0.
Then (2.117) follows when we set t = B/A. »

Now we have

Proposition 2.5.11 Consider problem (P,), where ¢ is the lruncaled L,-cutropy
defined in (2.22). Let x, be the optimal solution of (P,). Then for p > 2,

2 - zall, < (pu(T))7 B2 (2.119)
and for p < 2, or equivalently, ¢ > 2,
187" = 227, < (alg = DOEIZ + B =*(T))" B (2.120)
Proof: First let p > 2 and hence ¢ < 2. From Proposition 2.3.8 (1), we have

14(3) — Iy(ea) < W(T)EL. (2.121)
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From Lemma 2.5.10, we have

$(u1) — ¢(uz) — ¢'(u2) (w1 — ug)

1, 1 .
= -l -
p p
1 -
= “ub+-ub —ud
q
1
> =l —ugf’

Then using Theorem 2.5.1, we obtain
14(8) = Lo(e) 2 21 =zl (2.122)
Combining (2.121) and (2.122), we have
12~ zally < (pu(T))7 B (2.123)
Now we let p < 2 which implies ¢ > 2. From Proposition 2.3.8 (2), we have
I5(Z) = Iy(2n) < (9 = DI + En)**u(T) Ey. (2.124)
Applying Lemma 2.5.10 in the following way, we see that

¢"(v1) — ¢"(v2) — ¢ (v2)(v1 — v2)

1 1 -1
= Ev;’ - 3”3 — vy (v1—v2)
1 1 -
= —v! 4 -0 —v0l!
q )
1

> —|vy — vl
We then apply Theorem 2.5.2 and get
14(8) = Iyan) 2 <& = 7| (2.125)
Combining (2.124) and (2.125), we obtain
12771 = 27l < qlg = 1)(IZIET + Ba)*"24(T)EL,

and (2.120) follows. ]



Proposition 2.5.12 Consider problem (P,), where ¢ is the Boltzmann-Shannon en-
tropy defined in (2.17). Let z,, be the optimal solution of (P,), and for some M > 0,
Iznlloo < M for all n. Then

12— 2allz < (max{ M, [z]es}|Z]1) T2 .. (2.126)
Hence for T € Loo(T, 1), we have ||z — z,.|l2 = O(E,) as %, — 0.

Proof: Since for some M > 0, ||z,l|ec < M, for all n € IN. We may take

1

—1'—:——_}'
M’ |2l

o = min{
Then, applying Corollary 2.5.3 and Proposition 2.3.5, we have
nollZ — a3 < |lzlhe™ L,
and (2.126) follows. n

Note that ||Z]|, = oo might occur. Also, to avoid needing the uniform bounded-

ness of {z,}, we may check condition (A8) defined in (2.103).
Lemma 2.5.13 For the Boltzmann-Shannon entropy defined in (2.17), (A8) holds.

Proof: For uy,us; > 0, we first claim

$(wr) — d(uz) — ¢'(uz)(wr — ug)

> —uqlog(l + |—1-1—2——_—?—1—11) + |uz — wy]. (2.127)

Uy
To show (2.127), we only need to check the inequality for u; — u; < 0, since the other

case is clear when we write out ¢ and ¢’ explicitly.

Define a function for 0 < s < u,,

f(s) = —uplog(l — —b-) — s+ u;log(l + i) -3
Uy Uy
= —uylog(u; — s) + uy log(u; + 3) — 2s. (2.128)
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Then

Uy U

2u?
—2= 93>0,

! —
f(s)—ul—s+u1+s uy—s

since |s| < |[u1]. So f(s) > f(0) = 0, and hence (2.127) holds.
Now in (2.103), for r = 1, we take

H(z,y) = —zlog(1+2)+y, =,y 20. (2.129)

Noting that logz < z — 1 for z > 0, we have

)+1-— <0.

H (z,y) =1
(2, y) og(Hy e

Hence H is nonincreasing in the first variable. On the other hand we see that

’ Y
= ——
Hy(z,y) Tty 2 0,

for =,y > 0, and equality holds only if y = 0. Also

xr

HII , — e > 0,
and hence H is strictly increasing and convex in the second variable on y > 0. Thus
(AR) holds. [

Combining Proposition 2.3.5, Theorem 2.5.5, and Lemma 2.5.13, we have

Proposition 2.5.14 Consider problem (F,), where ¢ is the Boltzmann-Shannon en-
tropy defined in (2.17). Let x, be the optimal solution of (P,). Further suppose
supyer Z(t) < 1/86, for some 6 > 0. Then

8|7 — s — log(1 + 8||% — zul|1) < 6]|7||1 5 E2. (2.130)

Therefore if E,, — 0, we have

|12 — zafls = 0
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This again recovers the result obtained by Borwein and Lewis in [16]. Using (A8’),

we can even get the similar result for Burg’s entropy.
Lemma 2.5.15 For Burg’s entropy defined in (2.25), (A8’) holds.

Proof: For v,,v; < 0, we claim

¢*(v1) — 6" (va

) = 6% (v2)(vi — v2)
> —log(l+

v — v 1
| 2|)+ lvr = va.
Uy

(2.131)

For the same reason as in Lemima 2.5.13, we only need to check the last inequality

for v, —v; < 0.
Define for 0 < s < —vy,

S

f(s) = ——log(1+—)+ +log(1+—")-
U2 U
L gt 2
= log(_v2_3)+v2.
Then
1 1 2
! — —
f(s) - —v2+s+—v2—s+v2
—2v, 2 2 252
vi—s? vy wys?—vd) ——vg)

since |s| < |vg| and v, < 0. This implies tne inequality (2.131).
Now in order to check (A8’), for r = 1, we may take

H*(z,y) = —log(1 + %) + % = —log(z + y) + log(z) + %,

for z,y > 0. Noting that

. 1 1y Yy Yy
Hx’(:lt,y) = =

(2.132)

(2.133)

(2.134)
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we see that H is nonincreasing in the first variable. On the other hand, we also have

1 1
]_ltl —_ w/ .
y(z,y) z+y+ >0 Hy ( ,y) ( + )2 >0

Thus /7 is strictly increasing and convex in the second variable on y > 0. So (A8’)
holds. =

Proposition 2.5.16 Consider the problem (P,), where ¢ is Burg’s entropy defined
i (2.25). Let z,, be the optimal solution of (P,). Further suppose E, — 0, and

0< de— z(t) < M < +oo, (2.135)
for some M > 0. Then
— iz = 2 —Tos (1= 7 - ) < 4M?EL, (2.136)
for large n. This implies
“——;1—”“1 — 0, asn — oo. (2.137)

Proof: Since #(t) < M implies 1/Z(t) > 1/M, we have

#(F(t)) = -5(1—5 < —% <0.

For n large enough such that E, < 1/2M, there exists A\* € IR*(™ with the property

1
An T '(z oo — Ly
I3 X0~ ¢ @l = B < g7
Then
n 1
Y ANa, < ¢'(z)+ < -ty <o,

P zM— MM

which implies that ¢*(3,¢, A'a,) and ¢*(T,¢;, Ara,) are finite. Noting ihat
1

w/ A:l(l, — e

P N = ey

€l

< 4M?,



applying Corollary 2.3.4, we obtain
14(7) — Ig(z,) < AM*u{T)EZ. (2.138)
On the other hand, using Theorem 2.5.6 and z > 1/M,

14(z) ~ Ig(zn)
> H(iaf ¢ (@), 14() - ¢ @)
> H(=Mlz - o)

il

1,1 1 1,1 1
~log(l — == = —||1) = ==|l= = —||,. 13
log(1 = 73 = 1) = 3715 = 1l (2.139)
Hence, combining (2.138) and (2.139), we have

1.1 1 1,1 1 .
— —_—_"_-__— N | R < 2 32 G.
log(1 — 571z = —ll) = 57l = b SAMW(DIEL  (2140)

and the result follows. [



Chapter 3

Uniform Convergence Theorems

3.1 Introduction

Using a maximum entropy method to solve moment problems requires minimizing
some measure of entropy/information, a convex integral functional of the density,
subject to the given moment constraints. In doing this we hope that the estimates
will converge to the unknown density as the number of known moments increases.
As proved or stated in many recent papers (see, for example, [21], [18]), we know
that weak-star convergence hold almost unconditionally ([50], [82], [79]), and weak
convergence can be guaranteed if the level sets of the objective function are weakly
compact ([18], [23], [50], [79]). To obtain norm convergence, we require more assump-
tions such as strict convexity ({16], [79], [110]). Also, a uniform convergence theorem
has been proved for the Boltzmann-Shannon entropy in [16] and generally for analytic
underlying functions in [28].

The main results which will be proved in this chapter are some uniform conver-
gence theorems for moment problems with entropy-like objectives. We will specialize
these theorems to many well known entropies.

As observed in Section 2.1, we know that because of the bound constraints of(-)
and ((-), ¢* is a piecewise defined function. Under the given (CQ), the optimal

solution z, of (P,) has been seen to be truncated at a and 3. However, for entropies

49



such as the Fermi-Dirac entropy, where o and 8 are simply constants, we sce that
#'(a) = —o0 and ¢'(f) = +oo, and then the truncation in the expression of z,
disappears. So the bound constraints are automatically fulfilled. In the next section,
we first discuss uniform convergence for this case, which is easier to deal with. In
Section 3.6, we return to the truncation-type entropy, where we will need to use
Remez-type inequalities.

The reader is reminded that an index of assumptions is given in Appendix A.

3.2 Uniform convergence theorems for FD-type

entropies

First we are going to deal with the FD-type entropies, named after the Fermi-Dirac
entropy which has the form in (2.19). Using this entropy, the bound constraints are
automatically included in the objective function. The function ¢ and its conjugate
function ¢* are both essentially smooth and essentially strictly convex on IR. The
optimal solution of the problem (P,) has the form

za(t) = ™) Niai(?t)). 3.1)

i€l

Knowing this makes uniform convergence theorems much easier to prove.

More generally, we consider the following FD-type problem

inf  [r ¢(2(t))du(t),
(FDP,) st Jrai(t)(z(t) — z(t))dpu(t) =0, i€, (3.2)
z € L1(T, p),

where (T, ) is a complete finite measure space, a; € Loo(T, ), for z € I, and the
function ¢ : R — (—o00,+00] is a convex integrand with domain dom(¢) satisfying
(a,b) C dom(¢) C [a, b] for finite numbers a and b. We also assume: ¢ is essentially
strict convex and essentially smooth on the dom(¢), which implies

lim ¢'(u) = —o0, lim ¢'(u) = +oo0. (3.3)

u—rat
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Then the conjugate function ¢* is everywhere finite. It is also essentially strictly
convex and essentially smooth on R, with the useful property: ¢*' = (¢')~".
The dual problem of (FDP,) is

(FDD,) { z“tp ing)kE;,El" Aiai(t) — ¢*(Zier, Xiai(t))ldu(t), (3.4)
The constraint qualification (CQ) takes the form:
there exists & € Ly(T, i), such that
| Sl - 20)due =0, i€ 1, .

a<<b, ae.on T, and
| Jr ¢(&(2))du(t) < +oo.

By the duality results, if (CQ) of the form in (3.5) holds, then V(FDP,) =
V(FDD,), and both optima are attained. Moreover, if A € JR*™ is an optimal
solution of (FDD,), then the unique solution of (FDP,) is given by
20 = 6"(3 Xia). (3.6)

t€ln

Also we have ¢'(z,) € span{a;,i € I,,}, which implies
a<z,(t)<b, ae on T. (3.7)

For given {ai,? € I,,} and each n € IN, p > 1, we define a renorming constant

A"hP é Sup{llllff’lllooa f € Span{aivi € In}7f # 0} (38)
4

Noting that
A 1 1
1£1ls £ ([ S OPdu®)? < I llo(u(T)) >0,
it is always true that

Ay > (u(T))77 > 0. (3.9)

To obtain uniform bounds for {Z — x,}, we also require ¢* to satisfy the following

two more assumptions.



11
o

(AF1): For some § > 0, r > 1,
¢"(v1) — ¢7(v2) — @™ (v2)(v1 — v3) > Slvy — va", (3.10)
for all vy,v, € RR.

(AF2): ¢* is y-Lipschitzian on IR for some v > 0, i.e. there exists a constant L,
such that

|6 (v1) = 9" (v2)] < Ljvy — w7, (3.11)
for all v1,v, € RR.

It is obvious that the strict positivity and boundedness of the second derivative

of ¢* will imply (AF1) and (AF2) for r = 2 and y = 1 if we take
. . *M - */
§=min{¢"(v)}, L =max{¢"(v)}.

Theorem 3.2.1 Consider the FD-type problem (FDP,) defined in (3.2). Supposc
that ¢ satisfies (AF1)-(AF2) for somer > 1,6 >0, L >0, and v > 0. Let {z,} be
the optimal solution of (FDP,), and (CQ) hold. Further assume T € Ly(T,p) and
#'(z) € Loo(T, pt). Then

14'(Z) = ¢'(za)lloo <
Er+ (1(T))* Ay B + (Cp(T)L)* A En™ . (3.12)

In the most interesting case, when v =1 and r = 2, we have
16'(2) = ¢'(zn)llo = O(Ar2Ey).
Proof: For each n , we can choose A* € R*™ so that

16'(@) - 3 Maillo = En. (3.13)

i€l
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Then by (3.13) and the definition of A, in (3.8), we have

I14'(Z) = ¢'(2n)lloo
< N14(@) = X Mailloo + 1l 2o Xrai = ¢ (2n)lleo

icl 1€ln
< || X Mrai = ¢(@n)lloo + En
i€ln
S En. + An,r” Z X?ai - ¢l(xn)”7'
i€l

< Eut An,(I16@) = 3 Naill, +116(2) - ¢'(za)l1)

iel,
< Bt B (Ba(w(D))7 +114/(®) - #(za)l-)

1 1oa, 1
S Bt Bap(Ea(u(T)) +(5)7 (T6(2) = Ig(2))7)

1 1 i ity

< Ent (W(T)) B B+ (58(T)L)7 Any En”

Again from Assimption (AF2) and ¢* = (¢')~!, we have
12 = Sallee = 167(6(@) - 6" (F @)l < LIFGE) - Feallle (314)

Hence || — z,]|w -+ 0 is implied by ||¢'(z) — ¢'(2,)]|cc — 0.

