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Abstract 

The main results in this thesis are about multiplicative semigroups of functionally 

positive operators and their invariant subspaces. 

Let X be a topological space, and with its Borel structure, a standard Borel space, 

and m a <r-finite regular Bore1 measure on X such that £*{X,m) is of dimension at 

least two. An operator on C2(X,m) is called (functionally) positive if it maps non-

negative functions to non-negative functions. Generally, the algebra generated by 

all positive operators is not closed in operator norm topology. We introduce a new 

norm on the algebra and show, using classical methods of functional analysis, that the 

algebra is a Banach *-algebra under the new norm. The spectral aspects of elements 

of the Banach algebra are discussed. 

Suppose S is a semigroup of positive integral operatois on C2(X,m). We show 

by analyzing the structure of the kernels that S has a non-trivial invariant subspace 

if every operator in S is quasinilpotent. We construct a special kind of bases of 

the ranges of positive integral idempotent operators consisting of only non-negative 

functions. Using these bases, We prove that $ has a non-trivial invariant subspace 

if it contains a non-zero compact operator and r(AB) < r(A)r(B) for all A,B in 

S. Also, we prove that if S is a semigroup of positive integral operators with the 

kernels satisfying certain positivity conditions, then there exists a non-trivial standard 

subspace, i.e., a subspuce of the form XEC2(X, m) for some Borel set E in X, invariant 

under S. We give a non-compact analogue of the Lomonosov - de Pagter result. Let 

T be an injective positive quasinilpotent operator dominating a non-zero compact 

positive operator To, i.e., T — T0 is positive. Assume C is a collection of positive 

operators contained in a norm-closed algebra A with AT C TA. Then there exists a 

non-trivial standard subspace invariant under C and T. 

Finally, we construct a semigroup of positive nilpotent operators with no non-

trivial invariant subspaces. 

VI 
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Introduction 

One of the classical unsolved problems in Operator Theory is the Invariant Subspace 

Problem: Does every bounded linear operator on an infinite dimensional Hilbert space 

have a non-trivial invariant subspace? An equally interesting problem is the problem 

; of reducibility of algebras (or, more generally, multiplicative semigroups) of bounded 

linear operators on an infinite dimensional Hilbert space: What operator algebras (or 

semigroups) are reducible? By a reducible collection of operators is meant one whose 

members have a common non-trivial invariant subspace. 

Over the years, many important results have been obtained. The most strik­

ing ones are spectral theorems for normal operators, Aronszajn-Smith theorem [6] 

on the existence of invariant subspaces for compact operators on Banach spaces, 

Lomonosov's theorem [35] on the existence of hyperinvariant subspaces for compact 

operators, and S. Brown's theorem [12] for subnormal operators. Recently, Brown, 

Chevreau and Pearcy proved that every contraction on a Hilbert space with spectrum 

containing the unit circle has a non-trivial invariant subspace (see [11]). However, 

most of the theorems require the operators to have more than one point in their spec­

tra. In [25], Halmos initiated the study of quasitriangular operators. The concept of 

quasitriangular operators plays a central role in the proofs of the Aronszajn-Smith 

theorem. At the end of his paper, Halmos asked: Does every quasitriangular opera­

tor have a non-trivial invariant subspace? Surprisingly, C. Apostol, C. Foia§ and D. 

Voiculescu proved in a series of papers that every non-quasitriangular operatoi has 

non-trivial invariant subspaces (see [3]). Thus, the general invariant subspace problem 

was reduced to the invariant subspace problem for quasitriangular operators. In [9] 

1 
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Arveson and Feldman proved that every quasinilpotent operator with a cyclic vector 

is quasitriangular. Therefore, it is worthwhile to examine the existence of invariant 

subspaces for certain multiplicative semigroups of quasinilpotent operators, especially 

non-compact quasinilpotent operators. 

Several mathematicians have made progress in this direction. It has been proven 

[41] that a semigroup of quasinilpotent operators is reducible if it contains a non­

zero operator in some von Neumann-Schatten class Cp. For the non-compact case, 

a beautiful theorem was obtained by Ando and Krieger [61, Theorem 136.9]. Let 

C2(X,m) be a Hilbert space of dimension at least two. Under its natural structure, 

C2(X,m) is a Banach lattice. It follows from the Ando-Krieger theorem that every 

quasinilpotent integral operator with non-negative kernel on C2(X,m) must leave 

XEC2(X,m) invariant for some ncn-trivial Borel set E. Recently, a number of results 

in this area have been obtained (see [14], [34] and [46]). However, there are still 

several interesting problems that have not been solved, including the one posed in 

[41]: Is a semigroup of compact quasinilpotent operators reducible? In this thesis, 

we will investigate the reducibility and the existence of so-called standard invariant 

subspaces of certain semigroups of quasinilpotent operators, especially semigroups of 

integral quasinilpotent operators with non-negative kernels. 

A standard Borel space is a set X and a c-algebra of subsets of X (called the Borel 

subsets of X) such that X is Borel-isomorphic to a Borel subset of some complete 

separable metric space in its relative Borel structure (see [S, Chapter 3] or [37]). 

Throughout this thesis, we always assume that X is a topological space and, with its 

Borel structure, a standard Borel space. We also assume that m is a o-finite regular 

Borel measure on X such that the Hilbert ypace C2(X,m) is of dimension at least 

two. 

Chapter 1 covers basic aspects of the theory of integral operators and pseudo-

integral operators, a generalisation of integral operators introduced by Arveson in 

[7]. A number of known results about the algebraic properties of pseudo-integral 

operators and their kernels are listed for future use. We also introduce some notation 

and terminology. Most of the material in this chapter comes from Halmos and Sunder 
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[26], Sourour [57], as well as Zaanen [61]. 

In Chapter 2, we study the algebra V of all pseudo-integral operators with abso­

lutely oounded kernels on some Hilbert space £2(X,m) of square integrable functions 

on a finite measure space (X, m). We indicate that the algebra V may not be a norm-

closed subalgebra of B{C2(X, m)) in general; and a new norm ||| • ||| is introduced on V. 

Using classical methods of functional analysis, we prove that (V, | • |||) is a complex 

Banach *-algebra (Theorem 2.15). The spectral properties of operators as elements 

of the Banach algebra (V, ||| • |||) are discussed in Section 2.3. 

Chapter 3 is on the structure of kernels of positive integral idempotents. In gen­

eral, if A is an idempotent on a Hilbert space H, then, under a suitable orthonormal 

basis, A can be represented as a matrix whose upper left corner, corresponding to 

the compression of A to its range, is the identity matrix of the size of the rank of 

A. The main results of this chaptei (Theorem 3.13 and 3.16) are generalizations of 

this in the case where A is a positive integral idempotent on C2(X,m). As a result 

(Corollary 3.17), we can obtain a basis of the range of A consisting of positive ele­

ments of C2(X,m). This kind of special bases will be used in Chapter 4 to prove the 

existence of non-trivial invariant subspaces for certain semigroups of positive integral 

operators. 

Chapter 4 is devoted to the study of reducibility of semigroups of positive opera­

tors on £2(X, m). We prove that every semigroup of positive quasinilpotent operators 

is reducible (Theorem 4.7), and a theorem (Theorem 4.8) which is more general than 

Theorem 4.7. We also investigate the existence of non-trivial standard invariant sub-

spaces of certain semigroups of positive integral operators, and prove a generalization 

(Corollary 4.26) of the Ando-Krieger theorem in the special case where the Banach 

lattice is the functional Hilbert space C2(X,m) with its natural lattice structure. 

In Chapter 5, we construct a semigroup of positive nilpotent operators on £?([0,1]) 

which does not have any invariant subspaces other than {0} and £2([0,1]) itself. 

The semigroup constructed is discrete (Theorem 5.8), and hence, norm-closed in 

0(£2([O,l])). 

I 



4 

Finally, Chapter 6 consists of two sections. The first section discusses the relation 

between the Jacobson radicals of operator algebras and the existence of invariant 

subspaces of the algebras. The main results in this section are Theorems 6.3 and 

6.4. The second section itudies positive linear mappings between C*-algebras. We 

give a sufficient condition that makes a linear mapping between unital C-algebras a 

Jordan homomorphism (Theorem 6.12). The main theorem (Theorem 6.10) answers 

a question posed in [13]. 

! 



Chapter 1 

Preliminaries 

In this chapter, we will discuss some basic aspects of the theory of integral operators 

and pseudo-integral ope, tors, a generalization of integral operators introduced by 

Arveson in [7]. We list a number of known results that will be used extensively later. 

1.1 Integral Operators 

Suppose (X,m) and {y,m') are two standard Borel measure spaces with <7-finite 

reguhr Borel measures m and m'. The following definitions are from Halmos and 

Sunder [26]. A kernel on X x y is a complex measurable function on the Cartesian 

product space X x y. If k is a kernel on X x y, then the measurable function k* 

defined by 

k'(y,x) = k(x,y) {y,x)eyxX 

is a kernel on y x X, and called the conjugate transpose of k. 

Let k be a kernel on X x y. Suppose k has the property that for all g in C2{y, m'), 

Hxi')d(') € £l(yi™') for almost every a; in X, and the function / defined by 

M- fk(x,y)9{y)™'(dy) 
jy 

5 
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k 

is square integrable over X. It was proved in [26, Theorem 3.10] that k actually 

induces a bounded linear operator Int k from C2(y, m') to C2(X,m): 

(Int k)g(x) = / k(x, y)g(y)m'(dy) x e X a.e. 

We call kernels that induce bounded linear operators bounded kernels, and opera­

tors induced by bounded kernels integral operators. If u is in C2(X, m) and v is in 

C2(y,m'), then we denote by u®v the measurable function u(x)v(y), x G X, y € y. 

Clearly, u®v is a bounded kernel on X x y and induces a rank-1 operator. As usual, 

the rank-1 integral operator induced by u®v is still denoted by u®v. 

It is easy to see that every function in C2(X x ^ m x m ' ) induces a bounded 

operator from C2(y,m') to C2(X,m). The integral operator induced by a kernel in 

C2(X x y,mxm') is called Hilbert-Schmidt operator. 

Suppose H is an arbitrary Hilbert space. For any positive number p, the Schatten 

p classes Cp is the set of all compact operators T on H with the property that the 

sequence {sj(T)} of eigenvalues of (T*T)* (counting the multiplicity) is in /p. It was 

proved [49] that Cp is a two-sided ideal in B{H) and a Banach space under the Cp-norm 

|| • ||cp defined by the equation 

{EM \\T\\cP = V£A^n 

Usually, we call an operator T in C\ a trace-class operator, and the trace tr(J') of 

T is defined to be the sum of all eigenvalues (counting the multiplicity) of T. It 

is well-known that if H = C2(X,m), then the C2 class coincides with the class of 

Hilbert-Schmidt operators on C2{X,m) (see [49]). 

Kernels and integral operators have been extensively studied in [26] and [61]. We 

list here without proof a number of results from these papers. 

Proposition 1.1 [26, Theorem 7.5] The conjugate transpose k* of a bounded kernel 

k is bounded if and only if the adjoint of the iuduced integral operator is an integral 

operator, and in that case, Intfc* = (Intfc)*. 
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Proposition 1.2 [26, Corollary 4.4] Ifu\,U2,... tu n are in C2(X,rn), vi,v2,...,vn 

are in C2(y,m!) and k = ]£?=lUj®t>,, thei Int/: is a bounded linear operator from 

C2(y,m') to C2{X,m) of rank at most n. Conversely, if A is an arbitrary bounded 

linear operator from C2{y,m!) to C2(X,m) of rank at most n, then A = Int/; for 

some kernel k of the form !C"=i u3®v:. 

Proposition 1.3 [26, Theorem 8.1] If a bounded kernel k on X x y induces the zero 

operator, then k(x,y) = 0 for almost every (x,y) € X x y. 

From the above propositions, it is clear that if A is a finite-rank (integral) operator 

in B{C2(X,m)) with a non-negative kernel, then so is A*. 

Definition 1.4 [14, Definition 3.6] A subspace of C2(X,m) is a norm-closed linear 

manifold in C2(X,m). A standard subspace of C2(X,m) is a subspace of the form 

Mu = X(rC
2(X,m) = {feC2(X,m):f = 0 a.e. on Uc} 

for some Borel set U in X. The orthogonal projection from C2{X,m) onto Mu is 

denoted by Pu-

REMARK. It is easy to see that the union and intersection of any countable set 

of standard subspaces are still standard subspaces, and so are the complements of 

standard subspaces. If C2(X,m) is separable, then, as a topological space, it has the 

Lindelof property. Consequently, the union and intersection of any set of standard 

subspaces, countable or uncountable, are still standard subspaces. 

Proposition 1.5 [61, Theorem 136.3] Let U be a Borel set in X. An integral operator 

T 6 B(C2(X,m)) toith non-negative kernel k leaves the standard space Mu invariant 

if and only if k — 0 a.e. on UcxU. 

Proposition 1.6 [61, Theorem 135.1] Let T e B(C2(X,m)) be an integral operator 

with non-negative kernel. Then the spectral radius r(T) ofT belongs to the spectrum 

°{T) ofT. 
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Proposition 1.7 [61, Theorem 135.2] Let T € B(C2(X,m)) be a compact integral 

operator with non-negative kernel such that the spectral radius r(T) ofT is not zero, 

then there exists a positive function u in C2(X,m) such that u ^ 0 and Tu = r(T)u. 

1.2 Kernels of Integral Operators 

In this section, we discuss the boundedness of kernels on X x X, as well as the product 

of integral operators. Most of the material in this section comes from Halmos and 

Sunder [26]. 

It is easy to check that if h and k are bounded kernels and h + k is their pointwise 

sum, then h + k is a bounded kernel and Int (h + k) = Int h + Int k, and that if k is 

a bounded kernel and a is a scalar, then ak is bounded and Int (ak) = alnt k where 

aA; is defined by (aA;)(a;, y) = ak(x, y). 

One may expect similar results for the product of integral operators. Unfortu­

nately, the situation is complicated and no general theorem seems to be known about 

it. Two kernels h and k on X x X are called multipliable if h(x,-)k(',rj) belongs to 

Cl(X,m) for almost every (x,y) 6 X x X. In that case, the convolution 

/ h(x,t)k(t,y)m(dt) 
Jx 

can be formed for almost every (x, y) € X x X; and it defines a kernel h*k on X x X. 

In general, two bounded kernels are not always multipliable, and it is still unknown 

whether the convolution of two multipliable bounded kernels is necessarily bounded, 

and whether it necessarily induces the product operator if the convolution is bounded 

(see [26], p32-33). 

Proposition 1.8 If A € B(C2(X,m)) is an integral operator with kernel h and B € 

B(C2(X,m)) is a finite-rank operator with kernel k, k = ]C"_t u3®v} where Uj,v} are 

in £2(X, m) for ?ll j = 1,2,..., n, then h and k are multipliable, and the convolution 

h*k of h and k is bounded and induces the operator AB. 



Proof. With no loss of generality (WNLG), we may assume that B is a rank-1 

operator with kernel k, k — u®% where u and v are in C2(X,ni). 

For any (x, y) £ X x X, 

h(x, •)*(•» y) = h(x, •)«(•)%)• 

Since h is a bounded kernel, h(x, -)u(-) € Cl(X, m) for almost every x in X. Therefore, 

h(x, -)k(-,y) 6 £1(A',m) for almost every (x,y) € X x X. Hence, h and k are 

multipliable. 

The convolution h*k of h and k is given by 

(/i*fc)(j, y) = / /i(x, £)&(£, j/)m(d£) 

= / h(x,t)u(t)v(y)m(dt) 
•J X 

- (Au)(x)v(y). 

For a.ny feC2(X,m), 

[M(h*k)f](x) 

= I (h*k)(x,y)f(y)m(dy) 

= / (Au)(x)v(y)f(y)m(dy) 

= (Au){*) I v(y)f{y)™{dy) 
J X 

= ( h(x,t)u(t)m(c't) [ v(y)f(y)m{dy) 
** X J X 

= Jxh{x,t)yxu(t)v{y)f(y)m(dy) m{dt) 

= Jxh(x,t)(Bf)(t)m(dt) 

= A(Bf)(x) 

= UB)f](x), 

for almost every x in X. This implies that the convolution h*k is a bounded kernel 

and induces the operator AB. u 
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Let A and B be the same as in the above proposition. Then BA is a finite-rank 

operator as well, and therefore, an integral operator. But this does not imply that k 

and h are always multipliable and that the convolution k*h is a bounded kernel. We 

explain this through the following example. 

Recall that the discrete Fourier transform F from £a([0,1]) to C2(Z) is an integral 

operator induced by <j>, where <j> is the kernel on Z x [0,1] given by 

<i>{n,y) = e-2^ (n,y) € Z x [0,1]. 

The Fourier transform F assigns to each element g in £2([0,1]) the sequence of its 

Fourier coefficients; the adjoint F* assigns to each sequence / in C2(Z) the function 

whose sequence Gr Fouria coefficients it is. It is a well-known fact [26, Example 7.2] 

that the transpose <j>* of <j> is not a bounded kernel and F* is not an integral operator. 

In fact, if {cn\ is in I2 but not in I1, then £ e2irny,cn is not absolutely summable for 

every y € [0,1]. 

Example 1.9 There exists an integral operator A = Inth and a rank-1 operator 

B = u®u on a Hilbert space C2(X,m) such that u®u and h are not multipliable 

kernels. 

Proof. Let X be the disjoint union 2 Ud[G\ 1] °f -2 and [0,1] and let m be the 

measure on X that is the counting measure on Z and the Lebesgue measure on [0,1]. 

We identify C2(X,m) with C2{Z) 0 £2([0,1]). Let h be the kernel on X x X given 

by 

hi )=lt(xiV) i f *€ S a n d y €[0,1], 
[ 0 otherwise. 

Then it is easy 10 check that 

(Int h)£ = {Fv)@Q 

for any f = u0u € C2(Z) © £2([0,1]). Hence h is a bounded kernel. 
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Choose any sequence {cn} in I2 but not in I1 and let u = {c„}©0. Then ~.i € 

C2(X,m). For every (x,y) 6 X x X, we have 

(u®u)(a;, -)h{; y) = u(x)u(-)h(-,y) = u(x)h(-,y)u(-) 

which is not in Cx(X,m) since 

/ \h(t,y)u(t)\m(dt) = Y, |e-27rni"'c„| = +00. 
•̂  n 

Thus u®u and /i are not multipliable kernels. • 

Definition 1.10 [26, p.50] A kernel k on X x X is called absolutely boundedii \k\ is 

a bounded kernel on X x X. 

The idea behind the following proposition comes from [46]. 

Proposition 1.11 If a kernel k on X x X is dominated by a non-negative bounded 

kernel h in the sense that. \k(x,y)\ < h(x,y) for almost every (x,y) in X x X, then 

k is bounded and absolutely bounded. Moreover ||Int&|| < ||Int|fc||| < ||Int A||. 

Proof. For any / 6 C2(X,m), 

l*(*,y)/(0)l < h(x,y)\f(y)\ = h(x,y)\f\(y) (x,y) eXxX a.e. 

But h is a bounded kernel and | / | is in C2(X, m), we have that the function h(x, OI/KO 

is in Cx(X,m) for almost every x in X. Therefore, the function k(x, •)/(') ls m 

Cl(X,m) for almost every x in X. 

It is clear that the function 

/ H-,y)f(y)m(dy) 
J X 

is dominated by the function 

(Int h)\f\(-) = Jxh(;y)\f\(y)m(dy). 
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That is 

I / *(x,») /(yMdy) | < / h(x,y)\f\(y)m(dy) x£X a.e. 
J X J X 

However, (Int/i)|/ | is in C2(X,m), therefore, fx k(-,y)f(y)m(dy), as a function on 

X, is also in C2(X,m). Hence, k is a bounded kernel on X x X. 

From what we have shown above, we know that, for any / € C2(X} m), 

| |(Intt)/ | |<| |(Int |Jb|) | / | | | , 

and 

||(Int|fc|)/||<||(Intfc)l/|||. 

It follows that 

||Intfc||<||Int|Jt||| <||Intft||. 

Corollary 1.12 All absolutely bounded kernels are bounded kernels. 

Theorem 1.13 [26, Theorem 10.7] / / h and k are absolutely bounded kernels on 

X x X, then h and k are multipliable, and h*k is an absolutely bounded kernel on 

X x X and Int (h*k) = Int/ilntfc. 

Proof. It follows immediately from Fubini's Theorem. We omit the details. • 

If k is an absolutely bounded kernel on X x X, then, from the above theorem, 

(Int k)n is an integral operator induced by the absolutely bounded kernel 

/fc(") = k* • • • *k, 
n 

for all positive integer n. 

