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Absiract

In this thesis we study some aspects of A. Connes' entire cyclic cohomology theory.
This is a new cohomology theory of de Rham type for Banach alg:bras. We prove ¢
comparison theorem which shows that the theory can be formulated in terms of the
Loday-Quillen-Tsygan vicomplex. This allows us to extend the theory to the non-unital
category and is a basis for the rest of the thesis. We improve on the existing formulas for
pairing with K-theory and prove stability and additivity results for the theory. Finally, we
prove a vanishing theorem for actions of derivations on the theory and deduce the homotopy

invariance of the theory.
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Summary of Chapter I

This chapter is mainly expository and should be regarded as an introduction to cyclic
cohomology theory with a view towards entire cyclic cohomology. For our purposes i
this thesis it is important to be familiar with different formulaticns of the theory and explicit
maps between them. In this chapter we will present three different approaches to the
subject. They are based on the cyclic complex {3}, the cvclic bicomplex (also called
Loday-Quillen-Tsygan bicomplex) [18] and finally Connes' (b,B) bicomplex |3].

Our starting point, in Section 1.1, is a periodic sequence relating the Hochschild and
cobar complexes of an algebra [19]. This periodic sequence can be naturally interpreted as a
bicomplex called the cyclic bicomplex of the given algebra. In Section 1.2 we define the
cyclic complex of an algebra as a certain subcomplex of the Hochschild complex and deline
the cyclic cohomology of the given alzebra as the cohomology of this cyclic complex [3].
We then establish Connes' long exact sequence along the lines suggested in Quillen [19].
One merit of this approach is that the operators S and B appear naturally.

In Section 1.3 we introduce the periodic bicomplex of an algebra [19] and prove that its
cohomology with infinite support vanishes. We then use this result to link the cyclic
complex with the cyclic bicomplex approach. Connes' (b,B) bicomplex is introduced in

Section 1.4. Here, to get off the ground, we need a technical lemma of Connes which says
the E5 term of the first spectral sequence of the (b,B) hicomplex always vanishes ([3],

Lemma 36; the fundamental lemma). We give a straightforward proof of this important fact
and use it, in a way similar to Section 1.3, to link the cyclic complex approach to the (b,B)
biccmplex approach ([3], Theorem 40).

At the end of this section we prove a certain map, defined in Loday-Quillen [ 18], from
the cyclic complex to the (b,B) bicomplex is a quasi-isomorphism. An extended form of
this map and the associated comparison theorem, proved in Chapter II, plays an important
role in later chapters. Section 1.5 deals with periodic cyclic cchomology as a jumping

board for entire cyclic cohomology. We prove that the original definition, obtained by



Po

inverting the operator S, cvincides with the cohomology of (b,B) ([3], Theorem 40) and
the periodic bicomplex. This section ends with an example which illustrates the effect of

growth conditions in the context of deRham cohomology.

Summary of Chapter II

This vhapter starts with vecalling the definition of entire cyclic cohomology of unital
Banach algebras from Connes' paper [4]. As it is shown in [4], this theory (like its
ancestor, ordinary cyclic cohomology) can be paired with topological K-theory. In Section
2.2, starting from Connes' formula in [4], we will derive a formula for this pairing which
unlike the formulas in [4] and [12] does not require any technical conditions to be satisfied
by the entire cocycle. In Section 2.3 we prove a comparison theorem which shows that the
complex of entire cochains in Connes’ (b,B) bicomplex is homotopy equivalent to the
complex of entire cochains in the periodic (Loday-Quillen-Tsygan) bicomplex. This result
allows us to extend the entire cyclic cohomology functor to the category of non-unital
Banach algebras and plays an important role for the rest of this thesis In Section 2.4 we
show how one can use the above comparison theorem together with a result from
Loday-Quillen [18] (extended to the entire case) to prove that inner derivations act trivially
on entire cyclic cohomology groups. A Cartan type formula, due to Getzler and Szenes
[12} plays an important role here. At the end of this section, we use the above result to
prove, via more-or-lcss standard methods, Morita invariance and additivity theorems for

entire cyclic cohomology groups.

Summary of Chapter III

In this chapter we prove that any (continuous) derivation from one Banach algebra into
another induces the zero map between entire cyclic conomology groups. As a result of this
we can prove a homotopy invariance theorem for entire cyclic cohomology which shows the

theory is invariant under smooth deformations. The proof works in finite dimensional case




as well and implies, as a special case, & theoren of Goodwillie [13] which says that
derivations act like zero on periodic cyclic cohomology groups. The proofs are however
very different and based on entirely different ideas. There is little wonder here since the
proof in [13] does not generalize to the infinite dimensional (i.e. entire) case

Our proof is based on the theory of infinite dimensional cycles [4] and makes use of the
comparison theorem together with some reductions on the type of the cocycles. In [11] (see
also Cuntz' papers [10] and {9] for announceiaents and earlier versions) Cuntz and Quillen,
working in the context of Cuntz algebras QA and traces on them, characterize all those
traces (normalized cocycles) which correspond to coboundaries. This is a remarkable result
and clearly indicates the power of the Q-approach (Cuntz algebras) to cyclic cohomology.

The main result of this chapter can also be deduced from this result of Cuntz and Quillen.



Introduction

The goal of A. Connes' noncommutative geometry ([3], [4], [S]) is to study
noncommutative -- or quantum -- spaces and their invariants. Cyclic cohomoiogy is a
theory of invariants, of differential geometric nature, for these spaces. Entire cyclic
cohomology, which the study of some aspects of it is the subject of this thesis, is an infinite
dimensional version of cyclic cohcmology. Before discussing the content of the thesis in
detail, let us review, in broad terms, the general program of noncommutative geometry.

Let us start with the notion of a noncommutative space first. A key idea towards
understanding this concept is the well-known relation between a (classical) space and the
(commutative) algebra of functions on that space. This idea is made precise by, for
example, Gelfand's theorem in the theory of C*-algebras which shows that the category of
locally compact topological spaces is anti-equivalent to the category of commutative
C*-algebras; or by the so-called geometrization functor in algebraic geometry which defines
an anti-equivalence between the category of affine schemes. Based on these facts one can
think of a noncommutative algebra as a first approximate to a new kind of space, a
noncommutative space.

On the other hand it is also well known that in quantum mechanics the commutative
algebra of classical observables, i.e. functions on the phase space, is replaced by the
noncommutative algebra of quantum mechanical observables, i.c. operators on a Hilbert
space. In other words, at least one approach to quantization, namely the canonical
quantization, amounts to replacing functions by operators and commutative algebras by
noncommutative algebras (some extra conditions must of course be satisfied e.g. the
Poisson brackets should be preserved etc....).

To sum up, we see that one can think of dropping the commutativity assumption on the
algebras involved as a first step in passage from classical, commutative spaces to quantized,

noncommutative spaces. We refer the reader to [3] and [5] for some interesting examples.



Now, a general method to find the noncommutative analogue of vaxious notions of
geometry and topology suggests itself. Namely, one has first to replace the space X by the
commutative algebra A of functions (of a suitable type) on X and then try to define the
concept involved in terms of A only and without any reference to the commutativity of A .
Based on this new definition one can then try to generalize the concept at hand to an
appropriate class of noncommutative algebras. It should however be inentioned that this
method has only been partially successful. Moreover iit some cases, like deRham
cohomology, the right generalization, which is cyclic cohomology, was discovered in an
indirect way and through other considerations. We will discuss the cyclic cohomology and
its origins later in this introduction. But before that, let us consider two examples of the
success and failure of the above mentioned method.

An interesting example of the success of the above mentioned method is K-theory.

This theory was originally formulated for topological spaces only. To extend the K-functor
(at least in degree zero) to arbitrary algebras one can use a theorem of Serre and Swan
which shows that vector bundles on a topological space { are in one-to-one
correspondence with finitely generated projective modules on the algebra A = C(X) of
continuous functions on X . Based on this result and the definition of the K-theory of X
as the Grothendieck group of the semi-group of (isomorphism classes) of vector bundles on
X, one can then define the K-theory (in degree zero) of any algebra A to be the
Grothendieck group of the semi-group of finitely generated projective modules over A . In
this way one obtains an important invariant, namely the topological K-theory, for
noncommutat e C*-algebras. Closely related to vector bundles and K-theory is
Chern-Weil theory of characteristic classes where one constructs invariants of bundles using
connection-curvature approach. We refer the reader to [3] and [20] where an analogous
noncommitative theory is developed.

For the second example let us discuss a situation where a satisfactory definition of a

noncommutative analogue of a classical concept has not been found yet. Ironically, this is



concerned with the very notion of a smooth quantum space itself. Recall that von-Neumann
algebras (respectively C*-algebras) can be regarded as the noncommutative analogue of
measure spaces (respectively topological spaces) and this idea has played an important role
in the development of these two fields (see the introduction to [3] for more on this).
However, up to now, no definition of a noncommutative geometric space (smooth
manifolds, Riemannian manifolds, etc....) has been proposed. For more on this we invite
the reader to consult Connes' article [5] where a purely operational definition of a metric
(arising from a Riemannian metric) is acheived.

After these rather general remarks on noncommutative geometry we would like to
specify the rest of this introduction to a discussion of the cyclic cohomology and in
particular entire cyclic cohomology. Cyclic cohomology has two origins. In the work of
Tsygan [22] and also Loday and Quillen [18] cyclic cohomology appears as the primitive
part of the Lie algebra cohomology of the algebra of matrices over a given algebra. We
won't pursue this aspect of cyclic cohomology in this thesis. In the fundamental work of
Connes [3], on the other hand, cyclic cohomology appears as a noncommutative analogue
of deRham homology of currents for smooth manifolds and in particular as a target space
for a chern character map *rom K-homology. In other words, in Connes' work cyclic
cohomology appears as a basic tonl of noncommutative geometry. Since K-homology
plays an important role both in the definition and applicatioas of cyclic and entire cyclic
cohomology, in the next few paragraphs we will briefly explain K-homology and its impact
on cyclic cohomology.

Recall that K-homology is the dual of K-theory in the sense that there exists a natural
and nontrivial pairing between the two. By general abstract arguments from algebraic
topology one knows that such a K-homology functor exists. The important question was -
and still is! - to describe the K-homology cycles in a concrete form. By the work of Atiyah;
Brown, Douglas and Fillmore [1]; and Kasparov, one can say, roughly speaking, that

K-homology cycles on X are represented by abstract elliptic operators on X and while



K-theory classifies vector bundles on a space X, K-homology classifies elliptic operators
on X . Moreover, the required pairing now takes the form ([D],[E]) = index of the elliptic
operator D with coefficients in the vector bundle E. Now, one good thing about this way
of formulating the K-homology is that it is operational and hence extends to a non-
commutative setup. The corresponding cycles are called Fredholm module by Connes | .
More precisely, a (unbounded, odd) Fredholm module over an algebra A is a pair

(H,D) where H is a Hilbert space and D is a selfadjoint operator on H together with a

representation m: A — I(H) such that (i) (1+D2)‘1 is a compact operator and (ii) for

all ae A, [D,n(a))] is a bounded operator. The Fredholm module is said to be finitely
summable if ‘or some p, (1+D2)‘P is a trace class operator. As is discussed in [ ], finite
summability, in commutative case, is a characteristic of finite dimensions and one should
expect that it fails in infinite dimensional examples. Let D be the Laplacian on flat n-torus.
The spectrum of D is easily calculable and one can check that ( 1+D2)‘p 1s a trace class

operator iff p> T and hence the failure of finite summability in infinite dimensions). The

question of existence of finitely summable Fredholm modules over highly noncommutative
C*algebras is investiga‘ed in [5] and very general negative results is obtained. As a simple
example, it is easy to see ihat some naturally defined Fredholm modules over group
C*-algebras of discrete groups in which the (word) length function is not of polynomial

growth fail to be finitely summable (see [5]). However in all of these examples a weaker

summability condition is satisfied, namely the heat operato: e'tDz is trace class for all
t>0. These Fredholm modules are called 6-summable by Connes. Remarkably enough,
the rigorously defined Wess-Zumino model of A. Jaffe et al. in quantum field theory [14],
[15] can be interpreted as defining a 6-summable Fredholm module over the infinite
dimensional manifold loopspace of S' (see [5]). The operator D in this model is a Dirac

operator on this loop space. A quantum algebra in the sense of Jaffe et al. in [15] is, more

or less, a 6-summable Fredholm module.



Next recall that the chern character, in its smooth version, is a natural transformation
between K-theory and deRham cohomology theory. In [3] Connes extends this chern
character to a noncommutative setup. More precisely for each finitely summable Fredholm
module (H,D) over an algebra A acocycle ch(H,D) in the periodic cyclic cohomology of
A is defined. Several definitions of the cyclic cohomology of algebras is given in [3]. In
particular, for any algebra A a bicomplex, called Connes or (b,B) bicomplex of A ,is
defined and the periodic cyclic cohomology of A is defined as the cohomology of this
bicomplex. See [3] or chapter I of this thesis for definitions. In [4] it is observed that if,
instead of cochains with finite length in the total complex of (b,B) bicomplex, one
considers cochains with infinite length which also satisfy a certain growth condition then
one obtains a cohomology theory which is an infinite dimensional analogue of periodic
cyclic cohomology. This is called entire cyclic cohomology. With this cohomology theory
at hand, the definition of chern character can be extended to the infinie dimensional case,
i.e. to B-summable Fredholm modules. Indeed there are two such definitions due to
Connes [4] and Jaffe, Lesniewski, Osterwalder [14]. In [6] it is shown that the two
cocycles are indeed rohomologous.

There are some major technical differences between cyclic and entire cyclic cohomology
groups that makes it much harder to prove general results about the latter. For example, an
important role in cyclic cohomology is played by the Connes long exact sequence relating
cyclic and Hochschild theory (see [3] or chapter I of this thesis). Since Hochschild
cohomology is a derived functor, this inakes all the techniques of homological algebra
available. In particular in all of the known calculations of cyclic cohomology one first
calculates the Hochschild cohomology, using a convenient resolution, and then uses the
above result to calculate the cyclic cohomology (see the examples at the end of [3]). There
are no long exact sequences or even spectral sequences relating Hochschild and entire cyclic
cohomology. This means that new methods and ideas, particularly designed for entire

cyclic cohomology are needed and partly explains the lack of a good supply of examples



whete entire cyclic cohcmology is completely known. On the other hand to establish certain
properties, like Morita invariance (in a restricted sense) and additivity, it is enough to know
that inner derivations act as zero on entire cyclic cohomology. In this thesis we prove the
most general result of this sort, namely any continuous derivation act as zero on entire cyclic
cohomology. This result is of course the infinitesimal form of homotopy invariance of
entire theory under smooth deformations. There are certain technicalities about the use of
normalized cochains in entire theory and also non-unital algebras. We prove a comparison
theorem which shows the complexes of entire cochains in (b,B) bi-complex is homotopy
equivalent to the complex of entire cochains in Loday-Quillen-Tsygan bicomplex. This
result proved to be quite useful in getting around the above-mentioned technicalities. A

detailed summary of chapters will follow.



Chapter 1
1.1. The Cyclic Bicomplex

In this section we will first introduce the Hochschild and the cobar complex of an
algebra. Using an action of cyclic groups on these complexes, we then define chain maps
between them resuiting in a periodic exact sequence of Hochschild and cobar complexes.
This periodic sequence can be interpreted in a natural way as a bicomplex, called the cyclic
bicomplex of the algebra. The cyclic bicomplex was first introduced by Loday and Quillen
in {18] based on Tsygan's work [22]. There are two important technical facts about this
cyclic bicomplex that are used very often in this thesis: The rows of the cyclic bicomplex
are exact and, for unital algebras, the odd columns, which are all equal to the cobar
complex, are exact too. We will provide the standard proofs. Finally it should be
mentioned that in the next section we will only use the periodic sequence, and not the cyclic
bicomplex, to prove some basic facts about cyclic cohomology. The cyclic bicomplex will
be used in section 1.3 to give an alternative definition of cyclic cohomology.

Let A be an algebra and for n>0 let CP(A) be the space of (n+1)-linear functionals
on A. When there is no danger of confusion we will simply write C" for C*A). We

set C"= {0} for n<0. Elemeats of C? are called n-cochains or cochains of degree n .

Define maps b,b': C1 — ¢+l py

0 n+l L i 0 i j+1 n+1 n+l n+1 0 n
bO@ yma )= %(-1)J¢(a R AT i S B 1 i Y ek
F

b'q>(a0,...,an+1)= i (~l)j¢(a0,...,aj21j+1,...,an+1) .
=0
We have b2=b2=0,ie. b and b' are coboundary maps. The map b is the
Hochschild coboundary. We will refer to the cochain complex C(A) = (C*(A),b) as the
Hochschild complex of A and to B(A) = (C*(A),b") as the cobar complex of A.

When A is unital the cohomology of the Hochschild complex

10
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s 00 20l by 2

is the Hochschild cohomology of A with coefficients in the A - A bimodule A*
(= CO(A)) . We will use H%(A,A*), to denote the cohomology of the Hochschild complex
in degree n for A unital or not.

Recall that a cochain complex (CP,d) is said to be acyclic if it admits a contracting

homotopy operator i.e.amap s:Cl— ¢-1 guch that ds +sd =id .

Lemma 1.1.1. The cobar complex

— CO h' \Cl h' C2
of a unital algebra is acyclic.

Proof. When A is unital there is a contracting homotopy operator s : Cit1 — ¢
defined by
s0@Y,....aM) = o(1,a0,...,.a")

which has the property b's + sb' =1 ; this proves the acyclicity of the cobar complex of a

unital algebra. o

Remark. If A isnot unital, the cobar complex need not be acyclic. As an example,
take any algebra with zero multiplication. The b' operator (as well as b) is then equal to
zero and the cobar complex has nonzero cohomology in all degrees. However, there are
interesting examples of non-unital algebras where the cobar complex is still acyctic. These
algebras are called H-unital by M. Wodzicki and play an important role in his study of

excision in cyclic homology [23].

Let A be the canonical generator of the cyclic group Z/n+1. This group acts on the
space of n-cochains CP by

A9 @Y,....a0) = (-1)1p(al,al,... a1y |
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We have Al = 1. The corresponding norm operator on CP is defined by
N=1+A+..+AR

and we have N(1-A) = (1-A)N=0.

