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Notation

units
latin indices

greek indices

8nG = 1; ¢ = 1 (unless otherwise indicated)
a, b, c, ... run from 0 to 3.

a,3,4,... run from 1 tc 3.

metric signature — + ++

Tab,c

.,
abjc

uﬂ

ha,b

Tab

Qe

a comma refers to ordirary partial differentiation.

a semicolon refers to covariant differentiation (with respect to
the metric tensor g,).

represents the fluid velocity.

= gqp + UgUp, — the projection tensor (it projects tensors into
the three-dimensional space orthogonal to u®).

volume expansion; H = 83, where H is the Hubble parameter.
shear tensor

energy density

isotropic pressure

bulk viscous pressure

shear viscous stress

heat conduction vector

temperature

specific entropy or entropy per baryon

baryon number density

bulk viscosity coefficient
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i shear viscosity coefficient

K thermal conductivity coefficient

EC(s) energy condition(s)

WEC weak energy condition

DEC dominant energy condition

SEC strong energy condition

ODE ordinary differential equation

FRW Friedmann-Robertson-Walker, — Spatially homogeneous and iso-

tropic cosmological models that have a 6-dimensional, Gg, group
of isometries acting on spacelike hypersurfaces.

OSH Orthogonal Spatially Homogeneous. An OSH cosmological model
is a spatially homogeneous and anisotropic model that has a three-
dimensional, Gs, group of isometries acting simply transitive on the
three dimensional hypersurfaces orthogonal to the fluid flow.

H, An n-dimensional Lie group of similarities generated by a homothetic
vector and n — 1 Killing vectors. Each H, contains the subgroup Gy.;.

G, A n-dimensional group of isometries generated by n Killing vectors.
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Abstract

It is proven that if one desires self-similar asymptotic limit points in spatially
homogeneous cosmological models, then dimensionless equations of state.are neces-
sary. The converse is also true; it is proven that dimensionless equations of state
imply self-similar asymptotic limit points. These results are subsequently used in the
investigation of various cosmological models.

Dimensionless equations of state and a set of dimensionless, expansion-normalized
variables are used to reduce the dimension of the system describing the evolution
of spatially homogeneous imperfect fluid cosmological models. Since the resulting
system is an autonomous system of ordinary differential equations, dynamical systems
techniques can be used to determine its qualitative behaviour.

In particular, viscous fluid Bianchi type V models with heat conduction are ana-
lyzed and compared using both the Eckart and the ‘Truncated’ Israel-Stewart, theories
of irreversible thermodynamics, and Friedmann-Robertson-Walker models with bulk
viscosity are studied and compared using both the ‘Truncated’ and the ‘Full’ Israel-
Stewart theories of irreversible thermodynamics. Furthermore; the dynamical system
describing the evolution of the viscous fluid isotropic curvature models is given. The
qualitative behaviour of the first order Eckart theory can be very different from the
qualitative behaviours of the second order Israel-Stewart theories. It is found that
in the Eckart theory the anisotropic Bianchi type I and V models always isotropize,
however, the same is not true in the second order Israel-Stewart theories where it is

shown that they need not isotropize. It is also found that bulk viscous inflation is



possible in all of these theories. Finally, it is demonstrated that there can be more
entropy produced in the Truncated Israel-Stewart theory than in the Eckart theory.

The only scalar field models that allow self-similar asymptotic limit points are
those in which the potential is either of exponential form or zero. Using the prop-
erty that the dynamical system describing the spatially homogeneous models can be
rewritten in terms of dimensionless variables, a class of spatially homogeneous mod-
els are investigated. A general result pertaining to the isotropization and inflation
of Bianchi models with an exponential potential is obtained. Tt is found that the
only Bianchi models that can possibly inflate and isotropize when k? > 2 are those
of Bianchi types I, V, VII or IX.

One of the criteria that breaks the self-similarity condition is the existence of a
scalar field with a non-exponential potential. In isotropic and spatially homogeneous
models with a quadratic potential, it is shown that oscillatory behaviour is possi-
ble. A survey of various models exhibiting this oscillatory behaviour is given and
examples demonstrating this oscillatory behaviour, are found. Also, a qualitative
analysis of a cosmological model arising from a soft inflationary scenario i§ done and

the asymptotic behaviour is determined.

xxi



Chapter 1

Introduction

1.1 Relativistic Cosmology

In cosmology, one is primarily interested in studying mathematical models of the
universe that agree with astronomical observations. Assuming that the universe ig
electrically neutral, the dominant force on large scales is that of gravity. At present,
there are many theories of gravity to choose from, however, Einstein’s General Rela-
tivity has proven itself to be an excellent approximation in describing the gravitational
dynamics of the solar system. We will extrapolate this observalion and assume that
General Relativity describes the gravitational interaction on scales larger than that
of the solar system, for instance, -on scales of galaxy clusters.

In General Relativity, the force of gravity is represented by the curvature of a
Lorentzian manifold representing our spacetime. The Einstein field equations which

relate curvature and the matter content are,
Gab = 87I'Tab,

where G,; is the Einstein tensor calculated from the metric tensor, and Ty is the

energy momentum tensor which represents the energy and matter contributiony, By



the contracted Bianchi identities, the energy-momentum tensor satisfies
b
T* » =0,

which represents the energy and momentum conservation equations.

Recent measurements of the cosmic microwave background temperature indicate
that the universe has a very high degree of isotropy [8], which in turn suggests that
the universe is also largely spatially homogeneous. Assuming these two symmetries
are exact, (isotropy and spatial homogeneity) is called the Cosmological Principle.

On very large scales we can consider galaxy clusters as particles of a gas that fill
the universe. We are then able to model this gas as a fluid. Astronomical observatious
also suggest that the distribution of galaxy clusters is rather isotropic about us and
that there is an overall expansion of these clusters [9]. Therefore, (assuming we do not
occupy a privileged position in spacetime), there is an average velocity vector at each
spacetime point. This velocity vector can be thought of as representing the average
velocity of the fluid particles [9). By far, the most common assumption concerning
the nature of the fluid approximation is that it have negligible viscosity and heat

conduction, in which case it is called a perfect fluid.

1.1.1 The Standard Model

The Einstein field equations are very difficult to solve, and one usually imposes
some symmetries on the spacetime so as to make some progress in solving them. Given
that the matter can be described as a perfect fluid, the simplest cosmological models
satisfying the Cosmological Principle are obtained when one assumes that there is a
six-dimensional Gg group of isometries acting multiply transitively on spacelike orbits.
This results in the spatially homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) model, also known as the Standard model. The Standard model has had some
success in describing the present day universe. Firstly, the Standard model agrees

with the Hubble expansion law. Secondly, since the FRW spacetime is isotropic, the



Standard model agre<s with the isotropy observations of the universe. Thirdly, and
perhaps the greatest success of the Standard model was the prediction and subsequent,
discovery of the cosmic microwave background radiation. Fourthly, the Standard
model predicts primordial abundances of light elements in accord with observations.

Nonetheless, the Standard model does have its weaknesses. For instance, there is
no acceptable theory of galaxy formation. Also, on scales larger than galaxy clusters,
we observe the universe to be clumpy with large voids [10] — the Standard model
does not allow the formation of such structures. Therefore, it becomes interesting to
investigate cosmological models with a richer structure both geometrically and with

respect to the matter content.

1.1.2 Spatially Homogeneous Models

It is unrealistic to expect to solve the Einstein field equations in {ull generality.
(They are a coupled non-linear system of partial differential equations.) The Stan-
dard model is spatially homogeneous and isotropic, which is, perhaps, too restrictive
to describe the true behaviour of the universe. By dropping the isotropy condition
of the Standard model, the class of spatially homogeneous but anisotropic perfect
fluid models result. A very important subclass of the general spatially homogeneous
models are the crthogonal spatially homogeneous (OSH) models. (OSH models are
those where the average fluid 4-velocity is orthogonal to the surfaces of homogeneity.)
It was shown by Ellis and MacCailum [11] that the Einstein field equations for all
OSH models with appropriate equations of state can be written as an autonomous
system of ordinary differential equations. The perfect fluid OSH cosmological models
have been extensively studied [12, 13, 14, 15, 16, 17, 18, 19] [see also [20, 21] and ref-
erences therein] using various approaches and techniques. One of the most successful
approaches is the use of dynamical systems techniques to determine the qualitative

behaviour f the perfect fluid OSH cosmological models.
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1.2 Dynamical Systems and Spatially Homoge-

neous Cosmologies

There have been many groups using dynamical systems theory to study OSH cos-
mological models. The most elegant, and perhaps, most complete qualitative analysis
of the perfect fluid OSH models has been done by Wainwright and Hsu (Bianchi type
A) [18] and by Hewitt and Wainwright (Bianchi type B) [19]. In these papers, the
Ellis-MacCallum orthonormal tetrad techniques [11] were used to write down the
Einstein field equations. In this way, the commutation functions associated with this
tetrad basis become the physical variables. The system of ordinary differential equa-
tions with respect to these basic physical variables admits a scaling symmetry that
allows one to introduce dimensionless variables. The way one chooses the dimension-
less variables is not unique; however, since the expansion plays a dominant role in
these models, it is natural to choose dimensionless, expansion-normalized variables
[18]. A property of the dimensionless variables, is that the equilibrium points of the
reduced dynamical system represent self-similar cosmological models, that is, in addi-
tion to the three Killing vectors, there exists a homothetic vector (see equation (2.1)
on page 13 for a definition of homothetic vector). In addition, the reduced dynamical
system is analytic, (more over, it is polynomial). One further advantage of using
dimensionless variables in the perfect fluid OSH models is that the phase space of the
reduced dynamical system became a compact set in the Bianchi type B models [19]
and becomes a closed but unbounded set in the Bianchi type A models [18].

The resulting system of ordinary differential equations permits one to use dynami-
cal systems techniques to determine the qualitative bebaviour. (See Appendix A for a
review of Dynamical Systems techniques.) One of the aims in this thesis is to extend
the ideas used by Wainwright and his collaborators [18, 19] to viscous fluid spatially
homogeneous models. Since the dynamical system in the imperfect fluid case becomes

significantly more complicated than in the perfect fluid cases previously studied, only



special subsets of the OSH viscous fluid models will be investigated here.

1.3 Viscous Fluid Cosmological Models

1.3.1 Motivation

Much of this section has been taken from the recent comprehensive review of
viscous fluid cosmology by @. Gren {22].

It was Misner [23, 24, 25] who pointed out that viscosity, and in particular neu-
trino viscosity, in the early universe may have played a part in the isotropization of
the universe. Misner'’s idea [23, 24, 25] was that after the temperature decreased to
about 10'® K, the neutrinos would decouple from the rest of the radiaticn. At this
point, the neutrinos were neither collision-free nor collision-dominated and therefore
viscosity would be the dominant process. However, Doroshkevich et al. [26], Stewart
[27, 28] and Collins and Stewart [29] argued that Misner’s suggestion, based on the
relativistic fluid approximation, assumed that the initial anisotropy was already very
small. Stewart [27, 28] and Collins and Stewart [29] have shown, using statistical me-
chanical techniques, that if the initial anisotropy is sufficiently large then the universe
need not isotropize. The question of isotropization in spatially homogeneous models
has also been addressed by Collins and Hawking [30]. They proved that only a set of
measure zero oi all initial conditions in these models can possibly lead to isotropiza-
tion (provided the dominant energy condition and the positive pressure criterion are
satisfied). However, Belinskii and Khalatnikov [31] have shown that the viscous fluid
anisotropic Bianchi type I models (in particular) do isotropize to the future. In all of
the above work the Eckart theory was used, and it is not clear whether dissipation
can lead to isotropization in anisotropic models using the second order Israel-Stewart
theories.

The present entropy per baryon in the universe is of the order of 10® - 10%. This is

an extremely large number. Why is it so large today? Because the universe has been



approximately Friedmann-Robertson-Walker from the time of recombination, there
has been no significant growth in the entropy per baryon since this time. Therefore,
any significant entropy growth must have occurred in the early universe. Weinberg [32]
was the first to do some specific entropy growth calculations arising from dissipative
effects. Using the Eckart theory, Weinberg [32] showed that bulk viscosity alone can
in no way explain the enormous entropy per baryon. On the other hand, in work by
Caderni and his coworkers [33, 34, 35], it was shown that shear viscosity can produce
significant amounts of entropy. They found a class of models in which the entropy
per baryon at the present time could be of the order of 10°. Maartens [36] illustrated
that during a period of bulk viscous inflation an enormous amount of entropy can
be generated. Consequently, dissipation may offer a possible explanati;m for the
currently observed high entrepy per baryon.

Barrow and Matzner [37] pointed out that there are other possible dissipative
mechanisms available in the early universe, including, for example, graviton collisions,
quantum particle creation, and mini blackholes. Higher-dimensional superstring cos-
mological models give rise to bulk viscosity through the conversion of massive string
modes to massless string modes [38]. Dissipative effects may also be important with
respect to galaxy formation [29] and with respect to the possibility of bulk viscous
inflation (22, 39, 40, 41, 42, 43]. In some instances dissipative effects have been known
to change the nature of the initial singularity [44] and in other instances have been
known to remove it altogether [45, 46].

Therefore, dissipative cosmological models are of interest and should be analyzed
in order to discover what properties they may have. A number of important questions
include; do dissipative models isotropize!, do dissipative models sufficiently increase
the amount of entropy in the universe, do they cause inflation?, do they remove the

initial singularity. These are all questions that will be addressed in the thesis.

'A cosmological model will be said to isotropize if (i) the shear tends to zero and, (ii) in case of
imperfect fluid models, the anisotropic stress also tends to zero,

“Inflation is defined to occur when the generalized deceleration parameter, ¢ = -'l'l/ i’", is negative,
where [ is the average length scale. H = %9 = [/l is the Hubble parameter.



1.3.2 Eckart Theory

Given that the universe can be modelled as a simple fluid, a relativigtic theory of
irreversible thermodynamics is needed to describe the dissipative effects of the fluid.

In one of the first proposed theories of irreversible thermodynamics [47], it was
assumed that there was a linear relationship between the bulk viscous pressure® IT
and the expansion 6, viscous pressure Il and the expansion 8, and a linear relationship
between the heat conduction vector, ¢°, and the geadient of the temperature sumined
with the acceleration 42, as well as a linear relationship between the anisotropic stress

7q and the shear o,;; that is,

n = -(4,
¢ = —kh®(Ty +T), (1.1)
Tah = “2770ab7

where ( denotes the bulk viscosity coefficient, & denotes the thermal conductivity, and
n denotes the shear viscosity coefficient. Equations (1.1) describe Eckart’s theory of
irreversible thermodynamics [47]. Eckart’s theory is a first order approximation of
the viscous pressure II, heat conduction vector ¢*, and the anisotropic stress r, and

is assumed to be valid near equilibrium [47]. With equations of state of the form
¢=Cp", n=10p" (1.2)

Belinskii and Khalatnikov [31] found that the Bianchi type 1 models isotropized to
the future. The addition of viscosity allowed for a variety of different qualitative
behaviours (different from those of the corresponding perfect fluid models). However,
Eckart’s theory of irreversible thermodynamics [47] suffers from the property that
signals in the fluid can propagate faster than the speed of light (i.e., non-causality),

and also that the equilibrium states in this theory are unstable (see Hiscock and

3Definitions of all terms can be found in the Glossary.



Salmonson [48] and references therein). Therefore, a more complete theory of irre-
versible thermodynamics is necessary for fully analyzing cosmological models with

viscosity.

1.3.3 Israel-Stewart Theory

Among the first to extend the Eckart theory of irreversible thermodynamics were
Israel [49] and Israel and Stewart [50, 51]. For a simple fluid, and for small deviations

from equilibrium, one may write the entropy flux as
5% = s(p,n)N* + %; ~ Q*(H, ¢, 7%,

where s is the specific entropy, p is the energy density, N* = nu® is the number
density flux, T is the temperature and Q° is a general four-vector representing the
deviations from equilibrium upto and including second order terms. In the first order
Eckart theory, the general four vector Q* is zero. Kinetic theory arguments, however,
suggest the contrary, that is, @* does not vanish in general. To second order in II,

q°, and 7, the most general expression for Q° is of the form
a ]' a p a
Q" = —apllg® — a;7%q, + U (ﬁoﬂz + 614’y + Par bﬂ'ab)'

Assuming an irrotational fluid flow, the simplest way to satisfy the H-theorem (pos-
itive entropy production) is to assume the following set of linear (in II, ¢°, 7%)

phenomenological laws for II, ¢%, and 7 [48, 51, 52]:

I = —( {u‘?a + Boll — a0, + € [-;—TH (ﬁoTu) — 70q*T (%) }} ;
G = —RThab{% + U + Mgy — ol — aqm©, + 6[%71% (ﬂyf")'c
~(1 =T () - (1= m)mT (%)] } (13)
Tap = —2q <ua;b + Baftab — Q1gha + € [%T'Wab (ﬁz;‘f).c - %@l (%) . > )




where the angle brackets denote the purely spatial trace-free part of the enclosed
tensor; that is,

2
(Aw) = hohy(Aca + Adc = Theah! Acy)

1
2
The Israel-Stewart theory has three transport coefficients ¢, &, and 7; three param-
eters related to the relaxation times, By, B1, and Bz; and two coupling coeflicients
ap and oy, and two completely arbitrary parameters 4y and 43, The parameter ¢ is
a discrete parameter that takes on values of 1 or 0, thereby effectively switching off
certain components of equations (1.3). The variable, 7, represents the temperature.
We shall refer to equations (1.3) with € = 1 as the full Israel-Stewart equations. Israel
and Stewart [49, 50, 51] originally assumed that the divergences and spatial gradients
were sufficiently small so that their products with first order quantities were negli-
gible. This class of theories is effectively obtained from the above equations (L.3)
by setting (¢ = 0) and is appropriately named the truncated Israel-Stewart theory.
These equations, (1.3), reduce to the Eckart equations (1.1) used in [2, 53, 54, 55]
when ap =y = flo = = =0.

Belinskii et al. [44] were the first to study cosmological models satisfying the trun-
cated (e = 0) Israel-Stewart theory of irreversible thermodynamics. Using qualitative
analysis, Bianchi type I models were investigated. They assumed equations of state
of the form [44]

(=Cop™, n=mn0p", Po=p"", and Br=p7", (1.4)

where m and n are constants and (, and 7, are parameters. The isotropizing effect
found in the Eckart models no longer necessarily occurred in the truncated Israel-
Stewart models [44]. It was also found that the cosmological singularity still existed
but was of a new type, namely one with an accumulated “visco-elastic” energy [44].
Similar to the work done by Belinskii et al. [44], Pavén et al. [56] and Chimento
and Jakubi [57] studied the flat Friedmann-Robertson-Walker models. They assumed
the same equations of state as Belinskii et al. [44], namely (1.4), but studied the
models using slightly different techniques. Chimento and Jakubi [57] also found exact
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solutions in the exceptional case m = 1/2. They found that the future qualitative
behaviour of the model was independent of the value of m; however, to the past,
“bouncing solutions” and deflationary evolutions are possible [57].

Hiscock and Salmonson [48] analyzed a viscous fluid cosmological model using the
full (¢ = 1) Israel-Stewart theory. Hiscock and Salmonson used equations of state
arising from the assumption that the fluid could be modelled as a Beltzmann gas.
They concluded that when the Eckart equations, (1.1), or the truncated (e = 0) Israel-
Stewart equations, (1.3), were used, inflation could occur, but in the full (¢ = 1) Israel-
Stewart theory, inflation was no longer present. This result led them to conclude that
“inflation is a spurious effect produced from using a truncated theory” [48]. However,
Zakari and Jou [52] also employed the full (¢ = 1) Israel-Stewart theory of irreversible
thermodynamics, but assumed equations of state of the form (1.4) and found that
inflation was present in all three theories (Eckart, truncated (e = 0) Israel-Stewart,
full (e = 1) Israel-Stewart). Therefore, it appears that the equations of state chosen
determine whether the model will experience bulk-viscous inflation. Romano and
Pavén [58] also analyzed Bianchi ITI models using both the truncated (e = 0) Israel-
Stewart theory and the full (€ = 1) Israel-Stewart theory. They analyzed the isotropic
singular points and concluded that the qualitative behaviour of the models in the two

different theories was similar in that the anisotropy of the models died away.

1.4 Remarks

1.4.1 Inflationary Cosmologies

In Chapters 6 and 7 various scalar field cosmological models are studied. In these
chapters questions concerning isotropization and inflation are answered. See Chapter

6 and Chapter 7 for a general introduction into scalar field cosmological models.
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1.4.2 Divisions

In all, there are four primary parts to the thesis. The first part comprises the Intro-
duction, Chapter 1, and the chapter on Self-Similarity, Chapter 2. The second part
(and perhaps the primary theme in the thesis) is the work done on the viscous fluid
cosmological models found in Chapters 3-5. The third part is work done in Chapter
6 on the spatially homogeneous models with an exponential potential. The final part
consists of the analysis of the inflationary theories undertaken in Chapter 7. The final

chapter is a summary of the principal results together with some concluding remarks.



Chapter 2

Self-Similar Asymptotic Solutions
of the Einstein Field Equations

2.1 Introduction

Wainwright and Hsu [18] have shown for the orthogonal Bianchi type A perfect
fluid cosmological models that the asymptotic limi{ points are represented by self-
similar models. Similarly, Hewitt and Wainwright [19] have shown for the orthogonal
Bianchi type B perfect fluid cosmological models that the asymptotic limit points are
also represented by self-similar models. Hewitt and Wainwright [59] have also proved
that the ‘dynamical equilibrium states’ are self-similar for the orthogonally transitive
G, cosmologies. How far can these observations be extended? We propose to gen-
eralize tliese observations to general orthogonal Bianchi models containing imperfect
fluid sources.

In section 2.2 we shall define self-similarity. In section 2.3 the Einstein field
equations will be set up as a dynamical system using the orthorormal tetrad formalism
of Ellis and MacCallum [60]. Provided appropriate equations of state are given, the
dynamical system will be shown to admit a symmetry. This symmetry defines new

variables under which one of the equations in the system will decouple. It will be

12
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shown that the equilibrium points of the reduced system represent self-similar space-
times provided p + 3p > 0. Conversely, it will also be shown that if self-similarity
is assumed, the field equations will then imply these same equations of state for
the isotropic pressure p and anisotropic stress mag. In section 2.4 we will include
dissipative effects arising from theories of irreversible thermodynamics (for example
the Israel-Stewart theory of Irreversible Thermodynamics) and will determine the
equations of state required. In section 2.5 the analysis will be further generalized to
include a scalar field. In section 2.6 a list of conditions breaking self-similarity will
be given and examples illustrating these conditions will be shown. In section 2.7 we
shall analyze a class of scalar tensor theories. In section 2.8 we will conclude with
a discussion. The notation will be consistent with that used by MacCallum in the
Cargése Lectures [20]; in particular, lower case Latin indices range from 0 o 4 and

lower case Greek indices range from 1 to 3.

2.2 Self-Similarity

Let (M, g) be a space-time manifold with metric g. Let Ly denote the Lie deriva-

tive in the direction X and let ¢ be a constant. A vector X that satisfies

Lyg =2cg, (2.1)

generates a one parameter family of similarities. If ¢ = 0, then Xisa Killing vector
and if ¢ # 0, then X is a homothetic vector. The collection of all similarities of a
space-time (M, g) forms a Lie group, called the similarity group. A space-time is
defined to be self-similar if it admits a homothetic vector, and transitively self-similar
if it admits an H, [61]; that is, in addition to the homothetic vector, there exist three
Killing vectors that act transitively on 3-dimensional hypersurfaces. In order to be
consistent with previous work [61], we are using the term self-similarity to characterize
the properties of the geometry, rather than characterize the properties of the matter

[62]. It is somewhat conventional, however, to define self-similarity with respect to
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symmetries on the matter [62]. For perfect fluid spacetimes the two definitions are
compatible, however, the same cannot be said about imperfect fluid spacetimes. This
observation is part of the symmetry inheritance problem. (See Coley and Tupper [62]

for more details.)
Hsu and Wainwright [61] state and prove a theorem in which the conditions are

given for a simply transitive similarity group Hy to exist.

Theorem 1. A spacetime (M,g) admits a simply transitive similarity group Hy if

and only if there exists an orthonormal frame {€,} and a scalar field t such that

PYcab = F'cabt_1 (22)
. o |
ea(t) = e, %(t) =TI, (2.3)

where [€,, 8] = 7°,€;, and where F°, and n, are constants.

Proof. See Hsu and Wainwright [61].

2.3 The Field Equations

Consider a 4-dimensional space-time manifold (M,g). Suppose we also have a
timelike congruence of curves through every point p of the manifold M. This congru-
ence of curves defines a tangent vector U at each space-time point p. The covariant

derivative of 4 can be written as

b .
Uapp = Ehab + Oab + Wab — UqUp, (2.4)

where 04, = 0(a), Ot =0, 0,° = 0, Weptld = 0, Way = Wiy, and Uy = ugpul. I we
interpret i as the velocity field of a fluid, then 0 is the expansion, oy, is the shear,
web is the vorticity, u, is the acceleration, of neighboring particles in the fluid and
hay = ugup + gqb is the projection tensor [20].

The energy-momentum tensor, Ty, can be decomposed [20] with respect to u, as
follows,

Tab = pttatts + Phas + ¢ap + Uags + Tab, (2.5)
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where quu® = 0, muu® = 0, 7> = 0 and 7o = 7(g). In general the quantities p,
¢as D, and T, have no physical meaning, however, if u® is the velocity vector of the
fluid, then p can be interpreted as the energy density, ¢, as the energy flux, ji as
the isotropic pressure, and 7,; as the anisotropic stress as measured by an observer
moving with 4-velocity u°.

Assuming that the fluid is moving hypersurface orthogonal, @ = i (il is the unit
normal to the surfaces of homogeneity), the acceleration and vorticity are zero; that
i8, Ug = wgp = 0. If we parameterize the surfaces by distance along the geodesics
normal to the surfaces, then we can consider the surfaces as surfaces of constant time
where n, = —t,.

Using U and the three Killing vectors generating the G3 group of motions, the
Einstein field equations for the orthogonal spatially homogeneous models may be
written in terms of an orthonormal tetrad {&,}. If & = u, then the quantities v,
defined by the commutator relation [&,,8] = ¥°,,€. are spatially independent and
are functions of ¢ only. With respect to this basis, the non-zero components of o,
da, and m,, are respectively 0ug, ¢, and T.g. The quantities 4°,, may be written in

terms of 4, 044, and new variables n,s and a4 as follows [20]:

Yoo = Yas =0
6 Ze "
Tos = —ghas = Tap + caprl, (2.6)

Vg5 = €psen’ + 65 ag — 85" as.

Furthermore, the basis {€,} can be chosen so that n.s = diag(ni,ne,ns) and o =
(,0,0). The Einstein field equations are [equations (113~-121) in MacCallum’s Cargése
lectures [20], with A =0 and 0oy = $hay + 0]

. 2
Qo = 30aﬂaﬁ - Eaﬁ”/’ﬂsasﬁ: (2.8)
Oap = 2 ap j—02—ﬂ + Tap — 00ap
* 3 3

—20 'y(afﬂ)&vﬂs + 2615(01”;3“5 = 2n7(a"p)y
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a)2
+n,"nap + bap (QaA,a'V +nPn.s — (ial) . (2.9)
The Jacobi identities, [€,, [&;, €]] = 0, are
- By, — 0 B
da = =045~ 30a+ Eapyt o, (2.10)
R = )00 4 o, (o) znﬁ(%f’”g— —nPg. (2.11)

The energy-momentum conservation equations are

p = —(p+p)0 — Tapo™’ +2a%¢, (2.12)
fa = —€apyV — 0apg® — %0% + 3agm P + rrﬂ"’e«,agnﬁs. (2.13)

The generalized Friedmann equation is

02 1 n e 2
3= ad+p+ 3 (Gaaa"‘ + n*np — -(——"é—-)—-) . (2.14)

The quantity 0 is essentially the angular velocity of an observer moving with
velocity €y, of the triad {€,} with respect to a set of Fermi propagated axes. For
models of Bianchi type A, Q% = 0, and for models of Bianchi type B, (¢ is a linear
combination of components of the shear tensor, oap [60].

Equations (2.8) and (2.14) are first integrals of the system. Hence, the generalized
Friedmann equation (2.14) can be used to define p and equation (2.8) can be used
to define ¢, in terms of the remaining variables. It is important to note that both
p = p(6,048,naps @) and gy = ga(0, Cap, Nag, ay) are homogeneous functions of degree
two in their arguments. The remaining equations (2.7, 2.9, 2.10, 2.11) constitute a
dynamical system. The dynamical system (2.7, 2.9, 2.10, 2.11) is invariant under the

transformation

0 — A6, Qo — Mg, P — A,
Tap = AOap, Nag — ARag, (2.15)

Tag — AiTag, t— A7l
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This invariance implies that there exists a symmetry in the dynamical system [63]

(See also Appendix B). With the following change of variables

.l - R} - n
Laﬁ—-%é, Aa—i‘gg’ af — ;)

— d 1
©=mhd, =4,

(2.16)

the new evolution equations for £qg, Nyp and A, become independent of the variable
0. That is, © decouples from the dynamical system describing the evolution of ¥yg,
Nyp and A,. The dynamical system can be considered as a reduced dynamical system
for Yap, Nap and A, together with an evolution equation for ©.

What equations of state for the isotropic pressure p and anisotropic stress mqap are
needed to satisfy the conditions that p — A?p and 7ag — Almap in equation (2.15)7
In order for the dynamical system described by equations (2.7, 2.9, 2.10, 2.11) to have
a unique solution, the equations of state must be C! functions of their arguments.
The equations of state for p and 7,3 must also be homogeneous functions of degrec
two, that is,

PN, ATap, Aap, Aag) = ND(8, 0 apy Nag, ta)s (2.17)
and

Tap( A, ATap, Anag, Aaa) = Nmap(0, 0ap, Nug, Ga)- (2.18)

In the new variables (2.16) the equations of state needed are of the form

P= 2 ﬁ(aaaaﬁ,naﬂaaa)
-6 02
/0 Top Nof O
=P
= P(Zq4p, Nug, Aa) (2.19)
and
— Waﬁ ¢
Hap = —95" = Halg(za'@, Naﬂ,Aa). (220)

Thus, any C? functions of the dimensionless variables (Z,4, Ny, A4) gives rise to
equations of state that satisfy the conditions p — A%p and 7,5 — A7,5 in equation

(2.15). We note that P = p0~2 and Il,p = m,p02 are functions of dimensiouless
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variables and therefore are dimensionless. We shall call the corresponding equations
of state (2.19, 2.20) ‘dimensionless’ equations of state [64].
The equilibrium points of the new reduced dynamical system can be found. At
these equilibrium points X,p, Nag, and A, are constant and consequently the equation
9L 5wt Lo 43P (2.21)
6? 3 2
may be integrated where P = P(Z,5, Nag, Aq). [Note that equation (2.14) is used to

define pf~? in terms of the other variables.] The solution to (2.21) is

0,t71 if —1— 3.8 ~1(p072+3P) #0
0= (2.22)
0, if —1—%,55% —1(pf~2+3P) =0

at the equilibrium point. If the condition p + 3p > 0 is satisfied at the equilibrium
points then # = 6,4~ and the remaining physical variables may also be integrated
to yield oup = (Gap)ot™, nag = (Nap)ot™, and aa = (aqa)ot™", where the subscript
‘0’ denotes constant values. These solutions imply that the commmutation coefficients
v, are functions of t~! [see equations (2.6)]. Therefore, using Theorem 1 stated
in section 2.2, the equilibrium points of the reduced system represent transitively
self-similar cosmological models. However, the equilibrium points of the reduced
dynamical system also represent the asymptotic limit points of the Einstein field
equations.

Conversely, assume that the asymptotic limit points are self-similar then Theorem
1 in section 2.2 implies that the commutation functions v, oc ¢~1. Therefore v§, =
—0 < 171, and similarly the physical variables o4g, nag, and a, are also functions of
=1 [see equations (2.6)]. Equations (2.7-2.14) then imply that the isotropic pressure
P and anisotropic stress 7.4 are functions of t72; that is, p(t) = p,t™2 and mee(t) =
(map)ot 2. [Since 8, 04g, Nap, @q o< 171, from equation (2.14) we see that p oc £~2 and
substituting into (2.7), we obtain the result p oc #~2. Similarly for 7,5 using equation

(2.9).]
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If the pressure p has an equation of state of the form
7= 5(0, 0up, Nap, @a), (2:23)
then
p(t) = p(O(t), 005(t); nap(t), aslt));

= B0t (a)ot™, (ag)ot™ (a)at™). (224

Thus, it follows that

O = BMOot™), M(Gap)et™), M(mas)et™), M{aadot™)),

= (A0, Aoag, Anag, Aag). (2.25)

But p(A~'t) = Ap,t~2 = A?p(t), thus the equation of state for 7 is of the form
(A0, Aoop, Miag, Aaa) = A2(8,00p, Nup, @a). The result is similar for m,5. Therefore,
assuming that the spacetime is transitively self-similar, the equations of state for the
isotropic pressure § and anisotropic stress .3 must be homogeneous functions of
degree two of the variables (0, 04p, 24, ¢a). The previous two results are summarized

in the following theorem.

