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0, God
Thy sea is so great
and my boat is so small

(The Breton Fisherman’s Prayer)
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Abstract

A fast accurate computation of nonlinear wave-wave interactions is needed for prac-
tical wave modeling. For all modern wave models such as WAM, SWAN and WAVE-
WATCH III, wave-wave interactions are computed using the Discrete Interaction
Approximation (DIA). It is the centre of these models. While the DIA is fast, it is
well know that it is not accurate. An accurate solution was proposed by Webb, Tracy
and Resio (WRT) some years ago. Unfortunately, the WRT algorithm is still much
slower than the DIA, and cannot be used operationally.

Based on Tracy and Resio’s work, this thesis develops a new method which approx-
imates the dominant contributions to the calculation of the total nonlinear wave-wave
interactions. This method is denoted the Advanced Dominant Interaction (AvDI)
method. This method saves computational time by choosing sets of interacting waves
that account for the most important portion of the nonlinear wave transfer, so that
it isn’t necessary to integrate the contributions from the entire spectrum of possible
wave-wave interactions. Taking account of the dominant transfer along wavenumbers
and angles of interactions, the AvDI method can reduce the required computation
time and space sufficiently that it can be implemented for practical wave modelling.

The AvDI method was implemented in an operational wave model and tested for
ideal wave spectral cases and for a real storm. WAVEWATCH III wave model was
chosen as a test-bed for implementation of the AvDI method. Fetch- and duration-
limited growth tests were used in the ideal cases. Comparisons with waves observed
during hurricane Juan constitute the real storm test. Compared to DIA results show
that AvDI method can be used as an alternative competitive method to compute the
nonlinear wave-wave interactions.



Chapter 1

Introduction

1.1 Background

Waves are generated by the wind, formed as small wavelets due to variations of air
pressure over the sea surface. The wind pushes against the sides of the wavelets,
transferring energy more rapidly and causes the wave growth to accelerate. As the
waves continue to grow, a roughened sea state is formed. Waves become higher and
steeper until reaching a limiting point, after that individual waves break to form white
caps. The ‘fully-developed’ limit to wave growth occurs approximately when the ratio
of wave height to wave length (wave steepness) is 1 to 7. Waves continue to travel
until reaching a boundary, or entering shallow water, where they are influenced by
the bottom and modified, possibly with a loss of energy due to friction. If the wind
direction changes, new waves are formed and travel in this new direction.

There are three factors that influence the generation of wind waves, i.e.
e wind velocity,
o fetch distance that wind blows across the water, and

e time or duration over which the wind blows.



WIND
—_—

~—— STORM GENERATION REGION ——
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small roughened  fully developed swell surf
wavelets sea sea

Figure 1.1: Wind wave growth (after Earle & Bishop, 1984).

Figure 1.1 depicts wave growth from ripples to full development, propagation as swell,
dissipation and breaking on distant beaches as surf.

The correlation of wind speeds and ocean wave heights has been known for many
years. It dates back at least as far as 1805, when Sir Francis Beaufort introduced
a chart, the Beaufort scale, for this purpose. An interesting website which presents
more information about the Beaufort scale can be found from Wikipedia contribu-
tors (2001). Initially the function of such a chart was to help sail boat captains to
determine whether to add or take in sail, based on observations of the sea.

After sails were replaced with engines, people still used the Beaufort scale to esti-
mate the sea conditions, for a given wind speed. In modern forecasting the Beaufort
scale has been replaced, but it is still useful to provide an intuitive understanding of
the ocean conditions in the absence of instrumental measurements. A modern version
of the Beaufort scale is given in Table A.1, Appendix A. The table shows the relation
between wind speed and wave height, as well as providing a visualization of matching
sea surface conditions.

The modern investigation of ocean surface waves started with a pioneering study



by Sverdrup and Munk (1947). A discussion of their work also can be found in
Kinsman (1965). Sverdrup and Munk were the first to develop the wave-forecast
technique, expressed in terms of significant wave height. Their work and Bretschnei-
der’s work produced a wave model, commonly called the SMB (Sverdrup, Munk and
Bretschneider) model. The SMB model predicts the significant wave height Hy/3 and
significant wave period T3 from known storm conditions, i.e. wind velocity U, fetch
distance I’ and storm duration ¢t. Predictions are made empirically using graphs of
all the available data in terms of the dimensionless ratios gF/ U2, gt/U, gH/U? and
9T /U, where g is the gravitational acceleration, U is the estimated wind velocity, F’
is the fetch length, ¢ is the wind duration, T is the significant wave period and H is
the significant wave height. A detailed formulation and discussion of this model is
given by Komar (1976). However, since the SMB method only used local data, it was
most effective for local forecasts.

More than half a century has passed since then and the study of ocean surface
waves has greatly advanced. The current numerical wave models, supported by many
fundamental studies, enable us to compute ocean surface waves on a global scale with
sufficient accuracy for practical purposes. More details about the development of the
study of ocean surface waves are presented by Komen et al. (1994) and Mitsuyasu
(2002). The latter paper gives a summary of this development which can be seen
in Table B.1, Appendix B. However, the physical processes controlling the energy
balance of ocean surface waves are still not completely understood.

Modern wave modelling demands accurate results. An accurate computation of
nonlinear wave-wave interactions is important. Good results are needed for accurate
weather forecasting and offshore engineering projects in coastal waters of Canada’s

three oceans; Atlantic, Arctic and Pacific.



1.2 The Nonlinear Term

Modern wave models are often based on the energy balance equation. Wind-generated
waves are described by the energy spectrum, E(f,8), which obeys an energy conser-
vation relation, whereby energy is input to the spectrum by wind and removed by

wave-breaking dissipation,

dE(f,0) _
— o =St - (1.1)

In deep water, S;,; can be represented as:
Stat = Sinp + Sds + Snl4 (12)

where S, is the energy input by wind, Sy, is the energy dissipation by white-capping
and wave breaking, and S,;4 represents the nonlinear quadruplet wave-wave interac-
tions.

The nonlinear interactions play an important role in the evolution of wind waves,
representing a mechanism for shifting wave energy to lower and higher frequencies
within the spectrum. Phillips (1960), using high order analysis, concluded that there
are interactions between spectral components which cause transfer energy between
the components. Figure 1.2 depicts the behaviour of nonlinear transfer for young and
old seas.

In shallow water, the interactions may involve three waves in triad interactions,
by which two waves interact nonlinearly and transfer energy to a third component.
Hasselmann (1962) reported that this kind of interaction is insignificant in deep water.

In deep water, nonlinear interactions describe the resonant exchange of energy,
momentum, and action between four spectral components with wave number vectors
ki, ks, ks, and k4 and corresponding frequencies wq, wsy, ws, and w4 respectively.
This set of four waves is called a quadruplet. This thesis will discuss this type of
interaction only.

The basic equation describing Sni4 is the Boltzmann integral or kinetic equation,
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Figure 1.2: The energy balance at different sea states (after Komen et al., 1994).



proposed by Hasselmann (1962). He developed a perturbation method for the non-
linear resonant interaction of waves and found that energy exchange could happen

when the resonant conditions are satisfied, i.e.

w1 +wr=w3+wy (14)

He concluded that for wind-generated seas, a dominant energy flux is expected from
high to low wave-numbers in the initial period of development, when most of the
energy is concentrated in the high wave-number region. As the peak migrates to
lower wave-numbers, an increasing tendency for energy flux in the reverse direction
develops, from low to high wave-numbers.

In 1978, Hasselmann’s equation for nonlinear wave-wave interactions was studied
by Webb numerically. He inferred that the integral consists of two terms, the pumping
term and the diffusive term. Webb also introduced a transfer function 7'(k;,ks) to
simplify the triple integrals. However, the integral still required extensive in terms of
required computing time.

Hasselmann and Hasselmann (1981) developed the pioneering systematic compu-
tation of Spj4. They introduced symmetrical variables that avoid repeated calcula-
tions. They could speed up the computation relative to previous computations by
the order of a factor 30-100.

Tracy and Resio (1982), continuing Webb’s work, developed a simpler and more
efficient integration process by utilization of a geometrically spaced polar grid over
the spectral region. This special grid allows the loci and the coefficients inside the
integrand to scale by various multiples of the geometric scaling factors. Only basic
coefficients are computed. All other related computed values are products of the basic
coefficients times scale factors.

Webb’s transformation simplified the Hasselmann equation and Tracy and Resio’s
method increased computational efficiency significantly. The combination of these

methods is called the WTR (Webb Tracy-Resio) method. Further review on this



method will be presented in Chapter 3.

As mentioned earlier a fast accurate technique for computing the nonlinear term
is an important requirement for systematic studies of the nonlinear interactions or
for operational applications. However, efficient computation of the nonlinear term is
hampered by the complexity of the functional form and its computation is several
orders of magnitude more expensive than all other terms in Eq.(1.2).

Hasselmann and Hasselmann (1985) used a symmetrical treatment, and contin-
ued to reduce the computing time. Hasselmann et al. (1985) developed four different
parameterizations to approximate the exact solution of the nonlinear interaction ex-
pression. The Discrete Interaction Approzimation, DIA, their fourth parameteriza-
tion method, gives the best results. Therefore, they proposed the discrete-interaction
parameterization to represent the full Boltzmann integral, based on two elementary
interactions only. Chapter 3 will discuss this method in more detail.

The DIA, which dramatically increases the computational speed, enabled the de-
velopment of third generation wave prediction models such as WAM and SWAN.
However, DIA has a number of shortcomings (Van Vledder, 2000):

e DIA compares poorly with full integrations of Sy;4 for many types of spectra.

e DIA’s estimated spectral width is too large compared with measurements and

full integrations of Sy4.

e DIA produces too much transfer towards higher frequencies (Figure 3.6, Komen
et al., 1984), which has impact on the tuning that has to be imposed on the

source terms for wind input and dissipation.

Since DIA’s development, improvements to the nonlinear term computation method

have been attempted, consisting of three major approaches:
o more efficient calculation of the full S,;4 expression
e enhancement of DIA, and

e new approaches.



Resio and Perrie (1991) used selected scaling properties and symmetries of the
nonlinear energy transfer integral to construct an integration grid to evaluate the
Boltzmann complete integral. Lin and Perrie (1999) developed a formulation to rep-
resent the complete integral which is called the Reduced Integration Approrimation,
RIA. Their work is based on an analysis of the main resonance domain which reduces
the six -dimensional integration to~a quasi-line integral.

The previous paragraph shows examples of some works that have been done to
compute the full integral in a more efficient manner. The next paragraph is going to
show some examples of approaches which try to improve the DIA method.

The main idea of these approaches is to replace the full nonlinear integral Sy in
the kinetic equation that describes a continuum of four-wave resonant interactions
with a sum of a relatively small number of terms for a particular set of resonant
quadruplets. Extending the DIA term with another elementary interaction term,
Hashimoto et al. (2002) proposed the Multiple Discrete Interaction Approzimation,
MDIA. Polnikov and Farina (2002) found several simple configurations which are
more efficient than the original DIA. They called their method the Fast Discrete
Interaction Approzimation. The original DIA has constant parameters throughout
the spectrum. Tolman (2004) suggested that these parameters should be allowed to
vary in spectral frequency f. This method is called the Variable Discrete Interaction
Approzimation, VDIA. It less accurate but cheaper than the MDIA.

A new approach was developed to improve the computational efficiency of the non-
linear term. This method solves the nonlinear interaction problem from a different
point of view. Krasnopolsky, et.al. (2002) developed a neural network methodology
to compute the nonlinear interactions. They stated that the nonlinear interactions
constitute a continuous mapping from an initial input spectrum through an interac-
tion process to an output spectrum. A neural network that is a generic and accurate
tool for modelling complicated input-output relationship is trained using given inputs
and outputs. Derived coeflicients from the training are used as proper parameteriza-

tions for the mapping. This method can improve the performance by ten times and



higher, but representative training data must be constructed first.

A full six-dimensional integration is expensive for practical wave model forecasts.
The present study attempts to speed up the calculation of the full Sp4 expression
using the WTR formulation so it can be used for practical purposes. It is believed that
the key to speeding up this integration is to reduce the number of integrations. As will
be discussed in detail below, that the integral has two components; one component is
a function of time and the other is not. This thesis suggests setting up the spectral
grid first and keeps the value of the independent component at initial time for the
next step in the computation. We then find a set of (ki,k;) that gives maximum
transfer. The complete integral is replaced by representative integrals from the sets
of contributions that produce maximum transfer, multiplied by an empirical scaling

magnification factor.

‘This procedure will reduce the computation time needed for the whole integration. . ..

This method can be two orders of magnitude slower than DIA, but it still takes
account of the loci of resonance. As an ultimate test, this formulation is installed in

a wave model for practical storm wave simulations.

1.3 Objectives

The main objective of this thesis is to develop a new method to improve the computa-
tion of the nonlinear wave-wave interactions. Its purpose is to reduce the computation
time while yielding reasonable results, so that the new formulation can be integrated
into a wave model for practical storm wave simulations.

Secondly, a set of programs is built, based on the new method, and installed into
an existing modern wave model (WAVEWATCH III). The new program becomes
subprogram of the wave model and is modified to suit the main WAVEWATCH II1
program.

Thirdly, tests are conducted to document the performance of the new wave model,

containing the new method for the nonlinear term. There are three test cases. The
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first test concerns a defined input or ‘snapshot’ spectrum. This test must be done
before installing the new program into the wave model. After this test is successful,
the new program is ready to be installed in the wave model. The second test case
is to implement the modified wave model into a square box sea, and perform fetch-
limited growth experiments as prescribed in the SWAMP project. The third test case
implements the new model for a real storm. We study hurricane Juan which made
landfall in Halifax in September 2003, during the construction of this thesis, as a

category 2 storm.

1.4 Overview

This thesis consists of seven chapters. The background of the project is presented in
-Chapter 1. Chapter 2 discusses wave theories in general, followed by discussion of
nonlinear wave-wave interactions in Chapter 3, which also covers the basic method-
ologies of previous works on the nonlinear term. Chapter 4 is dedicated to presenting
the main work of the thesis, i.e. development of the new method to compute the
nonlinear transfer term. The next chapter, Chapter 5 discusses different kinds of
wave models and the process of installation of the new method in a wave model.
Results of the application of the new method for simulation of storm waves during
hurricane Juan are presented in Chapter 6. Finally, conclusions and recommendation

are presented in Chapter 7.



Chapter 2

Surface Wave Formulations

2.1 Linear Waves

In the ocean, waves have differing characteristics, from simple sinusoidal waves to
complex C-choidal or Trochoidal shapes, with different amplitudes, frequencies, and
directional distributions. These diversities create difficulties in the analysis of wave
behaviours. Waves also break and loose energy due to friction and turbulence. To
assist in the analysis of wave characteristics, we are going to analyse waves in their

simplest form using a number of assumptions as follows:

e waves have small amplitude

water is incompressible

e flow is irrotational and inviscid

two-dimensional flow (the component of acceleration along the y-axis is assumed

to be smaller than the other two components).

The theory that was developed using these assumptions is referred as small amplitude

theory or linear theory or Airy wave theory.

11
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We start with the continuity equation for incompressible two-dimensional flow,

which is stated as
du Ow B

I

For an irrotational flow, a velocity potential ¢ exists, that gives

0. (2.1)

__9¢ __9¢
u=—a- and w=—7". (2.2)
Substituting Eq.(2.2) into Eq.(2.1) yields
Ap=0 (2.3)

which is Laplace’s equation, where

2 2
PN

) + 3.2 (2.4)

Equation (2.3) is a partial differential equation which must be solved, subject to
boundary conditions. Before we solve Eq.(2.3), we recall the equations of motion in

the  and z directions, which are given as

ou ou ou 10P

ow ow ow 16P

Assuming that the only external force acting on that system is the gravitational force

per unit mass, then we may write Fi(z) = 0 and F5(2) = —g. The gravitational force
is also derivable from a potential field, so we can write —¢ = —%—9;2. With these

assumptions and using Eq.(2.2), the equations of motion, Eq.(2.5) and Eq.(2.6), can
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be stated as
5%¢ ou ou  10P
_ 7 - 2.7
otox tu Yoz W Yor T p Oz 2.7)
%9 ow ow _ 10P 9(gz)
— — . 2.8
O0toz o Oz w 8z p Oz 0z (2:8)
Integrating Eq.(2.7) and Eq.(2.8) with respect to = and z respectively yields
9¢ o, P
s 50+ )+~ = Qu(e) (2.9
o} P
o+ 500+ T gz = Qo). (2.10)
Subtracting Eq.(2.9) from Eq.(2.10) gives
92z = Qa(z,t) — Q1(z,1) (2.11)

which suggests that Q) is a function of ¢ alone. Thus @ = Q»(t) and hence @;(z,t) =
Qs(t) — gz. Therefore, Eq.(2.9) and Eq.(2.10) reduce to the single equation
o9

P
—E+(2Hﬂ+;+w=%@ (2.12)

which is Bernoulli’s equation in two-dimensional flow.

For the steady state case, %t‘é = 0, Eq.(2.12) reduces to
§(u + w®) + > + gz = constant . (2.13)
Without loss of generality, Q2(t) can be combined with the velocity potential ¢(z, 2, t),

so that Eq.(2.13) becomes

dp 1, , oy P _
a—l-é(u +w)+;+gz—0. (2.14)
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Figure 2.1: Schematic diagram for linear wave theory.

The small amplitude wave theory is based upon the further assumption that all mo-
tions are infinitely small, which enables us to neglect the square of the velocity com-
ponents, and yields

——+§+gz=0 (2.15)

which is the general equation of motion applied in the development of the small
amplitude theory of water waves.

The Laplace’s equation, Eq.(2.3), is the differential equation for water waves.
Variables and coordinates are defined in Fig. 2.1. The equation is to be satisfied in

the region —d < z <7 and —o00 < = < 0o subject to the boundary conditions

_ 99 _ -

w = 5 0 on z=-d and (2.16)
109 _

n= p (_Bt) on z=0. (2.17)

The method of separation of variables is a powerful tool for solving Laplace’s
equation. More details can be found in Rahman (1991). An alternative solution is

obtained by assuming a progressive wave solution of the form ¢ o e!**=7%)_ Thus we
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may write
¢ = Z(2)R{e*=—} (2.18)

where R, represents the real part of the complex solution. Therefore, we can rewrite
Eq.(2.18) as
¢ = Z(2) cos(kz — ot) . (2.19)

Applying this solution in Laplace’s equation, we get

72" -kKZ =0 (2.20)
which has the solution,
Z = Ae** + Be™ . (2.21)
Therefore
¢ = (Ae** + Be ™) cos(kz — ot). (2.22)

The boundary conditions to be satisfied by Eq.(2.22) are Eq.(2.16) and Eq.(2.17).
Using Eq.(2.16), we obtain

Ae7F + BeFd =0
A = Be*,

Then Eq.(2.22) becomes

¢ = (Be®™e** 4 Be™%) cos(kz — ot)
= Beld{ek@+2) | o=@} cog(kz — ot) . (2.23)

Applying Eq.(2.17), we get

B
n= {ekd{ekd + e Y sin(kx — ot) . (2.24)
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Defining
A= &ekd(ekd + e~k (2.25)
g

where A is the amplitude of the wave, then
n = Asin(kz — ot) . (2.26)

Consequently, we can write Eq.(2.23) as

Ag ek(d+z) + e—k(d+z)

¢ R S, cos(kz — ot)
Agcoshk(d+ z
= %W cos(kx — ot). (2.27)

With this velocity potential, the associated physical quantities can be written,

1[4
7= E <§>z=0

e wave elevation

= Asin(kz — ot) (2.28)
¢ horizontal velocity component
9¢
YT T
_ Agkcoshk(d+z) .
i —— sin(kz — ot) (2.29)
o vertical velocity component
__%
T 9z
_ _Agksinhk(d+2) e on) (2.30)

o cosh kd
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e pressure
9¢
P=rpe — o2
coshk(d+z) .
= kit Selllieds — — . 2.31
pAg i id sin(kz — ot) — pgz (2.31)

A descriptive book about waves, with minimum mathematical description, can be
found in Bascom (1964).

2.2 Group Velocity

If we consider two waves moving in the positive z-direction, having equal amplitudes

and phase, thus

nr = Asin(kiz — o1t) + Asin(kex — 09t) (2.32)
=2A cos[%(kl —ky)z — %(01 — 09)t]

x sin[—;—(kl ko) — —;—(01 +aa)f]. (2.33)

To determine nodal points which are located by finding the zeros of the cosine factor

in Eq.(2.33), we may write,

cosf =0

1 1
5 (ki = kp)z = 2(01 — o)t = (2n + 1)% n=0,1,2,3,... (2.34)

Thus

_[(o1—02 2n+ D)m
Tnode = (kl — k2> t+ kl — k2 . (235)
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As can be seen, the position of all nodes is not stationary, rather it is function of

time. At ¢ = O there will be nodes at

_(2n4+ D7

noae — = M ’2737"'
Tnod kl—kg n 0,1

The speed of propagation of these nodes is called the group velocity, which is given
by

d 01— 09

Co = g (Emate) = T—- (2.36)

do

As 0, approaches 03, we can rewrite Eq.(2.36) as C, = .

In terms of wave phase velocity C, C, can be stated as

d(kC
= (dk )
dcC
=C =+ kﬁ' and

c= \/%(tanh kd)V/?

% = \/_(_](—%)k"'g/z(tanh kd)'/?

+ \/%(tanh kd)~Y% d él-sech 2kd

dC 1 /g 1 /g sech 2kd
P 1 /9 12 . 1 /9 1/2
- 2\/; (tanh kd)"/2 + 2\/; (sanh k) kT
1. ¢ 1
- o Sha— L
5”5 ihkd cosh kd
_ 1o O 2kd theref
= T2Y T 2 sinh2kd eretore
dC
Cy=C+h
1. ¢ 2%d
=C - = -
50+ 3 sahoka

_ ¢ 1+ 2kd 2.37
2 sinh2kd / ° (2.37)
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For shallow water, kd — 0 and Cg = C. For deep water kd — oo and Cg =~ %C’.

2.3 Wave Energy

The total energy of a progressive wave is the summation of its potential energy and
kinetic energy. The potential energy is the height of the column of water when a wave
form is present minus the state when there is no wave. We shall first compute the
potential energy when there is a wave form, PF;. The potential energy of a column

of water with d + 7 height, dz length, and one unit width is

A(PE)) = (height to centre of gravity) x gAm

«PE) = (57 apld+ 1) ds

2
= @pg dz. (2.38)

Using n = Asin(kz — ot), the average potential energy per unit surface area can
be denoted

pg t+T pz+L .
PE; = —
_ pgd®  pgA*
=S+ 5 (2.39)

The potential energy in the absence of a wave can be stated as

pg t+T :z-+-Ld2

PEy, = —

2 oL T . ‘/z‘ dxdt
_ r9d

; (2.40)



Thus, the average of total potential energy is

PE = PE, — PE,
pgA?
—
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(2.41)

The kinetic energy of a small element of water with dz height, dx length, and one

unit width, and with velocity components « and w is

d(KE) = %(u? +w?) dm

1
= 5(11.2 +w?)p dzdz.

Thus, the average of kinetic energy is

p [HT (el =0
KE = —— .
2LT/t /a: /:_d (u® + w*)p dzdzdt

(2.42)

(2.43)

Using the velocity components compatible with the progressive wave n = Asin(kz —

ot), we get

pgA?

