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ABSTRACT 

Let P(x; 8) be the probability mass function or probability density 

function of a random variable X where 6 e SfiP, p b'eing finite. Using 

the first k (k > p) raw or central moments of this distribution we 

eliminate the p parameters in 6 and obtain a moment relation in k 

moments. We derive the raw and the central moment relations for a 

number of discrete and continuous distributions. These moment 

relations are used as criteria to characterize a distribution. In 

general the present method is affective. But there are some special 

situations, where the moment relations of two or more distributions 

are same or one particular moment function takes same value for 

two or more distributions. In such a situation we propose two 

moment ratios as extra criteria for deciding among them. These 

ratios are also useful in approximating the Neyman type A and the 

Generalized Poisson distribution by the Negative Binomial 

distribution. We can identify a distribution by using the ratios of the 

co-efficients of the recurrence relations obtained from its 

generating function. 

Subsequently, a special class of the Exponential family of 

distributions named the family of Transformed Chi-square 

distributions is defined. Explicit expressions for the MVUE with MV 

of a function of the parameter of this family are given. The critical 

region and the power function for various tests of hypotheses for 

the parameter of this family are also obtained. An identification 

procedure with probability of correct identification is discussed in 

detail. 
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Chapter 1 

Introduction 

At present a large inventory of discrete as well as continuous 

probability distributions is available. Most of the probability 

distributions and their properties can be found in the recent works 

of Rothschild et al. (1985), Patel et al. (1976), Johnson et al. 

(1969, 1970) and Patil et al. (1968). On account of the wide variety 

of available probability distributions, researchers in applied fields 

have begun to wonder which distribution will be the most 

appropriate one in a particular case and how to choose it ? One 

conventional method in this respect is to use Chi-square goodness 

of fit test. But the Chi-square goodness of fit test may give 

insignificant results for two or more suspected distributions for a 

particular data set. In such a situation, it is a difficult task to 

make a choice. We can only say that one distribution gives a better 

fit than others, but statistically we can not reject the possibility 

that the data set is from some other distribution(s). Thus, we need 

some criteria for making a choice. One such criterion is the method 

of moment relations. Let us consider an arbitrary distribution with 

p parameters. Since the moments of any distribution are functions 

of its parameters, by using the first k (k>p) raw or central 

moments of this distribution it is possible to eliminate its p 

parameters and obtain a moment relation in k moments. This 

1 
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moment relation can be used to characterize that distribution. 

Ferguson(1967) and Khan et al. (1986, 1987) have characterized 

some probability distributions through the conditional moments of 

order statistics with single or higher order gaps. Lin (1987, 1988, 

1989) has used several recurrence relations and identities for 

product moments of order statistics to characterize some 

probability distributions. Other recent works on this topic are 

those of Govindarajulu (1966), Gupta (1984), Hwang (1975), Hwang 

et ai. (1984) and Kirmani (1984). But in this thesis we have used 

ordinary moment relations to characterize probability 

distributions. Our method is equivalent to the method developed by 

Lukacs(1981) to characterize a distribution by zero regression of 

certain statistics. 

Characterization of distributions by means of zero regression has 

been thoroughly discussed by Lukacs et al. (1964) and Kagan et al. 

(1973). Other recent works on this topic are those of Bar-Lev et al. 

(1986, 1987), Gordon (1973), Heller (1979, 1983, 1984), Jorgensen 

(1987), Kushner et al. (1981), Kushner (1987), Lukacs (1963), 

Richards (1984), Seshadri (1983) and Tweedie (1984). In Chapter 2, 

moment relations for a number of discrete and continuous 

distributions have been derived and their uses have been discussed 

thoroughly with suitable examples. 

In general the method of moment relations is effective in. 

characterizing a distribution. But there are some special 

situations, where one particular moment function takes same value 

for two or more distributions or the moment relations for two or 
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more distributions are same. In such situations we need another 

criterion for making a choice. One such criterion is the method of 

moment ratios. If the moment relations for two or more 

distributions are same then we shall use the moment ratios d-| = 

(i u.3/ n 2 and d 2 = (U.2M-4 - u ^ 2 ) / ^ 3 a s e x t r a criteria for deciding 

among them. This is discussed in chapter 3. With the help of these 

ratios Generalized Poisson (Borel-Tanner) and Neyman type A 

distributions can be approximated by the Negative Binomial 

distribution. Comparison of exact and approximate distributions 

have been studied. 

The Compound Poisson distribution was first considered by 

Greenwood and Yule (1920). Let X be a Poisson random variable 

having p.d.f. P(x;0) = 0xe"e/x! , x = 0,1,2, . . ., where the parameter 0 

(> 0) gives the expected number of 'events'. If different individuals 

of a population are associated with different values of 0, and if 0 

is distributed as a random variable with distribution function F(0), 

the probability of x events in the total population will be given by 

P(x) = j ^ - d F ( 0 ) (1.1) 

0 

Following Greenwood et al. (1920) we shall refer to (1.1) as a 

family of Compound Poisson distributions. Negative Binomial, 

Hermite, Borel-Tanner, Neyman type-A etc. are distributions 

belonging to this family. These types of distributions have been 

successfully applied by many authors such as Neyman (1939), Palm 
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(1937), Lundberg (1940), Greenwood et al. (1920) and Eggenberger 

et al. (1923,1924) to problems of accident statistics, telephone 

traffic, fire damage, sickness-insurance, life-insurance, risk 

theory, and even in engineering. Following Feller (1965), the 

probability generating function (p.g.f.) of a Compound Poisson 

distribution can be written as 

P(s)= IpjSJ=exp[a0(s-1) + a^s 2 -1)/2 + a2(s3 -1)/3 + . . . ] (1.2) 

A recurrence relation to calculate successive Pj's obtained by 

differentiating (1.2) with respect to s and equating the 

coefficients of si is given by 

Pj + i(j+1) = arjPj + a l Pj. 1 + • • • + aj p0 

j-0,1,2 , Pj = 0 if j<0. 

The cumulants of the distribution can be obtained by taking the 

logarithm of both sides of (1.2) and expanding them . 

The i-th cumulant so obtained is 

Kj = aQ + 2 M a-t + 3'"1 a2 + 4 M a3 + . . . 

= Xr(r+1) i-1 a r , . . . . (1.3) 

i=1,2,3 

Thus the cumulants of any Compound Poisson distribution can be 

computed from (1.3). Hinz et al. (1967) have suggested that the 

plots of the sample values rjj and Yj against j may be used in 

discriminating among the Negative Binomial, Neyman type A, 

Poisson Pascal and Poisson Binomial distributions. Here TIO(K) = 

K ( 1 ) , Tij (K) = K(j + iy/K(j) (j=1,2,3, . . . ), where K(J > is the jth 

factorial cumulant and y0 = u..,', ^ = TJ + 1 (R)/TJ(R) (j=1,2,3, . . .), 

where Rj = Pj/p0 and Pj is the probability of the random variable 

having the value j , and the v. (R) are defined by 
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- t | ( R ) z J 

logG(z) = logp0 + £
 J =, 

H '' 

In particular x1=R1 , x 2 = 2 R 2 - R 1
2 , x3 = 6(R3-R1 P^)+2R1

3 , 

x4 = 24(R4-R1R3 +R1
2R2) -12R2

2 - 6 R / , where for convenience Xj 

is written in place of Xj(R). These can be obtained generally through 

the recurrence relation 

J J J £j j-l-1 I ' J-
1=1 

Earlier, Ottested (1939) used the ratio M-n + i / M-(j). where u-(j\is 

the jth factorial moment against j , to discriminate among the 

Binomial, Poisson and Negative Binomial distributions. One can use 

the corresponding sample values in these criteria to find out the 

possible form of the underlying distribution. Because of the 

sampling fluctuations, a particular criterion may not provide 

reliable information to draw sound conclusions. In fact whenever it 

is possible, more than one criterion should be used and other 

characteristics should be verified to ascertain a distribution. Here 

we suggest use of the ratios of a:'s rather than the ratios of 

moments for identifying certain Compound Poisson distributions, 

especially those listed in Table 4.1. It may be noted that the 

cumulants do not necessarily identify a distribution while within 

the Compound Poisson family the aj's do, hence the use of aj's in 

place of the cumulants has some merit. We have discussed these in 

chapter 4. Characteristics and applications of some distributions 

belonging to the Compound Poisson family are also discussed in 

this chapter. 
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Following Kotz and Johnson (1982) there are two main types of 

parametric families of distributions in Statistics such as the 

transformation (or group) families and the Exponential families. 

The families of distributions generated from a single probability 

measure by a group of transformations on the sample space are 

called transformation families. For example, any location-scale 

family p" 1f{(x-a) /p}, where f is a known p.d.f. of the random 

variable X. Following Barndorff-Nielsen (1978), the Exponential 

families are characterized by having p.m.f. or p.d.f. of the form 

/(x;6) = exp[a(x)b(e)+c(0)+h(x)] (1.4) 

A large number of commonly occurring families of distributions 

belong to the exponential family. Examples of such families are the 

Binomial, Poisson, Geometric, Normal, Gamma etc. Both 

Exponential and the transformation families of distributions 

possess particularly nice properties. Their general structures have 

been studied by many authors. The Cramer-Rao inequality, the 

Bhattacharrya inequality, the Lehmann-Scheffe theorem etc. play 

important roles in minimum variance unbiased estimation. To 

obtain the MVUE of any parameter or any function of the parameters 

by conventional methods we need to apply the method separately 

for each individual distribution. In testing any statistical 

hypothesis we need to choose an appropriate test-statistic. To find 

the critical region and the power of the test, we need to know the 

distribution of the test statistic. The distribution of the test 

statistic depends on the parent population. It varies from 

population to population. We have developed some general results 

for different types of estimators, the test statistic, the critical 



region and the power function of the test of hypothesis regarding 

some parameter(s). These results are true for a special family of 

distributions named the Transformed Chi-square family, which is a 

sub-family of the large Exponential family of distributions. By 

observing the p.m.f. or p.d.f. of any probability distribution 

belonging to the Transformed Chi-square family, one can easily 

obtain without much derivation various estimators, critical 

regions and power functions of the test concerning the 

parameter(s). These are discussed in detail with suitable examples 

in chapter 5. To summarise here, let X = ( X1( X2 , . . ., Xn ) be a 

random sample of size n drawn from a distribution that belongs to 

the family of Transformed Chi-squares having density of the form 

(1.4), then 

(i) the distribution of -2Xa(Xj)b(0) is Central Chi-square with nk 

degrees of freedom, 

(ii) Xa(Xj) is a sufficient statistic for 0 or, any one to one function 

of 0, 

(iii) Ia(Xi)/n is the MLE and UMVUE of [-k/{2b(0)}] with MV 

[k/{2nb2(0)}], 

(iv) Ia(Xj)/n is the MVBUE of [-k/{2b(0)}] with MV [k/{2nb2(0)}] 

provided Cramer-Rao regularity conditions hold, 

(v) 
y2 X2 

2la(X.) ' 2la(X.) 
is a 100(1- (a + a2)}% confidence 

interval of {-b(0)}, 

(vi) an a level UMP test for testing the hypothesis 
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HQ : 0 < 0O against 

H, : 0 > 0O is <Kx) = I , if Za(Xi) > [x2
nki(1. o)]/{-2b(e0)}, 

provided b(0) is strictly increasing in 0. Also the power function of 

the test is Pe{x2nk^Ne)x2
nk, (1.a)}/b(0o)]}. 

Obviously this is a time saving device in estimation and tests of 

hypotheses. In some practical situations to which conventional 

tests of homogeneity are applied, such as the F-test for the 

equality of p population means, the tests (whether or not they yield 

statistically significant results) do not supply the information 

that the experimenter seeks. For example, let the p populations be 

the populations of p different cities or counties. Then, possibly the 

hypothesis that the different cities or counties have the same 

average income is an unrealistic one since it is likely that if the 

cities or counties are different, the average incomes will also be 

different, and a sufficiently large sample will establish this fact 

at any preassigned level of significance. Moreover, the 

experimenter's problems usually begin after obtaining a significant 

result. After establishing that the average incomes are different, 

the experimenter usually desires to select the one which is best. 

The best city or county can be defined as the one having the highest 

average income of the people. A general identification procedure 

and the probability of correct identification of the best population 

or subset of populations have been discussed in section 5.5. 



Chapter 2 

Characterization by Moment Relations 

2.1 Introduction 

In this chapter a method for the construction of moment relations 

is presented. We derive the raw and the central moment relations 

for a number of discrete and continuous distributions. These 

moment relations are used as criteria to characterize a 

distribution. The present method is equivalent to characterizing 

the distribution by zero regression of certain statistics [Lukacs 

(1981)]. We shall need the following definition. 

Definition 2.1.1 Constant Regression and Zero Regression: 

Let U and V be two random variables. Suppose that the expected 

value of V i.e., E(V) exists. Then V is said to have constant 

regression on U if the conditional expectation of V, given U, equals 

the unconditional expectation of V, that is, if the relation E(V|U) = 

E(V) holds almost everywhere. If E(V) = 0, then we say that V has 

zero regression on U. Thus if V has zero regression on U, then E(V|U) 

= 0. 

9 
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Let us state the following lemma which is very important in 

deriving some statistics to characterize probability distributions. 

Lemma 2.1.1 The random variable V has constant regression on U, 

iff the relation E(Ve tu) = E(V) E(etu) holds for all t. Thus if V has 

zero regression on U, then E(Vetu) = 0. 

Proof : Let the random variable V have constant regression on U 

i.e., E(V|U) - E(V). 

Therefore, E(VetU) = E{e tU E(V|U)} = E{e tu E(V)} = E(V) E(etU). 

Conversely, let the relation E(Vs tu) = E(V) E(etu) holds for all t. 

Then 

E[e tu {V - E(V)}] = E(Vetu) - E(V) E(etu) = 0 

or, E[e t u E({V - E(V)}|U)] = 0 
oo 

or, j " e
, u E[{V-E(V)}|U] d^(u) =0 

Here, F^u) is the marginal distribution of the random variable U. 

We introduce the probability function P^A) of the random variable 

U instead of the distribution function F^u). This is a set function, 

defined on all Borel sets of R r The preceding equation then 

becomes 

e tu E[{V-E(V)}|U] d P u - 0 
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Let u.(A) = J E[{V-E(V)}|U] dpy . 

A 

This is a function of bounded variation which is defined on all 

Borel sets A of R., and we see that 

Je tu du = 0. 
R i 

This implies that u.(A) = |i(R-|) = 6. This is only possible if 

E[{V - E(V)}|U] = 0 

or, E(V|U) = E(V). 

Therefore, V has constant regression on U. 

Again, if V has zero regression on U, then E(V|U) = E(V) = 0. 

Thus, E(VetU) = 0. 

Hence the lemma is proved. 

Let X be a r.v. having p.m.f or p.d.f. given by 

P(x; 0) , 0e 9tp (2.1.1) 

We are interested in characterizing the distribution of X. Our 

approach is subject to the following assumptions : 

(i) The distribution function to be characterized depends only on a 

finite number of parameters. 

(ii) The existence of the moment generating function of the 

distribution is necessary. 

Let M = M(t) be the moment generating function of X about the 

origin. Using the first k (k>p) raw or central moments of this 
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distribution we can eliminate the p parameters in 0. In order to 

eliminate the p parameters in 0 let us differentiate M successively 

'r' times with respect to t. Let the jth derivative of M be written as 

dJM/dtJ -M(J)=gj( t ; 0) (2.1.2) 

where j=1,2 r and r can be chosen in such a way that we can 

eliminate not only the p parameters but also all expressions which 

contain the arbitrary variable t explicitly from the set of 

equations (2.1.2). By this method we obtain an ordinary differential 

equation which involves the moment generating function M and its 

derivatives. Let this differential equation have the following form 

(SJ (S9) (SJ 
. . ' 5 > . . _M M '-...M = 0 (2.1.3) 

'1~2 Sk n l ^ 

Let /=/(t)=E{exp(itX)} be the characteristic function. Now using / 

and proceeding as before we get, 

(SJ (SJ (Su) 

g - S v * %"••• ' - ° <2^ 
Let (X-j ,X2 Xn) be a random sample of size n from a population 

having p.m.f. or p.d.f. (2.1.1). Also let A = IX: and S = SfX-pXg, . . 

.,Xn) be two sample statistics such that S has k.ero regression on A. 

Then 

E(SeAt) = E(S)E(eAt) = 0 (2.1.5) 



13 

Lukacs (1981) has pointed out that the statistic S characterizing 

the function (2.1.1) by zero regression can be constructed by using 

the differential equation (2.1.4). In section 2.2 we show that the 

statistic S can also be constructed by using the relations of the 

first k (k>p) moments. Raw and central moment relations for a 

number of distributions are presented in Table 2.3.A and 2.3.B. 

These moment relations will be used to characterize a particular 

distribution. 

2.2 Construction of 'S' Statistics by Moment Relations 

We have. M = M(t) = E(etX) 

M<r)=E(XretX) (2.2.1) 

E(eAt) = (M)n (2.2.2) 

M<r) ={E(X reAt)}/(M)n"1 (2.2.3) 

Let S: ( j= 1,2, . . .,k) be integers such that r > s: > 0 ( j= 1,2, . . .,k) 

and suppose that X: * X| for j * I . Then 

Si s, sk n-k k s, tX 
E(X l

1X2
2...Xk e tA)={M(t)} f p x / e 1 ) (2.24) 

It follows from (2.2.1) that 

(SJ (s ) (SJ n-k s s s 
M 1 M . . .M K m =E(X 1

1 x / . . .X k e t A ). Therefore, 
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( s j (s9) (s j n-k 
. . Y b . . _M M \ . . M "(M. 

s~ v^2' • • • ,&k 
S1V

S2 v
Sk tA, 

12 k 
^ ^ . b g , . . . ,&k 

= E(SeAt) = 0 [Using (2.1.5)], 

V V V h S1 S2 S k 

where, S - 2 ^ - • • 2 - D s 1 , s 2 , . . .,sk Xi x
2 • X k 

I c. K 

Thus, 

(SJ (s ) (s ) n-k 

S I - I b s s s M M • • • M <M> = 0 

ts r s i ,s2- • • -sk 

™ ~ (si> (SP) (sk} 

or, Y Y . . .Yb_ _ _M M . . . M = 0 
s ^ s^ s r s 2 ^ 

Let u., n r and u.f be respectively the mean, rth raw and rth 

central moments of the distribution of X having p.m.f. or p.d.f. 

(2.1.1). Let 

u r ' =E(X r ) (2.2.5) 

Mr - E ( x ^ ) r (2-2-6) 

where, r = 1,2,3, . . . . We want to characterize the distribution of X. 

Taking the first k equations from (2.2.5) or (2.2.6) and eliminating 

the p parameters in 0 we obtain an equation of the form 
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! 