Theorem 2. Let there be a G5 group of isometries acting transitively on a 3-
dimensional hypersurface, and assume that the fluid is moving hypersurface orthog-
onal. Then the asymptotic limit points of the Einstein field equations are transi-
tively self-similar if and only if the equations of state for the isotropic pressure p and

anisotropic stress Tqp are homogeneous functions of degree two; that is,
p(A0, Aoap, Aag, Aaa) = /\Zﬁ(a’ Tapy Nap, Ga)
Wap()\o, /\O'O,g, /\nap, )\aa) = /\zﬁaﬂw, Tag, Nag, aa) (2.26)
provided p + 3p > 0.

Note: The condition p + 3p > 0 is a sufficient condition and not necessary. The
equilibrium points are self-similar as long as —1 — BapE — 1(p0~% 4+ 3P) # 0 at the
equilibrium point. Also, the condition p + 3p > 0 is equivalent o the SEC (strong

energy condition) if the energy momentum tensor, T, is diagonal.
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2.4 Equations of State in Theories of Irreversible

Thermodynamics

We have already determined that the isotropic pressure p and the anisotropic
stress 7o should be invariant under the transformation (2.15) so that the asymptotic
limit points will be represented by self-similar cosmological models. We will now use
this information to determine the equations of state that will be needed to complete
various theories of irreversible thermodynamics if the requirement that the asymptotic
limit points be represented by self-similar cosmological models is assumed.

In imperfect fluid models with bulk viscosity, the isotropic pressure, p, has two
components, the thermodynamic pressure, p, and the bulk viscous pressure, I, that
is = p+1II. A second order theory of irreversible thermodynamics was proposed by
Israel and Stewart [49, 50] to model viscous effects in a simple fluid. The evolution
equations for the bulk viscous pressure, II, the heat conduction vector, ¢,, and the

anisotropic stress, 7, are given implicitly iu equations (1.3).

2.4.1 First Order Eckart Theory

The first order Eckart theory [47] is obtained by settingas =z = o= i = 2 =
0, in equation (1.3). In the Eckart theory we need three equations of state for the
three transport coeflicients (, &, and . In order for the system (1.3) to be invariant

under the transformation (2.15), we must have
IT — I, ¢ — X, K — AK, n— An. (2.27)
Now if equations of state of the form

C = C(ev Ougy Nag,y aot),

k= ""(07 Oapy o, a'a)7 (228)

n = 77(07 TapBs Naf, aa),
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are assumed such that they satisfy (2.27) then the corresponding dimensionless equa-

tions of state are

= ((Baps Napy Ac);

= K(Dag, Nag, Aa), (2.29)
= (Zap, Nag; Aa).

DI I

The clynamical system describing the evolution of the spatially homogencous mod-
els in dimensionless variables (2.16) is independent of the variable © = In 6 and hence
the system has decoupled into a reduced system and an evolution equation for ©.
At the equilibrium points of the reduced dynamical system, Xog, Nyp, and Ay, are
constant and consequently the equation

6 1

@ 1 -2 hYa DK
gi =3~ DasZ A 500 24+3P-3(), (2.30)

may be integrated where P = P(Z,3, Nog, Aa) and ¢ = ((Zag, Nag, Aq)- [Note that
p0~2 is given by equation (2.14).] The solution to (2.30) is

. { 8,471 if — 1 = B8 — 1(p072 43P - 3) #0,

9, if —1—.p8% —1(pf7% +3P -3() =0,

at the equilibrium point. If the condition p +3p > 0 (note j = p+ 11 = p — (f)

(2.31)

is satisfied at the equilibrium points then § = 8,t~! and the remaining physical
variables may also be integrated to yield o, = (dap)ot™!, nap = (Nag)ot™, and
ay = (aq)ot™!, where the subscript ‘o’ denotes constant values. These solutions
imply that the commutation coefficients 4°,, are functions of £~ [see equations (2.6)].
Therefore, using Theorem 1 stated in section 2.2, the equilibrium points of the reduced
system represent transitively self-similar cosmological models.

We can deduce at the equilibrium points of the reduced system that p = p,t~2,
(=Gt k= kot™Y, = n,t7?, and p = p,t2. Therefore, at the equilibrium points

of the reduced system, the equations of state are of the form:

p o p, ¢ o« p'/?,
5 o< pH?, n o p'l?, (2.32)
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We can now conclude that if we choose any dimensionless equations of state for p, ¢,
k, and 7, then, asymptotically, as the cosmological models approach an equilibrium

point, the equations of state will have the above asymptotic form (2.32).

2.4.2 Second Order Israel-Stewart Theories

The second order Israel-Stewart theory is described by equations (1.3). In addition
to the three transport coefficients (¢, &,7) also found in the Eckart theory, there are
five other quantities (fo, 1, B2, o, 1) that require equations of state. In order for the
system (L.3) to be invariant under the transformation (2.15) we find that equation
(2.27) and

Bi= A8 (i=0,1,2), ;-2 (j=1,2) (2.33)
must be satisfied. Therefore, if the equations of state for the above quantities satisfy
(2.27) and (2.33) then it is possible to define new dimensionless variables y = I1/6*
and 2up = myg/0? and use the dimensionless variables (2.16) such that the dimension
of the system governing this model is reduced by one.

The most general equations of state are of the form:
C = 4(9: Oafy Naf) o, II) Waﬁ)r
& = K(0,048, N0, aa I, Tap),
n = 77(0, CuBs Nafy Cay II, 7"01,6), (2.34)
ﬂ; = ﬂ;(a, Tafy Nag, Aa, H, Waﬁ), (z = 0, 1, 2)

@ = aj(0,0a8nap; 0 L, map).  (j=10,1)

If the equations of state satisfy equations (2.27) and (2.33) then the above equations

of state (2.34) can be written in terms of dimensionless variables (2.16), viz;

= E(Eaﬁ? Naﬂ, Aon Y, Zaﬂ)y

= R‘.(Eaﬂ, Naﬁa An Y, Zaﬁ)?

S IR Yt
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% = ﬁ(Eaﬂ:Naﬁ)Amy’zaﬁ)) (2.3

ﬂ|'02 = Bi(zaﬁ;Naﬁ,Aa: y,zclﬁ)a (7’ = 0) 1:2)
o0 = & (Zags Nops Ay Y1 Zap)- (7= 0,1)

Using the same arguments found in the previous subsection we find at the equi-
librium points of the dynamical system describing the model that
—é- =i BppB? — l(,00‘“2 + 3P + 3y) (2.36)
6? 3 2 '
may be integrated where P = P(X.p, Nog, Au, Y, 2ap) and p0~? is given by equation
(2.14). The solution to (2.36) is

0,71 S N af _ 17 -2 4 ¢ :
0:{ if =5 = D2 = 3(p07°+3P +3y) £ 0, (2.37)

0, if — :’13‘ - Eaﬁzaﬂ - %(pa—‘). +3P + 3?/) = 0)

at the equilibrium point. Therefore, using Theorem 1 stated in section 2.2, the aqui-
librium points of the reduced system represent transitively self-similar cosmological
models provided pf=2 + 3P + 3y > 0. Note, this condition is satisfied if one assumes
the strong energy condition [65].

We deduce that at the equilibrium points of the reduced system, p = p,t~2,
(=0t k=Rt p=n,t7Y, B = (B:), 12, i = (i), 2%, and p = pot~?%. Therefore,
at the equilibrium points of the reduced system the equations of state are of the form:

p < p, ¢ o p?,
ko p'l?, n o« p'l?, (2.38)
Bi o p_la aj X P—l'

We can now conclude that if we choose any dimensionless equations of state for p,
¢, £, 0, Bi, and «;j, then, asymptotically, as the cosmological models approach an

equilibrium point, the equations of state will have the above asymptotic form (2.38).
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2.5 Scalar Field

We have seen in the previous sections that self-similarity plays a role in the spa-
tially homogeneous fluid spacetimes. This property of self-similar asymptotic limit
points may also be present in some scalar field cosmologies. In this section we shall
determine which scalar field models allow self-similar asymptotic limit points. The

addition of a scalar field ¢ with potential V(4) is equivalent to

1.,
p = prtes; ps=50" +V(9), (2.39)
1- .
P = pr+ps; Py = §¢2 - V(¢), (2.40)
Tap = §fTaf

where a subscript f denotes the usual fluid components. With the introduction of the
field ¢, one more equation is needed to complete the system, namely the Klein-Gordon

equation

¢ =—0§— 8?;“5). (2.41)

The conditions § — A?p and 73 — A’7.p, necessary for the symmetry to exist
in the dynamical system, (see section 2.3), imply that ¢ — A¢ and V() — \2V(4).
Furthermore, since q$ — Aff; is a linear transformation, it follows that ¢ — & + 4.,
but this is incompatible with V(4) — AV{4), except when V(¢) = 0 or V(4¢) =
Ae** (k # 0) in which case ¢, = 2In\. Therefore, if V(¢) = Ae™ (k # 0) a
symmetry will exist. If A # 0 then the potential permits power law inflation while if
A = 0 the scalar field is massless.

The existence of this symmetry in the dynamical system again implies that there
exists a transformation of variables (See Appendix B). Using the variables in equation
(2.16) and the new variables ® = ¢6-! and U2 = e**9-2, the dynamical system is
transformed such that one of the equations decouples. The equilibrium points of the

new reduced dynamical system can be found. At these equilibrium points X5, Nag,



Ay, ¥ and @ are constant. Thus, at these equilibrium points the equation
LA S S U I LIS 2.42)
02_“3_ aff - - ""é'(Pf + f)! ( hal
may be integrated. [Note that equation (2.14) can be used to define py6=% in terms
of the other variables.] The solution to (2.42) is

9=

{ Ot if =3 =N 8- AVI (0 IR AD,

0, if —1— N5 — 02— AU —1(p,07% +3P)) =0,

at the equilibrium point. If the condition p; +3p, 2> 0, is satisfied then the remaining
physical variables may also be integrated to yield gup = (dag)ot™, Rag = (Rap)et™,
aa = (@a)ot™! and qS = ($)ot"1. These solutions imply that the commutation coef-
ficients 4°,, are functions of t~1. Therefore, using Theorem 1 stated in section 2.2
the equilibrium points represent transitively self-similar cosmological models in the
case of a zero or an exponential potential. See Chapter 6 for an explicit example of

a cosmological model containing a scalar field with an exponential potential.

2.6 Non-Self-Similar Asymptotic Models

The self-similarity of the asymptotic limit points of the Einstein field equations is
not a robust property. For example, self-similarity is broken if any of the following

conditions are satisfied:
A. The equations of state are not of the form (2.26).

B. The existence of a scalar field with a non-exponential potential (e.g., V(¢) =
An ™).

C. The existence of a cosmological constant A.
In addition, self-similarity may be broken if :

D. The condition p + 3p > 0 is not satisfied.
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As an illustration, let us consider a Friedmann-Robertson-Walker (FRW) model
with a perfect fluid source and a scalar field ¢ with potential V(¢) = A.¢*". Since
the & = 0 flat FRW model occurs as the asymptotic limit of the k& = +1 (positive

and negative curvature) FRW models, we shall further simplify our examples by

assuming k = 0. The solutions examined here are exact k = 0 FRW solutions and

are not asymptotic solutions.
The Einstein field equations are [see equations (2.39), (2.40)]

. 1 1

0 = “592 - E(Pf + pg + 3ps + 3p4),
02
3 = ps+ pe
P.f = —'0(pf +pf)5
ps = —0(ps+ pg)-

Note that equation (2.47) is equivalent to the Klcin-Gordon equation (2.41).

Equations of State and Non-zero Potential.

(2.44)

(2.45)
(2.48)
(2.47)

Let us demonstrate that dimensionless equations of state imply self-similarity.

Consider a dimensionless equation of state of the form

P

7 =(y- 1)-5%; v = constant.

Substituting (2.48) and (2.45) into (2.44) we obtain

L)
6? 2’

The solution is § ~ ¢t~!, which implies that the model is self-similar.

(2.48)

(2.49)

However, now assume p; = p; = 0 and a potential V(¢) = Im?¢®. This is

equivalent to having a non-dimensionless equation of state for py, viz.,

Pe _ Ps o8

—= = —-mi.

g2~ 62 6?

(2.50)
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Substituting (2.50) into (2.44) and (2.45) we obtain

§ = —%—oﬁ—dsumw, (2.51)
1 1y, 1 .
§02 = '2‘¢2 + '2-le¢2. (2.52)

Taking linear combinations of (2.51) and (2.52) we obtain

f+0® = 2m?¢?, (2.53)
=0 = —24° (2.54)

If we assume that the solution is self-similar, then  ~ ¢! and § ~ t~2. Equations
(2.53) and (2.54) then imply that both ¢ ~ ¢t~ and ¢ ~ ¢~1. However, this is a

contradiction and thus the solution cannot be self-similar.

Cosmological Constant.

In a similar manner one may include a cosmological constant in the model by
setting ¢ = 0, whence py = V, and p; = —V,. If we consider the vacuum case
in which p; = p; = 0, equation (2.45) may be simplified to give = +/3V,. This
solution represents the de Sitter model which is not self-similar. Note, in this case

p/6% = =V, /6%, hence the equation of state for the pressure p is not dimensionless.

p+3p>0.

One may also consider a simple imperfect fluid model with bulk viscosity by
putting py = pg = 0 and py = p — (0, where p is the thermodynamic pressure and
¢ is the bulk viscosity coefficient. [This is an example from the Eckart theory, see

previous section 2.5.] If we assume the equations of state

p
2=¢E and .gg =(7— 1)%, (2.55)
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then the equation of state for p;8~? is dimensionless. Substituting (2.55) and (2.45)
into (2.44) we find that

= 5y~ )P - (256)
The solution for v # (, is & ~ ¢, which is self-similar. However, for v = (, the

solution is 8 = 0, (a constant), which is not self-similar. In this case

p+3p = pr+3p—3¢0,
= pr+3ps(y—1) = 3ypy,

whence p + 3p 2 0 if the energy density, py, is non-negative.

2.7 Scalar Tensor Theories

We have shown that, in General Relativity, the asymptotic limits of the Einstein
field equations are self-similar provided that the equations of state for the isotropic
pressure p and the anisotropic stress 7, are of the form (2.26) and p+3p > 0. Building
upon this result, a general class of modified theories of gravity will be studied to find
under what conditions one might expect to have self-similar asymptotic limits in
gravitational theories other than General Relativity.

The class of scalar-tensor theories under consideration has an action of the form

§ = [ do/~detgn { ~1(g)R - %¢;c¢;c ~V($)+Ln}, (2.58)

where Ly, is the Lagrangian of matter. A number of theories can be cast in this form.
For example, a) the classic Brans-Dicke theory is obtained by setting f(¢) = (¢?
and V(¢) = 0, and b) the uon-minimally coupled scalar field theories are achieved by
setting f(¢) = —z + 1eg?.

Varying the action S in a FRW background we cbtain the following dynamical

system

P. = —o(p'l'ﬁ))
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¢ = 9,

— _ f(¢) ! () 1" 2
o = -0 IO v+ L0 6 - e

FAV(d) +p —317)}, (259)

L, SO
6 = 39 + 79 00
1 " 2 -
TR O -9 o

+61($)V'(9) — ff'((‘f?) ( +%<I>‘2 -+ V(¢))},

with first integral

Sk L gef@) 1 ¢ 1o o
7= A e Y V@), (2:60)

where k takes on values +1,0,—1 which represents the closed, flat and open models
respectively and where 6 = 3%.

The system (2.59) is invariant under the transformation

60— )\, p— Ap,  p— AP,

2.61
b — A\, ¢ — ¢, (260)

if and only if V(¢) = 0 and the equation of state for p has the form (2.26). Therefore,

in the case V(¢) = 0, new dimensionless variables can be defined as follows:

_3p _ _ @ _ ﬂ_l ' .
=2, $=¢ U=y, 0=l Z=g (262

The evolution equations for z, %, and ¥ are now independent of ®. Hence, the
equations decouple and the qualitative behaviour of the system can be determined
from the reduced system of equations. A dimensionless equation of state of the form

p/0% = (y—1)z/3 is assumed for p (this reduces to the usual y-law equation of state)

in which case the equations become:

i
L. (y+2ﬁ) , (263)
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dp

w = (2.64)

A J' () FID) — 1) LBl g b .

& = T TR — ) {6770) = )0 + (4= 3)5 | — ¥ (265)
where

LA O L) P I

7= 3w 4(3f’(1/))'2—f(¢)){(2 6f"($))¥? + (37— 2)3

_.6-]:]—:.%%))—2 (é—’l: + %\Iﬂ) } (2.66)

The equilibrium points are found by setting each derivative to zero. Equation
(2.64) implies that at any equilibrium point ¥ = 0. From equation (2.63) either
=0 or -g% = —v/2. If x = 0, then from equation (2.66), we see that b% = -1/3.
Ience in either case the equilibrium points of the system (2.63-2.66) represent self-
similar cosmological models if y # 0.

In summary, if V(¢) = 0 and the equation of state for the pressure p = (y — 1)p,
then the dynamical system describing the Friedmann-Robertson-Walker model in a
Scalar tensor theory of gravity allows one equation to decouple when dimensionless
variables are used. In these new dimensionless variables the explicit forms for 9% were
found al all the equilibrium points. If 4 # 0 then 6 ~ ¢! at all of the equilibrium
points, and thus these equilibrium points represent self-similar cosmological models.
This conclusion is independent of the particular scalar tensor theory, that is, it is
independent of the form of f(¢), but this result does require that V(¢) = 0. [Unless
f'(¢) = 0 in which case the theory reduces to general relativity with a scalar field

(see section 2.4).]

2.8 Conclusions

The Einstein field equations with an imperfect fluid source were investigated using

techniques from dynamical systems theory and employing methods from the theory
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of symmetries of differential equations. We assumed a (73 group of isometries acting
transitively on 3-dimensional spacelike hypersurfaces; that is, the models under con-
sideration were the spatially homogeneous Bianchi models. Also, we assumed that the
fluid flow is moving hypersurface orthogonal. The equations of state for the pressure
p and anisotropic stress mop were assumed to be homogeneous functions of degree two
in the variables (0, 0ug, 1ag, @a), s0 that a symmetry in the field equations could be
used to define new variables. The field equations in these new variables allowed one
equation to decouple. The equilibrium points of the reduced system were shown to
represent self-similar cosmological models; provided p + 3p > 0. Also, it was shown
that if the spacetime is transitively self-similar then the cquations of state for the
pressure p and anisotropic stress 7,4 are homogeneous functions of degree two in the
variables (8, 0up, Nag, @a), whence the resulting equations of state in the new variables
(2.16) are ‘dimensionless’.

In the literature on cosmological models, the most utilized equation of state for

the thermodynamic pressure p is the barotropic y-law equation of state

p={(y~1)p. (2.67)

For the spatially homogeneous models, the energy densily defined by the Friedmann
equation (2.14) is a homogeneous function of degree two. Thus, employing the the-
orem in section 2.3, self-similar asymptotic solutions are to be expected for v 2 2/3
(this is the condition for p+3p > 0). Hence, as is most common in the literature, if a
y-law equation of state is assumed in the spatially homogeneous perfect fluid models,
then the asymptotic solutions are generally going to be self-similar.

Self-similarity is not only found in perfect Auid models, bhut it is also a feature of
viscous fluid models. In both the Eckart and the Israel-Stewart theories of irreversible
thermodynamics, it was shown that if the the equations of state are dimensionless an
if the matter satisfies p+3p > 0 then the equilibrium points of the system describing
the model represent self-similar cosmological models. It was also shown that if the
equations of state are dimensionless then asymptotically they had the form p x p,
12 ¢ o /2

nox pV% ko p Bio p7land a; o p7t, where (7 = 0,1,2) and (j =0, 1),
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This result is helpful in determining appropriate equations of state since primarily
they are a priori assumptions. Thus, we see that dimensionless equations of state
lead naturally to the above asymptotic forms and therefore to self-similar solutions.
(See Chapters 3, 4, 5.)

The Einstein field equations containing an imperfect fluid and a scalar field were
also investigated. It was shown that in the case of a scalar field with a non-exponential
potential, the field equations in general did not admit a symmetry that allowed one
to define new dimensionless variables. However, in the case of a massless scalar field
or an exponential potential the field equations admitted a symmetry that did allow
new variables to be defined. The dynamical system in the new variables led to one
equation decoupling. The equilibrium points of the reduced dynamical system were
shown to be transitively self-similar if the condition p 4+ 35 > 0 is satisfied. (See
Chapter 6.)

The asymptotic behaviour of a class of scalar-tensor theories of graviﬁy was also
analyzed. If the action is of the form (2.58) where f and V are arbitrary functions
of ¢ [66], then the asymptotic states will not, in general, be self-similar. However, if
V(¢) = 0 (this case includes the Brans-Dicke theory of gravity), then for isotropic
and spatially homogeneous perfect fluid models, a symmetry exists. With a change of
variables and provided the equations of state for p = (7 — 1)p, the asymptotic limits
can be shown to be self-similar independent of the form of f(4).

It should be stated clearly that asymptotic self-similarity is not a generic property
of cosmological models. For instance, with the existence of a scalar field with a non-
zero potential, a cosmological constant, or non-‘dimensionless’ equations of state, the
self-similarity may be broken. (See Chapter 7.)

In closing, we note that the dynamical system (2.7, 2.9, 2.10, 2.11) admits a
symmetry, and this symmetry allows one to define new variables. However, the choice
of variables (2.16) made here is by no means the only choice. Any one of the original
dynamical variables may be chosen so that it may decouple from the rest. This sort of

analysis may be extended to other cosmological models, in particular the orthogonal



@, cosmological models [59] and the tilting (non-orthogonal) G3 models [67].
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Chapter 3

Bianchi type V Imperfect Fluid

Cosmological Models

3.1 Introduction

The purpose of this chapter and the following chapters 4 and 5 is to further extend
the analysis in [12, 13, 14, 15, 16, 17, 18, 19] which analyzed spatially homogeneous
perfect fluid models to imperfect fluid models. In particular, we shall investigate the
effects of viscosity and heat conduction in the spatially homogeneous and anisotropic
Bianchi type V model. Bianchi type V models are of interest because they are gen-
eralizations of the negative curvature FRW models and are sufficiently complex to
allow viscous processes and heat conduction. In the following sections, the dissipa-
tive effects are described by Eckart’s theory of irreversible thermodynamics [47]. The
Einstein field equations are derived in section 3.2. Introducing dimensionless vari-
ables and assuming a set of dimensionless equations of state, the system describing
the Bianchi type V viscous fluid cosmological models with heat conduction reduces
to a two-dimensional system of autonomous ordinary differential equations. A com-
plete qualitative analysis is done in section 3.3.2 and exact solutions and asymptotic

behaviour is discussed in section 3.3.4.

34



35

3.2 The Bianchi type V Model

The diagonal form of the Bianchi type V metric is given by:
ds? = —dt® + a(t)?dz® 4 b(t)*e**dy* + c(t)%e**d22. (3.1)

The energy-momentum tensor considered in this work is due o an imperfect fluid

that includes bulk viscosity, shear viscosity, and heat conduction, viz.,

Tap = (p + P)tatts + Pab + Tab + qatit + Gota, (3.2)

where v® is the fluid 4-velocity (which will be assumed to be co-moving), p is the
energy density, the quantity 7 is defined to be p = p+II, where p is the thermodynamic
pressure, II is the bulk viscous pressure, 7 is the shear viscous stress, and ¢, is the
heat conduction vector such that g,u® = 0 (which implies for a co-moving fluid, along
with the field equations, that the only non-zero component of ¢, is ¢1).

The Einstein field equations and the energy conservation equations in terms of

the expansion(6) and shear(o) are:

b = —20"— 30"~ 2(p+3p+ M) (3.3)

. 2 1 .

p = —b0(p+p+I)~— poy i 5(01(2H1 — ) + o(200, U1)>, (3.4)
51 = —boy + 1L, (3.5)
6'2 = ‘*00‘2 + Hz, (36)

2 2 33
0 = 30°+3p— 5 R, (3,7)
@i = —0p — 0Oy (3.8)

where 0% = (o) + 03)® — 010,. We have used the property that both 0% = 0 and
7@ = 0 to define new shear variables oy = o', — ¢% and 03 = ¢!} — 0% and new
anisotropic stress variables [Ty = 7', — 7%, and II; = 7!, — 7% in an attempt to simplify

the system.



36

Now the system of equations (3.3-3.8), is invariant under the mapping (see Chap-
ter 2, equation (2.15)

6 — A, o1 — Aoy, oy — Aoy,
p — Ap, p— Mp, IT — NI, (3.9)
Iy — A0, Iy — A0,  t— A7

This invariance implies that there exists a symmetry [63] in the system and hence a
change of variables such that one of the equations can be made to decouple from the
system.

We define new dimensionless variables x, 31, ¥y, ¥, 21, 23 and a new tin'le variable

) as follows:

_ 3 _ 230y _ 2V/3ay _ o
T = 65, E] = ] ) 22 = ) , = -a'é-,
— \/:;Hl \/§H2 dQ 1 i
2 = W’ 2y = —W’ and E{ = —-50 (310)

The variable £ measures the dynamical importance of the matter content, X; and X,
(=P and B; resp. in Ref. [68]), measures the raie of shear {anisotropy) in terms of
the expansion, and we define £ = €, where where £ is the average length scale of the
universe (i.e., § = 3%).

The Einstein field equations (3.3-3.8) written in terms of the above dimensionless
variables (3.10) are:

de
o = m(1“24)-&-9% +y 4 B1(22 — 22) + Bg(229 — ) ‘
1
——— (D + D)4 — 4z — T2), (3.
4\@( 1+ D)4 — 4w —1%), (3.11)
dy
- Ql = 5)(2—¢q) - 122, (3.12)
dXs
o _ 1
5= g+ (3.14)
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where Y2 = %(21 + 3,)% — £;%;. The quantity ¢ is the generalized dimensionless
deceleration parameter given by
_ -t 1 P g2
Finally, from the Friedmanu equation, (3.7), we obtain the dimensionless Fried-
mann equation

4— 4z — 5= —63RO™?, (3.16)

where, in the Bianchi type V model studied here 3R = —6a(t)~%, which results in the
following inequality ‘

4~—4:1:—22=—£%§20, (3.17)
The interior of the parabola 4 = £? + 4z in the phase space represents models of
Bianchi type V, while the parabola itself represents models of Bianchi type I. There
are other physical constraints that may be imposed, namely the energy conditions
[65], which will place bounds on the variables z, £y, X, y, 21, and 22. A full list of
the energy conditions is given in Appendix C. In the present work we shall always
assume that z > 0, which states that the energy density be non-negative, which is a
necessary condition of the weak energy condition (WEC) [69].

In order to complete the system of equations (3.11-3.13) describing an anisotropic
viscous cosmological model, we require equations for the dimensionless bulk viscous
pressure ¥ and the dimensionless anisotropic stresses z; and z; (or equivalently, we
require equations for the viscous pressure IT and the anisotropic stresses m; and ).
In the next section and in the following chapters we will analyze various scenarios
concerning viscous fluid cosmological models in which the equations for the bulk
viscous pressure II and the anisotropic stress m, and x, will be described by the
Eckart theory (section 3.3), the truncated Israel-Stewart theory (Chapter 4), and the
full Israel-Stewart theory, (Chapter 5).
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3.3 Eckart Theory

3.3.1 The Equations

We will assume in this section that tke bulk viscous pressure and the shear viscous

stress can be approximated by the Eckart relations [47)
= —(0, Tap = —2NTgp, T (3.18)

where ( is the bulk viscosity coefficient and 7 is the shear viscosity coefficient. These
relationships are expected to be satisfied near equilibrium. Written in terms of the
dimensionless variables (3.10), equation (3.18) yields algebraic equations for y, z,

and 2z, of the form

B 1 S 1 P

which can be directly substituted into the system (3.11-3.13). Therefore, we require
equations of state for the thermodynamic pressure p and the transport coefficients ¢
and 7.

There are very few known equations of state!, hence, they must be put forward
as assumptions a priori. In the perfect fluid case with gamma-law equation of state
for the pressure p, the asymptotic limit points of the Einstein field equations are
represented by known self-similar cosmological models. We shall require that the
same is true for the imperfect fluid models. Therefore, employing the conclusions
reached in Chapter 2, dimensionless equations of state should to be introduced. To
conform with previous usage of dimensionless equations of state, we follow the lead
set forth by Coley [64, 70] and assume:

Y4

'03 Doy

C_ gm .
'0" —_ om ) (3- 0)
% = Toz”,

E.g., the equations of state are known for a Boltzmann gas.
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where p,, (s, and 7, are positive constants, and £, m, and n are constant parameters (x
is the dimensionless density parameter defined earlier). In the models under consider-
ation, 0 is strictly positive, thus equations (3.20) are well defined. Equations of state
(3.20) are phenomenological in nature and are no less appropriate than the equations
of state used by Belinskii et al. [31, 44]. The most commonly used equation of state
for the pressure is the barotropic equation of state p = (v — 1)p, hence p, = (v —1)
and £ = 1 (where 1 < 4 £ 2 is necessary for local mechanical stability and for
the speed of sound in the fluid to be 1o greater than the speed of light). Employing
these dimensionless equations of state (3.20) and substituting equation (3,19) into the
system (3.11-3.13), a three dimensional system of autonomous ordinary differential

equations results:

g_;- = :1:((37——2)(1 »:1:)—22) —9(2™(1 — z) — 3n,a"%?
1+ 5, 2
- 4—dz-% 3.21
4\/:'3' ( T )7 ( )
dEl E1 m D 2 ¢
= = _-2—((37-2)30—4—9@,:» ~ 12q,2" + 57), (3.22)
d22 _ & A m ol 2 ¢
- = (37— 2)x — 4 - 9a™ ~ 122" + B2), (3.23)

where the physical phase space R is defined to be

4 > T2+ 4x, (3.24)
x > 0, (3.25)

where £? = (21 4 )? — I;X;. Equations (3.22) and (3.23) can be integrated to

obtain E; = kX, for any constant k. The shear squared £ can now be written as

K —k+1
3k2

P -k+ D)5 = 2 (3.26)

Co|

In this way we have reduced the three dimensional system (z, X1, X;) to a one param-
eter family of two dimensional systems in variables (z, ). Each value of k represents

a different surface in the 3-dimensional phase-space. As k ranges from —oo to oo,
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St B EiEp+ dx= 4

Zp 224 £3- 55,=4 (Kasner Ring)

Figure 3.1: The interior of the three-dimensional paraboloid represents the physical
phase space. The two-dimensional shaded parabola represents a particular © - % plane
for a unique value of the parameter k. As we let k range through —oo to oo, the two-
dimensional z - X plane will rotate around and cover the entire three-dimensional
phasc space. For each value of k the plane intersects the Kasner ring of equilibrium
points at two points, allowing us to isolate the equilibrium points.

the one parameter family of 2-dimensional surfaces will rotate around the entire 3-
dimensional phase space. Hence the 3-dimensional phase portrait is the union of all
the 2-dimensional phase portraits. See Figure 3.1.
In order to simplify the analysis, we define the new parameter
kE+1
VE—E+1°

The parameter C' then ranges between —1 and 2 (see reference [68]). When C = 0 we

C= (3.27)

have no heat conduction and thus we have a imperfect fluid with viscosity (see Burd
and Coley [55]), and when C = 2, we have the system analyzed by Coley and Dunn

[54]. By choosing various values of the constants (,, %,, m, n, and C, the complete
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qualitative structure of the system in question was determined in my Master’s Thesis
[68].

The qualitative behaviour of the Bianchi Type V imperfect fluid cosmological
models was analyzed thoroughly in [68] (That is, eigenvalues, eigenvectors, and phase
portraits are given in [68]). The sections below containing the qualitative analysis
and the phase portraits are shortened adaptations of the reults in [68]. These results

are then used and expanded upon in the following sections.

3.3.2 Qualitative Analysis

The system we are analyzing which describes a viscous fluid Bianchi type V cos-

mological model satisfying the Eckart theory of irreversible thermodynamics is:

dz 2 m p [ w2
- = 2((3y - 2)(1 - &) = B%) = 9¢,a™(1 — ) — Inoa"E? -
—%2(4 — 4z — %?),
£ 3 1 .. k
- = —5((37 —2)x — 4 = 9(ox™ — 12n,z" + 22). (3.28)

Information about the stability and other properties of the equilibrium points is
summarized in Tables (3.1), (3.2), and (3.3) and some appropriate phase portraits are

given in the figures. In the following analysis the order of the coordinates is (z, ).

m=n>1

If v # 2, the point (0,2) is generally a stable two-tangent node, unless ¢ =
(3y — 2)/2 in which case the point degenerates to a one-tangent node, When ¢ = 2
the point is degenerate but the single sector in R is found to he hyperbolic in nature.
Finally, if v = 2 the point behaves like a stable node. (See also Table A in Ref. [68].)

The point (0,—2) (for v # 2), is generally a stable two-tangent node, unless
C = —(3y — 2)/2, in which case the point degenerates to a one-tangent node. There
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is also a degenerate case when 4 = 2 in which case the point behaves like a stable
node.

The point (0,0) is generally an unstable two-tangent node unless v = 4/3, in
which case the point degenerates to a one-tangent node if C' # 0 and a stellar node
for C = 0.