In the above theorem, we can see that in order to ensure
16'(2) = ¢'(za)lleo — O, asn — oo, (3.15)

we first must require E,, — 0, which is true if span{a;,? € U3%y In} D L1(T). More
than that, we also need
141
AnE, — 0, and An Enm — 0. (3.16)
In the case where {a;} are algebraic or trigonometric polynomials, (3.16) can be
fulfilled for smooth enough z. We will give detailed conditions later for these to be
true.

When ¢* is twice continuously differentiable, we have a direct corollary.



Corollary 3.2.2 Consider the FD-type problem (FDP,) defined in (3.2). Assume

that ¢* is twice continuously differentiable on IR and for some & > 0,
do < ¢*'(v) < %, forallv € R. (3.17)
0

Let z,, be the optimal solution of (FDP,), then

_ V2 L .
16/@) = ¢ @allloo < Bu+ (14 GH(T)) A B (3.18)
Proof: Apply Theorem 3.2.1 where r =2, y =1, L = 1/6 and § = &,/2. n

In case when this corollary applies, we only need
An2E, =0, asn—0 (3.19)

to guarantee uniform convergence. For algebraic or trigonometric polynomial moment
functions in JR™ and a smooth enough underlying function z, this limit can be ensured
by the theorems recalled in Section 1.5. This was first done in [16] for Boltzmann-
Shannon entropy case, which could not be covered here since a = 0 and b = oo.

_ In the next theorem, we will weaken the conditions (3.17) and even (AF1) or

(AF2) for twice continuously differentiable ¢,

Theorem 3.2.3 Consider the FD-type problem (FDP,) defined in (3.2). Assume
that ¢* is twice continuously differentiable on IR and for any M > 0,

Jo(M) & inf {¢""(v), v € [-M, M]} >0, (3.20)
and
Lo(M) £ sup {¢"(v), v € [-M,M]} < +oo. (3.21)

Then we have

16(2) - '(2n)llo
Lo(||¢'(2)lloo + En) Ly
< A+ VHDAH (e, 1 0@ — gl Vo (32)
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Proof: Using Corollary 2.3.4 by choosing
J(t, En, 2) = Lo(||4'(Z) I + En), (3.23)
we have
14(2) = I4(2n) < Lo(|4'(Z)loo + En)u(T) Ex.. (3.24)
On the other hand, applying Corollary 2.5.4 by choosing
o = Jo(l¢'(@)llo + 16'(Z) = ¢'(zn )l ), (3.25)
we obtain
14(2) = Is(2n) 2 Jo([|4'(2)l|oo + [I¢'(Z) — ¢ (2a)ll0)16'(Z) — ¢'(za)l2-  (3.26)

Hence

Lo([¢'@)lloo + En)i(T) 1
# @+ 170 - el o 2D

I4@) - $)lk <15
Then

[14'(2) = ¢'(zn)lle < En+ 1l 32 Xiai = ¢(2n)loo

i€l
Ey+ Anall D Xiai — ¢'(z4)]l2
i€l

Eq + Dn2(u(T)2 En + 14'(2) — ¢'(24)]2)

En + Apg(Eup(T)?
Lo(l¢'(@)ll + EJUT) _ y3py s
Jo([1¢'(@)lleo + 16'(Z) = ¢'(za)ll)”
Lo(l¢'(2)lloo + £n)
Jo([[#' (@)oo + [|4'(2) = ¢'(zn) )

IN A

+(

[+ Buzp(T)3 (1 + )?)]E,.

We can see that this theorem works even if a and/or b is not finite.
In this theorem we can see, if {||¢'(Z) — ¢'(z,)||} is bounded, and A, E, — 0,

then

1¢(2) = ¢'(za)lle0 — 0. (3.28)



We now give another version of a uniform convergence theorem, in which the
condition (AF3) looks more complicated but actually is easier to satisfy.

We will say ¢ satisfy (AF1"), if there exist § > 0 and r > 1, such that

$(u1) — d(uz) — ¢'(u2)(wr — ua) = 8wy — uyl", (3.29)

for all uy,u; € (a,b).
We will say ¢* satisfy (AF3), if for some M > 0, there exists a strictly positive

and nonincreasing function Ty : RY — R, with

lien_l'lglf T'm(€)¢ >0, (3.30)
such that
67 (w) — ¢*'(v)| = Pm([v])u — v, (3.31)

for any u,v € R, |u| < M.

Before establishing the next theorem, we prove a lemma.

Lemma 3.2.4 Let ¢* satisfy (AF3), let un,v, € span{a,, € 1.}, and |ju)le < M,

for large enough n. Further suppose for some p > 0,
A pll67 (un) = ¢*(va)ll, = 0, asn — +oo. (3.32)

Then

Arpllttn = vally — 0, as n — +oo. (3.33)
Proof: By (3.31), for almost all ¢ in T', we have

|6 (un(t)) — 6" (va(2))]
2 Tm(lon()D)un(t) — va(t)]

2 Ta(lun(®)] + e = valloo)un(t) — va(t)]
(since Ty is nonincreasing)
Par(M + Dnpllun = vallp) un(t) — va (1]

(by the definition of Ay, ,).

v
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Then
Anm“‘ﬁ"(un) - ¢*'(”n)”p 2 T (M + Anpllun — Unnp)An,pn“n — Vn|lp- (3-34)

Now we claim that {A,,|/un — vallp} is bounded. If not, for some subsequence {n,},
we have

Ay, plltn, — vn ||, = 400, as n — 400, (3.35)

so does

{M + Am.p“un. — Un, ”p}~ (3-36)
By (3.30;,

[:E]-}»lollf FIVI(A/[ + Annl’“uﬂt - v"l ”P)(M + AnnP”u‘"' - vﬂl “P)

2 lim inf Tar(€)¢ > 0. (3.37)
Noting that (3.30) and the monotonicity of T'ps imply
limTa(€) L0, (3.38)
we have
lim inf Cag (M + Av, plfttn, = v, [[5) B, pllten, = 0l > 0, (3.39)

which is in contradiction with (3.32) and (3.34). So {A,pllun —vs)|p} is bounded, say
by M. lence

Car(M + Anplltn — vallp) 2 Tp(M + M) > 0. (3.40)

Theu in (3.34), we deduce
Auplltn = vall, — 0. (3.41)
.

Theorem 3.2.5 For the problem giver n (3.2), suppose that (AF1’), (AF2) and
(AF3) are true for some 8§, L,y > 0, r > 1, and Tpy : R* — R*. Assume I €
IJI(Ta ﬂ): 45,(5) € Loo(Tv ﬂ); and

By BT 50, ALE, T 50, asn— oo, (3.42)



Let ., be the optimal solutions for (FDP,), then

”¢I(E) - ‘]5,(-7771)”00 — 0, asn — oo,
and also

|Z — zullo = 0, as n — co.

Proof: We choose A" € IR¥™), so that

I¢'(2) = - Aaillo < B,

i€l,
then

I 21: Aailleo < 116'(Z)l|oo + En-
From (AF1’) and Theorem 2z.5."1

14@) — T(a») 2 6117 ~ 2.l
From (AF2) and Corollary 2.3.3, we have

14(%) — Ig(zn) < Lp(T)EL.

Thus from (3.42),

1ty
BagllE = 2ally  Bus GLHTI BN 0,

Using (3.42), (3.49) and ¢* = (4')"', we now have
Anypll¢*(#'(za)) = ¢7'(D_ Arai)lls

1€,
= Aullen - 6(S Al
icly
< Aup(llen =2l + 17 — 67 (3 Arai)llr)
i€l

— 1 1{—= n

< Bus(llen =2l + (C16@) - T Nl
i€l,
(for same 6 > 0 as in (3.47))

- l r—1 1

< Aur(lan -2+ () BH)

= An,rllx'n - ‘7’“" + 6‘lr (”(T))%EFA""'

- 0.

(3.43)

(3.44)

(3.47)

(3.48)

(3.49)
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Since ¢'(zn), Yier, Ala, € span{a,, € I,}, and

I3 Mallew < 6/ ()lleo + En < +o0, (3.50)

iEIn

using Lemma 3.2.4, we have

Anylld(zn) = D Alal, = 0, as n — oo (3.51)
wel,
Hence
14/ (2n) — D Mailloo < Anplld'(2a) = Y- Aall- — 0. (3.52)
€l 1€l
So we have

1¢'(2a) = #'(@)lleo < N6'(20) = 32 Naulloo +§| 3o Na, — ¢'(E)l|e0 = 0, (3.53)

€l €l
and also from (AF1’),
2 = Zlloo < 677 ||¢'(2n) = $' (@7 — 0, (3.54)
as n — 0. =

The mos: irteresting case is when r = 2 and 7 = 1. Then we require A, ,E,, — 0

iv (*.12). We will now apply the theorems to important entropies.

3.3 Application 1: generalized Fermi-Dirac en-

tropy

As the first application, we consider the Fermi-Dirac entropy

(u—a)log(u—a)+ (B —u)log(B—u), a<u<p,
(,IS(U) = (:B - (1) log(ﬂ - a)a u=aor ﬂa (355)

+ 00, otherwise,

where o and 3 are constants.
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We can easily check that all conditions in (3.2) hold. Now

¢*(v) = av+(f-a)log(l +e’)— (8 —a)log(8 — ),

x/ _ (8 + ﬂev
¢ ('U) - 1 +ev ’
and
1 (8- aje’  B-a
<
¢ ('U) (1 + e”)2 —_ 4 )
which implies (AF2) with L = (8 — «)/4 and v = 1. Also we can sce that
Bl = g = P (3.5)

= >
u—a f-u (u—-a)f—-u)” f-do’
and (AF?1’) follows for § = 4/(8 — @) and r = 2. We now need to check (AF3).

Lemma 3.3.1 For any C > 0, Ty > 0, the following inequality is true for |t| < Ty:

|1— ¢l g
> . 3.57
Cte =~ (C+1)(To+1) (3.57)
Proof: Recall that
e >1+t, for all £ € R. (3.58)
For t > 0,
1-e| e‘—1_1_0+1
C+e  CHe C + ¢
S, CH1 ot l,” |
= T CHI+t CHIHtT(CHD)Te+ )
For t <0,
1-€| 1——6‘_(7-4-1__1
C+et  C+e CHe
C+1 ~ ~t
> - 1= > .
- O+ Cl-)+1 = (C+1)(Tu+1)
.

Lemma 3.3.2 For ¢ defined in (3.55), (AF3) holds.
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Proof: For any u,v € IR, and |u| < M, we have
» o _atpfe’ a+fe’ f[f-ae —e
I¢ (u)—¢ (U)I - !]+eu 1+ev|_]+eu|1+eu|
_ ﬂ—al e’ —1 | B—a lu — v|
T o l4ereuteru’ T 14 eM(eM 1) (M + v+ 1)
(by Lemma 3.3.1 and |u — v| < M + |v])

S Tu(ohlu— o).

It is easy to see that I'ys is a nonnegative and decreasing function and

B -«

(1+eM)?
and (AF3) follows. »

Jm Ta(6)¢ = >0, (3.59)

Now we obtain a uniform convergence theorem.

Theorem 3.3.3 Consider the problem (P,), with ¢ defined in (3.55). Suppose (T, )
is a completc finite measure space, a; € Loo(T, p),i € I, & € Li(T, ), log(Z—a)/(B-
Z) € Loo(T,p), (or equivalently, there ezists € > 0, such that o +¢ < T < f —¢,
a.e. on T). We also suppose that A, 2E, — 0, as n — oo. Let x,,’s be the optimal
solutions for (P,), then

lzn — &]|oc — 0, asn — 0o, (3.60)
Proof: Simply apply Theorem 3.2.5 and Lemma 3.3.2 with r =2 and vy = 1. =

If we recall the theorems stated in Section 1.5, we can get uniform convergence
results for algebraic and trigonometric moments.

Consider the case where {a;,i € I,,} are algebraic polynomials on T' = [A4, B]™ C
IR™ of degree at most n in each variable. Let # € C*[A, B]™. Then by Theorem 1.3.6

and 1.3.4, we have

Anz = O0(n), and E, = o(%), (3.61)



which implies

AnaB, -0, asn—0.
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(3.62)

If we consider the case where T = [—~m,7]™ € R™, and {a;,t € I,} are trigono-

metric polynomials of degree at most n in each variable, then we require the periodic

function Z to be in C"[—m, 7™, with r > m/2, to ensure (3.62).

3.4 Application 2: Burg-type entropy

We now consider the problem (P,) where ¢ is the Burg-type entropy defined by

¢(u)={ —logu —log(l—u), 0<u<x<l,

+00, otherwise.
Then
W
#u) = u + 1—u'
" 1 1
= ——>
B = Fro 2

which implies (AF1’). Through calculation, we obtain

¢*(v) = %(v —24+ Vot 4 4) + log(~———~v2 ;})‘24— —2

v+ Voi44-—2

)

¢ (v) = v ’
Ay -

$"(v) = vvi+d-2 < .1.,
v3y/v? + 4 8

which implies (AF2). Again we need to check (AF3).
Lemma 3.4.1 For ¢ defined in (3.63), ¢*' satisfies (AF3).

Proof: For any u,v € IR, |u| < M, we have

|67 (u) — ¢ (v)]

(3.63)
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|u+\/u2+4-—2_v+\/v2+4—2|

2u 2v
_ lv\/u2+4—2v—lz\/v2+4+2u|
- 2uv
_ I\/u2+4\/v2+4—2\/v2+4——2\/u2+4+4—-uv||u_v|
- 2uv(\/u2+4+ Vv? +4)
_ I(\/tﬂ —2)(Vvi+4-2) —uv“ ol
- 2uv(\/u2+4+\/vz+4)

lul lv| = (VU +4 - 2) (Vo2 +4-2) ]
- 2|u||v|(\f"’+4+\/v2+4)
(since 0 < Vu?+4 —2 < |ul). (3.64)

We can actually check that the function

w — (Vur+4-2)(Vvi+4-2)
uv(vVu? +4+ \/v2+4) (3.65)

is nonnegative and monotonic decreasing in each variable v or v for u > 0, v > 0.

