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ABSTRACT

Since controllers play a vital role in industrial processes, it is important to have methods
that monitor controller performance and diagnose the reasons when performance is poor.
This thesis deals with the inherent uncertainty involved in measuring the controller
performance. Since a common cause of poor performance in model-based controllers is
model error, this thesis also proposes several closed-loop methods for diagnosing the
presence of model error.

The estimates of the statistical properties of the minimum variance controller
performance index need to be made by using small samples since in practice the process
data may only be stationary over short intervals. Residual based bootstrapping is used to
estimate these statistical properties. It is demonstrated that accurate confidence intervals
can be obtained by using small samples in case of normal and non-normal innovations.
The broader applicability of the bootstrapping approach is also demonstrated by
estimating the sampling distribution of the closed loop settling time performance index.
An experimentally determined sampling distribution for the minimum variance
performance index shows that the index can have strong non-normal behavior. The
distribution estimated by the proposed bootstrap method is shown to capture the overall
features of the experimental distribution. Also, a bootstrap method is proposed which can
capture the effects of model-order uncertainty on the sampling distribution of the
performance index.

While bootstrapping of the controller performance index addresses the detection
of performance issues, several closed loop methods are also proposed to diagnose (and in
some cases correct) model-plant mismatch. An iterative method is proposed for
univariate systems to detect and correct gain and dead-time mismatch for models of
arbitrary order. This method is also used to correct for time constant mismatch in first
order plus dead time models. A multivariate cross-correlation method is presented to help
detect which specific models in model-based controllers are mismatched. A partial
control method is developed which utilizes the patterns contained in the closed loop step
response of the prediction error to set point changes to assist in the determining which
models are mismatched in multivariate model-based controllers. A sieve bootstrap
method is developed to estimate the confidence bands for the impulse response functions
determined via closed loop correlation analysis. Further the method is used to estimate
the confidence intervals for the process gains. This method can help detect the presence
of statistically significant model mismatch, and also the extent of the mismatch.

xvi



CHAPTER 1 INTRODUCTION AND CONTRIBUTIONS

1.1 Introduction

Automatic process control is vital for the safe and economic operation of today’s
complex industrial processes. Controllers must regulate unpredictable disturbances, and
at times move the process variables to new set-points. Control is achieved by using a
sensor to measure the controlled variable and subtracting the measured value from the
set-point. This subtraction results in an error-term, which is then used as an input to the
controller. Based on the error, the controller calculates a process input, which is then
applied to the system. The most common industrial controllers are based on proportional,
integral and derivative control actions. Since the 1970s, control algorithms which
explicitly use a process model (model based controllers) have become the most widely
used “advanced” form of control in industry. Since controllers play a vital role in
industrial processes, it is important to have methods that monitor controller performance
and diagnose the reasons when performance is poor. This thesis deals with the inherent
uncertainty involved in measuring the controller performance by using bootstrap
statistical techniques. Since a common cause of poor performance in model-based
controllers is model error, this thesis also proposes several closed-loop methods for

diagnosing the presence of model error.

Controller performance monitoring involves the comparison of actual controller
performance to a relevant benchmark or design objective. This allows the engineer to
determine if the controllers are performing as designed or to monitor for changes in their
performance. Estimators of controller performance are functions of the process output,
and therefore are random variables due to stochastic disturbances. To make sound
statistical inferences about performance measures, it is important to know how these
estimators are distributed. The sampling distributions of these estimates allow the
determination of confidence intervals and quantitatively describe the uncertainty of the

performance measure.



If the controller performance is found to deviate from acceptable performance (by
using the confidence intervals described above), then the root cause of poor performance
must be diagnosed. Diagnosing the root cause of poor controller performance is an
important yet difficult task due to the many possible contributing factors (e.g. sensor
failures, poor tuning). For model based controllers, the poor performance is usually due
to model-plant mismatch (MPM). MPM refers to differences between the actual process
and model, and can degrade the performance of a control system and/or cause instability.
The model mismatch may arise due to poor initial identification, or result from changing
process parameters (e.g. fouling of a catalyst). The presence of MPM directly affects
controller performance because the controller must be detuned (i.e. tuned for sluggish
performance) if it is to remain stable in the presence of model error. If MPM is detected,
the control engineer can decide if it is worthwhile to re-identify the inaccurate process
model, and subsequently redesign a more aggressive controller. Therefore, this thesis also
focuses on the detection (and in some cases the correction) of model-plant mismatch
(MPM) in model-based controllers.