The point (1,0) will take on a variety of different natures depending on the sign
of ¥; = 9(, — (37 —2). If ¥; < 0 the point is a saddle point. When ¥; = 0 the point
(1,0) is degenerate, but with a change to polar coordinates we find that the point is
saddle-like. When Wy > 0 the point is generally an unstable two-tangent node unless
Wy = 9¢ — (3y —2) — 4 — 124, = 0, in which case the point degenerates to a stellar
node.

When ¥, > 0 we have a fifth equilibrium point (Z,0) where & = (5%%)&5 The
point (Z,0) is found to be a saddle point.

m=n-=1

The equilibrium point (0, 2) is generally a stable two-tangent node, unless ¥3+C =
0 whence the point degenerates to a one-tangent node [where W3 = 2(9¢, — (3y —
2) + 12n,)]. There also exists a degenerate case when C = 2 which is found to be
hyperbolic in R. (See also Table B in Ref. [68].) '

The equilibrium point (0, —2) is generaily a stable two-tangent node, unless ¥z —
(¢ = 0 whence the point degenerates to a one-tangent node. There also exists a
degenerate case when C = 2 which is found to be hyperbolic in R.

The point (0,0) has a variety of different natures depending on the sign of ¥,. If
¥; > 0, the point is a saddle point. When ¥; = 0 the point (0,0) actually becomes
an equilibrium point on a non-isolated line of equilibria, ¥ = 0, and will be discussed
later. When W; < 0, the point (0,0) is generally an unstable two-tangent node unless
Vs = 9 — (37 — 2) + 2 = 0 in which case the point degenerates to a one-tangent
node for C # 0 and is a stellar node for C = 0.
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The point (1,0), in this case, has the same qualitative behavior as in the case
m = n > 1 except in the degenerate case when ¥y = 0 where it becomes part of the
line of equilibrium points.

In the case when ¥y = 0, we have a non-isolated line of equilibria (x,0), where

0 < o <1, The line is an attractor and the slope of the trajectories as ¥ — 0 is

s -2
im —— = — — )1
lim —— = = (1 + 370)(1 = 2}

If C < 0, the slope of the trajectories as ¥ — 0 is always positive, if C = 0 the slope
of the trajectories becomes infinite and the trajectories cross the line at right angles,

and if C > 0 the slope of the trajectories is negative.

m=n=1/2

In this case, there are at most five equilibrium points in ®. For the points (0, 0},
(0,2), and (0, —2), the system becomes non-analytic. By transforming to the variable
u and time coordinate T (u? = z; $¢ = u), these points can be analyzed using analytic
methods. All three points become degenerate, and by a change to polar coordinates,
the qualitative behaviour of the equilibrium points is determined.

The point (0,0) has invariant rays 0 = 0 and 0 = 0* where tan §* = =%2, We find
from the analysis that dr/dr < 0 along the invariant ray 8 = 0, and dr/dr > 0 along
the invariant ray @ = 0* thus each sector is hyperbolic. (See also Table C in Ref.
[68].)

The point (0,2) has invariant rays § = 0 and 0 = 6* where tan 6* = 952%2—’&. The
region & in the new coordinates is now bounded by (% — 2)( + 2) + 4u® = 4, so
the invariant ray @ = 0 corresponds to the trajectory along the boundary. If C' > 0,
the single sector in R is hyperbolic. If ¢ = 0, then #* = —r/2, which corresponds
to the v = * = 0 boundary where dr/dr < 0; hence the trajectories are attracted
to the point along the eigendirection z = 0. If C < 0, then R is divided into two

sectors. One can show that dr/dt < 0 along the invariant ray § = ¢*. The trajectories
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are attracted to the point along the eigendirection corresponding to the invariant ray
0 = 6~

The point (0,~2) has invariant rays § = 0 and 6 = 6* where tan 0* = et
If C < 0, the single sector in R is hyperbolic. If C = 0, then 6* = —m/2 which
corresponds to the u = = 0 boundary where dr/dr < 0; hence the trajectories are
attracted to the point along the eigendirection 2 = 0. If C > 0, then R is divided
into two sectors. One can show that dr/dr < 0 along the invariant ray § = 6*. The
trajectories are attracted to the point along the eigendirection corresponding to the
invariant ray 9 = 6.

The point (1,0) has the same character as it did in the previous two cases except
in the degenerate case when ¥y = 0. In the degenerate case, changing to polar
coordinates, the two sectors in ® are found to be parabolic in nature, hence, the
point behaves like an unstable node.

When ¥; < 0 there is a fifth equilibrium point (z,0), where Z = (5%%)2 The
point (Z,0) is an unstable two-tangent node, with the main eigendirection along the

X-axIs.

m=n=20

In this case there are two separate situations depending upon whether ¢, = 0 or
G # 0. If ¢, = 0, there are two equilibrium points, (0,0) and (1,0). The point (1,0)
is a saddle point. The point (0,0) is generally an unstable two-tangent node, unless
W5 = (3y —2) — 2 — 67, = 0, whence the point degenerates to a one-tangent node for
C # 0 and to a stellar node for C = 0. (See also Table D in Ref. [68].)

If ¢, # 0, we have at most two equilibrium points depending on the sign of ¥y. If
¥, < 0, there are two equilibrium points, (1,0) and (Z,0), where T = %_3—2. In this
case, the point (1,0) is a saddle point. The point (Z,0) is generally an unstable two-
tangent node, unless ¥ = 9¢, — (3y — 2) + 2 + 67, = 0, whence the point degenerates

to an unstable one-tangent node for C' # 0, and to a stellar node for C = 0. If



¥y = 0, we have only one equilibrium point. The point (1,0) becomes degenerate,
but by changing to polar coordinates and using higher order terms in the variable
r, we find that the point acts like an unstable node. If ¥, > 0, the point (1,0) is
again the only equilibrium point where the qualitative behavior is the same as in the

previous cases for ¥ > 0.

Co=770=0

For « # 2 there are four equilibrium points in ®. The points (0,2), (0,—2), and
(0,0) behave in the same manner as the points in the case m = n > 1 for 7 # 2,
and will not be summarized here. The po'nt (1,0) is a saddle when v # 2. (See also
Table E in Ref. [68].)

However, in the case v = 2 every point on the boundary X* + 4z = 4 becomes
a non-isolated line of equilibria. The system of equations can be solved explicitly
when 4 = 2. The solution is given by the line ¥ = 0 and the family of parabolas
A¥? — CX + 22 =0 (X # 0), where A is an arbitrary constant depending on initial

conditions.

3.3.3 Phase Portraits

In the case of the perfect fluid Bianchi type V model with C =0 and {, =7, =0,
we note that all trajectories remain in R for all time. The models evolve from the
Kasner singularities at (0,2) and (0,~2) towards the Milne model at (0,0). In this
case there also exists exceptional trajectories; there are two trajectories along the
boundary of ® that evolve from the Kasner points towards the FRW model at (1,0)
(these represent Bianchi I perfect fluid models), and one trajectory that evolves from
the matter dominated FRW model at (1,0) towards the Milne model at (0,0) (See
Figures 3.2).

In the case of the imperfect fluid Bianchi type V model with viscosity and zero
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(@) C=0, LG=1=0,1<y<2 B)C=0,6=0=0v=2

Figure 3.2: The phase portraits describe the behavior of the perfect fluid Bianchi type
V models with no heat conduction or viscosity in the case (, =7, =0 and C =0. In
all figures, the arrows refer to increasing Q-time or decreasing t-time.

heat conduction (C' = 0), there are two cases depending upon whether m = n =0
or not. If m = n # 0, equation (3.28) implies that z = 0 is an invariant set, hence
no trajectories can cross the Y-axis. Therefore, all trajectories remain in R for all
time. The behavior of the phase portraits depends critically on the sign of ¥y as
well as the parameters m and n. The models evolve from the Kasner singularities
at (0,2) and (0,—2) towards one of the isotropic models either at (0,0), (z,0) or
(1,0) depending on the sign of ¥y. There exists exceptional trajectories emitting
from (0,2) and (0, —2) towards the FRW models either at (1,0) or (z,0). There also
exists exceptional trajectories on the z-axis that remain on the axis for all time (see
Figures 3.2a, 3.3).

In the case m = n = 0 and C = 0, depending on the value of ¥y, we find in

all cases that the models start at some finite time ¢, and evolve towards one of the
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(@) C=0, m=n>1, ¥; >0

"
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()C=0,m=n=1,¥; >0
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»

(d)G:O, m:n:l, \111:0

Figure 3.3: The phase portraits describe the behavior of the Bianchi type V models
with viscosity and no heat conduction in the case m=n # 0 and C = 0.
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Figure 3.4: The phase portraits describe the behavior of the Bianchi type V models
with viscosity and no heat conduction in the case m =n =0 and C =0.

isotropic models. Note that the initial Big Bang singularity is avoided in this case
(see Figures 3.4).

With the introduction of heat conduction, x = 0 is no longer an invariant set,
hence trajectories may leave R, and consequently the WEC is violated. Equations
(3.28) are invariant under the transformation & — —X, ¢ — —C. The phase portraits
for ¢ > 0 are reflections over the x-axis of the phase portraits for ¢ < 0. Therefore,
in the remainder of the analysis only the case C' < 0 will be considered. The specific
case C' =2 is done by Coley and Dunn [54] (see Figures 2 in Coley and Dunn [54]).

Let us investigate what happens when we have a perfect fluid with heat conduction
(i.e., no viscosity). Assuming that the WEC is satisfied for all time, for 1 < 7 < %,
the positive ¥ quadrant has the same qualitative behavior as in the perfect fluid

case. However, when v > § the WEC is violated for all trajectories at some finite
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time (except for those exceptional trajectories which are qualitatively the same as in
the perfect fluid case). In the negative & quadrant, for ¢ < :ia—%:—zl, all trajectories
violate the WEC at some finite time (except again for those exceptional trajectories)
and for C > :(3—;"—22, the qualitative behavior is the same as in the perfect fluid case
(see Figures 3.5).

Let us consider an imperfect fluid with both viscosity and heat conduction. In
the case m = n = 0, all trajectories viclate the WEC at some finite time and can
only describe late time asymptotic behavior, we find in general that the qualitative
behavior is the same as if we had viscosity and no heat (see Figures 3.4). But when
(o = 0 and U5 > 0 there is a slight difference in behaviour; in the positive & quadrant
all trajectories violate the WEC, while the negative quadrant is the same as if we had
no heat (see Figure 3.6).

When m = n = 1/2, there are two different phase portraits depending on the sign
of ¥;. If ¥; < 0 and C < 0 there is a fifth equilibrium point at (£,0). The positive
¥ quadrant is the same as in the case where we just had viscosity (Figure 3.4), but
in the negative ¥ quadrant all trajectories violate the WEC at some finite time (see
Figure 3.7a). If ¥; > 0 and C < 0, the positive ¥ quadrant is the same as in the
case where there was just viscosity (Figure 3.3c), but in ihe negative & quadrant, all
trajectories violate the WEC at some finite time (see Figure 3.7b).

In the case m = n = 1, only the degenerate case when ¥; = 0 is qualitatively
different (to those already discussed). In this case, for C' < 0, the positive % quadrant
is similar to that with just viscosity (Figure 3.3d) but trajectories in the negative &
quadrant will violate the WEC at some finite time (see Figure 3.8).

In the case m =n > 1, C < 0 and ¥, < 0, the qualitative behavior is the same
as that for other cases (see Figures 3.2a, 3.5 (a-d)). However, in the case ¥; > 0,
there are different possibilities. Again there exists a fifth equilibrium point. When

1 <4< 4/3 and C < 0, the positive ¥ quadrant is similar to the case when no

heat was present (Figure 3.2a). In the negative ¥ quadrant, however, some or all

trajectories will violate the WEC at some finite time (see Figures 3.9a, 3.9b). When
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Figure 3.5: The phase portraits describe the behavior of the Bianchi type V models
with heat conduction and no viscosity in the case (, =1, =0 and C # 0.
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Figure 3.6: The phase portrait describes the behavior of the Bianchi type V models
with heat conduction and viscosity in the case m =n =0 and C < 0.

¥ < 4/3 and C < 0 in the negative & quadrant some or all trajectories will violate
the WEC at some finite time, while in the positive ¥ quadrant the only physically
realistic models evolve from the point (0,2) towards (1,0) whence the SEC is violated
(see Figures 3.9¢, 3.9d).

3.3.4 Asymptetic Behaviour: Exact Solutions

Equation (3.28) implies that there exists three invariant sets ®.. = {(z, £)|¥ < 0},
R, = {(z,X)|Z = 0} and R} = {(z,%)|X > 0}. We shall discuss what happens in
each invariant set and determine the exact solutions corresponding to each equilibrium
point. We will also show that almost all of these solutions represent space-times which
are transitively self similar (that is, there exists a homothetic vector field in addition
to the three Killing vector fields).
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Table 3.1: Stability of the equilibrium points for different values of the parameters

(with respect to Q-time).

(Ua 0) (‘i, 0) (la O) (0: 2) (0’ "2)
m=n>1 ¥ >0 y#2 R-N,® S R—N,> A-N,*% A-N,®
7v=2 R-N, S R—-N,» A-N*d4 A-N~
¥, =0 7#2 R-N,® g* A-N,,d A-Npe©
v=2 R-N, S* A-N*4 A—-N*
U, <0 9#2 R-N,® S A-N,c4 A—- N,
v = R—- N, S A—N4 A_ N*
m=n=1 U, >0 S R—- N} A——N2fd A - N,®
V=0 * o k Kok kK okok A-N, 4 A N8
U, <0 R— Nt S A-N,f4 AN,
m=n=1/2 ¥ >0 S* R-—N,> A-N*' A—-N*}
V=0 S* R—-N* A—-N*i A— N+
v, <0 Ch R-N, S A-N*1 A_N*
m=n=0 (=0 R-—N,k! S
U >0 (#0 R— N,b
Uy =0 (40 R - N*
¥, <0 Co§é0 R_N2m S
é.a:'r]o:O ’7#2 R__Nza S A~N2Cd A_N2e
=2 R-N, * ok % * k % % % ¥

“ If ¥ = 4/3 for C # 0 the point becomes a R — Ny, and for C = 0 the point becomes a

R—-SN.

5 If ¥, = 0 the point becomes a R — SN.
¢ If C' = (37 — 2)/2 the point becomes a A — Ny.

¢ If ¢’ = 2 the point becories a 5*.

¢ If ¢'= —(3v — 2)/2 the point becomes a 4 — Ny.
/ i C = —¥3 the point becomes a A — N.
9 If ¢ = VU3 the point becomes a A — Ny.

b If Wy = 0 for C # 0 the paint becomes a R — Ny, and for C = 0 the point becomes a

R-SN.

" If ' > 0 the point becomes a S*.
9 1f C < 0 the point becomes a §*.

kIt # 0 and ¥5 = 0 the point becomes a R ~ Nj.
"If ¢ = 0 and ¥5 > 0 the point becomes a R — §N.
"™ If ¥g = 0 for C' # 0 the point becomes a R — Ny and for C' = 0 the point becomes a

R-SN.




53

Table 3.2: Definition of the quantities used in Table 3.1.

Conditional Quantities
¥, 9, - (3y-2)
¥, 9, — (37 — 2) — 4 120,
¥, 19¢, — (37— 2) + 121,)
U, 9 — (37 —2) +2
s (3y—2)—2—6n,
Vg 9 — (3y —2)+2 + 69,

Table 3.3: Notation used to describe the equilibrium points in Table 3.1.

Notation
R Repelling
A Attracting
S Saddle Point
S* Saddle-like *
Ny One-tangent Node
N, Two-tangent Node
N> Node-like ®
SN Stellar Node
* % * Line Equilibria
No entry Not Singular

 Degenerate point that has the qualitative nature of a saddle-point in the region of interest.
P Degenerate point that has the qualitative nature of a two-tangent node in the region of
interest.
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Figure 3.7: The phase portraits describe the behavior of the Bianchi type V models
with heat conduction and viscosity in the case m =n = 1 and C < 0.

In the set R_, there exists only one isolated equilibrium point, (0, —2). It lies on
the boundary X? + 4z = 4 where ®R = 0, and hence the solution is of Bianchi type L.

The Kasner coefficients are:

_ k+1

= %(1 - k2—k+l)’

p= 31~ ), 629
= 31—l

Ps = 3(1 k-k+l)'

The solution is given by
ds? = —dt? + t*"1da? + t?P2dy? 4 1*P2 22, (3.30)

6= t—ly C =0,

p 9 . 77 3 (3.31)

g = _(\/gt)_ ) Q1= 01

II= 0, Tab = 0.
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Figure 3.8: The phase portrait describes the behavior of the Bianchi type V models
with heat conduction and viscosity for the degenerate case m =n =1 and ¥, = 0.

The space-time is transitively self-similar [61] with homothetic vector

3] 7] d 9 "
X = t—a-%- +(1- PI)X& +(1- Pz)}’a; +(1- Ps)z'gg- (3.32)

From a dynamical systems point of view, the equilibrium point (0,-2) is always
a repellor in ¢t — time (even when the sector in R_ is hyperbolic in nature, since
trajectories are repelled in ¢ — time along an eigendirection that is not in ®.), which
implies that this point represents an initial singularity. The singularity is generally
of cigar type, but in the case when C' = 1 the singularity is of pancake type [71].
For particular values of the parameters, there exist trajectories that start at (0,—2)
and leave R_ after a finite time ¢,. There also exist trajectories that start from the
equilibrium point (0, ~2) and remain in R.. for all time; these models expand from
the Kasner singularity towards one of the isotropic models located on the x-axis (i.e.,

these models isotropize as ¢ — 00). In some cases, there exist trajectories that enter
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Figure 3.9: The phase portraits describe the behavior of the Bianchi type V models
with heat conduction and viscosity in the case m =n > 1 and C < 0.
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R_ at some finite time #,; these models evolve towards one of the isotropic models
and can only represent late time behavior.

In the case m = n = 0, there are no equilibrium points in the invariant set R...
All trajectories enter R_. at some finite time and evolve towards one of the isotropic
models. Hence these models can only describe late time behavior.

In the case {, =7, = 0 with v = 2, there is a non-isolated line of equilibria on the
boundary %% + 4z = 4. The equilibrium points represent stiff perfect fluid Bianchi I
solutions (3.30) with coefficients p;:

_ 1 k1 :
m=3(1-gvi-5),
p2 = %(1 - [:2_._2]::_1 \% 1 - mo)’ (3033)
k=2
9 = t_—l, C = O’
p= %Qt_z? n= O,
3.34
o =— L;"-’).t—l’ ¢ =0, ( )
H - 0, Tab = 0

where the parameter z, is bounded by 0 < z, < 1. The space-time is transitively
self-similar [61] with homothetic vector (3.32) with the p; now defined by (3.33). For
C < 0 all trajectories remain in R_ for all time and evolve towards the isotropic
model at (0,0). For C > 0 all trajectories leave R_ after some finite time hence they
may only describe early time behavior.

In the invariant set R, there exists either 1, 2, 3, or a non-isolated line of'equilibria.
Points in this set represent negatively curved (i.e, z < 1) or flat (i.e,, z = 1) FKW
models with at most bulk viscosity.

The point (1, 0) is an equilibrium point in all cases. The point lies on the boundary
Y2 + 4z = 4, hence, the point represents a flat FRW model. 1t is a saddle-point for
¥y = 9¢, — (37 — 2) < 0. However, when ¥y > 0 the point becomes an atiracting-
node and represents a late-time attractor, [but note that in this case the SEC (strong

energy condition) (see Appendix C) is violated and the corresponding asymptotic
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solution may not be physically acceptable]. In the case ¥y = 0, the point is saddle-
like for m = n > 1 and node-like in the remaining cases. The solution corresponding
to this equilibrium point depends upon whether 4 = 3, or not.

For v # 3(, the solution is

ds? = —dt? + (£) T (da? + dy? + dz?), (3.35)
— 2 -1 — 2(o -1
b=mmat™ (=t
. 4 -2 — 270 -1
P=aamaert 0 1T st o (3.36)
og=0, @ =0,
M= __:iég_t—‘l, Tap = 0.

{(v~3¢0)?
The space-time (3.35) admits the homothetic vector (3.32) withp; = p; = ps = 3;-_?—,_)—5;,
hence the space-time is transitively self-similar [61)].

For 4 = 3¢, the solution is

ds® = —dt? + *Hi(dz? + dy* + d2?), (3.37)
0 = 3H, ¢ =96H?,
= 3H2, — 9, H?,
p n =9 (3.38)
g = 0, 1= 0.

M= -27CH3, 1w =0,
where H is a constant. The space-time (3.37) does not admit a homothetic vector,
hence, the spacetime is not self-similar [72].

When the point (1,0) is a saddle, models start from the matter dominated singu-
larity at (1,0) and evolve towards either the Milne model at (0,0) or the FRW model
at (Z,0). However, if the point is an attracting node, all models evolve towards the
point (1,0).

The point (%,0) represents a negatively curved FRW model with bulk viscosity
where & = (?3%%) =" The space-time is self-similar [61] and the correspoqding exact
solution is

ds* = —dt® + (1 — 2)7}()%(dz® + ¥dy® + €*d2?), (3.39)
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0 =37, (=3I,
= 3Tt?, = 3n,E"t1
, 1= oMt (3.40)
o= O) ¢ = Oa
II=-9,3"t"% 7u=0,
with homothetic vector 5
X = t—. 3.4}

When the equilibrium point (Z,0) is a saddle, models start from (,0) and evolve
towards either the Milne model at (0,0) or the FRW model at (1,0) (however this
latter model violates the SEC). However, if the point is a node, the solutien is a late
time asymptotic attractor (except in the degenerate case when there is a non-isolated
line of equilibria).

The point (0,0) represents an empty cosmological model, commonly known as the
Milne model. The space-time is transitively self-similar [61] with homothetic vector
(3.41). The solution is

ds® = —dt? + (t)*(dz? + e*dy® + e¥ds?), (3.42)

0=3t"1, (=0,
p=0 =0, (3.43)
c=0, ¢ =0,
I =0, Tap = 0.
(Note, there is one exception to the above solution; if m = n = 0 and (, = 0, then
n = 3n,t7%, but m = 0.) When the point (0,0) is an attracting node, the matter
dominated singularities at (,0) or (1,0) evolve towards the Milne model at (0,0).
However, when the point (0,0) is a saddle, the Milne model evolves towards one of
the other isotropic models.

In the set R, there exists only one isolated equilibrium point, (0,2). It lies on the
boundary Y2 + 4z = 4 where 3R = 0, hence, the solution is of Bianchi type 1. The
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solution is given by equations (3.30) and (3.31) [except that o = (v/3t)™1], with the
p; defined as:

h= %(1 + kkﬁcﬁ‘)’
P2 = %(1 + ,:2:2:+1)7 (3.44)
ps = %(1 + kf:iﬂ)'

The space-time is transitively self-similar with homothetic vector (3.32) with the
pi defined by (3.44). From a dynamical systems point of view, the equilibrium point
(0,2) in always a repellor in t — time (even when the sector in R, is hyperbolic in
nature, since trajectories are repelled in ¢t — time along an eigendirection that is not
in R, ), which implies that this point represents an initial singularity. The singularity
is generally of cigar type, but in the case when k =1 or C = 2 (the LRS case), the
singularity is of pancake type [71]. For particular values of the parameters, $here exist
trajeclories that start at (0,2) and leave R, at some finite time ¢,. There also exist
trajectories that start from the equilibrium point (0,2) and remain in R for all time;
these models expand from the Kasner singularity towards one of the isotropic models
located on the x-axis (i.e., these models isotropize as ¢ — 00). In some cases, there
exist trajectories that enter R, at some finite time ¢,; these models evolve towards
oue of the isotropic models and can only represent late time hehavior.

In the case m = n = 0, there are no equilibrium points in the invariant set R,.
All trajectories enter R, at some finite time and evolve towards one of the isotropic
models. Hence these models can only describe late time behavior.

In the case (, = 5, =0 and + = 2 there iz a non-isolated line of equilibria on the
boundary 2 + 4w = 4. The equilibrium points represent stiff perfect fluid Bianchi I

solutions (3.30) with coefficients p;:

= %(14‘ kft11c+lvl_m°)’
rm= {1+ 52T, (3.45)
po= 51+ V=)
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0 =11, (=0,

p= %ﬂt—-?’ n =0, Q4R
= (3.46)

o= lgot_‘la ¢ =0,

[M= 0, Tah = 0,

where the parameter z, is bounded by 0 < z, < 1. The space-time is transitively
self-similar with homothetic vector (3.32) with the p; defined by (3.45). For (* > 0
all trajectories remain in R, for all time and evolve towards the isotropic model at
(0,0). For C < 0 all trajectories leave R, after some finite time hence they may only

describe early time behavior.

3.3.5 Imvariant Curves and First Integrals

An implicit function determining the integral curves in the phase portrait for the
perfect fluid case {, = 1, = 0 and in the case m =n =1, C = 0 can be constructed.
We use the method of algebraic invariant curves to construct an algebraic first integral
using Darboux’s theorem (see [73] and references therein). An algebraic invariant
curve, Q; = 0, is a curve in the phase space such that ; = 7;Q;, where 7y is a
polynomial of the phase space variables. The following are invariant curves of the
system (3.28),

Ql = I,
Q: = I, (3.47)
Q3 = 22 + 4z — 4.

Calculating Q; = r;Q; for i = 1,2,3 above, we find

1 = (3y—-2-9)(1 —z)—Z*(1 4 3p,),
vy = —%[(37 —2—9¢, — 120,)0 + B — 4], (3.48)
rs = —[(3y-2-9()z + X4
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Using Darboux’s Theorem, an algebraic first integral @ can be found by setting
Q = Q" Q,7Q5" and then determining what values of ; satisfy the equation Q=0.

For the above set of invariant curves, (3.47), we have that
Q= Q(alrl + agry + 0!37'3) = 0. (3.49)

This yields a homogeneous system of equations for the constants a;. A solution is

@ = [9-(37-2)a/2
a3 = [3(7 - 2) - 9Co - 127’0]01 /4' (3'50)

Therefore without loss of generality we choose ¢ = 4 in which case the first integral

is of the form
Q(z, ) = e L1271 4 g — 4)30-2-%=12n0 (3.51)

such that the level sets Q(z,X) = @, a constant, are integral curves of the system,
(3.28), in the case m = n =1 and C' = 0. It is noteworthy to point out that the first
integral rec-ices to the perfect fluid form simply by setting {, = 7, = 0 in equation
(3.51).

This technique, however, fails whenever the system (3.28) is not polynomial or
when one cannot find enough algebraic invariant curves. Nevertheless, this technique
has yielded another first integral in addition to the Friedmann equation which may
aid us in determining an exact solution of the Einstein field equations for spatially

homogeneous cosmologies.

3.4 Conclusions

By using geometric techniques from dynamical systems theory we have been able
to determine the qualitative behavior of a class of spatially homogeneous cosmological

models that contain viscous matter and heat conduction.
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With the introduction of viscosity [satisfying the Eckart theory (3.18)] into the
fluid, the qualitative behavior of the models differ frorr that of the perfect fluid models
(for example, in some instances an additional equilibrium point is even created). In
particular, it is the nature of Wy and hence (, that affects the global behavior of the
models, while the values of ' and 5, change only the local behavior in a neighborhood
of an equilibrium point. With the introduction of heat conduction, solutions that
violate the WEC (weak energy condition) at some finite time ¢, in the past (and, in
some instances, in the future) arise.

With the introduction of bulk viscosity. the deceleration parameter ¢, defined by
equation (3.15) may become negative. A negative ¢ indicates that there exists a
region of phase space with an accelerated expansion; that is, inflation occurs. For
¥y > 0, in all cases, there exists some region of phase space such that ¢ < 0, which
implies that all models must inflate at some time in their evolution. For m =n £ |
and ¥; > 0, inflation occurs as ¢ — oo, For m = n > 1, the models may inflate
for all time t, or up to some finite time t,. For ¥; < 0 some models may inflate. In
the perfect fluid case, inflation occurs, assuming an equation of state p = (v — L)p,
when v < £ [74]. With the addition of bulk viscosity, the fluid effectively acts like
a perfect fluid with an equation of state p = (ver; — 1)p where .5y = v — (0p~1.
Several authors [42, 75, 76] have investigated whether a non-vanishing bulk viscosity
could drive an inflationary phase in the early universe. Bulk viscosity can only act as
a source for inflation if the SEC is violated. Models that include bulk viscosity and
in which the SEC is violated have also been studied [45] since the iniiial singularity
can, in 3 sense, be eliminated.

Except for the exceptional trajectories located cn the x-axis (as well as the stiff
perfect fluid case, v = 2, with {, = 5, = 0), all models that satisfy the WEC for all
time start their evolution from the Kasner singularities. Assuming all EC are satisfied,
all models (except the exceptional trajectories) either evolve towards the Milue model
at (0,0) or the FRW model at the point (Z,0). If the EC are not satisfied, then the

FRW model at (1,0) also becomes 2 late time attractor. In either case, models start,
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from an anisotropic state and isotropize towards a flat or negatively curved FRW
model. In all models the shear viscous stress, 7., is asymptotically zero both to the
past and to the future. We can also conclude that the bulk viscosity had little affect
on the initial singularities at (0,£2) in that the bulk viscous pressure is zero at the
initial singularity. However the bulk viscosity did influence the type of singularity
(cigar/barrel/pancake) and whether the matter was dynamically important or un-
important initially. The bulk viscosity also determines the final asymptotic state and
may cause the model to experience a period of inflation.

Using the dimensionless equations of state, all asymptotic states represent self-
similar cosmological models (unless 7 = 3{, whence the point (1,0) is no longer self-
similar). This shows that the past asymptotic behavior of the imperfect fluid Bianchi
V model without a cosmological constant is represented by self-similar solutions, and
if the EC are satisfied the future asymptotic states are also self-similar.

We heve shown in this chapter that by using dimensionless variables and di-
mensionless equalions of state, the Einstein field equations reduce to a system of
autonomous ordinary differential equations. All models, that satisfy the WEC for
all time, isotropize. Including viscosity (and heat conduction) in the models allow
for processes such as inflation and the removal of the initial singularity. These mod-
els are sufficiently simple to allow us to analyze them qualitatively. By considering
better approximations to the bulk viscous pressure, II, and the shear viscoas stress,

Tab, Mmore physically realistic models may be analyzed using similar techniques, which

may lead to interesting and different qualitative behaviour. (See Chapters 4 and 5.)




Chapter 4

Causal Viscous Fluid Cosmological
Models (Truncated Theory)

4.1 Introduction

In the previous chapter and in papers [53, 54, 55] it was assumed that the viscous
effects in the fluid could be described by Eckart’s theory of irreversible thermodynam-
ics [see equation (3.18)]. However, Eckart’s theory of irreversible thermodynamics [47]
suffers from the property that signals in the fluid can propagate faster than the speed
of light (i.e., non-causality), and, that the equilibrium states in the Eckart theory
are unstable (see Hiscock and Salmonson (48] and references therein). Therefore, a
more complete and satisfactory theory of irreversible thermodynamics is necessary for
fully analyzing cosmolagical models with viscosity. One such theory is the truncated
Israel-Stewart theory [49, 50, 51]. i

The intent of this chapter will be to build upon the foundation laid by Belinskii
et al. [44], Pavon et al. {56] and Chimento and Jakubi [57], and investigate viscous
fluid cosmological models satisfying the truncated Israel-Stewart theory of irreversible
thermodynamics [equations (1.3) with € = 0]. We shall study the new “visco-elastic”

singularity found in [44] and we shall determine whether bulk-viscous inflation is

65
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possible. We will also determine if there is a qualitative difference between these
models and the models studied in Chapter 3 where the Eckart equation (3.18) was
assumed. In this chapter we shall analyze qualitatively a class of anisotropic Biauchi
type V and Bianchi type I cosmological models in section 4.3, in addition to the
isotropic FRW cosmological models investigated in section 4.2, thereby extending the

analysis in Chapter 3 to causal theories.

4.2 Friedmann-Robertson-Walker Models

4.2.1 The Equations

In this section we assume that the spacetime s spatially homogeneous and isotropic
and that the fluid is moving orthogonal to the spatial hypersurfaces. The energy-
momentum tensor is an imperfect fluid with non-zero bulk viscosity (that is there is
no heat conduction, ¢, = 0, and no anisotropic stress, 7 = 0). The dimensionless
Einstein field equations are equations (3.11), (3.15), and (3.16) with ¥, = £, = 0

and z; = z; = 0. They reduce to the following three equations:

dx p
where ¢, the generalized dimensionless deceleration parameter, is given by
) p
q=§(:c+y+9§-2->. (4.2)

Finally, from equation (3.16), we obtain
4—de = —63RH7, (4.3)

where 8 is the expansion and 3R is the curvature of the spatial hypersurfaces. If
the curvature is negative, i.e., *R < 0, then the FRW model is open. If 3R = 0,
then the model is flat. If R > 0 then the FRW model is closed. Assuming that the

energy density, p, is non-negative, it is easily seen from (3.7) that in the open and
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flat FRW models the expansion is always non-negative, i.e. 8§ > 0, but for the closed
FRW models the expansion may become negative. (Great care must be taken in this
case because the dimensionless quantities that we will be using become ill-defined at
0=0.)

