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Abstract

Power utilities have been facing new challenges in the past few decades that
require changes to their traditional operational practices. Two of the main challenges are
the rising concerns about the harmful impacts of electric power production on the
environment and the deregulation of the electric power industry. In the past few decades,
environmental awareness led to the adoption of rigid environmental policies on power
utilities to regulate their emissions. One way to cope with this problem is to dispatch
power with environmental considerations. The emission-economic dispatch is an
extension of the traditional economic cost dispatch where the ultimate goal is not only to
minimize the total production cost but rather to minimize both the production cost and
emission of the generating units. Deregulating the power industry also created a highly
vibrant and competitive market in which major market players strive to maximize their
profits while meeting their other system-wide obligations. One way to do this is to
develop a more precise system modeling that eliminates oversimplified assumptions
included in representing the original system.

This thesis addresses two main problems commonly encountered in studies related
to power system analysis, namely the emission-economic dispatch and optimal power
flow. The former is formulated as a nonlinear multi-objective optimization problem with
conflicting objectives and subjected to both equality and inequality constraints. The latter
problem is formulated as a mixed integer optimization problem with various objectives,
i.e. emission, fuel cost, and real power losses, in which some are of non-convex and non-
differentiable nature. In both studies, special attention is paid to the environmental and
economical aspects of electric power generation.

Numerical solutions to the two problems are investigated via particle swarm
optimization (PSO) based algorithms. PSO is a new metaheuristic optimization method
which is receiving additional attention recently for several reasons. Modifications and
enhancements of the PSO are presented to improve its performance and to make it more
suitable to some specific power system problems. Special treatments of control variables
and improved constraints handling mechanisms are proposed to tailor the PSO to the
aforementioned problems. In the emission-economic dispatch problem, a PSO approach
is developed to capture the shape of the Pareto optimal solution set that shows the trade-
off relationship between competing objectives. Two aggregation methods are used and
analyzed to combine the conflicting objectives. The nature of the control variables and
the objectives considered in the optimal power flow study are troublesome to most
derivative-based optimization algorithms. Therefore, a hybrid PSO algorithm is
developed to overcome such difficulty with promising results. The proposed algorithms
are tested on various testing systems and their performances are compared to other
optimization techniques. Results indicate the promising potential pertaining to PSO
applicability to some of the commonly formulated optimization problems in power
systems.

Xvi



Chapter 1

Introduction

1.1 Motivation

Several factors have played a major role in drastically changing the nature of
electrical power industry worldwide. Electric power deregulation that has been taking
place in many parts of the world in the last two decades has led to the introduction of new
philosophies of operating the electric power system. Policies, interactions, and objectives
of different entities of the power industry have been fundamentally revised to cope with
the new competitive environment. This has created a highly vibrant and competitive
market in which all major players, in this case generation, transmission, and distribution
companies, strive to maximize their profits while meeting their other system-wide
obligations. One way to accomplish this goal is to develop a more precise system
modeling that eliminates oversimplified assumptions included in earlier system
representation. Even though the electric power system infrastructure has not changed
much since it has been restructured, the rules governing the game have changed

considerably.

A simple example illustrating one of the changes that has been introduced as a
result of deregulation is the case of operating pumped storage units. Prior to power
system restructuring, pump storage units made use of the excess power generated during
low demand periods to pump power to the upper reservoir as a means of storing electrical
power. This stored energy is then released to shave peak load periods, i.e. its operation
closely followed the load profile. Nowadays, the operation of pump storage units relies
heavily on following the market clearing price patterns in the electricity market. This
means that to optimize the overall profit, the units should store energy (pumping mode)

during low market clearing price periods and release it (generating mode) when the price



of electricity is high. This new operation concept totally alters the old direct correlation

between the load profile and the operation status of the pump storage units.

The impact of power plants on the environment is another issue that has changed
some aspects of operational practices. Up until the last few decades, power plants
produced electricity without much concern regarding how their emissions impacted the
surrounding living species. However, recent awareness of the harmful effects of
pollutants emitted as a result of fossil-based power generation and strict environmental
laws imposed on electricity producers led to the incorporation of environmental
considerations governing the methods by which the electrical power is being produced.
This factor prompted revisions to the concept that the optimal operations criterion is
measured only by minimizing the overall electricity production cost. Both emissions and
fuel costs have to be considered simultaneously to provide a real measure of optimal

operations.

Power system networks are considered the most complex man-made inventions of
the past two centuries for various reasons. Among these reasons are their wide
geographical coverage, various transactions among different utilities, and diversity among
individual electric power companies’ layouts, size, and equipment used. There are
different areas of electric power system analysis which one has to fully understand in
order to optimally study, monitor, and control different aspects of such sophisticated
systems. Some of the main areas are economic dispatch, unit commitment, state

estimation, automatic generation control, and optimal power flow.

An optimal operation strategy in each of the above mentioned areas is required to
improve the overall system’s economy and efficiency. There are several problems
associated with each area that are usually modeled mathematically as solving some type
of optimization problems. There are two main categories of optimization problems:
linear and nonlinear, these are typically based on the shape of the objective function

and/or its constraints. There are various optimization techniques which were developed



to suit a certain category. Most of the traditional optimization methods depend on
gradient or higher order derivative information to guide the search for an optimal
solution. This dependency imposes restrictions on developing precise models for a given
system. Another shortcoming of traditional optimization methods is the underlying
assumptions of the objective function’s shape, i.e. in terms of convexity or concavity
requirements. Such assumptions make the optimization approach local in nature (i.e.
converge to a local solution instead of the global one) while many problems in power

systems have multimodal characteristics.

The drawbacks of traditional optimization algorithms and restrictions imposed on
system modeling shifted the attention to the development and adoption of new modern
techniques to improve operational strategies. Recently, metaheuristic techniques have
been getting added attention as competitive methods to supplement traditional
optimization algorithms for a variety of reasons that will be discussed in later chapters.
There are some cases in which traditional algorithms are incapable of handling certain
optimization problems because of their complex mathematical modeling requirements.
Most metaheuristic techniques are inspired by natural phenomena, with many appealing
features such as a reliance on simple conceptual ideas that govern their performances,
ease of algorithms implementation in general, degree of flexibility to handle different
classes of optimization problems, and the ability to be integrated with other search

methods.

1.2 Thesis Objectives

Optimal operation of power systems while accounting for environmental aspects
is the main focus of this thesis. The goal is to address two main problems; namely
emission-economic dispatch (EED) and optimal power flow (OPF) problems. The former
is formulated as a multi-objective optimization problem with two types of competing
objectives while the latter is formulated with different types of objectives. In the EED

problem, the aim is to attempt to solve the problem when environmental issues are



considered. The relationship and interaction between the two different types of objectives
is to be addressed and analyzed. In solving the OPF problem, an investigation of more
precise modeling of the system is presented that is usually oversimplified due to its
challenging mathematical properties. Such properties cause difficulties within the context

of problem optimization especially with classical optimization methods.

Such complexity in the nature of power systems made its analysis, planning, and
monitoring a rather tedious task. This emphasizes the need to develop modern tools to
design, analyze, and monitor electric power systems. In this thesis, the goal is to study,
understand, and develop the Particle Swarm Optimization technique (PSO) as a new
metaheuristic method with global searching capabilities to solve power system
optimization problems. Therefore, an attempt is made to modify the algorithm to explore
its potential to suit some of the optimization problems that exist in the area of power
systems analysis. Finally, its performance in solving different problems is investigated

and compared to other commonly used optimization techniques and methods.

1.3 Thesis Contributions

The process of producing this thesis led to a number of contributions in the area of
power system economics and operations and the development of particle swarm
optimization theory. The following are the major contributions:

1. Providing comprehensive coverage of PSO applications and developments in the area
of electric power system operations. State of the art reviews of the problems
addressed in this thesis, i.e. EED and OPF, are presented and categorized based on the
solution method.

2. Developing an enhanced novel PSO algorithm to solve the EED problem. The
novelty of the proposed algorithm arises from the fact that it solves these problems
using the fuel cost and emission as direct objective functions instead of using

augmented functions to incorporate problem constraints as additional terms. This



overcomes some of the difficulties associated with augmented objectives that will be
discussed in more details in a later chapter.

3. Proposing a novel equality constraint handling mechanism which is developed to
enforce the optimizer to satisfy the equality constraints of the EED problem
throughout the optimization process.

4. Developing an inequality constraint handling strategy that efficiently makes use of
memory elements of PSO to improve its overall performance.

5. Implementing an algorithm that captures the Pareto optimal set showing the
compromise solutions between two conflicting objective functions, i.e. the fuel cost
and emission functions. This proposed algorithm can be adopted to solve other multi-
objective optimization problems found in other areas in electric power systems.

6. Developing a hybrid algorithm that combines a discrete version of PSO with the
Newton-Raphson technique of solving nonlinear equations to solve a mixed integer
nonlinear OPF problem with different objectives being considered. The objectives
considered in this study are the fuel cost (convex and non-convex), emission, and real
power losses. The proposed algorithm handles different types of control variables, i.e.

continuous and discrete variables.

1.4 Thesis Outline

The main tasks that led to the development of this thesis are detailed in seven
chapters. Chapter 1 highlights the motivation behind this research project. It also lists
the main objectives of the thesis along with its main contributions. Chapter 2 addresses
briefly some fundamental concepts of optimization theory that are directly related to the
scope of this research. In addition, it provides a general discussion of solution methods
commonly used to solve optimization problems. Chapter 3 presents the main elements of
PSO theory and its differences from other optimization techniques. Some real world
applications based on PSO theory are also listed in this chapter. In chapter 4, a recent and

detailed state of the art review is presented. The three main areas covered in this review



are: PSO applications in power systems, EED, and OPF. Chapter 5 deals with the EED
problem formulation and the proposed solution method along with simulation and results.
Chapter 6 addresses the OPF formulation along with the proposed solution approach.
Testing results of the proposed approach to the OPF problem are also included in this
chapter. Chapter 7 provides concluding remarks and possible future extensions to the

research of this thesis.



Chapter 2

Optimization Theory

2.1 Introduction

Optimization can be simply described as the process of finding the best solution
that optimizes (usually minimizes or maximizes, but also can be equal to) a certain
objective function while satisfying a number of restrictions. Constructing a valid
optimization model involves identifying the following three elements [1]:

1. An objective function that gives a measure to the quality of the solution obtained.
It can be a linear or nonlinear function.

2. Decision (sometimes called optimization or control) variables in which a proper
combination will yield an optimal solution that optimizes the objective. They are
categorized as binary, discrete, continuous variables, or combinations of the
aforementioned types.

3. Model constraints or restrictions that impose limitations on the decision variables.
Typically, model restrictions are represented by either equality or inequality

constraints.

Throughout this thesis, discussion will focus on objective function minimization
instead of maximization. However, the thesis findings are also applicable to
maximization problems since they can be easily converted to minimization ones.

Optimization problems are modeled mathematically as follows:

Min F(x,u) 2.1
subject to
g(x,u)=0 (2.2)
h(x,u) <0 (2.3)
where

F is the objective function to be minimized.



x is the state or dependent variables vector.
u is the control or independent variables vector.
g is a set of equality constraints.

h is a set of inequality constraints.

Optimization problems are widely encountered in various fields of science and
technology. Sometimes such problems can be very complex due to the actual and
practical nature of the objective function or the model constraints. Traditionally,
derivative-based optimization methods such as sequential quadratic programming
methods, Newton’s method, reduced gradient method, Hessian-based method, conjugate
gradient method, dynamic programming, branch and bound, integer programming, and
generalized reduced gradient method are commonly used to solve nonlinear optimization
problems [2-4]. These techniques are robust and have proven their effectiveness in
handling many classes of optimization problems. However, such techniques can
encounter difficulties such as becoming trapped in local minima, increasing
computational complexity, and not being applicable to certain classes of objective
functions. This led to the need for development of a new class of solution methods that
can overcome these shortcomings. Metaheuristic optimization techniques are fast
growing tools that can overcome most of the limitations found in derivative-based

techniques.

Metaheuristic or modern heuristic optimization techniques have emerged in recent
years as viable optimization tools that can replace and sometimes outperform
conventional optimization methods. The term “metaheuristic” originates from two Greek
words: meta and heuristic. Meta is a Greek prefix that stands for “beyond in a higher
level” while heuristic means “to find” [5]. The most popular heuristics algorithms, in
chronological order, are evolutionary programming (1960), genetic algorithm (1975),
Tabu search (1977), simulated annealing (1985), ant colony optimization (1991), and
PSO (1995).



2.2 Global Versus Local Optimization

Mathematical properties of the optimization model infer some information about
the characteristics of the optimization problem and solution method. It is very important
to identify some of the objective function and/or constraint characteristics before
selecting the most suitable solution method. Convexity is among the issues that one must
carefully analyze since it determines whether the obtained solution is a global minimizer

or a local one. A solution, x, is a global minimum of the function f'if
f(xH)< f(x)forallxe S (2.4)
where S is the entire feasible region. If the objective function to be minimized is a

convex function, then the local solution is also a global one. For a graphical illustration,

consider a single variable function shown in Figure 2.1.
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Figure 2.1. Difference between local and global solutions.
There are three extreme points, of which one is global and the remaining two are

considered locals. The two local solutions are x; = 4 and x; = 7 while the global one is at



10

x3 = 9. To further elaborate about one of the major drawbacks of gradient-based
optimization algorithms when handling non-convex objectives, suppose the solution
space in Figure 2.1 is divided into three convex subsets namely S;, Sz, and S;. These
subsets of the solution feasible region are defined as follows:
xes, iffxe[1,6]
S=4{xe8, iffxe]6,8] (2.5)
xeS, iffxe]8,11]
Since gradient-based optimization algorithms rely on Kuhn-Tucker conditions (i.e. when
the derivative vanishes) as termination criteria to detect stationary points, if the initial
guess selected to start the optimization process happens to be in subsets S; or S the
algorithm will converge to x; or x; respectively. In this case, conventional optimization
methods that depend on gradient information might fail to detect global solutions.
Additional difficulties rise when constraints are presented in the problem as depicted in
Figure 2.2. In this case, the optimal solution is not found at the bottom of a valley, i.e.
when the derivative equals zero, but instead it is located at the edge of the feasible search

space.

Feasible
Region

f(x)

. Optimal Solution ——»}

O =2 N W dhdh OO N
L

Figure 2.2. Effect of constraints on locating optimal solution.
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2.3 Categories of Optimization Problems

Optimization problems can be categorized in many different ways. It seems that

there is no standard way of classifying optimization problems. In an attempt to inform

the readers of the work yet to come in this thesis, the following classifications are made to

cover the wide classes of optimization problems:

1.

3.

Nature of the model: This determines whether the optimization model used to
formulate the problem is linear or nonlinear. Also, it shows if it is a constrained
or an unconstrained model. Sometimes, even the nonlinear category is divided
into sub-categories like quadratic, convex, and geometric.

Type of solution sought: This determines whether the targeted solution is global
or local.

Nature of the optimization variables: In this case, optimization variables can be
categorized into continuous, discrete, or a combination of the two.

Solution update mechanism: Most optimization problems are solved by means of
iterative techniques. Some of the solution methods, like in the case of gradient-
based methods, use deterministic transition rules to update the solution between
two consecutive iterations. On the other hand, some of the derivative-free
techniques make probabilistic transitions to modify the search direction between

two consecutive iterations.

2.4 Multi-Objective Optimization

Multi-objective optimization problems (also known as vector optimization or

multi-criteria) are widely encountered in many real world applications such as those

treated in this thesis. Unlike the case of single objective optimization in which one

function is being optimized, multi-objective optimizations minimize a number of

objectives simultaneously. Mathematically, it can be expressed as follows:
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Si(x,u)

fz({c,u)

Min F(x,u)= , where G = number of objectives (2.6)

Jo(x,u)

In most cases these objectives are incommensurable and conflicting in nature, i.e. there is
no single solution that optimizes all objectives concurrently. Therefore, instead of
targeting a single solution, an entire set of compromising and non-dominated (also called
non-inferior) solutions known as a Pareto optimal set is computed. A feasible vector
solution X is said to be a non-dominated solution if there exists no other feasible solution

X such that f(X,) < f/(X,) with respect to all of the objectives. In other words, a

solution X; is called Pareto optimal if there is no other feasible solution X, that would
further minimize any objective function without causing a simultaneous increase in at
least one objective. The entire set of Pareto optimal solutions (called Pareto front) shows
the trade offs among different competing objectives. It is common in multi-objective

optimizations to capture such a front as shown in Figure 2.3 for a bi-objective case [6].

4 ® Non-dominated solutions
0 Dominated solutions
6] ! O Infeasible solution
°
: o
®
W L
o © o
. ..o O 3
’ o . O
b L Feasible region
f1

Figure 2.3. Dominance concept for a bi-objective case.
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2.4.1 Aggregation Methods

Various methods were developed to deal with multi-objective optimization
problems by generating Pareto optimal sets. Aggregation techniques are by far the most
common approaches to handle optimization problems in which several objectives are
considered. The idea of these aggregation approaches is to convert the multi-objective
problem into a single scalar problem and then the problem is solved via any suitable
optimization method. Many aggregation techniques have been proposed to handle the
problem such as:

1. Goal programming [7]: Goal programming is implemented by assigning a goal or
value to be achieved for each objective function. These values are then
incorporated into the problem as additional constraints. Subsequently, the
problem is solved by minimizing the absolute deviations of the targeted values to
the objectives. This algorithm requires prior knowledge about the solution
feasible space. Goal programming becomes inefficient if any of the goals selected
becomes infeasible.

2. Weighting method [8]: This method simply assigns different weights to each
objective function based on its importance and combines different objectives into
one single objective function. The result of solving the problem using this
approach is highly dependant on the assigned weights. A major drawback of this
technique is that very little is known about how to select the proper weights.
However, the Pareto front can be obtained by minimizing the aggregated
objectives using different weights. This method is very efficient computationally
in generating non-dominated solutions.

3. e-constraint method [9]: In the e-constraint method, one of the objective functions
is selected as the primary objective and the remaining functions are treated as
constraints bounded by some proper value of €. This € is the maximum allowable

value of a given non-primary objective function. Time consumption is one major
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disadvantage of this approach since ¢ has to be updated quite frequently for each

objective function [10].

2.5 Solution Methods

This thesis focuses on some of the optimization problems typically encountered in
the area of power systems that are nonlinear in nature. Thus, a brief description of most
well known solution methods developed to solve such problems is presented. They are

mainly classified into two main categories:

2.5.1 Traditional Nonlinear Optimization Techniques

Most traditional nonlinear optimization methods are based on calculus theory in
which some operators, such as gradient and/or Hessian are used to guide the search
process in locating the optimal solution. This type of solution method is considered the
most dominant, and it is widely used in many industrial applications. There are abundant
optimization programs that integrate these techniques in order to solve difficult
constrained optimization problems. The following is a list of the most robust and well
established traditional optimization techniques [1]:

1. Sequential linear programming: This method finds the solution to the nonlinear
optimization problem by solving a series of linear programming problems. It
successfully linearizes the original problem around the search point using first-
order Taylor series expansion. Then, the resulting linear programming problem is
solved by the simplex method or any of its variants.

2. Sequential quadratic programming (SQP): As the name indicates, the solution to
the original nonlinear problem is obtained by solving an approximate quadratic
programming problem in each major iteration. This method involves three major
steps: updating the Hessian of the Lagrangian function, solving the quadratic

programming sub-problem, and performing a line search.
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3. Generalized reduced gradient (GRG): This is an extended version of the reduced
gradient method that was developed originally to solve nonlinear optimization
problems with linear constraints only. The idea behind this method is to reduce
the number of independent optimization variables in the original objective
function by manipulating the equality constraints.

4. Sequential unconstrained minimization technique: In this approach, the
constrained optimization problem is transformed to an unconstrained problem by
introducing additional terms in the original objective to account for the
constraints. Penalty function and Lagrangian multiplier methods belong to this
category of solution methods, in which additional terms are used in the objective

to force feasibility of the obtained solution.

