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Abstract 

The existenceof invariant subspaces for bounded linear operators acting on an infinite 

dimensional Hilbert space appears to be one of the most difficult questions in the 

theory of linear transformations. The question is known as the invariant subspace 

problem. Very few affirmative answers are known regarding this problem. One of the 

most prominent ones is the theorem on the existence of hyper-invariant subspaces for 

compact operators due to V.I. Lomonosov. 

The aim of this work is to generalize Lomouosov's techniques in order to apply 

them to a wider class of not necessarily compact operators. VVc start by establishing 

a connection between the existence of invariant subspaces and density of what we 

define as the associated Lomonosov space in a certain function space. On a Hilbert 

space approximation with Lomonosov functions results in an extended version of 

Burnside's Theorem. An application of this theorem to the algebra generated by an 

essentially self-adjoint operator A yields '".he existence of vector states on the space 

of all polynomials restricted to the essential spectrum of A. Finally, the invariant 

subspace problem for compact perturbations of self-adjoint operators is translated 

into an extreme problem and the solution is obtained upon differentiating certain 

real-valued functions at their extreme. 

The invariant subspace theorem for essentially self—adjoint operators acting on an 

infinite-dimensional real Hilbert space is the main result of this work and represents 

an extension of the known techniques in the theory of invariant subspaces. 
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Introduction 

The question 

Does every bounded linear operator on a Banach, space have a, noi) trivial closul, 

invariant subspace? 

is known as the invariant subspace problem. 

The examples due to Enflo [8] and Read [17] show that the answer to the invariant 

subspace problem is in general negative. However, there are no known examples 

of operators without invariant subspaces acting on a reflexive Banach space and in 

particular, on a Hilbert space. Furthermore, there seems to be no evidence what 

should be an expected answer for the operators acting on a Hilbert space, and the 

experts in the field have different opinions on it. 

It is therefore not surprising that there are relatively few special cases for which 

the existence of invariant subspaces have been established. One of the most prominent 

results is the one on the existence of hyperinvariant subspaces for compact operators 

due to Lomonosov [11, 16]. Another class of operators that is well understood in 

terms of invariant subspaces are normal, and in particular, self-adjoint operators for 

which there is the powerful spectral theorem. However, it is not known whether a 

compact perturbation of a self-adjoint operator has a non-trivial invariant subspace!. 

1 
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This work focuses on the existence of invariant subspaces for essentially self-

adjoint operators and culminates in an affirmative answer in the case where the 

underlying Hilbert space is assumed to be real. 

When dealing with the existence of invariant subspaces it is a common prac

tice [1, 4, 12] to study the space of certain continuous functions associated with the 

algebra generated by an operator rather than the operator itself. We follow this ap

proach and establish a connection between the existence of invariant subspaces for 

an operator algebra and density of certain associated spaces of continuous functions 

called Lomonosov spaces. The construction of these functions is based on the idea 

of the partition of unity subordinate to an open cover, which is a standard tool in 

approximation theory [7] and differential geometry [5, 18]. In [5] the partition of unify 

is also used to prove the Arzela-Ascoli Theorem. It should be observed that similar 

argument was employed by V.I. Lomonosov in the proof of his celebrated result [11]. 

On a Hilbert space differentiability of the norm yields a numerical criterion for 

the construction of Lomonosov functions with certain properties. This results in an 

extension of the Burnside Theorem and implies the solution of what we define as the 

"essentially-transitive algebra problem". 

An application of the extended Burnside Theorem to the algebra generated by an 

essentially self-adjoint operator yields the existence of vector states on the space of 

polynomials restricted to the essential spectrum of such an operator. The invariant 

subspace problem for compact perturbations of self-adjoint operators is translated 

into an extreme problem and the solution (in the case where the underlying Hilbert 

space is real) is obtained upon differentiating certain real-valued functions at their 

extreme. 



,'* 

Although the cibove-described techniques do not immediately extend to the com

plex Hilbert spaces, it is very likely that further analysis of the space of vector states 

will reduce the complex case to the real one and thus provide the affirmative answer 

to one of the most difficult questions in the theory of invariant subspaces [13]. 



Chapter 1 

The Space of Lomonosov Functions 

In this chapter we give a constructive proof of an abstract approximation theorem, 

inspired by the celebrated result of V.I. Lomonosov [11]. This theorem is applied to 

obtain an alternative proof of some recent characterizations of the invariant subspace 

problem, given in [1]. We also establish d^^ity of non-cyclic vectors for certain convex 

sets of compact quasinilpotent operators, and conclude with a related open question. 

In Chapter 2 we extend the techniques introduced in this chapter to non-compact 

operators acting on a Hilbert space. 

1.1 Introduction 

V.I. Lomonosov in his paper [12] conjectured that the adjoint of a bounded operator 

on a Banach space has a non-trivial closed invariant subspace. In view of the known 

examples of operators without an invariant subspace [8, 17], this is the strongest ver

sion of the invariant subspace problem that can possibly have an affirmative answer. 

In particular, if the Lomonosov conjecture is true, then every operator on a reflexive 

Banach space has a non-trivial invariant subspace. 

4 
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Considering the strong influence of Lomonosov's results on the theory of invariant 

subspaces, it is not surprising that both the conjecture and the techniques developed 

in the interesting paper [12] received further attention. L. de Branges used this result 

to obtain a characterization of the invariant subspace problem in terms of density 

of certain functions. This stimulated another characterization of the invariant sub-

space problem given by Y.A. Abramovich, C D . Aliprantis, and 0 . Burkinshaw in [1]. 

Section 1.4 presents a more detailed account of this work. 

We take a slightly different approach. First we give a constructive proof of the 

approximation theorem, inspired by the well known Lomonosov construction used 

in [11, 16]. This theorem is then applied to give an alternative proof of the main 

result in [1]. Our proof applies to both real and complex Banach spares, while the 

original result was established for complex Banach spaces only. The alternative proof 

somehow explains the role of compact operators that appear in the characterizations 

of the invariant subspace problem [1]. 

One may notice that the weak*-compactness of the unit ball in dual Banach spaces 

plays an important role in [1, 3, 4, 12], as well as in the applications given in this 

chapter. In other words, if the Lomonosov conjecture is true, then the compactness 

of the unit ball, with respect to the weak* topology, is likely to be an important 

ingredient of its proof. 

In the last section we put this observation to the test. A straightforward ap

plication of the approximation theorem obtained in Section 1.3, together with tiie 

Schauder-Tychonoff Fixed Point Theorem, yields density of non-cyclic vectors for 

the dual of a convex set of compact quasinilpotent operators. Wc end with the open 

problem of obtaining a similar result for the original set, rather than its dual. 
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This work is more or less self-contained and the notation and terminology used 

in it is (supposed to be) standard. However, here are a few conventions that hold 

throughout this chapter: 

By an operator we always mean a bounded linear operator acting on a real or 

complex Banach space. If A is a set of operators and K is a fixed operator then 

AK stands for the set {AK \ A £ A}. Saying that a set of operators A, acting on a 

Banach space X, admits an invariant subspace, means that there exists a non-trivial 

closed subspace of A" that is invariant under all operators in A. The space of all linear 

operators on a Banach space X is denoted by B(X), while C(S,X) stands for the set 

of all continuous functions / : S —> X. If S is a subset of a Banach space X, then 

in saying that a linear operator A is in C(S,X), we actually refer to the restriction 

of the operator A to the set S. 

1.2 Reflexive Topological Spaces and Continuous 
Indicator Functions 

This section introduces some topological preliminaries that lead to a fairly general 

treatment of the approximation theory in the next section, where an important role is 

played by the partition of unity and the "continuous indicator functions" associated 

with a basis for the topology on a compact domain of certain functions. The existence 

of continuous indicator functions can be characterized by a purely topological property 

of the underlying space, which is defined as "reflexivity" of the topological space. In 

this section we introduce both concepts and establish the connection between them. 



I 

Definition 1.2.1. Let S = {S,r) be a topological space and denote by 0(^,11) the 

space of all continuous real-valued functions on S. A topological space # is called 

reflexive if the topology r coincides with the weakest topology TW on S for which all 

the functions in C(S, E) are continuous. 

Remark 1.2.1. The reflexivity of topological spaces is not to be confused with the 

corresponding concept of the reflexivity of Banach spaces. Indeed, we conclude this 

section by showing that every subset of a locally couvex space, is reflexive. 

Proposit ion 1.2.1. Reflexivity is a hereditary property; i.e. a subspace ,V of a 

reflexive topological space X is reflexive with the relative topology. 

Proof. Consider the restrictions of the functions in C(X,R) to the subset fi, and 

observe that they induce the relative topology on S, whenever X is reflexive. • 

Definition 1.2.2. Suppose U is an open subset of a topological space S. A contin

uous function V: S —• [0, oo) is called a continuous indicator function of (/ in »V 

if 

U = {seS\ T{s) > 0} . 

Remark 1.2.2. If X is a metric space then every open ball 

U = U(x0, r) = {x € X | c/(x, xQ) < r} , 

admits a continuous indicator function Ty: X —• [0,oo), defined by 

P(/(a;) — max {0, ?• — d(x, XQ)} . 

Furthermore, suppose / € G(S\X). Then the open set V = / " ' ( ( / ) C S "inherits" 

an indicator function from U by setting: TK(S) = rrj(f(s)). 
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This yields the following characterization of reflexivity. 

Proposition 1.2.2. A topological space S = {S,r) is reflexive if and only if there 

exists an open basis B for the topology r such that each setV € B admits a continuous 

indicator function Yy: S —> [0,oo). 

Proof. By definition of reflexivity, the family 

B0 = {f~l(U) | / G (7(5, R) and U = (a, b) C R} 

is a sub-basis for the topology r on a reflexive space 3. Clearly, 

IV(t)=max{0, ^ - | ^ - * | } 

is a continuous indicator function of the open interval U — (a, b) in R. Consequently, 

IV(.s) = r(/f/(.s)J is a continuous indicator function for the set V = f~l(U) in S. 