Corollary 1.14 If k is a kernel on X x X dominated by a non-negative kernel h, 

then r(lntk) < r(lnth), where r denotes spectral radius. 
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Proof. It follows from Proposition 1.11 that k is an absolutely bounded kernel 

on X x X. Therefore, for any positive integer n, (Intfc)" is an integral operator 

induced by the kernel feW which is dominated by the kernel h^nK By Proposition 1.11, 

||(Int ib)n|| < ||(Int h)n\\ for all n = 1,2, • • •. Thus, r(Int k) < r(Int h). • 

1.3 Pseudo-Integral Operators 

In this section, we assume further that m is a finite regular Borel measure on X such 

that C2(X,m) is of dimension at least two. 

The Hilbert space C2(X,m) with its natural order structure is a Banach lattice. 

More explicitly, an element / in C2(X,m) is lattice positive (simply, positive) if and 

only if f(x) > 0 for almost every x in X. We call an operator T in B(C2(X,m)) 

functionally positive (simply, positive) if Tf is positive whenever / € C2(X,m) is 

positive. 

The concept of pseudo-integral operator was introduced by Arveson in [7], and 

studied by Sourour in [57] and [58]. The following definition comes from [57]. 

Definition 1.15 [57, Definition 2.1] A bounded linear operator T in B(C2(X,m)) is 

called a pseudo-integral operator if T is given by the equation 

(Tf)(x) = / f(y)n(x,dy) x € X a.e. 
J X 

for every / in C2(X, m), where, for almost every x in X, fi(x,-) is a complex Borel 

measure on X, and, for every Borel set B in X, the map x i—• p.(x,B) is assumed 

to be a Borel function. 

The class {/<(a:, •) : x 6 X) of measures is called the kernel of T. 

A kernel {n{x,-)} is called absolutely bounded if {|/t|(x,•)} is the kernel of a 

bounded operator on C2(X,m). 
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Clearly, the concept of pseudo-integral operator is a generalization of that of 

integral operator. Furthermore, the definitions of absolute boundedness of kernels 

are consistent. The class of pseudo-integral operators is quite large. In fact, for any 

<t> € C°°(X,m), the multiplication operator M^ is a pseudo-integral operator induced 

by the kernel: p(x, dy) = <j>(x)81(dy), where 6X is the point mass at x. Particularly, the 

identity operator / is a pseudo-integral operator. Also if ^ is a measurable map on X 

such that the equation C^f — foxjj defines a bounded operator C^ on C2(X,m), then 

C^, is a pseudo-integral operator with kernel p(x,dy) = 8^x)(dy) (see [57, p.342]). It 

is well-known that if (X, m) is a nonatomic measure space, then neither of them is an 

integral operator. However, not every bounded operator is a pseudo-integral operator. 

In [57], Sourour provided three examples to show that if X is the unit circle and m 

is the normalized Lebesgue measure, then there exists projections, unitary operators 

and compact operators on C2(X,m) that are not pseudo-integral operators. 

Next, we list several results, to be used later, related to pseudo-integral operators. 

As before, their proofs are omitted. 

In [7], Arveson proved the following disintegration properties for measures, which 

is essential for analyzing the kernels of pseudo-integral operators. 

Lemma 1.16 ([7, p.461]; [57, p.349]) Let X, y be standard Borel spaces, let p be a 

finite positive measure on X xy, and let p\(A) = p(A x y) be the first marginal mea­

sure of p. Then there exists a map x i—• /ig from X into the space of all probability 

measures on y such that 

(i) The map x i—• ^o(B) is a Borel function for every Borel set B in y. 

(ii) p(S) = /^/yXs(x, y)p,o(dy)pi(dx) for every Borel set S in X x y. 

Proposition 1.17 ([7, Proposition 1.5.3], [57, Proposition 4.2]) Suppose (X,m) and 

(y, m') are standard Borel measure spaces with finite regular Borel measures m and 

m'. Let p. be a bounded complex Borel measure on X x y such that p vanishes 

on marginally null sets (equivalently \p\\ <C m, |/z|2 < m', where \p\\ and \p\2 are 
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marginal measures of\p\). Then there exists a map x i—• pf of X into the set of all 

bounded Borel measures on y, and a map y •—• py of y into the set of all bounded 

measures on X, such that 

(i) For all Borel sets A C X and B C y, the maps x i—• px(B) and 

y i—• py(A) are Borel functions. 

(ii) p(dx,dy) = px(dy)m(dx), i.e., for every Borel set S in X xy, 

^S)~ II Xs(x,y)px(dy)m(dx); 

and p(dx,dy) — py(dx)m'(dy). 

(Hi) \p\(dx,dy) = \px\(dy)m(dx) = \py\(dx)m'(dy). 

Moreover, px and py are essentially unique. 

It is well-known that an integral operator is positive, i.e., it maps positive elements 

to positive elements, if and only if its kernel is non-negative. The following theorem 

not only generalizes this result, but also indicates that the class of pseudo-integral 

operators is much larger than that of integral operators. The proof can be found in 

[57]. 

Theorem 1.18 [57, Theorem 3.1] Let T be an operator on £2(X, m). In order for T 

to be a pseudo-integral operator with a positive kernel, it is necessary and sufficient 

that T be a positive operator. 

Recall that an operator T on C2(X, m) is called order-bounded if for every posi­

tive element « G C2(X,m), there exists a positive element v € C2(X,m) such that 

| ( r / ) (x) | < v(x) for almost every x in X whenever | /(x)| < u(x) for almost every x 

in X. 

Corollary 1.19 [57, Corollary 3.2] LetT be an operator on C2(X,m). The following 

conditions are equivalent. 
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(i) T is a pseudo-integral operator with absolutely bounded kernel. 

(ii) T = T\ — T2 + i(T3 — T4) for some positive bounded operators Ti,T2,T$ 

and T4. 

(Hi) T is order bounded. 

1.4 Pseudo-Integral Operators with Absolutely 

Bounded Kernels 

Sup-^se (X,m) is a standard Borel measure space with finite regular Borel measure 

m. It follows easily from Corollary 1.19 that the class of pseudo-integral operators 

with absolutely bounded kernels is a subspace of B(C2(X,m)). We denote it by V. 

In this section, we will see that V is actually a *-subalgebra of B(C2(X,m)). 

The following lemma is obtained by Sourour. It gives a sufficient condition for a 

measure on X x X to be an absolutely bounded kernel. 

Lemma 1.20 [57, Lemma 4.1] Let p be a Borel msasure on X x X which vanishes 

on marginally null sets and has the property that the function h(x,y) = f(y)g(x) 

belongs to CX(X x X, \p\) whenever f and g are in C2(X,m). Then the equation 

{TJ,g)=[ f{y)g{x)n{dx,dy) 
J X X X 

defines a bounded linear operator^ on C2(X,m). 

REMARK. If a measure p induces a bounded operator T), as in the above lemma, 

then so does the measure \p\. Therefore, TM is a pseudo-integral operator with an 

absolutely bounded kernel. In this case, we call the measure p the absolutely bounded 

kernel of T„ (see [57, p.350]). 

From now on, TM will denote the pseudo-integral operator induced by the abso­

lutely bounded kernel p. 
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Theorem 1.21 [57, Theorem 4.3] If T is a pseudo-integral operator on C2(X,m) 

with absolutely bounded kernel p, then so is T*, and for every f in C2(X,m), 

(T'f)(y) = I f(x)py(dx) y e X a.e., 
J X 

where p(dx,dy) = py(dx)m(dy) is the disintegration of the complex conjugate ~p of p. 

REMARK. From the above theorem, it is clear that if T is an integral operator with 

non-negative kernel k, then T° is also an integral operator, and its kernel is k*. 

We now consider the product of pseudo-integral operators with absolutely bounded 

kernels. The concept of convolution of absolutely bounded kernels was introduced by 

Arveson [7]. Suppose TM and T„ are two pseudo-integral operators with absolutely 

bounded kernels p and v respectively. Then the equation 

(p*v)(S) — \ (p, x i/*)(S)m(dz), for every Borel set ,9 C X x X 
J X 

defines a finite Borel measure p*u o n A f x ^ (see [57, p.350]). 

Theorem 1.22 ([7, Proposition 1.5.5]; [57, Theorem 4.4]) If p and v are absolutely 

bounded kernels, then so is p*v, and T^mv = T^TV. 

Theorem 1.23 [57, Theorem 4.5] The class V of pseudo-integral operators with ab­

solutely bounded kernels is a selfadjoint algebra containing the identity. The class I 

of integral operators with absolutely bounded kernels is a selfadjoint two-sided ideal in 

V. 

REMARKS, (i) It is easy to see that every Hilbert-Schmidt operator is in J , and 

therefore, in V. 

(ii) Suppose Tn € V is a pseudo-integral operator with absolutely bounded kernel 

p. Then T„ belongs to J if and only if 

p(dx,dy) = k(x,y)(mxm)(dx,dy) 
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for some measurable function k, and TM is a Hilbert-Schmidt operator if and only if 

p(dx,dy) = k(x,y)(mxm)(dx,dy) 

for some measurable function k in C2(X x X,mxm). In that case, we have that 

\\T»\\c2 - \\k\\c3(XxX,mxm)-

(iii) There are compact operators (see [57, Example 2.6]) that are not pseudo-

integral operators. Therefore, V is, in general, not norm-closed in B(C2(X,m)). 

(iv) There are positive compact operators (see [19, Example 3]) that are the norm-

limits of positive finite-rank operators, but .ioj. integral operators. Therefore, I is, in 

general, not norm-closed in V. 



Chapter 2 

The Algebra of Pseudo-Integral 

Operators with Absolutely 

Bounded Kernels 

Suppose X is a topological sp?xe and, with its Borel structure, a standard Borel 

space, and m is a finite regular Borel measure on X. Consider the collection V of 

all pseudo-integral operators with absolutely bounded kernels on C2(X,m). We have 

shown in Chapter I that V is a subalgebra of B(C2(X,m)), but not norm-closed, in 

general, in B(C2(X,m)). In this chapter, we will define a new norm ||| • ||| on V and 

prove using classical methods of functional analysis that under this new norm V is a 

Banach *-algebra. We will also discuss some spe tral properties of certain operators 

as elements in (V, ||| • |||). 

2.1 A New Norm on V 

In this section, we define a new norm ||| • ||| on V, and examine its relation to the 

operator norm and Hilbert-Schmidt norm. 

19 
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Definition 2.1 For any T G V with absolutely bounded kernel p, i.e., T = T^, we 

define the new norm of T = TM as the operator norm of T\n\. That is 

= II^I = IITMII. 

Proposition 2.2 (V, ||| • | ) is a normed space. 

Proof. The proof is straightforward and is omitted. • 

Recall that the collection of all complex Borel measures on X x X is a Banach 

space with the norm defined to be the total variation of the measure on X x X (see 

Dunford and Schwartz [18]). 

Proposition 2.3 IfT^ is in V with absolutely bounded kernel p, then 

= \p\(X x X) < m ( * ) | r j . 

Proof. For any / and g in C2(X,m), 

(TMf,g)= I f(y)g(x)\p\(dx,dy). 
J XxX 

Therefore, 

\p\(XxX) = / XXxX(x,y)\p\(dx,dy) 
J X xX 

= /„ x*(*)x*(0)H(rfMy) 
J X XX 

= (TMxx'Xx) 

< \\TM\\ H*vll2 

= m(*)|TM | . 

Let B denote the unit ball of C2(X,m), and B + the set consisting of all posi­

tive elements of C2(X,m) in B. The following proposition gives several equivalent 

definitions of the norm ||| • |||. 
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Proposition 2.4 Suppose TM is in V. Then, 

I W = 8up{||r,M|/|| : / € B+} 

= sup{(T|M|/, g) : f and g are in B + } 

= sup{||7|M|/|| : / G B + is a simple function} 

= sup{(T|^|/, g) : / , g € B + are simple functions}. 

Proof. By the definition of the new norm ||| • |||, |TM|| = ||7|M|||. Since T|M| is a 

positive operator, we have that, for any / € C2(X,m), 

\TMf\(x)<(TM\f\){x) 

for almost every x in X. But, ||/| | = || | / | || for every / in C2(X,m), so 

infill = ||rM|| 
= suP{| | rH / | | 

= •upfllTirf/ll 

= sup{||rM/ | | 

/ € £ 2 ( A r , m ) a n d | | / | | < l } 

/ € C2(X,m) is positive and ||/| | < 1} 

/ € B + } . 

For the second equation, it is easy to see that 

sup{(!T|„|/, g) : / and g are in B+} 

is less than or equal to |TJ||. Conversely, for any positive element / in £2(X,m), we 

have T\^f is positive. So if we let 

9 liriMi/ll' 

then g is in B + , and (T^f, g) = ||r|M|/||. It follows that 

supKT^i/, g) : f and g are in B4*} 

is greater than or equal to 

8 u p { | | T M / | | : / € B + } , 
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which is equal to |||JTJ|. Thus, 

sup{(r|„|/, g) : / and g are in B + } 

is equal to flTj. 

From what we have proven and the fact that every positive element in C2(X,m) 

is a norm limit of an increasing sequence of positive simple functions, we have that 

| r „ | is equal to 

sup{||T|^|/|| : / € B + is a simple function} 

and 

sup{(T|A,|/, g) : / , g € B + are simple functions}. 

• 

Next, we look at the relation between the new norm and the operator norm, and 

the relation between the new norm and the Hilbert-Schmidt norm. 

Proposition 2.5 Suppose T^ is in V. Then, 

(0 II^H < IITJI, and ||rM|| = | | r^ | if p is a positive measure, 

(n) !TM | < ||TM||ca
 J / ^ is a ^2 operator. 

Proof, (i) is obvious. 

For (ii), if TM is a C2 operator, then 

p(dx,dy) = k(x,y)(mxm)(dx,dy) 

for some k G C2(X x X,mxm). Therefore, 

\p\(dx,dy) = \k\(x,y)(rnxm)(dx,dy). 
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For any positive elements / and g in C2(X,m), 

(TMf,g) = / f(y)g(x)\p\(dx,dy) 
JXxX 

= I vf(y)g(x)\k\(x,y)(mxm)(dx,dy) 
JXxX 

< \f [f(y)g(x)]2(mxm)(dx,dy)Y 

• \JXxX \k\2(xiy){mxm)(dx,dy)y 

= ||/||IW||||*M|£.(*X*.mJcm) 

= \\f\\\\9\\\\k\\cHxxx,m*m) 

= 11/11 \\9\\\\T,\\c2. 

Therefore, by Proposition 2.4, \§TJ < |i!T„j|ca. • 

Proposition 2.6 If p is a positive measure and induces a bounded operator T^ in V, 

and if v is a measure on X x X such that \i/\ < p, then v is an absolutely bounded 

kernel and induces a bounded operator Tv in V with |Ti,| < l|rM||. 

Proof. Since p is a bounded kernel, we have that p vanishes on all marginally 

null sets in X x X. However, |t/| < p. So v also vanishes on all marginally null sets 

in X x X. 

For any / ang g in C2(X,m), 

1/ f(y)g(x)\v\(dx,dy) < f \f\(y)\g\(x)p(dx,dy) 
\JXxX JXxX 

= (TM/,9) 

< \\TM\\ 11/11 Ml 

Therefore, the function h given by 

Hx,y) = f(y)g(x) 

is in CX(X x X, \v\). By Lemma 1.20, v induces an operator T„ G V. 

file:///JXxX


24 

It is easy to see that | r j = ||rM|| < ||r„|| = ||TJ. • 

Suppose T is an operator in V with absolutely bounded kernel p. Then /* is a com­

plex measure on X x X such that \p\ induces a bounded operator T\^\ on C2(X,m). 

By the Lebesgue-Radon-Nikodym Theorem (see [50] or [51]), p has a unique decom­

position 

P = Pa-r Ps, 

where pa is absolutely continuous with respect to mxm (denoted by pa <£ mxm), 

and ps and mxm are mutually singular (denoted by ps JL mxm). Consequently, 

both pa and pa are dominated by \p\, i.e., \pa\ < \p\ and \ps\ < \p\. It follows from 

Proposition 2.6 that both pa and ps are absolutely bounded kernels on X x X, and 

that ITJII < |TJ and |T,J < M . 

It is clear from the definition of J in Theorem 1.23 that 

I = {T G V : T = 7 ; for some kernel p with pa = 0}. 

Let 

7?5 = {T G 7> : T = TM for some kernel p with ^a = 0}. 

Then, we have the following result. 

Theorem 2.7 For any standard finite measure space (X,m), 

(i) 1 is a closed two-sided ideal in (V, § • |||). 

(it) Ps is a closed subspace in (V, ||| • |||). 

(Hi) V = J © Va. 

Proof, (i) By Theorem 1.23, J is a two-sided ideal in V. 

Suppose {T^} is a sequence in J that converges to TM G V in (V, ||| • |||). Then, 

by Proposition 2.3, 

life - A = k - H(* x *) —»o (i — oo). 
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Since all T^, (j = 1,2, • • •), are in J , we have that all pj, (j — 1,2, • • •), are absolutely 

continuous with respect to mxm. Therefore, the measure p, as the norm limit of {pj}, 

is also absolutely continuous with respect to mxm. Thus, T^ is in I . 

(ii) It is easy to see from the definition that Va is a linear manifold in V. The 

proof of the fact that Va is closed under the new norm is similar to the proof of (i) 

since the norm limit of a sequence of measures singular to mxm remains singular to 

mxm. 

(iii) By the above analysis, V = I -rVs. Noticing the fact that p < mxm 

and p 1 mxm together imply p — 0 for any measure p on X x X, we have that 

inva = {0}. • 

We conclude this section by providing several interesting examples of operators 

in V. When the measure space (X,m) is not purely atomic, the identity operator on 

C2(X,m) is not an integral operator. In this case, Vs ^ {0}. In fact, Vs contains 

a large number of multiplication operators M$ with <j> G C°°(X,m) and composi­

tion operators C^ with suitable maps i/> on X. But these operators are clearly not 

compact. In [57], Sourour asked the following question: If T is a compact pseudo-

integral operator, must T be an integral operator? The answer to this question is 

negative. Consider the best example of nonatomic measure space: the unit interval 

[0,1] with the Lebesgue measure. Fremlin provided a method in [19] to construct 

positive compact operators on C2([0,1]) that are not integral operators. The method 

can be applied to other nonatomic measure spaces. 

Example 2.8 Let X be the unit interval [0,1] and m the Lebesgue measure on X. 

Then there are non-zero positive compact operators in Va. 

Proof. Using Fremlin's method, we can construct a non-zero positive compact 

operator T on C2(X,m) that is not an integral operator. Therefore T = TM is in V 

for some absolutely bounded kernel p and the singular part pa of p is non-zero. Thus 

the operator Ttit induced by the kernel pa is a non-zero positive operator in Va, and 

dominated by T,,, i.e., TM — T^a is positive. However, T"M is a compact operator. It 
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follows from [1, Theorem 2.3] or [15, Theorem 4.5] that TM, is also compact. • 

Example 2.9 Let X be the unit interval [0,1] and m the Lebesgue measure on X. 

Then there is a non-zero compact operator T in Va such that neither T nor —T is 

positive. 

Proof. From the previous example, it is not difficult to find two non-zero positive 

compact operators T\ and T2, T\ ^ T2, in V„ such that neither T\ — T2 nor T2 — T\ is 

positive. • 

REMARK. As we have pointed out earlier, Fremlin's method of constructing non-zero 

positive compact operators that are not integral operators can be generalized to other 

nonatomic measure spaces. Therefore, the above examples can also be generalized to 

other measure spaces. 

2.2 The Completeness of (V, ||| • |||) 

It follows from Corollary 1.19 that the algebra V coincides with the algebra generated 

by positive operators on C2(X,m). In [54] Schaefer studied the algebra generated by 

positive operators on a general Banach lattice and several results about the algebra 

were presented. Let £ be an order complete complex Banach lattice. An operator on 

S is called regular if it is a linear combination of positive operators. Clearly, the set 

of all regular operators on £ is an operator algebra and we denote it by Br(£). Since 

£ is order complete, an operator on £ is regular if and only if it is order bounded, 

i.e., maps order bounded subsets to order bounded subsets. Suppose T is a regular 

operator £. Then, for every positive element x in £, the supremum 

\T\x = sup{\Tz\: |*| < x} 

is well-defined where z —> \z\ is the modulus function (see [54, Chapter II, Definition 

11.1]). It was proved [54, p.234] that |T| can be linearly extended into a positive 

(bounded) operator on £. Schaefer proved the following equivalent definition of |T|. 
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Theorem 2.10 [54, Chapter IV, Theorem 1.8] Let £ be an order complete complex 

Banach lattice. IfT is a regular operator on £, then 

\T\= sup \(cose)T1-r(s\n0)T2\ 
O<0<2JT 

where T = 7\ 4- iT2 is the canonical decomposition ofT. 