Lemma 1.1.2. The periodic chain complex
1A cn N,cn 1A con N,
is acyclic.
Proof. Proof of this lemma makes use of the characteristic zero hypothesis. Define
N':CR?—CP by

1 2 n
N =-E+—1(1+27»+3k +..+@DA) .

1
It is easily verified that (1-A) N' + E-_!-TN = 1, so that the complex is acyclic. O

The next lemma records two important {acts in cyclic cohomology.

Lemma 1.1.3. The maps 1-A: C(A) — B(A) and N:B(A) —> C(A) are chain
maps. Thatis, (1-A)b=b'(1-A) and Nb'=bN.

Proof. See Connes [3] or Loday-Quillen [18] for the purely combinatorial proof.

a

Combining Lemmas 1.1.2 and 1.1.3 we obtain a periodic exact sequence

Moy 1B BA) -Noca) b (1.1.4)
relating Hochschild and cobar complexes. This exact sequence and especially its
by-product, the cyclic bicomplex, to be introduced shortly, plays an important role in the
whole subject of cyclic cohomology. For example in the next section we will see how one

can use the periodic sequence (1.1.4) to define the S-operation on cyclic cohomology and to



13

obtain the Connes long exact sequence.

Recall that a bicomplex (C™™,d;,d5) is defined by a family of linear spaces C\1;

(n,m) € Z2 | and differentials dy: CLM cn+lm dy : CI Chm+l ek that
d12=0,dy2=0 and djdy +dyd; =0
1 ) and @jdy Tdad; =U.
By changing the sign of differentials in (1.1.4) appropriately we obtain the cyclic

bicomplex, also called the Loday-Quillen-Tsygan bicomplex, of the algebra. We make this

precise in:

Definition 1.1.8, Let A be an algebra. The cyclic bicomplex of A, C +(A) , 18 the

following first quadrant double cochain complex

T T 1
-b' b
c2-1h 2 N, 2_,
T ) t
-b' b
cl-14 ¢cl-N, ¢l —s (1.1.6)
1 T 1
-b b
012 ON, ~O0__,

b
b

b

where the even columns are all equal to the Hochschild complex while the odd columns are
equal to the cobar complex, with th sign of the differential changed.

It follows from Lemma 1.1.3 that vertical and horizontal differentials in (1.1.6)
anticommute, so that C +(A) is abicomplex. We sometimes simply use C 4 forthe

cyclic bicomplex of the algebra under consideration if there is no chance of confusion.
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1.2. The Cyclic Complex and Cyclic Cohomology

The cyclic cchomology of an algebra was first defined by A. Connes [3] (and
independently by Tsygan [22]) as the cohomology of the cyclic complex of the algebra. In
this section we introduce this cyclic complex and prove some basic facts about cyclic
cohomology. There is an important operation on cyclic cohomology, the so-called
S-operation, Following Quillen [19,20] we define this operation using an exact sequence
relating the cyclic, Hochschild and bar complexes. This exact sequence is itself a
consequence of the periodic exact sequence (1.1.4). We show that up to a scalar factor this
definition of S coincides with Connes' definition in [3]. A fundamental result in cyclic
cohomolegy is Connes' long exact sequence relating the cyclic and Hochschild cohomology
groups. The proof given here is straightforward and is again based on the periodic
sequence (1.1.4). Making the maps in the long exact sequence explicit is the last thing we
do in this section. Here one naturally encounters Connes B-operator which is of
fundamental importance for cyclic cohomology. A deeper study of B will be undertaken in

section 1.4 where we introduce Connes' (b,B) bicomplex.
Let A be an algebra. A cochain ¢ € C*(A) is called cyclic if (1-A) 6=0. Let
CC™(A) be the space of cyclic n-cochains on A . It follows from the relation (1-A) b=

b'(1-A) in Lemma 1.1.3 that if ¢ is cyclic sois b¢ . This means that we have a
subcomplex CC(A) = (CC*(A),b) of the Hochschild complex. Itis called the cyclic
complex of A . Using the periodic exact sequence (1.1.4), we obtain the following exact

sequence relating the cyclic, Hochschild an.] cobar complexes of an algebra:

0 — CC(A) 1= C(a) 13 B(A) Nocca) — 0 . (1.2.1)

Definition 1.2.2. The cyclic cohomology HC*(A) of an algebra A is the

cohomology of its cyclic complex CC(A) .
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Cyclic cohomology is a functor: a homomorphism f: A — B induces a moiphism
of complexes £*: CC(B) — CC(A) , £*¥(¢) = ¢of forall ¢ e C(B), hence linear

maps f* : HC*(B) — HC*(A).

There is a fundamental operation of degree 2 on cyclic cohomology called the
S-operation. Connes' definition of S in [3] is based on his theory of cycles over algebras
and their tensor products: using cycles he defines a canonical operator S of degree 2 on
cyclic cocycles which induces the operation S on cyclic cohomology. Following Quillen
[19] we will give a straight- forward definition of S on the level of cyclic cocycles and
show that up to a numerical factor it coincides with Connes' S. Let us recall the exact
sequence (1.2.1). Given aclass [¢] € HC(A) we can use exactness to solve the

equations

No'=6¢ , (1-A) ¢"=b'd' , I'$=bo" (1.2.3)
for ¢', 0" and E) successively. One defines S[¢]=[6] € HC“+2(A), It follows
easily from the exactness of (1.2.1) that S: HCA) — HC“+2(A) is a well-defined

map. A homomorphism f: A — B induces a morphism between the exact sequences
(1.2.1) of B and A and itis easy tocheck that S is natural with respect to such
homomophisms, so that S is an operation of degree 2 on cyclic cohomology. This
definition of S is similar to the definition of the connecting homomorphism in a lung exact
sequence associated to a short exact sequence of complexes. Here we are working with a
four term exact sequence, hence we have a "connecting" homomorphism of degree 2.

To compare this definition of S with Connes' definition, it is useful to have a formula
for S on the level of cyclic cocycles. Let [¢] e HC“'I(A) . Using the fact that ¢ is
cyclic and the formula in the proof of Lemma 1.1.2 it is seen that

1__1 "o |v|_1 1.t ~ n_l 1.t
¢'==0¢, ¢ =Nb¢=—NbG, ¢=b¢"=— bNb'9
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solve the equations (1.2.3), so that

1
S[¢]=;11-[bN’b‘¢]e HC™ T (A) . (1.2.4)

Here N': CH—— (I is the operator introduced in Lemma 1.1.2. Let ¢ € -l pea

cyclic cocycle. Letus define S¢ e CI+! by

1 s 1 2 n_
s¢=FbNb¢—~m b(1+20+3A +..+@m+1)A ) b'd . (1.2.5)

It is easy to see that S¢ is again a cyclic cocycle. This is our formula for S on the level of

cyclic cocycles.

Connes' definition of S in [3] is based on his theory of cycles over algebras. There

is no need for us to review this theory and Connes' definition of S in detail. It suffices to

say that given any cyclic cocycle ¢ € Cn'l(A) , one defines a linear functional

3 :QM1(A) — € by ®(a0dal...dal"l) = ¢(0,....a01) and P(dal...dal"1y =0,
Here Qn'l(A) is the space of non-commutative differential forms of degree (n-1) over A.

Connes' formula for S is ([3], part II, Prop. 12)
S.0=by, (1.2.6)

where

k-1 k
a

0 D k+tl. 0.1 k+1
y(a ,...,an)=k2,1(-1) ¢0(a da ..da a .. 5

d da). (1.2.7)

Note: The formula in [3] contains a normalization factor of 2mi which we neglect here.
In order to compare Connes' formula 1.2.6 for S with the above formula (1.2.5), we

need some notation and facts.

Let j: C"1 — 1 be the operator defined by
jo(@,...am = (-Dp@aal,al,....am 1) (12.8)

we have b=b'+]j and
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A-GHDinko)0,....a0) = 1)Kp(0,....akak 1 any  0<k<n-l. (1.2,
Since ANl =1, we can write (1.2.9) as
A kipKe)(a0,....a" = -1)Ko0,....akak+ 1, am) (1.2.10)

We are now ready to prove:

Lemma 1.2.11. Let o e C™1 beacyclic cocycle. Then (1 +2A + 302 +...+
(n+DAR) b'dp = -, where  is defined from ¢ by (1.2.7).

Proof. Since ¢ is acyclic cocycle we have A¢=¢ and bd =0, so that
b'¢ = (b-j)¢ =-j¢ and

2 n &
A+ 22+ ot @A) Bo= k20(n+1-k) ke |

Using (1.2.10), the value of this cochain on (aO,...,a“) is

iy 0 kk+l n n on0O1 n-l
kZO(-n @+1-K)E ,ood @ ped ) H+(-1) W@ a2 02 )

= (n+1) $(aV%lda2..da) - n 9 (a0d(ala?)...dan) +...
+ (DD (aMa0dal 1.0-1y,
Using d(ab) =da+b +a-db, this last sum simplifies to
d(@ValdaZ. .da"y - § (a0dal.a2.da3...dal) +...
+ DL B (a0da'...da 1 a1 = y(a0,.....a") .
The lemma is proved. ]

Combining Lemma 1.2.11 with the definitions of S and S, we find that
1
" n(n+l) S -
Next, we would like to establish Connes' long exact sequence. As mentioned earlier

our main tool is the periodic exact sequence (1.1.4) and its various ramifications. Consider
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first the short exact sequence
0 — CC(A) — C(A) — C(A)/CC(A) — 0
and its derived long exact sequence
— HC™(A) — HA,A*) — HP(C(A)/CC(A)) — HCrHl(A) —
(1.2.12)

When A is unital we can identify the cohomology groups HM(C(A)/CC(A)) as follows:

Lemma 1.2.13. Let A be a unital algebra. Then HCM(A) = Hn+1(C(A)/CC(A)) for

all n.

Proof. From the periodic exact sequence (1.1.4) and the definition of the cyclic

complex we obtain a short exact sequence

0 — CAYCCA) 15 BA) Moccia) — 0 (1.2.14)

and its derived exact sequence

— HY(C(A)/CC(A)) — HI(B(A)) — HCH(A) — H¥F(C(a)y/cea)) —
(1.2.15)

The cobar complex of a unital algebra is acyclic, so that H}{B(A)) =0 forall n; and hence

HCM(A) =« HCP1(C(A)/CC(A)) as asserted. O

Combining this lerrma with the long exact sequence (1.2.12) we obtain the diagram

— HCM(A) — HI(A,A%) — HYC(A)/CC(A)) — HCH(A) —

HC™1(A)
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and hence canonical maps B : HY(A,A¥) — HCM1(A) and §:HCMT(A) —>

HCn+1(A) . Using these maps, the long exact sequence (1.2.12) can be written in the form

— HCY(A) 1 HY(A,A*) B> HOP1(A) S HCM(A) —  (1.2.16)
This is the Connes long exact sequence relating the cyclic and Hochschild cohomology

groups of a unital algebra A . This sequence is natural: given a unit: ; homomorphism

f: A—— B there is a chain map from the Conaes sequence of B to the Connes sezuence
of A. This follows easily from the nawrality of the long exact sequence associated to a

short exact sequence of complexes.

Remark. As we will see in the next few paragraphs the map S that appears in the
Connes sequence (1.2.16) is exactly equal to the S we defined earlier in this section.
Similarly we will show that the map B is induced by the B-operator so that the long exact
sequence (1.2.16) is the same as the one established by Connes in [3] except for some
rescalingin S.

The maps I, B, S entering the Connes sequence (1.2.16) can be described as

follows. The map 1 is the easiest of all to describe: I is induced by the canonical inclusion

CC(A) — C(A) of cyclic cochains into Hochschild cochains. Let us show the map S in

(1.2.16) is the same as the S-operation on cyclic cohomology defined earlier in this section,

Indeed S is the composition of the connecting isomorphism HC“'I(A) as

HY(C(A)/CC(A)) in Lemma 1.2.13 and the connecting homomorphism H™C(A)/CC(A))

—_— HC“+1(A) from (1.2.12). Hence, S is the composition of two connecting

homomorphisms defined from short exact sequences
0 — CA)/CC(A) 13 Ba) L cea) — 0

0 — CC{A) — C(A) — C(A)/CC(A) — O
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which is the same as the degree 2 connecting homomorphism defined from the exact

sequence (1.2.1), i.e. the S-operation.

To describe the map B we have to go back to Lemma 1.2.13 and describe the inverse

of the connecting isomorphism HCR(A) = Hn+1(C(A)/CC(A)) . Recalling the proof of
exactness of the derived long exact sequence of any short exact sequence of complexes, we

see that a class [¢] € Hn+1(C(A)/CC(A)) ,0€ Cn"’l(A) ,is sent to [Ns(1-A)0] €

HCM(A) under the inverse isomorphism Hn+1(C(A)/CC(A)) 5 HC™A) . Here s is the
contracting homotopy operator defined in Lemma 1.1.1. Now, going back to Connes'
long exact sequence (1.2.16) and the way n was defined, we have B[¢] = [Ns(1-A)0] €
HC™ LAY, for any Hochschild class [¢] € H}(A,A%).

The operator B = Ns(1-3) : CA) — Cn'l(A) that appeared naturally in the above
discussion was first defined by Connes in [3] and is a fundamental operator of cyclic
cohomology. In many respects it can be regarded as a noncommutative version of the
deRham coboundary operator of differential forms. We note that Connes's approach to B
is quite different from the above and is based on bordism of cycles. The next lemma shows

B is a boundary map and (up to a sign) a chain map with respectto b.

Lemma 1.2.17. One has B2=bB +Bb=0.
Proof. We have B2 = Ns(I-A)Ns(1-A)=0. Also bB + Bb = bNs(1-A) +
Ns(1-A)b = Nb's(1-A) + Nsb'(1-A) = N(b's + sb')(1-A) = N(1-A) = 0. Here we have

used the observation before Lemma 1.1.2, Lemma 1.1.3 and the proof of Lemma 1.1.1.

O

Let By: C? — CP-1 pe the operator defined by Bgy=s(1-A) . We have

B =NB(y. We end this section with the following very useful identity:
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Bgb +bBg=1-A. (1.2.18)

Indeed, Bgb + b'Bg = s(1-A)b + b's(1-A) = (sb' + b's)(1-A) = 1-A.

1.3. Cyclic Cohomology via Cyclic Bicomplex

The purpose of this section is to present an alternative definition of cyclic cohomology
dune to Loday and Quillen [18], to compare this definition with our original definition in
section 1.2 and to establish Connes's long exact sequence in this approach. In [18] Loday
and Quillen defined cyclic cohomology of an algebra as the (total) cohomology of the cyclic
bicomplex of the algebra. One nice thing about this approach is that the operator S
introduced in section 1.2 appears naturally as the result of the degree 2 periodicity of cyclic
bicomplex and also Connes's long exact sequence can be proved in a straightforward way.
However, more important for us are the applications we have in mind of this approach to
entire cyclic cohomology. See chapters II and III for more on this.

To compare this definition of cyclic cohomology with the one in section 1.2 based on
the cyclic complex, Loday and Quillen construct a chain map between relevant complexes
and using a spectral sequence argument they show this chain map is a quasi-isomorphism.
For reasons to be explained later in this section we decided to give a direct (i.e. spectral
sequence free) proof of this result. In order to do so it is better to introduce the periodic
bicomplex of an algebra and to prove a lemma about the vanishing of its cohomology with
infinite support. The periodic bicomplex and this lemma are of independent interest later
when we study entire cyclic cohomology.

The organization of this section is as follows. We first introduce the periodic
bicomplex of an algebra and prove that its cohomology with infinite support vanishes. Next
we show that the chain map defined by Loday and Quillen is a quasi-isomorphism. Finally
we define the operator S using this approach, compare it to the original definition of S in

section 1.2 and indicate a second proof of Connes's long exact sequer.ce. Let us start with
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Definition 1.3.1. The periodic bicomplex of an algebra A is the following double

cochain complex in the upper half plane

T 1 1

i i 1
b b b
Ea) — &l ol —

1 t 1
-b' b -b'
— 0N, COA 0 —

We note that the periodic bicomplex, C(A), is obtained from the periodic exact sequence
1.1.4 by changing the sign of the differentials suitably. Also, the cyclic bicomplex C +(A)

is obtained from C(A) by replacing the negative columns by zero.
Let us recall the definition of the total complex of a bicomplex and, at the same time,

various types of cohomologies one can define for a bicomplex. The total complex of a

bicomplex C = (CP9,d;,dy) with horizontal and vertical differentials

dy:cPd— cp+lq dy:cPd — cPqtl d12 = d22 =dydy +dpd; =0, is

defined by TotC=( @ C%,9) where 3=d, +d, is the total cifferential. By the
p+g=n

cohomology of a bicomplex we mean the cohomology of its total complex. A cochain of

degree n in TotC is a string of elements ( d‘f‘,,q)p+q=n i 9p,q € CP4 such that Opq =

(0 for all but a finite number of indices. Such cochains are said to be of finite support or

finite length and cohomology of TotT is called cohomology with finite support.
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If in the definition of the total complex we use direct products instead of direct sums,

we obtain a second complex ( [1 Cp ’q, 0) where the differential 9 is the same as above.
ptg=n

A cochain of degree n in this complex is a sequence (¢p,q)p +q=n’ e CPY, That

pg

is, cochains are allowed to have infinite length and the cohomology of this complex is
therefore called the cohomology of C with infinite support. It is to emphasize this

difference that the usual cohomology of T is sometimes referred to as the cohomology
with finite support.

Finally, if CP-Q's are normed spaces a third possibility arises. Namely, instead of
considering arbitrary cochains (q’p,q)p +q=n with infinite support, we can consider only

those cochains with Il¢p,ql| satisfying certain growth conditions. The entire cyclic

cohomology of Banach algetras is an example of such a theory. To study this theory in
detail is the object of this thesis.

We can compare these three types of cohomology of a bicomplex with analogous types
of de Rham cohomology of noncompact manifolds: one has, for instance, de Rham
cohomology with compact support, de Rham cohomology with arbitrary support and L2-de
Rham cohomology.

