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Abstract 

When internal waves reflect off a sloping bottom, the angle which the incident 

and reflected wave rays make with respect to the horizontal is preserved. Close to 

the critical frequency a>e, for which the wave ray slope equals the bottom slope, the 

wavenumber, energy density, and shear of the incident waves are greatly amplified 

upon reflection. Theoretical estimates of the rate of energy dissipation that could 

result from the enhanced shear of the reflected waves are presented. They are com

pared with the average energy dissipation rate that would be required if boundary 

mixing accounted for the inferred vertical eddy diffusivity of the ocean interior, and 

are found to be within the right order of magnitude, although somewhat too low. 

For internal waves incident on a bottom of non-uniform slope, it is argued that one 

is less likely to observe energy enhancement at the critical frequency above concave 

than above convex topography. Historical current meter data from the Scotian Rise 

and Slope, which is mostly concave, are used to test this as well as the critical reflection 

hypothesis. Some evidence of near-bottom energy enhancement at uc w / was found 

at a few moorings, and evidence for a cross-isobath alignment of motions and near-

bottom energy enhancement over a broad range of frequencies was found at other 

moorings where ivc ~ M^. 

Finally, current meter data from 4°N, at a location where Antarctic Bottom Water 

enters the Northwest Atlantic Basin, are examined in order to determine whether 

the energetic 3-4 day motions that are observed there can be attributed to critical 

internal wave reflection. An alternative explanation of these motions in terms of 

bottom-trapped waves is also examined. 
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Chapter 1 

Introduction 

1.1 The issue of boundary mixing 

Ocean General Circulation Models (OGCM's) are sensitive to the parameterization 

of sub-grid scale processes. For example, Bryan (1987) showed that the poleward 

oceanic heat flux increases by an order of magnitude when the vertical heat diffusivity 

is changed from 0.1 to 2.5 X 10~4m2s_1. Thus it is important that we try to determine 

Kv as accurately as possible for present-day conditions. It is also important that we 

understand what are the dominant mixing mechanisms if we wish to develop any 

predictive capability as to what the climatic role of the oceans may be in the future. 

In a now classic paper, Munk (1966) fitted the vertical profiles of temperature, 

salinity and Carbon-14 in the Pacific to a simple one-dimensional model in which 

vertical diffusion is matched by upwelling, and obtained a value of 1.3 x 10~4m2s_1 

for the "vertical" (or diapycnal) eddy diffusivity Kv. Somewhat larger values of Kv 

have been obtained from abyssal basin heat budgets. Hogg et al (1982) measured the 

flux of Antarctic Bottom Water (AABW) through the Vema Channel into the Brazil 

Basin, where water with a temperature less than \°C vanishes, and assumed a steady 

state heat balance from which they inferred Kv s= 3 to 4 X Ift'^m2a~x. Saunders 

(1987) applied the same technique to the Madeira Basin in the northeast Atlantic, 

and found Kv « 1.5 to 4 x 10"4m2a-1. 

Whitehead (1989) argues that the values of Kv obtained from abyssal basin heat 
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budgets may have to be revised (possibly downwards) due to uncertainties in the 

inflow rates and areas of isothermal surfaces, but his own calculations based on 

geostrophic estimates of the flow of AABW entering the Northwest Atlantic at 4° JV 

(Whitehead and Worthington, 1982) still yield Kv « 1.0 x 10"4m2a-1 . 

Basin-averaged values of Kv of this magnitude are at odds with most direct mea

surements of the rates of dissipation of kinetic energy and temperature variance 

made in the upper part of the main thermocline. Such measurements typically yield 

K„ « 10 - 5 m 2 s _ 1 or less (Gregg, 1987). They also suggest (Gregg, 1989) that Kv is 

independent of the buoyancy frequency N down to about 1000m, and thus should not 

increase with depth, but this awaits confirmation from microstructure measurements 

at greater depths, where the shear anc1 temperature variance are lower, and hence 

harder to measure reliably. 

If conclusions drawn from the microstructure measurements of Gregg and others 

are correct, and if inferred values of Kv are also correct, we are left asking where most 

of the diapycnal mixing takes place in the ocean. Munk (1966) raised the possibility 

that an effective diapycnal mixing for the ocean may actually arise from vigorous 

mixing at ocean boundaries, followed by advection and stirring along isopycnals into 

the more quiescent ocean interior. 

The energetic requirements of this were discussed by Garrett and Gilbert (1988) 

with reference to the schematic ocean shown here in figure 1.1, where -Aboundary(2,£z) 

denotes the area of the bottom exposed to water between two isopycnals which are 

assumed to be flat and lie at depths z and z + 8z. Note that Aboundary on figure 1.1 

includes the sides of topographic features such as seamounts as well as the sloping 

sides of ocean basins. If ify denotes the average energy dissipation rate per unit area at 

this boundary, then the total rate of energy dissipation is given by Fd^boundary(2) £•*)• 

Meanwhile, if K„ represents the effective diapycnal mixing rate in the ocean inte

rior, with buoyancy frequency N, the rate of gain of potential energy there is pKvN
2 

per unit volume, or pKvN
2A(z)Sz for the volume of thickness 8z and surface area 

A(z). Thus if T is the mixing efficiency, i.e. the fraction of energy dissipated at the 

boundaries which is converted to interior potential energy, we obtain 
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Figure 1.1: Schematic of an ocean basin in which boundary mixing leads to an effective 

vertical diffusivity in the interior, after Garrett and Gilbert (1988). 

iv- •^•boundary\zi OZJ L Td ,- - \ 
Kv ~ AjzYz W2' { } 

Armi (1979) quotes values for the ratio Aboundary(̂ j 8z)[A(z)8z]~1 for various depth 

ranges and different oceans. It averages to 2.2 x 10~"4TO-1 for the 3 to 4 km depth range 

and 3.5 x 10 _ 4 TO - 1 for the 4 to 5 km depth range. Taking N2 ~ 10 - 6 s - 2 as typical 

of the deep ocean, Garrett and Gilbert (1988) then point out that Kv « 10_4m2s -1 

in the ocean interior requires 

TFd « 0.2mW • TO"2. (1.2) 

Munk's (1986) boundary mixing hypothesis was more recently advocated by Armi 

(1978), who was able to track homogeneous layers of fluid originating at ocean bound

aries several hundreds of kilometers into the ocean's interior, and did a rough cal

culation suggesting that mixing associated with the bottom friction of low-frequency 

currents (u> «C / ) could be sufficient to account for a basin-averaged value of Kv ~ 

10_4TO2a_1. However, Garrett (1979) argued that Armi's calculation exaggerated the 

importance of boundary mixing, because near-bottom turbulence generated by low 
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frequency currents would likely mix fluid that is more weakly stratified than the ocean 

interior, and hence may be largely ineffective. 

In an important new contribution to research on boundary mixing, Phillips et 

al. (1986) performed a laboratory experiment which shed some light on possible 

exchange processes between the ocean interior, and fluid within the boundary layer 

above sloping topography. Using a tank in which N = 0 near the top and bottom, 

but is a maximum at mid-depth, they studied the flow patterns that result due to 

the oscillation of a rigid grid on a bottom of constant slope. 

They found that buoyancy flux divergences within the boundary layer cause the 

establishment of a secondary circulation, such that fluid enters the turbulent bound

ary layer near the top and bottom of the tank, where N is small, and leaves it at 

intermediate depths, intruding the interior fluid in the range of depths where it is 

more strongly stratified. As time goes by, the isopycnals in the interior fluid separate 

and the density gradients are reduced, so that boundary mixing acts as an effective 

interior diffusivity. They suggested that similar exchange processes should be possible 

in the ocean. 

Our observational knowledge of the processes that occur near the sloping bound

aries of the ocean is rather limited however. Some of the current measurements 

suggest a counter-clockwise change in mean current direction as the bottom is ap

proached (in the Northern hemisphere), as in Ekman layers above flat topography. At 

one of their moorings on the continental slope off New England, Wunsch and Hendry 

(1972) found the veering angle was 10° from 97m to 10m above the bottom, and 

11° from 10m to 2m above the bottom. Bird et al. (1982) found a smaller counter

clockwise veering angle, 6° betwe* a 62m and 6.9m off the sea bed, at a mooring 4630m 

deep on the Bermuda Rise, where the mean current was much larger with an average 

speed of 22cro a - 1 . 

Detailed temperature measurements in the first 100m above the bottom wei^ more 

recently performed by Thorpe (1987a) and Thorpe et al. (1390) on the Porcupine 

Bank and the Hebrides Slope. They found that most of the variability in the structure 

of the boundary layer was associated with the semi-diurnal tide at those locations. 

They also found that conditions favorable to static instability and overturning tended 
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to occur during the upslope phase of the tide. The bottom mixed layer sometimes 

extended up to a few tens of meters above the bottom, but only for a few hours, 

after which its thickness was generally reduced to less than 10m. This is in sharp 

contrast with the results of Armi and D ' A J I T O (1980), who found that bottom mixed 

layers several tens of meters thick could persist for several consecutive days above 

flat topography. Armi and Millard (1976) found that , in general, the thickness of 

the bottom mixed layer tends to be less above slop'^g topography than above flat 

topography. This may be due to secondary circulations of the type studied by Phillips 

et al. (1986), induced by gradients of the buoyancy flux in the boundary layer, which 

tend to restratify the fluid within the boundary layer. 

In a theoretical paper based upon the work of Phillips et al. (1986), Garrett (1990) 

looked at the role of the secondary circulation within the boundary layer, and showed 

that it reduces the mixing efficiency; the overall effectiveness of boundary mixing 

should involve the square of the reduction factor that would occur for the diffusive 

flux alone in a region of reduced stratification. Garrett (1990,1991) argues that steady 

boundary mixing probably cannot produce a significant vertical buoyancy flux unless 

the mixing extends well into the region that can be restratified by buoyancy forces. He 

also points out that the reflection of internal waves (Eriksen, 1985) and the reflection 

and/or generation of internal tides off sloping bottoms (Thorpe, 1987a) may meet this 

criterion, i.e. those processes raise the possibility not only of increased dissipation 

within the benthic boundary layer, but also of shear instability and mixing in the 

stratified region above the bottom mixed layer. 

1.2 Basic physics of internal wave reflection and 

historical ba Vkground 

The reflection of internal waves off a plane rigid surface differs markedly from the 

reflection of electromagnetic or acoustic waves. In Optics or Acoustics, the incident 

and reflected wave rays make the same angle with respect to the normal to the 

reflecting surface, whereas for internal waves, the incident and reflected wave rays 
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make the same angle with respect to the vertical. The unusual nature of the law of 

reflection for internal waves is a direct consequence of their dispersion relation which 

states that, for waves of a given frequency, energy must propagate at a given angle 

with respect to the vertical. As linear theory requires frequency to be conserved upon 

reflection, the angles which the incident and reflected wave rays make with respect 

to the vertical must be the same. 

Close <o the critical frequency u>c for which the wave ray slope equals the bot

tom slope, simple arguments (Phillips 1977, p.227) show that, upon reflection, the 

wavenumber, energy density, and shear associated with the incident waves are greatly 

amplified, so that shear instability and energy dissipation are more likely. This ampli

fication of motions upon reflection results from simple geometric effects together with 

the law of conservation of energy: as the reflected internal wave beam is narrower 

than the incident beam, the amplitude (and hence energy density) of the reflected 

waves must be greater than that of the incident waves in order for energy flux normal 

to the bottom to be conserved. 

Phillips (1963) first pointed this out for inertial waves incident on a bottom of 

constant slope in a rotating, homogeneous, inviscid fluid, and generalised the theory 

to internal gravity waves in Phillips (1966). In both cases he assumed that the 

direction of energy propagation of the incident waves was perpendicular to isobaths. 

For an arbitrary angle of incidence with respect to the isobaths, Sandstrom (1966) 

pointed out that the component of the wavenumber vector parallel to the isobaths is 

conserved upon reflection. Consequently, the waves should orient themselves closer to 

the normal to the isobaths upon reflection. Sandstrom was the first to report (p.78) 

observational evidence for energy enhancement at a>c, using thermistor data from the 

Bermuda slope (Haurwitz, Stommel and Munk, 1959). He also performed laboratory 

experiments which clearly demonstrated the amplification of parcel motions that re

sults from internal wave reflection off a sloping bottom (figure 21,p.71), and published 

that work in Sandstrom (1969). 

Carl Wunsch and co-workers at the Massasuchetts Institute of Technology also 

contributed to early research on the problem of internal wave reflection off sloping 

topography. Wunsch (1968) found progressive internal wave solutions for wedge-like 
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topography, and pointed out that for waves with ray slope steeper than the bottom 

slope (u > u>c), one should expect an accumulation of energy, and hence enhanced 

energy dissipation near the apex of the wedge. 

Wunsch (1972a,b) drew attention to the enhanced temperature finestructure found 

near Bermuda, and suggested that internal wave reflection off the slope of Bermuda 

could be partly responsible for it. He recomputed the power spectrum of the ther

mistor data of Haurwitz, Stommel and Munk (1959), and argued that unusually high 

energy levels at 1-2 hour periods are likely due to internal wave reflection, as Sand

strom (1966) suggested. 

Wunsch and Hendry (1972) used data from a complex array of current meters on 

the New England continental slope, and found rather little support for the theory of 

Wunsch (1968), i.~. they found no systematic increase in the energy density of waves 

with w > u)c as one progresses toward shallower water. However, their data did show 

evidence of energy enhancement at the critical frequency at a few mooring sites. 

Cacchione and Wunsch (1974) performed laboratory simulations of the process of 

critical internal wave reflection. They demonstrated the occurrence of an instability 

manifest as a series of regular vortices, along the sloping boundary, with horizontal 

axes parallel to the slope. Those regular vortices were not observed in the laboratory 

experiments of Thorpe and Haines (1987) and Ivey and Nokes (1989), conducted at 

much higher, and oceanographically more relevant Reynolds numbers (Re Ri 2, 20 

and 170 in the experiments of Cacchione and Wunsch, Thorpe and Haines, and Ivey 

and Nokes respectively). 

Other people worked on the problem of internal wave interaction with sloping 

topography in the late 1960's and early 1970's (e.g. Longuet-Higgins 1969, Hurley 

1970, Baines 1971a,b, etc.); their work will be discussed elsewhere in this thesis. 

The most recent surge of interest in the problem of internal wave reflection off 

sloping bottoms is largely due to the work of Eriksen (1982, 1985). Eriksen (1982) 

presented convincing observational evidence for energy and shear enhancement near 

the critical frequency at a few mooring ^ites. He also provided observational evidence 

for cross-isobath alignment of motions near uc at a few mooring sites. However, 

he pointed out this prediction of linear internal wave theory failed at mooring 636 
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of the Western Boundary Sill Experiment, where the most convincing evidence of 

near-bottom energy enhancement at uc was found. 

In a later paper, Eriksen (1985) explored the implications for ocean mixing of 

internal wave reflection off sloping bottoms. Using the observational requirement 

that the internal wave spectrum a few hundred meters above a sloping bottom has 

seemingly readjusted to the canonical GM79 form (Munk, 1981), he computed a 

quantity which he called the "redistributed energy flux" normal to the bottoin. He 

defined it as the integral over all azimuths, frequencies, and wavenumbers of the 

modulus of the aifference between the reflected energy flux and what this flux would 

be for a reflected spectrum of canonical form. 

The values Eriksen obtained for the redistributed energy flux are so large (10-

30mW TO-2) that only a small fraction of it could account for a basin-averaged value 

cf the coefficient of vertical eddy diffusivity Kv consistent with inferred values (1.2). 

However, a major shortcoming with Eriksen's calculation of the "redistributed energy 

flux" was that he offered no explicit criterion for how much of it should bt lost to 

dissipation, the remainder being presumably redistributed in the four-dimensional 

internal wave spectrum by nonlinear processes. Nevertheless, his suggestion that 

internal wave breaking at sloping boundaries may cause diapycnal mixing of global 

oceanic significance is important and deserves closer attention. 

1.3 Outline of the thesis 

In chapter 2, I summarize the essentials of linear internal wave theory, following Gill 

(1982). I derive the specular laws of reflection for incident energy propagation normal 

to isobaths first, and then for arbitrary angle of incidence. The process of internal tide 

generation over a continental slope is briefly discussed, and I give the main results of 

Rhines (1970) on internal edge waves. 

In chapter 3,1 describe the mechanistic hypothesis of Garrett and Gilbert (1988) 

for estimating the dissipated energy flux that might result from internal wave breaking 

above sloping topography. The algebraic steps leading to the evaluation of the total 

residual energy are given, and the rate of energy dissipation that could result from 
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bottom drag associated with the residual currents is evaluated. 

In chapter 4, I deal with a few aspects of internal wave scattering off irregular 

topography, following Gilbert and Garrett (1989). For the most part, this chapter 

consists of a review of work published on that topic in the early 1970's. A great 

deal of attention is paid to the convex and concave topographic shapes of Baines 

(1971b,1974), and a physical interpretation of his most important findings is given. 

His conclusions are generalised for the case where the buoyancy frequency N varies 

with depth. 

In chapter 5, current meter data from the continental rise and slope off Nova Scotia 

are used to look for evidence of energy enhancement and/or cross-isobath alignment 

of motions near wc. I also pay attention to other processes taking place on the Scotian 

Rise and Slope, such as the generation of internal tides, and the possible existence of > 

bottom-trapped waves within the internal waveband. < 

In chapter 6, current meter data from the Western Boundary Sill Experiment are 

analysed in detail. In particular, I try to verify whether the near-bottom enhancement \ 

of motions with 3-4 day periods at mooring 636 can be attributed to internal wave 

reflection off sloping topography, as Eriksen (1982) suggested. An alternative inter

pretation of those energetic motions in terms of bottom-trapped buoyancy oscillations . 

is examined. 

In chapter 7,1 summarise the results of earlier chapters. Questions left unanswered ( 
i 

in this thesis are raised, and possible ways of tackling them in the future are proposed ! 

in some cases. 



Chapter 2 

Theoretical background 

2.1 E lements of l inear in te rna l wave theory 

In this section, I summarise the main results of linear internal wave theory, following 

Gill (1982) for the most part. LighthiU (1978) and LeBlond and Mysak (1978) also 

give detailed accounts of linear internal wave theory. The reader is referred to any of 

these books for algebraic steps omitted here for the sake of brevity. 

2.1.1 The dispersion relation 

The linearised equations of motion for a stratified, rotating, incompressible, invi'icid, 

Boussinesq fluid are given by 

du -ldp . . 

Tt-fv = y0Tx (2-1} 

£ + / •—£ ^) 
dt p0 dy 

dw _ - 1 dp p'g . 
at p0 az p0 

together with the continuity equation 

du dv dw ,n lS 

dx dy az 

10 
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where («, J,W) are the velocity components in the (x,y,z) = (Eastward, Northward, 

Upward) directions respectively, / = 20 sin ^ is the Coriolis parameter given in terms 

of the Earth's angular speed £2 and latitude <j), p is the departure from hydrostatic 

pressure, pa = p0(z) is the background mean density, p' — p — p0 is the perturbation 

density, and g = 9.87ns-2 is the Earth's gravitational constant. Finally, the linearised 

form of the equation expressing the conservation of density for a material particle 

(Dp/Dt = 0) is given by 
t 

We thus have a system of five differential equations in the five unknowns u, v, w, p 

and p'. It is possible to eliminate u, u, p and p' from this set of equations, and reduce 

it to a single differential equation in terms of the vertical velocity w: 

d2 fd2w d2w d2w\ e2d
2w „2(d

2w d2w\ n 

where N2 = ^ ^ (2.7) 
po dz 

is the square of the Brunt-Vaisala frequency, the frequency at which a water parcel 

oscillates when displaced vertically fiom its equilibrium position. Gill (1982, p.129) 

suggests we should simply call N the buoyancy frequency, as Rayleigh drew attention 

to it before Brunt and Vaisala, and it is a physically more relevant name as the 

restoring force responsible for its existence is the buoyancy term gp'/p0 in (2.3). 

To obtain the dispersion relation for internal gravity waves in a rotating fluid (also 

referred to as inertio-gravity waves), wave solutions of the form 

w = w0 exp [i(kx + ty -f mz — ut)] (2.8) 

are substituted into (2.6), yielding 
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where (k, I, TO) are the (x,y, z) components of the wavenumber vector k, and u> is the 

frequency of the waves. Letting K = (k2 +12)1/2 denote the horizontal component of 

the wavenumber vector k, the dispersion relation (2.9) can also be written as 

or a;2 = N2 cos2 9 + f sin2 9 (2.11) 

where 9 is the angle which the wavenumber vector makes with respect to the hori

zontal. Since 0 < \9\ < 7r/2, it follows that f <u < N. One can also write (2.11) in 

the commonly used form 

The group velocity of internal waves can be obtained by differentiating the dis

persion relation (2.10) with respect to the horizontal and vertical components of the 

wavenumber vector, giving 

c g 
fdu du\ Km(N2-f2) , N .„„„. 

\dK dm J u [K2+m2)2 

which implies that cg • k = 0, i.e. cg A. k. This is one of the most important results 

of linear internal wave theory. It expresses the remarkable fact that the direction of 

energy propagation is perpendicular to the direction of phase propagation for internal 

waves, so that a packet of waves would appear to slide sideways along the crests. It 

also means that when phase propagation is upwards, energy propagation is down

wards, and vice versa (see figure 2.1). From (2.13), the modulus of the group velocity 

vector is given by 

, , nm (N2-f2) N2-f „ . „ .„„,. 
c8 = / a . . 2X3/2= irr-cosflsmfl. 2.14 

6 u (K2 + m2)3/2 w|k| 

The group velocity thus vanishes at JV and / , where 6 = 0 and 7r/2 respectively 

(2.12), and is inversely proportional to w and |k|. If we let ft denote the angle which 

Cg makes with respect to the horizontal (figure 2.1), we have that \9\ = TT/2 — |/x|, so 

that 
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Figure 2.1: Diagram showing the orthogonality of energy and phase propagation for 

internal waves. The oblique lines represent planes of constant phase. They propagate 

in the direction of the wavenumber vector k as time progresses. Meanwhile the energy 

of a wave packet propagates at right angles to that, with group velocity cg , i.e. in 

a direction parallel to individual wave crests. The angles which k and cg make with 

respect to the horizontal are denoted by the symbols 8 and fi respectively. 
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t a n 2 / i = tan2(W2-N)=Ia^' <2- lfi> 
and from (2.12), we get 

/ 0,2 _ X2 \ 
tan2 / i=(iv^j- <2-16) 

Internal ^/ave energy thus propagates at small angles with respect to the horizontal at 

near-inertial frequencies, and this angle increases with frequency, becoming vertical 

at the buoyancy frequency. 

2.1.2 Consistency relations 

Fofonoff (1969) has shown that it is possible to determine whether fluctuations in 

moored measurements are consistent with linear internal wave theory. For given 

values of / and JV, he showed that the ratio of potential energy to horizontal kinetic 

energy should be a function of frequency only, and is given by 

N2P/-t ( JV2 \ / V - f2\ 
cc - ' > ' J » (2.17) Pun + Pvv V N2 ~ « 2 / V <"2 + P J 

where P ^ , Puu and P„„ are the autospectra of vertical isopycnal displacement, East 

velocity, and North velocity. 

Decomposing the elliptical motion of a water parcel into cyclonically and anti

cyclonically rotating parts, it can also be shown that the energy in the cyclonically 

rotating part (P++) should be smaller than that in the anticyclonically rotating part 

(P__) by the factor (Gill 1982, p. 306): 

°f+ (<* ~ l/l 
2 

(2.18) 
P- W + l/17 

independently of the directional properties of the spectrum. In the Northern hemi

sphere, P + + represents the anticlockwise energy density, and P represents the clock

wise energy density (Appendix A). Note that while (2.18) can be derived from the 

spectral functions of Fofonoff (1969), it is not explicitly written down in that form 

there. 
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2.2 Laws of specular internal wave reflection 

2.2.1 Incident energy propagation normal to isobaths. 

Let us consider an ocean of infinite depth in which the buoyancy frequency N is 

constant, and the bottom slope is tan a (figure 3.2). It is possible to derive the linear 

laws of specular reflection for internal waves incident on such a boundary simply by 

invoking 

1. the conservation of wave crests upon reflection, 

2. the conservation of frequency upon reflection, 

3. the conservation of energy flux upon reflection. 

Conservation of frequency upon reflection implies that the angle p, which the 

incident and reflected wave rays make with the horizontal must be the same (2.16), 

as illustrated on figure 2.2, and conservation of wavecrests upon reflection implies 

that each incident wavecrest gives rise to a reflected wavecrest, so that incident and 

reflected wavecrests must match on the boundary. 

Mathematically, those two conservation laws translate into 

k , - s = k r - s , s = (cos a, 0, sin a) (2.19) 

where I is a unit vector in the plane of the slope, pointing in the upslope direction, 

and 

k, = |k,|(sinF,0,cos/i), (2.20) 

kr = |kr|(sin/i,0, — cos/t) for u > a. (2.21) 

We can thus rewrite (2.19) as 

|ki|(sin p., 0, cos p.) • (cos a, 0, sin a) = |kr |(sin /x, 0, - cos p) • (cos a, 0, sin a) (2.22) 
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z 
A 

*SS&: \ ^ 

Figure 2.2: Schematics of the reflection process for incident energy propagation nor

mal to isobaths. The i and r subscripts refer to the incident and reflected waves 

respectively, cg and k are the group velocity and wavenumber vectors, W is the 

width of the internal wavebeam, and a and p are the angles which the bottom slope 

and the wave rays make with the horizontal. 
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|k,|(sin/icosa-(- cos/i sin a) = |kr|(sin/icosa — cos/isina) (2.23) 

|kr | sin(/i + a) 
|k,| sin(/i — a) 

Similarly, we have 

(2.24) 

kr = |kr|(—sin/x,0,cos/i) for p < a, (2.25) 

and we can show that (2.19) leads to 

lkrl _ s i n ( a + /*) (o 0R\ 

|k,| sm{a-p) 

Thus according to (2.24) and (2.26), specular internal wave reflection off a sloping 

bottom leads to the wavenumber amplification 

|k,i sin(a - p) ' 

and from (2.21) and (2.25), the amplifications of the vertical and horizontal compo

nents of the wavenumber vector are given by 

TOT _ sin(a + p) K _ sin(a + p) ^ 2 g , 
TO,- sin(a — p)' k{ sin(a — p)' 

Hence TO changes sign upon reflection when p > a, and k changes sign when p < a. 