Let £ be an order complete complex Banach lattice. For every T in Br(£), let 

imirHlirm. 

We have the following theorem. 

Theorem 2.11 [54, Chapter IV, Corollary 2] Let £ be an order complete complex 

Banach lattice. Then (Br(£), | • |) is a complex Banach lattice and Br(£) is a complex 

Banach algebra under the norm ||-||r. 

For the special case where £ = C2(X, m), it is clear that £ is order complete and 

Br(£) = V. Let TM be an arbitrary operator in V. It follows from the definition that 

1^1 < T|„l-

Proposition 2.12 |T„| = TM for any TM in V. 

Proof. It suffices to show that |T^| > 7]^. Since \T^\ is a positive operator, 

|T,t| = Tv for some positive kernel v. Therefore it suffices to show that v > \p\. 

Let T = 7\ + iT2 is the canonical decomposition of T^ and let p = pi + ip2 be 

the canonical decomposition of p. Then Tj = T^, (j = 1,2). Fix any 6 G [0,27r] and 

consider the measure (cos#)_..! + (s\n6)p2. For any measurable rectangle ExF, we 

have 

| [ (COB%! + (sm9)p2](ExF)\ = KKcostf)^ + (Sm0)T2]XF, XE)\, 

and therefore, is less than or equal to {T„XF, XE) = i/(ExF) by Theorem 2.10. Thus 

|(costf)/.1(G) + (s in%2(G) | < u(G) 
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for any finite union G of measurable rectangles and then for any Borel subset G of 

A-xA*. 

For any Borel subset G of X x X and any partition {G}} of G, there exists a 

sequence of positive numbers {#,} in [0,27r] such that 

p(G}) = (cos*,) / ! ,^) + (sin0>2(G.,) 

for all positive integers j . It follows that 

£ l/*(G,)l = £ |(coe*>i(G,) + (Bin^MG,) ! < E "(<?,) = "(G). 

Hence |/f|(G) < i/(G) and then \p\ <v. • 

It follows immediately from Proposition 2.12 that 

lll̂ m = Hiyi = nr||r 

for all T G V. Consequently, (V, ||| • |||) is a Banach algebra by Theorem 2.11. 

In this section, we use classical methods of functional analysis to prove that 

(V, I • I) is a Banach *-algebra. 

Suppose / is a positive simple function in C2(X,m). Then / = Z ) J=I°J^£ ; f°r 

some integer s > 1, where a, is a non-negative number for all j = 1,2, ...,s and 

{Ej}s i is a Borel partition of X', i.e., E\,E2, ...,Ea are pairwise disjoint Borel subsets 

of X whose union is equal to X. Thus, | |/ | | = [Ej=i ot2m(E3)]*. 

If / = £j=i OLJXE and g = ^ = 1 j}jXF are two such positive simple functions, 

then, for any TM in V, we have 

s a' 

(TMf,9) = E12aMTMXEj,XF) 
]=l 1=1 

s a' 

i=\ <=i 

Hence, if | |/ | | ^ 0, and ||gr|| ^ 0, then 

£,',iEf=i aAWFixE,) _ (TMf, g) „ |Kr 
7 ^ 2 T E T T T T T W 02 7ZP\I± ~ ii fii tun - IIJ Mil - !JMIII-
[E ;= I a)m(EJ))*\TtU P?m(F,)}2 
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Let T be the set consisting of all the pairs ({aj}j=i, {Ej}j=i), where s > 1 is an 

integer, all ctj non-negative numbers and {Ej}a^=l a Borel partition of X such that 

EJ_, cijm(Ej) ^ 0. We are now ready to prove the following equivalent definition of 

the norm ||| • |||. We will use this definition later to show that ||| • ||| is a complete norm 

on V. 

Lemma 2.13 Suppose T^ is in V with absolutely bounded kernel p. Then, §T„| is 

the supremum of 
ZUZLajPilnKVxEj) 

[E^m^'E^/W^ 
for all ({ajYj=l, {Ej}^) and ( { f t } ^ {Ej}^) in T. 

Proof. It follows immediately from Proposition 2.4 and the above analysis. • 

Theorem 2.14 (V, ||| • |||) is a complex Banach space. 

Proof. It suffices to show that (V, ||| • |||) is complete. 

Suppose {Tjyjjij is a Cauchy sequence in (V, ||| • |||). By Propositions 2.3 and 2.5, 

rN-^ill<ll^.-,nll = I^-^(|«, 

\\N ~ /-ill = \N - *\{X x X) < m(X)ITN - TJ|, 

for all j , I = 1,2, • • • . Thus, {T,|Mi|}Jf.x is a Cauchy sequence in B(C2(X,m)) with the 

operator norm, and {pj}^ is a Cauchy sequence in the Banach space of all complex 

measures on X x X. It follows that there exists an operator T in B(C2(X,m)) and a 

Borel measure p on X x X such that 

IPtal - T||-—0 (j —oo), 

l l/*j-/*ll = l / ' i - / * l ( * x * ) — » 0 ( j—•«>) . 
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But, for every integer j , 

II \N\ - NII = I Iwl ~ H l (* * X) < \pi - p\(X x X). 

Hence 

I IN-HI I — o y —oo). 

Since all T\^\ are positive operators, we have that T, as the norm limit of a 

sequence of positive operators, is also a positive operator. By Theorem 1.18, T is 

induced by a positive kernel v, i.e., T = Tu. We claim that v = \p\. Indeed, for any 

measurable rectangle ExF in X x X, 

\p\(ExF) = Jim \m\(ExF) 

= {•li'Xfn XE) 

= v(ExF). 

Thus, v = \p\ ?'• 3 both v and \p\ are Borel measures on X x X. 

Now, \p\ is a bounded kernel on X x X, therefore, by Proposition 2.6, // itself is 

an absolutely bounded kernel on X x X and induces an operator T^ G V. 

We complete the proof by showing that 

ITN ~ T\\ —> 0 0 — oo). 

For any e > 0, there exists an integer N > 0 such that 

l l^i - r w 1 < | whenever j,l>N. 

Fix any two non-zero positive simple functions / = Ej=i aj%E anc^ 9 ~ £*j=i Pj^p 

with {EjYj^ and {Fj}1-'-^ two Borel partitions of X. For all integers p and 9 with 

p,q>N, 
EjaiSfaittjAk-H(fl*fi-) 

ES-i^mTOlirjXi^mtfi)]* 
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is less than or equal to 

ZUiTLiQjMlh-lhWxEi) HUULX^MN- AJFixEj) 

By Lemma 2.13, the first term of the above is less than or equal to [jT^ - T^J], and 

therefore, less than | since p,q > N. However, 

Ipj-pKXxX)—»0 (j—>oo). 

We can choose q so large that the second term is also less than | . 

Hence , for any p> N, 

[ZU^ME^HrLx^miF,)]^ 2 2 

It follows from Lemma 2.13 that 

| T „ P - rMl = I^P-,I« < e 

whenever p > N. Thus, 

|TMi - T | — 0 ( j - » o o ) . 

Theorem 2.15 Suppose T and S are in V. Then \\TS\\ < |||T||] |||5|| and | | r* | = 

!TI. Therefore, (V, ||| • |||) is a Banach *-algebra. 

Proof. Let p, v be the absolutely bounded kernels of T and 5 respectively. Then, 

by Theorem 1.22, p * v is the absolutely bounded kernel of TS, where p * v is given 

by 

(p * v)(G) = I (pzx vz)(G)m(dz) 
J X 
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for every Borel set G in X x X. It follows from the essential uniqueness of the 

disintegration of measures on X x A' that 

|(/»*i/)(G)| < / |/i, x v'\(G)m(dz) 
J X 

< JX{\P.\ x \u'\)(G)m(dz) 

= Jx(\li\. x \^)(G)m(dz) 

= (H*H)(G), 

for every Borel set G in A" x X. Therefore, \p * v\ < \p\ * |v| as measures on X x X. 

Hence, 

ITS! = ||T|,H|| < ||TH.M|| = ||TMTH|| < | | i y | ||TM|| = |||T||||||5|||. 

By Theorem 1.21, T* — T^ where p is the complex conjugate of p. It follows from 

the essential uniqueness of the disintegration of measures that \p\ = \p\. Therefore, 

IHI = TO = i ra = ||rM|| = ||TR|| = iir̂ H = ||T,H|| = | r | . 

• 

REMARK. Generally, the Banach *-algebra (V, || • | ) is not a C*-algebra. For example, 

in the case where C2(X,m) is the two dimensional space C2, let 

' - ( : - : ) • 

Then T*T = 2/ and hence | T T | = 2. However, | |T|2 = 4. Thus \\T*T\\ ± \\T\f, 

and consequently, (V, ||| • ||!) is not a G*-algebra. 

2.3 Spectral Properties of Elements 

of (V, || • I) 

Having shown that (V, ||| • |||) is a Banach algebra, we find it interesting to look at 

some spectral properties of operators as elements of (V, ||| • ||). 

file:////T/f
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Theorem 2.16 The set K. C\V is a closed two-sided ideal in (V, ||| • |||), where K. is 

the algebra of all compact operators on C2(X,m). 

Proof. Clearly, K D V is a two-sided ideal in V. By Proposition 2.5, K, C\ V is 

closed in (V, 1 -ID- • 

Suppose T is in V. Let o>(T) denote the spectrum of T in ! 'ie Banach algebra 

Ĉ > HI" ID- ^ ls e a s v k° s e e t n a t a(T) C av(T). Also, we denote rv(T) the spectral 

radius of T as an element in the Banach algebra (V, ||| • |||), that is 

rv(T) = sup{|A| : A G <TP(T)}. 

When we consider C2(X,m) as a Banach lattice, the spectrum o>(-) is the same 

as the order spectrum introduced by Schaefer in [55]. The order spectrum of regular 

operators on Banach lattices was also studied by Arendt and Sourour in [4] and [5]. 

The main results of this section, Proposition 2.18 and Theorem 2.22, are the special 

cases of [55, Theorem 3.3] and [5, Theorem 4.4]. The proofs we provide here can be 

easily understood by those unfamiliar with the theory of Banach lattices. 

Proposition 2.17 / / T G V is a positive operator, then r?(T) = r(T). 

Proof. Since T is positive, we have Tp is positive for all positive integers p. By 

definition, ||T"|| = ||TP|| for all positive integers p. Therefore rv(T) = r(T). • 

Proposition 2.18 For every (j> G £^(A,m) , ^(M*) = a(M^). 

Proof. Suppose Mj, is invertible in B(C2(X, m)). Then its inverse is also an 

multiplication operator, and hence, is belong to V. It follows that M^ is invertible in 

V. m 

Lemma 2.19 If\V is in B(C2(X,m)) and A £ <r(W), X^O, then 

(A - W)-1 = ~ [l + W(\ - W)-1] . 
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Proof. It suffices to show that \[l + W(\ — W)~l] is a left inverse of A — W. 
Indeed, 

1 + W(\ - W)~l] (A - W) 

= j[(*-W) + W] 

= I. 

Proposition 2.20 Suppose T is a Hilbert-Schmidt operator on C2(X,m). 

(i) If S is a nilpotent operator that belongs to V, then 

<rr(T + S) =a(T+S). 

(ii) If S is a quasinilpotent operator and positive, then 

<rT(T-rS) =tr(T + S). 

Proof, (i) Let A ̂  0 and A £ <r(T + S). Then A - (T + S) is invertible in 
£(£2(A\m))and 

[A-Cr + S)]"1 = [ ( A - S ) - T ] ' 1 

= {(A-sjfi-fA-srvr]}-1 

= [ l - ( A - 5 ) - , T ] ~ l ( A - 5 ) - 1 . 

By Lemma 2.19, 

[l - (A - S ) - ^ ] " 1 = / + (A - S)~lT [l - (A - S)-XT]~X, 

which is in V since T and then the operator 

(\-S)-1T[I-(\-S)-1T]"1 
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is in C2. 

However, there exists a positive integer p such that Sp+l = 0 because S is a 

nilpotent operator. Therefore 

p qj 

<A-*)"'= £ ] ! * • 
]=0A 

Since S is in V, it follows that (A - 5)"1 is also in V. Thus, [A - (T + S))~l is in V. 

This implies that A ^ 0>(T + S), and hence, 

M ^ + 5) C <T(T + S) U{0}. 

Since <?p+1 = 0, we have (T + S)p+1 G C2. Therefore, 0 G <x((T + 5)p+1), and 

hence, 0 G <r(T + S). It follows that av(T + 5) = <r(T + 5). 

(ii) Since S is quasinilpotent and positive, we have rv(S) = r(S) = 0. Therefore, 

for any non-zero complex number A, 

00 Cj 

is in V. 

In a way similar to the proof of (i), we can prove that A — (T + S) is invertible in 

V for any non-zero complex number A ^ a(T + S). It follows that 

aT(T + S)C<T(T + S)U{0}. 

However, since S is a quasinilpotent operator, we have that zero is in the essen­

tial spectrum <re(S) of S. Therefore 0 G cr(T + S) because T is compact. Thus 

av(T + S) =<r(T + S). * 

We have shown that er( -7) C ar(S) for all S G V, and that for certain S G V, 

namely nilpotent or positive quasinilpotent operators, a(S + T) = aT(S + T) for any 

Hilbert-Schmidt operator T. Naturally, one may wonder how large, compared with 

a(S), <TV(S) can be for a given S in V. The following results, which generalize the 

above proposition, provide an answer to this question. 
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Lemma 2.21 Let S G V. Then 

M S + T) C o(S + T) U <rv(S) 

for any Hilbert-Schmidt operator T. 

Proof. Fix an arbitrary Hilbert-Schmidt operator T. Suppose A is a complex 
number and not in <T(S + T) U OV(S). Then A - (S + T) is invertible in B(C2(X, m)). 
It is enough to show that [A — (S + T)]"1 is in V. 

Since A £ <rv(S), A — S is invertible in V, i.e., (A — S) - 1 is in V. Therefore, 

[A-(T + 5)]"a = [ ( A - S ) - T T 1 

= { ( A - S ) [ l - ( A - S ) - l r ] } " 1 

= [ l - ( A - 5 ) - 1 T ] " 1 ( A - 5 ) - 1 . 

However, the fact that T is a Hilbert-Schmidt operator implies that (A — S)~XT 

is also a Hilbert-Schmidt operator. Consequently, [1 — (A — SJ-'T]" = 1 + D for 
some Hilbert-Schmidt operator D. Thus, [1 — (A — 5)-1T]~ is in V, and hence, 

[A - (S + T)]"1 is in V as well. • 

Theorem 2.22 For every S £V, 

av(S) = a(S)\J (1 MS + T) 
Tec2 

Proof. Let S be an arbitrary element of V. It follows from Lemma 2.21 that, for 

every Hilbert-Schmidt operator T, 

aT(S) = aT((S + T) + (~T)) 

C <T((S + T) + (-T))U<TV(S + T) 

= a(S)Uav(S + T). 
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Thus, 

MS) £ f)[a(S)Uov(S + T)] 
Tect 

= *(S)\J riMs+T) 
TZC* 

On the other hand, since <rv(S) 3 a(S) and 0 € C2, we have 

MS)2^(5)U 

Hence these two sets are equal. 

flMS + T) 
Tect 

It was proved ([4] and [5, A2j) that, in the case where X is the unit circle of the 

complex plane and m is the Lebesgue measure on X, there exists a positive, compact, 

selfadjoint operator T in V such that ap(T) contains the unit circle. Thus o~p(T) ^ 

cr(T). We finish this section with the following question. An affirmative answer to 

the question will guarantee the existence of non-trivial invariant subspaces, or even 

the triangularizability, of certain semigroups of positive operators on C2(X,m). 

Question 1. Is it true that Op(S) is not a connected set in the complex plane for 

(i) every compact non-quasinilpotent operator S in VI (ii) every compact positive 

non-quasinilpotent operator S in "PI (iii) every compact positive non-quasinilpotent 

operator S with the property that the semigroup generated by S is contained in V„7 



Chapter 3 

Positive Integral Idempotents 

The purpose of this chapter is to study the ranges of positive idempotent integral 

operators through analyzing their kernels. For a given positive integral idempotent, 

we construct a basis of its range consisting of positive elements of C2(X,m). This 

kind of special bases for the ranges of positive integral idempotents will be used 

in Chapter 4 to obtain a theorem establishing the existence of non-trivial invariant 

subspaces for certain semigroups of positive integral operators. 

In this chapter, we always assume that A is a positive idempotent integral operator 

with kernel a and the rank of A is equal to s (s could be -foo). We will frequently 

use the fact that 

f(x)m(dx) = 0 

for a non-negative measurable function / if and only if / = 0 a.e. on X. 

3.1 Positive Integral Idempotents 

We first look at some general results about positive integral idempotents. Suppose / 

is an element in C2(X, m). We say that / is real if one of its representations is a real 

function. 

/ , 

38 
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Lemma 3.1 A" is also a positive integral idempotent with kernel a*. 

Proof. Clearly, A* is an idempotent. It follows immediately from Theorem 1.21 

that A* is a positive integral operator with kernel a*. • 

Lemma 3.2 Suppose A is an idempotent with finite-rank s. If {UJ}^=1 is an or-

thonormal basis of the range of A, then 

3 

A^J^u^A'uj), 
3=1 

or equivalently, the kernel a of A is given by 

s 

a(x,y) = ^2uj(x)A*u](y) 
7 = 1 

for almost every (x,y) in X x X. 

Proof. For any / G C2(X,m), since {UJ}J=1 is an orthonormal basis of the range 

of A, we have 

s 

3-1 
s 

3=1 

LJ=I 
/ 

Therefore, A = £ j = i Uj®(A*Uj). 

Lemma 3.3 Suppose U C X is a measurable set such that m(U)m(Uc) ^ 0. If a = 0 

a.e. in UcxU, and a is non-zero on a subset ofUxU of positive measure, then there 

exists a non-zero element u in C2(X,m) satisfying 

(i) u is a positive element in C2(X, m), 
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(it) u = 0 a.e. on Uc, 

(Hi) u is in the range of A, i.e., Au = u. 

Proof. Recall that Pu is the orthogonal projection of C2(X,m) onto Mu — 

XvC
2(X,m). We identify Mu with C2(U, m) in the usual way. Therefore, by Propo­

sition 1.5, PuC2(X,m) is invariant under A, and 

PuA\CHu,m)-- C2(U,m)-^ C2(U,m) 

is an integral operator with non-negative kernel a(x,y), (x,y)€UxU. Since a is non­

zero on a subset of UxU of positive measure, PuA\&(u,m) is a non-zero idempotent. 

Therefore, there exists a positive element w in C2(U,m) such that PuA\ci(u,m)'ii} ^ 0. 

Let 

w' = PuA\&(u,m)W. 

Then 

PuA\Cl(U,rn)W' ~ W'. 

Define a positive element u in C2(X, m) as follow: 

, . f w'(x) if xeU, 
u(x) = < 

' \ 0 if x#U. 

Clearly, u is non-zero, and satisfies (i), (ii) and (iii). • 

Lemma 3.4 Suppose u ^ 0 is a positive element in C2(X,m)that belongs to the 

range of A. Fix a non-negative representation ofu (and still denote it by u). If U is 

the measurable subset of X given by 

(7 = {xG X:u(x)^0}, 

then a(x,y) = 0 for almost every (x,y) in UcxU. 
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Proof. Since u is in the range of A, (Au)(x) = u(x) = 0 for almost every x€Uc. 

It follows that, for almost every x&Uc, 

J a(x,y)u(y)m(dy) = 0. 
J X 

But a(x,-) and u(-) are non-negative functions, and we have that a(x,y)u(y) = 0 for 

almost every y in X. Therefore, a(x, •) is zero almost everywhere on U. Hence, by 

Fubuni's Theorem, a(x,y) = 0 for almost every (x,y) in UcxU. • 

Lemma 3.5 / / an element u in the range of A is real, then there exists a positive 

element h in C2(X,m) such that Ah = 0, and u+ + h and u~ + h are in the range of 

A, where u+ = | ( |« | + u) and u~ = | ( | « | — u) are positive and negative parts ofu. 

Proof. By the definitions of u+ and u~, we have that 

u+ — u~ = u = Au = A(u+ — u~) = Au+ — Au~, 

and Au+ and Au~ are positive. So, if we let 

h = Au+ — u+ = Au~ — it", 

then Ah = A(Au+ — u+) = 0, and h is positive since w+ and u~ are the minimum 

among all pairs of positive elements <j> and tp with the property that u = <f> — V>- It 

follows that 

A(n+ + h) = Au+ + Ah = u+ + h, 

and 

A(u~ + h) = Au~ + Ah = u~ + h. 