Let V = Vi fl . . . 0 Ki for 14 6 BQ. A continuous indicator function of V can be 

defined by 

rv(*) = flrv,(5). 
Therefore, each set in a basis 

B = { V i n . . . n V „ | 14 G Bo; n < oo} , 

admits a continuous indicator function. 

The other direction is trivial, because the continuous indicator functions form a 

subset of C(5,R). • 

Remark 1.2.3. The argument in the proof of Proposition 1.2.2 shows that the space 

R can be replaced by any metric vector space over R in the definition of reflexivity. In 

particular, considering the complex valued functions would not change the definition 

of reflexivity. 
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Remark 1.2.4. While an open set U is uniquely determined by any of its continuous 

indicator functions, the converse is of course not true. However, Proposition 1.2.2 

allows us to choose a basis B, and a corresponding family 

rB = {rv:S'—>[o,oo) | U&B} 

of continuous indicator functions associated with the basis B for the topology on a 

reflexive topological space S. In that sense, the correspondence between the elements 

of B and an associated family of continuous indicator functions Fg can be established. 

Although not all topological spaces are reflexive (consider for example the topol

ogy of finite complements on any infinite set) the next proposition shows that convex 

balanced neighborhoods in a locally convex space admit continuous indicator func

tions, and consequently, all locally convex spaces are reflexive. 

Proposition 1.2.3. Every locally convex vector space X is reflexive (as a topological 

space). 

Proof. Suppose B is a base for the topology on X consisting of open convex balanced 

sets. Then for each U € B: 

U = {xeX\ fiu{x)< 1}, 

where \t,\j is the Minkowski functional of (/. The function 

Tu(x) = max{0, 1 - fiu(x)} 

is a continuous indicator function for U. By Proposition 1.2.2, X is reflexive. • 



10 

1.3 Lomonosov Funct ions 

The proof of the celebrated result of V.I. Lomonosov [11, 16] was based on the inge

nious idea of defining a continuous function with compact domain in a Banach space, 

assuming that certain local conditions are met. In this section we generalize this idea 

in the form of an approximation theorem. Since our construction was greatly inspired 

by the proof of Lomonosov's Lemma [11, 16], we suggest the following definition. 

Definition 1.3.1. Let A C G(S, X) be a subset of the space of continuous functions 

from a topological space S to a locally convex space X. The convex subset C{A) C 

C(S',X), defined by 

£ akAk | Ak G A, ak G C(S, [0,1]) and £ ak = 1; n < oo . 
Jk=l Jk=l J 

is called the Lomonosov space associated with the set A, and a function A G C(A) is 

called a Lomonosov function. 

Recall that the uniform topology on G(S, X) is induced by the topology on a linear 

space X. If B is a local basis for the topology on X then the sets 

0 = {feC(S,x)\ f(S)cUeB} 

define a local basis for the uniform topology on C(S,X). If X is a locally convex 

space then so is C(S,X). bi particular, if X is a Banach space then G(S,X) with 

the uniform topology is a Banach space, as well. 

We are now ready to give a construction of the Lomonosov function that uniformly 

approximates a continuous function within a given neighborhood. 
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Lemma 1.3.1. Let A C G(S,X) be a subset of conthmous functions from a reflexive 

compact topological space S to a locally convex space X. Fix an open convex neigh

borhood U of 0 in X. Suppose f: S —• A' is a continuous function that a I each 

point of S can be approximated within U by some element of A; i.e. for every point 

s G S there exists a function As G A such that As(s) — f(s) G U. Then there exists 

a finite subset {A\,... ,An] of A, together with continuous nonnegalivc functions 

ak: S —>• [0,1], such that £}jj=1 cxk = l} and the Lomonosov function A G C(A), 

defined by 

A(s) = X>(*M*(*). 
fc=l 

lies in the prescribed neighborhood U of f m G(S,X); i.e.. A(.s) — /(.s) G If for every 

sES. 

Proof. By the hypothesis, for every point s G S there exists a function As G A such 

that As(s) — /(s) G U. Continuity of the functions / and /ls implies the existence of 

a (basic) neighborhood Ws of 5 in S such that As(w) — f(w) G (/ for every w G Ws. 

In this way we obtain an open cover for S with the sets Ws. Compactness of S yields 

a finite subcover: WSl U . . . U WSn D S. 

Each set Ws is associated with a continuous indicator function IV, : S —> [0, co). 

Every point in S lies in at least one neighborhood WSk; therefore the sum Y?j=\ fV, (-s) 

is strictly positive for all elements s G S. Consequently, the functions ak. S —> [0,1], 

defined by 

MS) = ^T-R—T^- (fc = i, . . . ,n), 

are well defined and continuous on S. Also, YJk=\ ak{s) = 1 for every ,s G S, and 

cxk(s) > 0 if and only if s G WSk. Therefore, ctk(s) > 0 implies that A3k(s) — /'(.?) G (/. 
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Set Ak = ASk (k = 1, . . . ,n). Continuity of the functions ak: S —> [0,1] and 

Ak: S •—> X implies that the Lomonosov function A G C(A), defined by 

is continuous. Observe that 

A(a)-/(*) = X>(*)(>4*(a)-/(*)) 
fc=i 

is a convex combination of the elements in £/, because only those coefficients ak(s) for 

which Ak(s) — f(s) G C/ are nonzero. Since U is a convex set, it follows that the image 

of A — / is contained in U. In other words, A lies in the prescribed neighborhood U 

of / in C(S', A). • 

Remark 1.3.1. The proof of Lomonosov's Lemma [11, 16] introduces a special case 

of the above construction: S is a compact set in a Banach space X, defined as the 

closure of the image of the unit ball around a fixed vector xo, under a given nonzero 

compact operator K. Furthermore, the vector x0 is chosen so that the set S doesn't 

contain the zero vector; A is the restriction to 5' of an algebra cf bounded linear 

operators on X that admits no invariant subspaces. Under the stated hypothesis a 

construction of the function A: S —>• X is given such that A G £(AK) maps S 

into the unit ball around x0; or equivalently, the constant function / = x0 can be 

approximated on S within 1 by the elements of C(AK). It is clear from the original 

construction as well as from Theorem 1.3.2 that in that case the set S can be mapped 

into an arbitrary small neighborhood of a;0; or equivalently, the function f = x0 is in 

the closure of the space C(AK). 
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The following approximation theorem follows immediately from Lemma 1.3.1. 

Theorem 1.3.2. Let A C C(S,X) be a subset of continuous functions from a reflex

ive compact topological space S to a locally convex space X. Suppose that f: S —> X 

is a continuous function that at each point of S can be approximated by some element 

of A; i.e. for every s £ S and every neighborhood if of 0 in X there exists a func

tion As G A such that As(s) — f(s) G U. Then the function f can be approximated 

uniformly on S by the elements of the associated Lomonosov space C(A). 

In the next section we employ Theorem 1.3.2 to obtain an alternative proof of a 

characterization of the existence of invariant subspaces for algebras of bounded linear 

operators actiug on a real or complex Banach space. The complex version of this 

theorem was first established in [1], using rather different techniques built on the 

result of L. de Branges [4]. 

1.4 A Characterization of the Invariant Subspace 
Problem 

We introduce some basic concepts and notation that is consistent with [1]. However, 

for more details and further references on the invariant subspace problem, the reader 

is advised to consult the nicely written and comprehensible original [1]. 

In this section X stands for a real or complex Banach space of dimension gtcator 

than one and X' for its norm dual. The algebra of all bounded linear operators on 

A is denoted by B(A"). If A is any subset of B(A), then the adjoint set A' ol A is 

defined by A' = {A' | A G A}, where A' is the Banach adjoint of A. 
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The set S = {x G X' \ \\x\\ < 1} denotes the unit ball in the dual space A7, 

equipped with its weak* topology. 

Definit ion 1.4.1. The vector space of all continuous functions from 5' to A' , where 

both spaces are equipped with the weak* topology, is denoted by C(S,X'). As usual, 

G(S) denotes the commutative Banach algebra of all continuous complex valued func

tions on ,5' with the uniform norm. 

Note that for each T G B(A) the restriction of the adjoint operator T': S —• X' 

is a member of C{S,X'). The vector space C(S, A7), equipped with the norm 

11/11= SUP 11/(3)11, 

ses 

is a Banach space. 

The Banach space G(S,X') played the central role in [1, 4, 12]. Lomonosov [12] 

based bis proof of an interesting extension of Burnside's Theorem on the characteri

zation of the extreme points of the unit ball in the norm dual of C(S, A') using the 

argument of the celebrated de Branges' proof of the Stone-Weierstrass Theorem [3]. 

Louis de Branges [4] performed a deep analysis of the behaviour of these extreme 

points that yielded a vector generalization of the Weierstrass approximation theo

rem, similar to the approximation theorem in the previous section. This approach 

resulted in a characterization of the existence of a nontrivial invariant subspace for 

the algebra A' in terms of density of the linear span of the set 

{aA1 | a G G(S) and A 6 A}, 

in the space of restrictions of the adjoint operators to S, with respect to a topology 

in (7(5, A"'), introduced by L. de Branges. 
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Building upon this work, Y.A. Abramovich, C.D. Alipranfis, and 0 . Burkinshaw 

in [1], obtained the following characterizations of the existence of a non trivial in

variant subspace for an algebra A. of bounded linear operators acting on a complex 

Banach space A: 

Theorem 1.4.1 (Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw). 

There is a non-trivial closed A-mvariant subspace of X if and only if there exists an 

operatorT G B( A) and a compact operator K G B(A") suck that K'V docs not belong 

to the norm closure of the vector subspace of G(S,X') generated by the collection 

{aK'A' | a G C(S) and A G A) . 

Theorem 1.4.2 (Y.A. Abramovich, C.D. Aliprantis, and O. Burkinshaw). 

There is a non-trivial closed A1-invariant subspace of X1 if and only if there exists an 

operatorT G B(A') and a compact operator K G B(A) such that T'K' does not belong 

to the norm closure of the vector subspace of G(S,X') generated by the collection 

{cxA'K' | a G G(S) and A e A} . 

We will give a short proof of both theorems as an application of Theorem 1.3.2. 

Our proof applies to real or complex Banach spaces, where in the Ccise of a teal Banach 

space, C(S) stands for the Banach algebra of all real-valued continuous functions on 

the set S. 