S 1 . .S2 . .S3 . A 
l%,s2 s ^ W W ---W =0 (22-7) 

'1-2 Sk ^ ^ K 

S 1 . .S2 , .S3 . .Sk 
or, J J - • . f tV,^ s,M (^ (Mj • • • K) - 0 (225) 

1 2 k 

where S; > 0 , j=1,2, . . . ,k. Evidently, an unbiased estimator of the 

expression on the left side of (2.2.7) is 

T = T(X-| ,X2 Xn) 

1 2 k 

( W--vW-%- -W-Vk <22'9) 

Let T have zero regression on A = IX: , so that E(Tet A) = 0 . 

Therefore, using (2.2.9) we may write, 

•£*,.% ^ V ^ - K ' j V ^ O (22,0) 
1 2 

where bk = s-j+s2+ . . .+sk. Evidently, the expressions (2.2.4) and 

(2.2.10) are the same under the assumption that T has zero 

regression on A. This c.i orential equation (2.2.10) can be solved 

for M(t) corresponding to (2.1.1). On the other hand differentiating 

M(t) successively with respect to t and eliminating the parameters 
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we can derive (2.2.10). Then using (2.2.1), (2.2.2) and (2.2.3) we get 

E(TeA {) = 0 = E(T) which implies that (2.2.7) and (2.2.8) hold. Thus 

(2.2.7) and (2.2.8) imply that T has zero regression on A. Hence we 

can use (2.2.7) or, (2.2.8) to characterize a distribution. Now using 

the value of T in (2.2.9) and the sample (X-j ,X2,.. .,Xn) we can easily 

construct the sample statistic S characterizing the distribution 

(2.1.1) by zero regression on A i.e., satisfying E(SeAt) = 0. This is 

given by 

s-g-Zg-Su...*, *?•••* 
n(n-1)(n-2).. .(n-s^s.. - s . J 

i j zs.S, a 1'2* • • "It — ~ (2.211) 
J 1 2 k n/n-1\/n_^ fn.<5-S . . - S ) 

where the summations go over all subscripts i,j, . . ., which are all 

different and vary from 1 to n. S statistics for a number of 

distributions have been constructed and presented in Table 2.5. 

2.3 Discussion 

Consider the Poisson distribution having p.m.f. 

Px(0) = e"e0x/x! , x = 0,1,2 

The moment generating function is M(t) = exp(-0+0e*) . 

The first two raw moments are 

u.-)' = 0 = u, and u.2' = 62+ 0-

Now eliminating 0 from these two equations we get, 

u.2' - u , 2 - u - 0 . (2.3.1) 

Here, | i 2 =0. Thus the central moment relation is |!2 - u. = 0 . Let 
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T=X1
2-X2X3-X4 . (2.3.2) 

We observe that T is an unbiased estimator of f i 2 ' - p2 - u. , where 

{X1,X2, . . . } are any i.i.d. random variables whose 2nd moments 

exist. If T has zero regression on A = X̂  + X2 + . . . +Xn, then E(TeA *) 

= 0 . That is, 

E(TeA l) = E[( X1
2-X2X3-X4 )exp{t( X1 + X2 + . . . +Xn)}] 

=M"Mn"1-(M')2 M ^ - M ' M n " 1 

or, M M" - (M')2 -M' M = 0 (2.3.3) 

This is the differential equation in terms of the moment generating 

function for zero regression. To solve (2.3.3) for M(t), we may 

write 

M7M' = M7M +1 

Integrating both sides of this equation with respect to t we get 

InM' = InM + t + c , where c is a constant of integration. 

or, In(MVM) = t + c . or, MVM = c-| e* , ( C| =ec). 

Integrating again with respect to t we get 

InM = c-j e l + c2 . 

As M(0) = 1, c-| + c2 = 0 . Let c-j = 0, thus c2 = - 0. So, 

M(t) = expf-O+Oe*) (2.3.4) 

Therefore, if T has zero regression on A, then X^ ,X2 , . . .,Xn are from 

the Poisson distribution. Now if we start from (2.3.4) and 

eliminate 0 from M, M',M" we obtain (2.3.3), which can be written as 

E[( ̂  2-X2X3-X4 )exp{t( X1 + X2 +.. . +Xn)}] = E(TeA *) = 0. 

This implies that T has zero regression on A. Again substituting 
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t=0 in (2.3.3) and remembering that M(0) = 1, M'(0) =p , M"(0) = u,2' 

we get (2.3.2) and (2.3.1). Therefore, these moment relations 

characterize the Poisson distribution. Using T and the sample 

(X-| ,X2 Xn) we can easily construct the statistic S (Table 2.5.A 

and 2.5.B). 

Now consider the Negative Binomial distribution having p.m.f 

P(x;0) =( N x X " ) e x (1-0)N , x = o j , 2 , . . . , N,e>0. 

The moment generating function is M(t) = (1-0)N (1 -©e*)" .The 

first three raw moments are 

p = N0/( 1 -0), p2'= N0(1+N0)/(1 -0)2 and 

p 3 ' = N0(N202+3N0+0+1 )/(1 -0)3. 

Eliminating N and 0 we get, 

p 3 ' p -2 (p 2
, ) 2 +pp 2 ' - p 3 + p 2 p 2 ' = 0 (2.3.5) 

This is the raw moment relation.The second and third central 

moments are p2 =N0/(1 -0)2 and p3 =N0(0+1)/(1-0)3 

Thus the central moment relation is 

p 3 p - 2 p 2
2 + p p ^ - 0 (2.3.6) 

LetT=X1X2
3 - 2(X 1X 2 ) 2

+X 1X 2
2 - X,)fe X3+X1X2 X32 be an unbiased 

estimator of p 3 ' p -2(p 2 ' ) 2 + u.p2' -p3 + u.2u.2' , where X-j ,X2 ,X3 are 

i.i.d. random variables whose third moments are finite. If T has 
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zero regression on A, then E(Te*A) = 0. That is, 

M'M'"Mn '2-2(M")2Mn"2+M,M"Mn"2-(M')3Mn"3+(M,)2M"Mn'3= 0 

or, MW'M -2(M")2M + M'M"M - (M')3 + (M')2M" = 0 (2.3.7) 

This is the differential equation in the moment generating function 

for zero regression. This can be written as 

(M')2D{MM" - (M')2 - MM'} - {MM" - (M')2 - MM')D(M')2 = 0 

or, D[(M')2/{MM" - (M')2 - MM"]] = 0 

or, (M')2/{MM" - (M')2-MMr) = N, a constant, 

or, (MVM)2/[{MM" - (M')2)/M2 - M'/M ] = N 

or, (DlnM^/aAiM - DlnM) =N 

where, D is the differential operator, i.e., D = d/dt. 

This is the simplified form of the differential equation (2.3.7). 

Let Z = DlnM. Thus the above equation can be written as 

DZ - 2 = Z2/N . Let W= 1/Z. Then we may write, 

DW +W + 1/N = 0 

Here the integrating factor is exp{Jdt} = e1. Now multiplying both 

sides by the integrating factor we get, 

e ^ W + We1 = -1/N e{ 

or, D(Wet) = -1/N e1 

or, We* =-1/N ex +c 
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or, Z = Nee*/( 1 -0e*) [ Where c=1/N0] 

or, DlnM = (-NJK-eetyoW)}. 

or, InM = -Nlnfl-ee1) + lnc1 . 

As M(0) = 1, thus c1 = (1 -0)N. Hence, 

M(t) = (1-0)N(1-0e t)"N (2.3.8) 

Thus if T has zero regression on A then X-j, X 2 , . . . , Xn are from the 

Negative Binomial distribution. Now if we start from (2.3.8) and 

eliminate N and 0 from M, M\ M" and M"' we obtain (2.3.7), which can 

be written as 

E{(X1 Xg3 -2 X1
2X22 + X1X22 - X1X2 Xg2 )e*A} = E(Tet A) = 0. 

This implies that T has zero regression on A = X1+X2+.. . +Xn
-

Substituting t=0 in (2.3.7) and remembering that M(0) = 1, M'(0) = u, 

M"(0) - p2 ' , M"'(0) = p3 , we get (2.3.5) and (2.3.6). This implies 

that these moment relations characterize the Negative Binomial 

distribution. 

Using T and the sample (X^ ,X2,. . .,Xn) we can easily construct the 

statistic S (Table 2.5). 

The p.d.f. t;f the Generalized Negative Binomial distribution (Jain 

and Consul, 1971) is 

™ ^r/xv N(N+<xx-l)! x , . N+ax-x . , ^ 
P x^ e >= W+aiT-x]! 8 **> • x = a 1 ' 2 ' 

N>0, a>l ,O<0<l ,O<a0<l . 

The first four moments are p = N0/(1-a0), p2 =N0(1-0)/(1-a0)3, 
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p 3 =N0(1-0){1-20+a0(2-0)}/(1-a0)5 , 

M-4 = 3p 2
2 +[N0(1-0){1-60+602+2a0(4-90+402) 

+(a0)2(6-60+02)}]/(1 -a0)7. 

The moment relations of this distribution can be obtained by using 

the following equations 

(2-0)2/(1-0) = b = (3p 2
2 - pp 3 ' ) ? / pp 2

3 

and ( p 4 - 3 p 2
2 ) / p 2

2 = 15p2 / a 2 +(b+2) /p- -10(bp 2 /u 3 ) 1 / 2 . 

The derivation of moment relations for other distributions is 

straightforward. The p.m.f. or p.d.f., central or raw moments, 

central and raw moment relations for some important discrete and 

continuous distributions are given in Table 2.3A and Table 2.3B. To 

derive the differential equation for Generalized Poisson (Consul 

and Jain,1973) or the Borel Tanner distribution we use the 

differential equation G{GG"-(G')2} = G'(G+G')2 

or, {GG"-(G')2}/GG' = (1+GVG)2 

where G'=DG, G"=D2G and G=G(t) is its moment generating function. 

Here G(t)={M(t)}1/N, {GG"-(G')2}/GG' = {M"M - (M')2}/MM\ where M 

= M(t) is the moment generating function for the Generalized 

Poisson distribution. 

Differentiating the equation (1+GVG)2 = {M"M - (M')2}/MM* with 

respect to t and simplifying we get 

9{M"M - (M,)2}4+(M')2{M'"M2-3MM'M"+2(M')3}2-6M,{M"M - (M')2}2 

{M'"M2-3MM'M"+2(M')3} - 4MM'{M"M - (M')2}3 = 0 
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Differential equations for other distributions are straightforward. 

Differential equations for zero regression that satisfies E(Se*A) = 

0 for some discrete and continuous distributions are given in Table 

2.4.A and 2.4.B. Differential equations in the moment generating 

function to identify some distributions are also given in the fourth 

column of Table 2.4.A. If we integrate these equations with respect 

to t we get the moment generating function for the corresponding 

distribution, while the differentiation gives further differential 

equations as listed in the third column of Table 2.4.A. Hence these 

deferential equations also characterize a particular distribution. 

2.4 Applications of the Moment Relations 

The moment relations are used as criteria for discriminating one 

distribution from another. In particular consider the four 

distributions, +he Negative Binomial, the Neyman type A, the 

Hermite and the Generalized Poisson. The Negative Binomial 

distribution results if the Poisson distribution is generalized by 

the Logarithmic distribution. The Neyman type A distribution is 

obtained if the Poisson distribution is generalized by another 

Poisson distribution. If X-| and X2 be two independent Poisson 

variables then the random variable X-| + 2X2 has the Hermite 

distribution. The Generalized Poisson distribution results if the 

Poisson distribution is generalized by the Borel distribution. The 

moments function pp3 - 2 p 2
2 +u.p2 is zero for the Negative 

Binomial distribution, negative for the Neyman type A and also for 

the Hermite distribution and positive for the Generalized Poisson 
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distribution. The function (pp3 - p 2
2 - pp2 + u2 ) is zero for the 

Neyman type A, negative for the Hermite distribution and positive 

for the Generalized Poisson and Negative Binomial distributions. 

The moment relation for the Generalized Poisson distribution is 

{3/2 - pp 3 / ( 2p 2
2 ) } 2 = u7p2 which can be used in deciding which 

of the following kinds of distribution to use, if one of them is 

appropriate. 

Let a = {3/2 - p p 3 / ( 2 p 2 , J 2 and b = p/p2 . Then for the Poisson 

distribution a = b =1, for the Generalized Poisson 0 < a = b <1, for 

the Neyman type A 49/64 < a > b < 1, for the Negative Binomial 

1/4 < a > b < 1 and for the Generalized Negative Binomial 0 < b < a . 

In Table 2.1 we consider Bortkewitch's data on the "Number of 

deaths caused by horsekicks in the Prussian Army Corps". Fisher 

(1958) fitted the data with the Poisson distribution, Jain and 

Consul (1971) with the Generalized Negative Binomial (GNB) and 

Consul and Jain (1973) with the Generalized Poisson distribution. 

The calculated values of the Chi-square goodness of fit test 

statistics are insignificant in all cases. From the data we get, m = 

0.61, m2 = 0.6109548, m3 = 0.590562, m4 = 1.643373 and 

(i) m2-m = 0.0009548 for Poisson, 

(ii) {3/2 - m3m/(2m2
2 ) }2 - m/m2 = 0.03675632 for Generalized 

Poisson and 

(iii) 15m2
4 + 2mm2

3 + (mm3-3m2
2)2 - m2m2 (m4 -3m2

2 ) + 

10(mm 3 -3m 2
2 )m 2

2 = -0.009132426 for GNB distribution. 

Here (i) is very close to zero compared to (ii) and (iii). 
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Here, a = {3/2 -mm3/(2m2 ) p » 1 and 6 = m/m2 « 1 . 

Thus a= 6 « 1. 

Consider the moment ratios d-j = pp3/ u.2 and 

^2 = {^2^4 " M-32}/^23-

Then for the Poisson distribution d-j = 1 and d 2 = 3, for the GNB 

d1 < 3 and d 2 > 1, for the G. Poisson 1 < d1 < 3 and d 2 > 3. 

Here d^ - 1 and d 2 - 3. 

Therefore, the distribution is more likely to be Poisson. 

For assessing statistical accuracy we use the bootstrap method 

discussed by Efron (1982 ). This is a computer based method. 

Theoretically it is difficult to find the exact form of the 

distribution of a function of the sample moments. The bootstrap 

can routinely give us approximate distribution. There are two types 

of bootstrap: parametric and nonparametric. Here we used the 

nonparametric bootstrap method for Bortkewitch's data given in 

Table 2,1. First we drew a sample of size 200 from the given 200 

observations with replacement and calculated the mean, the 

variance, the third, and the fourth central moments. Then we 

calculated the values of the moments functions for the Poisson, 

Generalized Poisson, and Generalized Negative Binomial 

distributions. We repeated this experiment first 1000 times, then 

1500 times, and finally 2000 times in three stages and obtained 

three sets of 1000, 1500, and 2000 values for the three moments 

functions. Then we computed the mean and the standard deviation 
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for each set and are given in table 2.2A. To do this we used a 

Fortran program given in Appendixl. Now we are interested in 

testing the following hypotheses: 

(i) Hoi : ^ 2 " V- = ° against 

Ha1 : p2 - p * o 

(ii) HQg : {3/2- p 3 p / (2p 2
2 ) } 2 - p/p2 =0 against 

H ^ : {3/2- p 3 p / (2p 2
2 ) } 2 - p/p2 * 0 

(iii) I-L^: 15p2
4+ 2pu 2

3 +10(pu 3 -3p 2
2 ) p 2

2 - u.2p2( u 4 - 3p 2
2 )+ 

( p p 3 - 3 p 2
2 ) 2 =0 against 

Ha3: 15p2
4+ 2pp 2

3+1 0(pp 3 -3p 2
2 ) p 2

2 - p 2 p 2 (p 4 -3 u 2
2 )+ 

( p p 3 - 3 p 2
2 ) 2 * 0 

To test the above hypotheses we consider a test statistic which is 

of the following general form 

Z = [ H(m, m2, m3, . . . .) - 0]/S.E.[H(m, m2, m3, . . . .)], 

where H(m. m2, m3 ) is the mean of bootstrap sample. 

Let us assume that in some neighbourhood of the point m = p, rrij = 

Pj, (i=1,2, . . . ) the function H is continuous and has continuous 

derivatives of the first and second order with respect to the 

arguments m and rrij. According to the central limit theorem the 

test statistic Z follows the N(0,1) distribution at least 

approximately. The values of the test statistic, P-values, and the 

corresponding conclusion are given in Table 2.2B. In all cases the 

P-values are very large for the Poisson distribution and nearly 

zero for the Generalized Negative Binomial and Generalized Poisson 
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distributions. Thus there is no evidence against the hypothesis that 

the data set is from a Poisson population. 

For validation, we have considered a random sample of size 200 

from a Poisson population having mean 0.61 and calculated the 

first four sample moments given by m = 0.68, m2 = 0.680856, m3 = 

0.714, m4 = 2.223. We have used these values in the moment 

functions for the Poisson, Generalized Poisson and Generalized 

Negative Binomial distributions and obtained the following results, 

(a) m2-m = 0.000856 for Poisson, 

(b) {3/2 - m3m/(2m2
2 ) }2 - m/m2 = -0.0455435 for Generalized 

Poisson and 

(c) 15m2
4 + 2mm2

3 + (mm3-3m2
2)2 - m2m2 (m4 -3m2

2 ) + 

10(mm 3 -3m 2
2 )m 2

2 = 0.0135369 for GNB distribution. 

Evidently, (a) is close to zero compared to (b) and (c). 

Also, d-| = mm3/ m 2
2 = 1 and d 2 = {m2m4 - m3

2} / m 2
3 ~ 3. 

Subsequently, we have applied nonparametric bootstrap method 

discussed earlier to the randomly chosen sample obtained from the 

Poisson population with mean 0.61 for testing the hypotheses (i), 

(ii) and (iii). The results are given in Table 2.2C and 2.2D. Thus 

there are similarities between the results obtained from a Poisson 

population and those from Bortkewitch's data. 
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Table 2.1 : DEATHS DUE TO HORSE-KICKS IN THE PRUSSIAN ARMY, 

BORTKEWITCH'S DATA. 

Number of 

deaths 

0 

1 

2 

3 

4 or more 

Total 

Observed 

freque 

109 

65 

22 

3 

1 

200 

ncy 

Poisson 

108.67 

66.29 

20.22 

4.11 

0.71 

200 

GNB 

109.12 

65.27 

20.74 

4.27 

0.60 

200 

Generalized 

Poisson 

108.72 

66.22 

20.22 

4.12 

0.72 

200 

r 0.322 0.230 0.330 

Source : Fisher(1958) 



TABLE 2.2 A : SUMMARY OF THE OUTCOMES OBTAINED FROM THE 

FORTRAN PROGRAM (BASED ON BORTKEWITCH'S DATA) 

Moment relation Bootstrap Mean Standard 

estimate for samples deviation 

Poisson 1000 0.00044 0.06169 

G. Poisson 1000 0.05570 0.09769 

GNB 1000 -0.06606 0.31427 

Poisson 1500 -0.00001 0.06132 

G. Poisson 1500 0.05522 0.10093 

GNB 1500 -0.00635 0.03033 

Poisson 2000 -0.00066 0.06042 

G. Poisson 2000 0.05614 0.10022 

GNB 2000 -0.00682 0.02954 

G. = Generalized 

GNB = Generalized Negative Binomial 
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TABLE 2.2 B : TEST RESULTS (BASED ON BORTKEWITCH'S DATA) 

Hypotheses 

Ho1 

Ho2 

^ 3 

Hoi 

Ho 2 

^ 3 

Bootstrap 

samples 

1000 

1000 

1000 

1500 

1500 

1500 

Values of the 

test statistic 

0.225547 

18.030389 

-6.647153 

-0.006316 

21.18955 

-8.10862 

P-value 

0.8216 

0 

0 

0.995 

0 

0 

Conclusion 

Do not reject 

Reject 

Reject 

Do not reject 

Reject 

Reject 

Ho1 2000 -0.488515 0.6252 Do not reject 

HQ2 2000 25.05145 0 Reject 

HQ3 2000 -10.32497 0 Reject 
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TABLE 2.2 C: SUMMARY OF THE OUTCOMES OBTAINED FROM THE 

FORTRAN PROGRAM (BASED ON POISSON SAMPLE). 