This means that u+ + h and u~ + h are in the range of A. • 

Lemma 3.6 If an element u G£2(A*,m) belongs to the range of A, then the real part 

Rett and imaginary part Imu ofu are also in the range of A. 

Proof. Since A sends positive elements to positive elements in C2(X,m), A also 

sends real elements to real elements. Therefore, A(Reu) = Re Au = Reu and A(lmu) 

= \m(Au) = Imtt. It follows that Reu and Imit are in the range of A. • 
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Lemma 3.7 There exists an orthonormal basis of the range of A consisting of real 

elements of C2(X,m). 

Proof. Let {uj}j=1 be an arbitrary orthonormal basis of the range of A. For 

every j , it follows from Lemma 3.6 that both Reitj and Imu, are in the range of A. 

Hence, the range of A is the span of the set 

{ R e u ^ I m u j } ^ . 

Using the Gram-Schmidt process, we can obtain an orthonormal basis of the range 

of A consisting of real elements of C2(X, m). • 

3.2 Bases of Ranges of Positive Integral 

Idenipotents 

In this section, we will construct, for a given positive integral idempotent, a basis of 

its range that consists of positive elements of C2(X,m). The construction is based 

on the analysis of the kernel of the given positive integral idempotent. We will use 

freely the results about positive integral idempotents proved in the previous section. 

Recall that throughout this chapter A will denote a positive integral idempotent 

induced by kernel a and the rank of A is equal to s (s could be -foo). 

Lemma 3.8 Suppose T G B(C2(X,m)) is an integral operator with non-negative 

kernel k. If h is a positive element in C2(X,m), and Th = 0, then k(x,y) = 0 

for almost every (x,y) in XxUh, where Uh is the measurable subset of X defined as 

follows: fix a representation of h and 

Uh = {xeX: h(x) ? 0}. 

Proof. The proof is similar to the proof of Lemma 3.4. • 
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Lemma 3.9 If XQ and X\ are measurable subsets of X and a = 0 a.e. on both XXXQ 

and XQXX\, then a = 0 a.e. on Xx(X0UXi). 

Proof. Since A2 — A, we have that 

a(x,y)= I a(x,t)a(t,y)m(dt) 
J X 

for almost every (x,y) in X x X. Therefore, for almost every (x,y) G XxX\, 

a(x,y)— j a(x,t)a(t,y)m(dt) = 0. 
J X 

This means that a = 0 a.e. on A'xA'i and hence on Xx(XoliXi). • 

Lemma 3.10 If A is a positive integral idempotent of rank one, then there exist 

disjoint, measurable subsets Xo, Xi of X with m(X\) > 0 such that 

(i) a — 0 a.e. on XXXQ, 

(ii) a = 0 a.e. on (X0\jXi)c X X, 

(Hi) a(x,y) > 0 for almost every (x,y) in XIXXQ. 

Proof. Since A ^ 0 is a positive idempotent, there exists a positive element u in 

C2(X,m) such that ||u|| = 1 and Au = u. It follows from Lemma 3.2 that a = u®v 

where v = A*u is a positive element of C2(X, m). 

Choose non-negative representations of u and v. Then a(x,y) = u(x)v(y) for 

almost every (x, y) in X x X. Let 

Uu = {x G X : u(x) # 0}, 

Uv = {xeX:v(x)?0}, 

and let A'0 = U^, and X\ = UU(~\UV. Clearly, X0 and X\ are measurable and disjoint. 

However, 

(it, v) = (u, A*u) = (Au, u) = (u, u) = 1, 
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and we have m(Xi) = m(UuC\Uv) ^ 0. 

It is obvious that, for almost every (x,y) in XxXo, a(x,y) = u(x)v(y) = 0, and 

that, for almost every (x,y) in AIXA'Q, a(x,y) = u(x)v(y) > 0. 

Since 

XoUA'j = uc
vu(Uunuv) D uu, 

we have (X0UXi)c C {/£. Therefore, a = 0 a.e. on (X0UAi)c x X. m 

Theorem 3.11 Suppose A is a positive integral idempotent with kernel a. If there 

exists a real element in the range of A with positive and negative parts non-zero in 

C2(X,m), then there exist pairwise disjoint measurable subsets A"0,A'i and X2 of X 

such that 

(i) a = 0 a.e. on XXXQ, 

(ii) m(Xi) > 0 and m(X2) > 0, 

(Hi) a = 0 a.e. on (X0UX,-)cxXj, (j = 1,2), 

(iv) a is non-zero on a subset of XJXXJ of positive measure, (j = 1,2). 

In particular, A^XouX, is a non-trivial standard invariant subspace of A. 

Proof. Suppose u is a real element in the range of A with w+ and u" non-zero 

in C2(X,m). By Lemma 3.5, there exists a positive element h in C2(X,m) such that 

Ah — 0, and u+ + h and u~ -f h are in the range of A. Fix representations for u and 

h. Let 

X0 = {x G X : h(x) ? 0}, 

[/1 = { x G A ' : t t + ( i ) / 0 } , 

U2 = {xeX:u-(x)^0}, 

and let X\ = U\\XQ and X2 = U2\X0. Clearly, X0,Xi and X2 are pairwise disjoint 

measurable subsets of X. 
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It follows from Lemma 3.8 that (i) is true. 

For (ii), suppose m(Xi) = 0. Then Au+ = 0 since a = 0 a.e. on XxXo. It 

follows that u+ + h = A(u+ + h) = Au+ + Aft = 0. This implies that u+ = 0, which 

contradicts the assumption on u. Thus, m(X\) > 0. Similarly, m(X2) > 0. 

For (iii), since u+ + ft is in the range of A, by Lemma 3.4 we have a — 0 a.e. on 

(£/iUX0)
c x (t/iUAo). But f/jUXo = XoUXx and Xi C 0, . We conclude that a = 0 

a.e. on (A0UA/'i)cxA/'i. Similarly, a = 0 a.e. on (X0UA"2)
cxX2. 

Suppose (iv) is not true. Then a = 0 a.e. on XJXXJ, (j = 1 or 2). Combining 

with (iii), we have a = 0 a.e. on XQXXJ. Therefore, it follows from Lemma3.9 that 

a = 0 a.e. on A"xA'j, and hence, on XxUj. Thus, A(tt+ + h) = 0 or A(u~ + h) = 0. 

This implies that u+ = 0 or u" = 0, which is impossible. Hence a is non-zero on a 

subset of XJXXJ of positive measure, (j = 1,2). 

Finally, since X\ and X2 have non-zero measure, Mx^uXi is a non-trivial standard 

subspace of C2(X,m). By the fact that a — 0 a.e. on (A"0UXi)c x (XoUXi), we have 

that MA'0uX] is invariant under A. • 

Theorem 3.12 Every positive integral idempotent of rank at least two has a non-

trivial standard invariant subspace. 

Proof. Suppose A is a positive integral idempotent of rank at least two. By 

Theorem 3.11, it is suffice to show that there exists a real element u in the range of 

A with non-zero positive and negative parts in C2(X,m), i.e., u+ ^ 0 and it" ^ 0. 

It follows from Lemma 3.7 that there exists an orthonormal basis of the range of A 

consisting of real elements of C2(X, m). If one the basis elements has non-zero positive 

and negative parts, then we are done. Otherwise, we may assume that there are two 

non-zero orthogonal positive elements in the range of A, and hence, the difference 

between them is in the range of A with non-zero positive and negative parts. • 

For any integral operator T from C2(X,m) to another Hilbert space C2(y,m') 
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with kernel non-negative, let 

Null+(T) = {g G C2(X, m) : g is positive and Tg = 0}. 

We call it the positive null set of T. From Lemma 3.8, It is easy to see that Null+ (T) = 

{0} if and only if there is no measurable subset £ of A* with non-zero measure such 

that the kernel of T vanishes almost everywhere on yxE. In particular, Null+(T) = 

{0} if the kernel of T is positive almost everywhere. 

Suppose T is an integral operator with kernel non-negative and S is a pisitive 

operator. If Null+(T) = {0}, then TS = 0 implies that 5 vanishes on the set of all 

positive elements, and hence, S = 0. 

Theorem 3.13 Suppose A is a positive idempotent of finite rank s. Then there exist 

pairwise disjoint measurable subsets X'0,XQ,XI,...,XS with union X such that 

(i) a = 0 a.e. on XxX'0, and on XQXX, 

(ii) a = 0 a.e. on (X^UXjfxXj, (j = 1,2,.. . ,s), 

(iii) a(x,y) > 0 for almost every (x,y) in X3 xX}, and a\xJ*x} is the kernel 

of an idempotent of rank one, (j = 1,2, . . . , s). 

Proof. We prove this theorem by induction. It follows from Lemma 3.10 that the 

result is true for 5 = 1. 

Suppose s > 1, and the result is true for all positive idempotents with rank less 

than s. Since the range of A is of dimension s > 1, we can choose an element u 

in the range of A such that both u+ and u~ are non-zero. By Theorem 3.11, there 

exist pairwise disjoint measurable subsets YQ,YX and Y2 of X with m(Y\) and m ^ i ) 

positive such that a = 0 a.e. on XxYo, a = 0 a.e. on (YQUYJYXYJ, and a is non­

zero on a subset of Y} xY, of positive measure, (j = 1,2). Therefore, the restriction 

A\ = PYQUYI A\MYOUY °f ^ to its standard invariant subspace MY0UYX is a non-zero 

idempotent with rank less than s. Repeat this process if the rank of A\ is great than 

one. Thus, we may assume that A\ is of rank one. 
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Let A2 be the compression of A to M(Y0\JYI)C, the orthogonal complement of 

MYOVYI- Then A2 is an idempotent of rank s — 1. By the induction hypothesis, 

there exist pairwise disjoint measurable subsets W, W", X2, A 3 , . . . ,Xa of X whose 

union is equal to (VoUVi)0 such that 

(t) a = 0 a.e. on (KoUYifxWandon W"x(Y0UYl)
c, and hence, on W"xX, 

(ii) a = 0 a.e. on [(r0UFi)c \ (W'liX^xXj, (j = 2 , 3 , . . . ,s), 

(iii) a(x,y) > 0 for almost every (x,y) in X3xXj, and a\x *x} is the kernel 

of an idempotent of rank one, (j = 2 , 3 , . . . , s). 

It follows that MY0UYIUW' ' S invariant under A, and the restriction of A to it remains 

an idempotent of rank one. Thus, by redefining Y\ and F2 if necessary, we may assume 

that W = 0. Applying Lemma 3.10 to the idempotent A\, we have that there exist 

pairwise disjoint measurable subsets X'0, A î and W of ioUVi, whose union is YQ\SY\ 

and m(X\) > 0, such that a = 0 a.e. on (YQUYI)XXQ, and hence, on XxX'Q, and on 

W x (VoUVi); and a(x,y) > 0 for almost every (x,y) in XIX(XQUW). 

Corresponding to the decomposition 

-2( v C2(X,m) = MX'0 8 MXl 8 Mw © Mu>=2x, © Mw», 

A is of the form 

A = 

V 

0 * * * * 

0 A22 A23 A24 * 

0 0 0 A34 A35 

A44 * 

0 0 
0 

/ 

Since A = A, we have 

A22A24 + A23A34 + A24A44 = A24-

However, A22 is an idempotent. It follows that 

A22A24 + A22A23A34 + A22A24A44 = A22A24. 
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Thus, A22A23A34 = A22A24A44 = 0 since all operators here are positive integral 

operators. On the other hand, Null+(A22) and Null+(A23) are equal to {0} because 

a is positive almost everywhere on A'IXA'I and XixW; and both Null+(A44) and 

Null+(A44) are equal to {0} because a is positive almost everywhere on A'jXA',, 

(j = 2 , 3 , . . . , s). By the earlier comment on the positive null set, we have A34 = 0 

and A24A44 = 0, and hence, A24 = 0. Consequently, A35 = 0 since A2 = A. 

Let XQ = WUW". Then it is easy to see that the pairwise disjoint measurable 

subsets X'Q,XQ,X\, ...,X„ of X obtained above satisfy all the requirements. • 

The technique used above relies on the induction on the rank of A, and therefore, 

only works for positive integral idempotents of finite rank. However, if we assume that 

the Hilbert space C2(X,m) is separable, then the above result holds for all positive 

integral idempotents, finite rank as well as infinite rank. We need the following 

lemmas to prove this, 

A chain of subspaces of a Hilbert space H is a family of subspaces of H that is 

totally ordered by inclusion. Let 17 be a chain of subspaces of H. For every M €.$1, 

define 

M- = \/{X : M G n, M C M but M ^ M}. 

We call fl a continuous chain if M- — M for each M G fi. 

The following result, which will be used to prove the main theorem of this chapter, 

may be of independent interest. 

Lemma 3.14 Suppose T is an integral operator on C2(X,m) with non-negative ker­

nel k. If there exists a continuous chain fi of standard subspaces of C2(X,m) whose 

members are invariant under both T and T*, then T = 0. 

Proof. In Hilbert space C2(X x X,mxm), fix a sequence of non-negative mea­

surable functions {k}}~x with the properties that &i < k2 < • • • < k and {fcj}^j 

converges to k almost everywhere on X x X. For each positive integer j , let T, be the 

integral operator induced by k}. Then all T, are Hilbert-Schmidt operators and, by 

i 

! 



Proposition 1.5, all elements of Q are invariant under both Tj and Tf, (j — 1,2, • • •). 

Also, by Fubini's Theorem, {T,} converges to T in the weak operator topology. Thus, 

it suffices to show that T, = 0 for every positive integer j . 

Fix an integer j . All elements of Q are invariant under both Tj and Tj", and there­

fore, are invariant under TfTr However, fi is continuous. It follows from Ringrose 

(49, Theorem 4.3.10] that TfT3 is quasinilpotent. Consequently, Tj = 0. • 

Lemma 3.15 Suppose C2(X,m) is separable and A G B(C2(X,m)) is an integral 

idempotent with non-negative kernel a. Then there exists a measurable subset Xo of 

X such that a = 0 a.e. on XxXo and Null+(Ai) = {0} where A\ is the integral 

operator induced by the non-negative kernel a\x<-xx$-

Proof. Since C2(X,m) is separable, the unit ball of C2(X,m) is weakly metriz-

able. The intersection of the unit ball of C2(X,m) and Null+(A) is closed in the 

weak topology, and therefore, weakly compact and weakly separable. Let {/,•} be a 

countable weakly dense subset of the intersection. For each j , fix a representation of 

fj and let 

U] = {xeX:fj(x)^0}. 

Take A'o = UJUJ. Then a = 0 a.e. on A'xA'o since XxX0 = \JjXxU3 and, by 

Lemma 3.8, a = 0 «.e. on XxU} for each j . 

Suppose Null+(Ai) ^ {0}. Then there exists an positive element ft G Mxc, 

\\h\\ = 1, such that A\h = 0. Fix a representation of ft and let 

Uh = {x G A'0
C: h(x) ^ 0 } . 

By Lemma 3.8, a = 0 a.e. on X^xUh, and therefore, on XxUh by Lemma 3.9. 

Thus, Aft = 0, and ft is in the intersection of the unit ball of C2(X,m) and Null+(A). 

Consequently, ft is the weak limit of some subsequence in {fj}, which is impossible 

since ft is non-zero and orthogonal to each fj. m 
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Theorem 3.16 Suppose C2(X,m) is separable and A G B(£*(X,m)) is a positive 

integral idempotent with kernel a. Then there exists a sequence of pairwise disjoint 

measurable subsets X'0,XQ,X\,X2,-'
% wifft union X such that 

(i) a = 0 a.e. on XxXQ, and on XQXX, 

(ii) a = 0 a.e. on (A^UA'j^xA'j, (j = 1,2,- ••), 

(Hi) a(x,y) > 0 for almost every (x,y) in X}xXj, and a\x}xx} is the kernel 

of an idempotent of rank one, (j = 1,2, • • •). 

Proof. By applying Lemma 3.15 to A, we can obtain a measurable subset A'„ 

of X such that a = 0 a.e. on A*xA'o and Null+(Ai) = {0} where A\ is the integral 

operator induced by the non-negative kernel a\x>c*x,c- Now A\ is also a positive 

integral idempotent. By Lemma 3.15 again, there exists a measurable subset XQ of 

X'Q
C such that a* = 0 a.e. on X'0

cxX'Q' and Null+(A;) = {0} where A2 is the integral 

operator induced by the non-negative kernel 

a|(X{ux0»)«x(xjux0»)«. 

Thjs a = 0 a.e. on XxX'0 and on X0'xX. Since Null+(Ai) = {0}, we have that 

Null+(A2) = {0}. 

Consider the operator A2 defined above. It is the compression of A to the standard 

space M(x'uX")c, and therefore, a positive idempotent. Let Y — (XQXIXQ )C. Suppose 

U C Y is measurable and the standard space Mu is invariant under A2. Then, by 

Proposition 1.5, a = 0 a.e. on (Y\U)xU. Under the decomposition 

MY = Mu® MY\U, 

A2 is of the form 

. ( An A12 \ 
M=[ 0 A n ) ' 

Since A2 is an idempotent, we have 

A11A12 + A12A22 = Ai2. 



51 

Left multiplying this equation by An, which is clearly an idempotent, we have 

AiiAi2 + AuAi2A22 = AnAX2. 

It follows that AnAi2A22 = 0. However, both Null+(A2) and Null+(A$) are {0}, and 

hence, so are Null+(Au) and Null^A^)- Consequently, Ai2 = 0 and Mu is invariant 

under both A2 and A\. 

Fix a chain fl of standard invariant subspaces of A2 containing both {0} and 

C2(Y, m|y). By Zorn's Lemma, we may assume that (2 is maximal in the sense that 

there is no other chain of standard invariant subspaces of A2 containing Q properly. 

For every M € fi, by the remark following the definition of standard subspace (Defi­

nition 1.4), M- is also a standard subspace. Clearly, M- is invariant under A2 and 

flU{A^_} remains a chain. Thus, M~ G ft. However, every standard subspace which 

is invariant under A2 must be also invariant under A\. It follows that every M G fi 

is invariant under both A2 and A2. 

Suppose M G ft and M- ^ M. Then M 0 M- is a standard subspace, i.e., 

M 0 M- = ME for some measurable subset E C.Y. The standard subspace ME 

is invariant under both A2 and AJ. It follows from Proposition 1.5 that a = 0 a.e. 

on (Y\E)xE and £x ( i ' ' \ £ ) . The compression AM of A2 to ME = MQ M- is a 

positive integral idempotent whose kernel is the restriction O\EXE^ By the maximality 

of ft, AM has no non-trivial standard invariant subspaces as an operator on C2(E,m), 

and therefore, by Theorem 3.12, is an idempotent of rank one. Since both Null+(A2) 

and Null+(A5) are {0}, we have that a(x,y) > 0 for almost every (x,y) in ExE. 

Since C2(X,m) is separable, the set 

Hi = {M G ft: M. ± M} 

is countable. For each M G fti, choose a measurable subset J5>t of Y such that 

^ £ M = M e M -

If M and AT are two distinct elements of fti, then either M C A/" or M D A/". Con­

sequently, m(EMnEjtf) = 0. We may assume, WNLG, that EM^EJI/ = 0 if A4 ^ Af. 
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Thus, the set of all EM with M G fti is countable and can be listed as a pairwise dis­

joint sequence X\, X2, • • •. With the measurable subsets A'Q, X(j, A'i, X2, • • • of A*, the 

theorem will be proved if we can show that their union is equal to A', or equivalently, 

Y = Uj^Xj. 

Therefore, it suffices to show that 

m(K\(U j>1X j)) = 0, 

since we can change, if necessary, one of Xj by a set of measure zero. 

Let 

YX = Y\ (Vj>xXj), 

and let A3 be the restriction of A2 to MY^ • Then, since all Mxj are invariant under 

both A2 and A\, A3 is a positive integral operator whose kernel is «|ylXVi- Consider 

the following chain 

ft2 = {A/*: J\f = M (1 MYX for some M G ft}. 

It is a continuous chain of standard subspaces whose elements are invariant under both 

A3 and A\. By Lemma 3.14, we have that A3 = 0. It follows that XY € Null+(Ai), 

and therefore, m(Yx) = 0 since Null+(A1) = {0}. • 

Corollary 3.17 Suppose A is a positive integral idempotent on C2(X,m) with kernel 

a and its rank is equal to s, 0 < s < -foo, and C2(X, m) is separable ifs = -foo. Then 

there exist pairwise disjoint measurable subsets {Xj}*^ of X, and an orthonormal 

set {WJ}*^ of positive elements in C2(X,m) such that 

(i) Wj = 0 a.e. on Xj, and AWJ — w3 a.e. on U*=1X/ for every j . 