1.2 Background and contributions

The following sections provide a summary of previous work, and a description of the

contributions introduced in this thesis.

1.2.1 Sampling distributions of performance indices

By far, the most popular performance measure for controllers regulating stochastic
disturbances has been the minimum variance benchmark, which compares the actual
process variance’ to the lowest achievable [1]. Existing methods for estimating the
variance or developing confidence intervals for the minimum variance index have been
based on asymptotic arguments and parametric assumptions concerning the distribution

of the innovations (innovations are the independently distributed random variables



exciting the system, and represent the unpredictable portion of the process output) [2-4].
Methods that provide variance estimates further assume that the estimator is normally
distributed when determining confidence intervals. However, simulations and
experimental results provided in this thesis indicate that the performance index can
deviate significantly from normality. In addition, the existing methods‘ have not attempted
to estimate the bias of the performance index, or how to estimate the distribution of other

performance indices such as the closed-loop settling time.

Bootstrapping was introduced by Efron in 1979 as a flexible method for estimating
the sampling distribution of a statistic, which is an estimator for some population
parameter [5]. While bootstrapping has been widely used in the statistics and
econometrics literature, it is a relatively unknown technique in chemical engineering.
Since bootstrapping does not rely on asymptotic distributions, or parametric assumptions
concerning the innovations, it has the potential to perform better than existing methods,
especially when the underlying assumptions of the previous methods are invalid.
Previous works have been simulation based, and apparently no real-wrold sampling
distributions of the performance index have been presented. This thesis presents an
experimentally determined sampling distribution of the performance index for a bench

scale liquid level controller.

Also, the previous methods have considered that the model order is fixed. That is,
over the different realizations of the process output, the same order time-series model is
used each time. This appears unrealistic, since the user will not have a preordained model
order. In practice some criteria such as the Akaike Information Criterion (AIC) are used
to select the model order. Therefore, the model order will also be a random variable. It is
demonstrated that the model order selection uncertainty can have a large impact on the
variance of the performance index. It is not clear how the previous methods can be
adapted to handle such considerations. However, it is shown in this thesis that the

bootstrap framework can naturally accommodate the model order selection uncertainty.



CONTRIBUTIONS/FINDINGS

¢ Residual based bootstrapping is used to estimate the bias, variance, and confidence

intervals of the minimum variance performance index.

e The bootstrap method is compared to previous methods for estimating confidence
intervals for the minimum variance index. It is demonstrated that for small sample
sizes and/or strongly non-normal innovations the bootstrap method can provide better

performance. Recommendations are made as to when each method is appropriate.

o It was found that bootstrapping estimates of the bias are not reliable. Bias estimates
appeared to be unbiased, but had a large variance, which would inflate the variance of

the performance index.

e Bootstrapping is used to estimate the variance of the closed loop settling time index,

for which there was no previous method to estimate its uncertainty.

e An experimentally determined sampling distribution for the minimum variance
performance index is obtained from a bench scale liquid level controller. For smaller
sample sizes, strongly non-normal distributions are observed. The distribution
estimated using the bootstrap is shown to capture the overall features of the
experimental distribution,

e Itis demonstrated that the model order uncertainty can have a significant effect on the

uncertainty of the performance index.

e Bootstrapping is used to model the effect of model order uncertainty on the sampling

distribution of the performance index.



1.2.2 Closed loop detection of model plant mismatch

If we open the control loop, it is relatively easy to determine if the models are
mismatched. However, for safety, and economic reasons it is usually undesirable to open
the control loop. Therefore this thesis considers several closed-loop methods for detecting
model mismatch. Since the most popular form of model predictive control (dynamic
matrix control, DMC) utilizes a simple disturbance model, the methods used in this thesis
are insensitive to disturbance model mismatch and detect only process model mismatch.
Many of the methods in the literature provide yes/no (e.g. [6-12]) answers to the
presence of MPM; however, this thesis also considers the detection of specific parameter
mismatches such as gain and dead-time mismatch. Moreover, there has been little work
in the area of identifying which subset of multivariable models should be considered for

re-identification; therefore this thesis considers methods to aid in the selection of

candidate models for re-identification.

