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Abstract 

This thesis describes a complete theory of optimal control of piecewise deterministic 

Markov processes under weak assumptions. The theory consists of a description of the pro­

cesses, a nonsmooth stochastic maximum principle as a necessary optimality condition, a 

generalized BeUman-Hamilton-Jacobi necessary and sufficient optimality condition involv­

ing the Clarke generalized gradient, existence results and regularity properties of the value 

function. The impulse control problem is transformed to an equivalent optimal dynamic 

control problem. Cost functions are subject only to growth conditions. 

Piecewise deterministic Markov processes, termed PDPs for short, are continuous time 

homogeneous Markov processes consisting of a mixture of deterministic motion and random 

jumps. PDPs, with stochastic jump processes and deterministic dynamical systems as 

special cases, include virtually all of the stochastic models of applied probability except 

diffusions. Their impulse control extends their applicability to discrete event problems such 

as stochastic scheduling. The processes are controlled by an open loop control depending 

on the postjump state and the time elapsed since the last jump in the interior of the state 

space, a feedback control on the boundary of the state space and impulse controls on the 

entire state space. The expected value of a performance functional of integral type with 

additional boundary and impulse costs is to be minimized. 

The PDP optimal control problem is converted to an infinite horizon discrete-time 

stochastic optimal control problem and it is shown that the optimal strategy for control 

of a PDP is to choose after each jump a control function which is an optimal control in a 

corresponding deterministic control problem where the state of the system is required to 

stop at the boundary. This deterministic control problem is however non-standard in that 

the terminal time is not fixed but instead is either infinity or the first time the trajectory 

reaches the boundary of the state space. As preliminary results, we obtain a nonsmooth 

maximum principle as a necessary optimality condition and a necessary and sufficient opti­

mality condition in terms of a generalized Bellman-Hamilton-Jacobi equation involving the 

Clarke generalized gradient for the deterministic problem. The desired results then follow 

in a straight-forward manner. 
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Introduction 

Almost all the continuous-time stochastic process models of applied probability con­

sist of some combination of the following: 

(a) diffusion 

(b) deterministic motion 

(c) random jumps. 

If one wishes to study a stochastic process with continuous trajectories, there is 

a general model called a diffusion. For the study of diffusions, there are some stan­

dard techniques based on the theory of the Ito calculus and stochastic differential 

equations. For control of a diffusion, there are some highly developed optimality 

conditions such as those of the BeUman-Hamilton-Jacobi equation and Pontryagin's 

maximum principle. The situation is quite different, however, if one wishes to study 

non-diffusion models—i.e., those involving ingredients (b) and (c). Before the inven­

tion of the piecewise deterministic Markov process (abbreviated as PDP) there was no 

general model for non-diffusion processes. The available theory consisted largely of a 

heterogeneous collection of special models and methodologies appropriate to specific 

problems. Furthermore, some important problems, of which the capacity expansion 

model described in §1.5.1 is an instance, fell outside the scope of any available theory 

of control. 

The class of piecewise deterministic Markov processes (PDPs), first introduced by 

Davis (1984), provides a general family of siochastic models covering virtually all non-

diffusion applications. Such processes provide a framework for studying optimization 

1 

1 



2 

problems arising in queueing systems, inventory theory, resource allocation and other 

areas of the operations research. Stochastic calculus for these processes was developed, 

and a complete characterization of their extended generators was given by Davis 

(1984). 

The optimal control theory cf PDPs has recently been developed for optimal con­

trol by Vermes (1985), Soner (1986) and Davis (1986), optimal stopping by Lenhart 

& Liao (1985), Gugerli (1986), Costa & Davis (1988) and impulse control by Costa 

& Davis (1988), Gatarek (1988a,b) and Lenhart (1989). Using a modification of Vin-

ter and Lewis's convex duality approach, Vermes (1985) showed the existence of an 

optimal control and ga-"; a limiting form of the Bellman-Hamilton-Jacobi partial 

differential equation as a necessary and sufficient optimality condition. Soner (1986) 

investigated the optimal control of PDPs with state space constraint, i.e., the process 

whose trajectories have to stay within a given set and characterized tl 3 value func­

tion as the viscosity solution of the corresponding Bellman-Hamilton-Jacobi equation 

(BHJ equation). Davis (1986) converted the optimal control problem of PDPs to an 

infinite horizon discrete-time stochastic optimal control problem. Gugerli (1986) ob­

tained some optimality conditions for the value function of the optimal stopping of 

PDPs by iteration methods. Lenhart & Liao (1985) characterized the value function 

of the optimal stopping problem of PDPs as the unique solution to the variational 

inequality with an integro-differential operator. Lenhart (1989) obtained some exis­

tence and uniqueness results for viscosity solutions of the quasi-variational inequali­

ties associated with the optimal impulse control problem of PDPs. Gatarek (1988) 

obtained similar results to Lenhart and Liao (1985) by using a different approach. 

Gatarek's technique is to approximate value functions for an optimal stopping (im­

pulse control) problem for a PDP by value functions for Feller piecewise deterministic 

processes. Costa and Davis (1988) presented a numerical technique for solving the 

optimal stopping problem of PDPs by discretization of the state space. Applying 

these results to the impulse control problem, they developed a numerical technique 

for computing optimal impulse controls for PDPs (1988). Using the framework of 
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PDPs, some specif- problems have been solved by Davis et al. (1987) and Dempster 

and Solel (1987). 

Related to PDPs are so-called Markov u* A itM '".rift processes (MDDP) intro­

duced by van der Duyn Schouten in his 1979 tresis (now available as an Amsterdam 

Mathematical Centre Tract, van der Duyn Schouten, 1983). The i. ethods of analysis 

are, however, completely different, being based on time discretization and weak con­

vergence. A slightly generalized MDDP is given by Yushkevich (1983). Yushkevich 

also studied th°. problem involving interventions (impulse controls). 

In this thesis, we study the control problem of PDPs with full control (i.e. dy­

namic control plus impulse control). Under fairly general assumptions, we obtain the 

following main results: 

(1) existence of an optimal control 

(2) Lipschitz continuity of the value function 

(3) necessary and sufficient optimality conditions in terms of a generalized BHJ 

equation involving Clarke generalized gradients 

(4) a nonsmooth Pontryagin maximum principle. 

We conclude this introduction with a brief indication of some of the major points 

in the six chapters that follow. 

In Chapter 1, we introduce the concept of PDPs, the infinitesmal generator of a 

PDP, the cortrol of PDPs and give some examples. We also introduce the definition 

and properties of the Clarke generalized gradient. For future reference, we state a 

nonsmooth maximum principle for a standard optimal control problem and give some 

results on differential inclusions. 

In Chapter 2, we study a deterministic control problem where the state of the 

system is required to stop at the boundary. We show that the value function is 

a Lipschitz continuous solution of the generalized BHJ equation with a boundary 

condition and obtain some necessary and sufficient optimality conditions in terms of 

? P * • I m 
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the generalized BHJ equation. Under a certain regularity assumption, the uniqueness 

result for the nonsmooth solution of the BHJ equation with a boundary condition is 

also obtained. 

In Chapter 3, we show that the optimal strategy for control of PDPs is to choose 

after each jump a control function which is an optimal control in the correspond­

ing deterministic optimal control problem with a boundary condition formulated in 

Chapter 2. Then, by applying the results from Chapter 2, we prove that the value 

function for the PDP optimal control problem is a Lipschitz continuous solution of 

the generalized BHJ equation with the boundary condition and obtain necessary and 

sufficient conditions for optimality in terms of the generalized BHJ equation involving 

Clarke generalized gradients. 

In Chapter 4, we develop a nonsmooth maximum principle for the deterministic 

optimal control problem with a boundary condition formulated in Chapter 2. By 

reducing the control problem of a PDP to a family of corresponding deterministic 

i control problems with a boundary condition parametrized by initial states, as in 

Chapter 3, we derive a nonsmooth maximum principle for control of PDPs. 

In Chapter 3 and 4, we discuss only problems with dynamic control. In Chapter 5, 

we add impulse control. We transform the original process with dynamic control plus 

impulse control to a process with only dynamic control so that the optimal control 

theory developed in the previous chapters can be u-ed. 

In the previous chapters, we assumed that the cost functions are bounded. In 

Chapter 6, we extend the results to include the case where the cost functions are 

those subject only to bounded growth. 



Chapter 1 

Preliminaries 

1.1 Introduction 

This chapter basically contains the preliminaries and the preliminary results that will 

be useful in the development of the following chapters. 

1.2 Definition of a Piecewise Deterministic Pro­

cess 

We give first some terminology for ordinary differential equations which will be useful 

later. 

If / : Mn —> Mn is a Lipschitz continuous function (c/. Definition 1.7), then the 

equation £ = /(£) has a unique solution defined for all t 6 M, i.e., there is a unique 

function ( : M x Rn —• Rn such that for all z E Rn 

r):=* (u) 
SC(M) =/(«*,*))• 

If W : Mn —> M is an arbitrary sufficiently smooth (C1) function then 

±w((t) = v^(c«)/(C0 

5 
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Then (1.2) becomes 

••= E^KO/tfO, (i-2) 

where & = CC^J-2)- Let X denote the first-order differential operator 

XW(z) := VW{z)f(z) 

•= E^W(4 (1-3) 

±wM=xmu. (1.4) 
Co : = *, 

and this is equivalent to (1.1) in that ((t,z) is the unique function such that (1.4) 

is satisfied for all smooth W. Equation (1.4) is the "co-ordinate-free" form of the 

differential equation; X is a vector field and ((t,z) is the integral curve of A". It has 

the semigroup property 

((t + s,z) = ({t,({s,z)), s,teM+. 

Formulated in this way the differential equation can take values in some differential 

manifold or, in particular, in a Euclidean space JRn. 

Now we can give a formal definition of a piecewise deterministic Markov process. 

Its state space E° is defined as follows. Let if be a countable set and d : K —>• M(the 

natural numbers) be a given function. For each v 6 K, Mv is an open subset of 

JRdM(or M„ can be a d(v)-dimensional manifold). Then the state space is 

E° := |J Mv = {(u,() :ueK,(e Mv}. 
veK 

Let S denote the following class of measurable sets in E°. 

8 := { (J Av : Av 6 Mv}, 

where Mv denotes the Borel sets of M„. Then (E°, S) is a Borel space. The state of 

the process will be denoted x := {v, (). The probability law of {xt} is determined by 

the following objects, termed local characteristics: 



7 

(1) vector fields (Xv, v^K) 

(2) a jump rate which is a measurable function A : E° —• JR+ 

(3) a transition measure Q : S x (E° UI") —> [0,1] (T* is defined by (1.5) below.) 

The vector fields Xv are supposed to be such that for each z G Mv there is a unique 

integral curve <j>v(tyz) satisfying (1.4) with X — Xv and (t = <f>v{^)Z). Further, it 

is supposed that the Xv are conservative, i.e., the integral curves are defined for all 

t > 0 (no " explosions"). We denote by dMv the boundary of Mv and by d*Mv those 

boundary points which integral curves of Mv may reach, i.e. 

d*Mv := {( G dMv : (f>v(t,z) = C for some t > 0 and zE M„}. 

Now define 

dE := \JdMv 
veK 

V* := [Jd*Mv. (1.5) 
veK 

For x := (i/, z) G E° we denote by 

tt(x) := mi{t > 0 : &,(*,«) G d*Mv}, 

the first time a trajectory starting from x hits the boundary of the state space. By 

convention, inf 0 := oo, so that t*(x) = oo means that a trajectory starting from 

z G Mv never hits the boundary of Mu. 

Finally, we write XvW(x) instead of the more accurate XvW(u, •)(£) for the action 

of vector fields Xv on functions W : E° —> R at x = (u,() 6 E°. 

As regards the function A, we suppose that for each (u, z) G E° there exists e > 0 

such that the function s i—> A(i/, (j)v(s,z)) is integrable for s G [0, e]. The transition 

measure Q(A]x) is a measurable function of x for each fixed A G £, defined for 

JC G £° U r*, and is a probability measure on (E°, £) for each x G E°. 
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The motion of the process {xt} starting from x = (n, z) G E° can now be con­

structed in the following way. Define a survivor function F by 

pn) = I exp(~j0
 X(n> M3' Z^ds} t < **(x) (i 6) 

Realize a random variable Ti = Ti such that P[Ti > t] = F(t). Now realize, 

independently, an i2°-valued random variable (N, Z) = (N, Z) having distribution 

Q(-; (j)n(Ti, z)). The trajectory of {xt} for t < Ti is given by 

f {njn(t,z)) t<Tx 

\(N,Z) t = T1. 

Starting from x^ we now realize the next inter-jump time T2 — Ti = T2 — 7\ and 

post-jump location Xr2 = XT2 in a similar way, and so on. This gives a piecewise 

deterministic trajectory of {x t} with jump times Ti,T2, 

Under the stated local integrability condition on A, 

PfTi > 0] = 1 

P[T{ - T;_x > 0] = 1 for * = 2 ,3 , . . . . 

We will also make the following assumption: Let N t := E-fy>Tt} De ^ e n u m ^ e r 

of jumps in [0, t], where 

_ . . f 0 u>£A 

[ 1 u e A 

is the indicator function of the event A. Then 

ENt < 00 for all *. (1.7) 

In particular, (1.7) implies that 

P[Ti t o o . i t 00] = 1. (1.8) 

Since all the random variables in the above algorithm can be generated in the 

standard way from uniform [0,1] random variables, we have in effect defined a mea­

surable mapping from a countable product of unit interval probability spaces denoted 

http://too.it


9 

by (fi, B,P), to the space of right-continuous left-limited B°-valued functions. Thus 

the probability law Px of {x*} starting at x G E° is well defined. 

As shown by Davis (1984), {xt} is a strong Markov process. 

1.3 The Extended Generator of PDPs 

Denote by B(E°) the set of bounded measurable real-valued functions on E° equipped 

with the essential supremum norm || • ||oo- It is well known that the following formula 

defines a semigroup of operators {Tt} on B(E°): (i.e. Tt has the semigroup property 

Tf+j = TtTa) 

TtW{x) := ExW(xt) 

where Ex denotes the expectation respect to Xt with initial state x. 

The strong (infinitesimal) generator of this semigroup is an operator A acting on 

a domain of functions V(A) C. B(E°) such that for W G V(A) 

AW(x) = s-\im-(TtW(x) - W{x)), 

where s-lim indicates that the limit is taken with respect to the supremum norm 

in B(E°). The important property of the generator for our purposes is the Dynkin 

formula 

TtW(x) - W{x) = f T,AW(x)ds, (1.9) 
Jo 

which, from an analytic point of view, is the "fundamental theorem of calculus" 

for semigroups. Probabilistically, however, the Dynkin formula is equivalent to the 

statement that the process 
r' -

C f := W(xt) - W(x0) - / AW(x.)ds 
Jo 

is an Tt -martingale, where the natural filtration 3~t := o~{xa : s < t} is the cr-algebra 

generated by {x, : s < t} (i.e. E[CY — C1^ 1̂ ,] = 0). We can regard this property as 

the minimal connection between &n operator A and the corresponding process {xt}. 
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For technical reasons it is however convenient to enlarge V(A) to include those W 

for which C f is only a local .Ft-martingale, i.e. possesses the martingale property in 

a (time) neighbourhood of t. This leads to the following definition of of the extended 

generator A of {xt} . 

Definition 1.1 The extended generator of a homogeneous Markov process is an op­

erator A acting on a class V(A) of functions W : E° —> R such that for W G V(A) 

the process 

Cf := W{xt) - W(x0) - f'AWixJds 
Jo 

is a local martingale. • 

This definition is given by Jacod (1979). 

Evidently A and A coincide on V(A) so that A is an extension of the strong 

generator .4.. 

Davis (1984) gave an exact chaiacterization of (A,V(A)) as follows. 

Proposition 1.1 (Davis 1984, Theorem 5.5, p.367) 

A measurable function W : E° —• R1 belongs to the domain V(A) of the extend 2d 

generator A if and only if the following three conditions are satisfied:-

(i) For each (n, z) G E° the function 11—> W(n, (j>n(t, z)) is absolutely continuous 

fort6[0,t.(n,z)). 

(ii) There exists a sequence <rn of stopping times (i.e. <rn is Tt-measurable) such 

that Px[crn t 00, n t 00] = 1 and for each n 

^El^(x^J-^(xTrA(rn)|<oo. 
i 

(iii) W(z) := lim W o <£„(—£, z) exists for all (n, z) G BE and W satisfies the bound­

ary condition 

W(x) = / W(y)Q(dy;x) forxE dE. 
JE® 
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For W G V(A), Af is given at x = (n,z) by 

AW{x) = XnW(x) + A(x) / [V/{y) - W{x)]Q{dy; x) (1.10) 
JE° 

where Xn is the first-order differential operator given by (1.3). 

• 

1.4 The PDP Optimal Control Problem 

Optimal dynamic control problems arise when the local characteristics, X, A, Q of a 

PDP depend, besides on the state x, on a free control parameter v from a compact 

set U. The set of admissible controls may be different for interior and boundary 

states. We assume that v G U0 C Rm if x G E° and v G Ue C Rl if x G dE. 

It should be noted that it suffices to take UQ and Ua to be Polish, i.e. compact 

separable metric, spaces and we shall use such a control space in Chapter 5 where a 

one-point compactification of a half line is used. We shall distinguish the transition 

measure Q0(dy;x,v), for x G E°,v G UQ, describing jumps from interior points, 

from Qa{dy;x,v), for x G dE,v G Ua, describing jumps from boundary points. The 

"usual" class of admissible controls in Markovian problems is that of state feedback 

controls ut = u(xt). Corresponding to u, functions XU,\,J,,QU are defined by 

XuW(x):=VW{x)f{x,u{x)) 

\u(x) := \{x,u(x)) 

Qu(A;x):=Q(A;x,u{x)). 

Under certain smoothness conditions on tt(-), a PDP having local characteristics, 

Xu, Au, Qu, can be constructed as in §1.2. The state feedback control is however not 

the appropriate choice if we require u to be only measurable since the secondary 

component (t has to satisfy between jumps the ordinary differential equation 

-TiCt = f(vt,(tMut,(t)) 
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and this equation may fail to have a unique solution unless u is sufficiently smooth 

(e.g. Lipschitz continuous). To be able to use controls that are only measurable, we 

now consider controls in the form u = (v,Q,ua) where 

u0>.R+xE° —• U0 

ua:8E —> Ua 

are measurable functions. If T* is the last jump time before time t, let zt := Xxh 

denote the post jump state and TJ := t — Tjt be the time elapsed since the last jump. 

Then the ordinary differential equation 

jt(t = f(vt,(tMTt,zt)) t>Tk 

has a unique solution as long as / is Lipschitz in (t, by the Caratheodory existence and 

uniqueness theorem. Augmentation of the process to keep track of zt and rt as states is 

also possible (see Davis 1984 _ n.d Vermes 1985 for details) but not necessary, since zt, 

n can be derived from x t and {Tfc} in an obvious manner (c/. §1.2). Such piecewise 

open loop controls are therefore the "appropriate" ones. Consider a deterministic 

control problem as an extremal special case of a PDP. The "appropriate" controls 

should be open loop controls depending only on the initial state xo (which is the only 

"post jump state") and the elapsed time t. Therefore it is interesting to see that the 

control of PDPs involves an intriguing mixture of "deterministic" and "stochastic" 

features. 

The controls we have discussed so far are actions which only affect the infinitesimal 

generator of the process. Impulse controls are required, however, if one wishes to take 

actions which can cause an immediate change in the state of the process (i.e., a jump). 

We shall term the times that a such decision is taken intervention times and denote 

them by {T,} . We define {T,} as a sequence of stopping times. At intervention times, 

upon applying an impulse control action v G Us C Rk, the state x is moved to the 

state y which is a random variable with transition measure Qs(A;x,v). 

The performance criterion to be minimized includes a running cost 
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lo : E° X UQ —> R+ , a boundary cost la : dE x Ua —* R+ and an intervention cost 

Is : E xUg — • JR+. Let 8 > 0 be a discount factor. 

The PDP optimal (full) control problem is to find a sequence of optimal interven­

tion times {TJ} and an optimal control (i.e. a triple u = (uo,ua,us) of measurable 

functions: u0 : E° x R+ —> Uo,ua : dE — • Ua and us(xTi)) such that the expected 

cost 

/ •oo 

Jx(u) = Ex[ e~Stlo(xt,uQ(rtiZt))dt+ J2 e ^ ( x T . - , ^ ( x r . - ) ) l ( x T - 6 a s ) 
° Tij:T{ ' * * 

+ ^e-^^(xTr,Ufi(xTr))] (1.11) 
i 

is minimized. 

1.5 Examples 

1.5.1 A model for capacity expansion 

Capacity expansion is the process of adding facilities of similar type over time to meet 

a rising demand for their services. Typical examples are electrical power generating 

stations, water resource facilities, major computer and communication systems and 

large manufacturing facilities such as blast furnaces and rolling mills in the steel indus­

try. These are large-scale projects, tackled relatively infrequently, and this precludes 

a short term incremental approach to the planning of expansion. Planning decisions 

concern timing, scale and location of major projects in the face of uncertain-often 

highly uncertain-demand forecasts, costs and completion times. Project location de­

cisions are of fundamentally different character to those of timing and scale, and 

indeed are often predetermined by engineering and /or political considerations. Here 

we consider optimization of timing and scale with the major emphasis on timing. To 

be realistic, the mathematical model we consider here incorporates uncertain future 

demand, non-zero lead time and random cost overruns. 

We present a simple model for the capacity expansion problem incorporating these 
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features. The reader is referred to Davis et al. (1987) for some extensions in the 

direction of more rv.cJistic models. 

It is supposed that the demand for some utility is monotone increasing and can be 

modelled as a Poisson process with rate /z. This demand is to be met by construction 

of new identical expansion projects, each of which costs $<r and meets K units of 

demand when completed. Investment is channelled into the current expansion project 

at a rate %ut per unit time (to be decided upon). The maximum feasible investment 

rate being a known constant. The current project is complete when investment in it 

reaches level $ <r where tr is a random variable whose distribution function is given 

by 

PI <r 1 rrf\ j IoKr)dr 3 < E P[er < s\ := H(s) := < 

I 1 5 > S 

where h(-) is a bounded continuous function and S is a given constant. Thus <r < S 

always and a- has a continuous density h on [0, £ ) . The corresponding hazard rate is 

7(a) := lim*~1Pfo-< s + t\<r> s] 

= A(s)/(1 - H(s)) s G [ 0 , 2 ) . (1.12) 

This can be interpreted as the completion rate of the project due to constant invest­

ment at unit rate. We assume that -•/(•) is bounded. The costs of successive projects 

are independent, and the cost of the current project is unknown to the decision-maker 

(who, however, knows h and S ) until completion actually takes place. Upon com­

pletion, K units of capacity are supplied and further investment beyond this time is 

investment in the next project. We denote by c t the total capacity installed at time 

t\ thus c t = KNt where N t is the number of completed projects. 

If the existing capacity does not meet the demand, a penalty (shortage cost) is 

paid; excess capacity may also be penalized. Let d t be the demand process. We 

denote by vt —: dt — c t the under capacity process and by q(y) the penalty per unit 

time paid for undercapacity v (thus q{y) is the shortage cost for v > 0 and the excess 

capacity cost for v < 0). We assume that q[y) is non-negative and monotonically 

increasing as v > 0 increases or v < 0 decreases, with at most polynomial growth in 
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both cases. The decision-maker has to choose the investment rate ut for t > 0 so as 

to minimize the discounted infinite horizon cost 

/ •oo 

E / e-st(ut + q{vt))dt. 
Jo 

Now we formulate this problem as a PDP optimal control problem. Denote by (t 

the cumulative investment in the current project. Thus, 

dtCt = Ut-

We now formulate the process x t := (vt, (t) as a controlled PDP taking values in the 

state space E° = IV x (—1/2, E). An admissible control is a measurable function 

u : R+ x E° —> [0,p]. For all v £ JZV, we define the right hand side of the dynamics 

as f(x,v) := v for all x G E,v G [0,p]. Then / determines the vector fields Xv = X. 