It appears that the generalized reduced gradient and sequential quadratic
programming and their variants are the most robust and efficient nonlinear optimizers for

large scale optimization problems [11].

2.5.2 Modern Optimization Techniques

A new category of non conventional or metaheuristic optimization tools has
emerged to cope with some of the traditional optimization algorithms’ shortcomings. The
main modern optimization techniques include evolutionary programming, genetic
algorithms, evolutionary strategies, artificial neural networks, simulated annealing, ant
colony optimization, and PSO. Most of these relatively new developed tools mimic a
certain natural phenomenon in their search for an optimal solution like species evolution
(evolutionary programming, genetic algorithm, and evolutionary strategies), human
neural systems (artificial neural network), thermal dynamics of a metal cooling process
(simulated annealing), or social behavior (ant colony optimization and PSO). They have
been successfully applied to wide range of optimization problems in which global

solutions are more preferred than local ones or when the problem has non-differentiable
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regions. Also, they are known for their capability to quickly search a large solution

space. The following is a brief description of these optimization techniques:

1.

Evolutionary programming:  evolutionary programming and evolutionary
strategies are probably the oldest evolutionary algorithms used to solve
optimization problems. Evolutionary programming, along with genetic algorithm
and evolutionary strategies, adapt the concept of natural evolution or survival of
the fittest founded in the Darwinian Theory of Evolution to enhance the
population or “solutions” quality. It was first introduced by Fogel in 1964 as
findings of his doctorate work [12]. The evolutionary programming paradigm
emphasizes the relationship between ancestors (parents) and their descendants
(offspring) and it relies exclusively on a mutation operator to produce offspring,
i.e. there is no recombination operator.

Evolutionary strategies: The German researchers Rechenberg er al. developed
evolutionary strategies in 1965 to successfully solve difficult engineering
optimization problems when they encountered difficulties in applying gradient
based methods [13]. Evolutionary strategies make use of both mutation and
recombination operators to produce a new population. Typically, different sizes
of parent and offspring populations are used in evolutionary strategies
implementation.

Genetic algorithm: Genetic algorithm (originally termed reproductive plans) is by
far the most commonly used and well developed evolutionary technique with an
abundant number of applications and developments found in technical articles and
books. It was introduced by Holland in 1975 in an attempt to develop a technique
that enables computer programs to mimic the evolution process [14]. In addition
to the selection, crossover, and mutation operators, some genetic algorithm-based
approaches implement memory elements to preserve the elite solutions [15]. In
most genetic algorithm approaches, the binary representation is used for parameter
encoding to unify the recombination and mutation operators. However, more

recent advances in genetic algorithm approaches elevated its capabilities to
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represent solutions using floating point arithmetic. Genetic programming is an
extension of genetic algorithm in which individuals are represented as trees.

4. Artificial neural network: Hopfield and Tank introduced a special type of neural
network to solve the famous traveling salesman combinatorial problem in 1985
[16]. In this neural network architecture, some of the outputs are fed back to the
neurons in the input layer. Parallel data processing and fast network convergence
are key features of this approach.

5. Simulated annealing: This optimization technique was proposed independently by
Kirkpatrick et al. in 1983 [17] and by Cerny in 1985 [18]. Simulated annealing
emulates the physical gradual cooling process (called annealing) to produce high
quality crystals, i.e. better strength properties, in metals. In both papers, simulated
annealing was introduced to solve combinatorial problems by adapting the
crystallization process model developed by Metropolis et al. [19].

6. Ant colony optimization: Dorigo invented ant colony optimization as a new
metaheuristic optimization tool in the early 1990s as he was inspired by the
foraging behavior of some ant species. Solution candidates, called ants in ant
colony optimization, communicate with other members of the ant colony by
depositing pheromones to mark a path. High concentrations of pheromones
indicate more favorable paths that other members should follow in order to reach
the optimal solution. The original version of ant colony optimization published in
references [20;21] was called the ant system and it inspired many researchers to
modify and adapt the original ant colony optimization to suit various optimization
problems.

7. PSO: This is the main tool used in this thesis and an entire chapter will be

dedicated to provide more in depth discussion of this subject.

Other non-classical optimization tools are Tabu search, pattern search, differential
evolution, and cultural algorithms. However, these techniques are currently not as

popular and the discussion of this thesis is limited to the most commonly used techniques.
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2.5.3 Traditional Versus Non-Classical Optimization Methods

Derivative-based optimization algorithms are by far the most common tools being
used in most existing applications. This is due to their effectiveness in solving convex
optimization problems, solid mathematical foundation, and vast software availability that
incorporate these algorithms. However, new developments in non-classical methods are
shifting the focus to confidently adapt metaheuristic tools to similar or more complex
problems. There are some major differences between metaheuristic and classical
optimization methods that can be summarized as follows:

— Most metaheuristic methods are population-based methods that search the solution
hyper space by a group of possible solutions. In contrast, classical methods use a
single path to search for the optima. This difference enhances the chances of locating
the near global solution in metaheuristic methods. It also makes it more suitable to
search solution hyper space with non-smooth characteristics. Moreover, it reduces the
dependency of successful convergence on the starting search point since most
classical methods require a “good” starting point to ensure successful convergence.

— Metaheuristic methods include randomness into their transition rules to move from
the current solution to the next one, while classical methods apply deterministic
transition rules. This stochastic nature of the transition rules makes the metaheuristic
methods less likely to get trapped in local optimum points.

— Metaheuristic approaches are general purpose tools that can suit various optimization
problems i.e. linear, nonlinear, discrete, continuous, mixed type, constrained, and
unconstrained, with minor modifications. This is due to the fact that they are
derivative-free tools that require only a fitness function to measure the “goodness” of
a given solution with simple yet effective ways to handle constraints. In general, they
require more fitness evaluations with less computation efforts than those of the
classical methods.

— Metaheuristic methods with their population-based features can be adapted to serve as
niching algorithms in which multiple solutions are tracked upon convergence instead

of a single one. In optimization problems with multimodal characteristics, it is
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sometimes important to identify all solutions rather than the global one. This is one
way to expand the capabilities of metaheuristic tools to perform parallel processing
tasks.

— Classical methods are less efficient in solving combinatorial optimization problems
with considerable search space size when compared to metaheuristic methods. A
major difficulty in combinatorial problems like in the case of traveling salesman and
vehicle routing problems, is the fact that they are nondeterministic polynomial time or
NP-complete. This means that the optimization algorithm needs excessive time that
increases in polynomial order to guarantee optimality. The computation time burden
led many researchers to accept metaheuristic methods as substitutes to the classical

techniques that can generate near optimal solutions within a reasonable time frame.

The choice of which optimization methods one should use is completely reliant on
the targeted problem at hand. Careful analysis of the nature of the objective function and

constraints can narrow the search process to select the most suitable tool.

2.6 Summary

This chapter highlights the main components of optimization problems along with
some basic definitions. An attempt to classify different types of optimization problems is
made. Basic concepts of multi-objective optimization, Pareto dominance, and handling
methods are illustrated. A discussion of different solution methods and differences

among classical and non-classical methods are also addressed.



Chapter 3

Particle Swarm Optimization Theory and Development

3.1 Introduction

The fact that most optimization problems when modeled accurately are of non-
convex and multimodal nature has encouraged many researchers to develop new
optimization techniques to overcome such difficulties. PSO is one of the newly
developed optimization techniques with many attractive features. Early experimentations
of employing PSO in many applications in science and technology such as chip design
and project crashing analysis, as can be seen in chapter 4 and partially at the end of this
chapter, indicate its promising potential. Thus, the basics of PSO theory, development,

and main features are presented in the following sections.

3.2 Fundamentals of Particle Swarm Optimization

Kennedy and Eberhart first introduced PSO in 1995 as a new metaheuristic
method [22;23]. They studied a stochastic nonlinear model that was developed by
Heppner and Grenander to simulate species movement traveling in groups [24]. The
original objective of the research conducted by Heppner and Grenander was to create a
computer model that simulates the social behavior of bird flocks and fish schools. As
Kennedy and Eberhart progressed in their research, they discovered that with some
modifications, the social behavior model can also serve as a powerful optimizer. They
realized that such species try to approach their target in an optimal manner which
resembles finding the optimal solution to any mathematical optimization problem. The
first version of PSO was intended to handle only nonlinear continuous optimization

problems.

20
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A key attractive feature of the PSO approach is its simplicity as it involves only
two model equations. In PSO, the coordinates of each particle represent a possible
solution associated with two vectors, the position (x;) and velocity (v;) vectors. In N-

dimensional search space, X, =[x,,x,,...xy] and V, =[v,,v,,..,v,] are the two

vectors associated with each particle i. A swarm consists of a number of particles “or
possible solutions” that proceed (fly) through the feasible solution space to explore points
where optimal solutions exist. During their search, particles interact with each other in a
certain way as to optimize their search experience. In each iteration, the particle with the
best solution shares its position coordinates (gbesf) information with the rest of the
swarm. Then, each particle updates its coordinates based on its own best search
experience (pbest) and (gbest) according to the following equations:

vitt = v o (pbest! —x)+c,r,(gbest* —x) (3.1)

X =k 4y (3.2)

i
where
— c¢; and c; are two positive acceleration constants, they keep balance between the
particle’s individual and social behavior when they are set to be equal.
— r; and r; are two randomly generated numbers with a range of [0,1] added in the

model to introduce stochastic nature to the particles’ movement.

— pbest’ is the best position particle i achieved based on its own experience;

k _ r..pbest phest pbest
pbest; =[x, x5 ... x},

1

— ghest* is the best particle position based on overall swarm’s experience;

k _ r..gbest _ ghest ghest
ghest® =[xF x5 . xy ]

— ks the iteration index
Equations (3.1) and (3.2) represent the original PSO model equations introduced in 1995.

However, this model experienced poor convergence characteristics and sometimes

additional fitness evaluations were needed to find an optimal solution.
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3.3 PSO Development

Many advances in PSO development elevated its capabilities to handle a wider
class of complex engineering and science optimization problems and to improve its
overall performance. Summaries of recent advances in these areas are presented in
references [25] and [26] and the discussion of these advances will be limited to the ones
directly related to this thesis. Different variants of the PSO algorithm were proposed but
the most standard is the global version of PSO (Gbest model) introduced by Shi and
Eberhart [27], in which the whole population is considered as a single neighborhood
throughout the optimization process. The original model Equations (3.1) and (3.2) are

modified as follows:

kel _ k k k k k
vit = wy +on (pbest; —x, )+6n (gbest” —x; ) (3.3)
previous velocity cognitive ;omponent social c?)rmponem
k+l k k+1
x T =xl v (3.4

where

w is the inertia weight and it is a decreasing function of the iteration index;

wik)=w - (Mj ok (3.5)

Max. Iter.
The velocity vector in Equation (3.3) consists of three terms that determine the next
position:

1. Previous velocity: This is the stored velocity from the previous iteration to
regulate each particle from making severe changes in its direction between
consecutive iterations.

2. The cognitive component: This term represents the attraction force that each
particle has toward its best position achieved based on its own flying experience.

3. The social component: This term corresponds to each particle tendency to be
attracted toward the best position discovered among the entire individuals in a

swarm.
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To maintain a good balance between the individuality and sociality, ¢; and c; are
typically set to be equal. If ¢; is set greater than c», each particle individual performance
will be weighed more in Equation (3.3) and it is more likely that the algorithm will get
trapped in local solutions (i.e. the best solution achieved by that individual particle). On
the contrary, if ¢, is set less than c;, that algorithm might fail to converge. The inertia
weight parameter introduced in Equation (3.3) allows the velocity vector to start with
larger values, and then it decreases as the iteration index increases to limit any big particle
movements towards the end of the optimization process. This modification improves the
convergence characteristics significantly. Factors affecting the flying experience of each

particle in its search for optimal solution are shown in Figure 3.1.
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Figure 3.1. Influential elements on the particle’s movement during its search for an

optimum.

3.4 PSO Versus Other Optimization Techniques

PSO is a population-based evolutionary technique that has many key advantages

over other optimization techniques, for example:
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e It is a derivative-free algorithm unlike many conventional techniques.

e It has the flexibility to be integrated with other optimization techniques to form
hybrid tools.

e It is less sensitive to the nature of the objective function, i.e. convexity or
continuity.

e It has fewer parameters to adjust unlike many other competing evolutionary
techniques.

¢ It has the ability to escape local minima.

e Itis easy to implement and program with basic mathematical and logic operations.

e It can handle objective functions with stochastic nature like in the case of
representing one of the optimization variables as random.

e It does not require a good initial solution to start its iteration process.

The PSO algorithm can be best described in general as follows:
1) For each particle, the position and velocity vectors will be randomly initialized with
the same size as the problem dimension.
2) Measure the fitness of each particle (pbest) and store the particle with the best fitness
(gbest) value.
3) Update velocity and position vectors according to Equations (3.3) and (3.4) for each
particle.

4) Repeat steps 2-3 until a termination criterion is satisfied.

A pseudo-code of general PSO algorithm is shown in Figure 3.2.
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Set the algorithm parameters;
For each particle
Randomly initialize the position vector;
Randomly initialize the velocity vector;
End
Measure the fitness of each particle;
Store pbest
Store gbest
While the stopping criteria is not met
For each particle
Update the velocity and position vectors
Measure the fitness of the new position vector
If the new fitness value is better than the previously stored one
Store the new position vector as pbest
Store the new fitness value
End
End
Determine the particle with lowest fitness value in the search history
and store its position vector as gbest
End

Figure 3.2. A pseudo-code of PSO algorithm.

As mentioned in chapter 2, in addition to traditional gradient-based optimization
algorithms, there are many other heuristic techniques that compete with PSO such as
genetic algorithms, simulated annealing, evolutionary programming, and most recently
ant colony optimization. In general, most of these techniques can be used to solve
various optimization problems in a similar way to the case of PSO. However, such
competing techniques tend to have major drawbacks such as:

e More parameter tuning is required.

e They tend to require more computational time in most cases.

¢ Heavily involved programming skills are required to develop and modify competing
algorithms to suit different classes of optimization problems.

e Some techniques require binary conversion instead of working with direct real valued

variables.
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e Most of them require a considerable number of population members that would

translate to more fitness evaluations.

On the other hand, some advantages of the aforementioned algorithms over PSO are:

e The availability of commercial versions of some algorithms like Matlab (genetic
algorithm and simulated annealing) and Excel premium solver (evolutionary
programming).

e The extensive collection of books and research literature, especially in the case of
genetic algorithm and evolutionary programming, that provide broad coverage of

these competing methods.

Despite the simplicity of the PSO concept and implementation, its superiority is
proven when compared with other techniques in many different application areas [28-33].
The following simple yet instructive example is developed for a numerical illustration of
PSO global searching capabilities, the way it evolves to reach optimal solution, and to

compare its performance to other popular optimization techniques.

Example 3.1:
Find the global solution to the following minimization problem:

F(x,,x,)=x —x,—5sin(2x, + x,) -~ cos(3x, —x,) +sin(x, —x,) —cos(x, +x,) (3.6)
subject to

-5<x,x,<5 3.7

There are multiple valleys and peaks in the shape of this function as depicted in
Figure 3.3. This increases the chances of having any gradient based optimization
technique trapped in a local optima. A PSO program was implemented in an attempt to
locate the global minimizer of this objective. All PSO programs implemented in this
thesis are written in Matlab 7 and simulations were performed utilizing an AMD Athlon
64 X2 Dual-Core processor with 2 GB of RAM under windows XP environment. To

demonstrate the PSO consistency and robustness in finding the global optimal solution,



27

the program executed 100 independent runs and the findings are tabulated in Table 3.1. It

is clear that PSO was capable of detecting the global or near global solution in all cases.

Figure 3.3. Shape of the objective function in Example 3.1.

Table 3.1. PSO Solution to Example 3.1

Solution Objective Average time
X X Mean Best Worse (s)
-4.7119 4.7116 -16.4247 | -16.4248 | -16.4216 0.0205

An interesting and unique feature that exists in the PSO is the population
clustering around the global solution. In other evolutionary algorithms like genetic
algorithms, only one individual among the population usually reaches the optimal
solution. In contrast, the population in the PSO are initially scattered at random in the
feasible search space then they start clustering as they evolve in their search experience.

This clustering phenomenon is illustrated in Figures 3.4-3.9 for this example. The figures
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show snap shots of the particles’ journey in their search for global optimum for this

objective.
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Figure 3.4. Initial particles distribution in the feasible search space.
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Figure 3.5. Particles distribution at iteration 25.
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Figure 3.7. Particles distribution at iteration 75.



Figure 3.9. Close up of particles distribution at iteration 100.
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To emphasize PSO global search capabilities and to compare its performance with
other optimization methods, the solution to the simple problem in Example 3.1 was
obtained using various methods as shown in Table 3.2. The other competing methods are
as follows:

1. Excel premium solver: This additional excel add-in developed by Frontline Systems,
Inc. extends the basic solver capabilities that come pre-installed with Microsoft Excel
package [34]. There are two main nonlinear optimization techniques in this package:

— Enhanced GRG.

— Standard Evolutionary.

As the results in Table 3.2 indicate, the GRG approach was able to solve the problem
only when the solution was initialized in the neighborhood of the global solution. It
converged to multiple local solutions when it started in the wrong valley and even got
stuck at the problem boundary in one case when it was started at the solution space
border. The evolutionary algorithm performed better in solving this non-convex
optimization problem.

2. Matlab optimization toolbox [35]: SQP is the main algorithm used to solve
constrained nonlinear optimization problems in Matlab. Similar to the GRG
performance, the SQP algorithm converged to the global solution only when it was
initialized in the vicinity of the targeted area.

3. LINGO: This premier optimization software has multiple built-in solvers with global
searching capabilities [36]. The main nonlinear solver is based on the GRG approach
and it automates the initialization process. Unfortunately, the algorithm converged to
a local point and failed to reach the global optimum. The same point trapped the SQP

algorithm at two different initialization points.

This example shows how the concept of non-convexity can create a challenging
environment to most derivative-based approach methods. It also shows some aspects of
the superiority of the new metaheuristic methods in handling objectives with non-convex
natures. It may be easy to perform trial and error experiments to rule out the fruitless

regions in the solution hyperspace in case of problems with a few variables like in this
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example. However, many real world problems tend to have more than a few variables in

which this process can no longer be practical.

Table 3.2. Comparison of Different Solution Methods for Example 3.1

C ti Soluti Initial Guess Solution
or_npu ng T ° hu ton Objective Version
Environment echnique X, X, X, X,
Excel GRG 0 0 0.15375 1.22458 -7.85850
Excel GRG 5 5 4.31411 5.00000 -4.60343
Excel GRG -5 -5 -5.00000 -5.00000 4.92958 Premium
Excel GRG 25 2.5 1.57080 | -1.57079 | -3.85841 | Solver V5.0
Excel GRG -2.5 2.5 -4.71239 471239 | -16.42478
Excel Evolutionary 0 0 4.71240 4.71258 | -16.42478
Matlab SQP 0 0 1.57080 471239 | -10.14159
Matlab SQP 5 5 1.57084 471222 -10.14159 | V7.1.0(R14)
Matlab SQP 5 5 -5.00000 | -5.00000 | 4.92958 SP3
Optimization
Matlab SQP 2.5 2.5 1.57080 -1.57080 -3.85841 Toolbox
Matlab SQP 2.5 25 471239 -1.57080 | -10.14159 3.03
Matlab SQP -3.5 3.5 4.71241 471242 | -16.42478
LINGO GRG NA NA 1.57080 471239 | -10.14159 | LINGO 10.0
Matlab PSO random | random | -4.71190 471160 | -16.42478 NA

Other heuristic techniques that belong to the same category are summarized in
[37]. These techniques have been gaining more popularity mainly because of their
robustness, simplicity, and their ability to deal with more exact models instead of making
intolerable approximations. The major drawbacks of PSO are the lack of solid
mathematical background and failure to theoretically assure global optimal solutions, just
like in the case of other metaheuristic optimizers. PSO has been proven to perform well
in many standard benchmark optimization problems used by researchers to validate new
global optimization techniques [38-41]. Reference [39] is an excellent reference that
analyzed and studied the PSO promising convergence characteristics. In [39], Clerc and
Kennedy successfully established some mathematical foundations to explain the behavior
of a simplified PSO model in its search for an optimal solution. However, further

analysis is needed to explain other issues of the PSO like the social influence aspect of the
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algorithm and generalized rules in how to tune its parameters to suit different
optimization problems. In [39], the authors emphasized the need for further future studies
by stating “Several kinds of coefficient adjustments are suggested in the present paper,
but we have barely scratched the surface and plenty of experiments should be prompted
by these findings.” Figure 3.10 shows the exponentially increasing growth in various

research areas with regard to PSO (based on IEEE/IEE databases).
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Figure 3.10. Number of PSO related journal and/or conference papers each year in all

research fields.