Observe that the Lomonosov spaces C(K'A') and C(A'K'), as defined in flic previ

ous section, are subsets of the linear manifolds introduced in Theorems 1.4.1 and 1.4.2. 
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Definition 1.4.2. The vector x in a Banach space A is cyclic for the set of operators 

A C B(A) whenever the orbit 

Ax = {Ax | A G A) 

is a dense subset of A . If every nonzero vector is cyclic for A, we say that A acts 

transitively on X. The terms r-cyclic and r-transitive are defined in the same way, 

by considering the space A equipped with a topology r , instead of the norm. 

The following well known characterizations of the existence of a non-trivial in

variant subspace for an algebra A C B(A") follow immediately from the definition. 

Proposit ion 1.4.3. Suppose A C B(A) is a subalgebra of bounded linear operators 

on X. The following are equivalent: 

(1) A admits no nontrivial closed invariant subspace. 

(2) A acts weak-transitively on X. 

(3) A acts transitively on X. 

(4) A' admits no nontrivial weak*-closed invariant subspace. 

(5) A' acts weak*-transitively on X'. 

As in [1] we introduce the subspace of completely continuous functions in G(S,X'). 

Definition 1.4.3. A function / G G(S,X') is said to be completely continuous if it 

is continuous with respect to the weak* topology on S and the norm topology on A"'. 

The subspace of all completely continuous functions is denoted by 1C(S,X'). 
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Note that K': S —> X' is completely continuous whenever A" G B(X) is a 

compact operator on A" (Theorem 6 [6, p.486]). 

We are now ready to give a short proof of Theorems 1.4.1 and 1.4.2. 

Proof of Theorems 1.4.1 and 1.4.2. 

We start with Theorem 1.4.2, which is an almost straightforward consequence of 

Proposition 1.4.3 and Theorem 1.3.2, applied to the space AJ(,9, A"). 

Suppose A' has a non-trivial closed invariant subspace. Then by Proposition 1.4.3, 

there exists a pair of nonzero vectors x',y' G S such that \\A'x' — t/|| > e > 0 for all 

A' G A'. Choose any vector x G A' such that {x',x) = L, and define the rank one 

operators K = x ® x' and T = x ® y'. Clearly T'K'x' — y', and since T' K' cannot 

be approximated by the operators A!K' at the poiut x', it follows that T'K' is not in 

the norm closure of the linear space generated by {aA'K' | a G G(S) and A 6 A}. 

Conversely, suppose A' admits no non-trivial closed invariant subspaces. There

fore, A' acts transitively on A"', and consequently, every operator VK' can be ap

proximated by A'K' at each point of S. Furthermore, since K is a compact operator 

in B ( A ) , it follows that T'K' G fC(S,X'). Theorem 1.3.2 implies that 7"IC is in the 

norm closure of the Lomonosov space £(A'I{') and thus completes the proof. 

The proof of Theorem 1.4.1 is just slightly more complicated. 

Suppose the algebra A admits a nontrivial closed invariant subspace M. Then 

ML is an invariant subspace for A1. Fix a nonzero vector x G M. and a nonzero 

functional y' G Mx, and choose a vector y G A such that (y',y) — 1 and a functional 

x' G A7, with (a;', x) = 1. Define the rank-one operators K = x 0 y' and T = y (/) x'. 

Then K'T'y' = y' ^ 0, while K'A'y' = 0 for every A' G A'. Consequently, the operator 
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K'T' is not in the norm closure of the linear span of the completely continuous 

functions {aK'A1 \ a G C(S) and AeA}. 

Conversely, suppose that there exists a compact operator K and an operator T 

such that K'T' is not in the closure of the linear subspace generated by the completely 

continuous functions {aK'A' \ a G C(S) and A G A}. Theorem 1.3.2 implies that 

there exists a nonzero vector x' E S such that the orbit M = {K'A'x' | A G .A} is not 

a norm-dense manifold in the closure of the subspace J\f = {K'T'x' | T G B(A")}. By 

the Hahn-Uanach Theorem there exists a functional y" G X" such that (y", Ii'A'x') = 

0 for eveiy A' G A', and (y", K'T'x') = 1 for some T G B(A"). Consequently, 

K"y" ^ 0. Compactness of K implies that y = K"y" G A, where X is considered 

naturally embedded in its second dual X" (Theorem 5.5 [2, p. 185] or Theorem 2 [6, 

p. 482]). From (x',Ay) = 0 for all A G A, it follows that the algebra A admits a 

non-trivial closed invariant subspace. • 

It is possible to obtain similar characterizations that do not involve compact op

erators, by considering some other topology on (7(5, A') . Theorem 3.1 in [1] and 

Theorem 6 in [4] are examples of results in that direction. We conclude this section 

by giving yet another characterization of transitivity for an algebra A in terms of 

the closure of the Lomonosov space JC(A') with respect to the uniform topology TW*, 

induced on (7(5, A"') by the weak* topology on the dual Banach space A"'. 

T h e o r e m 1.4.4. Suppose A C B(A~) is a set of bounded linear operators on X. 

Then the dual set A' = {A' \ A G A} acts weak*-transitively on 5 if and only if the 

TW*-closure of the Lomonosov space C(A') is equal to the subspace 

c0(s:x') = {fec(s,xl)\ /(o) = o>. 
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Proof. The proof is almost identical to those of Theorems 1.4.1 and 1.4.2 except ">at 

Theorem 1.3.2 is now applied to the space (7(5, A') equipped with the topology T10», 

instead of AC(5, A') with the norm topology. 

If the set A' does not act weak*-trausitively on X' then there exists a nonzero 

vector x' G 5 together with a weak* neighborhood W of y' in 5 such that A':v' $ W 

for all A' G A'. Choose a vector a; G X such that (x',x) = 1 and let T = :rC\>i/. Then 

T'x' = y'i and since T' G (7o(5, A"') cannot be approximated by the operators in A' at 

the point »', it follows that T' is not in the r,u»-closure of the associated Lomonosov 

space C(A'). 

Conversely, if the set A1 acts weak*-transitively on 5 it follows from Theorem 1.3.2 

that every function / G Go(S,X') can be uniformly approximated by the elements of 

•C(A'), and thus / is in the rw,-closure of the Lomonosov space C(A'). • 

Corollary 1.4.5. The algebra A admits no non-trivial closed invariant, subspace, if 

and only if the T^*-closure of the Lomonosov space C(A') is equal to Ike. subspace 

C0(S,X') = {feC(S,X>)\ / ( 0 ) = 0 } . 

Proof. By Proposition 1.4.3, the fact that A admits no non-trivial invariant subspace 

is equivalent to A' acting weak*-transitively on 5. The result now follows from 

Theorem 1.4.4. • 

Note that the r^.-closure of the Lomonosov space £(B(A~)') is always equal to 

Co(5, A"). This observation yields a few alternative formulations of Corollary 1.4.5, 

which are left to the reader. 
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1.5 On Convex Sets of Compact Quasinilpotent 
Operators 

In this section wc combine Lemma 1.3.1 with the Schauder-Tychonoff Fixed Point 

Theorem, to establish a density result for non-cyclic vectors for the dual of a con

vex set of compact quasinilpotent operators. We discuss in what sense this result 

generalizes the celebrated Lomonosov Lemma [11], and conclude with a problem of 

establishing a similar result for the original set, rather than its dual. 

Recall that an operator is called quasinilpotent if 0 is the only point in its spectrum. 

T h e o r e m 1.5.1. Suppose A is a convex set of compact quasinilpotent operators act

ing on a real or complex Banach space X, and let A! = {A' \ A G A} be its dual in 

B(X'). Then the set of non-cyclic vectors for A' is dense in X'. 

Proof. Suppose not; then there exists a functional xo G A ' and a positive number 

?• > 0 such that all vectors in the ball 5 = {a; G X' | ||a; — aj0|| < 7'} are cyclic for A'. 

In particular, for every functional x G 5 there exists an operator A! G A' such that 

|| A'a; — a;0|| < r. By Lemma 1.3.1 it follows that there exists a Lomonosov function 

A G C(A') such that ||A(a;) — x0|| < r for all x G 5 . Consequently, A maps 5 into 

itself (weak*-continuously). 

The Schauder-Tychonoff Fixed Point Theorem [6, p. 456] implies that A has a 

fixed point x\ = A(.T1) in 5 . By the definition of the Lomonosov space 

71 71 

A = J^ <XkA'k, where Ak G A, ak G (7(5, [0,1]) and ^ cvfc = 1; n < oo. 
A.-1 k=\ 

Therefore A' = Y?k=i ak{xi)A'k is an operator in the convex set A1. From A(a;1) = x1, 

we conclude that A'x\ = xx. Since xi ^ 0, it follows that 1 is an eigenvalue for A', 

contradicting the assumption that A' is a quasinilpotent operator. • 
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Remark 1.5.1. Note that (unless A is assumed to be an algebra) it is not enough to 

require that the operators in A' have no common invariant subspace, in order to ensure 

that A' acts transitively on X'. It is indeed possible to give examples of manifolds of 

nilpotent operators without a non-trivial closed common invariant subspace. For such 

examples on finite-dimeusional vector spaces see [14Jt By Theorem 1.5.1 a manifoKl 

of such operators cannot act transitively on the underlying space. 

Theorem 1.5.1 does not follow from the original work of V.I. Lomonosov [11]. On 

the other hand, Lomonosov's Lemma [11] easily follows from Theorem 1.5. L, in the 

case when the underlying Banach space is reflexive. In that sense Theorem 1.5.1 is a 

generalization of the Lomonosov Lemma. 

This discussion suggests the following question, which we have not been able to 

resolve: 

Does there exist a convex set A of compact quasinilpotent operators acting 

on a real or complex Banach space X such that the set of non-cyclic 

vectors for A is not dense in X ? 

By Theorem 1.5.1 the underlying Banach space in such an example (if it exists) 

cannot be reflexive. Furthermore, Lomonosov's Lemma implies that the set A cannot 

be of the form AK or KA, where I{ is a fixed compact operator. In particular, the 

set A in such an example can never be an algebra. 