Techniques from homological algebra, especially spectral sequences, are often useful
in the study of cohomology of bicomplexes. This is in part because here one is working
with cochains of finite length. However when we consider cohomologies of infinite
support or of the third type, spectral sequence arguments are inapplicable and we have to
resort to more explicit or totally different methods. For this reason we have decided to
avoid spectral sequence arguments altogether, even when they are applicable. As aresult of
this some of our proofs are longer than usual, but at the same time less technical and more
constructive.

Let us consider the periodic bicomplex of an algebra A and its total complex with

infinite support
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oV aodd
» C » C > (1.3.2)

where C= [ Cn(A) . This is a periodic chain complex of period 2. We have
n>0

Proposition 1.3.3. The cohomology of the periodic complex (1.3.2) is zero, i.e. the

cohomology with infinite support of the periodic bicomplex of any algebra vanishes.

Proof. Let ¢ =(¢,),>0 be an even cocycle. We construct a cochain y =

(Wpn>0 such that BOdd\u = ¢ . This will prove that the even dimensional cohomology

group is zero. The proof of the odd case is completely similar. Now, aOdd\y =¢ is
equivalent to

N\]fzn +b\lf2n_1 =0op and (1—?\.)\|!2n+1 - b'\]fzn = ¢2n+1 ,n20. (1.3.4)

First note that there are Yo,V setisfying (1.3.4) for n=0,1. Indeed, we can simply
take W =0p, taen yq must satisfy (1-A) Wy =b'yy+ ¢y =b'dg+ ¢1 . From the
cocycle condition 3%V¢ =0 it follows that N(b'¢pg + ¢1) = bNog + No; =

bdg + N =0, so that by Lemma 1.1.2, b'¢q + ¢ isin the image of 1-A and we can
take W1 =N'(b'og+ 1) .

In general, assume we have defined v ,...,\fpj41 satisfying equations (1.3.4) for
n=0,..k. We prove there are cochains Wo,5 and ypy .3 such that yp,...\pp43
satisfy (1.3.4) for n=0,...,k+2 . Note that this finishes the proof. Now, N4 +
bWok+1 = 92K+ can be solved for Yy 45 because

(A-M@2x+2 - Wi+ 1) = (1-M) dppein - D'(L-A) Yoy
= (1-1) 92142 - DYk + D4 1)
= (1-A) Gox42 - D041 =0

by the cocycle condition 0%V =0. Once Wy, is found, we can find Yy, 3 to

satisfy the equation (1-A) Woy 3 - b'Wop o =dp1,3 . This is possible because
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N(Oo+3 +bWor42)  =No2k13 + Ny
= Nook+3 + D02k +2 - bW2K+1)
=N@op 43 +bdogs2=0,

where we used the cocycle condition 0V =0 in the last equality. By Lemma 1.1.2, we

can take Wop.3 = N'(dgy43 + b'Wor o) . The proposition is proved. O

Definition 1.3.5. A morphism o :C —— D of (cochain) complexes is called a

quasi-isomorphism if it induces an isomorphism of cohomology groups.

We are now ready to prove that the cohomology of the cyclic bicomplex is canonically
isomorphic to the cyclic cohomology.
Let us consider the map i: CC(A) — TotT_(A), i(0) = (0,0....0) , 6 € CHA),

defined by Loday and Quillen [18]. It is easy to see that i is a cochain map. The following
theorem is proved in [18] using a spectral sequence argument. The proof we give here

makes no use of spectral sequences, but is much longer. That's the price we have to pay.

Theorem 1.3.6. The map i is a quasi-isomorphism.
Preof. Let us prove the surjectivity first. Let ¢ = (¢(,...,0,) be an n-cocycle in

Tot (C +) - Wecan consider ¢ as a cocycle with infinite support. By Proposition 1.3.3

there exists a cochain with infinite support, W = (W} )x>( » such that dy =¢ . Equating

the n-cochains in this identity, we have
Ny, + by, 1=0, - (1.3.7)

On the other hand, since ¢ = (¢(),...,¢p,) is a cocycle, we have
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b, =0. (1.3.8)
It follows from (1.3.7) and (1.3.8) that Ny, is a cyclic cocycle. Next, we will show that
iINy] = [(9g-...0p)] - Indeed, it follows from dy = ¢ that (dg,....0) - (0,....Nyp)
= (Y- Wp-1) » 50 that [(§,....0p)] = i[Nyy] in H™(Tot C_ ). Hence i is

surjective.

Nex. we will prove the injectivity. Let [¢,] € HC™(A) be such that i[¢,] =0. This
means there is a cochain = (Y,...,¥p.1) In Tot C - such that dy = 0,....0,) . We

will use induction to show there exists a cyclic cochain ‘T’n—l such that L{i;n-l =0, ie.
[0,] =0. This is quite obvious for n=0,1. Let us assume the assertion is true for
n={0,...,k-1 and consider a cyclic cocycle ¢, such that

(0,01 = 9 (W Wi 1) - (1.3.9)

It follows from (1.3.9) that Ny + by_3 =0, so that Ny 5 isa cyclic cocycle. It

also follows from (1.3.9) that
(0, N _9) = 0 (Y(e-0 Vg 3) -
By the induction hypothesis there exists a cyclic cochain \h;;k_?, such that b\;hfk_3 = Nyo.
~ l W ~ 1 '
Let V2= Vi~ %) b Vi3 We have N\yk_2 =Ny - ) Nb Vi3 =
1~ ~ T
N\{lk_2 ) bN Y3 =NWp o-b ¥ 5 =0. Using Vy.p nstead of W, wecan

reduce (1.3.9) to
Orell) =0 (O W2 » Wi 1) - (1.3.10)
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This is equiv. ’ent to
b1 =0k » (1-A) W1 - D' W2 =0, Ny 2 =0. (1.3.11)
By Lemma 1.1.2, N\Tfk—z =0 implies there exists 'y 5 such that \I’k-z = (1-MVY'a .
We claim ‘I’k-l = V|1 - Yo is a cyclic cochain such that bys_; = ¢, . Indeed,
(1)) W1 = (-0 Wi 1 - (1-A) b’y o = (1A Wi 1 - D'(A-A) Wy g = (1) g -
b'Wy.o =0 by (1.3.11). This shows W1 is acyclic cochain. Finally bys_j = by g

=@ by (1.3.11). This completes the proof of the injectivity and the proposition. O

This proposition shows that the cyclic cohomology of an algebra can be defined as the
cohomology of the cyclic bicomplex of the algebra. One immediate application of this
approach is an alternative definition of the operator S . In particular, as we will see, the
existence of O is a consequence of the degree 2 periodicity of the cyclic bicomplex. We
need some notation first. Given a complex C,let C[2] be the complex obtained by
shifting C two steps forward:

C2t = C7-2,
There is a degree 2 embedding S of Tot C +(A) into itself
§': Tot € (A)[2] — Tot T (A)
defined by S (©gs--0p) = (6gs--9,0,0) . The periodicity of the cyclic bicomplex
implies that § is a chain map, so that one has the induced maps S:HYTot © ) R

H2(Tot & .) . We have the following diagram
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S
H(Tot T ) — HY2(Tot C))
t t
i i (1.3.12)
S
HC(A) — HCB+2(A)

Proposition 1.3.13. The diagram (1.3.12) anticommutes.

Proof. Let [dpp] € HC?(A) . Recalling formula (1.2.5) for S, we have iS[o,] =

1 ! ry _
[(0...,0,0, =T bN'b q)n)] and Si [¢n] = [(0,..., ¢n, 0, 0)] . We have to show
1 Tt —
©,..,00, =T bN'b ¢n) +Q@ ..., q>n ,0,0) =0y (1.3.14)

for some (n+1) - cochain ¥ = (y(,...,.\¥n41) in Tot C+ . Let . =0,0<k<n-1,

1 1 s o . . .
“’n=FI1' ¢n and erH:m Nbcpn. We claim, with this choice of v, (1.3.14)

holds. Indeed, by +1=--1--bN'b'q>n. Also, (I-M) v, | - by = n—_lq(Lx)N'b'(pn

n+l
1 ' : 1 1 — L]
- — b'¢, . Using the formula (1-A) N +n_+5 N=1, fromLemmal1.1.2, thisis
equalto —— (1-—=N) b - —-— b'¢_=0. Finally, Ny =—— No_= ¢_, since
4 n+l n+2 n gl m Y \Vn_n-;-l n n’
¢, is cyclic. Hence (1.3.14) holds and the proposition is proved. O

The next and last thing we would like to do in this section is a derivation of Connes's

long exact sequence starting from the cyclic bicomplex. To do this, let & be the
bicomplex obtained by replacing all, except the first two, columns of the cyclic bicomplex

by zero.
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The cobar complex of a unital algebra is acyclic. This implies the following.

Lemma 1.3.15. Let A be a unital algebra. Then the complex Tot & is quasi-

isomorphic to the Hochschild complex of A.

Proof. Define amap 7 :Tot & — C(A) by T (§.0,-1) =9, - One checks
easily that & is a cochain map. We will show that 7 is a quasi-isomorphism. To prove

the surjectivity let [¢] be a Hochschild class and consider the cochain (¢, s(1-A) ¢) in
Tot D . Using the homotopy formula b's +sb' =1 from Lemma 1.1.1, and b =0, we
see that (¢,s(1-A) ¢) is a cocyclein Tot D . Since m(d, s(1-A) ¢) = ¢, 7 is surjective.
Let us prove the injectivity of ®. From 7 [(¢p,0,_1)] =0 we have ¢, =by,_ for
some cochain 1. Let W, o =s(-0,.1 + (1-A) y,,.1) . Again, using the above
homotopy formula one checks that o(yy,.1, Wp.2) = (0p, $4.1) so that, [(§n, 0.1 =0
in Tot . Here 9 is the total differential of the bicomplex & . The lemma is proved.

0

Now consider the short exact sequence of complexes

0— TotC+[2]—§—> TotC+~——> TotD — 0 . (1.3.16)
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Using the canonical isomorphisms 7 : HY(Tot D) — H™A,A*) and

i~t : HYTot C,) — HC™(A) from Lemma 1.3.15 and Proposition 1.3.6 respectively,

we see that the derived sequence of (1.3.16) is related to Connes' sequence in the following

way

~

)-———>

S +2 +2 n+l
— H(Tot &) — H (Tt & )— H (Tt D)— H (TotT,

l S n+2J/ I n+2 l B n+1J'

— HCn(A) — HC (A — H @MAA¥)—> HC @A) —

By Lemma 1.3.13 the squares involving S anticommute. This shows that the canonical

shift S in the periodic bicomplex induces the (negative of) S-operation. Itis easy to see

that the squares involving I commute. Finally note that the squares involving B also

commute. Indeed, given a Hochschild cocycle ¢, we can represent itin H*(Tot ) by

(s(1-A) 0,0, . The connecting homomorphism in (1.3.16) sends this cocycle to

(0,....Ns(1-\) 0,0,0) in H*(Tot C +) . This of course shows that the square commutes

i.e. the connecting homomorphism in the first exact sequence is induced by B.

1.4. The (b,B) Bicomplex

We will continue our introduction to cyclic cohomology in this section by first proving
a fundamental lemma of Connes in [3] which shows that the b cohomology of the complex
ker B/Im B is 0. Then we introduce the (b,B) bicomplex of an algebra, first defined by
Connes in [3], and prove that its cohomology with infinite support is trivial. We prove that
the cohomology of the (b,B) bicomplex in the first quadrant is canonically isomorphic to
the cyclic cohomology of the algebra. This naturally leads to a third definition of the cyclic

cohomology in terms of the (b,B) bicomplex and hence a definition of the S-operation and
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a proof of the Connes's long exact sequence in this setting. Finally we will study a map
between the cyclic and (b,B) bicomplexes defined by Loday and Quillen [ 18] and using
only elementary methdos show that it is a quasi-isomorphism. Throughout this section all

algebras are unital (and over a field of characteristic zero) unless stated otherwise.
Let A be an algebra, Letus recall the two differentials b: C{A) — C“H(A) and
B:CY(A) — Cn'l(A) , introduced earlier in this chapter. Since B = Ns(1-A) we have

Im B C Ker(1-A) . The following lemma shows that indeed the equality holds.

Lemma 1.4.1. We have Im B = Ker(1-1) .
Proof. (Connes [3], part I, Lemma 31). We only have to show Ker(1-A) C Im B.

Let ¢ € CC*(A) be a cyclic cochain, choose a linear functional 6 on A with ¢y(1) =

1, and let

vl ..., a1 = 9g(a0) d(al,....an*1y
+ D)Mo - 9p)1), al,....aM gty .

One has y(1,a0,....a") = ¢{aY,...,a") and

w0, a% 1) =opad) oal,....am, 1) + 1) (al,..., a"
+ (1)1 950y ¢(1,a,..., a®)
=(-1)N ¢@0,..., am) .

Thus Boy =2¢ and ¢ € ImB. O

The next lemma that we would like to prove is the fundamental lemma of part II of [3].
Together with another lemma, it forms the basic technical tool upon which the proof of the

long exact sequence and the (b,B) bicomplex approach to the cyclic cohomology in (3]
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rests. Since we have already established the long exact sequence in section 1.2. We will
need this result only to link the cyclic complex with the (b,B) bicomplex. As for the
proof, we note that the proof given in [3] is indirect and is based on another technical
lemma. The proof presented here is straightforward and is motivated by the proof of
Lemma 6in [4]. To start, note that from the relation bB + Bb=0 in Lemma 1.2.17 it
follows that b descends to a differential (of degree -1) on the graded vector space Ker

B/ImB.

Lemma 1.4,2. (Fundamental lemma of [3], part II). The b cohomology of the

complex Ker B/mB is trivial.

Proof. Let [¢,] beacocyclein Ker B/ImB . From B¢, = NByd,, =0, using
Lemma 1.1.2, it follows that there is a cochain ;1 , not necessarily in Ker B , such that
(1-M W1 = Bg®py, . Let us show that by, 1 -9, € InB. Inview of Lemma 1.4.1

this is equivalent to cyclicity of by, 1 - ¢p, . Using the formula Bpb + b'Bp = 1-A from

section two, we have
(I"K)(b\i’m-l‘(pm) = (1-2) me-l - B:)bq)m - b'BOq)m .
Since [¢p,] is a cocyclein Ker BAm B, we have bd, € ImB and hence Bpbd, =0,

so that the above cochain is equal to
= (1-A) by, 1 - b'(1-A) w1 = 0.

Next, let us show that with this choice of yy,,_; we have bBgy,,.1 =0. Indeed

bBoWm.1 =b's(1-A) W1
= (1-sb)(1-A) Wy 1
=(1-A) V-1 - S(1-A) by¥m-1
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=By0y - Body +9) . ¢ ImB
=0 .

Now, sinc* bBoy,.1 =0, we can conclude, using Lemma 1.1.1. that there is a cochain
V-3 such that BoWy, 1 =b'Wy. 3. The cochain Ny, 3 iscy:lic and hence by Lemma
1.4.1 there is a cochain V-2 such that By, o =Ny, 3. Letus show vy, 1+
b\ym_2 € KerB:
B(Wp-1 + bWmp-2) = NBoWp.1 +Bbypy,
=Nb'yy.3 + Bbyy, o
= bNWy,.3 - BBV 2

=b(NY, 3 - Byy.2)
=b0)=0.

It follows that the cochain Y,,_1 + by, o represents a classin Ker B/ImB . We

have

bWim-1 + bW 2] = blWpm_1] = bW = [0py]
where we have used the fact that bYm-1 - Om € Im B, established at the beginning of the
proof, We have shown that every cocycle in Ker B/Im B is a coboundary. The lemma is

proved. O

Corollary 1.43. Let ¢ e CCA) and ¢ =by where By=0. Then [¢]=0 in
HC(A) .

Proof. From Lemma 1.4.1 we have by « Im B . It follows that y is a cocycle in
Ker B/Im B so that by Lemma 1.4.2 there exists Ty such that y-b '{V € ImB. We have

¢ =by e b(Im B) hence [¢]=0 in HCY(A). s
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There is an equivalent formulation of Lemma 1.4.2 which is also useful for our

purposes in this section. Consider the exact sequence of complexes

00— ImB— KerB— KerB/ImB— 0 .

By Lemma 1.4.1 Im B is the cyclic complex CC(A) so the derived long exact sequence is

of the form

—— HC™A) —> H%(ker B) — HM%(ker B/Im B) — HCM1(A) — |

By Lemma 1.4.2 HP(ker B/Im B) =0 forall n. Hence we have the following:

Corollary 1.4.4. The obvious map from HC"(A) to ker B N ker b/b(ker B) is

bijective. -

Definition 1.4.5. The (b,B) bicomplex of a unital algebra A 1is the following double

cochain complex.

N
c0b, ol
1 1
B B
BA) 0L by 2—
1 1 1
B B B
cO-b, clb. 2b, B_,
1 1 1 t

More precisely, B(A) = (pP:Y, b, B) where pP-9=CPq, and b:pP9 — BP”’q,

B:BPA — PP+l forall (p,q) e Z2, are the horizontal and vertical differentials.
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Note that P4 = {0} if p-g<0.

Remark. In [3], Connes defined the (b,B) bicomplex in the same way as above except
that instead of the differentials b, B, he considers certain scalar multiples of them. This is
to make sure that the S-operation as defined from the (b,B) bicomplex be exactly equal to
the S defined in [3], using the theory of cycles. We will see that if we use the above
definition of (b,B) bicomplex, the resulting S-operation coincides (up to a sign) with our

original definition in section 1.2.

The following proposition is a consequence of Lemma 1.4.2.

ren

Proposition 1.4.6. The cohomology with infinite support of B(A) is zero.