Moment relation Bootstrap Mean Standard 

estimate for samples deviation 

Poisson 1000 0.00079 0.05984 

G. Poisson 1000 -0.72855 0.07686 

GNB 1000 0.00491 0.03250 

Poisson 1500 -0.00125 0.05949 

G. Poisson 1500 -0.72225 0.07507 

GNB 1500 -0.00707 0.02893 

Poisson 2000 -0.00087 0.05889 

G. Poisson 2000 -0.72664 0.07472 

GTB 2000 -0.00724 0.02885 
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TABLE 2.2 D : TEST RESULTS (BASED ON POISSON SAMPLE). 

Hypotheses 

H01 

^ 2 

^ 3 

HD1 

•^2 

Ho3 

Ho1 

•^2 

Bootstrap 

samples 

1000 

1000 

1000 

1500 

1500 

1500 

2000 

2000 

Values of the 

test statistic 

0.41748 

-299.74986 

4.77747 

-0.813789 

-372.620517 

-9.464913 

-0.66068 

-434.908 

P-value 

0.6764 

0 

0 

0.4158 

0 

0 

0.5088 

0 

Conclusion 

Do not reject 

Reject 

Reject 

Do not reject 

Reject 

Reject 

Do not reject 

Reject 

HQ3 2000 -11.22297 0 Reject 
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TABLE 2.3.A MOMENT RELATIONS CHARACTERIZING CERTAIN DISCRETE DISTRIBUTIONS. 

Distribution with 

mass function 

Geometric 

(1 -e)ex 

Poisson e"86x/x 

prob. 

! 

Central or raw 

moments 

i i »e / ( i - e ) , 

j i2 -e/ ( 1-6)2 

H = e = n2 

Central moment 

relations 

f i 2 - H2 - p. = 0 

\L2 - ]i = 0 

Raw moment 

relations 

IL2'-2 \L2 - n= 0 

n2'- ^2 - ^ = o 

Negative Binomial n.=N6/(1-6), (1^3-2^ +M-I12 = 0 M-^3'"2(M2') + WH*' 

r(N+x)9x(1-6)N/(x!rN) |j.2=Ne/( 1-6)2, - (p)3 + \L2 H 2 ' = 0 

H3=N6(1+e)/(1-G)3 

Borel |i= G/( 1 -6), ^2"^ 1 + J0 2 = 0 V-2' V-" ^ " ^ = ° 

6 x (1+x) x - 1e- e ( 1 + xVx! n 2
= e / ( 1 -0)3-

Borel Tanner or u.=N0/(1 -6), {3/2- n3^/(2n2
2 ) }2 9 ( H 2 ' ) 4 - 18^2 (n 2 ' ) 2 

Generalized Poisson n 2
= N e / ( 1 ' e ) 3 ' " ^ 2 = ° '2^4 ^2"^ + ^ 8 " 6 ^ 6 V-2 

8 x N(N+x ) x "V e ( N + x Vx ! ^3=N0(1+26)/(1-e)5 + \i2 (n 3 ' ) 2 + 6 n 3 ^ ' H3' 

- 2\L5\L3' - 6 v^2'f[t3' - 4 ^ 2 ' ) 3 

+12|i3(n2
,)2-12n5 | i2 ' +4n7 = 0 

H = 01+262 f i 3 -3^2 +2^ = 0 M-3*- 3(i^2 ' + 2H 3 - 3 ^ ' 

^ 2 = 8 I + 4 6 2 +3^ 2 + 2n = 0 

| i 3 = 01 +802 

x = 0,1,2 for all cases. 

Hermite 

[^2] x-2] j -e r e 2 

X 9' 92 e 

j -0 j ! (x-2j)l 
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Distribution with 

mass function 

Logarithmic Series 

C8x/x, x=1,2,3, . . . 

c= [-in(i-e)]-1 

Neyman type A 

exp[ -X(l-e" e)] , x=0 

£.*(>,>.-l,-£'* 

Central or Central moment 

Raw moments relations 

H=C6/(1-6), ^ 3 - ^ 2 _ ^ 4 

| i 2 * = |t/(1 -0). - 2 ( ^ 2 ) 2 + jijig + j i 3 

^ = j i(1+e)/(1-8)2 

\L = \Q, mx3- nn2 - (n 2 ) 2 

| i 2 = X 6( 1 +9), + \i2 = 0 

H = A.9(1+39+92) 
o 

Raw moment 

relations 

W3' + W2' - 2(^2')2 = ° 

= 0 

V-V-3 - M - 2 ^ ' + ^ •* ^ 

- (H2 1 ) 2 - mia* + M.2 = 0 

j=1 

Generalized Geometric y.= 6/(1-a9), 4pp. 2
3 -9^ 2

4+| i 4n 2
2 4n(n2 ' )3-1 2M. 3 (H 2 ' ) 2 

r (l + a x ) e x ( i - e ) 1 + a x " x 3 . , „ . , 2 . 2 2 2 „ , 5 . n , , 4 <Q 2. , 3 
_ * ! . _ M-9=H (1-6) /8 . +6p.|i (i - M- p., +24ji H'-9((t' ) +18p. (y.') 
xTHax-x+2) * ^ J J <! i. t 

X =0,1,2, . . . p.3 = ^2n2[3(1-9)- =0 -14u.4(u.2')
2 -18n6H2' + 4|i8 

(1-a9)(2-6)]/62 -P2(M3')2 -4M.6-6y3n2V3'-4H7 

-4fi4M.3' +6n(n2")2n3
,= 0 

Generalized n=N6/(1-a8), 15y.2
4+2mx2

3
 6 [ ^ 5 |X 2 ' - (M-2 ' ) 4 - M-3(H-2')2] 

Negative Binomial n2=N8(1-8)/(1-<x9)3, +10(mi3-3|i2
2)M-22 +2[^6|i2 '+ l i(M-2 ,)3-l i7] 

Nr(N+ax)fl*(1-8)N+aX-X
 N 9 ( 1 ,B ) M ,2 e + + ( ^ 3 ^ ) 2

 + 1 5 [ , 2 ( , r ) % V j 2 ] + ( i V 
xir(N-iax-x + 1) 3 3 2 2 2 4 

x = 0,1,2, . . . +a6(2-9)}/(1-a9)5 -v^^H'3^2) +^5H'+VL^2^H'^ii2H' 

f i4=3ti2
2 +[N9(1-9){1-69 =0 -10|x3^2'H-3' - P-2H2V = ° 

+ 692+2a6(4-99+462) + 

a292(6-69+92)}]/(1-a9)7 
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TABLE 2.3.B MOMENT RELATIONS FOR SOME CONTINUOUS DISTRIBUTIONS. 

Distribution with prob. Central or raw Central moment Raw moment 

density function moments relations relations 

Gaussian or Normal p. = 6 , p 2 = o2 , p 4 - 3 ^ 2 = o p.4'- 4wi3 '+12p2| J .2
,-3(p.2

,)2 

exp{-(x-6)2/ 2c2}/((W 2B), 113 = 0, - 6p.4 = 0 

- « o < x < ° ° H-4 = 3o 

o p 4 p 
Inverse Gaussian p. = 8, ppg - 3p2 = 0 pp^'+Sprp^'-p. -3 (p 2 ' ) = 0 

V (X/ 2nx3)[exp{-X( x -6)2 j i2 = 83 / X 

/ ( 2 X62)}], x > 0. p.3 = 3p. 2
2 / ji 

? ? P 
Gamma p. = a/ 9 , p.p.3 -2ji2 - 0 p.p,3' + p. p-2' - 2(p,2') = 0 

6 a x a _ 1 e " e x / r a , p.2 '= a ( a + 1 ) / 8 2 , 

X > 0 . p.3 ' = a ( a+ l ) (a+2) /6 3 

P p 
Exponential p. = 6 , p 2 - p ' = 0 p.2' - 2p.^ = 0 

(1 /8)exp(-x/9) , x>0 . p-2 = 9 2 

Maxwell p = 2V(2M9), p 2 - {3n/8 - 1 ) p 2 = 0 \x2' - {3n/8) p 2 = 0 

V(293/7t) x 2 exp(-9x 2 /2) , p.2 = (3-8/n)/9 

Chi-square p. = v , p 2 = 2v p 2 " 2P- = 0 p.2 ' • M-2 - 2p. = 0 

e " x / 2 ( 2 x ) v / 2 / xT(v/2), 

Laplace p. = 8 p 4 - 6p22 = 0 p 4 ' - 4p.p.3
,+18p.2pj2'- 6p.2 '2 

e x p ( - | x - 6 | / a ) / 2 o p 2 = 2a2 , p 3 = 0, - 9p.4 = 0 

- 00 < x < 00 . p 4 = 24a 
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TABLE 2.4 A DIFFERENTIAL EQUATIONS IN MOMENT GENERATING FUNCTIONS FOR ZERO 

REGRESSION AND IDENTIFYING CERTAIN DISTRIBUTIONS. 

Distribution 

Geometric 

Poisson 

Negative 

Binomial 

Borel 

Moment generating 

functions, M=M(t) 

(i-ej/o-ee1) 

exp(-8+9el) 

( 1 - 8 ) N / ( l W ) N 

exp{8(Met -1)} 

Differential equations Differential equations 

satisfying E(SeA') = 0 identifying distributions. 

MM"-2(M')2 -MM' = 0 M/(1+ DlnM) = c, 0< c <1. 

MM"- (M')2 -MM' = 0 DlnM - InM = c, c > 0. 

MM'M"'+ M"(M')2-2M(M")2 (DlnM)2/(D2lnM-DlnM) = c, 

- (M')3 + MM'M" = 0 c> 0. 

M2M" -M(M')2 -M'(M'+M)2 = 0 DlnM/(1+DlnM)-lnM= c, 

0< c<1 

Borel Tanner exp{N8M1 / N e l -N9} 9(MM"-M ,2)4+(M2M" ,+2M'3 G(GG" - G'2) = G'(G + G')2, 

-3MM'M"){M ,2-6M ,(MM"-M'2)2} where G = M 1 / N . 

- 4MM'(MM"-M'2)3 = 0 

Hermite e x p f ^ l - e 1 ) - ^ M2(M" ,-3M"+2M')+2M'3 D^nM -3DlnM+2lnM = c, 

(1-e2 t)} -3MM'(M"-M') = 0 c> 0. 

Logarithmic ln(1-Be1)/!n{ 1-6) M'M"'+M'M"-2(M")2 = 0 (DM)2/(D2M - DM) = c, c> 0. 

Neyman exp[-X{l-exp M2M'(M"'-M"+M') -M2M"2 (DlnM)2/(D2lnM-DlnM) 

type A -6(1-e t)}] -MM"M'2 + M4+ MM'3 = 0 - InM = c, c > 0. 
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TABLE 2.4 .B DIFFERENTIAL EQUATIONS IN MOMENT GENERATING FUNCTIONS FOR 

ZERO REGRESSION. 

Distribution Moment generating functions Differential equations satisfying E(SeAI)=0 

Normal exp(6t + t2o2/2) M""M3-4M ,M" ,M2
+12MM"M'2-3M2(M")2-6(M ,)4=0 

Inverse Gaussian exp{X[1- V( 1 +2G2t A.) ] /8} M^ 'M" ' + 3MM"M'2 - (M')4 - 3M2(M")2 = 0 

Gamma (1 - t/6)"a MM'M"' + M"(M')2-2M(M")2 = 0 

Exponential (1 - te)"1 MM" - 2(M'r = 0 

Maxwell [1 +2t2{1- <p( -1/Ve) }/8]exp(-t2/ 26) MM" - (3JC/8)(M' ) 2 = 0 

+ tV(8/67t) 

Chi-square (1 -2t )" v / 2 MM" - M'2 - 2MM' = 0 

Laplace e6t (1- a 2 t 2 )" 1 M2{MM""-4M"M"'-6(M")2}) 

+ 9M,2(2MM"-M,2) = 0 
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TABLE 2.5.A SAMPLE STATISTICS S WITH ZERO REGRESSION ON A = ^ +X2 + . . . +Xn 

Distribution 

Geometric 

Poisson 

S Statistic 

(n-1) IX|(X r1) - 2IXj Xj 

(n-1)ZX, (X r1) - XXjXj 

Negative Binomial (n-2)IXj Xj2(Xj -2Xj +1) + IXj Xj Xk (Xk-1) 

Borel 

Borel Tanner 

Hermite 

(n-1)(n-2)IXj (Xj -1) - 3(n-2)ZXj Xj - IXj Xj Xk 

(n-4)(n-5)(n-6)(n-7)IXj Xj Xk
2 X,2 (9XjXj -18XkX| -6XjX, -4Xi) + 6(n-5) 

(n-6)(n-7)XXj Xj Xk X,2 Xm
2(Xm+2) - (n-6)(n-7)ZXj Xj Xk X, XmXp

2(21Xm+ 

2Xp+12) -2(n-7)IXj Xj Xk X, XmXpX0(3XQ-2) + IXj Xj XR X, XmXpXQXq 

(n-1)(n-2)IXj (Xj2 -3Xj +2) - 3(n-2)IXj Xj (Xj -1) + 2IXj Xj Xk 

Logarithmic Series IXj X=2(X: -2X, +1) 

Neyman Type A 

Generalized 

Geometric 

(n-2)(n-3)ZXj Xj(Xj2 -Xj Xj -Xj +1) - (n-3)IXj Xj Xk(Xk -1) + ZX, Xj XkX, 

(n-4)(n-5)(n-6)(n-7)IXjXjXk
2X|2(4X:-9Xj+6XX|-XkX|)-2(n-5)(n-6)(n-7) 

IXjX jXkX |Xm
2(6X |-9Xk+3X lXm+2Xm) -2(n-6)(n-7) IXjX jXkX |XmXp(7XmXp 

-12Xp+2-3Xp
2) -4(n-7)IX jX jXkX |XmXpX0(2X0+1)+4IXjXj Xk X, XmXpXQXq 

Generalized (n-4)(n-5)(n-6)IXiXjXk
2X|2 (2Xj -6XjXj -X,2+XkX,) +(n-5)(n-6)IXjXjXkX| 

Negative Binomial Xm
2(1 5\X{ -6X| -1 0X|Xm+4Xj XkX|Xm+Xm

2) +2IXjXj XkX|XmXpXQ(X0-1 ) 

+(n-6)ZXiXjXkX,XmX^2(6 -15Xm+4Xp) 
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TABLE 2.5.B SAMPLE STATISTICS S WITH ZERO REGRESSION ON A = X1+X2 + . . . +Xn 

Distribution S Statistic 

Normal or Gaussian 

Inverse Gaussian 

Gamma 

Exponential 

Maxwell 

Chi-square 

(n-2)(n-3)ZXj2 {(n-1)Xj2 - 4Xj Xj - 3Xj2} + 6IXj Xj Xk{2(n-3)X; - Xj } 

(n-2)(n-3)IXj X j 2 (Xj - 3Xj) + (n-3)ZX( Xj \ 2 - IX j Xj Xk X, 

(n-2)IXj Xj2 (Xj -2Xj) + IXj Xj \ 2 

(n-1)ZXj2 -2ZXjXj 

(n-1)ZXj2 - (37i/8)ZXj Xj 

(n-1)ZXj(X, - 2) -ZXjXj 

Laplace (n-2)(n-3)ZXj2 {(n-1)Xj2 - 4Xj Xj - 6X=2} + 9IXj Xj Xk{2(n-3)Xj - X, } 



Chapter 3 

Identification by Moment Ratios 

3.1. Introduction 

In this chapter we have proposed two moment ratios. These ratios 

are useful in identifying different members of a class of discrete 

or continuous distributions. These ratios are also useful in 

approximating the Neyman type A and the Generalized Poisson 

distributions by the Negative Binomial distribution. The impact of 

using approximate distributions instead of the exact distributions 

is studied. 

We know that the values of the pair ( p1 , p2 ) of moment ratios 

(JJ=JI3
2/ | i 2

3 anc l p2=fi4^ ^22 - w n e r e Mi 's tn© ith central moment of 

the distribution, are (0,3) for the Normal distribution. Hence a 

comparison of the point (pp p2) of any given distribution with (0,3) 

will give an idea about the departure from the shape of the Normal 

distribution. For discrete distributions Jain and Gupta (1980) have 

defined the moment ratios 

b, = (un3-U22)/m>2 

and 

b2 = (ujia -3n 2
2 ) 2 /nn 2

3 = ^i2(b r2)2 /u, 

39 
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where JI is the mean. The value of the point (b1( b2) is (0,4) for the 

Poisson distribution. Therefore, it provides useful information on 

how similar a discrete distribution is to the Poisson distribution. 

They have also given approximations of the Generalized Poisson 

(Borel-Tanner) and Neyman type A distributions by the Negative 

Binomial distribution by equating the JI and b-, values of these 

distributions. In this chapter we introduce moment ratios 

d1 = (ijx3/ (i2
2 and 

d2 = (n2u.4- M3
2) /u23 

based on the first four moments. The value of this pair (d1f d2) is 

(1, 3) for the Poisson distribution. The p.m.f. of the Generalized 

Poisson distribution is 

P(Y-j) = x ( u e j ) i - V <uei Vj! . 

It is shown in Section 3.2 that the use of (u., d2) provides better 

approximations of Generalized Poisson and Neyman type A 

distributions by the Negative Binomial distribution. Moreover, by 

the use of (u., b.,) the approximations for the Generalized Poisson 

distribution are valid only for 9 < 0.5, but the use of (u., d2) gives 

quite satisfactory approximations even for 9 < 0.8. The 

approximations are, however, not satisfactory for the following 

cases : 

(i) when 9 > 0.2, probability sums for r=0; 

(ii) when 9 > 0.4, probability sums for r<10; 

(iii) when 9 > 0.7 and X > 2; 

(iv) when 9 = 0.8 and X > 1; 

(v) when 9 > 0.8. 
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Taking random samples from Generalized Poisson, Neyman type A 

and their approximate distributions [say, Modified Generalized 

Poisson and Modified Neyman type A], it is shown in Section 3.3 

that the estimator of the population mean remains unbiased in each 

case. But the variance is overestimated in case of Generalized 

Poisson and underestimated in case of Neyman type A if we use the 

Modified distributions instead of the exact distributions. We know 

from the discussion in chapter 2 that moment relations can also be 

used to identify a distribution. But in some cases moment relations 

of two or more distributions are same. In such a situation the 

moment ratios (d^dg) can be used to identify a distribution. 