Since, according to Theorems 1.4.1 and 1.4.2, compact operators arc closely related 

to the existence of invariant subspaces for algebras of operators, the answer to the 

above question might be of some interest to the theory of invariant subspaces. 



Chapter 2 

An Extension of Burnside's 
Theorem 

In this chapter we combine differentiability of the Hilbert norm with the Schauder-

Tychonolf Fixed Point Theorem to show that for every weakly closed subalgebra 

A ^ B(?Y), acting on a real or complex Hilbert space TC, there exist nonzero vectors 

J\g G H such that for every A G A: 

| R e ( A / , < 7 ) | < | | R e A | | e s s ( / , 5 ) . 

This result generalizes an extension of Burnside's Theorem, recently obtained by 

V.I. Lomonosov, using rather different techniques. The theory developed in this chap

ter has an interesting application to the invariant subspace problem for essentially 

self-adjoint operators which is given in the last chapter. 

2.1 Introduction 

In the first chapter we defined the Lomonosov space and gave a constructive proof of 

the approximation theorem inspired by the well known result of V.I. Lomonosov [11]. 

This theorem was then applied to obtain a connection between the existence of in

variant subspaces for the norm dual of a.n algebra of bounded operators on a Banach 
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space, and density of the associated Lomonosov space in certain function spaces. 

These results cover recent characterizations of the invariant subspace problem by 

Y.A. Abramovich, C.D. Aliprantis, and 0. Burkinshaw in [1], who obtained their 

results using the techniques introduced in [12] and further exploited in [4]. 

In this chapter we combine differentiability of the Hilbert norm with a construc

tion of the Lomonosov functions and the Schauder-Tychonoff Fixed Point Theorem 

to establish a connection between the Lomonosov space and the transitive algebra 

problem [16]. 

We start by briefly introducing a simplified Hilbert space terminology, that is 

consistent with the first chapter, where the corresponding terms are defined in more 

general, Banach space setting. 

Definition 2.1.1. Suppose S is a bounded closed convex subset of a real or complex 

Hilbert space %, equipped with the relative weak topology. The set of all continuous 

functions / : S —> H, where both spaces are equipped with the weak topology, is 

denoted by (7(5, H). Similarly, (7(5, [0,1]) stands for the set of all weakly-continuous 

functions / : S —> [0,1]. 

Remark 2.1.1. Recall that a bounded closed convex subset S in a Hilbert space is 

weakly compact. Observe also, that a bounded linear operator A G B(7i) is in 

G(S,H). Whenever we say that A is in C(S,H), we actually refer to the, restriction 

of the operator A G B(7Y) to the subset S C H. 
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Definition 2.1.2. Let A be a subset of C(S,H). The convex set C{A) C C(S,H), 

defined by 

£M) = (X><A I Ak G A, ak G (7(5, [0,1]) and £ «* = 1; n < ool 
U=i fc=i J 

is called the Lomonosov space associated with the set A, and a function A G C(A) is 

called a Lomonosov function. 

Definition 2.1.3. Let VV be a basic weak neighborhood of a vector / G H: 

(2.1.1) W = {gEH\ \{f-g,h)\<h heH, fc = l , . . . , n ; 7Z<co}. 

A continuous nonnegative function Vyy: H —• [0,1], defined by 

(2.1.2) r w ( f l f ) = n m a X { 0 , l - | < / - i f , ^ > l } . 
k=i 

is called a continuous indicator function of W. 

Remark 2.1.2. Clearly, Ty\> is a nonnegative weakly continuous function and 

W = {g G H | rw((/) > 0} . 

The following proposition and its corollary introduce the idea that will lead to the 

main result of this chapter. 



Proposition 2.1.1. Let S be a closed bounded and convex subset ofH. Suppose tin-

set A C G(S,H) satisfies the following property: 

For every s G 5 there exists a function As G A together with a weak neighbor

hood Ws ofs such that AS(WS) C 5 . 

Then there exists a Lomonosov function A £ C(A) that maps the set S into itself. 

Proof. By the hypothesis for every point s £ S there exists a function As together 

with a basic weak neighborhood Ws of 5 such that As(Ws) C 5. In this way we obtain 

an open cover of 5. Since 5 is a weakly compact set there exists a finite subeover 

Wi , . . . , W„, together with functions Ai , . . . , An, with the property that Ak(Wk) C 5 

for k = 1 , . . . , n. 

Let Tk : 5 —> [0,1] denote the continuous indicator function of Wk as defined 

by (2.1.2). Each point s G 5 lies at least in one neighborhood Wk (k — 1,. . . ,/i), 

therefore the sum 2j l
= 1 T., (s) is strictly positive for all vectors .s G 5. Hence, the 

functions ctk: S —> [0,1], defined by 

Ms) = ^n r ,s [k =[,...,n), 
2^7=1 L o \s> 

are well defined and weakly continuous on 5. Also, J2l=i ak{s) — I for every s £ 5, 

and ak(s) > 0 if and only if s G Wk. 

The Lomonosov function A: 5 —> 5 , in the Lomonosov space C(A), associated 

with the set of functions A C G(S,H), is defined by 

A(s) = £>(*)/U(*). 
k=1 

Observe that A(.s) is a convex combination of the elements in 5, and consequently, A 

maps the set 5 into itself (weak-continuously). • 
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Corollary 2.1.2. Suppose A is a convex subset ofC(S,7i) satisfying the condition 

of Proposition 2.1.1. Then there exists an element A £ A with a fixed point s £ S. 

Proof By the Schauder-TychonofT Fixed Point Theorem the Lomonosov function 

A : 5 —> 5 , constiucted in the proof of Proposition 2.1.1, has a fixed point .s G 5 . 

Let A = 27,/L, ak(.s)Ak. Convexity of the set A implies that A £ A. Furthermore, 

fiom A(.s) = 5 it follows that A(s) = s. Q 

Remark 2.1.3. In our applications we will consider the situations when 5 is a closed 

ball of radius 7' G (0,1) around a fixed unit vector /o G "H, and A is a convex subset 

of B(?Y). If the set A satisfies the condition of Proposition 2.1.1 then Corollary 2.1.2 

implies that the set A contains an operator A with an eigenvalue 1. 

This gives rise to the following two questions: 

1. When does the set A satisfy the condition of Proposition 2.1.1? 

2. When is the operator A in Corollary 2.1.2 different from the identity operator? 

Complete continuity of compact operators, restricted to 5 , yields an affirmative 

answer to the first question whenever A is a set of compact operatois with the prop

erty that for every ,s G 5 there exists an operator As £ S such that ||Ass — /0 | | < 7\ 

Furfhcrmoic, if the space Ti is assumed to be infinite-dimensional then an affirmative 

answer to the second question follows from the fact that the identity is not a com

pact operator. However, compactness of the operators in A is much too strong an 

assumption. In the next two sections we develop conditions based on the properties 

of the essential spectrum and differentiability of the Hilbert norm that will replace 

the condition of Proposition 2.1.1. 
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2.2 On the Essential Spectrum 

In this section we state some well known properties of the essential spectrum in the 

form applicable to the situations arising later. We start with a few definitions and 

introduce notation and terminology that is consistent throughout this chapter. 

Definition 2.2.1. Suppose H is a real or complex Hilbert space. The algebra of 

all bounded linear operators on ri is denoted by B(%), while AJ(7Y) stands for the 

ideal of compact operators in B(?i). The spectral radius of the operator A G T$(H) 

is denoted by r(A) and its essential norm, i.e. the uorm of A in the Calkin algebra 

B(n)/IC{n), is denoted by ||A||ess. 

Definition 2.2.2. If A £ C is a complex number then Re A and ImA denote, its real 

and imaginary parts respectively, i.e. A = Re A -f 'ilmA. On the. other hand, for a, 

bounded linear operator A G B(%), Re A and ImA stand for its real and imaginary 

parts: 

T> A A + A * 1 X A A ~ A * 

Re A = — - — and Im A = — - — , 

where A* is the Hilbert adjoint of A in B(7^). 

Clearly, for every A G B(7i) we have A — Re A + ImA. Furthermore, this 

decomposition makes sense on a real or complex Hilbert space, and 

(2.2.1) HHeA||e s s<||A| |e s s<||A| | . 

Proposition 2.2.1. Suppose S and M are positive numbers, and A is a fixed operator 

in B(H). Then there exists a weak neighborhood W ofO in H such that every vector 

f £W with | |/| | < M, satisfies the inequality 

\Re(Af,f)\<\\KeA\U\jf + S. 
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Proof. From Re (A/ , / ) = ((Re A)f,f) and (Re A) = (Re A)* it follows that 

||ReA||=sup|Re(A/,/)|||/|r2. 

By definition of the essential norm, we have 

II^IL = K m ^ ||(Re A) + K\\ = M^ ||Re(A+ K)\\. 

Hence, there exists a compact operator K such that 

||ReA||ess > ||Re(A + K)\\ - ^ M " 3 > |Re((A + K)f,f)\ \\f\\~2 - \8M~\ 

The proposition now follows by the mixed (weak-to-norm) continuity of compact 

operators on bounded sets. • 

The following proposition plays an important role in the subsequent sections. 

Proposition 2.2.2. Suppose H. is a real or complex Hilbert space, and A G C is a 

point in the spectrum of the operator A £ B('H), such that 

(2.2.2) |ReA|>| |ReA||e s s . 

Then the norm closure of the algebra generated by A contains a nonzero finite-rank 

operator. 

Proof. We may assume that the Hilbert space 7i is complex, as long as we can con

struct a finite-rank operator in the closure of the real algebra generated by A. 