Thus between jumps the secondary component (t satisfies the ordinary differential 

equation 

ft(t = f{vu (t, U(T1} zt)) = u(rt, zt), 

where Zt is the the most recent post jump state before t, Tt is the time elapsed since 

the last jump. For x := (v,(), define X(x,v) := [i + vy(() where 7 is the hazard 

rate defined by (1.12). If a jump occurs, it may be because a demand increment 

has arrived, or because a project has been completed, these events having relative 

probalities fi/XjVy/X respectively. Thus, 

it vy 
Qo[dy,x,v] := -6(v+li()(dy) + y ^ - K . o ) ^ ) 

forx = (i/,C), C < £ . 

On the other hand, if ( — S, then a completion must take place since E is the 

maximum project cost. Thus, 

Qa[dy, x] := S^.Kfi)(dy), for x = (u, E), 

where Sy denotes the one-atom probability measure concentrated on y. Once the 

control u is chosen, the above specifications determine the probability law of the 
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process {xt}. The expected cost is now 

Jx(u) = Ex / e-st[u(n, zt) + q(vt)]dt 
Jo 

where x is the initial state. It is now an optimal PDP control problem to determine 

the control u which minimizes Jx(u). 

1.5.2 Stochastic scheduling 

In this example, we will show how to formulate the stochastic scheduling problem 

as a PDP optimal control problem. This extends the applicability of PDPs to some 

discrete event systems. For a detailed description, see Dempster and Solel (1987) and 

Solel (1986). 

Consider the following general precedence constrained stochastic scheduling prob­

lem. A finite number n of jobs must be executed on a finite number m of parallel 

identical (i.e. differing speed) machines. Jobs are to be processed by machines without 

preemption of running jobs except at review times (interventions) to be determined. 

There is a precedence (partial) order for processing jobs {j : j' = i,...,n} and 

there are forbidden sets of jobs which cannot be processed together. The random 

job processing requirements Pj have finite expectations and joint distribution P on 

P n := {x G Rn : x>0}. The cost function k : Pn —> R+ is such that if a job j , 

1 < j 5: n, is processed in time Cj := tj + pj, where tj denotes the start time of job 

j J 3 = 1) • • • J n j then k(ci, • • •, c„) is the induced cost and is usually assumed to be a 

linearly (polynomially, exponentially) bounded Junction. Scheduling (i.e. control) is 

to decide, after jobs finish being processed or at review times, the set of jobs to start 

(or to take off and process later) and the length t' of the time remaining until the 

next review time, in case no job finishes being processed within this time, based on 

process information to date regarding finished, running and unprocessed jobs—start 

times, processing times and present time—with a view to minimizing expected cost. 

The PDP model of this situation involves the state vector 

x := (wlf... ,wn, tu . . . ,tn, Si,..., Sn, t', m)' G -K3n+2, 
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where prime denotes transpose and for job j , Wj denotes the amount of processing 

currently received and Sj denotes the current job state (0 not started, 1 running, 2 

finished), t' represents either time remaining to the next review or fictitious time and 

m is the current number of jumps completed by the process. 

The process evolves in 3n + 1 linear manifolds, corresponding to all possibilities of 

job states and representing the combinatorial complexity of the scheduling problem, 

and the coffin state A . 

Real time t ib represented only implicitly in terms of process time s as 

i(s) := tj(s) + Wj(s), where j is any currently running job. 

The process jumps whenever there is a job completion or at review times. The 

dynamics of the process between jumps consists of movement along straight lines: 

f 1 if 8j - 1 and t' > 0 
WAS) = \ n , 

{ 0 otherwise 

*,•(*) = o 

S&) = 0 

*(*) = - 1 

m(s) = 0. 

The drift (vector field) and (job completion) intensity (which is assumes known) is 

uncontrolled. Therefore there is no interior control and the only control (scheduling) 

is the boundary control. The admissible controls are those taking account of the 

precedence and the forbidden sets constraints. 

Fictitious iime t' is started by job completion or review epochs with a jump to 

the interior of a suitable interval and runs while real time t is stopped until the 

boundary of this interval is reached and the control (scheduling) is exerted at these 

boundary points. By this device two jump states are passed through at each real time 

jump epoch -one state (involving only a fictitious time change) to review or complete 

finished jobs and another to start new jobs under the control process. The transition 

measure can be calculated accordingly. 
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The PDP control problem for this case is to find an admissible control u (schedul­

ing strategy) so as to minimize the expected cost defined by 

J
/-O0 

I l0(x»)ds) 
o 

= E[ 3fc(t1 + p 1 > . . . l t B + p„)(t'(3) + 6)2<fa 
J to 

where to is the time the process jumped to t' = —6 with 6\ = . . . = 6n = 2, and 

t'(s) — —6 — (s — to) evolves until it reaches t' = —7 and then the process jumps to 

the coffin state A and terminates. 

1.6 Basic Concepts of Nonsmooth Analysis 

In this section, v/e introduce some basic concepts on nonsmooth analysis. The reader 

is referred to Clarke (1983) for further details. 

1.6.1 Definition and properties of Clarke generalized gra­

dients 

We shall be working in a Banach space X whose norm we shall denote by || • ||jf, and 

whose open unit ball is denoted by Bx \ the closed unit ball is denoted by Bx • 

The Lipschitz condition 

Definition 1.2 Let 7 b e a subset of X. A function / : Y —> R is said to be 

Lipschitz continuous (on Y) or to be Lipschitz (on Y) with constant Lf provided 

that, for some nonnegative scalar Lf, one has 

| / ( y ) - / ( * ) | < l i / | | y - j | | j r 

for all points y,z in Y. We shall say that / is Lipschitz (with constant Lf) near x 

if, for some e > 0, / is Lipschitz continuous (with constant Lf) on the set x -j- eBx 

(i.e. within an e-neighborhood of x). f is said to be locally Lipschitzii f is Lipschitz 

near every interior point of Y. u 



19 

A function which is Lipschitz near a point need not be differentiable there, nor 

need it admit directional derivatives in the classical sense. 

The generalized directional derivative 

Definition 1.3 Let / be Lipschitz near a given point x, and let d be any vector 

in X. The generalized directional derivative of / at x in the direction d, denoted 

/°(:E; d), is defined as follows: 

rot * v /(y + fr*)-/(y) 
/u(x; d) := limsup — j — , 

t\0 
where y is a vector in X and t is a positive scalar. • 

Definition 1.4 If we use liminf instead of limsup in Definition 1.3, we define a 

lower generalized directional derivative and denote it by fo{x; d). • 

/ ° has the following basic properties: 

Proposition 1.2 (cf. Clarke 1983, Proposition 2.1.1, p.25) 

Let f be as in Definition 1.3. Then 

(a) the function d i—> /°(x; d) is positively homogeneous, is subadditive on X and 

satisfies 

\f°(x;d)\<Lf\\d\\x, 

where Lf > 0 is the Lipschitz constant of f, 

(b) f°(x;-d) = (-ff(x;d). M 

The generalized gradient 

Definition 1.5 Let / be Lipschitz continuous with constant Lf near x. Denote by 

X* the dual space of X. The generalized gradient of / at x, denoted df(x), is the 

subset of X* given by 

df(x):={('eX*:f°{x;d)>Cd for all d G X}, 

where ' denotes that (' is a dual object. In particular, if X = Rn, then a dual object 

C is the transpose of a vector ( G Rn • • 
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We denote by ||C'||* the norm in X*: 

IIC'H. := suptf'i : d G X, \\d\\x < 1} 

and by B, the open unit ball in X*. 

The following proposition summarizes some basic properties of the generalized 

gradient: 

Proposition 1.3 (cf. Clarke 1983, Proposition 2.1.2, p.27) 

Let f be Lipschitz with constant Lf near x. Then 

(a) df(x) is a nonempty, convex, weak*-compact subset of X* and \\('\\* < Lf for 

every (' in df(x), 

(b) for every d in X, one has 

f°(x;d) = max £d 

fo(x;d) = min ('d (1.13) 

where f0(x',d) is the lower directional derivative of f (cf. Definition 1.4). • 

Relation to derivatives and sub derivatives 

If / is smooth, df(x) reduces to the conventional gradient. 

If / is continuous and convex, the generalized gradient coincides with the subgra-

dient of the convex analysis. 

Basic calculus 

Proposition 1.4 (Scalar Multiples, cf. Clarke 1983, Proposition 2.3.1, p.38) 

Let f be Lipschitz near x. For any scalar s, one has 

d(sf)(x) = ad f{x). 

• 
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Proposition 1.5 (Local Extrema, cf. Clarke 1983, Proposition 2.3.2, p.38) 

Let f be Lipschtiz near x. If f attains a local minimum or maximum at x, then 

oedf(x). u 

Proposition 1.6 (Finite Sums, cf. Clarke 1983, Proposition 2.3.3, p.38) 

If fc(i = 1,2,... ,n) is a finite family of functions each of which is Lipschitz near 

x, it follows easily that their sum / = S / i is also Lipschitz near x. The following 

inclusion holds: 

s(E/0(*)cE^H 
and the equality holds if all but at most one of the functions fi are continuously 

(Gateaux) differentiable at x. * 

The following proposition is based on Clarke (1983), Theorem 2.3.9, p.42. 

Proposition 1.7 (Chain Rule) 

Let f = g o h, where h : X —• Rn and g : Rn —> R are given functions. The 

coordinate functions of h will be denoted h,(i = 1,2,... ,n). We assume that each hi 

is Lipschitz near x and g is Lipschitz near h(x); this implies that f is Lipschitz near 

x. Let a! = {o.\,a.2,...,an) G dg. One has 

df(x) C cd(Zaid : £ G dhi(x),a' G dg(h(x))} 
»=i 

(where co denotes the weak*-closed convex hull). • 

Regularity 

It is often the case that calculus formulas for generalized gradients involve inclu­

sions, such as in the finite sums formula. The addition of further hypotheses can serve 

to sharpen such rules by turning the inclusions to equalities. A class of functions that 

proves useful in this connection is one called "regular". 

Definition 1.6 (Clarke) Regularity 

/ is said to be (Clarke) regular at x provided 
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(i) for all d, the usual one-sided directional derivative f'(x; d) exists, 

(ii) for all d, f'(x; d) = f°(x; d). • 

Partial generalized gradients 

Let X = X\ x X2, where Xi,X2 are Banach spaces, and let / : X —> R be 

Lipschitz near (xi,x2). We denote by dif(x1}x2) the (partial) generalized gradient 

of / ( • , x2) at xi, and by 9 2 / (x i , x2) that of f(x\, •) at x2 . The notation / ° ( x i , x2; v) 

will represent the generalized directional derivative at x\ in the direction v G X\ of 

the function / ( - , x 2 ) . It is a fact that in general neither of the sets df(xi,x2) and 

dif(xi,x2) x ^ / ( x i j X a ) need be contained in the other. In some cases, however, we 

can show that equalities hold between these sets. The following proposition which 

gives such relations will be needed in the development of Theorem 2.2 and 4.1. 

Throughout this thesis, we shall denote by || • || the Euclidean norm and in par­

ticular by I • I the Euclidean norm in R, i.e. the absolute value. 

Proposit ion 1.8 / / the function f : Rn x R —> R and g : Rn x (0,00) —> R is 

such that f(xi,x2) := .F(xi), g(x\,x2) := x2G(xi), where x2 > 0, and 

G(x\) : Rn —>• R is continuous, then the following equalities hold: 

df(xl7x2) = d1f(x1,x2)x{0} 

= dF(Xl)x{0} (1.14) 

dg(xux2) = dig(xux2) x d2g(x1,x2) 

= x2dG(x1)x{G(x1)}. (1.15) 

Proof By Definition 1.3, for all dx E R", d2€Rl, we have 

,0/ ,N ,• f(%i +tdx,x2) - f(xi,x2) fii^^dx) := limsup — -f- ^ '-

t\0 

y Ffa+tdJ-Ffa) 
= lim sup —* —-

Xl—Hl " 
t \ 0 
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= F°(ai ;4) 

rot j j \ v f(xi+td1,x2 + id2)-f(xi,x2) f (xux2;d1,d2) := limsup — —'- * '-

X2—nca 

no 
J'(£1 + t d 1 ) - f ( S 1 ) 

= hm sup — —-
— t 
X\,—*Xy 

t \ 0 

= F0{xl]d1) 

tot u v f(xi,x2 + td2)-f(x1,x2)) f2
J(x1,x2]d2) := limsup > '— 

IJ-+XJ 
t \ 0 

F(Xl) - FM 
= nm sup 

X2~*X? 

= 0 
tor n . N ,. / ( S i + *•(), aa + ftfa)- /(xi,52) 
/ (xi,E2;0,a2) := limsup — -

X% —>X2 
tJO 

.. F(xx) - F{xi) 
= limsup — 

Xl —*X\ 

t\0 

= 0, 

That is, 

/x°(xi,x2;4) = fo(xi,x2;dud2) = F°(x1;dl) (1.16) 

f°(xux2;d2) = fo(x1,x2]0,d2) = 0 (1.17) 

from which we now derive equality (1.14). 

Indeed, for all rj' :— (771',7/2) G df(x\, x2), we have by Definition 1.5 and equality 

(1.16), 

i)\dx < f°(xi,x2\d1,0) 

= F°{x1]d1) for alUi Gift" 

which impies that r// G dF(x{) by Definition 1.5. 
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Similarly, we have by Definition 1.5 and equality (1.17) 

772̂ 2 < /°(si> x2\ 0, d2) = 0 for all d2 G R1 

which implies that T?2 = 0. 

Conversely, for all n' = (T?I', 0), where 771' G Si^xi) , we have by Definition 1.5 

and equality (1.16) 

Vi'dx < F (x^di) 

= f°(xu x2\ du d2) for all dx G Rn, d2 G R 

which implies that 77' = (rji',0) G df(x1,x2). 

Therefore, equality (1.14) holds. 

Similarly for g(xi,x2) by definition, we have 

0 / , s v x2G(xx + tdx) - x2G(xx) 
g1(x1,x2;d1) := limsup j - —-

Xl—*Xl 

t\0 

= x2G°(xi]di) (since x2 > 0) 

0/ , n\ v x2G(xx +tdi) — x2G(xt) g (xi,x2]d1}0) := limsup * i—-
Xl—>Xl 

K2—>IJ 
tiO 

. , _ G(xx + t<k) - G(£i) 
= mf sup x2—* —-

e i > 0 M~ n £ 
e 2 >0 lF l - a : i l l< e l 
5>0 |x2—X2|<e2 

te(o,tf) 
. , , . , - v G ^ i -fidl) ~ G(5l) 

= mf (mf sup x2) sup — —-
e i > 0 e a > 0 , - 1 11— 11 i 
/so 2 | a*-*2 |<e 2 | | a ! l -x i | |<e i * 

t€(0,«) 

= x2 inf sup 

(1.18) 

G{xx + tdx)-G{x-i) 

?>o° IPI-*IIK«I * 
ee(o,«) 

= x2G\xx]dx) (1.19) 
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where equality (1.18) follows from the fact that x2 > 0. 

„o, „ . , N ._ i- _,1T1 (
£2 + td2)G(xx) - x2G(xx) g2(xx,x2;d2) := limsup 

X 2 - H 2 
t\0 

= G(xx)d2 

0/ n A \ v (x2+td2)Gv )-x2G(xx) g (xx,x2;0,d2) := hmsup-v 

x\—>Xi 

X2—HC2 

tj.o 

= G(xx)d2 (since G is continuous) 

0 / , ,v ,. (x2 + td2)G(xx + tdx) - x2G(xx) g (xx,x2;dx,d2) := limsup 

Xj —*X2 

tio 

x2G(xx + tdx) - x2G(xx) + td2G(xx + tdx) 
= lim sup — 

X]_—>Xl 
xa—H2 

t[0 

r x2[G(Zx + tdx)-G(Bx)} 
= limsup—L- i ——+ G(xi)a2 (1.20) 

X{-~*X]_ 

X$—*X2 

tio 

= x2G°(xx; dx) + G(xx)d2 (since x2 > 0) 

where equality (1.20) follows from the fact that G is continuous. That is, 

gl(xx,x2]dx) = g°(xx,x2;d1,0) = x2G°(x1;dx) (1.21) 

g°2(xx,x2;d2) = go(xx,x2;0,d2) = G(xx)d2 (1.22) 

g°(xx,x2;dx,d2) = x2G°(xi;di) -f G(xx)d2 (1.23) 

from which we now derive equality (1.15). 

Indeed, for all n' = (T7I',772) G % ( X I , X 2 ) , we have by Definition 1.5 and equality 

(1.21) 

•qx'di < g°(xx, x2; dx, 0) = x2G°(xi; dx) for all dx G Rn 

which implies that 771' G x2dG(xx). 
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Similarly, we have by equality (1.22) 

772̂ 2 < g°(xx,x2; 0,d2) = G(xx)d2 for all d2 G R1 

which implies TJ2 = G(x2). 

Conversely, for all rj' = (r}X, G(XX)), where rjx' G x2dG(xx), we have by equality 

(1.23), 

nx'dx + G(xx)d2 < x2G°(xX)dx) + G(xx)d2 

= g°(xx, x2; dx,d2) for all dx G Rn, d2 G R1 

which implies 77' = (771', G(xx)) G dg(xx, x2). 

Therefore, equality (1.15) holds. 

• 

The case in which X is finite-dimensional 

Proposition 1.9 (see e.g. Clarke 1983, Theorem 2.5.1, p.63) 

Let f be Lipschitz near x, suppose S is any set of Lebesgue measure 0 in Rn and Q,f 

is the set of points at which f fails to be differentiable. Then 4 

df(x) = co{lim V / ( X J ) : xt- -* x, x,- $ S, Xj g1 fi/}, (1.24) 

where coA is the convex hull of set A defined by 

n 

coA := {^2 XitH : a< G A, Xi > 0, £ At- = 1}. 
t = l i 

m 

Remark 1.1 The meaning of (1.24) is the following: consider any sequence Xi con­

verging to x while avoiding both S and points at which / is not differentiable, and 

such that the sequence V/(x,-) converges; then the convex hull of all such limit points 

is df(x). u 

The following proposition is based on Clarke (1983), Proposition 2.1.5. p.29: 
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Proposition 1.10 Let f : Rn —> JR be Lipschitz near x, then 

(a) the generalized gradient of f as a set-valued map df : Rn H> jRn' is closed; that 

is 

Xi -» x, Ci 6 df(xi), Ci -* C' implies (' G df(x), 

(b) df is upper semicontinuous at x, i.e. for any e > 0, there is 8 > 0 such that, 

for all y G x + 8Bx 

df(y)cdf(x) + eBn. 

where Bx and Bn denote the unit balls of X and Rn respectively. • 

Generalized Jacobians 

Definition 1.7 Now consider a vector-valued function F : X C Rn —> Rm- F 

is said to be Lipschitz continuous (on X) with constant Lp provided that, for some 

nonnegative scalar Lp, one has 

\\F(x)-F(y)\\<Lp\\x-y\\x. 

We shall say that F(-) is Lipschitz (with constant Lp) near x if, for some e > 0, F 

is Lipschitz continuous on the set x + eBn. • 

We shall endow the space ofmxn matrices jRmXn with the Frobenius or Euclidean 

norm 
n rn 

l l4Ux. := ( E E ^ i 2 ) 1 VA = (a,,) G Rm*n. 

Denote by JF(y) for the usual m x n Jacobian matrix of partial derivatives 

whenever y is a point at which the necessary partial derivatives exist. 

Definition 1.8 The generalized Jacobian of F at x, denoted dF(x), is the convex 

hull of all m x n matrices Z obtained as the limit of a sequence of the form JF(xi), 

where XJ —> x and x,- g" Ftp, i.e. the set of points at which F fails to be differentiable. 

Hence 

dF(x) := co{lim J F ( X J ) : xt- -> x, x; g" £V}. 
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The following proposition is based on Clarke (1983), Proposition 2.6.2, p.70. 

Proposition 1.11 Let F : Rn —* Rm be Lipschitz near x with constant Lp. Then 

we have: 

(a) dF(x) is a nonempty convex compact subset of RmXn . 

(b) The set-valued map dF : Rn Z$ Rm*n> is closed. 

(c) The set-valued map dF is upper semicontinuous at x, i.e. for any e > 0, there 

is a 8 > 0, such that 

dF(y) C dF(x) + eBmXn Vy G x + 8Bn. 

(d) dF(x) C LFBmXn. 

(e) Ifm = l, then the generalized gradient and the generalized Jacobian coincide. 

Here BmXn denotes the unit ball of the mXn matrix space RmXn and BmXn devotes 

the closure of BmXn. u 

The follwing proposition is based on Clarke (1983), Proposition 2.2.1 and Propo­

sition 2.6.5. 

Proposition 1.12 (Jacobian Chain Rule) 

Let f = goF be the composite of F and g, where F : Rn —> Rm is Lipschitz near 

x and where g : Rm —> R is Lipschitz near F(x). Then f is Lipschitz near x and 

one has 

df(x) C co{dg(F(x))dF(x)}. (1.25) 
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1.6.2 A nonsmooth maximum principle 

Definition 1.9 Let 5, fit be the sets defined by 

S := {t : (t, x) G fi for some x G Rn} 

Qt := {x:(t,x)£n}. 

fi is called a tube provided the set S is an interval ([o,b], say) and provided there 

exists a continuous function w and a continuous positive function e on [a, b] such that 

fit = u(t) + e(t)Bn for t G [a,b}. We call such a tube fi a tube on [a, b}. • 

Let f :RnxRm —> Rn and fQ:RnxRm —> R be measurable and Lipschitz 

continuous in x G -2?1 uniformly in u G £/" C iRm, with ?7 compact. Let F : Rn —> R 

be locally Lipschitz and Cx be a closed subset of Rn. 

Consider the following autonomous deterministic optimal control problem with 

fixed initial time and free terminal time: 

(Pc) minimize / f0(x(t),u(t))dt + F(x(tx)) 
J to 

over the class of admissible pairs (u(-),x(-)) 

such that u : [to,ti] —• R™ is measurable, 

u(t)eUcRr ViG[Mi], 
(t,x(i))Gfi Vte[t0,tx], 

x(t) = f(x(t),u(t)) a.e. t G [to,h] 

x(t0) :=x 0 x(tx) G Cx. 

Define the Hamiltonian function for (Pc) 

H(x,u;p', r) := p'f(x,u) - rf0(x, u) 

for x G Rn,u G RTiP' G iKn and r e R. 

The following nonsmooth maximum principle for problem (Pc) is based on Clarke 

(1983), Theorem 5.2.1, p.211 and Theorem 5.2.3, p.213. 
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Theorem 1.1 (Maximum Principle) 

Let (x*,u*) solve the problem (Pc)- Then there exists an absolutely continuous func­

tion 

P':[to,tx]-+Rn' 

and a nonegative scalar r, which can be taken as 0 or 1, such that: 

(1) the optimal control function u* maximizes the Hamiltonian function: 

H(x*(t),u*(t);p'(t),r) 

= ma.xH(x*(t),u;p'(t),r) = 0 a.e. t E [to,ti], 

(2) the dual variable p' satisfies the adjoint equation in the form of the differential 

inclusion: 

-p'(t) G dxH(x*(t),u*(t);p'(t),r) a.e. t G [i0,*i], (1-26) 

(3) the system (1.26) is subject to the transversality condition: 

p'(tx) G -rdF(x(tx)) - pddcMti)), 

where p is a nonegative scalar and dc^(y) is the distance function from the point 

y to the set Gx defined by dc^(y) := inf{||z — y\\ : Vz G Cx}, 

(4) the dual variable satisfies the nontrivality condition: 

Ib'lloo + r > 0, 

where \\p'\\oo '•= suPte[t0.<i] IIP'MII
 l 5 ^ e supremum norm. • 

Remark 1.2 For a fixed initial and terminal time and state problem, i.e. tx is fixed 

and Cx := {cx}, the optimal solution (x*,u*) satisfies all conditions of the maximum 

principle except the transversality condition. • 
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1.7 Some Results on Differential Inclusions 

In this section, we shall state some definitions and results on the differential inclusions 

which will be used in Chapter 4. The reader is referred to Aubin and Cellina (1984) 

for further details. 

We start with some standard results on ordinary differential equations (see e.g. 

Aubin and Cellina 1984, p.119). 

Proposition 1.13 (Gronwall Inequality, see e.g. Aubin and Cellina 1984, Proposi­

tion 1, p.119) 

Let a, (f>: [a,b] —• Rn be continuous and k : la, b] —> R+ be an integrable function. 