KE = 1

Therefore, the total energy is given by

2
E:PE+KE='092A .

(2.44)

(2.45)
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2.4 Dispersion Relation

For small amplitude waves, the vertical velocity component w is equal to the rate of

change of the water surface at any point. Thus

_dn_on . On

Y= T e Ve

Neglecting the second order term on the right, we get

on
w e on z=0.
Since w = —%’, hence
on _ _0¢
ot 9z
on  0¢

Since the dynamic boundary condition is given by

1,84

=228 _ 2.47
then we can rewrite Eq.(2.46) as

0%¢  9¢

Fr) + 95; =0 at z=0. (2.48)

Considering a progressive wave with a velocity potential given by

_ Agcoshk(d + 2)

¢ o cosh kd

cos(kz — ot)
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we obtain,

¢ coshk(d + z)
__ 2) _ ot (249

e Ago P cos(kz — ot) (2.49)
8¢  Ag’ksinhk(d + 2)

— ot). 2.50
g@z o cosh kd cos(kz — ot) ( )

Substituting these values into Eq.(2.48) at z = 0, yields
0® = gktanh(kd). (2.51)

This relation is well known as the dispersion relation. Since o = kC, Eq.(2.51) may

be written as
c?= %tanh(kd). (2.52)

With o = %" and k = 27”, the dispersion relation may be rearranged to give

L= ﬁ tanh(#).

o (2.53)

2.5 Wave Height

We have discussed regular waves whose properties are the same from one cycle to
the next. In the real ocean waves are not regular, in the sense that the ocean sur-
face is composed of waves moving in different directions, with different amplitudes,
frequencies and phases. In characterizing ocean waves, wave height is important.
There are several wave height definitions, but Hy /3 (or H,), significant wave height
and, H,,,,, maximum wave height are the most popular wave height definitions. If
there are N wave heights measured at a certain point, and we arrange them from the

largest to the smallest, assigning numbers 1 to N, then H/3 or H; is defined as the



23

average of the first N/3 highest waves. Mathematically this can be stated as

3 N/3
Hs = H1/3 = N EH, (254)

i=1

The root-mean-square (rms) wave height is defined as

(2.55)
The relation between H,,,, and H,,, is given by (Longuet-Higgins, 1952)
i [\/E—JV + %J : (2.56)
2.6 Wave Spectra
A pure sinusoidal wave (Figure 2.2a) can be stated as
n=Acos(ot—kz) or np=-Acos(ot—¢). (2.57)

The actual ocean consists of many sinusoidal waves with many frequencies o, am-

plitudes A, and phases €,. Superimposing all these waves gives

oo
n= Z A, cos(ont — £5) (2.58)

n=0
This represents a random wave, and its plot can be seen in Fig. 2.2b. If the wave is
composed of the sum of sines and cosines and has a fundamental period T, it can be

expressed as

o
n= Z(an cosnot + b, sinnot) (2.59)

n=0

where o = 27/T. This wave is called an irregular wave, as shown on Fig. 2.2¢c.
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n
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(a) regular wave
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(b) random wave
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\/\/ \/t

(c) irregular wave

Figure 2.2: Sample of various wave profiles as functions of time (after Rahman, 1995).

Plotting n against ¢ is not really helpful because knowing n at any time is not
necessary. It is more useful to plot the amplitude A,, against o,,. This plot is called a
discrete amplitude spectrum (Fig. 2.3a). However, if n — oo, a continuous amplitude
spectrum is achieved, as shown on Fig. 2.3b. Another spectrum is found if we plot
A2/2 against 0, which results in a discrete energy spectrum (Fig. 2.3c). When
n — 00, a continuous energy spectrum yields Fig. 2.3d. This curve is commonly
called the energy density spectrum, because the area under this curve represents the
total energy of the wave. Figure 2.4 illustrates wave spectra which are associated with
types of surface waves, the nature of their displacing forces, wavelengths, frequencies,
and the relative amounts of energy. This kind of graph can be used to help harvesting
energy from the sea. A brief discussion about wave energy conversion can be found
in Brooke (2003).

Fourier series can be defined if 7(t) is a continuous function defined over d <t <
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Figure 2.3: Plots of various spectra (after Rahman, 1995).
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Figure 2.4: Wave spectra and types of surface waves (after Brown, et al., 1989).
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d + 2p where 2p is the period of function 7(¢). Then n(¢) can be expressed as

- ¢
n(t) = + Z <an cos — + b, sin %) (2.60)
=1
where
1 ot t
a, = —/ n(t) cos gt = 0,1,2,... (2.61)
DJa p
1 d+-2p +
by, = —/ n(t)sin = dt n=1,2,3,... (2.62)
bJa p

If the Fourier series contains a finite number of components, the infinite series can be

replaced by N number.
1
(E) = 5pg(n*(2)) (2.63)

where (7%(t)) is the mean square value of n(t) over a wave cycle, which can be written

2p
1 [erer ap nwt nnt

= — n(t) |—+ (a cos— + b, sin—) dt
2p Jg © 13 n; Tp T p

_ ag 1 d+2p
=2 (%/d () ”“)

= 1 / d+2p nmt )
+ an | — 7(t) cos — dt
TS
= 1 [ nmt
+ bn(—/ n(t sin—dt).
; 2p Ja 2 p
Substituting Eq.(2.61) and (2.62) in the above expression, we get

2 o0
PO) =2+ 2> (@ +8) (264
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This relation is known as Parseval’s identity. Then, Eq.(2.63) can be written as

(E) = %pg : (2.65)

a—g+l§:(a2+bz)
4 &gt m

The periodic elevation function of period 2p can be defined in complex Fourier
series as (see Rahman 1995 for detail),

o0
)= D ™™  and

n=-00
Cn = L[ np(t)e P dt
2p —p P
1P (1) inw7/p
= — T)e TP dr
% - p

Substituting the second expression for ¢, into 7,(t) gives

b P . .
0= 3 (g [ mee i) o

n=—00 2p -P
- 1 /[? ; ; T
_ el —inm7/p innt/p { ©
n;m (27r /_p np(T)e dT) e (p) . (2.66)

Furthermore, by defining, 0, = n7/p, 0nt1 = (n+1)7/p, and Ao = o1 —0n = 7/,
we can rewrite Eq.(2.66) with these definitions

o0

1 i —ionT io
np(t) = Z (5;/ np(T)e ™" dT)e "t Ao .
P

n=—o00 .

As p goes to infinity, the periodic function 7,(t) becomes 7(t) and Ao — 0. Then the
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previous expression asymptotes to the continuous random wave elevations integral

n(t) = / ” (i / " p(r)ei dT) &7 do (2:67)

/ / n(r)e™ " dr do . (2.68)

In terms of cosine and sine, remembering the fact that [* sino(r —t) dr = 0 and

[ coso(r —t) dr =2 [° coso(r — t) dr, therefore we infer that

/ / yeoso(T —t) dr do

n(t) = % /0 " la(o) cos ot + b(o) sinot] do (2.69)
where
a(o) = /_oo n(t)coserdr  and  b(o) /_oo n(T)sinor dr .

The total energy of a wave per unit surface area, F, in the wave record between

infinite time limits is given by

E- %pg / TR dt. (2.70)

—0o0
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Substituting Eq.(2.69) into Eq.(2.70) gives

E= %pg / ) n(t) n(t) de

—00

= %pg /oo n(t) [% /ooo[a(a) cos ot + b(o) sinot] dcr] dt

-

_r9 (7 [a(a) /00 7(t) cos ot dt + b(o) /_:n(t) sinot dt] do

2n 0 —00

A
21 Jo

- % /0 ” A%(0) do (2.71)

[a®(c) + b*(0)] do

where A%(0) = a?(0) + b?(0). Comparing Eq.(2.70) and Eq.(2.71), we find that

./oo n2(t) dt = %/Ooo A%(0) do (2.72)

-0

which is Parseval’s identity for a continuous nonperiodic random wave function 7(t).

This relation shows the concept of wave energy spectrum.

If (n?(t)) is the mean square value of 7(t) over a specified record length T then

—T/2

T/2
(ﬂm=£gH/ #mﬁ} (2.73)
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The mean total energy can be stated as

LU B Y ST
= —pg lim |~ ) dt
(B) = 5pg lim T/_mn()

pg [T
= lim —= t) n(t) dt
= Jim > _T/Zn()n()
T/2

= lim ﬂ n(t) [l /oo[a(o) cos ot + b(o) sin ot] da] dt

T/2
a(o) / n(t) cos ot dt
-T/2

T/2
+b(o) / n(t)sinot dt| do .
~T/2

(2.714)

Considering that T is large but finite and integrals [~ Tq/% 7n(t) cos ot dt and
f T/ n(t) sin ot dt are approximated as a(c) and b(c) respectively, then

_ P9 [ 2

(B) = % | @)+ 8@
rg A2(0)
- 2 0 7T
=P [ 5) do (2.75)
0

where s(0) = A;gi’ ), which is the spectral energy density as a function of frequency.

The total energy is obtained for the area under that curve.

There are two commonly known methods, i.e. the autocorrelation method and the
Fast Fourier Transform (FFT) method, for calculating the spectral energy density.
Further discussion of those methods is given by Rahman (1995). Several mathematical
spectrum models have also been proposed. Two well known models are the Pierson-
Moskowitz (1964) spectrum and the Joint North Sea Wave Project (JONSWAP)
spectrum, by Hasselmann et al. (1973). In common form, the JONSWAP spectrum
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1s stated as

F(f) = ag?(2m)~* {5 exp [—Z (fi) —4] 73""[‘(2_35%] (2.76)

~ 7

~
Pierson-Moskowitz spectrum

where «,v, and o are JONSWAP shape parameters; 0 = o, for f < f, and 0 = 03
for f > fp; and f, is the peak frequency.

2.6.1 Directional wave spectra

Wave energy at a point has an angular distribution as well as a frequency distribu-
tion. This angular distribution is known as the directional spreading. The spectral
energy density which represents both frequency distribution and angular spreading is
called the directz'ongl spectra. The directional spectra is needed in order to give wave
predictions. Collins et al. (1981) suggested that a model without directional spectra
overpredicts significant height by 20 percent during refraction.

The directional spectra can be commonly parameterized as the product of the
one-dimensional sprectrum times a directional spreading factor (Longuet-Higgins et
al. 1963),

F(£,6) = F(f) D(f,6) (2.77)
where the directional spreading factor D(f, ) must satisfy the following condition
/D(f, 6)do=1. (2.78)

Longuet-Higgins et al. (1963) defined the directional spreading factor as

D(f,8) = C(s) cos* [H_HT"‘(JC)} (2.79)

where C(s) is a normalization factor needed to satisfy Eq.(2.78) and 8,,(f) is the
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mean wave direction at frequency f. Many different directional spreading factors
have been proposed, for example Mitsuyasu (1981). Some of them are summarized

by Young (1999).

2.7 Energy Balance

In this section the energy balance equation, which forms the core of a wave model,
will be discussed briefly. Starting with the basic spectrum, which is the wave number-
direction spectrum F'(k, ), it is possible to define the wave action density spectrum
N(k,0) = F(k,0)/o. F(k,0) has invariance characteristics with respect to the physics
of wave growth and decay for different water depths, and in general the action density
spectrum is conserved.

The wave propagation is defined as

DN S
=== (2.80)

where D/Dt represents the total derivative and Sy, represents the total effect of

source and sink terms, defined by
Stot = Sin + Snl4 + Sds + Sbot . (281)

These are the general source terms that consist of wind input, nonlinear wave-wave
interaction, dissipation , and wave-bottom interaction (found in shallow water cases)
respectively.

In the modern third generation operational wave model, WAVEWATCH, the bal-

ance equation for the spectrum N(k, §;x,t) is defined as

ON . 0 . 0 .. St
i +VOXN+%ICN+‘5§0N—

(2.82)
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x=C,+U (2.83)
0o 0d ou

1[0 0d oU

=—7 {%% —ke %] (2.85)

where C, is given by C; and 6, s is a coordinate in the direction § and m is a
coordinate perpendicular to s. Details are given by Tolman and Chalikov (1996) and
Tolman (2002).

Equation (2.82) is valid for a Cartesian grid. It must be transferred into a spherical
grid for large scale or global applications. Rewriting Eq.(2.82) in longitude A and
latitude ¢ grid implies

b SN eoso+ AN+ BN Zan =T sy

and
b= gg%i% (2.87)
6, =6 E&M (2.89)

where R is the radius of the earth and Uy ) is current component. This model is using
a meteorological convention for § where 8§ = 0 corresponds to waves travelling from
‘west to east.

Detailed information about energy balance and source terms in WAVEWATCH 111
is given by Tolman (1999, 2002) and Komen et al. (1994). The nonlinear wave-wave

interactions will be discussed in the next chapter.



Chapter 3

Nonlinear Wave-wave Interactions

The ocean can be defined as the superposition of waves, with interactions among
wave components which give transfer of energy among the different wave components.
Triad interactions involve three waves. In this case, two waves interact nonlinearly
and transfer energy to a third wave. However, triad interactions are not significant in
deep water. For deep water, sets of four waves or quadruplet interactions constitute
the significant exchange the energy, when resonance conditions are fulfilled.

Many methods have been proposed to compute the non-linear wave-wave interac-
tions. However, only two common methods will be discussed in detail here, the WTR
(Webb, Tracy and Resio) method and DIA (Discrete Interaction Approzimation)
method. The WTR method represents an ‘exact’ solution of the nonlinear trans-
fer equation, while the DIA method is an approximation method which represents a

practical method to solve the problem.

3.1 Exact Solution

Hasselmann (1962) used a perturbation method to evaluate the energy flux in a finite-
depth gravity wave spectrum resulting from weak non-linear couplings between the

spectral components. His fifth-order analysis gave a fourth-order effect comparable
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in magnitude to the energy input by wind and the dissipative processes in wind-
generated seas. See Hasselmann (1962) for a detail development of this method.

This section will emphasize the work of Webb (1978) and Tracy and Resio (1982).
Basing their work on Hasselmann (1962}, they created a simple algorithm that can be
used to numerically compute nonlinear wave-wave interactions. This section presents
a summary of Tracy and Resio (1982). However, the formulations are derived for
deep water only. Finite depth formulations can be seen in Resio et al. (2001).

The basic equation describing the non-linear quadruplet wave-wave interactions,
as proposed by Hasselmann (1962), is known as the Boltzmann integral. The equation
describes the rate of change of action density, S,u4, of a particular wave number due

to resonant interactions among quadruplets of wave numbers, i.e.

v, _

pral // C(ky, ko, k3, kg) [Ny N3(Ny — N3) + NaNg(N3 — Ny)]

(S(kl + k2 - k3 - k4)5(w1 + Wy — wg — (U4)dk2dk3dk4 .

(3.1)

Equation (3.1) describes the rate of change of N; at wave number k; due to all
quadruplet interactions involving k;. Webb (1978) introduced a transfer function

T'(k1, ks) AN
1 _—

A0 / T(ks, ks) dks (3.2)

where
T(ky, ks) = 2 / / C(ky, ko, ka, ko) [N: N (N — Np) + NoNa(Ns — Ny)]

S(ky + ko — k3 — ka)S (w1 + wp — wz — wy) (3.3)
O([ky — ka| = [k1 — kg|) dkodks.

N; is the action density N(k;) at wave number k;, and w; is the angular frequency at
k;. The 4(...) is the Dirac delta function and the term C is the coupling coefficient
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(Webb, 1978; Tracy and Resio, 1982; or Appendix C) and

O(z)=1 ifz>0
O(z) =0 ifz <0 (3.4)
.’L‘=|k1—k4|—|k1—k3| .

The ©(z) function determines a section of the integral which is not defined due to
the assumption that k; is closer to k4 than ks. It reduces the domain of computation
by half, and we put factor 2 in Eq.(3.3), because it is assumed that the spectrum is
symmetric around 0°.

We will use the following property of the Dirac delta function,
z—a)y=0 if z#a (3.5)

where z and a are representative functions. The [ 6(z—a)dz = 1 if the region includes

x = a and is zero otherwise. Consider

/5(1{1 + ko — ks — ka)dky

if ky + ko — k3 = k4 for conservation of momentum, the dk, integral equals one and

the transfer integral becomes
T(ky, ks) = 2/5(k) §(wi +wy ~ w3 —wy) dky (3.6)
where
E(k) = C(ki, ko, k3, kg)[N1N3(Ny — Na) + N Ny(N3 — Np)|O(z).

This delta function evaluation limits the wave number configuration to k; + kg —
ks = k4 or k; + ko = k3 + kg. This means that the tips of the four wave-number

vectors must form a parallelogram in wave number space.
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In order to evaluate the integral numerically, we must fix values for k;(z,y) and
ks(z,y) and consider the limiting properties of the angular velocity delta function.
Then, for each of (ki, ks), let W(kz) equal the argument of the angular velocity delta
function. To eliminate the angular velocity delta function, let W (k2) be equal to zero;

therefore

Wi(ks) = w1 + wg — w3 — wy
=w;+ w(k2) — W3 — W(k1 +ky — kg) (37)
=0.

Consider a kj, ko, ks coordinate system. One point in the k; —ks plane would have
a whole line of solutions parallel to the ks axis. The set of solutions that will satisfy
the conservation conditions can be represented as an egg-shaped two-dimensional
locus in a Cartesian coordinate system in k, space where k,, is the x-axis and ky, is
the y-axis, as shown in Fig. 3.1. On this locus, n is the normal or radial direction
and s is in the increasing @ or tangential direction.

Using a (n, s) coordinate system for W (ks), the transfer integral, Eq.(3.6), can be

written in terms of the new coordinate system:

T(le;, k) = 2 / / (k) 6[W(s,n)] dsdn. (3.8)
Another property of the Dirac delta function (Jackson, 1962) is

/(@) = é%}%") where f(z) = 0

o(f)df = é(z)dx

where z and z, are representative functions. Using this property on 6[W (s, n)}, we

find that
é(n—0

6[W(s,n)] = ﬁ'.

|2l
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Figure 3.1: Loci of k; and k4.

We must integrate around the s-curve for this property to hold, so that

kl,k3)—2//u(k ‘4_“
"2f{( |4_gz

since [8(n — 0)dn = 1. The normal derivative in the denominator is the magnitude

(3.9)
ds.
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of a gradient and can be written (Tracy and Resio,1982):
IaW(s, n)|™

5 = |VW (kog, kay )| 7* (3.10)

The phase space term |%%| can be evaluated at each point of the locus by evaluating
the gradient of locus, Eq.(3.7). For deep water w oc k'/2. The locus equation can be
simplified by using Q = ki/ 2_ ké/ ? and defining a new vector, P = k; — k3, as shown

in Fig. 3.2. The expression for W(k;) becomes:

Q+ (lc;/2 - |P+k2|1/2) —0. (3.11)

“ € <1k

——— = A
x k2 =A K,
P2 = P!
\ '
k3
1
kg o2
p1
\

Figure 3.2: The integration grid and vector P.

Since ) will remain constant during calculation of the ky-contour, the gradient of

W will be:

ow, oW,
VW(ICQI, kgy) = EZ + 3_]/.7 (312)
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where

ow 0k - P+k?)

B VI Ex (3.13)
and

ow (K’ -IP+l?)

= . 3.14

o =V 5 (314

Writing the vectors in rectangular components yields:
P + ko|'/2 = [(P, + )2 + (B, +)*]/* (3.15)

where P, and P, are the rectangular components of P and z and y are the rectangular

components of k. The magnitude of the gradient in the normal direction is:

2 211/2
ow oW
VW (ks koy )| = [(%) + (8_3/) } (3.16)
where
T - valse e - B g ) G
5~ Vi{se e - B sop oy} ey

The transfer integral, equation (3.9), can be written as:

T(kyks) = 2 74 [Ny No(Ny — Ng) + NaNa(Ns — Ny)]

x C(k)@(x)m ds (3.19)

or

T(k;,ks) = 2 ]{ D(N) G(k) (3.20)
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where

D(N) = [NyN3(Ny— Ny)+ NoNy(N3 — Ny)]

Gk) = C(k)@(z)m ds. (3.21)

The geometric function, G(k), can be scaled by A multipled by the basic loci,
giving the product of scaling terms (see Tracy and Resio, 1982)

VXX A8 x A = A2, (3.22)

Each successive transfer integral at the same orientation of k; and k; (parallel P)

can be written as
GK)p = G(K)pasic X A1¥/2, (3.23)

Finally, in polar coordinates, the nonlinear energy transfer, Eq.(3.2), can be com-

puted from the following equation,

00 27
a_ / / T(k1, ks) kaddsdks. (3.24)
il A A

Focusing on the integral only, we can simplify Eq.(3.24) as

oo 27 nloci
Ny _ / / 7{ ... dsdfadks. (3.25)
dt 0 0 1

This implies that the nonlinear energy transfer must be computed over the entire
2-dimensional spectrum and number of loci of resonance. Figure 3.3 shows the scheme
of WTR itegration.

If 7 is the number of frequencies and j is the number of spreading angles and [
is the number of the four-wave interactions points on the resonance loci, the integral
needs %2 x 52 x [ calculations to compute Sy, for the entire ij-grid. By comparison

the DIA method (see next section) needs ¢ x j calculations for the same grid. This
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j=nangle R
loci of resonance

k()= kg

. k2= Ak(1)
i = nfreq j=2 k3) = A k(@)
j =1 etc

Figure 3.3: Configurations used in the WTR method.

number of computations makes the WTR method more time consuming.

3.2 Approximation Methodology

Exact solutions are time consuming and therefore not suitable for practical wave
forecasts. Hasselmann et al. (1985) proposed parameterization methods to compute
the nonlinear term efficiently. One of these methods is called the Discrete Interaction
Approximation (DIA). This approximation will be discussed further in this section
because this method is applied in all modern operational wave models.

DIA method simplifies the exact nonlinear transfer by one mirror-image pair of
intermediate-range interaction configurations. It defines k; = ks = k, where ks and

k4 have different magnitudes and lie at an angle to k, as shown in Fig. 3.4,

W) =Wy =W
w3 =w(l+A)=w" (3.26)
wp=w(l—-A)=w" (3.27)
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where )\ = 0.25, and the resonance condition, k; + ky = k3 + ky, implies that the
angles 05 and 6, of wavenumbers kj(k; ) and k4(k_) relative to k are 63 = 11.5° and

04 = —33.6° respectively. DIA implies that we may write the change in action density

SN 2
SN*p={ —1p C'g™8f° [N*(N*+ N~) — 2NN*N~] AkAt (3.28)
SN~ ~1

where C' is a numerical constant that represents the strength of the interaction.

h;kz

Figure 3.4: The two interaction configurations used in the DIA method.

In practice, the energy spectral densities F' with respect to frequency f and prop-
agation direction # are used in modern wave models like WAM. Rewriting Eq.(3.28)
in terms of F(f,9) yields

55w 2
§sh s ={ -1} Cg™f1
58S -1 (3.29)

o« |2 Ft + F- _q FFtF-
I+ X% (1-x)¢ (1— M2
where C is a modified numerical constant proportional to C’, and equal to 3 x 107

and F . F* and F~ are the energy densities, expressed in frequency-direction space
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or F(f,0). In finite depth, the nonlinear transfer is defined as
Su(finite depth) = R(kd) S (infinite depth) (3.30)

where & is the mean wave number and R is a scaling factor, stated as

R) =1+ (1 - 56?) exp (-%’”) (3.31)

)
Foull

d.

with £ =



Chapter 4
Developing New Methods

This chapter presents proposed new methods to improve the time for computing the
nonlinear wave-wave interactions, based on the WTR theory. Each method also is
based on a modified Boltzmann integral. The development of each method is shown

here in sequence, from basic to advanced improvement.

4.1 DTA Method

4.1.1 Formulation of the model

As seen in Eq.(3.19) in Chapter 3, to find the transfer function, T'(ks, ks), we have to
integrate along the loci, over a finite number of points, which we represent as nloci.
The nonlinear energy transfer must then be computed over the entire spectrum, from
the smallest k3 to the highest k3 and from § = 0 to § = 27 as shown in Eq.(3.24).
A typical wave model uses a spectral discretization of 30 wave number bins and 36
angular bins, where wn(l) = kg, wn(2) = A wn(l), wn(3) = A wn(2), and so on,
where ) is the incremental factor.

Suppose there are 36 points on the resonance locus. Therefore to make one evalu-
ation of the nonlinear interactions, one needs 30 x 36 x 36 or 38880 computations for

one frequency and one angle bin. The entire spectrum would require 38880 x 30 x 36

45
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or more than 4x10” computations.

In this section it is shown that certain sets of (ki, k3) give the dominant transfer,
which means that on those sets the maximum nonlinear interaction occurs, much
greater than the nonlinear transfer from other contributions. Figure 4.1 explicitly
shows that there is a set of (ki, k3) which gives the maximum or dominant transfer
in the nonlinear process in these cases.

