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Abstract

The inain results ir. this thesis are about multiplicative semigroups of functionally

positive operators and their invariant subspaces.

Let X be a topological space, and with its Borel structure, a standard Borel space,
and m a o-finite regular Bore' measure on X such that £*(X',m) is of dimension at
least two. An operator on L3(X,m) is called (functionally) positive if it maps non-
negative functions to non-negative functions. Generally, the algebra generated by
all positive operators is not closed in operator norm topology. We introduce a new
norm on the algebra and show, using classical methods of functional analysis, that the
algebra is a Banach *-algebra under the new norm. The spectral aspects of elements

of the Banach algebra are discussed.

Suppose S is a semigroup of positive integral operators on £L3(X,m). We show
by analyzing the structure of the kernels that S has a non-trivial invariant subspace
if every operator in S is quasinilpotent. We construct a special kind of bases of
the ranges of positive integral idempotent operators consisting of only non-negative
functions. Using these bases, We prove that S has a non-trivial invariant subspace
if it contains a non-zero compact operator and 7(AB) < r(A)r(B) for all A,B in
S. Also, we prove that if § is a semigroup of positive integral operators with the
kernels satisfying certain positivity conditions, then there exists a non-trivial standard
subspace, 1.€., a subspace of the form X ;L*(X', m) for some Borel set E in X, invariant
under S. We give a non-compact analogue of the Lomonosov - de Pagter result. Let
T be an injective positive quasinilpotent operator dominating a non-zero compact
positive operator Ty, i.e., T — Ty is positive. Assume C is a collection of positive
operators contained in a norm-closed algebra A with AT C T A. Then there exists a

non-trivial standard subspace invariant under C and T'.

Finally, we construct a semigroup of positive nilpotent operators with no non-

trivial invariant subspaces.
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Introduction

One of the classical unsolved problems in Operator Theory is the Invariant Subspace
Problem: Does every bounded linear operator on an infinite dimensional Hilbert space
have a non-trivial invariant subspace? An equally interesting problem is the problem
of reducibility of algebras (or, more generally, multiplicative semigroups) of bounded
linear operators on an infinite dimensional Hilbert space: What operator algebras (or
semigroups) are reducibie? By a reducible collection of operato:s is meant one whose

members have a common non-trivial invariant subspace.

Over the years, many important results have been obtained. The most strik-
ing ones are spectral theorems for normal operators, Aronszajn-Smith theorem [6)
on the existence of invariant subspaces for compact operators on Banach spaces,
Lomonosov’s theorem [35] on the existence of hyperinvariant subspaces for compact
operators, and S. Brown’s theorem [12] for subnormal operators. Recestly, Brown,
Chevreau and Pearcy proved that every contraction on a Hilbeit space with spectrum
containing the unit circle has a non-trivial invariant subspace (see [11]). However,
most of the theorems require the operators to have more than one point in their spec-
tra. In [25], Halmos initiated the study of quasitriangular operators. The concept of
quasitriangular operators plays a central role in the proofs of the Aronszajn-Smith
theorem. At the end of his paper, Halmos asked: Does every quasitriangular opera-
tor have a non-trivial invariant subspace? Surprisingly, C. Apostol, C. Foiag and D.
Voiculescu proved in a series of papers that every non-quasitriangular operator has
non-trivial invariant subspaces (see [3]). Thus, the general invariant subspace problem

was reduced to the invariant subspace problem for quasitriangular operators. In [9]
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(8]

Arveson and Feldman proved that every quasinilpotent operator with a cyclic vector
is quasitriangular. Therefore, it is worthwhile to examine the existence of invariant
subspaces for certain multiplicative semigroups of quasinilpotent operators, especially

non-compact quasinilpotent operators.

Several mathematicians have made progress in this direction. It has been proven
[41] that a semigroup of quasinilpotent operators is reducible if it contains a non-
zero operator in some von Neumann-Schatten class C,. For the non-compact case,
a beautiful theorem was obtained by Andé and Krieger [61, Theorem 136.9). Let
L¥(X,m) be a Hilbert space of dimension at least two. Under its natural stracture,
L%(X,m) is a Banach lattice. It follows from the Ando-Krieger theorem that every
quasinilpotent integral operator with non-nzgative kernel on £*(X,m) must leave
X pL*(X,m) invariant for some nco-trivial Borel set E. Recently, a number of results
in this area have been obtained (see [14], [34] and [46]). However, there are still
several interesting nroblems that have not been solved, including the one posed in
[41): Is a semigroup of compact quasinilpotent operators reducible? In this thesis,
we will investigate the reducibility and the existence of so-called standard invariant
subspaces of certain semigroups of quasinilpotent operators, especially semigroups of

integral quasinilpotent operators with non-negative kernels.

A standard Borel space is a set X' and a o-algebra of subsets of X' (called the Borel
subsets of X') such that X' is Borel-isomorphic to a Borel subset of some compiete
separable metric space in its relative Borel structure (see [&, Chapter 3] or [37]).
Throughout this thesis, we always assume that X’ is a topological space and, with its
Borel structure, a standard Borel space. We also assume that m is a o-finite regular
Borel measure on X" such that the Hilbert space £2(X,m) is of dimensien at least

two.

Chapter 1 covers basic aspects of the theory of integral operators and pseudo-
integral operators, a generalization of integral operators introduced by Arveson in
[7]. A number of known results about the algebraic properties of pseudo-integral
operators and their kernels are listed for future use. We also introduce some notation

and terminology. Most of the material in this chapter comes from Halmos and Sunder
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[26], Sourour [57], as well as Zaanen [61).

In Chapter 2, we study the algebra P of all pseudo-integral operators with abso-
lutely vounded kernels on some Hilbert space £L2(X’, m) of square integrable functions
on a finite measure space (X, m). We indicate that the algebra P may not be a norm-
closed subalgebra of B(L*(X,m)) in general; and a new norm || - || is introduced on P.
Using classical methods ef functional analysis, we prove that (P, || - [|) is a complex
Banacl *-algebra (Theorem 2.15). The spectral properties of operators as elements

of the Banach algebra (P, |} - [|) are discussed in Section 2.3.

Chapter 3 is on the structure of kernels of positive integral idempotents. In gen-
eral, if A is an idempotent on a Hilkert space H, thea, under a suitable orthonormal
basis, A can be represented as a matrix whose upper left corner, corresponding to
the compression of A tou its range, is the identity matrix of the size of the rank of
A. The main results of this chapter (Theorem 3.13 and 3.16) are generalizations of
this ir the case where A is a positive integral idempotent on £2(X',m). As a result
(Corollary 3.17), we can obtain a basis of the range of A consisting of positive ele-
ments of £2(.X',m). This kind of special bases will be used in Chapter 4 to prove the
existence of non-trivial invariant subspaces for certain semigroups of positive integral

operators.

Chapter 4 is devoted to the study of reducibility of semigroups of positive opera-
tors on C%( X, m). We prove that every semigroup of positive quasinilpotent operators
is reducible (Theorein 4.7), and a theorem (Theorem 4.8) which is more general than
Theorem 4.7. We also investigate the existence of non-trivial standard invariant sub-
spaces of certain semigroups of positive integral operators, and prove a generalization
(Corollary 4.26) of thc Andé-Krieger theorem in the special case where the Banach
lattice is the functional Hilbert space £L*(X,m) with its natural lattice structure.

In Chapter 5, we construct a semigroup of positive nilpotent operators on £2([0, 1])
which does not have any invariant subspaces other than {0} and £%([0,1]) itself.
The semigroup constructed is discrete (Theorem 5.8), and hence, norm-closed in

B(L*([0,1])).



Finally, Chapter 6 consists of two sections. The first section discusses the relation

between the Jacobson radicals of operator algebras and the existence of invariant
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subspaces of the algebras. The main results in this section are Theorems 6.3 and

E

6.4. The second section itudies positive linear mappings between C*-algebras. We

S

give a sufficient condition that makes a linear mapping betweea unital C*-algebras a

) o

Jordan homomorphism (Theorem 6.12). The main theorem (Theorem 6.10) an<wers

a question posed in [13].
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Chapter 1
Preliminaries

In this chapter, we will discuss some basic aspects of the theory of integral operators
and pseudo-integral ope. *ors, a generalization of integral operators introduced by

Arveson in [7]. We list a number of known results that will be used extensively iater.

1.1 Integral Operators

Suppose (X,m) and (Y, m') are two standard Borel measure spaces with o-finite
regular Borel measures m and m’. The following definitions are from Halmos and
Sunder [26]. A kernel on X’ x Y is a complex measurable function on the Cartesian
product space X’ x Y. If k is a kernel on X x ), then the measurable function k*
defined by

k(y,2) = k(z,y) (y,2) €Y x X

is a kernel on Y x X, and called the conjugate transpose of k.

Let k be a kernel on X' x Y. Suppose k has the property that for all g in L2(Y, m'),
k(z,)g(-) € LY(Y, m') for almost every z in X, and the function f defined by

f(@) = [ Kz )glym'(dy)

5
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is square integrable over X’. It was proved in [26, Theorem 3.10] that k actually

induces a bounded linear operator Int k from £3(Y,m') to L2(X',m):

(Int k)g(z) = /yk(m,y)g(y)m'(dy) r € X a.e.

We call kernels that induce bounded linear operators bounded kernels, and opera-
tors induced by bounded kernels integral operators. If u is in L3(X',m) and v is in
L*(Y,m'), then we denote by u®v the measurable function u(z)v(y), r € X,y € .
Clearly, u®v is a bounded kernel on X’ x ) and induces a rank-1 operator. As usual,

the rank-1 integral operator induced by u®v is still denoted by u®v.

It is easy to see that every function in L3(X x Y,mxm') induces a bounded
operator from L%(),m’) to L2(X,m). The integral operator induced by a kernel in
L3(X x Y,mxm') is called Hilbert-Schmidt operator.

Suppose H is an arbitrary Hilbert space. For any positive number p, the Schatten
p classes C, is the set of all compact operators T' on H with the property that the
sequence {s,(T)} of eigenvalues of (T*T') (counting the multiplicity) is in IP. It was
proved [49] that C, is a two-sided ideal in B(H) and a Banach space under the C,-norm
I| - |lc, defined by the equation

I7le, = {i [s,ml"}" .

Usually, we call an operator T in C; a trace-class operator, and the trace tr(7') of
T is defined to be the sum of all eigenvalues (counting the multiplicity) of T'. It
is well-known that if H = L*(X,m), then the C; class coincides with the class of
Hilbert-Schmidt operators on £2(X,m) (see [49]).

Kernels and integral operators have been extensively studied in {26] and [61]. We

list here without proof a number of results from these papers.

Proposition 1.1 [26, Theorem 7.5] The conjugate transpose k* of a bounded kernel
k is bounded if and only if the adjoint of the ti.duced integral operator is an integral

operator, and in that case, Int k* = (Int k)*.



Proposition 1.2 [26, Corollary 4.4] If uj,ua,...,u, are in L2(X,m), v1,v3,...,vn
are in L2(Y,m') and k = =1 4,0V, ther Intk is a bounded linear operator from
LYY, m') to L2(X,m) of rank al most n. Conversely, if A is an arbitrary bounded
linear operator from LYY, m') to L2(X,m) of rank at most n, then A = Intk for

some kcrnel k of the form 377, u,®v,.

Proposition 1.3 [26, Theorem 8.1} If a bounded kernel k on X x Y induces the zero
operator, then k(z,y) = 0 for almost every (z,y) € X x ).

From the above propositions, it is clear that if A is a finite-rank (integral) operator

in B(L*(X,m)) with a non-negative kernel, then so is A*.

Definition 1.4 [14, Definition 3.6] A subspace of L*(X,m) is a norm-closed linear
manifold in £2(X’,m). A standard subspace of L2(X,m) is a subspace of the form

My =X, LYX,m)={fe L2(X,m): f=0 ae. on U}

for some Borel set U in X. The orthogonal projection from L3(X,m) onto My is
denoted by Py.

REMARK. It is easy to see that the union and intersection of any countable set
of standard subspaces are still standard subspaces, and so are the complements of
standard subspaces. If L2(X’,m) is separable, then, as a topological space, it has the
Lindelof property. Consequently, the union and intersection of any set of standard

subspaces, countable or uncountable, are still standard subspaces.

Proposition 1.5 [61, Theorem 136.3) Let U be a Borel set in X. An integral operator
T € B(L*(X,m)) with non-negative kernel k leaves the standard space My invariant
if and only if k =0 a.e. on UsxU.

Proposition 1.6 [61, Theorem 135.1] Let T € B(L%*(X,m)) be an integral operator
with non-negative kernel. Then the spectral radius r(T') of T belongs to the spectrum
o(T) of T.



s o s moin o

Proposition 1.7 [61, Theorem 135.2] Let T € B(L*(X,m)) be a compact integral
operator with non-negative kernel such that the spectral radius r(T) of T is not zero,
then there exists a positive function u in L2(X,m) such that u # 0 and Tu = r(T)u.

1.2 Kernels of Integral Operators

In this section, we discuss the boundedness of kernels on X' x X', as well as the product

of integral operators. Most of the material in this section comes from Halmos and
Sunder [26].

It is easy to check that if A and k are bounded kernels and & + k is their pointwise
sum, then h + k is a bounded kernel and Int (A + k) = Inth + Int k, and that if k is
a bounded kernel and « is a scalar, then ak is bounded and Int (ak) = alnt k where

ak is defined by (ak)(z,y) = ak(z,y).

One may expect similar results for the prodnct of integral operators. Unfortu-
nately, the situation is complicated and no general theorem seems to be known about
it. Two kernels h and k on X x X are called multipliable if h(z,-)k(:,y) belongs to
L'(X,m) for almost every (z,y) € X x X. In that case, the convolution

/X h(z, 1)k(t, y)m(dt)

can be formed for almost every (z,y) € X x X; and it defines a kernel hxk on X x X.
In general, two bounded kernels are not always multipliable, and it is still unknown
whether the convolution of two multipliable bounded kernels is necessarily bounded,

and whether it necessarily induces the product operator if the convolution is bounded
(see [26], p32-33).

Proposition 1.8 If A € B(L*(X,m)) is an integral operator with kernel h and B €
B(L*(X,m)) is a finite-rank operator with kernel k, k = T°7_, u,®v, where u,,v, are

in L2(X,m) for 2llj =1,2,...,n, then h and k are multipliable, and the convolution
hxk of h and k is bounded and induces the operator AB.



[ -t

Proof. With no loss of generality (WNLG), we may assume that B is a rank-1

operator with kernel k, k = u®t where u and v are in L2(X,m).

For any (z,y) € X x X,
h(:l:, ’)k("y) = h(:!:, )u()i;'(y)

Since h is a bounded kernel, h(z, -)u(-) € L!(X,m) for almost every z in X'. Therefore,
h(z,-)k(-,y) € LYX,m) for almost every (z,y) € X x X. Hence, h and k are
multipliable.

The convolution hxk of h and k is given by

(hek)(z,y) = [ bz, t)k(t, y)m(dt)

/. b, u@ys(y)m(dt)
(Au)(2)o(y).

For any f € L3(X,m),
[Int (hxk) f](2)
= /(h*k)(m y)f(y)m(dy)
- / (Au)(z)5(y)f (y)m(dy)
= (Au)@) [, 70
= / h(z, t)u(t)m(:t) / T(y) f(y)m(dy)
= [ bt [ [ utyos)swm(dy)| miat)

[, bz, t)(BA)tm(dt)
= A(Bf)(@)
= [(AB)fl(z),

for almost every z in X'. This implies that the convolution h+k is a bounded kernel

and induces the operator AB. (]
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Let A and B be the same as in the above proposition. Then BA is a finite-rank
operator as well, and therefore, an integral operator. But this does not imply that &
and h are always multipliable and that the convclution k*h is a bounded kernel. We

explain this through the following example.

Recall that the discrete Fourier transform F from £([0, 1}) to £*(Z) is an integral
operator induced by ¢, where ¢ is the kernel on Z x [0,1] given by

p(n,y) = e 2™ (n,y) € Z x [0,1].

The Fourier transform F assigns to each element g in £3([0,1]) the sequence of its
Fourier coefficients; the adjoint F™* assigns to each sequence f in L*(Z) the function
whose sequence ¢ Fouric. cocfficients it is. It is a well-known fact [26, Example 7.2]
that the {ranspose ¢* of ¢ is not a bounded kernel and F* is not an integral operator.
In fact, if {¢,} is in > but not in I!, then ¥ e2™¥'¢, is not absolutely summable for
every y € [0,1].

Example 1.9 There exists an integral operator A = Inth and a rank-1 operator
B = u®u on a Hilbert space L*(X,m) such that u®u and h are not multipliable
kernels.

Proof. Let X be the disjoint union ZJ,[0,1] of Z and [0,1] and let m be the
measure on X’ that is the counting measure on Z and the Lebesgue measure on [0, 1].
We identify £3(X,m) with £2(Z) & L£%([0,1]). Let h be the kernel on X x .Y given
by

z, ifze Zandyel0,1],
hz,y) = $(z,y) : [0,1]
0 otherwise.
Then it is easy vo check that
(Int h)E = (Fv)®0

for any £ = udv € L*(Z) ® L£%([0,1]). Hence h is a bounded kernel.
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Choose any sequence {c,} in I? but not in I' and let u = {c,}®0. Then =t €
L(X,m). For every (z,y) € X x X, we have

(uBu)(2,)h(-+y) = u(@)T(+y) = u(e)h(- p)a)
which is not in £'(X, m) since
/ Ih(t,)(0)m(dt) = T le=2™¥ ¢, | = +o0.
Thus u®u and h are not multipliable kernels. ]

Definition 1.10 [26, p.50] A kernel k on X x X’ is called absolutely bounded if |k| is
a bounded kernel on X' x X'.

The idea behind the following proposition comes from [46].

Proposition 1.11 If a kernel k on X x X' is dominated by a non-negative bounded
kernel h in the sense that |k(z,y)| < h(z,y) for almost every (z,y) in X x X, then
k is bounded and absolutely bounded. Moreover ||Int k|| < ||Int |k]|| < ||Int &J|.

Proof. For any f € L%(X,m),

|k(z,9) f(y)] < h(z,If ()] = h(z,9)Ifl(y) (z,y) € X x X a.e.

But h is a bounded kernel and |f]| is in £L3(X, m), we have that the function h(z, )| f|(-)
is in £'(X',m) for almost every z in X'. Therefore, the function k(z,-)f(:) is in

LY(X,m) for almost every = in X.
It is clear that the function

[ K f@)m(dy)

is dominated by the function

(It WIFC) = [ G @)m(dy).
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That is
|/, M f@im@i < [ helfim(dy) e ae.

However, (Int k)|f] is in £2(X,m), therefore, [y k(-,y)f(y)m(dy), as a function on
X, is also in £2(X,m). Hence, k is a bounded kernel on X’ x X.

From what we have shown above, we know that, for any f € L¥(X,m),

l|(Int £) £l < I(Int |KDIA1N,

and

(Int [KD SN < ||(Int R)|£}]).

It follows that
| Int kl} < ||Int [K]l} < ||Int A]|.

Corollary 1.12 All absolutely bounded kernels are bounded kernels.

Theorem 1.13 [26, Theorem 10.7] If h and k are absolutely bounded kernels on
X x X, then h and k are multipliable, and hxk is an absolutely bounded kernel on
X x X and Int (h*k) = Inth Int k.

Proof. It follows immediately from Fubini’s Theorem. We omit the details. m

If k is an absolutely bounded kernel on X x X, then, from the above theorem,

(Int k)™ is an integral operator induced by the 1bsolutely bounded kernel

™ = fx ... xk,
Ny prmsras?’

n

for all positive integer n.