Hence

|67/ (u) - ¢¥'(v)]
M|~ (VAT F - 2)(V/oP +4-2)
- 2M [v|(VM? + 4 + Vo + 4)
( by |u| £ M)

2 Tullo]) ju=ol, (3.66)

u—ol

where I'p(+) is nonnegative nonincreasing on IR and

M+2- VM ¥4
oM

Thus (AF3) follows. N

léir_l,ljglofFM(f)é = (3.67)

We now have the exactly same convergence result for the Burg-type entropy as in

Theorem 3.2.5. This case can also be generalized to arbitrary bounds a and 3.
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To estimate an unknown density Z, bounded by 0 and 2K, we can also consider the

problem {P,) with the Hellinger-type entropy given by

S(u) { —V2uK —u?, 0<u<2K,
u) =

+00, otherwise.

It is easy to see that

u—K

QS,(U) = —5\/_117(____.——_&;, 0 <u< 2_’(,
and
K? 1
" =— > . > 0,
#lu) (u2K —u))2 ~ K

which implies (AF1’).

- We obtain through calculation
#*(v) = K+ vVvi+1),

L - v N
¢ (v) = K(1+\/'UT+_1)’

I
F0) =~ <K,
(v2+1)2

and hence (AF2) follows. As to (AF3), we have
Lemma 3.5.1 For ¢ defined in (3.68), ¢*' satisfies (AF3).

Proof: For u,v € IR, [u| < M, consider

1470) = 6”0 = Kl g =

For uv < 0, we have

|| o

u v
I\/u2+1 _\/v2+1' Y e R

(3.68)

(3.69)

(3.70)

(3.71)
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VT + Ve 41
- Vi + 1V + 1
ju] + Jo]
u? + 1vv?2 4+ 1
1

1
vy Ty (3.72)

_vl

For uv > 0, |u| 2 |v|,
u v _ v ol
|\/u2+1 B \/172+1| T Vil Vurtl
;slu._ vl
(u?+1)2
( by the concavity of |z|/v/2? + 1)

1
> —— lu—a|. 3.73
> Gt (373)

v

For uv > 0, |u| < |v|,

Uu v
By e
ol Iy
Vvt +1  Vut41
(o] = )VoP T T = ol(o7 T T = VT £1)

Vv +1vu? +1
o] — |u] Jo|(ll + [v])(lv] = Ju))
Viz+1  Vul+ 1V + 1(Ve2 +1 4+ Vu? + 1)
1 v |+ M
> —(1 — . - 3.74
: VE Vel erie )t .14

(since (Jv] + |£])/(Vv? + 1+ v/x2 + 1) is increasing in |z] for fixed v).
Combining (3.72), (3.73) and (3.74),
|6"(u) = ") Z Tu(lo])lu—v],  for [u] < M, (3.75)

where
1 1
VME LTV 4+ 1" (M2 4 1)

T'm(€) = min {


file:///v/-/u/
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1 (1- (€ + M) )}
VMET1Y  JETI(VEFTI+VME+])

which is decreasing since each of the items inside the “min” is decreasing. From

1 1

lim = )
o0 \/M2+1\/§'2+1‘f M2 +1

= 00,

lim ———
E—+00 (M? + 1)72‘

and

&0 VE+TI(VE+T+ VM2 +1)
) E+1+/(E@+ 1) (M2 +1) - —eM
T e JETIVETI+ VML)

(Ve + (M2 + 1) — €M + 1)(\/&2 + 1) (M2 +1) + €M = 1)¢
o BT T(vVE T T+ VI 11 (€ +1)(M2 +1) + €M — 1)
fim [+ )7 +1) — (M —1)]¢
f—»oo(§2+1+\/(§2+1)M2+1) (JE+ )M+ 1)+ M — 1)

— i (€+ M)
oo e+ 14 /(@ + )M +1)((E+ 1) (M2 +1) + €M — 1)
1
= W’
we get
li{rxl(i)glf Tm(€)€ > 0. (3.76)

Then the analogue result to theorem 3.2.5 for the Hellinger-type entropy follows
directly.
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3.6 Uniform convergence theorems for truncation-
type entropies

In this section, we will consider the problem

[inf [y $(2(t))dp(t),
wpy ot Fre@EE) 2@ =0, ek, (3.77)
" z € Li(T, ), |

a(t) < z(t) < B(L), a.e. on 7T,

where (T, u) is a complete finite measure space, ¢ : IR — (—o00,+0], a, f are

functions which satisfy:
(AT1): —o0o < a< at) < B(t) < b< +ooforall t € T with

(a,b) € dom(g) C [a,b]; (3.78)

(AT2): ¢ is strictly convex and continuously differentiable on (a, b).

Using the same notations we used before,

I 9 t S S t )
+o00, otherwise,
and hence (T P,) is equivalent to
inf  [7 $(t,2(t))dul(t),
(TF,) st Jra,(t)(z(t) — z(t))du(t) = 0, i € I, (3.80)
c € Ly(T, p).
The dual problem is then
z(t) 2 /\; 1 — ¢ vy Lt 1y ’
apy | " DT M)~ F S OO,
st. A€ RH™,

where ¢* is finite everywhere and given as in (2.9). We know that for almost all

teT, ¢(t, ) is continuously differentiable on IR, with the derivative given in (2.10),
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and is strictly convex on (¢'(a(t)), ¢'(8(t))), linear outside this interval. Moreover
we will frequently use the expressions (2.10) and (2.11). Under (CQ) given in (2.15),
the duality results tell that, if A € R*(™ is an optimal solution of (7'D,,), then the

optimal solution of (T'P,) is of the form
:En(t) = qNS;’(t, Z A,’(l,‘(t)). (582)
"EI')

By (2.10) and (2.11), we know

$(t, za(2))
= qS'( max {a(t), min{5(t), Z )‘i“-(t)}})

i€l,

2 g(at) v I Nailt) AB(2)). (3.83)

i€ly
Now we give uniform convergence theorems for these truncation-type entropies.
We assume T' = [A, B] C IR (or [—7,7] in the trigonometric case) and g is Lebesgne
measure. We also assume that {a;,7 € I,} are algebraic (or trigonometric) polyno-
mials so that we can apply Remez’ inequalities given in Theorems 1.3.7 and 1.3.8. In

the next section we apply these results to the L,-entropy.

Theorem 3.6.1 Let T = [A, B], {ai,t € I} be algebraic polynomials of degree at

most n. Suppose for some \* € R

2. = &5(t, S Mai(t)) (3.84)

i€ln

is the optimal solution for (T P,). We further assume
(AT3): for some C >0,q>1,v>1,
l¢'(z) — ¢'(zn)||2 < CEY, for large n, (3.85)
(AT4): for some K >0, r >0,

u{t €[4, B] | ¢(2() - #(alt) < €} < K& (3.86)



and
u{t € (A, B]| #(8(t) - $(z(t) S e} S K&,
for small € > 0.
(AT5): #'(z) € CUT, ), with

d > max

{2(1- +q) 2 ).
o

Then ¢'(z,) — ¢'(Z), uniformly on [A, B].

Proof: For z, given in the form of (3.84) and some X" € R¥(")  let

N, ={te(A,B]]| }‘1 Aa(t) € a(t)},

My ={te(4,B]]| Y Nat) 2 ()},

1€ln

and

A, =[A,B)\ (N, UM,).
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(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

From (AT1) and (3.85), for some C > 0,¢ > 1,7 > 1, large n and small € > 0, we

have
B 2 I14(2) - ¢
= [ 19(2() - ¢an(t)ldu(t)
[ 19@0) = ¢ eale) Pt
[ @) - #a)Paute

v

v

v

-/N \{tET) $(2(t)) - (a(t)) <o)
e'u{ N \ {t € T| ¢'(2(1)) - ¢'(a(t)) < €}}

vV IV IV

e'(u(N,) = Ke7),

|6'(2(t)) ~ ¢'(«(t)I*du(t)

e (1(Nu) — u({t € T| #'(2(2)) — ¢'(a(t)) < €}))

(3.92)

(3.93)
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and hence
p(Ny) <eT'CE] + Ke'. (3.94)
Since ¢'(z) € C[A, B, E, — 0, as n — oo, we may choose
= E'*" — 0, as n — oo (3.95)
n (3.94), and then get
ar
(N, <(C + K)E:*, for large n. (3.96)
In the same way, we can obtain
i_
p(M,) < (C + K)E*, for large n. (3.97)
In particular, when n is large enough, we have

u(N, U M,) < 2(13 A). (3.98)

We will use this inequality to apply Remez’ Theorems.

Now let ¢,(t) be an algebraic polynomial of degree at most n, such that

14'(Z) = gulloo = En. (3.99)

Then by Remez’ inequality (Theorem 1.3.8), and (3.98), for large n, we have

D Arai — gall? —/ | 3 Atai(t) — ()| du(t)

i€l, i€l
< (1 4 Sy NnCMn)y / | 30 Ma(t) — () du(t),  (3.100)
" i€l

for some constant Cy > 0.
Noting that in our assumptions, d > 2(r+q)/-yr, using (3.96), (3.97) and Jackson’s
Theorem (Corollary 1.3.2), we obtain

ny (N UM, < (2(C+ K)E ""’)tn
9%C + K)(nE,)T¥an' " 749 0. (3.101)
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So for large n,

1+ ePoamy/u(Mabln) < 3, (3.102)
Hence in (3.100)

IS Mai—gl < 3 [ |5 Xadt) - anl®)'dut)

1€l An 1€l
= 3 [ 1#(enlt)) ~ aa(t)|"dutt)
< 3)|¢(n) = gall. (3.103)
So
|2 e =gl < 3516 (2a) = gully
< 35(1¢'(za) = ' (2)llo + 14'(Z) ~ mlle)
< 3%(CHET + E.(B~ A)}). (3.104)

Now we have

[[6' () = ¢'(2)lloo
< X Alai — ¢'(Z)]loo (since T and z,, are feasible)

i€l,
< Z A ai = qalloo + llgn ~ ¢'(Z)l]oo
i€ln
< Cmil| S Nai= qullg+ E. (by Theorem 1.3.6, Aq, < Cin?)
i€l
Lo 12 2 12
< G39(ConiBY + 2B — A)invE,) + E,. (3.103)

We note that
2(r+4q) 2 ~d

> —, implies — — — < @,
a v q q

d> —————==

and (ATS5) implies n®E, — oo from Corollary 1.3.2, Then we have

24
q

1
niBy = (ndE',,)’Z nsTE o 0, asn — oo, (3.106)
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S

Also from d > 2/q in (AT5), we have

n%E" = (ndEn)n%—d — 0, asn — oo. (3.107)

Then in (3.105)
1¢(2n) = ¢'(@)|e0 = 0, asn — oo. (3.108)
]

By using Theorems 1.3.3, 1.3.5 and 1.3.7, we can get a similar result for the

trigonometric case.

Theorem 3.6.2 Let {a;,¢ € I,} be trigonomelric polynomials on 1' = [~w, x| of
degree at most n. Let A\, z,, be the optimal solutions of (D,,) and (P,), respectively.
Suppose Assumptions (AT1j-(AT4) hold. Let T be a periodic function on [~ , 7} with
period 2r. Also we assume (AT5’): ¢'(z) € C¢[—n, =], with
4> max({"ED 1y (3.109)
mooq
Then ¢'(zn) — ¢'(Z) uniformly on [—m, ).

Proof: Following the proof of Theorem 3.6.1, we make the following changes:

1. Instead of (3.98), for large n, we have

p(No | M) < . (3.110)

2. In (3.100), we use Theorem 1.3.7 and obtain

” E /\?ai _ ‘In||Z S (1 + ecoqu(mr—u(NnUMn)))/ I Z )\?(L;(l) _ ([n(/,)'ddll(’/),
A

i€l n i€l

for some constant Cy > 0.

3. Instead of (3.101) in Theorem 3.6.1, we have

ar,
nu(Nn UM,) < 2(C+ X)Ex*'n
= 2(C + K)(niE,) in' i — 0, (3.111)

which is implied by d > (r + ¢)/~r in (AT5’).
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4. Then in (3.105), using Theorem 1.3.5, we can similarly deduce

16'(zn) = ¢'(2)llo
1 1 1 X 1
< C3(CiniEY +2(2r)iniE,) + E,. (3.112)

Thus we need

niEY = (n'E) "% S0, (3.113)
and
niE, = (n®E)ni™* 0, (3.114)
which is guaranteed by (AT5’).
|

We know condition (AT3) can be obtained from the results in Sections 2.3 and
2.5. An interesting case is when ¢ = 2 and v = 2. We then require d > 1 + 2/r in
Theorem 3.6.1 and d > 1/2+1/r in Theorem 3.6.2. We now discuss condition (AT4).

It is easy to see that if for some e > 0,

#'(at)) + e < ¢'(2(t)) < 4'(B(t)) —€¢, ae on T, (3.115)

then (AT4) is true, since we can co* sider r to be 0o. Another sufficient condition for

(AT4) arises from the following lemma.