Clearly, (2.2.2) implies that A is not in the essential spectrum of A. From the well 

known properties of the essential spectrum (for example, Theorem 6.8 and Proposi

tion 6.9 in [2, p. 366]), it follows that every point in the spectrum of the operator A, 

satisfying the conditiou (2.2.2) is an isolated eigenvalue of A, and the corresponding 

Riesz projection has finite rank. 
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After first replacing the operator A by —A in the case wheu Re A < 0, and then 

substituting the translation A — max {Re A | A G (r(A)} for A, we may assume that 

max^go-^) Re A = 0. The condition (2.2.2) implies that 

cro(A) = {A G a{A) | RcA = 0} , 

is a nonempty finite set, consisting of eigenvalues of A with finite multiplicity. By the 

Riesz Decomposition Theorem [16, p. 31], the space 7i can be decomposed as H = 

HT. ®TC-2, where dim('Wi) < °°, and the operator A is similar to the operator /l | (]) Aa, 

corresponding to this decomposition. Furthermore, the spectrum of A\ is <J0(A), and 

the spectrum of A 2 lies in the open left complex half-plane. Therefore r(alAi) < I 

for t > 0, while r(etAi) = 1 for any real argument t. By Rota's Theorem [15, p. 136], 

the operator eA2 is similar to a strict contraction. Consequently, 

lim -r.—T77 — 0. 

On the other hand, finite-dimensionality of H-\ implies that the sequence 

enAi 

Tn= | | e ' ^ ' | | ' w = 0, L , . . . , 

has a subsequence converging in norm to a nonzero finite-rank operator. • 

Remark 2.2.1. Recall that the exponential function eA admits the power series: 

oo An 

Hence, the finite-rank operator constructed in the proof of Proposition 2.2.2 is indeed 

contained in the norm closure of the real algebra, generated by A. 
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2.3 Preliminary Geometric Results 

This section contains preliminary results that are needed in the constructive proof of 

the main theorem, given in the next section. The results presented here are mostly 

easy observations and the proofs are somehow tedious and straightforward calcula

tions, involving the standard "e, 5" arguments. 

Throughout this section we make the following conventions: 

Ti. is a real or complex Hilbert space. Fix a unit vector /o G T~i and choose a 

positive number ?• G (0,1). The set 5 is defined as follows: 

S = {f£H\ | | / 0 - / | | < r } . 

Lemma 2.3.1. Let W be a subset ofS and let Abe a bounded linear operator on Ti. 

Suppose that 

Re {Af, /o - / ) > £ > 0, for all f£W. 

Then there exists a positive number p, > 0, such that for any s £ (0,/i): 

||/o - (/ + eA)/| | < ||/o - f\\ , for all / £ W. 

Proof. Note that / £ 5 implies ||/| | < 1 + r < 2. Therefore for all f £S: 

l | A / | | < | | A | | | | / | | < ( l + r ) | | A | | < 2 | | A | | . 

Set n = ^~jp-. For any e £ (0, p,) and / G W we have: 

| | /o-(/ + £A)/||2 = | | / o - / - eA/ f 

= ||/o - / | |2 - 2e Re (Af, f0 - f) + e2 \\Af\\2 

<\\fo-f\\2-2e8 + eH\\A\\2 

= \\f0-ff-2e(6-e2\\A\\2)<\\f0-f\\
2. 

Hence fi is the required positive number. Q 
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Remark 2.3.1. Let ip'(0) denote the derivative of the function 

0(*) = ||(/ + M)/-/o||a, 

with respect to t, at the point t = 0. A straightforward calculation yields 

tf'(0) == - 2 Re (Af, /o - / ) . 

Therefore the statement of Lemma 2.3.1 corresponds to the well known fact that a 

real function with (strictly) negative derivative is (stiictly) decreasing. Note, however, 

that positivity of Re (Af, f0 — / ) does not imply that the mapping v]/(/) = (/ +e/l)/* 

is a contraction, as a function from W to 5. 

Lemma 2.3.1 gives a numerical criterion for the subset W C 5 to be mapped into 

5, namely positivity of the function $ ( / ) = Re(A/ , / 0 - / ) on W. Since <I>(/0) = 0, 

this criterion cannot be employed at the point fo. However, the problem of construct

ing a function A: 5 —>• 5 can be easily reduced to the subset of 5 not containing 

the point fo- A simple observation in 1R.2 suggests the following definition. 

Definition 2.3.1. For a fixed ball 5 = {/ G H | ||/o - / | | < r} around the unit 

vector /o G 7i, the polar hyperplanc Vs, of the origin with respect to S, is defined by 

the following set: 

vs = {fen\ </,/0) = i - r 2 } . 

Remark 2.3.2. Every vector / in Vs H 5 can be decomposed as / = (1 — r'2)fn -f- g, 

where g -L fo and ||<7|| < r2(l — 7;2). In particular, the boundary of Vs f) 5: 

Vs 0 8S = {(1 - r 2 ) / 0 + g \g±fQ and \\g\\2 = r2(l - r2)} , 

contains exactly the points where the tangents from the origin fo the ball 5 intersect 

the set 5 . Recall that in E2 such a line is called a polar, and our definition is just 
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a straightforward generalization of this geometric term to the higher dimensional 

Hilbert spaces. 

The following lemma will reduce the problem of constructing a Lomonosov func

tion A: S —> S to the polar hyperplanc 

Lemma 2.3.2. The function ho'- S —• S, defined by 

Ao(/) = ^TLh)1' ' 
maps the set S — {/ G Ti | ||/— /o|| 5; •"} weak-continuously into itself. Further

more, Uic set of all fixed points for A0 is equal to "Ps fl 5 . 

Proof. Since Ke(f,fo) > 0 for / £ 5, it follows that A0 is well defined and weakly 

continuous on 5. Clearly, / £ S is a fixed point for A0 if and only if ?-2 -f- (/, fo) = 1. 

By the definition of the polar hyperplane, that is equivalent to / £ Vs 0 5. 

We have to prove that ||A0(/) — fo\\ < 7- for all / £ 5. 

Every vector / £ 5 can be decomposed as / = (/,/o) ,/'o + [li where g -L fo and 

lk/| |2<r2-|l-(/ , /o)|2 . 

A straightforward calculation, using this decomposition, yields: 

1 
|Ao(/) - JO 

ra + (/,/o> f-fo Frkr("<+'rf) 

The conclusion follows if we can establish the following inequality: 

'•" + r 2 - | l - ( / , / 0 ) | 2 < r 2 r 2 + (/,/0) 

Setting (/, f0) = x -f iy, this can be translated to 

,.-« 4- r2 - (1 - a-)2 - y2 < r2(ra + xf + r\f, 
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or equivalently, 

(1 + r2)y2 > r4 + r2 - (1 - x)2 - r\r2 + x)2 

= (r4 -I- r2 - 1 - 7-6) + 2(1 - r*)x - (I + r2):r2 

= - ( l + r 2 ) ( ( l - r a ) - a : ) a . 

The last inequality is obviously always satisfied, with the strict inequality holding 

everywhere, except in the polar hyperplane Vs- • 

Definition 2.3.2. For every operator A in B(7-̂ ) define a real function A,i: 5 —> 1R 

as follows: 

^ ( / ) = ? , 2 ( 1 ! _ r 2 ) R e ( A / , , / o - / ) . 

Remark 2.3.3. Note that A^ is a "normalization" of the function Re (Af,fo — / ) in 

Lemma 2.3.1. 

From the definition of the set Vs it follows that every vector / in Vs H 5 can be 

decomposed as / = (1 — 7'2)/o + ry/l — r2g, where g J_ /o and \\g\\ < 1. Consequently, 

AA( /) = Re (A (/O + -jf^g) , fo - ^ g ) 
(2.3.1) \ v VI r /- / 

= Re(A/0 ,/o) - Re(A<7,<y) - R e ( ( ^ A - ^ / l * ) /o,.r;) . 

In particular, for the identity operator I on H, wc have A/(/) = 1 — ||</|| . Therefore, 

A7 > 0 on Vs n 5, with the equality A/(/) = 0 holding if an only if / £ Vs f\ OS. 

Observe that the function A^i: 5 —> E is norm continuous, but if is in general not 

weakly continuous, due to the presence of the quadratic form Re (Ag, g) = ((Re A)g, g) 

in (2.3.1). 

The next lemma imposes an additional condition on the operator A that guaran

tees the existence of a weak neighborhood of / in 5 on which A/t is positive. 
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Lemma 2.3.3. Suppose, f is a vector in the polar hyperplane Vs 0 5, satisfying the 

following strict inequality for some A £ B(H): 

AA(f)>\\ReA\\essAj(f). 

Then there exists a positive number 8 > 0, together with a weak neighborhood W of 

f, such that for every h £ W D S: 

A4/ t )> | |ReA| | e s s |A / ( / l ) | + f5. 

Proof. By the hypothesis, there exists a positive number 6 > 0 such that: 

(2.3.2) A4/)> | |ReA| | e s s A / ( / ) - | -5 ( 5. 

For any positive number 0 < e < r2, define a weak neighborhood We of Vs'-

W£ = { / l 6 K| \l-r2-(h,f0)\<e}. 

Every vector h £ We n 5 can be decomposed as h = (h, f0) f0 + <7, where g _L /o and 

y | a < r a - | l - { f c , / o ) | a < r 2 - ( r a - 6 ) 2 . 

Estimating roughly, we conclude: 

R e ( ( / t , / 0 ) ( l - ( M o ) ) ) -
A/(/0 = r 2 ( l - r 2 ) 

( l - r 2 - £ ) ( r 2 - g ) - r 2 + ( r 2 - £ ) 2 3e 
! ( l - r 2 ) r 2 ( l - r 2 ) ' 

Therefore, a weak neighborhood W£ of Vs, such that ||Re A||ess A/(/i) > — <5, for every 

vector h £ WE D 5 , can be obtained by setting 

Sr2(l - r2) 
e = l + 3||ReA||ess 
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A straightforward calculation yields: 

(2.3.3) 

AA(f + g) = AA(f) + ^ ^ (Re (Ag, f0 - / ) - Re (AJ\ g) - Re (Ag, </)). 

Proposition 2.2.1 implies the existence of a weak neighborhood Wi of 0, such that for 

every vector g £ Wi, with \\g\\ < 2: 

(2.3.4) Re(Ag,g) < ||Re A||ess \\g\f + r2(l - r2)8. 

Clearly, by the weak-continuity of both sides of the inequality, there exists a weak 

neighborhood W2 of 0, such that for g £ W2: 

R e ( A < 7 , / 0 - / ) - R e ( A / , ( 7 ) > 
(2.3.5) 

| | R e A | | e s s ( R e ( £ , / 0 - / ) - R e ( f , g ) ) - r\\ - r2)8. 