Corollary 1.14 If k is a kernel on X x X dominated by a non-negative kernel h,
then r(Int k) < r(Int k), where r denotes spectral radius.
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Proof. It follows from Proposition 1.11 that k is an absolutely bounded kernel
on X x X. Therefore, for any positive integer n, (Int k)" is an integral operator
induced by the kernel k(" which is dominated by the kernel (™). By Proposition 1.11,
I(Int k)*|| < ||(Int k)*|| for all n = 1,2, --. Thus, r(Int k) < r(Int h). m

1.3 Pseudo-Integral Operators

In this section, we assume further that m is a finite regular Borel measure on X’ such

that L%(AX’,m) is of dimension at least two.

The Hilbert space £*(X',m) with its natural order structure is a Banach lattice.
More explicitly, an element f in L2(X,m) is lattice positive (simply, positive) if and
only if f(z) > 0 for almost every z in X. We call an operator T in B(L*(X,m))
functionally positive (simply, positive) if Tf is positive whenever f € L3(X,m) is

positive.

The concept of pseudo-integral operator was introduced by Arveson in [7], and
studied by Sourour in [57] and [58]. The following definition comes from [57].

Definition 1.15 [57, Definition 2.1] A bounded linear operator T in B(L2(X,m)) is
called a pseudo-integral operator if T is given by the equation

(Tf)(z) = /X F@)ule,dy) =€ X ae.

for every f in L2(X,m), where, for almost every = in X, pu(z,-) is a complex Borel
measure on X', and, for every Borel set B in X, the map & — p(z, B) is assumed

to be a Borel function.
The class {p(x,+) : € X'} of measures is called the kernel of T.

A kernel {p(x,-)} is called absolutely bounded if {|u|(z,-)} is the kernel of a
bounded operator on L*(X',m).
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Clearly, the concept of pseudo-integral operator is a generalization of that of
integral operator. Furthermore, the definitions of absolute boundedness of kernels
are consistent. The class of pseudo-integral operators is quite large. In fact, for any
¢ € L>(X,m), the multiplication operator M, is a pseudo-integral operator induced
by the kernel: p(z,dy) = ¢(x)d,(dy), where § is the point mass at . Particularly, the
identity operator I is a pseudo-integral operator. Also if ¥ is a measurable map on X’
such that the equation Cy f = foy defines a bounded operator Cy on L2(X,m), then
Cy is a pseudo-integral operator with kernel p(z, dy) = y(z)(dy) (see [57, p.342]). It
is well-known that if (X', m) is a nonatomic measure space, then neither of them is an
integral operator. However, not every bounded operator is a pseudo-integral operator.
In [57], Sourour provided three examples to show that if X" is the unit circle and m
is the normalized Lebesgue measure, then there exists projections, unitary operators

and compact operators on £2(X’, m) that are not pseudo-integral operators.

Next, we list several results, to be used later, related to pseudo-integral operators.

As before, their proofs are omitted.

In [7], Arveson proved the following disintegration properties for measures, which

is essential for analyzing the kernels of pseudo-integral operators.

Lemma 1.16 ([7, p.461}; [57, p.349]) Let X', Y be standard Borel spaces, let p be a
finate positive measure on X x Y, and let p1(A) = p(A x Y) be the first marginal mea-
sure of p. Then there exists a map 2 — pf from X into the space of all probability

measures on Y such that

(¢) The map x — pg(B) is a Borel function for every Borel set B i Y.

(28) u(S) = [aly X5(z,y)p§(dy)pa(dz) for every Borel set S in X x Y.

Proposition 1.17 ([7, Proposition 1.5.3], [57, Proposition 4.2]) Suppose (X, m) and
(Y, m') are standard Borel measure spaces with finite reqular Borel measures m and
m'. Let p be a bounded complex Borel measure on X x Y such that p vanishes

on marginally null sets (equivalently |u|; < m,|ply; € m', where |p|; and |p|, are
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marginal measures of |p|). Then there exists a map x — p* of X into the set of all
bounded Borel measures on Y, and a map y — p, of Y into the set of all bounded

measures on X, such that

(1) For all Borel sets A C X and B C ), the maps z — p*(B) and

y — py(A) are Borel functions.
(i7) p(dz,dy) = p*(dy)m(dz), i.e., for every Borel set S in X x ),
W) = [ Xsle, v (dym(da)
and p(dz,dy) = py(dz)m/(dy).

(ii7) |p|(dz,dy) = |u*|(dy)m(dz) = |p,|(de)m’(dy).
Moreover, p* and p, are essentially unique.

It is well-known that an integral operator is positive, i.e., it maps positive elenents
to positive elements, if and only if its kernel is non-negative. The following theorem
not only generalizes this result, but also indicates that the class of pseudo-integral

operators is much larger than that of integral operators. The proof can be found in
[57].

Theorem 1.18 [57, Theorem 3.1] Let T be an operator on L*(X,m). In order for T
to be a pseudo-integral operator with a positive kernel, it is necessary and sufficient

that T be a positive operator.

Recall that an operator T on £%(X,m) is called order-bounded if for every posi-
tive element u € L?(.X,m), there exists a positive element v € L2(X,m) such that
(T f)(2)| £ v(z) for almost every z in X’ whenever |f(z)| < u(z) for almost every z

in X,

Corollary 1.19 [57, Corollary 3.2] Let T be an operator on L*(X,m). The following

conditions are equivalent.
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(2) T is a pseudo-integral operator with absolutely bounded kernel.

(#) T =T — To+ i(T5 — Ty) for some positive bounded operators Ty, Ty, T
and Ty.

(23¢) T is order bounded.

1.4 Pseudo-Integral Operators with Absolutely

Bounded Kernels

Sup»nse (X, m) is a standard Borel measure space with finite regular Borel measure
m. It follows easily from Corollary 1.19 that the class of pseudo-integral operators
with absolutely bounded kernels is a subspace of B(L%(X',m)). We denote it by P.
In this section, we will see that P is actually a *-subalgebra of B(L*(X,m)).

The following lemma is obtained by Sourour. It gives a sufficient condition for a
measure on X X X to be an absolutely bounded kernel.

Lemma 1.20 [57, Lemma 4.1] Let p be a Borel mzasure on X x X which vanishes
on marginally null sets and has the property that the function h(z,y) = f(y)g(z)
belongs to LY X x X, |u|) whenever f and g are in L2(X,m). Then the equation
(T.f,9) = f(y)g(z)p(dz, dy)
AxX

defines a bounded linear operator T, on L*(X,m).

REMARK. If a measure g induces a bounded operator T, as in the above lemma,
then so does the measure |u|. Therefore, T), is a pseudo-integral operator with an

absolutely bounded kernel. In this case, we call the measure p the absolutely bounded
kernel of T}, (see [57, p.350]).

From now on, T, will denote the pseudo-integral operator induced by the ahso-

lutely bounded kernel 4.
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Theorem 1.21 [57, Theorem 4.3] If T is a pseudo-integral operator on L*(X,m)
with absolutely bounded kernel pu, then so is T*, and for every f in L3(X,m),

(T*f)(y) = /X f(2)E,(dz) y€ X ae.,

where fi(dz,dy) = f,(dx)m(dy) is the disintegration of the complex conjugate Ji of p.

REMARK. From the above theorem, it is clear that if T is an integral operator with

non-negative kernel k, then T* is also an integral operator, and its kernel is £*.

We now consider the product of pseudo-integral operators with absolutely bounded
kernels. The concept of convolution of absolutely bounded kernels was introduced by
Arveson [7]. Suppose T, and T, are two pseudo-integral operators with absolutely

bounded kernels pu and v respectively. Then the equation
(p*v)(S) = / (p: x v*)(S)m(dz), for every Borel set SC X x X
X

defines a finite Borel measure p+v on X x X (see [57, p.350]).

Theorem 1.22 ([7, Proposition 1.5.5]; [57, Theorem 4.4]) If 4 and v are absolutely

bounded kernels, then so is pyxv, and T,., = T,T,.

Theorem 1.23 [57, Theorem 4.5] The class P of pseudo-integral operators with ab-
solutely bounded kernels is a selfadjoint algebra containing the identity. The class T

of integral operators with absolutely bounded kernels is a selfadjoint two-sided ideal in

P.
REMARKS. (i) It is easy to see that every Hilbert-Schmidt operator is in Z, and
therefore, in P.

(ii) Suppose T, € P is a pseudo-integral opzerator with absolutely bounded kernel
. Then T, belongs to T if and only if

p(dz, dy) = k(x,y)(mxm)(dz, dy)
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for some measurable function &, and T, is a Hilbert-Schmidt operator if and only if
i(de, dy) = k(z,y)(mxm)(dz, dy)
for some measurable function k in £3(X x X,mxm). In that case, we have that

[ITulle, = Ikl c2x 2, mxm)-

(i) There are compact operators (see [57, Example 2.6]) that are not pseudo-

integral operators. Therefore, P is, in general, not norm-closed in B(L*(X,m)).

(iv) There are positive compact operators (see [19, Example 3]) that are the norm-
limits of positive finite-rank operators, but noi integral operators. Therefore, T is, in

general, not norm-closed in P.
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The Algebra of Pseudo-Integral
Operators with Absolutely

Bounded Kernels

T
;

Suppose X' is a topological space and, with its Borel structure, a standard Borel
space, and m is a finite regular Borel measure on &'. Consider the collection P of
all pseudo-integral operators with absolutely bounded kernels on £2(X,m). We have
shown in Chapter 1 that P is a subalgebra of B(L*(X',m)), but not norm-closed, in
general, in B(L*(X',m)). In this chapter, we will define a new norm || - || on P and
prove using classical methods of functional analysis that under this new norm P is a

Banach *-algebra. We will also discuss some spe tral properties of certain operators

as elements in (P, || - ||).

2.1 A New Norm on P

In this section, we define a new norm || - || on P, and examine its relation to the

operator norm and Hilbert-Schmidt norm.

19
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Definition 2.1 For any T € P with absolutely bounded kernel g, i.e., T' = T}, we
define the new norm of T' = T}, as the operator norm of Tj,;. That is

I = WT.ull = 1 Tjul-
Proposition 2.2 (P,]|-||) is a normed space.

Proof. The proof is straightforward and is omitted. ]

Recall that the collection of all complex Borel measures on X' x X" is a Banach
space with the norm defined to be the total variation of the measure on X' x X (see
Dunford and Schwartz [18]).

Proposition 2.3 If T, is in P with absolutely bounded kernel y, then

el = 1el(X x &) < m(X)| T,

Proof. For any f and g in L%(X,m),

(Tufr9) = [, S@)g(@)lul(de, dy).

Therefore,

(X x X) = /xxx Xy o (@ 9|1l (dz, dy)
-/Xx,t' Xy(2)X (y)|p|(dz, dy)
(X s X )

1Tl 11X 11

m(X) T,

(FAN

Let B denote the unit ball of £2(X,m), and B* the set consisting of all posi-
tive elements of £2(X,m) in B. The following proposition gives several equivalent

definitions of the norm || - [|.

o i T

P
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Proposition 2.4 Suppose T, is in P. Then,
ITull = sup{||Tjufll: f € B*}
= sup{(T\uf, 9) : f end g are in B}
= sup{||Tiufll : f € B* is a simple function}
= sup{(T\uf, 9) : f, g € B* are simple functions}.
Proof. By the definition of the new norm || - |, [|7,l] = ||T\ll- Since T}, is a

positive operator, we have that, for any f € L*(X,m),

T f1(2) < (Tl f1)(=)

for almost every x in X. But, ||f]| = || | f| || for every f in L3(X,m), so

I = 1Tl

= sup{||Tjfll : f € L4(X,m) and || f]| <1}

= sup{||T\ufll : f € L3(X,m) is positive and || f]| < 1}
sup{||T},fIl : f € B¥}.

I

For the second ¢+ uation, it is easy to see that
sup{{T\uf, 9) : f and g are in B*}

is less than or equal to ||T,[l. Conversely, for any positive element f in L3(X,m), we

have T, f is positive. So if we let

Tlulf
9= v i
T3 f

then g is in BY, and (T}, f, g) = ||Tjy fl|. It follows that
sup{(T},f, g) : f and g are in B*}

is greater than or equal to

sup{[[Tjuifll : f € BF},
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which is equal to ||T,,[l. Thus,
sup{(T\.f, ) : f and g are in Bt}
is equal to [|T,||.

From what we have proven and the fact that every positive element in £2(X’,m)
is a norm limit of an increasing sequence of positive simple functions, we have that
IT.ll is equal to

sup{||Tj,fll : f € B* is a simple function}

and
sup{(T\.(f, 9) : f, g € B* are simple functions}.

Next, we look at the relation between the new norm and the operator norm, and

the relation between the new norra and the Hilbert-Schmidt norm.

Proposition 2.5 Suppose T, is in P. Then,

() NTull < WTull, and | Tull = \Tull if 1 is @ positive measure.

(i5) UT0 < | T, i T, is a Cy operator.

Proof. (i) is obvious.
For (ii), if T}, is a C; operator, then
p(dz,dy) = k(z,y)(mxm)(dz,dy)
for some k € L}(X x X,mxm). Therefore,

|el(dz, dy) = |k|(z,y)(mxm)(dz, dy).
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For any positive elements f and g in £L*(X,m),

Tufr9) = [ f@)@luldz, dy)

~/zYx,t' f(@)g(z)|k|(z, y)(mxm)(dz,dy)

([ ateiPmscm)(ds,dy)}

<
3
: k[? £,d }
{[ WP, y)(mxm)(dz, dy)
= [N gll K] ez xz, mxm)
= ||fll ||9|| "k”cﬁ(xxx, mxm)
= 71 lgiTulle,-
Therefore, by Proposition 2.4, [|T.ll < i Tuilc,- »

Proposition 2.6 If u is a positive measure and induces a bounded operator T, in P,
and if v is a measure on X X X such that |v| < u, then v is an absolutely bounded
kernel and induces a bounded operator T, in P with ||T,|} < ||T,]-

Proof. Since u is a bounded kernel, we have that u vanishes on all marginally
null sets in & x X'. However, |v| < p. So v also vanishes on all marginally null sets
inX x X.

For any f ang g in £L*(X,m),

. Sa@ded)| < [ 1Aiw)lsl@(dz, dy)
= (Tlulf, 9)
< 1Tl 1A sl

Therefore, the function & given by

h(z,y) = f(y)9(=)

is in £1(X’ x X,|v|). By Lemma 1.20, v induces an operator T, € P.
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It is easy to see that | .|| = [|Tj,|l < I T.ll = IT.[. .

Suppose T is an operator in P with absolutely bounded kernel 4. Then u is a com-
plex measure on X’ x X such that || induces a bounded operator T, on L}(X,m).
By the Lebesgue-Radon-Nikodym Theorem (see [50] or [51]), ¢ has a unique decom-
position

B = pa+ ps,

where g, is absolutely continuous with respect to mxm (denoted by p, < mxm),
and p; and mxm are mutually singular (denoted by g, L mxm). Consequently,
both g, and p, are dominated by |u|, i.e., |a] < || and |p,] < |p|- 1t follows from
Proposition 2.6 that both u, and u, are absolutely bounded kernels on X’ x X, and
that |7, < IToll and |71 < T

It is clear from the definition of Z in Theorem 1.23 that
I={T €P:T =T, for some kernel g with g, = 0}.

Let
P, ={T € P:T =T, for some kernel p with g, =0}.

Then, we have the following result.

Theorem 2.7 For any standard finite measure space (X, m),

(2) T is a closed two-sided ideal in (P, || - ).
(i7) Ps is a closed subspace in (P, || ||).

(i) P =T @ P..

Proof. (i) By Theorem 1.23, 7 is a two-sided ideal in P.

Suppose {T},} is a sequence in I that converges to T, € P in (P, || [I). Then,
by Proposition 2.3,

ey — pll = |y — (X x X) — 0 (j —» 0).
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Sinceall T,,,, (j = 1,2,--), are in Z, we have that all y;, (7 =1,2,--.), are absolutely
continuous with respect to m xm. Therefore, the measure g, as the norm limit of {#;},

is also absolutely continuous with respect to mxm. Thus, T}, is in Z.

(i1) It is easy to see from the definition that P, is a linear manifold in P. The
proof of the fact that P, is closed under the new norm is similar to the proof of (i)
since the norm limit of a sequence of measures singular to m xm remains singular to

mxm.

(iii) By the above analysis, P = I + P,. Noticing the fact that p < mxm
and ¢ L mxm together imply 4 = 0 for any measure g on X x X, we have that

InP,={0}. u

We conclude this section by providing several interesting examples of operators
in P. When the measure space (X', m) is not purely atomic, the identity operator on
L*(X,m) is not an integral operator. In this case, P, # {0}. In fact, P, contains
a large number of multiplication operators M, with ¢ € L*(X,m) and composi-
tion operators Cy, with suitable maps ¥ on X'. But these operators are clearly not
compact. In [57], Sourour asked the following question: If T is a compact pseudo-
integral operator, must T be an integral operator? The answer to this question is
negative. Consider the best example of nonatomic measure space: the unit interval
[0,1] with the Lebesgue measure. Fremlin provided a method in [19] to construct
positive compact operators on £2(]0,1]) that are not integral operators. The method

can be applied to other nonatomic measure spaces.

Example 2.8 Let X’ be the unit interval {0,1] and m the Lebesgue measure on X.

Then there are non-zero positive compact operators in Ps.

Proof. Using Fremlin's method, we can construct a non-zero positive compact
operator T on £*(X,m) that is not an integral operator. Therefore T = T,isin P
for some absolutely bounded kernel 4 and the singular part g, of u is non-zero. Thus
the operator T,,, induced by the kernel y, is a non-zero positive operator in P,, and

dominated by T, i.e., T, — T, is positive. However, T, is a compact operator. It
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follows from [1, Theorem 2.3] or [15, Theorem 4.5] that T,,, is also compact. "

Example 2.9 Let X' be the unit interval [0,1] and m the Lebesque measure on X,
Then there is a non-zero compact operator T in P, such that neither 7" nor —T is

positive.

Proof. From the previous example, it is not difficult to find two non-zero positive
compact operators Ty and Ty, T} # T3, in P, such that neither Ty — T; nor To - T is
positive. [ ]

REMARK. As we have pointed out earlier, Fremlin's method of constructing non-zero
positive compact operators that are not integral operators can be generalized to other
nonatomic measure spaces. Therefore, the above examples can also be generalized to

other reasure spaces.

2.2 The Completeness of (P, || - ||)

It follows from Corollary 1.19 that the algebra P coincides with the algebra generated
by positive operators on L2(X',m). In [54] Schaefer studied the algebra generated by
positive operators on a general Banach lattice and several results about the algebra
were presented. Let £ be an order complete complex Banach lattice. An operator on
€ is called regular if it is a linear combination of positive operators. Clearly, the set
of all regular operators on € is an operator algebra and we denote it by B"(£). Since
£ is order complete, an operator on € is regular if and only if it is order bounded,
i.e., maps order bounded subsets to order bounded subsets. Suppose T is a regular

operator £. Then, for every positive element z in £, the supremum
|T'|z = sup{|T2|: |2z| < =}

is well-defined where z — |z| is the modulus function (see [54, Chapter 11, Definition
11.1]). It was proved [54, p.234] that |T| can be linearly extended into a positive

(bounded) operator on £. Schaefer proved the following equivalent definition of |T|.
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Theorem 2.10 [54, Chapter 1V, Theorem 1.8} Let £ be an order complete complex

Banach lattice. If T is a regular operator on £, then
IT| = sup |(cos8)Ty + (sin0)T>|
0<o<2r

where T = Ty + iT; is the canonical decomposition of T'.