Lemma 3.6.3 Let f > 0, a.e. on [A,B], let 0 < k < 400 be the highest order of
any zero of f on [A, B, and f € C*[A, B]. Then for some M > 0,

u({t €[4, B]] f(t) < €}) < MeF, (3.116)
for small e > 0.
Proof: Let

Z={te[A,B]]| f(t) =0}, (3.117)
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which is compact. If Z = 0, then for some § > 0, f(¢) > 4, for all t € [A, B]. Hence

w({t€[A,B]| f() <)) =0, (3.113)

for € < 6. The equation (3.116) is trivially true.
Suppose Z # . For each fixed to € Z, we first assume to € (A, B). Let ko be the
order of the zero ty. Noting that f > 0, we have

f(to) =0, -+, fEN(to) =0, f*)(to) > 0. (3.119)
From the Taylor expansion formula around ¢y, we have
1 . .
J(8) = 7/ t)(t = o) +o((t — 10)*). (3.120)

There exists an open interval I(tp), with to € I(to), such that

ﬂﬂ>§%ﬂmmqugh for all t € 1(ty).
0-

Hence
. . Qk()!E 2
< — < )
fit) <Le implies [t — 1] < (f(k")(to))
So
2! L 1A 1 o e
p(I(to) N{f(t) € €}) <27~ eR = M(ty)e™. (3.121)
T (%)
If to = A or B, using one-sided derivatives, we get the same inequality as in (3.121).
Now since
U722z, (3.122)
€2

and Z is compact, there are only finitely many points, say, t;,l2, -, b, € Z, such

that

Z=JIt)2Z (3.123)
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Since f is strictly positive on the compact set [A, B]\ 7, for some € > 0, we have
J(t) > €0, for all t € [A, B]\ Z.

Thus for € < gg, we have

isey={rez|im<cte Jlreiw 110 <e).

=1

{t € [A, B]

Then for small enough ¢ > 0 (in particular we require ¢ < 1),

st e lABl f)<e}) < Soul{t e I(t) | fit) <e})

=1
i L 1 A 1
< ST M(t)eR <Ry M(t) = Me*.
§=1 i=1
Hence we are done, ]

Corollary 3.6.4 Let T = [A, B] (or [—7, 7] in the trigonometric case). Suppose that
a(t) < z(t) < B(t) on T. Let ko be the highest order of the zeroes of

At) £ (#(3(1) - ¢/'(a(2) (¢'(E(1) — $(B(1))) = 0. (3.124)

Further we assume
¢'(z), ¢'(a), ¢'(8) € CR(T, p). (3.125)

Then (AT4) holds.

Proof: Note that a zero of ) is a point at which either ¢'(z(t)) = ¢'(a(t)) or
#'(Z(t)) = ¢'(B(t)). Using Lemma 3.6.3 we obtain {AT4). n

Corollary 3.6.5 LetT = [A, B] (or [-7m,7]). Assume ¢ is real-analytic on [a,b], a,
B are constants, with a < a < < b, and T is real-analytic on (A, B], « < &(t) < 3,
but neither & = a, nor T = . Then (AT4) holds for some r > 0.

In [28], a similar uniform convergence theorem has been proved for an analytic
density Z. Finally we will see that, without the condition (AT4), we can still prove
uniform convergence on the subset on which Z stays strictly away from the constraint

boundary.
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Theorem 3.6.6 Let T = [A, B] € IR, a() be lower semicontinuous, 5(-) be upper
semicontinuous on T, {a;,t € I,} be algebraic polynomials of degree at most n. Let

A", 2, be defined as in (3.84). Assume for some C > 0,9 > 1,7 > 1,
16'(za) — ¢'(@)|§ < CE, (3.126)

forlarge n. Also assume thatz € C[A, B] and ¢'(2) € C¥[A, B), with d > max{1/7,1/q}.
Then for any & > 0, ¢'(x,) — ¢'(Z) uniformly on the sct

{teT|at)+e<3t) <) —c}. (3.127)

Proof: Let I be any subinterval on [A, B] on which

aft) + ¢ < E(t) < B(t) —e. (3.128)
Define
N.(D&{ter| Z:,: Ara,(t) < a(t)}, (3.129)
M.(ne{ter| > Nalt) 2 B0}, (3.130)
and n
Aa(I) & T\ (No(I) U M, (1)) (3.131)

Then for same reason as we deduce (3.92),

CEy 2 ”(bl(j)"¢'(z")”3:/T|¢'(f(t))—¢'(wn(t))|qdu(t)
/N"u) |#'(2(t)) — ¢'(a(2)| du(t) > e p(Na(1))-

I/

Hence we have

w(No (1)) S e7'CE]. (3.132)
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Similarly, we also have

u(Mo(I)) < CE, (3.133)
w(Na(1) U My (D)) < 2677CEY. (3.134)

For large enough n, we have
WNW(T) U M (1) < (). (3.135)

Now we may choose ¢, € span{a;,i € I,} such that
lgn = ¢'(Eleo = En, (3.136)
then

llgn — Y- AlaillLg(an) = I1gn — ¢'(Zn)llLg(an)

i€l,
< lgn = ¢'(@)lLy(an) + 16'(Z) = ¢'(20)lLg(an)
g = ¢'(@)lleon(An)7 + 1¢/(Z) — #'(za),
W(A)SE, + CE3
w(I)* B, + CEL. (3.137)

IN A

IA

Now using Remez’ inequality and (3.133), for some constant Cy > 0,we have

IS Are — q"”%q(l) < (1 + eG'onQ\/u(N"(l)uMn(l)))“ Y Alai— qﬂ”qu(A,.)' (3.138)

i€l 1€l

Note that we have

n.\//t(Nn(I)UMn(l)) < n(2e'qCEZ)%
/ = (Ze'qC)%(ndE‘")%nl"é}

— 0, (since d > 2/v and n*E, — 0 )


file:////qn~

-3
o

with n. This implies
1+ eConq\/;t(Nn([)UA!"(l)) S 3’ (3139)

for n large enough. Then in (3.138)

“ E /\:}(li - q"'”‘}‘v(l) < 3“ Z /\”(l, (1"“1 a{4An)
iEIn 'Elu
2
< 3(u(I)3E, + CEI), (3.140)

and hence
19'(22) = ¢'(Z)| Loo(r)

< NS Mai = ¢(@) L

i€ln
< @) = gallo@ + llan — D ArallLw
i€l
< En+ A ||g — Y- Araill Ly

i€ly
(where A() is a constant introduced in Theorem 1.3.6, dependent of 1)

B+ A(n335(u(1)F B, + CE3).

IN

By Corollary 1.3.2, d > 2/q implies

niE, = (nlE,)ns ™ — 0, (3.141)
and d > 2/ implies
n%Ej{[ = (ndEn)%nv ¥ 0. (3.142)
It follows that
1¢'(22) — ¢'(Z)|| Loy = 0, as n — 0. (3.143)

Now if a is lower semicontinuous on T', 3 is upper semicontinuous on 7', then for

any € > 0, the set

{teT|alt)+e<a(t)<Bt) ¢} (3.144)
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is closed, since Z is continuous on T'. Hence the set
Z={teT|a(t)+e<a(t)<B(t)—¢} (3.145)

is compact. Now for all t € Z, we can find an interval I(t), such that

a(t') + -;—e <z(t') < B(t') - %e, for all ¢’ € I(2). (3.146)
By the compactness of Z, there exist a finite number of points ¢,%,, - -, iy, such that
Z C Y I(t). (3.147)

i=1

By what has been proved above, we know that

¢'(zn) — ¢'(2) (3.148)
uniformly on each I(¢;),¢=1,2,---,m, and hence

¢'(zn) — ¢'(2) (3.149)
uniformly on Z. |

For trigonometric polynomials, we have a similar result:

Theorem 3.6.7 Let T = [, 7],{a;,t € I,,} be trigonometric polynomials of degree
at most n. Let \*, z,, be defined as in (8.84). Assume a(-) is lower semicontinuous
and fB(-) is upper semicontinuous on T'. For some C > 0,q > 1, > 1, and large

enough n, assume that
14'(zn) — ¢'(2)II2 < CEY. (3.150)

Further suppose that & € C|—n, 7] and is periodic with period 2x, ¢'(Z) € CY—=, 7],
with d > max{%, %} Then for any e > 0,

¢'(n) — 4'(2) (3.151)
uniformly on

{teT|aft)+e <z(t) < B(2) :e}. (3.152)
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From the theorems we have obtained above, it is interesting to note that uniform
convergence is only guaranteed in the interior of {t | Z(t) > 0}. It seems likely that
uniform convergence will take place on the interior of {t | Z(t) = 0} (it is true for the
trival case T = 0), but we have been unable to prove this.

We can easily release one bound, that is to set a(t) = —oo or B(t) = +oo, and

get the analogous results. Remember that in any case, (A6) musi be satisfied.

3.7 Application 4: truncated L,-entropy

As a typical example, we consider the problem (P,), where T' = [A, B] ( or [, 7))
€ R, é(u) = (1/p)|ul?, 1 < p < 2. Define

- TP >0
dy=4 » =0 (3.153)
+00, otherwise,
The conjugate function of q~5 is
~ 0, v<0,
" (v) = (3.154)
-};v", v >0,

where 1/p + 1/q = 1. Hence

. 0, <0,
¢%w={ = (3.155)

vi7l, v >0,
and

0, v <0,

, (3.156)
(g— 172, v>0.

(zm//(v) — {

If z,, is the optimal solution for (ff’,,) where ¢ is defined in (3.153), from Propo-

sition 2.5.11, we know that for 1 < p < 2, or equivalently, ¢ > 2,

I14'(zn) — ¢'@)E < ala — V(IEIE" + En)"*w(T)Ey, (3.157)
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and hence

7= 2T < qlg - D)(IEIT + E) T u(T) By (3.158)
n q

Now we give the final set of uniform convergence theorems for our truncated L,-

entropy.

Theorem 3.7.1 Let T = [A, B] € R, {ai,1 € I} be algebraic polynomials of degree
at most n. Assume T € Ly(T, ), and for some M > 0,r > 0, small enough € > 0,

p({t e [A,B]| 277! <e}) < Me'. (3.159)

Also suppose that z,,’s are the optimal solutions of (TP,) . Let zP~! € C?[A, B], with
d>1+q/r. Then 2271 — 7*~1 uniformly on [A, B). In particular, if for some e > 0,
I(ty > e forallt €T, (i.e. 7 =00 in ( 3.159)) then a2~1 — TP~ uniformly on
[A, B], whenever zP~! € C'[A, B].

Proof: By (3.158), (AT3) holds for ¥ = 2. Then Theorem 3.6.1 applies since ¢ > 2.

Theorem 3.7.2 Let T =: [-m,x] € R, and ¢ defined in (3.153). Let {a;,i € I,,}
be trigonometric polynomials of degree at most n, T be a periodic function on [—m, 7]
with period 2m, and z*~! € C¢[—m, 7], with d > (1 + q/r)/2. For some M > 0,r > 0,

we also assume
p{t € [-m, 7] | 277t < e} < M,

for small enough € > 0. Suppose x,’s are the optimal solutions of (T'P,) . Then

22t — 7P uniformly on [, 7).

Theorem 3.7.3 Let T = [A, B] ( or [-7,7]) € R, ¢ defined in (3.153), {a;,i € I,}
be algebraic (or trigonometric) polynomials of degree at most n, x,,’s are the optimal
solutions of (T'P,) . Suppose z*~' € C'[A, B] ( or C'[—n, =] and periodic in the

trigonometric case). Then for all e > 0, 227! — 7P~ uniformly on the set

{teT|5(t)>e). (3.160)
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In the most interesting case when p = ¢ = 2, we have z, — Z unifoumly if

0<zeCYA,B.



Chapter 4

Numerical Methods

4.1 Introduction

Since the moment problem has applications in so many settings, numerical methods
to solve the problem have been discussed repeatedly (see, for example, [37], [36], {50],
[57], [73]).

The maximum entropy method, widely used in spectral estimation and other
arcas, introduces the Boltzmann-Shannon entropy as the objective function and solves
a constrained convex programming problem. The use of more general entropy-like
functions is now widespread (see, for instance, [6], [7], [32], [35], [38], [40], [45], [48],
[49], [51], (53], [68], [72]).

As we saw in the previous chapters, the problem we study is an infinite dimen-
sional one. The variable is a function defined on some function space. We can solve
the primal problem directly by discretizing the unknown density function Z into an
unknown vector. It is more interesting to consider the dual problem, which is a finite
dimensional, unconstrained, concave maximization problem as we saw in Chapter 2.
By solving it, we can obtain the optimum of the dual problem, and then the opti-
mum of the primal problem can be simply reconstructed. The dual method has been

discussed in many papers (see, [5], [13],[29], [30], and [41]). As pointed out in [14],

83
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there is no difference whether we discretize the primal problem and solve the corre-
sponding dual, or consider the continuous dual problem and (when we numerically
solve it) discretize the integral in the objective function, if we use a fixed integration
scheme. But the dual structure le. ds to an appropriate discretization. We also note
that from the expression of the objective function in the dual problem, the first and
second derivatives can usually be calculated explicitly, and because of the concavity
of the objective function, Newton’s method (sce, for instance, [12], [84]) behaves well
in this case.

In the next section, we implement Newton’s method in Fortran 77 and examine
test problems for various choices of entropies.

For certain entropy functions, such as the Burg entropy and the Boltzmann-
Shannon entropy, using special structure in the integration formula, we can determine
a finite system of linear equations whose solution produces the dual optimum, or an
approximation. In [34], such an algorithm for the Burg entropy moment problem
with one dimensional trigonometric moments has been discussed in detail. In Section
4.3, we will give heuristic algorithms of this kind to “solve” algebraic or trigonomet-
ric polynomial moment problems in several variables with the Boltzmann-Sharnon
entropy.

In the final section, we will discuss how the number of nodes in the intcgration

scheme interferes the computational errors and time.