Assume that 

<f)(t) < a(t) + j k(s)cf>(s)ds, t G [a, b]. 
Ja 

Then 

<j>(t) < a(t) + f k(s)a(s)e^k^duds. 
Ja 

m 

Let / : [a, b) x Rn —r Rn, (t, x) i—> f(t, x) be continuous and Lipschitz contin­

uous in x with Lipschitz constant k(t), i.e. there is a nonnegative integrable function 

k : [a, b] —• [0, oo) such that 

\\f(t,x)-f(t,y)\\<k(t)\\x-y\\. 

Let x(-) and y(-) be absolute continuous solutions of the differential equation 

x = f(t,x) (1.27) 

with initial points xo and yo respectively. Setting <f)(t) := x(i) — y(t) and a(t) := 

^o ~ 2/o in the Gronwall inequality, it is easy to derive the following result on the 

continuous dependence of solutions on the initial data:: 

Mt)-y(t)\\<\\x0-yo\\e^k^. 



32 

For differential inclusions, Aubin and Cellina (1984) gave an analogue of Gron-

wall's inequality (cf. Aubin and Cellina 1984, Theorem 1, p.121) from which a result 

on continuous dependence of solutions was derived. 

First we need the following definition, which is the analogue of that for a Lipschitz; 

continuous function. 

Definition 1.10 Let F : Rn+1 3 Mn+1, (t,x) i—• F(t,x) be a set-valued map from 

Rn+1 to subsets of Rn+1. F is a Lipschitzean map with constant k(t) if there is a 

nonnegative integrable function k(t) such that 

d(F(t,x),F(t,y))<k(t)\\x-y\\, 

where d(CX)C2) := inf{||ci — c2|| : cx G Gi,c2 G G2} is the distance between the sets 

Cx and C2. • 

Proposition 1.14 (cf. Aubin and Cellina 1984, Theorem 1, p.121) 

Let Xo, 2/o be two initial points. Then with any solution y(-) of the differential inclu­

sion 

x(t) G F(t,x(t)) 

such that 2/(0) = yo, we can associate a solution x(-) such that x(0) = xo and 

\\<t)-ym<\\*o-yo\\e£kW'. 

B 

Definition 1.11 We denote by ./^(xo) the set of solutions of the differential inclu­

sion: 

x(t) G F(t, x(t)) x(0) := x0 (1.28) 

on the interval [0, oo). • 

Definition 1.12 Define m(K) := {k G K : \\k\\ = mimeK \\l\\}. The solutions of the 

differential inclusion 

x(t) = m(F(t,x(t))) 

are called the minimal norm trajectories of the set-valued map F. • 
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Now we are ready for the following proposition which is the analogue of the con­

tinuous dependence of solutions of differential equations on the initial data stated 

above. 

Proposition 1.15 (see e.g. Aubin and Cellina, Theorem 1, p.121) 

Let F : [0, oo) x jBz»JRn+1 be an upper semicontinuous set-valued map from 

[0, oo)x C iRn + 1 to convex compact subsets F(t,x) of Rn+1. Suppose m(F(-,-)) 

remains in a compact subset of R71. Then for any XQ G E there exists an absolutely 

continuous solution of (1.28) and F^xo) is a compact set in Rn. • 



Chapter 2 

Necessary and Sufficient 

Optimality Conditions for a 

Control Problem with a Boundary 

Condition 

2.1 Introduction 

Let the state space E be a bounded connected set in Rn with interior E° and 

boundary dE. 

The optimal control problem with a boundary condition we shall study is a Bolza 

problem formulated as follows: 

(Pz) minimize J(z,u(-)) := [tAZ\-AX*)f0(x(t),u(t))dt + e-AZWF(x(t»(z))) 
Jo 

over the class fi* of all admissible pairs (x(-),u(-)) 

such that u : [0,t"(z)) —•> Rm is measurable, 

u(t)eUcRm Vte[0,t»(z)), 

x(t) = f(x(t),u(t)) a.e. *€[0,*:(«)), 

x(0) := z G E°, 

34 
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where A"(x) := / A(as(s), u(s))ds and t*(z) is called the boundary hitting time of the 
Jo 

trajectory x(t) corresponding to control u for initial state z defined by 

t«(z) := inf{t > 0 : x(t) G dE}. (2.1) 

In the case where the trajectory for initial state z never reaches the boundary of E, 

t"(z) = inf 0 = oo by convention. Where there is no confusion, we will simply use 

t*(z) or <* instead of t"(z). 

To make sure that J is well defined, we assume that X := inf A(x.u) > 0. 
~ xeE°,i>eu v ' 

Thus even if t"(z) is oo, the integral converges and in this case the term 

e~ **(z'F(x(t"(z))) vanishes (by virtue of the boundedness of the cost functions as­

sumed below). 

Define V* C dE as 
T* := {z C dE : 3t > 0,x G E° (x(-),u(-)) G fi* s.t. z = x(t)} (2.2) 

the active boundary which flows may reach. 

We also assume the following conditions hold: 

(A2.1) the control set U is compact in Rm, 

(A2.2) / : E X U —> Rn is continuous, is Lipschitz continuoas with constant Lf in 

x G E uniformly in u G U and | / (X ,TJ ) | < Mf for all (x,u) G E xU, 

(A2.3) fo:E°xU-^> R+ is continuous, is Lipschitz continuous with constant Lfa in 

x G E° uniformly in u G U and \fo(x,u)\ < M/0 for all (x,u) &E° xU, 

(A2.4) X : E° x U —> R+ is continous, is Lipschitz continuous with constant L\ in 

x£ E° uniformly in u G U and |A(x,it)| < M$ for all (x,u) G E° xU, 

(A2.5) F is defined on dE and has a Lipschitz continuous extension to E such that 

F : E —> R+ is Lipschitz continuous with constant Lp and |.F(x)| < Mp for 

all x G E, 

where Mf, Mf0, M%, Mp are nonnegative constants. 
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Remark 2.1 The Lipschitz continuity of F(-) on whole state space is only required 

to show that the value function is Lipschitz continuous. • 

We define the value function for (Pz) as a function V : E —> R+ such that 

V(z) := F(z) \/z£dE. 

In the case where the value function V(z) is smooth, in the spirit of classic optimal 

control theory (see e.g. Fleming and Rishel 1975), the following sufficient condition 

is also necessary. 

Proposition 2.1 (Verification Theorem) 

Let W be a C1 solution of the Bellman-Hamilton-Jacobi (BHJ) equation 

min{VW(z)f(z, v) - X(z, v)W(z) + f0(z, v)} = 0 Vz G E° (2.3) 

with boundary condition 

W(z) = F(z) \/z G dE. (2.4) 

Let (x*,u*) be an admissible pair for P^ such that 

VW(x*(t))f(x*(t), u*(t)) - X(x*(t), u*(t))W(x*(t)) + f0(x*(t), «*(*)) = 0 

a.e.te [0,tf(zo)). 

Then (x*,u*) is an optimal solution for P^ . • 

Remark 2.2 It should be noted that the boundary condition (2.4) is in fact only 

required for z G T*. u 

Unfortunately, however, the value function is generally not smooth, so that the 

above condition is sufficient but far from necessary. For standard control problems, 

several approaches have been taken in the control theory literature to cope with this 

difficulty. Boltyanski (1966) (see also Fleming and Rishel 1975) restrict the class 
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of controls so that the value function becomes piecewise smooth. Instead of a C1 

solution, Vinter and Lewis (1978) characterize optimality through a sequence of Gx 

subsolutions of the BHJ equation. Crandall and Lions (1983) consider a generalized 

solution of the BHJ equation called a viscosity solution. On the other hand, local 

conditions for optimality has been given using nonsmooth analysis by Clarke and 

Vinter (1983). 

Using Clarke generalized gradients, the BHJ equation (2.3) can be generalized as 

follows: 

mm {C'f(z,v) - X(z,v)W(z) + fQ(z,v)} = 0 Vz G E°. 
f'€Slv(z) 

It is obvious that when W is C1, the above equation is the BHJ equation (2.3). 

Therefore, the generalized BHJ equation is a refined sufficient condition. For standard 

optimal control problems, Clarke and Vinter (1983) showed that this condition is also 

necessary under a calmness assumption (cf. Clarke 1983). 

In this thesis, we will take the generalized approach to the BHJ equation first 

introduced by Offin (1978). Under fairly general assumptions, we will provide a 

necessary and sufficient optimality condition of this kind using simple straightforward 

proofs. 

2.2 Sufficiency of the Generalized B H J Equation: 

The Verification Theorem 

Theorem 2.1 Let W be a locally Lipschitz solution of the generalized BHJ equation 

mm U'f(z,v) - X(z,v)W(z) + f0(z,v)} = 0 Vz G E° (2.5) 

t'eaW{z) 

with boundary condition 
W(z) = F(z) S/zedE (VzGT*). (2.6) 
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Let (x*,u*) be an admissible pair for (P^). If the following condition is satisfied: 

W(z0) = f* M e-A?'^fo(x*(t), u*(t))dt + e-<^F(x*(tf(zQ))), (2.7) 
Jo 

then (x*,u*) solves (P^) . 

Furthermore, if W is regular in the sense of Clarke (cf. Definition 1.6), then the 

following condition implies condition (2.7): there exists Ct' E dW(x*(t)) for almost 

all t E [0, U(zo)) such that 

C*t'f(x*(t),u*(t)) - X(x*(t),u*(t))W(x*(t)) + /0(x*(f),«•(*)) = 0, (2.8) 

where dW(x*(t)) is the generalized gradient set of W at x*(t). 

Proof Suppose (y(-),u(-)) is any admissible pair for (P^) and let 6(t) := W(y(t)). 

Observe that 8 is the composition of two Lipschitz continuous maps and hence is Lip­

schitz continuous. By the chain rule for the generalized gradient (Proposition 1.12), 

we have 

6(t) G co{dW(y(t))dy(t)}. (2.9) 

That is, 

Ht) e co{Ct'f(y(t), u(t)): Ct G dW(y(t))} a.e. t E [0, U(z0)). (2.10) 

Since W(-) is a solution of (2.5), we have V£ G dW(y(t)), 

C'tf(y(t),u(t)) - X(y(t),u(t))W(y(t)) + f0(y(t),u(t)) > 0 

*€[(U(*b)) . 

Therefore the following inequality holds 

dW{Jt
{t)) ~ Hy(t), «(*))W(y(t)) + f0(y(t),«(<)) > 0 

a.e.tE[0,U(zo)). (2.11) 

Consequently, 
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/ * *° e-A^)f0(y(t),u(t))dt + e-V.WF(y(t«(Zo))) 
Jo 

= r(2<>) e-A?Mf0(y(t),u(t))dt + e-AU^W(y(t:(z0))) (2.12) 
JO 

= / f" (*° ) e-A?^)/0(2/(i), u(i))dt + e~A° <*> W(y(0)) 
Jo 

+ J^K-^[-Xy(t)MtW(y(t))+
d^^]dt (2.13) 

= /'!(,',«-Af(-)[/o(»W,«W) - S W W i F W ) ) 
JO 

""W'Ww 
> W(*b) (2.14) 

= f* (Z0) e-A^)/0(x*(i),U*(i))di + e-A^)F(x*(tf(z0))) (2.15) 
Jo 

The equalities (2.12) and (2.15) hold by virtue of conditions (2.6) and (2.7) respec­

tively. The equality (2.13) follows from an application of the fundamental theorem 

of calculus to e~ ̂  W(y(-)). The inequality (2.14) holds by virtue of inequality 

(2.11). Therefore, (x*,u*) is an optimal solution to the problem (P*,,). 

Now suppose W is (Clarke) regular (Definition 1.6). At t,where y(t) exists and 

6(t) exists, we have 

dW(y(t)) 
9(t) = 

:= lim 

dt 
W(y(t - h)) - W(y(t)) 

h\0 -h 

= limW(y(t)-hy(t))-W(y(t)) 
h\0 -h K ' 

= -W°(y(t); ~y(t)) (2.17) 

< -a-m) 
= m) 
= £/(v(*)X*)) <ZdW(y(t)), (2.18) 
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where equality (2.16) follows by the Lipschitz continuity of W and equality (2.17) 

holds by the regularity of W. 

If condition (2.8) holds, by (2.18), we have for all £ ' G dW(x*(t)), 

dW(x*(t)) ^ „„,_„ 
dt 

= A(x*(i), u*(t))W(x*(t)) - /0(x*(i), u*(t)) 

a.e. tE[QX\z0)). (2.19) 

Combining (2.19) with (2.11), we have 

dW(x*(t)) 

dt 
= X(x*(t), u*(t))W(x*(t)) - f0(x*(t), u*(t)) (2.20) 

a.e. t E [0,t?(zQ)). (2.21) 

Multiplying both sides of (2.21) by e -A" (*°) and integrating from 0 to i"*(^o), we 

obtain condition (2.7). • 

2.3 Necessity of the Generalized BHJ Equation: 

The Value Function is a Solution. 

Theorem 2.2 Assume in addition to (A2.1)-(A2.5) that the following conditions are 

met: 

(A2.6) 3a > 0, such that 

f(x,v)-n(x)>a>0 MxEdE, Mv G U, (2.22) 

where n(x) is the unit outward normal to dE at the point x and • denotes the 

inner product, 

(A2.7) A:= inf A(x,u)>A° 

where C+ '•= max{£,0} and 

A°= sup {(y-z)'(f(y,v)-f(z)v))/\\y-z\\2}, 
V,z€E° 

veu 
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(A2.8) for every z E E° there exists an (ordinary, i.e. not a relaxed) optimal solution 

for(Pz). 

Then the value function V is a Lipschitz continuous solution of the generalized BHJ 

equation 

min {C'f(z,v)-X(z,v)V(z) + fo(z,v)} = 0 \/z G E° (2.23) 
£'€3V(JS) 

veu 

with boundary condition 

V(z) = F(z) V zEdE(VzE T*). 

If (x*,u*) is an optimal solution for P^, then 

a.e.tE[0,U(zo)), (2.24) 

where i*(zo) can be equal to oo. • 

Remark 2.3 Condition (A2.6) postulates that when the controlled trajectories get 

sufficiently close to the boundary, they must hit the boundary by virtue of the require­

ment (2.22) that on the boundary the corresponding field element makes an acute 

angle with the unit outward normal. Therefore, this condition could be replaced by 

any suitable condition: e.g. 3 positive y and a such that 

jtddE(y(t)) < - 7 for all t s.t. dr*(y(t)) < a, (2.25) 

where dc(x) is the distance from a point x to a set C and T* is the active boundary 

defined by (2.2). 

It is obvious that condition (A2.7) is implied by the following condition: 

3r > 0 s.t. X(x,v) >Lf + r Vx G dE Vv E U, (2.26) 

where Lf is the Lipschitz constant of function f(-,v). 

Condition (A2.8) is implied by the condition that the set {(f(x,u)', f0(x,u))' : 

u E U} is convex for any x E E° (cf. §3.5). • 
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Proof Technique Before studying the original Bolza problem we study the corre­

sponding Mayer problem. We show that the value function for the Mayer problem 

satisfies the generalized BHJ equation- We then transform the original Bolza problem 

to the Mayer problem and investigate the relationship between value functions. Us­

ing this information, we derive the generalized BHJ equation for the original problem 

from the one for the corresponding Mayer problem. • 

2.3.1 Lipschitz continuity of the value function 

The following proposition is due to Gonzalez and Rofman (1978) (see also Lions 1982, 

Proposition 1.4, p.39) and the proof technique is based on Gonzalez (1980). 

Proposition 2.2 Under assumptions (A2.1)-(A2.7), the value function V(z) for 

(Pz) is Lipschitz continuous on E°. 

Proof Let (<j6(.)(x),u(-)) and (<j)^(z),u(-)) be two admissible pairs for (Px) and (Pz) 

respectively and let TX, TZ be their corresponding boundary hitting times respectively 

(see (2.1)). Define 

rt _ 
rjt(x) := exp[- / X((j)3(x),u(s))ds] 

Jo 
rt _ 

rjt(z) :- exp[- / X(<f>a(z),u(s))ds]. 
Jo 

We consider the difference 

\AJ\ = \J(x,u(-))-J(z,u(.))\ 

separately for each of three cases: where rx = TE = oo, where TX = Tz = r ^ oo and 

where TX ̂  TZ . 
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Case 1. TX = TZ — oo 

In this case, the difference 

|AJ| := Aa 

/"OO J-OO 

= 1/ Vt(x)fo(<f>t(x)Xt))dt~ Vt(z)fo(<t>t(z)Xt))dt\ Jo Jo 
/•oo 

< / [Vt(x)\fo(Mx)Xt))- M<i>t(z)Xi))\ Jo 

Mvt(*)-vM\\fo{M*)Xi))Wt 

< / {e-xtLf0Ut(x)-U^)\\+Mf0\vt(x)-Vt(z)\}dt. (2.27) 
Jo 

Condition (A2.7) implies the following inequality: 

X°\\x-zf>(x-z)'(f(x,v)-f(z,v)), 

from which we have 

| | |^(x) - <t>t(z)\\2 = 2(&(*) - M*))V{M*)X*)) - /(*(*),«(*))) 

< 2\°\\M*)-M*)\\2-

Solving this differential inequality, we have 

IW) - M*)H2 -
That is, 

| |^(x)-^)||2<e2SOt | |x-z||2, 

or 

\\M*) ~ M*)\\ <'^W* ~ 4- (2.28) 

On the other hand, 

—[r)t(x) - r)t(z)] = -r)t(x)X(<l>t(x),u(t)) + rit(z)X(<l)t(z),u(t)) 

= X(<j>t(x), u(t))[rjt(z) - rit(x)] 

+Vt(z)[\(M*)Xi)) - *(&(»),«(*))]• 
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Solving this differential equation, since T/O(X) = 770(2) = 1, we have 

Vt(x) - Vt(z) 

= e-S!™*))AW{J\a(z)i^a(z)>u(s)) _ X<f,a(x)}U(s))]ef:*M*)AWd3y 

= r e - /o"^ 'W' u «) d / [A(^( 2 ) j U ( 5 ) ) - A(^(x) ,7 J( 5))] e- / . t^W-"«) d I^. 
Jo 

Therefore, by virtue of inequality (2.28), we have 

MX)-77t(2)| < r e - ^ | | ^ ( x ) - ^ ( z ) | | e - ^ - ^ 
Jo 

< e-*L-x f* eS°s||x - z\\ds. 
Jo 

If A0 = 0, the last inequality becomes 

\rjt(x) - Vt(z)\ < Ltfe-^x - z\\; (2.29) 

If A0 ̂  0, the last inequality becomes 

\r,t(x)-Vt(z)\<L-xrX°e-^0t-l}\\x-z\\. (2.30) 

Substituting (2.28) and (2.29) or (2.30) into (2.27), if A0 = 0, we have 

|Aa| < I™ e-*Lh\\x-z\\dt + Mfo f°°Ltfe-*\\x - z\\dt 
Jo Jo 

= (LfjX + MfMX2)\\x-z\\; (2.31) 

if A0 ̂  0, we have 

/•oo _ n fOO _ 

|Ai| < / e-*Lf0e
x0t\\x-z\\dt + Mf0 L-x/X° • e~*[ex°« - l]dt\\x - z\\ 

Jo Jo 

= [LfJ(X - A0) + Mf0L-x/~Aa ~ A0)"1 - A"1)]!!* - z\\. (2.32) 
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Case 2 TX = TZ — T ^ oo. 

In this case, the difference 

IA J\ < [T
 |T?S(X)/0(^(X), u(s)) - na(z)f0((t>a(z), u(s))\ds 

Jo 

+\VT(X)F(M^)) ~ Vr(z)F(Uz))\ 

< Ax+ 7/T(x)|P(^T(x)) - F(<f>T(z))\ + \r,T(x) - ^OOIFCM*)) 

< Aa f e-^TLF||^T(x) - ^ r(*)|| + MF|T7T(X) - rjT(z)\ (2.33) 

Substituting (2.28) and (2.29) or (2.30) into (2.33), if A0 = 0, we have 

|AJ| < Ai + e-^LpWx-zW + MpL^Te-^Wx-zW 

< (LfjX + MfMlh2 + LF + MpL^Mx)\\x - z\\, 

where the last inequality follows from ineqality (2.31) and the fact that e~-T < 1 and 

there exists a constant Mx > 0 for all £ > 0 such that te~- < Mx; if A0 ^ 0, we have 

|AJ | < Ax + e-x-TLpel0T\\x-z\\ + MpLl/X
oe~x-T(elOr-l)\\x-z\\ 

< [ I / J ( A - P ) + M / o i s / A ° [ ( A - r ) - 1 - - A - 1 ] + i F + M i r^M 2 ] | | x -2 | | , 

where the last inequality follows from inequality (2.32) and the fact that ê A ""-)' < 1 

for all t > 0 and A°~le~- (e*0' - 1) is bounded by a constant M2 > 0. 

Case 3 TX^TZ. Because of the symmetry, without loss of generality we may assume 

that TX <TZ. 

Case 3a. Suppose TX < TZ ^ oo. In this case, the difference 

|AJ| < r\Vt(x)fQ(Mx)Xt))-m{z)fo(Mz)Xt))\dt 
Jo 

+ r \Vt(z)fo(M*)Xt))\dt + I^(X)P(^(X)) - Vra(z)F(4>r.{z))\ 
JTX 

< A1 + Mf0e-X-T°(TZ-Tx) 

+\Vrx(x)n<t>rB(x)) ~ rh>(*)F(K(*))\- (2-34) 
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Suppose 

\\x - z\\ < —-zj-r- (2-35) 
11 " 1 + Mfjy v ; 

where 7 and a are the constants in condition (2.25) whose existence is assured by 

(A2.6). Then it can be shown that 

Tz-Tx<el0-*\\x-z\\ft. (2.36) 

Indeed, for all t > TX, by virtue of inequality (2.28) and the boundedness of the vector 

field / , we have 

IW)-^(*)II < \\M*)-M*)\\ + \\M*)-M*)\\ 

< Mf(t-Tx) + e*°T*\\x-z\\. 

Define a := eA Toj|x — 2IJ/7. By assumption (2.35), we have for all TX < t < TX + a, 

which implies dr*(<f>t(z))<a Vi G [TX,TX + a]. Therefore -j-daE(<f>t(z)) < — 7 V i G 
at 

[r
x,Tx + er] by virtuo of inequality (2.25) and this implies the following inequality: 

ddE(Uz)) < ddE(K{z)) + (-y)(t-Tx) 
< MM - <j>rM\ ~ l(t ~ Tx) 
< e

x ° r " | | a ! -2 ! | | - 7 (* -T«) J (2.37) 

where the last inequality follows from inequality (2.28). If we suppose that <f>t(z) E E° 

for all t E [TX,TX + a), we obtain by the last inequality that 

daB(K+*{*)) < ^°Tl |N - z\\ -ye^'Wx - z\\/i = 0, 

i.e. <f>Tm+<r(z) E dE. Therefore, the trajectory <}>(.)(z) hits the boundary dE at TX + a. 

Therefore TZ < TX + a := TX + ex°T"||x - z\\/^. Inequality (2.36) follows from the last 

inequality and the assumption that TX<TZ. 
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Since 

\VT«(X)-VTZ(X)\ = \ r]a(x)X((f>a(x),u(s))ds\ 

[T'\X(<j>a(x),u(s))\ds 
JTm 

>TX 

-XTB < e-

< e~^Mx(Tz-Tx), (2.38) 

we have that 

\rb.(*)F(K(*)) - i^W^C^W)! 