In order to close the system given by (4.1-4.3), we need an equation for the
dimensionless viscous pressure y, (hence, for IT). Using the truncated Isracl-Stewart,

theory, we can obtain an evolution equation for II by solving (1.3) [with ¢ = 0] for 11,

. 11 1

Unlike in the Eckart theory where we ended up with an ~lgebraic equation for y [see

equation (3 19)], we have the ordinary differential equation

dy 0 3 o . 3
=yl == -2-y—-37—-2)z]+9|—]. 4.5
a0 y[((:o) (,3002) 2=y — 12y )'E] + (ﬁu()z) ( ))
In order to complete the system of equations w= need to specify equations of state
for the quantities p, By, and (. In principle equations of state can be derwed from
kinetic theory, but in practice one must specify phenomenological equations of state

which may or may not have any physical foundations. Following Coley [70, 64], we

introduce dimensionless equations of state of the form

'élz = po:”l’

g — Comm’ (4-6)
_._3_.... —_ aw"'l
Bob® ’

where p,, (o, and a are positive constants, and £, m, and r, are constant parameters
(z is the dimensionless density parameter defined earlier). In the models under con-
sideration, 6 is positive in the open and flat FRW models, thus equations (4.6) are
well defined. In the closed FRW model the expansion could become zero, in which
case these equations of state break down, However, we can utilize these cquations to

model the asymptotic behaviour at early times, i.e., when 8 > 0. The most commonly
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used equation of state for the pressure is the barotropic equation of state p = (y—1)p,
whence p, = 3(y—1) and £ =1 (where 1 <7 < 2).
If we define a new constant b = a/(p, then using equation (4.6), equations (4.1),

(4.2) and (4.5) reduce to

dx
o = (1=2)[By=2)z+y],
::—;/2 = —y[2+y+ By —2)z]+ bz "y + Jaz™. (4.7)
Also, from the Friedmann equation, (4.3), we obtain
1 - =R (4.8)

Thus, the line z = 1 divides the phase space into three invariant sets, z < 1, z = 1,
and z > 1. If z = 1, then the model is necessarily a flat FRW model, if z < 1 then
the model is necessarily an open FRW model, and if © > 1 the model is necessarily a
closed FRW model.

The equilibrium points of the above system all represent self-similar cosmological
models, except in the case ¥ = 3{,. If v # 3(o, the behaviour of the equations of
state, equation (4.6), at the equilibrium points, is independent of the parameters m

and 7; namely the behaviour is
¢ocp?, and fooxp . (4.9)

Therefore, natural choices for m and ry are respectively 1/2, 1. We note that in the
exceptional case ¥ = 3(, there is a singular point {z = 1,y = —3~} which represents
a de Sitter solution and is not self-similar. (This is also the case in the Eckart theory
as was analyzed in Chapter 3.)

To further motivate the choice of the parameter r;, we consider the velocity of a

1 1/2
V= (p—ﬂ";) s (4:.10)

where v = | corresponds to the speed of light. Using (3.10) and equations (4.6), we

viscous pulse in the fluid [52],

obtain
v = (az" 1)/, (4.11)
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Now, if 7, = 1 then not only do we obtain the correct asymptotic behaviour of the
equation of state for the quantity gy but we are also allowed to choose a < 1 since
then the velocity of a viscous pulse is less than the velocity of light for any value
of the density parameter . Thus in the remainder of this analysis we shall choose
r1 = 1. In order for the system of differential equations (4.7) to remain continuons

everywhere, we also assume m < 1,

4.2.2 Qualitative Analysis

m=r;=1

We now study the specific case when m = ry = 1. In this case there arc three
singular points,

(0,0), (1,y7), and (1,y%), (4.12)

where

__b—3y /(6—37)*+36a o b—3y  J(0=37)2+36a

y o = ) - ) and Yy = B + 9 (4'13)

The point (0,0) has eigenvalues

DAl sy rses, T e (1)

This puint is either a saddle or a source depending on the value of the parameter, By;
By = (2= b)(37y -- 2) + 9a. (4.15)

If By > 0, then the point is a sad-le point and if By < 0, thea the point is a source.
If By = 0 (the bifurcation value), then the point is degenerate (discussed later).

The point (1,y~) has eigenvalues

_37-4+b

(b— 37)? + 364, -

+ =1/(b — 34)? + 36a. (4.16)

[
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If By < 0, then the point (1,3~ is a saddle point and if By > 0, then the point (1,37)
is a source, If By = 0 (the bifurcation value), then the point (1,y~) is degenerate
(discussed later). '

The singular point (1,y*) has eigenvalues

— /(6= 37)" + 36a, _5”"—2‘“"-9--;-,/(1,-37)2+36a. (4.17)

This singular point is a sink for 4 > 2/3 (See also Table 4.1 for details).
In addition to the invariant set x = 1, there exist two other invariant sets. These

are straight lines, y = myx, where

_ -3y +,/(b—37)? +36a ws)

2

My

The invariant line y = m,z passes through the singular points (0,0) and (1,y%)
while the line y = m_z passes through the singular points (0,0), and (1,y7). These
invariant sets represent the eigendirections at each of the singular points [see also
section 4.2.3].

In order to sketch a complete phase portrait, we also need to calculate the vertical
isoclines which occur whenever dz/d) = 0. From (4.7) we can see that this occurs
either when © = 1 or when y = —(3y — 2)z. This straight line passes through
the origin, and through the singular point (1,y7) if By = 0. If B; > 0 then the
vertical isocline has a negative slope which is greater than the slope of the slope of
the invariant line y = m_z, [i.e.,, m_ < —(3y — 2)], and when B, < 0 the vertical
isocline has a negative slope which is less than the slope of the invariant liney = m_z
i.e., m_ > —(3y —2)].

To complete the analysis of this model we need to analyze the poir‘s at infinity.
We do this by first converting to polar coordinates and then compactifying the radial

coordinate. We change to polar coordinates via

rP=z4+y® and 6 =tan™ %, (4.19)

and we derive evolution equations for » and 0. We essentially compactify the phase
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space by changing our radial coordinate » and our time § as follows,

r dQ
i B 2
T and - (1-7), (4.20)

o=

that is, the plane R? is mapped to the interior of the unit circle, with the boundary

of this circle representing points at infinity of R®. We have (for #, = | and general

m)
% = (1- 7"){?(1 —F)[(3y — 2) cos? 0 — 25in? 0 + (1 + 9a) cos O sin 0]
—[(37 — 2) cos 6 + sin 0] + 7™ (1 — 7)" [bsin® § cos' ™ 0]}, (d.21)
'ffg = (1- F){Qa cos® @ — sin® § — 3y cos fsin 0

+67 (1 — 7)™ sin 6 cos® ™ 0}. (4.22)

We easily conclude that if m = 1 (or any m > 0), then the entire circle, ¥ = |,
is singular. Therefore, we have a non-isolated set of singular points at infinity. To

determine their stability we look at the sign of dif/dr as ¥ — 1. In this case we sce

ar ~ (37 —2)cos 0 +sind (4.23)
g -
which implies that points above the line y = —(3y — 2)z are repellors, while those

points which lie below the line are attractors.

For completeness, we would also like to determine the qualitative bebaviour of
the system at the bifurcation value By = 0 where the singular points are (1,6 — 2)
and the line of singular points y = —(3y — 2)z. (Note that since By =0, b—2 > 0.)

Fortunately we are able to completely integrate the equations in this case to find
|6—2~y| = k|l — |, (4.24)

where k is an integration constant. We see that all trajectories are straight lines that
pass through the point (1,5 —2). It is straightforward to see that the line of singular
points are repellors while the point (1,5 — 2) is an attractor. We are now able to

sketch complete phase portraits (See Figures 4.1, 4.2 and 4.3).
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Figure 4.1: The phase portrait describes the qualitative behavior of the FRW models
with bulk viscous pressure in the case m = ry = 1 and B; < 0. The arrows in the

figure denote increasing -time (Q — 0o) or decreasing t-time (t — 0 ).

m=1/2andr; =1

This is a case of particular interest since it represents the asymptotic behaviour of

the FRW models for any m and r; (since at the singular points the viscosity coefficient

behaves like { o p'/? and the relaxation time like 8y o< p~1). Note that the physical

phase space is defined for x > 0, but the system is not differentiable at z = 0. In this

case there are four singular points,
(03 0)’ (ﬁ’ g)7 (lay—)y and (17y+),

where ( ( ))2
9a +2(3y -2 _ . _
BEGCED I

and y* and y~ are given be equation (4.13).

8]

(4.25)

(4.26)
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Figure 4.2: The phase portrait describes the qualitative behavior of the FRW models
with bulk viscous pressure in the case m = vy = 1 and By = 0. The arrows in the
figure denote increasing Q-time (2 — 00) or decreasing t-time (1 — 0% ).

The dynamical system, (4.7) is not differentiable at the singular point (0,0). We
can circumvent this problem by changing variables to u* = z and a new lime variable

r defined by d0/dr = u. The system then becomes

o -y -2 4l (427)
% = u[9au2 — 2y — y2 — (3’)’ — 2)u2 + byu]. (4.28)

In terms of the new variables the system is differentiable at the peint u = 0,y = 0,
but one of the eigenvalues is zero, hence the point is not hyperbolic. Thereflore in
order to determine the stability of the point we change to polar coordinates, and find
that the point has some saddle-like properties; however, the true determination of
the stability is difficult. [We investigate the nature of this singulur point numerically.

The integration and plotting was done using Maple V release 3. From the qualitative
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Figure 4.3: The phase portrait describes the qualitative behevior of the FRW modcls
with bulk viscous pressure in the case m = ry = 1 and By > 0. The arrows in lhe
figure denote increasing Q-time (4 — o0) or decreasing t-time (t — 0%).

analysis we find that the behaviour depends on the parameter B;. In the first of these
two plots we choose v = 1, @ = 1/9, and b = 4, so that B; = —1 < ( (see Figure
4.4). In the second plot we choose v =1, a = 1/9, and b = 2 so that B; =1 > (
(see Figure 4.5). From the numerical plots we can conclude that the point (0,0) has
a saddle-point like nature, in agreement with preliminary remarks.)

The singular point (Z,y) has eigenvalues

%ﬂ"%g—a + %J (W) =21 -%)9a+2(3y-2)].  (4.29)

This singular peint varies both its position in phase space with its stability depending

upon whether Z is less than, equal to or greater than one. If By > 0, then & > | and
the point is a saddle point. If By <0, then Z < | and the point is a source. Finally,

if By = 0 (the bifurcation value), then Z = 1 and the point is degenerate (discussed
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Figure 4.4: The phase portrait describes the qualitative behavior of the FRW models in
a neighborhood of the equilibrium point (0,0) in the case m =1/2 and B; = —1 < 0.

later).

The stability of the points (1,y~) and (1,y%) is the same as in the previous case,
see equations (4.16) and (4.17) for their eigenvalues and the corresponding text. (See
also Table 4.1 for details).

The vertical isoclines occur at = 1 and y = —(3y — 2)z. This straight line is
easily seen to pass through the origin and the point (z,—(3vy — 2)z). If B; > 0, then
the vertical isocline lies below the point (1,y~) and if By < 0, the vertical isocline lies
above the point (1,y~). Finally if By = 0 (the bifurcation value), the vertical isocline
passes through the point (1,y7).

From an analysis similar to that in the previous subsection, we conclude that there
is a non-isolated set of singular points at infinity. Their qualitative behaviour is the

same in this case m = 1/2 as in the previous case m = 1; namely, points which lie
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Figure 4.5: The phase portrait describes the qualitative behavior of the FRW models
in a neighborhood of the equilibrium point (0,0) in the case m = 1/2 and By =1 > 0.

above the line y = —(37y — 2)z are repellors, while those points which lie below the
line are attractors.

At the bifurcation value By, = 0, the points (1,y™) and (&, —(3y — 2)&) come
together; consequently these points undergo a saddle-node bifurcation as B passes
through the value 0. The singular point is no longer hyperbolic, but the qualitative
behaviour near the singular point can be determined from the fact that we know the
natute of the bifurcation. Hence the singular point is a repelling node in one sector
and a saddle in the others. A complete phase portrait is sketched in Figures 4.6, 4.7
and 4.8.
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Figure 4.6: The phase portrait describes the qualitative behavior of the FRW models
with bulk viscous pressure in the case m = 1/2 and ry = 1 with B; < 0. The arrows
in the figure denote increasing Q-time (0 — oo) or decreasing {-time (t — 0F).

4.2.3 Discussion

Exact Solutions

The exact solution of the Einstein field equations at each of the singular points
represent the asymptotic solutions (both past and future) of FRW models with a
causal viscous fluid source. The solution at each of the singular points represents
a self similar cosmological model except in one isolated case [see the singular point
Lyl

At the singular point (0,0) we have (after a re-coordinatization)

0(t) = 3t-1, a(t) = a.t,
p(t) =0, I(t) = 0,




~y=(3 -2

Figure 4.7: The phase portrait describes the qualitative behavior of the FRW models
with bulk viscous pressure in the case m = 1/2 and ry = 1 with By = 0. The arrows
in the figure denote increasing Q-time (Q — 0o) or decreasing t-time (1 — %),

which represents the standard vaccuum Milne model.
The singular point (1,y*) represents a flat FRW model with a solution (after a

re-coordinatization)

O(t) = 3A*1, at) = a,th",
p(t) = 3(A*)*t, I(t) = y+(A*)*2,

where AT = 2/(3y +yt*) > 0.
The singular point (1,y~) represents a flat FRW model. If 4 # 3¢y then the

solution is

0t) =34~ (t— 1),  a(t) =alt—t,J*",
p(t) = 3(A7)*(t - t,)7%, TI(t) = y*(A7)*(t - t)7?,
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~y=312x

Figure 4.8: The phase portrait describes the qualitative behavior of the FRW models
with bulk viscous pressure in the case m = 1/2 and ry = 1 with By > 0. The arrows
in the figure denote increasing Q-time (0 — oo) or decreasing t-time (t — 0%).

where A~ = 2/(3y+y~). (Note that in this case we cannot simply change coordinates
to remove the constants of integration.) The sign of A~ depends on the sign of v—3¢,.
If v > 3o then A~ > 0, and if v < 3(p then A~ < 0. Thus if A~ < ) then 8 is positive
only in the interval 0 <t < ¢,, hence we can see that after a finite time ¢, 0, p, and
a all approach infinity. (We will see later that the WEC is violated in this case).
If A~ > 0 then we can re-coordinatize the time ¢ so as to remove the constant of
integration, ,, and the absolute value signs in the solution for a(t). If ¥ = 3¢, then

A~ = 0 and the solution is the de Sitter model with (after a re-coordinatization)
0(t) = 3H,, a(t) = aeflt,
p(t) = 3H,%, I(t) = H,%y~.

This exceptional solution is the only one that is not self-similar, It can be noted here

that this is precisely the same situation that occurred in the Eckart models studied



Table 4.1: Qualitative nature of the equilibrium points of the dynamical system, (4.7),
for different values of the parameter By® and r; = 1 (with respect o O-time),

(0,0) Ly @yt Eef
m=1and B; <0 source saddle sink
m=1and B; =0 source © source *© sink
m=1and B; >0 saddle source sink
m=1/2 and B; <0 saddle saddle sink source
m=1/2and By =0 saddle saddle-node sink saddle-nodef
m=1/2 and By >0 saddle source sink saddle

¢ By = (6 - b){v ~2) + 3a.

by~ = (b= 37— /(b= 377 + 36a) /2.

°y+ = (b= 37+ /b~ 37) ¥ 36a) /2.

Y3 =(90+203y-2)) /b (3y-2  §=-(3y-2),

¢ These points are part of the non-isolated line singularity y = —(3v — 2)x.
J This is the situation when the points (1,57) and (Z,7) coalesce.

in [55].
The singular point (Z,7) represents either an open, flat, or closed model de-
pending on the value of the parameter B;. The solution in all cases is (after a

re-coordinatization)

(t) = 31, a(t) = aot,
p(t) = 35t M(t) = yt~2

Energy Conditions

The Energy conditions are given explicitly in Appendix C. Since the energy
momentum tensor is diagonal in this case the energy conditions simmplify immmensely.
In the particular model under investigation here, the WEC in dimensionless variables
becomes

>0 and y> -3z (4.30)
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The dominant energy (DEC) becomes
WEC and y < 3(y — 2)a. (4.31)
The strong energy condition (SEC) becomes
WEC and y > —(3y — 2)x. (4.32)

If we assume that the WEC is satisfied throughout the evolution of these models
then we find that there are five distinct situations. If v < 3(o, then By > 0 and the
line y = —3yz intersects the line z = 1 at a point y > y~. If ¥ = 3o, then By > 0
and the line y = —3yz intersects the line z = 1 at the point y = y~. If v > 3
then By can be of any sign or zero, but the line y = —3vz intersects the line ¢ = 1
at a point y < y~. If the WEC condition is assumed to be satisfied throﬁghout the
evolution of these models then the possible asymptotic behaviour of the models is

greatly restricted.

Asymptotic Behaviour

The qualitative behaviour depends on the values of B; and m. If the parameter
m is different from unity then there is an additional singular point. This property
is alsu present in the Eckart models studied in Chapter 3 and in [55]. The value
m =1 corresponds to the case when the dynamical system, (4.7), is polynomial (the
only other value of m that exhibits this property is m = 0). The value m = 1/2
is of particular interest as it represents the asymptotic bekaviour of all the viscous
fluid FRW models, and also, this is the case when the eqration of state for ( is
independent of 8 (i.e., { o p'/?). The parameter, By, plays a role similar to the
parameter Wy = 9{o — (37 — 2) found in the previous chapter 3. The value of the
parameter B; determines the stability and global behaviour of the system.

One of the goals of this section is to determine the generic behaviour of the

system of equations (4.7). Using the above energy conditions, and in particular the
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WEC, and the phase-portraits (Figures 4.1-4.8), we can determine the gencric and
exceptional behaviour of all the viscous fluid models satistying the WEC. We are
primarily interested in the generic asymptotic behaviour of the FRW model with
viscosity: If we consider the dynamical system, (4.7), as X = F(X) where X =
(z,9,a,0,9) C R®, z,y are the variables, and ,b, are the free parameters then
generic behaviour occurs in sets of non-zero measure with respect to the set R® (except,
for the flat models in which case the state space is a subset of R*). For example, the
case By = 0 is a set of measure zero with respect to the set R*. All Lehaviour is
summarized in Table 4.2.

Typically, if By < 0, then the open models evolve from the big-bang visco-vlastic
singularity at (1,y*) and evolve to the Milne model at (0,0) [if m = 1] or the non-
vacuum open model at (Z,§) [if m = 1/2]. If By < 0, then the closed models evolve
from the big-bang visco-elastic singularity at (1,y%) to points at infinity. A visco-
elastic singularity is a singularity in which a significant portion of the initial total
energy is in the form of viscous elastic energy, that is Il 3> 1. These particular points
at infinity correspond to the points where § = 0 (point of maximum expansion) and
the various dimensionless variables breakdown.

Typical behaviour of models with B, > 0 depends upon the sign of v — 3.
If v < 3(o, then all trajectories for the open models will violate the WEC and if
v > 3o, then the open models evolve from the big-bang visco-elastic singularity
at (1,y7), become open models and then evolve towards an inflationary flat FRW
model at the point (1,y~). Concerning the closed models when By > 0, if v < 3(
then models evolve from the big-bang visco-elastic singularity at (1,y*) te points
at infinity. However, if ¥ > 3(p, then the closed models again evolve from the big-
bang visco-elastic singularity at (1,y%) but now have two different typical behaviours.
There is a class of models which approach points at infinity and do not inflate and
there is a class of models which evolve towards the inflationary flat FRW model at
the point (1,y7).

The flat FRW models consist of a subset of meagure zero of the total state space
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Table 4.2: Asymptotic behaviour of the FRW models with bulk viscosity satisfying

the WEC with 7, = 1 (with respect to t-time).

parameters m models generic behaviour exceptional behaviour®
v <3, B1>0 m=1,1/2 open (1,y*) — (0,0)
flat (l,y+) — oo
: closed (1,y%) — o0 (Z,7) — o0, (Ly*) — (7, 7)°
¥230,Bi>0 m=1,1/2 open  (1,y7)— (Ly") (1,¥%)— (0,0),(0,0) — (1,y7)
flat (1,y7) — o=
(1,y7) = (L,97)
closed (1,y%) — oo z,9)— 1,y7)
Ly") = Ly) (&7 — oo, (1,yT) = (7,§)°
>3, Bi=0 m=l open (la y+) —* (moa:‘/O)c
flat 1,yt) —
(Ly") — (L,y7)
closed (1,y*) — oo
(1,y%) = (20, 90)°
m:1/2 open (17y+) - (17 y-) (11 y+) - (an): (0’0) - (1> y_)
flat (Lyt) = o
(Ly")— (Ly")
closed (1,y*) — oo (L,y~) — oo
7 >3, B1<0 m=l open (lay+) - (0’ O) (1a ?/_) - (O)O)
flat (1,y7) = o0
(1,y") = (L,y7)
closed (1,y%) — oo (1,y~) = oo
m=1/2 open  (Lyt) = (%,9)  (Ly") > (0,0), L,y )= (Z,7)
flat (l,y‘*') — oG
(Ly") — (1,97)
closed (l,y*) — oo (L,y~)— oo

@ These are exceptional trajectories and do not represent typical or generic behaviour.
® In the case m = 1/2.

“ yg = *‘(3‘ _ 2)1'0.
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R®. The flat models are of a special interest however, in that the flat models represent
the past asymptotic behaviour of both the open and closed models. If B; < 0, then
the flat models evolve from the visco-elastic singularity at (1,y¥) to points at infinity
or to the flat model located at (1,y7). If By > 0, and v < 3(p, then the flat models
evolve from the big-bang visco-elastic singularity at (1, y*) o points at infinity. And if
By > 0 and 4 > 3(o, then models evolve from the visco-elastic singnlarity at (1,y*) to
points at infinity (non-inflationary) or to the inflationary model at the point ({,y—).

Note, that if the WEC is dropped (i.e., let v < 3{o), then a class of very inter-
esting models occurs. There will exist models that will evolve from the visco-clastic
singularity at (1,y™) with 8 > 0 and § < 0 start inflating al some point ¢ and ai
a tinite time after ¢; will start expanding at increasing rates, that is 6> 0, and will
eventually evolve towards the point (1,y7). (This is the special case mentioned in the
previous subsection.) What this means in terms of the open and {lat models is that
they will expand with decreasing rates of expansion, start to inflate, and then con-
tinue to expand with increasing rates of expansion. For the closed msdels, the models
will expand with decreasing rates of expansion, start to inflate, and then continue to

expand with increasing rates of expansion, these models will not recollapse.

First Integrals

We will use Darboux’s theorem [73] to find an algebraic first integral of the system
in the case m = ry = 1 by first finding a number of a algebraic invariant curves. The

following are invariant curves of the system:

Ql = .'I}—l,
Q2 = y—m_x,

@s = y—myz,

where

(b—37) £ +/(b— 37)% + 36a
5 .

m4y =

(4.33)



Calculating Q; = ;Q;, we find

mo= [y + (37— 2)a],
rg = ~+@y-2)z-+-(2-b+m)],
ro= —ly+ Gy =2+ Qb ml

Using Darboux’s Theorem, an algebraic first integral ¢} can be found by setting
Q = @ Q520Q3° and then determining what values of o; satisfy the equation Q=0.
Solving the resulting algebraic system we find the following algebraic first integral of

the dynamical system, (4.7), in the case m =7 = 1.
Q = (z — 1)*(y — m_z)*(y — myz)*® = K (constant) (4.54)
where o is a free parameter and oy and a3 must satisfy
1 b+3y—4
Gy = — (65
2 /(b—37)? + 36a

a = [LpSE¥-d ) (4.35)
2 /(b 37) + 36a

This first integral determines the integral curves of the phase portraits in Figures
4.1, 4.2 and 4.3, where the value K determines which integral curve(s) is being de-
scribed. For example, if K = 0, the integral curves are £ = 1 and y = myz. Also, we
can see that if b =4 — 3y, oy = —2 and K =1 then the integral curve describes an
ellipse; however, these closed curves necessarily pass through the points (1,y%) and

(1,y7), thereby nullifying the possible existence of closed orbits.

4.2.4 Summary of the Isotropic Models

The only models that can possibly satisfy the WEC and inflate are those models
with v > 3(p and By > 0. Therefore, we can conclude that bulk-viscous inflation

is possible in the truncated Israel-Stewart models. However, in the models studied
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by Hiscock and Salmonsoun [48] inflation did not occur (note, the equations of state
assumed in [48] are derived from assuming that the universe could be modelled as
a Boltzmann gas), while inflation does occur in the models studied by Zakari and
Jou [52] who utilized different equations of state. In our truncated model we choose
dimensionless equations of state and find that inflation is sometimes possible, The
question of which equations of statc are most appropriate remains unanswered, and
clearly the possibility of inflation depends critically upon the equations of state uti-
lized [52].

This work improves over previous work on viscous cosmology using the non-causal
and unstable first order thermodynamics of Eckart [47] and differs from the work of
Belinskii et al. [44] in that dimensionless equations of state are utilized, Fiom the
previous discussion we can conclude that the visco-elaslic singularity al the point
(1,y%) is a dominant feature in our truncated models. This singular point remains
the typical past asymptotic attractor for various values of the parameters m and By,
This agrees with the results of Belinskii et al. [44]. The future asymptotic bebaviour
depends upon both the values of m and By. If By < 0, then the open models tend
to the Milne model at (0,0) [m = 1] or to the open model at (Z,7) [m = 1/2], and
if By > 0, then the open morlels tend to the inflationary model at the point (1,y™)
or are unphysical. If B; < 0, then the closed models teud to points at infinity, and
if By > 0, then the closed models tend to the inflationary model al the point (1,y7).
The future asymptotic behaviour of the flat models is that they either tend to points
at infinity or tend to the point (1,y7), in agreement with the exact solution given in
[57].

Belinskii et al. [44] utilized the physical variables 8, p, and Il in their analysis
and assumed non-dimensionless equations of state, and they found a singularity in
which the expansion was zero but the metric coefficients were neither infinite nor zero;
the authors passed over this observation stating that in a more realistic theory this
undesirable asymptotic behaviour would not occur. We note, by using dimensionless

variables and and a set of dimensionless equations of state, all asymptotic behaviour

g P |
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in our models can be represented by either a de Sitter model or by an exact power-
law solution (i.e., the length scale a(t) o t* for some constant o). Therefore the
un-desirable behaviour observed in [44] does not occur in our analysis.

The behaviour of the Eckart models in Chapter 3 and in Burd and Coley [55] with
¥y = 9¢o—(37—2) > 0 is very similar to the behaviour of the truncated Israel-Stewart
models studied here in the case B; < 0. This result also agrees with the conclusions
of Zakari and Jou [52]. However, when B; > 0 various new possibilities can occur;
for instance, there exist open and closed models that asymptotically approach a flat
FRW model both to the past and to the future. Interestingly enough this is also the
case in which the future asymptotic endpoint is an inflationary attractor. This type

of behaviour does not occur in the Eckart theory.

4.3 Anisotropic Models

4.3.1 Int_oduction

Recently, Romano and Pavén [58, 77] have studied anisotropic cosmological mod-
els in a causal theory of irreversible thermodynamics, analyzing the stability of the
isotropic equilibrium points in the Bianchi .ype I and III models. They also as-
sumed equations of state of the form (1.4). However, they concluded that any initial
anisotropy dies away rapidly but the shear viscous stress need not vanish, hence
neither the de Sitter models nor the Friedmann models are attractors.

In this section . - shall analyze qualitatively a class of anisotropic cosmological
models arising from the use of the truncated israel-Stewart equations, thereby ex-
panding the analysis in section 4.2 to anisotropic models and extending the analysis
in Chapter 3 and in [33, 54, 55] to causal theories. We will analyze both the Bianchi
tpe V aud the Bianchi type I models, which are simple generalizations of the open
and flat PFRW models.



4.3.2 The Equations

The dimensionless Einstein fieid equations are given by equations (3.11-3.16),
where in the Bianchi V case studied here, 3R = —6a(t)~%. In order to close the
system we need equations for y, z;, and z; and therefore for I1, [Ty, and Tl,.

Assuming that II, TI;, and II, can be described by the truncated Israel-Stewart
theory [49, 51], the evolution equations for I, Il;, and I, in this particular model are
derived from (1.3) [with € = 0],

M= - (e+2 (o1 + 02)(6? ~3a2-3))
= ﬂoC ﬁo 90’0 17T 02 Pl
b H 1 1 v ¥
H] = —--é—n—é—z- - '23—2- <0'1 — 6(11(0'1 + 0’2)(02 - 30'2 - 3p)> y (4..36)
_— H2 1 1 _ _ )
H2 = 277182 ﬂ2 (02 90[1(0'1 + 0'2)(0 30‘ 3p)

Note that the heat conduction ¢; is completely determined by the shear via equation
(3.8); thus the equation for ¢* in equations (1.3) is not needed for the determination
of the asymptotic behaviour of the models. The corresponding evolution equations

for y, 2y and z; are:
dy [4 3 Y 3
i = |(0) Gaw) 2]+ ()
3 ) (2% (5, 4 22)(4 — o — 52
+'B;‘072>4\/~(1+2)( z — L%,
dZ] 0 3
@ - [2 (5) (419202)_2

3
2(]J +E'l (4ﬂ202)
dZ2 N f 0 3
& - =) (W) T 2"] N (4ﬁ g
_ (@?2.0_2) (9193) (Ty + 82)(4 — de — 57).

In order to complete the system of equations we need to specify equations of state

for the quantities p, (, 9, Bo, B2, & and ;. In principle, equations of state can
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be derived from kinetic theory, but in practice one must specify phenomenological
equations of state which may or may not have any physical foundations. We shall

introduce dimensionless equations of state similar to that used in section 4.2 of the

form:
92 = powly
¢ o om n_ . .»n
9 Coz™, ] =TT,
3 3 ro
e a T, G az™, (4.38)
2 2

where po, (o, 70, a; and d; (1 < @ < 2) are positive constants, and £, m, n, r; and p;
(1 €14 £ 2) are constant parameters (z is the dimensionless density parameter defined
earlier). In the models under consideration @ is strictly positive, thus equations (4.38)
are well defined.

We define new constants by = a1/(,, by = a2/1,, &1 = a1dy and ¢y = azdy. Aug-
menting the system of equations (3.11-3.13), and (4.37), and employing the equations

of state (4.38), the following system results:
ds
?l% = z(1—2¢) +9p.' +y+ (221 — 22) + Ta(22, — )
1 .
—Zﬁ(& + 22)(4 - 4(13 — Ez), (4:39)

dx
L = 0y(2-q) — 1221, (4.40)

an
o,
an
_c_i_z{
aQ

= 22(2 - q) - 12Z2, (441)

= y(bz" ™™ ~2 - 2q) + Yaz™

+e 8Pt (Z + B3)(4 — 4z — B?), (4.42)
= 21(2b,2™ " — 2 — 2¢) + ap2™ 3,

—cpeP? 172 (5 + 5,)(4 — 4z — £7), (4.43)
= 2(2b,3™7" — 2 — 2¢) + ayz™ %,

—cpzP ™2 (3 + B,)(4 — 42 — £?), (4.44)

dn
an

d22

dQ
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where 22 = 1(X;+3;)?— 5, E; and the dimensionless deceleration parameter is given
by

q= (.z: +y + 9pozt + 22) . {4.45)

[NT e

From (3.14) we have
S+ By = —2V3L, (1.46)

and finally, from the Friedmann equation, (3.16), we obtain the inequality

bdp—¥ =0 5 (4.47)

a2 =

The interior of the parabola 4 = £? + 4z in the phase space represents models of
Bianchi type V, while the parabola itself represents models of Bianchi type I. There
are other physical constraints that may be imposed, namely the energy conditions
[65], which will place bounds on the variables z, y, &y, Ty, z, and z. A full list of
the energy conditions is given in Appendix C. We shall always assume that = > 0,
which states that the energy density be non-negative, which is a necessary condition
of the weak energy condition (WEC) [69].

The equilibrium points of the above system all represent self-similar cosmological
models, except for those equilibrium points that satisfy 6/6* = —(q+1)/3 = 0. If
g # —1, the nature of the equations of state (4.38) at the equilibrium points, is

independent of the parameters I, m, n, ry, 2, p1, and py, and is given by
1 1
pxp,  (oxp? g p?,

Booxp™l,  Paxpl,  apoxpl, and apocp7l (4.48)

Therefore natural choices for I, m, n, r1, 3, py and p; are respectively 1, 1/2, 1/2,
1, 1, =1, —1. We note, if there exists a equilibriun point with ¢ = -1, then it
necessarily represents a de Sitter type solution which is not self-similar.

The most commonly used equation of state for the pressure is the harotropic
equation of state p = (y — 1)p, whence from (4.38) po = 2(y—1) and | = | (where

1 < 4 < 2 is necessary for local mechanical stability and for the speed of sound in
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the fluid to be no greater than the speed of light). In addition, [ = 1 reflects the
asymptotic behaviour of the equation of state for p.

Using analogous arguments found in the previous section we set ry.= 1, and
therefore the requirement that viscous pulses travel at sub-light speed translates to
the condition 0 < a; < 1. In this way the parameter a; has a physical interpretation
as Lhe square of the speed of a viscous pulse in the fluid. Therefore, in the remainder
of this analysis we shall choose 1y = ry = 1. In an effort to keep the system polynomial
and therefore tractable we shall choose m =n =1 and py = p, = —1.