4.2 Dual method — numerical tests

The dual method solves the dual problem:
(D) max Ter, Aib = Jr %‘(Zieln Aiai(t))dp(t)
" sd. A€ IR,
which is a finite dimensional, unconstrained, concave maximization problem.
We write

YN 2 T b [ BT Na®)du(o) (4.2)

i€l i€ln



From Proposition 2.2.3, we know that [T = I, is Fréchet differentiable al each
2 € Loo(T, 1t). Now for each A € IR*™, we have ¥;c; Miai € Loo(T, 1), and hence
1. is Fréchet differentiable at 3-,c;, Aa;. Then by (2.13) and the chain rule, the
gradients of ¥ at each A € IR*™ are of the form

IU() oy
o, = b (T A
= b= [ FE Na@)ai)in(o) (13)

for any j € I,,.. Moreover, if ¢* is twice continuously differentiable and if differentiating
yJ g

through integration poses no problem, we can write for £,1 € /,,,

62\11(’\) Twll
oL = /T 5 (éj ai®))ax(t)ar(t)du(t). (1.4)
Let
<%Mé(a;8xi€LJTeRW% (4.5)
and
a az‘IJ(A) . k(n)xk(n) .
JO) = ( o BiE L)eR : (4.6)

Newton’s method with line search gives the following iteration formida:

ANew = dowp — tJ(AoLp) ™' (b — G(horp))- (4.7)

Note that the matrix J is always negative definite provided that (CQ) holds and
{.a,-,z' € I} are linearly independent in the sense that: for any positive measure set
ACT, A€ RH™,

/(Z Xiai(t))du(t) = 0 implies A=0e R,
A iely
Then the objective function ¥ is everywhere strictly concave, and hence Newton’s

method works very well.
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We will try the following six difierent choices of entropy:

BS-entropy: é1(u) = ulogu — u, u >0,
FD-entropy: $a(u) = Jlog u+(1—u)log{l —u), 0<u<Ll,
L;-entropy: ¢a(u) = u >0,
Burg entropy: Pa(u) = — log u, u >0,
Burg-type entropy : #5(u) = —logu — log(1l — u), 0<u<l,
Hellinger-type entropy: ¢e(v) = —vu — u2, 0<u<l.

The reason we include Burg's entropy here is to make a comparison. From the
numerical results we will give below, we will see that Burg’s entropy gives us the worst
oulputs in almost all examples. Also theoretically, we meet the greatest difficulty
when we deal with this entropy.

As the first example, we consider the underlying density function Z, defined in

[0,1] as follows:

(0.1, 0<t<02,
0.1+10(t—0.2), 0.2<t<0.27,
#1(t) = { 0.8, 0.27 < t < 0.42, (4.8)
0.8 —10(t — 0.42), 0.42 <t < 0.5,
0, 05<t<1.

We build this function Z; to be nonsmooth. Although all our convergence theorems
require the underlying function Z to be smooth enough, we can still get a pretty good
estimate for a nonsmooth function (even for a discontinuous function).

We first use Newton'’s method (with line search guarding techniques) to solve
the dual problem by using 15 algebraic moments. We discretize the integral in the
dual objective function using a Gauss quadrature integration scheme. In Figure 4.1,
we give a visual display of the reconstructions when we use six different choices of

cntropies. The curve labeled “1”

is the underlying test function #; and the curves
labeled “2” are estimate functions.
We can see that the Fermi-Dirac entropy produces a better estimate than some

other eniropies do, as well as the Hellinger-type entropy. Also, the Burg-type entropy
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Figure 4.1: Visual display to reconstruct Z, using 15 algebraic moments,
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works better than the pure Burg entropy. Remember that all these entropies zre
belong to the class we called “FD-type entropies”. In Section 3.2, we saw that the
uniiorm convergence is much easier to prove for this class of entropies. It is reasonable
tc use one of these entropies if we know that the value of the underlying functicn is
between certain upper and lower bounds.

The truncated Liy-cntropy is one of the truncation-type entropies we defined in
Section 3.6. When the underlying function vanishes on one cr several subintervals (or
a positive measure subset of T'), this class of entropies will do a better job than those

untruncated ones, as the truncated L;-entropy does in Figure 4.1 (c).

$1 b2 3 ¢4 s %6
Ly-error | [Bol-Shan] | [Fer-Dir} | [Trun-L;] | [Burg] | [B-type] | [Hellinger]
m=3 0.26662 0.26855 | 0.26999 | 0.26379 | 0.26615 | 0.26786
m=>6 0.09136 | 0.08219 | 0.09473 | 0.14952 | 0.07744 | 0.07807
m=10 0.06203 0.03005 | 0.03391 | 0.13541 | 0.05720 | 0.03782
m=18 0.03793 0.02122 | 0.02654 | 0.08268 | 0.04044 | 0.02465
I m=30 0.91911 0.062045 | 0.03561 | 0.06997 | 0.02184 | 0.01538
Table 4.1: L;-error of the estimate to 7.
$ [ 3 4 b5 s
Lo-error | [Bol-Shan] | [Fer-Dir] | [Trun-L,] | [Burg] | [B-type] | [Hellinger]
m=3 0.51974 | 0.52231 | 0.52449 | 0.51599 | 0.51893 | 0.52130
m=~6 0.47817 0.31419 | 0.29297 | 0.71715 | 0.45416 [ 0.35280
m=10 0.25242 0.12530 | 0.14738 | 0.87777 | 0.25060 | 0.12067
m=18 0.16396 0.11455 | 0.15247 [ 1.35101 | 0.15020 | 0.09949
m=30 0.08535 0.08474 | 0.19738 | 0.46666 | 0.11199 | 0.07-.67

In Table 4.1 and Table 4.2, L;-norm errors and L,-norm errors of our estimates

to the underlying function z, are given. As the number of moments m increases, we

Table 4.2: L -error of the estimate to z;.



can see how fast they decrease for each choice of entropy. Unsurprisingly, we will
find that the Boltzmann-Shannon eatropy, the Fermi-Dirac entropy, the Hellinger-
type entropy, and the truncated L;-entropy all behave better than Burg’s eniropy,
especially in the L,-norm.

Since our convergence theorems require & to be smooth enough and away from
the boundaries (which are 0 and 1 in our example here), we now consider a perfectly

smooth function:
Z(t) = 0.1 + 0.8sin?(8t), (4.9)

and give corresponding numerical results in Figure 4.2, Table 4.3 and 4.4. Our theo-
retical results proved in Chapter 3 have been verified numerically once again in this

example.

$1 2 ¢3 ¢4 ¢s s
Ly-error | [Bol-Shan] | [Fer-Dir] | [Trun-L] | [Burg] | [B-type] | [Hellinger]
m=3 0.25534 | 0.25555 { 0.25553 | 0.25516 | 0.25560 | 0.28556
m=6 0.17585 | 0.14109 | 0.17328 | 0.18255 | 0.11540 | 0.13238
m=10 0.04460 | 0.01672 | 0.01231 | 0.08391 | 0.03349 | 0.04968
m=18 0.03197 | 0.01339 | 0.00028 | 0.07485 | 0.03044 [ 0.04555
m=30 0.02204 | 0.01333 | 0.00157 | 0.05088 { 0.02995 | 0.04194

Table 4.3: L,-error of the estimate to Z,.

4.3 Heuristic algorithms for polynomial moment

problems with Boltzmann-Shannon entrcpy

When we use the Boltzmann-Shannon entropy as the objective function in the prob-
lemn (P,) to estimate a nonnegative density Z on IR™, given some of its algebraic or
trigonometric moments, we will find that there is a special structure in the integration

formula. From it, we will derive a useful linear relationship among the moments. A
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$1 2 3 Pa s L
Le,-error | [Bol-Shan] { [Fer-Dir] | [Trun-L,} | |Burg] | [B-type] | [Hellinger]
m=3 0.42777 | 0.42877 | 0.42854 | 0.42698 | 0.42800 | 0.428606
m=>6 1.10057 0.26015 | 0.57017 | 3.80299 | 0.22301 | 0.24860
m=10 0.09958 | 0.05756 | 0.07324 | 0.31243 | 0.07170 | 0.02210
m=18 0.08496 | 0.03332 | 0.00144 | 0.20547 | 0.07418 | 0.01902
m=30 0.09535 0.02873 | 0.01361 | 0.68714 | 0.07190 | 0.01867

Table 4.4: L.,-error of the estimate to .

simple algorithm then provide: a fairly good estimate of Z by just solving a couple of
g F g Y] g I

linear systems.

4.3.1 Algebraic polynomial case on [0,1]
We first consider a problem of the simplest form:
inf o (t) log(a(1)) ~ a(0)ids

s.t. fol t'-’l?(t)dt = bi, 1= 0717 R LD
0<ze LI[OYI]'

(BS”)

By the duality results, the optimal solution z,, of (BSP,) can be expressed as

T, (t) = exp(i: Ait'), (4.10)
i=0
where the {);,z =0,1,:-- n} can be determined by the nonlincar system
/01 exp(zn: Mt')tkdt = by, k=0,1,--- n.
i=0
We now SUPPOSE that the underlying density Z is exactly of the form:
i(t) = exp(zn: M), (4.11)

t=0
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for some n, and we need to find out the arguments X, ¢ =0, L,---n. If we are lucky

cnough to have known 2n + 1 i.:oments given by

b = /1 exp(i Mtk dt k=0,1,---,2n
0 t M (] k) b

1=0

integrating by parts, we c¢btain for k =0,1,---,n,

by S /]exp(i)\gti)tkdt
0

i=0
= i 1exp(§ Mt')thH |; ‘
—Tl— [ FHlexp(3 Nai(t) 3 ihtidt
i+ 1Je i=0 i=1
1 = 1 &.
= 7 lexp(g Ai) — Pl iAibryi,
or
(k+Db = exp(zn:o A) - ii)‘ibkﬁ'- (4.12)
= i=1

Thus Ag, A1, -+, An in (4.11) can be obtained by solving a linear system

b= Br, (4.13)
where
[ b ] (1 b by e by [ 7o |
N
_(’/1+1)an | 1 buyr b2 o-- b ] | T ]
and

{ro = exp(Tio M) (4.14)

e = —kAg, k=1,2,---,n.

It is not difficult to show that under a mild condition which is implied by (CQ)

the linear system (4.13) is solvable.
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Lemma 4.3.1 If there exists a nonzero density & on [0, 1], such that by,by,-- -, by,
are given by

1
b = / )R, k=0,1,---,2n,
0
then B is nonsingular.

Proof: Note that

1 b b, --- b,
1 b2 b3 bn+1

1B| =
1 Byt busz o+ Do
bi—by  bp—by oo by—bup
_ b27b3 bgjb4 bnﬂjbn” 5 p)
B — bugt bugt — bugz o+ bany — bon

For any v = (v, vz, +,v,)” € IR, v # 0, we have

o'Dv = 373 vw(bipior — bisj)
j=1i=1
no 1 " "
= Y Y v, / )T — )t
j=11=1 0
1 n n L.
= / )(C0 Y vivt (1 ~ t)dt
0 j=1i=1
1 no
= / Ft)(S vt 21 — 1)de
0 i=1
> 0.
Hence D is positive definite, |D| # 0, and so |B| is nonzero. |

From Lemma 4.3.1 we see that if {b;} are consistent then there is a unique solution
for the linear system (4.13). Thus the parameters Ag, Ay, -+, A, can be ohtained from

(4.14).
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For a density Z other than of the form in (4.11), we may use this simple method to
get a heuristic estimate of . We can se that in (4.14), ro is reguired to be positive,

which may not be true all the time. But from the first moment
1 no 1 no
bo = / expl( 3 Mt!)dt = ¢ / exp(3 Mti)dt,
0 =0 0 i=1
we can still “determine” Ag when A, Ag,---, A, are known.

Algorithm 4.3.2 Let 2n + 1 moments by, by, - - -, by, be given.
Step 1. Construct:

(1 b b, - by [ b

1 b b - b, 2b

Bn = . ," ,3 _+1 b bn = .1
L 1 bn bn+l e bgn i l_ (n -‘- 1)bn i

Step 2. Compute r™ € IR™! which solves th: linear system
B,r" =",

Step 8. Compute \™ € IR™*! as follows:

n r

)‘k '"fa k= 1,2, y 1y
n bo

Ao = log( )

fo exp(¥iz, APt')dt
Step 4. Construct

a(t) = exp(3_ AFtY).
i=0
The following fact is now obvious.

Theorem 4.3.3 If the prior density T is of the form (4.11) for some A € R", and

the first 2n4+1 moments are given, then the estimate density constructed by Algorithm
4.3.2 is exactly T itself.
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in Figures 4.3 and 4.4, we can sec that for general positive underlying functions,

our algorithm also gives fairly good estimates. We will try to recenstruct the functions

E5(t) = 2/t —0.5], (4.15)
Fq(t) = |(1—¢)sin12¢|. (4.16)

Figures (a), (c), and (e) are our heuristic solutions using 7, 17, and 27 moments,
respectively. This means we are approximating z3,xs, 13, the optimal solutions of
(P3), (Ps) and (P3). Figures (b), (d), and (f) ate the optimal solutions of (Ps), (Pis),
and (Pye), respectively, by using Newton’s method to solve the dual problems starting

from the initial point
A= (iog(bo)a 07 e 70)’

(suggested in [24]) and iterzting until the stopping criteria
IVG (Mo < 0.0001

is satisfied. That is to say, we have used the same number of moments to get each
pair of estimates: (a) and (b), (c) and (d), (e) and (f). We can also sce that there is
a greater advantage to using our heuristic algorithm when we have enough moments
(or observations). This is a consequence of the cost of computation versus the cost of
observation. When we have enough data from the moments available, our heuristic
algorithm can produce a good estimate (almost as good as the optimal solution of

(P,)) in much less time (for a time comparison, see Szction 4.2.5).

4.3.2 Algorithm generalized to [0, 1]?

We now consider T = [0,1]%. For n = (ny,ng) € Z%, let {a,, ¢ € I} be algebraic

polynomials of degree at most n; in £, and n, in #,, of the form
i, i=0,1,--,n, j=0,1,--,n,.