Note that there is a singularity in the wavenumber amplification when p = a. The 

frequency at which this occurs is called the critical frequency, and is such that 9 = 

7r/2 — a. Substituting this value of 6 into (2.11), we obtain 

w] = JV2 sin2 a -f f cos2 a. (2.29) 

Now Gill (1982, p.267) points out that for internal waves, the energy flux density 

vector F', given by 

F' = ^u", (2.30) 
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where p' and u are the perturbation pressure and velocity, can also be written in the 

form 

F' = Ec g , (2.31) 

where cg is the group velocity vector whose magnitude is given by (2.14), and E is 

the mean perturbation energy per unit volume associated with the internal waves 

E = ^ ( u ' + ti' + t*) + \ ^ , (2.32) 

where each overbar denotes the mean over one wavelength. If we now invoke the 

third conservation law mentioned above, namely that energy flux be conserved upon 

reflection, then the incident energy flux across the section of width W; must equal the 

reflected energy flux across the section of width Wr (figure 2.2). Using (2.31), this 

implies that 

Ei |cg i | Wi = Er |cg r | Wr, (2.33) 

, Wr K |ki| 
where Wi = A : = ikTj' (2-34) 

and from (2.14), 

Cg r | |ki| 

|Cgil |kr| ' 
(2.35) 

so that 

Ei\c#\Wi = Er\c#\^Wi^ (2.36) 

The ratio of the reflected and incident energy density is thus equal to the square of 

the wavenumber amplification. Using (2.8) and (2.37), it is now straightforward to 

show that upon reflection, the mean square vertical shear of horizontal currents is 

amplified by the factor 
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((f)2 + (£)2)r «*(?+"), 
((t)2 + (t)2),. " "*(* + "), 

m2Er 

(2.38) 

(2.39) 

((ft)'+(*)'), 
((S)2+(i)2),. 

The amplification of the mean square shear is thus equal to the wavenumber amplifi

cation (2.28) to the fourth power. Therefore one expects that the Richardson number 

Ri = N2l(8ujdz)2 could fall to low values due to internal wave reflection off sloping 

bottoms, possibly leading to shear instability whenever Ri falls below a critical value 

(i2ic = 1/4 say). 

2.2.2 Generalisation to arbitrary angle of incidence with 

respect to the isobaths. 

In all generality, for internal waves impinging on a sloping bottom with arbitrary 

angle of incidence with respect to the isobaths, the vertical velocity associated with 

the incident and reflected waves can be written in the form 

Wi oc exp [i(kix + Uy + miz - w;t)] (2-41) 

wr oc exp [i(krx + try + mrz — urt)], (2.42) 

where the i and r subscripts refer to the incident and reflected waves respectively. 

Analogous expressions could be written down for the u and v velocity components. 

Therefore, the boundary condition of no normal flow across the bottom (u • n = 0) 

must necessarily be o* the form 

{...} exp[i(fex + Uy + nuz ~ w,-t)] + {...} exp[i[krx + lry + mrz - urt)] = 0 (2.43) 
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at z = x tan a , so that 

{...} exp[i(kix+£iy + mix tan a — a>,£)] + {...} exp[i(krx+£ry+mrx tan a — urt)] = 0. 

(2.44) 

Such a boundary condition can be satisfied for all values of time t only if 

Wi = ur = u>, 

for all values ox the alongslope coordinate y only if 

(2.45) 

£• =£ —£ 
•c-i — <.r * . , 

and for all values of x only if 

(2.46) 

ki + TO,- tan a = kr + mr tan a (2.47) 

or K — h + (TO,- — m r ) tan a. (2.48) 

Equation (2.45) merely states that frequency is unchanged upon reflection. It than 

follows from (2.12) that the angle 8 which the wavenumber vector makes with the 

horizontal is also conserved upon reflection, so that 

tan2 9r = tan2 #,-, 

TO* TO; 
£2 + Jfe2 £2 + fc? 2 ' 

which, using (2.48), becomes 

(2.49) 

(2.50) 

mr 

mi 

£2 + [n>i + (wii ~ wir) tan a] 

£2 

VTO,/ 

£2 + fc? 

sin2 0,- + 

+ 

I2 + kf 

ki + (1 — TOr/m.,-)TO,-tan a 

(£2 + kfy/2 

cos * + (i-=*) 
\ mi J 

tan #,- tan a 

(2.51) 

(2.52) 

(2.53) 
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x (onslope) 

y (alongslope) 

h 

Figure 2.3: The projection of the wavenumber vector kj = (ki,£,m,i) onto the hori

zontal plane makes the angle fa with respect to the onslope direction. 

where fa is as defined on figure 2.3. If we now let 

a = tan a tan #,-, then (2.54) 

(!M 2
 = sin2 j . + cos2 j . + 2a cos fa(l - ^r] + a2 (1 - 2 ^ + ^ ) (2.55) 

\TO,/ \ mi J \ mi mf J 

Grouping like powers of TO,./TO,-, we obtain the quadratic equation 

(—) (1 - a2) + (—) 2a(cos fa + a) - (1 + 2a cos fa + a2) = 0, (2.56) 
VTO,/ \TO, / 

which can be solved in the usual way, yielding the two roots 

TO, _ 
— -"-5 

TO,-
and (2.57) 
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rnr a2 + 2a cos fa -f 1 . . . 
— = - — , a = tan a tan 0,-. (2.58) 
TO,- a2 — 1 v ' 

We reject the first root on physical grounds, as it corresponds to the case where 

no reflection occurs, so that energy continues to propagate along its original path, 

through the bottom. When fa = 0, (2.58) reduces to (2.28), as it should: 

m r a + 1 tan a tan 8i + 1 . 
(2.59) m-i a —I tan a tan 8i — 1 

tan a + tan p 
(2.60) 

t ana — tan/f 
sin a cos u + sin u cos a . 

r r (2.61) sin a cos p — sin /z cos a 
m r sin(a + p) (2.62) 
TO,- sin(a — p) 

Figure 2.4 shows how the wavenumber amplification |mr/TO,-| varies as a function 

of the incident azimuth fa and the frequency-dependent parameter a = tan a tan 0,-, 

using (2.58). We find that wavenumber amplifications larger than 1 are only pos

sible for downward incident energy propagation (a > 0). We also find that at all 

frequencies, maximum wavenumber amplification occurs for incident energy propaga

tion in the onslope direction (fa = 0), and |TOr/TO,|max decreases rapidly away from 

the critical frequency (a = 1). 

To show that (2.58) is equivalent to equation 5 of Eriksen (1982), we now rewrite 

it as 

m r — 2 cos ^,-tan #,-tan a — (1 + tan2 0,-tan2 a) cos2 <?,- cos2 a 
TO£- 1 — tan2 $i tan2 a cos2 #,- cos2 a' 

(2.63) 

TOr —2 cos fa sin 9i sin a cos 9i cos a — (cos2 8i cos a + sin 8i sin a) . . 
— = — . „ —r~o (2.64) 
TOj cos2 8i cos2 a — sin 0,- sin a 

mr —\ cos fa sin 20,- sin 2a + \ sin 20,- sin 2a — (cos 8{ cos a + sin 8i sin a)2 . . 
m,- (cos &i cos a + sin 8i sin a)(cos 0,- cos a — sin 0,- sin a) 



23 

a = tan a tan <?t-

Figure 2.4: Wavenumber amplification |mr/m,-| as a function of the incident azimuth 

fa and the frequency-dependent parameter a = tan a tan 0,-, using (2.58). The regions 

of (a, fa) space for which waves cannot be incident on the bottom are hatched. The 

direction of incident energy propagation is downward for a > 0, and upward for 

a < - 1 (after Garrett and Gilbert, 1988). 
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(2.66) 
TOr _ cos(a — 9i) sin20,- s in2a(cos fa — 1) 
TO,- cos(a + 0<) 2cos(a + 0,)cos(a — 0,)' 

as in Eriksen (1982). However, in the remainder of the thesis, we shall always use 

(2.58) instead of (2.66), due to its greater compactness. 

Now in order to obtain a formula for the reflected azimuth fa, we note that 

conservation of frequency upon reflection requires that tan |0,| = tan |^r|, so that 

TO,- TOr 

(£2 + k2y/2 (£2 + k2y/2' 
Defining fa in a manner analogous to fa on figure 2.3, we can write 

(2.67) 

sin^r = 
(^2 + fc2)l/2> 

, - ' 
r r (£2 + kf)1/2 

sin fa = sin fa 
TO,-

TOr 

TO,-

TOr 

) 

so that the incident and reflected azimuthal angles are related by 

(2.68) 

(2.69) 

(2.70) 

<rV = s i n - 1 ( — sin^.V (2.71) 
\ TOr / 

as in equation 8 of Eriksen (1982). It is important to note that near u>c, \mi/mr\ —* 0 

(figure 2.4), so that fa —» 0 or IT, i.e. the reflected wave ray is oriented nearly 

perpendicular to the isobaths, as illustrated on figure 2.5. Using (2.71) and (2.58) 

together with simple geometry, it can be shown that for a> < wc, we always have 

whereas for a; > a>c, we have 

I ^ T T / 2 

|<M>W2, 

for |&£cos 1(-^l)1 

(2.72) 

(2.73) 

as claimed by Eriksen (1985, equation 3). 



25 

W < U)c 
x (onslope) 

y (alongslope) 

OJ > UJt 

I 
I. 

y (alongslope) 

-> x > X 

Figure 2.5: Diagram showing the tendency for current ellipses to orient themselves 

closer to the normal to the isobaths upon reflection off a sloping bottom. The i and 

r subscripts refer to the incident and reflected waves respectively, k and cg are the 

wavenumber ( ) and group velocity (—) vectors, and <f> is the azimuthal angle 

measured counterclockwise from the onslope direction. The subcritical case (to < OJC) 

is depicted on the left, and the supercritical case (uj > u)c) is depicted on the right. 
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2.3 Other processes that could lead to near-bottom 

energy enhancement within the internal wave

band above sloping topography 

In the ocean, one rarely has the chance to study a single process in isolation, as can 

be done in the laboratory. Other processes besides internal wave reflection could 

lead to near-bottom energy enhancement within the internal wrveband above sloping 

bottoms. In this section, I consider two of these, namely the generation of the internal 

tide by the surface tide, and bottom-trapped buoyancy oscillations. 

2.3.1 Internal tide generation by the surface tide 

The process of internal tide generation by the curface tide over large topographic 

features such as the continental slope can be envisaged as follows (Baines, 1982). 

Starting with the set of equations (2.1)-(2.5), which are more concisely written in 

vector form as 

po-^ + Pof x u + Vp + p'gz = 0, (2.74) 

V - u = 0, (2.75) 

one can decompose the pressure and velocity fields associated with the tide into 

barotropic and baroclinic components: 

u = ui + Ui, P=Pi+Pi, (2.77) 

where the 1 and i subscripts refer to the surface and internal tides respectively. Sub

tracting the equations for u i , pi from (2.74)-(2.76), Baines obtains 

^ + f x u . + 5i + ^ = 0 , (2.78) 
at p0 p0 
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V • Ui = 0, (2.79) 

where p~a is the depth-averaged density. Baines (1973) shows that by letting p' = pi+p, 

where p\ and p are the density perturbations due to the surface and internal tides 

respectively, (2.78)-(2.80) can be rewritten so that the internal tide motion is driven 

by a virtual body force F: 

^ ! + f > < u . + ^ + ^ = r = ^ £ i ! , (2.81) 
at p0 p0 p0 

Baines also shows that the vertical velocity Wi due to the surface tide can be expressed 

in terms of the volume flux Q cos(wrt) as follows: 

Wl(x,y, z, t) = - z Q • V ( - ) cos(wr«), (2-83) 

where WT is the tidal frequency, h = h(x,y) is the bottom depth, and Q = (Qx, Qy) — 

(hu, kv) is assumed constant over the width of the continental slope. For the two-

dimensional case where h is independent of y, this becomes 

u>i(a>, z, t) = QJL-UD. cos(wrt), (2.84) 

yielding W\ = 0 at the free surface (z = 0), and w\ = —udh/dx at the bottom 

(z = — h(x)). Substituting (2.84) into (2.82), one obtains 

z(dh/dx)dPosm(uTt) 
Pi - -Qx~-rr--dz--^r-> (2>85) 

and substituting this into (2.81), we get the following expression for the body force: 

QxN
2z(dh/dx) . . _ . . 

F _ _ ^ \_J_—L s m ^ y ^ z . (2.86) 
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z = Q 

TTTTTTTTT * = -%) 

Figure 2.6: A cross-isobath volume flux Qx = hucos(uiTt) due to the barotropic tide 

sloshes to and fro over the continental slope. This causes a vertical motion wx within 

the fluid whose amplitude is W\ = —u(dh/dx) at the bottom, and decreases linearly 

to Wi = 0 at the free surface (z = 0). The body force responsible for the generation 

of the internal tide is given by F = —gp\% , where p\ is the buoyancy perturbation 

caused by the barotropic tide. 
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Having neglected any y-dependence in (2.8i), Baines (1973) defined a stream function 

\P for the internal tide motion such that 

Ui = - ^ L e - " * , tin = ^ e - » * ' , (2.87) 
dz dx 

and showed that (2.81) can then be rewritten in the form 

d2* ,d 2 ¥ 
dx2 dz2 ~ \i-w2

T/N2) *? W ' - W^4 {zm) 

subject to 

and 

t = 0 
f = 0 

at z = 0 

at z = —h(x). 

(2.89) 

(2.90) 

Note that in (2.88), s is the characteristic slope t&np (2.16) evaluated at w = UIT, 

so that internal tide energy should travel along rays of slope a. To solve (2.88)-(2.90) 

across variable topography, Baines developed a theory which exploits this beamwise 

character of internal tide energy propagation, and cast the problem of surface—internal 

tide coupling in the form of integral equations. 

He first dealt with the case where dh/dx < a everywhere on the slope ('flat-bump' 

topography) in Baines (1973), and extended that theory to the case where dh/dx > a 

over a portion of the topography in Baines (1974) ('steep-bump' topography). He 

found that, for steep-bump topography, the total energy flux from the barotropic 

tide to the baroclinic tide is 2 to 3 times greater than the maximum for flat-bump 

topography of comparable height. He also found that for steep-bump topography the 

largest internal tide velocities occur around characteristics emanating from regions of 

the topography where the M2 internal wave ray slope equals the bottom slope. 

Baines (1982) extended the theory of Baines (1974) by allowing for the generation 

of interfacial waves at the base of the surface mixed layer, and estimated the total 

energy flux from the surface tide to the internal tide for several shelf areas around the 

world. He concluded that, although the internal tides of largest amplitude are likely 

to be observed near continental shelf breaks, the total energy flux from the surface 
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tide to the internal tide in the abyssal ocean, based on the estimates of Bell (1975a), 

is more important overall. 

Sandstrom (1976) devised a theoretical framework quite different from that of 

Baines (1974) for studying the generation of the internal tide by the surface tide 

over a continental slope. Whereas in Baines' formalism the surface tide is treated 

as a body force in a non-homogeneous differential equation (2.88), in Sandstrom's 

formalism the differential equation to be solved is homogeneous, and tidal forcing 

enters the problem through non-homogeneous boundary conditions: 

9 2 * 2 5 2 * n 2 < 4 - / 2 ,o ,. 

subject to * = *„ at z = 0 (2.92) 

and * = 0 at z = -h(x). (2.93) 

In Sandstrom's method the problem of barotropic forcing over a bottom slope is 

reduced to solving a matrix equation by an iterative technique, and the form of the 

slope is contained in an inhomogeneous phase function S(x). Much of his paper deals 

with the construction of that phase function. 

He found, as Baines did, that the coupling between the surface and internal tide is 

relatively weak for 'flat'-bump topography, but is strong for 'steep'-bump topography. 

He also found that, for a step shelf, the baroclin'c energy density on the deep water 

side should be about 2.5 times larger than the barotropic energy density (see his 

table IV). Since a step shelf is conceptually equivalent to steep-bump topography, 

this result appears to be consistent with Petrie's (1975) finding that the baroclinic 

component of the tide dominates on the Scotian Slope (which is steep). 

2.3.2 Bottom-trapped buoyancy oscillations 

Rhines (1970) has shown that, besides plane progressive waves with frequencies be

tween / and N, a class of edge waves is possible in a uniformly stratified, uniformly 

rotating fluid bounded by a single plane wall with slope tan a. 
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He chose a set of coordinates (xi,x2,x3) and corresponding velocities ( u i ^ , ^ ) 

such that the sloping wall lies at x3 = 0, and Oxx, Ox2 are rotated through an angle 

(j) from the onslope and alongslope directions respectively 1 (see figure 2.7). Besides 

choosing Ox3 as the coordinate axis normal to the slope, Rhines also chose Oxi to lie 

along wavecrests, so that phase propagation is in the Ox2 direction. He then looked 

for wave solutions of the form 

exp [(—K + ik3)x3 + i(hiX2 — ut)] (2.94) 

to the linearised, incompressible, non-diffusive, inviscid, Boussinesq equations, wHre 

K and k3 are real. He pointed out that we must have u3 = 0 everywhere in the fluid 

in order to satisfy the condition of no normal flow at the boundary, and also pointed 

out that trapped waves which depend on the presence of the sloping boundary require 

«2 = 0 everywhere in the fluid. 

Water parcel motions corresponding to the trapped wave solutions of Rhines 

(1970) are thus rectilinear (parallel to Ox{), implying the ratio of anticlockwise (P++) 

to clockwise (P ) kinetic energy 

g ± = 1. (2.95) 

The frequency of these waves is a function of the Brunt-Vai'sala frequency N, the 

slope angle a, and the orientation <j) of the motions: 

w = JV sin a cos <f>. (2.96) 

The maximum frequency (u> = iVsina) occurs for cross-isobath motions ((j> = 

0), and equals the Brunt-Vai'sala frequency JV for a vertical wall (a = 7f/2). The 

minimum frequency (u = 0) occurs for alongslope motions ((f> = T / 2 ) . LeBlond and 

Mysak (1978, p.188) gave the apt name of 'bottom-trapped buoyancy oscillations' to 

the motions described by Rhines (1970), who himself called them internal edge waves. 

xThe notation used here differs from that of Rhines (1970), where $ = <f> + w/2. My choice of 

notation ensures that the onslope direction is given by (/> = 0 for internal waves (see figure 2.3) as 

well as for Rhines' bottom-trapped buoyancy oscillations. 
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Figure 2.7: Cartesian coordinate system chosen by Rhines (1970) to describe the 

types of motion that are possible above a single wall with constant slope tan a, in a 

uniformly stratified, uniformly rotating fluid. The Ox3 axis is normal to the slope, 

and the Ox2 axis is in the direction of phase propagation. The trapped motions are 

rectilinear and parallel to the Oxx axis. 
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Table 2.1: Consistency relations for internal waves and Rhines' bottom-trapped buoyancy oscillations. 
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Rearranging terms in (2.96), it is useful to note that the orientation of bottom-

trapped buoyancy oscillations should vary with frequency as follows: 

^ = c o s _ 1 (l^—) • (2-97) 
VJVsina/ v ' 

Some of the properties of Rhines' bottom-trapped oscillations are summarised and 

compared with those of internal waves in table 2.1. 



Chapter 3 

Estimates of the dissipated energy 

flux 

3.1 Introduction 

Garrett and Gilbert (1988) (hereafter GG88) have proposed a mechanistic model for 

estimating the energy dissipation rate that might result from internal wave breaking 

above sloping topography. In the first part of this chapter, I describe the physical 

assumptions on which their wave breaking model is based, and I summarize their 

most important results, contrasting them with those of Eriksen (1985). 

The remainder of the chapter deals with what we shall refer to as the residual 

energy spectrum. This is the energy spectrum which GG88 are left with after re

moval of the waves which are assumed to break upon reflection. The derivation of an 

analytical formula for the total energy content of this spectrum parallels that given 

for the reflected shear spectrum in GG88, and thus provides us with an opportu

nity to reexamine the validity of some of the approximations made in that paper. 

The distribution of residual energy in frequency space, azimuthal space, and vertical 

modenumber space is shown for typical values of the bottom slope and the frequency 

ratio //JV. And finally, the additional energy dissipation rate that could result from 

bottom drag due to the residual currents is estimated. 

35 
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3.2 Theoretical estimates of the energy flux avail

able for mixing. 

3.2.1 Eriksen's redistributed energy flux 

Current meter data from mooring 349 of Wunsch and Hendry (1972, figure 11) on 

the New England continental slope have much less kinetic energy at the critical pe

riod (14-16 hours) 100m above the bottom than 10m above the bottom. Similarly, 

Eriksen (1982) pointed out that current meter data from mooring 636 of the Western 

Boundary Sill Experiment (discussed in chapter 6) show a rapid decay with height 

above the bottom of the spectral peak at u>c f» O.Olcph, that peak having almost 

completely vanished 200m above the bottom. Using this observational requirement 

that the internal wave spectrum a few hundred meters above a sloping bottom has 

seemingly readjusted to the canonical GM79 form, Eriksen (1985) computed a quan

tity which he called the "redistributed energy flux" normal to the bottom. He defined 

it as 

FR = E / / \H»>J,h) ~ Fr(u,jr,fa)\dfadw, (3.1) 

where Fi(w,j,fa) = -^EGM(u;,j)cs(u,j7fa)-h (3.2) 

= ^Erefl(u,jr)Cg(u,jr,fa)-n (3.3) 

is the bottom-normal incident energy flux, and 

Fr(wJr,fa) = YEGM(vJr)Cg(u,jr,fa) • n. (3.4) 

is the bottom-normal reflected energy flux. The signs on the right hand side of (3.2) 

and (3.4) have been chosen so as to ensure that both Fi and Fr are positive, n being 

a unit vector normal to the bottom which points toward the ocean's interior. In (3.4) 

the reflected modenumber j r is the nearest integer to j|mr/m,-|, where mr/mi is given 

by (2.58), and the reflected azimuth fa is given by (2.71). Thus j r and fa are obtained 

using the specular reflection laws of chapter 2. 
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On the other hand, it is important to note that the energy density EaAf(oJ,jr) 

in (3.4) is not obtained using the specular reflection law (2.37), i.e. EGAf(v,jr) 7̂  

(mTlmi)2EoM(u,j). If it were, the integrand in (3.1) would be trivially equal to 

zero, as the laws of reflection derived in chapter 2 conserve energy flux normal to the 

bottom. 

In (3.2), EGM(VJ) is the GM79 (Munk, 1981) energy density at frequency o> 

and vertical modenumber j , and in (3.4), EGM(I»IJT) is the GM79 energy density at 

frequency u> and modenumber j r . Since the reflected energy flux Fr(u>,jr,fa) would 

be equal to the incident energy flux F((u,j,fa) if (2.37) were used, Eriksen's redis

tributed energy flux (3.1) thus represents the integral over all azimuths, frequencies, 

and wavenumbers of the modulus of the difference between the reflected energy flux, 

and what that flux would be for a reflected spectrum of canonical GM79 form. 

Quoting Eriksen (1985, p.1151), the reflected waves are "prescribed to take on 

amplitudes that are consistent with the canonical spectrum. The rationale for this 

calculation is that a reflected component must adjust to the canonical spectral level 

for its particular wavenumber and frequency in order for the observed total (incident 

plus reflected) spectrum not to imply a flux imbalance at that particular (reflected) 

wavenumber and frequency. The difference between incident flux and reflected flux 

accomplished within a prescribed distance from the bottom is then a measure of the 

power redistribution per unit volume of the internal wave field." 

The values which Eriksen (1985) obtained for the redistributed energy flux are 

quite large. They range from a few mW • m~2 to a maximum of nearly 60m W • m~2, 

typical values being on the order of 10-30 mW • m~2. If only a small fraction of that 

redistributed energy flux were dissipated, it could be sufficient to maintain a coefficient 

of vertical eddy diffusivity Kv of 10~4m2s-1 in the deep ocean (1.2). However, a 

major shortcoming with Eriksen's calculation of the "redistributed energy flux" was 

that he did not say how much of it should be lost to dissipation, the remainder 

being presumably redistributed in the four-dimensional internal wave spectrum by 

nonlinear processes. 

Now since shear instability and energy dissipation tend to occur at small spatial 

scales, it could be argued that the fraction of Eriksen's redistributed energy flux most 
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likely to cause mixing is that for which the transfer of energy takes place from small 

wavenumbers to high wavenumbers. However, it turns out that Eriksen's redistributed 

energy flux is dominated by the transfer of energy from high wavenumbers to low 

wavenumbers. 

This is most clearly seen on Eriksen's figure 5c: for incident spectra including 

both upward and downward propagating energy, the total reflected energy flux Fr 

(summed from j r = 1 to 32) is always larger than the total incident energy flux Ft. 

This is so because incident waves which get reflected from high wavenumbers to low 

wavenumbers are prescribed the GM79 energy density appropriate to their reflected 

wavenumber. As |cg | is inversely proportional to the magnitude of the wavenumber 

vector (2.14), and as the GM79 model spectrum has more energy at low modes than 

at high modes (3.11), the energy flux carried by Eriksen's reflected waves is larger 

than the incident energy flux whenever \mrjmi\ < 1. 

The overall tendency for Fr to be larger than F{ on Eriksen's figure 5c thus reveals 

the dominant role of reflection from high to low wavenumbers in his calculation of the 

redistributed energy flux. As |m r/m;| < 1 leads to a reduction of the vertical shear 

rather than to its intensification (2.40), this implies that the major part of Eriksen's 

redistributed energy flux is very unlikely to cause vertical mixing. 