3.5 Constraint Handling Methods in Evolutionary Algorithms

There are different ways to handle constraints in evolutionary computation
optimization algorithms just like in the case of the PSO. The following constraint
handling methods are the most commonly used [40]:

1. Preserving feasible solution method: In this method, solutions are initially placed
in the feasible search space and remain within this space by adapting an update
mechanism that generates only feasible solutions.

2. Infeasible solution rejection method: This approach rejects any solution that

violates the feasible search space.
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3. Penalty function method: In which a penalty factor is added to the objective once
any constraint violation occurs. It transforms the constrained optimization
problem to unconstrained one.

4. Solution repair method: This approach converts the infeasible solution to a

feasible one by performing special operations.

Selecting the proper constraint handling method is highly reliant on the nature of
the problem. Reference [40] indicates that in the solution repair method, the process of
reinstating the infeasible solution to a feasible one can be as challenging as solving the
original problem. In the penalty function method, the objective function is augmented by
adding penalty terms to transform the constrained problem into an unconstrained one.
This approach usually encounters a major difficulty in how to properly select penalty
factor values. If the penalty factors selected are high, the optimization algorithm will get
trapped in local solutions. On the other hand, the algorithm may not be able to detect a

feasible solution if the penalty factors are low [42].

3.6 Real World Applications of Recent Metaheuristic Methods

The appealing features that exist in metaheuristic methods have led to enormous
utilizations of these methods to real world applications. The mature metaheuristic
methods like genetic algorithms, simulated annealing, evolutionary programming, and
neural networks have been applied to an abundant number of applications and they are
recognized as well established methods. Even more, they became standard options in
many common optimization software programs like in the case of the new release of
Matlab (genetic algorithms, simulated annealing, and neural networks are presently
available options) and the Excel premium solver (the evolutionary programming option is
available). Thus, the focus of this section is to briefly summarize new real world
applications of the most recent metaheuristic methods, i.e. PSO and ant colony

optimization.
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PSO Real World Applications

The following is a list of recent PSO real world applications in different fields:
Auto2Fit software: CPC-X Software Inc. developed a commercial data analysis
program that incorporates multiple versions of PSO as one of the available
optimization tools available to solve complex optimization problems. This
software is designed specifically for regression and curve fitting, global
optimization, model auto-calibration, and equation solving [43].

Human tremor classification: A neural network was constructed to intelligently
distinguish between a normal physiologic tremor and a pathologic tremor
(Parkinson’s disease). The PSO was used to evolve the neural network to its
optimal settings in order to increase its pattern recognition accuracy. Results
indicate that the PSO-based neural network reached 100% accuracy on all the 22
patterns used to validate the classification process [13].

Design of aperiodic antenna arrays: In this application, various versions of PSO
were utilized to develop an enhanced antenna array design. The antenna arrays
were fabricated and testing results indicated the effectiveness of the PSO-based
design performance [44].

Chip design: Reference [45] appears to be the first to present a PSO-based chip
design of reconfigurable sensor signal amplifier. PSO is used to find the optimal

settings of analog structures in a dynamically reconfigurable multi-cell chip.

. Project crashing analysis: PSO was employed to find the optimal resources

allocation strategy for a construction project that rehabilitates 8 km of an existing
highway. It reduced the project execution time at relatively low additional cost
[46].
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3.6.2 Ant Colony Optimization Real World Applications

Reference [47] pointed out some real world applications of ant colony
optimization and they are summarized as follows:

1. EuroBios, a worldwide software vendor, employed ant algorithms to various
optimization problems like the routing/scheduling of airplane flights, supply chain
networks, and telecommunication networks [48].

2. AntOptima, a Swiss company, developed a set of optimization tools based on ant
colony optimization theory for logistics providers to efficiently run their fleet [49].
The main users of their products are:

— Pina Petroli: A Swiss heating oil distribution company.
—~ Migros: The main Swiss supermarket chain.
— Barilla: The main Italian pasta maker.
3. BiosGroup: Another vehicle routing application for a French company was

developed by this company that is based on ant colony optimization theory [50].

3.7 Summary

This chapter covers the basics behind PSO theory and recent developments that have been
made to enhance its overall performance. Differences between PSO and other
optimization techniques are addressed. A numerical example is derived to illustrate the
promising capabilities of PSO in solving optimization problems with multimodal
characteristics. A comparison of PSO performance against other various optimization
techniques is made. Some real world applications of recent metaheuristic tools are
presented to signify their promising potential and competence. Future PSO development
is anticipated to mainly focus on the theoretical investigations of the global convergence
characteristics, hybridization with other optimization techniques, multi-objective

optimization, and employment in new applications.



Chapter 4

Literature Review

4.1 Introduction

This chapter presents a review of the most recent publications with regard to
different areas directly related to the research work conducted in this thesis. To establish
a solid foundation and understanding of the scope of this thesis, the literature review is
divided into three main sections as follows:

1. PSO Applications in Electric Power Systems: This part covers most PSO
applications in different areas of electric power systems with added emphasis on
the electric power dispatch and OPF problems. Coverage is presented based on
the research area of interest.

2. EED: This part reviews most published articles that address both emission and
economic dispatching issues simultaneously.

3. OPF: This section addresses recent developments in methods of solving the OPF

problem.

4.2 PSO Applications in Electric Power Systems

The focus of the present section is to survey and summarize most PSO
applications in the area of electric power systems. This work can serve as a good starting
point for those interested in learning about the development of PSO and its applications in
electric power systems engineering. Research in power systems has its own share in
applying PSO to various optimization problems. Figure 4.1 shows the number of
published papers in which PSO was applied to different areas of electric power systems
(based on IEEE/IEE/Elsevier databases). It clearly indicates its applicability and the fast

growing interest in PSO utilization in this research area.
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Figure 4.1. Number of PSO related published papers each year in power system areas.

Electric power system optimization problems are fairly diverse and they can be
categorized in terms of the objective function characteristics and/or type of constraints.
They are commonly referred to as linear, nonlinear, integer, and/or mixed integer
constrained optimization problems. PSO applications in electric power systems are
similar to those in different research fields once a common formulation is established.

However, PSO parameter tuning might be different from one application to another.

Reference [51] appears to be the first to apply PSO in the area of electric power
systems to minimize the real power losses of an electric power grid. The problem is
classified as one of mixed-integer nonlinear optimization because some control variables
are continuous while others are discrete. This introductory application was followed by a
series of PSO related papers to solve similar problems [52-54]. The initial motivation to
apply PSO in this research field is mainly due to the complexity of this problem since
power flow calculations that involve solving a system of nonlinear equations of the power
system at one point in time, are required to evaluate each solution candidate. The PSO

technique demonstrated its effectiveness in solving this difficult optimization problem by
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improving the solution’s accuracy and computation time. The following are the major

areas in which PSO was applied:

1. Economic Dispatch:

El-Gallad et al. [55] and Park et al. [31] adapted PSO to solve the traditional
economic dispatch problem. In both papers, the objective function was formulated as a
combination of piecewise quadratic cost functions with non-differential regions instead of
using a single convex function for each generating unit. This innovation in problem
formulation is due to the incorporation of practical operating conditions like valve-point
effects and different fuel types. The system constraints included in reference [55] were
system demand balance constraint with network losses incorporated and the generating
capacity limits. Park ef al. did not account for transmission line losses in reference [31]
for simplicity. El-Gallad et al. added new constraints to the problem formulation in
reference [56] by introducing system spinning reserve and generator prohibited operating
zones. In this formulation, they included the same constraints as those used in reference

[55] and considered a single convex cost function.

In reference [28], a different formulation was proposed by including the generator
ramp rate limits in the same problem treated in [56]. In Gaing’s work [28], a comparison
is made between PSO and genetic algorithm performance in solving the same economic
dispatch problem. Gaing introduced a dynamic aspect to the same problem by adding a
time-varying system load in addition to accounting for some of the generator operation
related restrictions, such as ramping rate limits and prohibited operating zones, while
imposing system spinning reserve requirements and line flows as inequality constraints
[57]. Victoire and Jeyakumar extended Gaing’s research by forming a hybrid optimizer
to tackle the same problem [58]. They used SQP to fine-tune PSO search in finding the

optimal solution.

Kumar et al. included emission aspects of the power dispatching problem [59].

They utilized PSO in solving a multi-objective optimization problem that included both
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cost and emission functions. They combined the two objective functions by assigning a
single price penalty factor to the emission function to form a single objective function.
Reference [60] presents improved versions of PSO to solve both convex and non-convex
economic dispatch problems that take into account different operational constraints. The
main contributions of the proposed approaches are the integration of local random search
with PSO and the splitting up of the cognitive term such that both the best and worse
particle positions affect the velocity update equation. Wang and Singh formulated a
multi-objective emission-economic dispatch problem for a multi-area system [61]. A
PSO approach was developed to solve the problem with convex objective functions while
accounting for the tie-line transfer limits as additional constraints. Reference [62]
presents a hybrid form of PSO and evolutionary programming to solve the economic
dispatch while accounting for the valve point loading effects. The hybrid approach
showed faster convergence characteristics when compared to the conventional PSO or

evolutionary programming.

2. Reactive Power Control and Power Loss Reduction:

In this area, PSO was used to optimize the reactive power flow in the power
system network to minimize real power system losses. Yoshida et al. [51;52;54] and
Fukuyama et al. [53] took the initiative of introducing PSO to reactive power
optimization. In their problem formulation, the objective was to find the optimal settings
of some control variables that would minimize the total real power losses in a network.
The control variables were automatic voltage regulator operating values, transformer tap
positions, and a number of reactive power compensation equipment subject to equality
and inequality constraints. Based on the nature of the control variables, the problem was
classified as a mixed-integer nonlinear optimization problem since some variables are
continuous while others are discrete. Mantawy and Al-Ghamdi investigated the same

problem using a different test system [63].
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Miranda and Fonseco appear to be the first to introduce a hybrid PSO approach in
this area [64;65]. They combined evolutionary strategies with PSO to improve the
robustness of the classical PSO. In reference [66], Zhao et al. combined multi-agent
systems with PSO to solve the same problem. Esmin et al. considered shunt capacitor
banks as the only type of control variables in their problem formulation [67]. They
incorporated the tangent vector technique to identify the critical area of power system
network where voltage stability might be in danger. Then they applied PSO to find the
“needed” reactive power compensation. A new hybrid method was introduced by
Chuanwen and Bompard as they combined PSO with a linear interior point technique to
solve a reactive power optimization problem [68]. In their work PSO was used as a
global optimizer to search the entire solution space while the linear interior point method

acted as a local optimizer to search the space around the optimal solution.

To show the effectiveness of PSO in reactive power control and power loss
reduction, it was successfully applied to a practical power system in the province of
Heilongjiang in China [32]. This system consists of 151 buses and 220 transmission lines
with 71 control variables. A different problem formulation was proposed by Coath et al.
where they considered reactive power loss minimization as an objective function [69].
They also introduced generator real power outputs as additional control variables. The
difference in their problem formulation was mainly due to the inclusion of wind farms as

modern integral parts of the power system networks.

3. OPF:

Abido is credited with introducing PSO to solve the OPF problem [70]. In OPF,
the goal is to find the optimal settings of the control variables such that the sum of all the
generator’s cost functions is minimized. The generator real power outputs are considered
control variables in addition to the other control variables considered previously in
reactive power optimization problems. PSO was effective in dealing with this complex

optimization problem that has various equality and inequality constraints and both
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continuous and discrete variables. In a different approach to the problem, Zhao et al.
solved the highly constrained OPF optimization problem by minimizing a non-stationary
multi-agent assignment penalty function [29]. In this formulation, PSO was used to solve
the highly constrained OPF optimization problem in which the penalty values were
dynamically modified in accordance with system constraints. In reference [71], the
passive congregation concept was incorporated in PSO to solve the OPF problem. This
hybrid technique improved the convergence characteristics over the traditional PSO in
solving the same OPF problem. Wang et al. developed a modified PSO to solve the OPF
problem with the objective being the minimization of the quadratic fuel cost function
[72]. The proposed algorithm mainly relied on the idea of randomly exchanging
information among the entire swarm rather than only the best member in the swarm. The
environmental-economic transaction planning problem in the electricity market was
formulated as a multi-objective OPF in reference [73]. A multi-objective PSO algorithm
was developed to solve the problem via a non-stationary multi-stage assignment penalty
function. Different versions of PSO were developed in reference [74] in an attempt to
construct a comparison of their performance with regard to the OPF. The objective
functions selected in this study were the real power losses and voltage profile
improvement. Gaing introduced an enhanced PSO to solve a multi-objective OPF
problem with the objective functions being the fuel cost, real power losses, and voltage

deviation [75].

4. Power System Controller Design:

In references [76] and [77], PSO was employed to find the optimal settings of power
system stabilizer parameters. The problem was formulated as one of min-max
optimization of two eigenvalue-based objective functions. Okada et al. went along the
same lines when they used PSO to optimally design a fixed-structure controller to
enhance the stability of power systems [78]. In this work, the authors’ goal was to find
the global optimal solution of a multimodal optimization problem. PSO was also used in

optimizing the feedback controller gains. Al-Musabi ef al. made use of PSO in finding
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optimal controller gain values for a load frequency problem of a single arca power system
[79]. Abdel-Magid and Abido extended PSO usage in this area when they enlarged the
control system to two areas {80]. In their work, they considered two types of controllers
namely an integral controller and a proportional plus integral controller. Juang and Lu
combined the genetic algorithm with PSO in reference [81] to perform the same
optimization process as in [80] on a fuzzy proportional-integral-controller. Ghoshal
augmented the problem by trying to find the optimal proportional-integral-derivative
controller gains of a three area power system [82]. He tackled the problem using PSO in
addition to other heuristic techniques. Lu and Juang applied PSO to design a fuzzy
controller for a thyristor-controlled series capacitor to enhance the transient stability of

flexible alternating current transmission systems (FACTS) [83].

5. Neural Network Training:

Neural Networks emerged as a valuable artificial intelligence tool in many areas
of electric power systems. El-Gallad ef al. used PSO to train a neural network for power
transformer protection [84]. The objective was to develop a model that would be able to
intelligently distinguish between magnetizing inrush current and internal fault current in
power transformers. PSO was employed to improve the accuracy and the execution time
of the identification process. Hirata et al. used PSO to determine the optimal connection
weights of a neural network model used to improve stability control of power systems
[85]. They formulated the optimization problem as a min-max problem with an objective
function that has non-differential and discontinuous nature. Kassabalidis et al. integrated
PSO with a neural network to identify the dynamic security border of power systems

under a deregulated power system environment [86].
6. Other Electric Power System Areas:
In [87] and [88], the performance of PSO was explored in the area of electric

power quality by improving the process of feeder reconfiguration. The problem was

formulated as a nonlinear optimization problem with non-differentiable characteristics.
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Victoire and Jeyakumar combined PSO, sequential-quadratic-programming, and tabu-
search to form a hybrid technique to solve the unit commitment combinatorial
optimization problem [89]. In the area of short-term load forecasting, Huang ef al. were
able to identify the autoregressive moving with the exogenous variable model using PSO
[30]. Slochanal et al. and Kannan et al. introduced PSO in the area of generation
expansion planning in references [90] and [91] to solve discrete nonlinear optimization
problems. They used it in [90] to maximize the profit of a generating utility subject to
certain market conditions and various system constraints. In [91], PSO was employed to
minimize the capital and operation cost of the generation expansion planning problem.
Also in this area, PSO was utilized in solving the expansion planning problem of a

transmission line network [92].

Koay and Srinivasan solved the multi-objective generator maintenance scheduling
problem by creating a hybrid technique by means of combining PSO with evolutionary
strategies in reference [93]. In power system reliability studies, PSO was applied to
feeder-switch relocation problems in a radial distribution system [94]. The authors in
reference [94] used PSO to allocate the most appropriate positions to place sectionalized
devices in distribution lines. The objective function of this problem is categorized as
nonlinear with non-differentiable characteristics. In reference [95], applications of PSO
in finding optimal operation settings of a system composed of distributed generators and
energy storage systems were illustrated. Naka er al. and Fukuyama formed hybrid
techniques by combining PSO with other heuristic techniques to improve the performance
of a distribution of state estimator in [96] and [97] respectively. PSO was later applied to
solve short term hydroelectric system scheduling problems in reference [98]. The
problems in references [96-98] are formulated as continuous nonlinear optimization
problems. Yu et al. applied PSO to tackle the discrete optimal capacitor placement

problem in a noisy environment [99].
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4.3 Survey of the Economic-Emission Dispatch

This section offers a general recent review of most research work conducted in the
area of EED. Due to the rich volume of reported related articles, the discussion is limited
to the scholarly work that handles both economic and emission dispatches in the same
formulation. Reviewed papers are extracted exclusively from the IEEE database and

categorized based on the solution method as follows:

1. Classical Methods:

Nanda et al. solved the EED problem using linear and nonlinear goal
programming techniques for different types of fuel [7]. They used the least square
minimization principle to linearize the quadratic cost and emission functions. However,
the two objectives were treated separately and network losses were ignored in their
formulation. Ramanathan proposed two methods to include the emission aspects as
constraints to the classical economic dispatch, namely the efficient weights estimation
technique and the partial closed form technique [100]. In the first method, the Kuhn-
Tucker optimality condition is used to find the appropriate conversion factors to combine
emission and cost functions. In the second method, the author derived a closed form
solution to the economic dispatch with some simplifying assumptions. In reference [101],
the problem was solved by considering the cost as a primary objective and the emission
was treated as a bounded constraint with linear and nonlinear formulations. A
comparison between the results of linear and nonlinear programming methods was
presented with a conclusion in favor of the nonlinear approach. The authors used
successive quadratic programming to solve the combined nonlinear programming
problem. Lakshminarasimman e¢ al. used multiple price factors to combine the two
objectives based on the system constraints [102]. Then, they developed a closed loop
approach, i.e. non-iterative, to solve the problem. Joshi and Patel approached the problem

by considering the fuel cost as the main objective and included emissions as constraints in
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their formulation [103]. They employed Powell’s method to convert the constrained
problem into unconstrained one. In addition, they adapted goal programming to permit
only feasible solutions under any operating condition. Muralidharan et al. employed
adaptive dynamic programming technique to solve the EED problem [104]. In their
approach, the problem was solved by decomposing the multistage decision problem into a
sequence of single stage decision problems. This decomposition tends to simplify the
process of obtaining the solution to the original problem. Lamont and Obessis introduced
different emission models to account for start-up operations of thermal plants that was
previously not accounted for [105]. The authors employed Kuhn-Tucker optimality
conditions to minimize the fuel cost while treating different emissions as constraints. In a
rather interesting and more practical study, Vickers et al. proposed a model that accounts
for the impacts of the Clean Air Act Amendments that were enacted in 1990 to limit the
emission of electric power utilities in the United States [106]. This law assigns an
allowance, i.e. a specific number of permissible tons of emissions per year that each
generating unit within a utility can produce, that should not be exceeded to improve air
quality. The utility has the right to consume, sell, buy, transfer, or retain their given
emission allowances. The developed model optimizes a cost function that includes fuel
cost, sulfur removal cost, inventory cost, operation and maintenance cost, and allowance
market cost subject to various operational constraints like emissions, fuel supply, fuel
inventory, fuel transfer, generating units limits, and demand. It was designed for an
American power company with a model consisting of 14,108 decision variables and 5,249
constraints. Linear programming was employed to solve this practical case. Along the
same line, El-keib e al. employed the Lagrangian relaxation method to solve the EED
problem with two different formulations while considering the impact from the same law
[107]. |

All of the above attempts were able to find a single non-dominated solution based
on the price, conversion factor, emission bounds, or weight factors of the overall multi-
objective problem. The authors in reference [108] introduced the line flow constraints to

the EED problem. They used a weighting method to aggregate the conflicting objectives
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and they applied the Lagrangian multiplier method to solve the problem with different
weights considered. This approach successfully computed a full set of non-dominated
solutions. Heslin and Hobbs developed a long term model to solve the EED problem that
accounts for more complex features of power systems like planned outages, units with
energy limitations like hydro plants and pump storage, and must run units that serve the
base load [109]. In addition to the fuel cost and emissions, they included a new objective
that reflects the cost of coalfield job losses as a result of changing coal to fuel with fewer
pollutants. Since the model was developed for long term planning, they incorporated a
probabilistic means to account for the variable cost of fuels. The three objectives were
converted into a scalar objective by using the weighting method and the problem was
solved using linear programming. They applied their model to the Ohio generation

system and tradeoff curves were constructed successfully.

