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Abstract

Two dimensional dynamic models for mantle circulation beneath mid-ocean ridges
are characterized by two end members. Models with passive upwelling induced by the
separation of the lithospheric plates predict a broad region of partial melting, lateral
migration of melt to the accretionary axis, and a dependence of crustal thickness upon
spreading rate. Models with flow dominated by buoyancy forces localized beneath the
spreading centre predict that upwelling occurs rapidly in a narrow zone and crustal
thickness is independent of spreading rate. The Labrador Sea contains a rare example of
an abandoned mid-ocean ridge where active accretion of oceanic crust ceased due to a
change in the spreading geometry of lithospheric plates. As its thermal regime and
spreading rate must have changed as spreading stopped, studying the crustal structure
provides a means by which the predictions of thermal and petrological models for the
processes and structure of active spreading centres may be assessed.

Seismic refraction data were collected along two refraction lines in the Labrador
Sea, R1 along strike of the extinct ridge and R2 crossing it orthogonally. One and two
dimensional analyses of the refraction data using travel time and synthetic seismogram
techniques reveal major variations in crustal thickness and velocity. In the extinct
spreading centre, a crustal thickness of approximately 4 km is determined, compared with
5.5 km for the flanks. Substantial lateral variations in P-wave velocities of the upper and
lower crust are observed with a marked decrease within the extinct spreading centre. Low
velocities are also observed in the uppermost mantle underlying the extinct spreading
centre and are interpreted as being the result of hydrothermal alteration.

The anomalously low crustal velocities and crustal thinning are attributed to a
decreasing supply of partial melt and increasing degree of tectonism at the slow spreading
rates preceding extinction. The observations are consistent with thermal models which
suggest a spreading rate dependence on crustal generation at slow spreading rates, though
the thinning is not as appreciable as predicted. The seismic structure is also used to
develop two dimensional gravity models along line R2. These models support the seismic
observations of crustal thinning and demonstrate that the gravity field does not require a

deep low density gabbroic root zone to underlie the extinct spreading centre.
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1. Introduction

In plate tectonic theory, mid-ocean ridges mark boundaries between adjacent
lithospheric plates and the location where new oceanic crust and lithosphere is formed
when the plates are diverging. Extinct spreading centres are mid-ocean ridges where the
active accretion of oceanic crust has ceased due to a change in the spreading geometry
of the lithospheric plates. As such, extinct spreading centres represent a natural
pertubation from the steady state situation and provide a unique environment to study
aspects of crustal accretion. To this end, this thesis presents a geophysical study of a
segment of the extinct spreading centre in the Labrador Sea, including: 1) a one and two
dimensional analysis of seismic refraction data collected for this study; 2) gravity models
which are based on the proposed seismic velocity-depth structure; and 3), a spreading rate
history of the Labrador Sea based on modelling of the magnetic anomalics. The results
are integrated in Chapter 6 to discuss the nature of the crust within the extinct spreading
centre in the Labrador Sea and to assess the dynamic models of mantle circulation
beneath mid-ocean ridges which are reviewed in the remainder of this introductory
chapter.
1.1 Dynamic Models of Flow Beneath Mid-Ocean Ridges

As spreading beneath a mid-ocean ridge stops, properties such as its spreading rate
and thermal regime must change. A number of theoreiical studies suggest that the
processes of crustal accretion are dependent upon these properties [Bottinga and Allégre,
1978; Kusznir, 1980; Reid and Jackson, 1981]. The Reid and Jackson [1981] model trcats

the case of an isoviscous mantle in which upwelling (see streamlines Figure 1.1a) occurs
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solely due to plate spreading. Crustal thickness, as defined by the total melt production,
is predicted to decrease systematically with decreasing spreading rate (Figure 1.1b); this
effect being most appreciable at half spreading rates below 20 mm/yr. Their work includes
a compilation of seismic refraction measurements from active spreading centres; the most
well constrained data (post 1970's) in apparent agreement with the dependence of crustal
thickness upon spreading rate. However, in a more recent compilation of refraction data,
Chen [1992] finds no systematic decrease in crustal thickness with spreading rate. Rather,
large variations in crustal thickness are observed at slow spreading ridges (3-8 km for half
rates < 20 mm/yr) and small variations at fast rates (5-7 km for half rates > 30 mm/yr).
Chen [1992] speculates that these observations support a transition from a 3-D structure
of crustal accretion at slow ridges to a 2-D accretion pattern at fast ridges.

More recent thermal models [Scott and Stevenson, 1989; Sotin and Parmentier,
1989; Parmentier and Phipps Morgan, 1990] include buoyant upwelling as an additional
driving force for mantle circulation. A number of factors contribute to this buoyancy: 1)
thermal expansion; 2) phase changes associated with partial melting; and most
significantly 3) compositional density variations between the garnet lherzolite mantle
source rock and the lower density harzburgite or dunite residual mantle which is left
following partial melting of garnet and orthepyroxene. The relative importance of this
buoyancy force depends upon spreading rate and mantle viscosity. Sotin and Parmentier
[1989] find that at high mantle viscosity (10 Pa s) upwelling due to plate spreading
dominates and crustal thickness is predicted to be a strong function of spreading rate

(Figurc 1.2b). At lower mantle viscosity (10 Pa s), buoyancy dominates upwelling and
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Figure 12 Model for mantle flow in which circulation is dominated by
localized buoyancy forces. (a) Streamlines (solid) and contours of
1% porosity (dashed lines) from Scott and Stevenson [1989] and
(b) Predicted relationship between crustal thickness and spreading
rate at different mantle viscosities [Sotin and Parmentier, 1990].
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crustal thickness is nearly independent of spreading rate. In considering the role of the
buoyant residual mantle, Scott and Stevenson [1989] predict that it becomes stably
stratified under the newly formed plates (sub-horizontal streamlines beyond 80 km don't
allow re-circulation, Figure 1.2a) thereby forcing upwelling to occur rapidly (faster than

plate velocity) beneath the ridge axis with partial melting beginning at depths as great as

60 km.