A method developed by Webber et al. [13] used the patterns in the prediction error
resulting from step changes in the set-point to assess the presence of specific parameter
mismatch (i.e. gain, time-constant, and dead-time). The method considered first-order
plus dead-time models (FOPDT) used to design controllers for FOPDT processes.
However, as demonstrated in this thesis, it can be difficult to distinguish between time
constant and dead-time mismatch using the previous method. This thesis extends these
ideas to develop iterative methods for detecting and correcting gain and dead-time
mismatch for models of any order. In the case of FOPDT models, after correcting the
dead-time, any ambiguity between dead-time and time-constant mismatch can be
removed. This allows an iterative method to be developed to correct all the parameters of
FOPDT models based on the pattern of the prediction error. This method is also
demonstrated to be effective when the process is not FOPDT, but instead a higher order

process.

In practice, the identification of models is a very time consuming process, and

becomes even more complicated for multiple-input/multiple-output (MIMO) systems. If



model mismatch is detected, it can be valuable to determine which specific input-output
pairings contain the mismatch. For example a 10 x 10 MIMO system would have 100
individual models. If the subset of mismatched models can be identified, vthen the re-
identification process (either open or closed-loop) can focus only on the subset of models
that require re-identification. This can save time, and simplify the re-identification
process. Also, by identifying fewer parameters the variance of the estimated parameters
can be reduced [14]. In [6] cross-correlations were used to help detect the presence of
model mismatch for SISO (single input-single output) control systems. This method is
extended in this thesis to MIMO (multiple input-multiple output) systems to help detect
which rows and columns of the transfer function matrix contain mismatch. Webber et al.
[13] detected which specific input-output models are mismatched in MIMO control
systems by holding a single input constant during the set-point change. This thesis
demonstrates that it may be inadequate to only hold a single input constant, and that it
may be required to hold various subsets of the input constant. The previous method also
used transient analysis which is sensitive to disturbances and requires large set-point
deviations to observe the pattern which may excite process non-linearities. This thesis
improves the situation by considering correlation analysis which requires smaller

amplitude deviations in the set-point and is more ‘robust’ to disturbances.

The need to detect MPM naturally leads to the consideration of system identification
techniques. However, parametric modeiing can be difficult, especially in multivariable
systems. Therefore, non-parametric methods are better suited for screening for the
presence of MPM. The two most common forms of nonparametric methods are spectral
and correlation approaches. This thesis considers the correlation approach. Correlation
analysis is a standard system identification method for directly estimating the impulse
response function [14-16] . It is shown that if the non-prewhitening approach is used, a
significant reduction in the variance of the estimated coefficients can be obtained.
However, it is more difficult to analytically determine the variance when the inputs are
not considered as perfect white noise. Therefore a sieve bootstrapping method is
developed to estimate the confidence bands for impulse response functions and
confidence limits for the process gain determined via correlation analysis. Since DMC

and IDCOM uses step/impulse response models, it can be useful to directly calculate the



mismatch in the time domain. Further, some robust model predictive control schemes are
developed which explicitly use time domain uncertainty [17]. The results are then
extended to MIMO systems, and ultimately to closed-loop MIMO control systems. In the
literature closed loop identification via correlation analysis has received little attention.
Using the methods presented in this thesis, uncertainty bands can be used to explicitly
determine the presence of statistically significant model error, and also the magnitude of

the error.

CONTRIBUTIONS/FINDINGS

= The transient response of the prediction error to set-point changes is used for
univariate systems to detect and correct gain and dead-time mismatch for models of

any order. An iterative procedure is presented.

= The above procedure is then used to correct for gain, dead-time, and time-constant
mismatch in model based controllers designed around a FOPDT model. It is
demonstrated that the method can be effective in correcting specific parameter

mismatch even when the process is a higher order system.