2. Artificial Neural Network:

Hopfield neural networks were utilized in reference [110] to solve the bi-objective
optimization problem. A price penalty factor was used to combine the two objectives that
yielded a single optimal solution to the problem. Kumarappan et al. solved the EED
problem by adapting back propagation artificial neural network approach [111]. They
used the participation factor method to optimally distribute the network losses among
different generating units. Again, they used the price factor to convert the emission
function into a financial quantity in order to combine it with the fuel cost function. Kar et
al. provided a more in depth study of the parameter effects on the neural network
performance in terms of solution accuracy and computation time with regard to the EED
problem [112]. Their developed network was tested under various loading conditions and
they reported that it was 10-12 times faster than the conventional method once enough
training is conducted. However, the network was tested to solve the EED under a single
price factor scenario. The authors in reference [113] used the weighting method to merge
the two objectives into a scalar function. Network losses were ignored and a complete set

of Pareto optimal solutions was obtained by varying the weights assignments. King ef al.
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used the weighting method to combine different objectives into one while accounting for

losses [114].

In a more advanced implementation of neural network applications to solve the
EED problem, Huang and Huang attempted to solve the problem using the abductive
reasoning network approach [115]. Their approach involved the construction of a
polynomial neural network with advanced statistical tools, based on the provided training
data, to generate Pareto front. They adapted a fuzzy satisfaction-maximizing approach to
sequentially adjust the weights of the conflicting objectives. The convergence stability
performance of this complex network outperformed the conventional neural network
when considering larger systems. Chen and Huang extended the use of polynomial
network with their statistical features to develop an adaptive neural network to investigate
its potential to solve the EED problem [116]. They used the goal attainment method to
assign desired values for each objective in order to coordinate the competing objectives.
The proposed approach was tested on two test systems under different load profiles and

its performance was compared to conventional neural networks.

3. Genetic Algorithms-Based Approach:

Song el al. used a genetic algorithm to solve the EED problem with fuel switching
incorporated into the problem as an additional constraint [117]. In their formulation, the
emission function was treated as inequality constraint and included in the fitness function
along with power balance equality constraint. In a similar formulation, Wang and Li
adapted a genetic algorithm to minimize the wheeling cost of the transmission network
and the fuel cost while imposing emission as an additional constraint to the problem
[118]). A Tabu search algorithm was integrated within the genetic algorithm to form a
hybrid tool to solve the EED problem in reference [119]. This hybridization reduced the
likelihood of having the proposed algorithm getting trapped in a local optimum or
premature convergence. The fuel cost and emissions were combined into a scalar

objective by means of the price penalty factor while considering prohibited zones of the
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generating units. Venkatesh ef al. introduced a new way to compute a price penalty
factor that combines fuel cost and emissions into a single objective [120]. Then, the
performance of genetic algorithm, micro genetic algorithm, and evolutionary
programming was compared in solving the EED problem of different test systems with
line flow constraints included. Reference [121] addresses power exchanges and stability
issues of multi-area power systems with regard to the EED problem. The weighting
method was used to reduce the multi-objectives into one and the genetic algorithm served
as an optimizer to the problem under consideration. All the proposed approaches
discussed above generated a single non-dominated solution, which gave no additional

information about the shape of the Pareto front.

Tsoi et al. presented a study about the impacts of different fuel types and
pollutants on tradeoff curves between the fuel cost and emissions [122]. Two hybrid
algorithms were developed and were based on combining simulated annealing with an
incremental genetic algorithm, a variant of the genetic algorithm that adapts different
mechanisms to generate new chromosomes in order to enhance some of the shortcomings
of the conventional genetic algorithm. Thenmozhi and Mary developed a two level
genetic algorithm based approach to solve the EED problem [123]. In a recent
development, Liu ef al. developed a new genetic algorithm that mimics biological
immune systems to solve the aforementioned problem [124]. In references [122-124], the
Pareto optimal solution set was obtained by varying the relative weights of the competing

objectives.

In a new innovative approach, Abido solved the EED problem by developing a
non-dominated sorting genetic algorithm (NSGA) based approach to capture Pareto front
[125]. He proposed a diversity preserving mechanism to overcome premature
convergence and to provide a well distributed set of non-dominated solutions. A
comparison of sharing techniques based on parameter space and objective space
concluded that the latter method produced better diversity of Pareto optimal sets. The

same author extended the capabilities of a real coded genetic algorithm to develop a
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strength Pareto evolutionary algorithm (SPEA) to solve the EED problem [8]. In this
implementation, he developed a fuzzy based approach to extract the best compromise
solution out of the entire set of Pareto optimal sets. Additionally, Abido proposed a
niched Pareto genetic algorithm (NPGA), along with NSGA and SPEA, that has a built-in
feasibility check to enforce only feasible solutions in an attempt to tackle the multi-
objective problem [126]. More elaborate testing of three evolutionary computation
methods namely NPGA, NSGA, and SPEA with regard to the EED problem was
presented in reference [127]. A hybrid tool that combines simulated annealing in
generating the selection process of the genetic algorithm was proposed by Das and
Patvardhan [128]. They introduced security aspects to the EED problem as an additional
objective and the problem was solved considering tri-objectives. Reference [129]
presents an application of the genetic algorithm approach combined with heuristics to
force the feasibility of the search region to solve the EED problem. The authors used
fuzzy logic to combine the objectives into one and the developed algorithm has the option
of fuel switching to assess different alternatives. However, the algorithm seems to
generate few dominated solutions when constructing the tradeoff curves. Rughooputh
and King incorporated elitism into the traditional NSGA to improve the diversity of non-
dominated solutions in the Pareto front of the two conflicting objectives and to reduce the
computational complexity [130]. They provided a fuzzy based tool to help the operator
select the most desirable operating condition among different non-dominated solutions.
They extended their work in reference [131] to capture a Pareto optimal front that
accounts for three objectives (fuel cost and two emission types). King et al. accounted
for the stochastic nature associated with the decision variables and system demands to
formulate the EED as a stochastic multi-objective optimization problem [132]. Also, a
measure of the system reliability is incorporated as an additional constraint in their
formulation. They then used the NSGA approach similar to what was developed earlier
in reference [131]. It is important to note that one of the main features of NPGA, NSGA,
and SPEA algorithms is their ability to capture a well distributed set of non-dominated

solutions in a single run.
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4. Evolutionary Programming:

An evolutionary programming based approach with modified solution accerlation
techniques was proposed by Wong and Yuryevich to solve the EED problem [133]. They
handled the emission as a constraint while minimizing the fuel cost function to produce a
single non-dominated solution for each loading condition. Tsay et al. proposed an
interactive model for optimal operation of cogeneration systems in a petroleum company
that consumes different fuels [134]. They developed a full scale model that incorporates
various operational constraints on boiler, turbine, power generation, and emission. The
EED was formulated as a bi-objective optimization problem with the fuel cost expressed
in terms of the cost of different fuel types and total operation cost of boilers while NOx
emission is expressed as a function of each given boiler over a time horizon. The two
objectives were combined using the minimum least square error approach and
evolutionary programming was employed to minimize the resultant function. In reference
[135], the author re-attempted the same problem while accounting for all three emissions

in the objective along with the fuel cost.

S. Fuzzy Set Theory:

Srinivasan et al. employed fuzzy operators to aggregate four conflicting objectives
namely fuel cost, security, emission, and reliability to form the multi-objective problem
[136]). Then, an integration of the fuzzy expert system with pattern recognition
techniques was utilized to optimize the overall decision making function. The
uncertainties of computing the fuel cost and emission coefficients were considered in the
problem formulation in reference [137]. The coefficients were represented as fuzzy
numbers and the two objectives were combined into one by using a weighted ideal point
method. A hybrid approach of evolutionary algorithms and quasi simplex was developed

to solve the fuzzy nonlinear programming problem.
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6. Differential Evolution:

The authors in reference [138] adapted this newly developed meta-heuristic tool to
solve the EED problem. Two different formulations were considered with the first having
the fuel cost as a single objective and including emissions as a constraint, while the

second approach combined the two objectives by using the weighting method.
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4.4 Survey of the Optimal Power Flow

This section offers a general recent review of most of the research work conducted
with regard to the OPF. Due to the abundant number of reported OPF articles, only non-
classical OPF solution methods are addressed. A detailed review of major classical
solution methods to the OPF problem is presented in references [2;3;139]. Reviewed
papers are extracted from the IEEE database and categorized based on the solution

method as follows:

1. Genetic Algorithms-Based Approach:

Gaing and Huang presented a real-coded genetic algorithm for the OPF problem
with the objective function being the quadratic fuel cost function [140]. In their
formulation, the authors accounted for both discrete and continuous optimization
variables and introduced prohibited zones of the generation units as additional constraints.
In reference [141], a similar OPF formulation was considered with the inclusion of the
non-convex fuel cost function to better model the rippling effects in the I/O curve of the
generating units due to the valve admission. The prohibited zones constraints were
relieved in this formulation. Zhang e/ al. introduced a transient stability index as an
additional inequality constraint, to account for the impacts of different contingencies on
the transmission network stability, to their OPF formulation [142]. They employed a
binary version of the genetic algorithm to test their proposed approach in the deregulated
market of the United Kingdom. An enhanced binary version of the genetic algorithm
with advanced and problem-specific operators was developed by Bakirtzis et al. to solve
the OPF problem [143]. This enhancement improved the convergence rate and the
quality of solutions. The proposed approach was tested using the quadratic fuel cost
function as an objective of the OPF. Using the same objective function, a comparison of
the performance of two metaheuristic methods (namely PSO and enhanced genetic

algorithm) and two available commercial grade optimization software packages that
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employ nonlinear mathematical programming methods (LINDO and GAMS) was made in
references [144;145]. In this problem formulation, both the discrete and continuous
nature of the optimization variables were accounted for. In the case of the metaheuristic
methods, the authors transformed the constrained OPF problem into an unconstrained
problem by using the penalty factors approach. The authors have concluded that
metaheuristic methods performed well in small test systems and failed to provide feasible
solutions for medium-size test systems. Todorovski and Rajicic have proposed a special
initialization procedure for the control variables of the OPF problem to generate an initial
set of solution vectors with no or few constraint violations [146]. A real-coded genetic
algorithm based approach was used to solve the optimization problem and results
indicated significant reduction in the computation time. In their proposed solution
method, they used a distinct and unconventional set of control variables to optimize the
quadratic fuel cost function. They chose the complex voltages at the generator-buses (i.e.
both magnitudes and phase angles), reactive power of synchronous condensers,
transformer tap settings, and shunt device settings to be the control variables. The
unusual usage of the phase angles at the voltage controlled buses as control variables is
based on earlier research conducted by the same authors in which they have developed a
new innovative way to solve the power flow equations using genetic algorithm [147].
Their proposed approach appears to be faster than the fast decoupled method in solving
the power flow equations and it eliminates the concept of predetermined slack bus.
Devaraj and Yegnanarayane have used a real-coded genetic algorithm technique to solve
the OPF problem to improve system security [148]. They used a severity index, a
measure of the severity of the contingency to line overloading condition, as an objective
function in their formulation. The control variables selected were the phase angle of the
phase-shifting transformer (discrete) and the real power outputs and voltage magnitudes
of the generation units (continuous). Proper placement of the phase-shifting transformers

was achieved based on sensitivity analysis.

Das and Patvardhan treated the OPF as a multi-objective optimization problem

with four different objective functions, i.e. fuel cost and emissions of the generating units,
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transmission real power losses, and the security margin index {149]. They combined
genetic algorithm with simulated annealing to form a hybrid solution tool with enhanced
capability of handling both discrete and continuous control variables. The shape of the
Pareto front was detected and they determined the best comprising solution of the OPF
multi-objective optimization problem. Similarly, Abido proposed a strength Pareto
evolutionary algorithm to solve the multi-objective OPF problem [150]. In his
formulation, Abido considered two objective functions, namely the fuel cost and the
voltage stability indicator. An entire set of Pareto optimal solutions were calculated and

the Pareto shape was captured.

Lai and Ma proposed a binary-coded genetic algorithm approach to solve the OPF
problem in FACTS [151]. They used a unified power flow controller (UPFC) to regulate
the power flow such that the real power losses were minimized. Several contingencies
were considered to successfully test the proposed approach. Padhy er al. used a different
FACTS device, namely a thyristor-controlled series compensation (TCSC), to minimize
an objective function that sums the complex power lost in transmission lines (i.e. real and
reactive line losses) and the generated reactive power [152]. A hybrid tool of which
genetic algorithm was used to locate the optimal placements and settings of TCSC
devices and a quasi-Newton algorithm was then employed to solve the OPF problem.
Reference [153] presents a genetic algorithm approach that makes use of both UPFC and
TCSC devices to maximize the transmission lines capacity. Two similar applications of
employing genetic algorithm in solving the OPF problem are presented in references
[154;155]. In both cases, a binary-coded genetic algorithm coupled with a power flow
algorithm is used to minimize the quadratic fuel cost function with the inclusion of UPFC
settings as additional control variables. Chung and Li incorporated settings of the TCSC
and thyristor-controlled phase shifter (TCPS) into the OPF problem that minimizes the
quadratic fuel cost function [156]. A genetic algorithm was used to determine the optimal

settings of the used FACTS devices.
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With the deregulation of the electric power industry, new OPF formulations have
emerged to represent the new environment in which genetic algorithm versatile
capabilities were further employed. Gountis and Bakirtzis have formulated a two level
optimization problem to optimize the bidding strategies of electricity producers [157].
They developed a model that takes into account the uncertainty of nodal loading
conditions and the market risk factors. The problem was solved by forming a hybrid tool
of Monte Carlo simulation and genetic algorithm. Dong and Hill used a risk analysis to
optimally schedule the reactive power, a form of ancillary services, in the electricity
market [158]. They combined linear programming and genetic algorithm to minimize an
objective that represents the future risk of possible scenarios. Reference [159] presents an
application of genetic algorithm in calculating the available transfer capability of a power

network in a deregulated market.

2. Evolutionary Programming:

Lai and Ma introduced evolutionary programming as a viable tool to minimize the
real power losses in power networks by regulating the power flow via optimal UPFC
settings [160]. The proposed approach was tested under various contingencies scenarios.
Venkatesh et al. made use of evolutionary programming to solve the OPF problem while
accounting for UPFC in their formulation [161]. They addressed the problem considering
two fuzzy objective functions, i.e. minimum of the real power losses and the best voltage
profile, while accounting for the nature of control variables used. Ongsakul and Jirapong
used evolutionary programming to maximize the total transfer capability between
generation and load center areas [162]. The proposed approach optimally adjusts the real
power outputs and voltage magnitudes at generation buses such that the total load in the
sink area is maximized. They further enhanced their approach to determine the optimal
settings and locations of four types of FACTS devices in addition to the other previously
considered control variables to optimize the same objective [163]. Reference [164]
presents a multi-objective formulation of security constrained OPF problem with the

objective functions being the quadratic fuel cost and active power losses. In this
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application, a hybrid tool of evolutionary programming and SQP was developed in which
the former method is used to find good initial solution for the latter method. This
hybridization reduced the computation time and outperformed the performance of each
individual method. The developed algorithm was tested under different contingency
cases on a test system composed of two interconnected areas. Shi et al. proposed a hybrid
method that combines evolutionary programming and a classical gradient search method
to minimize the quadratic fuel cost function [165]. Lo et al developed a parallel
evolutionary programming approach to minimize the quadratic fuel cost function [166].
A master-slave set up of 31 computers was used to test their proposed approach on two
test systems. They compared their results to those of sequential evolutionary
programming and concluded that both approaches were comparable in terms of the
solution quality. However, parallel evolutionary programming reduced the execution
time by a factor of 10-12 times. The same authors extended their work by incorporating
the steepest descent as a local search mechanism for a portion of the population within
evolutionary programming to improve the speed of convergence [167]. In addition, three
configurations of parallel evolutionary programming, namely master-slave, dual-ring, and
2D-mesh, were implemented to solve the OPF problem. Comparison results reveal that
2D-mesh configuration of parallel evolutionary programming provided a better solution at

a faster convergence rate.

Padhy solved the OPF problem using evolutionary programming in order to
calculate the wheeling rates of active power at various parts of the transmission network
[168]. He used the quadratic fuel cost function to test his approach. Sood et al. presented
a hybrid method to calculate the wheeling rates of both real and reactive power based on
the solution of the OPF [169]. Evolutionary programming was combined with the
steepest decent method to minimize different types of fuel cost functions such as
continuous quadratic, piecewise quadratic, piecewise linear with prohibited operating
zones, piecewise quadratic with prohibited operating zones, and quadratic with a
superimposed sine term to account for valve loading effects. A similar hybrid method

was presented in reference [170] to optimize the voltage profile with three types of fuel
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cost functions. In reference [171], a hybrid method of evolutionary programming and the
Newton-Raphson method was formed to optimally select the best wheeling option when a
privately owned generator is introduced in an existing network. The incremental costs of
three options were computed based on the OPF calculations to make the proper judgment

about the best wheeling option.

3. Artificial Neural Network:

Reference [172] presented an application of using a modified Hopfield neural
network to solve the OPF problem with the objective being the incremental fuel cost.
Two types of neuron transfer functions were used to investigate the robustness and
accuracy of the proposed approach with regard to the OPF. Nguyen developed a neural
network that performs Newton-Raphson based OPF calculations to minimize the real
power losses [173]. A key feature of his developed network is the parallel computation,
i.e. reduced computation time, which makes use of the sparse nature of the OPF matrices.
Dondo and El-Hawary proposed a methodology for real-time electricity spot pricing
using neural networks [174]. They were able to express the electricity rate in terms of the
solution of the OPF problem. Results of the neural network based solution were
comparable to those of MINOS, an optimization software package, in terms of solution
accuracy and better in terms of execution time. Luo ef al used a faster training
algorithm, i.e. Quickprop, to train a neural network to maximize the transfer capability of
electric power among different areas [175]. The problem was formulated as an OPF
where different contingencies and loading conditions were considered during the training
process. The proposed network was heavily tested and its performance was compared to
the exact solution of the OPF. The same authors extended their work in reference [176]
where they compared their neural network performance when considering two different
training algorithms in addition to adding more contingencies and loading profiles. In a
different application, Luo et al. combined a neural network with a Monte Carlo

simulation to present a fast computing method to evaluate power system reliability [177].
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The problem was formulated as an OPF problem with the objective being minimizing the

sum of the load shedding at each bus.