Proof. We will prove the even case. Let ¢ = {¢9,},>0 .99 =0, be an even
cocycle. Let us find a cochain = {ypp,1}>0 such that dy=¢,ie.

byon.1 + BWop1 =92y » 020 . (1.4.7)

By Lemma 1.4.1, there is a cochain yq such that By = ¢ . Assume there are cochains
Wont1»0<n<k, satisfying (1.4.7) for 0<n<k. We can then find Yy, and
Yok+3 suchthat v, y3,..., T;f2k+1 » Yok+3 satisfy (1.4.7) for 0 <n <k+1. Note
that this finishes the proof since we can repeat this argument to find a sequence
V= {Ynn+1}n>0 Which satisfies (1.4.7) for all n. Now, to find Ty2k +1 and Yop .3,
consider the cochain ¢9),5 - by, 1. We have

B(®21c+2 - BY21+1) =BO2k42 + DBY2L1 = B + by =0, and

b(99x+2 - DW2k4+1) = bhok4n =-Bbpy,3€ Im B,

iiznce Gppin - bWy represents a cocycle in ker B/Im B . It follows from Lemma

1.4.2 that there are W'9.1 aad Yoy g such that

By'ok+1=0 and (G4 - b¥or1) bWoR41 =BYoksy - (1.4.8)
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Let Tka+1 =VYok+1 T W'Zk-i-l . From (1.4.8), we see that {\]fl. Y3 e TU2k+1’

Vor43) satisfy (1.4.7) for 0 <n<k+1, as we wanted. O

The (b,B) bicomplex is most useful when we study the periodic cyclic cohomology
or entire cyclic cohomology of algebras. For the purpose of cyclic cohomology itself, the

part of the (b,B) bicomplex which is in the first quadrant is more relevant. We denote this

bicomplex by B,(A).

t
B

c0-by ¢l b,
T 1
B B

Bo(A) 0L, clby 2-b,

Next we would like to show that the cohomology of B (A) is canonically isomorphic
to the cyclic cohomology of A . To do this, consider the chain map j: CC(A) —
Tot B (A) defined by

j0g) = 00 0) > 05 € CCUA).

The following proposition should be compared with Proposition 1.3.6.

Proposition 1.4.9. The map j is a quasi-isomorphism.

Proof. Let us prove the injectivity first. Let [¢y,] € HCZH(A) . jloonl =0
means there exists a cochain y = (Y/1,..., Yop,_1) € Tot B,(A) such that

O s Y2.1) = O ) (1.4.10)
From this we have bypn.1 =¢2p - By Corollary 1.4.3,if Byy,, 1 =0 then [¢5,]=0
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in HC2"(A) and we are done. Let us show that there is a cochain V=W 1)
with By, 1 =0 which satisfies (1.4.10). Indeed, it follows from (1.4.10) that By =0

and by € Im B so that by Lemma 1.4.2 there are cochains €, 85 such that yy - b
=B0B, . Now let ;{’13 =\y3+bby. We have b T|I3 =byz and B ;\U3 = By3 + Bbby =
-by; + by =0 and hence v = (0, TV3, Vs,..., Wop_1) satisfies (1.4.10). By repeating

this argument we find a cochain of the form v = (0, 0,..., 0, TVZn-l) satisfying (1.4.10).
This proves the injectivity of j. The proof of the surjectivity follows a similar pattern as

proof of Proposition 1.3.6. Let ¢ = (¢g, $2,..., #7,,) beacocyclein Tot B, (A). From
Proposition 1.4.6 we have ¢ =dy where ¥ = (Y 1)i>0 and we consider ¢ asa
cocycle of infinite support. From by, .1 + Byy, _{:3 =0 we have b(Byy,,1) =

-B(byopn+1) = -Bz\y2n+3 =0 . It follows from Corollary 1.4.4 that By, represents
a cyclic cocycle. In other words, there is a cyclic cocycle E)Zn such that Byp, .1 - 5)2 n
=by'y,.1 where By'y, 1=0. Let ﬁfzn_l =VY9n.1 + V¥op-1- Wehave b Tlfzn-l =
BWn-1+bWan 1 =bWan 1 +BYoqu1 - 92n =024~ 924 and By 1 =Byg, g+
BY'p.1 = BWoy,.1 - It follows from ¢ =0y that (9, 99w Do - o) = W] ,ens

Wop.3» Wop.1) s0 that j[Gan] = [(@0, 92,--., $p)] , and hence the susjectivity of j is

proved. a

This proposition shows that the cyclic cohomology of a unital algebra A can be

defined as the (total) cohomology of the bicomplex B, (A) . Parallel to our discussion in

section 1.3 we will now proceed to define the S-operator in terms of the bicomplex f3,(A) .

First we need to find a new formulafor S. Let ¢ € CCn‘l(A) be a cyclic (n-1)-cocycle.

In section 1.2, formula (1.2.5), we defined S¢= b('rlT N'b'g) . Let \4/=-I1; N'b'd .

Then
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By = %Ns(l—k) N'b'®

1 1 ,
= =Ns[1 - —N] b'9

1 1 1 ]
---r—l- Nqu)*m NSNb¢ .

Since NsNb'¢p = NsbN¢ =0 for any cyclic cocycle ¢, we have

1

n

By = —Ns b'¢=%N(1-b‘s)¢=¢-%sz 0= ¢+ bBO

for some cochain 6. Now let \Ir =Wy + b0 . We then have

By =By +Bb=By-bBO=0.

We can summarize the above calculatioa as follows: given any cyclic (n-1)-cocycle ¢
there is an n-cochain Ty such that
by=S¢ and By=¢ . (1.4.11)

From the picture of 3,(A) itis clear that the canonical degree 2 shift
S : Tot B,[2] — Tot B,
is a cochain map and hence induces a map
§: o 1(Tot B,) — HM™1(Tot B,) .

Using formula (1.4.11) we can easily show that S isthe negative of the S-operation.

Consider the diagram
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n-1 3 n+l
H (Toth) ° — H (Toth,)
1 i
] ]
n-1 S n+1
HC (A) — HC (A)

where j is the isomorphism in Proposition 1.4.9.

Lemma 1.4.12, The above diagram anticommutes.
Proof. Let [¢] € HC L(A). We have
(53 +39)6] = [(0»., 0, &, SO)] .
Let '\Vy be the cochain in formula (1.4.11). We have (0,..., 9, S¢) =0(0,..., 0, if) 50

that [(0,..., 0, 0, S®)] =0 and hence the diagram anticommutes, |

Remark 1. From the picture of B, (A) itis clear that the Hochschild complex of A,

C(A), and Tot 3, fitinto a short exact sequence

~

§
0—— Totp,[2] — TotB, — C(A) — 0

whose long exact sequence is the Connes long exact sequence (1.2.16) with the sign of S
changed. Since the argument is similar to the one in section 1.3, we leave the details to he

reader.

Remark 2. Formula (7.4.11) can be used to prove the formula S = bB-! due to Connes

([3], part II, page 121). We follow Connes's presentation: given ¢ € CC“'I(A) , a

cyclic cocycle, we can write ¢ =By for some W . This uniquely defines by e kerb N

ker B/b(ker B) and hence an element of HCn+1(A) , using the isomorphism in Corollary
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1.4.4. Now, to see that this is equal to S{¢] , we can choose Yy = ﬁf as in formula

(1.4.11).

Finally, we want to study a map from Tot c +(A) to Tot +(A) . In[18], Loday and

Quillen define (the dual of) amap 1: Tot C, — Tot B, by I(0)p; = d; + Nsdojyp if

¢ = (90s- $2n) » and 10511 = P41 + NsOjyp if ¢ =(dg,.... $241) - Using
the basic formulas of section 1.1 it is easy to see that I is a chain map. The following
proposition is proved in [18] using a spectral sequence argument. Our proof is elementary

and is based on two key results in sections 1.3 and 1.4,

Proposition 1.4.13. The map I is a quasi-isomorphism.

Proof. Consider the maps

acA) - Tor (A)— Tot p L(A) .

Here i:CC(A) — Tot C +(A) isthe quasi-isomorphism in Proposition 1.3.6.

Inspecting the definition of I above shows that Ioi is the quasi- isomorphism in

Proposition 1.4.9. Since i is a quasi-isomorphism, it follows that I isa

quasi-isomorphism too. O

1.5. The Pcriodic Cyclic Cohomolegy and Beyond
In section 1.2 we defined the S-operator, also called the periodicity operator, on cyclic
cohomology groups. In [3] Connes defines a pairing between cyclic cohomology and

K-theory of an algebra and shows that this pairing is invariant under the action of S. This,
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and other facts e.g. the calculation of de Rham homology of a manifold in terms of cyclic
cohomology of algebra of smooth functions on the manifold ([3], Theorem 46), shows that
as far as K-theory, index theory and in general topology/geometry are concerned the
relevant groups are direct limits of cyclic cohomology groups under S. In this section we
show that this periodic theory is most naturally defined in terms of either the (b,B) or the
cyclic bicomplex and set the ground for the next stage in the development of this theory,

narmely entire cyclic cohomology.

Definition 1.5.1. The periodic cyclic cohomology of an algebra A is the inductive

limit of the system (HC*(A),S).

We denote the periodic cyclic cohomology of A by Hcper(A) . Since S isof

degree 2, this group has a natural Z/2 grading:

2 dd 2n+1
HCeVr(A)= lim HC n(A) and HC}?er (A)=1lim HC " (A) .
pe -§ ~

As we saw in Sections 1.3 and 1.4, cyclic cohomology can be defined as the

cohomology of the bicomplex C 4+ or the bicomplex B . The identification of the

S-operator as the degree 2 shift in either of these two bicomplexes leads to the following

two propositions.

Proposition 1.5.2. The periodic cyclic cohomology of an algebra A is canonically

isomorphic to the cohomology of its periodic bicomplex C(A).
Proof. This is a consequence of Propositions 1.3.6 and 1.3.13. Let us define a

map i: HCIe); . (A)— Hev(Tot C) by sending a periodic class represented by, say,
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[d9n]e HC2n(A) to (0,...,07,,0,0,...) . By Proposition 1.3.13 i is well defined and by

1.3.6 i is an isomorphism. There is a similar map between odd groups which is similarly

proved to be an isomorphism. O

Similarly we have:

Proposition 1.5.3. The periodic cyclic cohomology of a unital algebra A is

canonically isomorphic to the cohomology of its (b,B) bicomplex B(A). 0

The quasi-isomorphism I:Tot C +(A) — Tot B (A) defined in Section 1.4

naturally extends to a map I: Tot C(A) — Tot B(A). Now, thisnew] isa
quasi-isomorphism too. Indeed, using Propositions 1.5.2 and 1.5.3 above, the method of
proof of Proposition 1.4.13 extends to show that the above map 1 is a quasi-isomorphism.

We record this in

Proposition 1.5.4. There is a canonical quasi-isomorphism I: Tot C(A) —

Tot B(A) . O

According to Proposition 1.4.6 the cohomologw with infinite support of the (b,B)
bicomplex of any algebra is trivial: given any, say even, cocyclce ¢ = (¢25)n>(0 > One can

always solve the equations
d=ay (1.5.5)

to find a cochain y = (W2n+1)n>0 that bounds it. The basic observation in [4] is that if
A is a normed algebra and we consider only those cochains ¢ = (¢,,,) for which the

growth of lip,,ll is restricted, then in general we cannot solve (1.5.5) to obtain a y which
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satisfies the same growth conditions. Moreover, in this way one obtains a reasonable
theory based on cochains with infinite length. Now, Proposition 1.5.3 shows that such a
theory is of the type of periodic cyclic cohomology. We will study this theory, called entire
cyclic cohomology, in detail in the next chapters.

We will end this section with a simple example which nicely illustrates the effect of

growth conditions in the context of de Rham cohomology of non compact manifolds. We

consider three different de Rham complexes for the real line R and show that the

dimension of their cohomology groups (in dimension one) is zero, one and uncountable!
The first complex that we consider is the standard de Rham complex of R
0— QO(R) 4> Ql(R)— 0 .
Here Qi([R) is th space of smooth i-formson R . Asis well known the cohomology of

this complex in dimension one is trivial: given any 1-form w=fdx on R, define the
A 0

smooth function g(x) = Jf(t) dt,then ge Q (R) and dg=w.
0

Next, let us consider the de Rham complex of R with compact support
0— Q9 (R)y-4-al (Ry— 0

where Qic (R) is the space of smooth i-forms on R with compact support. Again it is

1
well-known and easy to see that we Q' c (R) is exact if and only if J' w =0 and in fact

R

themap [w] — Jw defines an isomorphism from HIC( R) to R, where ch([R) =
R

Qlc ([R)/dQOc (R) is the de Rham cohomology group of R , in dimension one, with

compact support.



44

The last complex that we consider is the so-called bounded de Rham complex defined
by Roe (see [21], Section 3). Let M be a Riemannian manifold. Let QiB(M) be the
Banach space completion of the space of smooth i-forms which have finite J-norm, where

IIWIIB = sup{llw)ll + Ildw(x)ll ; x e M} .
Here the norms inside the bracket are induced from the inner products on the tangent
spaces. The exterior derivative extends to Q* B(M) and we obtain the bounded de Rham
complex

0— Qv - olgy 4 .. L Q) — 0

where n=dim M.

Definition 1.5.6. ([21], Section 3). The B-cohomology groups of a Riemannian
manifold M are defined to be the groups

P P +1 -1 p
H M)=ker (d: @ — @ )/[closureof Im(d: ¥ — QF J .
B P B e B B

Note the difference with the usual definition of cohomology groups: instead of
dividing by exact forms one divides by the closure of exact forms. As a result of this the

corresponding cohomology groups are Banach spaces in their own, right.

Now, let us consider the special case of M= R . The following is our main lemma in
finding dim ul B (R) (I am indebted to I. Putnam for discussions which led me to this

useful lemma). By Illl,, we mean the usual sup-norm.

Lemma 1.5.7. Let f be a bounded functionon R and let A be a positive real number.

Assume for every integer n there is an interval I; of length n such that either f(x) 22
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for xe VI, or f(x) <-A for xe UI, . Then lif-gll,,2 A for all bounded
differentiable functions g on R.

Proof. Assume f(x)=A for x e Ul,. Let £>0 be givenandlet g bea

bounded differentiable function on R . We claim there is a point xg & UI,, such that
g'(xp) <€. Indeed, if this is not the case, letting 1, = [ay, a,+n] , we can write
a_+n
n

g(an+n) -g(a n) = j g't)dt=€en forall n.

a
n

Thatis g(a,+n) = g(a,) + en 2 -ligll,, +n+¢ forall n. This obviously contradicts the
boundedness of g. Now, for such a point x we have If-g'll,, 2 If(xq) - g'(xp) 2 X - €.

Since € is arbitrary we have lif-g'll, > A as claimed. There is a similar proof for the case

where f(x) <-A for xe Ul . O

Corollary 1.5.8. Let w={fdx be a smooth 1-formon R such that f satisfies the

conditions of the above lemma. Then w represents a non-trivial cohomology class in

H! B(R) .
Proof. By the above lemma, we have llw-dglig =if-gll,, > A forall ge QUp(R)

N C(R) . This shows that w cannot be approximated by exact forms and hence

represents a nontrivial class in Hi B (R). O

Next, we utilize this corollary to prove that H! B (R) is infinite dimensional. Fix an

integer N2> 3. For each integer k> 1 divide the interval [Nk,Nk+1] into N closed
subintervals of equal length Ek1 -~ EkN . Foreach 1,i<i<N, choose a bounded

smooth function f; such that f;(x) =0 for x € Ekj ,j#i,k21 and fi(x)=1 ona

subinteral IX; of EX;,k=1.2,... We claim that the differential forms w; = f; dx,

1 €1 <N, represent linearly independent elements in HIB (R) . Indeed, for a sequence
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N
of real numbers 7‘1 yes )‘N where )“j #(0 for some j, the 1-form 2 7\.iwi satisfies the
i=1

conditions of the Corollary 1.5.8 with A= I?LJ-I and I, =1, and hence represent a
nontrivial class in Hlﬁ (R). Since the integer N in the above argument is arbitrary, we

have, in effect, shown that the (vector space) dimension of H1B (R) is infinite.

Now, as mentioned before, the bounded cohomology groups HPB (M) are Banach

spaces. A simple application of Baire category theorem shows that the (vector space)
dimension of an infinite dimensional Banach space is uncountable. This fact combined with

the above paragraph shows that HIB (R) has uncountable dimension. We summarize

these results in;

Proposition 1.5.9. The (vector space) dimension of the bounded cohomology group

H 1[3 (R) is uncountable. O

Note that this is in sharp contrast with the first two cases where the cohomology
groups were either trivial cr 1-dimensional.



Chapter 2
2.1. Definition of Entire Cyclic Cohomology
In this section we give the original definition of the entire cyclic cohomology due to
Connes and elaborate an instructive example from [4]. In the last part a trace map is studied

which plays an important role for many things to come.

Let A be a unital Banach algebra over C . Instead of arbitrary multilinear functionals
on A, we will work only with continuous ones in this chapter. So, for any non-negative
integer n, let C=C%(A) be the space of continuous (n+1)-linear forms on A . For
n<0 we set C'= {0}, as usual, The Banach space norm on each C is defined by

ol = sup{I$(a0,....aM; lalll < 1} . @2.1.1)

All of the operators that we defined in Chapter 1, in particular b and B, send a

continuous cochain to a continuous one, and are actually bounded. We have the following

easy estimates for the norms of some of these operators.

Lemma 2.1.2. For ¢, in C" we have: liby,|l < (n+2) lip,ll, I(1-1) ¢l < 2o,
lispll < lidppll , NG, < (n+1) llo, )l and 1b'd,H < (n+ DD, 11

Proof. Obvious. (|

Since B = Ns(1-A), from the last three inequalities we have

B, Il < 2nli,l (2.1.3)

Everything we did in Chapter 1 naturally carries over to the category of Banach
algebras provided everywhere we use continuous cochains instead of arbitrary ones.
Therefore, for a Banach algebra one can define continuous Hochschild, bar and cyclic

complexes and continuous Hochschild and cyclic cohomology groups. In particular there is

a (b,B) bicomplex B =B(A)=(B™™b,B) defined for any unital Banach algebra A,
where BMM = CMY(A) forall n,m in Z . By Proposition 1.5.3 in Chapter 1, the

47
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cohomology of the bicomplex B(A) is isomorphic to the continuous periodic cyclic

cohomology of A . On the other extreme, Proposition 1.4.6 shows that the cohomology of

the complex of cechains in B(A) , with infinite support, is zero. The basic observation of

[4] is that if we control the growth of ll¢pll in a cochain (02,)y>0 o (P2p+1)n>0 Of

the (b,B) bicomplex then we get a nontrivial cohomology theory of deRham type for
Banach algebras, i.e. of the type of cyclic cohomology theory. Let C®V = {(¢3)>0

o€ €20} and CO% = (g4 1)n>0 ; P2ne1 € C2H} be the spaces of even and

odd cochains with infinite supportin B(A) and let d =b+B be the boundary operator

which maps C&V to €044 and C0dd 15 CEV . We shall use the following growth

condition:

Definition 2.1.4. (Connes [4]). Aneven (resp. odd) cochain (Gop)n>p (xesp.