= The cross-correlation method presented in [6] for univariate systems is extended to
MIMO systems to help detect which specific input-output pairing contains model

mismatch.

= The partial control method of [13]is improved by considering correlation analysis
instead of transient analysis. This allows smaller set-point changes to be used and

decreases sensitivity to disturbances.

= It is demonstrated that using a non-prewhitening method for correlation analysis can

reduce the variance of the estimated impulse response coefficients.

= A sieve bootstrap method is used to estimate the confidence bands for the impulse
response functions for both SISO and MIMO systems. Further the method is used to

estimate the confidence intervals for the process gains.



= The sieve bootstrap method is further extended to closed-loop identification of model
etror for MIMO control systems. It can help detect the presence of statistically

significant model mismatch, and also the extent of the mismatch.

1.3 Thesis outline

Chapter 2: Provides an overview of the statistical performance monitoring literature. The
bootstrap method is introduced and is used for estimating the sampling distribution of

performance measures

Chapter 3: First provides an overview of MPC. Then various closed-loop methods for
detecting the presence of model mismatch for SISO and MIMO control systems are

presented.

Chapter 4: A sieve bootstrap method is presented for SISO and MIMO correlation
analysis to estimate the uncertainty of estimated impulse response coefficients and
confidence limits for the process gains. The method is then extended to closed-loop

identification of the model mismatch.



CHAPTER 2 SAMPLING DISTRIBUTION OF PERFORMANCE
INDICES

2.1 Statistical controller performance assessment

This section provides an overview of statistical performance monitoring literature.
Controller performance assessment has become an established field in control research,
with several review articles, and even a textbook describing its development [10, 18-22].
The seminal paper in controller performance monitoring by Harris [1] showed that
normal operating data can be used to estimate the minimum achievable output variance
for single-input/single-output (SISO) systems provided that the process delay is known.
The work of Harris extended the work of [23], who used multivariate time series analysis
to evaluate the performance of controllers in the paper industry but did not consider
process delays. Since process delays are common in industry, and strongly limit the

achievable performance this was an important extension.

The minimum achievable variance is a natural benchmark for controllers regulating
stochastic disturbances. A performance measure is simply the ratio of the actual variance
to the best achievable variance, or some function of the ratio. While many controllers are
not actually implemented as minimum variance controllers, the minimum achievable
variance still provides an absolute lower bound on the performance. The lowest
achievable variance is limited by the disturbance characteristics and the process delay.
Thus no amount of controller redesign can improve the situation if the desired output
variance is lower than the minimum achievable variance. In this case only reduction of
the process delay or reduction of the disturbance by process redesign or the addition of

feed-forward control can help.
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The original paper by Harris utilized an autoregressive moving average (ARMA)
time series model [1]. Since the moving average part of the model can cause some
difficulties in the identification, Desborough and Harris have suggested the use of an
autoregressive model (AR) to determine a normalized performance index [24]. This
method is sometimes referred to as the R? method. Laguerre models have also been
considered [25]. More recently ARMarkov models have been considered [26]. An
alternative approach that bypasses the calculation of the impulse response coefficients is
the filtering and correlation method (FCOR) introduced by Huang and Shah [22]. Further,
it has been known for some time that the autocovariance function can be used to check if
the control loop is operating as a minimum variance controller without any further
modeling [27]. However, this approach only provides a yes/no answer regarding the

achievement of minimum variance.

After the initial developments in assessing feedback systems, attention was turned
to assessing feedback/feed-forward control systems. An analysis of variance has been
used to determine the potential reduction in the output variance that can be achieved by
incorporating a feed-forward controller for a given measured disturbance [24]. The
performance of feed-forward controllers was also examined using cross-correlation
between measured disturbance and the controlled variable [6]. The performance

assessment of feed-forward controllers has also been extended to MIMO systems [28].

Naturally, other extensions of the original idea followed. A frequency domain
approach was used to examine the performance of controllers by examining the
bandwidth and maximum magnitudes of the sensitivity functions [8, 9], which tied the
assessment to robust control theory. Another interesting extension was the consideration
of the best achievable performance with structural constraints on the controller. Along
these lines the best achievable PI or PID benchmarks were introduced [29-31]. Many
common performance measures (such as closed-loop settling time and decay rate) have
been formulated in terms of the closed-loop impulse response coefficients [32].