Let W = W£ Pi (f + Wi fl W2) be a weak neighborhood of / . Every vector h in 

W PI 5 can be written as h = f + g, where g £ Wi H W2 and \\g\\ < 2. Putting the 

inequalities (2.3.2-2.3.5) together, and using ||Rc A||ess A/(/i) > —8, implies: 

AA(h) = AA(.f + g) 

= AA(f) + ^r)(Re(Ag,f0-f)-Ro(Af,g)-R.v.(Ag,g)) 

> ||ReA||ess (A/(/) + 7^r)(Re(g,f0 - /) - Ro(f,g) - Rc.(g,g)))+:]8 

= l|ReA||essA /(/ + (7) + 35 

= \\ReA\\essA1(h) + Z8 

>| |ReA| | e s s |A /( /0 | + 5. 

Consequent!}', W is a weak neighborhood of / , with the required property. • 

file:////g/f
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2.4 The Main Result 

We arc now ready to give the maiu result of this chapter, which is quite technical, 

but applicable to several situations discussed later. 

Proposition 2.4.1. Let A C B(7i) be a convex subset of bounded linear operators 

acting on a real or complex Hilbert space H. Fix a unit vector f0 £ H and choose a 

positive number r £ (0,1). Suppose that for every vector g JL /o and ||(/|| < 1, there 

exists an operator A £ A, satisfying the following strict inequality: 

(2.4.1) Re (A (/O + -rf-pg) ,f0 - ^ g ) > ||Re A||ess (1 - | |5 | |2). 

Then A contains an operator Ao, with an eigenvector in the set 

S = {f£H\ | | / o - / | | < r } , 

and the corresponding eigenvalue A satisfies the condition: |ReA| > ||ReAo||ess. 

Proof. Introducing the polar hyperplane Vs as before, observe that by (2.3.1) the 

condition (2.4.1) implies that every vector in Vs fl 5 satisfies the hypothesis of 

Lemma 2.3.3 for some operator A £ A. Consequently, for every vector / in Vs F\ S 

there exists an operator A £ A, together with a (basic) weak neighborhood W of / , 

and a positive number 8, such that for every h £ W C\ 5: 

AA(h)>\\ReAlss\AI(h)\ + 8. 

By Lemma 2.3.1 there exists a positive number p, such that the operator I + eA maps 

the set W fl 5 into 5 whenever e £ (0, //,). 

In this way we obtain a weakly open cover of Vs 0 5 with basic neighborhoods. By 

the weak-compactness of the set Vs H 5 , there exists a finite subcover Wi , . . . , Wn, 
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together with the operators Ak in A, and positive numbers pk > 0, such that for 

e £ (0, nit) the operator / + sAk maps the set Wk C\ 5 info 5, and 

(2-4.2) A / U . ( /0> | |ReA f c |UA, ( /0 | , 

for every h £ Wk fl 5 . 

Define the weakly open set W0 = {/ £ U | |(/,/o) - (1 - r2) | > 0}. Associated 

with the set Wo is its continuous indicator function VQ: Ti. —> [0,co): 

r0(/) = | ( / - / o > - ( i - r a ) | , 

and the function A0: S —> 5 , defined in Lemma 2.3.2: A0(/) = (V2 + (f,fo) ) / . 

Fix a positive number e £ (0,min {/i|,... , /i7l}), and recall that every basic weak 

neighborhood Wk admits a continuous indicator function Vk: 5 —> [0, I], defined 

by (2.1.2). Each point / £ 5 lies at least in one neighborhood Wk (k = 0, . . . , u), 

therefore the sum I ]" = 0 Tj(/) is strictly positive for all vectors / £ 5. Hence, the 

functions ak: 5 —• [0,1], 

are well defined and weakly continuous on 5. Also, J^=0 (xk(f) ~ ' ' o r evei'y / € 5, 

and ak(f) > 0 if and only if / £ Wk. 

The Lomonosov function A: 5 —> 5 , in the Lomonosov space C(A U Ao), asso

ciated with the set of functions AU A0 C C(S,Ti), is defined by 

A^ = ^TTTn f + £ a ^ ! + eyW-? +UJo) k=l 

Observe, that A(/) is a convex combination of the elements in 5, and consequently, 

A maps the set 5 into itself (weak-continuously). 
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The Schauder-Tychonoff Fixed Point Theorem implies that the Lomonosov func

tion A: 5 —> 5 has a fixed point /i £ 5. From A(/i) = A, we conclude: 

e(X>(/iM*)/i = (i-^ + yn-S^C/O)/! 
fc=i ' t\.n,Jo/ i.=1 

Outside the set Wi U . . . U Wn the function A equals A0 and has no fixed points. 

Consequently, f] £ Wk for at least one index k £ { 1 , . . . ,n}, and £"=1 «j(/i) > 0. 

Set 

E J = I « J ( / I ) l - « o ( / 0 

Then A0 = E/J-i PkAk is an operator in the convex set A- Clearly, f\ £ 5 is an 

eigenvector for Ao, corresponding to the eigenvalue A: 

£ ( l - « o ( / i ) ) V '-2 + (/i , /o)7 

Recall that by (2.4.2) the strict inequality AAk(fx) > ||Re Afc||ess |A/( / t) | is satisfied 

whenever otk(fi) > 0 (or equivalently fik > 0). Therefore, nonnegativity of the 

coefficients (3k and subadditivity of the essential norm, imply 

AA,(/I) = E/3fcA^,(/0 > f > llReA.H ĴAKA)! > ||ReAoi|ess|A7(A)| • 
k=\ k=l 

By (2.4.3) the sign of ImA is the same as the sign of Im(/ i , / 0) = Im (J\,f0 — fi)-

Hence, from A0J\ = XJ\ and A^C/i) > ||ReA0||ess |A/(/i)|, we conclude: 

|ReA| \A,(j\)\ > (ReA)A/(/0 = ^ ^ y ReARe (f\,f0 - A) 

> ^ 3 y ( R « A l t e ( / 1 , / o - / i ) - I m A I m ( / 1 , / o - / i ) ) 

= 7 ^ y R « < A / i , / o - / i > = A j l o ( / J )> | | I t eA) IL |A / ( / 1 ) | . 

The strict inequality implies that A/(/i) ^ 0, and consequently A satisfies the required 

condition: |R.eA| > ||ReAo|L„. D 
less 
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2.5 Burnside's Theorem Revisited 

V.I. Lomonosov [12] established the following extension of Burnside's Theorem to 

infinite-dimensional Banach spaces: 

Theorem 2.5.1 (V.I. Lomonosov, 1991). Suppose X is a complex Banach space 

and let A be a weakly closed proper subalgebra ofQ(X), A ^ B(Ar). Then there exists 

x £ X" and y £ X', x ^ 0 and y ^ 0, such that for every A £ A 

(2-5.1) KM'v}l<l|A|L.. 

The techniques introduced in the proof of this theorem, based on the argument 

of the celebrated de Branges' proof of the Stone-Wcierstrass Theorem [3], received 

further attention in [1, 4]. Although in the Hilbert space case Theorem 2.5.1 is 

equivalent to another theorem, also given in [12], wc take a different point of view 

and employ Proposition 2.4.1 to obtain a stronger extension of Burnside's Theorem 

to infinite-dimensional Hilbert spaces. 

The condition (2.5.1) is equivalent to the existence of unit elements x £ X" and 

y £ X', and a nonnegative constant G (depending on A), such that 

(2.5.2) \faA'y)\ < G \\A\\ess, for all A £ A. 

In general, the constant C depends on the space X, and the algebra A. If is not 

clear that on every Banach space there exists an upper bound for C, satisfying the 

condition (2.5.2), with respect to all proper weakly closed subalgebras of B(A'). An 

example of such a space would certainly be of some interest. On flic other hand, an 

affirmative answer to the Transitive Algebra Problem [16] is equivalent fo C = 0. 
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At the moment we can provide no results concerning the estimates for the constant 

G in any infinite-dimensional Banach space, other than a Hilbert space. The next 

theorem implies that on a complex Hilbert space the constant C is at most one. 

Theorem 2.5.2. Suppose Ji is a complex Hilbert space and let A be a weakly closed 

subalgebra ofB(H), A =£ B(H). Then there exist nonzero vectors f, h £ TL, such that 

for all A £ A: 

(2.5.3) |Re(A/,/,)| < HReAH^a,/ ,) . 

Proof. Suppose not; then the hypothesis of Proposition 2.4.1 is satisfied for every unit 

vector /o and any positive number 7' £ (0,1). Consequently, the algebra A contains 

an operator AQ with an eigenvalue A, satisfying the condition: 

|ReA|>||ReA||es s . 

Proposition 2.2.2 implies that the algebra A contains a nonzero finite-rank operator. 

Therefore [f6, Theorem 8.2], the (transitive) algebra A is weakly dense in B(7i), 

contradicting the assumption A ^ B('H). • 

Remark 2.5.1. Note that (after arbitrary choosing the unit vector /0 and then letting 

r —> 0) the argument in the proof of Theorem 2.5.2 shows that the set of all vectors 

f £H for which there exists a nonzero vector g £ H satisfying the condition (2.5.3) 

is dense in H. 

Corollary 2.5.3. Suppose 7i is a complex Hilbert space and let A be a weakly closed 

subalgebra of~B(H), A ^ B(7i). Then there exist unit vectors f, h £ H, such that for 

all A £ A: 

(2-5-4) \(Af,h)\ <\\Alss-
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Proof. By Theorem 2.5.2 there exist unit vectors / , k £ H, such that for every A £ A 

|Re(A/, / l) |< | |ReA| | e s s . 

Set 

f 1 if (Af, k) = 0, 

I $m\ oU^-wise. 

Then 

\(Af,k)\ = |Re(£A./»| < ||Rc(£A)|L < HMIL = MIL, 

and consequently, the condition (2.5.4) is weaker than (2.5.3). • 

The following definition yields an alternative formulation of the extended Burn

side's Theorem. 