< 1h.(*)\F(Mz)) ~ F(K(Z))\ + \Vr„(x) - T]ra(z)\\F(<f>Tm(z))\ 

+ W * F ( M * ) ) ~ H<t>Tz(z))\ + 1P(^(*))M*) - Vr,(z)\ 

< e-^Lpel°^\\x - z\\ + \rjTm(x) - VT.(Z)\MF 

+e-x-T*LFMf(Tz - TX) + MFe-^'Mx(Tz - TX) 

< LF\\x - z\\ + MF\rjTm(x) - T)Tx(z)\ 

+(LpMf + MpM^)\\x - z\\h, (2.39) 

where the last inequality follows from inequality (2.36) and the fact that A > A0. If 

A0 = 0, by virtue of inequality (2.29), (2.39) becomes 

\Vrx(x)F(<i>Tx(x)) - r)Tc(z)F(cl>Tz(Z))\ 

< LF\\x-z\\ + MFLxTxe-^-\\x^z\\ 

+(LFMf + MFM-X)\\x - *||/7 (2.40) 

= \Lp\MpLx\(LpMf\MpM-x)h\\x-z\ (2.41) 

Therefore, if A0 = 0, by virtue of inequality (2.31) and (2.36), inequality (2.34) 

becomes 

|AJ| < A x + M f c e - ^ - f c - r . ) 

+{LF + MFLX + (LpMf + MFMi)h))\\x - z\\ 
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< lLfJX + MfMIX2 + Mf0h 

+LF + MpL^ + (LpMf + MFMi)h]\\x - z\\ 

If A0 ̂  0, by virtue of inequality (2.30), (2.39) becomes 

k(»)%(*))-U^(M'))l 
< Lp\\x - z\\ + MpLz/X° • e-^-[eX°T- - l]||x - z\\ 

-r(LFMf + MpM^h • \\x - z\\ 

= [LF + MFLjiM2 + (LFMf + MFMd/<y]\\x-zl (2.42) 

where the last equality follows from A-1e~- (eX°* — 1) < M2. Therefore, if A0 ̂  0, by 

virtue of inequality (2.32) and (2.36), inequality (2.34) becomes 

|AJ| < Ax + Mf0e-^(TZ-Tx) 

+[LF + MFL-xM2 + (LpMf + MpM-x)^x-zl\ 

< [LfoKk ~ A0) + M /0^/A°((A - A0)"1 - A"1) + Mhh 

+LF + MFL^M2 + (LFMf + MFM^)h]\\x - z\\. 

Now suppose inequality (2.36) fails to hold, i.e. TZ — TX> e*°T*\\x — z\\/~f. Then 

we have 
ae~ T" 

because (2.35) implies (2.36). In this case the difference |AJ| is bounded in the 

following way 

|AJ| < Ai+rr,l(z)\foMz)Xm^+\^(x)F{Mx))-rhk(z)F(^k(z))\ 
Jrm 

< Ax+ Mfo f°° e-^ds + 2MFe-^ 
Jrm 

< Ai + Mfoe-*-T"/X + 2MFe-x-T«. 

But by virtue of (2.43) 

e-^<e-^<1 + Jl f^ll8-«||. 
a 
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Case 3b. Now suppose TZ — +00, we have 

TZ-TX> eS°T"||x-z||/7 

which implies 

l b - a l l > a e _ A°T" 
1 + M/ /7 ' 

Therefore, 

|AJ| < Ax+ ^(*)|/o(0e(*), «(t))|*ft + I^ («)1F(^ . (* ) ) | 
JT„ 

< Ax + Mfo e-^* IX + Mpe-^'. 

But e-*T- < e-X°r- < i ± ^ ^ | | x - zll. 

In all cases, there exists a constant Lj such that for all admissible controls u(-), 

V(x) < J(x,u(-)) < J(z,u(-)) + Lj\\x-z\\. Hence V(x) < inf J(*,u(0) + I j | |x - z\\. 

Therefore, V(x) — V(z) < Lj\\x — z\\. Since x and z are arbitrary, we have the reverse 

inequality, i.e. 

\V(x)-V(z)\<Lj\\x-z\\. 

2.3.2 A Mayer problem 

We define the Mayer problem of interest to us as follows: 

(Pt0,x0) minimize $(i*,x(i*)) 

over the class T of all admissible pairs (x(-),u(-)) for (Pt0,xo) 

such that u : [to,**) —> -Km is measurable, 

u(t)EU CMm VtE[tQ,t,), 

x(t) = f(t, x(t), u(t)) a.e. t E [t0, U), 

x(to) = x0 EE°, 

where i» := inf{i > 0, x(t) E dE} < 00 is the boundary hitting time. When U = 00, 

we agree that $(£„,, x(i»)) := lim^oo §(i,x(i)) (which exists by assumption (A2.10) 

below). 
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Assume that the following conditions hold: 

(A2.9) the control set U is compact in Mm, 

(A2.10) $ : JRxE0 — • M+ is locally Lipschitz, and for every admissible pair such that 

U = oo limj-Kx, $( i , x(t)) exists and is finite, 

(A2.l l ) / : M X E° x U —> Mn is continuous and locally Lipschitz in (t, x)EMx E° 

uniformly in u E U. 

Define the value function for (Pj0x0) a s the function V : [to, °°) X E° —> M+ 

given by 

V(s,y) := inf J>(t„x(t.)) V(s,y) E [t0, oo) x E° 

V(s,y) := $(s,y) V(s, y) E[tQ, oo) X dE. 

Then we have the following lemmas and theorem. 

Lemma 2.1 The value function evaluated along any trajectory corresponding to a 

control is a nondecreasing function of time. More specifically, for t0 < TX < T2 < 2* 

V(TX,X(TX))<V(T2,X(T2)). U 

Lemma 2.2 The value function evaluated along any optimal trajectory is constant 

for t0<t<tt. m 

We skip the proofs of Lemmas 2.1 and 2.2 since they are exactly the same as the 

proofs of Theorems 3.1 and 3.2 of Fleming and Rishel (1975). 

Theorem 2.3 Suppose that the value function is locally Lipschitz on [to, oo) x E°. 

Let (s,y) E (to, oo) x E°. Then V(s,y) satisfies the BHJ partial differential inequality 

in the following form: 

<x + P'f(s,y,v)>0 V(a,P')EdV(s,y), vEU. (2.44) 

http://A2.ll
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If there exists an optimal solution (x*,u*) for any (P»|V), then the value function 

V(s,y) is a solution of the following generalized BHJ equation 

min A* + B'f(s,y,v)} = 0 \/(s,y) E (t0,oo) X E° (2.45) 
(a,p')e3V(a,y) 

veu 

with boundary condition 

V(s,y) = §(s,y) \/(s,y)E[t0,oo)xdE 

and 

min {a-r8'f(t,x*(t),u*(t))} = 0 a.e.tE[s,Q. (2.46) 
(a,p')edV(t,x*(t))1 v w ' v " J L ' ' v ' 

Proof Assume first that V(s, y) is differentiable at (s, y) E (to, oo) x E°. Since (s, y) 

is an interior point of [i0, oo) x E, if an arbitrary constant control v G U is used over 

an interval [s, s + k] and k is small enough, the solution of the system 

x = f(t, x, v) a.e. t E [s, s + A;] 

x(s):=y 

will lie in [to, oo) X l?0 for s < t < s + k. Let u(i) be any control for initial point 

(s -f k, x(s + k)). Define a control Uk by 

Ujt(i) := { ~ ~ 
[ u(t) s + k<t<U. 

Let xjb denote tbe solution of the system 

x = f(t, x, v) a.e. t E [s, s + k] 

x(s) :=y 

y = f{i,y,u) a.e. t E [s-r k,U) 

y(s + k) :=x(s + k). 

Let D+g(t) denote the right derivative of a function g(t). Since Uk is constant on 

[s,s + k], we have 

D+xk(t) = / ( i , xfc(i),ufc(i)+) Vi G [3, s + k), 



52 

where uk(t)
+ is the limit from the right of Uk at t. By Lemma 2.1, V(-, xjt(-)) is non-

decreasing, hence D+V(t, Xk(t)) > 0 for any value of t for which this derivative exists. 

Hence computing this derivative at t := s, using the chain rule for differentiation, we 

have 

V. + Vyf(s, y,v)>0 VvEU. (2.47) 

Now for any (s,y) E (2o,oo) x E°, since V(s,y) is locally Lipschitz, we have by 

Proposition 1.9 

dV(s, y) = co{lim VV(si} Vi): (Si, Vi) -> (s,y) (Si, Vi) i S U Qv}, (2.48) 

where S is a set of measure zero and Qy is the set of points at which V is not differ­

entiable. Equation (2.48) implies that any (ct,B') G dV(s,y) is a convex combination 

of sequential limits defined by (ctk,B'k) := l imW(s*,y*), where (s*,y*) fc' S U fiy 
1—*oo 

and (si,yi) —> (s,y) as i —* oo. Since (.s,y) is an interior point, the points (.s*,y*) 

can be chosen to be in the interior of [t0, oo) X E° and where V is differentiable. 

Therefore, by virtue of inequality(2.47), we have 

^ ( ' f .¥?) + HW,»*)/(«},»?»») > 0 V« 6 ET. (2.49) 

Taking limits as i —• oo, we have, by the continuity of / and the definition of (ak,B'k)t 

*k + 8'kf(s,y,v)>0 VVEU. 

Since (a,B') is a convex combination of (ak,B'k), inequality (2.44) follows. 

To prove the validity of equation (2.45), it suffices to show that the equality 

a* + B*'f(s,y,v*) = 0. (2.50) 

holds for certain (a*,B*') E dV(s,y), v* E U. 

First, we can show that any C E dx(s) is a convex combination of Ck such that 

CkEG(s,y):={f(s,y,v): vEU}. (2.51) 

Indeed, by Proposition 1.9, dx(s) = co{limx(3j): s; -> s Si g S\J$lx}. Therefore, 

any C E dx(s) can be expressed as a convex combination of sequential limits Ck defined 



53 

by Ck = limx(s*), where i f - » s l s ^ 5 U Q,x. By the differentiablity of x(-) at s1-, 

we have 

iW) = /W,*W),«W)). (2-52) 

By the compactness of U, there exists a convergent subsequence of the sequence 

{•u(s*)}j (denoted by the same symbols) such that u(s^) —> vk E U i —v oo. Tak­

ing (sub)sequential limits in ( 2.52) as s* —•> s, we have Ck = /(•s>a:(>s)j't;fe) by the 

continuity of / and x and the definition of Ck- This implies that Ck G G(s,y). 

By Lemma 2.2, the value function V evaluated along the corresponding trajectory 

x* is constant. Hence 

~V(t,x*(t)) = Q tE(s,Q. 

Let H(t) := (t, x*(t)). By the chain rule for Clarke generalized gradients (Proposition 

1.12) we have 

0=4:V(t,x*(t)) E co{dV(t,x*(t))dH(t)} 
dt 

:= co{(at,Bt') • (1,6') : (a,, A') G dV(t,x*(t)),Ct E dx*(t)} 

= co{at + /3t'Ct : K Bt') E dV(t, x*(t)), Ct E dx*(t)} (2.53) 

C co{at+(3t'Ct : (at,Bt') E dV(t,x*(t)),Ct E G(t,x*(t))}, 

(2.54) 

where the last inclusion (2.54) follows from the inclusion (2.51). 

Consequently, for all t E (s,t*), there are element (at,Bt) E dV(t,x*(t)) and 

vt E U, such that 

0 = at + B'tf(t,x*(t),vt). (2.55) 

By Proposition 1.3, for all (at,Bt') E dV(t,x*(t)), s<t<U, \\(at,Bt')\\ < Ly which 

implies that the set {(at,Bt') E dV(t,x*(t)) : s < t < t*} contains in a compact set. 

Therefore we can assume (taking subsequences if necessary) that (ctt,Bt') —> (a*,B*') 

as t —• s. By Proposition 1.10, the generalized gradient of function V(-) as a set-

valued map is closed; therefore (a*,B*') G dV(s,x*(s)) = V(s,y). By compactness 
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of U, we may assume (taking a subsequence if necessary) that vt —> v* E U. Taking 

limits in (2.55), we obtain the desired equality (2.50) by continuity of the function / . 

Equation (2.46) follows from inclusion (2.53) and inequality (2.44). • 

2.3.3 Proof of necessity 

(Pz) can be equivalently posed as the following problem of Mayer type: 

(P0,z) min $(£(*.)) := xn+1(*») + x0(U)F(x(U)) 

over the class T of all pairs (x(-),u(-)) with 

x(.):=(x(.)>,xo(-),xn+x(.))> 

s.t. u : [0,£«) —> Mm is measurable 

u(t)EUCJRm ViG[0 , t ) 

5(2) = f(x(t),u(t)) a.e. *G[0,2,) 

x(0) = (2 : , l ,0 )G^°x(0 , l ]x[0 ,M / o /A] , 

where f(x,u) := (/(x,7j)',-x0A(x,u),x0/o(x,u))'. 

Define the value function for (Po,*) as the function V : (E x (0,1] x [0, M/0/A]) U 

(dE x {1} x {0}) —> M+ given by 

vm -= l infW.«(-))e^$^))> 5 : = (z> z°> *»+0 E E ° X (°> $ X [°> M^o/A] 
| $(Z) = F(z), z := (z, z0, zn+1) EdEx {1} x {0}. 

Then we have 

V(z) = ini{xn+1(U)-rX0(U)F(x(Q)} 
u(.) 

= mf{xn+1(0) + / * x0(t)f0(j(t),u(t))dt + x0(2*)^(s(^))} 

= zn+1 + inf{ / * xQ(t)f0(x(t), u(t))dt + x0(tt)F(x(U))} 
«(•) JO 

= zn+x + inf { /"* xo(0)e" /o ^I0.«(0)<«/o(a;(i)) u ( t ) ) d i 

-fxo(0)e-io*sW0."(0Hjp(a.(^))} 
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= zn+x + z0 inf{ /'* e~ S! W«l»dlf0(x(t), u(t))dt 

"(•) JO 

+ e - / o
, *A(x(0 ,u( 0 )c« i r ( a ; ( ^ ) ) } 

= zn+x + z0V(z). 

By Proposition 1.6, we have 

dV(z) = dVx(z)-r dV2(z) 

= (0,0,1)+ dV2(z) (2.56) 

where Vx(z) := zn+x and V2(z) := ZQV(Z). Define Q(z,z0) := z0V(z). By Proposi­

tion 1.8, since ZQ > 0, we have 

dV2(z) = 5<5(2 ,2o)x{0} 

= zodV(z) x {V(z)} x {0}. (2.57) 

Combining equalities (2.56) and (2.57), we have 

dV(z,z0,zn+x) = (0,0,1)+ zodV(z)x{V(z)}x{0} 

= zodV(z) x {V(z)} x {1}. (2.58) 

By Proposition 2.2, V(z) is Lipschitz continuous, therefore V(z) = zn+x + z0V(z) 

is Lipschitz continuous. 

By virtue of assumptions (A2.1)-(A2.5), assumption (A2.9)-(A2.11) are satisfied 

for problem (Poz). Noticing that V(z) is time independent and applying Theorem 2.3, 

we conclude that V(z) satisfies the generalized BHJ equation 

min {r)'f(z,v)} = 0. (2.59) 
v'eavft 

veu 

Using equation (2.58), any if E dV(z) can be expressed as TJ' = (z0C',V(z),l) 

where C' E dV(z). Therefore equation (2.59) is equivalent to the following equation 

min {z0C'f(z,v) - z0X(z,v)V(z) + z0fQ(z,v)} = 0. 
veu 

Since ZQ > 0, the above equation implies equation (2.23). 

The rest of the theorem follows analogously. • 
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2.4 Uniqueness of the Generalized Solution 

Following Dempster (1989), we shall need the following definitions. 

Definition 2.1 Let function <f> : E —> M be Lipschitz continuous. Its contingent 

derivative at xo in direction do E Mn is defined by 

^(x0;^0):=liminf^a: + ^ - ^ a ; ) . 
t\0 

u 
Definition 2.2 Let the function (f> : E —> M be Lipschitz continuous. We say <f> is 

regular if, and only if, for all x G E and all d E Mn 

<j>.(x;d)= nun C'd. (2.60) 
i'ed<f>(x) 

m 

This definition of regularity is equivalent to ^_(x;d) = (j>o(x;d) (cf. Proposition 

1.3), where <̂ o(x; d) is Clarke's lower directional derivative (Definition 1.4) and hence 

generalizes Clarke's notion of regularity (cf. Definition 1.6). It is implied by the 

relation d<j>(x) = d+<f>(x), where d+<f>(x) denotes the superdifferential of the theory of 

viscosity solutions (see e.g. Elliott 1987). 

The uniqueness result for a regular Lipschitz continuous solution of the Dirichlet 

problem with Cauchy data defined by (2.61) is new (Dempster 1989) and turns out 

to be the nonsmooth extension in this context of a proof of Haar (1928) (see also 

Courant and Hilbert 1953, pp. 145-147) of the uniqueness of a C1 solution of the 

Cauchy problem for a general class of first order nonlinear PDEs. 

Under our assumptions we may consider the left hand side of the generalized BHJ 

equation (2.23) to define an operator G(- ; /0) : C(E°) -> G(E°) by 

G(*; /o)(*); = mm %[C'f(z, v) - X(z, v)<f>(z) + /„(*, t,)], 
veu 

where C(M) denotes the space of all bounded real-valued continuous functions on 

the set M equipped with supremum norm. 



57 

In terms of this operator the Dirichlet problem for the generalized BHJ equation 

becomes to find a Lipschitz continuous funtion <j> E C(E) such that 

G(&/O)|BO = 0 and 4>\BB = F. (2.61) 

Theorem 2.4 A regular Lipschitz continuous solution <j> of the Dirichlet problem 

(2.61) is unique. • 

To see the simple idea of the proof consider the following. 

Proposition 2.3 A solution <f> E C1(E), the space of all real-valued C1 functions on 

E equipped with the supremum norm, of the Dirichlet problem (2.61) is unique. • 

This result is a simple consequence of the following. 

Lemma 2.3 Let fo,go E C(E° x U) and suppose that ,̂i/> G G1(E) solve respectively 

the BHJ equations G(<j>; /o) = 0 and G(yj; g0) = 0 on E° with (j)\aE = ^\aE = F. Then 

max[<£(z) - tp(z)}+ < max[f0(z,v) - g0(z,v)}+/X, 
zeni 2gBu 

veu 

where X := inf X(z,v) > 0. 
~ zeE°,veu v 

Proof Unless <j> < I/J throughout E° ( in which case the roles of <j> and ip may 

be reversed), a maximum of the Gl(E) function <f> — vb exists at z0 E E° at which 

V<f>(z0) — Vtl>(zQ). Now choose vQ E U such that 

ip(zo) = [V-&(zo)f(zo,vo) + go(zo,Vo)]/X(z0,vo) (2.62) 

and 

<f>(zo) < [V<f>(z0)f(zo,v0) +fo(z0,vo)]lX(z0,vo) (2.63) 

and hence 

[(j>(zo) - yj(z0)}+ 

< A_1[(V^(2o) - Vyj(zo))f(zo,v0) + fo(z0,v0) - g0(zQ,v0)]+ 

= A~1[/o(zo,vo)-5o(zo,,yo)]+ 

< X-1max[f0(z,v)-g0(z,v)}+. (2.54) 
zeE° 
„eu 
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By symmetry it follows that 

11̂  — -0II-O < A-X||/0 — police 

relative to the supremum norms for C(E) and C(E° X U) respectively. Hence a 

G1(E) solution of (2.61) is unique. 

• 
To extend this result to the uniqueness of a regular Lipschitz continuous solution 

of (2.61) , we replace (2.62) by 

i>(z0) = [v'of(zo,vo) -rgo(z0,v0)]/X(z0,v0), 

for 7/0' G argmiryea,(,(2o)777(zo,7jo), and (2.63) by 

4>(zo) < [C'of(zo,v0) + fo(z0,vo)]/X(zo,v0)], 

for Co' E axgmmiied^Zo)C'f(zo,vo). Then (2.64) becomes 

[<j)(z0) - i>(zo)]+ 

< X~l[(Co - Vo)'f(z0, v0) + fo(z0, v0) - g0(z0, v0)]+ 

and we are through by virtue of the following. 

Lemma 2.4 For regular Lipschitz continuous solutions (j>,ift of (2.61), we have 

(Co-Vo)'f(zo,vo)<0 

Proof Since ZQ £ E° maximizes <j) — yj over E°, 

ip(z) - yb(zo) > </>(z) - <p(zo) (2.65) 

for z E E°. Consider sequences 

di^>f(z0,v0) ti\0 

such that 

lirninf M(zQ + td) - ^(z0)]/t) = lim([^(*0 + U ) - ^(*b)]/*0, 
<*—*/l*Oifo/ »—•oo 

J \ 0 



for which from (2.65) 

tfbKzo + Udi) - il>(z0)} > t-l[<f>(z0 + Ud^ - <f>(z0)]. 

Taking (subsequential) limits (if necessary) it follows that 

i/»_(zo; f(zo, VQ)) > lim i,"1 [(f>(z0 + Udi) - 4>(z0)] 
I—+00 

> <j>-(z0;f(z0,Vo)). 

By regularity (cf. (2.60)), r}Qf(z0,vo) > C'of(zo,^o)-
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Chapter 3 

Necessary and Sufficient 

Optimality Conditions for Control 

of P D P s 

3.1 Introduction 

Throughout this chapter, for the purpose of exposition, we shall take the interior of 

the state space E° of a PDP to be a open bounded connected subset in Mn such that 

E° = {x G Mn : ip(x) > 0} defined by a boundary function ip E C1(Mn) for which 

[|Vty>(x)|| > 1 for x E dE := {x G JRn : VJ(X) — 0}, the boundary of the state space. 

Denote the state space (once again) by E := E° U dE. 

For more general cases where the state space is a union of sets in Mn, or even 

manifolds, all results remain true provided that each component satisfies the above 

smoothness assumption on the boundary. 

Supposing no impulse control action is allowable (to be relaxed in Chapter 5), we 

make the following assumptions throughout this and the next chapter: 

(A3.1) The interior control set U0 C Mm and the boundary control set Ua C Ml are 

compact. 

60 
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(A3.2) The vector field / : E X UQ —• -Kn is bounded, continuous and Lipschitz 

continuous in. x E E uniformly in u E UQ. 

(A3.3) The jump rate A : E° x U0 —> -K+ is bounded, continuous and Lipschitz 

continuous in x G E° uniformly in u G UQ-

(A3.4) As it was mentioned in §1.4, the transition measure Q may be expressed in terms 

of Qo := Q\B° :E°XUO-^ F(E°) and Qd := Q\dE : dE xUa — • P(E°). 

Qo : E° X U0 —* P(E°) is bounded, continuous (where P(E°) denotes the 

set of probability measures on E° with the topology of (probabilistic) weak 

convergence) relative to the weak* topology on 1P(E°) and Lipschitz continuous 

in x G E° (e.g. for all 6 E C(E°) the map x i—> / 6(y)Q0(dy;x,v) is 
JE° 

continuous and Lipschitz) uniformly in v E UQ. Qa is defined on dE X Ua and 

has an extension to E x Ua such that the extension Qa : E X Ua — • P(E°) is 

bounded, continuous and Lipschitz continuous in x G E uniformly in u E Ua. 

(A3.5) The set of admissible controls u := (u0,ua) C C C Co X Ca is defined in terms 

of the set of interjump open loop measurable (deterministic) control functions, 

Co := {uoEC: U0(T, z) : B+ x E° —> U0}, 

where r represents the time elapsed since the last jump and z represents the 

post jump state, and the set of measurable feedback boundary controls 

Ca := {udEC:ua:dE —> Ua}, 

for which P"{ l im n _ 0 O T n = oo} = 1 for all x G E°, where for initial state x 

Px(-) is the probability measure (on path space) induced by u and C denotes 

the set of all measurable functions between a given domain and range. 

(A3.6) The running cost l0 : E° x Uo —• JR+ is bounded, continuous and Lips­

chitz continuous in x G E° uniformly in u E Ua. The boundary (jump) cost 

la : dE x Ua —> 1R+ is continuous and has an extension to Ex Ua such that the 

extension la : E xUa —> JR+ is bounded, continuous and Lipschitz continuous 

in x E E uniformly in v E Ua. 
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It should be noted that the requirement of the existence of Lipschitz continuous 

extensions of Qa and la to whole state space E is only needed for the Lipschitz 

continuity of the value function as in the deterministic case (cf. Remark 2.1). 

As mentioned in §1.4, the use of controls which are only measurable necessitates 

the open loop nature of the interjump control function u0(-,z) (or uQ(.)(z) in an 

obvious notation) which is appropriate to the initial condition z and which need 

only be specified from 0 to the controlled boundary hitting time V?(z) < oo (cf. 

(2.1)) in case no random jump occurs up to this time elapsed from the last jump 

time. If a jump occurs before t^°(z) elapses, to w G E° say, the control function 

u0(-,w) is used next and the corresponding flow ^(-jw) (or <j>p.(w)) is the unique 

absolutely continuous solution of the nonautonomous dynamical system determined 

by the controlled vector field f(-,u0(-,w)): E X [0,t?(w)) —> E as 

frF'faw) = / ( ^ ( T , W ) , « O ( T , W ) ) P (0 ,™) :=w. (3.1) 

This follows from Caratheodory's existence and uniqueness theorem for first order 

differential equations of the form (3.1) in Mn on [0,2^ (w)) written in terms of the 

Lebesgue integral as 

<P(T,W) :=W+ fT f(<j>^(t,w),uo(t,w))dt T E [0,t»(w)) (3.2) 
JO 

(see e.g. Fleming and Rishel 1975, p.63). 