Let £ be an order complete complex Banach lattice. For every T in B"(£), let
Tl = 1Tl

We have the following theorem.

Theorem 2.11 [54, Chapter IV, Corollary 2] Let £ be an order complete complex
Banach lattice. Then (B"(€),|-|) s a complez Banach lattice and B"(E) is a complex

Banach algebra under the norm ||-||,.

For the special case where £ = L2(X',m), it is clear that £ is order complete and
BT(€) = P. Let T, be an arbitrary operator in P. It follows from the definition that
|| < Tiyy.

Proposition 2.12 |T,| = T}, for any T, in P.

Proof. It suffices to show that |T,| > Tj,. Since |T},| is a positive operator,

|T| = T, for some positive kernel v. Therefore it suffices to show that v > |ul.

Let T = Ty + T, is the canonical decomposition of T, and let p = p; + iy, be
the canonical decomposition of g. Then T; =T, , (j = 1,2). Fix any @ € [0,27] and
consider the measure (cos#),.; + (sin@)u;. For any measurable rectangle ExF, we

have

[(cos O)us + (sin B)z [ Ex F)| = ([(cos O)T: + (simO)Telxp, X ),
and therefore, is less than or equal to (T, X, Xz) = v(ExF) by Theorem 2.10. Thus

(cos 0)r{G) + (sinB)pa(G)] < v(G)
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for any finite union G of measurable rectangles and then for any Borel subset G of
A x X.

For any Borel subset G of X x X and any partition {G,} of G, there exists a
sequence of positive numbers {0,} in [0,27] such that

#(G,) = (cos 0,)(G,) + (sin 0,)u2(G))

for all positive integers j. It follows that

T 106 = ¥ l(cos 8, )(Gy) + (sin,)a(G)] < T H(Gy) = v(G).
Hence |¢|/(G) < »(G) and then || < v. [

it follows immediately from Proposition 2.12 that

IZll = I Thall = W'l
for all T € P. Consequently, (P, ]| - ||) is a Banach algebra by Theorem 2.11.

In this section, we use classical methods of functional analysis to prove that
(P, 1l ll) is a Banach *-algebra.

Suppose f is a positive simple function in £%(X,m). Then f = ¥;_, a,X 5, for
some integer s > 1, where @, is & non-negative number for all j = 1,2,...,s and
{E,};-, is a Borel partitionof X, i.e., Ey, Es, ..., E, are pairwise disjoint Borel subsets
of X whose union is equal to X'. Thus, ||f|| = [L}, &?m(E ML

Iff=7%_,0X E, and ¢ = j':l ﬂ,XFJ are two such positive simple functions,

then, for any T, in P, we have

(Twf, 9) = ZZ"Jﬂl{TIuIXE’ F,)

1=11=1

= Z Z O‘Jﬂlml(F’XEJ)-

1=1li=1

Hence, if || f|| # 0, and ||g|| # 0, then

2;_1 i, a,ﬂzlul ﬂxE,) _ {Tiuf, 9)

5 clm BT, gomEE Tl = Vel =10




29

Let T be the set consisting of all the pairs ({a;}}.;, {E;}}=;), where s > 1 is an
integer, all a; non-negative numbers and {E;}5_, a Borel partition of X such that
*_1a2m(E;) # 0. We are now ready to prove the following equivalent definition of
the norm || - . We will use this definition later to show that |} - || is a complete norm

on P.

Lemma 2.13 Suppose T, is in P with absolutely bounded kernel u. Then, ||T,| is

the supremum of ,
;:1 Zf:l a]ﬂllﬂ‘(EXEJ)
1 8! 1
(51 e3m(Ej)]2 (20, Bim( 1))z

for all ({a;}3-y, {E;}3zy) and ({8;}oy, {Ej}im) in T

Proof. It follows immediately from Proposition 2.4 and the above analysis. =
Theorem 2.14 (P, | - |l) is a complez Banach space.

Proof. It suffices to show that (P, || - ||) is complete.
Suppose {T},;}32, is a Cauchy sequence in (P, || - ||). By Propositions 2.3 and 2.5,

"Tl&j - Tm” S |||Tl-‘j - Tm “l’

Tt = Twall < Wil = 175 — Tl
s = pll = i = pal(X x X) < m(X)|T; — T,
for all j,1 =1,2,---. Thus, {T},;}%; is a Cauchy sequence in B(L(X',m)) with the

operator norm, and {g;}3, is a Cauchy sequence in the Banach space of all complex
measures on X' x X. It follows that there exists an operator T in B(L*(X,m)) and a

Borel measure g on X x X' such that
[Tuj =TI — 0 (j — 00),

lee; = el = lpj — pl(X x X) — 0 (§ — o0).
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But, for every integer j,

Mgl = Tl = lasl = Ll 1 x &) < s = wICX x ).

Hence

el = el — 0 (j — o).

Since all Tj,, are positive operators, we have that T, as the norm limit of a
sequence of positive operators, is also a positive operator. By Theorem 1.18, T is
induced by a positive kernel v, i.e., T = T,. We claim that v = |p|. Indeed, for any
measurable rectangle EXF in & x &,

Il(ExF) = lim |u;|(ExF)
= jlirnglu,lx)?’ Xg)
= (TXp Xp)
= y(ExF).

Thus, ¥ = |u| ¢° - : both v and |y| are Borel measures on X' x X'.

Now, |u| is a bounded kernel on X’ x X, therefore, by Proposition 2.6,  itself is

an absolutely bounded kernel on X' x X' and induces an operator T}, € P.
We complete the proof by showing that
17u; =Tl —0 (G — o0).
For any e > 0, there exists an integer N > 0 such that

IT,, — T ll < g whenever j,{ > N.

Fix any two non-zero positive simple functions f = 3>}_; ;X E, and g = Z;;, B;x F,
with {E;}%_, and {Fj}j'___l two Borel partitions of X. For all integers p and ¢ with
7q> N, '

i1 Liza @By — pl(Fix E;)

[C3e1 2m( BT, Bim(F)]?




~#

31

is less than or equal to

=1 Zla’=1 a;Bilpp — pq|(Fix E;) Yj=1 27:. O‘Jﬂl“‘q pl(Fix E;)
(T3 fm(EB (T, im(F))E  [Shes odm( BT, Bim(F)]E
By Lemma 2.13, the first term of the above is less than or equal to ||T,, — T}, and

therefore, less than £ since p,q > N. However,

luj — pl(X x X) — 0 (5 — oo).
We can choose ¢ so large that the second term is also less than £.

Hence , for any p > N,

i=1 Zi"-la]ﬂdﬂp pl(FixEj;) <f_
[Z _1a2m )] [Zl_l |m (FI)]2 2

It follows from Lemma 2.13 that

+

= €.

SR

170, — Tull = |1 Thp-nll < €
whenever p > N. Thus,

1Ty - T —0 (j — o).

Theorem 2.15 Suppose T and S cre in P. Then || TS| < ITHISI end |T*|| =
ITW. Therefore, (P,||- ) is a Banach x-algebra.

Proof. Let ;z v be the absolutely bounded kernels of T' and S respectively. Then,
by Theorem 1.22, u * v is the absolutely bounded kernel of T'S, where u * v is given
by

(i *v)( / (2 x v*)(G)m(dz)
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for every Borel set G in X x X. It follows from the essential uniqueness of the

disintegration of measures on X’ x &’ that
)@ < [ b x v7I(Ghm(dz)
< 2 )
< [ (el x 7 )(G)m(dz)

Jul. X 1) (G)m(dz)
(Il + (G,

for every Borel svt G in X' x X'. Therefore, |p * v| < |u| * |v| as measures on X' x X',

I

Hence,

I7SH = 1 Thuwstll < 1 Thutetitll = N Tiall < N Tl 1 T3l = UTWNST-

By Theorem 1.21, Ty = T; where T is the complex conjugate of u. It follows from
o m g K

the essential uniqueness of the disintegration of measures that |f| = |u|. Therefore,
170 =0T =0Tl = 1Tl = Wl = TN = 1Tl = TN

REMARK. Generally, the Banach *-algebra (P, || - ||) is not a C*-algebra. For example,

in the case where £%(X',m) is the two dimensional space C?, let

r=(! 7).
1 1
Then T*T = 2I and hence ||T*T|| = 2. However, ||T|? = 4. Thus [|[T*T|| # |ITIF,
and consequently, (P, || - |l) is not a C*-algebra.

2.3 Spectral Properties of Elements
of (P, |- 1)

Having shown that (P, || - [|) is a Banach algebra, we find it interesting to look at

some spectral properties of operators as elements of (P, || - |I)-
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Theorem 2.16 The set K NP is a closed two-sided ideal in (P, || - ||), where K is

the algebra of all compact operators on L2(X,m).

Proof. Clearly, K NP is a two-sided ideal in P. By Proposition 2.5, KNP is
closed in (P, || - |)- ]

Suppose 1" is in P. Let o,(T") denote the spectrum of T ir i'.e Banach algebra
(P, Il - ). 1t is easy to see that o(T) C op(T). Also, we denote rp(T) the spectral
radius of T' as an element in the Banach algebra (P, || - ||), that is

rp(T) = sup{|A| : A € ap(T)}.

When we consider L*(X',m) as a Banach lattice, the spectrum op(-) is the same
as the order spectrum introduced by Schaefer in [55]. The order spectrum of regular
operators on Banach lattices was also studied by Arendt and Sourour in [4] and [5].
The main results of this section, Proposition 2.18 and Theorem 2.22, are the special
cases of [55, Theorem 3.3] and [5, Theorem 4.4]. The proofs we provide here can be

easily understood by those unfamiliar with the theory of Banach lattices.
Proposition 2.17 IfT € P is a positive operator, then vo(T) = r(T).

Proof. Since T is positive, we have T? is positive for all positive integers p. By
definition, |T7|| = ||T?|| for all positive integers p. Therefore rp(T') = r(T). =

Proposition 2.18 For every ¢ € L(X,m), op(My) = a(My).
Proof. Suppose M, is invertible in B(L*(X,in)). Then its inverse is also an
multiplication operator, and hence, is belong to P. It follows that M, is invertible in

P. .

Lemma 2.19 If W is in B(LY(X,m)) and A € o(W), A # 0, then

(A=W)1= -i- [1+wo-w)].
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Proof. It suffices to show that {[1+ W(XA = W)™!] is a left inverse of A — W.
Indeed,

L+ WA -w) (A -w)

(A -W)+W]

:'N>4|h—‘>4|t—-‘

Proposition 2.20 Suppose T is a Hilbert-Schmidt operator on L2(X’, m).

(2) If S is a nilpotent operator that belongs to P, then

op(T +8) =o(T +5).

(22) If S is a quasinilpotent operator and positive, then
op(T'+S5) =a(T+S).
Proof. (i) Let A # 0 and A & o(T + S). Then A — (T + S) is invertible in
B(L*(X,m)) and

P=(T+9" = [(A-5)-T]"
= {0-)[-0-977]}”"
= 1= =877 (A= 85).

By Lemma 2.19,
L-(-87T] =1+ A=) Ti-(A-97T],
which is in P since T and then the operator

A =8 T[1-(r-571]"

P R AT
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is in Cs.

However, there exists a positive integer p such that SP*! = 0 because S is a

nilpotent operator. Therefore

A=97" =2 w7

Since S is in P, it follows that (A — S)~! is also in P. Thus, [A = (T + S)]"!is in P.
This implies that A & ap(7" + S), and hence,

op(T+S) Co(T+S)U{0}.

Since SP*! = 0, we have (T + S)?*! € C,. Therefore, 0 € o((T + S)**!), and
hence, 0 € o(T + S). It follows that op(T + S) = a(T + S).

(ii) Since S is quasinilpotent and positive, we have rp(S) = r(S) = 0. Therefore,
for any non-zero complex number A,
-
(A=-9)" =z%,\j+1
J=

is in P.

In a way similar to the proof of (i), we can prove that A — (T' + S) is invertible in
P for any non-zero complex number A € o(T + S). It follows that

op(T + 8) C o(T + S) U {0}.

However, since S is a quasinilpotent operator, we have that zero is in the essen-
tial spectrum oc(S) of S. Therefore 0 € o(T + S) because T is compact. Thus
op(T+8) =o(T+95). |

We have shown that o(*) C o,(S) for all § € P, and that for certain S € P,
namely nilpotent or positive quasinilpotent operators, 6(S+T) = 0p(S + T) for any
Hilbert-Schmidt operator T'. Naturally, one may wonder how large, compared with
o(S), op(S) can be for a given S in P. The following results, which generalize the

above proposition, provide an answer to this question.
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Lemma 2.21 Let S € P. Then
op(S+T) C o(S+T)Uap(S)

for any Hilbert-Schmidt operator T'.

Proof. Fix an arbitrary Hilbert-Schmidt operator T. Suppose X is a complex
number and not in (S +T)Uop(S). Then A — (S +T) is invertible in B(L3(X',m)).
It is enough to show that [\ — (S + T)]~! is in P.

Since A € 0p(S), A — S is invertible in P, i.e., (A = S)~! is in P. Therefore,

D=(T+8)" = [A-8-T1"
= {0=-9-0-s1)}"
= [1-(=8517]" (A= 95)

However, the fact that T is a Hilbert-Schmidt operator implies that (A — $)~'T
is also a Hilbert-Schmidt operator. Consequently, [l — (A = $)"'T]™" = 1+ D for
some Hilbert-Schmidt operator D. Thus, [1 — (A = §)~'T]™" is in P, and hence,
A=(S+T)]'isin P as well. .

Theorem 2.22 For every S € P,

o5(S) = () [ N op(S + T)] .

TGCQ

Proof. Let S be an arbitrary element of P. It follows from Lemma 2.21 that, for
every Hilbert-Schmidt operator T,

op(§) = op((§+T)+(-T))

C o((S+T)+(-T)Uop(S+T)
a(S)Uap(S+T).

I
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Thus,

op($) C [)1o(S)Vap(S+T)]
TeC,

= a(S)U{ﬂ "'P(S""T)}«

Tel,

On the other hand, since 05(S) 2 0(S5) and 0 € C;, we have

o5(8) 2 o($) [ N (5 + T)] .

Tec;

Hence these two sets are equal. [ |

It was proved ([4] and [5, A2]) that, in the case where X is the unit circle of the
complex plane and m is the Lebesgue measure on X', there exists a positive, compact,
selfadjoint operator T' in P such that o,(T") contains the unit circle. Thus o5(T) #
a(T). We finish this section with the following question. An affirmative answer to
the question will guarantee the existence of non-trivial invariant subspaces, or even
the triangularizability, of certain semigroups of positive operators on £2(X',m).

Question 1. s it true that op(S) is not a connected set in the complex plane for
(1) every compact non-quasinilpotent operator S in P? (ii) every compact positive
non-quasinilpotent operator S in P? (jii) every compact positive non-quasinilpotent

operator S with the property that the semigroup gencrated by S is contained in P,?
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Chapter 3
Positive Integral Idempotents

The purpose of this chapter is to study the ranges of positive idempotent integral
operators through analyzing their kernels. For a given positive integral idempotent,
we construct a basis of its range consisting of positive elements of £2(X',m). This
kind of special bases for the ranges of positive integral idempotents will be used
in Chapter 4 to obtain a theorem establishing the existence of non-trivial invariant

subspaces for certain semigroups of positive integral operators.

In this chapter, we always assume that A is a positive idempotent integral operator
with kernel ¢ and the rank of A is equal to s (s could be +00). We will frequently
use the fact that

/X f(z)m(dz) = 0

for a non-negative measurable function f if and only if f =0 a.e. on X.

3.1 Positive Integral Idempotents

We first look at some general results about positive integral idempotents. Suppose f
is an element in £%(X,m). We say that f is real if one of its representations is a real

function.

38
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Lemma 3.1 A* is also a positive integral idempotent with kernel a*.

Proof. Clearly, A* is an idempotent. It follows immediately from Theorem 1.21

that A* is a positive integral operator with kernel a*. ]

Lemma 3.2 Suppose A is an idempotent with finite-rank s. If {u;}3_, is an or-
thonormal basis of the range of A, then

A= Z uJ®(A‘uj)’
J=1
or equivalently, the kernel a of A is given by
a(z,y) = ) ui(z) A%, (y)
=1

for almost every (z,y) in X x X.

Proof. For any f € L%(X,m), since {u;}%., is an orthonormal basis of the range
of A, we have

s

Af = Y (Af, uj)y

i=1

= Z (f, A‘“J)“J

= [i: Uj®(A"uJ)] f

Therefore, A = 3°7_; u;Q(A%u;). ]

Lemma 3.3 Suppose U C X is @ measurable set such that m(U)ym(U®) # 0. Ifa=0
a.e. in USxU, and a is non-zero on a subset of UxU of positive measure, then there

ezists a non-zero element u in L2(X,m) satisfying

(1) u is a positive element in L2(X,m),

R e RETUCITE ey 0 g SRATT FER e e

RG] RS ol Pod IR N IR SEIAR I T R o &
v 4

DT SgteetpeTt g UEOAT R TAETT SRV TS YT VTR W

R LI



40

(¢2) u =0 a.e. on U,

(222) u is in the range of A, i.e., Au = u.

Proof. Recall that Py is the orthogonal projection of £3(X',m) onto My
Xy L3 (X, m). We identify My with £3(U, m) in the usual way. Therefore, by Propo-
sition 1.5, PyL?(X,m) is invariant under A, and

PyA

£2(Um) * ﬂz(U,m) I £Z(U,m)

is an integral operator with non-negative kernel a(z,y), (x,y)€U xU. Since a is non-
zero on a subset of UxU of positive measure, Py A|z2um) is a non-zero idempotent.
Therefore, there exists a positive element w in £2(U, m) such that Py A| cumw #0.
Let

w' = PU Alcz(u‘m)w.

Then

PUAIL:?(U,m)wl = w'.

Define a positive element u in LZ(X, m) as follow:

u(z) = w'(z) ff zel,
0 if z¢U.

Clearly, u is non-zero, and satisfies (i), (ii) and (iii). |
Lemma 3.4 Suppose u # 0 is a positive element in L2(X,m)that belongs to the

range of A. Fiz a non-negative representation of u (and still denote it by u). If U is

the measurable subset of X given by
U={zeX:u(z)#0},

then a(z,y) = 0 for almost every (z,y) in U°xU.

e Ghaign e

e s

-

S = = MRy

~

e gy AT B g e

n e e aRne

e RIS TPt o pek s v e wne

.



41

Proof. Since u is in the range of A, (Au)(z) = u(z) = 0 for almost every x€U°.
It follows that, for almost every z€U*,

[, ate,vyut@)midy) = o.

But a(z,-) and u(-) are non-negative functions, and we have that a(z,y)u(y) = 0 for
almost every y in X'. Therefore, a(z,-) is zero almost everywhere on U. Hence, by

Fubuni’s Theorem, a(z,y) = 0 for almost every (z,y) in U*xU. ]

Lemma 3.5 If an element u in the range of A is real, then there exists a positive
element h in L*(X,m) such that Ah =0, and u* + h and u~ + h are in the range of
A, where ut = I(Ju| + u) and u™ = 1(|u| — u) are positive and negative parts of u.

Proof. By the definitions of u* and u~, we have that
wt —u" =u=Au=A(ut —u") = Aut — Au~,
and Aut and Au~ are positive. So, if we let
h=Aut —u*t = Au™ —u",
then Ah = A(Aut — u*) = 0, and h is positive since u* and u~ are the minimum
among all pairs of positive elements ¢ and ¢ with the property that u = ¢ — 3. It

follows that
A(ut 4+ h) = Aut + Ah = ut + b,

and
Alu+h)=Au" + Ah=u" + h.