Using these particular values for m, n, r4, 19, p1, and ps, we can easily show that all
equilibrium points are self-similar except in the case y = 3(,, whence the equilibrium
point (z, 1, 8y,y,21,22) = (1,0,0,—-37,0,0) represents a de Sitter model. This is
precisely the same as in in Chapter 3 where the Eckart theory was employed.

The full six-dimensional system (4.39-4.47) is very difficult to analyze completely,
so various physically interesting subsystems are investigated. The case of zero heat
conduction implies, via equations (4.46) that ¥y + X; = 0. In addition, adding equa-
tions (4.40) and (4.41) we deduce that z; 4 z; = 0, in which case the resulting system
is four-dimensional (see Section 4.3.3). The case of non-zero heat conduction with

zero anisotropic stress is a three dimensional system and is discussed in Section 4.3.4.

4.3.3 Qualitative Analysis — Zero Heat Conduction

In the case of zero heat conduction, ¢; = 0, the field equations imply that £;+¥, =
0 and 2 + 7 = 0. Since, £? = X%, we shall drop the subscripts on ¥ and z; that
is, b = L; = —~L; and z = 21 = —2z;. The system of equations (4.39-4.47) then

becomes:
g = x(3y—2-2q) +y+62%,

T = B(2-4q) - 122,
y, = y(bl -2 — 2(1) -+ 9(11.'1), (449)
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2 = 2(2b; —2—2¢) + aprE,
where
7=z (37 =2 ty+5) (1.50)
2 1
and the physical phase space is
4—dp —-%*>0 and x> 0. (1.51)

There exists three obvious and physically motivated invariant sets of the system.
They are FRW = {(z,5,y,2)|]E = z = 0}, BT = {(¢,5,y,2)d =40 — ¥? =
0,andX # 0}, and BY := BI° N FRW® (where subscript ¢ denotes the complement)
which represents the Bianchi type V models. The set FRW represents the spatially
homogeneous and isotropic negative and flat curvature FRW models and the sct BZ
represents the Bianchi type I models. There are possibly eleven different equilibrium
points of the system (4.49) at finite values. The equilibrium points lying in the set

FRW are
(6,070’0)’ (1)01?/-30)) (1303y+’0)7 (4'52)

where

b—3y |
+_ =3y P .
vt == :!:5\/(1)1—37)2+.3(>a1. (4.53)

Also, if B; = 0 then there is a non-isolated line ol equilibrium points that passes
through the points (0,0,0,0) and (1,0,y~,0), where By is,

By = (37— 2)(2 — by) + 9ay. (4.54)

These points represent open (z = 0) and flat (z = 1) FRW models. There are possibly

six equilibrium points lying in the BZ invariant set. They are
(0,-2,0,0), (0,42,0,0) (4.5

which represent Kasner models, and

(E+a+z+a g+a+§+)? ("i+)'~2+ag+7~§+)

@+, +27), (3,55, ~%) (4.56)
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where

7 —2
(E:t — (qﬁaz )(bz_l__(—j:h),

()2 = 443,
4
gt = (= -2) (4«12 +2=-9)(b—1- q*)),

and §* is given by

_ (S1 + 252) ‘_‘I: \/(51 et 252)2 + 96(11(12

7t =) , (4.57)
where
S1 = (2=9)(bh —2)+ 3ay, (4.58)

The remaining two equilibrium points lie in the BY invariant set. They are

(1 - bz) (1 - bz)Bl 3(11(1 - bz) l (1 - bz)Bl
3 T\ 3aZ—5) w@—t) T6\3au2-5) )

(1 - b2) m 3a1(1 - bz) 1 _(1 - bz)Bl
( 3a, ’—\ 3a2(2— )’ aa(2-b1) ' 6\ 18ay(2 ——b1)) ,  (4.60)

o

where B is given by equation (4.54).

The stability of each of these equilibrium points is very difficult to determine in
general. However, one question that can be asked is whether these anisotropic models
generally isotropize; that is, “Does there exist a stable (t-time) equilibrium point in
the set FRW? (see the following subsection). We shall also analyze tie model when
there is zero anisotropic stress (z = 0) in order to determine the effects that bulk
viscous pressure may have on the models (see two subsections ahead). We shall also
analyze the effect of anisotropic stress in an anisotropic model with zero bulk viscous

pressure (y = 0). (see three subsections ahead).
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Stability of Isotropic Singular Points

In this subsection we are going to resolve the stability of the isotropic equilibrium
points, that is, those equilibrium points lying in the set FRW. We want to deter-
mine if there exists a stable (¢-time) equilibrium point in the future. In Q-time this
translates to showing that there exists a source in the set FRW.

The equilibrium point (0, 0,0, 0) represents the Milne model, and has eigenvalues

2, 2bz—1),1{(B7+b—4)+/3y+ b — 42 +4Bi},
{3y +b—4) — /3y + b —4)2 + 4By}, (4.61)

where Bj is given by equation (4.54). The bifurcation values are by = 1 and By = 0.
If By = 0 then there exists a non-isolated line of equilibrium points. The stability of
this point is summarized in Table 4.3.

The equilibrium point (1,0,y~,0) represents a flat viscous fluid FRW model and

has eigenvalues

1 .

R (R R Ry TN Y (R R LT
1 1
Z{B3+ \/B32—-832}, Z{133 ~+/B;? —8B2}, (4.62)

where

By = (2by—=3y—y7)(6 — 3y —y7) + 24as, (4.63)
Bs = 4b,— 3(37 - 2) -3y (46’1)

The stability of this point is summarized in Table 4.4.
The equilibrium point (1,0,y*,0) represents a flat viscous fluid FRW model and

has eigenvalues

s {Ot 3y -+ Jor B - aB), s - 4B,

}I{B5+\/M}, -j;{ \/—834} (4.65)
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Table 4.3: Stability of the equilibrium point (0,0, 0,0) where dim(W*) is the dimen-
sion of the stable manifold with respect to -time.

-+ Saddle 1
- Saddle 2
+ Source 0
- Saddle 1

sgn(By1) sgn(b—1) type  dim(W?)
+
+

Table 4.4: Siability of the equilibrium point (1,0, y~,0) where dim(W?*) is the dimen-
sion of the stable manifold with respect to {-time.

sgn(By) sgn(B,;) sgn(Bs) type  dim(W?)
+ - Saddle 1
+ + + Source 0
- — Saddle 2
- + + Saddle 1
— + — Saddle 3
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where
By = (2b;—3y—y")(6 -3y —y*) + 2a,, (4.66)
Bs = 4b;—3(3y—2) —3y™. (4.67)

The stability of this point is summarized in Table 4.5.

From the stability analysis of these equilibrium points we can conclude that there
exists a range of parameter values such that one of the equilibrium points in the set
FRW is a source (sink in t-time). If By < 0 and b, > 1 then the point (0,0,0,0) is a
source — this result is similar to the observation in Chapter 3 using the Eckart theory
whenm=n=1and ¥; =9(, - (3y—2) < 0. If By >0, By > 0, and B3 > 0 then
the point (1,0,y7,0) is a source. However, if either of these two conditions are not
satisfied then the anisotropic models will not tend to an isotropic FRW model to the
future (t-time). Therefore there is a set of parameter values having non-zero measure
such that the models will not isotropize. Romano and Pavén [77, 58] remarked that
the anisotropy dies away quickly in the anisotropic models but does not tend to an
FRW or de Sitter model since the anisotropic stress does not tend to zero. The same
result is true here for some range of parameter values. If by < 1 and By < 0 then the
models all isotropize but the anisotropic stress does not tend to zero and therefore

the model does not asymptotically approach an FRW model.

Zero Anisotropic Stress

In order to observe the effects of bulk viscous pressure in the model we set T, =
II, = 0, and 7 = 0. In the model under consideration here this amounts to setting
z = 0 and az = 0 in system (4.49). The resulting system is three-dimensional and

has the form

]
Il

z(3y -2~ 29) +y,
(2 ~¢), (4.68)
y = y(b] —2-—2q)+9a1m,

td
i
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where
1
=3 (37 -2z +y+5?), (4.69)
and the physical phase space is
4—43 — %% >0, and z>0. (4.70)

In this case there exist four invariant sets of particular interest. Similar to the
previous analysis we have the set FRW = {(z, X, y)|Z = 0} and BT := {(z, Z,y)|4—
4z — ¥* = 0andX # 0}. The Bianchi type V invariant set can be subdivided into two
disjoint sets, BVt := BI°NFRW° N {(z,5,y)|= > 0} and BY™ := BI°* N FRWN
{(z,Z,¥)|X < 0}. Due to the symmetry in the equations (reflection through the
Y = 0 plane) the qualitative behaviour in the set ¥ < 0 is equivalent to that in
the set ¥ > 0; henceforth ( and without loss of generality), we shall only concern
ourselves with the part of the phase space with ¥ > 0.

The equilibrium points of the system (4.68) are
(0,2,0), (0,0,0), (1,0,y7), (1,0,y%), (4.71)

where y* is given by equation (4.53).
There is only one equilibrium point in the invariant set ¥ > 0. The equilibrium

point (0,2,0) is in the set BT and has eigenvalues

bl +3")’ - 12 1
-4, S 5\/(bl ~ 37)? + 36as,
hi+3y—12 1 ;
e 5V (b = 37)? + 36as. (472)

This equilibrium point is either a saddle or a sink depending on the value of the
parameter .

B = (2 — 7)(by — 6) + 3a1. (4.73)

If Bs > 0, then the point is a saddle with a 2-dimensional stable manifold. If Bg < 0,
then the point is a sink, and if Bs = 0, then the point is degenerate (discussed later).
The solution at this equilibrium point is a Kasner model. The stability of this point

is summarized in Table 4.7.



The equilibrium point (0,0, 0) has eigenvalues

1 ¥
2, -2-{(1)1 +3y—4)++/(h +37-—4)2+4Bl}y
1

This point is either a saddle or a source depending on the value of the parameter By,
If B; > 0, then the point is a saddle with a 1-dimensional stable manifold. If B, < 0,
then the point is a source, and if B; = ( the point becomes degenerate (discussed
later). The stability of this point is summarized in Table 4.7.

The equilibrium point (1,0,y~) has eigenvalues

1
-5 {(bl 37— 4) — /(b + 3y - 4)? +4B1}, o 37— 42 + 4By,

_i {(b1 +3y—12) — /(b = 3y)2 + 36a1} : (4.75)

This point is either a saddle or a source depending on the value of the parameter
B,. If By < 0, then the point is a saddle point with a4 1-dimensional stable manifold.
If By > 0, then the point is a source, and if By = 0 the point becomes degenerate
(discussed later). The stability of this point is summarized in Table 4.7.

The equilibrium point (1,0,y") has eigenvalues

1
—5{(514—37—4)-1-\/(b1+37—4)2+431}, ‘“\/(b1+3’)"‘4)2+4B17

(37 -12) 4l — 37 4 560 (476)

This equilibrium point is either a saddle or a sink depending on the parameter By, If
Bs < 0, then the point is a saddle with a 2-dimensional stable manifold. If Bg > 0,
then the point is a sink, and if Bg = 0 then the point is degenerate (discussed later).
The stability of this point is summarized in Table 4.7.

The bifurcations in this model occur at By = 0 and Bg = 0. If By = 0 then there
exists a line of equilibrium points passing through the points (0,0,0) and (1,0,y7).
This line can be shown to have some saddle-like properties. In particular, if By = 0

then the points (1,0,y7) and (0,0,0) experience a saddle-node bifurcation. If B =

_
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then the curve y = 3(2—7)xz, &2 = 4— 4z which lies in the set BZ is a non-isolated line
of equilibria. This observation is analogous to the case 7 =2 in perfect fluid Bianchi
type V models in Chapter 3. In particular, if Bs = 0 then the points (1,0,y*) and
(0,2,90) experience a saddle-node bifurcation.

All information about the equilibrium points is summarized in Table 4.7. It is
very easily seen that if Bs > 0 then the solutions tend to an isotropic model both
to the past and to the future (in t-time), while if Bs < 0, then solutions only tend
to an isotropic model to the future. In the region of phase space where the DEC
is satisfied, it can be shown that ¥’ > 0 in that set. Therefore in this région there
are no periodic orbits. Thus, all models that initially are in the set where the DEC
is satisfied isotropize to the future ( — —oo or t — o0). Note the difference in
the result here and the result in the previous subsection. If there is a ‘non-zero’
anisotropic stress then there is a range of parameter values such that models will not
isotropize, and if there is ‘zero’ anisotropic stress then all models will isotropize to
the future. Therefore we can conclude that in the truncated Israel-Stewart theory the
anisotropic stress plays a dominant role in determining the future evolution of the
anisotropic models. This result is contrary to the observations in the previous chapter
based upon the Eckart theory where the anisotropic stress played only a minor role

and did not determine the the future evolution of the models.

Zero Bulk Viscous Pressure

As we have seen in the previous subsection, anisotrepic stress plays a dominant
role in the evolution of the anisotropic cosmological models. To further analyze the
effects of anisotropic stress on the evolution of an anisotropic model we shall et II = 0
and ¢ = 0. 'This translates into setting y = 0 and a; = 0 in equations (4.49). In
order to illustrate the possible influence anisotropic stress may have on an anisotropic
model we further restrict ourselves to the set BT := {(z, ¥, z)|4 — 4z — £? = 0}. The

resulting system is planar and lends itself easily to a complete qualitative analysis.
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Consequently the system under consideration is
Y o= %(2 — )B4 - 0%) — 12z,
Y = (2 —39)z— i.(z — )5+ 25— ) (4.77)
The equilibrium points are (0,0), (4+2,0), (—=2,0), (£, 2*), aud (£7,27) where
8 2-17) 2
E E_ DE(y 78
¥ :{:\/44- o 7)2B7, z ) (4 - %%, (4.78)
where
B7 = (2 - "}’)(Z)g — 3) + 4(12. (47{))
The point (0,0) represents a flat FRW model; the eigenvalues of this point are
1 : 3 .
Z {Bg + \/.Bg‘2 - 48[37 + —2'(2 - ’)/)2]} y (480)
where ‘

If B7 +3(2 —v)* < 0, then the point (0,0) is a saddle point. If B7 4 3(2 — 7)* > 0,
then the stability of the point (0,0) depends on the parameter Bs. If By > 0 the
point (0,0) is a source and if By < 0 the point (0,0) is a sink. Bifurcations of this
point occur when By = —2(2 —4)? and Bs = 0 and are discussed later.

The points (+2,0) represent Kasner models. The eigenvalues are

-;- {(2b2 +3y — 12) £ /(2b, + 3y — 12)2 + 2437} , (4.82)

If By > 0, the points (+2,0) are saddle points. If B; < 0, then the points (£2,0) are

sinks. The bifurcation that occurs when By = 0 is discussed later.

The points (£%, 2%) only exist when Br + (2 — v)? > 0. The eigenvalues are

1 5
{26, 4+ 3 —12-————8)
2{< 2T @=q)

+

5 ? 2
(21»2 +3y 12— ——~——~B7> ~ 94B, (1 + 7

—

2=7) —p B7)}.(4.83)
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If —2(2 —4)* < By <0, then the points (2%, 2%) are saddle points. If By > 0, then
the points (X%, 2%) are sinks. The bifurcation values By = —2(2 — 7)* and By = 0
are discussed laler, The stability of all equilibrium points is summarized in Table 4.6.

Knowing the equilibrium points and their eigenvalues only reveals the local be-
haviour of the system (4.77). The determination of some of the global properties
requires investigating the existence or non-existence of periodic orbits and analyzing
points at infinity.

The existence of periodic orbits is difficult to prove. However, with the aid of
Dulac’s criterion [78] (see Appendix A), we are able to prove the non-existence of
periodic orbits for a range of parameter values. Taking the divergence of the system
(4.77) we can see that s

V.f= -;-Bg — 22— (4.84)

Therefore, if Bg < 0 then there do not exist any periodic orbits.
To analyze the points at infinity we first change to polar coordinates r? = X2 4 22
and J = tan™?(z/X) and then we compactify the phase space through the following

transformations:

dQ

P

f:HT, 0=09, —(—it==(1—-7‘-)2, (4.85)
in which case the evolution equations for 7 and § become:
-((%: = (1-7)°F {3(2 — ) cos? 0 + (2by — 37) sin? 0 + (ag — 12) cos gtsiné}
~ (1-7) co;s: d {3(2 — v) cos? 8 + 3(2 — ) sin® § + a; cos A sin 0_} , (4.86)
Z—? = (1-7) {(262 - g'y — 3) cos @sin § + a3 cos® § 4 12sin? 9}
—7 cof@ {%(2 — 7)sin 8 + ay cos 5}. (4.87)

The points at » = oo are mapped to the unit circle # = 1. Hence the equilibrium
points ab infinity are those points on the unit circle # = 1 where %’: = 0. The
equilibrium points are thus

T

(1,%), (L-3),  (1,67), and (1,6 +7), (4.88)
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where tan 6* = —2a,/3(2—7). In order to determine the stability of these equilibrium
points we need to study the values of % and -‘fg in a neighborhood of each of the
equilibrium points. We find that the points (1,6*} and (1,9* + 7) are saddle-points
while the points (1,£7/2) are sources.

To obtain a complete picture of the qualitative behaviour of the model we must
discuss the various bifurcations that occur. A bifurcation occurs at By = ——%(‘2 — )3,
in which case the point (0,0) undergoes a pitchfork bifurcation [79] to create the
two new equilibrium points (5%, z¥) and its stability is transferred to them. When
Bz > —2(2—4)?, the point (0,0) experiences an Andronov-Hopf bifurcation at Bs = 0
[79]. Therefore, it can be shown that there exists a § > 0 such that for every By €
(0,8) there exists a periodic orbit. In addition, the periodic orbit is an attractor. A
third bifurcation occurs at B; = 0 when the points (X%, 2%) and (£2,0) undergo a
transcritical bifurcation [79] in which they exchange stability. The stability of all of
the equilibrium points (finite and infinite) is given in Table 4.6.

Let us now discuss the qualitative properties of this model. If B; < -—$(2 —-7)%
then all trajectories evolve from the equilibrium points at (42, 0) representing Kasner
models to points at infinity. These models are generally unsatisfactory since the WEC
(which implies £? < 4 for the Bianchi I models here), is broken eventually. However,
there do exist two exceptional trajectories for which the WEC is satisfied always.
These are the trajectories that lie on the unstable manifold of the equilibrium point
(0,0) which describe models that have a Kasner-like behaviour in the past (t-lime)
and isotropize to the future toward the point (0,0). A phase portrait of this model
is given in Figure 4.9.

If —2(2—-149)> < By < 0 and Bs < 0 then there exist two classes of generic
behaviour. One class of trajectories evolve from the isotropic equilibrium point (0, 0)
and evolve to points at infinity. The second class of trajectories evolve from the
equilibrium points (+2,0), which represent Kasner models, and evolve to points at
infinity. Both of these classes of trajectories describe models that fail to isotropize,
and describe models that will eventually violate the WEC. If —2(2 — 4)? < By < 0
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Table 4.5: Stability of the equilibrium point (1,0,y*,0) where dim(W*) is the dimen-
sion of the stable manifold with respect to (}-time.

Saddle 3
+ Saddle 2
4

sgn(B;) sgn(Bs) type  dim(W?)
+
+ - Sink

Table 4.6: Stability of the equilibrium points with respect to Q-time, at both finite
and infinite values, for the Bianchi type I anisotropic model with anisotropic stress
and zero viscous pressure.

By sgn(Bs) (0,0) (£2,0) (5%,2%) (0,£00)> (&oo,Fo0)> P.O.C
B, < B¢ saddle sink source saddle
B < B; <0 — sink sink saddle source saddle
B< By <0 + source sink saddle source saddle sink
B; >0 - sink saddle sink source saddle
B: >0 + source saddle sink source saddle sink

® These are the points at infinity corresponding to (7 = 1,6 = £7/2).

® These are the points at infinity corresponding to (7 = 1,8 = 6*) and (F = 1,8 = 6* + ).
¢ P.O. = Periodic Orbit

‘B=-3(2-9)
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Figure 4.9: The phase portrait describes the qualitative behavior of the anisotropic
Bianchi type I models with anisotropic stress and zero bulk viscous pressure in lhe
case By < —3(2 = 4)%. The arrous in the figure denote increasing Q-time (Q — o0)
or decreasing t-time (t — 07 ).

and Bs < 0, then there exists three sets of exceptional trajectories. Oue set is the
stable manifolds of the points (X%, z*) which represent models that start at (X%, 2%)
and evolve to points at infinity, hence the WEC will be violated. There do exist
trajectories describing models that satisfy the WEC for all time, namely the unstable
manifolds of the point (£%, 2%). One set of these trajectories start at the equilibrium
point (£2,0) which represent the Kasner models and evolve to the point (LF, 2%).
The other set of trajectories evolve from the isotropic equilibrium point (0,0) to the
equilibrium points (2%, 2%). In this case there are no models which isotropize. A
phase portrait of this model is given in Figure 4.10.

If —-%(2 —9)* < By < 0 and Bg > 0 then there exist three classes of models.

One class of trajectories evolves from the periodic orbit to the isotropic equilibrium
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point (0,0). This class of models is interesting in that the past singularity has an
oscillatory nature, that is, both the dimensionless shear ¥ and the dimensionless
anigotropic stress z tend to a closed periodic orbit in the past (¢-time). This class of
trajectories also represent models that isotropize and represent models in which the
WEC is satisfied always. The second class of trajectories are those which evolve from
the periodic orbit to points at infinity. This class of trajectories represent models that
will not satisfy the WEC at some point in the future. The third class of trajectories
is the same as the second class of trajectories in the case ~2(2 - v)* < B; < 0.
Again there exist three sets of exceptional trajectories. The stable manifolds of the
points (X%, 2t) represent models that will eventually violate the WEC. The unstable
manifolds of the points (5%, 2%) represent either models that start at the Kasner-like
equilibrium point (£2,0) and evolve to the point (£%, z*) or represent models that
start from the periodic orbit and evolve to the point (X%, z%). The phase portrait in
this case is very similar to that of Figure 4.11.

If B; > 0 and Bg < 0, then the behaviour of the trajectories is very similar to
the behaviour of the trajectories in the case ——3—(2 ~9)* < By < 0 and Bs < 0. The
difference stems from the fact that the points (42, 0) are now saddles and the points
(%%, 2%) are now sinks. The phase portrait in this case is very similar to that of
Figure 4.10.

If B; > 0 and Bg > 0, then the behaviour of the trajectories is very similar to
the behaviour of the trajectories in the case —3(2 — 4)* < B; < 0 and B > 0. The
difference stems from the fact that the points (+2,0) are now saddles and (Z%, z%)
are now sinks. A phase portrait of this model is given in Figure 4.11.

In conclusion, the general behaviour of these models is unsatisfactory in that the
WEC is violated eventually, except in the case Bs > 0 and —2(2 — )? < B; where
there exists a set of models (of non-zero measure) that will always satisfy the WEC.
These are the models represented by the trajectories which start at the periodic orbit
and isotropize to the point (0,0) to the future (t-time). There also exist models

which satisfy the WEC always, but these are the models represented by the unstable
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Figure 4.10: The phase portrait describes the qualitative behavior of the anisolropic
Bianchi type I models with anisotropic stress and zere bulk viscous pressure in the
case —3(2 —4)* < By < 0 and Bg < 0. The arrows in the figure denote increasing
Q-time (0 — oo) or decreasing t-time (t — 0F).

manifolds of the saddle-points.

Clearly the anisotropic stress in the truncated-Israel-Stewart theory plays a very
dominant role in the evolution of the anisotropic models. This is in contrast to what
was found in Chapter 3 using the Eckart theory where it was found that anisotropic
stress played a very minor role in determining the asymptotic behaviour. However,
if Bg < 0, then all models are generically unsatisfactory in that the WEC will be
violated. If By > 0, then there does exist a set of satisfactory modeis where the
WEC will always be satisfied. It is also interesting to note briefly the existence of
a periodic orbit, this type of behaviour is not seen in the Eckart models. With the
existence of this periodic orbit, the past attractor which this periodic orbit represents,

has a oscillatory character to it, in that the dimensionless shear (and therefore the
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Figure 4.11: The phase portrait describes the qualitative behavior of the anisotropic
Bianchi type I model with anisotropic stress and zero bulk viscous pressure in the
case By > 0 and By > 0. The closed elliptical orbit close to the center represents
the periodic orbit. The arrows in the figure denote increasing Q-time (1 — oco) or
decreasing t-time (t — 0% ).

dimensionless density) and the dimensionless anisotropic stress will have an oscillatory

nature.

4.3.4 Qualitative Analysis — Non-Zero Heat Conduction

In this section we will study the effects of heat conduction on the models. For
simplicity we will assume that the anisotropic stress is zero. Although II,;, = 0, the
bulk viscosity is still present, therefore, in a sense, we are investigating the effect
heat conduction will have on the viscous models with bulk viscosity. Under these

assumptions, the system (4.39-4.46) reduces to a one-parameter family (that is, in
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addition to the parameters arising from the equations of state) of three-dimensional
systems analogous to the parameterization used in Chapter 3. We label this new
parameter —1 < C' = (k+1)/v/k% =k +1 < 2, which is a function of the integration
constant, k, that appears when equations (4.40) and (4.41) are integrated. The value
C = 0 corresponds to the case in which there is zero heat conduction, and ¢ = 2
corresponds to the case in which the mode] is locally rotationally symmetric (LRS).

We define a new shear variable

¥+ Yy
Vv3c '

whence the system (4.39-4.47) becomes

X

fil

(4.89)

= x(3'y—2—2q)+y—C§-(4—-4:1;~22),
% = 5@-q) (4.0)
y = y(bi—2-2g) 49z + V30 B4 — 4w — 7,

where
1 .
¢=5 (- +y+¥%), (4.91)
and the physical phase space is
4—42-%*>0 and z>0. (4.92)

There exists three physically interesting invariant sets in the phase sp'ace of the
system, namely, FRW := {(z, £,y)|% = 0}, BT := {(z, Z,y)[4~4z— %% = 0,andX #
0}, and BY := BI° N FRW?* (where subscript ¢ denotes the complement) which
represents Bianchi type V models. As before, the set FRW represents the spatially
homogeneous and isotropic negative and flat curvature FRW models and the set BZ
represents the Bianchi type I models.

There are six different equilibrium points of the system. The equilibrium points
lying in the set FRW are:

(0,0,0),  (1,0,7),  (1,0,5%), (4.93)
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where y* is given by equation (4.53). Also, if By = 0 then there is a non-isolated
line of equilibria that passes through the points (0,0,0) and (1,0,y~), where By is
given by equation (4.54). These points represent open (z = 0) and flat (z = 1)
FRW models. The eigenvalues of the linearization in a neighborhood of each of the
isotropic equilibrium points are the same as in the case with zero heat conduction
(see equations (4.74), (4.75), and (4.76) for the eigenvalues of (0,0,0), (1,0,37), and
(1,0,y"), respectively, and the appropriate parts of Table 4.7).
The equilibrium points located in the set BT are

(0,-2,0), and  (0,+2,0). (4.94)

The eigenvalues of the linearization about the point (0,—2,0) are similar to those
in the case with zero heat conduction [see equation (4.72)]; indeed, only the first
eigenvalue is different, namely, instead of A\; = —4, we now have A, = —4 — 2C,
which is very easily seen to be negative definite. Therefore the stability of the point
(0, ~2,0) is the same as in the previous case with zero heat conduction. Similarly, for
the eigenvalues of the linearization about the point (0,+2,0), only the first eigenvalue
is different, namely, instead of A = —4 we now have Ay = —4 +2C, which is negative
definite for C # 2. Therefore, if C # 2, the stability of the point (0,42,0) is the
same as in the case with zero heat conduction. The case € = 2 is discussed below.

The sixth equilibrium point is (z, 5, §), where

_— 4(C? — 4) (b1 — 6 + 4/3¢)

* T O16vBer + (37— 2)(bs — 6) - Sar]’
5 - 4
= =
; 12(C? — 4)[4v/3¢1(2 — ) ~ 3] (4.95)

C*[16v/3c1 + (37 — 2)(by — 6) — 9a4]
However this last equilibrium point lies outside the region of phase space defined by
equations (4.92) for C # 2.

If C = 2, then a ‘transcritical’ bifurcation occurs, the points (%, £, %) and (0, +2,0)

coalesce and become a single point. The stability of this point cannot be determined
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via linearization. If (3y — 2)(6 — b;) + 9ay — 164/3¢; = 0, then there is a line of
equilibrium points y + (37 — 2)z = 0, ¥ = 2. The stability of the equilibrium point is
very difficult to determine analytically (even with the use of center manifold theory
[79]). However, numerical experiments in addition to some analysis show that the
equilibrium point has some of the same behaviour as in the case with C # 2 (e.g,, if
Bs > 0 the point is a saddle and if Bs < 0 then the point has both saddle-like and
sink-like behaviour).

The stability of the equilibrium points (0,0, 0}, (1,0,y7), (1,0,y*), (0,~2,0), and
(0,42, 0) are the same as in the case with zero heat conduction. The heat conduction
does not determine the stability of the equilibrium points that lie in the physical
phase space (4.92) but does play a role in determining their eigendirections. This is
similar to the situation in which the bulk viscous pressure is absent whence the model
reduces to one that was analyzed in Chapter 3; there the addition of heat conduction
did not change the stability of the equilibrium points but did allow the models to
violate the WEC by rotating the principal eigendirections [68].

4.3.5 Summary of the Anisotropic Models

This work improves over previous work in Chapter 3 and in [53, 54, 55] on viscous
cosmology using the non-causal first-order thermodynamics of Eckart [47] in that
a causal theory of irreversible thermodynamics has been utilized. Also, this work
enhances the analysis of anisotropic viscous cosmologies in [44, 58, 77} because more
than just the isotropic equilibrium points have been analyzed. The present work also
generalizes the analysis of causal viscous FRW models in section 4.2.

Again we have seen that the equilibrium points of the dynamical system describing
the evolution of an anisotropic viscous fluid cosmological model are, in general, self-
similar. In the case in whichm = n =1, r;, = 1 and p; = -1 ( = 1,2) all
equilibrium points are self-similar except in the case in which v = 3¢, when there

exists a equilibrium point that represents a de Sitter model which is not self-similar,
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We have found that in the case of zero heat conduction the anisotropic models
need not isotropize (that is, there exists a range of parameter values and initial
conditions such that the models will not isotropize). The parameter bz, which is the
parameter related to the relaxation time of the anisotropic stress, plays a major role in
determining the stability of the isotropic models. In the special case of zero anisotropic
stress we have shown that all models isotropize. The addition of anisotropic stress
on an anisotropic Bianchi type I model reveals some of the effects that anisotropic
stress has on an anisotropic model. For instance, anisotropic stress generically causes
models to increase their anisotropy and eventually violate the weak energy condition.
Anisotropic stress in some instances causes the creation of a periodic orbit. This
periodic orbit represents a past attractor in which the dimensionless quantities p/6?
and o /0 are approximately periodic. It is interesting to note that it is only when this
periodic orbit is present that there exist trajectories (in the interior) which represent
models that will isotropize and satisfy the weak energy condition.

The models with heat conduction analyzed here had no anisotropic stress but
did have bulk viscosity. Consequently, we have investigated whether any qualitative
changes arise from the inclusion of heat conduction. From our analysis the addition
of heat conduction in the model did not change the stability of the equilibrium points,
and hence the asymptotic states of the models. However, the inclusion of heat con-
duction did affect the dynamics in a neighborhood of each of the equilibrium points

in that some of the eigendirections have changed.

4.4 Conclusions

In this chapter we have employed the truncated Israel-Stewart theory which is
a causal and stable second order relativistic theory of irreversible thermodynamics.
The asymptotic behaviour of the Eckart models can be significantly different than the

asymptotic behaviour of the truncated Israel-Stewart models. Therefore, one must
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exercise caution when drawing conclusions about the dynamics of the universe when
using the Eckart theory.

It is possible that the truncated theory is applicable in the very early universe,
however, it is known that such a truncated theory could result in some pathological
behaviour, (e.g., in the temperature [36]). Hence, this work should be considered as a
first step in the analysis of the full Israel-Stewart theory [48, 52, 51, 80]. This chapter
provides a foundation for the analysis of viscous cosmological models using the Full

Israel-Stewart theory which will be presented in the following chapter.
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Table 4.7: Stability of the equilibrium points with respect to -time (both with and
without heat conduction).