Because of the sampling fluctuations, a particular criterion may 

not provide reliable information to draw sound conclusions. So, it 

is better to use moment ratios with moment relations to identify a 

distribution. 

3.2 Moment Ratios and their Uses 

Let the moment ratios based on the first four moments be defined 

by di - | i j i3/ u,2
2 a n d ^2 = (lI2lI4 " li32)/^23 • T n e e x a c t expressions 

of the moment ratios d1 and d2 as a function of parameters for 

some discrete and continuous distributions are given in Table 3.1 

and Table 3.2 respectively. The ranges of d1 and d2 for all 

distributions in Table 3.1 and Table 3.2 are given in Table 3.3. We 

know that the Generalized Negative Binomial (GNB) distribution is 

the generalization of the Binomial, Negative Binomial, Geometric 

and the Generalized Geometric distributions. Let X be a GNB 
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variable having probability mass function 

NT(N + ax) 9 x(1-9)N + a x" x / {x i r(N + ax-x+1)}. 

If a = 0, the distribution of X is Binomial, if a = 1, the distribution 

of X is Negative Binomial, if N = 1, the distribution of X is 

Generalized Geometric and if N =1 and a = 1, the distribution of X is 

Geometric. For the Binomial distribution d1 < 1 and 1 < d2 < 3, for 

the Negative Binomial distribution 1 < d1 < 2 and 3 < d2 < 5, for the 

Generalized Geometric distribution d1 < 3 and d2 > 5, for the 

Geometric distribution 1 < d1 < 2 and d2 = 5 and for the GNB 

distribution d1 < 3 and d2 ^ 1. The Gamma distribution is the 

general form of Chi-square and Exponential distribution. Let X be a 

Gamma variable having density 9pxP_1e"0x/r(p) . If p=v/2 and 9 = 

1/2 , the distribution of X is Central Chi-square with v degrees of 

freedom and if p = 1, the distribution of X is Exponential with mean 

1 /9. For the Chi-square distribution d1 = 2 and 3 < d 2 < 7, for the 

Exponential distribution d1 = 2 and d2 = 5 and for the Gamma 

distribution d ^ 2 and d2 > 3. Let X be a Weibull variable having 

density 9pxP-1exp(-9xP). If p =1, the distribution of X is 

Exponential and if p =2, the distribution of X is Rayleigh. For the 

Rayleigh distribution d1 = 2.2074 and d2 = 2.8468, for the 

Exponential distribution d1 = 2 and d2 = 5 and for the Weibull 

distribution ^ > 1 andd2 > 1. 

The Generalized Hermite distribution is the generalization of the 

Hermite and Poisson distributions. The p.m.f. of the Generalized 
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Hermite distribution is e" (a+P) H e(a, p)/j! , j=0,1,2,.... 

where, Hje(a,p) = J , ^ ^ J! W (J"ek)!} 
k=0 

If 9 = 2, it reduces to the Hermite distribution and if 9 = 2 and p=0 

it reduces to the Poisson distribution. For the Poisson distribution 

d1 = 1 and d2 - 3; for the Hermite distribution 1 < d^ < 2 and 3 < d2 < 

4 ; for the Generalized Hermite distribution 1 < d., < «. and 3 < d2 < 

oo. Therefore, the values of d1 and d2 could be used to identify a 

distribution. 

The Negative Binomial, Neyman type A and the Generalized Poisson 

distributions are contagious. Tables are available for computing 

c.d.f. of the Negative Binomial distribution only. One can also 

compute the c.d.f. of the Negative Binomial distribution by using 

the Binomial probability Tables and the incomplete Beta function 

Tables. 

In Table 3.4 we approximate the Neyman type A probabilities 

^N(J'^"e) by t n e Negative Binomial probabilities Z/NB(J;N,<X) by 

equating the means and the d2 values of these distributions with 

a = XQ/ (XQ + N), N = 2X(1+9)3/(2+29 + 92) 

andI/N( j ; ?i,9) = I/NB(j; N,a). 

In parentheses we consider the corresponding values taken from 

Jain and Gupta (1980) based on the first three moments. The 

probability values based on the first four moments seem to provide 

better approximations. 
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Similarly by equating the means and the d2 values of the 

Generalized Poisson and the Negative Binomial distributions in 

Table 3.5 we have approximated the Generalized Poisson sums by 

the Negative Binomial sums with a = e(9 + 2)/(1+292), 

N = A.(1-9)/{9(9 + 2)} and ^ ( j ; X,9)=I/NB(j; N,cx). 

We know from the discussion in chapter 2 that the moment 

relations can be used to identify a distribution. The moments 

function u.u.3 -2JI2
2+u.u,2 is zero for the Binomial, Poisson and the 

Negative Binomial distributions. But for the Binomial distribution 

d1 <1 and 1 < d 2 < 2 ; for the Negative Binomial distribution 1 < d1 < 

2 and 3 < d2 < 5 and for the Poisson distribution d1 = 1 and d2 = 3. 

The function u.3 -3u.2 +2)i is zero for the Hermite and the Poisson 

distributions. But for the Hermite distribution 1 < d1 < 2 and 3 < d2 

< 4 ; for the Poisson distribution d^ = 1 and d2 = 3. The function LLLI3 

- j ! 2
2 - LI LI2 + \i?- is zero for the Poisson and the Neyman type A 

distributions. But for the Poisson distribution d1 = 1 and d2=3; for 

the Neyman type A distribution, 1 < d1 < 1.25 and 3 < d2 < =». 

3.3 Comparison between Exact and Approximate 

Distributions 

3.3.1. Generalized Poisson and its Approximate 

Distributions 

The p.m.f. of the Generalized Poisson distribution is 

P(Y=j) = /GP(J; X,Q) = X(X+Q\ )i - V M )/jl 

and that of its approximate distribution is 
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P(X-j) -jJeG; N,a) = r(N+j)aJ'(1-a)N/ (j! TN), 

where N= X{ 1 -9) / {9(9 + 2)}, a = 9(9+ 2)1 {1 +292) and j = 0,1, 

Let the name of this approximate distribution be Modified 

Generalized Poisson. Let Y v Y2, . . .,Yn be a random sample from 

Generalized Poisson distribution and Y=£Yj/n be the sample mean. 

Then E( Y) = A,/(1 -9) = |i (say), where \L is the population mean and 

V( Y ) = X/{n(1 -9)3}. Let X1f X2, . . ., Xn be a random sample from a 

Modified Generalized Poisson and X = XXj/n be the sample mean. 

Then E( X) = X/( 1-9) = u. and V( X ) = ?i(1+292)/{n(1 -9)3}. 

Here, V(Y) - V(X) = - 2 ?i2/{n(1 -9)3}, which is negative. 

Thus V( Y ) < V ( X ) . 

This implies that if we use Modified Generalized Poisson 

distribution instead of Generalized Poisson distribution then the 

estimator of the population mean (ji) will remain unbiased but the 

variance will be overestimated. 

3.3.2. Neyman Type A and its Approximate Distributions 

The p.m.f. of a Neyman type A distribution is 

P(Y=j) = / N ( j ; X, 9)= le(x+ k e) ?ik(k9)i/(j! k!) and that of its 

approximate distribution is 

P(X=j) =/NB(J: N,a)-r(N+j) ai(1-a)N / (j! TN), 

where, N = 2X(1+9)3/(2+29+ 92), a = X6/(X9 + N) and j = 0,1,2, . . . 
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Let the name of this approximate distribution be Modified Neyman 

type A distribution. Let Y^Yg, . . .,Yn be a random sample from a 

Neyman type A distribution and Y = £Yj/n be the sample mean. Then 

E( Y) = XQ = uy (say), where u^ is the population mean and V( Y) = 

X9(1+ 9)/n. Let X^ X2, . . ., Xnbe a random sample from a Modified 

Neyman type A and X = XXj/n be the sample mean. 

Then E( X ) = XB = uy and V( X ) = ^92(2+29+92)/{2n(1+9)3} + XB/ n. 

Here, V( Y ) - V( X ) = X93(4 + 59 +292)/{2n(1+9)3}, which is 

positive. 

So V( Y )>V( X). 

This implies that if we use Modified Neyman type-A distribution 

instead of Neyman type-A distribution then the estimator of the 

population mean will remain unbiased but the variance will be 

underestimated. 
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TABLE 3.1: d1 AND d 2 FUNCTIONS FOR SOME DISCRETE DISTRIBUTIONS. 

Name of distribution with p.m.f. d1 c^ 

iinomial ~ (1 - 20)777 -8) T~~2/N 

Nq (9)J(1 -e ) N - i , o < e < i 

Negative Binomial 1 + a 3 + 2/N 

r(N+j) (a)J(1- a)N /( j ! TN) 

Generalized Negative Binomial l+0a+0(a-l)7(1-0) 3 + 2{"(2-20+ a0)a-1}/"{N(1 -a8)} 

NT( N +aj )0l ( 1 -0) N+aJ "i/{j! H N +aj - j + 1 )} 

Geometric 1 + 0 

(1- 9) 0l , j=0,1,2 

Generalized Geometric l+0a+0(a-l)/(l-0) 3 + 2{ (2-20+a0)a-1} / (1 -aG) 

r(1 +aj )0J( 1 -0) 1 + aH/{ j ! r ( a j - j + 2) } 

Neyman type A 1+0/(1+ 0)2 3+(2+2 0+ O2) A.(1 + 0)3 

exp{-X(1 -e"9)} for j=0 

£ e"(A-+ke)a.k (ke)'/(j! k!) , j = 1,2,3 
k=0 

Borel 1 + 2 0 1 + 6/(1- 0) 

e -e( l+J)( i +j)J-10J/j! , j=0,1,2,... 

Poisson 1 

e*-a)J/jl , o<x<-\ 

Generalized Poisson 

le'(x+eJ)(U0j )J"1/jl , 1 + 2 0 3 + 20(0+2) / {X(1- 0) } 

Hermite 1 + 2 6 , 02/ ( 9 ^ 4 0 2 ) 2 3 +4 0, 02/ ( 0 ^ 4 0 2 ) 3 

D/2] e - e / 
Xe 1 ; ej,e ' 7{k! (j-2k)i) , j = 0,1,2 
k=0 

Generalized Hermite 1+m(m-1)2ap/ (a+m2p)2 3 +m2(m-1)2ap/ 

e ^ H m(a,p)/j! , (a+m2p)3 

[ | /m] 

where, Hj m ( a - P) = l ^ m * W <]-mk,!} 
J-m k = o J=0,1,2 
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TABLE 3.2 : d1 AND d 2 FUNCTIONS FOR SOME CONTINUOUS DISTRIBUTIONS. 

Name of distribution with p.d.f. ĉ  ĉ  

Normal 

exp{-(x-8)2 /2o2 } / (<W27c) 

Student's t 

1/{Vp p ( p / 2 , 1 / 2 ) ( 1 + t 2 / p ) ( P + 

Gamma (0)PxP"V x G / r p 

Exponential 6 e" x e 

Chi-square 

2 - v / 2 e-x/2 xv/2 - 1 / r ( v / 2 ) 

Rayleigh 20x exp(-0x2) 

Weibull 

p0xP"1exp(-0xP) 

where, ar = T(1+r/p) 

Gumbel 

u/0e"u , where u = e " ( x ' a ) / e 

Logistic 

e - ( x - a ) / b { 1 + e - ( x - a ) / b j - 2 / b 

Uniform 1/(b-a) 

Laplace 
( 1 / 2 a b ) e x p { - l x - a l / b } 

Lognormal 

exp { - ( l n x -0 ) 2 / 2o2}/(xcW 2rc) 

0 

0 
1)/2j 

2 

2 

2 

2n(n-

(a2 -

3 ) / ( 4 

- 3 8 ^ 4 

a , ) 2 

0.8881(3/0) 

- 0 . 4 8 7 4 

0 

0 

0 

exp(a 2) +2 

3 

3 + 6/(p-4) 

3 + 2/p 

5 

3 + 4/v 

•n)2 (128 - 50TC+7C3) / ( 4-n) 3 

•2a.,2)/ { (a 4 -4a 1 a 3 +6a 2 a 1
2 -

3 a 1
4 ) 2 ( a 2 - a 1 ) - ( a 3 -

3 a 1 a 2 + 2 a 1
2 ) 2 / ( a 2 - a 1 ) 3 

4.10265 

4.2 

1.8 

6 

exp(4o2)+exp(3cr2) +1 

Inverse Gaussian 3 66/ A. 

lexp{-X( x -6)2/ (2 xe2)} / ( 2JCX3) 
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TABLE 3.3 : RANGESOFd1 ANDd2 FOR SOME DISCRETE AND CONTINUOUS 
DISTRIBUTIONS. 

DISTRIBUTION 

Binomial 

N. Binomial 

G. N. Binomial 

Geometric 

G. Geometric 

Neyman type A 

Borel 

Poisson 

G. Poisson 

Hermite 

G. Hermite 

Log Normal 

di 

(-co 

(1 , 

(-co 

(1 . 

(-co 

(1 . 

(1 -

1 

[1 . 

[1 . 

[1 . 

(3 , 

. 1] 

2) 

, 3) 

2) 

. 3) 

1.25) 

3) 

3] 

2) 

oo) 

, ~) 

d2 

[1 . 

(3 

[1 . 

5 

[5 , 

(3 , 

[7 , 

3 

[ 3 

[3 , 

[3 , 

(3 , 

3) 

• 5] 

- ) 

oo) 

, °°) 

co) 

. - ) 

4) 

oo) 

. ~) 

DISTRIBUTION 

Normal 

Student's t 

Gamma 

Exponential 

Chi-square 

Rayleigh 

Weibull 

Logistic 

Uniform 

Gumbel 

Laplace 

Inverse Gaussian 

di 

0 

0 

2 

2 

2 

1.2074 

d , «) 

- 1 

- 1 

( -oo, oo) 

0 

3 

<*2 

3 

(3 , 9) 

( 3 . oo) 

5 

(3 . 7) 

2.8468 

(1 , - ) 

4.2 

1.8 

4.10265 

6 

( 0 , oo) 

G.= Generalized and N. = Negative. 
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TABLE 3.4 : EXACT AND APPROXIMATE VALUES FOR NEYMAN'S TYPE-A SUMS. 

X 0 a N r Exact Approx. by 
SfN(j; x,e) if Mil; N.<X) 

2 
2 
2 
2 
2 
2 
8 
8 
8 
8 
8 
8 
8 
8 
8 
20 
20 
20 

0.1 
0.1 
0.1 
0.2 
0.2 
0.2 
0.3 
0.3 
0.3 
0.5 
0.5 
0.5 
0.1 
0.1 
0.1 
0.2 
0.2 
0.2 
0.1 
0.1 
0.1 
0.2 
0.2 
0.2 
0.3 
0.3 
0.3 
0.1 
0.1 
0.1 

0.0767 
0.0767 
0.0767 
0.1237 
0.1237 
0.1237 
0.1552 
0.1552 
0.1552 
0.1940 
0.1940 
0.1940 
0.0767 
0.0767 
0.0767 
0.1237 
0.1237 
0.1237 
0.0767 
0.0767 
0.0767 
0.1237 
0.1237 
0.1237 
0.1552 
0.1552 
0.1552 
0.0767 
0.0767 
0.0767 

1.205 
1.205 
1.205 
1.464 
1.464 
1.464 
1.633 
1.633 
1.633 
2.077 
2.077 
2.077 
2.409 
2.409 
2.409 
2.833 
2.833 
2.833 
9.636 
9.636 
9.636 
11.33 J 
11.331 
11.331 
13.068 
13.068 
13.068 
24.091 
24.091 
24.091 

0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 
0 
1 
5 

0.90922 
0.99150 
0.99999 
0.83421 
0.97081 
0.99999 
0.77168 
0.94319 
0.99993 
0.67471 
0.87933 
0.99917 
0.82669 
0.97629 
0.99999 
0.69591 
0.92381 
0.99992 
0.46706 
0.80515 
0.99949 
0.23453 
0.54177 
0.98767 
0.12575 
0.34933 
0.94310 
0.14908 
0.41887 
0.97809 

0.90840(0.90869) 
0.99228(0.99205) 
0.99999(0.99242) 
0.82938(0.83076) 
0.97473(0.97383) 
0.99999(0.97614) 
0.75925(0.76213) 
0.95189(0.95019) 
0.99995(0.95647) 
0.63890(0.64417) 
0.89636(0.89467) 
0.99965(0.91519) 
0.82520(0.82578) 
0.97759(0.98485) 
0.99999(0.98490) 
0.68786(0.69016) 
0.9286990.92787) 
0.99993(0.95284) 
0.46370(0.46487) 
0.80622(0.80604) 
0.99953(0.94094) 
0.22388(0.22688) 
0.54177(0.53946) 
0.98938(0.82395) 
0.11043(0.11382) 
0.33435(0.33850) 
0.95074(0.89839) 
0.14642(0.14734) 
0.41680(0.41768) 
0.97892(0.85429) 
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TABLE 3.5 : EXACT AND APPROXIMATE VALUES FOR G. P. (BOREL-TANNER) SUMS. 

6 X a N r Exact Approx. by 
^Gp(j; x,e) Ifm(\; N.a) 

0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.05 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.1 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.2 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.3 
0.4 
0.4 
0.4 
0.4 
0.4 
0.4 

1 
1 
1 
2 
2 
2 
5 
5 
5 
1 
1 
1 
2 
2 
2 
5 
5 
5 
1 
1 
1 
2 
2 
2 
5 
5 
5 
1 
1 
1 
2 
2 
2 
5 
5 
5 
1 
1 
1 
2 
2 
2 

0.102 
0.102 
0.102 
0.102 
0.102 
0.102 
0.102 
0.102 
0.102 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.206 
0.407 
0.407 
0.407 
0.407 
0.407 
0.407 
0.407 
0.407 
0.407 
0.585 
0.585 
0.585 
0.585 
0.585 
0.585 
0.585 
0.585 
0.585 
0.727 
0.727 
0.727 
0.727 
0.727 
0.727 

9.26 
9.26 
9.26 
18.34 
18.34 
18.34 
46.34 
46.34 
46.34 
4.29 
4.29 
4.29 
8.57 
8.57 
8.57 
21.43 
21.43 
21.43 
1.82 
1.82 
1.82 
3.63 
3.63 
3.63 
9.09 
9.09 
9.09 
1.014 
1.014 
1.014 
2.029 
2.029 
2.029 
5.072 
5.072 
5.072 
0.625 
0.625 
0.625 
1.25 
1.25 
1.25 

0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 

0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 

to 

0.36788 
0.99820 
0.99999 
0.13534 
0.97279 
0.99994 
0.00674 
0.57240 
.97482 
0.36788 
0.99584 
0.99999 
0.13534 
0.95875 
0.99972 
0.00674 
0.52977 
0.95778 
0.36788 
0.98605 
0.99980 
0.13534 
0.92048 
0.99756 
0.00674 
0.44885 
0.90412 
0.36788 
0.96780 
0.99833 
0.13534 
0.87005 
0.98916 
0.00674 
0.37552 
0.82408 
0.36788 
0.94063 
0.99280 
0.13533 
0.81056 
0.96835 

0.36897 
0.99816 
0.99999 
0.13614 
0.97248 
0.99994 
0.00684 
0.57245 
0.97453 
0.37234 
0.99552 
0.99999 
0.13863 
0.95729 
0.99969 
0.00716 
0.53047 
0.95629 
0.38622 
0.98330 
0.99972 
0.14916 
0.91376 
0.99678 
0.00860 
0.45515 
0.89667 
0.40999 
0.95901 
0.99718 
0.16810 
0.85673 
0.98418 
0.01159 
0.39582 
0.80960 
0.44395 
0.92452 
0.98716 
0.19709 
0.79576 
0.95350 



EXACT AND APPROXIMATE VALUES FOR G. P. (BOREL-TANNER) SUMS. 