This means that u* 4+ h and u~ 4 h are in the range of A. =

Lemma 3.6 If an element u €L%(X,m) belongs to the range of A, then the real part

Reu and imaginary part Imu of u are also in the range of A.

Proof. Since A sends positive elements to positive elements in L2(X,m), A also
sends real elements to real elements. Therefore, A(Reu) = Re Au = Reu and A(Imu)

= Im(Au) = Imu. It follows that Reu and Imu are in the range of A. ]



Lemma 3.7 There ezists an orthonormal basis of the range of A consisting of real
elements of L3(X,m).

Proof. Let {u;}_, be an arbitrary orthonormal basis of the range of A. For
every j, it follows from Lemma 3.6 that both Reu; and Imu; are in the range of A.
Hence, the range of A is the span of the set

{Reu;,Imu;}

s
j=1

Using the Gram-Schmidt process, we can obtain an orthonormal basis of the range
of A consisting of real elements of L2(X, m). .

3.2 Bases of Ranges of Positive Integral

Idempotents

In this section, we will construct, for a given positive integral idempotent, a basis of
its range that consists of positive elements of L2(X,m). The construction is based
on the analysis of the kernel of the given positive integral idempotent. We will use

freely the results about positive integral idempotents proved in the previous section.

Recall that throughout this chapter A will denote a positive integral idempotent
induced by kernel a and the rank of A is equal to s (s could be +00).

Lemma 3.8 Suppose T € B(L*(X,m)) is an integral operator with non-negative
kernel k. If b is a positive element in L2(X,m), and Th = 0, then k(z,y) = 0
for almost every (z,y) in X xU,, where U, is the measurable subset of X defined as
follows: fiz a representation of h and

U, ={z € X : h(z) # 0}.

Proof. The proof is similar to the proof of Lemma 3.4. s
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Lemma 3.9 If X, and X, are measurable subsets of X and a =0 a.e. on both X x X,
and Xx Xy, then a =0 a.e. on X'x(XoUX;).

Proof. Since A% = A, we have that
a(z,y) = /X a(z,t)a(t,y)m(dt)
for almost every (z,y) in X x X. Therefore, for almost every (z,y) € X' x X,
a(z,y) = /x a(z,t)a(t,y)m(dt) = 0.

This means that a = 0 a.e. on X' xX; and hence on X x(XoUX)). ]

Lemma 3.10 If A is a positive integral idempotent of rank one, then there exist
disjoint measurable subsets Xo, X; of X with m(X,) > 0 such that

() a =0 a.e. on XA'x Xy,
(20) a=0ae. on (XoUX;)* x X,
(z22) a(z,y) > 0 for almost every (z,y) in X;x X¢.
Proof. Since A # 0 is a positive idempotent, there exists a positive element u in

L%(X,m) such that ||ul]| = 1 and Au = u. It follows from Lemma 3.2 that a = u®v

where v = A*u is a positive element of L2(X, m).

Choose non-negative representations of u and v. Then a(z,y) = u(z)v(y) for

almost every (z,y) in X x X. Let
U, = {z € & : u(z) # 0},

U,={z € X:v(z)#0},

and let Xy = U¢, and X; = U,NU,. Clearly, Xp and X; are measurable and disjoint.

However,
(u, v) = (u, A*u) = (Au, u) = (u, u) =1,
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and we have m(X;) = m(U,NU,) # 0.

It is obvious that, for almost every (z,y) in X x Xy, e(z,y) = u(z)v(y) = 0, and
that, for almost every (z,y) in X;xX§, a(z,y) = u(z)v(y) > 0.

Since
XoUX, = UsU(U,NU,) 2 Uy,

we have (XoUX,)® C US. Therefore, a = 0 a.e. on (XoUX;)® x &X. L

Theorem 3.11 Suppose A is a positive integral idempotent with kernel a. If there
exists a real element in the range of A with positive and negative parts non-zero in
L3(X,m), then there ezist pairwise disjoint measurable subsets Xo, X, and X, of X
such that

(7)) a =0 ae. on XxXp,
(#7) m(X,) > 0 and m(X;) > 0,
(it7) a =0 a.e. on (XoUX;)*xX;, (7 =1,2),

(tv) a is non-zero on a subset of X;xX; of positive measure, (j = 1,2).
In particular, Mx,ux, is a non-trivial standard invariant subspace of A.

Proof. Suppose u is a real element in the range of A with u* and u~ non-zero
in £L2(X,m). By Lemma 3.5, there exists a positive element h in L2(X,m) such that
Ah =0, and u* 4 h and u™ + h are in the range of A. Fix representations for u and
h. Let

Xo = {z € X : h(z) # 0},
Uy = {z € X :u¥(z) # 0},
Uy = {z € X:u™(z) # 0},
and let X; = U;\Xo and X; = U\ Xp. Clearly, Xo, X; and X, are pairwise disjoint

measurable subsets of X.



It follows from Lemma 3.8 that (i) is true.

For (ii), suppose m(X;) = 0. Then Au* = 0 since ¢ = 0 a.e. on XxX,. It
follows that u* + h = A(u* + h) = Au* + Ah = 0. This implies that u* = 0, which
contradicts the assumption on u. Thus, m(X,) > 0. Similarly, m(X3) > 0.

For (iii), since u* + A is in the range of A, by Lemma 3.4 we have a = 0 a.e. on
(UhUXe)¢ x (U1UXop). But UjUXp = XoUX; and X; C U;. We conclude that a =0
a.e. on (XoUX))*xX,. Similarly, ¢ = 0 a.e. on (XoUX3)xXo.

Suppose (iv) is not true. Then ¢ =0 a.e. on X;xXj, (j = 1 or 2). Combining
with (iii), we have a = 0 a.e. on X§xX;. Therefore, it follows from Lemma 3.9 that
a =0 a.e. on XxX;, and hence, on X'xU;. Thus, A(u* + k) =0o0r A(u™ + k) =0.
This implies that u* = 0 or u~ = 0, which is impossible. Hence a is non-zero on a

subset of X;xX; of positive measure, (j = 1,2).

Finally, since X; and X, have non-zero measure, M x,ux, is a non-trivial standard
subspace of £L(X,m). By the fact that @ = 0 a.e. on (XpUX1)® x (XoUX;), we have
that Mx,ux, is invariant under A. ]

Theorem 3.12 FEvery positive integral idempotent of rank at least two has a non-

trivial standard invariant subspace.

Proof. Suppose A is a positive integral idempotent of rank at least two. By
Theorem 3.11, it is suffice to show that there exists a real element u in the range of

A with non-zero positive and negative parts in L*(X,m), i.e., ut # 0 and u~ #0.

It follows from Lemma 3.7 that there exists an orthonormal basis of the range of A
consisting of real elements of £L?(X',m). If one the basis elements has non-zero positive
and negative parts, then we are done. Otherwise, we may assume that there are two
non-zero orthogonal positive elements in the range of A, and hence, the difference

between them is in the range of A with non-zero positive and negative parts. [

For any integral operator T from £*(X,m) to another Hilbert space L£%(Y,m’)

e 7 O . . "= 2
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with kernel non-negative, let
Null¥(T) = {g € L3}(X,m) : g is positive and Tg = 0}.

We call it the positive null set of T'. From Lemma 3.8, It is easy to see that Null*(T) =
{0} if and only if there is no measurable subset E of X with non-zero measure such
that the kernel of T vanishes almost everywhere on Yx E. In particular, Null*(T') =
{0} if the kernel of T is positive almost everywhere.

Suppose T is an integral operator with kernel non-negative and S is a nositive
operator. If Null*(T') = {0}, then T'S = 0 implies that S vanishes on the set of all
positive elements, and hence, S = 0.

Theorem 3.13 Suppose A is a positive idempotent of finite rank s. Then there exist
pairwise disjoint measurable subsets Xg, Xg, X1,...,X, with union X' such that

(1) a=0 ae. on XxX{, and on XJxX,
(72) a =0 ae. on (XPUX,)xX,, (1 =1,2,...,s),

1) a(z,y) > 0 for almost every (x,y) in X,xX,, and a|x, xx, is the kernel
J J 1%

of an idempotent of rank one, (j =1,2,...,s).

Proof. We prove this theorem by induction. It follows from Lemma 3.10 that the

result is true for s = 1.

Suppose s > 1, and the result is true for all positive idempotents with rank less
than s. Since the range of A is of dimension s > 1, we can choose an element u
in the range of A such that both u* and u~ are non-zero. By Theorem 3.11, there
exist pairwise disjoint measurable subsets Yp,Y; and Y, of X with m(Y;) and m(Y3)
positive such that a = 0 a.e. on XxYy, a = 0 a.e. on (YoUY,)°xY,, and a is non-
zero on a subset of Y, XY, of positive measure, (j = 1,2). Therefore, the restriction
Ay = Pyuv A| Myuy, of A to its standard invariant subspace My,.y, is a non-zero
idempotent with rank less than s. Repeat this process if the rank of A, is great than

one. Thus, we may assume that A, is of rank one.
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Let A; be the compression of A to My,uy;)c, the orthogonal complement of
My,uy,. Then A, is an idempotent of rank s -- 1. By the induction hypothesis,
there exist pairwise disjoint measurable subsets W'/, W", X,, Xj,..., X, of X whose

union is equal to (YpUY;)° such that

(1) @ = 0a.e. on (YoUY;)*x W’ and on W”x(Y,UY; )%, and hence,on W"x X,
(#1) @ =0 a.e. on [(YoUY7)*\ (W'UX))]|xX;, ( =2,3,...,8),

(¢4i) a(z,y) > 0 for almost every (z,y) in X;xX;, and a|x,xx, is the kernel

of an idempotent of rank one, (j = 2,3,...,s).

It follows that My, y,uw is invariant under A, and the restriction of A to it remains
an idempotent of rank one. Thus, by redefining Y; and Y; if necessary, we may assume
that W’ = . Applying Lemma 3.10 to the idempotent A, we have that there exist
pairwise disjoint measurable subsets X{, X; and W of YyUY1, whose union is YoUY)
and m(X7) > 0, such that a = 0 a.e. on (YoUY;)x X], and hence, on X’ x X, and on
W x (YoLY1); and a(z,y) > 0 for almost every (z,y) in X; x( X{UW).

Corresponding to the decomposition
LY (X, m) = Mx; & Mx, ® Mw & Mu:_,x, & Mwn,

A is of the form
[0 * « % x )

0 Ay Az A *
A= 0 0 0 Asq A35
A44 *

L 0 o

Since A% = A, we have
AzAgs + A23Azqg + A2Ags = Aga.
However, A;; is an idempotent. It follows that

AnAx + ApAnAszs + A ArAsu = AxAgy.
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Thus, AzpA2A3s = AAzAs = 0 since all operators here are positive integral
operators. On the other hand, Null*(A;;) and Nullt(Az3) are equal to {0} because
a is positive almost everywhere on X;xX; and X; xW; and both Null*(A,) and
Null*(Aj,) are equal to {0} because a is positive almost everywhere on X, xX,,
(7 =2,3,...,s). By the earlier comment on the positive null set, we have Aaq = 0
and Ay4A44 = 0, and hence, A;4 = 0. Consequently, Azs = 0 since A? = A,

Let X; = WUW?". Then it is easy to see that the pairwise disjoint meacurable
subsets X{, X{, Xi,..., X, of X obtained above satisfy all the requirements. (]

The technique used above relies on the induction on the rank of A, and therefore,
only works for positive integral idempotents of finite rank. However, if we assume that
the Hilbert space £3(X',m) is separable, then the above result holds for all positive
integral idempotents, finite rank as well as infinite rank. We need the following

lemmas to prove this.

A chain of subspaces of a Hilbert space H is a family of subspaces of H that is
totally ordered by inclusion. Let Q be a chain of subspaces of H. For every M € Q,
define

M_o=\{N:NeQ,NCMbut N#M}

We call Q a continuous chain if M_ = M for each M € (.

The following result, which will be used to prove the main theorem of this chapter,

may be of independent interest.

Lemma 3.14 Suppose T is an integral operator on L2(X',m) with non-negative ker-
nel k. If there exists a continuous chain Q) of standard subspaces of L*(X,m) whose

members are invariant under both T and T*, then T = 0.

Proof. In Hilbert space £3(X x X',mxm), fix a sequence of non-negative mea-
surable functions {k,}%2, with the properties that k; < k; < -+ < k and {k;}32,
converges to k almost everywhere on X x X. For each positive integer 7, let T be the

integral operator induced by k,. Then all T, are Hilbert-Schmidt operators and, by

~

o
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Proposition 1.5, all elements of () are invariant under both T; and T7, (j = 1,2,--).
Also, by Fubini’s Theorem, {7},} converges to T in the weak operator topology. Thus,

it suffices to show that T}, = 0 for every positive integer j.

Fix an integer j. All elements of {) are invariant under both T} and T, and there-
fore, are invariant under T;T,. However, (} is continuous. It follows from Ringrose
[49, Theorem 4.3.10] that T;'T, is quasinilpotent. Consequently, T; = 0. |

Lemma 3.15 Suppose L*(X,m) is separable and A € B(L%(X,m)) is an integral
idempotent with non-negative kernel a. Then there exists a measurable subset Xy of
X such that a« = 0 a.e. on XxXo and Null*(A,) = {0} where A, is the integral

operator induced by the non-negative kernel a|xexxg.

Proof. Since £L*(X,m) is separable, the unit ball of L2(X,m) is weakly metriz-
able. The intersection of the unit ball of £2(X,m) and Null*(A) is closed in the
weak topology, and therefore, weakly compact and weakly separable. Let {f;} be a
countable weakly dense subset of the intersection. For each j, fix a representation of
[; and let

U,={zeX: fi(z) # 0}.
Take Xo = U,U,. Then a = 0 a.e. on A'xX, since XxXo = U;XxU, and, by

Lemma 3.8, a = 0 a.e. on X' xU, for each j.

Suppose Null*(A4,) # {0}. Then there exists an positive element h € Mg,
k]| = 1, such that Ajh = 0. Fix a representation of h and let

Un = {z € X§: h(z) # 0}.

By Lemma 3.8, @ = 0 a.e. on X{xU,, and therefore, on X' xU, by Lemma 3.9.
Thus, Ak = 0, and h is in the intersection of the unit ball of £2(X, m) and Null*(A).
Consequently, h is the weak limit of some subsequence in {f;}, which is impossible

since h is non-zero and orthogonal to each f;. |
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Theorem 3.16 Suppose L*(X,m) is separable and A € B(L*(X',m)) is a positive
integral idempotent with kernel a. Then there exists a sequence of pairwise disjoint

measurable subsets Xy, X¢, X1, X2, -+ with union X' such that

() a=0 a.e. on XxX}, and on XJx&X,
(¢2) a =0 a.e. on (XQUX,)*xX,, (j =1,2,--+),

(#22) a(z,y) > 0 for almost every (z,y) in X, xX,, and a|x,xx, is the kernel
of an idempotent of rank one, (j = 1,2,--.).

Proof. By applying Lemma 3.15 to A, we can obtain a measurable subset X{
of X such that @ = 0 a.e. on X'xX} and Null*(4,) = {0} where A, is the integral
operator induced by the non-negative kernel aj xzexxge. Now Aj is also a positive
integral idempotent. By Lemma 3.15 again, there exists a measurable subset Xy of
X4 such that a* = 0 a.e. on X}*x X} and Null*(A3) = {0} where A; is the integral
operator induced by the non-negative kernel

alxguxex(Xgux e
Thus @ = 0 a.e. on XxX}) and on X} xX. Since Null*(4,) = {0}, we have that
Null*(4;) = {0}.

Consider the operator A, defined above. It is the compression of A to the standard
space Mx1ux)e, and therefore, a positive idempotent. Let ¥ = (XgUXy)°. Suppose
U C Y is measurable and the standard space My is invariant under A,. Then, by
Proposition 1.5, @ = 0 a.e. on (Y\U)xU. Under the decomposition

My = My & My,

Ay = An Ap .
0 A

Since A; is an idempotent, we have

A3 is of the form

AnAiz + AAp = Ay,

oy

e Ve 3o e
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Left multiplying this equation by A;1, which is clearly an idempotent, we have
AnAiz + AnApdn = Andr.

It follows that A3 A 3A,; = 0. However, both Null*(4;) and Null*(A3) are {0}, and
hence, so are Null*(A;;) and Null*(A3,). Consequently, A;2 = 0 and My is invariant
under both A; and Aj.

Fix a chain Q of standard invariant subspaces of A, containing both {0} and
L%(Y,m|y). By Zorn’s Lemma, we may assume that ) is maximal in the sense that
there is no other chain of standard invariant subspaces of A; containing ) properly.
For every M € ), by the remark following the definition of standard subspace (Defi-
nition 1.4), M_ is also a standard subspace. Clearly, M_ is invariant under A; and
QU{M_} remains a chain. Thus, M_ € Q). However, every standard subspace which
is invariant under A; must be also invariant under A3. It follows that every M €

is invariant under both A, and Aj.

Suppose M € Q and M_ # M. Then M 6 M. is a standard subspace, i.e.,
M 6 M_ = Mg for some measurable subset £ C Y. The standard subspace Mg
is invariant under both A; and Aj. It follows from Proposition 1.5 that a = 0 a.e.
on (Y\E)xE and Ex(Y\E). The compression Ay of A; to Mg = MO M_ is a
positive integral idempotent whose kernel is the restriction a|gxg. By the maximality
of 2, A has no non-trivial standard invariant subspaces as an operator on L*(E,m),
and therefore, by Theorem 3.12, is an idempotent of rank one. Since botk Null*(A;)
and Null*(A3) are {0}, we have that a(z,y) > 0 for almost every (z,y) in ExE.

Since £2(X',m) is separable, the set
MG ={MeQ: M_ # M}
is countable. For each M € Q,, choose a measurable subset Exq of Y such that
Mg,, = Mo M_.

If M and A are two distinct elements of Q,, then either M C N or M O N. Con-
sequently, m(EmMNEx) = 0. We may assume, WNLG, that EMNEx = 0 if M # N

e
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Thus, the set of all Ep with M € (1, is countable and can be listed as a pairwise dis-
joint sequence Xj, X3, - . With the measurable subsets X3, Xg, X1, X3, - of X, the

theorem will be proved if we can show that their union is equal to X', or equivalently,
Y =U;51X;.
Therefore, it suffices to show that
m(Y '\ (Uj21Xj)) = 0,
since we can change, if necessary, one of X; by a set of measure zero.

Let
Y1 =Y\ (Uj» X;),

and let A; be the restriction of A; to My,. Then, since all My, are invariant under
both A; and A}, A3 is a positive integral operator whose kernel is aly, xy,. Consider
the following chain

Qy = {N: N = MN My, for some M € 1}.

It is a continuous chain of standard subspaces whose elements are invariant under both
Aj and Aj. By Lemma 3.14, we have that A3 = 0. It follows that Xy, € Null+(A1),
and therefore, m(Y}) = 0 since Null*(4;) = {0}. ]

Corollary 3.17 Suppose A is a positive integral idempotent on L2(X,m) with kernel
a and its rank is equal to s, 0 < s < +oc, and L2(X, m) is separable if s = +00. Then
there exist pairwise disjoint measurable subsets {X;}:_, of X, and an orthonormal

set {w;}%, of positive elements in L*(X,m) such that

(1) w; =0 a.e. on X§, and Aw; = w, a.e. on Uj_; X; for every j.

(i7) For every j, let u; = Aw;. Then (w;, w) = 8;1 for every pair of integer

j and 1. Consequently, {u;}%_, is linearly independent.
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(iti) There ezists a set {v,}°, of positive elements in L(X,m) such that

8
A= z u,-®v,-
j=1
where the series converges in the weak operator topology if s = +00. As

a result, {u,}I_, is a basis of the range of A.