(ii) For every j , let Uj = Auij. Then (WJ, u/) = 6ji for every pair of integer 

j and I. Consequently, {«j}j_i is linearly independent. 
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(iii) There exists a set {fj}j=1 of positive elements in C2(X,m) such that 

A = 53 UJ®VJ 
3=1 

where the series converges in the weak operator topology if s = -foo. As 

a result, {u,}j_i is a basis of the range of A. 

Proof. By Theorem 3.13 or 3.16 if s = -foo, there exist pairwise disjoint measur­

able subsets X'Q, X0', and {Xj}a
J=1 of X, whose union is X, with the properties that 

a = 0 a.e. on both XXXQ and XQXX, and that a = 0 a.e. on (X'0\JXJ)CXX3, and 

a|XjxXj is the kernel of an idempotent of rank one for every j . 

Fix an integer j . Since a\x}xX} is the kernel of an idempotent of rank one, there 

exists a positive element WJ in C2(Xj,m) with unit norm such that a\x}xXj = Wj®w'3 

for some positive w'j in C2(Xj,m). Define Wj and w'j to be zero on Xj. Then both of 

them are in Mxr Since a = 0 a.e. on XXXQ, on X'^xX and on (X0(jXi)cxXi for 

each /, we have that AWJ = w3 a.e. on Uf=xXi. Clearly, {t^j}j=i is an orthonormal 

set in C2(X,m). Thus (i) has been proven. 

It is easy to see that (ii) follows immediately from (i). 

For (iii), consider the matrix of A in the following decomposition: 

C2(X, m) = Mxi © Mw)=tXj © A<x»-

The matrix is of the form 
f 0 Ai2 A13 

A = 0 A22 A23 

k 0 0 0 

Since A2 = A, we have AX2A22 = A12, Ai2A23 = A13, and A22A23 = A23. By the 

definitions of Wj and w'j, the operator A22 given by 

/ 0 0 o \ 

\ 

/ 

A22 = 0 A22 0 

0 0 0 
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is equal to Y%=i Wj®w'j, where the series converges in the weak operator topology if 

s = -foo. However, AA22A = A. Therefore, 

A = A £ Wj®w'}-
i= i 

= E(i4wj)0(AVj) 

= J^Uj®Vj, 
3=1 

where Vj — A*w'- is a positive element of C2(X,m) for every j since A* is also a 

positive operator. • 



Chapter 4 

Semigroups of Positive 

Operators 

A class of bounded operators on a Hilbert space is called reducible if there exists a non-

trivial subspace of the Hilbert space invariant under every operator in the class. A 

class of bounded operator on a Hilbert space is called irreducible if it is not reducible. 

Recently, a number of results about the reducibility of semigroups of operators have 

been obtained. It was proved [41, Theorem 1] that a semigroup S of quasinilpotent 

operators on a Hilbert space H. is reducible if it contains an operator other than 0 

in some Cp class. The reduciblity of semigroups of operators represented by matrices 

with non-negative entries has been studied in [46]. It was proved [46, Theorem 5] 

that a semigroup S of compact operators represented by matrices with non-negative 

entries is reducible if r(ST) < r(S)r(T) for every pair S and T in S. The existence 

of non-trivial stantard invariant subspaces for certain semigroups of positive integral 

operators on C2(X, m) was studied in [14]. There are some other related results which 

can found in [34], [45] and [47]. In this chapter, we discuss the reducibility of certain 

classes of positive operators, especially, semigroups of positive integral operators. We 

either extend the results mentioned above to more general cases or use them to prove 

some results about the reducibility of semigroups of positive operators. We are also 

interested in finding non-trivial standard invariant subspaces for such classes. 

55 
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4.1 Reducibility of Semigroups of 

Positive Operators 

We first list several known results for future reference. A subset J of the semigroup 

S is called an ideal in S if JS and SJ belong to J for all J G J and S G S. 

Lemma 4.1 [46, Lemma 1] / / a semigroup S of operators is irreducible, then so is 

every non-zero ideal J in S. 

Proof. Suppose J is a non-zero ideal in S. If M is a non-trivial invariant 

subspace of J, then the following two subspaces are invariant under S, and it is easy 

to verify that at least one of them is non-trivial: 

(i) The closed linear span of {JM : J G J}. 

(ii) The intersection of the nullspaces of all J in J. 

• 

Lemma 4.2 [41, Lemma, p.272] Suppose H is an arbitrary Hilbert space and p is a 

positive number. If S is a semigroup of operators on H and C G S f~l Cp is non-zero, 

and if S leaves no subspace (other than {0}) of the nullspace of C invariant, then S 

contains a non-zero trace-class operator. 

Proof. Choose an integer n greater than p. We prove the lemma using the fact 

that any product of n Cp class operators is a trace-class operator. 

For each x G H, x ^ 0, there exists an operator 5 G S such that CSx ^ 0, for 

otherwise the closed linear span of {Sx : S G S) if Cx ^ 0 or of {Sx : S G S} U {x} 

if Cx = 0 is a non-trivial invariant subspace of S contained in the nullspace of C. 

By applying this procedure n times, we can find n operators Sx, S2,..., Sn in S such 
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that CSnCSn-X • • • CS\x ^ 0. Therefore, CSnCSn-x • • • CSX is a non-zero operator 

in Cx since every CSj is in Cp, j = 1,2,..., n. • 

Theorem 4.3 [41, Theorem 1] Suppose H is an arbitrary Hilbert space and p is a 

positive number. If S is a semigroup of quasinilpotent operators on H, and if S 

contains an operator other than 0 in Cp class, then S is reducible. 

Proof. Suppose S is irreducible. Then, by Lemma 4.2, S contains a non-zero 

trace-class operator S. Let J be the ideal in S generated by S, and let A be the alge­

bra generated by J. Clearly, every operator in J is a trace-class operator, and every 

operator in A is a linear combination of operators in J. Since <S consists of quasinilpo­

tent operators, we have that the trace as a function on the trace-class is constantly 

zero on J, and hence, on A. Consequently, A is not Ci-dense in Cx. However, by 

Lemma 4.1, the irreducibility of 5 implies that J is irreducible. Therefore, A is also 

irreducible. This contradicts the fact proven in [48] as a consequence of Lomonosov's 

Lemma [35], that subalgebras of Cp are reducible unless they are Cp-dense in Cp. • 

The following two theorems are from [46, Theorem 5], which give two sets of 

sufficient conditions for a semigroup of compact operators to be reducible. 

Theorem 4.4 [46, Theorem 2] If every member of a semigroup S is a non-negative 

scalar multiple of a compact idempotent and r(ST) < r(S)r(T) for every pair S and 

T in S, then S is reducible. 

Proof. Omitted. • 

Theorem 4.5 [46, Theorem 5] Let S be a semigroup of compact operators represented 

by matrices with non-negative entries. If r(ST) < r(S)r(T) for every pair S and T 

in S, then S is inducible. 

Proof. Omitted. • 
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An operator that can be represented by a matrix with non-negative entries may 

be viewed as an integral operator on some £2(A",m) which is induced by a non-

negative kernel with a discrete measure space (X,m). Therefore, the semigroup $ 

in the above theorem may be regarded as a semigroup of positive integral operators 

on some Hilbert space C2(X,m) with a discrete measure space (X,m). We now 

consider the case where (X,m) could be any type of measure spaces, discrete or not. 

Throughout the rest of this chapter, we assume that S is a multiplicative semigroup 

of operators on C2(X, m) where A is a topological space and, with its Borel structure, 

a standard Borel space and m is a <r-finite regular Borel measure on X such that the 

Hilbert space C2(X,m) is of dimension at least two. 

The following lemma, though not difficult to prove, is interesting. It plays an 

impotant role in the proofs of main theorems of this chapter. 

Lemma 4.6 Suppose T is a non-zero positive integral operator with kernel k. Then 

there exists a non-zero positive Hilbert-Schmidt operator To with kernel ko such that 

k — ko > 0 a.e. on X x X. 

Proof. For every positive integer j , let 

GJ = {(x,y)eXxX:0<k(x,y)<j}. 

Then all G3, (j = 1,2, •••), are measurable subsets of X x X, and at least one of 

them, say G]0, has measure (mxm)(Gj0) > 0 since T is non-zero. Since (X,m) is 

a <7-finite measure space, we can choose a measurable subset Go of Gl0 such that 

0 < (mxm)(G0) < +oo. 

Let 

K(x,y) = XGo(x,y)k(x,y) (x,y) G X x X. 

Then, k0 satisfies that k — k0 > 0 a.e. on X x X, and therefore, is a non-negative 

kernel on X x X. By the definition of G0, we have k0 G C2(X x X,mxm). Hence k0 

induces a non-zero positive Hilbert-Schmidt operator To on C2(X,m). • 
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Theorem 4.7 // S is a semigroup of positive quasinilpotent integral operators, then 

S is reducible. 

Proof. We may assume that S contains a non-zero operator T. Let k be its kernel. 

It follows from Lemma 4.6 that there exists a non-zero positive C2 class operator To 

with kernel k0 such that k — k0 > 0 a.e. on X x X. 

Let So be the multiplicative semigroup generated by S U {To}. We complete the 

proof by showing that So is reducible. By Theorem 4.3, it suffices to show that So is 

a semigroup of quasinilpotent operators since it contains a non-zero C2 class operator 

T0. 

Indeed, every element in So has the form TQ1SXTQ2S2 ••• Sn-iTo", where all Sj 

are in S and all gj are non-negative integers, (1 < j < n). By Proposition 1.11 and 

Theorem 1.13, the kernel of T0
1lSxT0

l2S2 ••• Sn-iT0
,n is dominated by the kernel of 

quasinilpotent operator TqiSxT'>2S2 ••• Sn-.xT
qn. It follows from Corollary 1.14 that 

T0
?151To252 • • • 5n_iTo" is a quasinilpotent operator. • 

Theorem 4.8 Suppose S. is a semigroup of compact positive integral operators. If 

r(ST) < r(S)r(T) for every pair S and T in S, then S is reducible. 

Proof. Since the spectral radius is continuous in norm for compact operators, we 

may assume that S is norm-closed and that any non-negative scalar multiple of an 

operator in S is still in S. We may also assume that S contains no quasinilpotent 

operator other than zero, for otherwise the ideal J in S generated by some quasinilpo­

tent operator S G S, A ^ 0, is non-zero and consists of only quasinilpotent operators. 

By Theorem 4.7, J is reducible, and therefore, so is S by Lemma 4.1. 

We may assume that S contains a non-zero operator and thus an operator A with 

r(A) = 1. We claim that there exists a non-zero idempotent of finite rank in S. The 

proof of this claim is similar to that of [46, Theorem 1]. By the Riesz decomposition 

theorem [48], A can be represented, under a decomposition of C2(X,rn) which may 
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be non-orthogonal, by a matrix of the form 

A = 

where U is a finite unitary matrix commuting with the finite nilpotent matrix N and 

r(B) < 1. Since U is unitary, some subsequence of {t/p}^i1, say {UPi}, approaches 

the identity matrix of the same size. Therefore, if we can show that N = 0, then 

the norm-limit of sequence {Ap'} will be an operator similar to the projection on the 

range of U, the hence, a non-zero idempotent of finite rank. Suppose N ^ 0. Let q 

be such that Nq ^ 0 and N**1 = 0. Then 

(u + N)p = up-f r) up-1N + -->+ rWp- ' iv 
W w 

for every p> q. By taking p = p,- -f q and letting i tend to oo in the above equation, 

we have 
^ ( t M j v y * 9 

l im-r5 *- = I " " I s C . 

and 

P. + 9 

« 

It follows that C G S is nilpotent and non-zero, which is impossible since 5 contains 

no quasinilpotent operator other than zero. To simplify the notation, we assume that 

A itself is an idempotent of finite rank. 

Suppose A is of rank s. If s = 1, then every member of SAS, which is the ideal 

in S generated by A, is a non-negative scalar multiple of a rank-1 idempotent since 

5 contains no quasinilpotent operators other than 0. Therfore, SAS is reducible by 

Theorem 4.4, and hence, S is reducible by Lemma 4.1. 

For the case where s > 1, by Corollary 3.17, there exists an orthonormal set 

{wx,w2,. ..,u>3} in C2(X,m) and a basis {ux,u2,.. .,ua} of the range of A such that 
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(i) WJ, Uj and Vj are positive, (j = 1,2,..., s), 

(ii) (WJ, ui) = 6ji, (j, I = 1,2,..., s). 

Let ft denote the range of A. Consider the semigroup A5A|ft. If we can show that 

there exists a non-trivial subspace M C It invariant under every operator in A5A|TJ, 

then the subspace 

M = \/{SM : S G 5} 

is invariant under S and is non-trivial since 

M = AM C M 

and 
SM = ASM -f (1 - A)SM C A< -f (1 - A)SM 

for all 5' G 5, so that 

A/'CA^ + ( l -A)£ 2 (A ' ,m) . 

We complete the proof by showing that there indeed exists a non-trivial subspace 

M C "R invariant under every operator in A5A|#. By Theorem 4.5, it suffices to 

show that relative to the basis {ux,u2,...,ua}, A5A|7j can be represented by sxs 

matrices with non-negative entries, since it is clear that r(ST) < r(S)r(T) for every 

pair S and T in A«SA|ft. For any T G S, suppose relative to the basis {ux,u2,..., ua}, 

ATA\K is represented by the matrix (tji), that is, 

s 
ATut = ^2tj,Uj, (l = l,2,...,s). 

i=i 

However, A and T are positive operators, u3 and WJ are positive for all j by (i) and 

(WJ, «/) = Sji for all j , I by (ii). It follows that 

*jl = {EU\tilUi,Wj) 

= (ATu,,Wj) 

> 0 

for all j , I = 1,2,..., s. • 
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Suppose (X,m) is a finite measure space. As in Theorem 2.7, the algebra of all 

pseudo-integral operators with absolutely bounded kernels can be decomposed into 

the direct sum 

V = I © Va, 

where I consists of all integral operators in V, and V„ of all operators in V with 

kernels singular to the product measure mxm. Therefore, corresponding to this 

direct sum, every operator in V is the sum of its integral part and its singular part. 

Theorem 4.9 Suppose (X,m) is a finite measure space and S is a semigroup of 

positive quasinilpotent operators. If S contains an operator with non-zero integral 

part, then S is reducible. 

Proof. Let T be in S with non-zero integral part To and let So be the semigroup 

generated by S U {To}. It suffices to show that So is reducible. 

Since T is a positive quasinilpotent operator, so is To. By an argument similar 

to that in the proof of Theorem 4.7, we can prove that So is a semigroup of positive 

quasinilpotent operators. Let J be the ideal in So generated by the non-zero integral 

operator T0. Then J consists of only integral operators by Theorem 1.23. Therefore 

J is reducible by Theorem 4.7 and then so is So by Lemma 4.1. • 

Theorem 4.10 Suppose (X,m) is a finite measure space and S is a semigroup of 

compact positive operators with the property that r(ST) < r(S)r(T) for every pair S 

and T in S. If S contains either a non-quasinilpotent operator or a non-zero integral 

operator, then S is reducible. 

Proof. Suppose S contains a non-quasinilpotent operator T. As in the proof 

of Theorem 4.8, we may assume that S is norm-closed and that any non-negative 

scalar multiple of an operator in S is still in S. And in particular, we may assume 

that r(T) = 1. Since T is compact, by an argument similar to the one in the proof 

of Theorem 4.8, the norm limit of a sequence of powers of scaler multiples of T is 
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a non-zero finite-rank operator, and hence, an integral operator. Thus 5 contains a 

non-zero integral operator. 

Now, WNLG, we assume that S contains a non-zero integral operator S. By 

Theorem 1.23, the ideal J in S generated by S is non-zero and consists of only 

integral operators. It follows from Theorem 4.8 that J is reducible, and therefore, S 

is reducible. • 

A maximal subspace chain is a chain of subspaces of a Hilbert space that is not 

properly contained in any other chain of subspaces. 

Definition 4.11 [41, Definition, p271] A collection of bounded linear operators on a 

Hilbert spa'^e „ (simultaneously) triangularizable if there exists a maximal subspace 

chair e<_ '.i of 'hose members is invariant under all the operators in the collection. 

Theorem 4.12 Suppose (X,rn) is a finite measure space and A is a norm-closed 

algebra of compact operators in Va. Then A consists of only quasinilpotent operators 

and hence is triangularizable. 

Proof. Since A is contained in V„, it contains no integral operators other than 

0, and hence, no finite-rank operators other than 0. Consequently, every operator in 

A must be quasinilpotent since A is a norm-closed algebra of compact operators. 

It follows from Lomonosov's results (see [34, theorem 10]) that A is triangulariz­

able. • 

4.2 Standard Invariant Subspaces 

In this section, we assume further that A* is a locally compact Hausdorff space and 

that A' is second countable, i.e., has a countable base for its topology. Recall that a 

standard subspace of C2(X,m) is a subspace of the form 

Mu = XLrC
2(X,m) = {/ G C2(X,m): / = 0 a.e. on Uc} 
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for some Borel set U in X. The idea of the standard subspace comes from the concept 

of decomposability for matrices with non-negative entries, as well as the concept of 

band in the Banach lattice theory (see [54] and [61]). The definition was introduced 

in [14]. 

Suppose T is a positive quasinilpotent integral operator on C2(X,m). Then the 

semigroup generated by T consists of only positive quasinilpotent operators. Theo­

rem 4.7 tells us that T has a non-trivial invariant subspace. But, just from the proof 

of Theorem 4.7, there is no way we can determine whether the existing non-trivial in­

variant subspace is a standard subspace or not. When dealing with the case of single 

operator, the following result, which is a special case of the Ando-Krieger Theorem, 

obtained by Ando [2] for compact operators and generalized by Krieger [33], is much 

more powerful. It not only tells us that any positive quasinilpotent integral operator 

on C2(X,m) has a non-trivial invariant subspace, but also indicates that the invariant 

subspace is a standard one. The proof of the Ando-Krieger Theorem can be found in 

[54, p.336] and [61, p.621]. 

Proposition 4.13 If T is a positive quasinilpotent integral operator on C2(X,m), 

then T has a non-trivial standard invariant subspace. 

Proof. See Cororllary 4.26, or [54, p.336], or [61, p.621]. • 

Remark. It follows from Proposition 1.5 that a positive integral operator on the 

Hilbert space C2(X,m) cannot be quasinilpotent if its kernel is positive almost ev­

erywhere on A* x A". 

It was proved in [14] that any semigroup of positive quasinilpotent integral opera­

tors on C2(X,m) with lower semicontinuous kernels has non-trivial standard invariant 

subspaces. The main theorems in this section are generalizations of this result. 

For any Borel set E in A, the fact that X is second countable implies the existence 

of a maximal open set U in X with the property that m(Ef\U) = 0. Indeed, using 

the usual set inclusion as a partial order, the collection of all open subsets of X with 
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the property that their intersections with E have measure zero is a partially ordered 

set. For any given chain in the collection, the union of all elements in the chain is 

still an open subset of X and, because X is second countable, is equal to the union 

of countable many elements in the chain. It follows that the union remains in the 

collection and is the maximum among all elements in the chain. By Zorn's Lemma, 

there exists a maximal element U in the collect, i.e., U is a maximal open subset of 

X with the property that m(ECiU) = 0. Consequently, if we let Ex = EC\UC, then 

m(E\Ex) = m(EDU) = 0. Suppose V is an open set in X such that m(ExnV) = 0. 

Then 

m(ECV) = m([Ex U (E\Ex)]OV) = 0. 

Thus, by the maximality of U, we have that V C U and hence E\f\V = 0. 

Lemma 4.14 For any Borel set E C X with m(E) ^ 0, there exists a Borel set 

Ex C E with m(E\Ex) = 0 sttcft that m(Exf\V) > 0 for all open sets V satisfying 

Proof. It follows from the above analysis. • 

By applying Lemma 4.14 to X itself and disregarding a subset of measure zero if 

necessary, we may assume that every non-empty open set in X has positive measure. 

We make this assumption throughout the rest of this section. 

Lemma 4.15 Suppose <f> is a measurable function on X x X. IfU and V are Borel 

sets in X, then the following are equivalent: 

(i) <j> = 0 a.e. on UxV. 

(ii) For almost every x£U, <j>(x, •) — 0 a.e. on V. 

(iii) For almost every j/GK, <{>(•,y) = 0 a.e. on U. 

Proof. Since m is <r-finite, we may assume that m(U) and m(V) are finite. 
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Let 

D={(x,y)£UxV:<i>(x,y)j:0}, 

and for every x€U, y€V, let 

Dx = {y£V:<j>(x,y)^0}, 

D» = {x€U:<l>(x,y)tO}. 