The PDP optimal control problem(with dynamic control) is to find an admissi­

ble control u = (uo,ua) E C so as to minimize the expected discounted total cost 

functional 

Jx(u) := E:[re-%(^,u0(Tlz-))dt + J2^STfH^T-M^T-))k^ VE)}- (3.3) 
JO • « » T. 

t t 

where E£ denotes expectation with respect to P£, 6 > 0 is the discount rate and 

1{.} denotes the indicator function of the event {•}. Henceforth for simplicity we 

sometimes suppress the notation showing the explicit dependence of process entities 

on a control policy u EC. 
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In this chapter, we aim at developing a necessary and sufficient optimality con­

dition of dynamic programming type for the PDP control problem. First we will 

show that the optimal control for the PDP control problem is to choose after each 

jump a control function which is an optimal control in a deterministic optimal control 

problem with boundary conditions by applying the theory on discrete time stochastic 

optimal control problems of Bertsekas &; Shreve (1978). Then by applying the results 

in Chapter 2, we will conclude that the value function for the PDP optimal control 

problem is Lipschitz continuous and that a generalized BHJ equation is a necessary 

and sufficient condition for optimality. 

3.2 Reduction to Discrete Time Stochastic Con­

trol 

In order to establish the existence of an optimal policy, as mentioned in §3.1, Davis's 

(1986) idea (originally carried out for the case of no boundary control, i.e. Ca := 0) 

is to reduce the continuous time PDP optimal control problem to an optimal discrete 

time stochastic control problem by examination of the embedded Markov decision 

process with the same admissible policies C. 

To this end assume further that: 

(A3.7) There exists a > 0 such that for all x G dE and all v E Uo, 

f(x,v)-n(x)>a>0, (3.4) 

where n(x) := VT/>(X)/|| VT/>(X)|| is the unit outward normal to dE C Mn at the point 

x G dE. (This is actually assumption (A2.6) repeated here in the PDP context.) 

Let UQ = ioo(iR+; UQ) denote the space of all bounded measurable functions 

uo : JR+ —> UQ with the essential supremum norm. For any u0 E UQ, let 4>X(z) 

be the integral curve of 

&t - f(xt,Uo(t)) XQ := z a.e. 2 G [0,2"(z)), 



64 

where t"(z) := inf{2 > 0 : $(z) E dE} is the boundary hitting time. Define the 

cumulative jump rate 

A?(«) := [\x(tf(z),uo(s)) + 6)ds]. (3.5) 
Jo 

Expression (3.5) represents the cumulative total jump rate of the killed process (see 

the proof of Proposition 3.3). 

Let U := Uo X Ua- Define the function g : E° xU —> JR+ by 

g(z, u) := j™ e-^MfcCff (*), u0(t))dt + e " ^ « f o ( ^ ( * ) , v), (3.6) 
Jo 

and the transition measure Q : E° X U —* P(E°) by 

Q(A;z,u):= 

/<VW Q0(A; tf(z),u0(t))X(tf(z),uo(t))e-AMdt + e-
AWQa(A; #.(*),«), (3.7) 

JO 

where A E £ (here the Borel sets of E°). 

The following problem is a well defined infinite horizon discrete time stochastic 

control problem (cf. Bertsekas and Shreve 1978): 
oo 

(DPI) minimize ExYJg('^k,iik) 
o 

over policies ir := (po,/MX, ..., /*#,...) 

such that fik(z0,^o,---,Zk-X,fik-i,Zk) EU0xU3 A; = 1,2,..., 

where g is defined by (3.6) and zjt is the discrete time Markov process with transition 

measure Q defined by (3.7). We shall call g the one step cost function and Uo x Ua 

the control space. 

According to Bertsekas and Shreve (1978) (Definition 8.7, p.208), (DPI) belongs to 

the lower semicontinuous model if the state space E° is a Borel space, the control space 

U0 x Ua is compact, the transition measure Q : E° xU —> P(E°) is continuous and 

the one step cost function g : E° xU —• JR+ is lower semicontinuous and bounded 

below. Alternatively (see Bertsekas and Shreve 1978, Definition 8.8, p.210), if the 

state space E° and the control space are both Borel spaces, Q : E° xU —> P(E°) 
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is continuous and g : E° xU —> M+ is upper semicontinuous and bounded above, 

then (DPI) belongs to the upper semicontinuous model. 

The state space E° of our model (defined in §3.1) with the Euclidean topology is 

a Borel space. Both IQ and la are positive and bounded above, so g is bounded both 

below and above. However the set of admissible interior controls UQ := Loo(M+; Uo) 

is no2 compact, so that the control space U — Uo x Ua is not compact. 

In order to make the nonseparable space L00(M+; U0) compact we must con­

sider Ir00(iR+;P(?7o)), the space of probability measure-valued relaxed (generalized, 

mixed) controls. Using a relaxed control amounts to randomizing at each time t over 

UQ rather than choosing a specific value u E UQ. The space of all ordinary controls 

UQ is embedded in the space of all relaxed controls by means of the injection de­

fined by u(t) i—> u(t) := £„(t)(-) where 8( denotes the 1-atom probability measure 

concentrated on £. 

Now we define a topology on the relaxed control space Uo := 2/co(iR+;iP(J7o)) C 

Loo(M+] @*(Uo)) as follows: Let X := LX(M+; C(UQ)) denote the space of all map­

pings A(.) : .R+ —> C(Uo) such that /0°° ||/it(')||ood£ < oo. It is a Banach space whose 

dual space is X* = Lao(M+; C*(Uo)) with the pairing 

(h,u) = / / ht(u)ut(du)dt 

for /i(.) G X and u^ E X*. Let || • jji denote the total variation norm in C*(UQ). 

Then the unit ball in X* is 

B, = {«/.) G L^R^C^Uo)) : ess sup ||u t(-)||i < 1} 
t€fl+ 

and this is iueafc*-compact by Alaoglu's theorem. The following proposition shows 

that the set of relaxed controls U0 is a weak*-closed subset of B„. 

Proposition 3.1 UQ is weak*-closed in B,. That is, for any sequence {{£'} C UQ, 

ux —+ u in the weak* topology implies u EUQ. 

Proof 

Uo = {u E Lo0(JR+; C*(U0)) : ess sup ||ut(-)||i = 1} 
teR+ 
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is obviously a subset of B* 

Since i?# is weak*-compact, ux —> u in the weak* topology implies that u E B*. 

By definition, ux —• u in the weak* topology means that for any fy.) G Lx(Pt,+; G(UQ)), 

(h,ul) —* (A,iZ), 

i.e. 

/°° / At(u)5|(<fcx)<ft -» /°° / fct(ti)tZt((i«)dt. (3.8) 
JO JUb JO Ju0 

In particular, let ht(u) := e _ t G ii( iR+; G(UQ)). Since S' G Wo, fUQu\(du) = 1. 

Therefore (3.8) implies that 

/•oo r ^oo 

/ e"1 / ut(du)dt = / e~'i2 
JO JUb ' Jo 

That is, 

I" e-^f ut(du) - l]dt = 0. 
Jo Ju0 

Since u g B , implies JUQ ut(du) < 1, we have 

/ ut(du) = / |72t(cfoj)| = 1 a.e. 2 G [0, oo), 
Ju0 Ju0 

by standard results in funtional analysis. Hence That is, 

ess sup ||3 t(0l|i = 1 

teR+ 

and u EUQ as required. 

Thus Uo is a weak*-compact subset of X*. We term the relative weak* topology 

on UQ the Young topolgy, and this is the only topology on UQ considered hence forth. 

With the Young topology on UQ and the Euclidean topology on Ua, the control space 

UQ x Ua with the product topology is compact. 

Redefine, in terms of u := (u0, v) E U , a relaxed control function u0 and boundary 

control action v pair, the flow (3.2) as 

fi(z) :=z+ f i f(tf(z),u)uot(du)dt, (3.9) 
Jo Jt/0 
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with boundary hitting time 

fj(z) := inf{2 > 0 : fi(z) E dE} 

and cumulative jump rate (3.5) as 

A?(*):= / ' / X(<f>Z
a(z)),u)uoa(du)ds + 8t. 

Jo JUQ 

Then the one step cost (cf. (3.6)) becomes 

g(z,u):--

IUa 

with corresponding one step transition measure (cf. (3.7)) given by 

ft,Z f e-
A^no(^(z),u)uot(du)dt + e-^^la(<l>l(z),v) (3.10) 

JO JU0 

Q(A;z,u):= 

/ t , ( 2 ) / Qo(A]i(z),u)X(rt(z),u)e-A^Uot(du)dt 
Jo JUQ 

+e-Al(z)Qa(A;<f>i(z),v). (3.11) 

To show that the functions defined by g : E° x U —> R+ and Q : E° xU —> 

P(E°) are continuous with respect the topology defined on E° x U, we need the 

following lemma (see e.g. Warga 1972, p.325). 

Lemma 3.1 Under assumption (A3.2), the map (z,{t0(.)) '—* ^ n t o IS continuous 

from Mn X UQ to C([0,T];Mn) with respect to the supi mum norm on C([0,T];Mn) 

for any T < 2?(z) E R+. 

P r o o f To show that the map (z, uo(-))'—* $*.)to i s continuous. We must show that 

if (zn,u
n) E E° X Uo and (zn,u

n) —> (z,u) as n —> oo, then it follows that 

<f>™ —> <f>t as n —» oo, 

where <f>t is the solution of (3.9) and $" is the solution of (3.9) with (z,u) replaced 

by (zn,un). 
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For simplicity, define 

IU0 

Then (3.9) becomes 

/ f(<f>t,ut)dt := ( I f(<t>t,u)ut(du)dt. 
Jo Jo JUo 

4>t = z+ / f(<j>a,ua)ds. 
Jo 

Therefore, we have, 

w - M < ik - z\\ +1 f\m,u:) -R<f>a,ua)dS\ 
Jo 

< \\zn-z\\+ f\M,Un
a)-f(<l>s,Un

a)\ds+\ ff(<f>a,u:-Ua)ds\ 
Jo Jo 

< \\zn-z\\ + Lf f\\fi-<t>a\\ds+\ff(<pa,u
n
a-ua)ds\. (3.12) 

Jo Jo 
Let 

rt _ 
hn(t) := I f(<f>a,u

n,-ua)ds 
Jo 

too _ 

= / /[o,t](5)/(^>S"-'"*) r f s 

«/0 

Since un —> u as n —̂  oo, we have, 

hn(t)->0 forall2G[0,T] 

by the general convergence theorem (see e.g. Royden 1963, Proposition 18, p.232). 

Now we prove that this convergence is uniform on [0, T] by contradition. Therefore 

suppose hn(t) do not converge to zero uniformly for 2 G [0, T]. Then there must exist 

e > 0, T G [0,T] and subsequence {tj}jeJ E [0,T] with J C {1,2, • • •} such that 

lim2j = r and \hj(tj)\ > s Wj E J. (3.13) 
JGJ 

Since hn is continuous for each / € J, let 8 > 0 be such that 

M O ~ hi(r)\ < £ / 2 if | < - T | < ^ 

and since hj(r) —> 0 choose j0 E JN such that for all / > j 0 , 

\hj(r)\ <e/2 and \tj-r\ < 8. 
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Then for all j E J such that j > jo, we have 

l*i(*i)l < Mti)-hi(T)\+\hi(T)\ 

< e/2 + e/2 = e 

contradictory to (3.13). 

By Gronwall's inequality (Proposition 1.13), from (3.12) we have 

H t f - M < \\zn-z\\ + \hn(t)\+ f LAWzn-zW + ^WeSl^ds 
Jo 

= \\zn - z\\ + \hn(t)\ + LfC(t)\\zn - z\\ + LfC(t) f \hn(s)\ds 
Jo 

< \\zn - z\\ + C(T)LfT\\zn - z\\ + C(T)Lf f \hn(s)\ds, 
Jo 

where C(t) := J0
teJ'Lid ds. We conclude that ^" —>• <j>t as n —» oo uniformly in 

2 G [0, T] from the fact that hn(t) —> 0 uniformly. • 

We now have the following continuity result. 

Proposition 3.2 Suppose conditions (A3.1)-(A3.7) hold. Then the maps g : E° X 

U —> IR-f. and Q : E° X U —> P(E°) are continuous respect to the appropriate 

topologies. • 

Davis (1986) proved this result with the assumption of no boundary controls. Using 

same technique, we shall give a proof allowing boundary controls. 

Proof Fix u0(.) E Uo, #(•) E C(E°) and z E E°, define functions <f>t,T)t,I? and Ct 

by the following differential equations 

j>t = / f(<j>t,u)uot(du) <f>0:=z (3.14) 
*SUQ 

Vt = - / X((f>t,u)rjtuot(du) 7i0 := 1 (3.15) 
JUc 

It = I [ 6(y)Qo(dyJt,u)X((}>t,u)rllUot(du) Ie
o:=0 (3.16) 

JUQ JE° 

Ct = / rjtlo(<bt,u)uot(du) CQ:=0. (3.17) 
JUg 
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To show that Q is continuous we must show that if (zn,un) —• (z,u) as n —> oo, 

then 

/ 9(y)Q(dy,zn,un)-+ f 6(y)Q(dy;z,u) (3.18) 
JE° JE° 

for all 9 E C(E°). 

Let <f)t be the solution of (3.14) with boundary hitting time 2, and <j>™ be the 

solution of (3.14) with (zn,un) replacing (z,u) with boundary hitting time 2" and let 

r]t,TJt and It,I" be the corresponding solutions of (3.15) and (3.16) for 6 E G(E°) 

fixed. Then 

J^ 6(y)Q(dy; zn,un) = i$ + ,p„ J^ 6(y)Qa(dy; tfn,un). (3.19) 

Case a. 2» = oo. 

Let Tc(t) denote the e-tube around (j> up to time 2, i.e. 

T.(t):={y SIT : gmM.-y\\<e}. 

Lemma 3.1 implies that {^",0 < s < 2} C Te(t) for n sufficiently large and hence, 

since Te(t) C E° for small e, that 2" —> oo as n —> oo. Thus using (A3.4) the last 

term in (3.19) converges to zero a s n - » o o and it remains to show that Jt" —> JM. 

It follows from the definitions that r/J1 < e~St for all n and that rjt < e~6t which 

together imply that 7" —k 1^ as 2 —* oo uniformly in n and Jt —> /QO. Applying 

the general convergence theorem, we have / " —» J4 as n —• co uniformly in 2 by 

Lemma 3.1. Hence /£, —* JTO as n —» oo; since for a jy T > 0 we can write 

| i ^ - / o o | < | ^ - i ? | + | i ? - / a | + |Jr-/oo|. 

We can now choose T (independently of n) aud then n to yield \I^ — 1^ < e for 

any e > 0. Finally, we have 

\i?«-ioo\<\it?-a + K~u. 

The result follows, using again the uniform convergence of J™ to I£, and the fact that 

2" —> oo as n —> oo. 
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Case b . 2t < oo 

Let Ct '•= (<t>t,nt,It C*)' denote the solution of equations (3.14)-(3.17) and let Ct 

denote this solution with (jzn,iln) replacing (z,u). These solutions evolve in the space 
A „ A ** 

E := E X M = {(x,y) : i])(x,y) > 0}, where ij)(x,y) := ^(x), the original boundary 

function ox §3.1, for x E Mn,y EM3. It follows from this construction that if f(x,v) 

satisfies (A3.7) then Ct satisfies 

l i m m f ^ ' " ^ ' " > 0 , " (3.20) 
*-**. 2 , - 2 K J 

where v := V,0(^t.)[||VV'(^4.)||]-1 is the outward unit normal to dE. Now the right 

hand side of (3.19) takes the form h(C^,un) for some continuous function h(-, •), so to 

establish (3.18) it suffices to prove that ££i —» 6. as n —» oo. We do this by showing 

that 

diam(fe(2#) n dE) -> 0 as e J. 0 (3.21) 

where Te(t) is an e-tube around {£,,0 < 5 < t} . Applying Lemma 3.1, we have 

C? —> Ct a s n ~> °° f°r a n y *• Therefore for arbitrary 2 and e, {£", 0 < s < 2} C Te(t) 

for sufficiently large n. Hence (3.21) will imply that eventually 2" is finite and that 

\Ctn — Ct.\ < diam(Te(2„) n dE). ^From the hypothesis that E has a C1 boundary we 

see that (3.21) holds if 

diam(re(2,) n T) -» 0 as e | 0, (3.22) 

where T is the tangent hyperplane to dE at Ct, • 

Thus it remains to establish (3.22). To this end, using (3.20), take tx E [0, i») and 

7 > 0 such that for all 2 G [2i, 2,) 

( 6 . - 6 ) ' " > 7 ( * . - 0 - (3-23) 

Since {C„0 < s < tx} C E°, there exists ex > 0 such that fCi(tx) C E°. Thus for 

e G (0,£i], fe(U) n P = [fe(U) - fc(tx)] n r , i.e. we can discard the trajectory prior 

to tx. From (A3.2) the velocity of Ct is locally bounded, i.e. there exists a constant 

a such that for 2 G [2i,2„) 

116-6.11 <<*(*.-2). (3.24) 
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Now (3.23) and (3.24) imply that the trajectory segment F = {Ct,h < * < * • } is 

contained in a cone of internal angle 2cos(7/a) . Hence if e < ex, and y G T is such 

that dF(y) < e then [\y — Cu\\ < a e / 7 , i.e. diam(Te(U)C\T) < 2acy. This establishes 

(3.22) and shows that Q is continuous. 

Continuity of g is proved in an exactly similar manner. • 

From above discussion, we have seen that the control space Uo X Ua is compact 

and that g and Q are continuous. Therefore we conclude that the problem (DPI) 

with relaxed controls may be defined as: 
_ 0 0 

( D P I ) minimize Ex^2g(zk,fJ-k) 
k=o 

over relaxed policies 7T := (/Jo, fix,..., fij^,...) 

such that (ik(z0, fi0,..., zk_x, (ik-x, Zk) EU0 X Ua A; = 1 ,2 , . . . , 

where z^ is the discrete time Markov process with the transition measure given by 

Q(A; z, u) and that belongs both to the classes of upper and of lower semicontinuous 

models. 

In particular, if 7T := (fi, fi,...) for fi : E° —»• Uo X Ua, then the policy is called a 

stationary (relaxed) policy. Moreover if 7r := (//, fi,...) for fi: E° —> UQ X Ua, then 

the policy is called a simple stationary policy. 

By Corollary 9.17.2 of Bertsekas and Shreve (1978), p.235, there exists a Borel 

measurable optimal stationary policy for (DPI), i.e. fi : E° —> U is Borel measur­

able. Therefore, from now on, we may consider only stationary polices. 

Rewrite the problem (DPI) with stationary policies as follows: 

00 

(DPI) minimize E^g&k, /*(z*)) 
fc=0 

over stationary policies /i = (fi0,/jia) : E° —> U0 x Ua, 

where z* is the discrete time Markov process with the transition measure given by 

Q(A;z,fi(z)). 

We now reformulate the PDP optimal c orol problem of §3.1 as (DPI) . In the 

case of no boundary control Davis (1986) has shown that the PDP optimal control 
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problem can be reformulated as (DPI) by considering the the embedded Markov chain 

given by sequence of postjump states, i.e. {z*. := XTk, k = 0 , 1 , . . . } . For the case in 

which boundary controls are allowable, we now prove the following theorem using the 

same techniques. 

Proposition 3.3 The PDP optimal control problem is equivalent to the following 

infinite horizon discrete time stochastic decision problem: 

oo 

(DP2) minimize Ex^2g(^k, fJ-(%k)) 
k=0 

over simple stationary policies \i := (/x0,/ia) : E° —> UQ X Ua 

such that u(z) := (u0t(z),ua((j>t,(z))) 

where %k : = XTk> the postjump process, is a discrete time Markov process with the 

transition measure given by Q(A; z, fi(z)). • 

R e m a r k 3.1 If we define (DP2) with relaxed control (DP2) as above, then the 

PDP optimal control problem with relaxed interior controls is equivalent to (DP2) 

by this theorem. • 

Proof For convenience, we avoid explicit mention of the discount factor by introduc­

ing killing. We adjoin an isolated point A (termed the coffin state) to the state space 

and define a new process xt on E& := E° U {A} by 

( x t 2 < T 

[ A 2 > T 

where T is an independent exponentially distributed (process) killing time 

(i.e. PX[T > 2] = e~H for all x E E°). The running co«t l0 : E° x U0 —> M+ 

is extended to E& x Uo by setting lQ(A,u) := 0 for all u E UQ. The boundary cost 

la : E xUa —> P+ is extended to E& X Ua by setting la(A,u) := 0 for all u E Ua 

where EA := E°A\JdE. 
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Let Tt denote the natural filtration of x t , Then the cost Jx(u) can be written in 

terms of the killed process xt as 
j-OO 

Jx(u) - Ex[ lo(xt,Uo(rt,Zt)dt 
Jo 

+ £ fe(*rfc-. ua(xT- ))J(*T_ €SJS)] 
k 

= EX^2EX[ lo(xt,uo(Tt,zt))dt 
k=0 JT>> 

+/a (x r -+ i , «a(xr-+1 ))I(*T_ ess)|^TJ 
rt-f-1 

= Ex]TExTk[l lo(xt,uo(t,xTk))dt 
k=o "° 

+'a(i(r»+l-Tfc)-' Ua(V*+i-Tfc)-)
7(*(Tfc+1-T,)-e3fi)] (3-25) 

where the last equation holds by virtue of the strong Markov property (see §1.2). 

Let < "̂(x) be the deterministic flow given by 

&#(x) - f(pt(x),uot(x)) a.e. 2 G [0,2:(x)) 

$ ( x ) := x, 

where 2"(x) := inf{2 > 0 : $*(x) G dE}. Then by the construction of a PDP we have 

Ex[ / /0(Xi, uot(x))dt + la(xT-,ua(xT-))I^ eaE)] 
JO l 1 

T 

= Ex[f \-%(xt,uot(x))]dt + Ex[e-sT>ld(xT-,ud(xT-))I{x edE)] 
JO 1 1 T ! 

/C(a:) / ' -<«/ /ww ^ , » ,A1 - P [ T i > 5 ] ) , 
= / / e Z0(^(a!),«w(a!))«— 3 -da 

Jo Jo ' as 
+e-St'^a(cf>l(x),ua(<!>t(x)))P[Tx = -(x)] 

= - f e-"^o(^(^),«ot(x))rf2P[Tx > 5 j | 0 * ( a : ) 

Jo 

+ r*(X)e-f,/o(C(^),^(^))^[Ti > *]& 
Jo 

-f-e-5t?W/a(^(x),na(^(x)))e-/o*AW(a!)'«<"W)dt 

= 0 + f ^ e-Wlo(fi(x),Uoa(x))ds + e-AWld(<f>l(x),ua(<t>Z(x))) 
JQ 

= S(s, /*(»))• (3.26) 
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Similarly, we find that 

P*[xTl G A] (3.27) 

= Px[xTl E A\TX < t:(x)]Px[Tx < %(x)} 

+P[xTl G A\TX = t?(x)]P[Tx = t:(x)} 

- rPx[^eAlTx = t^-p^>%t 
Jo at 
+Px[xTl G A|TX = t:(x)]P[Tx = t:(x)} 

= [l'{X) e-5tPx[xTl G A\TX = t]X(cl>?(x),uot(x))e-So M«W.«o.(-))*d4 
JO 

+e-
St'Mpx[xTl E A\Tt = t:(x)}e-S!'xMM<»°-Wdt 

= / * * e~StQo(A; tf(x),uot(x))X(<f>«(x),u0t(x))e-fo W(*)^.(*))*'dt 
Jo 

+e-ft•WQa(A;^(x),ua(^.(^))e~ /» t*W(:E) 'U0•(: , :)) ' i , 

= f,{X) Q0(A- tf(x),uot(x))X(<t>»(x),uot(x))e-AMdt 
Jo 

+e-AtWQa(A;<l>l(x),ud(4Z(x))) 

= Q(A;x,n(x)). (3.28) 

Let Zk := xyk be the postjump process. By virtue of equality (3.28), z^ is a 

discrete time Markov process with the transition measure Q. Due to equality (3.26), 

the cost (3.25) can be rewritten as 
oo 

Jx(u) = EXY^ g(ik, M(zfc))-
fc=0 

• 
(DP2) ((DP2)) is equivalent to (DPI) ((DPI)) if and only if the following result 

holds. As a consequence, the PDP optimal control problem (with relaxed controls) 

is equivalent to (DPI) ((.DPI)). 