(O2n+1)n>0) 1s called entire iff the radius of convergence of the power series

@2n)! n (2n+1)! no. . ..
rgb — ll¢2nl|z (resp. rgo 5 ll¢2n+lllz ) is infinite,

The space of even (resp. odd) entire cochains will be denoted by C(resp.
CEOdd)‘
Lemma 2.1.5. If ¢ is an even (or odd) emire cochain, then sois 0¢ = (b+B) ¢ .

Proof. Let d¢ =y . We have v, =b¢,, 1 +Bd, 1 hence by Lemma 2.1.2 and
formula (2.1.3), Iyl < (m+1) 10, 1 + 2(m+1) gy, 11l . This shows that y is eniire

if ¢ is. O
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The above lemma shows that we have a periodic complex of entire cochains for any

Banach algebra A:

N CECV 9, CBOdd ) Cet‘,v _ (2.1.6)

Definition 2.1.7. Let A be a unital Banach algebra. The entire cyclic cohomology of

A is the cohomology of the above periodic complex of entire cochains.

We will use Hg®V(A) and HEOdd(A) to denote the even and odd entire cyclic
cohomology groups of A . A finite cochain, (¢ )m>0 Om =0 for m iarge enough, is
obviously an entire cochain. This implies (using proposition 1.5.3) that there is an obvious

map from (continuous) periodic cyclic cohomology groups HC*per(A) to H*.(A),

* = even or odd.

As an example we calculate the entire cyclic cohomology groups, Hg®V and HEOdd ,

for the simplest Banach algebraie. A= C. As we will see this example is instructive in
many ways. First note that an (m+1)-linear functional on C is of the form

0y (@0,..a™) =420 ... a™  where A, = ¢ (L,1) and ligpll = Al . A simple
calculation then shows that

b¢2m =B¢yy =0, (b¢2m+1)(30,~--,azm+2) = 7\.2m+1 aO ...a2m+2

and finally
(B¢2m+1)(a0’_“,a2m) =2(2m+1) }‘2m+1 a()_..azm .

Let E be the space of entire functions on the complex plane. We have the obvious (vector

space) isomorphisms Cg®V(C) =« E , where a sequence (Ayp)y>( s sent to the entire
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, @n!, n odd, .. ,
function réo -—5!——7\.2“2 ,and C{5 {C) = E, where (7\.2 n +1) >0 18 mapped to

!
> Qo+ sl 7" . Fromn the calculation of b and B in above, we have a(sz)=0

T
n20 W

n n n
and 0 Za Z )=ZZ+1 (Ea Z) for an odd cochain a Z inE.
(nZ()n @) =0 " néO n

We, therefore, have an isomorphism of complexes

— Ceev(u:) N Cg()dd(q:) e N CECV(C) —_—

|

— g 2 E 2Z¥Dy, E — | 2.1.8)

Some elenientary analytic function theory reveals that
Im@: C24d — C®) = (feE; f=2(z+1)g, geE} = {feE; £(-1) = 0)
ker@: Ce04d — C.8Y) = (feE; 2(z+1)f =0} = {0} .

Based on this we have

odd ev
odd Ker(a:CE I CS ) _ {0}

H (0= = = {0}
d 0
& m@:c® - 0
€ £
ev Ker(d:C . C Odd) E
H (€)= £ € - ~ C
£ 0dd  _ev.  [(FeE. D=0

Im(E):C8 —’Ce )

where the last isomorphism is defined by evaluation at -1: [f] — £(-1) . We have

proved the following proposition in [4].

Proposition 2.1.9. We have H.24d(C) = (0} and H®Y(C) = C with isomorphism
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. o .0 (2n)!
givenby o(0y,),z0)= 30 (1 S 0y (Ll) 0

It is quite instructive to calculate the periodic cyclic cohomology of C along the same

lines. Indeed, all we have to do is to replace the compiex of entire cochains CE*((E) by the

complex of finite cochains Cf*(([l) , ¥ = even or odd and to replace the space of entire

functions E by the space of polynomials in one variable, P. The isomorphism (2.1.8)

should then be replaced by ”

_ Cfev(q:) BN Cded((E) -9, Cfev(@) s

|

N p 2 p 2z, p —
. odd ev C
and we obtain HC per (C)=0 and HC per(ﬂ:) = C. We note that, in this example, the

ev

ev .. . .
naturalmap HC D or He is an isomorphism. That is so because the cocycle z

ev
which is a generator of HC pe r(ﬁl) is mapped to z which is also a generator of

HSeV(C) .
Finally, we should remark that the space of even (or odd) cochains wiih infinite

support in B{C) is naturally isomorphic to the space, F, of formal power s.iies in one

variable. The isomorphism (2.1.8) is then of the form

— C&Y(C) R Codd(q:) 92, CeV(C) —

— F .ﬁ__) F 2(Z+1) F —_
Now, (1+z) isinvertiblein F so, unlike the other two cases, the cohomology of the

above complex is trivial in both even and odd degrees. This is of course a very special case
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of Proposition 1.4.6 which is true for any algebra. What we have done is to trace this back
to a fact about formal power series. Similarly, the "reason” for a nontrivial cohomology in

the first two cases is the non-invertibility of (1+z) in E or P.
For q apositive integer and A any algebra, let Mq(A) = Mq(ﬂ:) ® A be the algebra

of qxq matrices over A . There is an important rrace map Tr : C(A) — Cn(Mq(A))

defined by Tr ¢ = ¢4, where
040 ® a0,...u" ® an) = tr(u0.. u1) ¢(a0,....a1) . (2.1.10)

Here tr: Mq(ﬂl) — ( is the usual trace of matrices. As an example, let ¢ CO(A) be

alinear formon A . Then ¢9 is the linear form on My(A) given by

q .
¢>q((aij)) = z q)(aii). Indeed, letting e1J € Mq(iE) be the elementary matrices, we have
i=1

i y
¢q((aij)) = ¢q(z € ®aij) = 2 nr(elj) q>(aij)= 2 o) .

The following lemma shows that Tr is a chain map in a very strong sense of the word.

Lemma 2.1.11. We have boTr=Treb, AeTr=TroA and soTr=Tres.
Proof. This is a consequence of trace property of tr. We prove only the first

relation, since the proof of the rest is quite similar. Let ¢ € C', We have

b(Tr YO ® a0 ..., ! @ an+l =

n

iq0 _ 0 i j +1 ntl
.2(4) (-1)J q)q(u ®a,., uJ®aJ uJ @aJ yeres un ®a )+
J:

(_1)n+1 ¢q(un+l ® antl . u() ® aO ey U ® a1
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S0 o+l j 0 j i+l n+l
=2(,) r(l ey 0 YD Ha .., @8 ,.,a 0 )+
J:

DL gt 0 umy ot a0 an
= tr(u? ..., w1y (bo) (@0,..., an*1)

=Tr(bo) (W0 ® a0 ,..., pnt+! @ a1y

This proves the equality of both sides as applied to elementary tensors. By multilinearity

we have the equality. g

It follows from this lemma that NoTr=TroN and consequently BoTr="TreB.

Hence we have the following

Corollary 2.1.12. Themap Tr:p(A) — B(Mq(A)) is a map of bicomplexes.

O

Next, for A a Banach algebra, let us define a Banach algebra norm on Mq(A ) by

q
defining Il(aij)ll= 2 Haijll for any qxq matrix (aij). This is a convenient norm to work

.

i,j=1

with and is equivalent to other standard norms on Mq(A) . We should mention that the

concept of an entire cochain on a Banach algebra depends only on the equivalence class of

the norm we are using (recall: ll-ll, ll-lI' are equivalent if there are constants C and C'

such that -l < Cll-II' < C'li-1l) hence the choice of a norm for Mq(A) ,as long asitis

equivalent to the above one, is a matter of convenience.

Lemma 2.1.13. We have li¢9dll <ligll forall ¢ e CP.
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Proof. We prove this only for n=1. The general case is completely similar. we

have, with ell denoting the elementary matrices

169(a0) , (a1 =109 el x 20 % K agep i =
| (el - ekl ¢(aij0,ak21)l <IZ ¢(aij0, akgl)| <
191 3 O g g 11 = 1t (5 i O1) (Z Mgy 11 =

1ol iag Oy ay g DI - O

It follows that if ¢ = (¢p)>0 (resp. ¢ = (92n+1)n>0) s aneven (resp. odd) entire

cochain then the cochain ¢4 = (¢%,)>0 (esp. 9= (0%, 1)p>0) on Mq(A) is also

entire. This fact combined with ¢he previous corollary proves the following

Lemma 2.1.14, The map ¢ — Tr¢ is a morphism of the complexes of entire

cochains. |

2.2. Pairing with Topological K-Theory
Many of the applications of (ordinary) cyclic cohomology to questions in analysis and

topology depend on the fact that this theory can be paired with K-theory. In [3], through
explicit formulas, it is shown how to define the pairings Kp(A) ® HCZH(A) — C and

K1(A) ® HC2*1(A) — €. Here Ky and K; are algebraic K-theory functors and A

is an arbitrary algebra. This pairing is then shown to be invariant under the action of the

S-operator on cyclic cohomology groups and as a result of this we have pairings between
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K-theory and periodic cyclic cohomology groups: K«(A) ® HC*,,o (A) — > L, *=0,1.
Ty per

Moreover, in topological situations e.g. when A is a Banach algebra, one can show that
the same formulas define a pairing between topological K-theory and continuous cyclic

cohomology of A .

In this section we are interested in the pairing Kp(A) ® HfV(A) — € where A

is a unital Banach algebra. The existing formulas for this pairing are due to Connes [4] and
Getzler and Szenes [12] . In both of these formulas one has to assume that the cocycle
satisfies certain technical conditions. In this section we will show that it is possible to
derive a formula for this pairing which assumes no conditions on the type of the entire
cocycle and generalizes the above two formulas. More precisely we show, using the
normalization lemma in [4], that it is possible to express Connes' formula in terms of the

original cocycle and we will prove that the resulting formula actually defines a pairing

between Kq and Hc®V. Let us start with
Definition 2.2.1. (Connes [4]). A cocycle (O2p)n>0 (@esp. (92n41)n>0) 18

normalized iff Bpdy, (resp. Boodyp4q) is a cyclic cochain for all n.

The concept of a normalized cocycle is important in entire cyclic cohomology. As is
emphasized in [4], only normalized cocycles have a natural interpretation as traces on Cuntz
algebras or as infinite dimensional cycles on universal differential graded algebras. We will
come to this point later. Part of the usefulness of this notion is becauvse of the following

lemma, referred to afterwards as the normalization lemma.

Lemma 2.2.2. For every entire cocycle there is a normalized cohomologous entire

cocycle.

Proof. See Connes [4], Lemma 6 or the remark after Lemma 3.2.1 in this thesis. [
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Now, let e A be an idempotent and ¢ = (¢op)y>( @ normalized entire cocycle. The

following formula is used in [4] to define a pairing between HaeV(A) and Kg(A):

n (2n)!
<¢,c>=n§0(—1) T O (2.2.3)

More generally, if ee Mq(A) is an idempotent, then one defines

2n)!
(0.8 =(Tr ey = 3, (-1)" (“,) ¢2nq(e,...,e) . (2.2.3)'
n=0 n:

Note that the series are absolutely convergent thanks to the entire condition on the cocycle
¢ . In order to show that (2.2.3) and (2.2.3)" define the required pairing one has to check
the following:

(@) if ¢ =0y where ¢ is normalized and  is an odd entire cochain then {(¢,e) =0

for all idempotents e A ;

(b) if e;,0<t<1,isan smooth path of idempotentsin A then (¢,eq) ={(d,e1);

(¢) additivity: if e =fd®g where fe Mq(A) and ge MP(A) then (0.e) = (¢, + (d,g) .

As for the proofs of these statements, we note that (c) follows quite easily from the

definition of Tr: CR(A) — Cn(Mq(A)) , (a) follows from Lemma 2.2.6 below and we

refer the reader to [4], Theorem 8, for the proof of statement (b) above. We start off by

showing that (2.2.3) can be expressed in terms of the original cocycle.

Lemma 2.2.4. Let ¢=(pyp)p>p be an entire cocycle and ¢'=(¢'9) >0 &

normalized entire cocycle cohomologousto ¢ . If e A is anidempotent, then

- 2n)! - 2n)! 1
T " SR bggerne) = T ' SR (8y,00n0)- 5Bty (oren)
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Proot. By Lemma 7 in [4] or 2.2.6 below the value of the left hand side depends

only on the class of the normalized cocycle ¢' in HeeV(A) . A careful look at the proof of

the normalization lemma reveals that we can choose ¢'yp, = ¢pp - bOop 1 Where

~

-1 2 2n-1
92n_1 20-1 =3E(1 +2A+3A +..+ 2nh )ezn_1 and

=N'0
1
92n—1 = BO ¢y nE NBO Py - Now with this choice we have

09 p(€sn€) = Qo (e,...08) - évzn_l(e,..‘,e) .
But

~ 1
Gzn_l(e,...,e) =- -2—n(1 -2+ 3-...+(2n-1)-2n) Gzn_l(e,...,e)

1 1 1
5 9?n_1(e,...,e) =5 B0¢2n(e""’e) ey B¢2n(e,...,e) .

Using the fact that (¢,,),>0 is a cocycle, we have By, = -bd;, o and hence

By (e,....e) =-bhy, o(e,....e) =0 .
As aresult of this we have

~ 1
92n_1(e,...,e) = 5 B0¢2n(e,..‘,e) .

and finally
. 1
Q)zn(e,...,e) = ¢2n(e,...,e) y BO¢2n(e,...,e)
we should remind the reader that this last equality holds only for a particular choice of

normalized cocycie (¢'yp)p,>() > namely the one we defined above. For this choice the two

series are equal term by term and hence their sums are equal. Since, as we mentioned at the

beginning of the proof, the value of the left hand side depends only on the cohomology

class of ¢' we are done. O
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As a result of this lemma it seems natural to define a pairing between any entire cocycle

¢ and an idempotent e by the formula

2n)! 1
(<1>se>=2(-1)n (;) {9(€5--1€) - 5 Bdy (65.0)) - (2.2.5)

In order to show that this defines a pairing H®V(A) ® Ko(A) —> € we have to repeat

the steps (a), (b), (c) as before. The following lemma is part (a) of this plan.

Lemma 2.2.6. (Compare Lemma 7 in [4]). Let ¢ = (¢2n)n20 be an entire cocycle on

A. If ¢ is acoboundary, then we have

~ .0 (2n)! 1
2 CD S () - 7 By} =0

for any idempotent ec A .

Proof. Let ¥ =(yy,4+1)p>0 be an (odd) entire cochain such that oy =¢. We

thus have ¢y, =byy, 1 +Byyn, 1 forall n. Recalling the formula bBy +Bpb=1-A

from section 1.2, we have Boq)zn = Bo(b\]f2n_1 + BWZn-l = (1-A) Yon1- b'BO V2p-1-
It follows, since e2=¢ , that

B®2n(€,....€) = 2W9 1(€5.-€) - BoWop.1(€se.n€)

Next we have
¢2n(ey"°9e) = (bWZn-l + BWZn-{-l)(er"’e) = ‘-lf2n..1(es'-we)
+ (20+1) Boyop+1(6558)

From these two relations we obtain

1
¢2n(e,...,e) "3 Boq)zn(e,...,e) = (2n+1) BOW2n+1(e,...,e)

[y

+ ','Z‘B()Wzn"l(e,uo,e) .
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Let a, = BOW2n+1(e’-"’e) . We have

n (2n)!

n!

1
{@ntl)o +5o ;}=0

(o) =@yie)= 2, (1) 5
n=0

and the lemma is proved. |

Nextlet e, ,0<t<1, be a smooth path of idempotents. We have to show that
(d.eq) = {b,e1) where the bracket (,) is defined using (2.2.5). Let ¢' be a normalized
cocycle cohomologous to ¢ . Then by Lemma 2.2.4 (¢'.e;) = (d.¢;) where the left hand
side is defined by formula (2.2.3). Since (¢'.eq) =(¢'e1) ([4], theorem 8), we have

(0,eq) = (9,e1) . This proves (b). Finally, we note that condition (c), namely the

additivity of the pairing, follows directly from the definition of Tr.

To summarize: we have shown that formula (2.2.5) defines a pairing between
HECV(A) and KO(A) which is the same as the pairing defined in [4]. We also note that

< 10 (2n)! 1
Getzler and Szenes' formula [12], namely (¢e) = 2 -1 '('n_nuz" ¢2n(e "= €,..,€) ,
=0 ; “

which works only for normal cocycles, is a special case of formula (2.2.5). This is clear

since Bodop(e,....€) =don(1.e,....e) if ¢o, is a normal cochain.

Remark. A cochain ¢eCP is called normal if ¢(a0al,..a")=0 whenever al =1
for some i>0. Loday-Quillen ([18], section 1) call such cochains normalized but we
decided to call them normal and use normalized for cocycles which are normalized 4 la

Connes i.e. in the sense of Definition 2.2.1. Note that a normal O-cochain is just an

ordinary O-cochain. A cochain ¢ = (¢op)n>0 (tesp. ¢ = (9on41)n>0) in (b,B)
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bicomplex is said to be normal if each component ¢, is normal. It is easy to see that the

space of normal cochains is closed under the operators b and B and hence normal

cochains form a subcomplex of the (b,B) bicomplex which we denote by B(A)orm -

2.3. A Comparison Theorem

In this section we prove a comparison theorem which shows that entire cyclic
cohomology can be formulated in terms of the periodic bicomplex. A careful look at the
definition of the periodic bicomplex reveals that there is no need to assume the algebra is
unital. As a result of this we can extend the entire cyclic cohomology functor to the

non-unital category.