4. Fuzzy Set Theory:

Abdul-Rahman et al. developed a fuzzy linear model to include electromagnetic
field effects as additional constraints imposed on the OPF problem [178]. The objective
was to reach a compromise solution that minimized the fuzzy incremental fuel cost while
satisfying the traditional OPF crisp constraints by redirecting the generated power such
that the electromagnetic field fuzzy levels at some critical buses are kept within
acceptable limits. In a different formulation, a fuzzy representation was used to model
the uncertainty of loading conditions in reference [179]. Different membership functions
were used to model different elements of the OPF problem that account for contingencies.
Various objective functions, namely fuel cost, static security, and emissions, were
aggregated using a fuzzy operator to reach a compromise solution of the conflicting
objectives. Ramesh and Li modeled the OPF problem as a multi-objective optimization
problem with the conflicting objectives being the pre-contingency operating cost and
post-contingency correction time [180]. The two functions were formulated as fuzzy
objectives subject to hard constraints and SQP was used to solve the problem. A
nonlinear predictor-corrector primal-dual interior point method was used in reference
[181] to optimize a multi-objective OPF problem. The authors considered optimizing
fuzzy functions that model the total generation cost and the deviation of actual loading
conditions from an ideal loading condition. Wu used fuzzy rules to improve the
efficiency of a predictor-corrector interior point algorithm for the OPF [182]. The
proposed approach was tested on a large power system and an average of 20%
improvement in computation time was reported. A fuzzy dynamic programming
approach was employed to solve the OPF problem that was modeled with fuzzy objective
function and fuzzy loads in reference [183]. Padhy made use of the gradient descent
method to solve the traditional OPF in a deregulated power environment with the

objective being the quadratic fuel cost [184]. Then, he introduced the so called “fuzzy
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opinion matrix approach” to critically select the most suitable feasible transaction such

that the network congestion is reduced.

5. Others:

Tripathy and Mishra introduced a bacteria foraging algorithm to solve the multi-
objective OPF problem that optimizes the real power losses and voltage stability limit
simultaneously [185]. The control variables considered were the UPFC optimal
placement and location in addition to the existing transformer settings. A dynamic
version of the bacteria foraging algorithm was developed by Tang et al. to minimize the
quadratic fuel cost function [186]. The OPF was solved considering a dynamic loading
environment using the traditional control variables. A Tabu search was employed to
solve the OPF with non-convex fuel cost functions in reference [187]. The simulated
annealing technique was proposed to minimize the convex fuel cost function in solving
the OPF in reference [188]. The optimal settings and placements of FACTS devices were
included in the OPF formulation considered by Bhasaputra and Ongsakul [189;190]. A
hybridization of the Tabu search, simulated annealing, and quadratic programming was
formed to minimize the quadratic fuel cost function. Lin et al. developed an ordinal
optimization theory-based algorithm to solve the discrete OPF [191]. They investigated
the validity of the proposed algorithm with the objectives being fuel cost function and real

power losses.

4.5 Summary

Section 4.2 presents a summary of PSO applications in power systems. It
highlights many applications in which PSO was successfully applied, yet it reveals some
additional unexplored areas where it can be further employed like protection, restoration,

etc. Also, deregulating all major parts of the electric power industry led to the emergence
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of new operation philosophies that will reformulate many of the established power system
optimization problems. This will justify using the PSO to tackle such problems. Another
promising research area with regard to PSO is hybridization. Recently, many power
systems researchers attempted to combine the PSO algorithm with other techniques to
form hybrid tools. PSO adaptability to be integrated with other deterministic and
evolutionary optimization algorithms is expanding. This hybridization extended PSO
capabilities and improved its accuracy and computation time. This chapter also
emphasizes the need for future mathematical investigations of PSO characteristics and
behavior in its search for optimal solution. PSO is still in its infancy and further
development and research are needed to enhance its overall performance characteristics.
Sections 4.3 and 4.4 present major research conducted in the areas of EED and OPF.
Both sections are arranged based on the solution method used so that any future

extensions of the published work can be easily identified.



Chapter 5

Economic and Environmental Operational Aspects of Power
Systems

5.1 Introduction

Of the different primary energy sources that are used to generate electric power
the main ones are thermal, nuclear, hydro, and renewable sources. Thermal power plants
that consume fossil-based fuel as a primary energy source are the major contributor to the
world-wide electric power production. Figure 5.1 shows the electric power generation by
the source type in the USA for the year 2005 based on data provided by the US Energy

Information Administration [192].
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Figure 5.1. US electrical power generation by energy source for 2005.
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The heart of each electric power plant is the generator that converts mechanical
energy to electrical energy. This conversion takes place in steam turbines by directing the
steam produced in the boiler to drive the turbine-generator set. A typical simple set up of

a fossil-based power plant is shown in Figure 5.2.
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Figure 5.2. Layout of major elements of a thermal power plant.

It is always desirable to operate electric power plants in an optimal manner (i.e. at
the lowest possible cost) while meeting certain standards related to quality of service,
safety, reliability, and environmental impact. The input-output curve, commonly known
as the heat rate curve, of a thermal power plant relates the rate of fuel burnt in Btu/h to the
amount of electrical power produced in MW. The shape of this curve is determined based
on data collected from field testing of the generating units. It is customary to transform
the heat rate curve into its equivalent fuel cost curve that represents the production cost of
the electrical power generated. One common way to deal with other costs associated with
maintenance and operations is to express them as a fixed percentage of the cost related to
total fuel used [193]. Usually, the fuel cost is expressed as a smooth quadratic function as

shown in Figure 5.3. Mathematically, it can be represented as follows:

F(P)=a+bP+cP? $/hr (5.1)
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where a, b, and ¢ are non-negative constants determined based on curve fitting techniques

of the data provided from field testing.
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Figure 5.3. Fuel cost curve of a thermal power plant.

When considering N number of power plants, the overall cost function can be modeled as

follows:

i=N
FT(P)=z(al +blPl +clPiz) $/hr (52)

i=]

where a;, b;, and c; are the cost function coefficients of the i-th generating unit.

5.2 Economic Cost Dispatch

The main objective of Economic Cost Dispatch (ECD) is to allocate the optimal

power generation from different units at the lowest cost possible while meeting all system
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constraints. Note that the terms “economic cost” and “fuel cost” will be used

interchangeably. The optimization problem of the ECD can be formulated as follows:

Minimize F,(P)= F(B)+ Fy(B)+++ Fy(B)= S E(B)Shr  (53)

i=1

while satisfying the following two types of constraints:

1.

Generating unit capacity limits as inequality constraints

P min < P, < P max 54

2. Generation-demand balance including losses as an equality constraint

i=N
P-P,-P,=0 (5.5)

i=1

where Pp is the total system real power demand and P; is the system real power losses.

Equation (5.5) states that the total units’ generation shall meet system load demand and

losses. Various ways were proposed to handle the power losses within the context of the

ECD problem with the main ones being:

1.

Ignore system losses and supply enough power to meet the demands. Even
though this assumption may be computationally acceptable in some power
systems with power losses within a few percentage points of what is being
generated, it may not always hold since power losses can be a significant portion
of the generated power. The amount of power lost is governed by the system
topology and operational practices, e.g. power generation far from load centers
would result in more losses than generating power near the load, types of
conductors used to transfer electricity throughout different segments of the

grid...etc.

. Calculate losses based on the solution of the power flow equations. This gives

accurate representation of the actual system losses. However, it adds an extra
burden on the computation aspects of the ECD and it is usually considered when
performing OPF calculations.

Use approximate means to calculate the system power losses. This method

provides a compromise between modeling accuracy and computational
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complexity and will be used to solve the ECD problem. The most common

approach to estimate power losses is by using the approximate loss function [194]:

N
P=3

i=1

,MZ

~
I

(RB,P) (5.6)

It is quite common to estimate the real power losses in power networks by computing the
B-coefficients loss matrix shown in Equation (5.6). It should be noted here that there are
two main assumptions made behind this formulation:
1. The network losses are exclusively dependent on the active power generation
levels (i.e. reactive power injection effects are neglected).
2. The B-coefficients loss matrix depends on the operating state of the power
system. If there are no significant changes to the operating state of the power

system, the B-coefficients loss matrix can be assumed to be constant.

Historically, the ECD was solved by dispatching the generating units in a
sequence order based on their efficiency. In this approach, the most efficient unit is
dispatched first to its maximum rating then the second most efficient unit is loaded to its
maximum loading capability, ...etc. This was followed by introducing the equal
incremental production cost concept (i.e. partial derivative of fuel cost with respect to the

power or OF, /0P) that minimizes the overall cost by requiring that the incremental

production cost of all committed units be equal. Modeling simplifications like ignoring
the power network losses is one of the shortcomings among others of the early solution
approaches. New solution methods were utilized to cope with various constraints with
regard to the ECD problem as a result of the rapid progress in optimization techniques
development. Some of the optimization techniques used to solve the ECD problem are:

1. Linear programming [195-198].

2. Quadratic programming [199-201].

3. SQP [202;203].
In depth coverage of various techniques used to solve the ECD problem can be found in
reference [204].
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Recently, the ECD problem has been attracting more attention due to the
competitive market environment that resulted from power system deregulation and higher
fuel costs. Also, the development of modern optimization techniques that relieve some of
the assumptions that previously had to be accounted for when considering derivative-
based solution methods encouraged many researchers to revisit the ECD problem. Recent
work in this area focuses on finding a global solution and more precise modeling of this

problem.

5.3 Emission Dispatch

Fossil fuel based power generators are blamed for being a major contributor to air
pollution. There are various harmful emissions produced in power plants but their
primary gaseous pollutants are carbon dioxide (CO;), sulfur dioxide (SO,), and nitrogen
oxides (NOy). Carbon dioxide and sulfur dioxide emissions are highly dependent on the
type of fuel used while nitrogen oxide emissions mainly depend on the combustion
process used in power generation. Coal, heavy oil, and natural gas are the main fossil-
based fuels used to generate electricity with each having different chemical composites.
Generally, coal, natural gas, and heavy oil has a carbon content of about 65%, 70%, and
87% respectively, while the sulfur content is quite considerable in heavy oil and coal and
it is almost negligible in natural gas [205]. Several hazardous conditions can be
encountered when these chemicals interact with the outside environment. Some of these
effects are eyes irritation, respiratory diseases, vegetation damage, acid rain, and of
course for their long term contribution to global warming. In the past few decades,
environmental awareness led to the imposition of rigid environmental policies on power
utilities to regulate their emissions. The emissions of air pollutants came under US
federal regulations in 1963 when the Clean Air Act law was enacted and it was followed
by amendments to that law in 1990 [206]. Globally, most industrial countries, except the
two major world polluting countries: USA and China, signed the Kyoto Protocol in 1997

to reduce the greenhouse gas emissions to an average of 5.2% in the period of 2008-2010
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to their levels in 1990. It is estimated that the fossil power plants are responsible for
emitting 36% of the total CO, emissions produced as a result of man-made activities
[207]. Subsequently, power utilities had to restructure their operations and planning
practices to meet the new environmental laws. Several options were proposed to reduce
unit emissions like [208]:
1. Installing post-combustion cleaning equipment to treat the gases generated as a
result of the combustion process.
2. Improving the furnace design and technology used to lower the formation of
harmful products due to the combustion process.
3. Chemical treatment during the combustion process.
4. Changing fuels in favor of a different fuel type with fewer pollutants.
5. Dispatching with emission considerations.
The latter option is preferred for economic reasons since no capital cost is needed and it is

immediately available for short term operation.

Emission Dispatch (ED) is analogous to ECD with the objective of minimizing
emissions instead of cost. Typically, emissions are modeled as a function of the
generating units’ real power output. Many models were proposed to represent the
emission function of thermal generating units but the most known models are presented in
[8;209;210]. Early work conducted by Gent and Lamont suggested a combination of
linear and exponential terms as follows:

E(P)=a+ P +e* ton/hr (5.7)
More recent work models the emission function as second order polynomial while others

model it as quadratic function combined with exponential terms as follows:
E(P)=a+ BP+yP? ton/hr (5.8)
E(P)=a+ BP+yP’+Ce* ton/hr (5.9)
where @, £, 7, &, and A are the emission function coefficients of a given generating unit.

When considering N power plants, the overall emission function can be represented as

follows:
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E.(P)=E(B)+E,(P)+:-- + E, (Py) ton/hr (5.10)
The goal of the ED optimization problem is to minimize the overall emission of all

committed generating units.

subject to the following constraints:
1. Generating unit capacity limits as inequality constraints
P min < P < P max (5.12)

2. Generation-demand balance including losses as an equality constraint

i=N
P-P -P,=0 (5.13)

i=1
Due to the intrinsic distinctions among various power plants as a result of
differences in fuel types used, types of generating units, and the combustion processes,
researchers sometimes model the total emissions of carbon dioxide, sulfur dioxide, and
nitrogen oxides as a single emission function [7;8;127] while others model it with three
different emission functions [105;211]. Both formulations will be investigated and

analyzed in this chapter to test and validate the proposed solution technique.

The outcome of a single objective optimization is usually a single optimal
solution. On the contrary, in multi-objective optimization there is no single optimal
solution to any problem unless an exact preference or “weight” of all objectives is known.
This gives rise to finding a set of compromise solutions known as Pareto optimal
solutions. When optimizing all objectives simultaneously, Pareto optimal solutions show

the tradeoffs among conflicting objective functions.

5.4 Emission-Economic Dispatch Problem Formulation

The EED problem is mainly a mixture of two types of objective functions, ECD

and ED subject to equality and inequality constraints stated earlier. The EED problem is
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formulated as a multi-objective optimization problem with conflicting and
incommensurable objectives, i.e. there is no single solution that optimizes all objectives
concurrently. Thus, ECD and ED functions both have to be considered simultaneously to

find the optimal dispatch. It is formulated mathematically as follows:

Minimize z = [F,(P), E, (P)] (5.14)

subject to
g(P) =0 (5.15)
h(P)<0 (5.16)

where Equation (5.15) is the equality constraint for the generation-demand balance while
Equation (5.16) represents the set of inequality constraints that model the lower and upper
bounds imposed on the generating units. There is a trade-off relationship between ECD
and the ED multi-objective optimization and the goal here is to be able to construct the

shape of Pareto optimal set.

5.5 Solution Methodology

One common way to handle optimization problems with conflicting objectives is
to combine them into a single scalar function. The following two aggregation methods
will be investigated to capture the Pareto front for the EED problem:

1. Weighting method: In this approach the two functions are combined into one as

follows:

Minimize z =n,F,(P)+n,hE, (P) (5.17)
where 7, is the assigned weight that reflects the decision maker’s preference in each
objective. The total weights are related by z; n, =1 for k number of objectives. The
symbol % is a scalar factor used to scale different objectives. Note that when 7, =1, the

overall problem is reduced to the traditional ECD problem and, likewise, when 7, =0 the

problem becomes a pure ED problem. It is important to realize that these two cases

represent the two extremes of the Pareto front as shown in Figure 5.4. Any intermediate
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point along Pareto front corresponds to an optimal solution based on the assigned

weights.

2. Varying price penalty factor: In this method the conflicting objectives are
combined by assigning a penalty factor to one of the objectives as follows:

Minimize z =F,(P)+ D+E,(P) (5.18)

The Pareto optimal set of the resultant objective can be captured by varying the value of

the penalty factor D. Note that if D =oothe problem becomes one of pure emission

dispatch and if D = 0 the problem is changed to economic dispatch.

A
n=0or D==
R
Fr o a
~Shape of Pareto Front?
Fmin ................................... L B T|=1OFD=O
Emin ET

Figure 5.4. The two extreme points of the Pareto front.

5.5.1 Proposed PSO Approach

A PSO program was developed within the Matlab® computing environment to

investigate its performance with regard to the EED problem. An extensive number of
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experiments were conducted to tune the proposed PSO algorithm to effectively solve the
problem. In each experiment, the PSO algorithm is executed 50 times once one of its
parameter has changed. Proper PSO settings are determined based on consistency in
reaching the optimal solution. The average, best, and worst performance of each
experiment are then calculated. Figures 5.5-5.7 show the results of PSO parameters
tuning. The stopping criterion for all experiments is set to a maximum of 800 iterations.
The inertia weight is kept constant throughout all experiments with a range of 0.04-0.09.
These values are based on previously published works and are found to be suitable for the
EED problem [27]. The standard deviation of each experiment is shown in Table 5.1.
The optimal PSO parameters are selected as follows:

~ Number of Particles = 20.

= Vmax=2.0.

— Acceleration Constants = 1.25.



Table 5.1. A Study of Tuning PSO Parameters for the EED
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Parameter Ave Min Max St. Dev. | Other HPSO Parameters |
0.10 | 608.410 | 600.380 | 622.279 | 4.454 No. of Particle = 10
0.25 | 607.685 | 602.127 | 630.414 5.156 Max. Velocity = 1
0.50 | 605.691 | 601.257 | 619.525 3.671 Max. Iterations = 800
0.75 | 606.524 | 600.443 | 622.174 5.118
'S 1.00 | 605.179 | 600.540 | 623.450 3.986
L§ 1.25 | 600.818 | 600.112 | 608.961 1.835
1.50 | 601.402 | 600.112 | 614.796 2.831
1.75 | 602.184 | 600.111 | 610.412 3.240
2.00 | 603.944 | 600.113 | 624.480 | 6.088
250 | 601.481 | 600.112 | 613.539 3.071
w 5 606.852 | 600.121 | 628.848 | 6.059 Cl=C2=1.25
g L_S 10 600.818 | 600.112 | 608.961 1.835 Max. Velocity = 1
-Z§ E 20 600.521 | 600.111 | 603.870 | 1.021 Max. Iterations = 800
30 600.153 | 600.111 | 601.405 0.198
0.01 600.797 | 600.111 | 604.414 1.091 Cl=C2=1.25
g 0.1 600.636 | 600.111 | 604.890 1.045 No. of Particle = 20
g 0.25 | 600.481 | 600.111 | 604.638 0.958 Max. Iterations = 800
:E, 0.5 600.546 | 600.111 | 603.999 0.773
g 1 600.521 | 600.111 | 603.870 1.021
g 2 600.196 | 600.111 | 601.338 0.275
3 600.8302 | 600.1114 [ 604.4582 | 1.121033
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Figure 5.7. Impact of the maximum velocity on the convergence characteristic.

The system constraints increase the difficulty level in developing solution
techniques to most optimization problems since the anticipated optimal solution has to

satisfy them. In this regard, a special treatment of the EED constraints is presented next.

5.5.2 EED Constraints Handling Mechanism

The formulated optimization problem has both equality and inequality constraints.
The equality constraints in particular represent a challenge to most stochastic
optimization algorithms since they often hard to satisfy throughout the optimization

process. In the context of PSO, constraints are handled as follows:

A. Equality Constraints:
A novel mechanism is proposed in this thesis to handle this type of constraints for

the EED problem. At each iteration, the equality constraint shown in Equation (5.13) is

satisfied by following the simple yet effective procedure:
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1. Ignore network losses at first and randomly generate each particle vector,
which represents a unit’s power levels, within their bounds except for the last

element in that vector as follows:
X, =[x, %00 Xy ] (5.19)

2. Calculate the last element for each particle, i.e. the last unit’s power level
according to the following equation:
Xy =P, =[x, +x,+..+x, (5.20)

3. Check for the feasibility of the last element. If a violation has occurred go to
step 1, otherwise go to the next step.
4. If system losses are not considered, stop this procedure, otherwise go to step 5.
5. Calculate the network losses in accordance with the approximate loss function.
6. Incorporate losses into power generation by adjusting the last unit’s power
level as follows:
Xy =P, +P ~[x +x,+.tx, ] (5.21)

7. Re-calculate losses and re-adjust generation.

B. Inequality Constraints:

The particle’s position (i.e. power level) is checked after each iteration to ensure
its compliance with bounds. If any particle flies outside its bounds, its current position
will be restored to its previous best position (pbest). This strategy permits only feasible
solutions to exist among the population, thus it eliminates the need to use penalty
functions. A more elaborate explanation of the impact of this inequality constraint

treatment is provided in the next chapter.