6 X a N r Exact Approx. by 
ifcpil; M ) S fa ( j ; N.a) 

0.4 
0.4 
0.4 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.5 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

5 
5 
5 
1 
1 
1 
2 
2 
2 
5 
5 
5 
1 
1 
1 
2 
2 
2 
5 
5 
5 
1 
1 
1 
2 
2 
2 
5 
5 
5 

0.727 
0.727 
0.727 
0.833 
0.833 
0.833 
0.833 
0.833 
0.833 
0.833 
0.833 
0.833 
0.907 
0.907 
0.907 
0.907 
0.907 
0.907 
0.907 
0.907 
0.907 
0.955 
0.955 
0.955 
0.955 
0.955 
0.955 
0.955 
0.955 
0.955 

3.125 
3.125 
3.125 
0.400 
0.400 
0.400 
0.800 
0.800 
0.800 
2.000 
2.000 
2.000 
0.256 
0.256 
0.256 
0.513 
0.513 
0.513 
1.282 
1.282 
1.282 
0.159 
0.159 
0.159 
0.317 
0.317 
0.317 
0.794 
0.794 
0.794 

0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 
0 
5 
10 

0.00674 
0.31094 
0.72335 
0.36788 
0.90562 
0.97934 
0.13533 
0.74578 
0.93026 
0.00674 
0.25536 
0.61200 
0.36788 
0.86485 
0.95485 
0.13534 
0.67934 
0.87390 
0.00674 
0.20846 
0 .50073 
0.36788 
0.32064 
0.91857 
0.13533 
0.61425 
0.80261 
0.06738 
0.16948 
0.39805 

0.01724 
0.35390 
0.71064 
0.48836 
0.88714 
0.96516 
0.23849 
0.74165 
0.90447 
0.02778 
0.33020 
0.61867 
0.54392 
0.85598 
0.93389 
0.29585 
0.70346 
0.84808 
0.04761 
0.32518 
0.54769 
0.61223 
0.83918 
Q. 90357 
0.37483 
0.68856 
0.80098 
0.08602 
0.34253 
0.50695 



Chapter 4 

Family of Compound Poisson 

Distributions 

4.1 introduction 

In this chapter we have used some ratios of the co-efficients of a 

recurrence relation obtained from the generating function of a 

Compound Poisson distribution to identify different members of 

the Compound Poisson family. Moments of some distributions 

belonging to the Compound Poisson family are also presented. 

A Compound Poisson distribution can be defined as a family of 

distributions having the following probability generating function 

(p.g.f.) [Feller 1965, p. 271] 

P(s)= IpjSJ=exp[a0(s-1) + a^s2 -1)/2 + a2(s3 -1)/3 + . . . ] (4.1.1) 

This represents the model for cumulative effects of singlets, 

doublets etc., each with a Poisson law. The Poisson, Hermite, 

Negative Binomial, Neyman type A etc. are distributions belonging 

to this family and can be obtained by suitable choices of the 

coefficients a0, a1( . . . Table 4.1 gives a few Compound Poisson 

distributions , their p.g.f.s and aj-values. 

53 
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To obtain a recurrence relation for calculating successive Pj 's let 

us differentiate (4.1.1) with respect to s and get 

P'(s) = XJPJSH = [a0+ a.,s + a2s2 + . . ] exp[a0(s-1)+a1(s
2-1)/2 + . . ] 

= P(s) [aQ+ a-| s + a2s2 + .. ] 

= [p0+ Pi s + p2s2 + . . ] [a0+ a-| s + a2s2 + . . ] 

Now equating the coefficients of si we can write the recurrence 

relation as follows 

Pj + i(j+1) = a0Pj + a 1 p j . 1 + . . . + ajp0 (4.1.2) 

j=0,1,2, . . . , pj = 0 if j<0. 

The cumulants of (4.1.1) can be obtained by taking the logarithm of 

both sides and expanding. 

In P(s) = [a0(s-1) + a^s 2 -1)/2 + a2(s3 -1)/3 + . . . ] 

Thus the cumulant generating function is 

K(t) = a ^ - l ) + a^{e2{-1)/2 + a2(e3t-1)/3 + . . . 

The co-efficient of t'/i! is the i-th (i=1,2,3, . . .) cumulant 

KJ = ag + 2 M a^ + 3 M a2 + 4 M a3 + .. . = Z r(r+1 )"'-1 ar (4.1.3) 

Thus the cumulants of any Compound Poisson distribution can be 

computed from (4.1.3) . Hinz and Gurland (1967) have suggested 

that the plots of the sample values of the cumulant ratios 

nj ~K(j +1 / K( i ) ' w n e r e K ( j ) ' s t n e J tn fact01"'3' cumulant, against j 

may be used in discriminating among certain Compound Poisson 

distributions. Earlier Ottested (1939) used the ratio H(j + i / V-t\), 
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where u-(j)is the jth factorial moment against j , to discriminate 

among the Binomial, Poisson and the Negative Binomial 

distributions. One can use the corresponding sample values in these 

criteria to find out the possible form of the underlying 

distribution. Because of the sampling fluctuations, a particular 

criterion may not provide reliable information to draw sound 

conclusions. In fact whenever it is possible, more than one 

criterion should be used and other characteristics should be 

verified to ascertain a distribution. Here we suggest a use of the 

ratios of aj's, rather than the ratios of moments, identifying 

certain Compound Poisson distribution especially those listed in 

Table 4.1. It may be noted that the cumulants do not necessarily 

identify a distribution while the aj's do identify them, hence the 

use of aj's in place of the cumulants has some merit. 

4.2. Identification in the Compound Poisson Family 

The coefficients a0, a^a-j can be obtained systematically from 

(4.1.2) and can be written in matrix notation as 

P0 0 0 

P1 P0 o. . . 

r2 •! h) Po Pi P „ " " ° 

.P j P j - 1 P j - 2 • • • - P 0 , 

-1 P1 

2 P 2 

3P, 

(j +1 )P 
J+1, 

, j =0,1,2, . . . (42.1) 
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Let 

0 . . . 0 

0 . . . 0 

L P i P M P i - 2 - - -PoJ 
a n d p ( j ) = (p.,, p2 Pj )' . 

Then (4.2.1) can be written as 

"•"ao~ 

a1 

a2 

• 

_ a i _ 

— 

In particular using (4.2.2) for j=0,1,2, . . . we obtain a0, a1 t a2, a; 

etc. as follows 

a0 = Pi/Po 

ai = 2 p 2 / p 0 - ( P ^ P Q ) 2 

a2 = 3p3/p0 -3ptf2/pQ
2+ (Pl/p0)3 

a3 = 4 P4 / P0- 2 (P2 2 + 2 PlP3) / P0 2 + 4 Pl 2 P2 / P0 3 - (Pi/Po)4 

p = 
J 

Po o 

p2 P1 

2 P2 

3P, , j =0,1,2,.. (422) 

-1 

1-i 

< ! • % , 
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a4 = 5p5 /p0 - S p ^ / p o 2 -5p2p3 / p 0
2 +5p1

2p3 /p0
3 +5p1p2

2/p0
3 

•5p1
3p2 /p0

4 + (p1/p0)5 , etc. 

These coefficients can also be obtained by using the recurrence 

relations 

a0 =p 1 / p 0 

a j =Pj + i(J+1)/Po" ao Pj/Po" aiPj-i /Po " • • • " a j - iP i /Po >i=1>2> • • • 

For discriminating among the compound distributions of table 4.1 

we define the following ratios : 

nj =a i + 1/aj , i=0,1,2, . . . 

and tj = (1+i)ai + 1/aj , i=0,1,2, . . . 

Table 4.1 gives the values of nj's. In table 4.2 we state the 

behaviour of n/s and tj's for these distributions. The corresponding 

sample values may, therefore, be useful in discriminating among 

these distributions. Figures 4.1 and 4.2 give the plots of (1) ns 

against i and (2) ns against tj for i=0,1,2, . . . 

Because of the sampling fluctuations values of the estimates of n; 

for i>3 may not be reliable and conclusions may have to be based on 

n0, n1 and n2 only. Furthermore if these ratios give some indication 

of a particular form of an underlying distribution, it may be 

advantageous to verify other criteria and characteristics of the 

distribution. For example for the Binomial, Poisson or the Negative 

Binomial distributions it is known that K2/ K1 is less than, equal to 

or greater than one respectively. It is also known that the quantity, 

^ =Pj + 1(j + 1)/jPj- Pi/ j P0 . j=1.2,3, . . . , should be -p/(1-p), 0 or p 

for the Binomial, Poisson or the Negative Binomial distributions 
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respectively. Hence the sample counterparts of aj should be 

approximately a negative constant, zero or a positive constant for 

these distributions. 

As an example we consider the Bell Telephone Company data in 

table 4.3 regarding the lost articles found in the Telephone and 

Telegraph building, New York city. The sample values of nj are 

given in the table 4.3 and indicate that the distribution may be the 

Negative Binomial. For this data set m=1.03783, m2=1.27044, m3 

=1.75591, m4 = 7.90823, moment function for the Negative 

Binomial distribution mm2-2(m2)2+mm2 = 0, moment ratios d1 = 

1.12373, d2 = 3.38359 (for the Negative Binomial distribution 1 < 

d1 < 2 and3<d 2 < 5). Therefore, the distribution is more likely to 

be the Negative Binomial. 

4.3. Some Distributions belonging to the Compound 

Poisson Family 

In nature the individuals of many species (e.g. plants, insects) have 

the tendency to cluster together. The variance of an observational 

series in such a situation will exceed its mean. A few distributions 

have been developed in recent years. One such distribution is the 

Neyman type A distribution, which assumes that the clusters are 

randomly dispersed over a given area according to the Poisson law, 

while the number of individuals within a cluster are also 

distributed randomly according to another Poisson law. Neyman 

(1939) used this model to fit the observed distribution of larvae in 
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a randomly chosen area on a field. Thomas (1949) considered a 

modified form of the Neyman type A distribution by including the 

parent as well in the count for each cluster, and applied the 

distribution to fit the observed distribution of plants (Armeria 

martima and Plantago martima) per quadrant. There are situations 

where the hypothesis of the Poisson distribution of clusters may 

be reasonably justifiable, but the assumption of the Poisson 

distribution of the counts of a cluster may not be justifiable. Jain 

and Plunkett (1977) consider one such model by assuming that the 

clusters are randomly distributed according to the Poisson law 

with mean 6^ and that the cluster size '1+i' (i=0,1,2,...) has the 

Borel distribution having probability mass function (p.m.f) 
f i+ i = 02j(1+i)i"1exp{- e2(1+i)}, i= 0,1,2 , O<0 2<1 (4.3.1) 

with the probability generating function (p.g.f.) 

G(s) = L f 1 + i s
i + 1 = sH(s), (4.3.2) 

where H(s) is given by the functional relation 

H(s) = exp[- 92{1- sH(s)}] (4.3.3) 

The distribution of the total count by mixing the Poisson and the 

Borel distributions can be shown to have the Borel-Tanner 

distribution or, the Generalized Poisson distribution given by the 

p.m.f. 

tj =e 1 (e 1+e 2 j ) j - 1 exp{-( e1+e2j)}/ji , j= 0,1,2 (4.3.4) 

with the p.g.f. 

T(s) = exp[- 61{1-sH(s)}] (4.3.5) 
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The mean and variance of the cluster size as obtained from the 

Borel distribution (4.3.1) are respectively 1/(1- 62) and 92/(1- 02)3. 

The mean will, therefore, be smaller than, equal to or, greater than 

the variance depending on whether the value of G2 is greater than, 

equal to or, smaller than (3-V5)/2= 0.38197. The Borel-Tanner 

distribution (4.3.4) may, therefore, provide a good fit to many 

situations in Entomology and Bacteriology where the mean and the 

variance of the cluster count are not necessarily equal. All of these 

distributions belong to the family of the Compound Poisson 

distribution. A Compound Poisson distribution is one which is 

formed by a mixture of any two or more distributions. The 

computation of the moments of a Compound distribution in terms 

of those of the mixtures are presented in section 4.4. In subsequent 

sections the mixtures of Poisson and Borel-Tanner, Borel and 

Poisson, and Borel and Borel distributions are discussed. 

4.4. Moments of a Compound Distribution 

Suppose that clusters are dispersed according to an arbitrary 

distribution aj (i=0,1,2, . . .) with p.g.f. A(s) and that the cluster 

sizes, including the parent, are distributed according to another 

arbitrary distribution b-|+j (j=0,1,2, . . .) with p.g.f. B(s) = sC(s), 

where bn + j = C: (j=0,1,2, . . .) and C(s) = Z C: sJ . Then the compound 

distribution, say gj (j=0,1,2, . . .), of the total counts is given by 

j 

g j " S a i ĵ'-i ' J=1'2' • • •' 9o=ao - w i t h P-9-f- G<s) - A<sC(s» ( 4 A 1 ) 
i = 1 
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and where c; ( ' ' is given by the expansion 

[C(s)]' = I C J ( ' ) sJ (4.4.2) 

The moments of the distribution 'g: ' can easily be obtained by 

differentiating or expanding (4.4.1). Let y,^\ , <j)/k\ and p./k\ be the 

kth factorial moments, \|/k , (j>k and u.k be the kth central moments 

of the distributions as , C: and g: respectively. Then it can be 

shown that 

^(1)-Y(i) (1+4>(1)) 

^(2) = V(2)t1+ <f>(i )]2 + V(i)(2<l>(1) + <t>(2) ) 

^(3) =V(3)[1+ <t>(l)]3 + 3V(2) (1 + (t)(l))(2<t>(1) +<I>(2))+V(1)(3(|)(2) + <t>(3) 

"•(4) =V(4)[1+ ^ l ) ] 4 - ^ 6 ^ ) [1+ <1>(1)]
2(2<))(1) +<|>(2)) 

+ 4\|/(2) (1+ <t)(l))(3(t)(2) +(t)(3))+3xl/(2)[2<l>(1) +<t>(2)]
2 +V(1)(4<|)(3) 

+ •(4)) (4-4-3) 

and 

u.2 =\|/2[1+ <t>(1)]
2 + ¥(1)<t>2 

^3 =V3t1+ ^ l ) ] 3 - ^ 3 ( 1 + <I>(1))<I>2V2 +Y(l)<t>3 

P-4 = ¥ 4 t 1 + <t>(l)]4 + 6<)>2[V3+V(1) ¥2] [1+ ^ ( l ) ] 2 

+ \j/2(4<)>3 +3(|)2
2 +4 (̂  <|>3] + 3 ^ 2<|)2

2 + ^ (<|>4 -3 <))2
2 ) 

(4.4.4) 

Thus choosing A(s)=exp{-8(1-s)} and C(s)=exp{-X.(1-s)} gives the 

p.g.f. of the Thomas distribution as G(s)= exp[-9(1-s exp{-A.(1-s)}]. 

The mean and the other three central moments of the Thomas 

distribution are 

u ( 1 )=6(1+ X) 
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\i2 = B{J\+3X + X2) 

\i3 = 6(1+7^ + 6 a2 +X3) 

H4 = 3e2(1+3^ + X2)2 + e(1+15^+25X2 +10 X3 + ?,4) 

as given in Johnson and Kotz [1969]. 

Remark :-

For the compound distribution having the p.g.f. of the form 

G(s)=A[C(s)], the probability distribution of the total count is 

g; = XajCj(') , where Cj(') is defined in (4.4.2). 

The factorial and central moments can be shown to be as follows :-

H(2) =V(2)<)>(1)2 + V(1)4>(2) 

U ( 3 ) = V (3 )<|> ( 1 }
3 + 3¥(2)<|)(1 j ^ 2 ) ) + V ( 1 ^ ( g ) 

H(4) = V(4)4>(1 ) 4 + 6V(3)<1>(1 )2<l>(2) +4V(2) (1 )(1 )4>(3) + ^ J ^ ) 2 + V(1 )4>(4) 

^ 2 = V 2
( t ) ( l ) 2 + ¥(1)<t)2 

^3 = V3 4>(1 ) 3 + 3(t>(l ))<t>2 ^3 + V(1)4>3 

M-4 = ̂ 4 4>(1 ) 4 + 6<J>2 0 ^ ) 2 [\|fg+ V ^ j \|/2] + 4 y 2 <|>( 1 ft3 +3\|/( 1 )
2<|)2

2 

+ V( 1 )(4>4 " 3 <t)22 ) 

A choice of A(s)=exp{-6(1-s)} and C(s)=exp{-A.(1-s)} gives the p.g.f. 

of the Neyman type A distribution G(s)= exp[-9(1-exp{-A,(1-s)}], 

with the moments as 

u./.,) =BX , \i2 =BX(-\ + X) 

\i3 = BX{ 1+3 X + X2) 

u.4 = 6fc(1 + A +6 X2 +?i3) +3 X2 62(1 + k)2 



63 

4.5. Mixtures of the Borel Distribution 

Among the various mixtures which can be obtained by compounding 

a Borel distribution we consider mixtures of Poisson and Borel and 

the double Borel distributions. 

(i) The Poisson-Borel-Tanner Distribution 

A somewhat generalized model, to describe situations where the 

mean and the variance of the cluster counts are different, can be 

obtained by assuming that cluster size 1+i, is distributed 

according to the Borel-Tanner distribution, 

q 1 + i=e 1 (6 1+9 2 i ) i - 1 exp{-( e1+e2i)}/i! , i= 0,1,2, 

with the p.g.f. Q(s) = Xq1 + j si + 1 = sT(s), where T(s) is defined in 

(4.3.5). A further assumption of the Poisson distribution of 

clusters with mean 0 gives the distribution of the total count ' j ' as 

fl-e-^e'ie i)[e i + e2(j- i)f"1exp{-[e i +e2( j- i)]} /{ii (j-i)i} (4.5.1) 
J i = 1 

j=1,2,3, 

= exp (-6), j=0 

w:th the p.g.f. 