Let A be a unital algebra and let us recall the Loday-Quillen chain map
I:Tot C(A) — Tot B(A) defined in Section 1.5 by the formulas
(I9)oy =9y + Nsdop_1 if ¢=(0,)h>0 is an even cochain
(I®)op41 =0op+1 +Nsdopnyo  if ¢ =(dy)>0 is an odd cochain
In [17] C. Kassel defines (the dual of) a map J: Tot B(A) — Tot C(A) by the formulas
J9)on =02 » JP)2p-1 =Boday if ¢ =(dyp)n>0 is an even cochain

(U020 =Bod2n+1 » (P2n-1=02n-1 I ¢=2p41)n>0 is an odd cochain.
It is easy to see that J is a chain map. The following lemma and its proof is due to Kassel

[17].

Lemma 2.3.1. J is a left homotopy inverse to 1.

Proof. Define a homotopy operator (of degree 1) h: Tot C(A) — Tot C(A) by

the formulas
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(hd)yp, =509,41 » (hd)py 1 =0 if ¢ isan even cochain

(h¢)y, =0, (d)on.1 =S¢y,  if ¢ isanodd cochain .

It is easy to check that
JoI=id + hd + oh
where 0 denotes the coboundary of Tot C(A). This of course shows that J is a left

homotopy inverse to 1. a

The question of whether there exists a nice homotopy between IoJ and identity is
crucial for entire cyclic cchomology and is not answered in [17]. In the following lemma

we show that such a homotopy indeed exists.

Lemma 2.3.2. J is aright homotopy inverse to I.

Proof. Let us define a homotopy operator (of degree 1) h: ToB(A) — Tof} (A)

by the formulas
(h0)n =Ns2Bpdonss  if 0= (dap41)ps0 is an odd cochain
(E¢)2n+1 = NsZB0¢2n+4 if ¢=(dpp)p>0  is an even cochain.

We have to show that ToJ =id+0 h+ 1o, where = b+B is the coboundary of

Tot B(A) . Let ¢ = (¢p9p41)n>0 be an odd cochain in Tot B(A) . It is easy to see that

Wdon+1 =NsBo dop+3 + G2n41 -

On the other hand we have
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(@ h+ B0)yge1 = b B0y + B(Hd)on 4o + Ns?Bg@0)pn 44
= b(NsZB920+3) + BONs?B(op..5)
+ Ns?By(boon 43 + Bonss) -
But BN =B(B =0 and hence the above sum is equal to
= bNsZB( 02043 + Ns?Boboon,3
= Nb'ssBotns3 + Ns?Bgbdons3
= N(1-sb")sB¢943 + Ns2Bgboop 3
= NsBg®op3 - Ns(1-5b)s(1-0)0gp.43 + Ns2Bboos 43
= NsB(on43 - Ns2(1-M)don43 + Ns2b's(1-M)dpn43 + Ns2Bgbdon 43
= NsB99543 - Ns2(1-M)dgp 43 + NsZ(1-sb)X1-A)dgp 43 + Ns2Bgbodyn 3
= NsB(®n43 - Ns?sb'(1-M)dpn43 + Ns2Bboog3

=NsBo02n+3
where we have used the homotopy formula b's + sb' =id together with the relations

Nb'=bN and b'(1-A) = (1-A)b all from Section 1.1. This shows that
o =(id+9 h+ ho)d for any odd cochain ¢ . The proof for even cochains is

completely similar, O

Lemmas 2.3.1 and 2.3.2, combined together, show that the Loday-Quillen map

I: Tot C(A) — Tot B(A) is a homotopy equivalence with homotopy inverse J. In
particular this shows that I is a quasi-isomorphism i.e. induces an isomorphism between

cohomology groups and provides a new proof for propositions 1.4.13 and 1.5.4. The
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important thing is that this proof, unlike our first one, easily extends to the case of entire
cyclic cohomology.
We impose the following growth condition on the norm of cochains in the periodic

bicomplex. Let A be a non-unital Banach algebra.

Definition 2.3.3. An even (or odd) cochain (¢)>0 in C(A) is called entire iff

! n
E 0 llg iz is an entire function of z.
n=0 (n 1
2

n
In the above definition (3) =k if n=2k or n=2k+l. Itiseasy to see thatentire

cochains form a subcomplex of the complex of cochains with infinite supportin C(A). It

is the cohomology of the entire cochains in C(A) that we would like to compare to entire
cyclic conomology. Note that the maps I and J send entire cochains to entire cochaius

and hence are morphisms of the complexes of entire cochains. Similarly the homotopies h

and h respect the entire growth conditions and proofs of Lemmas 2.3.1 and 2.3.2 extend

word for word to the case of entire cochains. The upshot is the following:

Theorem 2.3.4. (Comparison Theorem). Let A be a unital Banach algebra. The map

I is a homotopy equivalence between the complexes of entire cochains in the periodic and

(b,B) bicomplexes of A. ]

We utilize this comparison theorem to extend the definition of entire cyclic

cohomology to non-unital Banach algebras.
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Definition 2.3.5. Let A be a non-unital Banach algebra. The entire cyclic cohomology

of A is the cohomology of the complex of entire cochains in the periodic bicompiex T(A).

We will use the same notation, H*e , to denote this functor. A non-unital continuous

homomorphism f: A — B induces a map of bicomplexes from C®B) to C(A) inan
obvious way. Using continuity of f we can check that entire cochains are mapped to entire
cochains and hence we geta map *: H*(B) — H*g(A).

There are certain obvious compatibility questions that must be addressed. First, let us

check that the new functor extends the old one. For thislet f: A—— B be a unital

homomorphism. Then we h ‘ve a commutative diagram

Tot £(B) -1 Tot £(A)
xl lx

Tot B(B) — Tot B(A)
Combined with the comparison theorem, this shows that the two definitions of H*g
coincide on unital Banach algebras.

Next, let f: A — B be a non-unital homomorphism between unital algebras. Then

If*J : Tot B(B) —> Tot B(A) is a morphism of complexes and non-unital homorphisms
act on cocycles in (b,B) bicomplex in this way. On the other hand from [4] and [7] it is
clear that non-unital homomorphisms act on normalized cocycles in a direct way. Indeed

(cf. [4], Proposition 3) normalized cocycles on A correspond to traces or super-traces,

depending on parity, on the algebra QA defined by Cuntz (or to infinite dimensional cycles

on the universal differential graded algebra QA). A non-unital homomorphism f: A——B
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induces a homomorphism from QA to QB (or QA to QB). Hence traceson QB (or

cycles on €2B) can be pulled back to traces on QA (or cycles on QA). This is the real

motivation for the following lemma and its proof. Recall that a cocycle
0= (d2)n>0 (esp. ¢ =(Ozn+1)n>0) is said to be normalized if, forall n20, Bydo,

(resp. B 9n41) is acyclic cochain.

Lemma 2.3.6. Let f: A—— B be a non-unital homomorphism of unital algebras. Let
¢ = (02p)n>0 esp. 0 =(d2n4+1)n>0) be a normalized even (resp. odd) cocycle on B.
Then £%¢ = (F*dyp)p>0 (resp. £*¢ = (F*09p41)p>() 18 2 (normalized) cocycle on A .
Proof. It suffices to prove the even case. Let us first show that Bf*¢r =
£¥B0oy, - This is rather surprising since f need not be unital. We have Byt*¢,, =
s(1-A) £*0q = sP*(1-A) 9y, = st*(Bgb + b'Bgy) 9oy, . By the cocycle condition for ¢,
we have Bgb¢y, =0 and hence
Bof*0pp(al,...a201) = stb'Byog, (a0,...,a20 1)

= f*b'Bdyp(1,a0,....a20° 1

= bBydo,(F(1), £@0),...fa2n-1)) .
But bBdy, =0 since ¢ is normalized, so that the above term is equal to

= -B0 (fa201) £(1), f(al),... f(a2"2))

= -B(0yq (faZ071), £(20),....£(a21-2))

= Bydon(f(@0),...f20"1))
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= P*Bog,(20,....a20 1
From Bgf*to, = f*Byo,, we conclude that Bof*dg, is cyclic and also Bf*¢y, =
NBf*¢o, = f*NBgdyp, = *Bdy, . It remains to check the cocycle condition. But this is

trivial since bf*¢y, + Bf¥¢5, o =*(bdyy + By 10) = 0. We have shown that

%0 = (f*¢n,)>() 1s @ normalized cocycle. O

Using above lemma we can derive a simple formula for £*: H*(B) — H*c(A)

when f is non-unital.

Lemma 2.3.7. Let f: A— B be a non-unital homomorphism of unital algebras and
let ¢ be anormalized cocycle on B. Then If*J¢ is cohomologous to the normalized
cocycle f*¢ .

Proof. Assume ¢ = (09,),>( is an even cocycle. We have
(If*J9)y, = *¢pp, + NsP*Bodonyn

= %67, + NsBof*0on42

where we have used the proof of Lemma 2.3.6 above. By the same lemma

P = (f*¢yp)p>( is a cocycle and hence by Lemma 2.3.2, NsBgf*¢,, .+ are the

components of a coboundary. This shows that f*¢ and If*J$ are cohomologous. O

Finally, we would like to show that I (and J) send normalized cocycles to normalized

cocyceles. But first



Definition 2.3.8. (Cuntz [10]). Aneven (resp. odd) cochain ¢ = (¢,)>( in the

periodic bicomplex is called normalized iff ¢apqq (resp. ¢op) is a cyclic cochain for all

n=0.

Now, assume ¢ is a normalized cocycle in C(A). Itis easy to see that 1 isa

normalized cocycle in B(A). Indeed, assuming ¢ iseven, we have

B(I9)on = B0y + Nsdypy 1) = Bodyy, -

By the normalized cocycle condition on ¢ we have
(1-Md2p+1 =0, (1-M)dyy - b'dgy_ 1 =0 and Nogqq + Doy, =0.
Hence by, =-(2n+2)do, 41 so that bhyy1 =0. Now, Bydo, =s(1-A)dyy, =
sb'dpp1 - We thus have
By (0,22t )y =g, 1(1,80,...,a20°0)
= _¢2n_1(a2n-1’a0,m’a2n—2) = ¢2n_1(a0,'..,a2“"’*)

where we have used the fact that bd,, 1 =0. Thus Bgdy, =dpp.1 and is cyclic. We

also note that J¢ is normalized if ¢ is normalized.

2.4. The Vanishing of Lie Derivatives and its Consequences

In this section we prove, in full generality, that inner derivations act trivially on the
entire cyclic conomology groups. As a consequence of this we can prove that inner
automor- phisms induce the identity morphism on the entire cyclic cohomology groups.

This in turn implies Morita invariance and additivity of the theory.
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Let A bea unital algebra. At the end of Section 2.2 we defined the notion of normal
cochains. A closely related concept is that of a reduced cochain (cf. [18], Section 4). An
n-cochain ¢eCB, n> 0, is said to be reduced iff ¢(a0,...,an) =0 whenever al=1 for
some i>0. A O-cochain ¢ isreduced iff ¢(1)=0. Note that for n >0 reduced and

normal cochains are the same. It is easily checked that the operators b and B send

reduced cochains to reduced cochains and hence we have a subcomplex B(A)red of (b,B)

bicomplex. The cohomology of this bicomplex is called the reduced cyclic cohomology of
A ([18], Section 4). If A is a Banach algebra we can consider reduced entire cochains on

A and hence the reduced entire cyclic cohomology of A can be defined.

For an algebra A, let A be the algebra obtained by adjoining a unitto A . For
every n 20, we have an isomorphism of vector spaces C(A) @ cn-1eA) =~ oy hA)red
where a pair (¢,,0,,.1) is sent to the reduced cochain 5 defined by:

6 (20, am=¢,(0,...a" +Ago, 1 @l,...aM) .
We can then define a map 0 : Tot C(A) — Tot B( Z)red by sending a, say even,

cochain ¢ = (¢p)p>( to 6 = (52n)n20 where E’Zn =07y D ¢o.1 and similarly for

odd cochains. 0 is obviously an isomorphism of vector spaces. The fact that it commutes
with coboundary operators is the content of the following important proposition in [18], the

proof of which is a direct calculation,

Proposition 2.4.1. The map 6 : Tot C(A) — Tot B( K)red is an isomorphism of

chain complexes.

Proof. See Loday-Quillen [18], Proposition 4.2. ad



By a derivation of an algebra A we mean a linearmap 8: A — A which satisties

d(ab) = a+-db + da-b . One should think of derivations as infinitesimal homomorphisms.
Homomorphisms act on cochains (by pullback) and this action commutes with many of the
operators of the theory. The infinitesimal version of this is the action of derivations on
cochains and the corresponding commutation relations (Lemma 2.4.1 below). More

precisely, given a derivation 8 we can define a map ([3], part II, page 340)

Lg: C"(A) — C™(A) by
n

L8¢(a0,.‘.,an)= E Q)(ao,..., Bal,...,a
1=0

n

).

Themap Lg is the Lie derivative associated to derivation 6. The proof of the following

lemma is a straightforward computation and we skip it. As mentioned before it is the

infinitesimal version of the corresponding result for homomorphisms.

Lemma 2.4.2. Let d:A — A be aderivation of an algebra A . The following

commutation relations hold
(i) bLg=Lgb
(i) bLg=Lgb'

(iii) ALg=Lgh

(iv) sLg= Lgs . 0

It follows from the above lemma that BLg =LgB and hence Lg defines a morphism

of the (b,B) and periodic bicomplexes. Moreover, it is easy to see that Lg sends a



70

normal (or reduced) cochain to a cochain of the same type and hence descends to a map of
normal (or reduced) bicomplexes.

If A isa Banach algebra and & is a continuous derivation of A, then it is clear that
L5 = (Lgdy,) is an entire cochain if ¢ = (¢, isentire. In this way we see that

continuous derivations act on the various types of entire cyclic cohomology groups that
have been introduced.

Recall the homotopy equivalences I and J in the comparison theorem (Theorem
2.3.4). The following lemma shows that these maps behave well with respect to Lie

derivative. The proof is a simple consequence of definitions and Lemma 2.4.2 above,

Lemma 2.4.3. Wehave Lgl=ILg and JLg=LgJ. 0

In [3] part II, Proposition 5, Connes, working with the cyclic complex, shows that

inner derivations act trivially on ordinary cyclic cohomology. Later on, Goodwillie [13],
working with the bicomplex B(A); o, » generalized this result to all derivations. However

his proof is highly nonconstructive and cannot be extended to the case of entire cyclic
cohomology. For our purposes in this chapter it is enough to prove that inner derivations
act like zero on entire cyclic cohomology groups. To do so we modify a result of Getzler

and Szenes [12] (see also [4], proof of theorem 8) to show that inner derivations act trivially

on B(A)peq. We then combine *his with Proposition 2.4.1. and comparison Theorem

2.3.4 to prove the desired result.

Recall that the inner derivation defined by an element a € A is the derivation 3,
defined by Sa(b) =[a,b] =ab-ba forall be A. Weuse L, todenote the Lie derivative

of §, .
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Proposition 2.4.4. (Getzler and Szenes [12], see also [4], proof of theorem 8). Inner

derivations act trivially on the cohomology of B(A);orm -

Proof. Define an interior multiplication operator i, : CHA) — cn-lia) by

ia¢(a0,...,an“1) = -¢(a0,a,a1,...,an"1) + Q)(ao,al,a,...,an'l)
+ DD o@0,....a%1a) .
The identity
igb+biy =L, (245
can be verified straightforwardly. Moreover i, sends normal cochains to normal cochains
and we have

Bi, +i,B =0 (2.4.6)
which is true only for normal cochains. From (2.4.5) and (2.4.6) we have oi, +i,0 =L,

where 0 =b+ B is the coboundary of B(A),orpy, - This of course shows that inner

derivations act trivially on the cohomology of B(A)porm - )

Remark. Let x be a vector field on a smooth manifold. Cartan's formula in differential
geometry tells us that di, + i,d=Ly . Here L, isthe Lie derivative with respect to x, iy
is the interior multiplication with respect to x and d is the exterior derivative of differential

forms. We see that the formula di, +i,0 =L, in the above proof, which is true only for

normal cochains, can be regarded as a noncommutative analogue of Cartan's formula.

Corollary 2.4.7. Inner derivations act trivially on the chomology of B(A);eq
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Proof. Note that the operator i, isnotamap of B(A),q (for ¢ & cl ,iacb(ao) =
-Q)(a(),a) and hence i;0(1) could be different from zero even if ¢ is reduced). This
problem is easily overcome by noticing that i,¢ isreducedif ¢ is a reduced cocycle.
Indeed for ¢ = (¢4+1)y>0 areduced cocycle we have By =Bpd; =0 and hence
¢1(1,a0) + ¢1(a0,1) =0. But ¢1(a0,1) =0 since ¢ isreduced. It follows that
d1( l,ao) =0 ie. ia‘bl is reduced and hence iaq) is reduced. We then have L.¢=

0iy¢ for any reduced cocycle ¢ . This shows that inner derivations act trivally on the

cohomology of B(A)req - m|

Note that i,¢ is entire if ¢ is entire and hence the proof of the above lemma and its

corollary continue to hold when A is a unital Banach algebra.

Next we would like to transport this result to the periodic bicomplex C(A) using

Proposition 2.4.1. We have to make sure that the isomorphism © behaves well with
respect to Lie derivatives. Note that a derivation 6: A — A extends uniquely toa

derivation on A denoted also by & and defined by 8(a+Al)=d(a) .

Lemma 2.48. Wehave 0Lg=Lg0, where 6 is the isomorphism in Proposition

24.1.