Experimental computations are conducted for wave conditions represented by
snapshot JONSWAP spectra, including the range of peakedness from y=1toy = 7.
In terms of the polar coordinates, we use grid (k, ) with wavenumbers spaced loga-~
rithmically in ‘rings’, k;y1 = A k;, where X is usually in the range from about 1.05 to
1.21. We find through numerical experiments that given wavenumbers k;(;) and ks;),
with polar ‘ring’ indices ¢ and j respectively, the ‘ring’ of dominant transfer can be
stated as:

j=i+mg (4.1)

where my is defined as:

lifm<1
my =
nearest integer of m if m > 1,

and (4.2)

m =2
In A
Here X is an incremental factor of k and Ay is the value of A that is used in most
applications in operational third-generation wave models, which equals 1.21. See for
example Tolman (1999). In this section A = 1.21 is also being used.
With this result, a new method to approximate the Boltzmann integral, which
is called as the Dominant Transfer Approzimation (DTA) is proposed. Rather than

integrating over the entire spectral domain from k3 = 0 to k3 = oo, this method uses
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Figure 4.1: Dominant transfer for certain set of k; and ks, where 3% is the i** ring of
wavenumber k;.

only the value for k3 which gives the maximum transfer,

le 27
T == Fd T(kl, k3d) Akgdk3dd93 (43)
0
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where
Max(Snlau_k)

= Maa:(S’nlDTA)

and where Fy, or the dominant factor, is a scaling factor. In this approximation,

F (4.4)

Snlgy_y is pre-computed from the entire spectrum (see Eqn.(3.24)) and Sniprg is

computed from the dominant set,

le 2
Snlpra = e / T(k1, ks,) Aks,ks,dbs . (4.5)
0

The method for finding Fj; is presented in the next section. Using Eq.(4.3), evaluation
of one point of nonlinear transfer for one time step of the 30 x 36 spectral grid with

36 points on the locus of resonance only needs 1080 computations.

4.1.2 Finding the dominant factor, Iy

In this section, we are going to discuss Fy, the key to the DTA method. We want
to see how Fj behaves if major JONSWAP parameters change. Before we implement
this method to a real wave model, we must do some experiments to collect the data
to find Fy. First the grid that is common for most wave models is set up. Then we
compute Syiq with the WTR method by employing Eq.(3.24). Next, we compute the
same case as Eq.(4.5). Finally, we determine Fy based on the positive lobe of the
nonlinear transfer, following Eq.(4.4), because this drives the spectral downshifting
during wave development (Komen et.al., 1994). Once we find Fj, we can use it in a
wave model to compute Sy with Eq.(4.3).

We must examine the behaviour of Fj as a function of the key JONSWAP param-
eters. We consider a variety of cases defined by prescribed JONSWAP input spectra,
with Phillip’s a coefficient varying from 0.001 to 0.04, f, varying from 0.2 to 0.4 Hz,
peakedness varying as v = 1,3,5, and 7 and spectral spreading factor = f(cos®")
varying with n=1, 2 and 6, representing windsea as well as swell cases. The exper-
iments give results as shown in Figs. 4.2, 4.3a, and 4.3b. Results show that while

Fy is a function of v and spectral spreading cos?"d, the Phillips’ « coefficient and
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peak frequency, fp, have little influence on Fy. Therefore Fy is a function of y and
spreading factor only. Detailed discussion about this method can be found in Susilo

and Perrie (2006a).

4.0

35

3.0

25

Fd

2.0

1.5

1.0 ] 1. 1 1 !

Figure 4.2: Fy as function of v and spreading factor.

4.2 DTA and Fuzzy Logic

4.2.1 Background of fuzzy logic

Going back a couple of millennia, Aristotle formulated the idea of a bivalent value
(two crisp values or a crisp set), for example A or not-A, alternately, an apple or not
an apple. Aristotle’s teaching is basic to the digital era, consisting of 0 or 1. However,
not all cases can be analyzed by bivalent values. Suppose one eats the apple bit by
bit, and finally there is no apple anymore. It goes from an apple to nothing. When

it is down to half an apple, is it an apple or nothing (not-apple) 7 In this case, we
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Figure 4.3: Fy for different o and peak frequency.

can not say ‘Apple or not-Apple’ but we have to say ‘Apple and not-Apple’. Now
we are entering a new concept of multivalence, commonly called fuzzy logic. This
is a system of logic in which a statement can be stated as a continuum of values in

between ‘false or true’ or ‘0 or 1°.
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In the 1960s, Prof. Lotfi A. Zadeh at the University of California Berkeley, in-
troduced the fuzzy set. But this idea originally received a huge amount of criticism
at that time. However, in the next decade, he continually broadened the fuzzy set
theory. In 1974, Mamdani developed a controller for the steam engine based on a
fuzzy algorithm from Zadeh’s paper. Since then, applications of the fuzzy set or fuzzy
logic in industrial settings have expanded, especially in Japan and Europe. More on
the history and progress of fuzzy logic can be found in Yen and Langari (1999).

Next, we are going to review the crisp and fuzzy set in more detail. Table 4.1

shows some differences between bivalence and multivalence as listed by Kosko (1993).

Table 4.1: Bivalence vs multivalence (after Kosko, 1993).

[BIVALENCE | MULTIVALENCE

A or not-A A and not-A

all or none some degree

Oorl continuum between 0 and 1
it it
1 1

A A
0 0
X X
Crisp set Fuzzy set

Figure 4.4: Bivalence and multivalence.

Figure 4.4 depicts a diagram of bivalence (or crisp set) and multivalence (fuzzy

set) and its membership function, u, or as it is called, grade of belonging. In a crisp
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set, a membership of element x of set A or not — A is defined by:

() 0,ifx¢g A
pa(z) =
4 1, ifzeA

@) 0, if z ¢ not — A
Hnot—A\T) =
A 1, ifx €not — A

However, in fuzzy set theory, the membership p is defined by wpa(z) € [0,1] or
Unot—a(x) € [0, 1], that expresses the degree to which x belongs to A, or not — A.
As a membership function differs between two sets, the logic of sets is also different

(see Schmid (2005) or other references about basic fuzzy logic). Crisp logic defines:

e AND: ANnB
e OR : AUB
e NOT : A’

Fuzzy logic defines (the diagrams are shown in Fig. 4.5):
® AND : pignp = min[pa(z), pp(z)]

* OR : paup = max(ua(z), pup(z)]

e NOT : pg =1— pa(x).

—_

"OR’ 'NOT’

Figure 4.5: Logic of fuzzy set shown in bold line.
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An example showing how the fuzzy logic formulation works can be depicted as
shown in Figs. 4.6-4.7. The Fuzzifier will compute the membership of inputs, then
the Interencer will denote the membership of outputs based on the logic of the fuzzy
set. The Interencer also aggregates all outputs. Of course, in the end we need a
single value or crisp value, not a multivalence value, and this is a job that is specified

by the Defuzzifier when it determines the crisp value.

x,y —| Fuzzifier | Inferencer ™ Defuzzifier|—> f(x,y)

Figure 4.6: Fuzzy controller.

i FUZZIFIER i INFERENCER
W 1) it
AN h
______ l \
i |
x(1) y(1) f(1,1)

IFx(1) ANDy(1) THEN f(1,1)

m m 13 A
NN N
i DEFUZZIFIER

' x) Y f(12)
IF x(1) AND y(2) THEN {(1,2)

Y

Figure 4.7: Example of fuzzy controller.

4.2.2 Use of fuzzy logic to determine F

As shown in previous section, Fj is a function of peakedness (y) and spectral spreading

factor, for a given spectrum. Thus, there are two inputs to get one output. Because
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peakedness and spectral spreading are usually only defined once at the initialization
of a simulation, we need to specify these variables so they can be determined at any
time.

We define new variables, slope, to represent peakedness and slope, to represent

the spectral spreading,

1 _ ngkmaz-{-l;omazz

l n(kmaz,oma:) 4.6
slopeg = 1) ke (4.6)
1 — n(kmazyarém::+l)
n(kmaz,9maz
slope, A(H A ) (4.7)
maxr

where 7 is the action density, A is the incremental factor, (kmaz, Omaz) is the location

of (k,6) where n is maximum. See Fig. 4.8 for details.

n
ND'max
) 9 max+1
slope g
O max
1 )
! : slope g
1 1
! ! - kmax+1
kmax kmax+1 k = kmax
=Ak max
Front View Top View

Figure 4.8: The slopey and slope,.

The next step is to use Fuzzy Logic (FL) to compute the Fy(slope,, slope,). Using
‘if-then’ rules, FL provides a simple way to determine F,; based on some numerical
experiments that have to be done. On the other hand, a number, such as Fj, also
can be defined by FL (Kosko, 1993). For instance, a number 0.9 can be defined as



55

90% of unity or 10% of zero (see schematic model suggested in Figure 4.9). Thus, we
apply FL as a methodology to determine Fj.

Figure 4.9: A number defined by FL.

In this case, a fuzzy controller gives one output from two inputs. The z and y
represent slope;, and slope, while f(z,y) represents Fy(slope,, slopes) respectively.
. Case examples are conducted to collect the FL required data, then sets of rules
are determined. Samples are taken, representing windsea as well as swell cases, for
peakedness varying as = 1, 3, 5, and 7 and spectral spreading varying as cos**§ where
p=1,2 and 6.

Table 4.2 shows data from computed samples. Before establishing FL rules, it
is convenient to relabel each case with a simple naming convention. We classify as
‘Tiny’, ‘Small’, ‘Big’ and ‘Large’ representing small slope, to large slope, and we
also classify varying spreading factors as ‘Low’, ‘Mid’, and ‘High’ for small slope, to
large slope, conditions, respectively, in Table 4.3. From Table 4.3, we define the rules
shown in Table 4.4. Membership functions of Table 4.3 can be depicted as shown in
Fig. 4.10.



Table 4.2: Fy from computed samples.

Fy slope,

0.0069 | 0.5124 | 0.5782 | 0.6138
& 0.1728 || 3.7209 | 2.0181 | 1.7889 | 1.6875
§* 0.3403 || 3.2459 [ 1.8951 | 1.7037 | 1.6217
@ 0.9615 || 2.3765 | 1.6473 | 1.5317 | 1.4835

Table 4.3: Rewriting matrix of Fy in a simplified form.

[ Tiny | Small | Big | Large
Low F, dl L, d2 F, d3 F d4
Mid || Fyd | Fq6 | Fy7 | E48
High || F49 | F410 | F 11 | Fy12

Table 4.4: If-then FL rules from study cases.

=
N —

00N Oo O W

—
e w

If Low
If Low
If Low
If Low
If Mid
If Mid
If Mid
If Mid
If High
If High
If High
If High

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

Tiny
Small
Big
Large
Tiny
Small
Big
Large
Tiny
Small
Big
Large

then Iyl
then Fy2
then F,;3
then Fy4
then F;5
then F,;6
then F,7
then F,8
then F,;9
then F,;10
then F,;11
then F12

The next example will show how the FL method works. Suppose we have inputs

slope; and slope, as shown in Figure 4.11a and Figure 4.11b.
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Tiny Small Big Large

XXX

0.1727 0.3403 0.9615 0.0069 05124 0.5782 0.6138
(a) Membership function of slope, (b) Membership function of slope,

Kl F2 F3 E4 ES5 E6 F7 E8 E9 El0 Kll EI2
1

3.7209
2.0181
1.7889
1.6875
3.2459
1.8951
1.7037
1.6217
2.3765
1.6473
1.5317
1.4835

(c) Membership function of F'd

Figure 4.10: FL membership function of inputs and output.

The fuzzifier gives

PLow(slopes) = 0.4

pnid(slopes) = 0.6
psman(slopeg) = 0.2

pig(slopey) = 0.8.

With outputs from the fuzzifier, the inferencer defines 4 rules which are ‘fired’ or
activated because of input combinations. Condition ‘Low AND Small’ will turn on
rule number 2. ‘Low AND Big’ will turn on rule number 3. Other combination
pairs, ‘Mid — Small’ and ‘Mid — Big’ will fire rules number 6 and 7 respectively.
Following is a summary of 'fired’ rules and the corresponding values of Fd(uaNpg) =

min()u'A7 ,LI,B)
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Low Mid High Tiny Small Big Large

slope_s slope_g

(2) slope, (b) slope,

Figure 4.11: Example of inputs, slope, and slope,.

Rule 2. If Low AND Small then F;2

Prow(slopes) N psman(slopeg) = min(prq,(slope,), tsmau(slopey)]
— min[0.4,0.2] — 0.2 F;2

Rule 3. If Low AND Big then F;3

KLow(slopes) N ppig(slopey) = min{ppe,(slope,), ppig(slopey)]
= min[0.4,0.8] — 0.4 F,;3

Rule 6. If Mid AND Small then Fy6

#Mid(Slopeé) N psmall (SlOPeg) = min[#Mid(Slopes), /J'Small(Slopeg)]
= min[0.6,0.2] — 0.2 F;6

Rule 7. If Mid AND Big then F;7
taia(slopes) N ppig(slopey) = min(paria(slopes ), ppig(slopey)]
= min[0.6,0.8] — 0.6 Fy7.

The final step is the defuzzifier, which maps the fuzzy set from inputs to the

output. There are many approaches to defuzzification, as mention by Patyra (1996),
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ie.

Centre of area (COA)

Centre of gravity (COG)

Height defuzzification (HD)

Centre of largest area (COLA)
e Mean of maxima (MOM).

Two methods which are common are the centre of gravity (COG) method and the
centre of average (COA) method. The COG method calculates the centroid of the
area of all membership outputs, and in most cases the centre of gravity is the same
as the centre of area. Therefore these names often refer to the same method. More
detailed definitions of the defuzzification method can be found in Patyra (1996). The
methods are illustrated in Figure 4.12.

M M
1 4 4

ucn’sp ucrisp

COA or COG HD

] ucris
COLA

Figure 4.12: Methods of defuzzification (after Patyra, 1996).
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We denote the final output as u®"*? and we compute the output with the COA
method as defined by the following relation (see Passino, 1998),

Yy — Z,’ Hpremise;) fz (48)
Ei ,u'p'remise“)

Finally, we obtain defuzzification results from the inferencer, which yields

0.2F42 4+ 0.4F;3 4 0.2F;6 + 0.6 F,7
02+04+4+02+06 '

ucrisp —
In this case, fpremiseq,y 15 Hpremise (slopes) and Horemise (slope,). The final output,
uP_ is the average of all Fy's from four relevant results that follow from the inputs.

Susilo et al. (2006) have presented results and further discussion about this method.

4.3 AvDI Method

As can be seen on Eq.(3.20), the transfer integral T' consists of density function D
and geometry function G. Tracy and Resio (1982) used a special grid and scaling
symmetries, and with this method they only compute the basic geometry function
Ghasic. Other G's are denoted as Grezt = Ghasic X Scalefactor-

Based on Tracy and Resio’s work, and the need to reduce integration loops, Susilo
and Perrie (2006a) developed a method called the Dominant Transfer Approzimation
or DTA, as described in the previous sections. They found a set of (kq,k;) which
gives a maximum transfer. See Fig. 4.1 for examples.

The DTA formulation selects the set of (k;, k3) and uses a multiplication factor or a
scaling factor to approximate the integral over the 2-dimensional spectrum. Equation

(3.25) can be rewritten as:

dN. 2 nloci

—Lx~F, / ]{ ... dsdf;  or (4.9)

dt o L

dN 27

LIy / T(ks, ka,) Aks, ks, dbs (4.10)
0
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where Fy is a scaling factor, the so-called dominant factor and (ky,ks,) is a set of k;
and k; where maximum transfer occurs. Further improvement of the DTA method
with Fuzzy Logic was developed by Susilo et al. (2006b), as dissused in Section 4.2.

A new method called Advanced Dominant Interaction or AvDI is proposed in this
section, whereby a maximum transfer occurs at a certain spreading angle, as shown
in Fig. 4.13. The use of AvDI enables a speed up in the computation by reducing
the loops and uses the Newton-Cotes method to find the integral along the loci of

resonance.

2e-14 T T T T T T T T

1.8e-14 T

1.6e-14 b

1.4e-14 .

1.2e-14 b

1e-14 | g

Snl(m2)

8e-15 B

6e-15 1

4e-15 B

2e-15 |- -

2e-15 ! 1 ! L L 1 ' 1
-100 -80 -60 -40 -20 0 20 40 60 80 100

Angle of k3 (deg)

Figure 4.13: Example of dominant transfer along the angle ks.

We apply the closed Newton-Cotes formula known as the trapezoidal rule. It
approximates the area under a curve by a trapezoid. Following will explain the
Newton-Cotes method. For simplicity, we take 2-point for the example, see Fig. 4.14
for detail. From Fig. 4.14, we can define
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Figure 4.14: Finding the area of an integral by Newton-Cotes method (after Weisstein,

2004).

<IL‘2=Z1+h

h=$2—3§1.

(4.11)
(4.12)

The Lagrange interpolating polynomial through the points (z1, fi) and (z2, f2) states

T — T I — I

Py(z) = i+ fa

Ty — T2 Ty — 21

z—(z1+h r—z
= (__;L )f1+ . 2 f

= %(f2 - fu)+ (fl + %‘fl - %fz)

(4.13)

where index 2 refers to the points that are part of the formulation, integrating over
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the interval gives

/z f(z) do ~ / Py(x) da

~ | -+ (AT h-Th)

~ (o= I+ (i A - 220) Bl

-

~ (o= R =2+ (it 2= 2 ) [ — =)

~ op(h= W@+ m)(e =)+ (fi+ A - ) ()
~ % fa= fl(zr + h) + 2] (h) + (fih + z1f1 — 31 f2)
~ 2(fa F)@o +B) + fiht o - o)

~z(fo — f1) + %h(fz — fi) +hfi —z:1(fo— f1)
~ Sh(fit fo). (414)

This approximation can be written as

/ " f(e) da (f1 +f2) - —h3f”(€) (4.15)

where the last term is the amount of error and z; < §{ < x5, see Krommer and
Ueberhuber (1994). Another approximation with a different number of points can be
found in Ueberhuber (1997) or Weisstein (2004).

We use 2 x 10 points to represent the integral of all resonance points of the loci.

With formulae from Ueberhuber (1997), a 10 points integration can be stated as

/:10 flz)dz = —_89200h [2857(f1 + fr0) + 15741(fz + fo) + 1080(fs + fs)

F19344(f4 + fr) + 5TT8(fs + fo)] = RV 00 g) . (4.16)

14620

We can denote the integral along the loci of resonance as (this is an example of the
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formulae for a half section only)

nloci/2 9
7{ f(s)ds= MAS [2857(fs1 + for0) + 15741(fs2 + fo0)

+ 1080( fs3 + fs8) + 19344(fos + for) + 5778(fs5 + fe6)]

173 11 £(10)
-—— A . 17
163028 FE) (4.17)

With Eq.(4.17) and the dominant transfer along the related frequency and spreading
angles, Eq.(4.9) can be simplified as

[
dd—]\szd;%w... ds or (4.18)
% ~ Fy [T(ky, kgd(_)) Aks, ks, AB3 + T'(ky, k34(+)) Aks, ks, Ab5] (4.19)
where
kay_y = (K3, O, — éw) (4.20)
Ky = (ksar s+ 57) (4.21)

Now, computing 7j-grid spectra with [ locus points does not need 72 x 52 x [ calculations

but only ¢ X j x 1 x 2 x 18. Chapter 6 will show results of this method.



Chapter 5

Wave Modelling

Wave models have been developed over the last several decades. The first genera-
tion wave models did not have an explicit S,; term. Non-linear energy transfers are
either not included or expressed implicitly through S;, and Sy terms. The second
generation wave models handle the Sy, term by parametric methods by applying a
reference spectrum (for example the JONSWAP spectrum) to reorganize the energy
over the frequencies. The third generation wave models calculate the non-linear en-
ergy transfers explicitly without constraints on the shape of the wave spectrum. But
it is necessary to make both analytic and numerical approximations to expedite the
calculations.

We are going to discuss three popular wave models, WAM, SWAN, and WAVE-
WATCH III, and a new model developed here, called WW3-AvDI

5.1 WAM

WAM (Wave Modelling) is the wave model developed by The Wave Model Develop-
ment and Implementation (WAMDI) Group (1988). This model is the most widely
used and best tested ocean wave model. The code is well documented and highly
optimized to run on many different computational platforms. The WAM model has

been extensively used for forecasting on global and regional scales at many weather
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prediction centers around the world. More information about this model can be found
in the WAMDI Group (1988) and Komen et al. (1994).

5.2 SWAN

The SWAN or Simulating WAves Nearshore model is a third-generation wave model
for obtaining realistic estimates of wave parameters in coastal areas, lakes and estu-
aries from given wind, bottom and current conditions. The model is based on the
wave action balance equation with sources and sinks, developed by Delft Univer-
sity of Technology, The Netherlands. SWAN can be used on any scale relevant for
wind-generated surface gravity waves too. However, the WAM model and the WAVE-
WATCH III model, which have been designed specifically for ocean applications, are
probably one order of magnitude more efficient than SWAN.

The basic scientific philosophy of SWAN is identical to that of WAM (Cycle 3
and 4). It uses the same formulations for the source terms (although SWAN uses the
adapted code for the DIA technique). On the other hand, SWAN contains some addi-
tional formulations primarily for shallow water. Moreover, the numerical techniques
employed are very different. WAVEWATCH III does not only use different numerical
techniques but also different formulations for the wind input and the whitecapping.

The current version of SWAN is 40.51 and succeeds the previous version 40.41 as

of August 2006. SWAN accounts for the following physics:
e wave propagation in time and space
e shoaling and refraction due to current and bathymetry
o frequency shifting due to currents and non-stationary depth
e wave generation by wind

three- and four-wave interactions

white-capping, bottom friction and depth-induced breaking



67

e wave-induced set-up

e transmission through and reflection (specular, diffuse and scattered) against

obstacles.

SWAN computations can be made on a regular and a curvi-linear grid in a Carte-
sian or spherical co-ordinate system. SWAN runs can be done in serial mode, i.e. one
SWAN program on one processor, as well as in parallel mode. SWAN provides the

following output quantities (numerical files containing tables, maps and time series):
e one- and two-dimensional spectra
e significant wave height and wave periods
e average wave direction and directional spreading
e one- and two-dimensional spectral source terms
e root-mean-square of the orbital near-bottom motion
e wave-induced force (based on the radiation-stress gradients)
e dissipation, etc.

More detail and updated information about SWAN can be found on the SWAN
website (2003) and a description of the model and of the physics was given by Booij
et al. (1999) and Ris et al. (1999).

5.3 WAVEWATCH II1

WAVEWATCH III is a third generation wave model developed at NOAA/NCEP by
Tolman (1997, 1999a). It is a further development of the model WAVEWATCH
I, built at Delft University of Technology, and WAVEWATCH II, built at NASA,
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Goddard Space Flight Center. However, WAVEWATCH III differs from its previ-
ous programs in many important points such as the governing equations, the model
structure, the numerical methods and the physical parameterizations.

WAVEWATCH III solves the spectral action density balance equation for wavenum-
ber -direction spectra. The governing equations of WAVEWATCH III include refrac-
tion and straining of the wave field due to temporal and spatial variations of the mean
water depth and of the mean current (tides, surges etc.), when applicable. Parame-
terizations of physical processes (source terms) include wave growth and decay due
to the actions of wind, nonlinear resonant interactions, dissipation (‘whitecapping’)
and bottom friction.

Wave propagation is considered to be linear. Relevant nonlinear effects such as
resonant interactions are, therefore, included in the source terms (physics). The model
includes options for choosing two source term packages: the first is based on cycles
1 through 3 of the WAM model (WAMDIG 1988); the second is based on Tolman
and Chalikov (1996). The source term packages are selected at the compile level. For
research purposes only, the model includes a full nonlinear interaction source term
option (version 2.22).

The numerical features of this model are as follows:

e written in ANSI standard FORTRAN 77 (version 1.15 and 1.18) and FORTRAN
90 (version, 2.22)

e uses a regularly spaced longitude-latitude grid (longitude and latitude increment

do not need to be equal) and, optionally, a Cartesian grid

e wave energy spectra are discretized using a constant directional increment (cov-

ering all directions), and a spatially varying wavenumber grid
e more options for propagation schemes with different orders of accuracy

e the source terms are integrated in time using a dynamically adjusted time step-
ping algorithm, which concentrates computational efforts during conditions with

rapid spectral changes, for example, during explosively developing storms
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e the model can optionally be compiled for a single processor, as well as parallel

Processors.