G(s) = exp{-9[1-sT(s)]} = exp{-8[1-s exp{-91(1-sH(s))}]}, 

where H(s) is given by (4.3.3). It is evident that the distribution 

(4.5.1) reduces to that of the Borel-Tanner distribution if B{ = 02 

and to that of the Thomas distribution if 92 = 0. 
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The mean and the second, third and fourth central moments are 

found to be 

U-(-l) =6(1+ X{') 

H2=9[(1+>02+X2)] 

^3 = 6[(1 + A./)3 + 3 ( 1 +X{) X2 + X3 ] 

\i4 = 6[(1+ X,')4 + 6(1+X/)2 X2 + 4(1 +Xl') X3 + XA] +362[(1+ Xj')2 + X2)
2 

where, 

x/ = e1/(i- e2) 

x2 =6^(1- e2)3 

x3 =e1(i+262)/(i- e2)5 

X.4 = 36^/(1- 92)6 + 61(1+892+692
2)/(1- 92)7 

(4.5.2) 

Therefore, 

p1 = (1/9)[1+3y(1+X l
,) 2 + X3/(1+X l ')

3][1+?t2/(1+?i l ')
2]-3 

p2= 3+ (1/9)[1+6X2/(1+?i l')
2+4X3/(1+V)3 + V(1+V)4] 

[\+X2/^+Xl')
zY2. 

Hence the distribution is positively skewed. 

Solving the moment equations for parameters also gives 

9 (9^2- | i ( l }
2 ) 4 +(9 - n ( l ) )

2[92u.3- u (1 }
3- 3ji (1 )(6u2- n ( l }

2 ) ] 2 

- 46(9^2- H ( 1 )
2 ) 3 ( ^ ( 1 ) - 6)- 6 (6^ 2 - ^ ( 1 )

2 ) [ 9 2 H 3 - ^ i ( l )
3 - 3 n ( l ) ( 9 j i 2 -

^ ( l )
2) ](u. ( l )-6) = 0, 

ei = (^( i ) -e)3 / 2 / [9(9u2 -u ( l )
2 ) ]1 /2 , 

6 2 - 1 - {0(u ( 1 )-6)/ [9u2-n ( 1 )
2 ] }1/2 , 
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(ii) The Borel-Poisson Distribution 

For a situation where the dispersion of the clusters is 'Non 

Poisson1, we consider here a particular one by assuming that the 

clusters are dispersed according to the Borel distribution 

br =ar(1+r)r"1exp{-a(1+r)}/r! , r=0,1,2 a < 1 . (4.5.3) 

If the cluster size, including the parent, is assumed to be 

distributed as Poisson with mean 0 , then the probability 

distribution of the total count is given by 

gj =Sa i(1+i) i-1exp{-a(1+i)-6i}(ei)J-1/{i! (j-i)!} , (4.5.4) 

j=1,2,3, . . . , a<1, 6>0 

= exp{-a} , j=0, 

which we call the Borel-Poisson distribution. 

The mean and the second, third and fourth central moments of 

(4.5.4) can be obtained by using the moments of the Borel 

distribution [as in (4.5.2) with 01= 02 = a ] and the moments of the 

Poisson distribution [as in (4.5.2) with 01= 9 , 02 = 0] in (4.4.4). 

Thus, the mean and the variance of (4.5.4) are 

H(1) = cc(1+9)/(1- a) 

H2 =a(1+ 0)2 /(1- a ) 3 + a0/(1- a) , 

from which the parameters 0 and a of (5.5.4) can be computed as 

62M-( 1 )" 6(u2- 3^( 1 )- 2(1^ )2) + \x^ ) 3 + 2u^ ) 2 + u.^) - \i2 = 0 (4.5.5) 

and 

<x= (2+29+n(1))/(1+ 9+n ( 1 }) (4.5.6) 
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(iii) The Double Borel Distribution 

If the clusters are assumed to be dispersed according to the Borel 

distribution (4.5.3) with parameter a and the cluster size is also 

assumed to be distributed according to the Borel distribution 

(4.5.3) with parameter p, then the total count has the following 

distribution, 

g j=Ia i(1+i) i-1exp{-a(1+i)-pj} i j i - i-1 f3i-1 /{ i !( j- i) !}, 

j=1,2,3 , a>0, p<1 

= exp{-a} , j=0, 

which we call the Double Borel distribution. The mean, the variance 

and the parametric relations of the Double Borel distribution are 

found to be 

j i ( 1 ) * o / ( 1 - a)(1- P), 

u 2 =a[1- ap(2-a)]/(1- a ) 3 (1- p)3 , 

«3(*i2- <^')3- (^Z)2) + ot
2{3<^,)3+2(n1

,)2 - ,i2} -3a(u1 ' )3+(a1 ' )3=0 

respectively and p= 1- a/{ (1/(1- a)}. 

By computing the probabilities for j = 0,1,2 and for different 

values of the parameters the behaviour of these distributions can 

be studied. In Table 4.4 and Figure 4.3 we exhibit the probabilities 

corresponding to these distributions for specific values of their 

parameters. 



TABLE 4.1: PGF, VALUES OF aj ANDnj FOR SOME DISTRIBUTIONS. 
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Distribution PGF Values of aj andnj 

Poisson 

9on{exp(-a0)}/jl exp[a0(s-1)] 

ao>0, aj = 0, i=1,2,3,. 

Pj = 0, i = 0,1,2 

Binomial 

nCjpiqn-i (q+ps)n 

Poisson Binomial exp[X{(q+ps)n -1 }] 

e-^Q-ij^V (nk)W)' T ~kT 
k>j/n 

Negative Binomial {(1 - p) / (1 - p s) }n 

n + i-1GJpiqn 

a j=n(p/q) i + 1 ( - 1 ) i , q=1-p 

n: = -q/p, i = 0,1,2,. 

a j=XnC1 + i(p/q) i + 1 q n (1+ i ) . 

i=0,1,2 n-1 

nj = p(n-l-1)/{q(i+1)}, i=0,1,2,. 

aj =np' + 1 , i = 0,1,2, . . . 

n; = p, i = 0,1,2 

Poisson-Negative 

Binomial exp[-M1-{q/d-ps)}n} ] 

I: •XM1-P) 
ni (ni+j-11 

j 

aj= n + 'q nXp' + V . 

n.=p(n+i+1)/(i+1) 

i-0,1,2, . . . 

Generalized Poisson e x p ^ ^ Z M )J" 1e" U/j! -1}] aj =(1+i)g j + 1, i=0,1,2, 

X\( V X] )J" V (X
1

+XJ )/ j ! where, gr (XI ) ' ' V x i / i l , 

ni = {1 + 1/(i + 1 ) } i + 1 A.e" *•, i=1,2, . 

Hermite exp[a0(s-1 ) + a^(s2^)] a^a^O , aj=0, i=1,2,3,. 

a ^ ] 

exp[-(a0+-2L)] > 

/2 k -2k 
—• a a 1 o 

. « , . 
V l T ' n r 0 ' i=1-2-

t r f kl2"(j-2k)l ^ 
NeymanTypeA exp[-X{1-exp{-0(1-s)}] aj=Xe_ e0i + 1 / i l , i=0,1,2,. 

? 6 ( k ! , G j ! 
0 n r 17^,1=0,1,2,. 
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TABLE 4.2: IDENTIFICATION OF THE MEMBERS OF COMPOUND POISSON FAMILY. 

Poisson nf = 0, i = 0,1,2, . . , tj = 0, i = 0,1,2, . . . 

Binomial n; = a constant tj decreases with i such 

i = 0,1,2, . . . that tj+-j - tj = nj, a constant, 

i = 0,1,2 . . . 

Poisson Binomial nj decreases to zero tj decreases to zero 

and i = n-1 and i = n-1 

Negative Binomial nj = a constant t; increases with i such 

i = 0,1,2, . . . that tj+-| - tj = n ;, a constant 

i = 0.1,2 . . . 

Poisson Negative nj decreases with i tj increases with i 

Binomial and tends to a 
constant 

Generalized Poisson 

or, Borel-Tanner 

Hermite 

nj increases slowly 

with i and tends to 
a constant 

n0 = a constant 

rij = 0, i = 1,2,3, . . 

tj increases with i 

t 0 = n o 
tj = 0, i = 1,2 

Neyman type A n-. decreases slowly tj = a constant 

to zero, i = 0,1,2, . . . i = 0,1,2, . . . 
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TABLE 4.3: LOST ARTICLES FOUND IN THE TELEPHONE AND TELEGRAPH BUILDING, 
NEW YORK CITY. 

No. 

lost 

0 
1 
2 
3 
A 

* 
5 
6 
7 

of articles No. of days 

169 
134 
74 
32 
1 1 
2 
0 
1 

n i 

0.31 
0.32 
0.25 

Expected Negative 

Binomial 

166.02 
140.42 
72.37 
29.33 
10.27 
3.26 
0.96 
0.37 

Total 423 423.00 

Source : Thorndike (1926) 



TABLE 4.4 : PROBABILITIES OF POISSON-BOREL-TANNER, BOREL-TANNER AND DOUBLE 
BOREL DISTRIBUTIONS FOR SPECIFIC VALUES OF THEIR PARAMETERS. 

PROBABILITIES g, 

Poisson-Borel Borel-Poisson Double Borel 
-Tanner 

0.548812 
0.551819 
0.274488 
0.141212 
0.074103 
0.039442 
0.021227 
0.011528 
0.006308 
0.003475 
0.001925 
0.001971 
0.000599 
0.000336 
0.000189 
0.000107 

0.740818 
0.081760 
0.050974 
0.025996 
0.013933 
0.007818 
0.004524 
0.002682 
0.001621 
0.000996 
0.000618 
0.000389 
0.000247 
0.000158 
0.000102 
0.000066 

0.670320 
0.133148 
0.069263 
0.041508 
0.026511 
0.017581 
0.011960 
0.008292 
0.005834 
0.004155 
0.002990 
0.002170 
0.001587 
0.001169 
0.000865 
0.000644 

0 = .6 , Qx = .4 0 = .4, a = .3 a = .4 , fj = .4 

02 = .3 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1 0 
1 1 
1 2 
13 
14 
15 
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FIGURE 4.1 GRAPHS OBTAINED BY PLOTTING THE RATIOS ns AGAINST i FOR 

DIFFERENT DISTRIBUTIONS. 

GENERALIZED POISSON (A = 0.8) 

in 

tr 
L l l 

I 

in 
d 

f 

^GATlV£^OMlAL(n = 5tP = 0A) 

NEGATIVE BINOMIAL (p = 0.4) 

POISSON 

\ 

•-> I 

5 

BINOMIAL (p = 0.4) 

10 15 20 
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FIGURE 42 GRAPHS OBTAINED BY PLOTING THE RATIOS n(- AGAINST 

THE RATIOS t j FOR DIFFERENT DISTRIBUTIONS. 
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FIGURE 4.3 PROBABIUTY CURVES FOR POISSON-BOREL-TANNER, 

BOREL POISSON AND DOUBLE BOREL DISTRIBUTIONS. 



Chapter 5 

Family of Transformed Chi-square 

distributions 

5.1 Introduction 

Family of Transformed Chi-square distributions is a sub-family of 

the Exponential family of distributions. Consider a random variable 

X whose probability mass function (p.m.f.), or probability density 

function (p.d.f.), /(x;0) depends on a scalar parameter of interest 0. 

Let the distribution of X belong to the Exponential family 

[Barndorff-Nielsen (1978)], i.e. /(x;6) given by, 

/(x;8) = exp[a(x)b(0)+c(9)+h(x)] (5.1.1) 

The Binomial, Poisson, Normal, Exponential, Gamma, Geometric, 

Rayleigh, etc. are distributions that belong to this family and can 

be obtained by suitable choices of a(x), b(8), c(0) and h(x). Here b(0) 

is a non-trivial continuous function of B for 8 E Q » ( C 1 , C 2 ) [Patel, 

Kapadia and Owen (1976)] where c1 and c2 are real numbers. The 

likelihood function of a sample of size n from (5.1.1) can be 

written as 

74 
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L(0;x.) = exp[b(0)Ia(xi)+nc(9)+Ih(xi)] (5.1.2) 

where, & = {x^,x2, . . . ,xn). According to the Neyman-Fisher 

Factorization theorem, X,a(Xj) is sufficient for 9 or, for any one to 

one function of 0. It follows from theorem 1, page 142 of Lehmann 

(1986) that Za(Xj) is also a complete statistic. Then according to 

the Lehmann-Scheffe (1950,1955) theorem, Za(Xj) is the unique 

uniformly minimum variance unbiased estimator [UMVUE] of its 

expected value which is a function of 0. If the Cramer-Rao 

regularity conditions hold then Za(Xj) is the minimum variance 

bound unbiased estimator [MVBUE] of 

E{Ia(Xi)} = ¥(0) (say) (5.1.3) 

iff, 

V{Ia(Xj)} = {\|/'(0)}2/V(3lnL/30) (5.1.4) 

General expressions for the exact form of (5.1.3) and (5.1.4) are not 

available. If b(0) is strictly increasing in 0 then Ea(Xj) is an 

optimal test statistic for testing H0 : 0 < 0 O against H1 : 0 > 0O 

[Bickel & Doksum (1976)]. In order to calculate the critical region 

and the power of the test we need to find the exact distribution of 

Xa(Xj). This distribution is also needed to obtain a confidence 

interval for 0. The general form of the distribution of La(Xj) is not 

available. 

We prove a theorem regarding some characteristics of a class of 

distributions in section 5.2 and then define a sub-family of the 

Exponential family of distributions called the Transformed Chi-

square family. The Gamma, Rayleigh, Normal, Lognormal, Pareto, 
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Exponential, etc. belong to this family. Irrespective of the form of 

the original distribution of a random variable X belonging to 

this family, the distribution of -2a(X)b(8) follows a Central Chi-

square distribution with appropriate degrees of freedom. This sub

family is thus named the Transformed Chi-square family. Without 

much derivation one can easily obtain MVBUE or UMVUE, and also an 

interval estimator, of 0 or any function of 0; this is discussed in 

section 5.3. In Section 5.4 the critical region and the power of the 

tests concerning the parameter 0 are given. A general selection 

procedure to identify the best population, or a subset of the best 

populations in the Transformed Chi-square family with probability 

of correct identification, has been discussed in section 5.5. 

5.2 The Transformed Chi-square Family 

The Transformed Chi-square family is a sub-family of the 

Exponential family of distributions. Let X be a continuous type 

random variable having p.d.f. of the form (5.1.1) then under certain 

conditions -2a(X)b(0) will follow a Central Chi-square distribution 

with appropriate degrees of freedom. We prove this result in the 

following theorem. 

Theorem 5.2.1. In a one parameter Exponential family of the form 

(5.1.1) iff 

2c'(0)b(0)/b'(0) = k (5.2.1) 

where k is positive and free from 0, then -2a(X)b(0) follows a 

Gamma distribution with parameters k/2 and 1/2 . In case k is an 
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integer then -2a(X)b(0) follows a Central Chi-square distribution 

with k degrees of freedom. 

Proof: 

Let 2c'(0)b(0)/b'(0) = k. 

Since exp[a(x)b(0)+c(0)+h(x)] is a p.d.f. we must have 

jexp[a(x)b(0)+c(0)+h(x)] dx =1, 

or, Jexp[a(x)b(0)+h(x)] dx = exp[- c(0)] (5.2.2) 

We have from (5.2.1), 

c'(0) = (1/2)kb'(0)/b(0) 

Integrating both sides of this equation with respect to 0 we get, 

c(0) = (1/2)k In ^0) + ^ 

where k1 is a constant of integration. 

Thus (5.2.2) becomes 

1 exp[a(x)b(0)+h(x)] dx = exp[-(1/2)klnb(0)-k1] 

Let U » -2a(X)b(0). The characteristic function of U is 

9u(t) - E{exp(itU)} = E[exp{-2it a(X)b(9)}] 

« exp{c(0)}Jexp[a(x)b(0)(1 -2it)+h(x)]dx 

= exp{c(0)} exp[(-1/2)k ln{b(0)(1-2it)} - k j = (1-2it)- k/2 

which is the characteristic function of a Gamma distribution with 

parameters k/2 and 1/2. As the characteristic function uniquely 

determines the distribution function, -2a(X)b(0) follows a Gamma 

distribution with parameters k/2 and 1/2. 

Conversely, let -2a(X)b(0) = Y be a Gamma variate with parameters 

k/2 and 1/2. Then the p.d.f. of Y is 

{exp(-y/2)}yk/2 - 1 / {2 k / 2 r (k/2)} . 
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Thus, the p.d.f. of a(X) is 

[exp{a(x)b(0)}]{-2b(0)}{-2a(x)b(0)}k/2 - 1 / {2 k / 2 r (k /2) } 

= [exp{a(x)b(0)}]{-b(9)}k/2{a(x)}k/2 - V{ r (k /2 ) } 

= exp[a(x)b(0) + (k/2)ln{-b(0)} + (k/2 -1)ln{a(x)} -ln{r(k/2)}], 

which is of the form (5.1.1). This implies that the distribution of X 

belongs to the Exponential family. 

Here, c(8) = (k/2)ln{-b(6)} 

or, 2c'(0)b(0)/b'(0) = k. 

It is also evident that if k is an integer then -2a(X)b(0) follows a 

Central Chi-square distribution with k degrees of freedom. 

Hence the theorem is proved. 

Example 5.2.1. Let X be an Exponential variate with p.d.f. 

/(x,0)= 0exp[-0x] . 

Here, a(X)=X, b(0)= -0, c(0)= In0, 2c'(0)b(0)/b'(0) = 2 , 

-2a(X)b(0) = 2X0 . 

Thus 2X0 is distributed as a Central Chi-square with 2 d. f. 

Table 5.1 gives the different expressions of the functions such as 

the p.d.f., a(X), b(0), c(0), -2a(X)b(8) and the values of k= 

2c'(0)b(0)/b'(0) for the Normal, Lognormal, Gamma, Exponential, 

Rayleigh, Pareto, Weibull, Eriang, Maxwell and Inverse Gaussian 

distributions. 
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DEFINITION 5.2.1. A sub-family of the one parameter Exponential 

family, having p.d.f. of the form (5.1.1) and satisfying (5.2.1), will 

be called a family of Transformed Chi-square distributions, 

provided that k is a positive integer. 

The Normal, LognormaL Gamma, Exponential, Rayleigh, Pareto, 

Weibull, Eriang, Maxwell, Inverse Gaussian, etc. are distributions 

that belong to the Transformed Chi-square family. However, all 

continuous distributions belonging to the Exponential family are 

not members of the Transformed Chi-square family. This may be 

seen from the following example. 

Example 5.2.2. Let X be a random variable having density 

/(x,0) = 0k~e x e _ 1 , 0 < x < k , 0>O, k being known. 

Clearly, the distribution of X belongs to the Exponential family 

with a(X) = InX, b(0)=0-1 and c(6)= In0 - 0!nk. 

Here, 2c'(0)b(0)/b'(0) = 2(0-1 )(1/0- Ink), which is a function of 0. 

Therefore, this distribution does not belong to the Transformed 

Chi-square family. 

5.2.1 Moments of the Distribution of a(X) in the Family of 

Transformed Chi-square Distributions 

The characteristic function of U= -2a(X)b(0) is 

9u(t)=(1-2it) -k/2 . 