Proof. By Theorem 3.13 or 3.16 if s = +00, there exist pairwise disjoint measur-
able subsets X, Xg, and {X;}_, of X, whose union is X, with the properties that
a =0 a.e. on both XxXj and X{xX, and that ¢ = 0 a.e. on (XgUX;)°xX,, and

a|x,xx, is the kernel of an idempotent of rank one for every j.

Fix an integer j. Since a|x,xx, is the kernel of an idempotent of rank one, there
exists a positive element w; in £2(X;, m) with unit norm such that a|x,xx; = w;Qu;
for some positive w’; in L2(X;,m). Define w; and w to be zero on X§. Then both of
them are in My,. Since a = 0 a.e. on X xXj, on XgxA' and on (XUX;)*xX; for
each [, we have that Aw; = w, a.e. on U}, X;. Clearly, {w;}!_, is an orthonormal

set in L2(X',m). Thus (i) has been proven.
It is easy to see that (ii) follows immediately from (i).
For (iii), consider the matrix of A in the following decomposition:
LYX,m) = Mx: @ My x; © Mxy.

The matrix is of the form
0 Az A
A=| 0 Ap Agx
0 0 0
Since A2 = A, we have A12A22 = A12, A12A23 = A13, and A22A23 = A23. By the

definitions of w, and w}, the operator Ass given by

Ap=]0 Ap 0
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is equal to 3}, w;@uw], where the series converges in the weak operator topology if
s = +o0o. However, AAyA = A. Therefore,

A i w;Quw}| A

i=1

A

3

2 (Aw;)®(A*w))

i=1

S
= 2 u®vj

i=1

where v; = A*w) is a positive element of L*(X',m) for every j since A* is also a

positive operator. ]



Chapter 4

Semigroups of Positive

Operators

A class of bounded operators on a Hilbert space is called reducible if there exists a non-
trivial subspace of the Hilbert space invariant under every operator in the class. A
class of bounded operator on a Hilbert space is called irreducible if it is not reducible.
Recently, a number of results about the reducibility of semigroups of operators have
been obtained. It was proved [41, Theorem 1] that a semigroup S of quasinilpotent
operators on a Hilbert space H is reducible if it contains an operator other than 0
in some C, class. The reduciblity of semigroups of operators represented by matrices
with non-negative entries has been studied in [46]. It was proved [46, Theorem 5]
that a semigroup S of compact operators represented by matrices with non-negative
entries is reducible if #(ST) < r(S)r(T') for every pair S and T in S. The existence
of non-trivial stantard invariant subspaces for certain semigroups of positive integral
operators on £2(X', m) was studied in [14]. There are some other related results which
can found in [34], [45] and [47]. In this chapter, we discuss the reducibility of certain
classes of positive operators, especially, semigroups of positive integral operators. We
either extend the results mentioned above to more general cases or use them to prove
some results about the reducibility of semigroups of positive operators. We are also

interested in finding non-trivial standard invariant subspaces for such classes.

35
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4.1 Reducikility of Semigroups of

Positive Operators

We first list several known results for future reference. A subset J of the semigroup
S is called an ideal in S if JS and SJ belong to J for all J € J and S € S.

Lemma 4.1 [46, Lemma 1] If a semigreup S of operators is irreducible, then so is

every non-zero ideal J in S.

Proof. Suppose J is a non-zero ideal in §. If M is a non-trivial invariant
subspace of 7, then the following two subspaces are invariant under S, and it is easy

to verify that at least one of them is non-trivial:

(¢) The closed linear span of {JM :J € J}.

(2¢) The intersection of the nullspaces of all J in J.

Lemma 4.2 [41, Lemma, p.272] Suppose H is an arbitrary Hilbert space and p is a
positive number. If S is a semigroup of operators on H and C € S NC, is non-zero,
and if S leaves no subspace (other than {0}) of the nullspace of C invariant, then S

contains a non-zero trace-class operator.

Proof. Choose an integer n greater than p. We prove the lemma using the fact

that any product of n C, class operators is a trace-class operator.

For each ¢ € H, = # 0, there exists an operator § € S such that CSz # 0, for
otherwise the closed linear span of {Sz: S € S} if Cx #0orof {Sz: S € S} U {z}
if Cz = 0 is a non-trivial invariant subspace of S contained in the nullspace of C.

By applying this procedure n times, we can find n operators Sy, Sz,..., S, in § such



P e

I

TG E s e

87

that CS,CSn_y -+ CS1z # 0. Therefore, CS,CSp-y -+ CS; is a non-zero operator

in C; since every CS; isinCp, j = 1,2,...,n. [ ]

Theorem 4.3 [41, Theorem 1] Suppose H is an arbitrary Hilbert space and p is a
positive number. If S is a semigroup of quasinilpotent operators on H, and if S

contains an operator other than 0 in C, class, then S is reducible.

Proof. Suppose S is irreducible. Then, by Lemma 4.2, § contains a non-zero
trace-class operator S. Let J be the ideal in S generated by S, and let A be the alge-
bra generated by J. Clearly, every operator in J is a trace-class operator, and every
operator in A is a linear combination of operators in J. Since S consists of quasinilpo-
tent operators, we have that the trace as a function on the trace-class is constantly
zero on J, and hence, on A. Consequently, A is not C;-dense in C;. However, by
Lemma 4.1, the irreducibility of S implies that J is irreducible. Therefore, A is also
irreducible. This contradicts the fact proven in [48] as a consequence of Lomonosov’s

Lemma [35), that subalgebras of C, are reducible unless they are C,-dense in C,. ®

The following two theorems are from [46, Theorem 5], which give two sets of

sufficient conditions for a semigroup of compact operators to be reducible.

Theorem 4.4 [46, Theorem 2] If every member of a semigroup S is a non-negative
scalar multiple of a compact idempotent and r(ST) < r(S)r(T) for every pair S and
T in S, then S is reducible.

Proof. Omitted. (]

Theorem 4.5 [46, Theorem 5] Let S be a semigroup of compact operators represented
by matrices with non-negative entries. If 7(ST) < r(S)r(T) for every pair S and T
in S, then § is reducible.

Proof. Omitted. ]
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An operator that can be represented by a matrix with non-negative entries may
be viewed as an integral operator on some £%(X,m) which is induced by a non-
negative kernel with a discrete measure space (X,m). Therefore, the semigroup S
in the above theorem may be regarded as a semigroup of positive integral operators
on some Hilbert space £*(X,m) with a discrete measure space (X, m). We now
consider the case where (X', m) could be any type of measure spaces, discrete or not.
Throughout the rest of this chapter, we assume that § is a multiplicative semigroup
of operators on L2(X, m) where X is a topological space and, with its Borel structure,
a standard Borel space and m is a o-finite regular Borel measure on X such that the

Hilbert space £L(X',m) is of dimension at least two.

The following lemma, though not difficult to prove, is interesting. It plays an
impotant role in the proofs of main theorems of this chapter.

Lemma 4.6 Suppose T is a non-zero positive integral operator with kernel k. Then
there exists a non-zero positive Hilbert-Schmidt operator Ty with kernel ko such that

k—ko20ae onX xX.

Proof. For every positive integer j, let
G, ={(z,y) € ¥ x X : 0 < k(z,y) < j}.

Then all G,, (j = 1,2,---), are measurable subsets of X x X, and at least one of
them, say G,,, has measure (mxm)(Gj,) > 0 since T is non-zero. Since (X, m) is
a o-finite measure space, we can choose a measurable subset Gy of G, such that
0 < (mxm)(Gy) < +o0.

Let
ko(z,y) = X (2,y)k(z,y) (z,y) €X x X.
Then, ko satisfies that k — kg > 0 a.e. on X x X, and therefore, is a non-negative

kernel on X x X. By the definition of Gy, we have ky € L2(X x X,mxm). Hence k¢
induces a non-zero positive Hilbert-Schmidt operator Ty on L%(X,m). [ ]
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Theorem 4.7 If S is a semigroup of positive quasinilpotent integral operators, then

S is reducible.

Proof. We may assume that S contains a non-zero operator T'. Let k be its kernel.
It follows from Lemma 4.6 that there exists a non-zero positive C, class operator Tp
with kernel kg such that k — kg > 0 a.e. on & x X

Let Sy be the multiplicative semigroup generated by S U {To}. We complete the
proof by showing that Sp is reducible. By Theorem 4.3, it suffices to show that S is
a semigroup of quasinilpotent operators since it contains a non-zero C; class operator
To.

Indeed, every element in Sp has the form Tg§'S;T?S; « -+ Sn-1Tg", where all S;
are in § and all ¢; are non-negative integers, (1 < j < n). By Proposition 1.11 and
Theorem 1.13, the kernel of Tg§'S,T§*S; - - Sp—1Tg" is dominated by the kernel of
quasinilpotent operator T" S5, T%S, ... S,_;T™. It follows from Corollary 1.14 that
TES\ TS, -« Su1T$" is a quasinilpotent operator. ]

Theorem 4.8 Suppose § is a semigroup of compact positive integral operators. If
r(ST) < r(S)r(T) for every pair S and T in S, then S is reducible.

Proof. Since the spectral radius is continuous in norm for compact operators, we
may assume that S is norm-closed and that any non-negative scalar multiple of an
operator in § is still in S. We may also assume that S contains no quasinilpotent
operator other than zero, for otherwise the ideal J in S generated by some quasinilpe-
tent operator S € S, A # 0, is non-zero and consists of only quasinilpotent operators.

By Theorem 4.7, .7 is reducible, and therefore, so is § by Lemma 4.1.

We may assume that S contains a non-zero operator and thus an operator A with
r(A) = 1. We claim that there exists a non-zero idempotent of finite rank in S. The
proof of this claim is similar to that of [46, Theorem 1]. By the Riesz decomposition

theorem [48], A can be represented, under a decomposition of £2(X’,m) which may

et
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be non-orthogonal, by a matrix of the form

U+N 0
A= +
0 B
where U is a finite unitary matrix commuting with the finite nilpotent matrix N and
r(B) < 1. Since U is unitary, some subsequence of {U?}32,, say {UP}, approaches
the identity matrix of the same size. Therefore, if we can show that N = 0, then

the norm-limit of sequence { A”*} will be an operator similar to the projection on the

range of U, the hence, a non-zero idempotent of finite rank. Suppose N # 0. Let q
be such that N? # 0 and N?*! = 0. Then

(U+NP?=U?+ (11’) UP~IN .. + (p) UP-IN?
q

for every p > ¢q. By taking p = p; + ¢ and letting ¢ tend to oo in the above equation,

we have sba
lim U+ NL = N9
pi+4q
q
and
l' AP.-HJ Nq 0 C
im———e— = =C.
Pitq 0 0
q

It follows that C € S is nilpotent and non-zero, which is impossible since S contains
no quasinilpotent operator other than zero. To simplify the notation, we assume that

A itself is an idempotent of finite rank.

Suppose A is of rank s. If s = 1, then every member of SAS, which is the ideal
in 8 generated by A, is a non-negative scalar multiple of a rank-1 idempotent since
S contains no quasinilpotent operators other than 0. Therfore, SAS is reducible by

Theorem 4.4, and hence, S is reducible by Lemma 4.1.

For the case where s > 1, by Corollary 3.17, there exists an orthonormal set

{wy,ws,...,w,} in L2(X,m) and a basis {u,us,...,u,} of the range of A such that
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(2) wj, u; and v; are positive, (j = 1,2,...,3),

(u) (zvj, U() = 05l (j,l = 1,2,...,8).

Let R denote the range of A. Consider the semigroup ASA|r. If we can show that
there exists a non-trivial subspace M C R invariant under every operator in ASA|z,

then the subspace

N=\{SM:S €S}

is invariant under S and is non-trivial since
M=AMCN

and

SM=ASM+ (1 — A)SM C M+ (1 — A)SM

for all S € S, so that
NCM+(Q1-AL(X,m).

We complete the proof by showing that there indeed exists a non-trivial subspace
M C R invariant under every operator in ASA|g. By Theorem 4.5, it suffices to
show that relative to the basis {uy,us,...,u,}, ASA|r can be represented by sxs
matrices with non-negative entries, since it is clear that r(ST) < r(S)r(T) for every
pair S and T in ASA|g. For any T € S, suppose relative to the basis {u;,us,...,us},
AT A|r is represented by the matrix (t;;), that is,

ATy = thluj, (1=1,2,...,9).
j=1

However, A and T are positive operators, u, and w; are positive for all j by (i) and
(wj, w) =& for all j,1 by (ii). It follows that

(i taui, w;)
(ATw, w;)
0

L

v

forall j,I=1,2,....s. (]
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Suppose (X,m) is a finite measure space. As in Theorem 2.7, the algebra of all
pseudo-integral operators with absolutely bounded kernels can be decomposed into

the direct sum

p'—'IeB'paa

where T consists of all irtegral operators in P, and P, of all operators in P with
kernels singular to the product measure mxm. Therefore, corresponding to this

direct sum, every operator in P is the sum of its integral part and its singular part.

Theorem 4.9 Suppose (X,m) is a finite measure space and S is a semigroup of
positive quasinilpotent operators. If S contains an operator with non-zero integral

part, then S is reducible.

Proof. Let T be in S with non-zero integral part Tp and let Sy be the semigroup
generated by S U {Tp}. It suffices to show that Sy is reducible.

Since T is a positive quasinilpotent operator, so is Tp. By an argument similar
to that in the proof of Theorem 4.7, we can prove that Sy is a semigroup of positive
quasinilpotent operators. Let J be the ideal in Sp generated by the non-zero integral
operator Ty. Then [J consists of only integral operators by Theorem 1.23. Therefore
J is reducible by Theorem 4.7 and then so is S¢ by Lemma 4.1. ]

Theorem 4.10 Suppose (X, m) is a finite measure space and S is a semigroup of
compact posilive operators with the property that vr(ST) < r(S)r(T') for every pawr S
and T in S. If S contains either a non-quasinilpotent operator or a non-zero integral

operator, then S is reducible.

Proof. Suppose S contains a non-quasinilpotent operator T'. As in the proof
of Theorem 4.8, we may assume that S is norm-closed and that any non-negative
scalar multiple of an operator in § is still in S. And in particular, we may assume
that r(T) = 1. Since T is compact, by an argument similar to the one in the proof

of Theorem 4.8, the norm limit of a sequence of powers of scaler multiples of T is
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a non-zero finite-rank operator, and hence, an integral operator. Thus § contains a

non-zero integral operator.

Now, WNLG, we assume that S contains a non-zero integral operator S. By
Theorem 1.23, the ideal J in S generated by S is non-zero and consists of only
integral operators. It follows from Theorem 4.8 that J is reducible, and therefore, S

is reducilile. s

A marimal subspace chain is a chain of subspaces of a Hilbert space that is not

properly contained in any other chain of subspaces.

Definition 4.11 [41, Definition, p271] A collection of bounded linear operators on a
Hilbert spa.e ., (simultaneously) triangularizable if there exists a maximal subspace

chair e. 1 of ‘hose members is invariant under all the operators in the collection.

Theorem 4.12 Suppose (X',m) is a finite measure space and A is a norm-closed
algebra of compact operators in Ps. Then A consists of only quasinilpotent operators

and hence is triangularizable.

Proof. Since A is contained in P,, it contains no integral operators other than
0, and hence, no finite-rank operators other than 0. Consequently, every operator in

A must be quasinilpotent since A is a norm-closed algebra of compact operators.

It follows from Lomonosov’s results (see [34, theorem 10]) that A is triangulariz-
able. a

4.2 Standard Invariant Subspaces

In this section, we assume further that X is a locally compact Hausdorff space and
that A" is sccond countable, i.e., has a countable base for its topology. Recall that a

standard subspace of £?(.X,m) is a subspace of the form

My =X, L3X,m) ={f € L)(X,m): f=0ae on U}
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for some Borel set U in X. The idea of the standard subspace comes from the concept
of decomposability for matrices with non-negative entries, as well as the concept of
band in the Banach lattice theory (see [54] and [61]). The definition was introduced
in [14].

Suppose T is a positive quasinilpotent integral operator on £2(X',m). Then the
semigroup generated by T consists of only positive quasinilpotent operators. Theo-
rem 4.7 tells us that T has a non-trivial invariant subspace. But, just from the proof
of Theorem 4.7, there is no way we can determine whether the existing non-trivial in-
variant subspace is a standard subspace or not. When dealing with the case of single
operator, the following result, which is a special case of the Andé-Krieger Theorem,
obtained by Andé [2] for compact operators and generalized by Krieger [33], is much
more powerful. It not only tells us that any positive quasinilpotent integral operator
on L%(X,m) has a non-trivial invariant subspace, but also indicates that the invariant
subspace is a standard one. The proof of the Andé-Krieger Theorem can be found in
[54, p.336] and [61, p.621].

Proposition 4.13 If T' is a positive quasinilpotent integral operator on L*(X,m),

then T has a non-trivial standard invariant subspace.

Proof. See Cororllary 4.26, or {54, p.336], or {61, p.621]. .

Remark. It follows from Proposition 1.5 that a positive integral operator on the
Hilbert space £2(X,m) cannot be quasinilpotent if its kernel is positive almost ev-

erywhere on X' x X.

It was proved in [14] that any semigroup of positive quasinilpotent integral opera-
tors on L2(X, m) with lower semicontinuous kernels has non-trivial standard invariant

subspaces. The main theorems in this section are generalizations of this result.

For any Borel set E in X, the fact that X is second countable implies the existence
of a maximal open set U in X with the property that m(ENU) = 0. Indeed, using

the usual set inclusion as a partial order, the collection of all open subsets of X with
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the property that their intersections with £ have measure zero is a partially ordered
set. For any given chain in the collection, the union of all elements in the chain is
still an open subset of X’ and, because X is second countable, is equal to the union
of countable many elements in the chain. It follows that the union remains in the
collection and is the maximum among all elements in the chain. By Zorn’s Lemma,
there exists a maximal element U in the collect, i.e., U is a maximal open subset of
X with the property that m(ENU) = 0. Consequently, if we let £E; = EnU¢, then
m(E\E,) = m(ENU) = 0. Suppose V is an open set in X’ such that m(E,NV) = 0.
Then
m(ENV) = m([E) U (E\E)]NV) =0.

Thus, by the maximality of U/, we have that V C U and hence E\NV = §.

Lemma 4.14 For any Borel set E C X with m(E) # 0, there exists a Borel set
E\ C E with m(E\E,) = 0 such that m(E\NV) > 0 for all open sets V satisfying
EnV # 0.

Proof. It follows from the above analysis. ]

By applying Lemma 4.14 to X itself and disregarding a subset of measure zero if
necessary, we may assume that every non-empty open set in X’ has positive measure.

We make this assumption throughout the rest of this section.

Lemma 4.15 Suppose ¢ is a measurable function on X x X. If U and V are Borel

sets in X', then the following are equivalent:

() ¢=0ae onUxV,
(11) For almost every zelU, é(x,) =0 a.e. on V.

(i2¢) For almost every yeV, é(-,y) =0 a.e. on U.

Proof. Since m is o-finite, we may assume that m(U) and m(V) are finite.
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Let
D = {(z,9)eUxV : ¢(z,y) # 0},

and for every z€U, yeV, let

D, = {yeV : ¢(z,y) # 0},

DY = {z€U : ¢(a,y) # 0}.

By Fubini’s Theorem,

J,.. Xolasnmxm)de,dy) = [ [ Xy, pm(dy)m(da)
= /V/U,\’D(m,y)m(da:)m(dy).

Therefore,
(mxm)(D) = /U m(Dy)m(dz) = /V m(D¥)m(dy).