Sgn(BG) Sgn(Bl) (0’ 0, 0) (1’0’3/—) (17O)y+) (O’ 2’0)
+ — source  saddle sink saddle
+ + saddle  source sink saddle
- - source  saddle saddle sink
- + saddle  source saddle sink




Chapter 5

Causal Viscous Fluid Cosmological
Models (Full Theory)

5.1 Introduction

In Chapter 4 spatially homogeneous viscous fluid cosmological models were in-
vestigated using the truncated Israel-Stewart [49, 50, 81] theory of irreversible ther-
modynamics to model the viscous effects. Although the truncated theory is a causal
and stable second order relativistic theory of thermodynamics, the truncated version
of the theory is known to give rise to very different behaviour than the full Isracl-
Stewart theory [49, 50, 81]; in fact, Maartens [36] argues that in many cases the
truncated theory will lead to pathological behaviour (for example, in the behaviour
of the temperature). Therefore, although it can be argued that the truncated theory
might be better formulated in terms of a redefinition of equilibrium values and that
the truncated theory may be applicable in particular circumstances, a neglection of
the divergence terms in Chapter 4 can only be regarded as a first step in the study

of dissipative processes in the universe utilizing the full (non-truncated) theory.
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5.2 Friedmana-Robertson-Walker Models

5.2.1 The Equations

The dimensionless Einstein field equations for a spatially homogeneous and isotropic
cosmological model are given by equations (4.1-4.3). Analogous to the analysis in the
truncated Israel-Stewart theory, we require an equation for the dimensionless viscous
pressure y and therefore for II. Here, we shall assume that the bulk viscous pressure,
I1, obeys the evolution equation (1.3) [48, 52],

M= —(f—7I~ —'rII [0 ZZ %] : (5.1)
where ¢ > 0 is the bulk viscosity coefficient, Ay > 0 is a relaxation coefficient for
transient bulk viscous effects, and T' > 0 is the temperature. Equation (5.1) with
€ = | ariges as a simple solution of the H-theorem (positive entropy production) [36].
The truncated theory effectively arises by setting € = 0, and it is the vanishing of the
term in square brackets in equation (5.1) that is the effective source of the pathological
behaviour of T [36]. Rewriting equation (5.1) with respect to the dimensionless

variables (3.10) we derive

1[0 ) 22 o () 3o p- g o

Equations of state for p, { and fy and a temperature law for T' are needed in
order for the system of equations (4.1-4.3) and (5.2) to be closed. Unlike Belinski et
al. [44] in which ¢, fo (and T') are assumed to be proportional to powers of p [36],
we shall adopt dimensionless equations of state (4.6) where p/8?, (/0 and Fy9? are

proportional to powers of the dimensionless density parameter z, namely,

1 3
% = =(y — 1)z, ¢ =(z", and —— =az", (56.3)
6 3 Y Bob

where m and r; are constants which are assumed to be non-negative and ¢, and a are
positive parameters. Clearly the equations of state employed will determine the qual-

itative properties of the models [36, 48, 52, 44]. Equations of state (5.3), which ensure
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that the asymptotic limit points represent self-similar models, are phenomenological
in nature and are no less appropriate than the equations of state used by Belinskii et
al. [44]. We note that the equations of state chosen by Belinskii et al. [44] and those
above coincide when m = 1/2, r; = 1. For simplicity we shall assume that ry = m,
and define b = a/{,. (Note, the parameters a and b used here are precisely those used
in Chapter 4.)

Finally, using equation (5.3), equations (4.1-4.3) and (5.2) become:

= (1-2)(3y—2a +9l (54)
v = ylb—2—y - (3~ 2)al + 9az™ + Sy(¥), (5.5)
where , , )
'\1153+2%+m%+§—, (5.6)
and
1—z= ~%31%9~2. (5.7)

Thus, the line z = 1 divides the phase space into three invariant sets, z < 1, z = 1,
and z > 1. If z = 1, then the model is necessarily a flat FRW model, if 2 < | then
the model is necessarily an open FRW model, and if z > 1 the model is necessarily a
closed FRW model.

Equations (5.4) and (5.5) constitute a plane autonomous system of ODEs for z
and y. In the truncated theory ¢ = 0, whence the final term in equation (5.5) is
absent and there is no need to specify an equation for T'. From this point on, we shall

set ¢ = 1, and adopt the following temperature law:
T = TozP0™e™®, (5.8)

where p, ¢, and r are constant. Consequently

’ /

0
¥ o= B+ +2Al+ a5+ mtp)s,

i/
= ¢ +cly+Czw+63i-,
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where
5+r+2¢+ (37 —2)(m +p),
a = l+qg—m-p,

(37 - 2)617

¢ = m+p.

&
il

C2

Relation (5.8) supports a variety of different interesting temperature laws, including,

for example,

1. T = Toz?d"/* (r =0, ¢ = 1/4) Represents a dimensionless equation of state,

assuming that the matter is pure radiation.

2. T =Tear0* (r =0, g = 2p) Represents the equation of state T = Top? which

is usually assumed when studying dissipative cosmology.

5.2.2 Qualitative Analysis

The flat case

All of the FRW models are governed by equations (5.4) and (5.5) together with
equation (5.7). We note from (5.4) that = 1 is an invariant set, where from (5.7)
we see that this set represents the flat FRW models. Let us study this physically

important zero curvature case first. When z = 1, we have that
U = (co+ ) + (1 + a)y, (5.9)

whence equation (5.5) becomes

yl___ (q"‘l)

1
5=y 520+ 3+ 7 +37(g ~ Dly + 9a. (5.10)

That is, the equations governing the evolution of the flat FRW viscous fluid models

reduce to a single autonomous ODE in y. If ¢ # 1, then equation (5.10) is a Riccati
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equation with constant coefficients and its solutions can be found in implicit form. If
¢ = 1, then equation (5.10) is linear with the solution

y= Coedltrtatnn _ L i83“+ -,

The analysis of (5.10) is straightforward. There are three possibilities concerning
the number of equilibrium points at finite values. There are either two, one, or
zero equilibrium points depending upon the values of the parameters q and By =
2043+ 7+ 3y(g — 1)]* — 18a(g — 1).

If By > 0 and ¢ # 1, then there are two equilibrium points at

ye = —-1[2b+3 +r+3fyl(q— 1] i\/FQ,
q—

(5.11)

where one is a sink and the other is a source (with respect to the invariant set x = 1,
not the full set of all FRW models). If By > 0 and ¢ < 1, then one root is positive
and the other negative. See Figure 5.1 for phase portrait. If By > 0, ¢ > 1, and
20+ 3 +r +3y(¢ — 1) > 0, then both roots are negative. See Figure 5.2 for phase
portrait. If By > 0, ¢ > 1, and 2b+3+r+3vy(¢—1) < 0, then both roots are positive.

There are two isolated cases when there is only a single equilibrium point, namely
when ¢ =1 or By = 0. If ¢ = 1, then there is a single equilibrium point at

—18a

T S

If ¢g=1and 2b+ 3 4+ r > 0, then this point is a source. See Figure 5.3 for a phase
portrait. If ¢ =1 and 2b+ 3 + r < 0, then this point is a sink. See Figure 5.4 for

a phase portrait. If By = 0, then necessarily ¢ > 1 and the equilibrium point has
coordinate ) ‘
o i34 g - 1)
qg—1
If By =0and 2b+3+7r+3v(¢—1) > 0, then this point has a negative y coordinate. If
By =0 and 26+ 3+ 7 +3vy(g~1) < 0, then this point has a positive y coordinate. In

each case the equilibrium puoint is nonlinear and has a stable and an unstable direction.

See Figure 5.5 for a phase portrait. If By < 0, then there are no equilibrium points
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at finite values. Evaluating y' at y = 0 reveals the direction of the flow. See Figure
5.6 for a phase portrait.

Two ceuclusions can be made quite easily concerning the flat FRW models. One
is that the behaviour of the flat models depends critically upon the value of the
parameter ¢ found in the temperature law (5.8). The second is that the behaviour of
the flat models with ¢ < 1 using the full (non-truncated) theory is qualitatively the

same as the qualitative behaviour in the truncated theory (see Chapter 4).

The general curvature case

Let us now return to the general curvature case ¢ # 1 [see equations (5.4) and

(5.5)]. Equation (5.5) can be written as
- _" C_O. — E_l_ — _C_l _ S?_ -1 m
y—y[(b 2+2)+m(3'7 2)(\2 1)+y<2 1)+2ya: ]+9a:1; . (5.12)

From equation (5.4), the equilibrium points (Z, §) not lying in the invariant set z = 1

satisfy § = —(3y — 2)&, and from (5.12) we obtain
902" — 2 (3~ 2)(2b+ 7 + 24 + 1)7 =0 (5.13)

For m > 0, there exists a singular point at the origin (0,0). (Note, however, that the
system of ODEs as given by equations (5.4) and (5.12) is not defined at & = 0 except
when ¢3 = 0, therefore the point (0,0) may not be a well defined equilibrium point of
the system. Changing to polar coordinates, it can be shown that this singular point
is saddle-like in nature (hyperbolic sectors) if m < 1. If m > 1 then the point (0, 0)
has parabolic and hyperbolic sectors.

If m # 1, then there is a second equilibrium point at

(%,7) = ([Q—%;a—z)(% +r+2¢+ 1)] i ,—(3y - 2)5;). (5.14)

If Byo = (3y—2)(20+7r +2¢+1)—18a > 0, then > 1, and when m < 1, this point
is a saddle. If Bjp < 0, then & < 1, and when m > 1, this equilibrium point is again

a saddle. There is a variety of other possible behaviours.



5.2.3 Summary

The qualitative behaviour of the flat FRW models has been determined com-
pletely. If ¢ < 1 (necessarily By > 0), then the flat models evolve from the visco-

elastic singularity represented by the point y = y* with corresponding solution (after

recoordination)
. 6
1) = 12/t +39) 0(t) = 1
12 -2 4y+ -3 .
) = —m—o1% H t) = ————t ) {-lr
P( ) (y+ +37)2 3 ( ) (y+ +37)2 () O)
towards either points at infinity or to the point y = y~ which has solution
- 6
t) = |t — to| 7t o(t) = t— o)™
alt) = |t = o674, ()= gt =)
12 -2 4y~ —2 )
)= —(t—to)"2, (t) = (¢ — to)~2. (5.16
P( ) (y_ +3,7);( 0) ( ) (y.. +37)2( 0) (‘) )

[Note if y~+3v > 0, then the solution (5.16) can be recoordinatized such that ¢ty = 0.]

The Israel-Stewart theory of irreversible thermodynamics is a linear approximation
of the true dynamics of a viscous fluid. The theory can only describe processes near
equilibrium and therefore the magnitude of the bulk viscous pressure 7 should be less

than the equilibrium thermodynamical pressure p, that is,

1| < (v = 1Dp. (5.17)

[Note: this condition can be relaxed if the bulk viscosity is a result of particle creation.]

In dimensionless variables, equation {5.17) becomes

lyl <3(y - 1)a. (5.18)

One can easily verify that solution (5.15) satisfies (5.18) if (y* + 3y) < 3(2y — 1). It
can also be shown that solution (5.16) satisfies (5.18) if y~ + 3y > 3.

If g =1 and 2b+3+r > 0, then the trajectories describing the models evolve from
points at infinity to the point y = —18a/(2b+ 3 + r) which has & solution similar to
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(5.16). If ¢ =1 and 2b+ 3 + r < 0 then the trajectories describing the models evolve
from point ¥ = —18a/{2b + 3 + r) which has a solution of the form (5.15) to points
at infinity.

If By = 0 (necessarily ¢ > 1) then tlere are trajectories that describe models
which evolve from the point y = —1[2b + 3 + r + 37(¢ — 1)]/(g — 1) [which has
a golution of the form (5.15) if ¥ + 3y > 0] to points at infinity. There are also
trajectories that describe models that evolve from points at infinity to the point
y = —3[2b+ 3+ 7+ 37(g—1)]/(¢ — 1). i By < 0, then the trajectory describing
the flat models evolves from y = 400 to y = —oo. This trajectory describes models
that evolve from a big-bang singularity and after a finite time start to inflate. After
inflating for a finite period of time, the models will start expanding at increasing rates
(i-e., 0 > 0) and will evolve to y = —co, which represents models with an infinite
negative viscous pressure.

The behaviour of the viscous fluid FRW models where the bulk viscous pressure
satisfies the full Israel-Stewart theory of irreversible thermodynamics has been ana-
lyzed. The stability of the singular point (0,0), representing the Milne model depends
upon the value of m. The equilibrium point (Z,7) can represent either an open, flat
or closed FRW model depending upon the value of the parameter Byo. Exact deter-
mination of the nature of this particular singular point is extremely difficult; however,
a partial result is possible—if Bjo(1 — m) > 0 then the equilibrium point is a saddle.

Maartens [36] has derived the evolution of the specific entropy, s, to be

. il
8§ = —;;T', (519)

where n is the number density. Using the number density conservation law (7 4+ nf =

0), equation (5.19) can be translated to dimensionless variables
s’ = (3Tyn,) " Tyz PePI-0e=(4nR (5.20)

Requiring $ > 0 or equivalently ' < 0 indicates that y should be constrained to be

less than zero, i.e., y < 0. Other possible constraints on p, ¢ , and r can be found by



imposing further conditions on the entropy evolution, e.g., imposing that it increase
but at decreasing rates, i.e. § < 0.
It can be concluded that the behaviour of the FRW models in which the bulk

viscous pressure satisfies the full Israel-Stewart theory can be qualitalively quite dif-

ferent from the behaviour of the truncated models, On the other hand, it can be
argued that the physically meaningful case is when ¢ < 1, in which case the qualita-
tive behaviour of the flat FRW models using the truncated and the full Israel-Stewart
theory is similar. The equations of state utilized for the temperature (5.8) and for
the bulk viscosity coefficient ¢ play major roles in determining the dynamics of the
models.

A complete analysis of the asymptotic behaviours of these viscous fluid models,
depending on the (many) free parameters in the model (a, b,y,m,p, q,7) and utiliz-
ing the energy conditions can be made. The next step in this research programme,
however, is to attempt to use results from kinetic theory in order to motivate phys-
ically plausible equations of state, or, at the very least, to limit the form of the

phenomenological equations of state used.

5.3 Isotropic Curvature Models

5.3.1 Introduction

In Chapter 3, a simple Bianchi type V model was investigated where the viscous ef-
fects were modelled by the first-order non-causal Eckart theory of irreversible thermo-
dynamics [47]. In Chapter 4, isotropic Friedmann-Robertson-Walker and anisotropic
Bianchi type I and type V models were analyzed where the viscous effects were de-
scribed by the second-order causal truncated Israel-Stewart theory of irreversible ther-
modynamics [49, 50] where it was found that anisotropy led to soms interesting be-

haviour. In the previous section 5.2, an isotropic Friedmann-Robertson-Walker model
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oy
- Cout

—————
y=y 0 y=y*

Figure 5.1: The phase portrait describes the qualitative behavior of the isotropic vis-
cous fluid FRW models in the case By > 0 and ¢ < 1. The arrows in all the figures
denote increasing Q-time (0 — o0) or decreasing t-time (t — 0%).

> — < @——]

y=y~  y=yt 0

Figure 5.2: The case By >0 and ¢ > 1.

- >

y=y- 0

Figure 5.3: The case ¢ =1 and 26+ 3+ 71 > 0.

Figure 5.4: The case g =1 and 2b+3+1r < 0.

-~

y=y~ 0

Figure 5.5: The case By =0 and 2b+3+r+3y(¢—1) > 0.

0

Figure 5.6: The case By < 0.



124

was studied in which the bulk viscous pressure satisfies the full (non-truncated) Israel-
Stewart theory of irreversible thermodynamics [48, 51, 52]. The obvious next step in
this line of research is to analyze the anisotropic generalizations of the Friedmann-
Robertson-Walker models employing the full Israel-Stewart theory of irreversible ther-
modynamics to describe the viscous effects.

In this section, to simplify the mathematics and derive a tractable system of
equations we shall assume zero heat conduction. We will investigate viscous effects in
a class of spatially homogeneous and anisotropic cosmological models, in particular,
the class of isotropic curvature models. The isotropic curvature models are described
by the property that the three dimensional Ricci curvature tensor is isotropic; that
is, >Rap = 1 Rb,s on the spatial hypersurfaces [20] (hence, the spatial hypersurfaces
have constant curvature [20]). This class of models contains the Bianchi type [ (*R =
0) and Bianchi type V (*R < 0) models and a special case of the Bianchi type IX
(®R > 0) models. In essence, the isotropic curvature models (Bianchi V, Bianchi
I, Bianchi IX) can be regarded as the simplest anisotropic generalizations of the

Friedmann-Robertson-Walker (open, flat, closed) models.

5.3.2 The Equations

The dimensionless Einstein field equations are for the isotropic curvature models
equivalent to equations (3.11-3.16). If the model is of Bianchi type V then there is
an additional constraint that must be satisfied, namely ¥; + %9 = 0. In order to close
the system of equations we need relationships for the dimensionless viscous pressure y
and the dimensionless anisotropic stresses z; and z,. Therefore, we require equations
for II, II;, and II;.

Assuming that the universe can be modelled as a simple fluid , the non-truncated

Israel-Stewart equations for the bulk viscous pressure, I, and the anisotropic stresses,
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M,, and II;, are given by (1.3) [48, 51, 52]:

. € ﬂo j‘
m = "C<3+ﬂoﬂ+‘2'ﬂoﬂ[ +E)‘—§;D,
I, = 29 (Ul+ﬂ2'ir]+'§ﬂ2nl 0+-§%—§D, (5.21)
m, = -2 (02+ﬂ273'2+§ﬂznz [0+%~§])-

The variable T represents the temperature, ¢ is the bulk viscosity coefficient, 7 is the

shear viscosity coefficient, B and 8, are proportional to the relaxation times. The

above equations reduce to the Eckart equations used in Chapter 3 and in [53, 54, 55]

when oy = oy = flp = 1 = B2 = 0, and reduce to the truncated equations used in

Chapter 4 when € = 0.

Rewriting the above system (5.21) in terms of the dimensionless variables (3.10)

and augmenting the result to equations (3.11-3.13) we obtain the following system:

dz
dQ
s,
dQ
d¥,
aa
dy
da
d2:1
a0
dZ‘)
a0

where ¥? =

.’E(l - 2(]) + 90—2 +y+ 21(22] — Zg) -+ 22(222 - 21)
B1(2 - ¢) — 1221,

22(2—-q) - 1232, (522)
3 . 3 € A

,—3-(—)—6;‘) “2_2‘1] +9(W> +§y |:3—E;+’T—:| y
3 3 € [

4,3202) _2"2‘1] + % (W) +-2—Zl [3— ﬂ: + ]

3 3 € B
() 22+ (o) * 52~ B+ 7).

3(%1 + E;)? — 5,8, the dimensionless deceleration parameter

1 .
q= (:v +y+ oL 4 232> , (5.23)

g2

and where ' denotes differentiation with respect to Q2. Finally, the Friedmann equation

(3.16) is

4—dz -5 =—6 g (5.24)
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The interior of the parabola 4 = L% + 4z in the phase space represents models of
Bianchi type V. The parabola itself represents models of Bianchi type I, and the
exterior of the parabola represents models of Bianchi type IX. Presently, we shall
always assume that z > 0, which states that the energy density in the rest frame of
the matter is non-negative. This is a necessary condition for the fulfillment of the
WEC [69].

Note also that if 2R < 0 then the model is of Bianchi type V and the extra
constraint ¥; + ¥y = 0 must be satisfied. Imposing this constraint on the Bianchi
type I and IX models leads to a sub-class of the isotropic curvature models, which,
since X = Xy = =X, and Il = II; = Iy, is governed by the four-dimensional system

of ordinary differential equations:

do
o = (1—2q)+9 +y+65z
% = 5(2-q)— 12z, (5.25)

dy AWAR I
an " ”[(z) (W)‘z 2“]+9(ﬂoz)+‘ [3"E+'f]’

dz 0 3 \ 3 _.EZ_ T
o = Z[Q(n) (4&02) 2 2"]”(%02) 2 [3 T }

where ¢ is given by equation (5.23). In order to close the system, a set of equations

of state must again be adopted. These equations of state can be chosen phenomeno-
logically in the same way as in the previous chapter [see Chapter 4, equation (4.38)).

However, the full Israel-Stewart theory requires a temperature law for T',

5.3.3 Future Work

Future work will include (i) an attempt at using relativistic kinetic theory to place
limits on the form of the phenomenological equations of state and (ii) an extensive
qualitative analysis of the isotropic curvature models using these physically motivated
equations of state, thereby expanding the analysis in section 5.2 to anisotropic models

and extending the analysis in Chapter 3 and in [53, 54, 55] to causal theories.
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5.4 Conclusions

The most obvious observation that one can make regarding this chapter is that
the qualitative behaviour of the flat FRW models, using the truncated Israel-Stewart
theory, and the qualitative behaviour of the flat models, using the full Israel-Stewart
theory, can be significantly different. This difference however, appears as a result of
the equation of state for the temperature. The primary conciusion that can be drawn
from all these results is that the equations of state play a primary role in determining
the behaviour of the viscous fluid cosmological models. Which equations of state are
most appropriate remains to be seen, however, from a mathematical perspective, the
dimensionless equations of state used throughout this thesis offer a convenient way of
reducing the dimensionality of the problem. It is hoped that through some analysis
of kinetic theory of relativistic fluids that the form of the equations of state can be

found explicitly or for our matters at least asymptotically.

)



Chapter 6

Spatially Homogeneous

Cosmologies with an Exponential
Potential

6.1 Introduction

We shall study cosmological models containing a self-interacting scalar field with
an exponential potential. Scalar field cosmology is of importance in the study of
inflation, an idea originally proposed by Guth [82], in which the universe under-
went a period of accelerated expansion (see, for example, Olive [83}). Models with
an exponential scalar field potential arise naturally in alternative theories of grav-
ity, such as, for example, theories based on the Brans-Dicke theory (for example,
extended inflation {84, 85], and hyper-extended inflation [86]), in the Salam-Sezgin
model of N = 2 super-gravity coupled to matter [87], and in theories undergoing
dimensional reduction to an effective four dimensional theory [88]. In addition, other
theories of gravity, such as, for example, quadratic Lagrangian theories, are known
to be conformally equivalent to general relativity plus a scalar field with potentials of

exponential-type [89, 90]. Cosmologies of this type have been studied by a number of
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authors, including Burd and Barrow [91], Kitada and Maeda [92, 93] and Feinstein
and Ibéiiez [94].

Our aim here is to perform a qualitative analysis on a class of Bianchi cosmologies
containing a scalar field with an exponential potential. Since the potential is an expo-
nential function, the governing differential equations exhibit a symmetry [63] which
allows expansion-normalized variables to be defined. The resulting phase space is com-
pact (except in the Bianchi IX case in which the phase space is closed but unbounded),
and the differential equation for the expansion decouples from the other equations.
Therefore the reduced system of ordinary differential equations can be analyzed by
using standard geometric (dynamical systems) techniques [18, 54, 55]. In particular,
we wish to study qualitatively whether the models inflate and/or isotropize, thereby
deter. :ining the applicability of the so-called cosmic no-hair theorem in homogeneous
scalar field cosmologies with an exponential potential. Essentially the cosmic no-hair
conjectuze asserts that inflation is typical in a wide class of scalar field cosmologies.
Because inflation in scalar field models with an exponential potential is of power-law
type [91] which is weaker than in conventional exponential inflation (for which no-hair
theorems exist [95]), it is not obvious that there exists a cosmic no-hair theorem for
these models. In addition, Feinstein and Ibifiez [94] have found exact homogeneous
solutions (of Bianchi types III and VI) which neither inflate nor isotropize; this work
will determine the relevance of these exact solutions and investigate whether their
qualitative properties are generic.

Cosmological models with a minimally coupled scalar field have a stress-energy

sensor given by ]

T = hads ~ 0 (3647 + V(4)), (6.1)
where for a homogeneous scalar field ¢ = ¢(t), so that ¢.¢° = —¢? (where an
over-dot denotes differentiation with respect to the proper time). In this case we

can formally treat the stress-energy tensor as a perfect fluid with velocity vector

u® = ¢ /\/— .., where the energy density and the pressure are given by

po = B=2d+V(9) (62)
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1.
b = 2P0 63)
In the models under consideration, the potential of the scalar field is given by

V(4) = Ae*?, (6.4)

where A (> 0) and k are constants.

As noted earlier, a number of authors have studied such cosmological models,
Homogeneous and isotropic, FRW models were studied using phase-plane methods
by Halliwell [88] [see also, for example, Olive [83]]. Homogeneous but anisotropic
models have been studied by Burd and Barrow [91] [Bianchi models of type I and 111
(and Kantowski-Sachs models); exact solutions and a discussion of their stability],
Lidsey [96] [Bianchi type I}, Aguirregabiria et al. [97] [Bianchi type I; exact solutions
and qualitative analysis for all k], Feinstein and Ibdiiez [94] [Bianchi types IIT and VI;
exact solutions for all k] and Kitada and Maeda [92, 93] [all Bianchi types; qualitative
analysis for models with 4% < 2, including standard matter satisfying the various
energy conditions).

This chapter is organized as follows. In section 6.2 we shall discuss genreral quali-
tative features of homogeneous scalar field cosmologies with an exponential potential,
such as for example, whether they isotropize or inflate and what is the relevance of the
Feinstein-Ibafiez solutions [94]. In addition, we will show that all equilibrium points
in the ‘reduced’ dynamical system correspond to self-similar cosmological models. In
section 6.3 we will perform a qualitative analysis of a particular class of Bianchi mod-
els, and in doing so illustrate these general properties. In section 6.4 we conclude

with a discussion.
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6.2 Isotropization and the Cosmic No-Hair

Theorem

6.2.1 Background

Wald’s [95] result that “all initially expanding homogeneous models, with ordinary
matter satisfying both the strong and dominant energy conditions and with a positive
cosmological constant, asymptotically approach the isotropic de Sitter space-time”,
was one of the first versions of the cosmic no-hair theorem that was actually proven.
Since then a number of extended ‘cosmic no-hair theorems’ have been proven for
Bianchi models. In particular, and essentially using Wald’s approach, Kitada and
Maeda [92, 93] have proven that for k? < 2, all initially expanding anisotropic models
containing a scalar field with an exponential potential (and ordinary matter satisfying
the energy conditions) locally approach an isotropic, power-law inflationary (FRW)
solution (in the Bianchi type IX case the models must also satisfy the condition that
the ratio of the effective vacuum energy to the maximum three curvature is larger _
than some critical value). In the special case k = 0, the theorem essentially reduces to
Wald’s result [95], and the unique attractor is the exponential inflationary de Sitter
solution,

In related work, Heusler [98] proved that all Bianchi models with ordinary matter
satisfying the usual energy conditions and containing a scalar field with a positive,
convex potential (with a local minimum such that V(¢,) = 0; for example, V(¢) =
imd¢*), can only approach isotropy at infinite times if the underlying isometry group
is a Lie subgroup of the G¢ group of isometries describing the FRW model, that is, if
the underlying Lie group is one of Bianchi types I, V, VII, or IX. This work extended
(by including scalar fields) the famous result of Collins and Hawking [30] that only
a subclass of measure zero in the space of all homogeneous models can approach
isotropy. Here, we shall extend Heusler’s result to the case of a scalar field with an

exponential potential of the form (6.4) with k* > 2. In this case, the scalar field
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¢ is generally not bounded and ¢V'(¢) > V(4) is only satisfied when ¢ is positive;
therefore, the conditions in Heusler’s main theorem are not met. However, Heusler’s
Proposition 1 (where now 8 — 0 and V' — 0 as t — oo if there exists a time t,
with 6(t,) > 0) and Proposition 2 (which gives necessary conditions in order for a
homogeneous model which is not among the Bianchi types admitted by an FRW
model to isotropize), are both true in the case of an exponential potential. In our
calculation below we effectively replace Heusler’s Proposition 3 with an analogous

result on the behaviour of V/E in the case of an exponential potential.

6.2.2 Equations

From the Einstein field equations describing the spatially homogeneous models,

we have the Raychaudhuri equation governing the evolution of the expansion

b= 20"~ 20~ F 4 V($), (6.5)
and the generalized Friedmann equation
9* =3q* + -;-qﬁz +3V(¢) — %P, (6.6)

where o is the shear scalar, P is the scalar curvature of the homogeneous hypersur-
faces, which is always negative or zero except in the Bianchi IX case [95], and V(¢)
is given by equation (6.4). The Klein-Gordon equation for the scalar field with an

exponential potential is then

¢+09+kV(¢) =0. (6.7)
Defining the new variable 1 as
.k
Pp=¢+ 50’ (6'8)
and using equations (6.5) and (6.6), the Klein-Gordon equation can be rewritten as

064 5P =0, (69)
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We now introduce new expansion-normalized variables and a new time variable

as follows:

(6.10)

With these definitions and using equations (6.5) and (6.6), equation (6.7) can be

rewritten as

Vo= (228 - 207 4 @%) - —‘/—2_6—%2, (6.11)
o = —9(—1-23%—20%+9% - {2913@), (6.12)

where ’ denotes differentiation with respect the new time . The equilibrium points
of the system have either ® = ¥ = 0, which corresponds to the massless scalar field
case, or 3?4+ ¥? = 1, ® = 0, which represents the Kasner-like initial (line) singularity,

or else (and in all cases of interest here) obey the following relation

&% 4+ U = ——?\Il. (6.13)
In terms of these new expansion-normalized variables, the energy density of the
scalar field (6.2) can be written as

E 1

i 5(\1:2 + ®%), (6.14)

and we have that

k& V3¢
v AV T

Hence, at the equilibrium points we obtain

B By .:1; (1 - .3_?) , (6.16)

U= (6.15)

62 3k ko
14 $? K ke
R TEY ki Y 1 (6.17)
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6.2.3 Isotropization

Following Heusler [98], the necessary conditions for the anisotropic and homoge-
neous models, which are not admitted by the FRW models?, that contain a homoge-

neous scalar field, to isotropize are:

g =0, (6.18)
and (Heusler’s Proposition 2 [98])
EEE — -;)—, as t— o0 (6.19)
|4 2
_ > 2 OM
S (620

where { ) denotes an appropriate time average [Heusler [98], equation (20)].

Now, using equation (6.16), equation (6.19) implies that as ¢ — oo

% - 0. (6.21)

Substituting equation (6.21) into (6.17) we can compute (V/E), viz.,

(%)= <1 - %> -1-8 (6.22)

Hence, the necessary condition, equation (6.20), for isotropization to occur implies
that

(&

k
6

Therefore, we have shown that if % > 2 and if the model is of Bianchi types II,
II1, IV, VI or VIII then it cannot isotropize. Another way, if k2 > 2 and the model

is not of Bianchi types I, V, VII, or IX, then it cannot isotropize. Like Heusler 98],

1- z% = k<2 (6.23)

we have not completely generalized the Collins and Hawking [30] result that only a
subclass of homogeneous models of measure zero can isotropize, since we have not

explicitly investigated Bianchi models of types VI, and IX.

!These are the Bianchi type II, III, IV, VI and VIlI models,
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The following question consequently arises; what is the future asymptotic be-
haviour of the models when k2 > 2. This question will be partially addressed in

section 6.3.

6.2.4 Inflation

For inflation to occur we must have a negative deceleration parameter ¢, i.e.,
g =2p%+2¥% — 0% < (, (6.24)

so that, using equations (6.13), (6.15) and (6.24), at the equilibrium points the solu-
tion will inflate if 5

(k* —2)— 3k2 <0. (6.25)

Therefore, from equations (6.18) and (6.21), for models to inflate and isotrop‘ze k?
must be less than two, a well known result [88, 92, 93].

We have shown that &% < 2 is a necessary condition for the spatially homogeneous
models under consideration to isotropize, and when k? < 2 these models will also in-
flate. Note, we have not proven that all such models with k? < 2 isotropize (although
we shall explicitly demonstrate that this is the case for a subclass of Bianchi models
in section 1IT). However, the no-hair theorem of Kitada and Maeda [92, 93], described
in section 6.2.1, shows precisely this; namely, that for &% < 2 the isotropic,’power-la,w
inflationary FRW solution is the unique attractor for any initially expanding Bianchi
model. In addition, these authors also showed [93] that in these models anisotropiss
always enhance inflation in models with non-positive spatial curvature (over their
isotropic counterparts) and generally enhance inflaticn in models of Bianchi type IX
(however; see the detailed discussion in Kitada and Maeda [93], pp 720-721).
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6.2.5 Remarks

First, we note that in our investigation we have not included ordinary matter
(satisfying the usual energy conditions). However, matter could easily be included in
precisely the same way as in Heusler [98] and Kitada and Maeda [92, 93], One would
just require that the matter satisfy the DEC and the SEC.

Second, for an exponential potential the equation describing the evolution of the
expansior. (6.5) written in terms of the new expansion-normalized variables {6.10)
decouples from the ‘reduced dynamical system’ aud can be written as

0 2., 1 2 1
5= ~§ﬂ‘ -3 §\I'2 + §<I>2. (6.26)
Consequently at the equilibrium points of the reduced system 3, ¥ and ® are con-

stants, therefore we must have that
0=06,t7", (6.27)

whence the corresponding cosmological models are necessarily self-similar in that
they admit a homothetic vector [61] (except in the degenerate case k = 0 in which
the right-hand side of equation (6.5) can be zero and the corresponding model is the
de Sitter space-time which is not self-similar).

In particular, the isotropic, power-law inflationary (FRW) attracting solutions (in
the case k? < 2), are self-similar models and the Feinstein-Ibdfiez [94] solutions (in

the case k? > 2) are aiso self-similar.