Definition 2.5.1. A vector / £ H is called essentially cyclic for an algebia A C 

B("H), if for every nonzero vector h £ K there exists an operator A £ A such that 

Re(A/ , / i )> | |ReA|L | | / | | | | / t , | | . 

We say that a subalgebra A of B(H) is essentially transitive if every nonzero vector 

is essentially cyclic for A. 

Remark 2.5.2. Note that our definition of essentially transitive algebras does not 

coincide with the definition in [12]. In view of the discussion preceding Theorem 2.5.2, 

we required that C is at most one in the definition of essential transitivity, while the 

definition in [12] assumes no upper bound on G. 

According to Definition 2.5.1, every essentially cyclic vector / £ H is also cyclic for 

A, i.e. the orbit {Af | A £ A} is dense in TL. Consequently, an essentially transitive 

algebra is also transitive, as defined in [16]. 
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Theorem 2.5.2 can be restated as the following solution of the "Essentially Tran

sitive Algebra Problem". 

Theorem 2.5.4. An essentially transitive algebra of operators acting on a complex 

Hilbert space H, is weakly dense in &(H). 

Remark 2.5.3. The reader may have noticed that, by Propositions 2.4.1 and 2.2.2, an 

essentially transitive algebra A, acting on a real Hilbert space, still contains a finite-

rank operator in its norm closure. However, in the case of a real Hilbert space this 

is not enough in order to conclude that A is weakly dense in 3(H). A commutative 

algebra J, generated by the matrix 

_ 1 0 J 

is an example of a proper essentially transitive algebra acting on E2. The tensor 

product B("H) $ J is an example of such an algebra acting on H®H. However, the 

existence of a nonzero finite-rank operator in the closure of an essentially transitive 

algebra, implies the following commutative version of Theorem 2.5.4, which holds on 

real or complex infinite-dimensional Hilbert spaces. 

Theorem 2.5.5. A commutative algebra A, of operators acting on a real or complex 

infinite-dimensional Hilbert space, is never essentially transitive. 

Proof. By Propositions 2.4.1 and 2.2.2 the (norm) closure of every essentially tran

sitive algebra contains a nonzero finite-rank operator T. Since TA = AT for every 

A £ A, it follows that the range of T is a nontrivial (finite-dimensional) invariant 

subspace for A, contradicting the. (essential) transitivity of A. • 



Chapter 3 

On Invariant Subspaces of 
Essentially Self—Adjoint Operators 

An application of the main result of the previous chapter fo the algebra generated by 

an essentially self-adjoint operator A yields the existence of nonzero vectors x,y £ H 

such that T(P) = (p(A)x,y) is a positive functioned on the space of all polynomials 

on the essential spectrum of A. This result immediately implies the existence of real 

invariant subspaces for essentially self-adjoint operators acting on a complex Hilbert 

space. Elementary convex analysis techniques, applied fo the space of certain vector 

states, yield the existence of invariant subspaces for essentially self- adjoint operators 

acting on an infinite-dimensional real Hilbert space. 

3.1 Introduction 

The existence of invariant subspaces for compact perturbations of self-adjoint op

erators appears to be one of the most difficult questions in the theory of invariant 

subspaces [13]. The positive results about the existence of the invariant subspaces 

for the Schatten-class perturbations of self-adjoint operators, acting on a complex 

Hilbert space, date back to the late 1950's. For the facts concerning such operators 

43 
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see Chapter 6 in [16], where a brief history of the problem, together with the ref

erences fo the related topics is given. The proofs of those results are based on the 

concept of the separation of spectra. However, Ljubic and Macaev [10] showed that 

there is no general spectral theory by constructing an example of an operator A such 

that a(A\M) = [0,1] whenever M is a nonzero invariant subspace for A. This sug

gests that different techniques might be needed to establish the existence of invariant 

subspaces for essentially self-adjoint operators. 

The fact that the right-hand side of the inequality (2.4.1) depends only on the 

essential norm of the real part of the operator A, suggests that Proposition 2.4.1 might 

have applications to the invariant subspace problem for compact perturbations of self-

adjoint operators. In this chapter we apply Proposition 2.4.1 in order to construct 

positive functionals r(p) = (p(A)x,y) on the space of all polynomials restricted to 

the essential spectrum of A. Finally, in the case when the underlying Hilbert space is 

real, the existence of invariant subspaces for A is established after solving an extreme 

problem concerning certain convex subspaces of vector states. 

Defini t ion 3 .1 .1 . Suppose H is a real or complex Hilbert space. An operator A £ 

J5(H) is called essentially self-adjoint, if 7r(A) is a self-adjoint element in the Calkin 

algebra B(H)IK.(H), where TT: B(H) —> B(H)/JC(H) is the quotient mapping. 

Remark 3.1.1. Clearly, by definition of the Calkin algebra, A is essentially self-adjoint 

if and only if A = 5 + K, where 5 £ B(H) is self-adjoint and K is a compact 

operator. Hence, saying that A is esseutially self-adjoint, is the same as saying that 

A is a compact perturbation of a self-adjoint operator. Note, however, that this is 

false if we replace self-adjoint operators by normal ones. 
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3.2 O n Rea l Invar ian t Subspaces 

Recently V.I. Lomonosov [13] proved that every essentially self-adjoint operator act

ing on a complex Hilbert space has a nontrivial closed real invariant, subspace. We 

give an alternative proof, based on Proposition 2.4.1, and thus introduce the idea that 

will be later generalized in order to yield the existence of proper invariant subspaces 

for essentially self-adjoint operators acting on a real Hilbert space. 

Recall that a real subspace of a complex Hilbert space H is a subset that is closed 

under addition and multiplication by the real scalars. A real subspace M C 7i is 

invariant for an operator A £ B(7Y) if and only \( M is invariant under all operators 

in the real algebra generated by A, i.e. the algebra of all real polynomials in A. 

Proposit ion 3.2.1. Suppose. TC is an infinite-dimensional complex Hilbert space and 

let A be a convex set of commuting essentially self-adjoint operators. Then the set of 

non-cyclic vectors for A is d,ense in Ti. 

Proof. Suppose not; then there exists a unit vector f0 and a positive number r £ (0, I) 

such that all vectors in the set 

s = {fen\ | | /o- / | l<7r^}, 

are cyclic for A. In particular, for every vector g £ H and \\g\\ < 1, there exists an 

operator A € A such that 

Re (A (f0 + jfrg) , -i (f0 - ^g)) > 0, 

or equivalently, 

Re (iA (fo + rfpg) , /o - ^Ftf) > 0. 
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Since A is an essentially self-adjoint operator, if follows that 

||Im/l|L = ||Re(M)|L = Ol 

and consequently the convex set %A = {iA | A £ .A}, satisfies the hypothesis of 

Proposition 2.4.1. Therefore, there exists an element AQ £ A (A0 ^ zl), with an 

eigenvector / i £ 5 . Since the operators in A commute, /i cannot be a cyclic vector 

for A, contradicting the assumption that all vectors in 5 are cyclic for A. • 

Corollary 3.2.2 (V.I .Lomonosov, 1992). Every essentially self-adjoint operator 

on an infinite-dimensional complex HUbert space has a nontrivial ch sed real invariant 

subspace. 

Proof. The commutative algebra A R of all real polynomials in A consists of essentially 

self-adjoint operators whenever A is essentially self-adjoint. By Proposition 3.2.1 the 

set of non-cyclic vectors for AR is dense in 7i. Since for every nonzero vector / £ H 

the closure of the orbit Auf = {Tf \ T £ AR} is a real invariant subspace for A, it 

follows that A has a nontrivial closed real invariant subspace. • 

Remark 3.2.1. If A is a self-adjoint operator acting on a complex Hilbert space H, 

then for every vector f £H and every real polynomial p we have: 

(3.2.1) I m ( K A ) / , / ) = 0 . 

The condition (3.2.1) in fact characterizes self-adjoint operators on a complex Hilbert 

space [9, p. 103]. Roughly speaking, Proposition 3.2.1 and its corollary establish a 

similar fact for essentially self-adjoint operators acting on a complex Hilbert space. 
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3.3 The Space of Vector States 

In the previous section wc applied our machinery only to the imaginary part of an 

essentially self-adjoint operator A. An application to the r > 'it yields the existence 

of "vector states" on the space of all polynomials restricted to the essential spectrum 

of A. Before proceeding, we make the following conventions that hold through the 

rest of this chapter: 

As usual, let % be an infinite-dimensional real or complex Hilbert space. The 

underlying field of real or complex numbers (respectively) is denoted by IF. Sup

pose A £ B(H) is a fixed essentially self-adjoint operator without non-trivial closed 

invariant subspaces and let E denote its essential spectrum. Furthermore, we may 

assume that ||A||ess < 1, and consequently, E C [— 1,1]. Let A C B(H) be an algebia 

generated by A, i.e. A is the algebra of all polynomials p(A) with the coefficients in 

the underlying field F. 

The algebra of all polynomials with the coefficients in F, equipped with the norm 

l|pL = ngc|p(OI, 

is denoted by V(E). 

Definition 3.3.1. Let P c W b e the set of all nonzero vectors x £ 7i for which there 

exists a nonzero vector y £'H satisfying the following inequality for every polynomial 

p £ V(E) 

(3.3.1) Re(P(A)x,y)<\\Rep\\(X1(x,y). 
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Lemma 3.3.1. The set V is dense, in H. 

Proof. Since the operator A has no invariant subspaces the condition of Proposi

tion 2.4.i is never satisfied for the algebra A. More precisely, for every unit vector 

/ o £ H and any positive number 7- £ (0,1) there exists a vector g J_ /0 such that for 

every polynomial p £ V(E) 

^(?(A) (fo + rf^a) ,/o - ^ g ) < | |ReKA)L s (l - fo||2). 

Clearly, for every polynomial p £ V(E) we have 

\\^P(A)\LS = \\(^P)(A)\LS = \\^P\L-

The vectors 

x = fo + 7^!f9 and y = fo- ^f^<7 

satisfy the inequality (3.3.1). Letting 7' —»• 0, and replacing the vector a; by As, where 

A > 0, implies the required density of V. • 

Lemma 3.3.2. For fixed vectors x,y £ H define a linear functional r : V(E) —• F 

r(p) = (p(A)x,y). 