Therefore, the moment generating function and the cumulant 
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generating function are 

MJt) = (1- 2t)"k/2 and 

ic(t) = In Mu(t)= -(k/2)ln(1-2t) respectively. 

tc(t) can be written as 

K(t)= kt/1! +2kt2/2! +8^ /3 ! +48kt4/4! + 

The rth cumulant kr is the co-efficient of tr/r! . 

Thus K ^ k, K2 = 2k, K3 = 8k, K4 = 48k. 

E{a(X)} = -k/{2b(0)}, 

V{a(X)} = k/{2b2(0)} =|i2 (5.2.3) 

u3= -k/b3(0), 

u4={12k + 3k2}/{4b4(0)}, 

^ = 8/k , 

p2= 3 +12/k . 

Hence the distribution of a(X) is positively skewed and leptokurtic. 

Example 5.2.3. Let a random variable X follow a Pareto 

distribution with p.d.f. /(x,0) = 0x~(e+1) , x > 0. 

Here, a(X) = InX, b(0) = -0, c(0) = In0, k = 2c'(0)b(0)/b'(0) = 2. 

Therefore, E{a(X)} = -k/2b(0) « 1/0 

V{a(X)} = k/{2b2(0)} =1/02 

u3= -k/b3(0) = 2/03 

u4={12k + 3k2}/{4b4(0)} = 9/04 

p > 8/k = 4 

p2=3 +12/k = 9 
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Corollary 5.2.1. If Xj is distributed with p.d.f. 

/(Xj,0j) = exp[aj(Xj)bj(0j)+Cj(0j)+hj(Xj)] and satisfies the conditions 

2c'j(0j)bj(0j)/bj,(0J) = kj kj being a positive integer, where j=1,2,. . 

.,r and X^Xg, . . .,Xr are independent, then -2Zaj(Xj)bj(Gj) follows a 

Central Chi-square distribution with Ik j d.f. 

Proof : Let Uj = -2a i(X j)b j(0 j). 

It follows from theorem 5.2.1 that Uj is a Central Chi-square 

variate with kj d.f. (j= 1,2, . .,r) and the characteristic function of 

Uj is (1-2 i t ) - k j / 2 . 

Since XVX2, . . .,Xr are independent, -2Zaj(Xj)bj(8j) = XUj is the sum 

of r independent Chi-square variates. Hence by the additive 

property of Chi-square variates, I U = -2Xaj(Xj)b:(0) follows a 

Central Chi-square distribution with Xkj degrees of freedom. 

Example 5.2.4. Let X1 and X2 be independently distributed with 

p.d.f. 01exp(-x101) and {exp[-({x2}
2)/(2{02}

2)]/{02V(27t)} 

respectively. 

Here, a ^ ) = X^ b , ^ ) = - 0 ^ ( 0 ^ = Ine^ a2(X2) = {X2}
2 , 

b2(02) = -1/(2{02}
2), c2(02) = -In02. 

Thus -2Ia,(Xj)bj(ej) = 2X161 +(X2/02)2 follows a Central Chi-square 

distribution with 3 d.f. 

Corollary 5.2.2. Let X be a random variable having density 

/(x,0)=xr-1 [exp{-x r/(r0 r)}]/0 r , x>0, 0>O, (5.2.3.1) 

r being a positive integer. Then, for any value of r, 2X r/{r0 r} 
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follows a Central Chi-square distribution with 2 d.f. 

Proof : The characteristic function of 2X r / ( r0 r ) is 

<p(t) = E[exp(2itXr/{r0r})] 

= (1 -2 i t ) " 2 / 2 , 

which is the characteristic function of a Central Chi-square 

distribution with 2 d.f. Hence, for any value of r, 2X r / { r0 r } follows 

a Central Chi-square distribution with 2 d.f. 

Example 5.2.5. Let a random variable X follow a Rayleigh 

distribution with p.d.f. /(x,0) = x[exp{- x 2 / (29 2 ) } ] /0 2 , x > 0. 

Here, r=2 and 2X r / ( r0 r ) = X 2 / 0 2 follows a Central Chi-square 

distribution with 2 d.f. 

5.2.2 Moments of the Distribution of X r in (5.2.3.1) 

Let W=2X r / ( r0 r) . The moment generating function of W is (1-2t)"1 

and the cumulant generating function is 

K(t) =• -ln(1-2t) = 2t/1! +4t2/2! +16^/3! +96^/4! + 

Thus E(Xr) = r0r= u'.,, V(X r)=(r0 r)2 = \x2 , 

^ 3 = 2 ^ 0 3 ' , u ^ g r 4 © ^ , p1=4, p2=9. 

Hence the distribution of X r is always positively skewed and 

leptokurtic. 
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Example 5.2.6. Let a random variable X follow a Rayleigh 

distribution with p.d.f. /(x,0) = x[exp{- x2/(202)}]/02 , x > 0. 

Here, r=2 and E(X2)=262 , V(X2)=404 , u3=1606 , u.4=14408 , 

M 4 - P2=9-

Corollary 5.2.4. If X is a random variable having p.d.f. of the form 

(5.2.3.1), then for any value of r, Xr is distributed as an Exponential 

Variate. 

Proof : The characteristic function of Xr is 

9(t) = E[exp(itX)] 

= J1exp(itxr) xr-1 [exp{-x r/(r0 r)}]/0 r dx 

Let y = xr/ (r0r) 

Therefore, (xr" V 0r)dx = dy and 

ip(t) = Jexp(-y +ityr0r) dy 

= Jexp{-y(1 - itr0r)} dy 

= (1 - itr0r)"1 

Which is the characteristic function of an Exponential distribution 

with mean r0r. Hence, Xr is distributed as an Exponential Variate 

with mean r0r. 

Example 5.2.7 Let a random variable X follow a Rayleigh 

distribution with p.d.f. /(x,0) = x[exp{- x2/(202)}]/G2 , x > 0. 

Here, r=2 . Let us make the transformation, w=x2 . 
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The Jacobian of the transformation is J = (1/2)w"1/2. 

Therefore, the p.d.f. of w is g(w,0) = (1/292)exp(w/202). 

=> w = x2 follows Exponential distribution with mean 202. 

5.3 Estimation of Parameters in the Transformed 

Chi-square Family 

In general there are two types of estimation, Point estimation and 

Interval estimation. These are discussed below. 

5.3.1 Point Estimation 

There are various methods of point estimation. Most commonly 

used point estimators are MLE, MVUE and MVBUE. 

Let X1,X2, . . .,Xn be a random sample of size n from a population 

having p.d.f. (5.1.1) and satisfying (5.2.1). Then the likelihood 

function of the sample observations is given by 

L = exp{b(0)Xa(Xi) +nc(0) +Xh(X;)}. 

or, InL = b(0)Ia(X|) +nc(0) +Ih(Xj). 

Differentiating partially with respect to 0 and setting this partial 

derivative to zero we get, 

b,(0)la(x i) + nc'(0) = 0. 

or, -k/{2b(0)} = Ia(x i)/n. 

Therefore, Ia(Xj)/n is the MLE of -k/{2b(0)}. 

The MVBUE of a function of 0 is given in the following theorem. 
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Theorem 5.3.1. Let X.,,X2, . . .,Xn be a random sample of size n 

from (5.1.1) satisfying (5.2.1). Then under the Cramer-Rao 

regularity conditions Xa(Xj)/n is the MVBUE of [-k/{2b(0)}] with MV 

[k/{2nb2(0)}] . 

Proof : The log-likelihood function of the sample observations is 

given by lnL=b(0)Xa(Xj) +nc(0) +Xh(Xj). Differentiating partially with 

respect to 0 and 02, we get, 

8lnL/90 = b'(0)Sa(xi) + nc*(0) and 

d2\ n L/302 = b"(0)Ia(Xi)+nc"(0) (5.3.1) 

Using (5.2.3), 

E{Ia(Xj)/n}= -k/{2b(0)}=\)/(0) (say) and V{Ia(X;)/n} = k/{2nb2(0)}. 

Taking expectations on both sides of (5.3.1) and simplifying we get, 

-E(d2lnL/302) = n{b"(0)c'(0) - c ' W ^ J / b ' ^ ) 

Hence, the Cramer-Rao lower bound (CRLB) for an unbiased 

estimator of \|/(9) is {V(0)}2/-E(32lnL/302). 

As V{a(X)} = {b"(0)c'(0) - c"(0)b'(0)}/{b'(0)}3 

= k/{2b2(0)} [Dobson(1983)], 

thus, -E(32lnL/302) = nk{b'(0)}2/{2b2(0)} and the CRLB is 

(kb'(0)/[2b2(0)]}2 . 2{b(0)}2/[nk{b'(0)}2] = k/{2nb2(0)} = V{Ia(X,)/n}. 

Hence the theorem is proved. 

The UMVUE of a function of 0 is given in the following theorem. 

Theorem 5.3.2. Let X^,X2, . . .,Xn be a random sample of size n 

from (5.1.1) and satisfying (5.2.1). Then X a ^ / n is the UMVUE of [-
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k/{2b(0)}] with MV [k/{2nb2(0)J] . 

Proof : The likelihood function of the sample observations is given 

by L = exp{b(0)Xa(Xi) +nc(0) +Xh(Xi)}. 

According to the Neyman-Fisher Factorization theorem, Xa(Xj) is a 

sufficient statistic. It is evident from theorem 1, page 142 of 

Lenmann (1986) that Xa(X,) is also a complete statistic. Then 

according to the Lehmann-Scheffe (1950,1955) theorem, Xa(Xj) is 

the unique uniformly minimum variance unbiased estimator 

[UMVUE] of its expected value. 

Since E{Xa(Xj)/n}= -k/{2b(0)} and V{Xa(X;)/n} » k/{2nb2(0)}. 

Therefore, Ia(X,)/n is the unique UMVUE of [-k/{2b(0)j] with MV 

[k/{2nb2(0)}] . 

Example 5.3.1. For a random sample Xv X 2 , . . .,Xn of size n from a 

Rayleigh density, the likelihood function is 

L(0,x) = expt-XXj2/(202) -2nln0 +IlnXj]. 

Here, a(Xi) = Xj2, b(0) = -1/(202), 

k = 2, -k/{2b(0)} * 202 and k/{2nb2(0)} = 404/n. 

Thus, XXi2/2n is the MLE, MVBUE and UMVUE of 02 with MV 04/n. 

5.3.2 Interval Estimation 

A general method of constructing an ordinary confidence interval 

and the shortest confidence set is given below, 

(a) Confidence interval by pivotal method : 
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For a random sample XVX2 Xn of size n from (5.1.1) satisfying 

(5.2.1), we consider -2b(0)Xa(Xj) as a pivot, the distribution of 

which is independent of 0 . Let k be an integer. Choose two values 

X^ and %2_a such that 

n 

i = 1 2 

or, P{ ^ (X) < 0 < t2(X) } = 1 - a , where ax+ 0^= a . 

Hence { t^X) , t2(X) } is a 100(1-a)% confidence interval for 0 . 

Example 5.3.2. Let X1 ( X2 , . . . , Xn be a random sample from an 

Exponential distr ibut ion with mean 1/0 . Then the l ikel ihood 

function is given by L(0,x) = exp[-XXj/0- nine] and 

-2Xa(Xj)b(0) = 2 X X / 0 is a Central Chi-square variate with 2n d.f. 

Thus, 

P{%; 
2£X. 

2 _ l ^ „,2 i n ^ < T " < 4n,(l-a2) > = 1 " «• W h e r e <*1+ tt2 = « ' 

2XX. 

or, P<j ^2 < 0 < 
2XX. 

2n,(1-a2) X 2n,a, 
= 1-a 

Hence, 

2XX. 2XX. 

X 2n,(1-a2) X 2n,a 

is a 100(1-a)% confidence interval for 0 . 
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(b) Shortest confidence set : 

Let XVX2, . . .,Xn be a random sample of size n from (5.1.1) and 

satisfying (5,2.1). Let b(8) be strictly increasing in 0 and let k be 

an integer. Then an a level UMP test for testing H0 :0 = 0O against 

H| :3>0O exists with the critical region 

W a ={x 2 :Xa (X i )> [ X V( i -a / { -2b (0 o ) ! ] } . 

Let VJ c be the region complementary to W . 
IX tX 

Then by the result 7b.2.1 of Rao (1973) the 100(1-<x)% shortest 

confidence set for 9 is l(x2) = {0O : X2 e Wa
c } 

or, l(x2) = {0o :Xa(X i)<bc2
nk(1.a)/{-2b(0o)}]}. 

Similarly, an a level UMP test for testing H0 : 9 = 90 against H1 : 9 

< 0O exists and the 100(1-a)% shortest confidence set for 0 is of 

the form J(X
2) = {90 :2a(X;) > [%2

nk,a/{-2b(90)}]}. 

According to lemma 1 of Lehmann (1986, page-135), there also 

exits an a level UMP unbiased test for testing H0 : 0 = 0O against 

Hj : 0 * 0O given by 

<Kx) = 1 , if Ia(x,) < c1 and Xa(Xj) > c2 , 

(|)(x) = 0, otherwise, 

where the constants c-| and c2 are determined by 

% 
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Ee fo(X)} = « and 
0 

E f l{Wla(X.)} = E 9 O T a 
0 i=i ° 

Here, the critical region is Wa= {%2 : Xa(Xj) < c^ Xa(Xj) > c2}. 

Let W c be the region complementary to W . 
(X IX 

Then by the result 7b.2.1 of Rao (1973) the 100(1-a)% shortest 

confidence set for 0 is l^x2) = {90 : X2 e Wa
c }. 

5.4 Tests of Hypotheses in the Transformed Chi-square 

Family 

Let Xv X2 , . . ., Xn be a random sample from (5.1.1) satisfying 

(5.2.1). Let b(9) be strictly increasing in 9 and let k be an integer. 

Then by theorem 6.2.1 of Bickei & Doksum(1976), Xa(X;) is an 

optimal test statistic for testing 

HQ : 6 < 90 against 

H, : 9 > 90 

and an a level test is 

<Kx) = 1 , if la(Xj) > c and 

<|>U) = 0. otherwise, 

where c is determined by 

M<t>(X)} = «, 
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or, P{-2b(0o)Xa(Xi) > -2b(0o)c } = a 

or, P{ X
2

nk > -2b(90)c } = a . 

Let -2b(e0)c = x 2
n k i ( 1 . a ) . 

Thus c = [x2nk,(i- a)V{~2b(%)) a n c i t n e Power function is 

Ee( «X)} = Pe{ la(Xj) > c } = Pe{ X
2
nk * Jb(6) X2

rik,(1.a)}/b(0o)]}. 

Here, the word optimal is used in the sense of UMP. Other UMP tests 

are given in section 5.3. 

Example 5.4.1. Let X1f X2 , . . . , Xn be a random sample from G(p,0). 

Then the likelihood function is 

L(0,x) = [(Xlx2....xn)P-i exp{-Zx,/e}]/[enP{(p-1)in , 

where 0>O, Xj>0 and p is known. We want to test, 

HQ : 0 <90 against 

H, :0>0 O . 

Here b(0) = -1/0 is strictly increasing in 0. Hence an a level 

optimal test is 

<t>(x) = 1 , if XXj > c and 

<Kx) = 0 , otherwise. 

Here, k = 2p, b(6) = -1/0, c = (1/2)0O x2
2np,(i-a) . ^)^(^o) = V ® 

and2XX/0 is distributed as a Central Chi-square with 2np d.f. 

Therefore, the power function is P{ x2
2 n p^(eo / e) X2

2np,(i-a)} • 

If 0 = 0O, then power is a and 

if 0 > 0O, then power > a . 

This implies that the test is also unbiased. 
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5.5 Identification of the Best Population in the 

Transformed Chi-square Family 

Bechhofer (1954) and Bechhofer et al. (1955) introduced a single 

sample multiple decision procedure for ranking means and 

variances of normal populations respectively. Similar procedures 

are discussed by many authors for other populations. A general 

identification procedure and the probability of correct 

identification of the best population or subset of populations in 

Transformed Chi-square family are given below. 

Let Xjj (i=1,2, . . ,p ; j=1,2, . . ,NJ; XNj=N) be independently 

distributed with p.d.f. /(Xj j,9j)=exp[a(Xj j)b(0j)+c(0j)+h(Xj j)] and 

satisfying the conditions 2c'(9j)b(0j)/b'(0j) = kj , where 0j are 

unknown. Let 6m < O^i < ©[31 ^ • • • ^ G[pi
 b e t n e ranked Bj ; it is 

assumed that we do not know which population is associated with 

Grji, i=1,2,. . ,p. Let us assume that a population is characterized by 

the value of the parameter 0, with the 'best' population being the 

one having the largest 0 , the 'second best' being the one having the 

second largest 0, and so on. On the other hand, we may define the 

'best' population as being the one having the smallest 0, the 'second 

best' being the one having the second smallest 9, and so on. 

However, the mathematical theory is the same for both cases. The 

p populations may be the populations of p different cities or 

counties and Vj(0) may be the average income of the people of the 
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ith city or county, where Vj(0) is a one to one function of 9. For 

example, if the income follows a Pareto distribution, then the 

average income will be of the torm \|/(9) = 0/(1+ 0). We are 

interested in identifying a population having the largest average 

income, which is equivalent to identifying a population with the 

largest 0. The p populations may be p different telephone exchanges 

and\j/j(0) may be the average time interval between two successive 

calls at the ith exchange. The time interval between two 

successive calls follows the Exponential distribution with mean 9. 

The telephone company may be interested in identifying the 

telephone exchange earning the maximum profit or the minimum 

profit. We would like, on the basis of a sample of N=XNj 

independent observations, to make some inferences about the true 

ranking of the populations. Our inferences will be based on the 

sample estimates of some function of 9. The MVBUE of-kj/2b(0j) is 

Xa(Xj :)/Nj =aj (say) for the ith population. Let the sample estimate 

and sample size associated with the population having population 

parameter 9m be denoted by a/j\ and N/JN respectively, i=1,2, . . ., 

p; that is the expected value of a/j\ is \|/(9m). 

The ranked as are denoted by 

a [ 1 ] < a [ 2 ] < - - - - < a [ p ] (5-5-1) 

The event as = a: (i*j) has probability zero and can be ignored in 

probability calculations. However, in practical situations this 

event can occur frequently because of the limitations of the 

measuring instrument of any experiment. If two or more a, are 

i 
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equal,, they should be ranked by using a randomized procedure which 

assigns equal probability to each ordering. Let us assume that 

a j j = b(9m)/b(e[j]), (i,j = 1,2 p) . 

Goals : Different goals are appropriate for different practical 

situations. In each situation it is the experimenter's responsibility 

to decide what the goal is before taking a sampie. 

For example, the goal may be to find any of the following :-

(i) The best population 

(ii) The best two populations with regard to order 

(iii) The best two populations without regard to order 

(iv) The best three populations with regard to order 

(v) The best three populations without regard to order, and so on. 

The choice of a goal may depend on economic and other 

considerations outside the control of the statistician. These goals 

are the special cases of the following two representative goals. 