The model provides binary or ASCII output, as well as output for the GrADS
graphics package by means of post processing. The output options are:

e gridded fields of 18 (16 for old versions) input and mean wave parameters such

as the significant wave height, directions, frequencies etc.
¢ output of wave spectra at selected locations
e output of wave spectra along arbitrary tracks
e up to 9 restart files per model run

e files with boundary data for up to 9 separate nested runs

More details and updated information about WAVEWATCH III can be found on the
website, Tolman (1997).

5.4 WW3-AvDI

In this thesis, the AvDI method was installed in WAWEWATCH III version 1.18.
Because WAVEWATCH III (or WW3) provides architecture options for installing
new source terms, a new subroutine for computing the nonlinear term using AvDI
was constructed. The new wave model is called WW3-AvDIL.

Version 1.18 was chosen because it was the last version of WAVEWATCH III
before the new FORTRAN 90 version was released. Moreover version 1.18 written
in FORTRAN 77 has proven to produce good results. FORTRAN 77 also makes the
model code easy to understand and to modify.

WAVEWATCH III version 1.18 puts files into several folders which can be classi-
fied as compiler folder, raw material folder, input folder, and working folder. Following

is the name of each folder and its contents:
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e aux raw auxiliary programs (source code etc.)

e bin  executables and shell scripts for compiling and linking
e exe  WWATCH executable files

o ftn source code and makefiles

e inp  input files

e obj  object modules of all subroutines of WWATCH

e work auxiliary work directory.

The model can be divided into four sections, as shown in Fig. 5.1. Because we
use FORTRAN 77, first we have to set up the required dimension arrays. Then, the
model compiles raw files and links to executable files. The next step is to set up
inputs for boundary conditions and initial conditions, after which the main program

can be run. The results from main program are managed by the postprocessor.

Compiler 4= Pre-processor (> Processor |—={ Postprocessor

Figure 5.1: Diagram of the wave model.

Excluding the compiler, the model consists of six main programs; three pre-
processor programs, one main processor program, and two postprocessor programs,

ie.

e Pre-processor: ww3_grid
ww3_prep
ww3_strt

e Processor: ww3_shel

e Postprocessor: ww3_outf

ww3_outp.

The main program is built by many subprograms. Appendix D shows the main
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______ =

grid preprocessor

o

 mod_def.ww3
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input preprocessor

................. r------@
| initial cond.|— restartww3 —} | initial @
st asaareanea {i —_—— - - ._‘
................ / program shell
. restart.ww3 or
nestww3d integrated
Y \__ __E)[O_g[a.m
' . I
output . out_pntww3 ' Wave model ®
postprocessing : out_grd.ww3 : 117 p"
Legends logww3  : track_iww3 :
files | 1 subroutines | | programs | | festww :: track 0.3 ;

— data transfered by files
zzz3  data transfered by COMMON

® o e (data trans. by parameter list

Figure 5.2: Flow chart of the wave model (after Tolman, 1999).

programs and their subprograms. Among programs, data are transferred by 3 meth-

ods, with parameter list, ‘COMMON’, and files respectively, as shown in Fig. 5.2.

Installing AvDI means switching the existing subprogram of nonlinear interaction
with the new version. The WAVEWATCH III version 1.18 only provides w3snll.ftn,

a program to compute the nonlinear interaction term with DIA. However, the WW3-

AvDI provides more options. It has w3snll.ftn, w3snlb.ftn', and w3snle.ftn?

1%y for Bedford Institute of Oceanography

2¢¢’ for Exact
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ww3_grid [~-—-----—1 ww3_shel

w3snpl [--------- w3snii

Figure 5.3: Program and subprograms for DIA.

which computes the nonlinear term with DIA, AvDI and WTR methods respectively.
To choose those options, we turn on the code in the switch file in directory bin.
Table 5.1 shows the code for each method.

Table 5.1: Switch of nonlinear interaction.

WAVEWATCH III v. 1.18 : WW3-AvDI
NLO No nonlinear interactions used NLO No nonlinear interactions used
NL1 Discrete interaction approx. (DIA) | NL1 Discrete interaction approx. (DIA)
NLX Experimental (user supplied) NLB Advanced Dominant Interaction
NLE Webb-Tracy-Resio method
NLX Experimental (user supplied)

However, the program can not run by just switching on the code. We need some
modifications and new subprograms in the wave model. Modifications are needed
in either the compiler or the main program, but only the main program has new
subprograms. Table 5.2 and 5.3 show modified files and new files. Details for those
files are displayed in Appendix E, F, and G.

The scheme for the new programs and subprograms for the new nonlinear term
are presented in Figs. 5.4 and 5.5. For comparison, the scheme for DIA method is

also displayed (see Fig. 5.3).



ww3_grid [--—------1 ww3_shel
fgeoe [--------- w3snle
locus
delw findn -
cple

Figure 5.4: Program and subprograms for WTR.

ww3_grid F--------1 ww3_shel
fgeob f--------- w3snlb
locus findy J fidfz —
delw defuz findn —
cple pten

Figure 5.5: Program and subprograms for AvDI.
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Table 5.2: Edited files of WW3-AvDI model.

Directory
aux T bin ftn inp
w3adc.f | ad3 dims.cmn ww3_grid.inp

ad3_test dimx.cmn

comp w3expo.ftn

comp.gen w3init.ftn

link w3iogr.ftn

link.gen w3srce.ftn
make_makefile.prog | w3wave.ftn
make_makefile.subs | ww3_grid.ftn

w3_new ww3_outp.ftn

ww3_shel.ftn

Table 5.3: New files of WW3-AvDI model.

Directory: ftn

fzzl.ecmn  nclO.cmn
geob.cmn nldp.cmn
geoe.cmn cple.ftn
grid.cmn defuz.ftn
loci.cmn  delw.ftn

fidfz.ftn locus.ftn
fgeob.ftn pten.ftn
fgeoe.ftn w3snlb.ftn
findn.ftn w3snle.ftn

findy.ftn
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Chapter 6

Numerical Results

6.1 Prototype Model

AvDI was tested and the results are compared to those of the WTR method in this
chapter. AvDI was then installed into a real wave model, in this case WAVEWATCH
IIT (also denoted WW3). Then, the new wave model representing a combination of
WAVEWATCH III and AvDI (WW3-AvDI) is tested with an ideal case and a real
storm case, hurricane Juan. The testing of the WW3-AvDI model is presented in the

second section of this chapter.

6.1.1 Setting the spectra grid

The spectra grid is set up on a half circle domain, with directional bins stretched
from —90° to +90° with 10° resolution, for a total of 18 angular bins. There are
30 wavenumber bins. The wavenumber % is defined by k(1) = ko, k(2) = Ak(1),
k(3) = Ak(2), and so on, where A is the incremental factor. In this thesis A = 1.21 is

used and the first wavenumber, ko, is defined as

kpea.k

ko = =2E.

(6.1)
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j = nangle ]
nfreq =30 loci of resonance
nangle = 18
nloci =36
ko
i=1
i=2
i = nfreq
j=2

Figure 6.1: Spectra grid for experimental case.

Points of the resonance loci are also set up at 10° resolution, so that there are 36
points. Therefore, the grid has dimension: nfreq x nangle X nloci = 30 x 18 x 36,
as shown in Fig. 6.1.

With these dimensions, the WTR method needs 30x 18 x30x 18 x36 = 10,497, 600
calculations. But AvDI will need only 30 x 18 x 1 x 2 x 18 = 19, 440 calculations.
The experiment was run using 3 different methods; WTR, DTA and AvDI. Table 6.1
depicts ‘do-loops’ for each method and DIA’s ‘do-loop’ for comparison. This shows

that AvDI can significantly reduce the number of calculations, if compared to DTA

or WTR.

6.1.2 Results and discussions

Some experiments were conducted to get results for comparison between AvDI, DTA
and WTR. We also ran the DIA method. These cases assume a JONSWAP spectrum
with parameters; o« = 0.01, peak spectral width parameters o, = 0.07, g, = 0.09,
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Table 6.1: Do-loop for each method.

WTR DTA AvDI DIA

do ikl = 1,ufreq

do ial = 1,nangle do ikl = 1,nfreq do ikl = 1,nfreq

do ik3 = 1,nfreq do ial = 1,nangle do ial = 1,nangle
do ia3 = 1,nangle do ia3 = 1,nangle do ia3 = 1,2 do ikl = 1,nfreq
do ile = 1,nlocus do ile = 1,nlocus do ilc = 1,18 do ial = 1,nangle
end do end do end do end do
end do end do end do end do

end do end do end do

end do end do end do

end do

fp=03Hz, y=1,3,5,7 and spreading factor = f(cos? ), and wind speed, U;o = 20
m/s.

The computation times corresponding to each method at ¢ = 0 and ¢ > 0 are shown
in Table 6.2 and Fig. 6.2. The program records the time that is needed to compute
the basic geometry function as presented in the table. At ¢ > 0, the computation
time of the basic geometry function is not included. It can be seen that saving the
basic geometry data can speed up the WTR method by 50%, but the same approach
does not produce the same result for DTA or AvDI, because neither DTA nor AvDI
is integrated along k;. However, compared to the others, AvDI is the fastest method
involving the loci of resonance. As shown in either Table 6.2 or Fig. 6.2, AvDI is only
two orders of magnitude slower than DIA. This result occurs because AvDI employs
two more integrations, i.e. along the directional angle of k3 which is represented by
two angles, —20° and +20° respectively and 18 points, representative of the resonance
loci. Therefore, AvDI is 36 times slower than DIA.

One- and two- dimensional results for S, are shown in Figs. 6.3 and 6.5-6.8
respectively. We show 1-dimensional results for all four methods. However, for 2-
dimensional spectra, we show results for WTR and AvDI, as well as for DIA.

The one-dimensional comparisons in Figs. 6.3a-6.3d suggests that results from
AvDI compare well with WTR results, particularly for the low frequency positive

lobe. Some discrepancies are apparent for the negative lobe at higher frequency,
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particularly for higher 7, but the overall level of agreement is good. On the other
hand, DIA results are quite different.

Figure 6.3a suggests that although DIA has the same basic pattern as the other
two formulations, DIA tends to overestimate the positive and negative transfer rates,
and the transfer at higher frequencies. At v = 3.0, the negative DIA lobe has much
greater magnitude than positive lobe, or the corresponding results from WTR or
AvDI. While positive transfer also occurs at higher frequency, it is much larger than
the transfer suggested by WTR or AvDI results (Fig. 6.3b).

At v = 5.0 (Fig. 6.3c), two positive DIA peaks are suggested at low frequency
relative to the spectral peak. Additional positive transfer at high frequency is quite
large, compared to WTR and AvDI results, the negative transfer is displaced com-
pared to peak negative values for WTR and AvDI and is much larger in magnitude,
comparatively. DIA’s plot in Fig. 6.3d shows similar trends, although clearly more
complicated with two positive peaks at low frequencies and positive transfer at high
frequencies, and the maximum positive transfer is shifted compared to peak positive
values for WTR and AvDI. Two negative peaks are also evident on the rear face of
the spectral peak. Magnitudes of these peaks are greater those of WTR or AvDI.

Two-dimensional results, as shown in Figs. 6.5-6.8, demonstrate that computa-
tional results from 5,4 by AvDI are similar to results from WTR. Contours depicting
the negative peak lobe of AvDI’s results tend to be slightly wider than those of WTR'’s
results. The positive high frequency lobe also tends to be too high in AvDI’s results,
especially at higher v, compared to WTR results.

Results from DIA are presented in panels (b) in Figs. 6.5-6.8, and are quite
different from WTR or AvDI, in both magnitude and contour shape. Magnitudes for
DIA are always 1-2 orders different from WTR and AvDI, which are comparable. In
terms of shape, at v = 1.0, DIA has wider directional contours than either WTR or
AvDI (Fig. 6.5b). With increasing v, the differences to results from WTR and AVDI
become more accentuated. At y = 3.0 (Fig. 6.6b), DIA results suggest a negative

lobe which is much more dominant than the positive lobe. T'wo positive peaks also
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Table 6.2: Relative computational time compared to the DIA method.

Method | Time compared to DIA
t=0] t>0

Exact 12163 12163
WTR 4864 2074
DTA 633 527
AvDI 36 29

appear in the higher frequency region as shown in Fig. 6.6b.

At v = 5.0, DIA results in four minor positive peaks and two major negative
peaks, displaying a pattern that is markedly different from WTR and AvDI patterns.
as shown in Fig. 6.7b. This behaviour is accentuated in Fig. 6.8b showing results
.when v = 7.0. Figure 6.8b suggests that the maximum positive lobe shifts to lower .
frequency compared to WIR and AvDI and negative peaks are more obvious than
at v =5.0.

From Figs. 6.3-6.8 there is overall systematic agreement between WTR and AvDI.
By comparison, DIA exhibits maxima in positive and negative lobes that are larger
than those of WTR or AvDIL Qualitatively, all three formulations in rough agreement
for ¥ = 1.0 with a broad positive peak located in the region from 0.2 Hz to 0.3 Hz,
and a broad negative centered on frequencies from about 0.4 to 0.5 Hz. This captures
the tendency for nonlinear energy transfers to broaden the spectrum for frequencies
less than the spectral peak and to tend towards a bimodal form at high frequencies
as seen in many observations (Long and Resio, 2007). In the case when vy = 3.0,
5.0 and 7.0, the degree of agreement between WTR and AvDI continues to be very
good throughout the range of the comparison. However, DIA exhibits broader larger
positive lobes and dominant negative lobes displaced to higher frequencies (about 0.4
to 0.5 Hz). DIA results feature detailed secondary peaks not evident in WTR or
AvDL These differences in the directional distributions of AvDI and DIA will have

notable differences on the modelled distributions of wave angles in a spectrum.
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Figure 6.2: Relative computational time of for different S,;4 methods compared to
the DIA method for a 30 x 18 x 36 grid.
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Figure 6.3: S, comparisons in 1 dimension for JONSWAP spectrum with peakedness
v = (a) 1.0 and (b) 3.0, respectively.
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Figure 6.4: Sy, comparisons in 1 dimension for JONSWAP spectrum with peakedness
~v = (a) 5.0 and (b) 7.0, respectively.
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Figure 6.6: As in Fig. 6.5, Sy, results for v = 3.0 comparing (a) WTR, (b) DIA, and

(c) AvDL
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6.2 WW3-AvDI Model

WAVEWATCH III uses a semi-implicit integration scheme. This scheme requires a

diagonal term to estimate the source function at each new time step, defined as

(s - 22 o

According to Van Vledder (2005) and Eq.(3.24), the diagonal term in WW3-AvDI

can be computed as

DT (k) = % {2 / ]4 D(N)GT(? ds dis (63)

_9 / f ;N[D(N)] Gg) ds dks (6.4)

DT (k) = 2 / f [Ny(Ny — Ny) — Ny Ni] G{g‘) ds dks (6.5)
DT(ks) = 2 / ]f [Ny(Ns — N3) + N3 N,] Gﬁ‘) ds dks . (6.6)

The spectra grid is set up in a circle domain, with directional bins stretched from
—180° to +180° with 10° resolution, implying 36 angular bins. There are 30 frequency
bins with the first frequency, ko = 0.0418 Hz, and the frequency increment factor is
1.1. The wavenumber increment factor is set as A = 1.12 = 1.21. The resonance loci
are also set at 10° resolution, so that there are 36 points. Therefore, the grid has
dimension: nfreq x nangle x nloci = 30 x 36 x 36.

Table 6.3 shows the value of F; used in WW3-AvDI. Because a different com-
putational domain is used for JONSWAP tests, compared to the full wave model
simulations of hurricane Juan, an adjustment must be made before installing AvDI
into WW3, for the latter tests. In general, WW3 simulates waves on a 360° direc-
tional distribution, whereas the prototype tests used of subsection 6.1.1 only consider

integration over a half-circle, from —90° to +90°. A correction to Fy is needed to
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Table 6.3: F; used in WW3-AvDI.

Fy slopeg

0.0069 | 0.5124 | 0.5782 | 0.6139
& 0.1728 || 12.5000 | 9.0761 | 9.5266 | 10.1712
& 0.3403 || 10.3665 | 8.4495 | 9.1633 | 10.0000
E 0.9615 || 7.0642 | 7.7174 | 9.2124 | 10.5817

accommodate the WW3 360° domain. From numerical experiments, it is found that
Fyae00) = 0.375F4(1800).

As shown in Fig. 6.3, AvDI also has a small amount of numerical disturbance at
higher frequencies. Therefore, a stabilizer to remove this disturbances is built into
WW3-AvDI. After some adjustments, two tests were conducted, one representing an
idealized case and the other representing a real storm. SWAMP Case II was chosen
for the ideal case, where the wind blows uniformly over time and distance. Hurricane

Juan was chosen as the real storm case.

6.2.1 SWAMP case

The Case II of the SWAMP Group (1985), Fetch- and Duration-Limited Growth test,
was conducted to test WW3-AvDI performance for an ideal situation. Figure 6.9
features the geometry of the wind field and boundary conditions. A homogeneous
wind field blows perpendicular to offshore constantly. The wind speed, Uy, is 20 m/s
and it is infinite in the lateral and downstream directions. The initial wave energy at
time ¢ = 0 is zero and remains zero for ¢ > 0 at the coastline y = 0.

Different formulations of source terms were employed to run the tests. The model
is classified according to the source terms. A model using the WAMS source terms
for wind input and dissipation and DIA for the nonlinear interaction term is called
WAMS3-DIA. WAM3-AvDI uses WAMS3 for wind input and dissipation and AvDI for
the nonlinear term. T'C-AvDI uses Tolman and Chalikov’s wind input and dissipation

and AvDI for the nonlinear term.
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Figure 6.9: Wind field geometry (after the SWAMP Group, 1985).

Following are the switch selections that must be turned on before running the

model

¢ WAM3-DIA
DUM LRB4 SHRD GRTST SPTST PR2 ST1 NL1 BT1 WND1 CUR1 SEED BPI0
BPO1 PNT5 O1 02 O2a 03 04 O5 06 O7

e WAMS3-AvDI
DUM LRB4 SHRD GRTST SPTST PR2 ST1 NLB BT1 WND1 CUR1 SEED BPI0
BPO1 PNT5 O1 02 02a 03 04 O5 06 O7

e TC-AvDI
DUM LRB4 SHRD GRTST SPTST PR2 ST2 NLB BT1 WND1 CURL SEED BPI0
BPO1 PNT5 STAB2 XW0 O0 O1 02 02a O3 04 05 06 O7.

The test results, showing the total wave energy and peak frequency as a function of

fetch- and duration-limited growth, are shown in Figs. 6.10 through 6.13.
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Figure 6.10: The total energy curves as function of fetch-limited growth.
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Figure 6.12: The total energy curves as function of duration-limited growth.
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Figure 6.13: The peak frequency curves as function of duration-limited growth.
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6.2.2 Hurricane Juan

A detailed description of hurricane Juan is given by Fogarty et al. (2006) and Fogarty
(2003) in the Canadian Hurricane Center website. Juan reached hurricane strength
on 26 Sept. near Bermuda, and moved northwestward, as a subtropical ridge to the
northeast of its location extended to the west. It attained maximum winds of 90 knots
at 1800 UTC on 27 Sept., and turned northward towards Nova Scotia, with increasing
propagation speed. By 1800 UTC on 28 Sept., Juan was north of the Gulf Stream,
and its intensity began to weaken due to the cooler continental shelf waters. Because
of its accelerating translational speed, Juan quickly passed over these cooler waters
and made landfall near Halifax (0300 UTC on 29), with sustained winds of 85 knots.
A feature of Juan’s development is the phenomenal acceleration of its translation
speed, increasing dramatically from 2.28 ms™! at 1200 UTC on 27 Sept. to 20 ms™*
at 1200 UTC on 29 Sept.

Xu et al. (2006) used interpolation methods to blend observed hurricane winds
with numerical weather prediction (NWP) model winds to accurately represent the
wind fields, as shown on Fig. 6.14. These data were used in this test as a wind input
field. The results from WW3-AvDI were compared to the default model in which the
DIA method was employed to compute the Sy term (called WW3-DIA). Results are
also compared to observed in situ data, obtained from the Canadian Meteorological
Service of Canada (MSC) operational buoys (buoys 44142 and 44137) off Nova Scotia
and a directional waverider (DWR) that is located at the mouth of Lunenburg Bay.
The buoys 44142, 44137, and DWR are located in water depths of 1300 m, 4500 m,
and 29 m respectively. Figure 6.16 shows the hurricane track and buoys locations. It
also shows the resolution grid, at 15’ devision. Its domain is from 40°W to 75°W and
20°N to 65°N.

The starting frequency fy was fy = 0.04118 following Xu et al. (2006). This
number was also used in this test. The frequency increment factor is 1.1, the number
of frequencies is 30 and the number of directions is 36 (10° resolution). The initial

spectrum is ITY PE = 3 on ww3_strt.inp, in which the local spectrum is calculated
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Figure 6.14: Comparison between interpolated blended winds and observations (from

Xu, F. et al., 2006), (a) wind speed at 44142 station and (b) wind direction at 44142
station.
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Figure 6.15: Comparison between interpolated blended winds and observations (from
Xu, F. et al., 2006), (a) wind speed at 44137 station and (b) wind direction at 44137

station.
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using local wind velocity. Before compiling, the switch was set up as

DUM LRB4 SHRD GRTST SPTST PR2 ST2 NLB BT1 WND1 RWND CURI1 SEED
BPI0 BPO1 PNT5 XW0 O0 O1 02 O2a O3 04 05 06 O7

After setting up the switch and inputs, the model was compiled and run. Mean wave
parameters (significant wave height and peak periode) on three buoys are presented
on Figs. 6.17 through 6.18, and the one- and two-dimensional spectra are plotted on
Figs. 6.19 through 6.22.

6.2.3 Discussions for both cases
a. Fetch- and duration-limited case

Figures 6.10 through 6.13 present plots of fetch- and duration-limited growth. The
wave energy and peak frequency are plotted against distance and time respectively
and compared to result from JONSWAP observations. The white band on those
figures represents the JONSWAP growth curve +5% (the SWAMP Group, 1985).
All models show the same trend, energy increases as distance or time increases, then
asymptotes to a constant after some long fetch or time. However, the peak frequency
decreases as distance or time increases, then reaches a constant after a limiting fetch or
time is achieved. However, the slopes are different from our model results, compared
to those of JONSWAP results.

AvDI results are better with Tolman-Chalikov’s source terms than with WAM3
source terms. As shown in Figures 6.10 through 6.13, TC-AvDI graphs present a
reasonably similar trend compared to either JONSWAP or WAM-DIA results. It is
also shown that WAMS3 source terms and AvDI are not a good combination. This is
a result of AvDI's formulation, which needs to have specifically tuned source terms

for S;, and Sgs, as is done in all modern wave models.
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b. Hurricane Juan case

The Hs and peak period (Tp) comparisons (Figs. 6.17-6.18) suggest that WW3-AvDI
and WW3-DIA are capable of simulating Juan-generated waves reasonably well, and
that results from both models are somewhat comparable, using the interpolated winds
from Xu et al. (2006). They suggest that these interpolated winds lead to better Hs
and Tp estimates than the COAMPS winds, noting that the latter tend to produce
underestimates in Hs and Tp values.

The comparisons in Figs. 6.17-6.18 show biases. At buoy 44137, before about
0400 UTC on 28 Sept., simulated Hs estimates agree well with observations, while
simulated Tp values are biased low. After 2200 UTC on 28 Sept., simulated Tp values
agree well with observations, especially during the storm’s peak, but simulated values
from both models over-estimate observed Hs values. At buoy 44142, simulated Hs
values from WW3-DIA under-estimate observed data during and after the highest
winds. Xu et al. (2006) suggest that this DIA result may be due to over-estimates in
the sea surface roughness for high winds, as well as contributions from strong swell
and current components, resulting in reduced effective winds in the region of these
buoys. However, as shown by the WW3-AvDI result in Fig. 6.17b, part of the bias
is due to the formulation for nonlinear wave-wave interactions: under-estimate from
DIA is partially reduced by AvDI.