Then r is a bounded positive functional on the space V(E) if and only if the following 

inequality is satisfied for every polynomial p £ V(E): 

R&(p(A)x,y)<\\Rep\\oo(x,y). 

Proof. Suppose that r is a positive functional on V(E). Then Re(p(A)x,y) = 

((Rcp)(A),t;, y). Since HReplJ^ — Rep is a positive polynomial on E, we have 

r( | |Rep|L - Rep) = ((\\R*P\L ~ ^p)(A)x, y) > 0, 
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or equivalently, 

Re(p(A)x,y)<\\Rcp\\co(x,y). 

Conversely, suppose r is not a bounded positive functional on V(E). Then either 

there exists a real polynomial p such that Im (p(A)x,y) ^ 0, or (p(A)x,y) < 0 for 

some positive polynomial p £ V(E). After replacing p by ±ip if is easy to see that 

Im (p(A)x,y) ^ 0 contradicts (3.3.1). Similarly, for a positive polynomial p we have 

I I I I P I L - P I L < I I P I L -

Therefore (p(A)x,y) < 0 and (x,y) > 0 imply 

({\\p\L-pWhv) > \\p\Li*,v) > IIIIPIL-PU9^). 

contradicting (3.3.1). Finally, in the case when (x,y) < 0 the inequality (3.3.1) fails 

for the polynomial p = —1. • 

Definition 3.3.2. The set of all bounded positive linear functionals on V(E) is de

noted by T. For each vector x £ H define the set 

% = {y£H\ r(p) = (P(A)x,y)£T}. 

Lemma 3.3.3. For every vector x £ H, Tx is a closed convex subset ofH. 

Proof. Convexity of the set % is obvious. It remains to prove that the. complement of 

Tx is an open subset of H. If y £"% then there exists a positive polynomial p £ V(E) 

such that (p(A)x,y) ^ 0. In that case there exists a weak neighborhood W of y such 

that (p(A)x,z) ^ 0 for every z £ W. Consequently, the complement of the, set T,. is 

a (weakly) open subset of H. • 

file://{//p/L-pWhv
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Definition 3.3.3. A positive functional r £ T is called a state if ||r|| = 1, or equiv

alently r(l) = 1. The space of all states on V(E) is denoted by T. Similarly, for 

every vector x £ H the set Tf. is defined by 

Tx' = {y£H\ r(p) = (p(A)x,y)£T'}. 

Remark 3.3.1. From Lemma 3.3.1 and Lemma 3.3.2 it follows that the set V of all 

vectors x £ H for which the set Tx contains a nonzero vector is dense in H. If x and y 

are nonzero vectors and y € % then (x,y) > 0. However, since a positive functional 

always attains its norm on the identity function, the equality (x,y) — 0 implies that 

r(p) = (p(A)x,y) — 0 for every polynomial p £ V(E), contradicting the fact that the 

operator A has no invariant subspaces. Therefore, the set Tf. is nonempty for every 

vector x in a dense set V C H. In fact, for every vector x £ V the set Tf. is the 

intersection of the cone Tx and the hyperplane M.x = {y £ H \ (y,x) — I}. Note 

also, that for nonzero vectors x £ V and y £%, we have: (x,y)~ y £ Tx. 

By Lemma 3.3.3 the set Tf. is a weakly closed convex subset of H. We show that 

the set Tf. has no extreme points. 

Lemma 3.3.4. For every vector x £ H the set Tx has no extreme points. 

Proof. Suppose y0 is an extreme point in TJ.. By definition of the set Tf,, the functional 

r'(p) = (p(A)x,y0) is a state on V(E). Hence, 

"(p) = T( ( I - t)p(t)) = (p(A)*, (i - A*)yo) 

is a positive functional on V(E). Consequently, 

y, = ((\-A)x,yo)-\l-A*)yo£Z. 
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Similarly, 

y-2 = ({l + A)x,yo)-l(l + A*)y0£T;. 

From 

„ ( ( l - ^ ) s , t t > ) „ , ((l + A).r,j/0) 

we conclude that y0 — y\ = 2/2- Therefore, (1 — A*)y0 — ((1 — A).e, y) yo implies that 

T/O is an eigenvector for A*, contradicting the nonexistence of invariant subspaces for 

the operator A. • 

Corollary 3.3.5. For every vector x £ H the set T[ is either empty or unbounded. 

Proof. By the Krein-Milman Theorem the set ZJ cannot be weakly compact due fo 

the lack of extreme points. • 

Although the set Tf. is unbounded for every vector x £ V, the following lemma 

shows that it contains no line segments of infinite length. In particular, TJ is a proper 

subset of the hyperplane 

Mx = {y£H\ (y,x) = l}. 

Lemma 3.3.6. Every line segment in Tf. has a finite length. 

Proof. Suppose the set Tf, contains a line segment of infinite length. Then there exists 

a vector y £ Tf., and a unit vector u J_ x such that y + Xv £ TJ for every A > 0. For 

every power k = 0 , 1 , . . . , and every vector z £ Tx, we have: (Akx, zj < 1. Applying 

this inequality to a vector y + Xu and letting A —>• co implies that (Akx,u) = 0, 

contradicting the fact that x is a cyclic vector for A. • 
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3.4 Invariant Subspaces on a Real Hilbert Space 

In this section we use vector states in order to establish the existence of invariant 

subspaces for essentially self-adjoint operators acting on an infinite-dimensional real 

Hilbert space. The invariant subspace problem for essentially self-adjoint operator 

will be translated info an extreme problem and the solution will be obtained upon 

differentiating certain functions at their extreme. Once again we will employ the 

differentiability of the Hilbert norm. We start with the following lemma. 

Lemma 3.4.1. Suppose x and y are any vectors in H such that Re(x,y) = 1. Fix 

a nonzero operator T £ B(H) and let a = (||T|| ||a;|| H2/H)""1. Then for every vector 

z £H the function '0(A): (—a,a) —> [0,oo), defined by 

'i/»(A) = | (Re ( ( l + AT)y,.T))"1(H-AT)7/-^| 

is difjereniiabtc on (—a,a). Furthermore, if ib' denotes the derivative of yj then 

7//(0) = 2Re(Ty,y - z - (||y||a - Re(y,z))x) . 

Proof. Since for A £ (—a, a) we have Re((l + XT)y,x) > 0, it follows that the func

tion 1/) is well defined on (—a, a). In order to compute its derivative ^'(0) first apply 

the polar identity to ?/> and then use the product and chain rules for differentiation. 

A straightforward calculation yields the required formula. • 

Definition 3.4.1. For every vector a; £ V, define Px: H —> Tx' to be the projection 

to the set Tx, i.e. for every z £H 

\Pxz - z\\ = M\\y - z\ 
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Remark 3.4.1. Since for a; £ V the set Tx is nonempty, closed, and convex if follows 

that the projection Px is well defined on the whole space H. 

Lemma 3.4.2. // x £ V then for every vector z £H and every power k = 0 , 1 , . . . , 

the following condition is satisfied: 

Re(Ak((\\Pxzf - Re(Pxz,z))x + (I - Px)z), l\z) = 0. 

Proof. Let T = A*k, and fix a vector y £ V£. The function <1>(A): (-1,1) —> H is 

defined by 

HX) = ((l + XT)y,x)-"{l + XT)y. 

The same argument as in the proof of Lemma 3.3.4 shows that <I> is well defined and 

$(A) £ TJ for every A £ (-1,1). 

Choose any vector z £ H and consider the function ij)(X): (~~L, 0 —"* [0>°°), 

defined by 

7/,(A) = | |<&(A)-* | | 2 . 

By Lemma 3.4.1 the function ?/> is differenfiable, and 

</>'(0) - 2 Re (Ty, y - z - (||y ||2 - Re (y, z))x) . 

By definition of the projection Px the function ip attains its global minimum af 

the point A = 0 whenever y — Pxz. Consequently, i/>'(0) = 0 for y = PJtz, which 

completes the proof. • 

A remarkable fact is that Lemma 3.4.2 holds on a real or complex infinite-

dimensional Hilbert space. It is now easy to establish the existence of proper invariant 

subspaces for essentially self-adjoint operators acting on a real Hilbert space. 
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Theorem 3.4.3. Every essentially self-adjoint operator acting on a real infinite-

dimensional Hilbert space H has a nontrivial closed invariant subspace. 

Proof. Suppose A is an essentially self-adjoint operator acting on a real infinite-

dimensional Hilbert space H. We may assume that ||A||ess < 1. If the operator A has 

no nontrivial invariant subspaces then wc can apply Lemma 3.4.2 and Lemma 3.3.6. 

We will show that this contradicts the non-existence of invariant subspaces for A. 

On a real Hilbert space Lemma 3.4.2 implies that for every k = 0 , 1 , . . . : 

\\e{Ak((\\Pxz\\2~Re(Pxz,z))x + (I-Px)z),Pxz) = 

(A*((||P,2||2 - Rc(Pxz,z))x + (I - Px)z),Pxz) = 0. 

Since Pxz ^ 0 it follows that 

ys = (\\Przf - Re(Pxz,z))x + (/ - Px)z 

is a non-cyclic vector for A whenever x £ V. The proof is therefore completed if we 

show that t / . ^ 0 for a suitable choice of the vector z £H. 

Recall that the set Tx lies in the hyperplane Mx = {y £ H \ (y,x) = 1}. By 

definition of the projection Px, the vector yz = 0 for z £ Mx if and only if z £ Tx. 

Lemma 3.3.6 implies that Tx is a proper subset of the hyperplane Mx and thus 

completes the proof. • 

Remark 3.4.2. Theorem 3.4.3 yields the existence of invariant subspaces for an es

sentially self-adjoint opercitor A acting on a complex Hilbert space, whenever the 

operator A has a matrix representation with real coefficients. Although considerable 

efforts have been made to reduce the general complex case to the real one, so far all 

such attempts have been unsuccessful. 

file:////Przf
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We suggest that further research in this direction is likely going to reveal additional 

properties of essentially self-adjoint operators and thus contribute to our understand

ing of how such operators act on the underlying Hilbert space in terms of invariant 

subspaces. 
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