By Fubini's Theorem, 

/ XD(x,y)(mxm)(dx,dy) = / / XD(x,y)m(dy)m(dx) 
JUxV JUJV 

= I lXD(x,y)m(dx)m(dy). 
JvJU 

Therefore, 

(mxm)(D) = I m(Dx)m(dx) = I m(Dy)m(dy). 

Thus, (mxm)(D) = 0 if and only if m(Dx) = 0 for almost every x€U, and if and 

only if m(Dy) = 0 for almost every y€V. m 

Lemma 4.16 Suppose {<f>a} is a class of measurable functions on X x X, and V is 

a Borel set in X with m(V) > 0. Then there exists a maximal open subset U of X 

with the property that <f>a = 0 a.e. on Ux V for all a, and a maximal open subset W 

of X with the property that <j>a = 0 a.e. on VxW for all a. 

Proof. Consider the collection of all open subsets O of A" with the property that 

(j>a = 0 a.e. on OxV for all a. The collection is non-empty since it contains the 

empty set. 

Use the usual set inclusion as the partial order and choose an arbitrary chain O 

in the collection. Let 0 denote the union of all members of O. Then 0 is open in X. 

The fact that X is second countable implies that O is actually equal to a countable 

union of members of O. Consequently, <f>a = Q a.e. on Ox V for all a, and hence 

0 is the maximum of all members of O. By Zorn's Lemma, there exists a maximal 
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element U in the collection, i.e., U is a maximal open subset of X with the property 

that <j>Q = 0 a.e. on UxV for all a. 

Similarly, we can obtain a maximal open subset W of X with the property that 

4>a = 0 a.e. on VxW for all a. • 

Definition 4.17 A function / on X is said to have dosed zero-set if the set 

{x G X : f(x) - 0} 

is a closed subset of A'. 

Suppose / is a non-negative function on X. Then / has closed zero-set if and only 

if the set given by 

{.r G A*: f(x) > 0} 

is an open subset of A'. We will use this as an equivalent definition of having closed 

zero-set for non-negative functions. 

Theorem 4.18 Let S be a semigroup of positive integral operators. Suppose S sat­

isfies the following conditions: 

(i) for every S = Intfcs in S, k§(-,y) has closed zero-set for almost every 

V € X, 

(ii) there exists a measurable rectangle UxV with m(U)m(V) > 0 such that 

ks = 0 a.e. on UxV for all S = Int ks in S, 

(iii) S has a countable weakly dense subset So-

Then S has a non-trivial standard invariant subspace. 

Proof. By Lemma 4.16, there exists a maximal open set Vo such that ks = 0 a.e. 

on UxV0 for all S = \ntks in S. Therefore ks = 0 a.e. on Ux(VUVo) for all 5 in 
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S by (ii). If either m(Uc) = 0 or m((VUVo)c) = 0, then we are done. Thus we may 

assume that both Uc and (VUVb)c have non-zero measure. 

Let A = Int kA be an arbitrary operator in S with kA non-zero on a subset of 

f/cx(VUVo) of positive measure, and let, for every y G X, 

Uy = {x€X:kA(x,y)^0}. 

By Condition (i), there exists a Borel set XA Q VUVo with m(XA) = 0 such that Uy 

is open for every y in (VUVo)\AU. 

If we can prove that Uy C Vo for almost every y in VUVo, then, by the definition 

of Uy, we have kA = 0 a.e. on V0
cx(VUV0). Thus kA = 0 a.e. on (VUV0)

cx(KuVo) 

for all A G S. Clearly, m(VUVo)m((VuVo)c) > 0, and therefore, it follows from 

Proposition 1.5 that S has a non-trivial standard invariant subspace. 

Indeed, for any 5 G S, since ksA = ks*kA — 0 a.e. on {/x(VUVo), there exists a 

Borel set Ys C VUV0 with m(Ys) = 0 such that 

(ks*kA)(-,y) = 0 a.e. on U 

for every y in (VUVo)\VU-

Fix an arbitrary element y in (VuVo)\[A''/lU(Use5o^)]• For a n v & € &> Dy the 
definition of the set Ys, we have (ks*kA)(-,y) = 0 a.e. on (/, i.e., 

fcs(x, t)kA(t, y)m(dt) = 0 

for almost every x€U. Hence, for almost every x(E.U, ks(x,-) = 0 a.e. on Uy since 

kA(t,y) > 0 f°r a ' l <€(/j,. By Lemma4.15, &s = 0 a.e. on UxUy. Therefore Condition 

(iii) and the fact that 

/ ks(x,y)(mxm)(dx,dy) = (SXu,Xu), 
J UxUy " 

imply that ks = 0 a.e. on f/xf/y for every 5 G 5 . It follows from the maximality of 

Vo that Uy C Vo- Thus, [/„ C V0 for almost every yGVuVo since m(XA) = m(Vs) = 0 

for all S and then m(XA{J(USes0>s)) = 0. • 

L 
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Suppose T is a collection of operators on C2(X,m). Let 

T = {T*: T€T}. 

Notice that (ME)1 = ME< for every Borel set E in X. We have the following 

corollary. 

Corollary 4.19 Let S be a semigroup of positive integral operators. Suppose S sat­

isfies the following conditions: 

(i) for every S = Int ks in S, ks(x, -) has closed zero-set for almost every 

xeX, 

(ii) there exists a measurable rectangle UxV with m(U)m(V) > 0 such that 

ks = 0 a.e. on UxV for all S — Intfcs in S, 

(Hi) S has a countable weakly dense subset So. 

Then S has a non-trivial standard invariant subspace. 

Proof. By Proposition 1.1 or Theorem 1.21, for every S G 5 , 

ks>(x,y) = ks(y,x) 

for almost every (x,y) G X x X. Therefore, it follows immediately from Theorem 4.18 

and the above analysis that S has a non-trivial standard invariant subspace. • 

Next, we give another set of conditions under which every semigroup of positive 

integral operators on C2(X,m) will have a non-trivial standard invariant subspace. 

We are interested in the case where the kernel of integral operator has closed zero-set 

in both coordinate direction. 

Proposition 4.20 Suppose <j> and ip are non-negative Borel functions on X x X. If 

<f>(x,-), <j>(-,y), tp(x, •) and i>(-,y) all have closed zero-sets for any x and y in X, then 

(<f> * V'K3*? ) an(l ($ * V')('> J/) a ' s o nave closed zero-sets for any x and y in X. 
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Proof. For any x G X, if (<j> * i>)(x, j/o) > 0 for some y0 G A", i.e., 

/ <j>(x, z)i{>(z, y0)m(dz) > 0, 
J X 

then the set E given by 

£ = {zG A :<f>(x,z)>0 and rp(z,yo) > 0} 

is a non-empty open set in X since both ^(a;,-) and VK'ii/o) have closed zero-sets. 

Choose any zQ£E. It follows that the set O given by 

0 = {y € X : xl>(z0,y) > 0} 

is open in A* and contains y0. Therefore, for any yGO, the set 

{z e X : i{>(z,y) > 0} 

is open and contains zo. Hence 

20GF = E D {z G A* : 0(z,y) > 0}, 

and F is open in X. Consequently, m(F) > 0. Thus, for any j/GO, 

((f>*yj)(x,y) = /̂  <l>(x,z)xl>(z,y)m(dz) 
v X 

> / <j>(x,z)yj(z,y)m(dz) 
JF 

> 0. 

By the definition, (<j> * il>)(x, •) has closed zero-set. 

Similarly, for any y G X, (<j> * tj>)(-, y) has closed zero-set. • 

With the kernels of operators in S having closed zero-set in both coordinate di­

rection, we can drop the condition of having a countable weakly dense subset in the 

statement of Theorem 4.18. 

Theorem 4.21 Let S be a semigroup of positive integral operators. Suppose S sat­

isfies the following conditions: 
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(i) for every S = \ntk$ in S, ks(x,-) and ks(-,y) have closed zero-set for 

all x and y in X, 

(ii) there exists a measurable rectangle UxV with m(U)m(V) > 0 such that 

ks = 0 a.e. on UxV for all S = Int ks in S. 

Then S has a non-trivial standard invariant subspace. 

Proof. By Lemma 4.16, there is a maximal open set Uo in X with the property 

that ks = 0 a.e. on UoxV for all S = Int ks in S. Hence, by Condition (ii), ks = 0 

a.e. on WxV for all 5 = \ntks in S, where W = UDUQ. Applying Lemma 4.14, 

we may assume, by disregarding a subset of measure zero from X if necessary, that 

m(OfW) > 0 for all open sets 0 satisfying Of\W # 0, and that m(Of\V) > 0 for all 

open sets O satisfying 0(~\V ^ 0. 

If m(Wc) — 0, then we are done. So we may assume that m(Wc) > 0. We 

complete the proof by showing that ks = 0 a.e. on WxlV0 for all S = Int ks in 5 , 

and consequently, S has a non-trivial standard invariant subspace by Proposition 1.5. 

For any S = Int ks in S, and any x£\V, SGV', let 

Wx(S) = {yeX:ks(x,y)>0}, 

Vz(S) = {yeX:ks(y,z)>0}. 

Then, by condition (i), 14^(5) and V*(S) are open in X for all x$W and zGV. 

Suppose we can prove that Wx(S)f\Vg(A) = 0 for any x&W, z€V, and for any 

S = Int ks, A — Int kA in S. Fix an arbitray xGW and an arbitray S G S. For 

any (y,z) G Wx(S)xV, we have that y is in WX(S) and hence not in VZ(A) for all 

A G S. By the definition of the set V*(A), hA(y, z) = 0 and then kA = 0 a.e. on on 

Wx(S)xV for all A G S. It follows from the maximality of U0 that WX(S) C UQ C W 

for all xGW and S G S. Thus, by the definition of the set WX(S), ks = 0 a.e. on 

VVxW c fora l lS=InU- 5 inS . 

It remains to show that H/
1.(5)DV!;(A) = 0 for every xGVK, zGV, and for every 

5 = \nt ks, A = Intfc,4 in 5. Indeed, suppose Wx(S)nVz(A) ^ 0 for some xeW, 

file:///ntks


72 

zEV, and for some S = Int ks, A = Int kA in S, then m(Wx(S)f\Vt(A)) > 0 since we 

assume that every non-empty open subset of X has non-zero measure. Therefore 

ksA{x,z) = (ks*kA)(x,z) 

= I ks(x,t)kA(t,z)m(dt) 
J X 

> / ks(x,t)kA(t,z)m(dt) 
JW^S)nV{A) 

> 0. 

By Condition (i), the set E given by 

E = {y€X:kSA(x,y)>0} 

is open in X and contains z. It follows that m(EC\V) > 0. For each y€.EC\V, again 

by condition (i), the set given by 

F» = {teX:kSA(t,y)>0} 

is open and contains x. As a result, m(FyC\W) > 0. Therefore, from Lemma 4.15, ksA 

is non-zero on a subset of Wx(EDV) C WXV of positive measure. This contradicts 

the fact that ks ~ 0 a.e. on Wx V for all S = Int ks in 5. • 

Lemma 4.22 Suppose S is a semigroup of positive quasinilpotent integral operators. 

If there exists an operator T G S whose kernel kj is positive almost everywhere on 

a measurable rectangle UxV of positive measure, then ks = 0 a.e. on VxU for all 

S = Int ks in S. 

Proof. We prove the result by a contradiction. 

Suppose there exists an operator S G S whose kernel ks is non-zero on G C VxU 

and (mxm)(G) > 0. For each xGV, let 

Gt = {yeU:(x,y)€G). 

Clearly, Gx is a Borel set in X for almost every xGV. By Lemma 4.15, there exists a 

Borel set Vo C V with m(Vo) > 0 such that m(Gx) > 0 for almost every xGVo-
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For almost every (x, j/)GVoxVo, 

(ks*kT)(x,y) = I ks(x,t)kT(t,y)m(dt) 
J X 

> / ks(x,t)kT(t,y)m(dt) 

> I ks(x,t)kT(t,y)m(dt) 
JGX 

> 0. 

Therefore the kernel ksr of ST G S is positive almost everywhere on (x,j/)GVoxVb. 

But ksrWoxVo is non-negative and induces a quasinilpotent integral operator on 

£2(Vo?m|v0) because the operator ST G «S is quasinilpotent. This contradicts Propo­

sition 4.13 and the remark following its proof. • 

Corollary 4.23 Let S be a semigroup of positive quasinilpotent integral operators. 

Suppose S satisfies the following conditions: 

(i) either for every S = Intfcs in S, ks(-,y) has closed zero-set for almost 

every y G X, or for every S = Int ks in S, ks(x, •) has closed zero-set 

for almost every x G X, 

(ii) there exists an operator T G S whose kernel kj is positive almost every­

where on a measurable rectangle UxV of positive measure, 

(iii) S has a countable weakly dense subset So. 

Then S has a non-trivial standard invariant subspace. 

Proof. It follows immediately from Lemma 4.22, Theorem 4.18 and Corol­

lary 4.19. • 

Corollary 4.24 Let S be a semigroup of positive quasinilpotent integral operators. 

Suppose S satisfies the following conditions: 
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(i) for every S = lntks in S, ks(x,-) and ks(-,y) have closed zero-sets for 

all x and y in X, 

(ii) there exists an operator T £ S whose kernel kj is positive almost every­

where on a measurable rectangle UxV of positive measure. 

Then S has a non-trivial standard invariant subspace. 

Proof. It follows immediately from Lemma 4.22 and Theorem 4.21. • 

4.3 An Application of the Lomonosov-Hilden 

Technique 

In 1973, Lomonosov proved one of the best-known results in operator theory [35]: 

any non-zero compact operator T on an infinite dimensional Hilbert space has a 

non-trivial hyperinvariant subspace, i.e., a subspace invariant under every operator 

commuting with T. The proof is simple and involves constructing a (non-linear) 

map that satisfies the condition of Schauder's fixed point theorem. After being told 

the result, H. M. Hilden found an even simpler proof that only requires very basic 

knowledge of functional analysis (see [38] or [48, Corollary 8.25]). 

In [43], de Pagter proved by using the Lomonosov-Hilden technique that any 

positive compact quasinilpotent operator on a Banach lattice of dimension at least 

two has a non-trivial invariant closed ideal, de Pagter's proof actually proves that any 

non-zero positive compact quasinilpotent operator T on a Banach lattice of dimension 

at least two has a non-trivial invariant closed ideal that is also invariant under every 

positive operator commuting with T. If we view C2(X,m), with its natural order, as 

a Banach lattice, then a subspace of C2(X,m) is a closed ideal if and only if it is a 

standard subspace (see [54] and [61]). The following theorem combines several results 

in [43]. The idea of the proof is virtually the same, but we state it in a way which 

can be easily understood by those unfamiliar with the theory of Banach lattices. 
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Theorem 4.25 [43, Proposition 2 and Proposition 4] Let T be a positive quasinilpo­

tent operator on C2(X,m). If there exists a non-zero positive compact operator To 

on C2(X,m) such that To < T, then T has a non-trivial standard invariant subspace 

that is also invariant under every positive operator commuting with T. 

Proof. Let 

T = {S£ B(C2(X,m)) : S is positive and ST = TS}, 

TX = {S€ B(C2(X,m)) : 0 < S < R for some R G 7 } . 

Clearly, [I ,T) C T CTX, and both T and Tj are closed under products and positive 

linear combinations. Let A be the algebra generated by Tx. Then every member of 

A is actually a linear combination of elements of Tx. Since / G T, all multiplication 

operators M^ with <f> G C°°(X,m) are in A. 

For any / G C2(X,m), / ^ 0, the subspace Af is obviously invariant under 

A. We claim that A~f is a standard subspace of C2(X,m). Indeed, let P be the 

orthogonal projection on Af. Then, by the fact that Af is invariant under A and 

A contains all multiplication operators Mj, with <j> G C°°(X,m), the projection P 

commutes with every A/^. However, the collection of all multiplication operators 

M$ with <j> G £°°(A',m) is a maximal abelian selfadjoint algebra. Hence P is a 

multiplication operator of some characteristic function XE where E is a measurable 

subset of A'. It follows that Af = ME is a standard subspace of C2(X,m). 

Now, Af is a non-zero standard subspace invariant under T for any non-zero 

/ G C2(X, m). Therefore, the proof of the theorem will be completed if we can prove 

that Af ^ C2(X,m) for some non-zero / G C2(X,m). 

Suppose Af = C2(X,m) for all / ^ 0. Choose a non-zero positive element h in 

£2(A', m) such that T0ft ^ 0. Fix an open ball V centering at ft such that 0 G" V and 

0 £ T0V. This can be done by choosing a positive number e small enough such that 

||T0ft|| — e||T0|| > 0 (which implies ||ft|| > e automatically), and letting 

V = {geC2(X,m):\\g-h\\<e}. 



76 

For any / G T0V, we have / ^ 0, and therefore, Af = £2(A',m). Hence ft G A~f. It 

follows that there exists an operator Sj G A such that S/ /GV. Let Vj be an open 

neighborhood of / such that SjVj C V. Then {Vj : / G ToV} is an open cover of 

ToV which is a compact set in C2(X,m) since To is compact. Therefore, there exist 

f\if2i---ifp in T0V such that 

ToVCV/.UV^U-.-UV/,, 

We simply denote Vj} by V, and Sjj by S}, (j — 1 ,2, . . . ,p) . 

Since ToftGToV, we have ToftGVPl for some px between 1 and p. It follows that 

SPlT0ftGSplVPl C V. 

Again, we have ToSPlToftGToV, and hence, ToSp,r0ftGVP3 for some p2 between 1 and 

p, and 

5P2T05PlToftG5PaVPj C V. 

Repeating this process, we obtain a sequence {p}}^Lx in {1 ,2 , . . . ,p} such that 

hj = OpjToOpĵ jTo • • • oP2ToS'PlToftGV 

for all positive integer j . 

For each j , 1 < j < p, S, G A, therefore, it follows from the definition of A that 

there exists an operator Rj G T such that 

\S3g\ < Rj9 

for all positive g G C2(X,m). Let 

7 = max{||/21 | | , | |R2 | | , . .., |!72p||}. 

Then, for each j , (j = 1,2, • • •). 

IKI = \Sp, ToSp,.., To • • • SP3 TQSPI 70ft | 

< RP} ToRVj _, To • • • Rp2ToRpi Toft 

< RP}T/2Pj_, T • • • RP2TRPi Tft 

= Rp Rp r • • • RpjR^T3h. 
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Hence, 

IIM < 7J||TJ||||ft|| 

= ll(7T)'||||ft|| — 0, 

as j —• oo since T is a quasinilpotent operator. This contradicts the fact that 0 £ V, 

and the proof is completed. • 

Corollary 4.26 IfT is a non-zero positive quasinilpotent integral operator, then T 

has a non-trivial standard invariant subspace which is also invariant under every 

positive operator commuting with T. 

Proof. By Lemma 4.6, there exists a non-zero positive Hilbert-Schmidt operator 

To on C2(X,m) such that T — T0 is also positive. The result follows immediately from 

Theorem 4.25. • 

REMARK. The above corollary is a generalization of Proposition 4.13, which is a 

special case of the Ando-Krieger Theorem ([54] and [61]) when the Banach lattice 

is actually the functional Hilbert space C2(X,m) with its natural lattice structure. 

We should point out that this result cannot be obtained by simply applying the 

Ando-Krieger Theorem to the special case. 

Next, we give a generalization of the de Pagter Theorem (Theorem 4.25). We first 

prove the following lemma. 

Lemma 4.27 [42, Lemma 4] Suppose K is an injective operator and A is a norm-

closed algebra of operators on a Hilbert space. If AK C KA, then the map $ on A 

defined by 

AK = K$(A) 

is a continuous algebra homomorphism. 

Proof. The map $ is well-defined since K is injective. Clearly, $ is an algebra 

homomorphism. To prove that $ is continuous, it suffices to show that it is a closed 
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map: if A = lim Aj and B = lim<&(Aj), then 

A A' = limAj/v = HmA'*(i4j) = KB, 

and thus B = $(A). • 

Theorem 4.28 Let T be an injective positive quasinilpotent operator on C2(X,m) 

dominating a non-zero positive compact operator T0> i.e., 0 < To < T. // T is 

a collection of positive operators contained in a norm-closed operator algebra A with 

AT C TA, then T has a non-trivial standard invariant subspace that is also invariant 

under every operator in T. 

Proof. We may assume that T contains the identity operator / , for otherwise, 

we can replace T by T U {/} and A by the algebra generated by A U {/}. Also we 

may assume that T is closed under products and positive linear combinations. 

Let 

7i = {S G B(C2(X,m)) : 0 < S < R for some R G T}. 

Clearly, Tx contains T and is also closed under products and positive linear com­

binations. Let A\ be the algebra generated by Tx. Then every member of Ax is 

actually a linear combination of elements of Tx, and all multiplication operators Afy, 

with <f> G C°°(X,m) are in Ax. 