Assuming normally distributed innovations, they used generalized likelihood tests to
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determine if the closed-loop satisfied some performance objective. Probably the most
important extension after the seminal work by Harris was the extension of the minimum
variance benchmark to multivariate systems [33, 34]. This required the introduction of a
process interaction matrix, which can be interpreted as a sort of multivariate delay.
Generally, the interactor matrix cannot be determined from knowledge of the process
delays alone. A two-step procedure was proposed in [33], which consisted of a
multivariate spectral factorization, and a solution of a multivariate Diophantine equation
to estimate the minimum variance, assuming the interactor matrix is known. Alternative
methods based on knowledge of the first few Markov matrices have also been proposed
[34, 35]. Assuming the disturbance model is known for MIMO syStems, the closed loop
impulse response coefficients are compared to user designed coefficients [36]. Instead of
placing all closed loop poles at the origin (i.e. minimum variance), a benchmark with one
pole located at a user defined location has been considered [3]. The performance
assessment of time varying systems, and time variant disturbances has been studied in
[37] [38] [39]. The effects of model mismatch on performance were considered in {11,
40]. A projection based performance monitoring approach is adopted in [41, 42]. The
effect of process nonlinearity on the performance has been studied in [43].

Recently there has also been interest in finding suitable performance measures for
model predictive controllers. Hugo points out that the minimum variance benchmark does
not consider the limiting effects of the structure of dynamic matrix control (DMC) (e.g.
simplified disturbance model) [44]. He suggests using a performance index, which is
based on a random walk disturbance model, as used in DMC instead of a full
autoregressive integrated moving average (ARIMA) model. The standard minimum
variance performance measure does not account for penalties on the controller input
variance, thus the linear quadratic performance index was proposed, which requires an
accurate process and disturbance models [22]. A normalized multivariate impulse
response curve, which is a lumped measure and does not require knowledge of the
interactor matrix has been suggested in [45]. The ratio of designed to achieved objective

function can be used to assess the performance of constrained model predictive
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controllers, but does not provide information concerning the best achievable performance
[46]. A historical benchmark which compares the current performance to when the
performance was known to be good has also been proposed [46]. The optimal objective
function for move and prediction horizons are suggested as a benchmark [47], where they
have integrated monitoring and some diagnostics. The performance monitoring of SISO
model predictive controllers using a performance index that accounts for the step
disturbance model commonly used in practice has been considered in [48]. This method
requires knowledge of the true process and disturbance dynamics. The expected
performance is used as a benchmark for input constrained model predictive controllers
[49].A constrained minimum variance controller based on a moving horizon approach is
used to assess model predictive controllers, which also accounts for constraints on the

process variables [50].

2.1.1 Calculating the SISO benchmark

Several different benchmarks may be used to monitor controller performance. Ihave
considered the minimum variance and the closed-loop settling time as indicators of
performance. The settling time is considered to demonstrate the generality of the
bootstrap method. This section briefly outlines how point estimates of these performance
measures might be obtained. Further details may be found in the previously cited reviews

on performance assessment.

The developments in this chapter are based upon the following linear time invariant

system:

¥, =G (2 )z Pu +G,(z a, 2.1
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where G'(z”) and Gu(z") are the process and disturbance transfer functions, respectively.
Note that G~ (z”) is the delay free transfer function. D-1 represehts the process delay

(D 21), and g, is a zero mean, independent and identically distributed (i.i.d,) sequence
with variance o,. The process input, u,, is determined by some linear feedback control
law. The closed-loop transfer function between y; and a, may be expressed as:

Y =w(z)a, =W +yz” +ot 27, + ) iz, (2.2)

=D

where the y, for i =0,1,...D—1 are controller invariant. If the system is operating under
minimum variance control then y, =0 Vi = D,...,c0 . Hence, the minimum output

variance may be calculated from Eq.(2.2):
min Var(y,) = o2, =W, +¥ +..+y, 2)o,} (2.3)