Proof. Let ¢ =(¢,),>0 be an even cochain in Tot C(A). We have

(BLg0an V..., 321 = (Lgh)oy (@0,....22M) + A(Lgd)og.1(al,....a20) , and
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2n
~0 ~2n,_ -0 -k -
(LgB0)y (37 1 )_go (80)gq (3 sy Lg & ey 2™

2n
~ ~ ~ 9 ~ ~ ~ D
= (09),,(Ls 205l almyy k2=1 (80), (& 0. Lsa ko2

=¢2n(L5aO al My Y {¢2n(a0 L5ak o 22y

+7»0(1>2n‘1(a1 yoors L5 a ,..,a )}

2n

_ 0 k
= z-_-:o ¢2n(a yoery Laa

2n
9
N azn)+7»0 1;1 ¢2n-1 (a1 Lsak oy 27

= Lg§ 0 (@0,....a21) + A Lg 091 (al,....a2)
=(L§ 9)an @0,....22M) + Ay (Lgd)o,, 1 (al,....a2) .

Thus, we see that the two sides are equal. O

Now we have a commutative diagram

Tot E(A) L, Tot E(A)
9, 18
Tot (&), y —— ToT B(A) 4

From Corollary 2.4.7 and the fact that 6 is an isomorphism we can conclude

Proposition 2.4.9. Inner derivations act like zero on the entire cyclic cohomology of

non-unital Banach algebras. d
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When the Banach algebra is unital we know that the entire theory can be formulated in

terms of the (b,B) bicomplex. By Lemma 2.4.3 we have a commutative diagram

Tot B(A) —LL Tot B(A)
1! "1

La
Tot C(A) —> ToT C(A) .

By Theorem 2.4.3 (comparison theorem) I is a homotopy equivalence. This proves

Proposition 2.4.10. Let A be a unital Banach algebra. Inner derivations act trivially

on the cohomology of entire cochains in B(A) . |

The fact that inner derivations act trivially on entire cyclic cohomology groups is the
infinitesimal manifestation of another fact: inner automorphisms induce the identity
morphism on entire cyclic cohomology groups. Integrating the first result yields the
second one. We adopt the method of proof of Proposition 5 in [3], part II, where the same
results for ordinary cyclic cohomology are proved. We give the full details here since the

exposition in {3] is rather brief.

Lemma 2.4.11. The inner automorphism defined by an element of square one induces

the identity morphism on entire cyclic cohomology groups.

Proof. Let 6(x) =uxu~!l be the given inner automorphism. Since =1 , We can

write u=-iexp Ezlu . Consider the famiily of invertibles u (= €Xp %i—tu = COS lg— 1+
1 sin EQ-E +u,0<t<1, andlet Bt(x) =, xu;1 be the associated family of inner

L

automorphisms. Note that 90=id and 81=0. Let ¢=(d),>0 be an, say even,



entire cocycle in periodic the bicomplex. We have

0 n
q>n (Gta Gta )

=2

da*, , 0 n
50 0p(@ )=

ol

t

- 0 d ., J n
=j§b 0, 0.2 ..., 584 s 82

n
. O j n
1 ]
2 jg() q)n (eta 9oy 6u et d. LENTYY et a )

Ti oA * 9 n
—2-9t Lu¢n(a yeeey &)

d ,* Ti , %
In short we have: a-tet ¢——§- Gt Lo -

By Proposition 2.4.9 L,; ¢ = oy for an entire cochuin . Now we can write

1
. d
e*¢-¢=el¢-eg‘¢=jaet*¢-dt
0

We have to show W is an eniire cochain. Indeed

75
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1
- 0 n 0 n
[y (@ .2 =1y ®a .. 08a)dl
0 . j
<yl sup e, a’ll
0si<1 g) t
. . 2
but I!Staﬂ:IIexp%—t-u-a~exp-%—tulls (1+lul)” Hall and hence

Il\_;;nll <(1+ Ilull)2r1+2 Iy, ll . this estimate is enough to show that \|7 = (\;n) is an entire

cochain. The lemma is proved. |

Next, we can get rid of the technical condition on u by a matrix trick as in [3], part II,

Proposition 5.

Proposition 2.4.12. lnner automorphisms induce the identity morphism on entire
cyclic cohomology groups.

Proof. Let B(x) = uxu~! be the given inner automorphism. Recall the maps
Tr: Hg*(A) — Hg*(M,(A)) and i* :Hﬁ*(Mq(A)) — Hg*(A). We have

i*oTr=id. Let ¢ e Hg*(A). We have 6%¢ - ¢ = i*Tr 0%¢ - i*Tr ¢ . Let

w0 u 0)fo 1){u’ 0
U-—-—O u .WehaveU=U1U2where U1=O 1\t oflg 1/

0 1 2 2
u, =(1 ()) and U1 = U2 =1. Itiseasy to see that i*Tr 6*¢ ={*@*Tr ¢ , where

© is the inner automorphism of My(A) defined by U . Hence it is enough to prove that

©* =id . But this is a consequence of previous lemma since @* =@; o @2* where ©1

and ®> are inner automorphisms induced by elements of square 1. |
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Now we turn to the question of Morita invariance of entire cyclic cohomology. Let A

be a unital Banach algebraand i: A — Mq(A) the (non-unital) homomorphism that puts

A in the upper left corner of Mq(A). Let i*: HE*(Mq(A)) —> Hg*(A) be the

morphism induced by i. Morita invariance (or stability) of entire cyclic cohomology is the
verification of the statemant: i* is an isomorphism.

In [18] this has been established, for ordinary cyclic cohomology, by using Morita
invariance of Hochschild cohomology. One uses the Connes long exact sequence relating
Hochschild and cyclic cohomology groups to deduce the former result from the latter one.
This approach doesn't work for entire cyclic cohomology simply because there is no
spectral sequence from Hochschild theory to entire theory. However there is an alternative
method of proof, used also in algebraic k-theory as well as ordinary cyclic cohomology,

which deduces Morita invariance from invariance of the theory under inner automorphisms.

Let Tr: p(A) — B(Mq(A)) be the trace map introduced in Section 2.1. As we saw

there, Tr induces a map between entire cyclic cohomology grouns which we will denote by
Tr: HE*(A) — HE*(Mq(A)) . We obviously have

i*oTr=id . (2.4.13)

This of course shows that i* is surjective. Proving the injectivity is harder. For thiy

consider the algebra A ® Mq®M where M, = My( C). Let 6: A®M

q’ q oM,

q i

A® Mq ® Mq be the automorphism which interchanges the last two factors. Since all

automorphisms of matrix algebras are inner, we know that © is inner as well.

Lemma 2.4.14. We have Treoi* =1id
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Proof. Consider the pentagon

He*(A®M) —15 HHABM®M)
¥
;
He*(A) o+
Tr "\, "
He*(A®My) <— Hg*(A®M ®M,)

where (to simplify the notation) we have used the same symbols to denote different maps.
This diagram commutes. More precisely we have Tr o i* =i* o 8% o Tr. To see this let
de Cn(A®Mq) . We have
Tr i*p(a%@p0,..., al@pm) = (O ... u?) 0(a0®eqyg ,...., aA"®ey)
and
i*0*Tr ¢a%&p0 ..., a ®u") = 6*Tr o(a¥ @0 ey ,..., a AU Beg)
=Tr ¢(a0 ®eq ®u0 L )
=1r (uO yorer M) <b(a0 ®eq( - a7 Req) -
We see that the two sides are equal. Here ey is the elementary matrix with 1 in position
(1,1) and 0 elsewhere. Since 8 is inner, by Proposition 2.4.12, we have 0* =id .

Using (2.4.13) we have Treoi*=i%* o §% o Tr=1i* o Tr=id . O
The above lemma and formula (2.4.13) conspire to prove

Corollary 2.4.15. (Morita invariance). Let A be a unital Banach algebra. For all

q=21,the map i*: HE*(Mq(A)) — Hg™*(A) is an isomorphism with inverse given by

Tr. O
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Remark. More generally let 1 <p<q and let ip A Mq(A) be the homomorphism

which puts A inthe (p,p) position in Mq(A). The same proof shows that

ip* : He*(Mq(A)) — Hg*(A) is an isomorphism with inverse given by Tr. Asa

corollary we have ip* =i* forall 1<p<q.

The next and last thing we do in this section is to establish additivity of entire cyclic

cohomology. Let Ay and A; be unital Banach algebras. Consider the obvious
homomorphisms i : Ay — A; @ Ay and et A @ Ay — Ap k=12, These
homomorphisms can then be used to define maps o : He*(A1®@Ap) — Hg*(A) @

H*(Ag) and B:Hg*(A1) @ Hg*(Ag) — H*(A[®A)) .

Lemma 2.4.16. We have oef=id.
Proof. We have

aeBxy) = oUTy*(x) + Ty*(y))

= (i1 *(m*(X) + T*(Y)) i (1 *(x) + My *())) = (x,y)

where we Lay ~ used the relations @p0i; =0, 7 °i2 =0 and T oip = id . 0

Showing Beo =id is harder. consider the algebra of 2x2 matrices over Aj®A,,

My(A1©DA5) =My(A1) @ My(Ap) . and the automorphism

0: My(A{DAy) — My(A ®A,)
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~ ~ [0 1 01 ~
defined by 6(x,y) =(x, y) where y=(1 O)Y(l 0).Notethat yr y isan

inner automorphism and hence © is inner too.

Lemma 2.4.17. We have Boa=id.

Proof. One can easily verify that the following diagram is commutative i.e.
Beou=i* o B* o Tr.
He* (A1 @A) —1D H*(Mp(A{®Ay))
Boat 6%
! 1)

He (A @A) < H*(My(A1©Ay)

The automorphism 6 is inner and hence by 2.4.12, 6% =id . By Morita invariance

(Corollary 2.4.15), i* o Tr=1id and hence Bea =1id. O

Lemmas 2.4.16 and 2.4.17 combined together show that o is an isomorphism with

inverse . Thisis, of course, the additivity of the theory.

Remark. As far as author knows, the question of Morita invariance for non-unital Banach

algebras is open. More precisely, we don't know if, for a non-unital Banach algebra A,
the map i*: HE*(Mq(A)) ~— H¢*(A) is an isomorphism. It is probably wrong in
general and is true only for a suitable class of Banach algebras containing all {non-unital)

(C*-algebras. This is suggested by the case of ordinary cyclic cohomology. Indeed, in [24]

it is shown that Morita invariance (in ordinary cyclic cohomology) holds for all Banach
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algebras with a bounded approximate unit. The proof consists of establishing an excision
theorem for such algebras (and more generally for H-unital algebras, see [23]) and applying

it to the (split) exact sequences

0— A — A — € —0

0 — My(A) —an(X) — Mg(€) — 0

It is needless to say that the proof of excision theorem in [23] does not generalize to the case

of entire cyclic cohomology and one needs a new approach to this question in this case.
Finally, we would like to mention that the problem of additivity of the entire theory,

for non-unital Banach algebras, also remains open. Indeed our proof of this property in the

unital case makes use of Morita invariance which is not settled yet in the non-unital case.



Chapter 3

3.1. Infinite Dimensional Cycles

In order to penetrate deeper into cyclic cohomology one has to bring in more
sophisticated formulations of the theory. For example, as we saw in Chapter 1, ordinary
cyclic cohomology of an algebra, which is originally defined as the cohomology of the
associated cyclic compleesx, can also be formulated as the (total) cohomology of the (b,B)
or periodic bicomplex of the given algebra. This is, more or less, equivalent to a central
result for ordinary cyclic cohomology, namely Connes' long exact sequence and is also
crucial for the definition of entire cyclic cohomology.

In this section we will quickly review Connes' theory of cycles over algebras and
especially look at its infinite dimensional form. The goal is to make a formal analogy
between cyclic cohomology and deRham's homology of currents on marifolds. More
precisely one wants to interpret a periodic cyclic cocycle as a kind of current - or integral -
over the algebra of (non-commutative) differential forms. As we will see in the next
section, this will enable us to prove, in full generality, that derivations act trivially on all
kinds of cyclic cohomology groups and in particular on entire cyclic cohomology.

i

By a differential graded algebra (DG algebra) we mean a graded algebra Q = EBOQ
iz

together with a graded derivation d of degree 1 with d2=0. More precisely we have
() Q1. QJ ¢ Qi
(2) df € O] d(g 0y) =do; - @y + (-1)IE DM ;- day ,d2 =0 .

An important example of such algebras is of course (2(M),d) : the algebra of differential
forms on a manifold M together with exterior derivative. Note that this example is
(graded) commutative. A non-commutative example is the algebra of matrix valued forms

on M with the obvious extension of d.

82
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Now let A be an algebra. We can associate to A its universal DG algebra . Thisisa
DG algebra (QA,d) together with a homomorphism A — VA , which is universal:
given any DG algebra Q and a homomorphism A — QO there is a unique morphism

of DG algebras ©: QA — Q such that the following diagram commutes

A

T

e
.

A nice way to think about, and construct, the universal DG algebra (QA,d) of an
algebra A isasfollows. Let QA be the graded algebra obtained by adjoining elements

{da; ac A} to A subject to the relations

d(ab) = adb +da-b , d(a+Ab) =da+ Adb

dega=0 and degda=1,
forall a,be A and scalars A. We then have QO0A = A and QNA ,n21,is generated
(as a vector space) by elements of the form aOdal . dan .dal ... da?, ale A . Note that
this is a construction in the non-unital category: QA 1is not unital even if A is unital, and
1da #da. The graded derivation d is defined by

d(a%al ... da") = da0 ... da® and d(dal ... daR)=0.

It is popular to think of (QA,d) as the algebra of non-commutative difterential forms
on A. This analogy, although sometimes useful, is nevertheless superficial. Ona
technical level, as many examples suggest, it is more appropriate to think of Hochschild
cohomology groups as the space of differential forms on A and to think of the operator B

as the right generalization of the exterior derivative.
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In [ 3], Connes introduced the notion of cycle as a starting point of (ordinary) cyclic

cohomology. More precisely, given an algebra A, an n-dimensional cycle on A isa

linear form f : QA —C , supported on QPA , which satisfies the two conditions

f dw=0 and f [w], @] =0 (graded commutator).
Given an n-cycle on A one can define its character , which is an n-cochainon A, by
q>(a0,...,an) =Ja0dal ... dan .
Now, it is easy te check, using the above two conditions for cycles, that the character of an
n-cycle is a cyclic n-cocycle, i.e. we have
bo=0 and (I-A)¢=0.
Conversely, given a cyclic n-cocycle ¢ on A, we can define an n-cycle I QA — C
by
a0dal.. dam = ¢a0,....a%), [dal..da" =0 and [0 =0 if 0 e QPA.
In this way, we have a canonical one-to-one correspondence between n-dimensional cycles
on A and cyclic n-cocycleson A.
Now, by Proposition 1.4.9, a cyclic cocycle on A corresponds to a cocycle of finite
length in the (b,B) bicomplex. A natural question that arises is: how to interpret a cocycle

of infinite support in (b,B) bicomplex e.g. an entire cocycle, in terms of cycles. The

answer is given by the following definition and the proposition that comes after.

Definition 3.1.1. (Connes {4]). An even (resp. odd) infinite dimensional cycle over
an algebra A is an even (resp. odd) lirear form f : QA — C such that
[ 10y, 0g) = -1)4e8 1 [ day - do, (3.1.2)

forall Wy and wy in QA.

In the following proposition the algebra A is unital,
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Proposition 3.1.3. (Connes [4]). Let (Vr)p>0 Vo, € c-n (resp. (Wap+1p>0 »

Vo4 € C20*1) be such that

@ bYm=Bo¥pmsz Ym,

(b) Boyy, iscyclic  Vm.

Then the functional [: QA — € defined by
(o) JaOdal ... da™ =y, (a0,....a™)

®) Jdal ... da™ =By, (al,...am)

) J w=0 if deg® is odd (resp. even),
is an infinite dimensional even (resp. odd) cycle.

Proof. We prove the even case. Note that suffices to check the cycle condition

(3.1.2) only for ®; of the forni a or da,ae A, and arbitrary w, . Letus check

(3.1.2) for 0y =a and @y = a0dal ... da . We have

[0,09] =10, - (-1)4e8 ®1+deg @2 0y = anldal...da?n-a0dal. .dan.a
=aa0dal ... da20 - 0dal ... d(a20a) + a0dal ... d(a2m-1420).4a - ...

~a0alda2 .. da2n . da.

it follows that

f [wy,09] = -b\yzn(ao,...,azn,a) = -B()\lfzn+2(ao,.‘.,a2”,a)
= B0w2n+2(a,a0,...,a2n) = f da- da¥ ... da2n

=Id£l)1 dCl)2 .
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If o) =da and oy =aldal ... da?""1 , then

[y,0,] =da- aldal..da?M1 +20dal .. da?21 . da

= d(2a0) dal.. da?0-1 - adaldal... da20-1 4 70dal | da?0-l4q

Since bBW,, = by, =0 , we have bBqypq(al....a201,2) =

-B()\;IZH(aaO,al,...,azn'l) . Using this, we have

[ 101,09] = BBy, (a0,....a20 L a) + (1-4) o (a,....a20" 1

,a) .
Using the identity b'Byy+ Bpb=1-A from Section 1.2, we can write

J twy,wa] = Bybyiop (a0,....a20°12) = ByB (0,207 La) = 0

since By, is cyclic.
These two cases are the only non-trivial cases. In view of the comment at the beginning

of the proof, the proposition is proved. O

Conversely, given an even (resp. odd) infinite dimensional cycle on A , one can define
cochains W, by
\;/m(ao,.‘.,am) =[a0dal .. dam, m=even (resp. odd)
and the same proof shows that W = (W)>0 satisfies conditions (a) and (b) of the above
proposition.
Finally, we should mention that by, = BgWy,,o is not quite the same as the cocycle

condition in (b,B) bicomplex. Define universal constants Ao, = -DZn)(2n-2)..2-1,

n20. Given a normalized even cocycle ¢ = (dy,)n>0 + define Y = (Woy)n>0 by
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\;fzn(ao,...,azn) = lzn¢2n(a0,...,a2“) .

It is easy to see that = (Yy)p>( satisfies (a) and (b) if and only if ¢ = (d2)p>() i85 2
normalized cocycle in (b,B) bicomplex. Thus Proposition 3.1.3 defines a one-to-one

correspondence between normalized cocycles in B(A) and infinite dimensional cycles on
A . Asitis emphasized in [4], this is the reason for the importance of normalized cocycles:

they have a natural geometric interpretation.