Thus, (mxm)(D) = 0 if and only if m(D,) = 0 for almost every z€l/, and if and
only if m(DY) = 0 for almost every yeV. =

Lemma 4.16 Suppose {@q} is a class of measurable functions on X x X, and V is
a Borel set in X with m(V) > 0. Then there exists a mazimal open subset U of X
with the property that ¢, =0 a.e. on UXV for all a, and a mazimal open subset W
of X with the property that ¢, =0 a.e. on VXW for all a.

Proof. Consider the collection of all open subsets O of X with the property that
6o = 0 a.e. on OxV for all a. The collection is non-empty since it contains the

empty set.

Use the usual set inclusion as the partial order and choose an arbitrary chain O
in the collection. Let O denote the union of all members of O. Then O is open in X
The fact that X is second countable implies that O is actually equal to a countable
union of members of . Consequently, ¢, = 0 a.e. on OxV for all a, and hence

O is the maximum of all members of O. By Zorn’s Lemma, there exists a maximal
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element U in the collection, i.e., U is a maximal open subset of X with the property
that ¢, = 0 a.e. on UxV for all a.

Similarly, we can obtain a maximal open subset W of X with the property that
®a =0 a.e. on VxW for all a. -

Definition 4.17 A function f on X is said to have closed zero-set if the set
{z e X: f(z) =0}

is a closed subset of X.

Suppose [ is a non-negative function on X. Then f has closed zero-set if and only

if the set given by
{xeX: f(z) >0}

is an open subset of A'. We will use this as an equivalent definition of having closed

zero-set for non-negative functions.

Theorem 4.18 Let S be a semigroup of positive integral operators. Suppose S sat-

isfies the following conditions:
(7) for every S = Intks in S, ks(:,y) has closed zero-set for almost every
ye X,

(77) there exists a measurable rectangle UxV with m(U)m(V) > 0 such that
ks =0 a.e. on UxV for all S =Intks in S,

(111) S has a countable weakly dense subset S.
Then S has a non-trivial standard invariant subspace.

Proof. By Lemma 4.16, there exists a maximal open set V4 such that ks =0 a.e.
on Ux Vg for all § = Intks in S. Therefore ks = 0 a.e. on Ux(VUV,) for all S in
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8 by (ii). If either m(U*¢) = 0 or m((VUV,)¢) = 0, then we are done. Thus we may
assume that both U¢ and (VUVy)° have non-zero measure.

Let A = Intk, be an arbitrary operator in S with k4 non-zero on a subset of
Ucx(VUVp) of positive measure, and let, for every y € X,

U, ={z € X: ka(z,y) # 0}.

By Condition (i), there exists a Borel set X4 C VUVy with m(X4) = 0 such that U,
is open for every y in (VUV,)\ X 4.

If we can prove that U, C V; for almost every y in VUV,, then, by the definition
of Uy, we have k4 = 0 a.e. on V§x(VUV,). Thus k4 = 0 a.e. on (VUVp)*x(VUVp)
for all A € S. Clearly, m(VUV)m((VUV)¢) > 0, and therefore, it follows from

Proposition 1.5 that S has a non-trivial standard invariant subspace.

Indeed, for any S € S, since ksq = ks*ky = 0 a.e. on Ux(VUV,), there exists a
Borel set Ys C VUV, with m(Ys) = 0 such that

(ks*ka)(:,y) =0 ae. on U
for every y in (VUVg)\Ya.

Fix an arbitrary element y in (VUV,)\[XaU(Uses, Ys)]. For any S € S, by the
definition of the set Ys, we have (ksxka)(-,y) =0 a.e. on U, i.e.,

/x ks(z, U)ka(t, y)m(dt) = 0

for almost every z€U. Hence, for almost every €U, kg(z,:) = 0 a.e. on U, since
ka(t,y) > 0 for all teU,. By Lemma4.15, ks = 0 a.e. on U xU,. Therefore Condition
(iii) and the fact that

/U o, k() mxm)(dz, dy) = (5X,,, X,),

imply that ks = 0 a.e. on UxU, for every S € S. It follows from the maximality of
Vo that U, C V. Thus, U, C V; for almost every yeV UV, since m(X4) = m(Ys) =0
for all S and then m(X,U(Uses, Ys)) = 0. ]
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Suppose T is a collection of operators on £3(X,m). Let
T ={T":TeT}.

Notice that (Mg)* = Mg for every Borel set E in X. We have the following

corollary.

Corollary 4.19 Let S be a semigroup of positive integral operators. Suppose S sat-

isfies the following conditions:
(1) for every S = Intks in S, ks(z,:) has closed zero-set for almost every
re X,

(it) there erists a measurable rectangle UxV with m(U)m(V) > 0 such that
ks =0 a.e. on UxV for all S =Intks in S,

(111) S has a countable weakly dense subset S.

Then S has a non-trivial standard invariant subspace.

Proof. By Proposition 1.1 or Theorem 1.21, for every S € S,
kse(z,y) = ks(y, z)

for almost every (z,y) € X’ x X. Therefore, it follows immediately from Theorem 4.18

and the above analysis that S has a non-trivial standard invariant subspace. ]

Next, we give another set of conditions under which every semigroup of positive
integral operators on £%(X’,m) will have a non-trivial standard invariant subspace.
We are interested in the case where the kernel of integral operator has closed zero-set

in both coordinate direction.

Proposition 4.20 Suppose ¢ and  are non-negative Bovel functions on X x X. If
#(x,+), 8-, y), ¥(a,+) and (-, ¥) all have closed zero-sets for any x and y in X, then
(p*x¥)(x,:) and (¢ *¢)(+,y) also have closed zero-sets for any x and y in X.
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Proof. For any z € X, if (¢ * {)(x,y0) > 0 for some yo € X, i.e.,
] #(z, )iz, yom(dz) > 0,
then the set E given by
E={zeX:¢(x,z) >0 and (z,y0) > 0}
is a non-empty open set in X’ since both ¢(z,-) and (-, yo) have closed zero-sets.
Choose any z€E. It follows that the set O given by
0 ={y € X:9(z0,9) >0}
is open in X’ and contains yo. Therefore, for any y€0O, the set
{z€X:¥(z,y) >0}
is open and contains z¢. Hence
2n€F = ENn{z € X :Y(zy) >0},
and F is open in X'. Consequently, m(F) > 0. Thus, for any y€0,
(#+)ay) = [ o(z,2)(z,y)m(dz)
> [ 6@z pmidz)

> 0.
By the definition, (¢ * 1)(z,-) has closed zero-set.
Similarly, for any y € X, (¢ * ¥)(-,y) has closed zero-set. (]

With the kernels of operators in S having closed zero-set in both coordinate di-
rection, we can drop the condition of having a countable weakly dense subset in the

statement of Theorem 4.18.

Theorem 4.21 Let S be a semigroup of positive integral operators. Suppose § sat-

isfies the following conditions:
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(¢2) for every S = Intks in S, ks(z,-) and ks(-,y) have closed zero-set for
allz andy in X,

(i) there exists a measurable rectangle UxV with m(U)m(V') > 0 such that
ks =0 a.e. on UxV forall S =Intks in S.

Then S has a non-trivial standard invariant subspace.

Proof. By Lemma 4.16, there is a maximal open set U in X with the property
that ks = 0 a.e. on UpxV for all S = Int ks in §. Hence, by Condition (ii), ks = 0
a.e. on WxV for all S = Intks in S, where W = UUU,. Applying Lemma 4.14,
we may assume, by disregarding a subset cf measure zero from & if necessary, that
m(ONW) > 0 for all open sets O satisfying ONW # 0, and that m(ONV) > 0 for all
open sets O satisfying ONV # 0.

If m(W¢) = 0, then we are done. So we may assume that m(W¢) > 0. We
complete the proof by showing that ks = 0 a.e. on WxW?* for all § = Int ks in S,

and consequently, S has a non-trivial standard invariant subspace by Proposition 1.5.

For any § = Int ks in S, and any z€W, z€V, let
W,(S) ={y € X : ks(z,y) > 0},
Vi(S)={y € X : ks(y,z) > 0}.

Then, by condition (i), W,(S) and V*(S) are open in X for all zéW and z€V.
Suppose we can prove that W,(S)NV*(A) = 0 for any z€W, z€V, and for any
S = Inthks, A = Intky in S. Fix an arbitray €W and an arbitray S € S. For
any (y,z) € W,(S)xV, we have that y is in W, (S) and hence not in V*(A) for all
A € S. By the definition of the set V*(A), ka(y,2) =0 and then k4 = 0 a.e. on on
Wi(S)xV for all A € S. It follows from the maximality of Uy that W;(S) C Uy C W
for all xeW and § € S§. Thus, by the definition of the set W;(S), ks = 0 a.e. on
WxWe for all S = Intks in S.

It remains to show that W,(S)NV*(A) = 0 for every teW, z€V, and for every
S = Intks, A = Intky in S. Indeed, suppose W, (S)NV*(A) # 0 for some zeW,
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z€V, and for some § = Int ks, A = Int k4 in S, then m(W, (S)NV*(A)) > 0 since we

assume that every non-empty open subset of X’ has non-zero measure. Therefore
kSA(.’B,Z) = (ks*kA)(CL',Z)
- /{r ks(z, t)ka(t, 2)m(dt)
2 ks(z,t)ka(t, z)m(dt)

/w,(S)an(A)
> 0.

By Condition (i), the set E given by
FE= {y . kSA(IlI,y) > 0}

is open in X" and contains z. It follows that m(ENV) > 0. For each ye ENV/, again
by condition (i), the set given by

FY = {t eX: kSA(t,y) > 0}

is open and contains z. As a result, m(FYNW) > 0. Therefore, from Lemma 4.15, ks
is non-zero on a subset of W x(ENV) C W xV of positive measure. This contradicts
the fact that ks = 0 a.e. on WxV for all S =Int ks in S. a

Lemma 4.22 Suppose S is a semigroup of positive quasinilpotent integral operators.
If there exists an operator T € S whose kernel kr is positive almost everywhere on

a measurable rectangle UXV of positive measure, then ks = 0 a.e. on VxU for all
S=Intks in S.
Proof. We prove the result by a contradiction.

Suppose there exists an operator § € § whose kernel ks is non-zero on G C VxU
and (mxm)(G) > 0. For each z€V, let

G, = {yeU : (z,y)eG}.

Clearly, G, is a Borel set in X for almost every z€V. By Lemma 4.15, there exists a
Borel set Vo C V with m(Vp) > 0 such that m(G,) > 0 for almost every z€ V.
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For almost every (,y)eVox Vg,

(ks*kT)(f'?»y) = Lks($,t)k7(t,y)m(dt)
|, kst Dkr(t,yymiat)
> f ks(z, t)kr(t, y)m(dt)

z

0.

v

\Y

Therefore the kernel kst of ST € S is positive almost everywhere on (z,y)eVoxVb.
But ksr|v,xv, is non-negative and induces a quasinilpotent integral operator on
L%(Vp, mly,) because the operator ST € S is quasinilpotent. This contradicts Propo-

sition 4.13 and the remark following its proof. ]

Corollary 4.23 Let S be a semigroup of positive quasinilpotent integral operators.

Suppose S salisfies the following conditions:

(2) either for every S = Intks in S, ks(:,y) has closed zero-set for almost
everyy € X, or for every S = Intks in S, ks(z,-) has closed zero-set

Jor almost every x € X,

(¢7) there exists an operator T € S whose kernel kr is positive almost every-

where on a measurable rectangle UxV of positive measure,

(211) S has a countable weakly dense subset Sp.

Then S has a non-triviel standard invariant subspace.

Proof. It follows immediately from Lemma 4.22, Theorem 4.18 and Corol-
lary 4.19. .

Corollary 4.24 Let S be a semigroup of positive quasinilpotent integral operators.
Suppose S satisfies the following conditions:
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(2) for every S = Intks in S, ks(z,') and ks(-,y) have closed zero-sets for
allz and y in X,

(41) there exists an operator T € S whose kernel kr is positive almost every-

where on a measurable rectangle UV of positive measure.

Then S has a non-trivial standard invariant subspace.

Proof. It follows immediately from Lemma 4.22 and Theorem 4.21. [ ]

4.3 An Application of the Lomonosov-Hilden

Technique

In 1973, Lomonosov proved one of the best-known results in operator theory [35]:
any non-zero compact operator 7' on an infinite dimensional Hilbert space has a
non-trivial hyperinvariant subspace, i.e., a subspace invariant under every operator
commuting with T. The proof is simple and involves constructing a (non-linear)
map that satisfies the condition of Schauder’s fixed point theorem. After being told
the result, H. M. Hilden found an even simpler proof that only requires very basic
knowledge of functional analysis (see [38] or [48, Corollary 8.25)).

In [43], de Pagter proved by using the Lomonosov-Hilden technique that any
positive compact quasinilpotent operator on a Banach lattice of dimension at least
two has a non-trivial invariant closed ideal. de Pagter’s proof actually proves that any
non-zero positive compact quasinilpotent operator T on a Banach lattice of dimension
at least two has a non-trivial invariant closed ideal that is also invariant under every
positive operator commuting with 7. If we view £2(X’,m), with its natural order, as
a Banach lattice, then a subspace of £2(X,m) is a closed ideal if and only if it is a
standard subspace (see [54] and [61]). The following theorem combines several results
in [43]. The idea of the proof is virtually the same, but we state it in a way which

can be easily understood by those unfamiliar with the theory of Banach lattices.

-



(6]

Theorem 4.25 [43, Proposition 2 and Proposition 4] Let T be a positive quasinilpo-
tent operator on L2(X,m). If there exists a non-zero positive compact operator Ty
on L*(X,m) such that Ty < T, then T has a non-trivial standard invariant subspace

that is also invariant under every positive operator commuting with T.

Proof. Let
T = {S € B(LYX,m)) : S is positive and ST = T'S},

T ={SeB(L}X,m):0<S<Rforsome Re T}

Clearly, {/,T} C T C T, and both T and 7 are closed under products and positive
linear combinations. Let A be the algebra generated by 7;. Then every member of
A is actually a linear combination of elements of 7;. Since I € T, all multiplication
operators My with ¢ € L®(X, m) are in A.

For any f € L¥X,m), f # 0, the subspace Af is obviously invariant under
A. We claim that Af is a standard subspace of £3(X’,m). Indeed, let P be the
orthogonal projection on Af. Then, by the fact that Af is invariant under A and
A contains all multiplication operators M, with ¢ € £>*(X,m), the projection P
commutes with every M,. However, the collection of all multiplication operators
My with ¢ € £>(A',;m) is a maximal abelian selfadjoint algebra. Hence P is a
multiplication operator of some characteristic function X, where E is a measurable
subset of X' It follows that Af = Mg is a standard subspace of L3(X,m).

Now, Af is a non-zero standard subspace invariant under T for any non-zero
J € LY X', m). Therefore, the proof of the theorem will be completed if we can prove
that Af # L%(X',m) for some non-zero f € L2(X,m).

Suppose Af = L*(X,m) for all f # 0. Choose a non-zero positive element & in
L*(X',m) such that Toh # 0. Fix an open ball V centering at h such that 0 ¢ V and
0 ¢ ToV. This can be done by choosing a positive number € small enough such that
| Tok|| — €||To]| > O (which implies ||h]} > € automatically), and letting

V={g9e€LiX,m):|g—h| <e¢}.
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For any f € TyV, we have f # 0, and therefore, Af = L2(X’,m). Hence h € Af. It
follows that there exists an operator S; € A such that S;feV. Let V; be an open
neighborhood of f such that S;V; C V. Then {V; : f € TV} is an open cover of
ToV which is a compact set in L%(.X,m) since Ty is compact. Therefore, there exist
fisfas.. oy [, in ToV such that

ToV C V,UV,U-- UV, .
We simply denote V;, by V, and §; by S,, (j = 1,2,...,p).
Since Toh€ToV, we have Toh€V,, for some p; between 1 and p. It follows that
Sp, Toh€S,, Vp, C V.

Again, we have TS, Toh€TyV, and hence, TS, Toh €V}, for some p; between 1 and

p, and
SP2TOSPI TOheSPz VP: - V.

Repeating this process, we obtain a sequence {p,}32, in {1,2,...,p} such that
hJ = SPJT()SPJ_]TO e szTOSm To’LEV
for all positive integer j.

For each j, 1 < j < p, S, € A, therefore, it follows from the definition of A that
there exists an operator R, € 7 such that

1,91 < Ryg
for all positive g € L*(X,m). Let
v = max{||Rall, | Ra|,.. ., 1 R}

Then, for each j, ( =1,2,---).

th| = |Sp,TOSp,..1T0 e szToSm Tohl
S Rp,TOR'p,_lTO tee RmToRpl Toh
s RPJ TRPJ—IT - Ry, TR, Th

RPJRPJ-I ot RmRm T7h.
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Hence,

e < I A
= l(TY IR — O,

as ] —» oo since T is a quasinilpotent operator. This contradicts the fact that 0 ¢ V/,

and the proof is completed. ]

Corollary 4.26 If T is a non-zero positive quasinilpotent integral operator, then T
has a non-trivial standard invariant subspace which is also invariant under every

positive operator commuting with T.

Proof. By Lemma 4.6, there exists a non-zero positive Hilbert-Schmidt operator
To on L2(X,m) such that T — T is also positive. The result follows immediately from

Theorem 4.25. ]

REMARK. The above corollary is a generalization of Proposition 4.13, which is a
special case of the Andé-Krieger Theorem ([54] and [61]) when the Banach lattice
is actually the functional Hilbert space £L3(X,m) with its natural lattice structure.
We should point out that this result cannot be obtained by simply applying the

Ando-Krieger Theorem to the special case.

Next, we give a generalization of the de Pagter Theorem (Theorem 4.25). We first

prove the following lemma.

Lemma 4.27 [42, Lemma 4] Suppose K is an injective operator and A is a norm-
closed algebra of operators on a Hilbert space. If AKX C KA, then the map ® on A
defined by

AK = K®(A)

is @ continuous algebra homomorphism.

Proof. The map ® is well-defined since K is injective. Clearly, ® is an algebra

homomorphism. To prove that ® is continuous, it suffices to show that it is a closed
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map: if A = limA; and B = lim ®(A;), then
AR =limA;R =limK®(A;) = KB,

and thus B = ®(A).

Theorem 4.28 Let T be an injective positive quasinilpotent operator on L1(X,m)
dominating a non-zero positive compact operator Ty, i.e., 0 < Ty < T. IfT is
a collection of positive operators contained in a norm-closed operator algebra A with
AT CTA, then T has a non-trivial standard invariant subspace that is also invariant

under every operator in T .

Proof. We may assume that 7 contains the identity operator I, for otherwise,
we can replace T by T U {I} and A by the algebra generated by AU {I}. Also we

may assume that 7 is closed under products and positive linear combinations.

Let
T, ={S € B(L¥X,m)):0< S < Rforsome ReT}.

Clearly, 7, contains 7 and is also closed under products and positive linear com-
binations. Let .4, be the algebra generated by 7;. Then every member of A, is
actually a linear combination of elements of 7;, and all multiplication operators M,
with ¢ € L*(X,m) are in A,.

For any f € L2(X,m), f # 0, the subspace A, f is obviously invariant under T and
every operator in 7. As in the proof of Theorem 4.25, we have that A, f is a standard
subspace of £2(X,m). We complete the proof by showing that A f # L*(X,m) for

some non-zero f € L3(X,m).

Suppose A, f = L2(X,m) for all f # 0. Choose a non-zero positive element h in
L3(X,m) such that Tyk # 0. Fix an open ball V centering at h such that 0 ¢ V and
0 ¢ ToV. Again, as in the proof of Theorem 4.25, we can obtain, by the coinpactness
of Ty, a positve integer p, a sequence {p;}%2, in {1,2,...,p}, and a sequence {Sy,}
in A, such that

ki = S5, To Sy, To - -+ Sp, ToSy, Toh€V

o bl LEEY

[rews
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for every positive ingeger ;.