If we assume that

7 N2

Z(t1,t2) = exp(3_ 3 Nistitd), (4.17)

1=0 j=0
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and we know the mements given by

bl],lg / / t],tz)t lt dtzdtl’
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(4.18)

for , =0,1,---,2ny, I, =0,1,---,2n,. Then the analogous formula to (4.12) 1s

ny n2

(4.19)

b, = / / exp(Y_ 3 N tith)titadt,dty
1=0 j=0
1 1 ) .
= /0 ( /0 exp(Z(t; Z)\;,jté))tlfdtz)tll‘ dty
1 ! t1=1
= T l+1/ exp(3 143 Aiith))tdtal,
L+1 0 Z:O ,2_; 7 I“—O
1 1
el A / exp Zt'(ZA ) Z(zt' VSO ) edt)d
1 0 1] =0
1 ny ng [ ny n2
- -I-—-—-I/ exp(z Z A ,th t dt2 ——— E Z 1A ,Jbll‘f'l l247)
i + 1=0 7=0 :—1 7=0
or
ny ng . ny n2
(h+ Dby, = [‘ exp Z Z Ai ,t’ t2dty — E LzA 1 i a4
=0 j=0 =1 5=0

for j =0,1,--+,nq, I =0,1,---,ny. Now let

ny ng

7o, __/ exp ZA,Jt%)tlzdtg, l,=0,1,--

1=0 1=0

and

Thi, = '"11)“1,12’ ll = 1a2"" 1y 1, l2 = Oal,"'

We now obtain a linear system:

d = Du,

cyTNg,

, 2.

(4.20)
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where
bo,g To,0
bO,n; 7'0,11-2
d= : , U= -, (4.21)
(Tl] + 1)bnl,0 7'nl,O
L (nl + 1)bm."2 | | Tny o i
and

! b”l V12

1 ... 0 bio bl,ﬂz bn.,o

0 - 1 brmy - bigm

bn],nz e bm ang

1 -« 0 byg oo by o o bugie o b

bn|+l,n2 bm-}-l,'lng

D=0 -1 bz,ng b2,'ln2

1 -+ 0 bn1+1,0 e bnl-H,ng Tttt b?.n.,() e b'ln,,n;

0

L e bn1+1,n2 e b711+],2n2 trrotee b2n|,n2 e 1)2711 21 i

fum—

wzhuang Solving it, we can obtain A;;, for ¢ = 1,2,--- ny, j = 0,1, n,.

Switching the order of ¢; and ¢z, and integrating by parts in (4.19), we have

1 1 n] N2 .

b = ————/ At hdt

llvlz 12+1 0 exp({___zo.g W] ]) ]( 1
ny ny

1 ) (918
- [2 +1 ZZJ/\i:jb‘1+i,l2+j' (422)

120 j=1
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Set, [} == 0, we have

1 1 ny n2
bogy, = 7= / At )dt
% = L1k exp(;; o )dh
L_s-¥ b (4.23)
- 1A bitat s :
12 _+_1 g;] W Vil +;
which can be used to find Ag,, for j = 1,2,.-- ny. Finally, from the first moment
1 r1 n n2
bop = / / exp(>. 3 #1d)dtadty, (4.24)
0 Jo 1=0 7=0

we can determine Ago. We then have the following detailed algorithm.

Algorithm 4.3.4 Let b,,, : = 0,1,---,2ny, 5 = 0,1,--+,2n, be given moments in

(4.18).
Step 1. Construct

b0 Tko
bi1 Tk1
' ¥
dk: . y Uk = . ) k=0,1,---,n1,
| bk, | | Tkng |

I
bro bk b,

1

by bre o bk,

Dy = . . . ’ k=132v""2n11

i bk,nz bk,n2+1 e bk,2nz ]

Step 2. Solve the following linear system with (ny + 1)(ng + 1) variables

d = Du,
where ] ) ) _
d() U
2d
d= R PR R
| (n1 4 1)dy, ] | Un, |
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I D] D') ter Dnl
I D'l ~D3 Dn|+1

_1 Dn|+l -Dn|+‘2 D2ul J

Step 3. Compute:
1

Aij = —2—1-7',,‘12, L=12,---,nq, Lb=0,1,--- n,.

Step 4. Compute:

ny N2
;2 = (l2 + 1)b0,12 + 2 Zj’\i.ibiy12+j7 I, = 0,1,--,ny,
i=1 j=1
and solve the linear system
b = B,
where ) ] ) i
b 0
/ !
b= by o = T2
= A y U — )
| O, | [ 7%
and i
1 boy bo 2 bo ., W
BI — 1 b0v2 b0’3 bO,ng-H
L 1 bO,n;-H bO,n2+2 b0,2n2
Step 5. Compute:
1

Ao»j = _;7._’1'7 .7 = 1727° Tty M.

Step 6. Finally we have

1 p1 . -
)\0,0‘—‘105 [bo,o(/o /0 CXP( Z Ai,jt;té)dh‘”l) l]»
(

4,3)#(0,0)
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and
ny n2

Ty (tl ] t2) = eXP(E Z A'-Jtit%)

=0 3=0U

15 Lthe estimate density.

Analogously to the Theorem 4.3.11, we have

Theorem 4.3.5 If the prior density z is of the form (4.17) for some ny, ny € Zy,
and we know the first (2n1 + 1)(2n2 + 1) moments given by (4.18), then the estimate
density z,, constructed by Algorithm 4.3.4 is exactly T itself.

We now give some numerical test results of our algorithm in [0,1]? C IR%. We will
try {o reconstruct some two variable underlying density functions. In the figures given
below, pictures labeled (a) give the underlying density functions, pictures labeled
(b), (c), or (d) give the heuristic estimations generated by Algorithm 4.3.4 using
49(= 7 x 7), 121(= 11 x 11), or 289(= 17 x 17) algebraic moments, respectively.

In Figure 4.5, the underlying function Z; is like a helmet, which is smooth but with
sharp derivative at the center. In Figure 4.6, we give a pyramid function Z¢, which is
continuous but nonsmooth. In Figure 4.7, we will reconstruct a forest-like function
T, which is perfectly smooth but with a lot of peaks. In Figure 4.8, a discontinuous
stairway function Zg is to be reconstructed.

Note that our estimate is always a smooth function and is strictly positive. So
for a nonsmooth or discontinuous underlying function, we should not be surprised to
see that vhe reconstruction looks like a melting ice cube (as in Figure 4.6(d)), or a
muddy path (as in Figure 4.8(d) ).

In the last example, although the estimates do not look as cute as the original

stairway function, we can still see the steps (especially in (d)) climbing to the top.

4.3.3 Generalization to [0, 1]™

Now we generalized the algorithm to [0,1]™. Let T = [0,1]™, and write

a T m
n = (n,ng,-,ny) €27,
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I, = {(ZlaZZ,"',Zm)TGZZ} l 21'2071)"°7"’j7.7:132:""773}

{¢eZf | 1<i<n},
{ai,i € I} be algebraic polynomials of the form
thiiz..im 4= 0,1,---,n;, § = 1,2,

Then we have

m

k(n) = [J(n; +1). (4.25)
i=1
Again we assume Z is of the form

ni 2 nim o :
-"—"'(tl7t2a ce vtm) = exP(E Z et Z Aihizy'",imt‘lltl; e 't:;:‘)v
11=01,=0 tm=0
ar
z(t) = exp(z Ait),
t€l,

here we denote

t 2 (ti,ty,tm)T € R™,
i 2 (i1,iz e, im)! € 27,
2 fiagh. . gim
and
Ai é )‘ix,iz."-,im> iE]n,
hence

A& (Niel)e R,
Then for [; = 0,1,--+,n;, t =1,2,.--,m, the moments are given by

1 rl 1
b,y = /0/0---/0 i(t,,tg,---,tm)tslt’;--.tir':'dtldtg---dtm.
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or
= (1)t dt lel,
by /{W 5(1) c
where

l = (11712,"'7lm)ez1-:7
dt = didty---dt,.

Note that for each j = 1,2,---,m, integrating by parts, we have for each [ € I,
1

b = ex At ()N ()i
! L+ 1 Joumes P(ieg(j) ()N d(5)
1 ij)‘ibi-H,

i+ 1.6

where
LG) 2 {iel|i#0}
t(4) £ (th'",tj—l,tj+1,°",tm)T€R’"'l
i(7) S (il,"',ij-l,ij+1,"',im)TEZT'I
di(j) & dty---dtjqdtip - dbn.

The algorithm can be stated as follows.

Algorithm 4.3.6 Let b;,1 € Iy, be the [Ti=,(2nk + 1) moments given in (4.18).
Step 1. Construct linear system with [Jf=,(ns + 1) unknowns:

ny n2

m
dllvl29""1m = rOv‘Zv"'vlm + Z Z Tt Z 1"-1v"""mbil‘*‘ll’"'a'.m‘{'lm?

f1=1142=0 tm=0
where

dllv’?v"'ylm = (Ll + l)bllvbv‘"ylm?

and solve it. Let

) . Tiy,enim
1,0 ¢m . 3

31
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for

=1,y ny, 00=0, - 00, 0y, =0, n,,.
Set 3 =1.

Step 2. If j <m — 1, construct the linear system with [I{L, (i + 1) unknowns:

N4l W42 nm

dIJ-H:"'vlm = 7'0,1,.,.2,-",1,,. + Z Z T z r'J+lv"'v'mbor"‘vo)‘ﬂl+’1+l»" n'""Hm’

ty41=11,42=0 1m=0
for
l]+1 =1,--+,n541, l]+2 =0,--- yy42,° yln =0, npp,
where
dl]+1,---,lm = (l]+1 + l)bo,---,o,1,+,,---,lm + Z T,J_'_,'...,,mb.h iyt <tm e
t14-41,>0

Solve it and let

o Tl]-l-ls" ylm
l]+1

A0‘~-~,0,11+1,-'-,l . ,

for

— —_ | Ap—
l]+l —17"')n1+17 IJ+2 —07"',"]+2,"'7~m = 01"'1"110-

Set j =7+ 1, repeat Step 2.
Step 3. When j = m, compute:

A = log[b /1 L ) TPTILY | TRt
0,0+,,0 = g[ 0,"-,0( o o o exp( Z 1y tm 1 m 1 (tm) ]'

iy tig+e 1 >0

Then the estimate density is

Ta(t) = exp(z AtY).

1€,
4.3.4 Trigonometric polynomial cases

We first consider the trigonometrical case on the interval [—=, 7).
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Let I, = {-n,---,0,---,n}, ax(t) = e*, k € I,, where : = /=1. Then the
problem becomes:
min [T [z(t) log(z(t)) — =(t)]dt
(Pa) § st [T z(t)e dt == by, k=-n,--+,0,-+,n
0 < z(t) € Ly[—m,7].
Note that in the one-variable trigonometric case, k(n) = 2n +1. We consider only

the case where z(t) is real. In this case we have for all &,

b = by. (4.26)
Moreover we may again assume Z(t) is of the form
7(t) = exp( Y Mee™), (4.27)
k=-n

and where we have for each k,
Ak ==X, (4.28)

since Z is assumed to be real.
As to the integration property, for k # 0 we have

b = /7r exp( Y Mel)etdt

- l=—n

1 n : . 1 T n ) n _
= zT/;exP( Z Aelt)etr ;]:/ e""exp( E et Z i\etdt

{=-n l=-n ==n

1 n
= -2 % Db

l==-n

Using the property that A_y = —A, we have the linear system:
b= C7 + Br,

where

- ?.b) { 2A2




H

bo b - T)n—l by by - bn+l
C = b.l b.O ‘_”11-—2 , B= bi} b4 T bﬂ+'2
L bn~1 bn-2 ot bO i bn+1 Ln+2 o b?n i

Solving this system, we can determine all A, k # 0. Finally Ag can be obtained from

by = /W exp( Y Axe'tt)dt

=T k=-n
— Ao T A 1kt dt
e exp(D_ Aee')dt.
- k#0

We can also express everything above in real form. Let

#(t) = exp{ Ao + Y (A coskt + py <in kt)),

k=1

and the moments:

a = [ 5(1)dt, (4.29)

ap = /W I(t)cosktdt, k=1,2,---,n (4.30)

be = / #(t)sinktdt, k=1,2,--,n. (4.31)

-

Then for [ = 1,2, n, using trigonometric angle formulae, we have

a = /1r exp(Ao + i(/\k cos kt + gy sin kt)) cos lLdt
-7 k=1
= %i ’CZ::I E[Ak(ai—k — aipi) — pr(bi—i + bigr)],
and
b = 517 kz::‘ E[=Me(brar = bi-k) + pr(ai-k + arge)).

Note that & s real, thus for each k, we have

A_g = A,



and

b—-k = "'bk’

112

The next algorithm then follows after some arithmetic calculation.

Algorithm 4.3.7 let ag,k = 0,1,---,2n, b,k = 1,2,--+,2n, be given moments in

(4.29).
Step 1. Construct:

201 2b1
4(12 4b2
a= . ? b = . !
2na, 2nb,
~ b o
o ay ER / P | az as
a Qg - Qp-2 as ay
Al - 1‘A2'—
L &n-1 Gp-2 °°° Qo | | @ntl Gny2
0 =b - —=buy by b3
b 0 .- —=bu_, b by
B, = . . . y B2 = . .
i bn—l bn-2 e 0 ) | bn+1 bn+2

Solve the lincar system

a _ ‘Al-*.A2 '“131—-£h i
b B, -B, A+ A,

Step 2. Fori=1,2,---,n, let

and

)

Qni1

an+2

a2q ]

bn+1

bn+2

(4.32)
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Step 3. Compute:

n

o = log[ao(/_7r exp()_(Nicosit + pux sinat))dt) ']

1=1
We now give some numerical test results of Algorithm 4.3.7 for trigonometric

polynomial moments. We will try to reconstruct the following two functions defined

on [0,2x]:

[ 0.5, 0<t<l,
0.5+0.5(t~1), 1<t<?2,
To(t) = § 3 -+, 2<t<3, (1.33)
0.125(t — 3)2, 3<t<d4,
| 0.5, 4 <t <2,
and
F1o(t) = 0.8 cos'®(10%%) + 0.1. (4.34)

We give a visual display of our numerical results in Figure 4.9.