Proposition 3.4 If n* = (/£*,, ^a) 1S an optimal policy for (DPI), then there exists 

a feedback function ua : dE i—• Ua such that ua(^"((x)) = /^(x), i.e. if [i* is an 

optimal policy for (D± i) and i",(x) = <f>$,(z), then a*g(x) = fi%(z) for all x,z G E°. 
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Proof Suppose the assertion is not true. That is, there exists x ^ z such that 

(/>^(x) = <f>£(z) and p,*d(x) ^ u*a(z). Without loss of generality, we can assume that 

W » , /4to) + JE0 V(y)Qa(dy; *«(*), fi(x)) 

> H^UM) + JvV(y)Qe(dy]4l(x),^(z)). 

By Proposition 9.12 of Bertsekas and Shreve (1978), p.227, a stationary (relaxed) 

policy fi* is optimal, if and only if for all x E E°, fi*(x) EUoxUa solves the following 

problem 

(Px) min {g(x,u)+[ V(y)Q(dy;x,u)}. 

Let p,(x) := (Ho(x),IJ<d(z))> f°r w n i c n w e have 

g(x, ]i(x)) + j V(y)Q(dy; x, Ji(x)) 

= fU f e-
A^)?0(^(x),n)50t(du)i2 + e-AJ:.W?a(^(^).^(^)) Jo Ju0 

+ [ t I %)A(^(»)>«)e-A?-WQo(^;^(»)>«)5W(^)cft 
JE° JO JU0 

+e~*w JE0V(y)Qa(dy;tf(*),ti(z)) 

< g(x, u*(x)) + JEO V(y)Q(dy; x, fi*(x)). 

Therefore, Jl(x) is a better solution than u*(x). This contradicts the fact that fi*(x) 

is optimal for (Px). • 

3.3 Regularity Properties of the Value Function 

We show first that the value function of the PDP is continuous by showing that this 

property holds for the value function of the equivalent problem (-DPI). 

By Corollary 9.17.2 of Bertsekas and Shreve (1978), p.235, since (DPI) belongs 

to the class of lower semicontinuous models, V(x) is lower semicontinuous. By their 

Proposition 9.21, p.241, for negative upper semicontinuous models, V(x) is upper 
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semicontinuous. Our model does not satisfy the negativity assumption of g but g is 

bounded above. Suppose g(x,u) < b, then g(x,u)—b < 0 and the value function using 

g(x,u) — b as one step cost instead of g(x,u) will be upper semicontinuous. Recall 

from the proof of Proposition 3.3 that the killing time T is distributed exponentially, 

i.e. P J T > 2] = e~st. Since EX[T) = £_1 < oo and P^limTn = oo] = 1 , we must 
n—+oo 

have 
oo 

Jx(u) = ExYl{g(zk,lx(zk))~b} 
*=o 

oo 

= ExY:g(^^K))-bEx(N) 
k=0 

= Jx(u)-bEx(N), 

where N is the jump number at which the process is killed, i.e. zjy = XT, the coffin 

state. 

Therefore, 

V(x) = V(x) - bEx[N], 

where V(x) denotes the value function with g(x,u) — b as the one step cost. 

Consequently, by Proposition 9.21 of Bertsekas and Shreve (1978), p.241, V(x) 

is upper semicontinuous. This implies that V(x) is upper semicontinuous and hence 

V(x) is continuous. 

Next we can show that V(x) is bounded in E°. 

Indeed, suppose lo < Mo, la < Ma, for any G E° and any u = (u0,ua). Then 

' e~6tlo(xt,uo(rt,zt))dt + ^e~' ! T i / a(xT r , 'Ua(xT r))J(x 6ajs)] 
0 t * * * 

< Mo r e~6tdt + MaEx[Y] e-sT"] 
Jo Y 

< Mo/8 + Ma/8 = (Mo+ Ma)/8. 
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3.4 Reduction to the Family of Deterministic Prob­

lems 

The purpose of this section is to prove the following theorem. 

Theorem 3.1 The PDP optimal (relaxed) control u = (u0,ua) is equivalent to choos­

ing for each possible postjump state z E E°, an optimal (relaxed) control function 

u0t.)(z) in the deterministic control problem with boundary condition (Pz) defined in 

$2.1 where 

fo(x,v) := l0(x,v)+ f V(y)Q0(dy;x,v) (3.29) 
JE° 

F(x) := mm{la(x,v)+ [ V(y)Qd(dy;x,v)} (3.30) 
veUg JE° 

X(x,v) := X(x,v) + 8 (3.31) 

and for each z E dE, an optimal feedback control action ua(z) which solves the 

following optimization problem: 

™il{fe(*>v) + L V(y)Qa(dy, z, v)}. veot/ JE° 

Proof By Proposition 9.12 of Berksekas and Shreve (1978), p.227, a stationary policy 

ft is optimal if and only if for any x G E°, fi(x) EUoXUa solves the following problem 

(P~) min {g(x,u)+ [ V(y)Q(dy;x,u)} 

Zeu0xuB
 JE° 

and V(x) is the corresponding value. 

Using the definitions of g (see (3.10)) and Q (see (3.11)), we have 

g(x,u)+ V(y)Q(dy;x,u) 

JE° 

JO JXJQ 

+ L r L ^(^)Qo(^;^(x),7x)A(^(^),7x)e-A?WSot(^)^ 
JE° JO JJ/n 
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+e~ -A?-W JE0V(y)Qa(dyJt(x),v) 

= iU I e-W{lo(tf(x),u)uot(du)dt 
Jo JU0 

+ I V(y)Qo(dy]ft(x),u)X(<b:i(x),u)}uQi(du)dt 
JEe 

+e-AlW{la(<i>i(x),v) + JEQ V(y)Qa(dy; &(»),«)}, 

where the last equlity follows from Fubini theorem. 

Define /0 , F and A by (3.29), (3.30) and (3.31) respectively. The desired result 

follows in a straightforward manner. • 

3.5 Existence of an Optimal Ordinary Control 

We now impose the following assumption: 

(A3.8) The set 

Ng(x) := {(f(x, u)', X(x,u), l0(x,u) + / 8(y)Q0(dy; x, u)X(x, u)) : u E U0} 
JE° 

is convex for all x G E° and 8 E C(E°). 

This required only in the interests of clear presentation to obviate the necessity 

for considering relaxed or generalized control policies in cumbersome detail. The 

following approximation lemma is given by Young (1969), Lemma 76.1, p.190. 

Lemma 3.2 Let U denote a compact (a-compact) subset of a Banach space X with 

norm || • \\x • Let f : U —> X be continuous and take 8 > 0. Then there exists a finite 

number of points it,- G U and a finite number of continuous functions hi : U —> [0,1] 

such that Y!ii 1°i = 1 ftTid 

11/(0-E/(^M-)IL<£, 

where WgW^ =: suvueU\\g(u)\\x. • 

Using the approximation lemma, it is easy to see that the following proposition 

(see Young 1969, Theorem 79.1, p.192) holds. 
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Proposition 3.5 Let U denote a compact (a-compact) subset of a Banach space 

X. Let f : U —> X be continuous and \i be a unit Riesz measure on U, i.e. a 

nonnegative Borel measure satisfying fa ldfi = 1. Then 

L f(u)dnEco{f(u):uEU}. 

Now we are ready for the following existence result. 

Theorem 3.2 Under assumption (A3.1)-(A3.8), there exists a simple optimal sta­

tionary policy (or equivalently, an ordinary optimal control for the original PDP). 

Proof By Corollary 9.17.2 of Berksekas and Shreve (1978), p.235, there exists an 

optimal stationary policy for (DPI) . Under our assumption that Ng(x) is convex, 

we shall show that this stationary policy must be a simple one. 

Reformulate the problem (Px) with relaxed controls as a problem of Mayer type. 

(P0iB) minimize x„+1(2) + x0(t*)F(<ftt(x)) 

over all admissible controls u0^ G UO 

such that <j%(x) = / f(4%(x),u)u0t(du) a.e. 2 G [ 0 , 2 „ ) 

xQ(t) = -x0(2) / [X($(x),u) + 8)uQt(du)] a.e. 2 G [0,2*) 
u" f 

xn+x(t) =-x0(t) [k(fi(x),u) 
JUo 

+ 1B V(y)Qo(dy]tf(x),u)X(<ft(x),u)]uot(du) a.e. t E [0,2*) 

<5&0'(x) := x 

x0(0) := 1 

xn+1(0) := 0. 

Define the set 

Mg(x', x0) := {/(x, u)\ x0X(x, u), x0[/o(a:,u) + / 8(y)Q0(dy; x,u)X(x, u)]) : u E U0}. 

JE° 

By Proposition 3.5, since every relaxed control UQ E Uo is a unit Riesz measure, 

we have 
(fi(x),x0(i),xn+x(t)) E coMv(Ft(x)',xo). (3.32) 
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For any fixed (x', x0), Mg(x', x0) is convex and compact by virtue of the convexity 

of Ng(x) (assumption A3.8) and the compactness of Uo. Consequently, coMg(x', x0) t= 

Mg(x',xo). In particular, since V"(x) G C(E°) by §3.3, we have coMv(x' ,XQ) = 

MV(X',XQ). Consequently, the right hand side of (3.32) is equal to 

My ( # ( * ) ' , B0(i)) 

= {( / (^(x) ,«) ' ,Xo(2)A(^(x) I«) ,x 0 (2)[ / 0 (^(^) ,«) 

+ / V(y)Qa(dy]<ft(x),u)X(ft(x),u)}): uEU0}. 

Therefore, we have 

(tf(x)',x0(t),xn+x(t)) 

G { ( / ( ^ ( » ) , t t ^ a o ( * ) A ( ^ ( a ) , u ) | a ! o ( * ) [ W ( * ) , t t ) 

+ JEJ(y)Qo(dy-,cft(x),u)X(<t>Z
t(x),u)V : u G U0}. 

By the Fillippov Lemma (see e.g. Young 1969, Corollary 34.7, p.297), we can 

choose a meaburable function «o(.) : [0,2*) —> UQ such that 

xo(t) = -xo(t)[X(^(x),uot)-^8} 

xn+x = xo(t){lo(^(x),uot) -f / V(y)Q0(dy; $(x),uot)X($(x),uot)}-
JE° 

This implies that the optimal control can be taken to be ordinary. • 

3.6 Necessary and Sufficient Optimality Condi­

tions for Control of P B P s 

We are now in a position to state the main result of this chapter. 

First we set out a final assumption (cf. Gonzalez and Rofman 1978 and A2.7) on 

the PDP jump rate which ensures the Lipschitz continuity of the value function of 
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the PDP optimal control problem: 

(A3.9) The jump rate satisfies 

inf X(x,u) + 8>X°+, (3.33) 
xeE°,ueu0

 + 

where A0 := sup (x-y)'(f(x,v) - f(y,v))/\\x - y\\2. 
x.yeE0 

ueu0 

Theorem 3.3 Under assumptions (A3.1)-(A3.9), there exists an optimal ordinary 

control policy u* = (UQ,UQ) E C which solves the PDP optimal control problem with 

(expected) cost functional Jz defined by (3.3) for any initial point z E E and the value 

function V(z) defined by 

Viz) := min Jz(u) Vz E E v ' uec 

is a Lipschitz continuous solution of the generalized BHJ equation on E° 

{C'f(z,v)+X(z,v) f (V(y)-V(z))Qo(dy;z,v)-8V(z) + l0(z,v)}=--0 (3.34) 

I JE° 

with boundary condition 

V(z) = min{la(z,v)+ f V(y)Qd(dy;z,v)} (3.35) 
veUg JE° 

on dE. If V is regular in the sense of (2.60), then it is the unique solution of 

(3.34),(3.35). 

An admissible control u = (u0,ua) E C is optimal if and only if for all z E E° 
V(z) = Jz(u) 

= /VA?«[io(ff(*),M*)) 
JQ 

+ L V(y)Q°(dr> tf(z),n0t(z))X(x(t),Uot(z))]dt 
JE° 

+e~AW{la(<i>l(x),ua(<l>l(x))) 

+ L v^Qd^ ilWMKi*))}- (3-36) 

mm 
veu0 
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and fori all z E dE, 

V(z) = la(z,ud(z)) + J^ V(y)Qa(dy;z,ua(z)), 

where V(z) is the value function. 

Furthermore, if the value function is (Clarke) regular, then condition (3.36) can 

be replaced by the following condition: there exists Ci(z) E dV($(z)) such that 

C't(z)M(z),uQt(z)) + X(^(z),u0l(z)) f (V(y) - V(fl(z)))Q0(dy; #(*),««(*)) 

-8V(fi(z)) + l0(<l>?(z),Uot(z)) = 0 a.e. t E [0,2.). 

Remark 3.2 As in the deterministic case (Chapter 2), the first term in the gener­

alized BHJ equation shows that the nature of the generalization is that the usual 

gradient term for a C1 value function is replaced by the appropriate minimum ele­

ment of the Clarke generalized gradient of the Lipschitz continuous value function at 

z E E°. The remaining terms in this equation are due respectively to interior jumps, 

discounting and running costs. In the extreme case when A = 0, the PDP is reduced 

to the deterministic control problem with boundary condition and the generalized 

BHJ equation is reduced to (2.5) for the case when A := 6". • 

Proof The existence of an optimal ordinary control has been shown in §3.5. Here we 

prove the rest of theorem. 

By §3.4 and §3.5, the PDP optimal control u — (uo,ua) is equivalent to choose for 

each z G E° an optimal control function u0[.\(z) in a deterministic control problem 

with boundary condition (Pz) defined in §2.1 where 

fo(x,v) := l0(x,v)+ / V(y)Qo(dy;x,v) 
JE° 

F(x) := mm{la(x,v)+ V(y)Qa(dy;x,v)} 
veug JEC 

A(x,t») := A(x,v)-f6' 
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and for each z E dE, an optimal feedback control action ua(z) which solves the 

following optimization problem: 

m|n{/a(2, v) + J^ V(y)Qa(dy; z,«)}. 

Since V(x) G C(E°), f0, F satisfies conditions (A2.3), (A2.5) respectively by virtue of 

(A3.4) (A3.7) & (A3.6), A satisfies conditions (A2.4) &(A2.7) by virtue of (A3.3) and 

(A3.9) respectively. Therefore (Px) is a well-defined deterministic optimal control 

problem with boundary condition (see Chapter 2). Applying results obtained in 

Chapter 2, we conclude that the value function V(x) is Lipschitz continuous on E° 

and satisfies the generalized BHJ equation 

min {C'f(z,v) - X(z,v)V(z) + f0(z,v)} = 0 z E E° (3.37) 
t'edv[z) 

veu0 

with boundary condition 

V(z) = F(z) z E dE. (3.38) 

Substituting /o, F and A into equations (3.37) and (3.38), we obtain the generalized 

BHJ equation for the PDP control problem: 

(mmx){C'f(z,v) + X(z,v) JjV(y) - V(z))Q0(dy;z,v) - 8V(z) + l0(z,v)} = 0 
veu0 

VzEE0 

with the boundary condition 

V(z) = mm{la(z,v) + j ^ V(z)Qa(dy; z,v)} 

Vz E dE (\/z E P ) . 

The rest of the theorem follows analogously. 



Chapter 4 

Maximum Principles 

4.1 Introduction 

In this chapter, our aim is to develop a nonsmooth maximum principle for control of 

piecewise deterministic Markov processes under weak assumptions. The PDP opti­

mal control problem considered in this chapter is the one formulated in §3.1 and all 

assumptions remain in effect. 

In Chapter 3 we have shown that the optimal control for the PDP control problem 

is to choose after each jump a control function which is an optimal control in a 

deterministic optimal control problem with a boundary condition. Therefore it is 

obvious that a maximum principle for the PDP control problem will follow once the 

appropriate one for the control problem with boundary condition is established. 

As noted in Chapter 2, this deterministic control problem is however non-standard 

in that the terminal time 2, is not fixed, but is instead either +oo or the first time 

the trajectory reaches the boundary of the state space. In the proof, we will consider 

separately the case when 2* is finite and when 2* is +oo. A nonsmooth maximum 

principle developed by Clarke (1983) will be used in the case where 2, is finite, while 

an infinite horizon nonsmooth maximum principle will be developed for the case where 

2* is infinite using some results on differential inclusions of Aubin and Cellina (1984). 

85 
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4.2 A Maximum Principle for a Control Problem 

with a Boundary Condition 

In this section, we consider the deterministic control problem with boundary condition 

(Pz) as formulated in §2.1. 

Given x E E°, v EU, p' E Mnl, q E M, r E M, define the Hamiltonian function 

for (Pz) as 

H(x,v;p', q,r) := p'f(x,v) - qX(x,v) - rf0(x,v). 

The following theorem provides a maximum principle for (Pz). 

Theorem 4.1 Let (x*(-),u*(-)) be an optimal solution for problem (Pz) and 2* the 

corresponding boundary hitting time. Then under assumptions (A2.1)-(A2.5), there 

exist: 

(a) absolutely continuous functions 

p' : [0,2.) —• 2R*' q:[0,U)—*M, 

(b) a scalar r E {0,1} 

such that:-

(1) The optimal control u*(t) maximizes the Hamiltonian pointwise, viz. 

mzxH(x*(t),v-,p'(t),q(t),r) 

= H(x*(t),u*(t);p'(t),q(t),r) 

= 0 a.e 2G[0,2*). (4.1) 

(2) The dual variables (p', q) satisfy the adjoint equations in the form of the differ­

ential inclusions 
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-p'(t) E p'(t)dxf(x*(t),u*(t)) 

-q(t)dxX(x*(t),u*(t)) 

-rdxf0(x*(t),u*(t)) 

-X(x*(t),u*(t))p'(t) 

a.e. tE [0,2*) (4.2) 

- 3 ( 0 = -rfo(x*(t),u*(t)) 

~q(t)X(x*(t),u*(t)) 

a.e. tE [0,2»). (4.3) 

(3) The system is subject to the transversality condition: if 2, < oo, then 

(AU), q(U)) + r£ E -pdddE(x*(U)) X {0'} (4.4) 

for some scalar p > 0 and C' E Rn+1 with 

C E dF(x*(t,)) x {(F(x*(U))}. 

(4) J/2* < oo, then the dual variables satisfy the nontriviality condition 

||p'||oo + |ki|oo + r >0, (4.5) 

where d denotes either the Clarke generalized gradient or the generalized Jacobian, dx 

denotes the generalized partial derivative with respect to x and [| -1]oo is the supremum 

norm for the spaces of appropriate continuous functions on [0,2*). 

Proof It is convenient to replace the exponential term in the cost by an extra 

differential relation 
x0(t) = -x0(t)X(x(t),u(t)) 

xo(0) = 1. 

Problem (Pz) can be equivalently posed as follows: 
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(PM) min / *xo(2)/0(x(2), u(t))dt + x0(2,)P(x(2*)) 
JO 

on the class fj of all pairs (x(-),u(-)) with 

x(-):=(x(.y,xo(.))> 

s.t. -5 (2) = [/(x(2), u(t))', -x0(2)A(x(2), u(t))}' 

a.e. 2 G [0,2.) 

5(0) := (z1,1)' 

2* := inf {2 > 0 : x(2) G dE} 

For an optimal pair (x*(-),u*(-)) in Q, we denote by (x*( ),u*(-)) the corresponding 

solution for (Pz) in the class fi. 

Now we divide the analysis into two cases: 

(a) the boundary hitting time of the optimal trajectory x*(-) is finite, 

(b) the boundary hitting time of the optimal trajectory x*(-) is infinite. 

Since by assumption (A2.6) any trajectory must hit the boundary of E in such a way 

that the corresponding vector field element makes an acute angle with the outward 

pointing unit normal, we can find a tube about the optimal trajectory x*(2) such that 

any trajectory in the tube hits the boundary at most once. Therefore, (x(-),u*(-)) is 

the optimal solution of the following problem: 

(Pc) minimize /0'* x0(2)/0(x(2), u(t))dt + x0(2*)P(x(2*)) 

on the class fl of all pairs (x(-),u(-)) with 

*(•) = (*'(• W-))' 
s.t. ^x(2) = [f(x(t),u(t))', -xo(t)X(x(t),u(t))}' 

a.e. 2 G [0,2*) 

x(2)GT(x*;e) 

3(0) := (z', 1)' 

(2*,x(2*)')eM, 
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where M =: [0, oo) X dE X [0,1] in case (a), M := {oo} x E° x [0,1] in case (b), 

T(x*; s) is the e-tube about optimal trajectory x* defined by 

T(x*; e) := {v E Mn : \\x*(t) - v\\ < e, 2 > 0}, 

and e > 0 is sufficiently small to ensure that T(x*;e) C E° for 2 G [0,2*). 

Case (a). 2* < oo 

In this case the time interval is finite and the endpoint constraint set [0, oo) x dE x 

[0,1] is closed in Mn+2 , the nonsmooth deterministic maximum principle developed 

by Clarke is applicable. We refer to Theorem 1.1 and identify the data for (Pc) with 

the corresponding data in the theorem. 

The Hamiltonian function for the problem (Pc) is defined as follows: 

H(x, v;p', q, f) := p'f(x, v) - gx0A(x, v) - fx0/0(x, v) 

for x := (x',x0)' G Rn+1, vEU,p' E Mn', q E R and f E R. 

Applying Theorem 1.1 we have the following maximum principle for the problem 

(Pc): 

There exist 

(a) absolutely continuous functions 

p' : [0,2.) —> Rn' q : [0,2,) —* R 

(b) a scalar r E {0,1} 

such that:-

(1) The optimal control function u*(t) minimizes the Hamiltonian pointwise, viz. 

m^H(x*(t),v;p',q,r) 

= B(z\t),u*(t)rf,q,f) 

= 0 a.e. 2G[0,2*). (4.6) 
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(2) The dual variables (p', q) satisfies the adjoint equations in the form of the dif­

ferential inclusions 

- ^(P'(t),q(t)) € a^(x*(2),u*(2);p'(2),g(2),f) a.e. 2 6 [0,2*). (4.7) 

(3) The system is subject to the transversality condition 

(P'(Q, q(U)) E -rdF(x(t.)) - /J9d9Bx[0li](x(2*), x0(2*)) (4.8) 

where the function F(x) := XOJP(X) and p is some nonnegative scalar. 

(4) The dual variables satisfy the nontriviality condition 

IK?'. 9)ll=o+ ̂ > 0 - (4.9) 

Now we need to rearrange the expressions so that we have a maximum principle 

for the problem (Pz). 

Define p'(-) := P'(-)/XQ(-), which is well defined since x*,(-) > 0. We also identify 

q(-) := q(-) and r := f. It follows that (4.6) implies (4.1) and (4.9) implies (4.5) by 

the above definitions. 

Let Hx(x,v;p') := p'f(x,v) and H2(x,v;q,f,) = -x0(qX(x,v) + ff0(x,v)). By 

Proposition 1.8 we have 

dxHx = dxHx x {0} 

dxH2 = dxH2 x {-qX(x,u) - ff0(x,u)}. 

Consequently, we have 

dxH := (^[tfi + i^] 

C dxHx + dxH2 (4.10) 

= (dxHx + dxH2)x{-qX(x,u)-ff0(x,u)}, (4.11) 

where the inclusion (4.10) follows from the finite sums formula (Proposition 1.6). 
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Therefore (4.7) implies 

jtp'(t) E 9I^(x*(2),u*(2);p'(2))-f5Ei?3(x*(2),U*(2);g(2),f) 

= p'(t)dxf(x*(t),u*(t)) - x*0(t)[qdj(x*(t),u*(t)) 

+fdxf0(x*(t),u*(t))] a.e. 2 G [0,2*) (4.12) 

and 

-~q(i) = -g(2)A(x*(2),u*(2))-f/0(x*(2),U*(2)) 

a.e. 2 G [0,2*). (4.13) 

Since p'(t) := XQ(2)P'(2) by definition, the left hand side of inclusion (4.12) is equal 

to 

jt[x*0(t)p'(t)} = Xo(typ(t) + jtx*0(t)-P'(t) 

= *S(*)^(*) + *5(*)*(»*(t), <*M*)-
Therefore inclusion (4.12) and the definition of p' imply (4.2). Equation (4.3) is 

obtained from equation (4.13) and this definition. 