6.3 A Class of Anisotropic Cosmological Models

6.3.1 The Equations

The diagonal form of the Bianchi type VI, metric is given by:

ds2 —_ __dt2 + a(t)Zdzz + b(t)zezmﬁdyQ + C(t)zehdz2, (6.28)
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where m = h — 1. If m = 1 then the metric is of Bianchi type V, if m = 0 then the
metric is of Bianchi type III, and if m = —1 then the metric is of Bianchi type VI,
Thus we are considering a 1-parameter (m) class of Bianchi models which include
Bianchi types IIl (m = 0), V (m = 1), VIg (m = —1), and VI, (all other m). In
addition, the Bianchi type I models can also be included as they are on the boundary.
The expansicn scalar, which determines the volume behavior of the fluid, is given

by o
a=§+%+§. (6.29)
The shear tensor, o,, determines the distortion arising in the fluid flow leaving the

volume invariant. The nonzero components of the shear tensor are

oo = Gfyd b
=8\ T )

pe2me b 4 &

” _ce® 2&__(1_@
¥ T T3 \%¢ @ b)?

b

and the shear scalar, 07 = 10*%gy;, is given by

1[ra\ (B\" re\2 @b e ke
2 _1}(@ 0 ¢y _a ac
773 [(a) +(b) + (c) ab ac bc}' . (631)
In the case under consideration here, there is no rotation and no acceleration.

The Einstein field equations with a homogeneous scalar field having an exponential

potential (6.4) are:

% + % + S = —§ +Aet?, (6.32)

3(1 +m) —m% --Z: = 0, (6.33)
Seliafimdl g (634)
il e o
S+ : T = A (6:36)
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From the above equations one obtains the generalized Friedmann equation [see equa-
tion (6.6)] 3

6% = 302 + g¢;z +306H 4 S (m? 4+ m 4 1), (6.37)
Note that the quantity m? + m +1 > 3/4 > 0. The Raychaudhuri equation is [see

equation 6.5)]
; 1

0=~20"— 26"~ $* + Ae*?, (6.38)
The evolution equation for the shear is
. (1--m) 2_a2_ S k
= —o0 0 — 307 — ~¢* — 3Ae*?), 39
o a+3\/?_>\/m2+m+1( o ng e*’) (6.39)

The Klein-Gordon equation for the scalar field is [see equation (6.7)]

¢ = —0¢ — kAe*?, (6.40)

The above system of equations (6.37)-(6.40) is invariant under the transformation
(see section 2.5),
9 — M d—=Xrp ¢—d+2n)

o= Ao t— A"l

(6.41)

This invariance implies that there exists a symmetry in the dynamical system (6.37)-
(6.40) [63]. With the change of variables given by equation (6.10), the evolution
equations for 3, U and ® become independent of the variable #. That is, # decouples
from the dynamical system describing the evolution of 8, ¥ and ®. The dynamical
system can be considered as a reduced dynamical system for 3, ¥ and ¢ together
with an evolution equation for 6 (see equations below).

The system of differential equations in the expansion-normalized variables be-

comes:
dp l-m 2 2 2
_— = -2t e (1 =B =P = D
5 = Pla-2)+ e-—-mumH( A )
dv Vok _,
dd 6k
-Jﬁ = q)(l +q)+—-—2—\11(1>
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do
dQ

where the deceleration parameter g, is defined to be

= —0(1+9q)

q=2p*4+297 - 92 (6.43)
The phase space [determined by equation (6.37)] is the region defined by
B4+, (6.44)

which describes the interior of a sphere. The sphere itself is the phase space for the
Bianchi type I models. We also note that the above system is invariant under the
transformation & — —®, hence without 1oss of generality we restrict ourselves to the
set defined by equation (6.44) and ¢ > 0.

Inflation, in the context of this paper, is defined to occur whenever the deceleration
parameter ¢ is negative, that is ¢ < 0. We easily see from equation (6.43) the

inflationary regime describes a cone inside the sphere.

6.3.2 Qualitative Analysis

Equilibrium Points

The equilibrium point

1—-m
= — U= (), 0= 6.45
{ﬂ 2vVmi+m+1’ ’ } ’ (6:45)
satisfies the boundary condition for all m, and when m = —1 the point is part of the

non-isolated line of equilibrium points 32 + ¥? = 1 (which will be discussed later).
The inflationary condition ¢ < 0 is never satisfied, hence this point is non-inflationary.
The linearized system in a neighborhood of the equilibrium point has the following
eigenvalues:
=3(m +1)?
2m*+m+1)’
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_ =3(m+1)? .
A 2(m?+m+1)’ (6.46)
3(m?+1)
Ay = —
2(m? +m+1)

It is easily seen that this point is a saddle point with a 2-dimensional stable manifold,
The exact solution corresponding to this point is that of a vacuum Bianchi type VI,
model or its degeneracies (that is if m = 0 it is type III, and if m = 1 it is of type

V), with line element (after a re-coordinatization)

ds* = —di? + a, (1?1 dz? + 1?2 dy? + 177e*d?), (6.47)
where )
m*+m m-+1
= 1 = = ———— h.
n=1, R P = (6.48)

such that py + p2 + ps = p} + pi + pl.
The equilibrium point

{ﬁ:ﬂ,@:-@,@:?ﬂ}, (6.49)

does not exist if &> > 6 and is part of the non-isolated line of equilibrium points
B2+ ¥? = 1 when k? = 6. The point lies on the boundary of the phase space
B% 4+ W% 4 ®% = 1, hence it is of Bianchi type . The point is inflationary if

k-2
T2

g <0 (6.50)

that is, the point represents an inflationary model if k* < 2. The linearized system

in a neighborhood of the equilibrium point has the following eigenvalues:

k-6
)*1 - 9 ’

kz - 6 4
AZ - 9 3 (6'51)
A = k-2

If k* < 2 the point is a sink, and if 2 < k? < 6 the the point is a saddle point. (The

behaviour when k% = 2 or k? = 6, the bifurcation values, will be discussed later.) For
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k # 0 the exact solution corresponding to this equilibrium point is that of a flat FRW

model with line element given by (after a re-coordinatization)
ds? = —dt? + /¥ (dz® + dy® + d2%), (6.52)

and if & = 0 then the exact solution is the de Sitter model. The scalar field is given

by
$=¢o— %m £, (6.53)
The equilibrium point
{/3 (-2 (m—1)Vm+m+1
- 2 (k2 - 2)(m?+m+1)+3(m?+1)]
_ __\/6k (m?+1)
v= 2 [(k—2)(m?+m+1)+3(m2+1)] (6.54)
5 - V8 VT T[(R2 = 2)(m + 1)2 + 4(m? + 1)]}
T2 [(k2=2)(m*+m+1)+3(m?+1)]

can be shown (after much algebra) to satisfy the boundary condition if k* > 2 and
satisfies the inflationary condition ¢ < 0 if ¥ < 2, which reveals that the point is
inflationary if ¥* < 2 and is non-inflationary if k> > 2. The linearized part of the
system in a neighborhood of the equilibrium point has the following eigenvalues:

- _é{ 4mP+ 1)+ (A - 2)(m + 1)® }
! (B2 =2)(m?+m+1)+3(m2+1))’

2
Ay = _§{ (k2 —2)(m 4+ 1) + 4(m? + 1)
2 (k2 = 2)(m? + m +1) +3(m? +1)]

4
VIR = 2)(m + 1)2 + 4(m? + 1)][4(m? + 1) — (k2 — 2)(Tm? — 2m + 7)] }

+

(k2 - 2)(m2+m+1)+3(m?+1)
_ _g{ (K = 2)(m +1)2 +4(m* + 1)
4 | (k2 =2)(m24+m+1)+3(m? +1)
B VI = 2)(m +1)2 + 4(m2 + D)][4(m? + 1) — (k2 — 2)(Tm2 — 2m + 7)]}

(B —2)(mZtm+1)+3(m2+1)

It can be shown that if #* > 2 then all three eigenvalues are negative, hence the

equilibrium point represents a stable node. It is also interesting to note that if k% >



2 +4(m? + 1)/(Tm? — 2m + 7), then the point is a focus (i.e., the solution oscillates
in a neighborhood of the equilibrium point). The behaviour of the system at the
bifurcation value k? = 2 will be discussed later. The exact solution corresponding to
this point is that of a Bianchi type VI, or its degeneracies (that is if . = 0 it is type

I and if m = 1 it is of type V), with line element (after a re-coordinatization)

ds? = —dt? + a2 (131 dz? 4 tP2e?Medy? 4 12e¥ d2?), (6.55)
where
nh = 17
2 (k% — 2)(m? + m) i
P = Zz— <1 + 2(m2 i 1) 3 (6.')())
2 (k* = 2)(m + 1)
Pz = F(l-'_ 3(m?+1) .
The scalar field in this case is given by
2 .
d=d,— —I;hlt' (6.57)

This solution was first given by Feinstein and Ibaiiez [94].

Boundaries

The qualitative behaviour on the boundaries can also help to determine the be-
haviour in the interior of the phase space. In this situation, cach boundary get ® = 0,
B%* 4+ W% 4 % = 1 is an invariant set. The invariant set ® = 0 represents models
with a massless scalar field or zero potential. Presumably, this invariant set will rep-
resent the behaviour of the system as the scalar field ¢ tends to minus infinity. The

remaining system of equations for 4 and ¥ can be directly integrated to yield

_ __(1-m) :
=0 (zﬁ m) . (6.58)
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Figure 6.1: Phase portrait in the invariant set ® = 0.

These are straight lines emanating from the equilibrium point, (6.45), directed in-
wards, and thus in the two dimensional invariant set ® = 0 the point is a sink.
However, in the three dimensional phase space, the point is a saddle point, and thus
we can conclude that the invariant set ® = 0 is the 2-dimensional stable manifold.
Also, it is easy to conclude that the outer ring described 'y %+ ¥% =1 is a source
(see Figure 6.1).

We can alsc analyze the invariant set 3% + ¥2 4 2 = 1 which represents the
Bianchi type I models with a scalar field and an exponential potential. Again the
system of equations can be integrated and the solutions are found to be straight lines
emanating from the ring of equilibrium points given by 42 + ¥% = 1 and evolving to
the equilibrium point, (6.49), if ¥* < 6. In the full three dimensional phase space for
2 < k* < 6 this point is a saddle, and thus we can conclude that the invariant set
A%+ U2+ ®? =1 is the 2-dimensional stable manifold. However, if k* > 6, then part
of the ring of equilibrium points % + ¥% = 1 hecomes a sink and the rest remains a
source (see Figures 6.2 and 6.3). Also, in the full three dimensional phase space, the
ring of equilibrium points (8% + ¥? = 1, ® = 0) for k* < 6 is a global source, and for
k? > 6 we find that some of the ring acts like a source and the remaining part of the

ring behaves like a saddle. The solution at the equilibrium points (85, +4/1 — 82, 0)
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Figure 6.2: Projection of the phase portrait in the invariant set 524+ U? 4 &% = 1 with
k? < 6.
has the form

d82 — _dtZ + t'lpl dwz + t'lpzdyZ + t2p3dz‘2’ (6‘59)
where

1 (1 —m)B,

n = ;|1+—7——),
3 vmi4+m+1

1 (24+m)B,
3 (1~ \/m'2+m+l>’ (6.60)

—_ l 1+ (1+2m)ﬁ0
bs = 3 vmitm+1/)’

where —1 < 8, < 1. Note that p; + py + p3 = 1 but p} + pj + p = 3(1 + 28,), hence

these points are not Kasner models but are Kasner-like.

p2 =

Bifurcation Values

We shall now concern ourselves with the bifurcation values. If k* = 0, it is easily
determined that the critical points and the qualitative behaviour is the same as in the
case 0 < k? < 2. However, the exact solutions are different. (Note that the k? = 0

case corresponds to the situation of when there is a positive cosmological constant.)
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Figure 6.3: Phase portrait in the invariant set f% + W% + 2 = 1 with k* > 6.

At the bifurcation value of k* = 2, we find that the equilibrium points, (6.49) and
equation (6.55), coalesce to become a single equilibrium point. The linearized system
at this point has a zero eigenvalue. However, by using polar coordinates we can see
that the point is a sink, hence the qualitative behaviour of the system is the same
as in the case 0 < k? < 2. Thus, we conclude that the equilibrium point, (6.49),
undergoes a saddle-node bifurcation at ¥ = 2. At the bifurcation value of k? = 6,
the equilibrium point, (6.49), now becomes part of the line of equilibrium points
(B* + ¥2 =1, & =0). This particular point remains a saddle point and the rest of
the ring of equilibrium points remain sources, however as the value of k? is increased
past 6, more and more of the ring starts to behave like a saddle point. Thus, in some
extended sense of the definition, the ring of equilibrium points (82 + 92 =1, ¥ = ()

starts to undergo a saddle-node bifurcation at &* = 6.

6.3.3 Remarks

"The behaviour of the models depend critically on the values of k¥ and somewhat on
the parameter m. The parameter m determines which Bianchi model we are consid-

ering. However, the parameter k has a profound affect on the qualitative behaviour
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of the models. For 0 < &? < 2 all trajectories (that is, all models Bianchi I's, 111,
V’s and the VI)’s) except for a set of measure zero, evolved from the ring of equi-
libria B% + W2 = 1, ® = 0, representing the Kasner models and evolved towards the
isotropic and power-law inflationary model located at equation (6.49). For k* = 2
all trajectories evolved from the ring of equilibrium points p% + ¥ = [, ® = 0
and evolved towards the isotropic model located at equation (6.49), however, these
models need not inflate. For 2 < k? all trajectories in the Bianchi IIT and V1, cases
evolved from some portion of the ring 5% + U? = 1 representing the Kasner models
and evolved to the equilibrium point, (6.55), which represents the Feinstein-Ibdfiez
solution [94] which is neither isotropic nor inflationary. However, in the Biauchi |
and Bianchi V cases, for 2 < k? < 6 all trajectories evolved {rom some portion of the
ring and isotropized, but they need not inflate. For 6 < k* the Bianchi V modely
remain to isotropize while the Bianchi I models fail to do so, Hence the condition
given be Kitada and Maeda [93] for the Cosmic No-Hair conjecture to hold {ollows
here. We also see that if k% > 6 that the Cosmic No-hair conjecture cannot in general
be satisfied.

6.4 Discussion

We have shown in section 6.2 a result that extends the analysis of Heusler [98] to
potentials that are exponential functions. Namely, if V(¢) = Aet? and k? > 2 then
the spatially homogeneous models cannot isotropize to the future unless they are of
Bianchi types I, V, VII;, or IX. We have also demonstrated that if k* > 6 then the
Bianchi type I model does not isotropize to the future, however, this set of models
represents a set of measure zero, with respect to the set of all spatially homogeneous
models, the most general being Bianchi types VI, VIII, and IX.

The investigation started here is not a complete qualitative analysis of the spatially

homogeneous cosmological models with an exponential potential. It does, however,
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illustrate how the dimension of the problem can be reduced through the use of di-
mensionless variables. In addition, this analysis puts into perspective the role played
by the Feinstein-Ibafiez solutions [94]. These solutions are neither isotropic nor in-
flationary and therefore created an interesting problem as to whether these solutions
violated the cosmic no-hair theorems proven Kitada and Maeda [92, 93] for &% < 2.
We show that the Feinstein-Ibafiez solutions only become physical when k% > 2 and
therefore do not violate the Cosmic No-Hair theorems of Kitada and Maeda [92, 93].
It is also interesting to note that these solutions also represent the generic future

asymptotic behaviour of the Bianchi types III and VI models when &* > 2.



Chapter 7

Qualitative Analysis of

Inflationary Theories

7.1 Soft Inflation

7.1.1 Introduction

Inflationary cosmology was originally investigated in the hope that some out-
standing problems in cosmology might be solved. To date, however, there is no fully
acceptable model for the source of inflation. In a recent paper [89], a Soft Inflation-
ary scenario was proposed in which the matter content is described by two coupled
scalar fields, one of which has a decaying potential and the other which serves ag
the inflaton during the expansion [89, 90]. Inflation, with two scalar fields, has been
considered previously in [99, 100, 101]. Tke effect of the decaying exponential poten-
tial in Soft Inflation, however, is to reduce the rate of inflation in a manner similar
to that in Extended Inflation [84, 85]. As the inflaton rolls down a flat plateau the
second scalar field evolves on the exponential potential resulting in power-law infla-
tion [88, 102, 103, 104]. The advantages of Soft Inflation are: (z) when the inflaton

is of New Inflation-type [105, 106] the fine tuning of initial conditions is lessened
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and density perturbations are suppressed, and (72) when the inflaton is of Chaotic
Inflation-type [105, 107], the restrictions placed upon the coupling parameter are re-
duced considerably. Thus, Soft Inflation allows the constraints placed on pievious
models to be loosened.

In this chapter we shall show that the field equations governing soft inflation can be
written as a dynamical system allowing us to analyze, in a mathematically rigevrous
manner, the evolution of the model and the corresponding asymptotic behaviours.

The action under investigation is
R 1 1
— 4, /T - 2 _ 2 _ a—frd
$ = [ dtav/=g(5 7 - 5 (V) - 5(V8) -V ()), (7.1)

where ? = 87G, ¢ and ¥(the inflaton) are scalar fields, V(%) is a potential and
is the coupling constant. Variation of the action in a flat FRW universe yields the

following set of non-linear second order ordinary differential equations:

$+3H$ — Bre PPV () = 0, (7.2)
¥+ 3HY -+ e‘ﬁ“¢fl~%fpi) = 0, (7.3)
where the constraint equation is
1= (30 + 3 + v ) (1.4)
3 \2 2 ’ )

and where an overdot denotes differentiation with respect to time and H = % is the
Hubble parameter where a is the length scale.
Berkin et al. [89] have found a unique stable power-law inflationary solution as

the field ¢ — +o0o. The solution is given by
kp = Ko+ (2/8)In(t/x),
@ = a,(t/t. )",
f(¥) = fwo) — (1 - B*/6)in(a/a,), (7.5)

where for a general potential V we have

B = _BEV()

= TI-p6)
) = & @b
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We wish to investigate whether this solution is genmeric. This can be done wsing
qualitative techniques of dynamical systems theory.

First we define new independent and dependent variables

a e
dr ~— ‘
& = ¢ =ge, (7.6)

i Prg
v = "p':"/)ea )

where / denotes differentiation with respect to the new time 7. Calculating both
®’ and V', the resulting equations form a four dimensional autonomous system of

ordinary differential equations:

¢ = 9@, (1.1
W=y, (7.8)
P = %&Iﬂ - —\'—/—2—6—5@(412 + 07 4+ 2V(7,b))§ + BV (1), (7.9)
Bk 6k Lodv(y)
A v vy 2 2 -
Vo= e - (2% + U2 + 2V (4)) - (7.10)
where the constraint equation is
2
HY = e (qﬂ 0 4 2V(¢)). (7.11)

We observe that the equilibrium points (defined by ¢ = 4/ = ¢’ = W = 0) at

finite values are given by

® =17, ¥ =0, V(‘[)) =0, d‘;'(;/)) = (. (712)

We note that the equations (3.5)-(3.7) in Berkin and Maeda [90] hold at all finite

equilibrium points in the full system which implies that the slow-roll approximation

employed by Berkin and Maeda [90] and the full system are compatible close to the
equilibrium points. Further analysis depends on the chosen form of the poteniial

V(z). In the next section we shall consider potentials arising from Chaotic inflation.



7.1.2 Chaotic Inflation

In Chaotic Inflation we choose the potential V(1)) = 224" where n is even and
M is constant [90], In particular, here we consider n = 2. From (7.12), we see
that for finite values of ¢, we have a non-isolated line of equilibria along the ¢-axis
(¢5,0,0,0). Linearizing about this line, we find that all eigenvalues have Re(A) = 0,
hence, all equilibrium points are ‘nonlinear’. We note that the system (3, ®,¥) is
independent of ¢. Thus, for each ¢ = ¢, we need only consider a three dimensionai
system to determine the qualitative behavior, Progress is achieved by converting to

cylindrical-coordinates:

¥ = rcosd,
P = 77')‘——_25in0, (7.13)
® = =2

The inverse transformation is
7,‘2 - ‘112+A21/)2,
§ = tan™' (—@) (7.14)
1]
z = ¢,

The equations then become (hereafter dropping the suffix on A for convenience),

" = rcos Gg- ( z—VB(2* + 1-2)%) , o (7.15)
¢ = VX~ cosfsin og (B2~ VB(* +17)3), (7.16)
7 = zg (ﬂz —~V6(z* + 1‘2)%) + %57'2 sin? §. (7.17)

It can be shown that if 8 < /6 then
Bz —V6(2* 4+ r)? <0, (7.18)

and therefore r' < 0 everywhere. We define the compact set S; = {(r,6,2)|r <
€,—1 <2 <1}, where  + 1 = 2%' On the boundary » = ¢, for (-1 < 2 < 1),
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r’ < 0. On the boundary z = ~1, for (0 < r < €), it is easily seen that 2/ > 0. On
the boundary z = 1, for (0 < r < ¢), after some algebra it can be seen that 2’ <0,
Hence the set Sy is a positively invariant compact set in R3, i.e., it is a trapping set.
We can choose V = r as a Lyapunov function. Since » < 0 everywhere, V/ = ' < ()

everywhere in 5. From the Global Lyapunov Theorem {108, 79], we have

Vae 8, w(a)CW={zeS|V(z)=0), (7.19)
where
W= {(7‘ =0),(0=5),(0=—2)r=0,z= 0)} (7.20)

but the omega-limit set of {a} , w(a), is the union of complete orbits. The only whole
orbit in W is the equilibrium point {r =0,z = 0}. Therefore, the w(a) for any point
{a} in the trapping set Sy is the equilibrium point. Therefore, for cach ¢ = ¢, the
equilibrium point (¢,,0,0,0) is a sick.

Let us now consider the conditions for these equilibrium points to be inflationary.
Using the fact that ¢ = a - H and the appropriate coordinate transformations we
calculate i

a

.2
e _ e—ﬁ»uﬁf‘g_(%w — P2 - \1;‘3)_ (7.21)

a
For inflation to occur £ must be greater than zero. Hence, the condition for which

inflation takes place is given by
A
Equ -9 -0 >0. (7.22)

This inequality describes the interior of a cone aligned along the 1 axis, so any orbits
inside the cone will experience an acceleration in their expansion. We note that the
apex of the cone is at the equilibrium point (see Figure 7.1).

Let us define the compact set So = {(r,8,2)|r < ¢,~¢ < z < ¢}, where ¢ =
Rﬁ% > 0. After some algebra it can be shown that 6/ > 0 inside S;. Along
with the fact that ' <0, this shows that orbits spiral around the equilibrium point
infinitely many times in a sufficiently small neighborhood of the equilibrium point.
Thus, for any point {a} in the inflationary regime, we can show that the orbit through

{a} will eventually leave the inflationary regime.
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Figure 7.1: The cone describes the inflationary regime defined by equation (7.22).

We can show that if 8 < /2 then every orbit (except the orbit r = 0) that enters
the inflationary regime will do so infinitely many times as it spirals its way to the
equilibrium point. We choose S5 = {(r,0,z)|r < ¢,|2| < 75} where € > 0. The set
S3 is a compact set that contains part of the inflationary region in such a way that
at 8 = Z or & the inflationary cone is bounded by Ss. On the boundary r = ¢, we

have that ' < 0. The system of differential equations, equations (7.15-7.17) defines

a vector field & on the surfaces z = % with inward normals (with respect to S3) 74

and 7i-. Tt can be shown that if # < /2, that @ - 7 > 0, so the angle between 7
and ¥ is less than 90° which implies that the vector field @ is directed into Ss, that is
trajectories are flowing into the set S3. Hence, for # < +/2 the set Ss is a trapping set,
and thus any orbit that enters S3 must also enter the inflationary regime infinitely

many times as it spirals its way to the equilibrium point.

We are also interested in the behavior of the field ¢ at infinity!. By making use

' Soft Inflatron (89, 90] (and for that matter, Extended Inflation (84, 85]) occurs as ¢ — oo (with
the scale factor inflating as a power-law) - see equation (7 5)



of a Poincaré-like transformation (and a new time transformation) given by:

N Y SR T ! .
Z’ 'U,—¢, 'U-—¢, w-_¢, (dfr—‘_¢)’ (7n23)

the transformed set of equations become:

€T ==

i = —val (7.24)
v = z(w—uv), (7.25)
b = %vz - ig—iv(v2 +w? 4 /\uz)% —av? + %ﬁx\uz, (7.26)
W o= %’ivw - —\/-gc-w(zﬂ + w? + )\uz)% — Tvw ~ Au. (7.27)

We are interested in the equilibrium points on the hypersurface = 0 (that is, as
¢ — 400, £ — 0%). We note that the set £ = 0 is an invariant set. Thus, the problem
becomes less difficult because z = 0 divides the phase space into three invariant sets.

In the set £ = 0 we find that the critical values depend on the value of the

parameter A and are given by:

U = Uop, v=vozv-§:)‘ﬂ—2ﬂ|uo|, w:(), /B<\/6,
u=0, v=uv, w=0, f=+6, (7.28)

u=0, v=vo=,/-5§§:—6{wo[, w=w, fB>6.

Note that in each case the equilibrium points are again non-isolated. Motivated by
Berkin et al. [89], hereafter, we shall consider the case 8 < v/6.
Linearizing the system about the non-isolated line of equilibria, we find that the

eigenvalues are:

K
AL =0, A=Az = —5‘\/)\(6 - ﬁz) |u,,| <0. (7.29)

There exists a center manifold which is tangent te the eigenvector associated with

the zero eigenvalue namely v = w = 0, the u-axis is a center manifold for all u,. The
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nonlinear system is thus topologically equivalent in a neighborhood of the equilibrium
point to the linear system restricted to the center manifold [109]. We also note that
u = u, is a 2-dimensional invariant set and thus we have effectively foliated the phase
space and now need only consider the planar system (v,w) (with parameter u,).
For u, # 0, the equilibrium point is hyperbolic and so (by the Hartman-Grobman
Theorem [10]) the non-linear system is topologically equivalent to the linear system
which is an attracting stellar node. For u, = 0, the equations can be integrated exactly
and the same behavior results. Thus inside the invariant set z = 0 the non-isolated
line of equilibria is a sink.

We note, & = —wvz? and that the line of equilibria has positive v coordinate.
Hence, in any sufficiently small neighborhood of the line z < 0, so in the set z > 0
the orbits are attracted to the line. However, in the set z < 0 orbits are repelled
away from the line. Thus as ¢ — oo the line is a sink and as ¢ — —oo the line is a
source.

We next consider whether these equilibrium points at positive infinity are infla-

tionary. In the appropriate coordinates we have

é _ =Brd -2 i 2_ .2 _ .2 .
~=e e (2u v —w ) . (7.30)
We note that in a neighborhood of the equilibrium point the condition

Ao 9.9

Gu° = v —w > 0, (7.31)

must hold true if inflation is to occur. Equation (7.31) represents a cone along the
u-axis. If in any v = u, stable manifold we substitute the coordinate values of
the equilibrium point into the condition (7.31) we find that in order to have inflation
B < /2 (which is precisely the same condition given in Berkin et al. [89] to guarantee
power-law inflation). Thus there is a neighborhood about the line of equilibria such

that it is a stable attractor and for B < +/2 it is also inflationary.



7.1.3 Summary cf Soft Inflation

We have used the geometrical techniques of dynamical systems theory to inves-
tigate the generic behavior of the differential equations resulting from Soft Inflation.
We found that as the field ¢ — +o0o there exists no unique equilibrium point which
can act as an aftractor, but a one-dimensional submanifold of equilibrium points;
consequently the nature of this submanifold needed further analysis. For the Chaotic
Inflation case, we found that for finite values of @,, there does not exist an asymp-
totically stable inflationary solution, but if 8 < /2 then there exists trajectories that
enter the inflationary regime infinitely many times. Also, as the field ¢ — +oc, for
B < /2 there exist regions U C R* such that for any initial point in U the orbit
asymptotically approaches a stable equilibrium point evolving through some infla-
tionary regime as it approaches the equilibrium point; hence the solution given by
Berkin et al. [89] is representative of a class of solutions in which the model undergoes

power-law inflation as ¢ — +oo0.

7.2 Oscillatory Behaviour in Inflationary Theo-

ries

7.2.1 Introduction

Cosmological models with an oscillatory behaviour are investigated. This anal-
ysis is motivated, in part, by observations from the deep narrow-cone pencil beam
surveys of Broadhurst et al. [110] which find an apparent regular galaxy distribution
with a characteristic scale of 128h~! Mpc. This apparent periodicity in the galaxy
distribution suggests that the universe may have an oscillatory nature. The analysis

in this section is also related to work of Morikawa [111, 112] in which the oscillatory
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behaviour in the Hubble parameter was used to model these observations. The cos-
mological models proposed by Morikawa are not physical in the sense that they do not
agree with all astronomical observations [113]. However, we want to stress the fact
that oscillatory behaviour is a general feature of general relativity with a scalar field
in particular, and of scalar-tensor theories in general (in which oscillatory behaviour
is found in the effective gravitational constant as well as in the Hubble parameter).
It is this oscillatory behaviour in the cosmological models that may account for the
apparent periodicity in the Broadhurst et al. observations.

In section 7.1.2, it was shown that the oscillating behaviour of the scalar field in
the soft-inflationary model manifests itself in the Hubble parameter. It is known that
in the standard Friedmann-Robertson-Walker (FRW) model with a single scalar field
with potential V(¢) = 247 that the scalar field undergoes oscillatory behaviour [114,
115, 116]. We further expand this result in section 7.2.3 by analyzing an FRW model
containing a perfect fluid source and a scalar field. Again an approximate solution
is found whereby the Hubble parameter is assumed a priori to have an oscillatory
nature. In section 7.2.4, we argue (using the conformal equivalence between general
relativity with minimally coupled scalar fields and scalar-tensor theories of gravity),
that this oscillatory behaviour is a general property of cosmological models arising
from scalar-tensor theories of gravity. In the final section we make some concluding
remarks and briefly comment upon the question of whether the oscillatory nature
observed in flat FRW models persists in non-flat models and the related question of

chaotic behaviour in closed models.

7.2.2 Soft Inflation

Asymptotic Solution

In a neighborhood of the stable equilibrium point (r = 0, z = 0) an approximate
solution may be found. For small r, z, equation (7.16) yields 8’ = /X, which may be

integrated to yield @ = VA (after normalization). Assuming z = ar (a constant),
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equations (7.15) and (7.17) are consistent if 4% < 6 and

B
Ryl

(4 =~

(7.32)

]

Note, the assumption z = ar is only good for z > 0, as a must be positive.) The
) Yy 8

evolution equation for » becomes

v = —f-—ﬁ*—ﬂ-'—ﬁ cos® (\/)—\T), (7.33)

2

which is integrated to yield a solution for r:

1 1 6—- B2 1. ‘
;_;o._—_n‘/: B [¢+2\/Xsm (2\/}7')} (7.34)

From equations (7.34) and (7.11) we then obtain (after re-normalizing )

4 1 - s
H, = T [T + ™ sin (2\/X(7' - T,,))} , (7.35)

where

4
T k-

We note the presence of a trigonometric term in the Hubble parameter. It is precisely

this term that leads to the oscillatory behavior of the cosmological models.

7.2.3 Friedmann-Robertson-Walker Model with a
Scalar Field

Qualitative Analysis

We will use a qualitative analysis to show that this oscillatory type of behavior
is possible for an isotropic and spatially homogeneous universe containing a single
classical scalar field and non-interacting matter. We shall then adopt the ‘Ellis-
inverse method’ [117], to obtain an ad-hoc potential V(¢) corresponding to the desired

behavior of the scale factor a.
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The field equations of general relativity for an FRW model with a homogeneous
scalar field with potential V(¢) and a matter field in the form of a non-interacting

co-moving perfect fluid with equation of state p = (y — 1)u are:

2, b _ K _1_'2
w4 = S (B +V@) +a),
3H +3H® = &* (V(qS) - %(3'7 - 2);4) , (7.36)

where k = +1,0, and x? = 8xG. The separate conservation laws are:

$+3H+V'($) =0 (7.37)
and
p4+37Hu=0; p=Ma?, (7.38)

where V' = % and M is a constant. The weak and dominant energy conditions

require M > 0,0 <y <2,and V > 0.

In particular, in the qualitative analysis we shall assume that & = 0 and that
the potential V() has the form, V(¢) = 7A4%. By defining the new cylindrical-
coordinates (7,0, z) as follows,

. r 1,

¢=rcosb, ¢= 7 sinf, p= 3% (7.39)
the following autonomous system of ODEs result:
ro= —\/Tgmr(rz + 222 cos? 9, (7.40)
§ = Vit \/7615(1'2 + 222 cos fsin 6, (7.41)
z = —gfwz(rz + )2, (7.42)

The equilibrium point at finite values of the varialles is given by (r =0, z = 0).
This equilibrium point is easily seen to be a sink, because 1 < 0, and for 2 > 0, 2 < 0
and for 2 < 0, 2 > 0. As both r and z approach zero the dominant part of equation
(7.41) is the first constant term, thus @ will monotonically increase as ¢ — co. Hence,

the equilibrium point (» = 0, z = 0) is a stable focus for the k& = 0 flat FRW models.
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Asymptotic Solution

A simple Painlevé analysis using the ARS algorithm [118, 119] indicates that the
system of equations (7.36),(7.37), and (7.38) (for general k and a potential of the
form V(¢) = $)¢?) does not have the Painlevé property, which is conjectured to be a
necessary condition for integrability [118, 119], and hence an exact solution may not
exist. Consequently, we shall seek an approximate solution.