In any event, it could also be argued that the energy flux lost from the internal 

wave spectrum cannot possibly be of the same order of magnitude as Eriksen's (1.985) 

redistributed energy flux (10-30 mW-m~2), as this would drain the internal wavefield 

of its total energy of about 4 x 103 J • m~2 (Munk, 1981) in just a few days. A sink 

of internal wave energy of this magnitude would lead to far less universality of the 

internal wave spectrum in time and space than seems to be typical (Olbers, 1983). 

3.2.2 A more explicit model for estimating the dissipated 

energy flux due to shear instability of the reflected 

waves. 

Garrett and Gilbert (1988) proposed a more specific model based on mechanistic ideas 

to estimate the energy flux that might be lost to dissipation. Their approach can be 
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outlined as follows: 

1) using the GM79 model spectrum as their incident internal wavefield, they let 

each wave component in this spectrum give rise to a reflected wave according to 

(2.58), typically with higher wavenumber (figure 2.4) and greater energy (2.37) 

and shear (2.40) 

2) the total shear spectrum of the incident and reflected wavefields is then summed 

from mode j = 1 to j = j p , such that the Richardson number based on the 

mean square shear from this part of the spectrum has some 'critical' value 

Ric(jp) = 0(1) 

3) finally, they suggest that waves with j > jp are likely to undergo shear instabil

ity, and hence tend to break and get dissipated. The rate of energy dissipation 

due to internal wave breaking is assumed to be equal to the energy flux carried 

by those shear unstable waves. 

The formulae they obtained for the cutoff modenumber jp and the rate of energy 

dissipation Fda due to shear instability depend only on tan a and 7, where tan a is 

the bottom slope and 7 = //JV is the ratio of the inertia! to the buoyancy frequency. 

They are given by 

jp = lll(sin a j -^^s in 2 a + 7
2 cos2 a)2'3[sin2 a + 7

2 (1 + cos2 a)]"1 /3 , (3.5) 

Fds = 85j~^sin2 a + 72 cos2 a ) - 3 / 2 cos3 a sin3 a mW • m - 2 , (3.6) 

and are plotted on figures 3.1 and 3.2 respectively. We see on figure 3.1 that for 

typical values of the bottom slope tana and the ratio f/N, jp is the range 30-100. 

Figure 3.2 shows that the dissipated energy flux Fds could be as large as 1 mW • 

m~2, but is generally much less than this for typical values of f/N and tana . These 

estimates of Fda, while much less than Eriksen's "redistributed energy flux", still 

appear to be significant for deep-ocean mixing rates (1.2), and may represent an 

important sink in the overall energy balance of the oceanic internal wavefield (Olbers, 
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Figure 3.1: Cutoff modenumber jp for which Ri(jp) = 1, as a function of 7 = f/N 

and the bottom slope tana (after Garrett and Gilbert, 1988). 
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Figure 3.2: Dissipated energy flux Fds due to shear instability of the reflected waves, 

as a function of 7 = f/N and the bottom slope t ana (after Garrett and Gilbert, 

1988). 
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1983). Figure 3.2 also suggests that (i), for a given value of //JV, Fds generally 

increases with bottom slope tan a, reaching a broad maximum when tan a w 3//JV, 

and (ii), for a given value of tan a, Fd, increases as f/N gets smaller, so that boundary 

mixing via internal wave breaking might be more important at low latitudes than at 

mid-latitudes. 

The latter remark should be taken with a 'grain of salt' however, as it results 

directly from Munk's (1981, footnote 14) suggestion that we should take Ef = 

conatant = 4.6 x 10~9s_ 1 , instead of E = conatant = 6.3 x 10~5 in the GM79 

model spectrum. This suggestion was made to give a more accurate energy density 

for w > M2 as we approach the equator; observational evidence (Wunsch and Webb 

1979, and Eriksen 1980) suggests that the energy density is independent of latitude 

for u > O.lcph. However, the problem with taking Ef = conatant is that it tends to 

exaggerate the energy density for UJ < M2, and we end up with a singularity in total 

energy content at the equator (E —* oo as / —> 0). 

GG88 have listed some of the limitations of their calculations. One of them in

volves the assumption that the incident waves are reflected as if from a uniformly 

sloping bottom. Except for flat abyssal plains, realistic ocean topography does not 

usually fit that description. Even large scale topographic features such as the conti

nental slope are rich in structure with many canyons and other indentations. 

Another serious problem with GG88's calculation of the dissipated energy flux 

Fds is that they cannot oay anything about the ultimate fate of their residual energy 

spectrum. An analytical formula for the ratio R of the sum of the incident and 

residual energy to the total GM79 energy was given by GG88: 

R = 1 + 0.26jP7 sin a(sin2 a + 72 cos2 a ) - 1 , (3.7) 

and is plotted here on figure 3.3. The detailed algebraic derivation of this formula is 

given below. The main difference with the derivation of the reflected shear spectrum 

outlined in GG88 lies in the fact that Er = (mr/mi)2Ei in (2.37), whereas Sr = 

(mr/mi)4S, in (2.40). 
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Figure 3.3: Ratio R of the sum of the incident and residual energy to the total GM79 

energy, as a function of f/N and the bottom slope tana (after Garrett and Gilbert, 

1988). 
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3.3 Evaluation of the total residual energy 

Let us assume that the incident energy spectrum is vertically symmetric and horizon

tally isotropic, as in the GM79 model spectrum of Munk (1981). Half the waves of 

this spectrum are going to be incident on a sloping boundary, and the incident energy 

density in (u),j,fa) space is thus of the form 

Ei(w,j,fa) = ^-E(u;,j) (3.8) 

where h = 1300m, JV0 = 5.2 x 10-3s_1 (3cph), and 

E(u,j) = B(u) H(j) E, (3.9) 

and E = 6.3 X 10 -5 is a dimensionless constant which sets the overall energy level in 

the GM79 model spectrum. The total incident energy per unit mass is obtained by 

summing over all vertical modes and integrating over all frequencies and azimuths: 

b2N„N ^ rN r _, b'N0N ^ r» r _ , .... , Ei = -T-Y[jf J_J(u,3)dfa<L> 

__ b2NaNE(, 2._1ff\\ b2NaNE 

The energy of a single reflected wave component is given by (2.37), 

fm \ 2 

Er(u,jr,fa)= — ) Ei(u>,j,fa), 
\rriiJ 

'mr\
2b2ILN rw • JL x fmr\

2¥IJ0N ., 

using (3.8). Defining the residual energy spectrum as the reflected energy spectrum 

truncated at j r = j p , the total residual energy per unit mass is then given by 

file:///rriiJ
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h2N N °° 
Er = ^1£(J 1 + J2 + J3), Where (3.13) 

4 7 r j=x 

h = r» r/!*y EM)d4tidu (3.14) 

= 2 f* r (—) E(v,j)dfadu> (3.15) 

j 3 = [" T (^V E(w,j)dfadw. (3.16) 

The limits of integration a»ji and o»j2 are defined in such a way that, for / < w < 

Wji and Wj2 <w < N, we have j r / j < jfp/j for 0 < fa < 2ir (see figure 3.4). Hence in 

(3.14) and (3.16), all incident azimuths contribute to the residual energy spectrum. 

On the other hand, for uiji < w < Wj2, waves with —fa(u,j) < fa < fa(u,j) are 

reflected with jT/j > jp/j, and so do not contribute to the residual energy spectrum 

(3.15). An expression for the cutoff azimuthal angle fa(ui,j) is derived below (3.33). 

As we expect the peak in reflected energy density at u> = uc to dominate the 

contributions to Ji, I2 and I3, we shall use an asymptotic form of (2.58) valid near 

the critical frequency, i.e. valid for a = 1 + 8, where J < 1 . Such an expression is 

given by equation (4.7) of GG88, who further assumed that JV2 > w2, obtaining 

^ = -Wi / 
2 m ; \ (JJC 

(1+cos&), (3.17) 

where e is defined such that 

u = uc(l -f e), dw = wcde. (3.18) 

If we now let 

A = (l-p/w2
c), (3.19) 

this can be rewritten as 

— = ~e-1A(l + cos^,)- (3.20) 
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Figure 3.4: Diagram showing the maximum reflected modenumber jT for the incident 

modenumbers j = 1 (—) and j = 5 ( ), using (2.58) with fa = 0. For / < ui < uiji 

and u)j2 < w < JV, we always have \jT/j\max < jp/j- The range of frequencies 

uiji < u < Wj2 for which \jT/j\max > jp/j increases with j . This figure was drawn for 

the particular case where / = 7.3 x 10" 5 5 - 1 , N = 10 _ 3 5 - 1 and t a n a = 0.07, so that 

jp = 51 according to (3.5). 
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For any frequency (i.e. for any value of e), the maximum wavenumber amplification 

is achieved when fa = 0. Thus, 

mT 

Ttl; 
= 2|e"1|J4 

In particular, at o» = Wji = Wj2, we have 

mr 

mi max 

mp 

mi 
Jp 

and if we define ej by letting 

it follows that 

l^ji - wc| = \WJ2 — wc\ = ejWc, where ej > 0, 

Jp/j = 2 6 7 % 

(3.21) 

(3.22) 

(3.23) 

3.3.1 Evaluation of Ji and J3. 

Using (3.18)-(3.20), we can rewrite (3.14) as 

(3.24) 

nuc(l-e.;) fir 

Ji w / / e-2A2(l + c o s ^ ) 2 ^ ( w , i ) # , 
Julc(l— £f) J —IT 

dw 

/i « wc f
 e' r e~2A2(1 +cos fa)2E(w,j)dfade. 

J—tf J—IT 

(3.25) 

If we now assume that most of the residual energy density is concentrated near the 

critical frequency wc, i.e. assume that contributions to I\ fall off quickly away from 

wc, then we do not need to take into account the u>-dependance of E(w,j) in the 

GM79 model spectrum (3.10), and simply let 

E(w,j) « E(wc,j) = constant. (3.26) 

It follows that 
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Ji « A2wcE(wc,j) f £J e~2de f (1 + cos fafdfa, (3.27) 
J— ef J—IT 

where 

0,- sin 2 fa 
J* (1 + 2 cos 0,- + cos2 &)<*& = I fa + 2 sin fa + ^ + = 3TT, 

so that 

e~2<2e 
-£/ 

Ji « 37rA2a;cii7(wc,i) • (^-\ 

l2. - . x / 1 1 
I1^ZTA2WCE(WC,J)[ , (3.28) 

(3.29) 

h w y ^ J p i ^ ^ W c J ) . (3.30) 

3TTA2U;C.E(U;C, j ) 
Ji « — — for 1/e.,- > 1/e/ 

ei 
Using (3.24), this becomes 

3TT 

2 

Proceeding as we did for I\ in (3.25), we can rewrite J3 as 

repf fir 

h~uc / e_2A2(l + cos fa)2E(w,j)dfade, 
Jtj J—IT 

where e^r = (N — wc)/wc, and if we let E(w,j) = E(wc,j) = constant as in (3.26), 

this yields a result similar to (3.28): 

J3 w 3TVA2WCE(WC, j) I J . 

Using (3.24) and assuming that 1/e,- ;> 1/CAT, which is usually a good approximation, 

this becomes 

37T 

h = h « YA<JJC3P i ^K'J' ) ' 

so that 

Jx + I 3 » 37rAwc;p j
 lE(wc,j). (3.31) 
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3.3.2 Evaluation of J2. 

We now proceed to the evaluation of (3.15): 

/ 2 = 2 r 2 r ( — Y E(w,j)dfa<k>. 

Using (3.18)-(3.20), this becomes 

J2 - 2wc r !* e~2A2(l + cos fa)2E(u,j)dfade. 

If we now let E(w,j) ~ E(wc,j) as in (3.26), a better approximation here as the 

frequency range involved is narrower and centered about wc, we obtain 

I2 ~ iA2wcE(wc, j) T f e-2(l + cos fafdfade. (3.32) 
JO Jtj>c 

As we get closer to u.'c (e —» 0), the range of incident azimuths fa for which j r > jp 

increases. Hence in the above equation, the cutoff azimuthal angle fa is a function 

of e. It ranges from fa = 0 at e = ej, to fa = ir at e = 0, its exact dependence on e 

being easy to deduce from (3.20): 

^ = |e-1 |4(l + cos^c) 
3 

cos& = ^ 4 - l 

^ = cos-1 ( i p - l ) . (3.33) 

Therefore, 

h ~ U2wcE(wc,j) p r , . v e"2(l + cos fafdfade. (3.34) 
JO Jcos~l I -4?- l I 

Replacing ej by its value in (3,24), this becomes 

h ~ U2wcE(wc,j) / }p / , . , e"2(l + cos fafdfade. 
JO ./cos-M-^-lJ 
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Figure 3.5: The region over which we perform the integration is hatched, and the 

curved line is given by x = 1 + cos fa. 

This expression can be made more tractable if we use the change of variables i = ^ , 

dx = &*, yielding 

- 2 
A J \ \ - 2 f , , „ .N2JJ . (AJ h ~ 4A2wcE(wc, j) f r 1-?- I ar2(l + cos fafdfa • ( ^ \ dx 

Jo Jcos- i (x- l ) \Jp ) \J„ ' 

h ~ 442u,c£(u;(:, j ) ( 4 ^ 1 / ' / * x~2(l + cos fafdfadx, 
JO Jcos- l (x- l ) Jp 

and J2 can thus be rewritten as 

I2 ~ 4Awcjpj-1£(a;c, j ) / x " 2 ^ / * (1 + cos fafdfa. (3.35) 
JO Jcos~l(x-l) 

Evaluating this double integral is most easily done by changing the order of integration 

as follows: (see figure 3.5) 
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f x~2dx fV (1 + cos fafdfa = A l + cos fafdfa f x~2dx, (3.36) 
J0 JCOB-I(l-I) Jo J(l+C08^,) 

f x~2dx r (1 + cos fafdfa = f (1 -f- cos 6 f f ̂  + 7TT—H ) d^ 
Jo Jcos-l(i-l) -/O V 2 (I + COS fa) J 

so that 

-1 /•* 
(3.37) 72 ~ 4^wcypj-1£;(a'c,i) [—- J (1 + cos ̂ , )2#. ' + / (l + c o s 4>i)^Pi 

.A . . i n / .\ I 1 / , « . , & sin2c^,-\ , . , 
I2 ~ iAwcjpj~

1E(wc,j) - - I & + 2 sin & + — + — — j+fa + sin fa 

I2 ~ 44wc.?pj
 xE(wc,j) \^j , 

and we finally obtain 

h ~ TAwcjpj-
1E(wc,j). (3.38) 

3.3.3 Total residual energy 

Adding (3.38) and (3.31), we get 

h + h + h « 47rA^Jpr1£KJ), (3.39) 

and substituting this back into (3.13), we get 

oo 

Er w b'NoNAwJp^j-1 E(wc,j) 
i=i 

for the total residual energy per unit mass Er. If E(wc,j) is of the form proposed by 

Munk (1981) in (3.9)—(3.11), then 

oo 

Er « j p 62JV0JVJE7.4a,c£(u;c) E i " 1 ^ ; ) 
i=i ( 

0.4 
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Er « 0.4jp b2N0NE AwcB(wc), 

where A is given by (3.19), and B(wc) is given by (3.10), so that 

and it follows that the total residual energy per unit mass is given by 

Er « —jP b2N0NE 4 K 2 - /2)1 / 2- (3.40) 
TV WQ 

The ratio of the total residual energy to the total incident energy is obtained by 

dividing (3.40) by (3.12), yielding 

Next we seek to rewrite (3.41) as a function of only two parameters: 7 = f/N, 

and the slope angle a. Since jp as given in (3.5) is already a function of 7 and a, we 

only need to write the rest of (3.41) in terms of these two parameters. Replacing wc 

by (2.29), we get 

Er_ ~ g l . f(iV2sm aa + / 2 c o s 2 a - / 2 ) 1 / 2 

Ei ~ " hf N2sm2a + f2cos2a 

* / [(JV2-/2)sin2a]i/2 

Ei ' Jp JV2 (sin2o- + 72cos=a) 

which, for JV2 ^ / 2 , becomes 

Er „ „„ . / JVsina 
Ei ' JP N2 (sin2 a + 72 cos2 a) 

El 

- f « 0.51jP7sina(sin2 a + 72 cos2 a ) - 1 (3.42) 
Ei 
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This is the ratio of the total residual energy (reflected energy truncated at j r = jp) 

to the total incident energy (equal to half the total GM79 energy (3.12)). For the 

purpose of comparison with data, it may be more relevant to compute the ratio R of 

the sum of the total incident and residual energy to the total GM79 energy: 

EL±EL = Ei + (E,/Ei)Ei 

2Et 2Et
 K ' 

Rlal±l£m (3.44) 

and we finally obtain 

R « 0.5 + 0.26jP7 sin a(sin2 a + 72 cos2 a ) - 1 . (3.45) 

Note that the second term on the right hand side of (3.45) tends to zero as a —> 0. To 

obtain the correct limit R —* 1 as a —» 0, GG88 adjusted the first term on the right 

hand side of (3.45) from 0.5 to 1 in (3.7). This correction was used to compensate 

for some of the approximations made here, e.g. (3.17), (3.26) and (3.29). Estimates 

of iZ based on (3.45), and numerical calculations of R made without any of the above 

approximations, were always found to be in agreement to within this correction factor 

of 0.5. 

3.4 Distribution of energy within the residual spec

trum 

Besides allowing a verification of (3.45), the numerical calculations referred to above 

allow us to look at the distribution of energy within the residual spectrum. The 

specular reflection formula 

Er(w,jr,fa) = (mr/m,-)2 Ei(w,j, fa) (3.46) 

was used for a spectrum of incident waves with the GM79 energy density, each of them 

giving rise to a reflected wave according to (2.58) and (2.71). The energy density of 
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the reflected waves was added and stored in a three-dimensional array containing a 

discrete number of frequency bins, modenumber bins, and azimuthal bins. Special 

attention was paid to what happens in the neighbourhood of the critical frequency 

by using a very fine grid near a = tan a tan 0,- = 1 (in contrast with Eriksen's (1985) 

frequency grid which did not have an increased resolution near u;c). 

Figure 3.6 shows a projection of the energy contained in this three-dimensional 

array Er(u>,jr,fa) onto the frequency axis: 

&(«) = ]C f Er(u,jr,fa) dfa. (3.47) 

There is a wide range of frequencies for which the residual energy density is sub

stantially larger than the GM79 energy density. The narrow spectral valley right at w,. 

is due to truncation of the reflected spectrum at jr = jp. Otherwise there would have 

been an infinite peak there. The residual energy density equals the GM79 incident 

energy density at / and JV, where from (2.58), |m r/m,| = 1. 

Figure 3.7 shows a projection of ET(w,jT,fa) onto the modenumber axis: 

Er(jr) = l T Er(wJr,fa) dfadw. (3.48) 
Jf J-x 

We see that the residual energy spectrum is white in modenumber space, in sharp 

contrast with the j ~ 2 slope of the incident GM79 model spectrum (3.11) for j >• j t = 

3. One way of interpreting this result would be to say that (2.37) exactly compensates 

for the j ~ 2 slope of the incident spectrum (3.11) to yield a reflected energy spectrum 

that is white. If this interpretation is correct, we would expect the mean squared 

reflected shear spectrum to have a j 2 slope, by virtue of (2.40) and (3.11). This is 

indeed the case, as can be seen on figure 3.8. 

Finally, figure 3.9 shows a projection of Er(w,jr,fa) onto the azimuthal axis: 

Mtr) = £ fN Er(w,jr,fa)dw. (3.49) 
J r = l Jf 

The residual energy density is concentrated at fa = 0° (onslope direction) and fa — 

180° (offslope direction). The spectral peak at fa = 0° is due to slightly supercritical 

waves (w^jWc) which get reflected toward shallower water, whereas the spectral peak 
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Figure 3.6: Distribution of residual energy density as a function of frequency w for the 

case where / = 7.3 x lO -5* -1, JV = 10~3*-1 and tana = 0.07, so that wc ~ lO^s"1 . 

The dashed line shows the canonical GM79 energy level for the purpose of comparison. 
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Figure 3.8: Contribution to the inverse Richardson function Ri'1 = ((du/dzf/N2) 

(Munk, 1981) as a function of the reflected modenumber j r for / = 7.3 x 10~ 5s _ 1 , 

JV = 10 _ 3 s _ 1 and tan a = 0.07. Its j 2 slope ( — ) is contrasted with the j ° slope of the 
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Figure 3.9: Distribution of residual energy density as a function of the reflected 

azimuth fa for the case where / = 7.3 X IO - 5*"1 , N = l O ^ s " 1 and t a n a = 0.07. 

The isotropic GM79 energy level (- - -) is shown for the purpose of comparison. 
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at fa — 180° is due to slightly subcritical waves (w'Swc) which get reflected toward 

deeper water (see figure 2.5). The residual energy density for fa = [—180°,0°] is a 

mirror image of figure 3.9, and so is not plotted. 

Figures 3.6, 3.7, 3.8 and 3.9 clearly demonstrate the extent to which the residual 

energy spectrum differs from the level and shape of the canonical GM79 energy spec

trum. Projections of Er(w,jr,fa) onto the (w, j r ) , (jr,fa) and (w, fa) planes were also 

plotted, but are not reproduced here as they yield little useful additional information. 

3.5 Dissipated energy flux due to bot tom drag 

associated with the residual currents 

An estimate of the rate of energy dissipation due to the bottom stress r associated 

with the residual currents could be obtained from 

^ r = ( r - u ) , r = ^ 2 u , (3.50) 

where p is the density of the water, it* is a friction velocity, and u is a unit vector 

pointing in the same direction as u. Hence 

Fdr = (pul\u\), (3-51) 

and taking u* « |u|/30 as in Armi (1978), this is consistent with 

Fdr = pCd(\u\3), (3.52) 

where Cd ~ 10 - 3 . To evaluate this, we need to know the value of (|u|3) that is 

associated with the residual internal wavefield. To that effect, we note that for the 

GM79 model spectrum, the mean square horizontal current associated with the whole 

internal wavefield is given by (Munk, 1981, equation 9.24) 

(|u|2) = U2N0NE (3.53) 

(|u|2) = 4 . 4 x l 0 - 3 ( | ) m V 2 , (3.54) 
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where N0 = 5.2 x 10_ 35 - 1 . Approximating (|u|3) by (|u|2)3/2, and substituting (3.54) 

into (3.52), we get 

3/2 

?dr~pCd 

, N' 
4.4 x 10"3 ' /JVM ' 

Gdl Wm" (X55) 

for the dissipated energy flux due to bottom drag associated with the GM79 horizontal 

currents. For reasonably modest bottom slopes (dh/dx < 0.10 say), the residual 

currents are mostly horizontal, so that for a residual spectrum with R times the 

GM79 energy, the rate of energy dissipation J^r should be 

F^ « pOd 4.4 x 10"3i2 (—J W m~2, (3.56) 

where R is given by (3.7). Figure 3.10 shows contours of Fdr for Cj = 10 -3 and 

JV « lO -3^"1 (0.6 cph), the value of JV used in (1.2). The shape of the contours is 

dictated by that of the R contours shown on figure 3.3. 

3.6 Discussion 

The rate of energy dissipation due to the bottom drag associated with the residual 

currents (.Fdr) varies between about 0.1 and 0.6 mW • m~2 on figure 3.10. Those 

values are of the same order of magnitude as those obtained for the rate of energy 

dissipation (Fds) due to shear instability of the reflected waves (figure 3.2), but Fda 

and Fdr are distributed differently in (f/N,tana) space: Fds > Fdr for low values of 

f/N and large bottom slopes, whereas Fdr > -Fds for large values of f/N and small 

bottom slopes. 

The mixing efficiency T should be less for Fdr than for Fds however, as Fdr results 

from bottom friction and presumably mixes fluid that is already mixed (Garrett, 

1990). Ivey and Imberger (1990) argue that T could be as high as 0.2 for internal 

wave breaking above sloping bottoms (.Fds), but it seems unlikely that T could be 

nearly as high as 0.1 for Fdr. 

Therefore as they stand, the estimates of Fds and Fdr given here appear too low 

to satisfy (1.2), TFd « O.ZmW • m - 2 , required by the boundary mixing hypothesis. 
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Figure 3.10: Energy dissipation rate Fdr due to bottom drag associated with the 

residual currents (in mW • m~2), as a function of 7 = f/N and the bottom slope 

tana, using (3.56) with Cd = 10"3 and JV = lO - 3* - 1 . 
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They are of the right order of magnitude however, and so we cannot completely rule 

out the possibility that internal wave reflection off sloping bottoms may be a major 

agent of diapycnal mixing in the abyssal ocean. 

A more definitive answer awaits more theoretical work as well as more observa

tional work. Among other things, the theoretical work should address the issue of how 

the GG residual spectrum relaxes back to a more typical shape. In the next chap

ter, it is argued that rapid spectral changes with height above sloping bottoms could 

be partly due to geometric effects, but energy redistribution via non-linear processes 

undoubtedly plays a role too. 

Non-linear processes would presumably transfer energy away from wc to adjacent 

frequency bands (figure 3.6). One assumes that they would also transfer energy in 

vertical modenumber space to restore the more typical j ~ 2 slope, but we do not know 

a priori whether the dominant energy transfer would take place from low j ' s to high j ' s 

or vice-versa, as figure 3.7 shows that the energy density at low j ' s is slightly depleted 

with respect to the GM79 energy level. Finally, non-linear processes would tiso have 

to redistribute energy in azimuthal space (figure 3.9), but nothing is known about 

how an anisotropic internal wave spectrum might relax back to horizontal isotropy 

(Miiller et al., 1986). 



Chapter 4 

The effects of a non-uniform slope 

4.1 Introduction 

Internal wave measurements made in the first 100m or so above sloping bottoms often 

depart noticeably from the canonical Garrett-Munk model spectrum (Wunsch, 1976; 

Wunsch and Webb, 1979). However, the extent of this departure is highly variable, 

especially in the neighbourhood of the critical frequency wc. There are locations where 

energy enhancement near wc is quite pronounced (Eriksen, 1982), and others where 

it is absent (Thorpe, 1988). 