By Proposition 1.8, since xo(2») > 0 and F is continuous, we have 

dF(x(t.)) = x0(U)dF(x(Q) x {P(x(2*))}. (4.14) 

Since ddc1xc3(xx,x2) = ddc^(xx) X ddc7(x2) (see the corollary of Theorem 2.4.5 

of Clarke 1983, p.54), we have 

ddaEx[o,X](x(U),xo(U)) = ddaE(x(U)) x dd[otX](x0(tt)) 

= dddE(x(t.)) x {0}, (4.15) 

where the last equality follows from the fact that x0(2*) G (0,1). 

By substituting equalities (4.14) and (4.15) into inclusion (4.8), we have 

tf(U),q(U)) E -r[xo(U)dF(x(U))x{F(x(U))}]-pdddE(x(U))x{0} 

= [(-fx0(t4))dF(x(U)) - pdddE(x(tt,))} x {-rP(x(2*))}, 

from which we derive the inclusion (4.4). 
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Case (b). 2« = oo 

The situation of this case is not covered derectly by the results employed in the 

previous case due to the fact that 2* = +00. For infinite horizon optimal control 

problems with smooth data, a maximum principle is developed b " Carlson and Haurie 

(1987). Here we develop a nonsmooth maximum principle for infinite horizon optimal 

control problems. 

Take a strictly increasing sequence {2,-} in [0,oo) such that 2,- —> 00 as i —> 00. 

A collection of deterministic problems {(Pi)} can be defined as follows: 
rU 

(Pi) minimize / xo(t)f0(x(t),u(t))dt 
Jo 

over the class Cli of all pairs (x(-),u(-)) on [0,ti\ with x(-) := (x'(-),Xo(-))' 

s.t. jtx(t) = [f(x(t), u(t))', -x0(t)X(x(t), u(t))}' 

a.e. 2G [0,2*) 
x(0):=(*' , l) 

x(2,):=(x*,(2i))x0(2,-))'. 

Then x* restricted to [0,2̂ ] is an optimal trajectory for (Pi)- Since, if x* is not 

optimal, then for some 2̂  > 0 and some (x+,u+) G flj one has 

T x+(2)/o(x+(2),u+(2))<Z2 < f xl(t)f0(x*0(t)y(t))dt. (4.16) 
JO JO 

Now let (x, u) be defined by 

r m -m\ / (5+( f)'u+W) ^tE[0,U} 
(x(t),u(t)) := < 

1 (5*W» «*(*)) for2G[2i,co). 
From the optimality of (x*(2),u*(2)), there exists T > U so that 

/ x*0(t)f0(x*(t),u*(t))dt < [ x0(t)fo(x(t),u(t))dt 
Jo Jo 

= [UxZ(t)f0(x
+(t),u+(t))dt+ [T x*0(t)f0(x*(t),u*(t))dt 

Jo Jti 

< r 4(i)fo(x*(i), u*(t))dt + / x0(2)/0(x*(2), u*(t))dt 
Jo Jt{ 

=-. [T x*Q(t)fo(x*(t),u*(i))dt. 
Jo 
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This is a contradiction. Therefore (x*(t),u*(t)) restricted to [0,2,-] is an optimal pair 

for (Pi). 

Thus we can again use Clarke's nonsmooth maximum principle. By Theorem 1.2, 

we conclude that for the problem (P,) there exist absolutely continuous functions 

#:[0,2i]—+Rn ' qi:[Q,ti]-^R 

and a scalar Ft- > 0 such that 

max#(x*(2), u; #(2), ^(2), fi) 

= ^x*(2),u*(2);^(2),g-(2),fi) 

= 0 a.e. 2 G[0,2,-] (4.17) 

-jtm)Mt)) 6 d-xH(x*(t),u(t)-,p[(t),Ut),f) 

a.e. 2 G [0,2i] (4.18) 

| |(&«)ll-Q+ft>0. (4-19) 

As in case (a) , we can rearrange the expressions by redefining 

P.-'(-)==§T !<(•)••=*(•) rr^fi x0[-) 

to yield 

~W) 6 Pi(^5I/(x*(2),u*(2)) 

-qi(t)dxX(x*(t),u*(t)) 

-ridxf0(x*(t),u*(t)) 

-X(x*(t),u*(t))p'(t) 

a.e. 2G[0,2i] (4.20) 

-*(*) = -ftWA(^(2),7x*(2))-ri/0(x*(2),u*(2)) 

a.e. 2G[0,2i] (4.21) 

i 
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||p;i|oo + |ki||oo + r i>0 . (4.22) 

By normalization, the condition (4.22) could be equivalently replaced by 

||pi'||oo + ||gi||oo + fi = 1 so that ||pi'(0)|| + |gi(0)| + r,- is bounded. Hence by passing 

to an. appropriate subsequence one may assume that 

lim pi(0) = p(0), lim g»(0) = q(0), lim n=r 

exist. 

Define set-valued maps A(t) and B(t) as follows: 

A : 11—> A(t) C itf"+i)x(n+i) such that Va(2) G A(t) 

«(*) = 

zxl + X 

Z2\ 

znX 

0 

ZX2 

Z22 

zn2 

0 

+ A 

0 

ZXn OLX 

z2n a2 

znn + X an 

0 X 

where A := A(x*(2),u*(2)), a := (ax,---,an) E dxX(x*(t),u*(t)) and 

(2ii)„x„eai/(x*(2),u*(2)). 

B(-) : 2 i—> B(t) C Rn+1 such that V6(2) G B(t) 

b(t) 

rBx 

r/3n 

rfo 

where f0 := f0(x*(t),u*(t)), 8 := (Bu - - - ,BK) E dxf0(x*(t),u*(t)). 

Rewrite the differential equation (4.3) and the differential ii lusion (4.2) as a 

differential inclusion in the form: 

d 

dt 
(p'(t),q(t))'EF(t,(p'(t),q(t)y) a.e. / > 0, (4.23) 

where F is a set-valued map from Rn+1 into subsets of Rn+1 defined by 

F(t,x) = A(t)x + B(t). 
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The set value map A is compact-valued due to the compactness of generalized 

gradient sets and generalized Jacobians (see Propositions 1.3 and 1.11). Consequently, 

the set-valued map F satisfies 

d(F(t,x),F(t,y)) < ||a tx-a tt/|| 

= IMIII»-vll 

- ™** HI-IIs-^11 
0 [ 6 J 4 ( 4 ) 

i.e. F is a Lipschitzean map with Lipschitz constant A:(2) := maxat6ji(t) ||at|| 

(see Definition 1.10). 

Let q : [0, oo) —• R be the unique absolutely continuous solution of the differen­

tial equation (4.3) with the initial data q(0) = limi_»oo g,(0). One has 

lim qi(t) = q(t) (4.24) 
»-»oo 

due to the continuous dependence of solutions of the differential equation (4.3) with 

respect to the initial data (see §1.7). 

By results on continuous dependence of solutions for differential inclusions of 

Aubin and Cellina (Proposition 1.14), since p(0) = lim^oo Pi(0) and 

q(0) = limi-,00 3,-(0), for each (p[(-), &(•)) of the differential inclusion (4.23) with 

initial data (Pi(0), qi(0)), we can associate a solution y[(-) of the differential inclusion 

(^.2) with initial point p'(Q) (or equivalently (yil('),q(-)) of the differential inclusion 

(4.23) with initial data (p'(0), q(0)) such that 

\\(yi'(t), q(t)) - (Pi'(t),qi(t))\\ < ||0/(0), s(0)) - (Pi'(0), qi(0))\\eS:kW<> (4.25) 

which implies that 

l|y.'W-ft(0lla < (IIK0)-Pi(0)||2 + |k(0)-g i (0)f)e2 /o f c^- | |gi(2)-g(2) | |2 . (4.26) 

Since A is bounded, A, /0 and / is Lipschitz in x uniformly in u, by Proposi­

tions 1.3 and 1.11, it is easy to see that F(t,x) remains in a compact set of JRn+1, 

that is the minimum norm trajectory of (4.23) remains in a compact subset of R™+1. 
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Since F is convex and compact valued by the convexity and compactness of the gen­

eralized gradients and generalized Jacobians (Propositions 1.3 and 1.11 respectively), 

by Proposition 1.15 the set of ail solutions of the differential inclusion (4.23) vlth 

initial data (p'(0), t*(0)) is compact in the uniform convergence (supremum) norm. 

Therefore, without loss of generality, we may assume there exists a solution p(t) to 

the differential inclusion (4.4) with initial data p(0) such that 

lim yi'(t) =p'(2). (4.27) 

1—>oo 

We now show that 

p'(2) = limP;.(2). (4.28) 
*—*oo 

Indeed, we have 

HWW-PWII < \\rtt)-ym\\ + \W)-p(t)\\-
Hence for any e > 0, we can choose an N E M so that the right hand side of inequality 

(4.26) (consequently the first term of the last inequality) is less then or equal to e/2 

for all i > N. The second term of the last inequality can be treated in the same way 

by virtue of (4.27). 

Taking limits in (4.17), by virtue of (4.24) and (4.28), we obtain (4.1) due to the 

linearity of H in r, q and p. 

It is obvious that r can be taken as 0 or 1 so the proof is complete. • 

4.3 A Maximum Principle for the PDP Control 

Problem 

Definition 4.1 The Hamiltonian function for the PDP control problem is defined as 

follows: 

H(x,u;p',q,r,8) := p'f(x,u)-q(X(x,u) + 8) 

-r[/0(x,7i) + A(x,ti) / 6(y)Q0(dy;x,u)} 
JE° 

for x G Rn, u E Uo, p' E Rn', q,r E R and 6 E C(E°). • 
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Theorem 4.2 (A Nonsmooth Maximum Principle for the PDP Control Problem) 

Under assumptions (A3.1)-(A3.8), let u* = (u*,,u*,) be an ordinary control policy 

which solves the PDP optimal control problem. For arbitrary z E E°, let ^" (z) be 

the corresponding trajectory in E° on [0,2"*(z)) with initial point z. Then (seLing 

cj>*(z) := </>t'(z) and 2* := 2" (z)) there exist: 

(a) absolutely continuous functions 

p':[0,2.)—>Rn ' q:[0,U)—> R, 

(b) A scalar r E {0,1} 

such that:-

(1) The optimal control function TJJ/\(Z) maximizes the Hamiltonian pointwise, viz. 

maxH(cj>*t(z),v]P'(t),q(t),r,Jz(u*)) 
veuQ 

= H(<)>*t(z),u*ot(z);p'(t),q(t),r,Jz(U*)) 

= 0 a.e. 2G[0,2*) 

(2) The dual variables (p', q) satisfy the adjoint equations in the form of the differ­

ential inclusions 

-P'(t) E P'(t)(wt(z),«w*)) - Wt(z),«*(*)) + w 

-q(i)dx\(Pt(z),<(z)) 

-rdx[lo(ft(z),u*t(z)) 

+X(ft(z),u*ot(z)) JEQ Jy(u*)Qo(dy; #(„),u*ot(z))] 

a.e. tE [0,2*) 

-q(t) = -q(t)(X(^(z),ult(z)) - r[l0(<f>;(z) u*ot(z)) 

+*(#(*),uot(z)) JEB Jy(u*)Qo(dy; $(,),uot(z))] 

a.e. 2 G [0,2,) 

i 
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where Jv(u) is the cost corresponding to control u starting from the interior 

state y E E° and J(u) is defined us the function y i—> Jy(u). 

(3) The system is subject to the transversality condition: if 2, < oo, then 

(p'(Q,q(U)) + rC E -pdddE(Pt(z)) x {0'} (4.29) 

for some scalar p > 0 and C' E Rn+1 with 

C E dF(ftt(z)) X {F(<f>l(z))}, 

where 

F(x) := ld(x,ua(x)) + / Jy(u*)Qa(dy;x,ua(x)). 
JE° 

(4) If 2* < oo, then the dual variables satisfy nontriviality condition 

||p'||«, + | |g | |oo+r>0. (4.30) 

Remark 4.1 For every z E E°, there is a multiplier function (p',q) which depends 

Borel measurably on z. Hence corresponding to the optimally controlled PDP {xt} 

we may consider the multiplier process (p;, q) as a random process. • 

Proof In §3.4 we have shown that a control (UQ,UQ) is optimal if and only if 

for each . G E0,^,^) is an optimal control function in the deterministic optimal 

control problem with boundary condition (Pz) with the following data: 

fo(x,u)~l0(x,u) + X(x,u) I V(y)QQ(dy;x,u) (4.31) 
JE° 

F(x) := mm{l9(x,v) + f V(y)Qa(dy;x,v)} (4.32) 
veUg JE° 

X(x,u) := X(x,u) + 8 (4.33) 

and for z E dE, u*a(z) solves the following optimization problem: 

min{ld(z,v)-\- f V(y)Qd(dy;z,v)}. 
veug JE° 
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Notice that we are dealing with a necessary condition. The value function V(y) 

is known to be equal to the expected cost Jy(u*). Subsituting f0(x,u),F(x),X(x,u) 

defined by (4.31), (4.32) and (4.33) respectively into Theorem 4.1, the maximum 

principle for optimal control of PDFs follows in a straightforward manner. • 



Chapter 5 

Optimal Impulse Control of PDPs 

5.1 Introduction 

In the previous chapters we have developed a control theory for optimal control of 

PDPs in the absence of impulse controls. In this chapter, we study the PDP optimal 

control problem with dynamic control pUs impulse control as formulated in §1.3. 

The impulse control problem for PDPs has been studied in the literature by Costa 

and Davis (1988), Gatarek (1988a,b) and Lenhart (1988). In their papers, the optimal 

PDP impulse control problem is formulated as follows. At stopping time r, the state 

is moved from x to x + C E E° with impulse C EU C Rn and cost c(x, C) is incurred 

when the impulse C is applied while the process is in state x. An impulse control 

(strategy) x is a sequence of stopping times and impulses, 

*- = {TI,£I,T2 , &,-••}, 

where TJ —» oo almost surely as i —y oo. The controlled PDP xT satisfies x*(ri+) = 

x*(rr) + b-
The associated expected cost to be minimized is 

Jx(ir) := Ex[ / e~%(x«(t))dt + £ e ^ c ^ T f ) , 6)1-

To solve this optimal impulse control problem, Costa and Davis take the value im­

provement approach while the others take the (quasi-)variational inequality approach. 

100 

I 
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Since we will relate our approach to the quasi-variational inequality approach in 

the end of this chapter, we now illustrate this approach. Under certain assumptions, 

Gatarek (1988a,b) and Lenhart (1989) characterized the value function as a general­

ized (e.g. Viscosity) solution of the following quasi-variational inequality: 

(AV -8V+ l0) A (MV - V) = 0 for x G E° 

V(x)= f V(y)Qd(dy;x) 

JE° 

where 

AV(x) := VV(x)f(x) + A(x) / (V(y) - V(x))Q0(dy; x) 

JE° 

and 
MV(x) := inf {c(x, v) + V(x. + v)}. 

The approach taken to the optimal PDP impulse control problem in this chap­

ter is different from the ones in the literature in the two aspects: the very general 

formulation of the problem and the characterization of optimality given. It was first 

studied in a special case by Dempster and Solel (1987) ( see also Solel 1986). 

1. Formulation of the problem 

By applying an impulse contrcl action v at state x, instead of being moved to 

state x + v , the state x will be moved to state y which is a random variable with 

transition measure Qs(-;x,v). Since a determined change to state x + v can be 

considered to be a random variable with distribution 8{x+vy(-), the 1-atom measure 

concentrated on x + v, our problem formulation generalizes the formulation of the 

PDP optimal impulse control problem considered in the literature. It is similar to the 

concept of interventions introduced by Yushkevich (1983). Therefore we will use the 

words intervention and impulse control interchangeably. We will also call a stopping 

time an intervention epoch (or moment). 

Due to the (strong) Markov nature of PDPs and by the structure of stopping 

times (Davis 1976), for any stopping time T there exists a sequence of non-negative 

random variable r n such that: 
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(1) r n is Ttn measurable for n = 0,1,2,..., 

(2) r = E/{Tn<rn<Tn + 1}(Tn + r„) A T n + 1 , 

where T i , T 2 , . . . is the sequence of jump times of the (controlled) PDP. Conse­

quently, by specifying after each jump (either a process jump or a jump caused by 

an intervention) a time remaining to intervene 2' > 0 ( r n ) , then an t stopping time 

T G ( T n , T n + i ] is either the time when t' = 0, providing no process jump has occurred 

(this corresponds to the case where Tn + r n < Tn+X), or the jump epoch, if a process 

jump has occurred with 2' > 0 (this corresponds to the case where T„ -f r„ > Tn+X). 

Therefore, impulse control strategies can be implemented as follows. For each 

possible prejump state x E E° of the process, a time remaining to intervene 2'(x) > 0 

(in the absence of a process jump) is specified which subsequently diminishes with 

(process) time. Providing no process jump has occurred previously, an impulse control 

action is applied whenever 2' = 0 and a decision is made whether or not to intervene 

at each jump epoch. 

Unlike the usual formulation of impulse control problems with no dynamic control, 

the problem considered here includes not only impulse control but also full dynamic 

control. 

Having implemented interventions in the way we have just described, we can 

formulate the PDP optimal control problem with dynamic and impulse control as 

follows. 

The PDP optimal control problem with both dynamic and impulse control is to 

find a dynamic control (policy) u as before (i.e. a pair u := (uQ,ua) of measur­

able functions u0 : E° x R+ —> U0 and ua : dE —• Ua) and an impube control 

(policy) (ug,t'), which specifies for each (prejump) state x G E a (post jump) time 

remaining to intervene 2'(x) > 0 (i.e. a measurable function 2' : E — • (0, oo]) and 

an intervention control action ug(x) (i.e. a measurable intervention control function 

Us : E —> Us C Rm, a compact) which influences the (given) intervention transition 
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measure Qs : E X Us —• IP(E0)) so as to minimize the expected cost 

Jx(u) = Ex[[°° e-s%(xlUo(T?,z?))dt+ £ e-sT?la(x»-,ua(x»r))lix*_€aE) 

+ Y,e-6T%(xlr,u6(x«-))), (5.1) 
i 

where TX,T2, .. denotes the sequence of stopping times corresponding to the impulse 

control (us,t'). 

2. Characterization of optimality 

The approach used here is to reduce the original PDP control problem with both 

dynamic control and impulse control to a new PDP control problem with only dy­

namic control. The new problem is equivalent to the original problem in that they 

both have the same expected cost, the data for the new problem is obtained from 

the original problem, and the control strategy (dynamic plus impulse control) of the 

original problem can be recovered from the corresponding control strategy (dynamic 

control only) of the new problem. Although the new state space is not bounded, 

we note that the boundness of the state space was only needed for previously the 

uniqueness results, so that we can characterize optimality through applying the BHJ 

necessary and sufficient optimality condition and the maximum principle to the new 

problem with only dynamic control. 

On the other hand, we deal with the nonsmoothness of the value function by using 

Clarke generalized gradients instead of viscosity solutions. 

The results in this chapter are related to the quasi-variational inequality approach 

by a relation between the value function for the original optimal process and the one 

for the new problem. 
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5.2 Reduction to a New Problem with Only Dy­

namic Control 

If we compare a boundary control with an impulse control, we find that they both 

move a process instantaneously to a new state chosen according to the transition 

measures Qa and Qs respectively. The difference is only in the timing. A boundary 

control action is applied whenever the process hits the boundary of the state space, 

while an impulse control action is applied at intervention epochs. To reduce impulse 

controls to boundary controls, it is sufficient to embed the original process in a new 

process in such way so that at intervention epochs of the original process the embedded 

process will hit the boundary of the new state space. 

It is obvious that if we let 2' be one of the coordinates of state of the new process, 

the new process will hit the boundary of the new state space when 2' = 0 since 0 is 

an end point of the interval (0, oo). However, in the case when the process jumps 

while 2' > 0, i.e. an ordinary interior jump, the problem is how to embed the original 

process so that the new process will hit the boundary at this time. 

The idea here is to use a fictitious time construction following Yuskevitch (1983, 

1988) and Dempster and Solel (1987). We consider an ordinary interior jump to be 

an interior jump of the new process. The new process jumps to a state where all the 

coordinates are kept constant except for which 2' is set equal to —5, an interior point 

of the fictitious time interval (—6, —4). Fictious time then runs backwards until it 

hits the boundary at 2' = —6 at which time we decide whether or j\ot to intervene. 

To be consistent, we also let fictitious time run after both jump epochs and in­

terventions. We distinguish two kinds of boundary states for the new process, i.e. 

boundary states at which we always intervene and ones at which we can decide 

whether or not to intervene. Thus we define the state space for fictitious time as 

a union of two disjoint time intervals (—6, —4) U (—3, —1). In the case when 2' = 0, 

the new process will jump to a state where all the coodinates are kept constant except 

2' which is set equal to —2, an interior point of the fictitious time interval (—3, —1). 
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When the new process hits the boundary 2' = —3, an impulse control action is taken. 

Due to the use of fictitious time, the new process time increases one unit for each 

intervention and each process jump. To calculate the original process time, we must 

therefore keep track both of the number of original process jumps and the number of 

interventions. 

We must also keep track of the postjump state and the time elapsed since the last 

jump for the original process because interior controls depend on them. 

We now give the precise formulation. Define from given controlled process x{ a 

new controlled process x , with state 

x := (x, z, T, t, m, n), 

where 

x is the s2a2e of the original process; 

z is the postjump s*ate of the original process; 

r is the time elapsed since the last jump of the original process ; 

2' is the time remaining to intervene or fictitious time; 

ms, n„ are respectively number of interventions and the number of original 

process jumps up to the present process time s. 

If a strategy under consideration does not specify a next intervention decision 

time, i.e. we need to take 2' to be oo, we will instead take 2' := —8. Therefore, the 

new process x5 evolves in a new s2a2e space defined as follows: 

E° = (E°xE°xTxT'xN2) 

U(dE xE°xTx [ ( -6 , - 4 ) U ( - 3 , -1 ) ] x M2), 

where 
T = (0,oo); 

T' = ( -oo , - 7 ) U ( - 6 , - 4 ) U ( - 3 , - 1 ) U (0, oo) 
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The effective boundary is 

T* = (E°xE°xTx [{-6} U {-3} U {0}] x M2) U 

(T* x E° x T x [{-6} U {-3} U {0}] x N2). 

Denote by (x t E E°: t E T) the original process and (x, E E° : s E S) the new 

process, where the original time set T is called the real time and S is termed the 

new process time set. Then real time 2 in the new process is represented implicitly in 

terms of process time 5 as t(s) := s — (ma + na + 1). 

Since the time remaining to intervene and fictitious time 2' runs backwards at unit 

speed and all coordinates but fictitious time are kept constant while fictitious time is 

running, the dynamics of the new process are as follows: 

In E°xE°xTx [(-co, - 7 ) U (0, oo)] x N2 x, = f(xa, U0(T„ za)) 

z, = 0 

r, = l 

i's = - 1 

771, = 0 

n, = 0 

In [E° \JdE]xE°xTx [(-6, -4 ) U ( - 3 , -1)] x N2 x. = 0 

i , = 0 

ra = 0 

2 > - l 

771, = 0 

n, = 0. 

While a trajectory of the original controlled process x t starting at xo proceeds 

with time 2, the corresponding trajectory of the new controlled process x, taking 

values in the state space E with the dynamics defined as above proceeds with time s 

in the following way. 

The new process x, starts at the initial point (XQ, XQ, 0, —2,0,0) at time s := 
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0 and goes in fictitious time to (x0 ,x0 ,0,-3,0,0) which is a boundary point of 

E°xE°xTx ( - 3 , -1 ) x {0} x {0} at a = 1. 

Applying an impulse control action ug0, the original process jumps to x£ chosen 

by transition measure Qs(']x0,UsQ) and 20' is set. This formulation allows impulse 

controls to be taken even at time 2 = 0. The new process jumps to (x^, XQ, 0,t'0, 1,0) 

which is an interior point of E° X E° X T x V X {1} X {0} and the new process 

continues its motion described by the integral curves until one of two possible cases 

occurs at real time 2 or process time 5 = 2 + 1 

(i) 2' = 0, 

(ii) 2' > 0 or 2' < —8 and it is a jump epoch ( either an interior jump or a boundary 

jump). 