Again, in a neighborhood of the equilibrium point (r = 0, z = 0), an approximate
solution may be found. Using the ‘Ellis-inverse method’, and in analogy with (7.35),

we assume that the Hubble parameter is of the following form
I ‘
H=«a (; ) sm(bt)) . (7.43)

where o, 8 and b are constants and we choose units so that 87(¥ = x* = 1. From

equation (7.43) we have

1
a = a,t” (1 + :—g cos(bt) + O(ﬁ)) , (7.44)
. 1
A = _%(1 + b8 cos(bt)) + O(55), (7.45)

where O(%) denotes terms of order %-(trigonometric functions). From (7.38) we have

1
p=mi" 4 O(33): (7.46)
where m = Ma,™3" and we have chosen o = %
From equations (7.36) we find that
. k ! —_ "
¢ = 255 —~2H — ymt~2. (7.47)

Hence-forward we shall assume that k£ = 0, whence

¢ = :—2({201 — ym] + 2abp cos (bt)),

= %(1 + cos (bt)), (7.48)
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where §? = 2a — ym = 2abf (which serves to define m). Thus

. /26 b
b= = cos (§t)’ (7.49)

and therefore /36 ; ,
= ¢, + 2" sin | = = @
b= o2 (1) + o) (7.50
which serves to define t = t(¢).

Finally, from equations (7.36) and (7.50), we obtain the potential V(4):
V(g) = H+3H 4 5(r-2)p,

= (3a2 —a—abf+ %(7 - 2)m) %1-5-}— ZC;S‘B sin? (-g—t),

= 52(—1—;1)--{(;—)2 + %(«ﬁ — )" (7.51)

To leading order, equations (7.36) and equation (7.37) are satisfied. In general, we
obtain the desired behavior for H(t) [viz. (7.43)] for a single scalar field with potential
(7.51) which has a quadratic part and an ‘additional part’. Note, however, that in
the case 7 = 1 the first term in (7.51) is absent; that is, the potential V(¢) will be a
simple quadratic function of the scalar field and the energy density p will be of the

form p = mt~2, where m = $(1 —p).

7.2.4 Scalar-Tensor Theories

In the previous two sections we have demonstrated that in two cosmological models
the late-time asymptotic behaviour (that is, as ¢ — o00) of the Hubble parameter
contains trigonometric contributions. We will argue that this oscillatory behaviour is
a rather general property in the class of scalar-tensor theories of gravity.

The action in the so-called Bergmann-Wagener theories of gravity [120] can be

written in the form

§=[d's/=g {¢R - E’fgﬁ(wf —26M(4) + Lm} \ (7.52)
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where Ly, is the Lagrangian due to matter and other non-gravitational fields. Action

(7.52) is equivalent (up to field redefinitions) to,

5= [deyg{F@R~ L (VOP - V(®) + L}, (7.53)

where
b= (@), w(d)= 2;,(3;))2, and  A(g) = zl/f-%. (7.54)

One of the well known examples of a scalar-tensor theory of gravity is the subclass

where
f(®) = o and V(®)=0
167 !

or equivalently

w(P) = -2<l and  A(¢) =0,

which results in the standard Brans-Dicke theory of gravity. The benefits of using
either the action (7.52) or the action (7.53) are discussed in [121].

We note that if L,, = 0, then both (7.52) and (7.53) can be recast into the
form of general relativity minimally coupled to a scalar field through conformal
transformations and field redefinitions (see [122, 123] and references within). If
Ly = —3(V1))?—V(3}), whence the matter is due to a second scalar field, then (7.52)
and (7.53) may be recast into the form of a soft-inflationary scenario again through a
conformal transformation and field redefinitions [90]. 1t was precisely these two cases
that were investigated in the previous two sections of this paper. In sections 7.1.2 and
7.2.3 we observed that asymptotically the Hubble parameter contained trigonometric
contributions. Therefore, in scalar-tensor theories, the conformally related Hubble
parameter might also be expected to contain trigonometric contributions in general.

However, these conformal transformations may lead to problems, such as, for ex-
ample, the metric may change signature [122], or the conformal transformation may
become singular at the equilibrium points of the field equations [123]. Therefore, gen-

eral results using qualitative theory are problematic. Consequently, we shall simply

demonstrate the genericity of the oscillatory behaviour of these models with the above
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action (7.52) or (7.53), by briefly discussing previous work done without utilizing a
conformal transformation.
Walliser [123] has studied the field equations resulting from the action

9= [ doy/Tg {THAR+ 9BV - V() + Ln},

which is a further generalization of the the action (7.53), in a flat Robertson-Walker
background. He has found that at finite values, there is a equilibrium point that
is a stable focus, and near this equilibrium point the oscillatory behaviour in the
variables manifests itself in both the Hubble parameter and the effective gravitational
constant. Romero and Barros [124] have investigated a class of vacuum Brans-Dicke
models, They have found that for appropriate values of the parameter w, the late time
asymptotic behaviour may be oscillatory in nature, whence the effective gravitational
constant will also oscillate. (Note, in this case the potential A(¢) = 0.) Scalar-tensor
theories of gravity based upon the action (7.53) with a non-minimal coupling function
f(®) of the form

f(@) = o5 - :cqﬂ, (7.55)

have also been investigated recently [111, 112, 125, 126]. Barroso et al. [125] have
shown that for finite values, the equilibrium points exhibit an oscillatory nature. It is
precisely these models that Morikawa [111, 112], investigated in an attempt to model
the periodic distribution of galaxies.

However, oscillatory behaviour is found not only in scalar-tensor theories of grav-
ity, but also in more general theories of gravity such as, for example, theories in which
derivatives of the scalar field are non-minimally coupled to the curvature R via an

action of the form

S= /d“m\/-—_g { [i?s%‘é —(f(®) - n(VfI’)z]R - (V&) +V(2) + L’”} ’

where { and 7 are constants and where f(®) is an arbitrary function of ® {127, 128],

and modified theories of gravity with an action of the form

§= / '2y/=G{F(R, RuR", CopuC*", ..},
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where F is an arbitrary function of its arguments [129]. This indicates that oscillatory
behaviour in alternative theories of gravity may be a generic property.

It is also interesting to note that the deceleration parameter ¢, defined by
_ da 1 . 9

q=—53=_—}_{3(H+H ), (7.56)
changes sign periodically. A negative ¢ indicates that there exists a region of phase
space with an accelerated expansion; that is, inflation occurs. In the soft inflation
case of section 7.1.2 it was shown in [130] and [6] that for 4% < 2 the model must
undergo periods of both accelerated and decelerated expansion. For the asymptotic

solution (7.35) it is easy to see that q has the form
25 f-

¢="—+

p* ok
I 1 cos(2VA(T — 7)), (7.57)

which has an oscillatory nature. For the asymptotic solution (7.43) the deceleration

parameter is given by
l—a b8
q= + — cos(bt), (7.58

«Q a4

which is again easily seen to have an oscillatory behaviour [130].

The oscillatory behaviour in (both the Hubble parameter H and) the deceleration
parameter ¢ implies that the universe expands faster in some stages (and slower in
others) than its average value (which is the same as in the ‘non-oscillating’ case) [66].
Maeda [131] has studied such oscillatory models with regards to structure formation
and found a significant enhancement in the growth of density perturbations, which
perhaps further motivates the study of such models. In other work Futamase and
Maeda [126] studied scalar-tensor theories with a non-minimal coupling function of
the form (7.55) and found that there exist severe restrictions on the parameter { in
order for inflation to occur, and suggested that adding a second minimally coupled

scalar field might give rise to a more realistic model.
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7.2.5 Summary of Oscillatory Behaviour in Inflationary

Theories

It was proposed by Morikawa [111, 112] that an oscillating Hubble parameter may
be responsible for the apparent periodic distribution of galaxies [110]. However, Hill et
al. [113] have argued that such oscillations in the Hubble parameter are not consistent
with the observations of Broadhurst et al. within the standard FRW model of general
relativity. In addition, they argue that Morikawa’s models are not physically viable.

However, according to Hill et al. [113], an oscillating gravitational constant G
is one of the most viable candidates for generating an apparent periodicity in the
distribution of galaxies. If the gravitational constant G is allowed to vary with respect
to timein the standard FRW models, then oscillations in the Hubble parameter induce
oscillations in the gravitational constant G. In thic case, the resulting model nearly
agrees with the Broadhurst et al. results and the shortfalls may be due to errors in
determining the quantity G/G from the Viking experiment [113].

Morikawa [111, 112), Hill et al. [113] and Steinhardt [66], have suggested that one
way in which the gravitational constant G may vary is to introduce a scalar field that
is non-minimally coupled to the curvature R in the Lagrangian (in other words, to
introduce a scalar-tensor theory of gravity). In Morikawa [111, 112] and Hill et al.
(113] the non-minimal coupling function has the form (7.55), and consequently the

effective gravitational constant, Geg, is given by

1 1, )\
167I'Geﬂ' = (:l-é—ﬂ-_a - § 0] ) , (759)

and thus varies with time. This class of theories constitute a subclass of the larger
class of scalar-tensor theories of gravity governed by (7.53) in which the effective

gravitational constant varies with time according to
167Gege = f(®)"1, (7.60)

[or, equivalently, 16mGeg = ¢! from (7.52)]. Therefore, these more general scalar-

tensor theories of gravity may give rise to physically acceptable cosmological models.
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Both of the models that we have analyzed are flat FRW models and the discussion
has focussed upon such zero-curvature cosmologies. It is of interest to ask whether the
oscillatory nature of the k = 0 FRW models is stable to perturbations in the curvature;
that is, whether this oscillatory behaviour persists in the k # 0 models. Belinskii et
al. [114, 115, 116] have studied the FRW models with a minimally coupled scalar
field and a potential of the form V(¢) = %)\qS’ using qualitative ..o .'ysis. They found
that for the ¥ = 0 and k¥ = —1 models the oscillatory behaviour is a general feature;
however, in the k¥ = +1 case they noted the existence of a closed chain of trajectories
which hints at the possibility of the system having periodic orbits. Hawking [132] has
shown that there do indeed exist periodic orbits in such models and, in particular, a
countable infinite set of periodic orbits without singularity. Furthermore, Page [133]
has shown that there exists a discrete set of non-periodic orbits without a equilibrium
point. These two properties suggest the possibility of chaos in the closed models.

We note that the Painlevé analysis discussed in section 7.2.3 concerning the inte-
grability of the minimally coupled FRW model also suggests chaos. Recently, Calzetta
[134] has studied various cosmological models using Melnikov’s method. In particular,
Calzetta analyzed a class of scalar-tensor theories with f(®) of the form (7.55) with
¢ = 1/6 (the conformally coupled case) and with a potential of the form V(®) = 1 A$?
and found, using both Melnikov’s method and numerical techniques, that the k = 41
FRW models exhibit chaotic behaviour (which in turn, suggests the non-integrability
of the models). Clearly it is of interest to study whether closed FRW models with
a potential of the form V(®) = JA®? exhibit chaotic behaviour in other theories of

gravity.

7.3 Conclusions

In closing, we have studied two inflationary models using geometric techniques

from dynamical systems theory. In section 7.1.2 the primary result is: as the field
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¢ — +00, for A < /2 there exist regions U C R* such that for any initial point in U
the orbit asymptotically approaches a stable equilibrium point evolving through some
inflationary regime as it approaches the equilibrium point; hence the solution given by
Berkin et al. [89] is representative of a class of solutions in which the model undergoes
power-law inflation as ¢ — +oo. A secondary result (and much less imiportant) was
the observation that the soft-inflationary model exhibited an oscillatory behaviour in
its expansion towards the future.

In section 7.2 both the soft-inflationary model and the FRW model with a scalar
field exhibited some oscillatory behaviour. It was shown that the Hubble parame-
ter contained trigonometric contributions asymptotically. Using the fact that these
two theories are conformally equivalent to particular scalar-tensor theories of grav-
ity (up to field redefinitions), we have argued that such oscillatory behaviour is a
general property of models in all scalar-tensor theocties of gravity. We also remarked
that this oscillatory behaviour is found not only in general relativity and in scalar-
tensor theories of gravity but also in other alternative theories of gravity. With the
deep narrow-cone pencil-beam red-shift surveys exhibiting an apparent oscillatory
behaviour in the observed universe [110], these oscillatory cosmelogical models merit

further investigation.



Chapter 8

Conclusions

8.1 General Remarks

8.1.1 Self-Similarity

Cosmological models with various matter sources have been investigated using
techniques from dynamical systems theory and employing methods from the theory
of symmetries of differential equations. In particular, spatially homogeneous modely
were analyzed, primarily since the set of equations describing the evolution of such
cosmological models reduce to a set of autonomous ordinary differential equations,
susceptible o a qualitative analysis. In addition, if one assumes a set of dimensionless
equations of state, then a symmetry in the system allows one to define new dimen-
sionless variables that permits one differential equation to decouple (in essence, reduc-
ing the dimensionality of the problem). In dimensionless variables, the equilibrium
points of the reduced dynamical system always represent self-similar cosmological
models (provided 6/6% 0 at the equilibrium point). One then uses this property of
asymptotic self-similarity as an ansatz to derive equations of state needed for various
theories of irreversible thermodynamics. In addition, it was demonstrated that the

only scalar field cosmological models that can be asymptotically self-similar are those
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with an exponential potential (V ~ €*#) or with a massless scalar field (V = 0). It
was argued that self-similar asymptotic limit points are to be expected in various
Scalar-Tensor theories of gravity in which V(¢) = 0 (e.g., this includes the standard
Brans-Dicke models). Furthermore, it was shown that self-similarity is not a robust
property in that the existence of non-dimensionless equations of state, a cosmological

constant, or a non-exponential potential can destroy this property.

8.1.2 Viscous Fluid Models

Viscous fluid cosmological models were investigated using various theories of irre-
versible thermodynamics to describe the viscous effects. In particular, a rather com-
prehensive analysis was completed for the Eckart and the Truncated Israel-Stewart
theories of irreversible thermodynamics and a partial analysis was done using the Full

Israel-Stewart theory.

Past Asymptotic Behaviour In the anisotropic Bianchi type I and V models, if
the Eckart theory is employed, then the past asymptotic attractor is always a Kasner
model, while if the truncated theory is employed, then the past asymptotic attractor
need not always be a Kasner model (e.g., sometimes there exists a periodic orbit or
a non-vacuum model representing the past asymptotic attractor.)

Concerning the isotropic models, if the energy conditions are satisfied then the
past asymptotic attractor in both the Eckart and the Truncated Israel-Stewart theory
is represented by a flat FRW model representing a Big-Bang singularity. In the
Truncated theory, however, the nature of the initial singularity is different than that
of the standard Big-Bang singularity in that the bulk viscous pressure makes up a

significant portion of the initial total energy.

Future Asymptotic Behaviour In the Eckart theory the anisotropic Bianchi type

I and V models with zero heat conduction isotropize to the future. In the case of



170

non-zero heat conduction, the anisotropic Bianchi type V model isotropizes provided
the weak energy condition is satisfied. In the Truncated Israel-Stewart theory this
result no longer remains true since there exists sets of non-zero measure of parameter
values in which the models do not isotropize. In those models which do not isotropize
to the future, the shear viscous stress becomes arbitrarily large.

For the negatively curved FRW models, the future asymptotic state is represented
by a Milne model or a negatively curved FRW model with viscosity, unless the models
experience a period of inflation, in which case the models evolve toward a power-law

inflationary attractor (or an exponential inflationary attractor if v = 3¢).

Entropy Production Using the Eckart theory, Weinberg [32] showed that bulk
viscosity could not have produced the presently observed high entropy per baryon.
Fustero and Pavon [135] have done calculations which imply that there is more entropy
produced if one uses the Truncated Israel-Stewart theory instead of the Eckart theory.
In the viscous fluid models studied here, one finds that the total change in entropy

in a co-moving volume is given as
¥ = snR®,

where s is the specific entropy, n is the baryon number density and R is the scale

factor of the universe. It follows from

. . o1l
n+nf =0, and §= =
that the total change of entropy in a comoving volume between times £y < < #; is

4 QTIR®
S(t) - B(ta) = —/to 7t

Converting to dimensionless variables and assuming

T = Toa"6%,

for the temperature T, we find that in the case of the flat FRW models (note, 2 =1
for flat FRW models)

1 ru
E(t) —E(te) = —?ﬁg /;0 y0P~ YR dt.
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It was shcwn previously that there exists an attracting equilibrium point in each of
the Eckart, Truncated Israel-Stewart, and the Full Israel-Stewart thermodynamical
theories. At these equilibrium points, y = ¥ is a negative constant and ¥+ 3y > 0 is

necessary for the weak energy condition to be satisfied. For the
Eckart theory: ¥ =yg = -9,

1
Truncated lIsrael-Stewait «heory: J=ur = 5(() —3y) — % (b — 3v)? + 36a,

320434 3v(¢=1)]~vBs

Full Israel-Stewart theory: J=ypr = s
(1—q)

where By is given by equation (??). The solution at each of these points is given by

R(t) = R/, 00 = 55
12 47
t = - t—z, H t — ________t—'27 8,]_
whence
RB 2 \ 3—~2¢ 1 o )
)= N(ty) = —j—2 20-246/(7+37)
2t = ¥ V3T, (!7+37,) 2¢ — 2+ 6/(7 + 37) (t:

2g—-246/(§4+3
_toq + /(y+ ’Y))’

except if 2¢ —2+6/(7+3y) = 0 whence X(t;) — £(to) is proportional to In(t; /%,). We
shall compare the amount of entropy generated as ¢; — oo in each of these theories.

Let Yg, X7 and X represent the total entropy in a comoving volume for t; >
to in each of the Eckart, Truncated Israel-Stewart, and Full Israel-Stewart theories
respectively. Then

YE et
— Y ANy

— CE/Ttl E T3
P

where Cgr is a positive constant depending upon the various parameters, in the

H

model and a similar expression also holds for £5/%p. In the limit as t; — oo we find
that
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b
—5}2 < 1 whenever yr — yg < 0 which implies that y — 3{y > 0,
T

)Y C e
EJ_E < 1 whenever yr — yg < 0 which implies that vy — 3¢ > 1/(1 — ¢).
F
The condition ¥ —3(y > 0 is the weak energy conditior for the Eckart models. We can
conclude that there is more entropy produced in the Truncated theory than in the
Eckart theory (in agreement with the result of Fustero and Pavon [135]). Comparisons

of the entropy production in the the Full theory and the Eckart and the Truncated

theories does not yield a definitive result.

Summary

There exist different qualitative behaviours belween the Eckart theory and the
Truncated Isracl-Stewart theory. The striking difference between the Eckart and the
Truncated Israel-Stewart theory is the fact that the anisotropic stress can play a
very dominant role in determining the future asymptotic behaviour of the truncated
Israel-Stewart thecrv, while in the Eckart theory the anisotropic stress plays a very
minor role and does not affect the global dynamics. One of the similarities between
the Eckart theory and the truncated Israel-Stewart theory is that the addition of heat
conduction in both theories does not change the global dynaniics or the stability of
the equilibrium points. The question of whether inflation cea occur is also addressed
in both theories and it is found that bulk viscous inflation can indeed occur in both
theories depending upon the particular equations of state chosen.

There can exist different qualitative behaviours between the Truncated and the Full
Israel-Stewart theories. Preliminary results voncerning the Full Israel-Stewart theory
indicate that the asymptotic behaviour depends crucially upon the temperature law
chosen for T'. There do exist parameter values such that the Full Israel-Stewart model
has the same qualitative behaviour as the Truncated Israel-Stewart theory, at least
for simple “RW models. If » = 0 and p = ¢, then the assumed equation of state for

the temperature is T' = Tpp?. It can be argued that the most physically plausible

== 1
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range for the parameter ¢ is ¢ < 1. It is in this case that the qualitative behaviour
of the Truncated and the Full Israel-Stewart theories is similar. Again bulk viscous

inflation is possible in the Full Israel-Stewart theory.

8.1.3 Exponential Potential

The key idea in the analysis of the cosmological models with an exponential po-
tential is the fact that new variables can be defined so that the dimension of the
problem can again be reduced. The main result is that if V(¢) = Ae* and k% > 2,
then the spatially homogeneous models cannot isotropize unless the underlying Lie
group is one of Bianchi types I, V, VII, or IX. Another interesting result is that the
non-isotropic non-inflationary Feinstein-Ibafiez Bianchi type VI, solution [94] repre-
sents the future asymptotic solution for all Bianchi type VI, models if k? > 2. In
addition, we have illustrated how the techniques from dynamical systems theory and
how dimensionless variables can be applied to analyze this particular inflationary

model.

8.1.4 Inflationary Models

The use of dynamical systems theory has proven itself to be very powerful in the
analysis of other inflationary scenarios as well. In the Soft Inflationary scenario, in
which the potential of the inflaton field is quadratic, it was proven that the solution
given by Berkin et al. [89] is the future asymptotic attractor of the governing au-
tonomous system of ordinary differential equations. Qualitative analysis was also used
to illustrate that large classes of cosmological models exhibit some sort of oscillatory

behaviour.
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8.2 Future Work

Throughout this thesis dynamical systems techniques have been used extensively
to determine various properties of different cosmological models. These techniques
are ideally suited for the type of questions we wish to ask concerning the possible
past, intermediate, and future asymptotic behaviours of the models. The methods,
techniques, and analysis employed in this thesis will provide an excellent foundation
for future research concerning the qualitative properties of cosmological models.

One conclusion that can be drawn from our analysis is that the equations of state
play a fundamental role in determining the behavious of the viscous fluid cosmological
models. Which equations of state are most appropriate is unciear; however, from a
mathematical perspective, the dimensionless equations of state used throughout this
thesis offer a convenient way of reducing the dimensionality of the problem and making
the analysis more tractable. The primary weakness in the analysis of these viscous
fluid models is the fact that the equations of state used are phenomenoclogical in
nature. It is clear, however, that the qualitative behaviour in each of the three theories
of irreversible thermodynamics can be quite different. Indeed, one can conclude that
the first order Eckart theory does not accurately approximate the higher order Israel-
Stewart theories. Future work will include both an attempt to use relativislic kinetic
theory to determine (or at least place limits on) the form of the phenomenological
equations of state to be used in the Full Israel-Stewart theory, and then an extensive
qualitative analysis of the isotropic curvature models (discussed in Chapter 5) using
more physically motivated equations of state.

In this thesis we have employed the Eckart and the Truncated Israel-Stewart the-
ory of irreversible thermodynamics to describe the viscous effects. It was originally
assumed that the Eckart theory and the Truncated Israel-Stewart theory would at
least be applicable in the very early universe; however, the Eckart theory is non-causal
and the Truncated Israel-Stewart theory suffers from a pathological behaviour in the

temperature [36]. Hence, this work should only be considered as a first step in the
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analysis of the Full Israel-Stewart theory. Moreover, by considering better approxi-
mations for the bulk viscous pressure, I1, and the shear viscous stress, #,;, than in the
Full Israel-Stewart theory, perhaps more physically realistic models may be analyzed
using similar techniques. The analysis of the isotropic curvature models using the
Full Israel-Stewart theory will be of great interest. In a preliminary investigation, we
have found that there a~pear to exist open sets (of initial conditions and parameter
values) of non-zero measure for which these models isotropize (and opens sets of non-
zero measure which do not). The results depend on the values of the parameters used
in the equations of state, and consequently the question of isotropization in viscous
fluid models is as yet unresolved.

Concerning the cosmelogical models with an exponential potential, there are a
number of problems that merit further investigation. Future work will consist of a
comprehensive analysis of the Bianchi type VII, models, with particular focus on
the question of whether these models isotropize if &> > 2. Another problem, and
perhaps a more important one, is to extend the analysis done in this thesis to the
inhomogeneous G, cosmological models containing a scalar field with an exponential
potential, thereby generalizing the Hewitt and Wainwright [59]. analysis of perfect

fluid Gy models.



Appendix A

Dynamical Systems Review

A.1 Preliminary Definitions

This review comes from two primary sources. A set of dynamical systems notes
prepared by John Wainwright which appeared in the workshop proceedings Deter-
ministic Chaos in General Relativity [136] and out of the first chapter of Stephen
Wiggins book Introduction to Applied Nonlinear Dynamical Systems and Chaos [79)].

Definition 1 An equilibrium solution of the DE & = f(z) is a point T € R" such
that
(&) =o0.

Once an equilibrium solution is found, it becomes of interest to determine the be-

haviour of solutions of the DE in a neighborhood of the equilibrium solution.

Definition 2 Let z € R" be an equilibrium point of the DE & = f(z), and let

u =z — %, then the nonlinear DE & = f(x) has an associated linear DE
u=Df(z)u

which is called the linearization of the DE & = f(z) at the equilibrium point Z.

Definition 3 Let 7 be a equilibrium point of the DE ¢ = f(z). Then % is called a

hyperbolic equilibrium point if none of eigenvalues of D f(Z) have zero real parts.
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A.2 The Flow of a Non-Linear DE

Definition 4 Let x(t) = 1,(t) be a solution of the DE & = f(z) with initial condition
z(0) = a. The flow {g'} is defined in terms of the solution function v,(t) of the DE

by
gla = (1)

Definition 5 The orbit through a, denoted by v(a) is defined to be
y(a) = {:z: € Rz = gla, foralltc R}
Orbits are classified as point orbits, pertodic orbits, and non-periodic orbits.

Definition 6 An w-limit set of a point a, w(a), is the set of points in R™ which are

approached along the orbit through a with increasing time.

Definition 7 Given a DE & = f(z) in R", a set S CR" is called an invariant set for
the DE if for any point a € S, the orbit through a lies entirely in S, that is y(a) C S.

In order to determine an w-limit set, it is helpful to know that an orbit enters a

bounded set S and never leaves it. Such a set is called a trapping set.

Definition 8 Given a DE z = f(z) in R", with flow {g'}, a subset S C R™ is said
to be a trapping set of the DE if it satisfies

1. S is a closed and bounded set,

2. a €S implies gla € S for allt > 0.

The usefulness of trapping sets lies in this result; if S is a trapping set of a DE

& = f(z), then for all @ € S, the w-limit set w(a) is non-empty and is contained in 5.
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Definition 9

1. The equilibrium point & of a DE & = f(x) is stable if for all neighborhoods U
of &, there exists a neighborhood V of & such that gtV C U for all t > 0 where
gt is the flow of the DE.

2. The equilibruim point T of a DE & = f(z) is asymptotically stable if it is stable

and if, in addition, for all z € V, limy ||gtz — Z|| = 0.

Theorem 1 (Lyapunov Stability) Let Z be an equilibrium point of the DE & =
f(z) inR™. LetV: R* - R be a C! function such that V(z) =0, V(z) > 0 for all
z € U~ {Z}, where U is a neighborhood of T.

1. IfV(z) <0 for allx € U — {3}, then & is asymptotically stable.
2. IfV <0 forallz € U— {z}, then T is stable.

8. If V(z) >0 for all z € U — {7}, then 7 is unstable.

Proof. [See Wainwright [136].] a
A function V' : R™ — R which satisfies V(z) = 0, V(z) > 0 for all z € U — {Z},
and V(z) < 0 (respectively < 0) for all z € U — {5}, is called a Lyapunov function

(respectively, a strict Lyapunov function for the equilibrium point ).

Theorem 2 (Criterion for Asymptotic Stability) Let Z be an equilibrium point
of the DE z = f(z) in R™. If all eigenvalues of the derivative matriz D f(%) satisfy
Re()\) < 0, then the equilibrium point T is asymptotically stable.

Proof. [See Wiggins [79], page 13.] a
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A.3 The Hartman-Grobman Theorem

Theorem 3 (Hartman-Grobman) Let z be a hyperbolic equilibrium point of the
DE & = f(z) m R", where f : R* = R" 15 of class C'1, Then there is a homeomor-
phism which maps orbits of the linear flow e'®/©®) onto orbits of the non-linear flow

g in a neighborhood of the equilibrium point &, preserving the parameter t.

Proof. [See Hartmaa [137], pages 244-250.] 0
A hyperbolic fixed point Z, is called a saddle if not all of the eigenvalues of the
associated linearization are of the same sign. Z is called a source if the eigenvalues
are all positive, and a sink if they are all negative.

The following theorem follows from the Hartmann-Grobman theorem.

Theorem 4 (Stable Manifold Theorem) Let  be a equilibrium point of & = f(z)
in R”, where f is of class C2, and let E* be the stable subspace of the linearization at

Z, that is the subspace spanned by the eigenvectors corresponding to the eigenvalues
with Re(A) < 0. Then there exists a neighborhood U of T such that the local stable
manifold W(z,U) is a smooth (C'') manifold that is tangent to E* at 7.

A.4 Periodic Orbits and Limit Sets in the Plane

Theorem 5 (Dulac’s Criterion) If D C R? is a simply connected open set and
div(Bf) = a—iT(Bfl)‘['é%(Bf?) >0, (or < 0) for allz € D where B is a C* function,
then the DE & = f(x) where f € C' has no periodic orbit which is contained in D.

Proof. Based on Green’s Theorem. O

Comment: The function B(z1,%,) is called a Dulac function for the DE in the set D.
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The second criterion for excluding periodic orbits, which is valid in R®, n > 2, follows
from the observation that if a function V(z) is monotone decreasing along an orbit

of a DE, then that orbit cannot be periodic.

Theorem 6 Let V : R® — R be a C'! function. If V(z) = VV(z)- f(z) <0 on a
subset D C R, then any periodic orbit of the DE & = f(x) which lies in D, belongs
to the subset {m[V(fc) = 0} nD.

Theorem 7 Consider a DE & = f(z) in R®. Let a € R® be an initial point such
that {glalt > 0} lies in a closed bounded subset K C R®. If K contains only a finite

number of equilibrium points then one of the following holds:
1. w(a) is an equilibrium point
2. w(a) is a periodic orbit
3. w(a) is a cycle graph!.

Proof. The proof is based on the fundamental lemma of w-limit sets in R?. [See Hale
[138], page 230, and Lefshetz [139], page 129]. ]
Comment: This theorem does not generalize to DEs in R™, n > 3, or to DEs on the
2-torus. Indeed, the problem of describing all possible w-limit sets in R", n > 3, is

presently unsolved.

A.5 Bifurcations of Equilibria

Consider a DE in R™ of the form & = f(z, u) where y is a real parameter. Bifurcation
theory, as applied vo DEs, is the study of how the portrait of the orbits change as u

varies.

Theorem 8 (Hopf) Consider the DE & = f(z,u) in R?, where f € C 3. Suppose
f(O,u) =0 for all g € I CR, and that Df(0,x) has eigenvalues a(p) +18(s). If

1A cycle graph is a union of two or more whole orbits, e.g., a homoclinic orbit.
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H1: there exzists uo € I such that a(po) =0, B(ue) # 0, o'(uo) # 0
H2: the equilibrium point & = 0 is not a nonlinear center when p = po
then

C: there exists a § > 0 such that for each p € (po, o+ 98) or p € (o — 6, po), the DE
has a unicue periodic orbit (when restricted to a sufficiently small neighborhood
of z=0).

Proof. [See Hopf [140, 141], vol. 94 , pages 1-22 and vo.. 95, pages 3-22.] 0



Appendix B

Homogeneous Differential

Equations

Consider an autonomous system of second order homogeneous equations

dz; _ . .
—%—Exizﬁ}(ml,zg,...,zn), i=1...n (B.1)
that is Fi(\z1, Az2,...,AB,) = A2F(z1,29,...,2,). This system is invariant under

the transformation
T — AT, t— A4, (B.2)

Taere exists new variables such that the n-dimensional system (B.1) can be reduced

by one dimension. Define

T,':m—i, t=1...n—-1
‘Z"n,
s =lInz,,
- (B3)
T—xn. .
Then
di _ v dh
dr  dt dr’
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(B.5)

Therefore one can easily see that the original system (B.1) rewritten iu the new

variables (B.3) decouples to an n — 1 system (B.4) for r; and 1 equation for s where

s is given by the integral of (B.5),

(B.6)

| 4



Appendix C

Energy Conditions

For the imperfect fluid cosmological models studied in Chapters 3-5, the energy
conditions can be formulated with respect to the eigenvalues of the energy momentum
tensor [69]. The weak energ, condition (WEQC) states that T, W% > 0 for any
timelike vector W* [65]. In the models under investigation the WEC, written in

dimensionless variables (3.10), becomes
32-y)z—y—2V3(z1 +2) +9A > 0,

3ve +y + 2V3(2 — 52) + 9A
3vz 4y +2V3(z — 521) +9A > 0,

v
=

where

A= ]%\/[67:1: + 2y + 6v3( + 2)]2 = 3(51 + B2)%(4 — 4z - X2). (C.1)

Before we proceed, it must be stated that the eigenvalues of the energy momentum
tensor must be real [69] and therefore the quantity under the root sign in (C.1) must
be positive.

The dominant energy condition (DEC) states that for every timelike vector W,
T WeW® > 0 and T®*W, is non-spacelike [65]. In the models under investigation the

184
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DEC becomes

0 3(2 — )z —y — 2V3(z1 + 2),
0 < 3yz+y+2v3(2 — 52) +9A < 6(2 — )z — 2y — 4v3(21 + 22) + 184,
0 < 3ve+y+2v3(22—521) + 9A <6(2 — )z — 2y — 4V3(2, + 22) + 18A.

IA

AN

The strong energy condition (SEC) states that T,,W*W* — %T CWEW, > 0 for

any timelike vector W [65]. In the models under investigation the SEC becomes

WEC and 6(y—1)z+2y — 2/3(z + Z2) +9A > 0.
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