For any / G C2(X,m), f ^ 0, the subspace Axf is obviously invariant under T and 

every operator in T. As in the proof of Theorem 4.25, we have that A\f is a standard 

subspace of C2(X,m). We complete the proof by showing that A\f ^ C2(X,m) for 

some non-zero / G C2(X,m). 

Suppose Axf = C2(X,m) for all / ^ 0. Choose a non-zero positive element ft in 

C2(X,m) such that T0ft ^ 0. Fix an open ball V centering at ft such that 0 ^ V and 

0 G" ToV. Again, as in the proof of Theorem 4.25, we can obtain, by the compactness 

of To, a positve integer p, a sequence {pj}^ in {1,2,... ,p}, and a sequence {SPl} 

in Ax such that 

hj = 5PjTo5'Pj_,To • • • SP2ToSPl ToftGV 
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for every positive ingeger j . 

For each j , 1 < j < p, S, G A\, therefore, it follows from the definition of Ax that 

there exists an operator R3 G T such that 

\S,g\ < R}9 

for all positive g G C2(X,m). Let 

7 = max{| | /?1 | | , | | f l2 | | , . . . , | | f lp | |} , 

and let $ be the continuous algebra homomorphism on A given by 

AT = T$(A) 

as in Lemma 4.27. Then, for each j , (j = 1,2, • • •), 

l^jl == [SpjToSp^iTo • • • SP2ToSPlToh\ 

< RP] Toflp^.j To • • • Rp2 TQRJH Toft 

< /2PjTi?Pj_,T-• • ilpjT/ipjTft 

= r'*(...(*(»(*(iipj/k_1)iiFj_a)... RPi)h. 

Hence, 

IIMI < iiyjnii*ii'T,iiAii 
= IK7!l$l|Ty||||ft||->o, 

as j —• 00 since T is a quasinilpotent operator. This contradicts the fact that 0 ^ V, 

and the proof is completed. • 

Corollary 4.29 Suppose C2(X,m) is separable and T is a positive quasinilpotent 

operator on C2(X,m) with a dense range dominating a non-zero positive compact 

operator T0} If T is a collection of positive operators contained in a norm-closed 

opemtor algebra A with TA C AT, then T has a non-trivial standard invariant 

subspace that is also invariant under every operator in T. 
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Proof. With T" as the operator in Theorem 4.28, T* the collection of positive 

operators, and A" the norm-closed algebra, the conditions of Theorem 4.28 are all 

satisfied. Therefore T' has a non-trivial standard invariant subspace ME for some 

Borel set E in X that is also invariant under every operator in T*. Thus the standard 

subspace MEC is a non-trivial and invariant under T and every operator in T. • 



Chapter 5 

An Irreducible Semigroup of 

Positive Nilpotent Operators 

In Chapter 4, we have proven that certain semigroups of positive quasinilpotent op­

erators are reducible. One may ask: Is every multiplicative semigroup of positive 

quasinilpotent operators reducible? In [21, Theorem 1], Had win et al constructed an 

irreducible semigroup of nilpotent operators on a Hilbert space such that every oper­

ator in the semigroup has nilpotency two. And in [56], Schaefer provided a positive 

quasinilpotent operator which does not have any non-trivial standard invariant sub-

spaces. It is easy to see that neither of the two examples anwsers the above question. 

In this chapter, we construct an irreducible semigroup of positive nilpotent operators. 

Consider £2([0,1]) with Lebesgue measure m on [0,1]. For every a G [0,1], we 

defim. Sa and Ta in B(C2([0,l])) as follows: 

<^«)=(o('+Q)ir,!n1~£;! < ' e c « 
^ 0 if t G (1 - a, 1] 

( f(t -a) \ite [a, 1] 
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Clearly, Sa and Ta are well-defined bounded linear operators on £2([0,1]). For conve­

nience, we define Sa = Ta =Q for all a > 1. Still, we denote by MA the multiplication 

operator corresponding to <f> € C°°(X,m). 

Lemma 5.1 For any a G [0,1], 

(i) Sa nnd Ta are positive operators. 

(ii) S'a = Ta, So = To = / , Sx = T, = 0. 

(iii) SaTa = Aiv t, TaSa = Mx. ., and therefore, Sa and Tn are partial 

isometries. 

(iv) / / a ,4 1, rAen||Sa|| = ||ra | | = l. 

Proof, (i) It is obvious that 5U and Ta are positive operators. 

(ii)Forany/,</G£2([0.1]), 

(Saf,9) = [\saf)(t)g(t)dt Jo 

= f~° f(l + a)g(t)dt 
Jo 

= J f(s)g(s-a)ds 

= (I TQg). 

Thus, S*=Ta. Clearly, S0 = T0 = /, Sx = Tx = 0. 

( i i i )Forany/,oG£2([0, l]) , 

(SaTaf,g) = (TQf,Tag) 

= f f(t-a)g(t-a)dt 
Ja 

= raf(s)g(s)ds 
Jo 
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Therefore, SaTa = MX[o ,_a]. Similarly, TaSa = MX[a „• 

Since 

S;5„ = TQSa = MX,Q „, 

ra*To = 5aTo = MX[0i_a] 

are projections, we have that Sa and Ta are partial isometries. 

(iv) It follows immediately from (iii). • 

Lemma 5.2 For any a G [0,1), and any (j> G £°°([0,1]), 

(i) ScM* = Msa*Sa, T0MA = MTa4,Ta. 

(ii) MA So, S0 A/A, MAT», andTaM^, are all nilpotent operators. 

Proof, (i) For any / G £ 2 ( [ 0 , 1 ] ) , 

Therefore, 

(5 Q A/A)/ = 5ft(^/) = (Sa4>)(Saf) = (MSa<t,S0)f. 

Hence, SQA/A = Msa<t,Sa. 

Similarly, T„MA = MTo*T0. 

(ii) It is obvius that (Sa)
p = Spa for any positive integer p. Therefore, it follows 

from (i) that 

(M^SaY = M^Ms^ • • • MS{p_l)a4,Spa 

for any positive integer p. Hence, (M^Sa)
v = 0 for p large enough to satisfy pa > 1. 

Thus. M A 5 0 is a nilpotent operator. 

Similarly, SaM^, M<pTa, and T<»MA are all nilpotent operators. • 

Lemma 5.3 If a, ft £ [0,1], then 
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(i) SaS() = Sa+0 and TaTp = Ta+p. 

(ii) 

I MXln ,T0-a if<x<l3 

(iii) 

[ Mx, Ta-a ifa<P 

° \ Mx[0i]Sa-0 if a > 13 ' 

Proof, (i) It is easy to check. 

(ii) If a < /?, then by (i) and Lemma 5.1, 

SaTp = SaTaTp..a = MxIOil_o]T/j_a. 

If a > 0, then by (i), Lemma 5.1 and Lemma 5.2, 

SQTp = Sa-pSpTp 

= Sa-pMx^^ 

= MSa-pXl0l_mSa-f3 

(iii) The proof is similar to the proof of (ii). • 

In [57] it was proved that every positive operator 5 on £2([0,1]) is a pseudo-

integral operator, and that S is determined by a positive finite Borel measure ps on 

[0,1] x [0,1] by the equation 

(Sf,g)= I , , f(y)S(x)ns(dx,dy). 
J[0,l]x[0,l) 

For any a G [0,1], let 

Ga = {(x, y) G [0,1] x [0,1] : y = x + a}, 
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and 
FQ = { ( x , t , ) G [ 0 , l ] x [ 0 , l ] : y = = x - a } . 

It is easy to check that Sa is a pseudo-integral operator determined by pa, where pa 

is the positive finite Borel measure defined by the equation 

pQ(E) = m ({x G [0,1] : (a;, y)€EC\Ga for some y G [0,1]}). 

Similarly, Ta is a pseudo-integral operator determined by va, where va is defined by 

the equation 

ua(E) = m({x G [0,1] : (x,y)<cEf\FQ for some y G [0,1]}). 

Next, we construct a multiplicative semigroup of positive nilpotent operators, and 

prove that the semigroup is irreducible. 

Choose an arbitrary irrational number 0 G (0,1). Let S$ be the multiplicative 

semigroup generated by the set 

{Sa, The : a, b G (0,1) are rational numbers}. 

Theorem 5.4 The semigroup So consists of nilpotent operators. 

Proof. By (i) of Lemma 5.3, any 'word' in So looks like 
W _ CPlTWl CP2T 9 2 . . . CPtir"9n 

for some integer n > 1, where aJ: b3 G (0,1) are rational numbers and p^ q3 are 

non-negative integers for all j = 1,2, . . . , n , and at least one of p3, q} is non-zero, 

(i = i,-: ...,n). 

By Lemma 5.3, W is either 0, or M^Sa-b with a — b > 0, or M^Tt~a with a — b < 0, 

where a = £"=i Pja]i° = # E"=i <7.Ai an(^ ^ an(^ V' a r e characteristic functions of some 

intervals. Clearly, a ^ ft since 0 is irrational, and thus, by (ii) of Lemma 5.2, W is a 

nilpotent operator. « • 

Next, we prove that So is a discrete and irreducible semigroup of positive nilpotent 

operators. 
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Lemma 5.5 For any a G [0,1], and any interval [a,b] C [0,1], 

(i) Either MXla aSa = 0 or \\MXfa s j = 1. 
N«.»] i«.»r 

(ii) Ei*fter M . ^ T , = 0 or \\MX[a b]Ta\\ = 1. 

Proof, (i) Since the range of Sa is Xr0 1 _ ,£2([0,1]), the interval [a\ b'} = [a, 6] (~l 

[0,1 - a] has length b' - a' > 0 if MX[Q fc)50 ^ 0, and 

Mx[fl,fc^a = MX[ai6]5a. 

Clearly, |MX[a b]Sa\\ < | K , J ||S.|| = 1. 

L e t / = *[.• + «..»• + „]• T h e n H/ll = \\X[a'A * 0. a n d 5 « / = *[a',6T Therefore, 

IK.,^'1 = ( M V b ( ] 5 Q ) / 

( M V y ] S a ) / 

AfV.HX[a',*'l 

- ||X[a',b'] 

= 11/11, 

= 1. and hence, |MX [ O 5O,| > 1. It follows that | MX[a fc]5a 

(ii) As in the proof of (i), we have that Mx Ta = 1 if Mx Ta ^ 0. • 

Lemma 5.6 Suppose a, (3 £ [0,1], and E, F a<e two intervals in [0,1]. Then, 

MXpSa - MXTP is either equal to 0 or not less than 1. 

Proof. If either MxESa or MXfTp is 0, then we are done by Lemma 5.5. 

Suppose MXeSa / 0 and MXpTp ± 0. Then both E' = E D [0,1 - a] and 

F' = FC\[[3,1] are intervals of length greater than 0. If a = /3 = 0, then Sa = T/j = 7, 

and therefore, the result is obviously true. If a + /3 > 0, then by the definition of E', 

we can choose an interval [a, 6] satisfying 0 < 6 — a <a + [3 and 

[a,6]C£' + aC [a,l]. 



Hence 

[a, b] - a = [a — a, b — a] C E' 

and, because b — a < a -f /3, 

([a,b]- a)n([a,b) + /3) = [a-a,b- ct)n[a + /3,b + P) 
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Let / = X[n fc]. Then / ^ 0, and 

\(MXESa - MXfTfi)f\
2 

(MXE,Sa-MXFlT0)f\\ 

= \xB,(Saf)-XF.(Tfif)\ 

Thus, 

~ ||*£;'*[a,fc]-a * F ' X M ] + /3 

= | X [ a , f c ] - a - X F 'n ( [ a ) t ]+ /3 ) | 

= F M I - J +||XF'n([a,6] + /3)| 

> 

= X 

lMl-« 
12 

>.<>lll 

= ll/H2-

\MxESa - MXFTp\\ > 1. 

Lemma 5.7 Suppose a, /J G [0,1], and E, F are two intervals in [0,1]. Tftew, 

(i) Mj^Sa — MXjs,S/» is either equal to 0 or not less than 1, 

(ii) MxETa — A/XpT/j is either equal to 0 or not less than 1. 

Proof, (i) If either a or /3 is 0 or 1, then we are done by Lemma 5.5, Lemma 5.6 

and the fact that So = To = / . So we may assume that 0 < a < /? < 1. Therefore, 



by (ii) of Lemma 5.3, 

MXESa - MXpSp 

MXBSa - MXpSp \\TQ 

MXESaTa - MxFSpTa\\ 
M X E M X [ 0 1 _ Q ) - M X F A / X ( O I _ ^ _ Q 

M > = e n , . . . . o , - M X F n I o . 1 _ / , 5 0 _ a | | 

M*E n ID, 1 - a]T° ~ M*F n lo. 1 - *SP~4 

By Lemma 5.6, either 

AL *E n [0, i - a)T° " ^ F n [ 0 , i - A
S0-° - l ' 

or 

Thus, either 

or 

\\MxESa - MXpSp\ > 1, 

MXESa ~ MXpSp 

= ( M ^ n [ 0 , i _ a ] ~ ^ , n | 0 i I . f l 5 / ) - a ) 5 a 

= 0. 

(ii) By (ii) of Lemma 5.1, Ta = (Sa)* and T/j = (Sp)*. Therefore, 

(MxETa - MxFTp)* 

= SaMxE-SpMxF 

= MSaxBSa - MSpxFSp 

= MxB_.S.-MXp_pS<>. 

Thus, (ii) follows immediately from (i). 
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Theorem 5.8 The norm-distance between any two distinct elements ofS$ is at least 

1. Therefore, So is discrete, and hence, norm-closed in B(C2([0,1])). 

Proof. From the proof of Theorem 5.4, anv element in S$ is of the form MXc.Sa 

or MXfTp where E and F are intervals in [0,1], and a = a — b0, {3 = cO — d are in 

[0,1] for some rational numbers a, b, c and d. Thus, the result follows immediately 

from Lemma 5.6 and Lemma 5.7. • 

Theorem 5.9 For any a G [0,1], Sa and TQ are in the weak closure So of So-

Consequently, So is independent of0. 

Proof. Clearly, 5 , = T , = 0 e Se. 

For any a G [0,1), choose a decreasing sequence {oj} of rational numbers in (0,1) 

such that lima, — a. We claim that Sa is the weak limit of the sequence {5^}, a n ^ 

hence, Sa G So 

We need to show that 

(S.,f, g)—* (Saf, g) (j—»<») 

for all / and g in £2([0,1]). Since | |5 a j | | = 1 for all j , and since C([0,1]) is dense in 

£2([0, l]), it suffices to show that 

(Sa,f, g) —• (Saf, g) (j —• oo) 

for all / and g in C([0,1]). 

Suppose / and g are in C([0,1]). For any positive number e > 0, by the continuity 

of / , we can find a number 8 > 0 such that 

\f(x) - f(y)\ < e 

whenever x, y G [0,1] and \x — y\< 8. Since limaj = a, we can find a positive integer 

Â  such that 

\aj — a\ < m'in(e,8) 
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for all j with j > N. 

Therfore, for any j , j > N, 

\(Sa,f, g) - (Saf, g) 

= / f(x + aj)g(x)dx - / f(x + at)g(x)d; 
\Jo Jo 

= / f(x + aj)g(x)dx - f(x + a)g(x)dx 
I Jo Jo 

rl—a 
+ / f(x + a)g(x)dx 

Jl-Oj 

= f~a)\f(x + aj)-f(x + a)\\g(x)\dx 
Jo 

+ fl'°\f(x-ra)\\g(x)\dx 

< ellolloo + K-aJII/llooNloo 
< « o o ( l + ll/Hoo). 

Thus, 

(Sajf,g)—>(Saf,g) (j—»<»)• 

Similarly, choosing a decreasing sequence {ft,} of rational numbers in (0,1) with 

YimbjO = o;, we can prove that Ta G So 
W O T 

-WOT 
We now prove that So is independent of 0. Let 0X and 02 be two irrational 

numbers in (0,1). For every o G [0,1], by what we just proved, Sa and TQ are the 

weak limits of sequences of operators in <Se,. Let W be an arbitrary operator in 

So2 • To prove that W is in Sot , we may assume that W ^ 0. From the proof of 

Theorem 5.4, W is in the form of M% Sa or M\ TQ for some interval [a, b] C [0,1] 
[a,b] [a,b] 

and some number a G [0,1). Choose a sequence {[aj, bj]} of subintervals of [a, b] with 
the property that limaj = a and limftj = b. Then it is easy to check that Mx is 

kfc] 
the strong limit of the sequence {Mx }- However, by (iii) of Lemma 5.1, 

u**M
 = i'xM"**» = T->s-St-t>T>-* 

for every integer j . We can choose {[aj, bj]} so that all Mx are in Sot because 

Sot is a semigroup. Thus M\ is the strong limit of a sequence of operators in 
' [a,6] 



91 

Sot. It follows that W is the weak limit of a sequence of operators in Sox, and hence 

$e3 Q Set . Consequently, So2 C <Sfl, 

Similarly, we have that Sot Q Se2 - Thus S#, = So2 • • 

Theorem 5.10 The semigroup So is irreducible. 

proof. Suppose M is a subspace of £2([0,1]) invariant under So- Then M is also 

invariant under S$ 

Let g be an arbitrary element of M1, the orthogonal complement of M in 

£2([0,1]). For any / G M and any a G (0,1), by (iii) of Lemma 5.1, 

M^-a]f = SaTafeM, 

since both Sa and Ta are in So . Therefore, (Mx , _ . /» g) — 0, or equivalently, 

f a f(x)g(x)dx = 0. 
Jo 

It follows that 

f(x)g(x) = J(x)g(x) = 0 

for almost every x G [0,1], and hence (|/|, \g\) — 0. Thus, 

M^C{ge £2([0,1]) : (|/|, M) = 0 for all / G M). 

On the otbs" hand, it is obvious that 

ML D {g G £2([0,1]) : (|/|, \g\) = 0 for all / G M}. 

Consequently, 

ML = {g G £2([0,1]): (|/|, \g\) = 0 for all / G M}, 

and therefore is a standard subspace of £2([0,1]). 

Let E be a Borel set in [0,1] such that 

ML = ME =X££2([0,1]). 
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For any a G [0,1], since M is invariant under Sa, TQ G So , we have that ME = 

ML is invariant under S* = Ta arid T* = Sa- In particular, (Sa + TX-a)XE € ME-

However, 

( ^ O T J | - o ) A r — "Jf lAp - f - J l — QfAp. 

= X[0,l-a]*E-o, + * [ l - a , l ] * E + l - a 

where £„ is the Borel set in [0,1] given by 

EQ = {(E - a) D [0,1 - a]} U {(E + 1 - a) n [1 - a, 1]}. 

Thus 

\ 6 A T £ =X££2([0,1]). 

However 

m(£ a) = r n ( { ( £ 7 - a ) n ( 0 , l - a ] } U { ( f ? + l - a ) n [ l - a , l ] } ) 

= m((E - a) D [0,1 - a]) -r m((E + 1 - a) D [1 - a, 1]) 

= m ( £ n [ a , l ] ) + m(£n[0,a] ) 

= m(E). 

It follows that XE = XE. 

We now calculate the Fourier coefficients XE (n) of XE . For all integers n, 

yl 

= J0 ^E-^nlO.l-aft)*'2™"* 

+ J0
 X(E + l-o)n[i-o. l](0 e " " ' ^ 

/(e-a)n[o,i-o 
e-

2wntidt 
} 

+ f e-2*niidt 
J(E+l-a)r\[l-a,\] 

f e-2nn{s-a)ids 
JEn[a,l] 
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/ 
JEn[0,a 

+ I e-
2™la+l-a)tds 

= e2™01 / c-2nna,ds 
JEn[a,i EC\[a,l] 

+c2*n(«-l), I e-^'ds 
JEnto.M 

= e 

En[o„-*] 

2imat / e - 2 ™ 4 ' ^ + / e~2wnMds 
JEn[a,l] JEn[o,a] 

= e2Kna' / e-2"n3'ds 
JE 

= e2natxUn). 

By the fact that XE = XE for all a G [0,1], we have that XE(n) = 0 for all integers 

n ^ 0. Thus, XE is a constant function, and hence, either m(E) = 0 or m(E) = I. 

This implies that ML, and therefore M itself, is a trivial subpace of £2([0,1]). • 

REMARK. The operators SQ and Ta, (a G [0,1]), are so-called B,shop-lype operators. 

Some nice properties of the Bishop-type operators can be found in [36] and in the 

references at the end of [36]. 

It is easy to see that the index of nilpotence of operators in So is not bounded. 