The role of lateral melt migration remains unresolved in thermal models. 1t is
generally agreed that melt is rapidly extracted from the mantle matrix [Ahern and
Turcotte, 1979] since only a small melt fraction is required for interconncctedness of the
melt [Daines and Richter, 1988]. However, a number of different views surround the
ability of melt to move laterally from its source region to the accretionary axis. In
modelling the melt production and melt migration at a ridge-transform intersection for a
slow spreading centre, Phipps Morgan and Forsyth [1988] find a broad region of meiting
up to 100 km {rom the ridge axis and argue that a ridge suction force draws melt through
an as yet undefined plumbing system to the ridge axis. Specifically, they note that melt
production is only slightly reduced away from the fracture zone into the cold lithosphere,
whereas melt migration is significantly reduced leading to an explanation for the observed
extent of crustal thinning across fracture zones [Louden et al., 1986].

Similarly, for fl- ; induced by plate spreading [Reid and Jackson, 1981], a broad
region of upwelling underlies mid-ocean ridges (out to 100 km). However, as a narrow
neovolcanic zone (typically less than 5 km) is observed, partial melt must travel laterally

to the accretionary axis. Speigelman and MacKenzie [1987] propose that the extraction
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of small melt fractions from a wide region and focusing of melt to the ridge axis arises
from pressure gradients generated by corner flow of the mantle matrix when viscosities
are sufficiently high (10* Pa s). Sparks and Parmentier [1991] present a thermal model
in which melts ascends vertically until it reaches the base of the newly formed lithosphere
where it is able to migrate laterally to the ridge axis through a high permeablility layer,
driven by its along-layer component of gravity. The lithosphere, in this model, is treated
as an impermeable layer underlain by a thin (200 m - 300 m) layer with a high
permeability which arises from decompaction stresses in the narrow freezing region.

Scott and Stevenson [1989] argue that the non-hydrostatic forces introduced by
plate spreading are inadequate for driving lateral melt migration. Consequently, the source
regice 3 restricted to a narrow zone directly underlying the ridge axis, as predicted in
their buoyancy dominated models of mantle circulation. Further, their flow models
complement petrological models, based on ophiolite studies, in which melt must be
equilibrated at high pressures [Elthon et al., 1982] and gravity models in which mid-ocean
ridges are underlain by deep low density root zones [Hall ez al., 1986, Jonas et al., 1991].
1.2 Extinct Mid-Ocean Spreading Centres

Failed rifting systems have been categorized by Batiza [1989] based on the length
of their ridge segments and the offset between the inactive portion and its newly activated
counterpart. The first category have small offsets (<50 km) and result from
propagating/retreating rifts, migrating overlapping spreading centres, small non-
overlapping offsets and deviations from axial linearity. The second category have offsets

in the range 50 to 400 km and are related to the processes which form and destroy
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microplates. The third category "extinct spreading centres” result from aborted spreading
due to a change in the spreading geometry of lithospheric plates. They are large scale
features separated by a ridge jump in excess of 400 km between the extinct spreading
centre and the new locus of rifting [Batiza, 1989]. Coupling between the extinct spreading
centre and the new rift may be weak or non-existant.

Extinct spreading centres are the least common type of failed rift. A number have
been identified based on magnetic anomaly identifications and morphological expression
[Mammerickx and Sandwell, 1986]. Those which have been identified include: the
Mathematician Ridge [Klitgord and Mammerickx, 1982] and the Galapagos Ridge
[Anderson and Sclater, 1972] in the Pacific Ocean; the Aegir Ridge in the Norwegian-
Greenland Sea [Talwani and Eldholm, 1977]; the Central Basin Fault [Lewis and Hayes,
1980] and Shikoku Ridge in the Phillipine Sea [Tomoda et al., 1975]; and ridges in the
Tasman Sea [Weissel and Hays, 1977], Coral Sea [Weissel and Watts, 1979], and
Labrador Sea [Srivastava et al., 1981].

As detailed in section 1.3, studying the crustal structure of an extinct spreading
centre provides unique opportunities to comment on the processes of crustal accretion
which are ongoing at active spreading centres. Prior to the research detailed in this thesis
(and preliminary results in [Osler and Louden, 1992]), the only published refraction
profiles in the vicinity of an extinct spreading centre were in the Shikoku basin in the
Phillipine Sea [Nagumo et al., 1980]. However, this is in an area with a complicated and
ambiguous spreading history [Chamot-Rooke et al., 1987] and the data only sampled the

upper crust. Recently, there have been seismic refraction lines shot across the extinct
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Aegir Ridge in the Norwegian-Greenland Sea, however, no results are yet available from
this experiment [R.B. Whitmarsh, personal communication, 1992].
1.3 Thesis Objectives

A study of the crustal structure at an extinct spreading centre provides an
opportunity to comment on the different views of the processes which dominate crustal
accretion (as reviewed in section 1.1) as the extinct spreading centre represents a frozen
accretionary axis, free of the spatial complications of fracture zones and their effects on
melt migration. In addition, for ridges 