This proposed constraint handling mechanism introduces a new approach for the
PSO population initialization process. In a typical PSO implementation and in most
evolutionary computation methods, the entire population is initialized at random. If this
approach is incorporated in the EED problem, the randomly initialized population most

likely will not satisfy the equality constraint. This type of constraint represents a major
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difficulty for most metaheuristic methods. However, the proposed procedure enforces the
last element of each particle position vector deterministically to satisfy the equality
constraint. Thus it blends both randomness and deterministic natures in initializing the

candidates for the optimal solution.

5.6 Simulation and Results

Various testing cases are used to examine and validate the applicability of PSO to
solve the EED multi-objective optimization problem. In the study cases under
consideration, special attention was given to include different aspects of the EED problem
modeling. The main differences are the type of model used for the emission function, the
number of objectives, system loss considerations, and aggregation methods. The
following cases are used to validate the proposed PSO approach:

A. Case study 1: Bi-objective optimization using varying penalty factor method:
The PSO technique was tested on the IEEE 30-bus system with 6 generators and 41
interconnected transmission lines. The system total demand is 283.4 MW which is based
on the standard loading condition of this test system [212]. Fuel cost and total emission
function coefficients along with each generator’s capacity limits are given in appendix A
[8]. The emission function considered in this formulation is a quadratic function with
exponential term as in Equation (5.9) that represents all types of gaseous pollutants for
the first two cases. The system is tested using the following cases:
Case 1: Ignoring system losses, fuel cost and emission functions were minimized
individually using PSO, see Table 5.2. Then, losses were considered and both
functions were minimized individually, results obtained are shown in Table 5.3. The
convergence characteristic of PSO is shown in Figure 5.8 when losses were ignored.
When losses were included in the problem, similar convergence characteristics were
obtained as shown in Figure 5.9. In both figures, generation represents iterations with
improved objective function value. The optimal solutions found in this case show the

two ends of the Pareto optimal set.
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The results were compared with those for previous studies done in reference [8] in
which Evolutionary Algorithms (EA) were used and also against results obtained
using LINGO software. LINGO is a commercial-grade optimization tool with built-in
global optimization capabilities. Comparison between results is shown in Table 5.4.
When network losses were ignored, PSO generated comparable results to LINGO and
it generated slightly better results than EA. However, PSO gave improved results

compared to EA and LINGO when system losses were included in the problem

formulation.
Table 5.2. Best Solutions (Lossless)
Cost Dispatch Emission Dispatch
Pg (p.u.) C(Pg) Pg (p.u.) E(Pg)
0.109922 33.192614 0.402285 0.029701
0.299959 65.790910 0.458427 0.011862
0.526262 125.805272 0.540935 0.028520
1.014833 173.276485 0.383863 0.048923
0.522898 125.058537 0.538283 0.028522
0.360126 76.987960 0.510206 0.046677
Total cost ($/hr) 600.111778 637.966153
Total emission (ton/hr)] 0.222037 0.194204




Table 5.3. Best Solutions (With Losses)
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Cost Dispatch Emission Dispatch
Pg (p.u.) C(Pg) Pg (p.u.) E(Pg)
0.080492 26.746238 0.414015 0.029693
0.303937 66.675909 0.464760 0.011858
0.586878 139.415016 0.547697 0.028517
0.992925 168.446490 0.392175 0.048918
0.533032 127.310654 0.549413 0.028517
0.360029 76.966470 0.518387 0.046673
Total cost ($/hr) 605.560777 650.207276
Total emission (ton/hr)] 0.221868 0.194175
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Figure 5.8. Convergence characteristics of minimizing fuel cost and emission functions

when losses are ignored, Case 1.
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Figure 5.9. Convergence characteristics of minimizing fuel cost and emission functions

when losses are considered, Case 1.

Table 5.4. Comparison among PSO, EA, and LINGO
Considering Fuel Cost Only

Considering Emission only

Cost

Emission Cost Emission
EA 600.11 0.2221 638.26 0.1942 2
PSO 600.11178 | 0.22204 | 637.96615 | 0.194204 'ﬂé
LINGO 600.11143 | 0.22214 | 638.27351 | 0.194203 3
EA 607.78 0.2199 645.22 0.1942 @
PSO 605.56078 | 0.22187 | 650.20728 | 0.194175 g
LINGO 605.65822 | 0.22212 | 650.34745 | 0.194175 §

Case 2: The multi-objective optimization problem was solved using PSO by means

of assigning a price penalty factor to the emission function. This method makes it

possible to combine the two objective functions into a single objective. The new

combined objective optimization problem is formulated as follows:

z=F.(P)+D+E (P)

(5.22)

Different researchers derived formulae to calculate the proper price penalty factor for
a given demand [120].

This approach will find a single solution based on the
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calculated value of D. However, D is varied in the proposed algorithm to generate a
trade-off curve between the two conflicting objective functions. Note that when D =
0, the combined problem reduces to the conventional fuel cost dispatch problem.
Likewise, the problem becomes a pure emission dispatch when D = . Figure 5.10
shows the trade-off curve when system losses are ignored, while Figure 5.11 shows
the same curve when losses are considered.

The results obtained for Case 2 were compared to previous studies reported in
reference [8]. The same system was used to test various techniques reported in the
literature, like the Multi-objective Stochastic Search Technique (MOSST), Linear
Programming (LP), and EA. Tables 5.5(a) and 5.5(b) show a comparison between
results obtained using the aforementioned techniques when network losses were
neglected. Results obtained using PSO were compared to those of EA when system
losses are considered and tabulated in Table 5.6. It is clear that PSO did slightly

better than EA in this case as well.

0.225 ~
0.22
0.215 ~

Emission
(tonvhr) 0205 -
0.2 1

0.195 -

0.19 +- o e - —

595 605 615 625 635
Cost ($/hr)

Figure 5.10. The trade-off curve between emission and cost when losses are ignored,
Case 2.
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Figure 5.11. The trade-off curve between emission and cost when losses are included,
Case 2.

Table 5.5(a). Comparison Between Different Techniques When Losses Are
Ignored (Cost)

Best Cost
Pg No. MOSST LP EA PSO
1 0.1125 0.15000 0.06490 0.10898
2 0.3020 0.30000 0.05638 0.29848
3 0.5311 0.55000 0.04586 0.52597
4 1.0208 1.05000 0.03380 1.01489
5 0.5311 0.46000 0.04586 0.52591
6 0.3625 0.35000 0.05151 0.35977
Cost ($/hr) 605.89 606.31 600.15 600.112
Emission (ton/hr) 0.2222 0.2233 0.2215 0.2221
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Table 5.5(b). Comparison Between Different Techniques When Losses Are
Ignored (Emission)

Best Emission

Pg No. MOSST LP EA PSO
1 0.4095 0.4000 0.4116 0.4055
2 0.4626 0.4500 0.4532 0.4499
3 0.5426 0.5500 0.5329 0.5431
4 0.3884 0.4000 0.3832 0.3875
5 0.5427 0.5500 0.5383 0.5385
6 0.5142 0.5000 0.5148 0.5095
Cost ($/hr) 644.11 639.60 638.51 637.54

Emission (ton/hr) 0.1942 0.1942 0.1942 0.1942

Table 5.6. Comparison Between EA and PSO When Losses Are Considered

Best Cost Best Emission
Pg No. EA PSO EA PSO
1 0.1086 0.08160 0.4043 0.4108
2 0.3056 0.30396 0.4525 0.4668
3 0.5818 0.58990 0.5525 0.5484
4 0.9846 0.99763 0.4079 0.3911
5 0.5288 0.52464 0.5468 0.5515
6 0.5384 0.35959 0.5005 0.5173
Cost ($/hr) 607.807 605.562 642.603 650.044
Emission (ton/hr) 0.22015 0.2221 019422 | 0.1 941_8_

B. Case study 2: Bi-objective optimization using weights method:

The proposed technique was tested on IEEE 14-bus system with 5 generators and a total
demand of 270 MW. The characteristics of the generating units are listed in Appendix A
[213]. Note that the exponential term in the total emission model given in Equation (5.9)
was eliminated in this case, i.e. a quadratic function is used to model the emission

function. Since the goal of this chapter is to test and compare the PSO technique with



84

regard to the EED problem, modeling precision and validity will not be addressed nor
discussed here. The multi-objective optimization problem of this system is converted to a
single objective problem using the weighting method as follows:

z=nF.(P)+(1-n)hE.(P) (5.23)
In Equation (5.23), A is assigned a value of 0.25 and losses were included. This weight
has a range of [0,1]. When 7 =1, z in Equation (5.23) transforms to optimizing the fuel
cost function only. Similarly, if 7 =0, the problem is reduced to optimizing the emission
function exclusively. The Pareto optimal solution set is obtained in this case by changing
the weight of each function as shown in Table 5.7. The shape of the Pareto optimal
solution set is constructed in Figure 5.12 by obtaining a set of compromising solutions.
The same system was optimized using the Adaptive Hopfield Neural Network (AHNN)
and LINGO software. Comparison among PSO, AHNN, and LINGO is listed in Table
5.8. PSO generated slightly better results at different weight factors.
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Figure 5.12. Pareto solution shape for 14-bus system.

Table 5.8. Comparison Among PSO, AHNN, and LINGO

n Method F(P) E(P)
PSO 3290.6027 1133.7379
1 AHNN 4556.3500 1217.2700
LINGO 3319.2181 1184.4723
PSO 3290.6064 1133.4640
0.9 AHNN 4584.5000 1198.3400
LINGO 3319.2226 1183.6811
PSO 3290.6188 1133.1850
0.8 AHNN 4585.3500 1197.8200
LINGO 3319.2226 1183.6811

C. Case Study 3: Different Loading Conditions:

The test system for case 1 is used to study the impact of loading conditions on the shape

of the Pareto front and to ensure the steady performance of the proposed approach. The

weighting method is used to aggregate the two objectives under three different loading

conditions and ignoring losses in this case. The total system demand is increased by
multiples of 20% of the base load, i.e. Pp; = 340.08 MW, Pp, = 396.76 MW, and Pp; =
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453.44 MW. Table 5.9 shows the results obtained from the first loading condition. A
careful look at the results reveals that the generating units 1, 2, and 6 are very efficient in
terms of their emissions but poor in their fuel consumption. Unit 4 is the most efficient
one among all the units in terms of economics but it is the worst in terms of its harmful
effects toward the environment. Units 3 and 5 maintain somewhat of a balancing
performance in terms of emission and economic dispatching. The shape of Pareto fronts
for all three loading conditions are shown in Figure 5.13. It appears that the Pareto shape
is not affected by the loading condition as it preserves the same characteristics in all three

cases. Also, the proposed approach seems to be performing steadily in capturing the

shape of the trade-off curves.
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Figure 5.13. Pareto fronts for all three loading conditions.
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D. Case study 4: Quad-Objective optimization using the weights method:

The PSO technique was tested on the 30-bus standard test system with six generating
units and a total demand of 1800 MW. Generation units data are tabulated in Appendix B
[211]. Each type of emission is represented by its quadratic function, i.e. the overall
objective is composed of a single fuel cost and three emissions functions. The resultant
objective is formulated as follows:

z=[F(P), F,(P), F5(P), Fy (P)] (5.24)
where subscripts 1, 2, 3, and 4 correspond to economic cost, NOy, SO, and CO;
emissions respectively. It is assumed here that the decision maker has a Utility Function
(UF) that assigns proper positive weights based on each objective importance. So the
overall objective function is formulated as a constrained minimization problem as
follows:

Minimize z = F,(P) + n,F,(P) + n,F,(P) + n,F,(P) (5.25)
Subject to the equality and inequality constraints discussed earlier. Also, note that the

weights are related according to Z,: n, =100. The PSO Algorithm was tested as follows:

Case 1: All four functions were minimized individually and the results obtained are
shown in Table 5.10. A comparison between PSO outcomes and previously published
works [211] in which the Newton-Raphson method (NR) was used is tabulated in Table
5.11. Tt is clear that PSO found better solutions than NR in minimizing all four functions.
Note that even a 1% improvement would translate to enormous annual cuts in cost and
emissions.
Case 2: Each pair of objectives was combined to form a single objective function as
follows:

Minimize z=nF +(1-m¥F, ; i#j (5.26)
The Pareto optimal solution set is obtained in this case by changing the weight of each
function as shown in Table 5.12. The shape of the Pareto optimal solution set of each

pair is constructed in Figures 5.14-5-19 by obtaining a set of compromising solutions.
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Each point on the curve represents an optimal or “near optimal” solution to the bi-

objective optimization problem for a given weight.

Table 5.10. Individual Function Minimization

Fl1 F2 F3 F4
PIMW) | 282.823506 | 193.659307 | 391.0250216 | 249.8915155
P2(MW) | 294.6215108 { 210.8889282 | 334.687164 | 330.0543111
P3(MW) | 468.4433957 | 525.7681452 | 556.7494734 | 381.7954604
P4(MW) | 353.0811697 | 325.7273027 | 6.997043147 | 377.7313208
PS(MW) | 293.0731444 | 476.5906814 | 355.0771987 | 341.268196
P6(MW) | 216.1466775 | 195.7489106 | 283.0980479 | 237.3998507
F1($/h) 18527.33624 | 18767.18808 | 18965.92868 | 185680.27257
F2(kg/h) |2275.973963 | 2031.287103 | 3209.789854 | 2322.026372
F3(kg/h) | 24820.63393 | 22917.47706 | 11372.20253 | 26835.39707
F4(kg/h) | 58378.03426 | 65307.61975 | 82303.19414 | 56473.61712
Table 5.11. Comparison Between PSO and NR
PSO NR % improvement

F1($/h) 18527.34 18721.39 1.04

F2(kg/h) 2031.29 2070.127 1.88

F3(kg/h) 11372.20 | 26264.86445 56.70

F4(kg/h) 56473.62 58066.35 2.74
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Figure 5.14. The trade-off curve between fuel cost and NO emission.
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Figure 5.15. The trade-off curve between fuel cost and SO, emission.
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Case 3: The solution of the overall multi-objective problem was achieved by minimizing

the decision maker UF with the following three scenarios:

A. All functions have equal weights, i.e. 25.
B. With assigned weights of 40, 30, 20, and 10 to Fy, F, F3, and F4 respectively.
C. With assigned weights of 60, 20, 10, and 10 to Fi, F, F3, and F4 respectively.

Results are summarized in Table 5.13. The findings are compared to results found in

[211] as shown in Table 5.14. Table 5.14 clearly signifies the success of PSO algorithm

in solving this problem when compared to traditional methods.

In analyzing the two methods used in combining the multi-objective optimization

problem, namely using the price penalty factor and weight factor method, one can

conclude that these two methods work exactly in the same manner. Each point on the

curve represents an optimal or “near optimal” solution to the multi-objective optimization

problem for a given price or weight factor. Different results between the two methods are

mainly due to the factors chosen during the analysis. PSO was able to capture the shape

of the Pareto solution set when both methods were used.

Table 5.13. Overall UF Minimization

A B C
P1(MW) 270.99 279.19 271.53
P2(MW) 352.90 350.52 341.19
P3(MW) 438.63 467.90 446.72
P4(MW) 226.92 176.26 237.65
P5(MW) 381.64 394.74 373.82
P6(MW) 251.55 256.20 249.24
P, (MW) 122.62 124.81 120.16
F1($/h) | 18639.30 | 18689.01 | 18615.73
F2(kg/h) | 2360.12 2432.25 2323.54
F3(kg/h) | 16837.94 | 1462007 | 17372.29
Fakg/h) | 59983.19 | 62856.00 | 59580.62
UF 2445513.81 | 1741489.39 | 1932943.76




Table 5.14. Comparison Between PSO and NR

Objective A B C
F1($/h) 18639.3 18689.0 18615.7
F2(kg/h) 2360.1 2432.2 2323.5
Q% F3(kg/h) 16837.9 14620.1 17372.3
F4(kg/h) 59983.2 62856.0 59580.6
UF 2445513.8 | 1741489.4 | 1932943.8
F1($/h) 18772.6 18848.9 18837.9
F2(kg/h) 2339.3 24247 2412.4
% F3(kg/h) 27209.0 27752.9 27699.9
F4(kg/h) 58112.4 58348.4 58262.3
UF 2660833.0 | 1965238.4 | 2038145.6
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It is worth mentioning at this point that the PSO algorithm is very inexpensive in

terms of computation time and memory usage.

All program runs performed during

simulation took about 0.1-0.2 seconds to complete a total of 800 iterations. Throughout

this research, PSO would converge to a “good” solution within the first 100 iterations.

Then slow improvements would follow to enhance the accuracy of its solution.

5.7 Summary

The ECD and ED problems are formulated separately at first, then they were

combined to form the EED. This problem has been getting more attention recently due to

the deregulation of the power industry and strict environmental regulations.

It is

formulated as a highly nonlinear constrained multi-objective optimization problem with

conflicting objectives. A PSO technique was developed and presented as an effective tool

for solving multi-objective optimization problems like the EED. A novel equality

constraint handling mechanism is proposed in this chapter to ensure satisfaction of the

equality constraints throughout the optimization process without the need to use penalty

factors. PSO was tested using three standard test systems. Results demonstrated its
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effectiveness and robustness in finding optimal or near optimal solution sets when
compared to other widely used techniques and software. It was shown that PSO was
successfully capable of capturing the shape of Pareto solution sets. Also comparison of
methods in combining multi-objective optimization problems into a single objective was
presented. This technique is further extended to handle more than two objectives.
Computation time, simplicity, and its capabilities of handling a wide class of optimization

problems are key advantages of this powerful heuristic technique.



Chapter 6

Optimal Power Flow

6.1 Introduction

Electric power grids are considered the most complex man-made systems mainly
due to their wide geographical coverage, various transactions among different utilities,
and diversity in individual electric power companies’ layouts, size, and equipment used.
Engineers need special tools to optimally analyze, monitor, and control different aspects
of such sophisticated systems. Some of these tools are economic dispatch, unit
commitment, state estimation, automatic generation control, security analysis, and OPF.
The latter is regarded as the backbone tool that has been extensively researched since its
first introduction in the early 1960’s [214;215]. It appears that the term “optimal power
flow” was first introduced by Dommel and Tinney in 1968 [216].

Initially, the OPF was formulated as a natural extension of the traditional
economic dispatch. Differences between the two optimization functions exist even
though both of them may share the same objective function. In economic dispatch, the
entire power network is reduced to a single equality constraint. By contrast, all major
elements of the modeled system are explicitly presented in the OPF problem. The generic
term “OPF” is no longer associated exclusively with the extended economic dispatch
calculation. Rather, it presents a wide range of optimization problems commonly
formulated in power systems related studies. The historical development of the OPF is
closely correlated with the advances made in the area of numerical optimization
techniques [217]. Researchers have attempted to apply most optimization techniques to
solve the OPF.
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The goal of OPF is to find the optimal settings of a given power system network

that optimize a certain objective function while satisfying its power flow equations,

system security, and equipment operating limits. Different control variables are

manipulated to achieve an optimal network setting based on the problem formulation.

The main control variables typically used in optimizing the OPF are as follows:

1
2
3.
4
5

Generators’ real power outputs and voltages.

Transformer tap changing settings.

Phase shifters settings and placement for expansion planning.
Switched capacitors and reactors.

FACTS devices settings and placement for expansion planning.

A major difficulty of the OPF problem is the nature of the control variables since

some of them are continuous (e.g. real power outputs and voltages) and others are discrete

(e.g. transformer tap setting, phase shifters, and reactive injections). The presence of

discrete variables makes the optimization problem a non-convex one, which in turn

complicates the solution methodology. The most commonly used objective is the

minimization of the overall fuel cost function (convex and non-convex). However, other

traditional objectives are as follows:

1.

8.

NSV A e

Minimization of active power loss.
Bus voltage deviation.