Notice that the function Z;o behaves really badly, though it is perfectly smooth. By
using enough moments, we can get a very accurate reconstruction. (For a possibility
to use that many moments, see comments at the end of Section 4.3.6.)

In i similar way, we can generalize this to m-dimensional space IR™.

Let T = [—m,x]™, {ai(t),! € I,.} be trigonometric polynomials of the form

el(kltl+«.-+kmtm)’ k] — _n]., e ,0, o v , nj, J el 1_,2’ e ’Tn“

Let

(nl,nz,~ --,nm)T €2},
(ki koo k) € 2T,
{keZr| -n<k<n},
{i € I, i; # 0},

3
i

~
I

>

o~
—
o,
S
e
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Figure 4.9: Heuristic reconstructions to functions ¥ and Z0.



then
k(n) = [[(2n, +1).
=1
Assume
#() = exp( X Aee™),
Lel,
where

t2 (ty, -, tm)T € R™,
A2 (A, ke L)} eCH,
and the moments are
b= /[_m]m F(t)ettdt, 1€ I,

where

dt = dtldtg . dtm

By the integration procedure, we have

1 .
b= kAebik, 1€(L)j=1,2-,m.

lJ kel,

Suppose we know all the moments b, | € I5,, we can get all Ay, k € I, using the

following algorithm.

Algorithm 4.3.8 Let b, | € I,, be given moments.

Step 1. Solve the linear equations:

1
b[ = T E IC]Aka.k, IE ]n(l),
1 keln(1)
Set j = 1.
Step 2. If 3 < m, solve
lJ+lbl - Z i]+1 )‘tbt-!-l = E i]—H /\tbt-H-
1€l (3+1)N {1y =---=1,=0} 1€lnn{ = - =1,4,=0}

Set j = 7+ 1, repeat Step 2.
Step 3. When j = m, compute

Ao = log[ao(‘/[‘ : exp( Y. Aet)dt)7!).
—mT keln\{o)
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4.3.5 Further comparison with the dual iteration method

We have proposed several algorithms in the previous sections and also implemented
them to solve one and two dimensional best entropy moment problems with algebraic
or trigonometric moment functions.

In order to make further comparisons, we will take our heuristic estimate as an
initial solution and then use the Newton method combined with the Armijo’s step
length search technique to iterate for some more steps.

The following notations are helpful in reading the tables and figures below.
e Z(t) (or Z(t1,12)): the prior density function.

e sup-ERR: the supremum norm of z — z,, where z, is the estimate density

function constructed by the corresponding algorithm.
e [;-ERR: the L,-norm of Z — z,,.
o d-GAP: the duality gap defined by V(P,) — V(D,).
e TIME: execution time (in seconds) used to compute the dual solution A only.

We first consider a step function

fn(t) = 0.5)([0,0.5] +0.1 (435)

on the interval [0, 1], and use the first 25 algebraic moments to reconstruct Z,;. In each
table below, ALG1 means the Algorithm 4.3.2 given in Section 4.3.1, NEWTON(k) is
Newton’s method starting from our heuristic solution and making k& more iterations,
OPTIMAL means we use Newton’s method to solve the problem (Py4) and iterate

until some termination criterion is satisfied, in our case we use
IVO(M)|| < (= 0.0001).

The optimal solution is then of the form

Z Alai(t),

i€l
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Figure 4.10: Comparison
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sup-ERR | L,-ERR | d-GAP | TIME
ALG 1. 0.23105 | 0.04020 | 0.01286 | 0.0199
NEWTON(5) | 0.23332 | 0.02481 | 0.00407 | 0.5099
NEWTON(15) | 0.23356 | 0.02472 | 0.00122 | 0.8598
OPTIMAL 0.23444 | 0.02498 | 0.00008

Table 4.5: Numerical results for the step function Z;;.

where A" € IR*™ is obtained from QOPTIMAL.

We also consider a smooth density
flz(t) = tsin2(10t) (436)

on the interval [0,1], and again use the first 25 algebraic moments and give the

numerical results in Figure 4.11 and Table 4.6.

sup-ERR [ L;-ERR [ d-GAP | TIME
ALG 1. 0.12194 | 0.04390 | 0.00841 | 0.0299
NEWTON(5) | 0.10858 | 0.02669 | 0.00656 | 0.2100
NEWTON(15) | 0.11467 | 0.02676 | 0.00255 | 0.5100
OPTIMAL 0.11419 | 0.02681 | 0.00047 o

{

Table 4.6: Numerical results for continuous function Z;s.

Note that the objective function we used here is the Boltzmann-Shannon entropy,
it is neither the supremum norm nor the L;-norm. We use these norms here just to
compare the results and to measure the goodness of our reconstructions. Actually, it
is the d-GAP which measures our success in getting our numerical estimates close to
the optimal solution of (P, ).

We now deal with 2-dimensional functions: first consider a smooth function,
513(t1, t2) = 08t1t2(sm(6t1) COS(8t2))2 + 0.1 (437)

on [0, 1]* (see Figure 4.12(a)), and use 225(= 15 x 15) algebraic moments. We again

use the estimate density generated from our heuristic algorithm as the initial solution
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of the Newton method. This saves a lot of time especially in multidimensional cases.
So NEWTON(k) means that we use the Newton method to make k more iterations

from the heuristic solution of Algorithm 4.3.4.

i sup-ERR | L;-ERR | TIME estimat. sup-error
ALG 2. 0.08851 | 0.01319 | 1.01979 | Fig.4.12(b) | Fig.4.12(d)
i NEWTON(5) | 0.11897 | 0.00792 | 221.895 | Fig.4.12(c) | Fig.4.12(e)

Table 4.7: Numerical results for 2-dimensional smooth function #;s.

As the final example, we consider a maple-leaf function Z,4 on [0, 1}? (see Fig.4.13(a)),
which is very discontinuous. For both the heuristic algorithm and Newton’s method,

we use 121(= 11 x 11) algebraic moments.

sup-ERR | L;-ERR | d-GAP | TIME | estimat. sup-error
ALG 2. 0.67450 | 0.05402 | 0.01383 | 0.42991 | Fig.4.13(b) | Fig.4.13(d)
NEWTON(4) | 0.71720 | 0.04367 | 0.00035 | 105.248 | Fig.4.13(c) | Fig.4.13(e)

Table 4.8: Numerical results for the maple-leaf function Z,4.

Note that these tables allow us to deduce the very steep cost of each Newton step
as compared to our heuristic. Moreover, earlier Newton steps are even more costly

because greater work is needed in the line search.

4.3.6 Notes about error analysis in R!

In this section, we give some error estimates in 1-dimensional cases. We consider
T =[0,1] or [-m, 7], and {a;(¢)} be algebraic or trigonometric polynomials in only
one variable. As we know, our algorithms 4.3.2 - 4.3.8 are exact when the underlying

density Z can be expressed as an exponential of a polynomial of {c;, ¢ € I.}. Now
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we assume that Z is almost of this forr, that is
(1) = exp[ 3 Nai()]
i€l
in some sense, and we wish to determine arguments A;, ¢ € I,.
We write
B, = /T exp(S Nai(t)lax(t)dt, k€ I,
i€l

while
by = /T talt)dt, kel
and we denote B and B by the matrices generated in the algorithms using the data
{b;} and {b;} respectively.
By the construction of the algorithms, A can be determined by r which solves a

linear system

Br =1
Pt from the input data {b;} and B, we can only obtain #, which solves the lincar

system
Bi =b.

Since B is nonsingular under mild hypotheses, we can obtain 7 and hence A . We
now need to estimate the error bounds of |A — A]| in some gevin norm. From the

nonsingularity of the matrix B, it is easy to see that
#—r=B""(b~- Br). (4.38)

Considering the algebraic case first, we have

1 b b e b, ] [ B
1 by b o by 2by

o
1l

h1 E'n-H zn+2 7727» _(n+l)z".
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(1 b by o by | [ B
T R
i 1 bn.+1 bn:rz bz;n | | (2 +.1)bn ]
We assume
i(t) = exp[znj Ait' + €a(2)], (4.39)
1=0
and
llea (Moo < 6ns (4.40)
forn=20,1,---.
Note that when ¢,() is differentiable on [0, 1]
1
b Q.AEMﬁM
- + k+1/t“‘ rfAfl+€a»
= kilﬂw_lifizdh”

thH13(t
k+1/ (B)en(t

Considering the kth component of (b — Br) in (4.38), we have

(b-—BT)k = (k+1 bk+ZzA bk+,-—exp[z)\]

= (1)(1—exp[—en( ) - e 1)z (1)
+ /0 ] ea(t)((k + 1)T(t)tF 4 th17'(2))dt

= E(1)[1 — ex(1) — exp[—ea(1)]]
+L¥AQ«b+Uﬂuﬁ+ﬁ“aa»m, (4.41)

for k=0,1,---

, 1.



Lemma 4.3.9 Suppose 3 € C'[0,1] is of the form in (4.39), {ai(t), i € .} are
algebraic polynomials 1,t,---,t" on [0,1]. r, ¥, B, b are defined as before. Then

1= Brile < (5 +2)els + 5111,
where
Omaz = max{b,, 1 =0,1,...},
hence
IF =7lle < CillB™|cobns
where

A esmﬂl’

=

Proof: First we recall an inequality ( proved in [ 2, Lemma 4.10 ]},

_ 1, _
Cy + 2)||E |00 + §||$'||oo-

6771(11'

eM -1

le® —1] £

|z, for |z| < M. (1.42)
By (4.41), we have

(b= Brjl < 2(1)(e" ~ 1) +lea(DIE(1)
+6n/0 |(k + Dz(2)th 4 51 (1)|de

— — — -~/ l ‘
< alleoe®™ = 1) 4 Bl + B3l + 1o 5), (449)
and hence by (4.42),
e6maz ~ ] .y .
b= Brle < [+ 2o + g2 el
The result follows now from (4.38) .

From Lemma 4.3.9, we have, for k =1,2,---,n,

. 1 3
Ao — ] = ;I"k — 7
< lr=7ls

IN

1
EuB-‘anl&” (4.44)
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for a constant C, depending on Z and 8,5, but independent of n.

To estimate Ao — Ao|, we need the following mean value theorem.

Lemma 4.3.10 If g(t) > 0 is integrable, and f(t) > 0 is continuous on [0,1], then
there exists t € [0,1), such that

/0 ' fe(t)dt = 1) /0 L g()dt.

We now give the error bound for [ — ;\ol. From the algorithm, we know that

fo _ bo
fol exp[Li, )‘iti]dt.

€
By (4.39) and Lemma 4.3.10, we have

/0‘ exp[i Mt'lit = /01 exp[i Mt' + en(t)]exp[i:(;\.- — X))t —eq(1)]dt

e | & (t)exp3 (i — ) — en(t)]dt

i=1

= e M, exp[i(j\; — X))t = ea(d)],

1=1
for some £ € [0,1]. Thus
‘ A
e e

- exp[Try (A — X)F — e,(D)]

and

| Ao — 5\()[ = |Z(:\, - )\.)tA‘ ~ (1)
i=1

< Y- Xl +6,
i=1
n 1 .
S (M= rlloo + s

i=1

IN

- 51
(CilIB o Y 7 +1)és
k=1 k

< (G1||1B Y|eo(1 + log n) + 1), (4.45)



noting that
n n
Zl <1 +/ —l—d:v =1+ logn.
k=1 k 1T
We now have
Theorem 4.3.11 Suppose logz € C*[0,1], that the moments are giwen by
1
bk=/ Z(t)tkdt, k=0,1,---,n
0
and that the estimate density &,(t) is computed by Algorithm 4.3.2. Then
180 = Zlloo < (|Zllo(exP(2E0(C1l| By Nloo(1 + logn) + 1)) = 1),

where

B, = inf, {lllogZ - g At'lloo ),

and Cy is a constant dependent only on z.

Proof: By the definition of E, there exists A® € IR"*! such that

n

logz =Y _ A't' +ea(t)
1=0
and
len(®)lloo < 65 = En.
Using Algorithm 4.3.2, from (4.44) and (4.45), we have
M=l S LB oG,

fork=1,2,---,n, and

A2 —Xol < (Cil|BY|oo(1 + logn) + 1) E,.
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Thus we have

n

IZ = Zallo < NIE]loo 11 — exp(3o(hi = AP = €n(t))lloo
1=0
< |Zloolexp(3- [Xi = AF| + 62) — 1)

=0

< NIz )|oo(exp(2Ea(CilIB;  lo(1 + logn) + 1)) = 1).

It is clear that E, = 0 implies ||Z — Z, || = 0.
Similarly, in the trigonometric case, we assume Z is of the form
n
Z(t) = exp(Aa + Y (Mk cos kt + py sin kt) + e4(t)),
k=1

and
len(®)llco < bn,

forn=20,1,---.
In the same way we proved for Lemma 4.3.9 , using trigonometric angle formulae,

we note that,

a 2 /1r Z(t) cos ktdt
R PPN Y LAY
= km(t) sinkt|”, — . /_7r z'(t) sin ktdt
1 [~ =
= ——_/ Z(t) sin kt(D_(—jA;sin jt + jp; cos jt) + el (t))dt
- e
1 ¢~ 1
= -z Z(1)(D_(—jA;sin jtsinkt + jpu; cos jtsin kt) + €, (¢) sin kt)dt
—n foet

l n . .
= 5 (FAi(aj-k = @jpi) + jpi(bj-k — bjsr))
i=1

1 ™
2 / 5(1)e.(t) sin ktdt, (4.46)

0
-
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and
b 2 ‘/1r z(t) sin ktdt
1_ . 1, i
= ———-:v(t)coskt|_ + k/ T'(t) cos ktdt

= k/ Z(t) coskt(z —JjAjsin gt + jpu;cos jt) + € (t))dt

i=1

= 7 / t)(Z(—]/\ sin jt cos kt + jp; cos jt cos kt) + €, (t) cos kt)dt

i=1

1 & .
= —kZ( J A (bks — bi—j) + Fui(ar—; + ary;))

+z /_ _ E(t)e(t) cos ktdt, (4.47)

for £k =1,2,-.-,n. Hence from the periodity of z,

n

(b= Br)e = Zhar — 3 (aj-k — aja)i);

j=1

+ 2 (= bik + b
=1
= ---2/7r z(t)e, (t) sin kidt
= 2/1r en(t)(E'(t) sin kt + kZ(t) cos kt)dl,

and

1

2kbi — 3 _((bi—k — bisr)iA;

o
+(a5-k + ajyi)ipg)
= 2/ :Y;(t )en(t) cos ktdt

(b— Br)nyk

= -2 6,1(t)( (t) cos kt + kz(t) sin kt)dt,

for k=1,2,-..,n. Taking supremum norm, we have

“b - B"“oo < 47"6n(”5,“oo + ""”i”w)' (4'48)



From Algorithm 4.3.7, we then have
« 2r 4 _ _
e = Akl < 1B Nloobn(l12lloo + KlIZ]|o0),
and
~ 27r -1 -7 —_
ik = el < B Hoobn([[Z'llco + FlZllo0 ),
for k=1,2,---.n, here B is

A —A, —B,—B,
By - B, A+ A;

constructed in Algorithm 4.3.7.