In this chapter, I examine the possibility that the shape of the underlying seafloor 

may be responsible for some of the variability in energy content seen at the critical 

frequency. For waves of a given frequency incident on a bottom of non-uniform slope, 

the wave ray slope matches the local bottom slope only in a few specific locations, 

so that we may ask whether large enhancements of vertical shear and energy density 

near the critical frequency can still be expected in those locations, as in the uniform 

slope case. 

Baines (1971a, 1971b) has done much of the pioneering work on the scattering of 

internal waves off irregular topography. He pointed out the importance of using the 

proper form of the radiation condition, which requires the scattered waves to carry 

energy away from the boundary. For the "flat-bump" case where the bottom slope 

dh/dx is everywhere less than the characteristic slope a, Baines (1971a) showed that 

63 
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the back-scattered wave usually does not vanish, so that the simple application of ray 

theory (e.g. Longuet-Higgins, 1969) is incorrect. 

4.2 Sinusoidal topography 

Strictly speaking, the reflection laws of chapter 2 are only valid for infinite sloping 

planes. It is therefore not obvious that they can be used to provide a good description 

of the interaction of internal waves with a bottom of non-uniform slope, and if so, 

under what conditions. 

A logical first step in the study of internal wave scattering by irregular topogra

phy is to investigate the problem of a single wave component incident on sinusoidal 

topography of infinitesimal amplitude. The solution of this problem could then be 

used to determine the scattered wavefield over arbitrarily complicated topography, 

subject to linearisation of the boundary condition. 

To simplify matters, Baines (1971a) assumed that both the wave motion and 

the bottom topography are independent of the alongslope y-coordinate. This two-

dimensional assumption, together with the incompressibility condition V • u = 0, 

enabled him to describe the wave motion in terms of a streamfunction, and thus 

facilitated analytical treatment of the problem. He let a monochromatic wave of 

frequency w, characteristic slope a = tan/i (2.16), and wavenumber (,s.fiTi,ifi) in 

(x,z) space be incident on a sinusoidal bottom 

h(x) = dcoslx (4.1) 

where d is the amplitude of the sinusoidal perturbation, and / is the topographic 

wavenumber. Making the "flat-bump" assumption 

— = Id < a ioi — oo < x < oo (4.2) 
dx 

max 

and assuming that Kid «C 1 and Id <C 1, Baines found that, in addition to the 

specularly reflected wave whose wavenumber is (aKi,—Ki), two scattered waves were 

generated with wavenumbers 



65 

K' = (aK1±l,-\B:l±l/a\) (4.3) 

The sum (+) wave is always forward-scattered, whereas the difference (—) wave 

can be either forward-scattered when I < sKi, or back-scattered when I > sK\. 

Denoting by JF̂- the energy flux associated with the incident wave, and by F± the 

energy flux associated with the sum and difference waves, Baines showed that 

Kid2 (4.4) 

to first order accuracy in Kid and Id. 

Rubenstein (1988) expanded the work of Baines (1971a) by applying (4.4) to a 

more general bathymetric profile, using the empirical power spectrum of topographic 

variations introduced by Bell (1975b), and assuming the downward propagating half of 

the GM79 model spectrum (Munk, 1981) was incident on that bottom. He found that 

the principal interactions involve the scattering of low-frequency, low-wavenumber 

incident waves into higher wavenumbers, 

Because of its higher wavenumbers, the scattered wavefield has elevated shear lev

els compared to the incident wavefield; Rubenstein found that the inverse Richardson 

number (-Ri"1) for the scattered wavefield, summed from mode j = 1 to j = 260, 

is increased by a factor of about 3.6 with respect to the incident wavefield. This is 

important, as it shows that we can expect enhanced internal wave breaking above a 

bumpy bottom even when the mean slope on a larger scale is effectively zero. The 

mechanism leading to shear enhancement here is thus conceptually different from 

that envisaged in chapter 2, where the bottom was smooth but had a non-zero mean 

slope. 

The conclusions of Rubenstein (1988) may be qualitatively true, but they are 

quantitatively very uncertain, as there are serious problems associated with the use 

of (4.4), the cornerstone of his paper. Perhaps the most serious problem is that (4.4) 

was obtained under the assumption that the bottom slope is everywhere less than 

the characteristic slope (4.2). Shadowing effects are thus strictly forbidden, and the 

critical case where dh/dx = a locally, which is so important for the intensification of 

Fi 
Ki±-

3 
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the vertical shear ((2.40) and (2.58)), cannot be dealt with explicitly. 

Another problem with (4.4) is that it is only accurate to first-order in K\d and Id. 

Mied and Dugan (1976) numerically performed a higher-or*1 5r perturbation expansion 

involving a finite set of 2nmax -f 1 discrete, scattered horizontal wavenumbers 

K'x = aKi±nl n = 0 , l , 2 , 3 , . . . n m a x . (4.5) 

Their higher-order solution for the scattered wavefield agrees remarkably well 

with the first-order solution of Baines (1971a) for Id < a/6, i.e. the contributions 

from n > 2 are then unimportant. However, when the bottom slope Id becomes 

steeper than about a/2, they find that the series solution (4.5) fails to converge. This 

is unfortunate, in that it does not take us nearly as close to the critical case as is 

desirable; in the wave breaking model of GG88, it was typically found that 80% of 

the total shear comes from waves with ray slopes within ±20% of the critical wave 

ray slope. 

Mied and Dugan (1976) also pointed out that (4.4) only conserves the energy flux 

of the incident wave to 0(Kfd2/a2), so that for a given bathymetric profile for which 

Kid is fixed, Baines' solution will do much worse at conserving the energy flux of the 

incident wave at near-inertial frequencies than at higher frequencies. This, as well as 

violations of the flat-bump assumption (4.2), severely limits the ability of (4.4) to 

describe the interaction of near-inertial waves with the ocean bottom, which is what 

Rubenstein (1988) was primarily concerned with. 

4.3 Local topographic effects 

Given this inability to deal explicitly with the critical case using a Fourier represen

tation of the topography, one can at least try to determine some properties of the 

scattered wavefield for particular local topographic shapes. 

Baines (1971b) developed a two-dimensional theory for the scattering of internal 

waves in which the critical case can be dealt with explicitly, provided dh/dx — a at 

a single location in the bathymetric profile. Using the same radiation condition as 

in Baines (1971a), he was able to reduce the problem of determining the scattered 
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wavefield to a pair of coupled integral equations with two unknown functions. He 

cast the problem in terms of the characteristic coordinates 

£ = z + ax, T\ — z — ax (4.6) 

where z is the vertical (upwards) coordinate, a; is the cross-isobath (onshore) co

ordinate, and a is the characteristic (or wave ray) slope. The origin of both the 

characteristic and Cartesian coordinate systems is chosen to coincide with the single 

location in the bathymetry profile where dh/dx = a. Now for smoothly-varying to

pography, the bottom can often be regarded as either locally convex (d2h/dx2 < 0) 

or concave (d2h/dx2 > 0). It should therefore be useful to look at properties of the 

scattered wavefield for both of these cases. 

4.3.1 Locally convex topography 

For locally convex topography with radius of curvature R at the origin, Baines (1971b) 

showed that, for \£/R\ <C 1, the equation for the bottom can be approximated by 

in terms of the characteristic coordinates (figure 4.1). This equation is symmetric in 

£, an asymmetric term proportional to (3/R2 having been neglected. Baines let a 

plane wave with stream function 

i>i = eexp{i(Kit-wt)}, (4.8) 

of infinitesimal amplitude e, total wavenumber -Ki(l + a2)1!2, and frequency w, be 

incident on ideaHsed topography specified exactly by (4.7). He obtained an analytical 

solution for the scattered wavefield, and expressed it as a superposition of a back-

reflected (or back-scattered) wave ipR, a wave transmitted to the right ipTr, and a 

(Vave transmitted to the left ipTi (see fig 4.1). His solution may be conveniently 

summarised as follows: 

MM = o (-oo < ( < oo) (4.9) 
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Figure 4.1: A plane wave with stream function -0,- is incident on topography specified 

by (4.7) and gives rise to a wave transmitted to the left, ipxh and a wave transmitted to 

the right, tpxr- The back-reflected wave ipn vanishes for this particular bottom shape. 

The arrows point in the direction of energy propagation, and the wave ray slope is 

a = 0.2. The origin coincides with the single location in the bathymetry profile where 

the bottom slope matches the wave ray slope, and R denotes the radius of curvature 

of the topography there. The characteristic coordinates are £ = z -f ax, -q = z ~ sx. 
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i>Tr(i),t) = VT/(T?,0 = -eexp{-iir1(7?/c1)1/2}exp(-ia;t) (0 < 77 < oo)(4.10) 

Mv,t) = - e e x p ^ x d r / l / c x ) 1 / 2 - ^ ] } (-00 < 7, < 0) (4.11) 

# / M ) = -eexp{-i[Ki(\V\/ciy/2 + wt}} (-00 < T? < 0) (4.12) 

It is worth analysing this solution in some detail. The vanishing of the back-

scattered wave (4.9) is a property of the particular bottom shape specified by (4.7): 

symmetric in ( and parabolic in the characteristic coordinates, with slope at infinity 

asymptotic to that of the ^-characteristics (see figure 4.1). The back-scattered wave 

does not necessarily vanish for other bottom shapes. 

For the region above the grazing characteristic (77 > 0), where purely specular 

reflection would produce no motion, (4.10) describes an evanescent field of oscillatory 

motions with velocity amplitude 

dijji 
^^^{-K^/cifl2} ( 0 < r , < o o ) (4.13) 

dij 

where eKi is the velocity amplitude of the incident wave. The time-averaged kinetic 

energy density is thus given by 

d-^i 

dr\ 

F2 K2 , •. 
= 1 ^ ) e xP { - 2 # I ( T ? / C I ) 1 / 2 } (0 < r, < co). (4.14) 

The e-folding scale associated with the exponential factor in (4.14) is given by 

77 = ci/AK2 = (1 + a2fl2/(Z2a2K2R) « (Z2a2K2R)~\ It is therefore very sensitive 

to our choice of a,Ki and R. For example, it equals 1250m for Ki = 10~3m_1, 

a = 0.0b, R = 104m, but merely equals 12.5m for Ki = 10 - 2m - 1 with a and R 

unchanged, indicating a much faster rate of decay of the scattered wavefield for large 

incident wavenumbers (small incident wavelengths). Note that the distance from the 

77 = 0 characteristic is given by |T?J/(1 + a2)1!2, which approximately equals |T/| for 

small wave ray slopes, and that the kinetic energy density in (4.14) decays as 77-1 for 

0 < 7/ < d/AKf. 

In the region below the grazing characteristic (77 < 0), i.e. for 77-characteristics 

which intersect the bottom, (4.11) and (4.12) describe a field of propagating internal 

waves with velocity amplitude 
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dij)T 
07/ 

eKx 

2(ci\n\yi2 ( - 00 < 77 < 0) (4.15) 

and time-averaged kinetic energy density 

dipT 
077 

*K2 e2K2a2R 
( - 0 0 < T / < 0). (4.16) 

16dM 2(1 + 32)3/2^1 

As Baines (1971b) pointed out, perhaps the most significant feature of the field 

of motion (4.9)-(4.12) is that the kinetic energy density near 77 = 0 is proportional 

to e2K2R/\q\, as can be seen from (4.14) and (4.16). There is a singularity at 77 = 0, 

and the strength of this singularity increases with the local radius of curvature R 

(R = 00 for a bottom of uniform slope). Now with ijjn = 0, the condition that the 

total stream function I/J must vanish on the boundary reduces to 

1>i + ipTi = 0 on£ = -(|77|/Cl)
1/2 (4.17) 

fa + i>TT = 0 on £ = (\r,\/ci)1/2 (4.18) 

A similar boundary condition involving only incident and reflected wave com

ponents can be used to derive the specular laws of reflection of chapter 2. Hence 

we expect the latter to be valid for 77 < 0, i.e. for the region of the fluid where 77 -

characteristics intersect the bottom. To verify this, we first need to find a relationship 

between the bottom slope dh/dx and the characteristic coordinate £ for the idealised 

topography shown on figure 4.1. Substituting £ = h(x) + ax and 77 = h(x) — ax into 

(4.7), and differentiating with respect to x, we obtain 

dh 
dx 

s{l-2c1£) 
(4.19) 

(l + 2 d 0 ' 

The bottom is thus vertical at £ = —l/(2cx), and horizontal at £ = 1/(20^. We 

also verify that dh/dx = s at £ = 0, and dh/dx —> — a as £ —> ±00, i.e. the bottom 

slope is critical at £ = 0, and is parallel to the ^-characteristics at £ —» ±00, as stated 

earlier. The next step consists of defining the phase function 
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^(iltt) = Kt (^\ -wt (4.20) 

for the wavefield ^ - ( T / , * ) given in (4.11). Subject to the WKB approximation (Gill 

1982, p. 300), a local wavenumber K'(rj) may then be defined by 

""-^-spS- (4-21) 
yielding the wavenumber amplification 

K' - 1 

* i 2c\/2\V\V2' ( 4 ' 2 2 ) 

A similar amplification in velocity amplitude was implicit in (4.15). Now by virtue 

of (4.18), we can replace \r)\ll2 by c / £, so that 

f = 2̂  (4'23) 
Rearranging terms in (4.19), we get 

* = 2ci(dh/dx + a) ^ ' 2 4 ) 

and substituting this into (4.23), we obtain 

K> (dh/dx + a) 

Ki (dh/dx - a) K ' 

To show that (4.25) is equivalent to (2.28), we let dh/dx = t ana and a = tan/^, 

yielding (2.60) and hence 

K'(v) _ sin(a + p) 

Ki(t) sin(a-pY ^ 0 ) 

By virtue of (4.6), the vertical wavenumber amplification is also given by (4.26), 

whereas the horizontal wavenumber amplification is given by the negative of that. 

Equation (4.26) is thus consistent with specular reflection theory (2.28), as could be 

expected from the simple form of the boundary condition (4.18). This is an important 

result. It suggests that when the back-scattered wave either vanishes or is small 
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enough to be neglected compared to the incident and reflected waves, then internal 

wave reflection off a bottom of non-uniform slope does not differ significantly from 

reflection off a uniform slope, the rules for which are well known. The implications of 

this for ocean mixing are that, for a given frequency, large enhancements of vertical 

shear (2.40) and energy density (2.37) can still be expected above locally convex 

topography in the neighbourhood of points where dh/dx = a. 

4.3.2 Locally concave topography 

Using the same formalism as in Baines (1971b), Baines (1974, appendix 1) examined 

the problem of internal wave scattering off locally concave topography. For \£/R\ < 1, 

the equation for the bottom can be approximated by (see figure 4.2) 

77 = Cl£
2, where c1 =

 ( 1 + j j / 2 . (4.27) 

Substituting £ = h(x) + ax and. 77 = h(x) — ax into (4.27), and differentiating with 

respect to x, we can obtain a formula for the bottom slope dh/dx as a function of the 

characteristic coordinate £ (cf. (4.19)) 

dh _ a(l + 2cU) ,, „Rv 

Tx ~ (1 - 2cii) • ( 4"2 8 ) 

The topographic shape described by (4.27) is thus horizontal at £ = —1/(2^), 

and vertical at £ = 1/(2^). We still have dh/dx = a at £ = 0, and dh/dx —» —3 at 

£ —* ±00, as for figure 4.1. For an incident plane wave with stream function 

ipi(t,t) = eexp{i(Ki£ - wt)}, (-00 < £ < 00) (4.29) 

as in (4.8), Baines' solution for the scattered wavefield may be expressed as the 

superposition of a back-reflected wave I/JR and a 77-dependent field of motion far, 

where 

Mt,*) = eexp{-i(Ki£ + wt)} (-00 < £ < 00) (4.30) 

and 
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£=1/(2c,) 

?:•• f s 0 

Figure 4.2: Same as figure 4.1, but for topography specified by (4.27). The back-

reflected wave V;/e has the same magnitude as the incident wave ijji, and we have a 

pure standing wave pattern. The bottom is vertical at £ = l/(2ci), and horizontal at 

£ = -l/(2t0. 
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•0T(T7,£) = —2ecos jiTi^y^jexpHwt). (0 < 77 < 00) (4.31) 

Perhaps the most striking feature of this solution is that the back-reflected wave i/'/j 

has exactly the same amplitude as the incident wave ijn, and since it travels in the 

opposite direction, a standing wave pattern results: 

&(£>*) +M&) = 2ecos(Ki£)exp(~iwt). (4.32) 

The total stream function ip = tpi+tpR+tpr *s thus equal to zero at £ = ±(T7/CI) 1 / ' 2 , as 

required by the no-normal flow boundary condition. Note that (4.31) also represents 

a standing wave pattern, with velocity amplitude 

dipi 
drj 

eKi {'• en (Cl77)V2 

eKi f / , y /» iir3/77\3/2 \ 

(4.33) 

(4.34) 

which, for Kifa/ci)1/2 <C 15 reduces to (after correcting equation (A13) of Baines 

(1974) for a missing factor K\) 

dipi 
dr\ 

eK\ 
eKx 

8a2(KiR) 
(4.35) 

Ci (1 + S2)3/2 

where eK\ is the velocity amplitude of the incident wave. Interestingly enough, this 

velocity field is independent of the 77-coordinate, and no singularity arises unless 

the radius of curvature R becomes infinite (the uniform slope case). It follows from 

(4.35) that, for 0 < 77 <C Ci/K2, the time-averaged kinetic energy density above 

locally concave topography is given by 

dipT 
dr) 

e2Kt 
4cf ' 

(4.36) 

This can be compared with the time-averaged kinetic energy density above locally 

convex topography (4.14) which, for 0 < 77 <C ci/AK2, is approximately equal to 

e2K2/lQciTf (same as (4.16)). Assuming that R and dh/dx (and therefore c{) are 
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the same at two mooring sites, the first one being locally concave and the second 

one convex, we find that very close to the bottom, i.e. for 0 < 77 <!C ci/AK2 « 

(32«2Jf1
2i2)-1, 

(K.E.)C (e2K*/ic2) _AK2rj 
<1. (4.37) 

(K.E.)convex (e2K2/l6clV) a 

This suggests that close to the bottom, internal wave measurements made above 

locally concave topography are less likely to show energy enhancement at the critical 

frequency than those made above locally convex topography. To understand why 

locally concave sites should not tend to show energy enhancement near wc, we first 

rewrite (4.31) as 

where 

V»T(I?, *) = i>Tr(v, t) + 1vi(y, t) (4.38) 

TpTr(ri,t) 

ipTl(v,t) 

-eexp 

-eexp 

N l / 2 

J +ut 

wt 

(0 < 77 < oo) (4.39) 

(0 < 77 < 00) (4.40) 

(4.41) 

The above expressions for ipTr{y, t) and ipTi(v> *) a r e °f the same form as (4.11) and 

(4.12), which were themselves shown to be consistent with Phillips' law of reflection 

for a bottom of uniform slope. This suggests we can interpret Baines' (1974) solution 

for the scattered wavefield (4.30)-(4.31) in terms of a series of specular reflections 

off the concave bottom. The first stage of these reflections occurs when the incident 

wave ij)i(£,t) impinges on £ = — (77/cj.)1/2 to generate tjJTr(v^)i a n ^ on £ = (77/ci)1/2 

to generate ipxi^it). The second stage of reflections occurs when i/>3>(77,£) impinges 

on £ = (y/ci)1!2, and V T J O M ) impinges on £ = — (77/ci)1/2 to generate i)R(£,t). The 

situation is drawn schematically on figure 4.2. 

Now if we let ^'(77) denote the local (WKB) value of the reflected wavenumber 

after the first reflection, we could proceed as we did for convex topography and show 

that the wavenumber amplification K'/Ki is again given by (4.25). This result is not 
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surprising in :i& If. What is interesting though is that, for the second reflection, the 

wavenumber amplification K"/K' is equal to ~(K'/Ki)~x for topography specified 

exactly by (4.27), due to the assumed symmetry of the reflecting surface with respect 

to £. This yields K" = — K\, and provides us with a simple explanation for the form 

of the back-reflected wave V>,R(£,i) given in (4.30). 

The absence of a singularity in the velocity field near 77 = 0 is due to the fact that 

the wave reflected at £ = 0+ has a phase shift of T with respect to the wave reflected 

at £ = 0~, so that they interfere destructively. More generally, the wave ifixi reflected 

at £ = (77/ci)1/2 has a phase shift of 7r + 2Ki(7)/c1)
1/2 with respect to the wave farr 

reflected at £ = — (77/ci)1/2. We would expect them to interfere constructively when 

Tt + 2Ki(^-) = 2mr n = 1 ,2 ,3 , . . . (4.42) 

i.e. when *-i (—) = (2n - 1 ) - n = 1 ,2 .3 , . . . (4.43) 

When this condition is satisfied, we find that the velocity amplitude (4.33) for 

the total 77-field of motion becomes twice that associated with ipjl o r farr alone (see 

4.15), as is indeed expected for constructive interference. This lends further support 

to the assertion that Baines' solution for the scattered wavefield (4.30)-(4.3l) may 

be interpreted in terms of specular reflection theory. 

I now summarize the key results of this section. For locally convex topography 

specified exactly by (4.7), the back-scattered wave is identically zero (4.9). There is 

a singularity in energy density at 77 = 0, and the strength of this singularity is pro

portional to the local radius of curvature R of the topography. For 77—characteristics 

which come directly in contact with the bottom (i.e. for 77 < 0), Baines' (1971b) solu

tion for the scattered wavefield (4.11)-(4.12) is consistent in a WK.B sense with the 

reflection law of Phillips (1977). For 77 > 0, there exists an evanescent field of oscil

latory motions (4.10) whose origin cannot be explained by purely specular reflection, 

but there is no energy flux associated with it. 

For locally concave topography specified exactly by (4.27), the back-reflected 

wave has the same amplitude as the incident wave, and the resulting field of motion 

is that of a standing wave. It is possible to interpret this solution in terms of a 
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series of specular reflections off the concave bottom. Close to the origin (where 

dh/dx w a), Tpxi a nd ipTr interfere destructively, and no singularity occurs. Locally 

concave topography is thus less likely to show energy enhancement near wc than 

locally convex topography. 

4.4 Generalisation of t he concavity criterion to 

the case where JV = N{z) 

For the sake of simplicity, Baines (1971b, 1974 appendix 1) assumed N = conatant 

in his theory. In this section, I examine how vertical variations of the buoyancy 

frequency N may affect the effective concavity of a given bathymetric profile. 

4.4.1 A simple criterion! du)c/dz > 0 

Let us consider a bathymetric profile (figure 4.3) such that the bottom slope at the 

origin 0 equals the wave ray slope for a given frequency w = wco. By analogy with 

figure 4.2, we shall classify as effectively concave any site for which wave rays at that 

particular frequency are reflected toward shallower water at A, and toward deeper 

water at B. In such a case, the critical frequency is less than wco at A, but is greater 

than wco at B (WCA < wco < WCB). Taking z as positive upwards, concavity thus 

implies dwc/dz > 0. To find out when this simple concavity criterion is satisfied, we 

note that the square of the critical frequency wc is given by 

w2
c = N2 sin2 a + f2 cos2 a (AAA) 

whe^i N is the buoyancy frequency, / is the inertial frequency, and t a n a is the 

local bottom slope. Differentiating both sides with respect to z , and noting that 

df /dz = 0, we obtain 

w, 
dwc dN . o , »r2 • ®a tl • 9oi 

c-r— = iV-r— sin a + N sin a cos a— t c o s a s m a — 
dz dz dz d 

z 

= N-7T- sin2 a + (N2 - f2) sin a cos a — , (4.46) 
dz dz 
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a b) 

Figure 4.3: Two examples of locally concave topography: a) N is constant and the 

bottom slope decreases with depth, b) the bottom slope is constant and N decreases 

with depth. Wave rays are drawn for the frequency which is critical at the origin 0 . 
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so that 

dwc 

dz ~~ 

Thus dwc/dz > 0 requires 

rsir<2 a 

wn 

dN (N2-f2)dcx 
jV \- - — - — 

dz tan a dz 

(4.47) 

NdN + {N^1f)da>Qi 
dz tan a dz 

(4.48) 

which for dN/dz = 0 is satisfied when da/dz > 0, and for da/dz = 0 is satisfied 

when dN/dz > 0, corresponding to the two special cases drawn on figure 4.3. For 

the common oceanic situation where N2 > / 2 , (4.48) simply becomes 

dN N da n + > 0 . 
dz tan a az 

(4.49) 

This can be further simplified to 

— (aJV)>0 for t a n a < l . 
dz 

(4.50) 

4.4.2 WKB-st re tching: d2ti/dx2 > 0 

The slope of internal wave rays is given by 

( 2 _ f 2 \ l / 2 

{&) ' (4-51) 
so that wave rays become straight lines in an ocean where N varies with depth if we 

use the transformation 

, (N2-w2\1/2 

(4.52) 

where Na is some arbitrary constant. Thus 

,. Sh' dh' 
hm — = -7T-

6x~*0 Qx OX 

N2 w2\lf2dh 

N2 
w dx 

N2-w2 1/2 

A2 tana. 
w' 

(4.53) 

(4.54) 
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Since the slope of internal wave rays does not change with depth in this WKB-

stretched frame of reference, we would have a situation conceptually equivalent to 

the constant N, constant bottom slope of Phillips (1977, p.227) when d2h'/dx2 = 0. 

Thus for concavity, we simply require that d2h'/dx2 > 0 , i.e. 

Evaluating this derivative along the boundary z = h(x), where 8z — tan a&c, this 

becomes 

or simply 

tan a^- [(N2 - w2)1'2 tan a] > 0, (4.56) 

•^z[(N2-w2yl2ima] > 0 , (4.57) 

(N2 - w2)-V2N^ tana + (N2 - w2f'2^- ( tana) ^ 5 > 0. (4.58) 
dz dz dz 

Multiplying this by (N2 — w2)1/2/ tan a, we get 

dN (N2-w2) 1 da n fJten. 
N + ±_ L_ > 0 . 4.59 

az tan a cos-4 a az 

The effective boundary concavity is thus frequency dependent. For the particular 

case where w = wc, we have 

2 , JV2 -W2
 tl „„. 

cos a = cos p = N2 _ , (4.60) 

and (4.59) reduces to (4.48), as it should. 