For each j, 1| <j <p, S, € A, therefore, it follows from the definition of A, that

there exists an operator R, € T such that
15,91 < Ryg
for all positive g € L2(X,m). Let
v = max{||[Ru|, || Rall,.., | Rpll},
and let ® be the continuous algebra homomorphism on A given by
AT = T®(A)
as in Lemma 4.27. Then, for each j, (j = 1,2,:-+),

lhy| = 1S, ToSp, To-+ - SpToSp, Toh|
< R, ToR, ,To-- Ry, ToRyToh

R, TR, ,T--- Ry, TR, Th

T99(... (B(®(®(R,,) Ry, ,)Rp,,) .. Ry ).

IA

i

Hence,

(1Y I VA L g el
I YN HiRl — O,

as j — oo since T is a quasinilpotent operator. This contradicts the fact that 0 ¢ V,

and the proof is completed. [ ]

Corollary 4.29 Suppose L%(X,m) is separable and T is a positive quasinilpotent
operator on L*(X,m) with a dense range dominating a non-zero positive compact
operator Ty, If T is a collection of positive operators contained in a norm-closed
operator algebra A with TA C AT, then T has e non-triviel standard invariant

subspace that 1s also invariant under every operator in T .
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Proof. With T* as the operator in Theorem 4.28, T* the collection of positive
operators, and A* the norm-closed algebra, the conditions of Theorem 4.28 are all
satisfied. Therefore T* has a non-trivial standard invariant subspace Mg for some
Borel set £ in X" that is also invariant under every operator in 7*. Thus the standard

subspace Mg is a non-trivial and invariant under T and every operator in T. .

I
¥

- imegeatt &



Chapter 5

An Irreducible Semigroup of
Positive Nilpotent Operators

In Chapter 4, we have proven that certain semigroups of positive quasinilpotent op-
erators are reducible. One may ask: Is every multiplicative semigroup of positive
quasinilpotent operators reducible? In [21, Theorem 1}, Hadwin et al constructed an
irreducible semigroup of nilpotent operators on a Hilbert space such that every oper-
ator in the semigroup has nilpotency two. And in [56], Schaefer provided a positive
quasinilpotent operator which does not have any non-trivial standard invariant sub-
spaces. [t is easy to see that neither of the two examples anwsers the above question.

In this chapter, we construct an irreducible semigroup of positive nilpotent operators.

Consider £2([0,1]) with Lebesgue measure m on [0,1]. For every a € [0,1], we
define Sy and T, in B(L?([0,1])) as follows:

f(t+a) ifte[0,1—aq

0 fte(-a1 o€ £4(0,1),

(Snf)(t) = {

0 ift€[0,a)

fi-a) iftefay U EFEID

(Tos)(t) = {

81
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Clearly, S, and T, are well-defined bounded linear operators on £3([0, 1]). For conve-
nience, we define S, = T, = 0 for all @ > 1. Still, we denote by My the multiplication
operator corresponding to ¢ € L(X, m).

Lemma 5.1 For any a € {0, 1],

(-

(2) Sq and T, are positive operators.

o it w0 SFIINE ORI PRRR Y pepp

(H) S;‘-‘-TQ,SQ:TD:I,Sl:T]:O.

.

(#4) SaTo = My,

0.1 - a)’ TuSy = M'Yi " and therefore, S, and T, arc partial

isomelries.

(iv) Ifa#1, then |So)l = |T.) = 1.

Proof. (1) It is obvious that S, and T, are positive operators.

(ii) For any f, g € £3([0.1]),

D RPN ASE Pgr Sy gt T e vt

Sufio) = [ (SDOBOE
.'.» /; 7 f( + a)g(t)de

é‘ f rome-

]

i

Tog).

ThllS, S; = Ta. Clearly, SQ = To = I, Sl = Tl = 0.

(iii) For any f, g € £*([0,1]),
(SaTofy9) = (Tuf, Tag)
= /ft— g(t — a)dt

" f(s)a(s)ds
(Mxlo, 1- a]f’ g)'
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Therefore, S, T, = M"[o.: o Similarly, TS, = Mx[a’“.
Since
S;Sa = Tasa = Mxla, 1)
T3To = SaTlo = My, , _,
are projections, we have that S, and 7, are partial isometries.
(iv) It follows immediately from (iii). 8

Lemma 5.2 For any o € [0,1), and any ¢ € L=([0,1]),

() SaMys = Ms,4Sa, TaMy = Mr,oTs.

(17) MyS,, SaMy, MyT,, and T, My are all nilpotent operators.

Proof. (i) For any f € £2([0,1]),

Sa(9f) = (Sad)(Saf).

Therefore,
(Sa}v[d’)f = Sa(¢f) = (Sa¢)(Saf) = (MS¢,¢Sa)f-
Hence, S, My = Ms,4S,.

Similarly, TyMy = Mr,4T,.

(ii) It is obvius that (S,)P = S, for any positive integer p. Therefore, it follows
from (i) that
(MpSa)’ = MyMs,g- - Ms,_y).65p0

for any positive intege} p. Hence, (M;S,)P = 0 for p large enough to satisfy pa > 1.
Thus. M4S, is a nilpotent operator.

Similarly, Sy My, MyT,, and T, My are all nilpotent operators. o

;%3
Lemma 5.3 [fa, 8 €[0,1], then
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(2) SaSg = Sq+ﬁ and TaTﬁ = Tc.+g.
(2)

5T = 4 Miwsoalbma Hoa <
A,lxlo-l —-n]Sa"ﬂ 2!0 > ﬂ

(212)
TﬂSa = Mxlp' "Tﬁ-a ifa f-" ﬁ .
Mx[B' “Sa..g zfa > ﬂ
Proof. (i) It is easy to check.
(i) If @ < B, then by (i) and Lemma 5.1,
SaTg = SaTaTp-a = Mx, , _ Tp-a.
If o > 3, then by (i), Lemma 5.1 and Lemma 5.2,

SoTsg = Sa-pSsTs
= S"“ﬁMxlo, 1 -8
= Ms,_px,,_4 Sa-g
= Mx[o.l—u)Sa_ﬂ.
(iii) The proof is similar to the proof of (ii). n

In [57] it was proved that every positive operator S on L2%([0,1]) is a pseudo-
integral operator, and that S is determined by a positive finite Borel measure pg on
[0,1] x [0,1] by the equation

S = T dz,dy).
For any a € [0,1], let

Go = {(z,y) €[0,1] x [0,1] : y =z + @},



ke

85

and

F,={(z,y) €[0,1] x[0,1] : y = = — a}.
It is easy to check that S, is a pseudo-integral operator determined by p,, where p,
is the positive finite Borel measure defined by the equation

pa(E) =m({z €[0,1] : (z,y)€ENG, for some y € [0,1]}).

Similarly, T, is a pseudo-integral operator determined by v,, where v, is defined by

the equation

vo(E) = m({z € [0,1] : (z,y)€ENF, for some y € [0,1]}).

Next, we construct a multiplicative semigroup of positive nilpotent operators, and

prove that the semigroup is irreducible.

Choose an arbitrary irrational number § € (0,1). Let Sy be the multiplicative

semigroup generated by the set

{Sa, Tie : @, b € (0,1) are rational numbers}.
Theorem 5.4 The semigroup Sy consists of nilpotent operators.

Proof. By (i) of Lemma 5.3, any ‘word’ in Sy looks like
W= SnTysSa T - Sonling
for some integer n > 1, where a,, b, € (0,1) are rational numbers and p,, ¢, are

non-negative integers for all j = 1,2,...,n, and at least one of p,, ¢, is non-zero,

(y=1,2...,n).

By Lemma 5.3, W is either 0, or MyS,— witha—5b> 0, or MyT,_, witha—-b< 0,
wherea = Y7, p,a,,b=03"]_, ¢;b,, and ¢ and 1 are characteristic functions of some
intervals. Clearly, a # b since 0 is irrational, and thus, by (ii) of Lemma 5.2, W is a

nilpotent operator. ¢ |

Next, we prove that Sy is a discrete and irreducible semigroup of positive nilpotent

operators.
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Lemma 5.5 For any a € [0,1], and any interval [a,b] C [0, 1],

(i) FEither Mx[n,b]Sa =0 or "Mx|a,u15" = 1.

(i6) Either My, ,To =0 or | My, Tuf =1.

Proof. (i) Since the range of Sa is X5 , _ ,,£?([0,1]), the interval [a',¥] = [a,8] N
[0,1 — o] has length &' — a’ > 0 if My, Sa # 0, and

MX[ai‘bl]Sa = Mx[a' b]Sa-

Clearly, ”M“[a,b]S“ | 1Sall = 1.

< [l

Let f =Xt ap o) Then || f|| =
[, o)) = (M, 5201]
= (M"[a'.b’ls")f"
= M‘lu',»'lxla',b']“
= [l
Il
> 1. It follows that “Mx[alb]Sa“ =1,

X[a',b']” #0,and S, f = Xfat by Therefore,

and hence, “MX[,. b]Sa

(i1) As in the proof of (i), we have that "MX[.. b]Ta

Lemma 5.6 Suppose o, f € [0,1], and E, F aie two intervals in [0,1]. Then,
“MXESO’ - Mxpr" is either equal to 0 or not less than 1.

Proof. If either MxESa or Mx_Tp is 0, then we are done by Lemma 5.5.

Suppose My S, # 0 and My T # 0. Then both E' = EN|0,] - a) and
F' = FN[B,1] are intervals of length greater than 0. If a = 8 = 0, then S, = Ty = I,
and therefore, the result is obviously true. If a + 8 > 0, then by the definition of E’,
we can choose an interval [a, ] satisfying 0 < b—a < a +  and

[a,8] C E'+a C [a, 1].

= 1if My, ,Ta # 0. =

-~

-

> e

B oo
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[a,b]—a=[e—a,b—a] C E

and, because b — a < a + 5,

(Ja,b] = @) N ([a,b] + B) = [a — @, b— o) N [a + B, b + f] = 0.

Let f =X, 4 Then f # 0, and

AV | il

1

Thus,

|(My, S — My, Tp) S|
(M Sa = My To) S|
Xg(Saf) = Xpl T )|
IXE'Xla.bl —a " Xp X,y +ﬁ"2

2
Xfa,t~o ~ XFr 0 ((a,h] ol

“+ D +ml|2
2

X[a,b] -a

X[a.b] -a

,2

Xfa,8)

WA

| M, Se = M, T3] > 1.

Lemma 5.7 Suppose o, B € [0,1}, and E, F are two intervals in [0,1]. Then,

(7) quES" - .A’IXPSp" i= either equal to 0 or not less than 1,

(72) "MXETC, - M,\'FT;;" is either equal to 0 or not less than 1.

Proof. (i) If either « or B is 0 or 1, then we are done by Lemma 5.5, Lemma. 5.6
and the fact that Sy = To = I. So we may assume that 0 < a < 8 < 1. Therefore,
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by (ii) of Lemma 5.3,

My, Sa ~ Mx, S|

My, So ~ Mx,Sg| |1 T
MXESaTa - MxPSﬂTa
M"EM"(o,l -a) MXFM"(o.l —a}sﬁ“” "

v

1l
=
o
2
3
)
]
£
|
ES
-
]
S
=2
=
i
2

By Lemma 5.6, either
llA/IXEn[O.l -a]TO - A/IXFn[o,l _‘,]Sﬂ..a“ 21,
or
MxEnlo.l -alTO B Mxrn(o.x-msﬁ—a =0.

Thus, either
|Mx,So — My, So| 21,

or

MXESO, - MxFSﬂ

MxEn[O,l —u]S"’ - Mxi‘n[o,x -p]Sﬂ

= (MxEn[O,l -a] Mxrn[o,n -ﬁ]Sﬁ"”)S“
= 0.

(ii) By (ii) of Lemma 5.1, T,, = (S,)* and T = (S5)*. Therefore,

(MXETa - MxFTﬂ)‘
= SaMXE — SaMy,
= Ms,x,Sa ~ Mspx,5p
= My aSO’ - MXp-,gSﬁ'

E -

Thus, (ii) follows immediately from (i).

on
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Theorem 5.8 The norm-distance between any two distinct elements of Sy is at least
1. Therefore, Sy is discrete, and kence, norm-closed in B(L2([0,11)).

Proof. From the proof of Theorem 5.4, any element in S is of the form My ES(,
or My T where E and F are intervals in [0,.], and a = a — b9, 8 = cf — d are in
[0,1] for some rational numbers a, b, ¢ and d. Thus, the result follows immediately

from Lemma 5.6 and Lemma 5.7. [}

Theorem 5.9 For any a € [0,1], S, and T, are in the weak closure S " of Sp.
Consequently, S5 is independent of 6.

Proof. Clearly, 5 =T, =0 € S,.

For any a € [0,1), choose a decreasing sequence {a,} of rational numbers in (0, 1)
such that lima; == a. We claim that S, is the weak limit, of the sequence {S,,}, and
hence, S, € St

We need to show that

(Sa,fr 9) — (Saf, g) (§ — o)

for all f and g in £2([0,1]). Since ||S,,|| =1 for all j, and sizce C([0,1]) is dense in
L%([0,1]), it suffices to show that

(Sa, [y 9) — (Saf, 9) (§ — 0)

for all f and ¢ in C([0,1]).

Suppose f and g are in C([0,1]). For any positive number € > 0, by the continuity
of f, we can find a number é > 0 such that

|f(z) — fy)l <e

whenever z, y € [0,1] and |z — y] < . Since lime; = a, we can find a positive integer
N such that

la; — a] < min(e, §)

b

w
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for all j with 3 > N.

Therfore, for any 3,7 > N,
(2, f, 9) = (Saf, 9)]
= [ e+ aaere~ [ o+ ag(a)ds

1-

= [ @+ apgtaa - [ f(o + a)ala)de

+ [ f(z + a)g(a)de

[ 1@ + @) - J(o + @)l lg(@)lde
+ [ 1@ + o)l lg@)lda

< ellglleo + (2, = ) flloollglloo
< ellglloo(1 + 1 Flloo)-

Thus,
(Sa,f, 9) — (Saf, g) (j — o0).

Similarly, choosing a decreasing sequence {b;} of rational numbers in (0,1) with
=WOT

lim b;0 = «, we can prove that T, € Sy

We now prove that ST s independent of 6. Let 8, and 6, be two irrational
numbers in (0,1). For every a € [0,1], by what we just proved, S, and 7, are the
weak limits of sequences of operators in S,. Let W be an arbitrary operator in
Ss,. To prove that W is in Sy, ', we may assume that W # 0. From the proof of
Theorem 5.4, W is in the form of Mx(a,b]s" or Mx[a,b]T" for some interval [a, b] C [0, 1]
and some number a € [0,1). Choose a sequence {[a;, b;]} of subintervals of [a, b] with
the property that lima, = a and limb; = b. Then it is easy to check that Mx[a'b] is
the strong limit of the sequence { My } However, by (iii) of Lemma 5.1,

[a,,,]
My =My My =To;5,5Ti
[a)- b] /\[,,l] X[ 0,5,] 08, 91-b;L1-bj

for every integer j. We can choose {[a;, b;]} so that all MX[ are in Sy, because
Ss, 1s a semigroup. Thus M,\’[ " is the strong limit of a se::fuJe:nce of operators in
a,
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Ss,. It follows that W is the weak limit of a sequence of operators in Sp,, and hence
So, CSs ", Consequently, S, = CSg, .

Similarly, we have that ETWOT - 35;“’“. Thus :S'ZWOT = S_ozwm. ]
Theorem 5.10 The semigroup Sy is irreducible.

proof. Suppose M is a subspace of £%([0, 1]) invariant under Sp. Then M is also
invariant under 3—9WOT.

Let g be an arbitrary element of M*, the orthogonal complement of M in
L%([0,1]). For any f € M and any a € (0,1), by (iii) of Lemma 5.1,

My, _of = SeTuf € M,

since both S, and T, are in Sy . Therefore, (M,;[0 )l [, g9) =0, or equivalently,

1

| f@)glz)dz =0.
It follows that

f(2)g(z) = f(z)g(=) = 0
for almost every z € [C, 1], and hence (| f|, |g]) = 0. Thus,

M* C {g € L£2([0,1]) : (If], lg]) = 0 for all € M}.
On the oth. -~ hand, it is obvious that
M* 2 {g € L2([0,1]) : {|f], lgl) = 0 for all f € M}.
Consequently,
ME = {g € £2(0,11): (1], lgl) =0 for all f € M},
and therefore is a standard subspace of £2([0,1]).
Let E be a Borel set in [0, 1] such that

Mt = Mg =X L¥([0,1]).
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For any a € [0, 1], since M is invariant under S,, T, € Sa ", we have that Mg =
M is invariant under S; = T, and T = S,. In particular, (S, + T1-a)Xz € ME.

However,

(Sa+Tica)Xg = SuXg + TimaXg

= Xo1-ofE-a TXca 1 E4+1-a

= XEG’
where E, is the Borel set in [0, 1] given by
Eo={(E-a)n[0,1-e]}JU{(E+1-a)Nn][i—a,l]}.

Thus
Xg, € Mg = XE£2([0, 1]).

However

m(Ey) = m({{(E-a)N[0,1 —a]JU{(E+1-a)N[l —a,1]})
= m((E-a)N0,1-a])-rm((E+1-a)N[l —e,l])
= m(EN[a,l])+m(EN[0,a])
= m k).

It follows that Xg, = Xg-

We now calculate the Fourier coefficients fb: (n) of X, . For all integers n,

—

1 .

an(n) = /0 XEa(t)e—erntxdt

! —27mnti
/(; ’\(E—a)n(ﬂ,l —a](t)e at
1
. —2mnti
+/0 XE+1-0)n]1 - a.l](t)e Tt
- / e—21rntidt
(E-a)n[0,1—a]

+
(E+1-a)A[1-a,1)

- / e-21rn(s-a)ids
Enfa,1]

e—21rnti

g
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+/ 6-2”"(’+l_a)'d3
En[0,a]

— e2rmm/ c—21m.nds
En[a,1)

+e21m(a—l)|/ e—21msld8
Enfo,n)

/ e—21maud8 + / equmaods]
En[a,1} En[0,a]

e—21mstds

(p(n).

e21mm

P ra—

— e21mcn

) o

e2rmm

P

By the fact that \ , = X for all & € [0,1], we have that Xg(n) = 0 for all integers
n # 0. Thus, X is a constant function, and hence, either m(E) = 0 or m(E) = 1.
This implies that M*, and therefore M itself, is a trivial subpace of £3([0,1]). =

REMARK. The operators S, and T, (a € [0,1]), 2re so-called B.shop-type operators.
Some nice properties of the Bishop-type operators can be found in [36] and in the
references at the end of [36].

It is easy to see that the index of nilpotence of operators in Sy is not bounded.
Hadwin et al [21, Theorem 6] proved that an algebra of nilpotent operators is simul-
taneously triangularizable if the index of nilpotence is bounded. Thus, it is natural

to ask the following question:

Question 2. Is it true that any semigroup of positive nilpotent operators is reducible

if the index of nilpotence is bounded?

g bt 5

e



Chapter 6

Miscellaneous Results

6.1 The Jacobscon Radical and

Invariant Subspaces

Recently the relation between the Jacobson radical of an operator algebra and the
existence of invariant subspaces of the algebra has been studied in several papers
(Hadwin et al [22]; Katavolos and Radjavi [32]; Lambrou, Longstaff and Radjavi
[34]). Let A be a linear algebra. A representation of A on a vector space V is an
algebra homomorphism from A to the algebra of all linear transformations on V. A
representation 7 of A on a vector space V is (strictly) irreducible if there is no linear
manifold of V other than {0} and V itself invariant under #(.A). The Jacobson radical
RadA of A is defined to be the intersection of the kernels of the (strictly) irreducible
representations of A (see Aupetit [10] and Jacobson [27]).