Hadwin et al [21, Theorem 6] proved that an algebra of nilpotent operators is simul­

taneously triangularizable if the index of nilpotence is bounded. Thus, it is natural 

to ask the following question: 

Question 2. Is it true that any semigroup of positive nilpotent operators is reducible 

if the index of nilpotence is bounded? 



Chapter 6 

Miscellaneous Results 

6.1 The Jacobson Radical and 

Invariant Subspaces 

Recently the relation between the Jacobson radical of an operator algebra and the 

existence of invariant subspaces of the algebra has been studied in several papers 

(Hadwin et al [22]; Katavolos and Radjavi [32]; Lambrou, Longstaff and Radjavi 

[34]). Let A be a linear algebra. A representation of A on a vector space V is an 

algebra homomorphism from A to the algebra of all linear transformations on V. A 

representation n of A on a vector space V is (strictly) irreducible if there is no linear 

manifold of V other than {0} and V itself invariant under n(A). The Jacobson radical 

RadA of A is defined to be the intersection of the kernels of the (strictly) irreducible 

representations of A (see Aupetit [10] and Jacobson [27]). 

Suppose A is a Banach algebra. It has been shown [10, Appendice I, Theorem 2] 

that if A is unital, then 

RadA = {A G A: AB is quasinilpotent for every B G A}, 

and therefore, every element in RadA is quasinilpotent. These remain true when A 
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is not unital. Indeed, assume A is not unital, and let A be the unitization of A given 

by 

A = {(A, A): A G A and A is a complex number} 

with norm defined by ||(A,A)|| = |A| + ||A||. (Usually, we write (A, A) simply as A + A.) 

Then, A is a proper closed two-sided ideal of A. First, wt claim that RadA C A. 

To see this, let A + A be an element of RadA with A € A and A a complex number. 

Then A + A is quasinilpotent, and therefore, A is invertible in A if A ^ 0. However, 

no element of A can be invertible in .4. Thus A = 0. Consequently, RadA C A-

Secondly, it is clear that any irreducible representation of A can be extended into an 

irreducible representation of .A. On the other hand, the restriction of any irreducible 

representation oi A to A is still irreducible since A is a two-sided ideal of A. It follows 

that RadA — RadA. Therefore, 

RadA 3 {A G A : AB is quasinilpotent for every B G A). 

Conversely, if A G A and AB is quasinilpotent for every B G A, then, for any 

[A(\ + B)]2 = A[(\ + B)A(\ + B)) 

is quasinilpotent, and hence, A(A + B) is also quasinilpotent. This implies that 

A G RadA. Thus, 

RadA = {A G A : A5 is quasinilpotent for every B € A}. 

Let H be an arbitrary Hilbert space of dimension at least two. It is known [41, 

Theorem 1] that any semigroup S of quasinilpotent operators on H is reducible if 

S contains an operator other than 0 in the trace class C\. We are going to examine 

the relation between the set of all trace class operators in S and the radical of the 

norm-closed algebra generated by S and give a generalization of this result. 

Proposition 6.1 Let S be a semigroup of quasinilpotent operators on H, and let A 

be the norm-closed algebra generated by S. Then RadA ^ S f)C\. 
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Proof. Let A G Sf)Cx. We need to show that AB is quasinilpotent for every 

B G A. By the continuity of spectral radius of compact operators, it is enough to 

show that AB is quasinilpotent for every B in the linear span of S. 

Suppose B = £"_i otjSj where n is a positive integer, Sj is in S and aj is a 

complex number, (j = 1,2,... ,n). Then 

tr(Afl) = ^ a J t r ( A 5 J ) = 0 
3=1 

for every such B. Replacing B by B(AB)P~1, we have that tr(( AZ?)P) = 0 for ev­

ery positive integer p. As in the proof of [47, Theorem 5], we have that AB is a 

quasinilpotent operator. • 

Theorem 6.2 Let S be a semigroup of quasinilpotent operators on 7i, and let A 

be the norm-closed algebra generated by S. If RadA contains a non-zero compact 

operator, then S is reducible. 

Proof. It suffices to show that A is reducible. Fix a compact operator K^RadA, 

K ^ 0. If A is irreducible, then, by Lomonosov's Lemma [48, Lemma 8.22], there 

exists an operator A G A such that 1 is in the spectrum of AK. This contradicts the 

fact that A' G RadA. u 

From the proof of Theorem 6.2, we can see that the existence of non-zero compact 

operators whose products with all operators in an algebra A are quasinilpotent is 

a sufficient condition for A to be reducible. It turns out that the condition is also 

necessary. 

Theorem 6.3 Let S be a set of operators on a Hilbert space, and A the algebra 

generated by S. Then the following statements are equivalent: 

(i) S is reducible. 

(ii) A is reducible. 
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(Hi) There exists a rank-1 operator K such that AK is quasinilpotent for all 

AeA. 

(iv) There exists a non-zero compact operator K such thai AK is quasinilpo­

tent for all A€ A. 

Proof. Clearly, (i) and (ii) are equivalent, and (iii) implies (iv). As in the proof 

of Theorem 6.2, we have that (iv) implies (ii). Therefore, we only need to show that 

(ii) implies (iii). 

Suppose M is a non-trivial subspace invariant under A. Let x be a unit vector 

in M. and y a unit vector in ML, and let A' = x®y. Then, for any A G A, AK is 

rank-1. But tr(AA') = tr(Ax®y) = (Ax, y) — 0. Thus, AA' is nilpotent. • 

Let A be an algebra of operators on H. Katavolos and Radjavi proved [32, The­

orem 1] that if A consists of compact operators, then A is simultaneously triangu­

larizable if and only if AB — BA is quasinilpotent for all A and B in A. If A is 

also norm-closed, then this condition is equivalent to A/RadA being commutative 

(Murphy [39, Theorem 1]). Hadwin et al [22] asked several questions about the rela­

tion between the triangularizability of A and the commutativity of A/RadA for an 

algebra A of not necessarily compact operators. We will answer one of the questions 

in the case where A is weakly closed and contains a non-zero essentially unitary C0 

operator. An operator T on H is called essentially unitary if 1 — T'T and 1 - TT* are 

compact. And a contraction T is called a Co opemtor (Sz.-Nagy and Foias, [60, p 123]) 

if T is completely non-unitary and <f>(T) = 0 for some non-zero fu.iction <j> G H°°. 

Theorem 6.4 Let A be a weakly closed algebra of operators on H and assume that 

A/RadA is commutative. If A contains a non-zero essentially unitary Co operator 

T, then A is simultaneously triangularizable. 

Proof. We may assume, WNLG, that A contains the identity operator. By 

Nordgren [40, Corollary 2], A contains a sequence of compact operators that converges 

weakly to the identity operator. Consequently, .A fl AC is weakly dense in A where 
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AC is the algebra of all compact operators on H. The commutativity of A/RadA 

implies that AB - BA is in RadA for any A and B in .4 D AC. Hence, AB - BA is 

quasinilpotent for any A and B in .An AC. It follows from [32, Theorem 1] that .An AC 

is triangularizable. Thus, A is triangularizable since .4 0 AC is weakly dense in A. • 

6.2 Positive Linear Mappings 

between C*-Algebras 

In this section, we will be concerned with the usual notion of positivity in C'-algebra. 

Let A be a unital C-algebra. An element of A is positive if it is self-adjoint with 

non-negative spectrum. Suppose <j> ;s a linear mapping from A to another unital 

C*- algebra B. Consider the following conditions on <j>: 

(1) <f> maps the unit element of A to the unit element of B, 

(2) <f> maps self-adjoint elements of A to self-adjoint elements of B, or equivalently, 

0(A-) = ^(A)*forall AG A 

(2') <j> maps positive elements to positive elements, 

(3) <j) maps invertible elements to invertible elements, 

(3') <j> maps invertible self-adjoint elements to invertible elements. 

Depending on which condition <j> satisfies, we call it (1) unital, (2) self-adjoint, (2') 

positive, (3) invertibility preserving, and (3') invertibility preserving for self-adjoint 

elements, respectively. It is obvious that if A and B are unital C-algebras and 

<f>: A —• B satisfies (1) and (3'), then <j> is self-adjoint if and only if it is positive. 

Proposition 6.5 [44, Proposition 2.1] Suppose <f> : A —• B is a positive linear 

mapping. Then <j> is bounded and \\<j>\\ < 2||^(1)||. 

Proof. Omitted (see [44, p9]). • 
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Proposition 6.6 [53, Corollary 1] Suppose <f>: A —• B is a unital linear mapping. 

Then <j> is positive if and only tj \\<j>\\ = 1. 

Proof. Omitted. (See [53],) • 

A Jordan homomorphism of a C*-algebra A into another C"-algcbra B is a linear 

self-adjoint mapping <j> with the property that <j>(A2) = <f>(A)2 for every self-adjoint el­

ement A G A- The concept of Jordan homomorphism is from Kaplansky [31]. Jordan 

homomorphisms have been studied by several mathematicians. It has been shown 

([28], [29], [59]) that any Jordan homomorphism is the sum of a ^-homomorphism 

and a *-anti-homomorphism, and therefore, a *-homomorphism if the range is com­

mutative, and that any Jordan homomorphism is a ^-homomorphism if the domain 

is commutative. A number of sufficient conditions that a linear mapping be a Jordan 

homomorphism have been obtained. (See M-D Choi et al [13], Russo [52], and Russo 

and Dye [53].) 

Theorem 6.7 (Russo and Dye [53, Corollary 2]) Let <f>: A —• B be a unital linear 

mapping between unital C-algebras A and B. Then <f> is a Jordan homomorphism if 

it maps unitary elements of A to unitary elements ofB. 

Proof. Omitted. • 

Theorem 6.8 (Russo [52, Theorem 2]) Let <f>: A —• B be a linear mapping from a 

von Neumann algebra A to a unital C" -algebra B. Then <f> is a Jordan homomorphism 

if it satisfies condition (1), (2) and (3). 

Proof. Omitted. • 

After proving the above result in [52], Russo asked the following question: Does 

the result remain true if A is only a unital C algebra? It is Russo's observation that 

there is no loss of generality in assuming A to be commutative since only self-adjoint 

elements are involved. 
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When the range of the linear mapping is also commutative, the question has been 

answered positively by Gleason [20] and Kahane and Zelazko [30]. We give a different 

proof of a special case of the general results obtained in [20] and [301. 

Theorem 6.9 (Gleason [20]; Kahane and Zelazko [30]) Let <j>: A —• B be a linear 

mapping from unital C'-algebra A to commutative unital C'-algebra B. Then <p is a 

Jordan homomorphism if it satisfies condition (l), (2) and (3). 

Proof. We may assume, WNLG, that B = C(y) for some compact Hausdorff 

space y. We need to show that for any self-adjoint element A G A, 

<j>(A2) = <j>(A)2. 

Fix an arbitrary self-adjoint element A G A, let C'(A) be the C"-subalgebra 

generated by A, and let ip be the restriction of <j> on C*(A). Then C'(A) is com­

mutative and 0 satisfies condition (1), (2) and (3). It suffices to show that 0 is a 

•-homomorphism. 

Through the Gelfand transform, we can identity C'(A) with C(X) where X = 

cr(A). For any y G X let y denote the multiplicative linear functional on C(y) given 

by 

Then the composition y o 0 is a linear functional on C(X) that satisfies condition 

(1), (2) and (3). It follows from Theorem 6.7, or from M-D Choi et al [13, Theorem 

6], that Lhe composition y o ip is a multiplicative linear functional, and hence, there 

exists a unique .r = 0(y) in X such that 

(y o 4'Kg) = 9(x) = x(9) g€C(X). 

Clearly, the mapping 0 : y —• X is well-defined, and 

H9) = 9O0 geC(X). 

Thus, 4' ' s a ^-homomorphism. • 
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Remark. We know that the linear mapping 0 in the above proof is automatically 

continuous by Proposition 6.5. However, we can prove the continuity of the mapping 

0 directly using the technique employed by Dunford and Schwartz in proving [18, 

Theorem IV.6.26]. 

A topological space X is called totally disconnected if every component in X is a 

singleton (Dugundji [17]). Through a careful examination of the proof of Theorem 6.8 

in [52], we can see that the assumption of A being a von Neumann a'gebra is needed 

only to ensure that any given self-adjoint element A can be approximated by real 

linear combinations of commutative orthogonal projections in A commuting with A. 

Suppose X is a compact, totally disconnected, Hausdorff topological space. If / is a 

real continuous function on X, then f(X) is a totally disconnected subset of the real 

line. Therefore, / can be approximated by real linear combinations of characteristic 

functions of mutually disjoint open-and-closed sets in X. Consequently, any linear 

mapping <j> from C(X) into a unital C-algebra B satisfying condition (1), (2) and (3) 

is a *-homomorphism. 

For any bounded Borel function ft on the unit circle, the restriction T/, of the 

multiplication operator A//, to the Hardy space H2 (consisting of ah £2-functions 

whose negative Fourier coefficients are v) is called the Toeplitz operator induced by ft 

(see [23]). M-D Choi et al proved [13, Theorem 2] that if A* is a compact Hausdorfr 

space containing a continuous injective image of [0,11, then there exists a linear 

mapping <j> from C(X) to B(H2) that satisfies the condition (1), (2) and (3) but 

is not a Jordan homomorphism. The proof involves Toeplitz operators and is based 

on the fact (Douglas [16, Corollary 7.28]) that the spectrum a(Th) for a continuous 

function ft is the range of ft together with those points not in the range with respect 

to which ft has non-zero winding number. At the end of [13], M-D Choi et al asked 

the following question: what is the necessary and sufficient condition on X thai forces 

all linear mappings from C(X) into a unital C*-algebra satisfying (1), (2) and (3) to 

be *-homomorphisms? The main result of this section is a theorem that answers this 

question with condition (3) replaced by (3'). 

Theorem 6.10 Suppose X is a compact Hausdorff space. Then all linear mappings 

i 
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from C(X) into unital C'-algebras satisfying (I), (2) and (3') are *-homomorphisms 

if and only if X is totally disconnected. 

We need some preparations to prove the above theorem. First, we prove a gener­

alization of a lemma obtained by Russo [52, Lemma 3]. 

Lemma 6.11 Let A and B be unital C'-algebras. Suppose <f> : A —• B is a linear 

mapping and satisfies condition (1), (2) and (3'). Then 

(i) (j> maps projections into projections. 

(ii) <j> maps every pair of orthogonal projections into a pair of orthogonal 

projections. 

Proof, (i) Let P G A be a projection. Since <h satisfies (1), (2) and (3'), <f>(P) is 

self-adjoint and a(<j>(P)) C a(P) C {0,1}. Therefore, <j>(P) is a projection. 

(ii) It is easy to check that an operator T is a projection if and only if / — 2T is 

self-adjoint and unitary. 

Suppose P and Q are orthogonal projections in A. Then PQ = QP = 0. It 

follows that U = I —IP, V = I — 2Q are self-adjoint and unitary, and that UV = VU. 

Therefore, UV is soii-adjoint and unitary. Hence, <j>(UV) is self-adjoint and unitary 

since <r(<j>(UV)) C a(UV) C {-1,1}. However, 

<f>(UV) = # ( / - 2P)(I - 2Q)) = / - 2[<KP) + <f>(Q)l 

It follows that <j>(P) + <f>(Q) is a projection, and thus the projections <f>(P) and <j>(Q) 

are orthogonal. • 

The following result is a generalization of [52, Theorem 2]. The proof is essentially 

the same. 
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Theorem 6.12 Let A and B be unital C-algebras. Suppose any self-adjoint element 

A G A can be approximated by real linear combinations of commutative orthogonal 

projections in A commuting with A. Then every linear mapping <j> : A —• B that 

satisfies condition (1), (2) and (3') is a Jordan homomoi"phism. 

Proof. Suppose <j>: A —• B is a linear mapping and satisfies condition (1), (2) 

and (3'). Then, <f> is positive, and by Proposition 6.6, ||</>|| = 1. 

Let A G A be a self-adjoint element and ||A|| = 1. For any e > 0, the assumption 

on A implies that there exist orthogonal projections Px, P2, - - - ,Pn in A commuting 

with A and real numbers ax,0:2, - • • ,ctn such that 

3 = 1 
< e. 

By Lemma 6.11, <j>(P\), ^(T^) , . . . , (f>(Pn) are orthogonal projections in B. Therefore, 

<i>(A)2 - <t>(A2) 

= 4>{A?- Evra 
.J=I 

5>W) 

= H*) m-E°Mp>) 
3=1 

+ 

- <f>(A2) 

3=1 
EaMp

}) 
j 3=1 

+E«X^)-^2) 
3=1 

= <j>( A) <f> ( A - £ a, P} + <i> A - £ «, P} \<f> £ a, P3 

3=\ I \ 3=1 / \J=1 
71 

+<*> X > ^ - ^ 2 

V3=l 

n 

J=l / \ 3=1 ) \3 = l 
2 

+<£ 
LJ=I 

- A 2 
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= MA)+\A-Y,aJpA+ + [A-EaipA + 
i=i j= i (P'"\ 

+<t>((£°JPj-A)(£ajPj + A)] 

Hence, 

l l ^ ) 2 --HA2)\\ < A-t,<*jPj 
3=1 

+ A-

+ ftoiPj--A 

n II II " 

|E«ip i + ̂  

3P3 

= e-f e(l + e) + e(2 + e) 

— i h(2 + e). 

Letting e tend to 0, we have that <j>(A)2 = (f>(A2). This implies that <j> is a Jordan 

homomorphism. • 

Corollary 6.13 Suppose A is a von Neumann algebra and B is a unital C'-algebra. 

Then every linear mapping <j> : A —• B that satisfies condition (1), (2) and (3') is a 

Jordan homomorphism. 

Proof. It follows immediately from Theorem 6.12. • 

Corollary 6.14 Let B be a unital C'-algebra. Suppose X is a compact, totally dis­

connected, Hausdorff space. Then every linear mapping <j>: C(X) —• B that satisfies 

condition (1), (2) and (3') is a Jordan homomorphism, and hence, a *-homomorphism. 

Proof. Since the total disconnectness of X implies that the condition of Theo­

rem 6.12 is satisfied with A = C(X), the result follows immediately. • 

Theorem 6.15 Let X be a compact Hausdorff space. Suppose all linear mappings 

from C(X) into unital C'-algebras that satisfy condition (1), (2) and (3') are Jordan 

homomorphisms. Then X is totally disconnected. 
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Proof. Suppose, on the contrary, there exist two distinct points « and v in the 

same component Xo of X. Form the disjoint union X Uj [0,1], and let X be the 

topological space obtained by identifying u with 0 and v with 1. Then X is compact 

and Hausdorff. 

Define 0 to be the mapping 0 : C(X) —• C(X) given by 

j)/(u) + x/(v) if a: G [0,1] 

It is easy to check that 0 is well-defined, and that it is linear, unital and positive. For 

any real /GC(A'), since XQ is connected, f(Xo) is a connected subset of the real line, 

and hence, an interval. Therefore, «, v G XQ implies that 

(i-x)f(u) + xf(v)ef(XQ) 

for all x G [0,1]. Thus, 0 satisfies (3') because 

'(9(f)) = (*/)(*) = ft*) = *(/)• 

Fix a continuous surjective mapping ft from the unit circle to the unit interval 

[0,1], and let r : [0,1] —• X be the embedding of [0,1] into X, i.e., 

T(X) = X zG[0 , l ] . 

Define ip to be the linear mapping yj : C(X) —• B(7i2) given by 

^ ( / ) = Tjoroh, 

where H2 is the Hardy space and Tj0Toh is the Toeplitz operator induced by the 

continuous function for o ft on the unit circle. Straightforward verifications show 

that i{> is linear and unital, and that V'(l) = 1 = H l̂l- It follows from Proposition 6.6 

that ip is positive. 

Let (j> = 0 o 0. Then <\> : C(X) —• B(H2) is linear and satisfies (1), (2) and 

(3'). We complete the proof by showing that the linear mapping (j> is not a Jordan 
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homomorphism. Choose any real function f£C(X) with f(u) = 0 and f(v) = 1. 

Such functions do exist by the Tietze Extension Theorem. By the definition, <f>(f) — 

T(oj)oroh- Since, for any x G [0,1], 

0(f2)(x) = (1 - x)f2(u) + xf2(v) = *(/)(*), 

we have that <j>(f2) = ^(/)» Therefore, it is impossible that <p(f2) = [^(/)]2, for oth­

erwise we have that <f>(f) = [(j>(f)]2 is a self-adjoint idempotent. It follows that <£(/) is 

a projection, and consequently o-(<j>(f)) C {0,1}. However, o~(<f>(f)) = (#(/))([0,1]) = 

[0,1], and we have a contradiction. • 

The proof of Theorem 6.10. It follows immediately from Corollary 6.14 and 

Theorem 6.15. • 
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