Emission of generating units.
Number of control actions.

Load shedding.

Transient stability index.

Capacity of transmission lines.

Post-contingency correction time.

Deregulation of the electric power industry has also introduced new objectives to the OPF

problem such as:

1.
2.

Maximization of the social welfare.

Individual supplier’s profit.
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3. Bidding strategy.
4. Wheeling rates.

Researchers proposed different mathematical formulations of the OPF problem,
which can be broadly classified as follows:
1. Linear problem in which objectives and constraints are given in linear forms with
continuous control variables.
2. Non-linear problem where either objectives or constraints or both combined are
non-linear with continuous control variables.
3. Mixed integer linear and non-linear problems when control variables are both

discrete and continuous.

Various traditional optimization techniques were developed to solve the OPF
problem, the most popular being linear programming, sequential quadratic programming,
the generalized reduced gradient method, and the Newton method. The reader is referred
to references [2;3;139] for a complete list of the most commonly used conventional
optimization algorithms with regard to the OPF. Despite the fact that some of these
techniques have excellent convergence characteristics and various among them are widely
used in the industry, some of their drawbacks are:

1. They are local optimizers in nature, i.e. they might converge to local solutions
instead of global ones if the initial guess happens to be in the neighborhood of a
local solution. This occurs as a result of using Kuhn-Tucker conditions as
termination criteria to detect stationary points. This practice is commonly used in
most commercial nonlinear optimization programs [11].

2. Each technique is tailored to suit a specific OPF optimization problem based on
the mathematical nature of the objectives and/or constraints.

3. The theoretical assumptions behind these developed algorithms may not be
suitable for the actual OPF conditions like convexity, differentiability, and

continuity, among other things.
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PSO is one of the new optimizers that have been investigated to solve the OPF
problem. Researchers in references [42;72;73] have attempted to utilize the PSO to solve
the OPF problem considering different objective functions. In their mathematical
formulation, only continuous control settings were considered as optimization variables
which restrict its applicability to real power systems. In a different formulation, authors
in references [70;71;145] employed the PSO to solve the OPF with the inclusion of both
discrete and continuous optimization variables. Then, they augmented the OPF objective
function by adding penalty terms to transform the constrained OPF into an unconstrained
one. This approach usually encounters a major difficulty in properly selecting penalty
factor values. If the penalty factors selected are high, the optimization algorithm will get
trapped in local solutions. On the other hand, the algorithm may not be able to detect a
feasible solution if the penalty factors are low [42;216].

6.2 Problem Formulation

The OPF goal is to optimize a certain objective subject to several equality and

inequality constraints. The problem can be mathematically modeled as follows:

Min  F(x,u) (6.1)

Subject to
glx,u)=0 (6.2)
hmin < h(x,U) < hmax (6.3)

where the vector x denotes the state variables of a power system network at one point of
time that contains the slack bus real power output (Pg,), voltage magnitudes and phase
angles of the load buses (¥4 6.), and generator reactive power outputs (Qg). Vector u

represents both integer and continuous control variables that consist of real power

generation levels (Pgy) and voltage magnitudes (

VGN

), transformer tap settings (7%), and

reactive power injections (Qcy) due to volt-amperes reactive (VAR) compensators; i.e.

Continuous Discrete
N A

u= rPGz...PGN,VGz...VG;,rTI...TN,Q(.‘:...QCN (6.4)
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6.2.1 Objective Functions

In this study, minimization of different objectives is considered to examine the
performance of the proposed algorithm. The objective functions taken into considerations
are fuel emission, fuel cost, and the network real power losses. Each objective is briefly

described as follows:

1. Fuel Emission:

Fossil based thermal plants are considered to be a major player in the pollution
crisis that we are facing nowadays. Industrial growth led to greater demands to generate
more electricity. Consequently, the emission of these generating units is gradually
building up in the atmosphere which is having a severe impact on our environment. One
way to cope with this problem is to dispatch electric power with emission considerations.
The objective of the fuel emission dispatch problem is to minimize the total emission of
all thermal units by allocating optimal control settings while satisfying various network
operation constraints. Fuel emission of a number of generating units can be modeled
mathematically as follows:

N
E=Y (a,+BP+y,P) ton/hr (6.5)

i=l

2. Fuel Cost:

The aim of the fuel cost dispatch problem is to allocate the best network settings
that minimize the overall fuel cost function while imposing all network constraints.
Conventionally, the overall fuel cost function for a number of thermal generating units
can be modeled by a quadratic function (convex and differentiable) as follows:

i=N
F=Y(a,+bP+cP’) $/hr (6.6)

i=1
However, this model ignores the valve point loading due to throttling losses caused by
partial valve opening that introduces rippling effects to the actual input-output curve. In

typical steam turbine-generators, multiple control valves are used for steam admission.



This usage of multiple valves improves the turbine efficiency for all output levels when
compared to using a single control valve [218]. Equation (6.6) is modified by adding an

additional sine term to account for the valve effects in this manner [219]:
i=N
F=> [a,. +bP +c P+ .e,. sin(f,(P™ - E))l] $/hr (6.7)
i=1

This more accurate modeling adds more challenges to most derivative-based optimization
algorithms in finding the global solution since the objective is no longer convex nor
differentiable everywhere. Figure 6.1 shows the shape of the fuel cost function with the
valve loading effects included. This more accurate modeling may have great economical
advantages for any power utility. An estimate annual saving of $60,000 was reported for
the Philadelphia Electric Company when their steam system operations were based on
valve-point loading [220]. This study was done in 1962 and it is based on a total
generation capacity of 3256 MW.

A

Fuel Cost ($/hr)

- >
Prmin Power (MW) P max

Figure 6.1. The generator input-output curve considering the valve point effects.
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3. Real Power Losses:
With this objective, all control settings are adjusted such that the total real power

losses are minimized. Power losses can be modeled as follows:
Ny
P=Y¢g DV f +, }2-2|V,||Vj\cos(5,, —51)} (6.8)
k=1

where N, is the number of transmission lines in the system, g; is the conductance of the

line k connecting buses i and j, and the bus voltage is represented in polar form by |V|

and .

6.2.2 Constraints

The OPF problem has two categories of constraints:
1) Equality Constraints:

These are the sets of nonlinear power flow equations that govern the power

system, i.e.
B, — Py =S |W |||t |cosd, -6, +6,)=0 6.9)
Jj=1
Q; -0, +2|V,”V1”Yij!sin(9y ~5,+8,)=0 (6.10)
Jj=l

where Pg; and Qg; are the real and reactive power outputs injected at bus i respectively,

the load demand at the same bus is represented by Pp; and Op;, and elements of the bus

admittance matrix are represented by IYU’ and 6.

2) Inequality Constraints:
These are the set of continuous and discrete constraints that represent the system
operational and security limits like the bounds on:

1. The generators real and reactive power outputs;

P <Py <P, i=1,...,Gv (6.11)
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on" <Q; < Q5™ i=L...,Gy (6.12)
2. Voltage magnitudes at each bus in the network;
ymr<y <y™, i=1,...,N (6.13)

3. The discrete transformer tap settings;
T <T <T™, i=1,...,T, (6.14)
4. The discrete reactive power injections due to capacitor banks;
o <Q. <O, i=1,...,Cx (6.15)
Note that Pg;, Jai, and V; are continuous variables while 7;and Qc; are discrete ones.

5. The transmission lines loading;
S, S, i=L.. Ly (6.16)

A hybrid method is developed to solve these OPF problems and it is detailed in the

following section.

6.3 The Proposed Hybrid Algorithm

The proposed hybrid approach combines PSO technique with the Newton-
Raphson based power flow program in which the former technique is used as a global
optimizer to find the best combinations of the mixed type control variables while, the
latter serves as a minimizer to reduce the nonlinear power flow equations mismatch. The
Newton-Raphson method used in this implementation is the one with the full Jacobian
evaluated and updated at each iteration. The hybrid PSO (HPSO) utilizes a population of
particles or possible solutions to explore the feasible solution hyperspace in its search for
an optimal solution. Each particle’s position is used as a feasible initial guess for the
power flow subroutine. This mechanism of multiple initial solutions can provide better
probability of detecting an optimal solution to the power flow equations that would
globally minimize a given objective function. The importance of such hybridization is
signified by realizing the fact that in a transmission system, the solution to the power flow

equation is not unique, i.e. multiple solutions within the stability margins may exist and
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only one can globally optimize a certain objective [221]. The flow chart of the proposed
algorithm is shown in Figure 6.2.

Randomly Initialize Particles with Feasible Discrete
Positions and Velocity Vectors

———PC Minimize the Mismatch in Power Flow Equations )

Measure the Fitness of Each Candidate and Record
Gbest and Pbest

Converge

( Update Solution Vectors )

<Check and Reinforce Solution Bounds )

( Position Vectors Discretization >

Figure 6.2. Flow chart diagram of the proposed algorithm.
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6.3.1 Constraints Handling Methods

Various methods were proposed to handle problem constraints within the context
of evolutionary computation methods. A brief description of the main constraint handling
mechanisms is highlighted in chapter 3. Within the context of PSO applications to the
OPF and economic dispatch, inequality constraints that represent the permissible
operating range of each optimization variable are typically handled in one of the
following two ways:

— Set to Limit Approach (SLA): If any optimization variable exceeds its upper or
lower bound, the value of the variable is set to the violated limit. This
resembles the idea found in operating all generating units at equal incremental
production costs to reach optimal power dispatch. Once any unit violates its
operating range, the real power is set to the violated limit. It is important to note
that PSO has some randomness in the update equation that might cause several
variables to exceed their limits during the optimization process. Thus, this
approach may fix multiple optimization variables to their operating limits for
which global solution may not be reached. Also this approach fails to utilize the
memory element that each particle has once it exceeds its boundaries.
References [28;31;74;75] employ this approach.

— Penalty factor: The other approach is to use penalty factors to incorporate the
inequality constraints into the objective. The main problem with this approach
is introducing new parameters that need to be properly selected in order to reach
acceptable PSO performance. Values of the penalty factors are problem
dependant, thus this approach requires proper adjustments of the penalty factors
in addition to tuning the PSO parameters. References [70;71;73] make use of
this approach.
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6.3.2 Hybrid Inequality Constraints Handling Mechanism

The inequality constraints are handled by a hybrid constraints handling
mechanism that brings together the concepts of two common methods currently used in
evolutionary computation optimization methods to deal with constraints. It combines the
ideas of preserving feasible solutions and infeasible solution rejection methods to retain
only feasible solutions throughout the optimization process without the need to introduce
penalty factors in the objective function. In most of the evolutionary computation
optimization methods that employ the infeasible solution rejection method to handle
constraints, any solution candidate among the population is randomly re-initialized once it
crosses the boundaries of the feasible region. The majority of these methods do not have
memory elements associated with each candidate in the population. However, in the
cases of HPSO in which each particle has a memory element (pbest) that recalls the best
visited location through its own flying experience to search for the optimal solution and
may use this information once it violates the problem boundaries. Thus, this
hybridization makes use of the memory element that each particle has to maintain its
feasibility status. This restoration operation keeps the infeasible particle alive as a
possible candidate that could locate the optimal solution instead of completely rejecting it

and therefore eliminating its potential in the swarm.

6.3.3 Control Variables Treatment
The problem variables considered in this formulation are of two types: continuous

and discrete, as shown in Equation (6.4), that require special initialization and treatment
of the position vector throughout the optimization process. The continuous variables are
initialized with uniformly distributed pseudorandom numbers that take the range of these
variables, e.g. P =random{P™ ,P™ ] and V, = random[V™" V™). However, in the case of
the discrete variables, an additional operator is needed to account for the distinct nature of
these variables. A rounding operator is included to ensure that each discrete variable is

rounded to its nearest decimal integer value that represents the physical operating
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constraint of a given variable. Each transformer tap setting is rounded to its nearest

decimal integer value of 0.01 by utilizing the rounding operator as follows
round(random[T™ ,T™ 1,0.01) . The same principle applies to the discrete reactive injection

due to capacitor banks with the difference being the step size, 1ie.

min

round(random[Q", 0> 1,1) . This ensures that the fitness of each solution is measured

only when all elements of the solution vector are properly represented to reflect the real
world nature of each variable. Since the particle update equations have some uniformly
distributed random operators built into them and because of the addition of two different
types of vectors, the rounding operator is called again after each update to act only on the

discrete variables as follows: round(T,0.01)and round(Q,,,1). Once the rounding process

is over, all solution elements go through a feasibility check. This simple rounding
method guarantees that power flow calculations and fitness measurements are obtained
only when all problem variables are properly addressed and their nature types are

accounted for.

6.4 Simulation and Results

The proposed algorithm was implemented in the Matlab® computing environment
and the standard IEEE 30-bus test system was used to validate its potential. The test
system consists of six generating units interconnected with 41 branches of a transmission
network to serve a total load of 189.2 MW and 107.2 Mvar as shown in Figure 6.3. A
detailed description of the system’s data is presented in the Appendix C [9;222]. The
emission data used in this study are for nitrogen oxides (NOy). However, the proposed
algorithm can easily accommodate other types of emissions. Note that the original
system has two capacitor banks installed at bus 5 and 24, with ratings of 19 and 4 Mvar
respectively. A series of experiments was conducted to properly tune the HPSO
parameters to suit the targeted OPF problem. Considering the quadratic fuel cost function
as an objective, Figures 6.4-6.6 show the HPSO outcomes as a result of varying each

parameter. Table 6.1 summarizes results from this early tuning process. To quantify the



results, 50 independent runs were executed for each parameter variation.

number of particles and particle’s maximum velocity (Vmax) are 20 and 0.1 respectively.

- | 2
1 16 _ ’ : |
| “ fy g
. ey
; ‘ 10 _.a..._"_..
0 — 12 ‘”’ ; v
;J‘ \ ‘g * 1 | 9 \
\ vf/ }/{ [ “;’;‘
| S
|
s r.,ll]r It N el
S ] '
/" ‘ 7 T }
) e T 5"' .

Figure 6.3. A single line diagram of IEEE 30-bus standard test system.
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The most
noticeable observation from this groundwork is that the optimal settings for ¢, and ¢, are
found to be 1.0. These values are relatively small since most of the values reported in the

previously related work are in the range of 1.4-2 [28;31;70;74;75]. The best settings for
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Figure 6.4. Impact of the acceleration constants on the convergence characteristic.
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Figure 6.6. Impact of the maximum velocity on the convergence characteristic.

In this implementation, Vi is the upper limit used to randomly initialize and
enforce the velocity vector throughout the optimization process. A fixed Vyax value is

used for all problem variables. This means that the velocity vector of all optimization
problems is randomly initialized with a range of [—Vmax,Vmax ] It appears from the results

shown in Table 6.1 that HPSO performed better with lower values of Vs In addition,
the proposed algorithm incorporates an inertia weight with linearly decreasing function as
discussed in chapter 3 to provide better control on balancing exploration and exploitation
by controlling the velocity vector update equation. This parameter directly impacts the
velocity vector with larger values in the early stage of the search process and lower values
toward the end of the iterations. In the presence of the inertia weight parameter, proper
setting of Vimax would take the least priority when compared to setting the acceleration

constants or swarm’s size. Note that increasing the number of particles beyond 20 will
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improve the solution accuracy slightly at the expense of increasing the computation time

significantly.
Table 6.1. A Study of Tuning HPSO Parameters
Parameter Ave Min Max St. Dev. | Other HPSO Parameters
0.10 | 582.396 | 577.831 | 588.311 2.950 No. of Particle = 10
0.25 | 578.845 | 576.501 | 584.893 | 2.220 Max. Velocity = 1
0.50 | 577.569 | 575.835 | 583.552 1.761 Max. Iterations =30
0.75 | 576.849 | 575.841 | 579.132 | 0.921
') 1.00 | 576.721 | 575.461 | 579.343 | 0.931
$) 125 | 576.971 | 575.659 | 578.876 | 0.932
1.50 | 576.939 | 575.809 | 578.321 0.935
1.75 | 577.129 | 575.526 | 579.325 | 0.941
2.00 578.266 | 576.882 | 581.483 1.201
250 | 580.053 | 576.583 | 583.388 | 1.977
s . 5 579.679 | 576.086 | 586.938 | 2.910 C,=G=10
g jé‘z 10 576.721 | 575.461 | 579.343 0.931 Max. Velocity = 1
g E 20 575.872 | 575.392 | 577.514 | 0.521 Max. Iterations =30
“ 30 575.792 | 575.392 | 576.788 | 0.351
> 0.01 | 575.949 | 575.418 | 576.518 | 0.356 G=C=10
:f 0.1 575.704 | 575.411 | 576.339 | 0.263 No. of Particle =20
> 0.25 | 575.811 | 575414 | 576.678 | 0.343 Max. Iterations =30
g 0.5 576.344 | 575.456 | 578.814 { 1.065
Ei 1 575.872 | 575.392 | 577.514 | 0.521
= 2 576.025 | 575.424 | 577.553 | 0.564

The inertia weight is kept fixed throughout the simulation process between the

upper and lower bounds of 0.9 and 0.4 respectively since changing its values did not have

a great impact on improving the convergence characteristics. The same parameters were

suitable for Cases 1 and 2 below. Once the HPSO best parameters were set, the following

cases were considered to test the proposed approach:

Case 1: The quadratic emission and fuel cost functions in Equations (6.5) and (6.6) were

minimized considering only the continuous control variables, i.e. real power outputs and

voltages at voltage-controlled buses. A comparison of results obtained using the HPSO to
those obtained using MATPOWER, MATLAB-based software that uses SQP to solve the
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OPF, are shown in Table 6.2. MATPOWER is capable of solving the OPF when the
objective is represented in polynomial form and is only capable of handling continuous
variables. SQP took 28 evaluations of fuel cost and emission functions to converge to its
answer while in HPSO each particle is evaluated 30 times. Results clearly indicate that
HPSO achieved better solution in both cases when only continuous optimization variables

are used.

Table 6.2. Comparison Between HPSO and SQP for Case 1

Fuel Cost ($/hr) Emission (ton/hr)
Method SQP PSO SQP PSO
Py 41.54 43.611 24.88 24.016
Py 55.4 58.060 28.82 27.601
Pai3 16.2 17.555 33.05 30.181
Py 22.74 22.998 33.06 34.441
Py); 16.27 17.056 26.25 30.000
Pyy; 39.91 32.567 45.27 45.202
A2 0.982 1.000 1.033 1.000
vV, 0.979 1.000 1.03 1.001
Vis 1.064 1.059 1.1 1.064
Va 1.016 1.012 1.023 1.023
Vs; 1.026 1.021 1.054 1.043
Vs, 1.069 1.037 1.068 1.048
Objective | 576.892 | 575.411 | 284.966 | 282.628
Pjosses 2.860 2.647 2.130 2.240

Case 2: The test system is modified by introducing four tap-changing transformers
between buses 6-9, 6-10, 4-12, and 27-28. The operating range of all transformers is set
between 0.9-1.05 with a discrete step size of 0.01. The capacitor banks at buses 5 and 24
are also considered as new discrete control variables with a range of 0-40 Mvar and a step

size of 1. With this modification, the problem now has both continuous and discrete
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control variables that can be troublesome to most conventional optimization methods. In

addition to the objectives considered in Case 1, the total real power losses are also

introduced as a new objective in this case. Table 6.3 summarizes the results of each

minimization problem along with the best solution vector achieved. The inclusion of

discrete variables in this case further improved the results of minimizing the fuel cost and

emission functions when compared to Case 1. The convergence characteristic of each

objective is shown in Figures 6.7-6.9. The HPSO algorithm appears to converge fast in

the early iterations then further improvements are progressed before reaching the stopping

criteria.