Observed 1D wave spectra data were collected at buoys 44137 and 44142, and
observed 2D wave spectra data, at the DWR. Figures 6.19a-6.19f compare the sim-
ulated 1D spectra with observations at buoys 44137 and 44142, at the storm’s peak
intensity, three hours before the peak wave, and three hours after the peak wave.
Overall, the simulated 1D spectra from WW3-DIA achieve a better match to ob-
servations than those resulting from WW3-AvDI. This is suggested over the entire
frequency range, before, during, and after the highest winds occurrences, under wind
wave-dominated as well as swell- dominated conditions. This is illustrated at 44142
as well as 44137; the simulated 1D spectral peak is improved by 200% by WW3-DIA
during peak (swell) waves (0020 UTC on 29 Sept.), compared to WW3-AvDI.
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Figure 6.22 compares the 1D spectrum from the models to observed data from the
DWR. At this location the results from WW3-AvDI appear similar to the observed
data, and WW3-DIA gives serious underestimates in peak values. Lags are evident
in the timing of the peak, reflecting a lag in the simulated wind fields. A low bias in
the WW3-AvDI results is present at about 0.1 Hz, compared to WW3-DIA results
and the observed data.

Figure 6.23 gives simulated 2D wave spectra comparisons with the DWR observa-
tions at the time of maximum waves (0411 UTC on 29 September). At this time, the
spectra are relatively narrow in directional and frequency range (Fig. 6.23a), whereas
after this point, swell is dominant. To some extent the simulated 2D spectrum gen-
erated by WW3-DIA suggests wider directional and frequency range distributions,
and does not capture the height of the peak, or the extent of the narrowing of the
observed spectrum. By comparison, WW3-AvDI obtains a narrower higher spectrum
that is qualitatively closer to characteristics of the observed data.

It is not surprising that results show some good agreements, and also some dis-
agreements, with observation data because the wave model is not been tuned for the
new method. Some tuning or calibration of variables would improve results. However,
our achievement is that the AvDI method makes the Boltzmann integral applicable

for a practical wave model.
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Figure 6.16: Grid domain and storm track of hurricane Juan: WW3 grid (15"). Ob-
servations are at open ocean buoys 44142 (64.02°W, 42.5°N) and 44137 (62.0°W,
42.26°N) located in 1300 m, and 4500 m depth water, respectively, and at nearshore
the DWR (64.18°W, 44.24°N} in 29 m depth water.
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Figure 6.17: Comparison of observed and simulated estimates for Hs at different

locations.
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Figure 6.18: Comparison of observed and simulated estimates for Tp at different

locations.
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Figure 6.19: Comparison of one-dimensional spectra between observations and WW3
simulations using blended winds, at 2120 UTC on 28 Sept., at buoys (a) 44137 and
(b) 44142.
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Figure 6.20: Comparison of one-dimensional spectra between observations and WW3

simulations using blended winds, at 0020 UTC on 29 Sept., at buoys (a) 44137 and
(b) 44142,
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0320 UTC on 29 Sept., at 44137 station
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Figure 6.21: Comparison of one-dimensional spectra between observations and WW3
simulations using blended winds, at 0320 UTC on 29 Sept., at buoys (a) 44137 and
(b) 44142.



104

on 29 Sept., at DWR station

160 T T . :
rrin 0411 UTC, Observation
1ol =m0 0410 UTC, WW3-AVDI | |
. + 0410 UTC, WW3-DIA
| b 1
120 1
]
100} 2 |
i

Spectral density (mzs)
D o]
o o
T T

B
o
T

20

iy

'

uyvvvr.:u.nunnn:uuuuuy
'

0.2 0.
Frequency (Hz)

Figure 6.22: Comparison of one-dimensional spectra between observations and WW3
simulations using blended winds at DWR location, at the time of maximal wave

energy.
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Figure 6.23: Comparison of two-dimensional spectra at the DWR location, at the time
of maximal wave energy, showing (a) DWR observations, (b) WW3-DIA simulation,
and (c) WW3-AvDI simulation. Contours indicate fraction of E,,,,. Contours values
are: 0.005, 0.01, 0.05, 0.10, 0.50, and 0.9. Direction is in the nautical convention.



Chapter 7

Conclusions and Recommendations

From this study it can be shown that the nonlinear transfer due to 4-wave interac-
tions (quadruplet) can be approximated by the dominant transfer related to selected
wavenumbers and a scaling factor F;. The latter is shown to follow a well-defined
variation, depending on wave maturity, as specified in terms of wave peakedness <y
and the spectral spreading function.

For a variety of JONSWAP input spectra, it can be seen that this advanced
dominant interaction (AvDI) formulation compares well with the full integration of
the nonlinear transfer due to wave-wave interactions. It is faster than DTA and is
competitive with DIA. In actual computations, the WTR method needs five loops to
compute the entire spectral grid, whereas the DTA program requires only four loops.
AvDI also requires four loops but at the same time reduces domain integrations;
therefore AvDI is more efficient than DTA.

Table 6.2 and Figure 6.2 show that the computation time can be improved by
setting up the spectra grid and using the geometrical scaling similarity property. The
geometry function is not a function of time, and so we can retain its value for all
the successive computations. As shown in Table 6.2, we do not need to compute the
G(k) again at t > 0. Reducing the loop and domain integration results in a relative
speed up the AvDI method, and reduces the requirement on computational memory

because fewer G(k) basic points are needed.
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For the experimental case, AvDI results show a good agreement with WTR, both
in 2-dimensional and 1-dimensional S, cases. Although two orders of magnitude
slower than DIA, this prototype AvDI can be readily applied for practical operational
wave simulations and forecasts.

In fetch- and duration-limited cases, it is shown that AvDI works well with Tolman
and Chalikov (1996)’s wind input and wave-dissipation source terms. The combina-
tion between AvDI and wind input and wave-dissipation source terms from WAM
plots gives different patterns, compared to the JONSWAP observational swath and
the results from the Tolman and Chalikov (1996) source terms. However, it is not
surprising that the results are different because the wave model source terms have
not been tuned for the new method (AvDI).

Comparisons with the standard formulation for WW3, using the DIA formulation
for nonlinear wave-wave interactions, show several results. With respect to JON-
SWAP input spectra, and computations from an accurate method as represented by
the WTR formulation, AvDI is much more accurate than DIA, in terms of distribu-
tions of the nonlinear transfer, as well as height of the positive and negative lobes of
the transfer peaks.

In terms of real data comparisons from hurricane Juan, we suggest that WW3-
AvDI is competitive with WW3-DIA in estimating peak periods Tp and significant
wave height Hs values at the peak of the storm. At buoy 44137, both models tend
to over-estimate peak Hs values, while under-estimating peak Hs values at 44142 and
the DWR. Both models tend to under-estimate Tp before the arrival of the storm at
the three buoys, and then to simulate the observed peak values relatively well.

It is more difficult to simulate 1D and 2D spectra, from open ocean conditions.
Our results suggest that although our new formulation, WW3-AvDI, can qualitatively
simulate observed 1D and 2D wave spectra at the peak of hurricane Juan, it appears
to have a tendency to over-predict the 1D spectral peak, in some instances, compared
to WW3-DIA. In other cases, WW3-DIA has a tendency to under-predict the peaks.

We show that the new formulation has a sufficiently fast execution time and can
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be implemented in an operational wave forecast model. For a particular grid that
has been shown, the estimated run time is about 135x faster than WTR, and 36x
slower than DIA. Moreover, compared to WTR, much less computational memory
is required, because fewer basic wave-wave interaction geometry points are needed.
However, as mentioned earlier, AvDI results compare well with WTR results, in both
1D and 2D tests. Therefore, as a prototype, AvDI can be readily applied for practical
wave simulations and forecasts. Additional research needs to consider appropriate
tuning of source terms for wind input and wave dissipation. In fact, we recommend
that the wave model should be properly tuned to accommodate the new methodology
for nonlinear term computation (AvDI method) before using this model.

Another approach is to recognize that DIA probably gives a good approximation
for developed waves in the open sea but is relative poor in spectral wave approxi-
mations for developing wave situations. Therefore, a possible recommendation for
further development is to combine two methods, i.e. AvDI and DIA. In this scenario,
AvDI would be used to compute the nonlinear wave-wave interactions during young
sea conditions, and DIA would be used for developed seas. A problem with this ap-
proach is that the real ocean is never so homogeneous as to have all fully developed or
all growing wind-wave spectra. For rapidly developing storms, the waves are always
growing and developing, throughout the domain of the storm.

AvDI method is fast but still not practical compared to DIA. Further research
needs to look to additional methods to optimize the Boltzmann integral and yet to

retain the accuracy achieved by the AvDI formulation.
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Appendix A
Beaufort Wind Force Scale

Table A.1 is taken from Met Office website, United Kingdom. 1

Note for Table A.1
¢ ' Beaufort Number

e * These columns are a guide to show roughly what may be expected in the open
sea, remote from land.

e Numbers in brackets indicate the probable maximum height of waves. In en-
closed waters, or when near land with an offshore wind, wave heights will be
smaller and the waves steeper.

 http:/ /www.met-office.gov.uk/weather /marine/guide/beaufortscale.html [2006, 1 September].
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Table A.1: Beaufort’s scale (available at Met Office website, UK).
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BNt

Description

Wind speed
at 10 m

(knots)

(m/s)

Description
in forecasts

Sea
of state

Specification for use at sea™

Probable
height of wave
(m)

10

11

12

Calm

Light air

Light breeze

Gentle breeze

Moderate breeze

Fresh breeze

Strong breeze

Near gale

Gale

Strong gale

Storm

Violent storm

Hurricane

<1

1-3

11-16

17-21

22-27

28-33

34-40

41-47

48-55

56-63

0.0-0.2

0.3-1.5

1.6-3.3

3.4-5.4

5.5-7.9

8.0-10.7

10.8-13.8

13.9-17.1

17.2-20.7

20.8-24.4

24.5-28.4

28.5-32.6

> 32.7

Calm

Light

Light

Light

Moderate

Fresh

Strong

Strong

Gale

Severe gale

Storm

Violent storm

Hurricane force

Calm

Calm

Smooth

Smooth

Slight

Moderate

Rough

Very rough

High

Very high

Very high

Phenomenal

Phenomenal

Sea like a mirror

Ripples with the appearance
of scales are formed, but
without foam crests.

Small wavelets, still short
but more pronounced.
Crests have a glassy

appearance and do not break.

Large wavelets, crests begin
to break. Foam of glassy
appearance, perhaps
scattered white horses.
Small waves becoming
longer, fairly frequent white
horses.

Moderate waves, taking

a more pronounced long
form; many white horses
are formed.

Chance of some spray.
Large waves begin

to form; the white foam
crests are more extensive
everywhere.

Probably some spray.

Sea heaps up and white
foam from breaking waves
begins to be blown in
streaks along the direction
of the wind.

Moderately high waves of
greater length; edges of
crests begin to break into
spindrift. The foam is blown
in well-marked streaks
along the direction of

the wind.

High waves. Dense streaks
of foam along the direction
of the wind. Crests of waves
begin to topple, tumble and
roll over.

Spray may affect visibility.
Very high waves

with long overhanging crests.
The resulting foam, in great
patches, is blown in dense
white streaks along the
direction of the wind.

On the whole, the surface
of the sea takes a white
appearance. The ’tumbling’
of the sea becomes

heavy and shock-like.
Visibility affected.
Exceptionally high waves
(small and medium-sized
ships might be lost to view
for a time behind the waves).
The sea is completely
covered with long white
patches of foam lying along
the direction of the wind.
Everywhere the edges of the
wave crests are blown into
froth. Visibility affected.
The air is filled with foam
and spray. Sea completely
white with driving spray;
visibility seriously affected.

0.0

0.1 (0.1)

0.2 (0.3)

0.6 (1.0)

1.0 (1.5)

2.0 (2.5)

3.0 (4.0)

4.0 (5.5)

5.5 (7.5)

7.0 (10.0)

9.0 (12.5)

11.5 (16.0)

14.0 ()




Appendix B

The Study of Ocean Surface Waves

List of acronyms in Table B.1.

0OSJ
SWOP
SMB
PNJ
ICCE
WAM
JONSWAP
JWA3G
ARSLOE
RIAM
Project
SWADE
HEXOS
RASEX
SOWEX

: The Oceanographic Society of Japan (founded in 1941).

: Stereo Wave Observation Project.

: Sverdrup, Munk and Bretschneider.

: Pierson, Neumann and James.

: International Conference on Coastal Engineering (started from 1950).
: Wave Model.

: Joint North Sea Wave Project.

: Japan Weather Associations Third Generation Wave Model.

: Atlantic Remote Sensing Land Ocean Experiment.

: Wave Observation Project.

: The Surface Waves Dynamics Experiment.
: Humidity EXchange Over the Sea.

: Ris Air-Sea Exchange.

: Southern Ocean Waves Experiment.
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Appendix C

Coupling Coefficient

The coupling coefficient C' is defined as

192 D?(ky, ko, k3, kq)
4 WowsWy

C(ky, kg, ks, kq) = (m™*s™4).

where

2 _ —
D(kl, k2, k3, k4) — 2(’!1}1 + ’LU2) (kzlkg kl . k2)(kzk‘4 k3 » k4)
Wiy — (w1 + wo)
+ 2(101 - 1U3)2(k1k3 - k1 . k3)(k2k4 - kz . k4)
wi_g — (w1 — w3)?
2(w1 - w4)2(k1k4 - k] . k4)(k2k3 - k2 . k3)
+ 7 — 5
wi_y — (w1 — wa)

+ %[(k1 o) (Kg « Ka) + (kg « ka) (kg ko) + (K1 « Kg)(Ks - Ks)]

1 1

- Z(kl ko + ks k4)(w1 + ’LU2)4 + Z(kl eks+koo k4)(U)1 — ’l.U3)4
1 5

+ Z(kl kit ks, k3)(w1 — UJ4)4 + ‘2—k1k2k3k4

+ (w1 + 1U2)2(w1 - w3)2(w1 - w4)2(k1 + ko + ks + k4)

Here,

k’iz lki], wi = \/k—z

and

wiy2 = v/ k1 + ko, wi—3 = v/ |k; —ka|, wi—g =/ |k1 — k4.
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Appendix D

Main and Subprograms

The following are diagrams of pre-processor, processor, and postprocessor subpro-
grams used by WAVEWATCH III

W3GRID

—1 DISTAB

INPTAB

—1 W3SNPn

—1 W3IOGR

Figure D.1: ww3_grid’s subprograms (after Tolman, 1999).
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W3STRT

W3IOGR

W3IORS

Figure D.2: ww3_strt’s subprograms (after Tolman, 1999).

W3PREP

— W3IOGR

— W3FLDP

— W3FLDO

—1 W3FLDG

Figure D.3: ww3_prep’s subprograms (after Tolman, 1999).



W3SHEL — W3I0GR
— W3MPH
— W3INIT [
W3IORS
— W3FLDO
— W3IOPP
— W3WAVE —1{ wampIo
— W3FLDH || ] W3UCUR
W3DCXY
— W3FLDG | | H W3UWND
W3UINI
| wsloBc
W3UBPT
— W3UICE
W3ULEV
L 1 W3MAPN W3GATH
W3DDXY
W3QCK1
—— W3XYPn W3SCAT
— W3KTPn W3QCK2
[: W3APRn
| W3SRCE W3SPRn
~| w3ouTG | W3SINn
WSIOGO | \— wasNLn
W3IOPE
L] W3IOPO — W3SDSn
— WS3IOTR
W3IORS | '~ W3sBTn
— W3IOBC
W3IOPA

Figure D.4: ww3_shel’s subprograms (after Tolman, 1999).
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W3OUTF

—1 W3IOGR

— W3I0GO

— W3EXGO

Figure D.5: ww3_outf’s subprograms (after Tolman, 1999).

W30UTP
—1 W3IOGR | ] W3SPRn
—1 WS3IOPO | [ W3SINn
—] W3EXPO W3SNLn
—| W3SDSn
— | W3SBTn

Figure D.6: ww3_outp’s subprograms (after Tolman, 1999).



Appendix E
Edited Files

The following are edited files and their contents as the results of installing the new
nonlinear term in WAVEWATCH III.

e Directory: aux

1. w3adc.f

e Directory: bin

ad3

ad3_test

comp

comp.gen

link

link.gen
make_makefile.prog
make_makefile.subs

w3_new

© 2N e e WD

e Directory: ftn

1. dims.cmn
2. dimx.cmn

3. w3expo.ftn
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w3init.ftn
w3iogr.ftn
w3srce.ftn
w3wave.ftn

ww3_grid.ftn

© N s o e

ww3_outp.ftn
10. ww3_shel.ftn

¢ Directory: inp

1. ww3_grid.inp

Directory: aux
1. w3adc.f

before:

PARAMETER ( MMFILE 20 )

after:

PARAMETER ( MMFILE 30 )



Directory: bin

1. ad3

before:

echo "’#i#toutp.dat’ ’$path_i/outp.dat’ " >> w3adc.
after:

echo "’##outp.dat’ °’$path_i/outp.dat’ " >> w3adc.
echo "’##nldp.cmn’ ’$path_i/nldp.cmn’ " >> w3adc.
echo "’#i#loci.cmn’ ’$path_i/loci.cmn’ " >> w3adc.
echo "’#i#tgrid.cmn’ ’$path_i/grid.cmn’ " >> w3adc.
echo "’##tgeob.cmn’ ’$path_i/geob.cmn’ " >> w3adc.
echo "’##tgeoe.cmn’ ’$path_i/geoce.cmn’ " >> w3adc.
echo "’##fzzl.cmn’ ’$path_i/fzzl.cmn’ " >> w3adc.
echo "’##ncl0.cmn’ ’$path_i/ncl0.cmn’ " >> w3adc.
2. ad3_test

The changes are same as ad3.

3. comp
At section ‘Compile, Generic’ use this line

g77 -c $name.f > $name.out 2> $name.err

4. comp.gen

The change is same as comp.

5. link

At section ‘Link all things, Generic’ use this line

g77 -o $prog $objects > link.out 2> link.err

6. link.gen

The change is same as link.

inp

inp
inp
inp
inp
inp
inp
inp
inp
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7. make_makefile.prog

before:

OK=’NLO NL1 NLX’ ;;

after:

OK=’NLO NL1 NLB NLE NLX’ ;;

before:

NL1) nli=’w3snpl’
nl2=’w3snll’ ;;

after:

NL1) nli=’w3snpl’

nl2=’w3snll’ ;;
NLB) nli=’delw cple locus fgeob’

nl2="findy defuz ffdfz findn pten w3snlb’ ;;
NLE) nli=’delw cple locus fgeoe’

nl2="findn w3snle’ ;;

8. make_makefile.subs

before:

files=’w3sinl w3sin2 w3snll w3snpl w3sdsl w3sds2 w3sbtl’ ;;

after:

files=’w3sinl w3sin2 w3snll w3snpl w3sdsl w3sds2 w3sbtl’ ;;
files=’w3sinl w3sin2 w3snll w3snpl w3sdsl w3sds2 w3sbtl’
files="$files findn findy defuz ffdfz fgeob fgeoe"
files="$files pten w3snlb w3snle" ;;

before:



files=’wavnul

after:

files=’wavnul
files=’wavnul
files="$files

before:

tabl.cmn tab2.

after:

tabl.cmn tab2.
nld4p.cmn loci.
ncl0.cmn

9. w3_new

wavnu2 distab inptab fejbp’

wavnu2 distab inptab fejbp’
wavnu2 distab inptab fej5p’
delw cple locus" ;;

cmn auxl.cmn auxt.cmn outp.

cmn auxl.cmn auxt.cmn outp.
cmn grid.cmn geob.cmn geoe.

before:
’spec’ ) cd $main_dir/ftn ; touch dims.
after:
’spec’ ) cd $main_dir/ftn ; touch dims.
touch nl4p.
Directory: ftn
1. dims.cmn
before:
PARAMETER ( NTH = 24 )
PARAMETER ( NK = 25 )
after:
PARAMETER ( NTH = 36 )

PARAMETER ( NK = 30 )

2

bR

dat

dat \
cmn fzzl.cmn \

cmn ;;

cmn
cmn
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2. dimx.cmn

before:

after:

where nX and nY are number of points in zy-plane.

PARAMETER ( MX
PARAMETER (MY
PARAMETER ( MSEA
PARAMETER ( MX
PARAMETER (MY
PARAMETER ( MSEA

3. w3expo.ftn

before:

##auxt.

after:

##auxt.
##nldp.
##geodb.
#ttgeoe.
##grid.
##fzzl.
##ncl0.

before:
C/NL1
after:
C/NL1
C/NLB
C/NLE

cmn

cmn
cmn
cmn
cmn
cmn
cmn
cmn

nX )
nY )
nX x nY )

CALL W3SNL1 ( A, CG, WNMEAN*DEPTH,

CALL W3SNL1 ( A,
CALL W3SNLB ( A,
CALL W3SNLE ( A,

cG,
CG,
CaG,

WNMEAN*DEPTH,
UABS,

XNL, DNL )

XNL, DNL )
XNL, DNL )
XNL, DNL )

129



4. w3init.ftn

before:

##auxt .

after:

##auxt.
##nl4p.
##geob.
#itgeoe.
##grid.
##fz=z1.
##nc10.

5. w3iogr.ftn

before:

##auxt.

after:

##auxt.
##nldp.
#i#tgeob.
##geoe.
##grid.
##fzzl.
##ncl0.

before:

INTEGER

after:

INTEGER

cmn

cmn
cmn
cmn
cmn
cmn
cmn
cmn

cmn

cmn
comn
cmn
cmn
cmn
cmn
cmn

ISEA, IX, IY

ISEA, IX, IY, IZ, IR
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before:

C/NL1 TNAME2 = ’Discrete Interaction Approx. °’
after:

C/NL1 TNAME2 = ’Discrete Interaction Approx. °’
C/NLB TNAME2 = ’Advance Dominant Int., AvDI ?
C/NLE TNAME2 = ’WTR Method ’

In ‘Source term parameters’ add following lines

*

C/NLB IF ( WRITE ) THEN

C/NLB WRITE (NDSM)

C/NLB & (WKA(IR),IR=1,NNR), (PHA(IR),IR=1,NNR)

C/NLB ELSE

C/NLB READ (NDSM,END=801,ERR=802,I0STAT=IERR)

C/NLB & (WKA(IR),IR=1,NNR), (PHA(IR),IR=1,NNR)

C/NLB ENDIF

*

C/NLB IF ( WRITE ) THEN

C/NLB WRITE (NDSM)

C/NLB & (((X2BL(IX,IY,IZ),IX=1,NNA),IV=1,2),IZ=1,NLOCI),
C/NLB & (((Y2BL(IX,IY,IZ),IX=1,NNA),IY=1,2),1Z=1,NLOCI),
C/NLB & (((X4BL(IX,IY,IZ),IX=1,NNA),IY=1,2),1Z=1,NLOCI),
C/NLB & (((Y4BL(IX,IY,IZ),IX=1,NNA),IY=1,2),1Z=1,NLOCI),
C/NLB & (((GEOM(IX,IY,IZ),IX=1,NNA),IY=1,2),IZ=1,NLOCI),
C/NLB & H10

C/NLB ELSE

C/NLB READ (NDSM,END=801,ERR=802,I0STAT=IERR)

C/NLB & (((X2BL(IX,IY,IZ),IX=1,NNA),IY=1,2),IZ=1,NLOCI),
C/NLB & (((Y2BL(IX,IY,IZ),IX=1,NNA),IY=1,2),IZ=1,NLOCI),
C/NLB & (((X4BL(IX,IY,IZ),IX=1,NNA),IY=1,2),IZ=1,NLOCI),
C/NLB & (((Y4BL(IX,IY,I1Z),1X=1,NNA),IY=1,2),1Z=1,NLOCI),
C/NLB & (((GEOM(IX,IY,IZ),IX=1,NNA),IY=1,2),IZ2=1,NLOCI),
C/NLB & H10

C/NLB ENDIF

*
C/NLE IF ( WRITE ) THEN



C/NLE
C/NLE &
C/NLE
C/NLE
C/NLE &
C/NLE

C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE
C/NLE

PR

R
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WRITE (NDSM)
(WKA(IR),IR=1,NNR), (PHA(IR),IR=1,NNR)
ELSE
READ (NDSM,END=801,ERR=802, I0STAT=IERR)
(WKA(IR),IR=1,NNR), (PHA(IR),IR=1,NNR)
ENDIF

IF ( WRITE ) THEN

WRITE (NDSM)
(C(((X2BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA),
(C((Y2BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA), IR=1,NNR),IZ=1,NPA),
((((X4BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA),
(C(((Y4BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA),
(C((GEOME(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA)
ELSE

READ (NDSM,END=801,ERR=802,I0STAT=IERR)
((((X2BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA),
((((Y2BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA), IR=1,NNR),IZ=1,NPA),
((((X4BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA),
(C(((Y4BLE(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA),
((((GEOME(IX,IY,IR,IZ),IX=1,NNA),IY=1,NNA),IR=1,NNR),IZ=1,NPA)
ENDIF

6. w3srce.ftn

before:

Cc C/NL1
after:

C C/NL1
C C/NLB
C C/NLE
before:

##auxt.cmn

Discrete interaction approximation.