Suppose A is a Banach algebra. It has been shown [10, Appendice I, Theorem 2]
that if A is unital, then

RadA = {A € A: AB is quasinilpotent for every B € A},

and therefore, every element in RadA is quasinilpotent. These remain true when A
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is not unital. Indeed, assume A is not unital, and let A be the unitization of A given
by
A={(\A): A€ Aand ) is a complex number}

with norm defined by ||(A, A)|| = |Al+]/A||. (Usually, we write (X, A) simply as A+ A.)
Then, A is a proper closed two-sided ideal of A. First, we claim that RadA C A.
To see this, let A + A be an element of RadA with A € A and A a complex number.
Then X + A is quasinilpotent, and therefore, A is invertible in A if A # 0. However,
no element of A can be invertible in A. Thus A\ = 0. Consequently, RadA C A.
Secondly, it is clear that any irreducible representation of A can be extended into an
irreducible representation of A. On the other hand, the restriction of any irreducible

representation oi A to A is still irreducible since A is a two-sided ideal of A. It follows

that RadA = RadA. Therefore,
RadA 2 {A € A: AB is quasinilpotent for every B € A}.

Conversely, if A € A and AB is quasinilpotent for every B € A, then, for any
A+ Be A
[A(M + B))? = A[(A + B)A() + B)]

is quasinilpotent, and hence, A(A + B) is also quasinilpotent. This implies that

A € RadA. Thus,

RadA = {A € A: AB is quasinilpotent for every B € A}.

Let H be an arbitrary Hilbert space of dimension at least two. It is known (41,
Theorem 1] that any semigroup S of quasinilpotent operators on H is reducible if
S contains an operator other than 0 in the trace class C;. We are going to examine
the relation between the set of all trace class operators in S and the radical of the

norm-closed algebra generated by S and give a generalization of this result.

Proposition 6.1 Let S be a semigroup of quasinilpotent operators on H, and let A
be the norm-closed algebra generated by S. Then RadA 2 SNC,.
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Proof. Let A € SN C,. We need to show that AB is quasinilpotent for every
B € A. By the continuity of spectral radius of compact operators, it is enough to

show that AB is quasinilpotent for every B in the linear span of S.

Suppose B = 377_, a,5; where n is a positive integer, S; is in § and a; is a

comnplex number, (j = 1,2,...,n). Then

tr(AB) = )_ a,tr(AS;) =0
=1
for every such B. Replacing B by B(AB)?~!, we have that tr((AB)?) = 0 for ev-
ery positive integer p. As in the proof of [47, Theorem 5], we have that AB is a

quasinilpotent operator. [

Theorem 6.2 Lel S be a semigroup of quasinilpotent operators on H, and let A
be the norin-closed algebra generated by S. If RadA contains a non-zero compact

operalor, then S is reducible.

Proof. It suffices to show that A is reducible. Fix a compact operator K€ Rad A,
K # 0. If A is irreducible, then, by Lomonosov’s Lemma {48, Lemma 8.22], there
exists an operator A € A such that 1 is in the spectrum of AK. This contradicts the
fact that k' € RadA. ]

From the proof of Theorem 6.2, we can see that the existence of non-zero compact
operators whose products with all operators in an algebra A are quasinilpotent is
a sufficient condition for A to be reducible. It turns out that the condition is also

necessary.

Theorem 6.3 Let S be a set of operators on a Hilbert space, and A the algebra

generated by S. Then the following statements are equivalent:

(1) S is reducible.

(1) A is reducible.
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(222) There exists a rank-1 operator K such that AK is quasinilpotent for all
Ae A

(fv) There erxists a non-zero compact eperator K such that AK is quasinilpo-

tent for all A€ A.

Proof. Clearly, (i) and (ii) are equivalent. and (iii) implies (iv). As in the proof
of Theorem 6.2, we have that (iv) implies (ii). Therefore, we only need to show that
(ii) implies (iii).

Suppose M is a non-trivial subspace invariant under A. Let = be a unit vector
in M. and y a unit vector in M*, and let K = z®y. Then, for any A € A, AN is
rank-1. But tr(AK') = tr(Az®y) = (Az, y) = 0. Thus, AR is nilpotent. (]

Let A be an algebra of operators on H. i<atavolos and Radjavi proved [32, The-
orem 1] that if A consists of compact operators, then A is simultaneously triangu-
larizable if and only if AB — BA is quasinilpotent for all A and B in A. If Ais
also norm-closed, then this condition is equivalent to A/RadA being commutative
(Murphy [39, Theorem 1]). Hadwin et al [22] asked several questions about the rela-
tion between the triangularizability of A and the commutativity of A/RadA for an
algebra A of not necessarily compact operators. We will answer one of the questions
in the case where A is weakly closed and contains a non-zero essentially unitary Cy
operator. An operator T on H is called essentially unitaryif | = T*T and | —T'T* are
compact. And a contraction 7 is called a Cy operator (Sz.-Nagy and Foiag [60, p123])
if T is completely non-unitary and ¢(T') = 0 for some non-zero fuaction ¢ € H*>.

Theorem 6.4 Let A be a weakly closed algebra of operators on H and assume that
A/RadA is commutative. If A contains a non-zero essentially unitary Cy operator

T, then A is simultaneously triangularizable.

Proof. We may assume, WNLG, that A contains the identity operator. By
Nordgren [40, Corollary 2], A contains a sequence of compact operators that converges

weakly to the identity operator. Consequently, A N K is weakly dense in A where
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K is the algebra of all compact operators on ‘H. The commutativity of A/RadA
implies that AB — BA is in Rad A for any A and B in ANK. Hence, AB - BA is
quasinilpotent for any A and B in ANK. It follows from [32, Theorem 1] that ANK
is triangularizable. Thus, A is triangularizable since A N K is weakly dense in A. ®

6.2 Positive Linear Mappings

between C*-Algebras
In this section, we will be concerned with the usual notion of positivity in C*-algebra.
Let A be a unital C*-algebra. An element of A is positive if it is self-adjoint with

non-negative spectrum. Suppose ¢ ‘s a linear mapping from A to another unital

C*.algebra B. Consider the following conditions on ¢:
(1) ¢ maps the unit element of A to the unit element of B,

(2) ¢ maps self-adjoint elements of A to self-adjoint elements of B, or equivalently,

HA™) =d(A) forall A€ A,
(2') ¢ maps positive elements to positive elements,
(3) 4 maps invertible elements to invertible elements,
(3") & maps invertible self-adjoint elements to invertible elements.

Depending on which condition ¢ satisfies, we call it (1) unital, (2) self-adjoint, (2')
positive, (3) invertibility preserving, and (3') invertibility preserving for self-adjoint
elements, respectively. It is obvious that if 4 and B are unital C*-algebras and
¢ : A — B satisfies (1) and (3'), then ¢ is self-adjoint if and only if it is positive.

Proposition 6.5 [44, Proposition 2.1] Suppose ¢ : A — B is a positive linear
mapping. Then ¢ is bounded and ||¢|| < 2||¢(1)]|.

Proof. Omitted (see [44, p9]). ]
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Propasition 6.6 [53, Corollary 1] Suppose ¢ : A — B is a unital linear mapping.
Then ¢ is positive if and only if ||¢j| = 1.

Proof. Omitted. (See [53].) "

A Jordan homomorphism of a C*-algebra A into another C*-algcbra B is a linear
self-adjoint mapping ¢ with the property that ¢(A?) = ¢(A)? for every self-adjoint el-
ement A € A. The concept of Jordan homomorphism is from Kaplansky [31]. Jordan
homomorphisms have been studied by several mathematicians. It has been shown
([28], [29], [59]) that any Jordan homomorphism is the sum of a *-homomorphism
and a *-anti-homomorphism, and therefore, a *-homomorphism if the range is com-
mutative, and that any Jordan homomorphism is a *-hornomorphism if the domain
is commmtative. A number of sufficient conditions that a linear mapping be a Jordan
homomorphism have been obtained. (See M-D Choi et al [13], Russo [52], and Russo
and Dye [53].)

Theorem 6.7 (Russo and Dye [53, Corollary 2]) Let ¢ : A — B be a unital hinear
mapping between uuital C*-algebras A and B. Then ¢ is a Jordan homomorphism if

it maps unitary elements of A to unitary elements of B.

Proof. Omitted. .

The-rem 6.8 (Russo [52, Theorem 2]) Let ¢ : A — B be a linear mapping from a
von Neumann algebra A to a unital C*-algebra B. Then ¢ is a Jordan homomorphism
if it satisfies condition (1), (2) and (3).

Proof. Omitted. ]

After proving the above result in [52], Russo asked the following question: Does
the result remain true if A is orly a unital C*-algebra? It is Russo’s observation that
there is no loss of generality in assuming A to be commutative since only self-adjoint

elements are involved.



100

When the range of the linear mapping is also commutative, the question has been
answered positively by Gleason [20] and Kahane and Zelazke [30]. We give a different

proof of a special case of the general results obtained in [20] and [301.

Theorem 6.9 (Gleason [20]; Kahane and Zelazko [30]) Let ¢ : A — B be a linear
mapping from unital C*-algebra A to commutative unital C*-algebra B. Then ¢ is e
Jordan homomorphism if it satisfies condition (1), (2) and (3).

Proof. We may assume, WNLG, that B = C()) for some compact Hausdorff

space Y. We need to show that for any self-adjoint element A € A,

#(A%) = ¢(A)%.

Fix an arbitrary self-adjoint element A € A, let C*(A) be the C*-subalgebra
generated by A, and let ¢ be the restriction of ¢ on C*(A). Then C*(A) is com-
mutative and ¢ satisfies condition (1), (2) and (3). It suffices to show that ¢ is a

*-homomorphism.

Through the Gelfand transform, we can identity C*(A) with C(X’) where X =
o(A). For any y € Y, let § denote the multiplicative linear functional on C()) given
by

§(f) = f(y).
Then the composition g o ¢ is a linear functional on C(X’) that satisfies condition
(1), (2) and (3). It follows from Theorem 6.7, or from M-D Choi et al [13, Theorem
6], that the composition § o ¢ is a multiplicative linear functional, and hence, there

exists a unique & = d(y) in A’ such that

(JoyMg) = g(z) = (9) g¢eC(X).

Clearly, the mapping 8 : Y — X is well-defined, and
p(g) =gob geC(X).

Thus, ¢ is a *-homomorphism. ]
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Remark. We know that the linear mapping 1 in the above proof is automatically
continuous by Proposition 6.5. However, we can prove the continuity of the mapping
0 directly using the technique employed by Dunford and Schwartz in proving {18,
Theorem 1V.6.26).

A topological space X is called totally disconnected if every component in X' is a
singleton (Dugundji [17]). Through a careful examination of the proof of Theorem 6.8
in [52], we can see that the assumption of A being a von Nenmann z'gebra is needed
only to ensure that any given self-adjoint element A can be approximated by real
linear combinations of commutative orthogonal projections in A commuting with A,
Suppose &' is a compact, totally lisconnected, Hausdorff topological space. If f is a
real continuous function on X', then f(X') is a totally disconnected subset of the real
line. Therefore, f can be approximated by real linear combinations of characteristic
functions of mutually disjoint open-and-closed sets in X. Consequently, any linear
mapping ¢ from C(X’) into a unital C*-algebra B satisfying condition (1), (2) and (3)
is a *-homomorphism.

For any bounded Borel function h on the unit circle, the restriction T}, of the
multiplication operator M, to the Hardy space H? (consisting of ali £2-functions
whose negative Fourier coefficients are «; is called the Toeplitz operator induced by h
(see [23]). M-D Choi et al proved [13, Theorem 2] that if X’ is a compact Hausdorfl
space containing a continuous injective image of [0,1], then there exists a linear
mapping ¢ from C(X) to B(H?) that satisfies the condition (1), (2) and (3) but
is uot a Jordan homomorphism. The proof involves Toeplitz operators and is based
on the fact (Douglas {16, Corollary 7.28]) that the spectrum o(T}) for a continuous
function A is the range of h together with those points not in the range with respect
to which h has non-zero winding number. At the end of [13], M-D Choi et al asked
the following question: what is the necussary and sufficient condition on X that forces
all linear mappings from C(X’) into a unital C*-algebra satisfying (1), (2) and (3) to
be *-homomorphisms? The main result of this section is a theorem that answers this

question with condition (3) replaced by (3').

Theorem 6.10 Suppose X is a compact Hausdor[f space. Then all lincar mappings

[T v
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from C(X) into unital C*-algebras satisfying (1), (2) and (3') are x-homomorphisms
if and only if X is tolally disconnected.

We need some preparations to prove the above theorem. First, we prove a gener-

alization of a lemma obtained by Russo [52, Lemma 3].

Lemma 6.11 Let A and B be unital C*-algebras. Suppose ¢ : A — B is a linear
mapping and satisfies condition (1), (2) and (3'). Ther

(t) @ maps projections into projections.

(i1} ¢ maps every pair of orthogonal projections into a pair of orthogonal

projections.

Proof. (i) Let P € A be a projection. Since ¢ satisfies (1), (2) and (3'), ¢(P) is
self-adjoint and a(#(P)) C o(P) C {0,1}. Therefore, $(P) is a projection.

(ii) It is easy to check that an operator T is a projection if and only if I — 2T is

self-adjoint and unitary,

Suppose P and @ are orthogonal projections in A. Then PQ = QP = 0. It
follows that U = I —2P, V = I —2(Q) are self-adjoint and unitary, and that UV = VU.
Therefore, UV is su.i-adjoint and unitary. Hence, ¢(U/V) is self-adjoint and unitary
since o(@(UV)) C o(UV) C {—1,1}. However,

HUV) = ¢((1 - 2P)(I - 2Q)) =1 - 2[4(P) + $(Q)}.

It follows that #(P) + ¢(Q) is a projection, and thus the projections ¢(P) and ¢(Q)
are orthogonal. ]

The following result is a generalization of [52, Theorem 2]. The proof is essentially

the same.

&
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Theorem 6.12 Let A and B be unital C*-algebras. Suppose any self-adjoint element
A € A can be approzimated by real linear combin:tions of commutative orthogonal
projections in A commuting with A. Then every linear mapping ¢ : A — B that
satisfies condition (1), (2) and (3') is a Jordan homomorphism.

Proof. Suppose ¢ : A — B is a linear mapping and satisfies condition (1), (2)
and (3'). Then, ¢ is positive, and by Proposition 6.6, ||¢|| = 1.

Let A € A be a self-adjoint element and ||A|| = 1. For any € > 0, the assumption
on A implies that there exist orthogonal projections Py, P,,..., P, in A commuting

with A and real numbers oy, ay, ..., a, such that

< €.

A=) a,P,
=1 |

By Lemma 6.11, ¢(Py), ¢(P2),. .., ¢(P,) are orthogonal projections in B. Therefore,
$(A)* ~ ¢(A%)
¢(A)2 - [Z a,¢(P))

1=1

2
+

2

- ¢(A?)

ia1¢(PJ)

=1

" [¢(A) - f:am(a)] 3 0,8(F)

=1 =1

= 44 [qs(A)—iaJ«zs(PJ)

+30a24(P) — $(A)

=1

= H(A)9 (A - ia]P,) +4 (A - f:aJP,) s (z a,P,)

=1 =1

+¢ (Z 2P, — A?)

=1

P(A)¢ (A - iaJIJJ) + ¢ (A - En:aJP]) ¢ (22: a]P])

+4 (L; ajp,] T A2) )
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= pA) (A— z":a,-P]) 9 (A— ia,ﬂ) s (Z a,.p,)

i=1 i=1
+¢ ((Z a, P — A)(Y ;P + A)) :
i=1 j=1
Hence,
n n n
l6(A)* - ¢(A*)ll < ‘A =2 Pl + A=Y ;P 1 a;P;
=1 i=1 i=1
+ Ea,-P,-‘—A Eaij-l—A
J=1 =1
= e+e(l+e)+e(2+¢)
= 2¢(2 +¢€).

Letting € tend to 0, we have that ¢(A)? = #(A?). This implies that ¢ is a Jordan

homomorphism. ]

Ccrollary 6.13 Suppose A is a von Neumann algebra and B is a unital C*-algebra.
Then every linear mapping ¢ : A — B that satisfies condition (1), (2) and (3') is a

Jordan homomorphism.

Proof. It follows immediately from Theorem 6.12. ]

Corollary 6.14 Let B be a unital C*-algebra. Suppose X is a compact, totally dis-
connected, Hausdorff space. Then every linear mapping ¢ : C(X') — B that satisfies

condition (1), (2) and (3') is a Jordan homomorphism, and hence, a x-homomorphism.

Proof. Since the total disconnectness of X' implies that the condition of Theo-
rem 6.12 is satisfied with A = C(X’), the result follows immediately. [ ]

Theorem 6.15 Let X' be a compact Hausdorff space. Suppose all linear mappings
from C(X) into unital C*-algebras that satisfy condition (1), (2) and (3') are Jordan

homomorphisms. Then X is totally disconnected.
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Proof. Suppose, on the contrary, there exist two distinct points u and v in the
same component Xy of X. Form the disjoint union X Uy [0,1], and let X be the

topological space obtained by identifying u with 0 and v with 1. Then Xis compact
and Hausdorff.

—

Define 8 to be the mapping 8 : C(X) — C(X) given by

(6/)(=) = { /(@) ifz € ¥\ {5,1]

(1-z)f(u)+zf(v) fze(0,1] feO(X).

It is easy to check that 8 is well-defined, and that it is linear, unital and positive. For
any real feC(X'), since Ap is connected, f(Xp) is a connected subset of the rcal line,

and hence, an interval. Therefore, u,v € Xp implies that

(1 —x)f(u) + zf(v) € f(X)

for all z € [0,1]. Thus, 0 satisfies (3') because

—

a(0(f)) = (05)(X) = f(X) = o(f).

Fix a continuous surjective mapping h from the unit circle to the unit interval
[0,1], and let 7 : [0,1] — X be the embedding of [0,1] into X, i.e.,

r(z) =z z€[0,1)

—

Define 9 to be the linear mapping 9 : C(X') — B(H?) given by

zI)(f) = Tforoh')

where H? is the Hardy space and Tjoron is the Toeplitz operator induced by the
continuous function for o h on the unit circle. Straightforward verifications show
that 9 is linear and unital, and that (1) = 1 = ||¢]|. It follows from Proposition 6.6
that ¢ is positive.

Let ¢ = ¢ 00. Then ¢ : C(X) — B(H?) is linear and satisfies (1), (2) and
(3'). We complete the proof by showing that the linear mapping ¢ is not a Jordan

e e ng o ATt
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homomorphism. Choose any real function feC(X) with f(u) = 0 and f(v) = 1.
Such functions do exist by the Tietze Extension Theorem. By the definition, ¢(f) =

Tia4)oron- Since, for any z € [0, 1],

(f*)(z) = (1 - 2)f*(u) + 2f*(v) = 8(f)(2),

we have that ¢(f?) = ¢(f). Therefore, it is impossible that ¢{f?) = [#(f)]?, for oth-
erwise we have that ¢(f) = [¢(f)]? is a self-adjoint idempotent. It follows that ¢(f) is
a projection, and consequently o(¢(f)) C {0,1}. However, a(o(f)) = (8(f))([0,1]) =

[0,1], and we have a contradiction. ]

The proof of Theorem 6.10. It follows immediately from Corollary 6.14 and
Theorem 6.15. [ ]
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