Table 6.3. Results of Different Objective Minimization When Both

Discrete and Continuous Variables are Considered (Case 2)

Fuel Cost ($/hr) |[Emission (ton/hr)|  Pjoees (MW)

Py 42.180 24,032 7.057
Py 57.013 27.333 50.131
P.i3 17.305 29.817 39.888
Py 22.025 33.895 45.575
Py 17.872 29.993 19.116
Py 35.060 46.202 28.963
A\ 1.000 1.000 1.000
vV, 0.999 1.002 0.950
Vi3 1.061 1.098 1.100
Vi 1.071 1.041 1.091
V3 1.076 1.073 1.093
V,, 1.100 1.084 1.093
Qcs 4.000 2.000 9.000
Qc24 8.000 9.000 9.000
Teo 0.900 0.970 0.900
Te.10 0.950 0.930 0.950
§ VRY 0.930 1.020 0.920
Ty708 0.950 0.990 0.980
Objective 574.143 282.218 1.540
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Case 3: Since HPSO is capable of handling optimization problems in which the objective
is not required to be convex or differentiable, the fuel cost function is augmented with an
additional sine term as in Equation (6.7). This addition increases the degree of non-
smoothness in the shape of the objective function significantly. Note that the fuel cost
coefficients are modified to create more challenging objective function shape within the
permissible operating range. The two coefficients e and f are made such that the
generating units experience at least four ripples to give more realistic representation of
real world power unit response [223]. The number of ripples is proportional to the degree
of non-convexity in the shape of the objective function and it increases the difficulty of
detecting the global solution. Figure 6.10 shows the shape of the fuel cost function of two
generation units, which represents part of the overall problem, when the valve point
effects are accounted for and in the absence of any constraints. Note that even when
considering only two units, the shape of the objective is highly non-convex with multiple
peaks and non-differentiable valleys. In this case, more particles are needed to explore
this complex solution hyperspace efficiently. Table 6.4 tabulates the results obtained
using different swarm’s size. Increasing the swarm’s size improved the HPSO

performance in achieving better results at the expense of increased computational time.
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Figure 6.10. The high degree of non-convexity in the shape of the objective once valve

loading effects are included.

To demonstrate the consistency and robustness of the developed algorithm, 20
independent runs were conducted for each case to measure the frequency of reaching the
optimal or near optimal solution while maintaining the same stopping criteria (maximum
iterations of 30). Results and computation time are shown in Table 6.5 that reflect the

better performance of HPSO in solving the OPF problem.

It is evident that in Case 1, even the worst HPSO performance outperformed SQP
in both fuel cost and emission minimization. However, it is noted here that in Case 3,
there was a noticeable deviation between best and worst run when incorporating the valve
loading effects into the fuel cost function. This is due to the highly non-smooth feasible
region as a result of adding sine terms to the quadratic functions. Similar deviations were

noted in earlier work conducted in [187;203] when considering the valve loading effects.



Table 6.4. Results of Case 3 Under Different Swarm Sizes

Swarm size 20 30 100
Py 47.068 47.095 47.126
Py, 42.911 42.359 71.366
Pgi3 8.790 35.902 8.972
P 44.728 37.359 37.391
Pg3 8.983 8.826 8.993
Pg7 42.044 20.959 20.777

V, 1.000 1.000 1.000
V, 1.099 1.009 1.097
Vi3 1.091 1.017 1.037
Vi 1.087 1.082 0.982
V3 1.048 1.057 1.048
Vo 1.029 1.080 1.088
Qcs 33.000 16.000 29.000
Qca4 35.000 15.000 12.000
Te.o 1.040 1.010 1.020
Te.10 1.010 1.000 0.990
Ts12 1.040 0.990 1.020
Th7.08 0.990 1.030 1.040

Objective 658.416 645.333 615.250
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Table 6.5. Statistical Data for Cases 1-3

e | se | o | Sontard [ e i

Case 1 Fuel Cost ($/hr) | 575.704 575.411 576.339 0.263 5.974
Emission (ton/hr)}] 283.110 282.628 283.874 0.386 6.172

Fuel Cost ($/hr) | 575.228 574.143 576.485 0.550 9.564

Case 2 | Emission (ton/hr)| 283.072 282.218 284.179 0.565 6.781
Piosses (MW) 1.688 1.540 2.018 0.123 10.116

20 Particles 744.306 658.416 849.511 61.224 8.519

Case 3 30 Particles 734.342 645.333 897.349 70.800 6.712
100 Particles 677.222 615.250 753.868 42 461 22.870

Case 4: For better understanding of the effectiveness of the proposed hybrid inequality
constraint treatments in enhancing the flying experience of the swarm in the search for an
optimal solution, the algorithm was modified such that the SLA approach was
incorporated to deal with the inequality constraints. Cases 2 and 3 were repeated with the
same HPSO parameters previously used. The performance results of this version of PSO
are tabulated in Table 6.6. This type of inequality constraints handling strategy degraded
the PSO performance in solving the OPF in both cases and for all the objectives
considered when compared to results shown in Table 6.5. As anticipated, multiple
optimization variables (in some cases up to eight variables) were set to their limits. This
signifies the importance of utilizing the memory element of each particle to recall its
pbest position once it flies outside the feasible solution hyperspace.

Table 6.6. Statistical Data for Case 4

Standard
Deviation
Fuel Cost ($/hr) | 577.511 575.389 581.813 1.718
Case 2 | Emission (ton/hr)| 289.321 283.445 302.355 5.116
Posses (MW) 1.873 1.573 2.145 0.197
20 Particles 754.104 627.999 890.090 76.800
Case 3 30 Particles 748.652 620.047 879.785 70.860
100 Particles 703.173 635.269 786.119 42.765

Mean Best Worse
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6.5 Summary

The work presented in this chapter investigates the applicability of HPSO in
solving the OPF problem under different formulations and considering different
objectives. The HPSO algorithm treats the OPF problem in three major steps: First, the
optimal combinations of the mixed-type control variables are handled by the discrete
HPSO to optimize convex and non-convex objectives. Secondly, the equality constraints,
i.e. the power equations mismatch is minimized using the Newton-Raphson method in a
separate subroutine. Thirdly, the inequality constraints are handled by the proposed
hybrid constraints handling mechanism to preserve feasibility of solutions. Results are
compared to the outcomes of other optimization techniques, namely SQP and modified
PSO with conventional inequality constraints handling strategy. Comparison shows that
HPSO consistently outperforms both techniques once its parameters are properly tuned.
A study of HPSO parameters tuning is presented to enhance the optimizer performance in
finding the minimum of several objectives. The PSO is combined with the Newton-
Raphson algorithm to form a hybrid optimizer that can solve the discrete OPF problem
including valve loading effects. This emphasizes the HPSO capability of handling
optimization problems with greater complex modeling of system objectives and/or
constraints. In contrast, most gradient-based optimization methods add more restrictions
on the nature of the problem formulation like continuity, convexity, and differentiability
to ensure finding the optimal solution. Sometimes, such restrictions may lead to
intolerable modeling simplifications that can produce gross errors in computing the

minimum of the objective at hand.

HPSO performance and robustness in its search for optimal solution is highly
dependant on the tuning of parameters and the shape of the objective function. Objective
functions with smooth shapes tend to require less particles and iterations to converge to
the optimal solution while the ones with rough surface would require a greater number of

particles and iterations to reach the same quality of solution.



Chapter 7

Conclusions and Recommendations

7.1 Conclusions

Improving the operational practices of electric power systems is desired at all
times but the question remains in how can these goals be achieved. An optimal
operational strategy is a multidimensional objective that can be interpreted in many ways.
From a power company’s point of view, it can be viewed as one of minimizing the overall
system production cost so that the utility revenues are maximized. On the other hand, one
can argue that it can be viewed from environmental perspectives as one of minimizing the
overall harmful effects done on the environment as a result of generating electricity.
These represent only two points of view, for the purpose of this thesis, but others still
exist. Reaching an optimal stage of electric power system operations requires complex
system modeling to handle different, and sometimes conflicting, aspects of such systems.

More advanced analysis tools are required to cope with this rising complexity.

PSO is a relatively new optimization tool that has been adopted in this thesis to
investigate its applicability to some optimization problems commonly encountered in
power systems. Recently, added attention has been paid to exploiting the promising PSO
potential in many different research fields. The research work involved in developing this
thesis presents a step directed at attracting and adopting modern optimization tools to the
area of electric power system analysis. The rapid interests of many researchers in this
area can give a good indication to possibly expecting real world implementations of such
tools in power systems analysis in the near future. They are mainly employed to alleviate
some of the previously assumed modeling simplifications and to overcome some of

shortcomings found in traditional optimization methods.
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In this thesis, an attempt is made to try to fill some of the gaps that have been
identified to further bridge PSO to the area of economic and environmental operations of
power systems. The two main problems addressed in this work are the EED and the OPF.
Even though, these two problems sometimes share the same objective functions, their
formulations are quite different. The EED is formulated as a multi-objective optimization
problem with continuous control variables and competing bi- and quad-objective
functions. In the OPF formulation, both discrete and continuous control settings are used
to reach the optimal operating strategy considering different objective functions, some of
which are non-convex and non-differentiable. Modifications and improvements of the
PSO are presented to improve its performance and to make it more suitable to some
specific power system problems. The main improvements are made in handling
constraints in a more efficient manner and in integrating other optimization tools with the
PSO. Different approaches are proposed to solve the targeted problems and comparisons
are made to evaluate these algorithms. The comparison is made against both traditional
and evolutionary computation methods. Results reveal that one can have high

expectations of the PSO potentials in the area of power system analysis.

7.2 Contributions

The research work involved in producing this thesis has led to several
contributions that can be summarized as follows:

— It provides up-to-date literature reviews of the three main areas related to this
work, i.e. PSO applications and developments in the area of power systems and
recent work related to the EED and OPF problems. Each review is organized
such that it can easily help researchers in power systems to identify and extend
existing knowledge in order to plan for future research. The goals of these
reviews are first to expand the reader’s horizons to encompass what has been

done and to identify what can be accomplished in these areas. Secondly, these
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are meant to provide good starting points for the newcomers who are interested
in conducting scholarly research in any one of these areas.

The EED problem is formulated as a constrained multi-objective optimization
problem to properly incorporate both economic and environmental aspects of
this problem. The problem formulations accounted for different models
commonly used to represent the emissions of generating units. Then, a PSO
algorithm is developed to solve the problem by aggregating the conflicting
objectives into a scalar one via two different methods. The proposed approach
eliminates the need to use augmented objective functions, thus, avoiding the
necessity of properly selecting the penalty factors. The initialization process is
carried out by steps that implement both random and deterministic rules to
initialize the swarm. This process ensures satisfying the equality and inequality
constraints throughout the search for an optimal solution.

The proposed approach is used to capture the shape of the Pareto optimal set
that shows the trade-off relationships between competing objectives. This curve
gives the system operator additional information about the expected optimal
value for a given objective with respect to other objectives.

A hybrid tool is presented to solve the OPF problem in which HPSO searches
for the most proper settings of the optimization variables, while the Newton-
Raphson method is used to satisfy the highly nonlinear equality constraints.
The hybrid algorithm incorporates a special operator to properly address the
nature of the control variables since some of them are continuous while others
are discrete. Different formulations of the OPF problems are proposed and
solved considering different objectives that include one with non-differentiable
and non-convex characteristics.

The developed algorithms make use of the PSO memory elements to improve
the efficiency of the search process. Results indicate that such utilization of
each particle’s memory can help significantly in improving the consistency and

robustness of the optimizer’s performance.
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7.3 Recommendations for Future Work

The research work presented in this thesis can be further continued in many
different directions. The following list highlights the most promising extensions to the
research work presented in producing this thesis:

1. Inthe EED problem, the performance of PSO can be further analyzed in solving
this problem with the presence of additional constraints such as prohibited
zones, spinning reserve, and minimum up and down times for time varying
loads. An interesting point would be to analyze the changes in the Pareto
optimal set when accounting for these additional constraints.

2. A worthwhile study would be to formulate the EED problem with valve point
loading effects and to investigate its impacts on the computed results.

3. Other aggregation methods such as goal programming and the e-constraint
method can be adopted to combine the EED conflicting objectives into a single
scalar function. PSO performance can be then compared in solving the same
problem with three different aggregation methods.

4. Discrete PSO algorithm can be developed to solve the unit commitment
problem while accounting for environmental issues.

5. Dynamic weighting factors can be used to help in improving the uniformity of
Pareto optimal set.

6. Fuzzy set theory can be used to model the uncertainty associated with the fuel
cost and emission coefficients. Also, it can be used to represent the loading
uncertainty. This will formulate the EED problem as fuzzy EED rather crisp
EED.

7. Computation time of the OPF solution can be further reduced by implementing
the HPSO algorithm in parallel processing units to execute the OPF faster. This
can be done by dividing the swarm into segments and assigning each segment to
a different processing unit to measure the fitness.

8. In the OPF problem, DC or other faster power solution methods may be

implemented to reduce the execution time.
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9. Additional constraints can be presented in the OPF formulation, such as
reducing the impacts of the electromagnetic fields at certain segments of the
transmission line network close to residential sites.

10. This study considered only one type of load modeling. Other more precise load

modeling schemes can be investigated.
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Appendix A

Data for the Bi-Objective EED Simulation

1. Fuel cost and emission coefficients for IEEE 30-bus test
system

Table Al. Fuel Cost Coefficients and Capacity Limits (30-bus)

Generator a b c Pmin(p.u.) | Pmax(p.u.)
1 10 200 100 0.05 0.50
2 10 150 120 0.05 0.60
3 20 180 40 0.05 1.00
4 10 100 60 0.05 1.20
5 20 180 40 0.05 1.00
6 10 150 100 0.05 0.60

Table A2. Emission Coefficients (30-bus)

Generator o B Y 4 A
1 0.04091 -0.05554 0.06490 0.000200 2.857
2 0.02543 -0.06047 0.05638 0.000500 3.333
3 0.04258 -0.05094 0.04586 0.000001 8.0
4 0.05326 -0.03550 0.03380 0.002000 2.0
5 0.04258 -0.05094 0.04586 0.000001 8.0
6 0.06131 -0.05555 0.05151 0.000010 6.667




2. Fuel cost and emission coefficients for IEEE 14-bus test
system:

Table A3. Fuel Cost Coefficients and Capacity Limits (14-bus)

Generator a b c Pmin (MW) | Pmax (MW)
1 0.00156 7.92 561 100 250
2 0.00194 7.85 310 25 100
3 0.00482 7.97 78 10 50
4 0.00512 7.77 75 10 25
5 0.00509 7.54 77 5 10

Table A4. Emission Coefficients (14-bus)

Generator [} B Y
1 0.0126 -1.355 22.983
2 0.01375 -1.249 137.37
3 0.00765 -0.805 363.7
4 0.00693 -0.902 365.51
5 0.0045 -0.795 350.82
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Appendix B

Data for the Quad-Objective EED Simulation

1. Fuel cost and emission coefficients for IEEE 30-bus test
system

Table B1. Fuel Cost Coefficients and Capacity Limits

Generator a b c Pmin Pmax
1 85.6348 8.43205 0.002035 150 400
2 303.7780 6.41031 0.003866 200 400
3 847.1484 7.42890 0.002182 350 600
4 274.2241 8.30154 0.001345 5 400
5 847.1484 7.42890 0.002182 270 500
6 202.0258 6.91559 0.005963 170 300

Table B2. NO, Emission Coefficients
Generator a B Y
1 80.9019 -0.38128 0.006323
2 28.8249 -0.79027 0.006483
3 3241775 -1.36061 0.003174
4 610.2535 -2.39928 0.006732
5 3241775 -1.36061 0.003174
6 50.3808 -0.39077 0.006181




Table B3. SO, Emission Coefficients

Generator a B Y
1 51.3778 5.05928 0.001206
2 182.2605 3.84624 0.002320
3 508.5207 4.45647 0.001284
4 165.3433 4.97641 0.110813
5 508.5207 4.45647 0.001284
6 121.2133 4.14938 0.003578

Table B4. CO, Emission Coefficients

Generator a B Y
1 5080.148 -61.01945 0.265110
2 3824.770 -29.95221 0.140053
3 1342.851 -9.552794 0.105929
4 1819.625 -12.73642 0.106409
5 1342.851 -9.552794 0.105929
6 11381.070 -121.9812 0.403144
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Appendix C

Data for the 30-Bus Test System Used in the OPF Studies

Table C1. Characteristics of The Generating Units

Generator 1 2 3 4 5 6
a 0 0 0 0 0 0
b 2 1.75 1 3.25 3 3
¢ 0.02 0.0175 0.0625 0.00834 0.025 0.025
e 300 200 150 100 200 200
f 0.2 0.22 0.42 0.3 0.35 0.35
a 0.04091 0.02543 0.04258 0.05326 0.04258 0.06131
B -0.05554 -0.06047 -0.05094 -0.03550 -0.05094 -0.05555
y 0.06490 0.05638 0.04586 0.03380 0.04586 0.05151
Pmin(MW) 0 0 0 0 0 0
Pmax(MW) 80 80 50 55 30 40
Qmin(Mvar) -20 -20 -16 -16 -10 -15
Qmax(Mvar) 150 60 62.5 48.7 40 447
Bus Number 1 2 22 27 23 13
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Table C2. Bus Data for IEEE 30-Bus System
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Bus No. Pd Qd Qe Vi Vinax
1 0 0 0 0.95 1.1
2 21.7 12.7 0 0.95 1.1
3 2.4 1.2 0 0.90 1.05
4 7.6 1.6 0 0.90 1.05
5 0 0 19 0.90 1.05
6 0 0 0 0.90 1.05
7 22.8 10.9 0 0.90 1.05
8 30 30 0 0.90 1.05
9 0 0 0 0.90 1.05
10 5.8 2 0 0.90 1.05
11 0 0 0 0.90 1.05
12 11.2 7.5 0 0.90 1.05
13 0 0 0 0.95 1.1
14 6.2 1.6 0 0.90 1.05
15 8.2 25 0 0.90 1.05
16 35 1.8 0 0.90 1.05
17 9 5.8 0 0.90 1.05
18 3.2 0.9 0 0.90 1.05
19 9.5 34 0 0.90 1.05
20 2.2 0.7 0 0.90 1.05
21 17.5 11.2 0 0.90 1.05
22 0 0 0 0.95 1.1
23 32 1.6 0 0.95 1.1
24 8.7 6.7 4 0.90 1.05
25 0 0 0 0.90 1.05
26 35 2.3 0 0.90 1.05
27 0 0 0 0.95 1.1
28 0 0 0 0.90 1.05
29 24 0.9 0 0.90 1.05
30 10.6 1.9 0 0.90 1.05




Table C3. Branch Data for IEEE 30-Bus System

From To R X B
1 2 0.02 0.06 0.03
1 3 0.05 0.19 0.02
2 4 0.06 0.17 0.02
3 4 0.01 0.04 0
2 5 0.05 0.2 0.02
2 6 0.06 0.18 0.02
4 6 0.01 0.04 0
5 7 0.05 0.12 0.01
6 7 0.03 0.08 0.01
6 8 0.01 0.04 0
6 9 0 0.21 0
6 10 0 0.56 0
9 11 0 0.21 0
9 10 0 0.11 0
4 12 0 0.26 0
12 13 0 0.14 0
12 14 0.12 0.26 0
12 15 0.07 0.13 0
12 16 0.09 0.2 0
14 16 0.22 0.2 0
16 17 0.08 0.19 0
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Table C3. Branch Data for IEEE 30-Bus System

From To R X B
15 18 0.11 0.22 0
18 19 0.06 0.13 0
19 20 0.03 0.07 0
10 20 0.09 0.21 0
10 17 0.03 0.08 0
10 21 0.03 0.07 0
10 22 0.07 0.15 0
21 22 0.01 0.02 0
16 23 0.1 0.2 0
22 24 0.12 0.18 0
23 24 0.13 0.27 0
24 25 0.19 0.33 0
25 26 0.25 0.38 0
25 27 0.1 0.21 0
28 27 0 0.4 0
27 29 0.22 042 0
27 30 0.32 0.6 0
29 30 0.24 0.45 0
8 28 0.06 0.2 0.02
6 28 0.02 0.06 0.01

158