Discrete interaction approximation.
Exact interaction approximation (AvDI).
Exact interaction approximation (BIO-EXA).



after:

##auxt.
##nldp.
##geob.
##geoe.
##grid.
##fzz].
##ncl0.

before:
C/NL1
after:
C/NL1
C/NLB
C/NLE
before:
C/NL1
after:
C/NL1
C/NLB
C/NLE
before:
C/NL1
after:
C/NL1
C/NLB
C/NLE

cmn
cmn
cmn
cmn
cmn
cmn
cmn

’e

& &

CALL W3SNL1 ( SPEC,

CALL W3SNL1 ( SPEC,
CALL W3SNLB ( SPEC,
CALL W3SNLE ( SPEC,

CG1, WNMEAN*DEPTH, VSNL, VDNL )

CG1, WNMEAN*DEPTH, VSNL, VDNL )

CG1, U10ABS,
CG1,

+ VDNL(IS)

+ VDNL(IS)
+ VDNL(IS)
+ VDNL(IS)

+

+ + +

VSNL, VDNL )
VSNL, VDNL )

VSNL(IS)

VSNL(IS)
VSNL(IS)
VSNL(IS)
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7. w3wave.ftn

before:

##auxt.

after:

##Hauxt.
##nldp.
##geob.
##geoe.
##grid.
##fzz].
##nclo0.

8. ww3_grid.ftn

before:

##auxl.

after:

##aux1.
##nldp.
##geob.
##geoe.
#i#grid.
##ncl0.

before:

WRITE (NDS0,903) NTH, DTH*RADE, NK, FR1, XFR

after:

WRITE (NDSO,903) NTH, DTH+RADE, NK, FR1, FR1*XFR**(NK-1), XFR

cmn

cmn
cmn
cmn
cmn
cmn
cmn
cmn

cmn

cmn
cmn
cmn
cmn
cmn
cmn

134



before:

##auxl.

after:

##auxl.
##nl4p.
#i#geob.
##geoe.
##grid.
##ncl0.

before:

-C/NL1
after:
C/NL1
C/NLB
C/NLE
before:
C/NL1
after:
C/NL1
C/NLB
C/NLE
before:
C/NL1
*

cmn

cmn
cmn
cmn
cmn
cmn
cmn

NRNL = NRNL + 1
NRNL = NRNL + 1
NRNL = NRNL + 1
NRNL = NRNL + 1

WRITE (NDSO,1922)

WRITE (NDSO,1922)
WRITE (NDSQ,7922)
WRITE (NDSO,8922)

CALL W3sNP1 ( LAMBDA )
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after:

C/NL1
C/NLB
C/NLB
C/NLB
C/NLE

C/NLE
C/NLE

before:
C/NL1
after:
C/NL1

C/NLB
C/NLE

before:

after:

before:

C/NL1

after:

CALL W3SNP1

WRITE (NDSO,
WRITE (NDSO,

CALL FGEOB

WRITE (NDSO,
WRITE (NDSO,

CALL FGEOE

WRITE (NDSO,

WRITE (NDSO,
WRITE (NDSO,
WRITE (NDSO,

136

( LAMBDA )

8923) NNR,NNA,NPA,FR1,XFR
888)

8923) NNR,NNA,NPA,FR1,XFR
888)

1922)

1922)
7922)
8922)

Lowest frequency (Hz) :’,F9.4/

Frequency range (Hz) :’,F9.4,’-’,F6.4/

shallow water constants 12 F8.2,2F6.2/)
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C/NL1 & ’ shallow water constants :?,F8.2,2F6.2/)

*

C/NLB 7922 FORMAT (/’ Nonlinear interactions (AvDI) 2/

C/NLB & ?  (this method suits for deep water omnly!)’/

C/NLB & ? --= )
C/NLB 8923 FORMAT ( ° Number of frequency (=30) 12,14/
C/NLB & ? Number of angle (=36) 17,14/
C/NLB & ? -input must be equal as in bracket, ’ /
C/NLB & ? if not, go to dims.cmn to edit those- ’ /
C/NLB & ’ Number points in loci 12,14/
C/NLB & ’ -go to nl4p.cmn to edit it- > /

C/NLB & ’ First frequency (Hz) :?,F8.3/
C/NLB & ’ Freq. multiplication factor :’,F8.3/)

*
C/NLE 8922 FORMAT (/’ Nonlinear interactions (BIO-EXA) :'/

C/NLE & > (this method suits for deep water only!)’/

C/NLE & e -=’)
C/NLE 8923 FORMAT ( ° Number of frequency 27,14/
C/NLE & ’ Number of angle 17,14/
C/NLE & ’ -go to dims.cmn to edit those- ’ /
C/NLE & : Number points in loci 17,14/
C/NLE & ’ -go to nld4p.cmn to edit it- > /

C/NLE & ’ First frequency (Hz) :?,F8.3/
C/NLE & ? Freq. multiplication factor :’,F8.3/)

*

before:

C/02a 998 FORMAT (80I1)
*

after:

C/02a 998 FORMAT (80I1)
*

888 FORMAT (/’ Computing GEOMETRY term...... D

9. ww3_outp.ftn

before:



##auxt.

after:

##auxt.
##nl4p.
##geob.
##geoe.
##grid.
#tfzzl.
##ncl0.

10. ww3_shel.ftn

before:

##spar.

after:

#i#spar.
##nldp.
#i#geob.
#tgeoe.
##grid.
#Hfzz1.
##ncl10.

cmn

cmn
cmn
cmn
cmn
cmn
cmn
cmn

cmn

cmn
cmn
cmn
cmn
cmn
cmn
cmn
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Directory: inp

1. ww3_grid.inp

Do not activate nonlinear constants.

$

$ Nonlinear interactions - — = = = = = = = = = = = = = = = — = — - -
$ Not defined 1 -

$ Discrete I.A. : lambda and C source term,conversion factor
$ kd in Eq. (2.24) ,minimum kd, and

$ constants c1-3 in depth scaling function.
$ line 1: Cf. WAM model.

$ line 2: Cf. Tolman and Chalikov (1996).
$

$ 0.25 2.78E7 0.75 0.50 5.5 0.833 -1.25

$ 0.25 1.00E7 0.75 0.50 5.5 0.833 -1.25

$

$ Experimental R

3

$

Dissipation - - - - - - - - - = - - - - = - = - - - - - - - - - -



Appendix F
New COMMONSs

List of new ‘COMMON’s in alphabetical order and their contents (see next page).
1. fzzl.cmn
2. loci.cmn

geob.cmn

geoe.cmn

grid.cmn

nclO.cmn

NS o e W

nl4p.cmn
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1. fzzl.cmn

c/

C/ ---- WW-III SOURCE

c/
c/
c/

*

REAL

2. loci.cmn

c/

C/ ---- WW-III SOURCE

c/
c/
c/

&

REAL

COMMON /LOCI/

3. geob.cmn

c/
c/
c/
c/
c/
c/
c/

--—-— WW-III SOURCE

&
&

REAL

COMMON /GEOB/
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/

FUNCTION. COMMON : SNL4(BID)
Written by

Last update :

XSP, XGAM, FACTID

: Adhi Susilo

21-Feb-2006

FUNCTION COMMON : SNL4(BID)
Written by

Last update :

XL0C2,YL0C2,XL0C4,YL0OC4,DS

XLOC2(NPA),YLOC2(NPA),
XLOC4 (NPA) ,YLOC4 (NPA) ,DS(NPA)

/

: Adhi Susilo

25-Dec-2005

FUNCTION COMMON : SNL4(BIO)
Written by

Last update :

H10,GEOM, X2BL,X4BL,Y2BL,Y4BL

H10,GECM(NNA,2,NLOCI),

: Adhi Susilo

11-Apr-2006
16-Mar-2006
25-Dec-2005

X2BL (NNA,2,NLOCI) ,X4BL(NNA,2,NLOCI),
Y2BL(NNA,2,NLOCI) ,Y4BL(NNA,2,NLOCI)



4. geoe.cmn

c/
C/ ---- WW-III SOURCE
c/
c/
c/
REAL

COMMON /GEQE/
&
&

5. grid.cmn

c/
C/ ---- WW-III SOURCE
c/
c/
c/

*
REAL

COMMON /GRID/

6. ncl0.cmn

c/
C/ ---- WW-III SOURCE
c/
c/
c/
REAL

COMMON /NC10/
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FUNCTION COMMON : SNL4(BIO)--- /
Written by : Adhi Susilo
Last update : 25-Dec-2005

GEOME, X2BLE,X4BLE, Y2BLE, Y4BLE

GEOME (NNA,NNA,NNR,NPA) ,
X2BLE(NNA,NNA,NNR,NPA) ,X4BLE(NNA,NNA,NNR,NPA),
Y2BLE(NNA,NNA,NNR,NPA) , YABLE(NNA,NNA,NNR, NPA)

FUNCTION COMMON : SNL4(BIOD)-- /
Written by : Adhi Susilo
Last update : 25-Dec-2005

DENS13,WKA,PHA

DENS13(NNR,NNA) ,WKA(NNR) , PHA(NNR)

FUNCTION COMMON : SNL4(BIO)--~——=—==—==—=-—- /
Written by : Adhi Susilo
Last update : 11-Apr-2006
TR10,DG10

TR10(NLOCI),DG10(NLOCI)



143

7. nldp.cmn

c/
C/ ---- WW-III SOURCE FUNCTION COMMON : SNL4(BID) - /
c/ Written by : Adhi Susilo
c/ Last update : 16-Mar-2006
c/ 25-Dec-2005
c/

REAL XLM

INTEGER NNR,NNA,NPA,I3S,IPAP,IPAN,ILOCI,NLOCI
*

PARAMETER ( NNR = NK )

PARAMETER ( NNA = NTH )

*
C/ NPA is number of points of a loci
PARAMETER ( NPA = 36 )

%

C/ 138 is k3 chosen
PARAMETER ( I35 = 1 )

*

C/ IPAp/n is k3 chosen angle
PARAMETER ( IPAP = 2 )
PARAMETER ( IPAN = -2 )

*
C/ For I10, the selected points along loci
PARAMETER ( NLOCI = NPA/2 )



Appendix G

New Programs

List of new programs in alphabetical order and their contents (see next page).
1. cple.ftn*
2. defuz.ftn
3. delw.ftn*
4. fidfz.ftn
5. fgeob.ftn

o

fgeoe.ftn

~

findn.ftn
8. findy.ftn
9. locus.ftn*
10. pten.ftn
11. w3snlb.ftn

12. w3snle.ftn

Note:
* these programs are taken from Resio’s work and are modified by author so they can
be suitable for the wave model, WAVEWATCH III version 1.18.
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1. cple.ftn

c/ - -—-- -—- /
SUBROUTINE CPLE(X1, Y1, X2, Y2, X3, Y3, X4, Y4, CSQ)

##docb

c/

c/

c/

| FISHERIES & OCEANS CANADA
| BEDFORD INSTITUTE OF OCEANOGRAPHY
c/ [ Dartmouth, Nova Scotia, Canada
c/ [ &
c/ | DALHOUSIE UNIVERSITY
c/ | Halifax, Nova Scotia, Canada
c/ |
c/ |
c/ [
c/ |
c/ +
c/
C 1. Purpose :
C

—_————— — —

Adhi Susilo

FORTRAN 77 |

Last update : 25-Dec-2005 |
- -—+

Calculate the coupling coefficient.
2. Method :
Compute C(k1,k2,k3,k4) with Webb’s theorem.
This subroutine is from subroutine of a program called
windwave3.f, written by Resio.

3. Parameters :

Parameter list

Xn,Yn Real Components of wave number in x-y axis.
csQ Real The coupling coefficient.

Local parameters

See source code.

C
c
c
C
C
C
C
C
C
c
c
c
C
C
c
C
C
c
C
c

4. Subroutines used :



None.
5. Called by :

FGEOB,FGEQE
Finding the geometry term.

6. Error messages :
None.
7. Remarks :
None.
8. Structure :
See source code.
9. Switches :
None.

10. Source code :

[sNoNosNosNsNoNoNeoNorNoNeNoNoNoNoNoNesNoNoNeoNolNoNoNs Mol e

C/——mmmmm o e -
IMPLICIT NONE

c

C/ Local parameters

c/

REAL X1,Y1,X2,Y2,X3,Y3,X4,Y4,72,721,22,23,
PI4,EPS,WK1,WK2,WK3,WK4,W1,W2,W3,W4,
DOT12,D0T13,D0T14,D0T23,D0T24,D0T34,
WSQP12,WSQ12,WSQM13,WSQ13,WsSQM14,WsSQ14,
pPi1,P2,P3,P4,P5,P6,P7,DS,D,CSQ

= = = =

DATA PI4/.78539/

EPS = 1.0E-30
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WK1
WK2
WK3
WK4
w1
W2

SQRT (X1*X1+Y1*xY1)

SQRT (X2*X2+Y2*Y2)

SQRT (X3*X3+Y3*Y3)

SQRT (X4*X4+Y4%xY4)

SQRT (WK1)

SQRT (WK2)

W3 = SQRT(WK3)

W4 = SQRT(WK4)

DOT12 = X1*X2+Y1xY2

DOT13 = X1*X3+Y1%xY3

DOT14 = X1*X4+Y1xY4

DOT23 = X2*X3+Y2*Y3

DOT24 = X2*xX4+Y2xY4

DOT34 = X3*X4+Y3*Y4

WSQP12= SQRT( (X1+X2)*(X1+X2) + (Y1+Y2)*(Y1+Y2) )
WSQ12 = (W1+W2)*x(W1+W2)

WSQM13= SQRT((X1-X3)*(X1-X3)+(Y1-Y3)*(Y1-Y3))
WSQ13 = (W1-W3)*(W1-W3)

WSQM14= SQRT( (X1-X4)*(X1-X4) + (Y1-Y4)=*(Y1-Y4) )
WSQ14 = (Wi-W4)*(W1-W4)

21 = WSQP12-WSQ12
Z2 = WSQM13-WSQ13
Z3 = WSQM14-WSQi4

Z = 2.xWSQ12* (WK1*WK2-DOT12) * (WK3*WK4-D0OT34)
Pi= Z/(Z1+EPS)
Z = 2.*WSQ13* (WK1*WK3+D0OT13) * (WK2*xWK4+D0T24)
P2= Z/(Z2+EPS)
Z = 2.*WSQ14x (WK1*WK4+DOT14) * (WK2*#WK3+DOT23)
P3= Z/(Z3+EPS)
P4= 0.5 *(DOT12*DOT34+D0OT13*D0T24+D0T14*D0OT23)
P5= 0.25*((DOT13+D0T24)*WSQ13*WSQ13- (DOT12+DOT34) *WSQ12*WSQ12)
P6= 0.25*(D0OT14+D0T23) *WSQ14*WSQ14+2 . 5*xWK1*WK2*WK3*xWK4
P7= WSQ12*WSQ13*WSQ14* (WK1+WK2+WK3+WK4)
DS= P1+P2+P3+P4+P5+P6+P7
D = DS*DS
CSQ = PI4xD/(W1*W2*xW3*xW4+EPS)
*
C/ End of CPLE -/
c/

END
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2. defuz.ftn

c/ ——- — /
REAL FUNCTION DEFUZ(WA, WB, WC, WD, FA, FB, FC, FD)

##dochb

c/

c/ I FISHERIES & OCEANS CANADA |
c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |
c/ | Darmouth, Nova Scotia, Canada
c/ I & !
c/ | DALHOUSIE UNIVERSITY |
c/ | Halifax, Nova Scotia, Canada |
c/ I |
c/ [ Adhi Susilo |
c/ | FORTRAN 77 |
c/ | Last update : 20-Feb-2006 |
c/ Fom e ———— -+
c/
C 1. Purpose :
c

To find crips value from fuzzy logic.

2. Method :
(Sum weight*crips)/(Sum weight)
3. Parameters :
Parameter list
DEFUZ Real The value of defuzzying.

Local parameters

See source code.

4. Subroutines used :

None.

e eoNoNoNoNoNoNoNolNoNoNesNoNoNoNs NN Ne!
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5. Called by :
FFDFZ
6. Error messages :
None.
7. Remarks :
None.
8. Structure :
See source code.
9. Switches :

None.

[y
o

. Source code :

sHesEoNoNsNorNeNoNeoNsNoNolNoNoNoNeoNeoNoNoNe oM e!

Q
~
|
|
|
~

*

REAL WA,WB,WC,WD,FA,FB,FC,FD,FNOM,FDOM

FNOM = FA+FB+FC+FD

FDOM = WA+WB+WC+WD

DEFUZ = FNOM/FDOM
C
C/ End of DEFUZ /
¢

END
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3. delw.ftn

c/ /
REAL FUNCTION DELW(X2,Y2,X4,Y4)

##docdb

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

C 1. Purpose :
C

FISHERIES & OCEANS CANADA
BEDFORD INSTITUTE OF OCEANOCGRAPHY
Dartmouth, Nova Scotia, Canada

&
DALHOUSIE UNIVERSITY
Halifax, Nova Scotia, Canada

Adhi Susilo
FORTRAN 77
Last update : 25-Dec-2005

 —— — — — — — — —— 4
- ——_- ————— — +

Calculate the magnitute of grad W.
2. Method :

See Tracy-Resio 1982. This subroutine is from subroutine of
a program called windwave3.f, written by Resio.

3. Parameters :

NONE

Local parameters

Xn,Yn Real Components of wave number in x-y axis. \

C
C
C
C
C
C
C
C
C
C Parameter list
C
C
C
C
C
C
C
C
C
C

4. Subroutines used :
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None.
5. Called by :

FGEOB, FGEOE
Finding geometry term.

6. Error messages :
None.
7. Remarks :
None.
8. Structure :
See source code.
9. Switches :
None.

10. Source code :

eNsEsEsEsEsrErsrNoNoNeoNosNeoNeoNoNoNoNoNoNoNeNoNoNoNoNe N

c/ ——- /
IMPLICIT NONE

C

c/ /

C/ Local parameters

c/

REAL X2,Y2,X4,Y4,ZZX,7Z7ZY,
& XK25Q,XK45Q,Z22,Z24,ZZSUM

XK238Q X2xX2+Y2*Y2
XK4SQ = X4x*X4+Y4xY4
Z2 = XK28Q**(-0.75)
Z4 = XK4SQ**(-0.75)
27ZX= X2xZ2-X4*Z4
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ZZY= Y2*Z2-Y4*xZ4

ZZSUM = ZZX*ZZX+ZZY*ZZY

IF (ZZSUM.LT.1.0E-25) ZZSUM=1.0E-25
DELW = 0.5%SQRT(ZZSUM)

RETURN
*

C/ End of DELW - /
c/

END
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4. fidfz.ftn

c/ -— - - -/
SUBROUTINE FFDFZ (XSP, XGAM, FACTD)
##doch
c/ e +
c/ | FISHERIES & OCEANS CANADA I
c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |
c/ | Darmouth, Nova Scotia, Canada
c/ | & |
c/ | DALHOUSIE UNIVERSITY |
c/ | Halifax, Nova Scotia, Canada ]
c/ | l
c/ | Adhi Susilo |
c/ | FORTRAN 77 |
c/ | Last update : 16-Mar-2006 |
c/ | 20-Feb-2006 |
c/ + —_——s
c/

C 1. Purpose :

Q

Calculate the dominant factor, Fd.

N

. Method :

Compute Fd(spreading factor,gamma) with Fuzzy Logic.

w

. Parameters :

Parameter list

XSP,XGAM Real Slope-T(theta), Slope-K(wavenumber)
FACTD Real The dominant factor, Fd.

Local parameters

See source code.

4. Subroutines used :

[eeNsNeoNoNoNeoNoNoNeoNoNINIsrNoNo NN NN
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FINDY, DEFUZ.
5. Called by :
W3SNLB
6. Error messages :
None.
7. Remarks :
None.
8. Structure :
See source code.
9. Switches :
None.

10. Source code :

eHoNsEsNo NN ErsrEoNoNoNeoNeoNsNeoNoNo oo NolNe Moo Ne!

Q
~
|
~

IMPLICIT NONE
C
##fzz1.cmn
C/ Local parameters
C
INTEGER ISP,IGM

REAL SP1,8P2,5P3,GM1,GM3,GM5,GM7,
FDO1,FD02,FD0O3,FD04,FD05,FDO6,
FDO7,FD08,FD09,FD10,FD11,FD12,
CSP1,CSP2,CSP3,CGM1,CGM3,CGMb5,CGM7,
c1,c2,C3,C4,F1,F2,F3,F4,
FINDY,DEFUZ

R

EXTERNAL FINDY,DEFUZ
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¢/ e - -- e
FL DATA

Q

Q

Slope of spreading factor:
DATA SP1,SP2,5P3 /0.17276792,0.34032625,0.96153523/

C Slope of gamma factor:
DATA GM1,GM3 /0.00693812,0.51239269/
DATA GM5,GM7 /0.57823480,0.61386923/

Q

Fd(gamma, spreading factor), IPA=2
DATA FDO1,FD02,FD03,FD04 /12.5000, 9.0761, 9.5266,10.1712/
DATA FDO5,FD06,FDO7,FDO8 /10.3665, 8.4495, 9.1633,10.0000/
DATA FDO9,FD10,FD11,FD12 / 7.0642, 7.7174, 9.2124,10.5817/

¢/ -~ mm s /

sk

*

C

c Findind the magnifying factor with Fuzzy logic
C

*

C

Two inputs, one output

C Determine the domain class of speading

IF(XSP.LE.SP1) ISP =1
IF(XSP.GT.SP1.AND.XSP.LE.SP2) ISP = 2
IF(XSP.GT.SP2.AND.XSP.LT.SP3) ISP = 3
IF(XSP.GE.SP3) ISP = 4

*

C Determine the domain class of gamma
IF(XGAM.LE.GM1) IGM =1
IF(XGAM.GT.GM1.AND.XGAM.LE.GM3) IGM = 2
IF (XGAM.GT.GM3.AND.XGAM.LE.GM5) IGM = 3
IF(XGAM.GT.GM5.AND.XGAM.LT.GM7) IGM = 4
IF (XGAM.GE.GM7) IGM =5

C Determine crip values for spreading factor



IF(ISP.EQ.1) THEN
CSP1 = 1.

GO TO 444

END IF

IF(ISP.EQ.2) THEN

CSP1 = FINDY(SP1,S5P2,XSP)
CSP2 = 1-CSP1

GO TO 444

END IF

IF(ISP.EQ.3) THEN

CSP2 = FINDY(SP2,SP3,XSP)
Csp3 = 1-CSP2

GO TO 444
END IF

IF(ISP.EQ.4) THEN
CSP3 = 1.

GO TO 444
END IF

444 CONTINUE
C Determine crip values for gamma factor

IF(IGM.EQ.1) THEN
CGML = 1.