Goal 1: To divide the p populations into two groups, the t 

best(unordered) and p-t worst(unordered) populations, where 

1<t<(p-1). 

Goal 2: To divide the p populations into t+1 groups, the t 

best(ordered) and the p-t worst(unordered) populations, where 

1<t<(p-1). 

It is obvious that, for Goal 1, the problem of choosing the t best is 

equivalent to choosing the p-t worst. On the other hand, for Goal 2, 

if t=p-1, then we need a complete ranking. The two goals coincide 

for t=1. 
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Assumptions: For goal 1 it is assumed that the experimenter can 

specify a smallest value of a t+-j t , say a * t + 1 t , that he desires to 

detect. He also must specify the smallest acceptable probability of 

achieving Goa1 1 when a t + 1 t >a* j . + 1 j . . 

For Goal 2 it is assumed that the experimenter can specify a 

smallest valte of each <Xj + -| j , say a* j+ i j (i = p-t+1, p-t+2, . . , p) 

that he desires to detect. The experimenter also must specify the 

smallest acceptable probability of achieving Goal 2 when aj + ^ j > 

a* i + 1,j ('=P-t+1. P-t+2, . . ., p). 

5.5.1 Identification Procedure 

Having chosen a goal, the statistical procedure is elementary. We 

take a random sample of Nj observations from the ith population 

(i=1,2, . . ,p). Then we compute the p-statistics a-), a2 , . . ., ap and 

arrange them in ascending order of magnitude like (5.5.1). We then 

take the decision as follows : 

If our goal is (i), the population associated with arp i is the best 

population. If our goal is (ii), the populations associated with arD-, 

and ai-p.-ji are the best and second best populations respectively. If 

our goal is to find (iii), (iv), etc., we can make similar statements. 

In general, for Goal 1 the populations that give rise to the t 

largest aj are the t best populations and the p-t remaining 

populations are the worst populations. For Goal 2, the populations 

that give rise to the largest, second largest, , . ., t-th largest aj are 

H 
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the best, second best t-th best populations respectively, and 

the remaining p-t populations are the worst populations. 

5.5.2 Probability of Correct identification 

To calculate the probability of correct identification, we must 

first state our goal. A general goal can be expressed as follows :-

To find the ps best populations, the ps_-| second best populations, 

the ps_2 third best populations, etc., and finally the p1 worst 

populations. Here p1 , p2 , . . , ps (s<p) are positive integers such 

that X Pj = p . The probability of a correct ranking associated with 

this can be written as : 

P[max{a 1 , a 2 , . . , a P | }<min{a p | + 1 , a p ) + 2 , . . , a P ) + p 2 } l 

nm%v V ' • -VP,} Kmin{£Wi'aPl+P2+2" • " V P ^ 
max{Vp,-P.1+i W<min{Vps+i 'aP-Ps+2 aP» 

If we assign particular values to s and pj we obtain severai special 

cases of interest. For example, for s = 2; pn = p-t, p2 = t, we have 

P[max{ a ( 1 ) ( a (2),...,a (p. t )} < min{a ( p . t +1 y a ( p . t + 2 ) a(p)}] (5.5.2) 

For s = t+1; p-j = p-t and p2 = p3 = . . . .= pt+-| =1 we have 

P[max{a ( 1 ) ,a ( 2 ) , . . . ,a ( p . t )}<a ( p . t +1 )<a ( p . t +2 )<...<a ( p )}] (5.5.3) 

and for s = p ; p̂  = p2 = . . . .= pt = 1, we have 

P {a ( 1 ) <a ( 2 ) < . . . . < a ( p ) } . 

Thus (5.5.2) is the probability that the best population will yield 

the largest sample statistic aj, then (5.5.2) for t=1, 2, 3 is the 

H i 
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probability of a correct ranking associated with (i), (iii), (v) 

respectively. Also (5.5.3) for t - 2, 3 is the probability of a correct 

ranking associated with (ii), (iv) respectively. Evidently (5.5.2) c.r«d 

(5.5.3) represent the probabilities of correct ranking for Goals 1 

and 2 respectively. The expression (5.5.2) can be written as 

P-t 

XP[max{a ( 1 ) , . . ,a ( J i ) ,a ( | + 1 ) , . . (a ( p t )}<a ( ] )<min{V t + 1 ) a(p)}] 

P- I 

^ P { a ( i ) < a ( j ) < a ( 0 : ' - 1 . 2 . --J -U+1.--.P- t } 
H l=p-t+1, p-t+2 p 

= £ P r a ( i ) < a ( i ) ; i - i . 2 , . . j - i . i + i . . , P - t 1 ( 5 5 4 ) 

j=i \ a >aa) ; |=p-t+1,p-t+2,...,p J 

By theorem 5.2.1, -2Xa(Xj j) b(Brj]) = - 2 N ( i ) a ( i ) b(0rj]) = U ( j ) (say) 

is distributed as a Gamma variate with parameters k/j\/2 and 1/2. 

Therefore, (5.5.4) can be written as 

p-t V s ! H u ( i ' i- ' '2 ' ' i- i ' i+ i ' --p- t 

( j ) 

Nd) U >-Ii-a..U ; I =p-1+1, p-t+2 p 
(I) N . ij (j) y 

(J) 

If for each j the above probability is evaluated for U/j\ fixed (say 

at u), and the expectation is taken over u, then (5.5.4) can be 
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written as 

SjiflftT^^^nliH^^^V'** (5-5-5) 
j=ir j 1=1 "» l =P" , +1 Q) 

' * j 

where f j (u) and F: (u) are the probability density function and 

cumulative distribution function, respectively, of the Gamma 

variable U with parameters k/j\/2 and 1/2. The probability (5.5.2) 

can be evaluated for arbitrary values of Nj and aj j (i,j=1,2, . . , p) 

using (5.5.ii). If N1 = N 2 = . . . = Np = n (say) then (5.5.5) will be of 

the following form 

n 
Oj[ oo p-t 

IfinnviHlll'I'V'"';'")* 
J = 1 o i = 1 i=p-t+i 

The expression (5.5.3) can be written as 

p-t 

X 
j - 1 

Xp[max{a(1),..^ (J. l ).a ( |+1)...,a (p. t )}<a0)<a (p_ l + l )<..<a (p )] 

" § p [ ^ > < ^ > < V . + i > < - ' < a < P ) ; i = 1 ' 2 ' - , M ' i + 1 ' ' - ' p_tl 

•} I 
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p-t 

XI 
j=1 

"a < a ; i = 1,2, . .,j-1,j+1, . .,p-t 

V t + D > a(j) 

a > a 
(P) (p-1) 

p-t 

U ( i ) < T ^ a i i U ( i ) ; i = 1 ' 2 ' - - ' j - 1 J + 1 , - - p " t 

J. , .. >—r. a ( < . U... 
(p-t+1) N p-t+1,] (]) 

(j) 

N 
U ^ r r ^ a < U, .. 

(f* N, „ p.p-1 (p-1) 
(p-1) 

(5.5.6) 

If N-j = N2 = . . . = Np = n (say) then (5.5.6) can be written as 

p-t 

XH 

' U ( l , < 0 « U ( D : W A 

U > a , . . U. 
(p-t+1) P-t+i .j (j) 

(p) F-P"1 (P-1) 

.J-1J+1, • .,p-t 

On the other hand, if we define the 'best' population as being the 

one having the smallest 0, the 'second best' being the one having 

p i 
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the second smallest 0 and so on, then the probability of correct 

ranking for Goal 1 will be of the following form 

P[max{ a ^ j , a(2),...,a(t)} < min{a(t+1), a(\+2)>->a(p)Yl v5-5-7) 

Here s = 2, p1 = t and p2 = p-t. 

For s = t+1; p-j = p2 = .. .= pt =1 and p t + 1 = p-t we have 
p[a(1) < a^2) < . . . < a( t j < min{a^t+1 j , a^+ 2 ) , • • •, a^pj}] (5.5.8) 

Thus (5.5.7) is the probability that the best population will yield 

the smallest sample statistic aj, then (5.5.7) for t =1, 2, 3 is the 

probability of a correct ranking associated with (i), (iii), (v) 

respectively. Also (5.5.8) for t = 2, 3 is the probability of a correct 

ranking associated with (ii), (iv) respectively. Evidently (5.5.7) and 

(5.5.8) represent the probabilities of correct ranking for Goals 1 

and 2 respectively. The probability expression (5.5.7) can be 

written as 

t 

gp[max(a ( | ) , . . . a ^ . a ^ , ...a(t)} < affl < min(a(t+1) a(p)>] 

t 

Xp[max(a ( l ),..,a (. l ),a (. t i ),..,a( t )(<a (. )<mln{a (u l ) a(p))] 

£ P{a(D * a(D < a(D : '-1.2. • • . M . i + V - . t } 
i=1 l=t+1,t+2 p 

•£P/V 
r- l a ( l ,> -

a(i) : ' - i .2 . -J- i .H. - - . t , { 5 5 9 ) 
a(]) ; i=t+i,t+2 p / 
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By theorem 5.2.1, -2Xa(Xj j) b(6rj]) = -2N ( j ) a ( i ) b(0[ j]) = U ( j ) (say) 

is distributed as a Gamma variate with parameters k/,\/2 and 1/2. 

Therefore, (5.5.9) can be written as 

XP 
J=I 

L 

N 
u ( i > < F A a - j u ( i > ;i = " i . 2 . - - >M . i+ i - - - t 

^ N H ^
 :l= t+1> t+2 p 

d) 

If for each j the above probability is evaluated for U/j\ (fixed say 

at u), and the expectation is taken over u, then (5.5.9) can be 

written as 

z jriFj^^^n^-^K^v^v"^" (55-io) 

J-1 0 1 = 1 (I) l-t+1 ()) 

where fj (u) and Fj (u) are the probability density function and 

cumulative distribution function, respectively, of the Gamma 

variable U with parameters k/: \/2 and 1/2. 

If N^ = N 2 = . . . = Np = n (say) then (5.5.9) will be of the following 

form 

p 

£T[n^v>nIlM<v>>] 
i=1 A 1=1 l = t+1 

f.(u)du 

j - 1 6 i=1 
i *l 



101 

Example 5.5.1. Let Xj j be iid random variables distributed as 

N(nj,aj2), (i=1,2, . ., p; j=1,2, . .,Nj). We assume that the u.j's are 

known and that the Oj2's are unknown. Let c m ^°[2] - • • • - a [p ] 

be the ranked Oj2. Suppose that it is not known which population is 

associated with am2- We further assume that for the ith 

population, the only parameter of interest is the population 

variance o-j2. The 'best' population being the one having the 

smallest variance, the 'second best' being the one having the second 

smallest variance, etc. The p populations may be p different 

measuring instruments and Oj2 may be the population variance of 

measurement of the ith instrument. This variance, which 

characterises the reproducibility of repeated measurements of the 

same quantity, can be used as an index of the precision of the 

measuring instrument. We would like, on the basis of a sample of 

INj = N independent observations, to make some inferences about 

the true ranking of the populations. 

The p.d.f. of Xj j is exp{-(Xj : - jij) 2/(2 Cj2) - In Oj -lrW(2rc)}. 

Therefore, a(Xj j) = (xj j - u.j) ^ 

b(oj) = -1/(2 aj2) ; c( a;) = -In <jj ; 0, = Cj 

a i=Xa(x i j ) /N i = X ( x u - U j ) 2 /N j 

k i =2c ' ( c i ) b ( c i ) / b'(oj) = 1 

Evidently aj is the MLE of Cj2. Let the ranked aj be denoted by 

a m < a [ 2 ] < . . . . < a [ p ] . 
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Thus the population associated with ar-n is the best population and 

the population associated with ar2 i is the second best population, 

and so on. The probability of correct identification can be obtained 

by using the expression (5.5.10) and remembering that k/j\ = 1 and 

ajj are the ordered variance ratios (i, j =1,2, . ., p). 

Example 5.5.2. Let Xj j be iid random variables distributed as 

Exponential distributions having density of the form 

/(Xj j) = (1/9j)exp(-Xj j/9j), Xj j > 0 , 

i = 1,2 p; j = 1,2, . ., Nj. 

Here, 9j are unknown parameters. Let 0r-n < 0r2i < ©1-31 ^ ^ e rp i be 

the ranked 0j. It is not known which population is associated with 

0rjj, i=1,2,. . , p. The p populations may be p telephone exchanges and 

Xj j may be the time interval between jth and (j+1)th calls of the 

ith telephone exchange. We are interested in identifying the 

telephone exchange which earns the minimum profit, so that we 

can take preventive measures or increase the facility to improve 

the situation. 

A telephone exchange with the highest average time interval will 

produce the lowest profit. The average time interval of the ith 

telephone exchange is 0j. Thus, to identify a telephone exchange 

with the highest average time interval is equivalent to identifying 

a population with the largest 0j.That is, 0rp-. is associated with the 

telephone exchange earning the lowest profit. 

Let aj j = Grj-j/ 0rn be the ratios of the ordered average time 

intervals. We have for Exponential distribution, 
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a(Xj j) = xy , b(9j) = -1/0j, c(0j) = -In 9j. 

Therefore, a; = Xa(Xj j)/Nj =XXJ JH{ = Xj 

kj =2c ' (9 j )b(9 i ) / b'(9j) = 2 

-kj/2b(8j) =9j 

By theorem 5.3.1, as = Xj is the MVBUE of 9j. Let the ranked as be 

denoted by 

a [ 1 ] < a [ 2 ] < - ' < a [ p ] • 

Thus the telephone exchange associated with arpi is the one earning 

the lowest profit and the telephone exchange associated with arp_ 

1j is the one earning the second lowest profit, and so on. The 

probability of correct identification can be obtained by using the 
* 

expression 5.5.5 for given values of a: ; say a; : . 
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TABLE 5.1: CHARACTERISTICS OF SOME DISTRIBUTIONS BELONGING TO THE 

TRANSFORMED CHI-SQUARE FAMILY. 

Name of Distribution a(X), b(0), c(0) , -2a(X)b(e) , k 

with p. d. f. 

Normal X 2 , -1 /20 2 , -1 no, X2 /©2 , 1 

{exp( -x 2 /20 2 ) } / {0V(2n) } 

Lognormal (InX)2 , -1 /20 2 , -In0, ( lnX) 2 /0 2 , 1 

{exp[-( lnx)2 /202 ] } / {0xV(27t)} , 

Exponential X, - 1/0 , -1 ne, 2X/0 , 2 

{exp(-x /0) } /0 , 

Gamma X, - 1 / 0 , -p In0, 2X/0, 2p 

xP-'{exp(-x/0)}/{0P(p-1)l} , 

Rayleigh X2 , -1 / 202 , -2 In© , X2/ 02 , 2 

x {exp( -x 2 /20 2 ) } /0 2 , 

Pareto InX , - 0 , In0, 20lnX , 2 

ex- (^D 

Weibull X , - 0 , Ine, 20XP, 2 

0pxP_1exp{-0xP} , 

Eriang X, - 0p , pln0, 20pX, 2p 

(ep)PxP'1{exp(-P0x)}/(p-1)l , 

Maxwell X 2 , -0/2, (3/2) InB, 0X2 , 3 

V(2/ir) 0 3 / 2 x 2 e x p { - ( 0 / 2 ) x 2 } , 

Inverse Gaussian (X-p) 2 /p 2X, -0/2, ( ln0)/2, 0(X-p) 2 /p 2X, 1 

V {0/2 j ix3 }exp{-0(x-p)2 /2p2x} , 



Appendix 1 

Fortran Program 

INTEGER s1,s2,s3 

REALu 

COMMON /DAT/ s1,s2,s3,u 

REAL Y(200),YSTAR(200),BSTRAPV(2000,200) 

OPEN (unit=5,file='horse.dat',form='formatted',status='old') 

OPEN (unit=6,file='horseout.dat',form='formatted',status='new') 

N=200 

NBOOT=2000 

DO 10 l=1,N 

READ(5,*) Y(l) 

10 CONTINUE 

C Enter the three seeds 

s1 = 297+I 

s2 = 1907 

S3 = 859+2*1 

WRITE(6,104) 

104 FORMAT(' SAMPLE* ',' POISSON ',' G.POISSON ', 

$' G.N.BINOMIAL ') 

105 
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WRITE(6,*) ' 

$ ' 

WRITE(6,*) ' 

DO 20 1=1 ,NBOOT 

DO30J=1,N 

call random 

ll=INT(u*N) + 1 

YSTAR(J)=Y(II) 

BSTRAPV(I.J) = YSTAR(J) 

30 CONTINUE 

THBAR=0 

DO40J=1,N 

THBAR=THBAR+BSTRAPV(I,J) 

40 CONTINUE 

THBAR = THBAR/N 

THVAR=0 

DO50J=1,N 

THVAR=THVAR+(BSTRAPV(I,J)-THBAR)**2 

50 CONTINUE 

THVAR = THVAR/(N-1) 

THTAR=0 

DO60J = 1,N 

THTAR = THTAR + (BSTRAPV(I.J) - THBAR)**3 

60 CONTINUE 

THTAR = THTAR/N 

THFAR = 0 

DO 70 J = 1 ,N 
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THFAR = THFAR + (BSTRAPV(I.J) - THBAR)**4 

70 CONTINUE 

THFAR = THFAR/N 

THPO = THVAR - THBAR 

THGP = (3/2 - (THTAR)*(THBAR)/(2*(THVAR)**2))**2 

-THBAR/(THVAR) 

THGN1 = 15*(THVAR)**4 +2*(THBAR)*((THVAR)**3) 

THGN2 = THGN1+ (THBAR*THTAR-3*((THVAR)**2))**2 

THGN3 = THGN2 

$ - ((THBAR)**2)*(THVAR)*(THFAR-3*((THVAR)**2)) 

THGNB = THGN3 + 10*(THBAR*THTAR 

$ - 3*((THVAR)**2))*((THVAR)**2) 

WRITE(6,102) l,THPO,THGP,THGNB 

102 FORMAT(I10,4F13.5) 

WRITE(6,*) ' 

20 CONTINUE 

STOP 

END 

SUBROUTINE RANDOM 

c This random number generator appeared in the 

March, 1987 issue of Byte magazine, 

c The algorithm uses three 2 byte integer seeds 

s1, s2 and s3 to produce a real between 0 and 1. 

c The cycle length is around 7 E+12. That is, if 

1000 numbers are generated every second then the 
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numbers will not repeat for 220 years. 

INTEGER. s1,s2,s3 

REAL x.temp 

COMMON /DAT/ s1,s2,s3,x 

c First generator 

s1 = 171*MOD(s1,177) - 2*(s1/177) 

IF(sl.LT.O) s1 = s1 + 30269 

c Second generator 

s2 = 172*MOD(s2,176) - 35*(s2/176) 

IF(s2.LT.O) s2 = s2 + 30307 

c Third generator 

S3 = 170*MOD(s3,178) - 63*(s3/178) 

IF(s3.LT.O) S3 = S3 + 30323 

c Combine to give random number 

temp = si/30269.0 + S2/30307.0 + S3/30323.0 

x = temp - INT(temp) 

RETURN 

END 
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