4.4.3 Application to a model ocean. 

Throughout most of the oceaa, N generally decreases with depth (dN/dz > 0), and 

(4.48) tells us that a bottom of constant slope is then effectively concave. Let us 

quantify this statement by evaluating (4.48) for the particularly simple profile of 

N(z) proposed by Garrett and Munk (1972) for the Pacific Ocean: 
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N(z) = 0 for - 200m < z < 0 (4.61) 

= i V 0 e x p f * ~ ^ ° ) for z < -200m (4.62) 

where iV0=3 cph. Replacing (4.62) into (4.48), we get 

l n r 9 [ /* + 200\] (N2~f2)da n t A . 

N2 (N2-f2)da A lABA. 
1300 tan a fiz 

which for JV2 >• / 2 reduces to 

1 3 0 0 da 

I -5- > - 1 - (4-65) 
tan aoz 

Thus when da/dz > — tana/1300m, the topography can be considered locally 

concave. Conversely, the topography will be considered convex when da/dz < 

— tana/1300m. Taking tana = 0.10 for example, the topography would be ef

fectively convex only when da/dz < —7.7 x 10~5m-1, which requires the slope to 

decrease by 0.01 for 8z ~ 130m. For tana = 0.01, convexity would only require the 

bottom s^pe to decrease by 0.001 for 8z ~ 130m. 

4.4.4 Application to the case of the Bermuda slope. 

Wunsch (1972a) recomputed the power spectrum from the thermistor data of Haur-

witz, Stommel and Munk (1959), and found evidence of energy enhancement near wc 

at ~ 500m depth near Bermuda. At that depth, dN/dz < 0 in the North Atlantic 

mid-ocean gyre, but since da/dz > 0, we may ask whether the local increase of N 

with depth can make up for this and render the WKB-stretched topography convex. 

Rough estimates for the various parameters of (4.48), using the information available 

in HSM (1959) and Wunsch (1972a,b), are 

dN 2.5cpfc - 1.7cpfr o c ,„-3 . -i 
dz -730m + 500m * 
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N « l.lcph, f = 4.46 x 10~2cph, tana « 0.25, 

3.75 x lO^m"1, 
da 0.10-0.25 -_4 _L 

and we get 

dz -900m + 500m 

ATdN (N2-f2)da iC 1n_3 , _x 
J V — - -) ^ J—L—- fa _1.6 x 10 3cph m \ 

az tan a dz 
which suggests effectively convex topography, according to (4.48). Therefore the 

observed energy enhancement near wc may not be inconsistent with the concave versus 

convex hypothesis at that Bermuda site. 

4.4.5 Other observational support 

Thorpe (1987a) made detailed near-bottom measurements of currents and temper

ature on the continental slope southwest of Ireland, in a range of depths where 

dN/3z > 0 and da/dz > 0 so that the bottom is definitely concave (4.48), and 

found no statistically significant energy enhancement near wc « / (see his figure 11). 

Lai and Sanford (1986, p.664) remark that some 50km north of site D on the New 

England continental slope, current meter data from mooring 458 consistently show 

low energy densities at wc fts / compared to other moorings, possibly due to the more 

pronounced concavity of the bottom at that site. 

Kunze and Sanford (1986) found enhanced energy densities at near-inertial fre

quencies near the top of Caryn seamount, in a depth range where the bottom slope is 

either constant or convex. They found less near-inertial energy at the concave sides 

of the seamount. 
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4.5 Energy back-scatter off rounded and sharp 

corners 

The topographic shapes considered in section 4.3 are highly idealised, being perfectly 

symmetric with respect to £, and with bottom slope at infinity asymptotic to that 

of the ^characteristics. Baines (1971b) briefly examined the effect of relaxing those 

assumptions about the shape of the topography by studying the problem of a wave 

incident on topography specified by (see figure 4,4) 

r? = -ci£2
 ( 6 , < £ < £ R ) (4.66) 

T? = - C I £ R ( 2 £ - £ H ) ( £ > £ R ) (4.67) 

V = - C I £ L ( 2 £ - £ L ) (t<ti) (4.68) 

where ci = (l-(-s2)3/2/8s2J2 as before, and we have £L < 0, |£j,| < £/*. Such topography 

is locally convex near the origin, but becomes plane on either siie of it, with bottom 

slope a continuous function of £. Baines investigated the nature of the solution for 

the scattered wavefield near the origin and at large distances from it. He pointed 

out that the singularities (e.g. (4.15)) associated with the reflected waves are still 

present, so that we may still expect large energy and shear enhancement near wc for 

the topographic shape shown on figure 4.4. He also found that the back-scattered 

wave does not vanish near £ = 0, and the velocity associated with it is finite and 

continuous there. However, while Baines pointed this out, he did not provide any 

estimate of the resulting back-scattered energy flux. 

Sandstrom (1972) also investigated the problem of a wave incident on a bottom 

where two asymptotically plane sections come together in a rounded corner. His 

method of solution uses ppecular reflection theory as a first approximation for the 

scattered wavefield, and then gets rid of the wave components which violate the 

radiation condition through a series of iterations. Among other things, he found that 

the amplitude of the back-scattered wave is maximum for a sharp corner. Hence one 

could obtain an upper bound for the back-scattered energy flux from a rounded corner 

(e.g. figure 4.4) by letting R go to zero. 
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Figure 4.4: Topographic shape described by (4.66)-(4.68). The bottom slope for 

£ > 6i(£ < 6,) is given by (4.19) evaluated at £ = £/*(£ = £,). 
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Gilbert and Garrett (1989, section 4) extended Hurley's (1970) theory to evalvate 

the total energy flux that is back-scattered from a sharp convex corner. They found 

it amounts to 1.5% of the energy flux incident over a single wavelength. On that 

busis alone, one may axgue th?t the back-scattered energy flux is small enough to be 

neglected, especially as it represents an upper bound for the total energy flux that 

might be b^ck-scattered from a rounded convex corner. But GG89 point out that if 

the back-scattered energy fiux occured mostly in the critical region where dh/dx ft; s, 

it would affect GG88's estimates of the dissipated energy flux by lowering them. 

As a rough criterion, the results of Sandstrom (1972) suggest that internal wave 

reflection off an isolated, rounded corner, can be adequately described by specular 

reflection theory when R is comparable to or larger than the incident wavelength 

(KR^l). We do not know whether this criterion would remain valid for more re

alistic topographic shapes, but if it did, the implications for ocean mixing would be 

important. For the typical oceanic internal wavefield (Munk, 1981), we would expect 

all incident waves to be specularly reflected when R is only on the order of a few Aim's 

or more. An interesting question then is to ask how the reflected wavefield might vary 

with height above the bottom over a convex portion of the topography. 

4.6 Kinematic effects of finite topography 

Referring to figure 4.5, let us suppose the anchor weight of a mooring line is at A, 

where the bottom slope is tan a, and the local radius of curvature of the topography 

is equal to R. For the sake of simplicity, we assume R = constant, and allow a single 

azimuthal angle of incidence (fa = 0 for onshore propagation of energy, following 

Eriksen (1982)). Rays from all internal wave frequencies (f < u < N) are allowed to 

be incident on the bottom however. 

Suppose the mooring line has a sensor (e.g. current meter) at C, some height h 

above the bottom. Not all reflected rays will intersect the sensor, but one that does is 

drawn on figure 4.5. It is inclined at an angle p with respect to the horizontal which 

is determined by its frequency, and impinges on the bottom at B, where the local 

bottom slope is tan /3. Choosing the origin of a Cartesian coordinate system at the 

* < 
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Figure 4.5: A mooring is deployed over locally convex topography. Its anchor weight 

lies at A, where the bottom slope is tana and the radius of curvature is equal to 

R. A wave ray inclined at an angle p with respect to the horizontal impinges on the 

bottom at B, where the local slope is tan/3. The reflected wave ray intersects our 

mooring line at C, some height h above the bottom. 
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Figure 4.6: Variation of the reflected energy spectrum v/ith height above the bot

tom for the idealised topography shown on figure 4.5, taking N/f = 13.1 and 

t a n a = 0.125. The energy density amplification E'/E is given by the square of 

the wavenumber amplification (2.37). 
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center of the circle of radius R, the coordinates of the points A, B, C are then given 

by 

A = (—iZsina, i l cosa ) , 

B = (-R sin/3, Rcos /3), 

C = (—iZsina, Rcosa + h). 

We thus have 

= tan/z, (4.69) 
xc —XB 

Rcos a-\-h~ R cos /3 

—i2sina + Rsin/3 

cos a — cos /3 + ^ _ sin p, 

sin/3 —sina cos/z' 

cos a cos p — cos /3 cos p -f — cos /i = sin /3 sin /z — sin a sin /J, (4.72) 
i t 

cos a cos p + sin a sin 74-f — cos/z — cos /3 cos p + sin/3 sin/J, (4.73) 
R 

cos(a — /i) + — cos p = cos(/3 — p), (4-74) 
i t 

and we finally obtain 

(3 = cos - 1 < cos(a — p) -f — cos p \ + p. (4-75) 

I # ) 
For any specific instrument on a mooring line, the parameters, t a n a and h/R are 

constant, so that (4.75) essentially gives us /3 as a function of p. Critical reflection 

occurs when /3 = p — pc, in which case (4.75) reduces to 

= tan/i , (4.70) 

(4.71) 
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cos(a - pc) + — cos pc = 1 '4.76) 
K 

Right on the bottom (h — 0), this yields pc = a, as expected. However, at 

some height h above the bottom, pc can take two values. The smaller one (pc < a) 

results from critical reflection at a point shallower than A, whereas the larger one 

(pc > a ) results from critical reflection at a point deeper than A. Both values of pc 

satisfy (4.76) and can be found by iteration for given values of tan a and h/R. The 

frequencies corresponding to these values of p are easily obtained from the dispersion 

relation, which we write here as 

w 

1 
l + ( iWUnVr (4 j r ) 

1 + tan2 p 

The linear inviscid theory of Phillips (1977) predicts an infinite wavenumber ampli

fication (4.26) for critical reflection (p = /?), and therefore an infinite energy den

sity amplification E'/E (2.37). Figure 4.6 shows how the frequency of critically re

flected waves varies with height above the bottom for the case where N/f = 13.1 and 

t a n a = 0.125. Using (4.75), we can also find two values of p (and hence w) for which 

the wavenumber amplification (4.26) equals \/T0, so that the reflected energy density 

E' is 10 times greater than the incident energy density E (2.37). The frequency for 

which E'/E = 10 varies with height above the bottom, and this is also shown on 

figure 4.6. 

On linear inviscid grounds alone, figure 4.6 thus predicts a rapid evolution of the 

reflected energy spectrum with height above the bottom. Right on the bottom, there 

is a single singularity at wc ~ 1.9/. But merely 50m above the bottom, taking R ~ 

2bkm for example would yield h/R « 0.002, and figure 4.6 then predicts enhanced 

energy densities over a broad range of frequencies for w > 2.6/, and over a very 

narrow range of frequencies for w fa 1.3/. 

My main objective in presenting this model was simply to point out that current 

meters (or other sensors) placed at different heights above a non-uniformly sloping 

bottom do not feel the same topography. Therefore, in addition to non-linear and 

viscous effects, finite topographic effects could play a role in the rapid change with 
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height of internal wave spectra observed by Eriksen (1982) at a few mooring sites. 

To carefully determine the importance of finite topographic effects at a particular 

site, we would have to relax our assumption that R =constant We would also have 

to consider the truly three-dimensional nature of the topography and the incident 

wavefield, which was ignored in this chapter. Since the Garrett-Munk internal wave 

spectrum is isotropic, that would imply allowing for waves to be incident at any angle 

with respect to the isobaths (i.e. fa = —7r, 7r instead of just fa = 0). It would also 

imply allowing for alongslope variations of the topography. 

4.7 Summary 

In this chapter, I have made the following points: 

1. The formalism of Baines (1971a) for the scattering of internal waves off in

finitesimal sinusoidal topography was used beyond its realm of applicability by 

Rubenstein (1988). 

2. To my knowledge, the solutions of Baines (1971b, 1974) for the scattering of 

internal waves off ideaHsed convex and concave topographic shapes are the only 

ones which deal explicitly with the critical case. 

3. By defining a local wavenumber for the scattered wavefield, it is possible to show 

that Baines' solutions are consistent in a WKB sense with specular reflection 

theory. 

4. Energy enhancement at the critical frequency wc is less likely to be observed 

above concave than above convex topography. 

5. A bottom of constant slope is r' ctively concave (convex) when the buoyancy 

frequency decreases (increases) with depth. 

6. The work of Sandstrom (1972) suggests that for rounded corners, the back-

scattered energy flux is negligible when KR>1. 
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7. Rapid spectral changes can be expected from purely geometric reasons above a 

non-uniformly sloping bottom, and need not result solely from non-hnear and 

viscous processes. 



I 
i 

I-

Chapter 5 

The Scotian Rise and Slope 

Internal Wavefield 

5.1 Introduction 

In this chapter, I analyse historical current meter data from the Scotian Rise and 

Slope to look for evidence of energy enhancement and/or cross-isobath alignment of 

motions at the critical frequency wc. 

The current meter data were collected for the purpose of studying low frequency 

(sub-inertial) motions on the Scotian Rise and Slope, not for the purpose of study

ing internal wave reflection off sloping bottoms. Consequently, the vertical spacing 

between current meters is large at most moorings; there is usually only one current 

meter in the first 100m above the bottom, which does not allow us to study the 

vertical structure of some of the small-scale processes known to occur above sloping 

topography (e.g. Thorpe, 1987a). Nevertheless, since all the moorings considered 

here did have a current meter within 100m of the bottom, it should be possible to 

look for evidence of near-bottom energy enhancement at wc in a manner analogous 

to Eriksen (1982). 

92 



93 

5.2 Description of the data base 

5.2.1 Current meter data 

The Bedford Institute of Oceanography deployed several moorings on the Scotian 

Rise and Slope during the 1970's and 1980's. Figure 5.1 shows the locations of the 

moorings used here. They come from two main sources, each of which is labeled with 

a different letter. 

The most abundant source of data, labelled S, was collected in 1975-78 during the 

Shelf Break Experiment (Lively, 1979a,b). It was collected for the purpose of studying 

low-frequency motions on the Scotian Rise and Slope. Louis, Petrie and Smith (1982) 

used it to look at some of the properties of topographic Rossby waves on the Scotian 

Slope, and Smith and Petrie (1982) examined the low-frequency, cross-shelf eddy 

fluxes of heat and salt near the shelf break. 

The second source of data, labelled R, was collected in 1980-81 during the Scotian 

Rise Experiment (also known as RISEX). The original aim of this experiment was 

to study the spatio-temporal structure of topographic Rossby waves on the Scotian 

Rise (Lively, 1984). The mean currents from the deepest current meter of each of the 

RISEX moorings were used by Hogg (1983) in his paper on the deep circulation of 

the western North Atlantic. 

Tables 5.1 and 5.2 provide a convenient summary of the current meter data col

lected during those experiments. In table 5.1, the bottom depth and current meter 

depths are only nominal; small differences on the order of about 10-20m may have oc

curred from one mooring deployment to the next. Similarly, most of the deployment 

dates, recovery dates and lengths of deployment in table 5.2 are only approximate. 

The reader is referred to Lively (1979a,b, and 1984) for more detailed information 

about the rates of data return from the Shelf Break and Risex Experiments. 

When referring to a specific mooring in the remainder of this chapter, I will often 

use a shorthand notation containing information about both the location and time at 

which that mooring was deployed. For example, if I write something about mooring 

S3E, it should be understood that my statement applies to mooring location S3 (table 

5.1), mooring deployment period E (table 5.2). 
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Longitude (°W) 

Figure 5.1: Map of the Scotian Rise and Slope showing the location of moorings 

used in this chapter. The letter S refers to moorings from the 1975-78 Shelf Break 

experiment, R refers to moorings from the 1980-81 Risex Experiment, and mooring 

PIA is Petrie's (1975) mooring 1A, The hydrographic data used to plot figure 5.2 

comes from subarea 33 of Drinkwater and Trites (1987), whose perimeter is shown 

here as a thin line. 
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Mooring 

SI 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

RI 

R2 

R3 

R4 

R5 

Latitude 

42°48.6'J(V 

42046.8'i\T 

42o45.0'J\T 

42°40.4'iV 

42°30.5'IV 

43°00.5'iV 

42°41.7'i\T 

42°01.0'zV 

4i°20.yi\r 

41°27.0'iV 

41°00.0'iV 

4r38.6'iV 

41°53.2'iV 

Longitude 

63°30.0W 

64°00.0'W 

63°30.0W 

63°30.0W 

63°30.0W 

63°30.0W 

64°00.0W 

63°30.0W 

63°58.0W 

63°30.0W 

65°00.8W 

64°17.7W 

64°31.7W 

Bottom depth 

250m 

250m 

710m 

1010m 

1550m 

170m 

710m 

2550m 

3600m 

3600m 

3600m 

3000m 

2500m 

Current meter depths 

20,50,100,150,230m 

20,50,230m 

230,500,690m 

50,100,150,500,690,990m 

50,150,1530m 

20,50,100,150m 

230,690m 

70,1500,2530m 

200,500,1000,2900,3500m 

3500m 

3500m 

200,1000,2900m 

200,500,1000,2400m 

Table 5.1: Mooring locations on the Scotian Rise and Slope. The letter S stands for 

the Sheff Break experiment, and R stands for the Risex experiment. 



96 

Mooring 

deployment 

period 

A 

B 

C 

D 

E 

F 

G 

H 

I 

J 

Deployment 

date 

dd/mm/yy 

13/12/75 

06/04/76 

05/07/76 

17/10/76 

16/12/76 

02/04/77 

09/07/77 

04/11/80 

03/03/81 

06/05/81 

Recovery 

date 

dd/mm/yy 

06/04/76 

05/07/76 

17/10/76 

16/12/76 

02/04/77 

09/07/77 

04/01/78 

03/03/81 

06/05/81 

24/10/81 

Length of 

deployment 

(days) 

115 

90 

104 

60 

107 

98 

179 

119 

64 

171 

Comments 

Mooring Si only 

SI and S4 only 

Data from Si, 

S2,S4,S6 only 

Poor data return, 

except for R5. 

Poor data return 

Good data return, 

except for R5. 

Table 5.2: Mooring deplcyment periods on the Scotian Rise and Slope. Periods A 

to G are from the Shelf Break Experiment, and periods H to J are from the Risex 

Experiment. 
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5.2.2 Hydrographic data 

Drinkwater and Trites (1987) collected historical Knudsen bottle data and CTD data 

from the Scotian Shelf and Slope region, and calculated monthly averages and stan

dard deviations of temperature and salinity at discrete depths for 35 subareas. Figure 

5.2 shows yearly-averaged profiles of temperature, salinity, and buoyancy frequency 

for subarea 33 of their report, which coincides with the area of interest here. 

The monthly-averaged data of Drinkwater and Trites (1987, figure 5j) show that 

seasonality is mostly confined to the top 100m. However, even at larger depths, there 

are large standard deviations of temperature and salinity (but not necessarily density), 

part of the variability being attributable to the presence or absence of Gulf Stream 

eddies on the Scotian Slope. Figure 5.2 represents the best available spatio-temporal 

average of hydrographic properties on the Scotian Slope, and is plotted here for that 

reason, given the multitude of mooring locations and deployment periods considered 

in this chapter. 

At greater depths, an average buoyancy frequency profile computed from 13 CTD 

casts on the Scotian Rise (Bob Lively, pers. comm.), shows that between 1000m and 

3500m depth, N sa Q.Gcph ± 15%. 

5.2.3 Bathymetric data 

Figure 5.3 shows bathymetric profiles at 63°30W and 64°W, where all the Shelf Break 

Experiment current meter data was collected. The bathymetric data used to draw 

those profiles dates back to a 1962 survey by CHS Kapuskasing. The survey lines 

were oriented North-South, ended at about 2000m depth, and the horizontal spacing 

between consecutive lines was two nautical miles (3.7fcm). Successive depth readings 

on a given survey line were taken approximately one kilometer apart. 

Comparing this bathymetric data with a more recent echo sounder survey made 

near 63°30'W, during Batfish station 34 of Sandstrom and Elliott (1989), suggests 

the profiles are accurate near the shelf break. However, they become somewhat 

less reliable at depths larger than about 700m, where the 1962 depth readings were 

generally rounded to the nearest multiple of 10 fathoms. 



98 

2 4 6 8 10 

S ( °/oo) N (cph) 

Figure 5.2: Yearly-averaged profiles of temperature (—) and salinity ( ) on the 

Scotian Slope (left), and buoyancy frequency (right), based on data from subarea 33 

of Drinkwater and Trites (1987) (shown on figure 5.1). The discrete depths at which 

T, S and JV were evaluated are indicated by small circles. 
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Figure 5.3: Bathymetric profiles at 63°30'W (—) and 64°W ( ) on the Scotian 

Slope. Horizontal distance is measured from the 100 fathom contour at both longi

tudes. 
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5.3 Testing the critical reflection hypothesis 

5.3.1 Estimation of coc 

To determine whether there is energy enhancement at the critical frequency, we must 

first estimate wc itself, given by (2.29): 

u>2 = JV2sin2a + / 2 c o s 2 a . (5.1) 

To that effect, Eriksen (1982) remarked that JV and t a n a are usually not easy to 

estimate to an accuracy better than roughly a factor of two. The possible implications 

of this are illustrated in figure 5.4, where my best guess for wc at 63°30W, based on 

the data used to plot figures 5.2 and 5.3, is shown together with lower and upper 

bounds that allow for a ±33% uncertainty in both JV and tan a. My best guesses for 

JV, t ana , and hence wc at each of the moorings are giv^"\ in table 5.3. 

On the Scotian Rise and Slope, we may know the time-averaged buoyancy fre

quency N(z) to within better than ±33%, and we may also know the large-scale 

bottom slope (defined on a scale of a few km's) to within better than ±33%. How

ever, because JV is time-dependent, and because the value of the bottom slope depends 

on the spatial scale over which we measure it, the uncertainties depicted on figure 

5.4, although large, may not be unrealistic. 

For the range of slopes encountered on the Scotian Slope, cc= n: ~ 1, so that 

w2 ~ JV2 sin2 a + f2. Allowing for a ±33% uncertainty in both JV and t a n a as in 

figure 5.4, wc should then be found in a range of frequencies such that 

( j ) ' JV2 sin2 a + f2 < w\ < ( J ) " JV2 sin2 a + f2. (5.2) 

Figure 5.4 shows that the value of wc is most sensitive to the values of JV and sin a 

at depths less than about 1200m. However at greater depths, where JVsina C / , 

(5.2) yields wc « / regardless of a possible ±33% uncertainty in JV and sin a. 
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Figure 5.4: Critical frequency wc at 63°30'W, allowing for a ±33% uncertainty in both 

JV and tan a. For this particular, arbitrary choice of the percentage of uncertainty, 

the upper bounds for JV and tan a are twice as large as the lower bounds. The inertial 

frequency is / ~ 0.056cp/i over most of the Scotian Slope. 
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i 

Mooring 

SI 

S2 

S3 

S4 

S5 

S6 

S7 

S8 

RI 

R2 

R3 

R4 

R5 

Depth 

250m 

250m 

710m 

1010m 

1550m 

170m 

710m 

2550m 

3600m 

3600m 

3600m 

3000m 

2500m 

Buoyancy 

frequency 

N(z) 

2.6 cph 

2.6 cph 

1.0 cph 

0.7 cph 

0.6 cph 

3.0 cph 

1.0 cph 

0.6 cph 

0.6 cph 

0.6 cph 

0.6 cph 

0.6 cph 

0.6 cph 

Bottom 

slope 

t ana 

0.025 

0.046 

0.050 

0.030 

0.020 

0.005 

0.050 

0.020 

0.010 

0.010 

0.010 

0.012 

0.020 

JVsina 

(0.065 cph) 

(0.120 cph) 

(0.050 cph) 

0.021 cph 

0.012 cph 

0.015 cph 

(0.050 cph) 

0.012 cph 

0.006 cph 

0.006 cph 

0.006 cph 

0.007 cph 

0.012 cph 

Critical frequency wc = 

(JV2sin2a + /2cos2a)1/2 

0.086cph = 1.52/ 

0.132cp/i = 2.33/ 

0.076cph = 1.34/ 

OMOAcph = 1.07/ 

0.0576cph = 1.02/ 

0.0587cpfc = 1.03/ 

0.076cph = 1.34/ 

0.0571qm = 1.02/ 

QM5ZcPh = 1.005/ 

0.0555cpfc = 1.005/ 

OMSOcph = 1.005/ 

Q.0559cph = 1.01/ 

0.0569qm = 1.02/ 

Table 5.3: Cutoff frequency JV sin a for internal edge waves, and critical frequency 

w~c at various mooring sites on the Scotian Rise and Slope. The values of JVsina 

such that JVsina^,/ are indicated in parentheses. See the text for a discussion of the 

uncertainties. 
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5.3.2 A list of criteria 

In chapter 2 it was shown that the reflection of internal waves off a bottom of constant 

slope, in a constant-JV ocean, should lead to energy enhancement at the critical fre

quency u>c (2.37). However in chapter 4, it was argued that such energy enhancement 

was less likely to be observed above concave topography than above convex topogra

phy (4.37). For the data set at hand here, we can test those predictions about the 

presence or absence of energy enhancement at wc by looking for 

la) a spectral peak above the background energy level at wc 

lb) near-bottom energy enhancement at wc for instruments at different heights 

above the bottom, but on the same mooring 

lc) near-boundary energy enhancement at wc for instruments at the same depth, 

but on different moorings 

Id) a spectral level at wc larger than thrt given by the GM79 model spectrum. 