GO TO 555
END IF

IF(IGM.EQ.2) THEN

CGM1 = FINDY(GM1,GM3,XGAM)
CGM3 = 1-CGM1

GO TO 555

END IF

IF(IGM.EQ.3) THEN
CGM3 = FINDY(GM3,GM5,XGAM)
CGM5 = 1-CGM3

156
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GO TO 555
END IF

IF(IGM.EQ.4) THEN

CGM5 = FINDY(GM5,GM7,XGAM)
CGM7 = 1-CGMb5

GO TO 555

END IF

IF(IGM.EQ.5) THEN
CGM7 = 1.

GO TO 555

END IF

555 CONTINUE
C. Determine rules to find the mag. factor
C First combination

IF(ISP.EQ.1.AND.IGM.EQ.1) THEN
FACTD = FDO1

GO TO 777

END IF

C3 =
Cc4 =
F3
F4

]
O O O O

IF(ISP.EQ.1.AND.IGM.EQ.2) THEN

C1 = CGM1

C2 = CGM3

F1 = C1xFDO1

F2 = C2xFD0O2

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777
END IF

IF(ISP.EQ.1.AND.IGM.EQ.3) THEN



158

C1 = CGM3

C2 = CGM5

F1 = C1xFD02

F2 = C2+FD03

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777

END IF

IF(ISP.EQ.1.AND.IGM.EQ.4) THEN

C1 = CGM5

C2 = CGM7

F1 = C1+FD0O3

F2 = C2x%FD04

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777
END IF

IF(ISP.EQ.1.AND.IGM.EQ.5) THEN

FACTD = FD0O4
GO TO 777
END IF

C Second combination

IF(ISP.EQ.2.AND.IGM.EQ.1) THEN

C1 = CSP1

C2 = CSpP2

€3 = 0.

C4 = 0.

F1 = C1+FDO1
F2 = C2+FD0b5
F3 = 0.

F4 = 0.
FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777
END IF

IF(ISP.EQ.2.AND.IGM.EQ.2) THEN
C1 = MIN(CSP1,CGM1)
C2 = MIN(CSP2,CGM1)



FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C3 = MIN(CSP1,CGM3)
C4 = MIN(CSP2,CGM3)
F1 = C1xFDO1

F2 = C2xFDO5

F3 = C3%FD02

F4 = C4*FDO6

GO TO 777

END IF

IF(ISP.EQ.2.AND.IGM.EQ.3) THEN

C1 = MIN(CSP1,CGM3)

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C2 = MIN(CSP2,CGM3)
C3 = MIN(CSP1,CGM5)
C4 = MIN(CSP2,CGM5)
F1 = C1xFD02
F2 = C2xFDO6
F3 = C3*FD03
F4 = C4xFDO7
GO TO 777
END IF

IF(ISP.EQ.2.AND.IGM.EQ.4) THEN

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C1 = MIN(CSP1,CGM5)
C2 = MIN(CSP2,CGM5)
C3 = MIN(CSP1,CGM7)
C4 = MIN(CSP2,CGMT7)
F1 = C1xFD0O3

F2 = C2xFDO7

F3 = C3*FD04

F4 = C4xFD08

GO TOo 777
END IF

IF(ISP.EQ.2.AND.IGM.EQ.5) THEN

C1
c2
Cc3

CSP1
CSP2
0.
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FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C4 = 0.

F1 = C1xFD0O4
F2 = C2xFDO8
F3 = 0.

F4 = 0.

GO To 777
END IF

C Third combination

IF(ISP.EQ.3.AND.IGM.EQ.1) THEN

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C1 = CSP2

C2 = CSP3

€3 =0.
C4=0.

F1 = C1xFDO5
F2 = C2xFD09
F3 = 0.

F4 = 0.

GO TO 777
END IF

IF(ISP.EQ.3.AND.IGM.EQ.2) THEN

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C1 = MIN(CSP2,CGM1)
C2 = MIN(CSP3,CGM1)
C3 = MIN(CSP2,CGM3)
C4 = MIN(CSP3,CGM3)
F1 = C1xFDO5

F2 = C2xFD09

F3 = C3*xFD06

F4 = C4xFD10

GO TO 777
END IF

IF(ISP.EQ.3.AND.IGM.EQ.3) THEN

C1 = MIN(CSP2,CGM3)
C2 = MIN(CSP3,CGM3)
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FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C3 = MIN(CSP2,CGM5)
C4 = MIN(CSP3,CGM5)
F1 = C1xFDO6

F2 = C2xFD10

F3 = C3*FDO7

F4 = C4xFD11

GO TO 777

END IF

IF(ISP.EQ.3.AND.IGM.EQ.4) THEN

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C1 = MIN(CSP2,CGM5)
C2 = MIN(CSP3,CGM5)
C3 = MIN(CSP2,CGMT7)
C4 = MIN(CSP3,CGM7)
F1 = C1*FDO7

F2 = C2+FD11

F3 = C3%FDOS8

F4 = C4%FD12

GO TO 777
END IF

IF(ISP.EQ.3.AND.IGM.EQ.5) THEN

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)

C1 = CSP2

C2 = CSP3

€3 =0.

C4 = 0.

F1 = C1xFDO8
F2 = C2xFD12
F3 = 0.

F4 = 0.

GO TO 777

END IF

C Fourth combination

IF(ISP.EQ.4.AND.IGM.EQ.1) THEN

FACTD = FDO9

161
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GO TO 777
END IF

C3 =
C4 =
F3 =
F4 =

O O O O

IF(ISP.EQ.4.AND.IGM.EQ.2) THEN

C1 = CGM1

C2 = CGM3

F1 = C1+FDO9

F2 = C2xFD10

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777
END IF

IF(ISP.EQ.4.AND.IGM.EQ.3) THEN

C1 = CGM3
C2 = CGM5
F1 = C1xFD10
F2 = C2xFD11
FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777
END IF

IF(ISP.EQ.4.AND.IGM.EQ.4) THEN

C1 = CGM5

C2 = CGM7

F1 = C1%FD11

F2 = C2%FD12

FACTD = DEFUZ(C1,C2,C3,C4,F1,F2,F3,F4)
GO TO 777
END IF

IF(ISP.EQ.4.AND.IGM.EQ.5) THEN
FACTD = FD12

GO TO 777
END IF
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777 CONTINUE
*

C/ End of FFDF -— - -—
c/

END
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5. fgeob.ftn

C/ ——-mmmmmm- e - /
SUBROUTINE FGEOB

##docb

c/ +-- —-———t

c/ | FISHERIES & OCEANS CANADA |

c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |

c/ | Dartmouth, Nova Scotia, Canada |

c/ | & I

c/ | DALHOUSIE UNIVERSITY I

c/ | Halifax, Nova Scotia, Canada |

c/ I I

c/ I Adhi Susilo |

c/ I FORTRAN 77 |

c/ | Last update : 16-Mar-2006 |

c/ I 25-Dec-2005 |

c/ + - -— +

c/

C 1. Purpose :

C

C To computes the geometry term, Geom(x,y,p).

C

C 2. Method :

C

C Use a special grid proposed by Tracy-Resio.

C

C 3. Parameters :

C

C Parameter list

C -

c Xn,Yn Real Components of wave number in x-y axis.

C

C Local parameters

c —_— _—

c See source code.

C

C Common /CW3PHS/ Physical and algebraic constants. (##auxl.cmn)

C @ ==

C TPI Real 2pi.
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GRAV Real Acc. of gravity
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(##dims.cmn)
(##n14p.cmn)

NTH,NNA Int. Number of directions.
NK,NNR Int. Number of wavenumbers.
NPA Int. Number of points.

Common /LOCI/ Loci of K2 and K4

(##loci.cmm)

XLOCn R.A. Component of Kn on x-axis.
YLOCn R.A. Component of Kn on y-axis.
DS R.A. Delta S along loci.

. Subroutines used :

LOCUS Find loci of resonance.
CPLE Find the coupling coeffisient.
DELW Find delW.

. Called by :

WW3_GRID Main initial subroutine.

. Error messages :

None.

. Remarks :

None.

. Structure :

See source code.

. Switches :




166

C None.

C

C 10. Source code :

C

c/ - -~/
IMPLICIT NONE

C

##dims . cmn

##spar.cmn

#i#auxl.cmn

##nl4p.cmn

##loci.cmn

##grid.cmn

##geob.cmn

c/

¢/ --- -- - -/
C/ Local parameters

¢/

INTEGER IRNG,IRNGM1,IA1,IA3,ISA3,IR3,IPTS,IPA,I
INTEGER I10(18)

REAL GSQ,GSR,WKO,DK,DW1,
& X1,X2,X3,X4,Y1,Y2,Y3,Y4,
& DELW,CSQ

REAL DS10(0:NPA)
EXTERNAL DELW

DATA 110( 1),110( 2),110( 3) /10,12,14/
DATA 110( 4),I10( 5),I10( 6) /16,18,20/
DATA I10( 7),I10( 8),I10( 9) /22,24,26/
DATA I10(10),I10(11),I10(12) /28,30,32/
DATA T110(13),110(14),I10(15) /34,36, 2/
DATA I10(16),110(17),I10(18) / 4, 6, 8/

C 1. Set constant variables

GSQ = GRAV*GRAV
GSR = SQRT(GRAV)
XLM = XFR*XFR
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WKO = SIG(1)*SIG(1)/GRAV

DO IRNG = 1,NNR

IRNGM1 = IRNG-1

WKA(IRNG) = SIG(IRNG)=*SIG(IRNG)/GRAV

DK=WKO#* (XLM** (IRNGM1+0 .5) -XLM#** (IRNGM1-0.5))
PHA (TRNG) =DK*DTH*WKA (IRNG)
END DO

. Compute the BASIC GEOM
IR3 = 1+I38
DO IAl1 = 1,NNA

X1 = WKO*ECOS(IA1)
Y1 = WKO*ESIN(IA1)

DO ISA3 =1,2
IPA = IPAP
IF(ISA3.EQ.2) IPA = IPAN
IA3 = TAl1 + IPA

IF(IA3.GT.NNA) IA3
IF(IA3.LT. 1) IA3

TA3-NNA
NNA+TA3

X3 = WKA(IR3)*ECOS(IA3)
Y3 = WKA(IR3)*ESIN(IA3)
CALL LOCUS (X1,Y1,X3,Y3)

DO ILOCI = 1,NLOCI
IPTS = I10(ILOCI)

X2 = XLOC2(IPTS)
Y2 = YLOC2(IPTS)
X4 = XLOC4(IPTS)
Y4 = YLOC4(IPTS)

X2BL(IA1,ISA3,ILOCI) = X2
Y2BL(IA1,ISA3,ILOCI) = Y2
X4BL(IA1,ISA3,ILOCI) = X4
Y4BL(IA1,ISA3,ILOCI) = Y4



DW1 = 1/(GSR+DELW(X2,Y2,X4,Y4))
CALL CPLE(X1,Y1,X2,Y2,X3,Y3,X4,Y4,CSQ)
IF (CSQ.LT.1.0E-20) CSQ=0.

GEOM(IA1,ISA3,ILOCI) = DW1xCSQ*GSQ

END DO
END DO
END DO
%
C 3. Compute averaged ds, H10
*
DS10(0) = 0.
DO I = 1,NPA
DS10(I) = DS(I)+DS10(I-1)
END DO

H10 = DS10(NPA)/NLOCI
*

C/ End of FGEOB
c/
END
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6. fgeoe.ftn

¢/ -- it /
SUBROUTINE FGEOE
##docb
c/ + -- +
c/ | FISHERIES & OCEANS CANADA |
c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |
c/ | Dartmouth, Nova Scotia, Canada |
c/ | & |
¢/ | DALHOUSIE UNIVERSITY |
c/ | Halifax, Nova Scotia, Canada |
c/ | |
c/ I Adhi Susilo |
c/ | FORTRAN 77 |
c/ | Last update : 25-Dec-2005 |
c/ o -+
c/
1. Purpose :
To computes the geometry term, Geom(x,y,z,p)
2. Method :
Use a special grid proposed by Tracy-Resio.
3. Parameters :

Parameter list

Xn,Yn Real Components of wave number in x-y axis.

Local parameters

See source code.

Common /CW3PHS/ Physical and algebraic constants. (##auxl.cmn)

TPI Real 2pi.
GRAV Real Acc. of gravity

[eHrNsNeoNeoNesNeoNeNoNsNoNoNoNoNsNoNoNeoNo N R NS
|
|
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(##dims.cmn)
(##nl4p.cmn)

NTH,NNA Int. Number of directions.
NK,NNR Int. Number of wavenumbers.
NPA Int. Number of points.

Common /LOCI/ Loci of K2 and K4

(##loci.cmn)
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XLOCn R.A. Component of Kn on x-axis.
YLOCn R.A. Component of Kn on y-axis.

DS R.A. Delta S along loci.

. Subroutines used :

LOCUS Find loci of resonance.
CPLE Find the coupling coeffisient.
DELW Find delV.

. Called by :

WW3_GRID Main initial subroutine.

. Error messages :

None.

. Remarks :

None.

. Structure :

See source code.

. Switches :

None.
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C

C 10. Source code :

C

0 — -—= /
IMPLICIT NONE

C

##dims . cmn

##spar.cmn

##aux1.cmn

##nl14p.cmn

##loci.cmn

##grid. cmn

##geoe.cmn

c/

c/ -- /
C/ Local parameters

c/

INTEGER IRNG,IRNGM1,IA1,IA3,IR3,IPTS
REAL GSQ,GSR,WKO,DK,DW1,
& X1,X2,X3,%X4,Y1,Y2,Y3,Y4,
& DELW,CSQ

EXTERNAL DELW

C 1. Set constant variables

GSQ = GRAV*GRAV
GSR = SQRT(GRAV)
XLM = XFR*XFR
*
WKO = SIG(1)*SIG(1)/GRAV

DO IRNG = 1,NNR
IRNGM1 = IRNG-1
WKA(IRNG) = SIG(IRNG)*SIG(IRNG)/GRAV
DK=WKO* (XLM** (IRNGM1+0.5) -XLM** (IRNGM1-0.5))
PHA (IRNG) =DK*DTH*WKA (IRNG)
END DO



C 2. Compute BASIC GEOM
*
DO IA1 = 1,NNA
X1 = WKO*ECOS(IA1)
Y1 = WKO*ESIN(IA1)

DO IA3 = 1,NNA
DO IR3 = 2,NNR
X3 = WKA(IR3)+*ECOS(IA3)
Y3 = WKA(IR3)+*ESIN(IA3)
CALL LOCUS (X1,Y1,X3,Y3)

DO IPTS = 1,NPA

X2 = XLOC2(IPTS)
Y2 = YLOC2(IPTS)
X4 = XLOC4(IPTS)
Y4 = YLOC4(IPTS)

X2BLE(IA1,IA3,IR3,IPTS) = X2
Y2BLE(IA1,IA3,IR3,IPTS) = Y2
X4BLE(IA1,IA3,IR3,IPTS) = X4
Y4BLE(IA1,IA3,IR3,IPTS) = Y4

DW1 = 1/(GSR+DELW(X2,Y2,X4,Y4))
CALL CPLE(X1,Y1,X2,Y2,X3,Y3,X4,Y4,CSQ)
IF (CSQ.LT.1.0E-20) CSQ=0.

GEOME(IA1,IA3,IR3,IPTS) = DS(IPTS)*DW1*CSQ*GSQ

END DO
END DO
END DO

END DO
*

C/ End of FGEQE --- -
c/
END
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7. findn.ftn

c/ -- /
SUBROUTINE FINDN(X, Y, DF)
#i#dochb
¢/ - -
c/ | FISHERIES & OCEANS CANADA
c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY
c/ | Dartmouth, Nova Scotia, Canada
c/ [ &
c/ [ DALHOUSIE UNIVERSITY
I
I
I
I
I

c/ Halifax, Nova Scotia, Canada
c/
c/
c/ FORTRAN 77 |
c/ Last update : 25-Dec-2005 |
c/ e —————————————— - +

—_————- ——— %

Adhi Susilo

Q
~

1. Purpose :

Célculate the n(k) which is outside the grid point.
2. Method :

Compute the n(k) using weight factors.
3. Parameters :

Parameter list

X,Y Real Components of wave number in x-y axis.
DF Real Action density in that point (X,Y).

Local parameters

XLM Real Wavenumber multiplication factor.

Common /CW3PHS/ Physical and algebraic constants. (##auxl.cmn)

TPI Real 2pi.

[eoNeNeoNoNoNoNoNoNoNoNoNoNoNsNoNosrNoNsNoNe !
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Common /CW3SPR/ Spectral parameters. (##tspar.cmn)
XFR Real Frequency multiplication factor.
(##dims.cmn)
(##n14p.cmn)
NTH,NNA Int. Number of directions.
NK,NNR Int. Number of wavenumbers.
Common /GRID/ Physical properties in the grid. (##grid.cmn)

DENS13 R.A.
WKA R.A.
PHA R.A.

None.

. Called by :

N(k) in the grid.
Wavenumber.
Unit area ( k dtheta*xdk )

. Subroutines used :

W3SNLB, W3SNLE
Nonlinear interactions preprocessing program.

. Error messages :

None.

. Remarks :

None.

. Structure :

See source code.

. Switches :
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C None.

C

C 10. Source code :

C

c/ -/
IMPLICIT NONE

C

##auxl.cmn

##dims.cmn

##spar.cmn

##nld4p.cmn

##grid.cmn

C

c/ i /
C/ Local parameters

c/

*

INTEGER NDEG,NRING,INID,IFID,INIR,IFIR

REAL X,Y,DF,R,DEG,RWKO,WA1,WA2,WR1,WR2,

& RASWF,DHS13,DHE13
%*

XLM = XFR*XFR

R = SQRT(X*X+Y*Y)

DEG = ATAN2(Y,X)

IF(DEG.LT.0) DEG=TPI+DEG

IF(R.LT.WKA(1)) THEN
DF = 0.

ELSE IF(R.GT.WKA(NNR)) THEN
NDEG = DEG/DTH+1
INID = NDEG
IFID = NDEG+1
IF(IFID.EQ.NTH+1) IFID = 1

WA2
WAl

(DEG-TH(INID)) /DTH
1-WA2

RASWF = (SQRT(R/WKA(NNR)))x**(=7)
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DHS13 = DENS13(NNR, INID)*RASWF
DHE13 = DENS13(NNR,IFID)*RASWF
DF = WA1xDHS13+WA2xDHE13

ELSE
NDEG
RWKO

NRING

DEG/DTH+1
R/WKA(1)
LOG(RWKO) /LOG (XLM) +1

INID = NDEG

IFID = NDEG+1
IF(IFID.EQ.NTH+1) IFID = 1
INIR = NRING

IFIR = NRING+1

(DEG-TH(INID))/DTH

1-WA2
(R-WKA(INIR))/((XLM-1)*WKA(INIR))
1-WR2

WA2
WAl
WR2
WR1

DF = WR1xWA1*DENS13(INIR,INID)+WR1*WA2*DENS13(INIR,IFID)+
& WR2*WA1*DENS13(IFIR, INID) +WR2*WA2+DENS13 (IFIR, IFID)

END IF
*

C/ End of FINDN - - - _ /
c/

END
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8. findy.ftn

C/ -—————--—- -—- /
REAL FUNCTION FINDY(X1,X2,XF)

#i#tdocb

c/ S —— +

c/ FISHERIES & OCEANS CANADA

c/ BEDFORD INSTITUTE OF OCEANOGRAPHY

c/ Darmouth, Nova Scotia, Canada

|
l
|
c/ | &
I
l
|
I
I

[

[

|

|
c/ DALHOUSIE UNIVERSITY I
c/ Halifax, Nova Scotia, Canada |
c/ [
c/ Adhi Susilo |
c/ FORTRAN 77 |
c/ | Last update : 20-Feb-2006 |
c/ +——— - +
c/

[

. Purpose :

To find Y(X) (for Fuzzy Logic)

N

. Method :

YX) =mX + C

. Parameters :

w

Parameter list

FINDY Real The value of Y(x).

Local parameters

See source code.

NN

. Subroutines used :

None.

Qoo aaaoaaogaoaaaaoaaaaaaaaaaan
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10.

. Called by :

FFDFZ

. Error messages :

None.

. Remarks :

None.

. Structure :

See source code.

. Switches :

None.

Source code :

Q
S~

*

C

178

_____ - ————— et e e /
REAL  X1,X2,XF,XM,XC
XM= 1/(X1-X2)
XC = X2/(X2-X1)
FINDY = XM*XF+XC
C/ End of FINDY - - - -/

C

END
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9. locus.ftn

c/ - /
SUBROUTINE LOCUS(X1, Y1, X3, Y3)

##docb

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

c/

C 1. Purpose :
C

- —+

FISHERIES & OCEANS CANADA |
BEDFORD INSTITUTE OF OCEANOGRAPHY |
Dartmouth, Nova Scotia, Canada |

& |

DALHOUSIE UNIVERSITY |
Halifax, Nova Scotia, Canada |

|

|

Adhi Susilo
FORTRAN 77 |

Last update : 25-Dec~-2005 |
-_— -+

 ——— — — — — — — — 4

Find locus of K2 and K4 as function of (K1,K3).

2. Method :
Use NEWTON-RAPHSON iteration for locus solution.
This subroutine is from subroutine of a program called
windwave3.f, written by Resio.

3. Parameters :

Parameter list

Xn,¥Yn Real Components of wave number in x-y axis.

Local parameters

See source code.

Common /CW3PHS/ Physical and algebraic constants. (##auxl.cmn)
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TPI Real 2pi.
(##dims.cmn)
(##nl4p.cmn)
NTH,NNA Int. Number of directions.
NK,NNR Int. Number of wavenumbers.
NPA Int. Number of points.

Common /LOCI/

Loci of K2 and K4

(##loci.cmn)

XLOCn R.A.
YLOCn R.A.
DS R.A.

None.

. Called by :

FGEOB,FGEOE

Component of Kn on x-axis.
Component of Kn on y-axis.
Delta S along loci.

. Subroutines used :

Finding the geometry term.

. Error messages :

None.

. Remarks :

None.

. Structure :

See source code.