In case (i), the new process hits the boundary. It jumps to (xt-, XQ, Tt-, —2,1,0) G 

E°xE°xTx ( - 3 , - 1 ) X {1} x {0} or dE x E° x T X ( - 3 , - 1 ) x {1} x {0} depending 

on whether x t- G E° or xt- E dE. 

In case (ii), if xt- E E°, the new process has an interior jump to 

(xt-,xt,Tt-,-5,l,0) G E ° x E ° x r x ( - 6 , - 4 ) x { l } x { 0 } . Ifx t- G dE, the new pro­

cess hits the boundary. It jumps to (xt-, xjj", rt~, —5,1,0) which is an interior point of 

dExE°xTx (-6, -4) x {1} x {0}. 

In both cases, the new process will continue along the appropriate integral curve 

until 2' - -3 in case (i) or 2' = —6 in case (ii) at which point it will jump using the 

given control strategy to a new state in which t' E (0, oo) or 2' := —8 G (—oo, —7). 

In case (i), the original process jumps under an impulse control action ug from 

xt- to xt according to the transition measure Qs(- ;xt-,us). In case (ii), the original 

process jumps under an impulse control (as in case (i)) or jumps under an ordi­

nary control according to the appropriate transition measure Qo(-;xt-,Uo(Tt-,Xo)) 

or Qa(- ;xt-,ua) optimally according to relevant remaining expected total cost. In 

the first instance, a cost e~Stls(xt-,us) is incurred, while in the second instance, a 

cost 0 or e~stla(xt-,ua) is incurred as the process enjoyed an interior or a boundary 

jump. 
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Note that in all cases, whether or not an intervention is dictated by the control 

policy, the state variable of the original process jumps to a point in E°. In case (i), 

the process restarts again from the interior point (x4, xt, 0,2', 2,0) or (x t , x t, 0,2', 1,1) 

depending on which action (impulse or not) takes place. Similarly in case (ii), the 

process restarts again from the interior point (xt, xt, 0,2', 2,0) or (xt,xt, 0,2', 1,1). 

To ensure that the new controlled process proceeds in the way described above, 

it remains to define the control sets UQ and Ua, admissable controls u = (uo,ua), the 

jump rate A, and the transition measures Qo, Qa. The new control sets Uo and Ua 

to be defined below will also be compact. 

Since thr new process undergoes an interior jump only when 2' > 0 and it is an 

interior jump epoch of the original process, the interior control set of the new process 

can be taken to be that of the original process, i.e. Uo := Uo. The new jump rate is 

. . , f X(x,u) iixEE°xE0xTx[(0,oo)\j(-co,-7)]xN2 

X(x,u):= < 
^ 0 otherwise 

When the new process has an interior jump, we expect it jump to the state with 

all coordinates kept the same except that fictitious time is set to —5. Therefore, the 

new in+orior jump transition measure is given by 

w'i4)-tw-i 
f S{x.2,T,-5,-*.n}(0 HxEE0xE0xTx [(-oo, - 7 ) U (0, oo)] x M2 

otherwise. 

The new boundary control set is defined as 

Ud = (UoUUd{JUs)xUtl, 

where Ut> := [0, oo) U {—8} is a one point compacification of [0,oo). It is thus a 

compact separable metric space. As mentioned in §1.3, this control set is well-defined 

since all results in Chapters 3 and 4 will hold if we use a such control set instead of 

a compact subset in Euclidean space. 
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A A 

An admissible boundary control is a feedback function Ua : dE —• Ua such that 

«e(i) EUsxUv iixEE°xE°xTx {-3} x {m} x {n} 

t*o(») 6 [0* U Ua] xU, if xEdExE°xTx {-6} x {m} x {n} 

us(x) G [£/"« U {7j0(r, z)}] x Uf ifxEE0
 AE°XTX {-6} x {m} x {n}. 

The boundary jump transition measure Qa is defined as follows: 

0{x,2,T,-2,m,n}(-) 

"{x,z,T,-5,m,n}(v 

Qa(;x,ua) := < 

%}(dz)Q^(rfy; x> us)6{o,t',m+x,n}(-) 

ifxEExE°xT 
x{0} X {m} x {n}, 

HxEdExE0 xTx 
[(0,oo)U(-oo,-7)] 
x{m} x {n}, 

HxEExE°xT 
: {-3} x {m} x {n} 

and ua := (^$,2'), 

8{y}(dz)Q0(dy; x, TJ0(T, *))£{o.t',m1n+i}(-) if xQE°xE°xT 
x { - 6 } x {m} x {n} 

and ua := (u0(T,z),t'), 

HXEE0XE°XT 

x { - 6 } x {m} x {n} 
and ua := (us, 2'), 

if x G d £ x £° x T 

x { - 6 } x {m} x {n} 

and Tig := (ud, t'), 

HxEdExE°xT 
x { - 6 } x {m} x {n} 

and tig := (us,f). 

S{v}(dZ)Qs(dy, X, U*)£{o,t',m+l,n}(-) 

8{yy(dz)Qa(dy; x, us^o.i'.m.n+i}^) 

8{y}(dz)Qs(dy; x, u*)£{o,«',m+i,n}(-) 

We have now finished the construction of the embedding process. 

Next we identify cost functions for the new problem so that it has the same 

expected total cost as the original problem. 
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The expected total cost of the original problem is 

Jx(u) := Ex[r e^%(xXM^,zX))dt 
Jo 

+ E e-sT?ld(x»-,ua(x»r))l{x« edE} 

+ -Ee-ST%(x«rMKr))} 
i 

Arrange T,- and Tj in increasiig order and denote the resulting sequence by { I ? } , 

so that T? is the i th jump epoch of the original process Xt controlled by both dynamic 

and impulse control. In terms of new process time, we define the jump time as 

fi:=T? + i + l. 

Now rewrite the expected total cost of the original problem as follows: 
°° el* 

Jx(u) = J5«E/,'+l e-stl0(xt,uo(n,Zt))dt 

+ E e~STild(*Tr,Ud(XTr))hxT-edE} 
T«iT 4 ' * ; 

+Ee_h,M\^(v))]1 
i 

Setting 2 := s — (i + 1), we have 

rT* 
/ ' e~Silo(xt,uo(rt,zt))dt 

JT? 

= j '+ l e-s(3-(,+Vho(xa-ri+X),Uo(Ta-.u+x\,za_ti+X)))ds 
^*+(i+i) 

= j e"5se4( ,+1)io(x,-(i+i),7io(r,-(i+i),2,-(i+i)))d3. 

Therefore, if we define the new running cost function IQ for u E UQ as 

(5.2) 

lo(x,u) 

es(m+n+in0(x, u) if x G E° x E° x T x [(-00, - 7 ) U (0,00)] 
x {m} x {TI} 

0 otherwise, 

we have 

/ , + l e Stlo(xt,uo(Tt,zt))dt= I e 6'io(xa,u0(Ta,za))ds. 
JT? Jfi 
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Consequently, we have 

0 0 tTf. ~ r?n 
E / '+l e-Stl0(xtMTt, zt))dt] = E / - e-s'i0(xaMrs,za))ds 
i=0 jTi i=0 jTi 

f°° c A 

= / e~s,lo(xa,u0(Ta,za))ds. (5.3) 
Jo 

A 

Similarly, if we define the new boundary cost function la as 

ia(x,u3) := < 

we have 

' e*(m+n+1)/a(x, 7iS) if x G d £ x £ ° x T x {-6} x {m} X {n} 

and v,a := ("3,2') 

e5(m+n+i)^(X) Ug) i{£(zdExE0xTx [{ -3} U {-6}] x {m} x {n} 

and ua := (1*5,2') 

0 otherwise, 

E e - * T f Z a ( x I . - , ^ ( x j , - ) ) / ^ , ^ } + E e- f fT</5(x r r,w5(x r-))] 
T&n 

= E e i^(^f-)^3(^fr))l{x t_€9£;}- (5.4) 

The new PDP optimal control problem is to find an optimal control among all 

admissible controls v, := (u0,Ua) G C such that the expected total cost 

Jx(u) := Ex[ e-Salo(xa,u0(ra,za))ds 
Jo 

+ E e~STiU*fr,Mxfr))l{i._edE}] 
i « 

is minimized. Here x := (x0, x0 ,0, —2,0,0). 

We conclude from equalities (5.2), (5.3) and (5.4) that the expected cost of the 

new problem is the same as that of the original problem. 

We will give an example to illustrate the construction of a new boundary controlled 

process from an original impulse controlled process. 
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Example A Repair/Maintenance Model 

Suppose x t repesents the cumulative degree of damage to a machine at time 2. This 

increases at rate f(x) when the degree of damage is x, and also discontinuouly due 

to independent random shocks which occur at Poisson times and have some known 

distribution function G. The intervention stategy is to replace the machine (i.e. set 

xt to 0) when the cumulative damage first exceeds some fixed level xmax . (Of course, 

this could happen at a shock time or between shocks, see the figure.) There may or 

may not be some delay in doing this. 

Cumulative 
damage x 

2„ 

t r, 
T 

1st 
Intervention 
Time 

T-> 

T 
2nd 
Intervention 
Time 

time t 

Since there is no dynamic control in this case, we can take the new state space to be 

E := E° x f X IV2, where T' is defined as above. 

While the trajectory of the original impulse controlled process x t starting at x0 

proceeds with (real) time 2, the corresponding trajectory of the new process x , taking 

values in the new state space E proceeds with (process) time s in the following way. 

The new process starts at the initial state (x0, - 2 ,0 ,0 ) at time s := 0 and goes in 
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fictitious time to (x0, - 3 , 0 , 0 ) which is a boundary point of E° x ( - 3 , - 1 ) X {0} x {0} 

at s = 1. 

Set the time remaining to intervene (i.e. the time remaining to replace the machine 

provided no random shocks have occurred) 2' := 2o', the time at which, starting from 

the initial damage level x0, the cumulative damage will first exceed xm a x at 2 = 20', 

i.e. such that /0
to f(x)dx + x0 = xm a x , providing no random shocks occur before time 

2o' and let the impulse control action be equal to zero. This is equivalent to taking a 

new boundary control v,a := (us,t') '•= (0,2o '). Under this boundary control action, 

the new process jumps to (xo,20', 1,0) G E° x T' x {1} x {0} and, if (as shown) 

there are no shocks before 2 = 2o', continues its motion until it reaches the state 

(aWx, 0,1,0) which is a boundary point of E° X T' x {1} x {0}. At this boundary 

point, the new process has an uncontrolled boundary jump to (xm a x , ~2 ,1 ,0) G E° x 

(—3, —1) x {1} x {0} and goes in fictitious time to (xm a x , —3,1,0) which is a boundary 

point of E° x (—3,-1) X {1} x {0}. Applying the boundary control action ua := 

(—im»xi tx), where tx satisfies xm a x = f0
tl f(x)dx, the new process xt jumps to 

(0,2i', 2,0) G E° x T' x {2} X {0} and continues its motion until it reaches the state 

(xT-,tx — (Tx —10'), 2,0) at the first jump time 2 = Ti or s = Tx + 2. The process x , 

then takes an interior jump to ( x r i - , —5,2,0) G E° x (—6, —4) x {2} x {0} and runs in 

fictitious time to (xT- , - 6 , 2 , 0 ) which is a boundary point of E° x (—6, - 4 ) X {2} X {0}. 

Applying the boundary control action ua := t2 (i.e. do not intervene), where xm a x = 

/o2 f(x)dx + xTl, the new process jumps to (xT l ,22 ' ,2,1) E E° x T1 X {2} X {1}, 

where x ^ is determined by the distribution function G. The new process x, again 

continues its motion until it reaches the state (xT-,t2 — (T2 — Tx), 2,1) at the second 

jump time 2 = T2 or s = T2 + 3, It then takes an interior jump to (xT- ,—5,2,1) 

and proceeds in fictitious time to (xT- ,—6,2,1) , a boundary point. Applying the 

boundary control action ua := (—x r-,23 ') (i.e. intervene to replace the machine), 

where 23' := tx (i.e. xm a x = /0'
3 f(x)dx), the new process jumps to (0,23 ', 3,1) and 

restarts again from this interior point. 

This example shows that three possible cases can occur (see the figure). 
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(1) At time 20', 2' = 0. We intervene to replace the machine. 

(2) At time I \ , a jump epoch, a decision is made not to intervene. 

(3) At time T2, a (second) jump epoch, a decision is made to intervene and replace 

the machine. 

• 

5.3 Generalized B H J Equation for the New Prob­

lem 

In the last section, we have reduced the original problem with both dynamic and 

impulse control to an equivalent problem with only dynamic control. Therefore if 

Qs satisfies the same conditions as QQ and Qa, we can apply all but the uniqueness 

result (which as stated requires the compactness of the state space not satisfied in 

this case) obtained in Charpters 3 and 4 to the new problem. We will not state the 

BHJ necessary and sufficient optimality condition or the maximum principle for the 

new problem here since they are straightforward but complicated. However, since the 

value function and the BHJ equation play a very important role in our charactrizations 

of the optimality, we will set up the generalized BHJ equation for the new problem 

in this section. 

Define the value function for the new problem by 

V(x) := min Jx(u) for any x E E. 
ae& 

Then the generalized BHJ equation for the new problem is 

min {C'f(z,v) + X(z,v) [(V(y)-V(z))Qo(dy;z) 
t'e3V(z) JE° 

veu0 

-8V(z) + lo(z,v)} = 0 VS G E° (5.5) 
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with boundary condition 

V(z) = min{fs(i, TJ) + f V(y)Qd(dy; z, v)} Vi G dE. (5.6) 

Substitute the non-hat counterparts into equations (5.5) and (5.6). Then the BHJ 

equation (5.5) becomes 

min {C'(f(x, v), 0,1, -1,0,0) + A(x, v)[V(x, z, r, - 5 , m, n) - V(x)] 
i'eav{x) 

veu0 

-8V(x) + es(m+n+VlQ(x,v)} = 0 

Vx G E° x E° x T x [(-co, - 7 ) U (0, oo)] X N2 

min {C'(0,0,0,-l,0,0)-8V(x)} = 0 
i'eaV{£) 

Vx G [E° U dE] x E° x T x [(-6, - 4 ) U ( -3 , -1] x N2 

and the boundarjr condition (5.6) implies 

V(x) = min {eslm+n+%(x, v) + f V(z, z, 0,2', m + 1, n)Qs(dz; x, v)} (5.7) 
veUs JE° 
t'eut, 

Vx G [E° UdE]xE°xTx {-3} x {m} x {n} 

F ( x ) = min min{ es(7n+n+1Ha(x,ua)+ [ V(z,z,0,t',m,n + l)Qa(dz;x,ua), uBeup JE° 

es^n+ins(x,us)+ I V(y,y,0,t',m + l,n)Qs(dy;x,us)} 
JE° 

t'eut, 

JE° 

\/xEdExE°xTx {-6} x {m} x {n} 

V(x) = min min{ es(m+n+1Us(x, us) + [ V(z, z, 0,2', m + 1, n)Qs(dz; x, us), 
UO(*>T) JE° 

t'eut, 

I V(z, z, 0,2', m, n + l)Q0(dz; x, U0(T, z))} 
JE° 

VXEE°XE°XTX {-6} x {m} x {n} . 
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Remark 5.1 It follows from the above construction that prior to jumps of the new 

process 

V(x) = e-^m+n+1^V(x,z,T,-Z,m,n) (intervention) 

V(x) = e-s(m+n+l)V(x,z,T,-6,m,n) (jump), 

while postjump we have 

V(z) = mme-s(m+nny>V(z,z,0,t',m + l,n) (intervention) 
t'euti 

V(z) = m i n e - ^ + ^ ^ ^ ^ ^ . ^ m ^ + l) (jump). 
t'euti 

• 
To relate our approach to the quasi-variational approach, assume there is no dy­

namic control, the impulse control action does not take place at boundary states, 

la = 0 and Qg(-;x,v) := 8X+V(-) the one-atom probability measure concentrated on 

x + v. Then the boundary condition for the new embedding problem and Remark 5.1 

together imply that if x G E° is a state where the BHJ equation is not satisfied by 

the original problem, then following equality, which implicitly defines the intervention 

boundaries in E°, must be satisfied, 

V(x) = mm{ls(x,v) + V(x + v)}, 
veus 

while if x G dE, then the following boundary condition must be satisfied, 

V(x) = JEV(y)Qa(dy;x). 

This relates our approach to the quasi-variational inequality approach (cf. §5.1). 



Chapter 6 

An Equivalent model with 

Bounded Costs 

6.1 Introduction 

In the previous chapters, we have developed a control theory for the PDP optimal 

control problem with bounded cost functions lo and la- Unfortunately, cost functions 

are in general not bounded. In a lot of cases, for example, capacity expansion problems 

(cf. Davis et al. 1986, 1987 or Example 1.5.1) and stochastic scheduling (cf. Solel 

1986, Dempster and Solel 1987 or Example 1.52.), cost functions are not bounded 

but are instead subject to certain bounded growth conditions. 

In this chapter, we consider a PDP optimal (dynamic) control problem as for­

mulated in §3.1 with cost functions Z0 and lg that are subject to bounded growth by 

which we mean that there exists a function g(x) : E —>• R+ such that lQ(x,u) < g(x) 

and la(x,u) < g(x) for all x and u. Applying the results of the previous chapter this 

extends immediately to the PDP optimal control problem with both dynamic and 

impulse control. 

The purpose of this chapter is to construct an equivalent PDP control problem 

with bounded costs using the technique of !,he multiplicative functional transformation 

as in Davis et al. (1986). 

117 
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6.2 An Equivalent Model with Bounded Costs 

As was shown in the proof of Proposition 3.3, a discounted problem with discount rate 

8 is equivalent to a non-discounted problem with killing rate 8. The killed process 

is a new PDP on E^ := E° U {A} with total jump rate A(x,u) + 8. All functions 

x(x,u) are extended to E& x Uo or E& x Ua by setting x(A,u) = 0. A trajectory 

of the killed process proceeds as the original one until it jumps to the coffin state A 

and remains at A thereafter. Since the killing rate is a part of the jump rate for the 

killed process, it can be generalized to depend on the state x and control u just as 

the original jump rate X(x,u) does. 

Definition 6.1 A multiplicative functional of a Markov process x t is an adapted 

two-parameter process /3£ such that 

# = # # for r<s<t. 

• 
Multiplicative functionals and their properties are described in detail in Dynkin (1965) 

and Blumenthal and Getoor (1968). An introduction adequate for our purposes here 

may be found in Davis (1981). 

The purpose of this section is to prove the following theorem. 

Theorem 6.1 Suppose there is a C1 function g : E —• R+ such that the following 

conditions are satisfied: 

(A6.1) lo(x,v) < g(x) for all x E E° and v E U0 

la(x,v) < g(x) for all x E dE and v E Ua, 

(A6.2) E:[g(xt)} < g(x), 

(A6.°,) 

(1 - g(x, v)/g(x))X(x, v) + 8 + l/g(x) • Vg(x)f(x, v) > 0, 
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where g(x,v) := fE„ Q0(dy;x,v). Then there is a PDP {xt} on E° with the same 

vector field f, jump rate X(x,v) := X(x,v)g(x,v)/g(x), killing rate 

yj(x, v) := (1 - g(x, v)/g(x))X(x, v) + 8 + l/g(x) • Vg(x)f(x, v) 

and transition measure 

i Qo(dy;x,v) := — r f g(y)Q0(dy;x,v). 
J A 9\X,V) J A 

The problem of control of the new process {xt} with initial state x E E° and the 

bounded costs l0(x,v) := l0(x,v)/g(x) and la(x,v) := la(x,v)/g(x) is equivalent to 

the original problem in the sense that its expected costs are equal to -h times the 

expected costs of the original problem. 

Proof 

Step 1. Fix an admissible control u and let P " be the semigroup (i.e. P" has 

the semigroup property P?Pa = Pt+,) of the corresponding controlled killed process 

{xt} defined for <f> E B(E%) (or <j> E B(EA)) by 

PW*) := mi*)], 

where E" denotes the expectation with respect to the process Xt with initial state x. 

Define (3t := g(x")/g(x). Since /3t = /30/3t, it is a one-parameter multiplicative 

functional of xt. 

Let P " be the semigroup corresponding to 8 defined by 

P^(x) := EMxM 

= ^fMxtMxt)}- (6.1) 

By assumption (A6.2), we have 

P?IE° < I-

Therefore, P" defines a sub-Markovian semigroup. 
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As is shown in Blumenthal and Getoor (1968), one can construct a transformed 

process {x t} satisfying 

P^(x) = E^(xt) <j>EB(E°A) (or Vcj>EB(EA)) xEE°. (6.2) 

For simplicity, we write lo(x,u) as IQ(X) and la(x,u) as 2g(x). It follows from this 

and (6.1) that for 

<j>(x) := <«(*) = ro(x)/g(x) E B(E°A) 

and 

<f»(x) := rd(x)I{xedE) = ^(as)/^(x)J(xe8S) G B(EA), 

we can use the Fubini theorem to yield 

~ fOO _ _ 

Jx(u) := E:[JO luo(5ct)dt + j:iu
d(xTr)I^reBE)} 

= / mio(^t)]dt+j:E:[rd(xTr)i{K_€aE)} (6.3) 
JO i T. 

+ £ ^j^ie(xrrM'=jrW»rr«B)] (6-4) 

+ E«XTrMx I i - ) i (xT_€as)] (6-5) 

+ E ( a (x I r «* r -£8E>] (6.6) 

Here the equalities (6.3) and (6.5) follow from Fubini theorem. The equality (6.4) 

has on both sides an expression for P"(") given respectively by equalities (6.1) and 

(6.2). The equalities (6.6) and (6.7) follow from the definitions of IQ and lg and Jx(v>) 

respectively. 
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Since IQ(X,U) < g(x) and la(x,u) < g(x) by assumption (A6.2), l0(x,u) = 

l0(x,u)/g(x) < 1 and la(x,u) = la(x,u)/g(x) < 1. Thus the control problem for 

{xt} is replaced by an equivalent one for {x t} with bounded cost functions. 

Step 2. By Davis (1981), the extended generator of the transformed process {x<} 

is 

(A?<f>)(x) = ^-yA^g}(x), 

where Av<f> is the extended generator of the original process {xt} corresponding to 

a fixed control action v E Uo. By Proposition 1.1, the extended generator of the 

original killed process {xt} is given by: 

(Av<f>)(x) = V<f>(x)f(x,v) + K*,v)[JE0 <t>(y)Qo(dy;x,v) - <j>(x)] - 8<f>(x). 

Consequently, 

(Av<f>)(x) = -^Av[<f>g](x) 
g(x) 

1 -[<j>(x)Vg(x)f(x,v) + g(x)V<f>(x)f(x,v) 
g(x) 

+A(x, v)( j 4>(y)g(y)Qo(dy; x, v) - <j>(x)g(x)) - 8<f>(x)g(x)] 

= V^(x)/(x, v) + l/g(x) • Vg(x)f(x, v)</>(x) 

+A(x, v)g(x, v)/g(x)[ f <f>(y)g(y)/g(x, v)Q0(dy; x, v) - <j>(x)} 
JE° 

-[(1 - g(x, v)/g(x))X(x, v) + 8}<p(x), 

where g(x,v) = j g(y)Qo(dy;x,v). 
JE° 

Using 

A(X,TJ) := X(x,v)g(x,v)/g(x) 

Qo(dy;x,v) := g(y)/g(x,v)QQ(dy;x,v) 

i>(x,v) := (l-g(x,v)/g(x))X(x,v) + 8+l/g(x)-Vg(x)f(x,v), 

we have that 

(Av<j>)(x) = V<f>(x)f(x,v) + X(x,v)[[ <t>(y)Qo(dy-,x,v)~<i>(x)}--ip(x,v)<l>(x). 
JE° 
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Since ip(x,v) > 0 by assumption (A6.3), this is the generator of a PDP with vector 

field / , jump rate A, killing rate VJ(X,V) and transition measure Q0. 

Consequently, we have the desired result from the uniqueness of the extended vener­

ator. • 

Remark 6.1 If g(x) is equal to a constant, then it is easy to see that the transformed 

process coincides with the original process. • 
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