A second major prediction of internal wave reflection theory is that current ellipses 

should tend to orient themselves nearly perpendicular to the isobaths upon reflection 

(2.71). Hence we should also look for 

2) a pronounced anisotropy at wc, the major axis of current ellipses being oriented 

in the cross-isobath direction. 

Criterion la was successfully used by Sandstrom (1966) and Eriksen (1982) at 

mooring sites where the critical frequency was well separated from the energetic tidal 

and inertial frequencies. Such a separation is necessary if we wish to unambiguously 

interpret a spectral peak above the 'background' energy level at wc as the signature 

of internal wave reflection. Unfortunately, wc is close to / or M2 at all the mooring 

sites considered here (except for S2, see table 5.3), so that criterion la is not going 

to be very useful. 

Criterion lb was also used successfully by Eriksen (1982) at a few moorings. It can 

be used at most of the moorings considered here, as the majority of them have two or 
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more current meters in the vertical. However, we should bear in mind this criterion 

fails to take into account the slantwise propagation of internal wave energy, as pointed 

out in section 4.6, and so may not be completely unambiguous. For example, current 

meters at different heights above the bottom on a given mooring may not measure 

the same near-inertial wave packets, due to the nearly horizontal energy propagation 

of these waves. 

Criterion lc was used by Thorpe (1987a, figure 11) at a site where the critical 

frequency was close to the inertial frequency (wc « / ) , a situation where this cri

terion should be most useful. It can be used in a few cases for the data set under 

consideration here. However, for mooring sites where wc «a M2,1 will not use criterion 

lc when the fractional change of depth between two moorings is important, due to 

sizeable variations in the expected amplitude of the barotropic tide. 

Although criterion Id does not on its own constitute evidence of critical internal 

wave reflection, it could be used to support successful tests based on other criteria, 

especially when wc > M2, where there is some degree of universality in the spectral 

levels (Wunsch, 1976). However, Fu (1981) has shown that such universality does not 

exist near / in the deep ocean, so that criterion Id is not useful at those moorings 

where wc ~ / . It is not useful at those moorings where wc ~ M2 either, since 

internal tides were excluded from the internal wave model of Garrett and Munk 

(1972). Application of criterion Id will thus be limited to mooring S2 for the present 

data set. 

Criterion 2 was successfully used by Eriksen (1982) for mooring sites on Muir 

Seamount and the New England continental slope, but it failed at mooring 636 of 

the Western Boundary Sill Experiment. At the deeper moorings where wc ~ / , we 

do not a priori expect the quasi-circular near-inertial motions to have a well-defined 

orientation. Hence we expect criterion 2 should be most useful here in water shallower 

than about 1000m, where wc becomes appreciably greater than / (table 5.3). 
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5.4 Results 

Hundreds of autospectra were computed from the data set described in tables 5.1 

and 5.2. In this section, my description of the results will be kept as succinct and 

factual as possible, postponing further discussion until the next section. The reader 

is referred to Appendix A for a description of the techniques of data analysis used. 

In order to compare the kinetic energy spectra fro:n instruments at different 

depths, I normalised them with respect to a common value of JV, taking into ac

count the prediction that we should have 

Kinetic energy a JV (5.3) 

according to WKB theory (Gill 1982, p.300). Briscoe (1975) has shown that normal

ising the kinetic energy spectra in this manner brings them within close agreement 

in the internal wave continuum (w > M2). It also reduces variability at the inertial 

frequency / , but not to the same extent as it does for w > M%. Note that right at M2, 

such WKB-scaling may reduce the variability in spectral levels when the baroclinic 

tide dominates the barotropic tide, but it increases the variability otherwise. 

The values of N(z) ^ised for the WKB-normalisation are the climatological, yearly-

averaged values shown on figure 5.2. While this may be justified for z < —150m, 

where the monthly-averaged data of Drinkwater and Trites (1987, figure 5j) show 

little seasonal variations, I did not attempt such WKB-scaling within the top 100m 

of the water column, thus precluding the use of criterion lb at moorings SI, S2, and 

S6. 

5.4.1 The Risex Experiment 

The critical frequency is very close to the inertial frequency at all the Risex moorings 

(see table 5.3). Therefore, in order to look for evidence of critical internal wave 

reflection at those moorings, we rule out the use of criteria la, Id and 2 (see section 

5.3.2). That leaves us with criteria lb and lc, and so we shall look for near-boundary 

energy enhancement at wc ~ / in the vertical and horizontal directions, however 

weak those criteria may be. Criterion lb can be used at moorings RIJ, R4J and 
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R5H, where we have several current meters in the vertical, and criterion lc can be 

used to compare the 2900m spectra from moorings RIJ and R4J. 

For mooring RIJ , figure 5.5 shows no clear evidence of near-bottom energy en

hancement at wc ~ / . The near-inertial peak at 3500m is about the same as at 200m, 

and is not significantly greater than at 1000m. It is significantly greater than the 

2900m inertial peak however. Note that at moorings R2J and R3J, where we have a 

single current meter at 3500m depth, the spectra are very similar in both shape and 

level to the 3500m spectrum from mooring RIJ . 

For mooring R4J, the situation is somewhat different, in that figure 5.6 doas 

show hints of near-boundary energy enhancement at wc ~ / . The horizontal energy 

enhancement with respect to the 2900m spectrum at mooring RIJ is significant at 

the 95% level, but the vertical energy enhancement is not. 

At mooring R5H, the situation is different still (see figure 5.7). This time, the 

largest energy densities are observed at mid-depth instead of near the surface or 

bottom, but those differences are not significant. The overall conclusion we are thus 

led to draw so far from the Risex data set is that there is no clear evidence of near-

bottom energy enhancement at wc ~ / on the Scotian Rise. 

5.4.2 The Shelf Break Experiment 

Since mooring S8 was approximately at the same depth as mooring R5, we should 

expect similar results at both moorings. Comparing the 2530m kinetic energy spec

trum from mooring S8E with the 2400m spectrum from mooring R5H (figure 5.7), 

both of which are representative of winter conditions, I found that the two spectra 

were indeed very similar in shape and level. At mooring S8, criterion lb could only 

be used for period F, when it was found that the near-inertial peak was stronger at 

2530m than at 1500m, but not significantly so. 

At mooring S5, there are signs of near-boundary energy enhancement at wc fti / 

for periods C, D, and F, when good data were obtained. The spectra from period F 

are shown on figure 5.8, where we see that the near-boundary energy enhancement is 

significant in the vertical, but not in the horizontal. For period C, the near-boundary 
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Frequency (cph) 

Figure 5.5: Kinetic energy spectra for mooring RIJ (depth = 3600m): 200m ( o ), 

1000m (—), 2900m (- - -) and 3500m ( + ), with v = 28. The spectra are WKB-

normalised with respect to JV = lcph. 
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Figure 5.6: Kinetic energy spectra from 200m ( o ), 1000m (—) and 2900m ( + ) 

at mooring R4J (depth =3000m), and from 2900m ( ) at mooring RIJ (depth = 

3600m), with u = 28. The spectra are WKB-normalised with respect to JV = lcph. 
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Figure 5.7: Kinetic energy spectra for mooring R5H (depth =2500m): 200m ( o ), 

500m (—), 1000m ( ) and 2400m ( + ), with v = 40. The spectra are WKB-

normalised with respect to JV = lcph. 
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Figure 5.8: Kinetic energy spectra from 150m ( o ) and 1530m ( + ) at mooring S5F 

(depth = 1550m), and from 1500m (- - -) at mooring S8F (depth =2550m), with 

v = 32. The spectra are WKB-normalised with respect to JV = lcph. 
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energy enhancement is significant in both the vertical and the horizontal, whereas for 

period D, it is not significant in either direction. 

It is not entirely clear whether it is more relevant to use criterion lb or lc in order 

to look for energy enhancement at the critical frequency, but on figure 5.6, we see that 

near-boundary energy enhancement at wc « / is more pronounced in the horizontal 

than in the vertical, whereas on figure 5.8, the reverse is true. At the very least, this 

suggests that there is no systematic bias between the use of either one of these two 

criteria. 

At mooring S4,1 also found signs of near-boundary energy enhancement at wc ss / 

for periods C, E and F, when good data were obtained. Figure 5.9 shows the spectra 

from period E, where we see that the near-inertial peak is significantly higher near the 

bottom than at other depths. Interestingly enough, the inertial peak is also broader 

near the bottom. The near-bottom energy enhancement at wc ~ / is also significant 

for period C, but not for period F. 

Note that figure 5.3 suggests the presence of a bump on an otherwise rather smooth 

profile at about 1000m depth at 63°30W, raising the possibility that mooring S4 sat 

on a bump. A close look at the echo sounder data from Batfish station 34 of Sandstrom 

and Elliot (1989) confirms the presence of that bump. It is about 2.5 km wide and 

extends from about 980m to 1100m depth. The bottom slope ranges from 0 to 0.10 

on that bump, possibly explaining the breadth of the near-inertial peak on figure 5.9 

(wc Pd 1.07'/ according to table 5.3). 

Continuing our progression toward the shelf break, we find that at moorings S3 and 

S7, there is usually some evidence of near-bottom energy enhancement throughout 

most of the internal waveband. A good example of this is shown on figure 5.10 for 

mooring S3E. A comparison with the 690m spectrum from mooring S4E (figure 5.9) 

shows a similar near-boundary energy enhancement in the horizontal direction. For 

mooring S3F, near-bottom energy enhancement was only observed for w > M2, with 

the largest enhancement at M4. 

Figure 5.11 shows that 20m above the bottom at mooring S3E, current ellipses are 

oriented normal to isobaths over a very broad range of frequencies, so that criterion 

2 is apparently satisfied. By contrast, figure 5.12 shows that 480m above the bottom, 
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Figure 5.9: Kinetic energy spectra at 150m ( + ), 690m ( ) and 990m (—) for 

mooring S4E (depth = 1010m), with i/ = 35. The spectra were normalised with 

respect to JV = lcph. 
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Figure 5.10: Kinetic energy spectra from 230m ( ) and 690m (—) at mooring 

S3E (depth =710m), with u = 36. The spectra are WKB-normalised with respect to 

JV = lcph, and are compared with the GM79 model spectrum. 
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Figure 5.11: Current ellipse orientation and stability 20m above the bottom at moor

ing S3E. The dashed line on the upper plot represents the 95% significance level for 

zero true coherence between clockwise and anticlockwise velocities. The 95% confi

dence intervals for ellipse orientation are shown on the lower plot (v = 36). 
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Figure 5.12: Current ellipse orientation and stability 480m above the bottom at 

mooring S3E. The dashed line on the upper plot represents the 95% significance level 

for zero true coherence between clockwise and anticlockwise velocities. The 95% 

confidence intervals for ellipse orientation are shown on the lower plot (v = 36). 
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Figure 5.13: Kinetic energy spectra 20m above the bottom at moorings SID (—) and 

S2D ( ), where the local depth is « 250m (u = 18). 
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stable current ellipse orientations are only found at the tidal frequencies. 

Comparisons were made between data from the deepest current meters at moor

ings S3 and S7 foi periods D, E and F. Although I found some differences between 

them, none of the data from mooring S7 is shown here, for economy of space. In 

almost all cases, I found evidence for a cross-isobath alignment of motions over a 

broad range of frequencies in the internal waveband (as in figure 5.11). 

Figure 5.13 compares kinetic energy spectra 20m above the bottom at moorings 

SID and S2D. There is more energy at S2 in the neighbourhood of M4, possibly due 

to the fact that M4 is near-critical at that site (see table 5.3). The difference is not 

significant at the 95% level, but M4 is also slightly stronger at S2 than at Si for 

periods E and G, the other two periods for which we have simultaneous data from 

this pair of instruments. Similarly, Huthnance and Baines (1982) observed a strong 

M\ near the bottom at a mooring where wc FZ M4 on the Northwest African Shelf. 

A summary ox the results is given in table 5.4, where each mooring site is classified 

as either concave or convex, depending on whether dwc/dz > 0 (concave) or dwc/dz < 

0 (convex). Overall the Scotian Slope is mostly concave (see figure 5.4). 

5.5 Discussion 

5.5.1 Energy enhancement (or lack thereof) at mooring 

sites where CJC ~ / . 

According to table 5.3, the critical frequency is close to the inertial frequency at 

moorings RI , R2, R3, R4, R5, S4, S5, S6 and S8, i.e at 9 of the 13 mooring sites 

considered in this chapter. The results obtained at those moorings are quite variable 

(table 5.4); they vary from one mooring site to the next during a given mooring 

period, and they also vary from one mooring period to the next at a given mooring 

site. 

Deviations of the time-averaged buoyancy frequency N(z) from the climatological 

mean (figure 5.2) could explain some of the variability in the results, as criterion lb 

involved WKB-scaling with respect to JV (5.3). I attempted to minimize this source 
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Mooring 

Sl(.086) 

S2(.132) 

S3(.076) 

S4(.060) 

S5(.058) 

S6(.059) 

S7(.076) 

S8(.057) 

R1(.0SS) 

R2(.0S6) 

R3(.055) 

R4(.056) 

Concave 

or 

Convex 

convex 

concave 

concave 

? 

? 

? 

concave 

? 

? 

? 

7 

7 

R5(.057) ? | 

Successful 

tests 

(95% significant) 

D(ld,2),E(ld,2), 

G(ld,2) 

E(2),F(2) 

C(lb),E(lb) 

C(lb,lc),F(lb) 

C(lb,2),E(2), 

F(lb,2) 

J(lc) 

Unsuccessful 

tests 

(not significant) 

D(2),E(2),G(2) 

D(la),E(la), 

G(la) 

D(lb,2),E(lb,lc), 

F(lb,lc) 

F(lb) 

D(lb,lc),F(lc) 

F(lc) 

D(lbJ2),E(lb) 

F(lb) 

J(lb) 

J(lb) 

H(lb) 1 

Comments 

Large bump at RS 1000m 

sig. at 80% level 

K.E.(3500m) > K.E.(2900m) 

K.E.(w = / ) ~ RI (3500m) 

K.E.(w = / ) - Rl (3500m) 

Table 5.4: Results of tests aimed at determining whether critical internal wave re

flection was observed at moorings from the Shelf Break and Risex Experiments. In 

column 1 the critical frequency (in cph) at each of the mooring sites is written in 

parentheses. In columns 3 and 4 the capital letters refer to the mooring periods listed 

in table 5.2, and the numbers in parentheses refer to the criteria given in section 5.3.2. 
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of error, by limiting the use of criterion lb to records longer than two months and at 

least 150m deep, but deviations of JV from the climatological mean could still affect 

the significance of the tests performed with that particular criterion. 

Another way of explaining the variability of the results would be to invoke the 

intermittent nature of inertial wave generation (e.g. Smith, 1989); complex demodu

lation at the inertial frequency for the Risex data shows the usual burstlike character 

of the near-inertial motions. Given that, together with the slantwise propagation 

of near-inertial wave packets, it seems possible that current meters near the surface 

would have more near-inertial energy at times, current meters near the bottom would 

have more near-inertial energy at other times, as would current meters at interme

diate depths, and there is some evidence for all of those situations occurring in the 

data. 

5.5.2 In terna l wave reflection versus internal t ide genera

t ion at mooring sites where wc « M2. 

20m above the bottom at moorings S3 and S7, current ellipses are oriented normal to 

isobaths over a wide range of internal wave frequencies (both above and below M2), 

as can be seen on figure 5.11 for example. There is also some evidence of near-bottom 

energy enhancement over much of the internal waveband (e.g. figure 5.10). Yet figure 

5.4 shows that dwc/dz > 0 at 700m depth, so that the topography is locally concave. 

This modest near-bottom energy enhancement near wc at a concave site could 

be due to departures from ^-symmetry in the bathymetry profile (see figure 4.2). 

Such asymmetries would lead to slightly different wavenumber amplifications upon 

reflection on either side of the concave corner, since (4.23) would no longer be valid, 

and this would prevent exact cancellation of the reflected waves. 

The other reason why tpTr and I/JTI cancelled each other at wc on figure 4.2 was 

that the incident wave 4>i had the same ampHtude on both sides of the origin (which 

coincides with the critical point on that figure). Since wc « M2 at moorings S3 and 

S7, one cannot rule out the possibility that the energy enhancement and cross-isobath 

alignment of motions seen at those moorings could be due to internal tide, generation, 
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followed, by a non-linear energy cascade to other internal wave frequencies. The body 

force F responsible for the generation of the internal tide is such that 

g JPW .. (fl/fe) (5.4) 

as Qa; and WT are constants in (2.86). Figure 5.14 shows contours of constant am

plitude of F at 63°30'W. The tangential (or critical) concave corner for the internal 

tide is close to mooring S3, at a depth of about 600-700m (figure 5.4), and we see 

that | F | is stronger on the shallow side of it than on the deep side. In fact |P | varies 

rapidly with depth in the neighbourhood of the tangential concave corner, so that 

exact cancellation of waves generated on either side of it does not seem possible. In 

that sense the process of internal tide generation differs markedly from the process of 

internal wave reflection. 

5.5.3 Energy density at the first overtide (M4). 

The energy density at Jkf4 is detectable above the background energy level nearly 

everywhere on the Scotian Rise and Slope, as can be seen on most of the spectra 

shown here. For the purpose of comparison with other published data from the Scotian 

Slope, figure 5.15 shows the kinetic energy spectra from Petrie's (1975) mooring 1A, 

deployed for 35 days starting March 1, 1973, at 62° W, in 540m deep water (see figure 

5.1). 

The most striking feature of that plot is that M4 is much stronger at 490m depth 

than at 290m. In fact at 490m, the M\ peak is comparable in size with the M2 peak, 

most of the energy at Af4 (~ 90%) being in the North velocity component. The ratio 

Pw/Puu of North to East kinetic energy is roughly equal to (w/ff over a broad range 

of frequencies (M2 < w < M4) at that "urrent meter, consistent with a unidirectional 

field of internal waves travelling in the North-South direction; the orientation of the 

current ellipse at M4 itself is 0°T ±5°T (A.17). 

In view of the recent theoretical work of Thorpe (1987b), it now appears possible 

to offer an explanation for the unusual size of the Jlf4 peak seen at Petrie's mooring 

1A. Thorpe showed that when a train of finite amplitude internal waves reflects off 
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Figure 5.14: Contours of equal amplitude of the body force responsible for the gen

eration of the internal tide at 63°30W, using (5.4). Horizontal distance is measured 

from the 100 fathom depth contour. 
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Figure 5.15: Kinetic energy spectra at 290m (—) and 490m (- - -) for Petrie's (1975) 

mooring lA (depth = 540m), with v = 34. The spectra were WKB-normalised with 

respect to the value of JV at 490m (1.4 cph). 
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a bottom of constant slope, resonance between the incident and reflected waves is 

possible at second order only ior a < 8.4° and p < 30°, a condition that can be met 

everywhere on the Scotian Slope at 63°30'W (figure 5.3). 

Taking JV « l.Acph (figure 5.2) and t a n a « 0.045 (figure 7 of Petrie (1975)) 

as reasonable values of the buoyancy frequency and bottom slope at that mooring, 

Thorpe's theory (see his figure 2) predicts a singularity at a wave ray slope of w 0.10, 

corresponding to a; « Q.lUcph (2.16). This is close to M±, and so it seems possible 

that the reflection (not generation) of the internal tide at that location may have 

caused the unusually large M4 peak. 

None of the spectra I computed show as dramatic near-bottom energy enhance

ment at M4 as figure 5.15. However, figure 5.17 does show one instance where 

Pou/Puu & (v/ff a* M4 f°r mooring S3F, as for Petrie's mooring 1A. Taking 

JV fa l.Ocph and t a n a « 0.05 as reasonable values of the buoyancy frequency and 

bottom slope at mooring S3 (table 5.3), figure 2 of Thorpe (1987b) predicts a second 

order singularity for tan/z « 0.12, corresponding to w m 0.13cph (2.16). 

Taking another look at figure 5.10 with that prediction in mind, we find that 

the largest near-bottom energy enhancement at mooring S3E is in fact roughly cen

tered at that frequency. We thus have an alternative explanation for the broadband 

near-bottom energy enhancement observed at mooring S3E, and it has the distinct 

advantage of not being affected by the destructive interference near a concave corner 

discussed in chapter 4 (figure 4.2). 

In that context, it is worth mentioning that for the GM79 model internal wave 

spectrum (in which tides are excluded), the maximum vertical energy flux occurs at 

UJ = \ / 2 / . This nearly coincides with the M2 frequency on the Scotian Rise and 

Slope, as M2 — y/2f at 43° latitude. Consequently, apart from any consideration 

for the internal tide generation or reflection problem, we would expect a substantial 

downward flux of internal wave energy to be incident on the Scotian Slope near 

w fa M2. Non-linear reflection of these waves could lead to the broadband near-

bottom energy enhancement shown on figure 5.10 for example. 



124 

5.5.4 Evidence for bottom-trapped buoyancy oscillations 

with UJ > / ? 

Thompson and Luyten (1976) have provided evidence for the existence of bottom-

trapped buoyancy oscillations (Rhines, 1970) at frequencies lower than the inertial 

frequency. In the context of this thesis however, what is interesting about Rhines' 

internal edge waves is that, as the bottom slope becomes steeper and JV increases, 

JVsina eventually becomes greater than / , and bottom-trapped motions become 

possible in the frequency band normally reserved to freely-propagating internal waves 

(f<w< JV). 

The possibility of trapped waves (or nearly-trapped waves) with w > f above 

sloping topography has not received much attention in the literature, but Huthnance 

(1989) points out that "continuity of mode forms near w = / (Huthnance, 1978) sug

gests that trapped waves approaching w = f from lower frequencies should continue 

as nearly-trapped waves for w exceeding / . The bottom trapped waves of Rhines 

(1970) in realistic contexts are obvious candidates." 

Figure 5.16 compares the frequency cutoff JVsina for Rhines' internal edge waves 

with the critical frequency (5.1) at 63°30'W, based on the values of JV and sin a 

shown on figures 5.2 and 5.3. At depths larger than 700m, JVsina < / , but at 

shallower depths, JV sin a gets well into the internal wave band, and becomes virtually 

undistinguishable from wc between 300m and 600m depth. 

According to table 5.3, the frequency cutoff for internal edge waves should be 

about 0.050cph at mooring S3 (700m depth), close to the inertial frequency / . For 

the three periods when the deepest current meter at mooring S3 worked properly (D, 

E and F), I found that Pvv > Puu at w = f, possibly indicating the presence of Rhines' 

waves in the data, since inertial motions are circular and should have Puu = Pvv. This 

is shown for period F on figure 5.17, where we see that Pvv = 2.2PUU at the inertial 

frequency. Using (A.17), I found that the ellipse orientation at / for the same mooring 

period was 13° T ±14°T, roughly perpendicular to the isobaths and consistent with 

(2.97), which predicts <j> m 0°T. 

To further emphasize the point that motions with properties (2.95) similar to 
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Figure 5.16: Frequency cutoff JVsina for Rhines' internal edge waves (dashed line) 

versus Wc = (JV2sin2a + / 2 c o s 2 a ) 1 / 2 (solid line) at 63°30W. The vertical dashed 

line is drawn at the inertial frequency (w = / ) . 
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Figure 5.17: East (—) and North (- - -) velocity spectra 20m above the bottom at 

mooring S3F (u = 32). 
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Figure 5.18: Ratio P++/P of anticlockwise to clockwise kinetic energy 20m above 

the bottom at mooring S2G (v = 61). The curved dashed line represents the theoreti

cal ratio (2.18) for linear internal waves, whereas the horizontal dashed line represents 

the theoretical ratio P++/P = 1 for Rhines' internal edge waves. The 90% con

fidence intervals assume a Fisher's F distribution for the ratio of two independent 

chi-squared distributions (Jenkins and Watts, 1968, p.85). 
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Figure 5.19: Current ellipse orientation and stability 20m above the bottom at moor

ing S2G. The dashed line on the upper plot represents the 95% significance level for 

zero true coherence between clockwise and anticlockwise velocities. The 95% confi

dence intervals for ellipse orientation are shown on the lower plot (v = 61). 
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Rhines' bottom-trapped waves could play a role within the internal waveband at 

mooring sites where JVsina-^/ , figure 5.18 presents another type of information. It 

shows that the ratio P++/P of anticlockwise to clockwise kinetic energy at mooring 

S2G starts to deviate systematically from the prediction of linear internal wave theory 

(2.18) at about 0.14cph, close to the value of JV sin a given for mooring S2 in table 5.3. 

However, changes of current ellipse orientation with frequency that seem consistent 

with (2.97) only occur at frequencies below the diurnal tide, where P++/P is closer 

to 1 (see figure 5.19). 

Huthnance and Baines (1982) showed that the M2 tide itself was consistent at 

times with Rhines' bottom-trapped waves at one of their moorings. They called for 

a more detailed investigation of the phenomenon, pointing out the fact that we do 

not know much ab< ut the possible radiational energy losses of these waves when 

JV sin a > / over only a finite portion of the bathymetry profile, as is the case here 

(figure 5.16). 
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Chapter 6 

A closer look at the 3—4 day 

motions from the Western 

Boundary Sill Experiment. 

Eriksen's (1982) most convincing evidence of energy enhancement near wc came from 

mooring 636 of the Western Boundary Sill Experiment, originally deployed to measure 

the flow of Antarctic Bottom Water into the Northwest Atlantic Basin (Whitehead 

and Worthington, 1982). In this chapter, I try to determine whether the energetic 

motions with 3-4 day periods observed at that mooring can indeed be attributed to 

internal wave reflection off a sloping bottom. 

6.1 The low-frequency currents 

The main objective of the Western Boundary Sill Experiment (WBSE) was to measure 

the average flow rate of Antarctic Bottom Water (AABW) into the Northwest Atlantic 

Ocean. To this end, the buoy group of the Woods Hole Oceanographic Institution 

deployed two moorings at about 4°N, between the Ceara Rise and the mid-Atlantic 

ridge, from December 9, 1977, to December 5, 1978. Mooring 636 was deployed 

at 4°2.5'N, 39°40.6'W, and mooring 637 was deployed at 4°1.3'N, 39°19.0'W. Both 

moorings had current meters at 10m, 50m, 100m and 200m above the bottom. The 
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Figure 6.1: Topography in the vicinity of moorings 636 and 637 of the Western 

Boundary Sill Experimeiit, based upon the East-West transect at 4°JV shown on 

figure 4 of Whitehead and Worthington (1982). 

local depth was 4456m at mooring 636, and 4304m at mooring 637 (see figure 6.1). 