. Switches :

None.
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C

C 10. Source code :

C

c/ -—- /
IMPLICIT NONE

C

##auxl.cmn

##dims.cmn

##spar.cmn

##nl4p.cmn

#i#loci.cmn

C

C/ Local parameters
c/

INTEGER NPP2,NP2,ILOC,ICOMP

REAL AINC,X1,Y1,X2,Y2,X3,Y3,X4,Y4,WK1,WK3,0M1,0M3,0M13,
Q,QsQ,PX,PY,PSQ,PMAG, PANG, COSP, SINP,
ABSQ, THETA,YY, YYXX, ANGLOC, ANGLOCP,
ANGLOCN,HPOT , WKMX , WKMAX , WKMN , WKMIN ,
CNTR,CX,CY,DIAM,RADIUSL,ANGABS,R1,COSA,SINA,
OM2,0M4,W0,RP,RM, X2P,Y2P,X4P, Y4P,
X2M,Y2M, X4M, Y4M, OM2P, OM4P, OM2M, OM4M,
WP, WM, ZZZ ,DWDR,RN,DX2,DY2

PR R

AINC=TPI/NPA
NPP2=NPA+2

NP2=NPA/2

WK1=SQRT (X1*X1+Y1%Y1)
WK3=SQRT (X3*X3+Y3%Y3)
OM1=SQRT (WK1)
OM3=SQRT (WK3)
OM13=0M1-0M3

Q=0M13

QSQ=Q*Q
PX=X1-X3
PY=Y1-Y3
PSQ=PX*PX+PY*PY
PMAG=SQRT (PSQ)
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PANG=ATAN2(-PY,-PX)
COSP=COS (PANG)
SINP=SIN(PANG)

Solution is quadratic in sqrt(k) so answer must be squared
ABSQ=ABS(Q)

IF (ABSQ.LT.1.0E~10) THEN
WKMIN=0.5*PMAG
THETA=0.
DO 1001 ILOC=1,NP2
DS(ILOC)=TAN(THETA) * WKMIN /NP2
YY=(ILOC-1)*DS (ILOC)
YYXX=YY/WKMIN
ANGLOC=ATAN(YYXX)
ANGLOCP=PANG+ANGLOC
ANGLOCN=PANG-ANGLOC
HPOT=WKMIN/COS (ANGLOC)
XLOC2 (ILOC) =HPOT*COS (ANGLOCP)
YLOC2(ILOC)=HPOT*SIN(ANGLOCP)
ICOMP=1-ILOC+NPA
XLOC2 (ICOMP)=HPOT*COS (ANGLOCN)
YLOC2 (ICOMP)=HPOT*SIN(ANGLOCN)
XL0C4 (ILOC)=XLOC2(ILOC)+PX
YL0OC4 (ILOC)=YLOC2(ILOC)+PY
XL0C4 (ICOMP)=XL0OC2 (ICOMP)+PX
YLOC4 (ICOMP)=YLOC2 (ICOMP) +PY
DS (ICOMP)=DS(ILOC)

1001 CONTINUE

ELSE
WKMX=(-PMAG-QSQ) / (2.%*Q)
WKMAX=WKMX*WKMX

WKMN=0. 5% (-Q+SQRT (2. 0*PMAG-QSQ) )
WKMIN=WKMN*WKMN

XL0OC2 (1) =WKMIN*COSP
YLOC2(1)=WKMIN*SINP

XLOC2 (NP2+1)=WKMAX*COSP

YLOC2 (NP2+1) =WKMAX*SINP
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XL0C4 (1)=XL0C2(1)+PX
YLOC4(1)=YLOC2(1)+PY

XL0OC4 (NP2+1)=XLOC2(NP2+1) +PX
YLOC4 (NP2+1)=YLOC2 (NP2+1)+PY
CNTR=0.5* (WKMAX+WKMIN)
CX=CNTR*COSP

CY=CNTR*SINP
DIAM=WKMAX-WKMIN
RADIUSL=0.5*DIAM
DS(1)=RADIUSL*AINC
DS(NP2+1)=RADIUSL*AINC

DO 1 ILOC=2,NP2
ANGLOC=(ILOC-1)*AINC
ANGABS=ANGLOC+PANG
R1=RADIUSL

COSA=C0S (ANGABS)
SINA=SIN(ANGABS)
X2=CX-R1*COSA

Y2=CY-R1*SINA

X4=X2+PX

Y4=Y2+PY
OM2=(X2*xX2+Y2*Y2) **0 .25
OM4=(X4*X4+Y4*xY4) %0 .25
WO0=0M13+0M2-0M4

IF (ABS(WO).GT.1.0E-6) THEN
RP=1.001*R1

RM=0.989%R1

X2P=CX-RP*C(OSA
Y2P=CY-RP*SINA

X4P=X2P+PX

Y4P=Y2P+PY

X2M=CX-RM*COSA
Y2M=CY-RM*SINA

X4M=X2M+PX

Y4M=Y2M+PY
OM2P=(X2P*X2P+Y2P*Y2P) **0 . 25
OM4P=(X4P*X4P+Y4P*Y4P) **0.25
OM2M= (X2M*X2M+Y2M*Y2M) **0 , 25
OM4M=(X4AM*X4M+YAM*Y4M) *%0 . 25
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WP=0M13+0M2P-0M4P
WM=0M13+0M2M-0M4M

ZZZ=(WP-WM)

DWDR=ZZZ/ (RP-RM)

IF (ABS(DWDR).LT.1.0E-10) DWDR=1.0E-10*ABS(DWDR)/DWDR
RN=R1-WO/DWDR

IF (ABS(RN-R1).LT.0.0001) THEN

CONTINUE

ELSE

R1=RN

GO TO 10

END IF
ELSE

RN=R1
END IF

DX2=RN*COSA
DY2=RN*SINA
XL0OC2(ILOC)=CX-DX2
YLOC2(ILOC)=CY-DY2
ICOMP=NPP2-ILOC
XL0OC2 (ICOMP)=CX-RN*C0OS (PANG-ANGLOC)
YLOC2 (ICOMP)=CY-RN*SIN(PANG-ANGLOC)
XL0C4 (ILOC)=XLOC2(ILOC)+PX
YLOC4 (ILOC)=YLOC2(ILOC)+PY
XL0OC4 (ICOMP)=XLOC2(ICOMP)+PX
YLOCA (ICOMP)=YLQOC2(ICOMP)+PY
DS (ILOC)=RN*AINC
DS (ICOMP)=RN*AINC
1 CONTINUE

END IF
*

C/ End of LOCUS /
c/

END
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10. pten.ftn

c/ - /
SUBROUTINE PTEN (HNC, FS10, TRNC, DTRNC)
##docb
c/ o +
c/ [ FISHERIES & OCEANS CANADA |
c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |
c/ | Darmouth, Nova Scotia, Canada |
c/ | & |
c/ | DALHOUSIE UNIVERSITY !
c/ | Halifax, Nova Scotia, Canada
c/ [ !
c/ | Adhi Susilo l
c/ | FORTRAN 77 |
c/ | Last update : 11-Apr-2006 |
c/ + - - +
c/

C 1. Purpose :

Compute the integral along loci.
2. Method :

Calculate the integral with Newton-Cotes method (10 points).
3. Parameters :

Parameter list

FS10 Real power of geometry term
TRNC,DTRNC Real Integral of Transfer & Diagonal function

Local parameters

See source code.

4. Subroutines used :

PHeNsEsEsEsEsNsNeoNsNeNeo NN NI NI NI R EP RN

None.



5. Called by :
W3SNLB
6. Error messages :
None.
7. Remarks :
None.
8. Structure :
See source code.
9. Switches :
None.

10. Source code :

eNeoNoEesNoNoNoNoNoNoNeoNosNoNeoNoNoNo oMo e RO RO o]

Q
S~
|
I
t

IMPLICIT NONE

c
##dims.cmn
##nl4p.cmn
##ncl10.cmn
C/ Local parameters
c
*

REAL WIO,WI1,WI2,WI3,WI4,WIS,

& HNC,FS10,TRNC,DTRNC
*

c/ - - ---
*

C/ Weight factors
C WIO = 9/89600.
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Compute the integral using 2x10 points method

*

*

C/ End of PTEN -

c/

R RP P

WIOo
Wil
WI2
WI3
WI4
WI5

TRNC
TRNC

R

TRNC

R

DTRN
DTRN

R

C
C

DTRNC

END

0.000100446
2857

15741

1080

19344

5778

0

(

TRNC + WIO*FS10+HNCx*

WI1*x(TR10(1)+TR10(10))+
WI2+(TR10(2)+TR10( 9))+
WI3*(TR10(3)+TR10( 8))+
WI4*(TR10(4)+TR10( 7))+
WI5*(TR10(5)+TR10( 6)) )

TRNC + WIO*FS10*HNCx*

(

0

WI1*(TR10(10)+TR10( 1))+
WI2*(TR10(11)+TR10(18))+
WI3*(TR10(12)+TR10(17))+
WI4*(TR10(13)+TR10(16))+
WIS*(TR10(14)+TR10(15)) )

DTRNC + WIO*FS10xHNC*

(

WI1*(DG10(1)+DG10(10))+
WI2*(DG10(2)+DG10( 9))+
WI3*(DG10(3)+DG10( 8))+
WI4*(DG10(4)+DG10( 7))+
WI5S*(DG10(5)+DG10( 6)) )

DTRNC + WIO*FS10*HNCx*

(

WI1*(DG10(10)+DG10( 1))+
WI2%(DG10(11)+DG10(18))+
WI3*(DG10(12)+DG10(17))+
WI4*(DG10(13)+DG10(16))+
WI5S*(DG10(14)+DG10(15)) )
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11. w3snlb.ftn

¢/ —--
SUBROUTINE W3SNLB(A, CG, UREF, S, D)

##doch

c/ +- -+

c/ | FISHERIES & OCEANS CANADA |

c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |

c/ | Dartmouth, Nova Scotia, Canada |

c/ [ & |

c/ | DALHQUSIE UNIVERSITY I

c/ | Halifax, Nova Scotia, Canada |

c/ | |

c/ | Adhi Susilo |

c/ | FORTRAN 77 |

c/ | Last update : 24-Jul-2006 |

c/ | 21-Feb-2006 |

c/ e +

c/

C 1. Purpose :

C

C Calculate nonlinear interactions and the diagonal term of

C its derivative.

C

C 2. Method :

C

c Boltzmann integral with dominant tranfer and fuzzy logic,

C AvDI (Advance Dominant Interaction) method.

C

C 3. Parameters :

C

C Parameter list

C —_—

C A R.A. I Action spectrum A(ITH,IK) as a function of

C direction (rad) and wavenumber.

C CG R.A. I Group velocities (dimension NK).

C S R.A. 0 Source term. *)

c D R.A. 0 Diagonal term of derivative. *)

c

C *) 1-D array with dimension NTH*NK
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Common /GRID / Nonlinear interactions (##grid.cmn)

DENS13 R.A. Action density n(k).
WKA R.A. Magnitute of wavenumber.
PHA R.A. kdtheta x dk.

Common /GEOB / Nonlinear interactions (##geob.cmn)

GEOM R.A. Geometry term, G(k).
XnBL R.A. Length of locus ’n’ on X-axis.
YnBL R.A. Length of locus ’n’ on Y-axis.

Local parameters

See source code.

. Subroutines used :

FINDN Finding the action density n(k).
FFDFZ Finding the dominant factor by fuzzy logic.
PTEN Finding the integral along loci by fuzzy Newton-Cotes.

. Called by :

W3SRCE  Source term integration.

. Exrror messages .

None.

. Remarks :

None.

. Structure :

See source code.
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C
c
C
C
C
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9. Switches :

None.

10. Source code :

- - - -/

c/

c

#i#auxl.
##dims.
#i#tspar.
##nldp.
##grid.
#i#geob.
##fzz1.
##ncl10.

c/
¢/ ---

IMPLICIT NONE

cmn
cmn
cmn
cmn
cmn
cmn
cmn
cmn

- _— A -—/

C/ Local parameters

c/

&

L -

*

INTEGER I3D,I,J,IANG,IRNG,TA1,TA3,IR1,IR3,IETA,I],

IR14,IR24,IMAX, JMAX,IMAXP1, JMAXP1,ISA3,IPA,IMIN

REAL X1,Y1,X2,Y2,X3,Y3,X4,Y4,VN1,VN2,VN3,VN4,V1T3,V3M1,

DNDT1(NNR,NNA) ,DNDT2(NNR,NNA) ,DIAG1 (NNR,NNA) ,DIAG2(NNR,NNA),
FS,ETAP,DIF13,DIF14,TR,DTR,PUMP,DIFF,DTOTAL ,DIATTL,

TRAUX ,DGAUX,T13,D13,DNDTAUX1,DNDTAUX2 ,DIAGAUX1,DIAGAUX2,
A(NTH,NK) ,S(NSPEC) ,D(NSPEC) ,CG(NK) ,CONV (NK) , CONN (NK) ,

REFMAX ,DMAX ,FMAG,FGRID,SNL4(NNR,NNA) ,DNL4(NNR,NNA),
DSL1,DSL2,UREF, EPMREF,ESCALE,MYPEAK , WHMIN

C 1. Set constant variables

*

FGRID = 0.375
XLM = XFR+XFR
EPMREF = 3.64e-3%(UREF*%*4)/(GRAV*GRAV)

*

C 2. Set action desity (n(k))
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DO I = 1,NNR

CONV(I) = TPIINV / SIG(I) * CG(I)
CONN(I) = GRAV/(SIG(I)*SIG(I))
DO J = 1,NNA

DENS13(I,J) = A(J,I)*CONN(I)
IF(DENS13(I,J).LT.1.E-20) DENS13(T,J)=0.
END DO
END DO

C Finding max 2density

REFMAX = 0.
DO I = 1,NNR
DO J = 1,NNA

DMAX = MAX(REFMAX,DENS13(I,J))
IF (DMAX.EQ.DENS13(I,J)) THEN

IMAX = 1
JMAX = J
REFMAX = DENS13(I,J)
END IF
END DO
END DO

ESCALE = A(JMAX,IMAX)/EPMREF
IF(ESCALE.LT.2.5) THEN

ESCALE = 1.0
ELSE
ESCALE = 0.6
END IF
C 1 step:
IMAXP1 = IMAX + 1
JMAXP1 = JMAX + 1

IF(IMAX.EQ.NNR) IMAXP1 = NNR
IF(JMAX .EQ.NNA) JMAXP1

]
(Y

C Finding the slope for wave number & angle of direction,
C a normalised slope. (1 step)
XSp (1-DENS13(IMAX, JMAXP1) /DENS13 (IMAX, JMAX))
XSP = XSP/(DTH*WKA(IMAX))

]



XGAM
XGAM

(1-DENS13(IMAXP1, JMAX) /DENS13(IMAX, JMAX))
XGAM/ ((XLM-1) *WKA (IMAX))

C Finding the dominant factor, Fd
CALL FFDFZ(XSP, XGAM, FACTD)

C Magnifying factor:
FMAG = FGRID*FACTD*ESCALE

C Initial dndt & diagonal term

DO IRNG = 1,NNR
DO IANG = 1,NNA
DNDT1 (IRNG, IANG)
DNDT2(IRNG, IANG)
DIAG1(IRNG,IANG) =
DIAG2(IRNG,IANG)
END DO

END DO

o
o O O O

*

C 3. Do the integration
*
C 1st loop
DO IA1 = 1,NNA
*
C 2nd loop
DO ISA3 =1,2
IPA = IPAP
IF(ISA3.EQ. 2) IPA
IA3 = TA1+IPA
IF(IA3.GT.NNA) IA3
IF(IA3.LT. 1) IA3

IPAN

TA3-NNA
NNA+IA3

*
C 3rd loop
DO IR1 = 1,NNR-I3S
I3D = IR1+I3S
IETA = (IR1-1)

X1 = WKA(IR1)*ECDOS(IA1)
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Y1 = WKA(IR1)*ESIN(IA1)
X3 = WKA(I3D)+EC0S(IA3)
Y3 = WKA(I3D)*ESIN(IA3)

VN1 = DENS13(IR1,IAl1)
VN3 = DENS13(I3D,IA3)
ViT3 = VN1*VN3
V3M1 = VN3-VN1

FS = XLM**IETA
ETAP = IETA%6.5
DIF13 = (X1-X3)*(X1-X3)+(Y1-¥Y3)*(Y1-Y3)

C 4th loop, along loci

1111

DO ILOCI = 1,NLOCI
X2 = X2BL(IA1,ISA3,ILOCI)*FS

Y2 = Y2BL(IA1,ISA3,ILOCI)*FS
X4 = X4BL(IA1,ISA3,ILOCI)*FS
Y4 = Y4BL(IA1,ISA3,ILOCI)*FS

DIF14 = (X1-X4)*(X1-X4)+(Y1-Y4)*(Y1-Y4)
IF(DIF13.GE.DIF14) GO TO 1111

CALL FINDN(X2,Y2,VN2)
CALL FINDN(X4,Y4,VN4)

PUMP = V1T3*(VN4-VN2)
DIFF = VN2xVN4xV3M1
DTOTAL = PUMP+DIFF

DIATTL = VN3#*(VN4-VN2)-VN2*VN4

TR10(ILOCI) = DTOTAL*GEOM(IA1,ISA3,ILOCI)*XLM**ETAP

DG10(ILOCI) = DIATTL*GEOM(IA1,ISA3,ILOCI)*XLM**ETAP
CONTINUE

END DO

CALL PTEN(H10,FS,TR,DTR)
T13 = 2*xTR*FMAG
D13 = 2xDTR*FMAG

193
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DNDTAUX!1 = Ti3*PHA(I3D)
DNDTAUX2 = T13*PHA(IR1)
DIAGAUX1 = D13*PHA(I3D)
DIAGAUX2 = D13+PHA(IR1)

DNDT1(IR1,IA1)
DNDT2(I3D,IA3)
DIAG1(IR1,IA1)
DIAG2(I3D,IA3)

DNDT1(IR1,IA1)+DNDTAUX1
DNDT2(I3D, IA3)-DNDTAUX2
DIAG1(IR1,TA1)+DIAGAUX1
DIAG2(I3D,IA3)-DIAGAUX2

END DO
END DO
END DO
*
C 4. Stabilize Snl
*

WHMIN = 0.

D0 I=1,NNR

DO J=1,NNA
SNL4(I,J) = DNDT1(I,J)+DNDT2(I,J)
DNL4(I,J) = DIAG1(I,J)+DIAG2(I,J)

WHMIN = MIN(WHMIN,SNL4(I,J))
IF( WHMIN.EQ.SNL4(I,J) ) THEN
IMIN = I
WHMIN = SNL4(I,J)
END IF
END DO
END DO

DO I=IMIN+1,NNR
DO J=1,NNA
IF( SNLA(I,J).GT.0. ) SNL4(I,J) = 0.
END DO
END DO
*
C 5. Transfer 2D Snl&D into 1D Snl&D
*
DO I=1,NNR
DO J=1,NNA



IJ = J + (I-1)*NNA

C S requires m~3, output is m~4, so:

S(IJ)= SNL4(I,J)/CONN(I)
D(IJ)= DNL4(I,D)
END DO
END DO
*
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C/ End of W3SNLB ———
c/
END
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12. w3snle.ftn

€/ ~—mm—mem—memmmme /
SUBROUTINE W3SNLE(A, CG, S, D)

##dochb

c/ --- oot

c/ FISHERIES & OCEANS CANADA

| |
c/ | BEDFORD INSTITUTE OF OCEANOGRAPHY |
c/ |  Dartmouth, Nova Scotia, Canada |
c/ | & [
c/ | DALHOUSIE UNIVERSITY [
c/ | Halifax, Nova Scotia, Canada [
c/ | |
c/ | Adhi Susilo I
c/ | FORTRAN 77 |
c/ | Last update : 25-Dec-2005 |
c/ + -—- +
c/

C 1. Purpose :

Calculate nonlinear interactions and the diagonal term of
its derivative.

2. Method :
Boltzmann integral (WTIR method).
3. Parameters :

Parameter list

A R.A. I Action spectrum A(ITH,IK) as a function of
direction (rad) and wavenumber.

CG R.A. I Group velocities (dimension NK).
S R.A. 0 Source term. *)
D R.A. 0 Diagonal term of derivative. *)

*) 1-D array with dimension NTH*NK

PH*ErEsEsEsEeNesNesNsNeoNeNoNoNoNeoNsNeo NN S

Common /GRID / Nonlinear interactions (##grid.cmn)



sNeNeNoNoNoNoNoNoNoNsNoNsNoNeoNeNoNoNeNoNoNoNeNoNsNeoNoNoNoNoNsNosNs NN EIE S 2 S
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DENS13 R.A. Action density n(k).
WKA R.A. Magnitute of wavenumber.
PHA R.A. kdtheta x dk.

Common /GEOE / Nonlinear interactions

(##geoe . cmn)

GEOME R.A. Geometry term, G(k).
XnBLE R.A. Length of locus ’n’ on X-axis.
YnBLE R.A. Length of locus ’n’ on X-axis.

Local parameters

See source code.

. Subroutines used :

FINDN Finding the action density n(k).

. Called by :

W3SRCE  Source term integration.

. Error messages :

None.

. Remarks :

None.

. Structure :

See source code.

. Switches :

None.
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C 10. Source code :

C

c/ - e /
IMPLICIT NONE

C

##auxl.cmn

##dims . cmn

##spar.cmn

##nl4p.cmn

##grid.cmn

##geoce.cmn

c/

C/ == - ---- /
C/ Local parameters

c/

INTEGER I3D,I,J,IANG,IRNG,IA1,IA3,IR1,IR3,IETA,IPTS,I],
& IFINISH,IRD

REAL X1,Y1,X2,Y2,X3,Y3,X4,Y4,VN1,VN2,VN3,VN4,V1T3,V3M1,
& DNDT1(NNR,NNA) ,DNDT2(NNR,NNA),DIAG1(NNR,NNA) ,DIAG2(NNR,NNA),
& FS,ETAP,DIF13,DIF14,TR,DTR,PUMP,DIFF,DTOTAL,DIATTL,
& TRAUX,DGAUX,T13,D13,DNDTAUX1,DNDTAUX2,DIAGAUX1,DIAGAUX2,
& A(NTH,NK),S(NSPEC),D(NSPEC),CG(NK),CONV(NK),CONN(NK)
*
C 1. Set constant variable
*
XLM = XFR*XFR
*

C 2. Set action desity (n(k))
*

DD I = 1,NNR

CONV(I) = TPIINV / SIG(I) * CG(I)
CONN(I) = GRAV/(SIG(I)*SIG(I))

DO J = 1,NNA

DENS13(I,J) = A(J,I)*CONN(I)
IF(DENS13(I,J).LT.1.E-20) DENS13(I,J)=0.
END DO
END DO
*

C Initial dndt & diagonal term
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DO IRNG = 1,NNR

DO IANG = 1,NNA
DNDT1 (IRNG, IANG)
DNDT2 (IRNG,IANG) =
DIAG1(IRNG,IANG)
DIAG2(IRNG, IANG)
END DO

END DO

O O O O

*
C 3. Do the integration
*
C 1st loop
DO IA1 = 1,NNA
%
C 2nd loop
DO IA3 = 1,NNA
%
C 3rd loop
DO IR3 = 2,NNR
IFINISH = NNR+1-IR3
IRD = IR3-1
*
C 4th loop
DO IR1 = 1,IFINISH
I3D = IR1+IRD
IETA = (IR1-1)

X1 = WKA(IR1)*ECOS(IA1)
Y1 = WKA(IR1)*ESIN(IA1)
X3 = WKA(I3D)*ECOS(IA3)
Y3 = WKA(I3D)*ESIN(IA3)

VN1 = DENS13(IR1,IA1)
VN3 = DENS13(I3D,IA3)
V1T3 = VN1xVN3
V3M1 = VN3-VN1

FS = XLM**IETA
ETAP = IETA*7.5
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DIF13 = (X1-X3)*(X1-X3)+(Y1-Y3)*(Y1-Y3)
TR = 0.
DTR = 0.

C 5th loop, along loci
DO IPTS = 1,NPA

X2 = X2BLE(IA1,IA3,IR3,IPTS)*FS
Y2 = Y2BLE(TA1,IA3,IR3,IPTS)*FS
X4 = X4BLE(IA1,IA3,IR3,IPTS)*FS
Y4 = Y4BLE(IA1,IA3,IR3,IPTS)*FS

DIF14 = (X1-X4)*(X1-X4)+(Y1-Y4)*(Y1-Y4)
IF(DIF13.GE.DIF14) GO TO 1111

CALL FINDN(X2,Y2,VN2)
CALL FINDN(X4,Y4,VN4)

PUMP = V1T3*(VN4-VN2)
DIFF = VN2*VN4*V3M1
DTOTAL = PUMP+DIFF
DIATTL = VN3+*(VN4-VN2)-VN2*VN4

TRAUX = DTOTAL*GEOME(IA1,IA3,IR3,IPTS)*XLM**ETAP
DGAUX = DIATTL*GEQOME(IA1,IA3,IR3,IPTS)*XLM**ETAP

TR = TR + TRAUX
DTR = DTR + DGAUX

1111 CONTINUE

END DO

T13 = TR

D13 = DIR

DNDTAUX1 = T13+PHA(I3D)
DNDTAUX2 = T13%PHA(IR1)
DIAGAUX1 = D13*PHA(I3D)
DIAGAUX2 = D13*PHA(IR1)

DNDT1(IR1,IA1) = DNDT1(IR1,IA1)+DNDTAUX1
DNDT2(I3D,IA3) = DNDT2(I3D,IA3)-DNDTAUX2



DIAG1(IR1,IAL)
DIAG2(I3D,IA3)

DIAG1(IR1,IA1)+DIAGAUX1
DIAG2(I3D,IA3)-DIAGAUX2

END DO
END DO
END DO
END DO
%
C 4. Transfer 2D Snl&D into 1D Snl&D
*
DO I=1,NNR
DO J=1,NNA
IJ = J + (I-1)*NNA
S(IJ)=(DNDT1(I,J)+DNDT2(I,J))/CONN(I)
D(IJ)= DIAG1(I,J)+DIAG2(I,J)
END DO

END DO
*
*

C/ End of W3SNLE -
c/
END
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