The rescaling constants A, become important in the next section. For future

reference, we note that

7\2n+2

— =], 314
@n+2)h_ (319

3.2. A Vanishing Theorem

In this section we prove, in full generality, that any continuous derivation of a Banach
algebra induces the zero homomorphism on the entire cyclic cohomology groups. We use
the language of cycles together with reduced cochains to achieve this.

Let A be a non-unital algebra. Recall from Section 2.3 that an even (resp. odd)
periodic cocycle ¢ = (§,),>0 is said to be normalized if (1-A) ¢o4.1 =0 (resp.

(1-A)dy,, =0) forall n>0. The following normalization lemma is the analog of

normalization Lemma 2.2.2. Its proof however is considerably simpler. This is due to the
fact that we work in the periodic bicomplex. Moreover, as we will see, using the

comparison theorem, it implies Lemma 2.2.2.

Lemma 3.2.1. Every periodic cocycle is cohomologous to a normalized cocycle.
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Proof. Let ¢ = (¢,);>0 beaneven cocyclein C(A) andlet 83 1 = ¢ 1 -

1 — ~ . .
7 Noy .1 - Wehave N 0.1 =0 and hence by Lemma 1.1.2 there is a cochain

62m_1 such that (1-A) €2m-1 =0y,,.1 forall m=0. Letus define a cocycle

¢'=(¢'y,) by the formulas ¢'5, = o -bby 1 and ¢'r 1 =0om-1 - O2mo1 -

¢' is cbviously normalized. Let us show ¢' is cohomologous to ¢ . To see this define
the (odd) cochain W= (Ym0 bY Wom =0 and W 1 =065, 1. Wehave

(OW)om = N +byom.1 = b62m-1 and (OY)om.1 = (1-M) Yom-1 -DWom2
=(1-A) Wppy-1 = O3m-1 - Here 0 is the total (odd) coboundary of the periodic bicomplex.

It follows that ¢’ =¢ - dy and hence ¢' is cohomologus to ¢ . There is a similar proof

for the odd case. ]

Note thatif A is a Banach algebra and ¢ is an entire periodic cocycle on A (cf,
Definition 2.3.3) then the normalized cocycle ¢' in the above lemma can be chosen to be
entire. Indeed, from the proof of Lemma 1.1.2, it is clear that we can choose

~ -1 2m-1
0y 1= 5= (1+2h+..+2mA )6, . Thus we have

~

16, < (m+1) I8, < 2Ame+Dllo, 1l .

It follows that W and hence ¢' are entire cochains.

Remark. Let A be a unital Banach algebra. The homotopy equivalences I and J send
a normalized cocycle to a cocycle of the same type (cf. discussion at the end of Section 2.3).

This shows that the above lemma combined with the comparison Theorem 2.3.4 proves the

normalization lemma of Connes (Lemma 2.2.2): for every entire cocycle in B(A) thereisa
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normalized cohomologous entire cocycle. This is another example of the usefulness of the
comparison theorem. Itis sometimes easier to prove or to see the results ir the periodic
bicomplex picture. We can then transport these results to the (b,B) bicomplex, without

worrying about the entire growth conditions, using the comparison theorem.
Let A be anon-unital Banach algebraand 6 : A — A a continuous derivation. We

would like to show the Lie derivative Lg acts trivially on the entire cyclic cohomology of

A . Let us recall the map 0 : Tot C(A) — Tot B(X)red defined by

~0 ~2 0 2 1 2
(G¢)2n( A ., @ n)=(1)2n(::1 yoory & n)+?»0 ¢2n‘1(a yoeey & rl)

if ¢ is an even cochain, and similarly for odd cochains. By Proposition 2.4.1, 8 is an

isomorphism of chain complexes.

Lemma 3.2.2. The map 0 sends normalized cocycles to cocycles of the same type,

Proof. Recall Defintiion 2.1.1 of a normalized cocyle in the (b,B) bicomplex. For

an even normalized periodic cocycle ¢ = (0;);>() » we have to show B()(6¢)y,, isa cyclic

cochain forall n=0. We have
Bo©¢)pn( 20 ..., 2201y = (89)p (1,20 ..., a21)

- (-1)20(89),, (20 ..., 2201 1)
= ¢2n(0,a0,...,a2n'1) + ¢2n_1(a0,..., a2n-ly. ¢2n(a0,..., a2n-1 )
Mg, @l ..., 4?01 0)
aZn-l) )

=dp-1@0 e,

This shows that Bpy(69),,, is cyclic and hence 8¢ is normalized. !
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Theorem 3.2.3. Let A be a unital Banach algebraand & : A — A a continuous

derivation. Let ¢ be a reduced and normalized entire cocycle on A . Then there is a

canonically defined reduced and entire cochain W on A such that Lgd = dy, where 4 is

the (total) coboundary of (b,B) bicomplex.

Proof. Let us prove the even case. Let ¢ =(dy,),>() » be the given even cocycle
and J : QA —>C be the corresponding cycle. Let us define an odd cochain
V= (Y2p+1)n20 bY
—0212n+1'~101'21
A i Zi " [Qdal . sal a2
J:‘.‘

S O R
- n
:Jgi(-u Voo (& e ).

We would like to show that y = (\—V2n+l)n20 is a reduced cochain and estimate the

norms of its components, First note that j dal .., da2K =0 if ol = 1 for some 1. Indeed,

in this case,
[dal...da%k =%y Booylal,..., aZk)
= Ao (Ooe(Lal 22Ky 9y (2l 22K 1)) =0
in view of the fact that ¢ = (¢2n)n20 is reduced. Now we have
Jop-dle oy =+ f oyo;dl £ dog- d1- day =0

forall @; and w, in QA . This shows that each cochain Wj2n+1 is reduc.d and hence

y= (\'11‘211_,_1)[120 is reduced. To estimate the norms of ‘472n+1 »n 20, note that we can
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write, using d(ab) = adb + da-b, each cochain \p’jan in terms of ¢9,.41 - This gives
us the following estimate

g 4111 < iRl ool IS

2n+1 1
Using Vonel = _]gl (-1) \;/-12 ne] o WE obtain

”\;2n+1” < I?»an (0+1)(2n+1) H(bznll lial . (3.2.3)

Next, we will calcula‘e BO{V—2n+1 and show that it is cyclic. Using the relation

1da¥ = da0 - d1. o , We can write
[1d20 ... 841 ... da20 =[da0 .. 81 .. da20-[d1-a0.. 8a! .. da2n
=[da0 ... 8a"1 ... da20.
It follows that
BoWane1(a0a?® = 1(1,20,..021) +ydpy 10,020 1)

=f 1da0 ... 8a)-1 .. @an =fda0 .. 0a1 . da2n

From this we have

n+1

il .
_ 0 2 1,0 _j1 2

By, (@, )= (Y Jda .8 .da . (3.24)
0V2n+1 =

This is a cyclic cochain. Indeed a straightforward calculation shows

2n+1

Let us calculate the Hochschild coboundary of \sznﬂ . We have, by definition
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j 0 o2ns2 20t i 0 k k+#1  2n42
by 2n_}_1(a yeensdl )=k§O(-1) \yan(a Y - ea @ )

+ (_1)2n+2 Wj2n+1(32n+2 aO,..., a2n+1) .

Using the relations ¢i(ab) = adb + da+b and d(ab) =a+8b + a-b , we see that all .he terms

in the above sum cancel except
=-[a0dal .. 8a ... da2nt1. a2n+2 4 [ 22042 504y 1 §aj | da2n+]
= - d(a0dal ... §al ... da2nt1y . ga20+2
=-J a0 dal... 8aj ... da2n+1. ga2n+2

+ (-1 ] a0dal... d5al ... da2n+1. ga2n+2

We thus have
2n+1 .
L e s L ) [da .. 8a) . da™  da”"
=1

261 0 1 i el 2042
- Z fada ..dda ..da - da . (3.2.6)
£

Now, we have

2n+2 )
0 2n+2 j 2n+2
Anialgonsn@ »od )=hgp s J,z‘}o%mz(a SRR L
2n+1
0 1 2n+2 01 2n+1 2n+2 0 1 i 2n+2
=/%a da .. da ! +fa'da ... da G gt Z Ja'da ... s da™™
=1

Combining this with the formulas (3.2.4) and (3.2.6) we get

bYon+1=BoWan+3 - Mon42 Ls 92042 - X2n+2 (3.2.7)

where the cochains )5, ,n 20, are defined by

120 (a0,...a%" = [ d(@0dal ... da2n+1. 522042)
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To proceed further we need a lemma about infinite dimensional cycles.

Lemma 3.28. | dlw),0y] =0 forall @) and @ in QA Here [,] is the super-

bracket.

Proof. Let 9;=deg ©;. We have

,fd[cnl,u)z] =fdco1- 0y + (-1)81 wday, - (—1)3132 day. @ - (-1)(31”“1)82 ndamg

= (dag @y - (1) @32 gydar) + (1191 (01- dey - (1)21@2 D day, + @
1092 240 1* dwy 2 W01

=[ oy coy + (1% do; - 2wy =0 since d2=0, o

Now, using the above lemma, we can write %o, as the coboundary of a suitable

cochain and hence bring the equation (3.2.7) to the desired form. Define the cochains
Wonse1.020,by
Woon4q @0, a2y < | d(da¥ dal ... da2 . §a201y,

Note that y*,, .1 is reduced and Boy*p, 41 =0 . Indeed, we have

Boy*on41 @0 a2y = [ ddi dal ... da?™1 . 5a20)= 0 .
To estimate Ihy*y 411, note that

a2n+1) - a2 ’5a2n+1 ),

¥ n41@h, - 2042 B) 920420,

and hence
¥ 1S g0l lidy 42l el . (3.2.9)

We also have to calculate the Hochschild coboundary of w*5, 1. After obvioius
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cancellations, we have
by*op_1(@0,....a2m) =[ d(a%al ... da2™1. §a21 - daldal... da2n-2 §a20-1, 420

+2a20 da0  4a2n-2, §520-1 4 4220, 20451 4a2n-2. 5520-1y

By the previous lemma, the two middle terms cancel and we get

b\y*zn_l(ao,...,azn) =,f d(aodal ... da2n-1, 8a2n) . .[ d(aodal... da2n-2. §a2n-1. 4520y

Thus we have

N B . 2n-1
Oy e1 =Xop ~ 9¥on g

« 2n-1
or by on-1 7" W2n—1) =%X2n -
Using this we can write (3.2.7) in the form

= 2n+1 —
B(Wanet + ¥ 2ne1 * Yanet) =Bo Y2ne3 Manva Lg danea - (3.2.10)

~ —_ 2n+1 .
Nowlet Wy 1= Voni1 T V* 9041 T Yope - Wehave, since By y*, ;=0 and

using (3.2.5) ,

BYpp43 = (20+3) BoWy, .3 + BoWpp s = (2n+4) By, .

We can thus write (3.2.10) in form

~ 1 ~
Wone1 = 2n+4 BYon3 - }”2n+3 L8 Pon42 - (3.2.11)

Finally, if we define the required cochain W = (Yo,41)n>0 bY

- 1 ~
Yon+1 = Moni2 Yontd »

the equation (3.2.11) transforms to

1

Mnt2 ¥ons1 ~ 507 Manta BY2ne3 =

on+2 T§ Yone2

or,
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bWon+1 + BW2n43 =15 02n+2
which is the required equation.

We have to show W is an entire cochain. Using the estimates (3.2.3) ard (3.2.9), we

have
D SN LA P I W
W1 S Popg W g T+ W0+ W
< (@+D)ll + I ol 1811 . (3.2.12) '
This of course guarantees that  is an entire cochain. The theorem is proved. O

Corollary 3.2.13. Let A be a non-unital Banach algebraand §: A— A a

continuous derivaiion. Then Lg: H*c(A) — H* (A) is the zero homomorphism.

Proof. Since A is non-unital we have to work in the periodic bicomplex. Let ¢ be

an entire periodic cocycle. By Lemma 3.2.1 ¢ is cohomologous to a normalized entire

cocycle and hence we can assume it is normalized. Now recall the commutative diagram

Ly
Tot C(A) —————- Tot C(A) .

o o

Tot B(A)rog 22 T B(A)reg

The cocycle 8¢ is reduced and normalized. By the above theorem there is a reduced entire

cochain y such that Lg8¢ = oy . We thus have Lgd = ae'l\p and the corollary is

proved. O

In the next section we are going to need explicit estimates for II(O'l\y)nII . We have,

using (3.2.12),
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18Iy 11 < gy 411 < {@42)180)n 1 + 11(80)g o1} 1S
2n+2
@) Y I (3.2.10)
i=2n-1

and similarly for (8 ly)oull -

3.3. A Homotopy Invariance Theorem
To prove the homotopy invariance theorem we have to generalize the notion of Lie

derivatives a little further and prove the analogue of Theorem 3.2.3 in this context. So, let
A and B bealgebras and f: A — B a homomorphism beiween them. A linear map

6: A —— B iscalled a derivation if
d(ab) = f(a)d(b) + d(a)f(b) forall ab in A.
Given such a derivation &, we can then define a Lie derivative
Lg: C(B) — C(A)

by the formula

0 n < 0 i n
Lgb(a sy a )= _zoq)(f(a Yoreey 82 onny 2 )
i=

One can easily check that the analogue of Lemma 2.4.2 holds i.e. the map Lg commutes
with the operators b, b', A and s. As aresult of this we cbtain a map of bicomplexes
Ls: C®B)— C()
and also, in case f: A — B is unital,
Lg:BB) — B(A).

The proof of the following theorem is completely similar to the proof of Theorem 3.2.3

with obvious modifications.
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Theorem 3.3.1. Let A and B be unital Banach algebrasand f:A—— B a

continuous unital homomorphism with a continuous derivation 6: A— B. Let ¢ bea

normalized, reduced and entire cocycle on B . Then there is a canonical reduced and entire

cochain y on A such that Lgd =dy .

Proof. Let ¢ beev.aandlet f : QB — € be its associated cycle. The definition

of  is a modification of the corresponding definition in Theorem 3.2.3. For example
W1 @0,,a20h) = [ f0)df(al) ... 8e1 .. dfa@n+]y, 1< <2n+1

and similarly for y*5, . etc. The proof of Theorem 3.2.3 extends word for word to

show that the cochain = (Wop41)p>0 defined as before by yo, 41 = “72n +1

2n+1
+ ¥y i1 F Yoy 1S areduced and entire cochain which satisfies L5¢ = -0y . Firally,

we have the following estimate for Iy, 11l:

W11 < (042) 109l + g ol IAZDFL 13 W

Corollary 3.3.2. Any continuous derivation between Banach algebras acts trivially on

entire cyclic cohomiology groups.

Proof. Let A and B be the given (non-unital) Banach algebras, f: A—— B a

homomorphism between them and §: A — B a derivation. We have the following

commutative diagram

L
Tot C(A) ——————-6——-——> Tot C(A)

o] ’ E

Tot B(B)eq —— Tot B(A)eq -
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We can now apply Theorem 3.3.1. The rest of the proof is similar to the proof of Corollary

3.2.13. O

Given a periodic, say even, cocycle ¢ = (¢,),>( » using the above corollary, we can

write Ly = 86'1\11 . Using the estimate in Theorem 3.3.1, we have

2n+2

-1 2t
O W)y, IS Ihys 1< (12) (i=”zn—1 g,y 1o . (3.3.3)

Next, let A and B be (non-unital) Banach algebras and f;: A — B.0<t<1,a
1-parameter family of homomorphisms between them. Such a family will be called smooth
iff
(a) each f;,te [0,1],is continuous with lifll<M,ie. f; is a uniformly bounded

family of continuous homomorphisms,

(b) forall ae A, themap t+ f; (a) from [0,1] to B is cl. Moreover, the
corresponding family of derivatives 8,: A — B is uniformly bounded.

The derivatives 6,: A — B are of course defined by

f (a)-1i(a)
8 (a) = lim LN M
s—0

since f; is a family of homomorphisms, we have
8y(ab) = &y(a) fy(b) + f(a) 8,(b) .

This shows that each 6, is a derivation with respect to f; .
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Theorem 3.3.4. (Homotopy Invariance). Let fi: A — B, te [0,1], be a smooth

family of homomorphisms between Banach algebras A and B. Then fj and f] induce
the same map between entire cyclic cohomology groups.

Proof. Let §;,0<t<1, be the family of derivations defined by f;. By our
assumptions, theve are constants M and N such that il <M and 113/l <N, uniformly

in t. Let ¢ =(¢,),>g be a, say even, entire cocycle. We can assume ¢ is normalized.

We have

0 0 n. o 0 n
é—f Pkt q)n(a yoouy & )= g q)n (ft (a ),'--, f (a ))

n .
= o @ B, 2 £ (3
= P ¢n(t 8 )y Op 8,y £
0 n
=L8t q)n(a seeey & ) .

In short, we can write

0
a—t- Pktq):LSt(p .

Now, by Coroliary 3.3.2, for each te [0,1], there is a canonical entire cochain ! =

(\ytan) such that L& o= Bwt . We can then write, at least morally
1 1 1
0 t t
£%0 - P00 =g§ﬂ<t¢- dt=6[aq1 L dt=2d (_)[\y dt ,

which shows that the difference is a coboundary and hence f*; =f*; on the level of

cohomology. To make this precise, we have to show that the integral exists and defines an

entire cochain. Fix ao,..., a" in A. Then our proof of Theorem 3.3.1 shows that

\ptn(ao,..., a®) is at least a continuous function of te [0,1] (by the smoothness
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hypothesis, for ae A, St(a) is 2 continuous function of t). Thus the integrals
1

J \y; dt exist (in the strong sense) and define the required cochains. To check the
0

entire growth condition, use (3.3.3) to get
2n+2

t 2n+1
Iy g IIS(n+2)(i_zZm1 ol 1) HE 1 13,1

n+2

<@ (2, o N MmN
i=2n-1

and similar formula for Il\ytznll . In view of the fact that ¢ = (¢,),>( 18 an entire cochain,

1
the above estimate certainly implies that ( j w;dt) 020 is an entire cochain. a
; 2
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