In tL's chapter, I concern myself mostly with data from mooring 636, where Erik

sen (1982) found the clearest evidence of near-bottom energy enhancement at what 

he estimated to be the critical frequency wc. Average hydrographic properties at that 

mooring are summarised in tables 6.1 and 6.2. Salinity was not directly measured 

by the current meters, but is readily obtained from temperature, using a linear T-S 

relation derived from CTD stations near the moorings. 

Whitehead and Worthington (1982) (hereafter WW82) analysed the low-frequency 

current and temperature signals at moorings 636 and 637. Figure 8 of their paper 

shows stick diagrams of the low-passed velocity, as well as curves of the low-passed 

current speed, direction, and potential temperature. Surges of AABW into the North

west Atlantic with a roughly 60-day period are clearly seen on that figure. Those 
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Instrument 

6361 

6362 

6363 

6364 

Depth (m) 

4256 

4356 

4406 

4446 

Height above bottom (m) 

200 

100 

50 

10 

~9(°C) 

1.568 

1.276 

1.146 

1.055 

S( %o) 

34.853 

34.818 

34.803 

34.792 

Table 6.1: Average potential temperature 6 and salinity S at mooring 636. 

Instruments 

6361-6362 

6362-6363 

6363-6364 

Height 

above 

bottom 

150m 

75m 

30m 

de/dz 

(xlO-3 °Cm-1) 

2.92 

2.61 

2.27 

dS/dz 

(xl0~4 Voom-1) 

3.5 

3.0 

2.8 

N(cph) 

0.94 

0.90 

0.82 

Table 6.2: Average temperature gradient, salinity gradient, and buoyancy frequency 

at mooring 636. 

surges are shown here on figure 6.2, where I plotted the East and North components 

of the low-passed velocity for the four current meters at mooring 636. 

The low-pass filter used to draw figure 6.2 is a triangular window whose transfer 

function has its first zero at a period of 7.1 days (local inertial period); it effectively 

removes all internal wave motions. By contrast, WW82's low-passed currents were 

subjected to a Gaussian filter with a 1-day half width. That filter passed 95% of the 

energy at periods longer than five days, which explains why the energetic 3-4 day 

temperature and velocity oscillations can still be seen on WW82's figure 8. 

Note on figure 6.2 that the zonal velocity component is consistently eastward 10m 

above the bottom (u = 2.0cm a~l), whereas it fluctuates a few times from eastward 

to westward at other heights above the bottom. A strong mean eastward flow is also 

present 10m above the bottom at mooring 637 (u = 2.8cm s~l according to table 1 

of WW82). The mechanism responsible for the confinement of this mean eastward 

flow near the bottom is not known (WW82), part of the difficulty residing in the fact 

that we do not know the orientation of isobaths at moorings 636 and 637. 
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at mooring 636. The plots start on day 350, 1977, and end on day 332, 1978. Tick 
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Figure 6.1 may tell us that the bottom shallows towards the west at mooring 636, 

but it does not tell us the orientation and magnitude of Vh there. The most detailed 

bathymetric map available for the area, produced by Moody et al. (1979), and shown 

on figure 2 of WW82, does not help us solve that problem either due to its lack of 

resolution. 

Progressive vector diagrams for the four current meter records at mooring 636 are 

drawn on figure 6.3 (cf WW82's figure 7a). A surprising feature of this graph is that 

currents turn clockwise as we approach the bottom instead of anticlockwise; the sense 

of rotation of the low-frequency currents is thus opposite to what one would expect 

in an Ekman layer above flat or sloping topography (see the data from mooring 349 

of Wunsch and Hendry (1972) for an example from the continental slope). 

Also note that the flow 10m above the bottom appears to be bimodal: during 

periods of strong northward flow, it is reasonably well aligned with the flow at other 

depths, but as soon as that northward flow weakens, it veers towards the Southeast 

and becomes misaligned with the flow at other depths. 

6.2 Power spectral analysis at mooring 636 

6.2.1 Kinetic energy spectra 

Kinetic energy spectra were computed for the four current meters at mooring 636, 

and are shown on figure 6.4. The spectra agree quite well with those shown on figure 

7 of Eriksen (1982), except that Eriksen did not plot the 50m spectrum due to its 

similarity to the 10m spectrum. Also note that Eriksen plotted twice the kinetic 

energy in (cm/af/cph, whereas I plot the kinetic energy itself in (m/af/cph. 

The near-bottom energy enhancement ranges roughly from 0.005 cph to 0.05 cph 

(periods between 20 and 200 hours), with a peak in energy density centered at 0.0117 

cph (85.5 hour or 3.56 day period) for all four instruments. The inertial frequency at 

that location is 0.00587 cph (170.3 hour period), so that the energy peak occurs well 

within the internal waveband at w sa 2/ . 

Following Eriksen (1982) in taking JV « 0.8cph, and assuming that the bottom 
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Figure 6.4: Kinetic energy spectra at 10m ( -f ), 50m ( o ), 100m (—) and 200m 
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slope at mooring 636 is 0.015, as estimated from the East-West transect shown on 

figure 6.1, we obtain wc = (JV2 sin2 a + f2 cos2 a)1/2 « 0.0133cpA. This estimate of the 

critical frequency compares well with the energy enhancement shown on figure 6.4. 

However, I should point out that while Eriksen's estimate of JV is consistent with 

the values given here in table 6.2, his estimate of the bottom slope probably is a 

lower bound. For any orientation of the isobaths other than North-South, the bottom ' 

slope would be larger. Hence it can be argued that Eriksen's estimate of the critical 

frequency wc probably is a lower bound too. 

6.2.2 Temperature spectra 

The temperature autospectra at 10m, 50m, 100m and 200m above the bottom were 

also computed. Figure 6.5 shows these spectra without any normalisation with respect 

to the vertical temperature gradients. They all show a peak at 0.0117 cph, but unlike 

the kinetic energy spectra, this time the 10m record does not have the largest peak. 

Table 6.2 suggests this is probably due to the fact that the temperature gradient 

10m above the bottom is smaller than at other heights above the bottom, given the 

tendency for d8/dz to decrease as we approach the bottom. 

6.2.3 Rotary spectra and the ratio P++/P 

Using the clockwise (ii_) and anticlockwise (u+) rotary velocity components 

u_ = (u~iv)/V2 (6.1) 

u+ = (u + w;)/V2, (6.2) 

I computed the clockwise and anticlockwise autospectra P and P++ at each current 

meter (see Appendix A). For linear, freely-propagating internal waves, the ratio of 

anticlockwise to clockwise kinetic energy is given by (2.18) 
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Figure 6.6: Ratio P++/P— at 10m ( + ), 50m ( o ), 100m (—) and 200m (- - -) above 

the bottom at mooring 636 (u = 30). The theoretical ratio (6.3) for linear, freely 

propagating internal waves, is also shown for the purpose of comparison. The 90% 

confidence intervals assume a Fisher's F distribution for the ratio of two independent 

chi-squared distributions (Jenkins and Watt , 1968, p.85). 
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independently of the directional properties of the wavefield. On figure 6.6, I plotted 

P++/P as a function of frequency at 10m, 50m, 100m and 200m above the bottom. 

Interestingly enough, I find large deviations from the predictions of linear internal 

wave theory (6.3) in the range of frequencies for which near-bottom kinetic energy 

enhancement is observed. More interesting still, I find that in the neighbourhood of 

the energy peak (w ra 0.0117cph), the largest departure from internal wave theory 

occurs at 10m above the bottom, followed by the departures at 50m, 100m and 200m 

in that order. There thus seems to be a one to one correspondance between kinetic 

energy enhancement and the degree of departure from (6.3) near w — 0.0117cph; the 

records with the most kinetic energy at a; = 0.0117cpfe are the least internal wave 

like. 

To explain this, a physically appealing hypothesis would be that the energetic 3-4 

day motions at WBSE mooring 636 are in fact Rhines' (1970) internal edge waves, 

described in chapter 2. Water parcel motions should then be rectilinear, implying the 

ratio (2.95) 

P++ = 1. (6.4) 
P_ 

Looking at figure 6.6, we find that at 10m and 50m above the bottom, P++/P is 

closer to 1 than to the internal wave line for w < 0.025cph, in rough agreement with 

(6.4). To further test the hypothesis that the 3-4 day motions could be a manifes

tation of Rhines' trapped waves, we next try to find out whether the orientation of 

these motions changes with frequency according to (2.97): 

*=cos_1 (V^—) • (6-5) 
VJVsina/ v ' 

6.3 Ellipse orientation and stability at mooring 

636 

It was pointed out by Eriksen (1982, p.533) that the orientation of current ellipses 

at mooring 636 (shown on figure 9 of his paper) is not consistent with internal wave 
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reflection theory: "... the critical period ellipses seem to turn with depth much more 

than they do with frequency. Furthermore, orientation is nearly parallel to the low 

frequency flow at each level rather than perpendicular to the isobaths inferred from the 

bathymetry shown on Figure 6 and the mean currents. Both of these characteristics 

conflict with the linear model for internal wave reflection considered so far. In addition 

the current ellipses are more narrow than would be expected from linear internal 

waves at w ~ 2 / , even if waves were unidirectional." He suggested that the lack 

of agreement between observed current ellipse orientations and what linear internal 

wave reflection theory predicts " is a manifestation of complex nonlinear interaction 

of the wave field with the strong mean and low frequency currents." 

Using the method outlined in appendix A, I computed both ellipse orientation and 

stability as a function of frequency at 10m, 50m, 100m and 200m above the bottom, 

shown on figures 6.7, 6.8, 6.9 and 6.10 respectively. Those plots essentially agree 

with Eriksen's figure 9, but with the added advantage that they tell us something 

about the stability of the orientations. We find as he did that current ellipses do not 

turn much with frequency, and that the energetic 3-4 day motions are parallel to the 

orientation of the low-frequency flow oscillations at each height above the bottom. 

We also find that at 10m, 50m and 100m above the bottom, ellipse stability falls 

below the 95% significance level for zero true stability at about the same frequency 

(w fa 0.0225cpft.) as the ratio F++/P returns to the linear internal wave line on figure 

6.6. If those motions were a manifestation of Rhines' internal edge waves (possible 

for tan a pa 0.03), equation (6.5) predicts that ellipse orientation should then vary by 

as much as 60° from w = 0.0225cp/i to w = O.Olcph. Figures 6.7, 6.8 and 6.9 show 

that this is clearly not the case, casting doubts on the Rhines wave hypothesis. 

In summary then, Eriksen's interpretation of the 3-4 day motions at mooring 636 

as bottom-reflected internal waves fails to explain why the current ellipses near wc are 

not perpendicular to the inferred North-South orientation of the isobaths, whereas 

an interpretation of those motions in terms of Rhines' internal edge waves fails to 

explain the lack of turning of the current ellipses with frequency. 
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Figure 6.7: Current ellipse orientation and stability 10m above the bottom at mooring 

636. The dashed line on the upper plot represents the 95% significance level for zero 

true coherence between clockwise and anticlockwise velocities. The 95% confidence 

intervals for ellipse orientation are shown on the lower plot (v = 30). 
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Figure 6.8: Current ellipse orientation and stability 50m above the bottom at mooring 

636. The dashed line on the upper plot represents the 95% significance level for zero 

true coherence between clockwise and anticlockwise velocities. The 95% confidence 
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Figure 6.9: Current ellipse orientation and stability 100m above the bottom at moor

ing 636. The dashed line on the upper plot represents the 95% significance level for 

zero true coherence between clockwise and anticlockwise velocities. The 95% confi
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Figure 6.10: Current ellipse orientation and stability 200m above the bottom at 

mooring 636. The dashed line on the upper plot represents the 95% significance 

level for zero true coherence between clockwise and anticlockwise velocities. The 95% 

confidence intervals for ellipse orientation are shown on the lower plot (v = 30). 
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6.4 Power spectral analysis at mooring 637 

Mooring 637 was deployed 40 km to the east of mooring 636, near the top of an 

abyssal hill, at a depth of 4304m (see figure 6.1). Figures 6.11, 6.12 and 6.13 show 

the kinetic energy spectra, temperature spectra and ratio P++/P— 50m, 100m and 

200m above the bottom at mooring 637. Data from the current meter 10m above the 

bottom were judged to be of lesser quality by NODC (National Oceanographic Data 

Center), and so were not sent to me. Comparing those figures with the corresponding 

ones from mooring 636, we notice major differences, but also some similarities. 

A first obvious difference in the kinetic energy spectra is that an inertial peak 

( / = 5.87 x 10~3cph) is present at mooring 637, whereas it could not be discerned 

at mooring 636 (figure 6.4). It is possible that the inertial peak at mooring 636 

was simply overshadowed by the broadband energy enhancement centered at w = 

0.0117cph ~ 2 / . 

A second difference is that while mooring 637 shows some near-bottom kinetic 

energy enhancement at w = 0.0117cph, the energy levels are not nearly as elevated 

as at mooring 636; comparing the 50m records from each mooring, we find that the 

spectral level at mooring 637 is about 5 times lower than at mooring 636. The range 

of frequencies over which we observe near-bottom kinetic energy enhancement is also 

narrower at mooring 637. 

Now turning our attention to figure 6.12, we find that the 50m and 100m records 

both show increased temperature variance at w = 0.0117cph. The peak at 100m is 

narrow, whereas the peak at 50m is broad, extending from 0.0117c?/i to 0.0156cp/i. 

200m above the bottom, a peak at w — 0.0117cph is also present, but its relative size 

compared to neighbouring peaks is much smaller. 

Finally, looking at figure 6.13, we find that the ratio P++/P is close to the 

internal wave line for a; > 0.0117cph at all heights above the bottom, in sharp contrast 

with figure 6.6. Yet we should note that there is some similarity between P++/P 

200m above the bottom at mooring 636, and P++/P 50m above the bottom at 

mooring 637, both of which were approximately at the same depth. 
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Figure 6.11: Kinetic energy spectra 50m ( o ), 100m (—) and 200m ( ) above the 

bottom at mooring 637 (u = 30). 
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6.5 Cross-spectral analysis 

6.5.1 In the horizontal: mooring 636 versus mooring 637 

Since moorings 636 and 637 both display near-bottom energy enhancement at w = 

0.0117cp/i, it seems worthwhile to find out whether motions at the two moorings are 

correlated at that frequency. 

Figure 6.14 shows cross-spectra between the current meter 200m above the bottom 

at mooring 636, and the current meter 50m above the bottom at mooring 637 (4256m 

and 4254m deep respectively), for the clockwise velocity and temperature signals. 

The cross-spectrum for anticlockwise velocity is not shown due to a lack of coherence, 

and also because P++/P < 1 at w « O.QU7cph for those two current meters. 

For the clockwise velocity signals, there is a strong coherence peak at the semidi

urnal tide (not shown on figure 6.14), a few weak peaks near the diurnal tide, and an

other peak spreading across four adjacent frequency bins from 0.0117cph to 0.0146cph. 

The latter coherence peak coincides perfectly with the range of frequencies with the 

most kinetic energy within the internal waveband 50m above the bottom at mooring 

637 (figure 6.11). The clockwise velocity signals are not significantly out of phase in 

that frequency band (0.0117cph-0.0146cpb). 

For the temperature signals, the strongest correlation peak occurs at low fre

quencies, due to the strong two-month flow oscillations (figure 6.2), but significant 

correlation peaks are also found at the diurnal frequency, and at 0.0137-0.0146cph, 

where the temperature signals are not significantly out of phase. Note that 50m above 

the bottom at mooring 637, the maximum temperature variance within the internal 

waveband occurred at 0.0146cph (figure 6.12). 

6.5.2 In the vertical: mooring 636 

I also computed cross-spectra between like components of the motion at various 

heights above the bottom at mooring 636. This was done for clockwise velocity, 

anticlockwise velocity, East velocity, North velocity, and temperature, between all 

possible pairs of current meters (200m-100m, 200m-50m, 200m-10m, 100m-50m, 
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Figure 6.14: Cross-spectra between the current meter 200m above the bottom at 

mooring 636, and the current meter 50m above the bottom at mooring 637, both of 

which were at the same depth. The cross-spectrum for clockwise velocity is shown on 

the left, and that for temperature is shown on the right. A positive phase means that 

the signal at mooring 637 leads the signal at mooring 636. The dashed line represents 

the 95% significance level for zero true coherence on the upper plots, and the 95% 

confidence intervals for phase are shown on the lower plots (u = 30). 
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lOOm-lOm and 50m-10m). 

Figure 6.15 shows some of the results obtained for the temperature signals. The 

results obtained for the velocity signals, especially for the North velocity component 

which dominates the records, are similar and so are not described. 

We can see on figure 6.15 that for the 50m-10m pair of current meters, the tem

perature signals are highly correlated between 0.004cph and 0.025cph, where they are 

not significantly out of phase. For the lOOm-lOm pair of instruments, the signals are 

correlated between 0.006cph and 0.022cph, where they are not significantly out of 

phase for the most part. However, there is a suggestion that the temperature record 

at 100m may lead that at 10m by pa 20° (the phase difference is significantly different 

from zero for 5 out of 17 frequency bins between 0.006cph and 0.022cph, suggesting 

more than pure randomness). For the other pairs of current meters, the temperature 

signals are also correlated over a broad range of frequencies centered at w pa 0.012cph, 

and the phase lead or lag is generally not significantly different from zero. 

6.6 Complex demodulat ion at u) — 0.0ll7cph. 

One of the goals of this chapter was to investigate whether the energy enhancement 

near a; = 0.0117cph at mooring 636 could be due to something other than internal 

wave reflection off a sloping bottom. With that in mind, I now examine the possi

bility that the energetic motions with 3-4 day periods might be generated by lower 

frequency motions, such as the pulses of AABW into the Northwest Atlantic with 

roughly 60-day periods (figure 6.2). 

After multiplying the original time series by exp(—iwt), where w — 0.0117cph, I 

low-passed the resulting time series with the same filter as in section 6.1, i.e. with a 

triangular window whose transfer function has its first zero at a period of 7.1 days 

(the pass band is 0.0117 ± 0.0059cph). 

The East and North components of the demodulated currents are plotted on figure 

6.16, where we see that the north velocity component at 10m and 50m is dominated 

by two large bursts of energy, near days 380 and 620. Comparing figure 6.16 with 

figure 6.2, we see that those bursts are not related in any obvious way to fluctuations 
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of the low-frequency flow. 

To be more quantitative about this, I computed cross-spectra between the complex 

demodulated currents shown on figure 6.16, and the low-frequency currents shown on 

figure 6.2. For the energetic north velocity component, no significant correlations were 

obtained at 10m above the bottom. A few marginally significant correlation peaks 

were obtained at other heights above the bottom, but they all occured at different 

frequencies, suggesting they may be purely random. Hence there seems to be no 

clear relationship between the low-frequency currents and the currents demodulated 

at w = 0.0117cph. The same conclusion holds for the temperature signals as well. 

6.7 Discussion 

Eriksen (1982) pointed out that while the energetic motions with w pa 0.012cph at 

mooring 636 could be due to critical internal wave reflection, they violate one of 

the basic criteria listed in section 5.3.2, namely that the major axis of the current 

ellipses should be oriented normal to the isobaths. This is not a trivial discrepancy, as 

the mechanism leading to energy enhancement near the critical frequency involves a 

'squeezing' of the reflected wavebeam (relative to the width of the incident wavebeam) 

in the vertical plane normal to the isobaths (figure 2.2). It is hard to envisage how 

internal wave reflection could lead to enhanced motions in a vertical plane roughly 

parallel to the isobaths, as seems to be the case here. 

Another puzzling feature of the motions with w fa 0.012cph at mooring 636 is 

that they do not satisfy the consistency relation (2.18) for freely-propagating internal 

waves (figure 6.6). At 10m and 50m above the bottom, those motions are essentially 

rectilinear, apparently more consistent with the prediction of Rhines (1970) for in

ternal edge waves (2.95). Agreement with Rhines' theory is only partial however, 

since the orientation of those quasi-rectilinear motions does not vary with frequency 

according to (2.97), as can be seen on figures 6.7, 6.8 and 6.9. 
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6.7.1 Horizontal and vertical cross-spectra 

Results obtained from the horizontal and vertical cross-spectra do not seem to support 

the critical internal wave reflection hypothesis either. Figure 6.14 shows that for 

w pa 0.012cph, the motions at mooring 636 are coherent with those at mooring 637, 

some 40 km away. Significant coherences within the internal waveband over horizontal 

distances of the order of a few tens of kilometers are rare but not unheard of in the 

deep ocean. For example, Fu (1981) obtained significant coherences over horizontal 

separations up to 70 km at mid-latitudes for the inertial frequency. 

For the mid-latitude internal wave model proposed by Garrett and Munk (1972), 

the horizontal distance at which the coherence drops to 0.5 is given by 

58m • Zcph . 
AX°-5 = ( „ i - / » ) ! / * ' (6'6) 

where w and / are expressed in cph. For a; = 1.17 x 10~2cph and / = 5.87 x 10~3cph, 

this yields AJf0.5 = 17fem, so that the coherence should be less than 0.5 (or the 

squared coherence should be less than 0.25) at a separation of 40 km. Rearranging 

terms in the above formula, we could alternatively evaluate w0,s for AX = AQkm, 

obtaining w0.s = 7.3 X 10~3cph — 1.24/. 

A direct comparison of this prediction with figure 6.14 is not warranted, as the 

latter does not show a 'monotonic' decrease of coherence with frequency in the internal 

waveband, but we find that the squared coherence on figure 6.14 is larger than 0.25 

at w pa 0.012cph. 

Such a high coherence over a distance of AQkm is rather surprising, because Wun

sch and Webb (1979) and Eriksen (1980) showed that at low latitudes, currents are 

generally coherent over smaller spatial scales than at mid-latitudes, not the oppo

site. The observed coherence becomes doubly puzzling when we consider the fact 

that based on the critical internal wave reflection hypothesis, the observed field of 

motions, if dominated by the reflected wavefield, should be unusually rich in motions 

with small horizontal and vertical scales (figures 2.2 and 2.4). 

The horizontal and vertical scales of motion should be reduced by the same factor 

upon reflection, because conservation of frequency implies that tan# r = tan#,-, which 
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in turn implies that mr/mi = « r /« i , where m and K are the vertical and horizontal 

components of the wavenumber vector respectively. 

Just as figure 6.14 suggests large horizontal scales of motion, figure 6.15 suggests 

that the dominant vertical scales of motion at mooring 636 are large too. For all pairs 

of instruments in the vertical, the phase leads or lags are generally not significantly 

different from zero in the frequency band of interest (w pa O.Q12cph). This is true 

for all the signals analysed: clockwise velocity, anticlockwise velocity, East velocity, 

North velocity and temperature. 

6.7.2 Harmonic generation of the peak at w « 2/? 

The largest spectral enhancement at mooring 636 occurs at about twice the inertial 

frequency (a; pa 2 / ± 0 . 1 7 / for the spectral resolution used in figure 6.4). Is this purely 

coincidental? Could spectral enhancement at w pa 2 / result from non-linear effects 

involving the inertial frequency / ? 

For the case of the M2 tide, non-linear effects generally give rise to an M.\ peak 

which is smaller than the 'parent' M2 peak (figure 5.15 is really an exceptional case). 

Therefore, if the example of the tide is at all relevant, it becomes hard to explain how 

a large energy peak at w ~ 2 / might result from non-hnear effects at mooring 636, 

given the absence of an inertial peak at that location. 

6.7.3 Alternative explanation for P++/P— fa 1 near the bot

tom at mooring 636. 

Could the 3-4 day motions be internal waves, and yet not satisfy (2.18)? Looking at 

figure 6.1, we see that the seamount or ridge on which mooring 636 lies is not isolated; 

it effectively lies within a 'valley' whose width is only of the order of a few tens of 

kms. 

Now Gill (1982, p.248) suggests that for internal waves, rotation effects become 

important only when the horizontal scale of motion exceeds the vertical scale by a 

factor of N/f. For the case at hand, it seems reasonable to assume that the horizontal 

scale of motion L cannot exceed the width of the valley, and so I let Z/^32km, 35km, 



158 

40km and 90km at 10m, 50m, 100m and 200m above the bottom respectively. 

For the vertical scale of motion H, I pick H> 1500m. This choice is consistent with 

estimates of the dominant vertical scale of motion, based on the phase lags shown 

on figure 6.15 for the lOOm-lOm pair of current meters. For those values of L and 

H, I get L/H<21, 23, 27 and 60 at 10m, 50m, 100m and 200m above the bottom 

respectively, compared with N/f pa 150 using the values of N found in table 6.2. 

Those values of L/H are only approximate, but they qualitatively support the 

claim that internal wave current ellipses could be very flat, with P++/P « 1 near 

the bottom at mooring 636. As for the preferred orientation of the ellipses, nearly 

due North and aligned with the low-frequency flow oscillations, it could also be due 

to the narrowness of the valley, a few tens of kma wide compared to a few hundreds 

of kma for the internal Rossby radius of deformation NH/ f at that latitude; the 

major axis of the current ellipses could then be parallel to the longitudinal axis of the 

valley (e.g. Artale and Gasparini, 1990). Due to its poor resolution, the most detailed 

bathymetric map for the area (Moody et al., 1979) does not allow us to determine 

the orientation of that hypothetical valley, but figures 6.7 and 6.8 would suggest a 

roughly North-South orientation. 



Chapter 7 

Conclusions and Discussion 

In the first part of this chapter, I give a summary of the material presented in previous 

chapters, reemphasizing only the most crucial p Dints. This is followed by a discussion 

based on the principal conclusions of the thesis. 