As to [Ag — ;\DI, note that in the algorithm, we have

o %o

[+

Since

T o
/ exp(d_ \; cos jit + ji; sin jt)dt

i=

= /:; i(t)e“Aoexp(zn:((j\j ~ Aj)cos jt + (f1; — p;) sin jt) — ,(¢))dt

j=1

= e"“’exp(Z((z\ — A )cos]t+ (5 = pj) sin jt) — ea( t)

=1

( by Lemma 4.3.10 for some £ € (~m, 7))

Thus
ho— o] =

< (A = Xl + 1 = 3) + 6

2 (

Combining this with (4.49) and (4.50), we have

- S eexp(Xia X; cos jt + ji; sin jt)dt’

) cos ji + (i — ) sin ji) - eald)]

130

(4.49)

(4.50)
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Theorem 4.3.12 Suppose logz € C'[—n, 7], T is periodic with the period 2. Given

4n + 1 moments

w = [ " E(t)dt
" Z(t) cos kidt

-
T

Z(t) sin ktdt
k=1,2,---,2n.

ay, =

H
—

by,

Let &,(t) be the estimate density constructed from the Algorithm 4.3.7. Then
i#n ~ Zlloo < N2 ]loo(exp(87 Enl| B~ oo ((1 + log n)l|Z[low + nllZ]|a0) +1) = 1),

where

E. £ inf{||[log# — Ao — S_(Ajcos jt + psin jt)leo | (A, 1) € R**H'Y,

j=1

From the error bounds in Theorem 4.3.11 or 4.3.5 we see that the product
1B oo - En

is an overestimate for the rate of the convergence of &, to . From approximation

theory, Jackson’s Theorem (see [108]) tells us that if

logz € C"[0,1],

then
By = o(—
n=o(~ )-
Moreover, if log Z is analytic on [0, 1], then
E. < Cq",

where C is a constant and ¢ < 1. Unfortunately, we haven’t found any theoretical

bound for || B;'||c. Numerical results indicate that

187 oo — 00,
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(see Table 4.9. and Table 4.10.). and so that when the number of moments gets
too large, the computational results may not be reliable due to the accumulation of
errors. This difficulty accurs in the numerical computation when we use too many
moments. But for the trigonometric case, when the prior density is smooth enough,
we can see from Table 4.10. that ||B; || appears to be dominated by a polynomial,
so that using Jackson’s theorems, the convergence of our algorithm for trigonometric
polynomial moments may follow. Numerically, as we saw in Section 4.3.4, we have

successfully recontructed a somewhat bizarre function ¢ by using 121 moments.

1Bl | Fa £y F3 Fi
n=2 | 0.320E02 | 0.469E02 | 0.498E02 | 0.477E02
3 0.578E03 { 0.240E04 | 0.219E05 | 0.195E04
4 0.206E05 | 0.105E06 | 0.121E08 | 0.732E05
3 0.608E06 | 0.450E07 | 0.107E11 | 0.363E07
6 0.231E08 | 0.160E09 | 0.895E13 | 0.151E09
7 0.594E09 | 0.560E10 | 0.746E16 | 0.416E10
8 0.223E11 | 0.209E12 | 0.866E19 | 0.152E12
9 0.667E12 | 0.717E13 | 0.904E22 | 0.642E13
10 0.233e14 | 0.233E15 | 0.110E26 | 0.176E15
11 0.675E15 | 0.844E16 | 0.179E29 | 0.840E16
12 0.250E17 | 0.289E18 | 0.355E32 | 0.274E18
13 0.758E18 [ 0.948E19 | 0.965E35 | 0.856E19
14 0.257E20 | 0.326E21 | 0.451E38 | 0.326E21
15 ".816E21 | 0.112E23 — 0.949E22
16 0.289E23 | 0.372E24 — 0.374E24
17 0.885E24 | 0.124E26 — 0.123E26
18 0.307E26 | 0.428E27 — C.422E27
19 0.989E27 | 0.144E29 — 0.158E29
20 0.342E29 | 0.470E30 — 0.477E30

Table 4.9: || B;!|| for algebraic moments.

In Table 4.9, for functions [0, 1]

R

= 2/t-0.5|,




1Bl | A 5 F3 Fy

n=3 0.40166 | 0.63662 | 0.932E00 | 0.12861
5 0.67313 | 0.63662 | 0.359E02 | 0.23679
7 0.99875 | 1.90986 | 0.311E04 | 0.50826
9 1.27501 | 1.90986 | 9.339E06 | 0.82539
11 1.55475 | 3.81972 | 0.375E08 | 0.91805
13 1.84964 | 3.81972 | 0.443E10 | 1.24088
15 2.16509 | 6.36620 | 0.667E12 | 1.77943
17 2.46792 | 6.36620 | 0.132E15 | 2.65173
19 2.77001 | 9.54940 | 0.229E17 | 2.93955
21 3.07217 | 9.54930 | 0.495E19 | 3.23528
23 3.36068 | 13.36902 | 0.151E22 | 4.00094
25 3.65724 | 13.36902 | 0.599E24 | 5.59461
27 3.96081 | 17.82575 | 0.253E27 | 6.09011
29 4.23835 | 17.82575 | 0.164E30 | 6.27491
31 4.53221 | 22.91831 | 0.194E33 | 7.28279
33 4.79253 | 22.91831 | 0.156E34 | 9.72277
35 5.08312 | 28.64789 | 0.158E34 | 10.49603
37 5.33845 | 28.64789 | 0.107E35 | 10.53350

Table 4.10: ||B;||o for trigonom #tric moments.

F,
Fs
Fy

= sin’t,

= X[0.4,0.6)

= tsin®(10t),

133

we compute the corresponding values of || B !||. In Table 4.10, we compute the

values of || B; || for functions defined on [0, 27]

in the trigonometric case.

g\
Fy
Fy
Fy

= 1.5,

= sin’t,

= 0-8X[l.4,3.6]1
= tsin?(2t),
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Although the convergence of these algorithms is still unsettled, they often give
very good estimates for the problem (P,), and use much less time than Newton’s
method, as we can see in Section 4.3.5. If we use the heuristic solution as an initial
estimate, then often only a couple of iterations are needed in order to get an almost

optimal solution to (P,).

4.4 Number of nodes in the integration scheme

We know that one of the most time consuminug jobs is to compute numerical integrals.
Although at each step, we can, and do, evaluate many integrals at the same time, as
mentioned in [14], the cost (in time) still depends a lot on the number of integration
nodes used in the Gauss quadrature integration scheme. In all our computations, we
used 99 nodes for one dimensional cases and 3025 (= 65%) nodes for two dimensional
cases. This large number of nodes is not necessary, and we can reduce it without
any signiﬁ(‘;amt increase in errors. The reason we use this many nodes is to improve
drawing pictures using NCARG. More nodes give nicer pictures, especially in two
dimensional cases.

It is an accepted fact that the more moments involved in the problem the more
nodes required in the integration scheme. Usually the number of the nodes should
be at least as many as the number of moments. From our numerical experience, we
have found that: to keep a reasonable level accuracy, the number of nodes in the
integration scheme should be around two to four times (in one dimensional cases) the
number of moments involved in the problem.

In Table 4.11, we give reconstruction errors for the underlying function Z; defined
in Section 4.2. We use the Newton method to solve the dual problem with the
Boltzmann-Shannon entropy and algebraic polynomial moments. We use the stopping
criterion as before or iterate up to 55 steps. Both L;-norm errors and L.,-norm errors
are given in the table when we use varying numbers of nodes (n) and moments (m).

To compare the execution time, we use the classical Newton method in which the



step length is set to be 1. The right-most column in Table 4.11 gives the execution
time (in seconds) per iteration for fixed m = 25 and varying amount of nodes. The
bottom row shows the execution time (in seconds) for fixed n = 99 and varying
number of moments. So we can see how the execution time depends on the number of
nodes in the integration scheme and the number of moments involved in the problem,
respectively. We can observe that the best choice of the number of nodes in the
algebraic case is around the double of the number of moments. The Italicized data
given in the table show unsatisfactory results, while the Bold data show the most

favorable choices.

Ly-err m=5 m=10 | m=16 | m=25 | m=37 | m=50 | Time
L-err
n=9 0.1484 — — — — — —
0.3966
n=13 | 0.1497 | 0.1780 — — — — —_
0.3960 | 0.9512
n=19 | 0.1497 | 0.0622 | 0.1777 e — _— —
0.3960 | 0.2609 | 0.9421

n=25 | 0.1497 | 0.0620 | 0.0620 | 0.2846 — — 0.0180
0.3960 | 0.2593 | 0.2593 | 0.5470
n=37 | 0.1497 | 0.0620 | 0.0243 | 0.0417 | 0.2856 — 0.0200

0.3960 | 0.2593 | 0.1346 | 0.2749 | 0.5554
n=53 | 0.1497 | 0.0620 | 0.0275 | 0.0373 | 0.0252 | 0.1768 | 0.0220
0.3960 | 0.2593 | 0.1062 | 0.6747 | 0.1178 | 0.9196
n=69 | 0.1497 | 0.0620 | 0.0362 [ 0.0309 | 0.0185 | 0.0247 | 0.0233
0.3960 | 0.2593 | 0.1507 | 0.5744 | 0.1530 | 0.1633
n=87 | 0.1497 | 0.0620 | 0.0284 | 0.0202 | 0.0162 | 0.0194 | 0.0247
0.3960 | 0.2593 | 0.1106 | 0.2095 | 0.0786 | 0.1532
n=99 | 0.1497 | 0.0620 | 0.0375 | 0.0202 | 0.0186 | 0.0199 | 0.0273
0.3960 | 0.2593 | 0.1691 | 0.1504 | 0.0998 | 0.1692
Time | 0.0040 | 0.0060 } 0.0120 | 0.0273 | 0.0593 | 0.1380 —_

Table 4.11: Number of nodes vs. number of moments (algebraic case).

In Table 4.12, we give the reconstruction errors for underlying function zZg defined
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in Section 4.3.4. We again use the Newton method to solve the dual problem with the
Boltzmann-Shannon entropy but for trigonometric polynomial moments. We use the
same stopping criterion as before or iterate up to 55 steps. The right-most column
gives the execution time (in seconds) per iteration for fixed m = 27 and varying
amount of nodes. The bottom row shows the execution time (in seconds) for fixed
n = 199 and varying number of moments. We can see that in this case the best
choice of the number of nodes should be around two to four times of the number of

moments.

Ly-err | m=) m=11 | m=19 | m=27 | m=39 | m=55 | Time
L-err
n=9 | 0.4771 — — — — — —
0.1806
n=19 | 0.4586 | 0.1586 | 14.395 _ —_— — —
0.1625 | 0.0962 | 2.7165

n=31 | 0.4586 | 0.1338 | 0.0849 | 14.395 — — 0.0507
0.1625 | 0.0784 | 0.0517 | 2.7239
n=45 | 0.4586 | 0.1337 | 0.0496 | 0.0421 | 14.395 — 0.0640

0.1625 | 0.0783 | 0.0336 | 0.0237 | 2.7247
n=61 | 0.4586 | 0.1337 | 0.0502 | 0.0403 | 0.0251 | 14.395 | 0.0800
0.1625 | 0.0783 | 0.0373 | 0.0295 | 0.0156 | 2.73/6
n=87 | 0.4586 ; 0.1337 | 0.0502 | 0.0401 | 0.0246 | 0.0251 | 0.1080
0.1625 | 0.0783 | 0.0373 | 0.0265 | 0.0162 | 0.0223
n=111 | 0.4586 | 0.1337 | 0.0502 | 0.0401 | 0.0243 | 0.0154 | 0.1453
0.1625 { 0.0783 | 0.0373 | 0.0265 | 0.0160 | 0.0109
n=155 | 0.4586 | 0.1337 | 0.0502 | 0.0401 | 0.0243 | 0.0156 | 0.1766
0.1625 | 0.0783 | 0.0373 | 0.0265 | 0.0160 | 0.0115
n=199 | 0.4586 | 0.1337 ( 0.0502 | 0.0401 | 0.0243 | 0.0156 | 0.2390
0.1625 | 0.0783 | 0.0373 | 0.0265 | 0.0160 | 0.0115
Time | 0.0280 | 0.0447 | 0.1160 | 0.2390 | 0.4759 | 0.9745 —

Table 4.12: Number of nodes vs. number of moments (trigonometric case).



Appendix A

Assumptions

The following assumption are given and used in Chapter 2 and 3.
(A1), (A2): page 17
(A3), (A4), (A5), (A6): page 18
(AT): page 40
(AT’: page 41
(A8): page 43
(A8’): page 45
(AF1), (AF2): page 58
(AF1%), (AF3): page 63
(AT1): page 75
(AT21): page 76
(AT3), (AT4), (AT5): page 77
(AT5’): page 81
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