7.1 Summary of the thesis 

In chapter 1,1 put the problem of internal wave reflection off sloping bottoms into its 

oceanographic context, mentioning the claim by Eriksen (1985) that it could be the 

dominant cause of diapycnal mixing in the deep ocean. Following Garrett and Gilbert 

(1988), I also discussed the energetic requirements of an effective diapycnal mixing for 

the ocean that would arise solely from vigorous mixing at ocean boundaries, followed 

by advection and stirring into a quiescent ocean interior. 

In chapter 2,1 reviewed some of the basic concepts of linear internal wave theory, 

and derived the laws of specular internal wave reflection off sloping topography. Those 

laws predict that upon reflection, the wavenumber of the incident waves should be 

amplified over a wide range of frequencies and incident azimuthal angles (figure 2.4). 

At the critical frequency wc, for which the slope of internal wave rays matches the 

bottom slope, there is a singularity in the wavenumber amplification. According to 

linear, inviscid, specular reflection theory, this should lead to large enhancements in 

energy density and vertical shear near wc. 
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In chapter 3, the consequences for ocean mixing of such increases in vertical shear 

and energy density were examined, based on the model of Garrett and Gilbert (1988). 

Their estimates of the rate of energy dissipation Fda, due to shear instability of the 

reflected waves, are generally less than lmW • m~2 for realistic values of the bottom 

slope t a n a and the ratio f/N o? the inertial to the buoyancy frequency (figure 3.2). 

This is more than one order of magnitude lower than Eriksen's (1985) estimates of 

the redistributed energy flux (10-30 mW m~2), and does not seem large enough to 

sustain a vertical eddy diffusivity of 10~4m2B_1 in the ocean interior. 

In the rest of chapter 3, I dealt with the energy spectrum that is left after elim

ination of the waves that are assumed to undergo shear instability, and break upon 

reflection. I referred to this spectrum as the residual energy spectrum, and derived a 

simple analytical formula for its total energy content, using the same approximations 

as Garrett and Gilbert (1988) in their derivation of the reflected shear spectrum. 

As a complement to the work of Garrett and Gilbert (1988), I calculated the rate 

of energy dissipation Fdr that could be associated with bottom drag caused by the 

residual currents. I found that Fay is always less than 0.7mW • m~2 for N = 1 0 - 3 a - 1 

(figure 3.10). As we would expect the mixing efficiency V to be much smaller than 

0.25 for energy dissipation within the benthic boundary layer, those estimates of Fdr 

probably cannot sustain an effective vertical diffusivity of 10~4m2a~1 in the ocean 

interior either (1.2). Finally, the distribution of the residual energy in frequency, 

modenumber and azimuthal space was shown to be quite different from that of the 

canonical GM79 spectrum (figures 3.6, 3.7 and 3.9). Further energy dissipation may 

result from the relaxation of the residual spectrum back to a more typical form^ but 

this was not quantified. 

In chapter 4, I drew attention to how little is known about the interaction of 

internal waves wnh irregular topography. IdeaHsed topographic shapes were consid

ered in an attempt to understand some aspects of the scattering problem, neglecting 

topographic variations in the alongslope direction in all cases. Among other things, 

I pointed out that the approach taken by Rubenstein (1988) to investigate the scat

tering of near-inertial waves off irregular topography, using a Fourier representation 

of abyssal hill topography together with Baines' (1971a) linear solution for sinusoidal 
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topography, is inappropriate. I also pointed out that the solutions of Baines (1971b, 

1974) lead to the conclusion that the kinetic energy density at the critical frequency 

should be less above concave than above convex topography. And last but not least, 

I pointed out, using specular reflection theory as a first approximation, that rapid 

variations of the internal wavefield can be expected above a non-uniformly sloping 

bottom (figures 4.5 and 4.6). The energy redistribution inferred by Eriksen (1982, 

1985), from observations made at different heights above the bottom at a few mooring 

sites, could therefore be largely due to geometric effects. 

In chapter 5 ,1 used historical current meter data from the Scotian Rise and Slope 

in order to look for evidence of critical internal wave reflection. To that end, a set 

of criteria was proposed and discussed in section 5.3.2, and then applied to the data. 

I found some evidence of energy enhancement at wc Pa f in a few cases (see table 

5.4). At moorings S3 and S7 (see figure 5.1), where wc pa M2,1 found that current 

ellipses tended to be oriented normal to the isobaths throughout most of the internal 

waveband (e.g. figure 5.11). I suggested that those observations could be due to 

internal wave reflection, but could also be attributed to internal tide generation or 

reflection, followed by a non-linear energy cascade to higher frequencies. The latter 

possibility was examined in light of the theory of Thorpe (1987b). 

In chapter 6, I reexamined data from mooring 636 of the Western Boundary Sill 

Experiment to verify whether the energetic 3-4 day motions seen at that mooring 

are due to critical internal wave reflection, as postulated by Eriksen (1982). I found 

as he did that the motions are parallel to the inferred orientation of the isobaths, 

not normal to them, thus violating one of the predictions of specular internal wave 

reflection theory (figure 2.5). 

Moreover, I found that the 3-4 day motions are coherent over a horizontal scale 

of at least 40km. Such a large coherence scale appears to be inconsistent with the 

transfer of energy to smaller scales that should occur due to internal wave reflection. 

The 3-4 day motions are also coherent over at least 200m in the vertical at mooring 

636, and the measured phase leads or lags are generally not significantly different 

from zero, implying large vertical scales of motion. 

I also found that the ratio of anticlockwise to clockwise kinetic energy P++/P for 
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the 3-4 day motions 10m and 50m above the bottom at mooring 636 does not satisfy 

(2.18), predicted for linear internal wave theory, but is more consistent with (2.95) 

instead, predicted for Rhines' (1970) internal edge waves (see figure 6.6). However, 

agreement with the theory of Rhines is rather limited, as the current ellipses do not 

turn with frequency according to (2.97) (see figures 6.7, 6.8 and 6.9). 

Since mooring 636 lies within a 'valley' whose width is small compared to the 

internal Rossby radius of deformation, it seems possible that the preferred orientation 

of the motions in the North-South direction at 10m, 50m and 100m above the bottom 

is in fact parallel to the longitudinal axis of that valley. 

Principal Conclusions 

1. The process of internal wave reflection off sloping topograpby probably leads 

to rates of energy dissipation near the boundary that are much smaller than 

claimed by Eriksen (1985). As they stand, the estimates of Fda and Fdr given 

in chapter 3 do not seem large enough to sustain an effective vertical eddy 

diffusivity of 10_4m2s-1 in the ocean interior, but are within the right order of 

magnitude. Further energy dissipation might result from the relaxation of the 

residual spectrum back to a more typical form. 

2. Locally concave topography should tend to inhibit energy enhancement at the 

critical frequency wc, due to destructive interference of the reflected waves near 

the critical point. 

3. Rapid variations of internal wave spectra with height above the bottom can be 

expected for purely geometric reasons above non-uniformly sloping topography, 

and need not result solely from non-linear and viscous processes. 

4. Current meter data from the Scotian Rise and Slope show signs of critical in

ternal wave reflection at a few mooring sites. However, due to the fact that 

wc Pa f or M2 at the majority of the moorings, it is difficult to offer a com

pletely unambiguous interpretation of the data in favor of the critical reflection 

hypothesis. 
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5. The pronounced near-bottom enhancement of 3-4 day motions observed by 

Eriksen (1982) at WBSE mooring 636 does not peem to be consistent with 

internal wave reflection theory. It is not consistent with Rhines' internal edge 

waves either. The narrow width of the 'valley' within which mooring 636 was 

deployed seems to affect the nature of the observed motions, whether trapped 

or propagating. 

7.2 Discussion and suggestions for future work 

Although the estimates of the rates of energy dissipation Fd, and Fdr given in chapter 

3 are apparently too low to satisfy TFd Pa 0.3mW m~2, required by the boundary 

mixing hypothesis, they are within the right order of magnitude. In fact it is possible 

that when the rate of energy dissipation due to internal wave reflection off sloping 

bottoms is added to the rates of energy dissipation due to other mechanisms, such 

as the generation of the internal tide by the surface tide (e.g. Munk, 1966, Bell, 

1975a), or the bottom drag associated with the mean currents (Armi, 1978), the 

total energy dissipation rate Fd from all of those processes may be large enough that 

TFd pa O.ZmW m~2 would be satisfied. 

More theoretical and observational work is thus necessary before a definitive state

ment about the importance of internal wave reflection off sloping bottoms as a bound

ary mixing mechanism can be made. Some of the necessary studies are discussed 

below. 

Theoretical studies 

Figures 3.6, 3.7 and 3.9 show that the distribution of energy in the residual spec

trum of Garrett and Gilbert (1988) is very different from that of the canonical GM79 

model spectrum. Can the existing theories of non-linear interactions among internal 

waves help resolve the issue of how the residual spectrum might relax back to a more 

typical shape, and what would be the additional energy dissipation rate associated 

with J _*at relaxation? 
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The residual spectrum has much more energy than the GM79 model spectrum over 

a wide range of frequencies centered about wc (figure 3.6). The relaxation of a small 

spike on an otherwise smooth spectrum was studied by McComas (1977), under the 

assumption of weakly non-linear interactions, but in light of the criticism of Holloway 

(1980), it seems very unlikely that weakly non-linear theory could adequately describe 

the relaxation of the residual spectrum back to a more typical shape. 

The eikonal approach of Henyey et al. (1986) may seem more promising at first, 

as it does not assume the interactions are weak, but it involves an assumption of 

scale separation between the small amplitude 'test waves' and the dominant scales 

of motion. This assumption breaks down here, as figure 3.7 shows that the residual 

energy spectrum is white in modenumber space. 

It is also worth mentioning that while the weakly non-linear theory has had some 

success explaining the observed vertical symmetry of the internal wavefield at fre

quencies well above the inertial frequency (Miiller et al., 1986), no attempt has yet 

been made to explain how an anisotropic internal wavefield, such as the one shown 

on figure 3.9, may relax to horizontal isotropy. Hence for all of the above reasons, it 

seems fair to say that in their present state, the existing theories of non-linear energy 

transfer among internal waves would not allow us to deal properly with the problem 

of the relaxation of the residual spectrum. 

In chapter 4, it was argued that energy enhancement at the critical frequency wc 

is less likely to be observed above concave than above convex topography. This is 

a useful prediction, in that it represents a first attempt at determining which type 

of conditions may or may not favor energy enhancement (and dissipation) due to 

the critical reflection of internal waves. Could other factors affect the likehhood of 

observing energy enhancement at the critical frequency? 

I would like to suggest that when N sin a <C / at a given mooring site, so that 

wc ~ / (2.29), the orientation of the isobaths could be one such factor. The linear 

reflection laws of Eriksen (1982), derived in chapter 2 and valid on an /-plane, predict 

that maximum wavenumber amplification upon reflection should occur for onslope 

incident energy propagation (i.e. fa = 0, see figure 2.4). 

However, on a /?-plane, near-inertial motions are very unlikely to have fa = 0 when 
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the onslope direction is poleward, due to the turning latitude effect (Kroll, 1975). This 

may help explain the overall absence of large energy enhancement at wc ~ / on the 

Scotian Rise, where isobaths are oriented roughly East-West, so that near-inertial 

motions are more likely to have fa pa ±z/2. A more quantitative investigation of this 

phenomenon could probably be carried out using the wave functions of Munk and 

Phillips (1968). 

Further theoretical work on the interaction of internal waves with irregular topog

raphy is needed. Alongslope variations of the bathymetry were neglected in chapter 4 

for waves incident on a non-uniformly sloping bottom, and were also neglected in the 

analytical and numerical models of internal tide generation described in chapter 2. 

This assumption made the problem two-dimensional in both cases, allowing the use 

of a streamfunction which greatly simplified the mathematics. However, empirical 

evidence suggests that the neglect of alongslope variations of the bathymetry may 

not be justified in many situations, at least for the internal tide generation problem. 

For instance, using remote sensing techniques, New (1988) found that near the 

shelf break in the Bay of Biscay area, the main internal wave packets generated by 

the tide seem to be radiating from topographic ridges between canyons. Sandstrom 

et al.(1989) also report large internal tides, as well as packets of large amplitude, high 

frequency internal waves, near a prominent submarine canyon at the edge of the Sco

tian Shelf. Moreover, Huthnance and Baines (1982) found that the baroclinic tidal 

currents off Northwest Africa are much stronger than the estimate for internal tides 

generated by the onshore component of the barotropic tidal current alone. They 

suggest that the strong baroclinic currents could be caused by the longshore com

ponent of the barotropic current interacting with 'unknown' longshore topographic 

irregularities in the shelf and slope. 

For the internal tide generation problem, the inclusion of three-dimensional effects 

will likely require the introduction of more sophisticated numerical models. However, 

for the internal wave reflection/scattering problem, specular reflection theory could 

probably be used as a first approximation to investigate how internal wave spectra 

vary with height above a non-uniformly sloping bottom, proceeding in a manner 

analogous to section 4.6, where the radius of curvature of the topography was assumed 
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much larger than the incident wavelength. 

The ideaHsed problem of a horizontally isotropic internal wavefield, incident on 

a half-sphere which lies on an otherwise flat bottom, could provide us with useful 

insight about the manner in which the internal wavefield varies with height above 

a large, isolated seamount, for example. It is necessary that we account for such 

geometric effects before inferences about the role of non-linear and viscous effects in 

the rapid spectral changes that occur above sloping bottoms can be made. 

When the radius of curvature of the topography is comparable to the incident 

wavelength, specular reflection theory is still fairly accurate, but as the radius of 

curvature becomes smaller than the incident wavelength, correction terms to specular 

reflection theory become increasingly important (Sandstrom, 1972). For internal wave 

reflection/scattering off rough topography, a question which then arises is: what 

is the effective bottom slope that is felt by a given incident wavetrain? A rough 

measure of the steepness of random abyssal hills can be obtained from the empirical 

topographic spectrum of Bell (1975b, p. 884), which suggests an r.m.s. bottom 

slope of 0.03, 0.07, and 0.16 when integrated up to topographic wavenumbers 0.1 

cycle km'1, 0.5 cycle km~l and 2.5 cycle fern-1 respectively. The effective bottom 

slope felt by a spectrum of incident internal waves should then be a function of the 

incident wavenumber, with the short waves presumably 'seeing' a steeper bottom than 

the long waves. Currently available theories of internal wave scattering off irregular 

topography do not allow us to quantify that statement however. 

To better explain some of the observations made at moorings 636 and 637 of the 

Western Boundary Sill Experiment, an extension of the existing theories of trench 

waves and/or channel waves would also seem worthwhile. Brink (1983) has shown 

that for baroclinic trench waves, the alongslope velocity is a maximum at the deepest 

part of the trench, and then decays with height above that trough, qualitatively 

consistent with the observations. Figure lb of Brink (1983) shows that the decay is 

rapid when the width of the trench is a few times smaller than the internal Rossby 

radius of deformation, as is the case at mooring 636. 

Interpreting the data at moorings 636 and 637 in terms of the theory of Brink 

(1983) is not justified however, because trench waves require a large depth contrast 
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between the flat shelf region and the flat-bottom deep ocean; the valley shown on 

figure 6.1 is only 200m-300m deep in a total fluid depth of about 4500m. Furthermore, 

whereas Rhines' (1970) bottom-trapped waves may exist above / , it is far from clear 

whether some of the results for baroclinic trench waves, derived for w <C / , would 

remain valid in the internal waveband. 

A careful investigation of the manner in which the consistency relations for internal 

waves may change as we approach a sloping bottom should also be done. To illustrate 

the need for this, let us consider the inviscid problem of a wave which reflects off a 

vertical wall with an oblique azimuthal angle of incidence. The onslope velocity 

component of the incident and reflected waves must cancel each other at the wall 

in order to satisfy the boundary condition of no normal flow, but the alongslope 

velocity component of the incident and reflected waves are phase-locked at the wall 

and add up constructively. Consequently, in the immediate vicinity of a vertical 

wall, motions should be rectilinear, and we should have P++/P = 1 instead of 

P++/P = [(w — f)/(w + f)]2. We need to verify whether this result would still hold 

above sloping topography, as it may explain the variation of P++/P with height 

above the bottom that was observed at mooring 636 for example (figure 6.6). 

Observational studies 

More observational studies are also needed if we wish to determine the importance 

of internal wave reflection off sloping bottoms as an agent of diapycnal mixing in the 

deep ocean. In fact the final verdict will have to come from the observations. 

As a first step, a very inexpensive way of studying internal wave reflection off 

sloping bottoms would be to analyse the existing data bases of currents and tempera

ture collected above sloping topography, and look for evidence of energy enhancement 

at the critical frequency wc, as was done in chapter 5. The analysis of data from a 

variety of locations may reveal whether factors such as boundary concavity, or the 

orientation of the isobaths, tend to favor or inhibit energy enhancement at the critical 

frequency. We should also gain a better knowledge of the cHmatology of the internal 

wavefield above sloping bottoms from that exercise. 

A 
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New experiments aimed specifically at studying the problem of internal wave re

flection off sloping bottoms should involve a dense sampling of the water column in 

the first 100m or so above the bottom. Armi and D'Asaro (1980) have investigated 

the structure of the boundary layer over flat topography, on the Hatteras abyssal 

plain, with current meters at 15m, 25m, 35m, 45m, 55m, 65m and 85m above the 

bottom at one of their moorings, but such detailed current measurements have not 

been performed above sloping topography yet. 

Locations where wc pa f or M2 may yield results that are harder to interpret 

in terms of the critical internal wave reflection hypothesis. However, they should 

not be avoided, as inertial and tidal motions are usually the most energetic signals 

within the internal waveband, and hence are the most likely to lead to large values 

of the rate of energy dissipation. Some of the ambiguity in the results obtained from 

moorings where wcpa f could easily be removed by taking into account the slantwise 

propagation of inertial wave packets. The comparison of spectral peaks at wc in an 

oblique direction would then replace criteria lb and lc of section 5.3.2. 

A better evaluation of the role of boundary mixing in the deep ocean, whether 

caused by internal wave reflection and/or other mechanisms, will also require mea

surements of the rates of dissipation of kinetic energy and temperature variance in 

the boundary layer. At present, direct estimates of mixing with microstructure mea

surements are not easy to make in the abyssal ocean due to the weakness of the 

temperature and velocity gradients, but Thorpe (1987a) was able to obtain indirect 

estimates of mixing, using the empirical relationship of Dillon (1982) between the 

scale of overturns and the Ozmidov scale. 

Efforts to monitor the exchange of water properties between the ocean interior 

and the fluid within the boundary layer should also be made if we wish to elucidate 

the role of boundary mixing in the ocean. Naturally occuring or deHberately injected 

tracers might be useful in that respect. 



Appendix A 

Data analysis techniques 

A. l Est imat ion of the auto and cross-spectra, and 

number of equivalent degrees of freedom. 

The Welch method of auto and cross-spectral estimation was always used in this 

thesis. For the computation of the autospectra, a time series x(t) of length T is first 

subdivided into several shorter sections of length M, each of which is Fast Fourier 

Transformed, and an average autospectrum 

(r(W)) = (X(w)X*(w)) (A.l) 

is then calculated from the individual autospectra, where * denotes a complex conju

gate, and the angled brackets denote the averaging process. Similarly, two time series 

xi(t) and x2(t) can be subdivided into several shorter sections of length M, each of 

which is Fast Fourier Transformed, and an average cross-spectrum 

is then calculated from the individual cross-spectra, where (Ki2(w)) is the estimated 

coherence spectrum, and (fa2(w)) is the estimated phase spectrum. The Ilanning 

window, given by 
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I 

w(t) = 0.5 - 0.5 COS(2TT*/M), 0 < t < M (A.3) 

was used in all cases, and successive windows were routinely overlapped by 50% to 

increase the number of equivalent degrees of freedom. The properties of the Banning 

window were studied in detail by Nuttall (1971), who calls it the 'cosine data window'. 

Table 6 of his paper indicates that for 50% fractional overlap between successive data 

pieces, we obtain 92% of the maximum number of equivalent degrees of freedom. 

Combining this information with the formula appearing at the bottom of table 4B of 

his paper, together with equation (33) and table 1 of his paper, we get the approximate 

formula 

, T\ 
v pa 3.82 ' ' ( s ) - 2 . 2 4 (A.4) 

for the number of equivalent degrees of freedom obtained with 50% fractional overlap 

of successive windows. Table 4B of Nuttall (1971) suggests this formula may slightly 

underestimate the number of degrees of freedom, but never by more than about 0.25 

for v < 100, which covers most practical cases. 

A.2 Estimation of the 95% confidence intervals 

and significance levels. 

I have used figure 3.10 of Jenkins and Watts (1968) in order to obtain lower and 

upper bounds for the autospectral estimates such that 

Pr \ Lower bound < . ,{. < Upper bound 1 = 0.95, (A.5) 

where T(w) is the true autospectrum of the parent time series, and (T(w)) is the 

estimated autospectrum. The ratio T(w)/(T(w)) should lie within those bounds 19 

times out of 20, but could lie outside of them by pure luck 1 time out of 20. 

The 95% significance level for zero true coherence between two time series x^(t) 

and x2(t) is given to a very good approximation by (Thompson, 1979) 



171 

i.e. for zero true coherence, the estimated squared coherence (K2
2(w)) should be 

less than (K2
2)os5 19 times out of 20. For the phase spectrum, the 95% confidence 

intervals are given by (Jenkins and Watts, 1968, p. 435) 

fa2(w) = (fa2(w)) ± sin - l 
2 / v -W"™ (A.7) 

^ _ 2 — - - ' (K2
2(w)) 

where fa2(w) is the true phase spectrum, (fa2(w)) is the estimated phase spectrum, 

(K2
2(w)) is the estimated squared coherence spectrum, and /2,i,-2(0.95) is related to 

Fisher's F distribution (see figure 3.12 of Jenkins and Watts (1968)). 

It turns out that the expression within square brackets in (A.7) is equal to one 

when (K2
2(w)) = (-̂ 42)0.95- Hence a simple formula for /2,^_2(0.95) can be obtained 

from the value of (#12)0.95 given in (A.6): 

/2,„_2(0.95) = 
v-2 (K2

2)0, .95 (A.8) 
2 1 — (^2)0.95 

Note that (A.7) is such that it gives no confidence intervals for the phase when 

{&!*{»)) < (tfl2
2)0.95. 

A.3 Clockwise and anticlockwise velocity spectra 

Instead of using the cartesian East and North velocity components u and v, it is 

sometimes useful to work with the clockwise and anticlockwise velocity components 

u_ and u + , defined here as in Muller et al. (1978): 

u_ = (u — iv)/\2 (A.9) 

u+ = (u + iv)/V2. (A.10) 

The clockwise and anticlockwise autospectra P and P++ are respectively given by 
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P__ = 0.5(PUU + Pvv - 2QUV), (A.11) 

P+ + = 0.5(PUU + Pvv + 2QUV), (A.12) 

where Quv is the quadrature spectrum between u and v, and is such that Quv > 0 

when u leads v. From the above equations, it follows that 

P-+P++ = PUU + PVV, (A.13) 

so that the total kinetic energy is given by 

K.E. = ±(P^ + P++). (A.14) 

A.4 Current ellipse orientation and stability 

Following Gonella (1972, p.837), I now introduce the concepts of ellipse orientation 

and stability by defining (E(w)) as 

where U~(w) and U+(w) are the Fourier transforms of the clockwise and anticlockwise 

velocities, the angled brackets denote spectral averaging over adjacent data pieces, 

(d>(u)) is the estimated orientation spectrum, and (|JB(w)|) is what Gonella (1972) 

calls the coefficient of eUipse stability; it gives us a statistical measure of the stability 

of the estimated orientation (faw)). 

It is clear from the form of (A.15) that (|J5»(o;)|) is simply the estimated coherence 

spectrum between the clockwise and anticlockwise velocities, and 2{<f>(w)) is the esti

mated phase spectrum. Hence we can assign to those quantities the same confidence 

intervals we would assign any other type of coherence or phase spectrum. The 95% 

significance level for zero true ellipse stabflity is thus (cf A.6) 
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( |£M|2)o.95 = l - 0 . 0 5 2 ^ ~ 2 > , (A.16) 

and the 95% confidence intervals for current ellipse orientation are (cf A.7) 

^ ) = (^(a;))±iSin-1 * W 0 . 9 5 ) IzMm I (A,7) ^ _ 2 j 2 , , - 2 v — ; ( | j B ( w ) | 5 ) 

where <̂ >(u;) is the true orientation spectrum, and (< (̂w)) is the estimated orientation 

spectrum. The ellipse orientation can take any value within a total range of angles 

equal to 180° (e.g. 0°T-180°T). Other directions are simply redundant (300°T=:120oT 

for example). Note that when (|E(w)|2) < (|£I((A')|2)O.95, (A,17) gives no confidence 

intervals for the ellipse orientation. 

In terms of spectral quantities computed in a Cartesian frame of reference, the 

ellipse stability could alternatively be computed as 

/l rpf. ,M2\ _ A "" T "w j ~ A{rulirlw — Putl)\ /i 1 8 \ 
m")] ] - \—(KU + PVV)2-AQIV—/' ( i U 8 ) 

where Pu„ is the co-spectrum between u and v, and the ellipse orientation (<p(w)) 

could be computed as 

(faw))=0.H^ ( (y%->)- (A.19) 

Those equations yield the same results as (A.15), bat are awkward to use, and are 

certainly not as transparent as (A.l 5) in terms of their meaning. 



Appendix B 

Permission to use published work 

Part of chapter 3 is based on the paper of Garrett and Gilbert (1988). Permission 

to use this material for the purpor? of inclusion in my thesis has been obtained from 

Elsevier Science Publishers B.V., Physical Sciences Sz Engineering Division, P.O. Box 

330, 1000 AH Amsterdam, The Netherlands. 

A more substantial part of chapter 4 is based on the paper of Gilbert and Garrett 

(1989). Permission to use this material for the purpose of inclusion in my thesis has 

been obtained from the American Meteorological Society, 45 Beacon Street, Boston, 

Massachusetts 02108, U.S.A. 
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