A typical performance index is the ratio of actual output variance o”to o7, [19]:

E=—2- ’ 2.4)

An estimate for the minimum variance may be obtained by fitting a time-series model

to the output y, and substituting the estimated impulse response coefficients {7, , and noise

variance &, into Eq. (2.3) [1]. Note that the o,” term cancels. A point estimate, &, is

then found:

=5 2-5)
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Finally, an example of a non-quadratic performance measure is the closed-loop

settling time, 7,, defined in [19] as:
wlsel izt (2:6)

£ is a user-chosen parameter, below which y, is considered to have settled. A point

estimate for 7, may be obtained by observing the estimated impulse response coefficients

~

v, .
2.1.2 Normal approximations, linearization, and likelihood methods

This section describes existihg work on estimating confidence intervals for the
minimum variance performance indices. In [4] approximate moments are estimated for
the performance index by assuming the disturbance variates (innovations) to be normally

distributed. This approach is based on a linearization of the index, or Delta method, for
calculating the variance, The variance of f for a sample size of N., can be shown to be

approximated by [4]:
n D-1 0
Var($)=(4/ N)&’ [Z(p,, —pe,k)2+kZpﬁ} 2.7
k=1 =D

where p,,,and p, are the autocorrelations of the D step ahead prediction errors, and

process output, respectively. The autocorrelations may be calculated directly from the
time-series model parameters, see for example [2]. For practical use, the estimated model
parameters may be substituted into Eq. (2.7). However, this method does not explicitly
account for uncertainty in the model parameters. It has been shown that uncertainty in the

parameters can lead to significant errors by using this method [2]. However, since the
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estimated model parameters should converge to their true values as the sample size

approaches infinity, the variance should also converge asymptotically [2]. A (1-2)100%

confidence intervals may be estimated by assuming .f is normally distributed:

(f - z“-“’”,/Var(é), E+ z“"“’z),/Var(f)) (2.8)

where z*'?is the 100(1-a /2)th percentile of a standard normal distribution. This
interval is symmetric and does not account for the actual shape of the distribution, which
can be skewed for small samples, or distorted when the index is close to its limiting value

of one. This method is referred to as the normal method.

A method that does account for uncertainty in the model parameters was
introduced in [3] where it was suggested that the variance of the performance index can
be estimated by using the covariance matrix of the estimated time series parameters. This
method is also based on a Delta approximation, and will be referred to as the linearization

approach:
Var(€) = £(@)Cov(0) 1 '(6)" 2.9)

vy~ (0 05 05 _
f(g)'—(6919692 :v-"ag )9 9"'[0p023"-0np]

np

where @ is the vector of time series parameters. The covariance matrix, Cov(@), is
calculated via MATLAB?’s system identification toolbox. The most common methods for
estimating Cov(@) are based on linearization and asymptotic arguments [51]. The partial

derivatives are numerically estimated by making small perturbations to the parameters
[3]. Confidence intervals are estimated in the same fashion as Eq. (2.8). Methods based

on Taylor expansions can become unreliable if the variables have large variance.
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Generalized profiling has been used to estimate the confidence intervals for f 2]

In this method, no linearization is required, and the intervals may be non-symmetric. The
intervals are estimated based on the asymptotic distribution of the likelihood ratio of the
unconstrained and constrained likelihoods. To formulate the likelihood function it is first
necessary to assume how the innovations are distributed. Assuming normally distributed

innovations, the following procedure is used to estimate the (1-a)100% confidence
interval (&, fhigh) 2]

1) Using some optimization routine, estimate the unconstrained set of model parameters
@, such that the likelihood is maximized, or for normally distributed variables such that

NOEDNCES N & (2.10)

k=1

is minimized. y,,, is the one step ahead predictor. The set of parameters that minimizes

Eq. (2.10) is 9. The index, f, is then calculated based on 8.

2) Select a value of d > .f , and solve the constrained optimization problem to find the

model parameters 6* that minimizes

N "~
SO =Y. ~Pys) st &*=d (2.11)

k=1
where f * is then calculated based on 6*.

3) Form the ratio:

NG -
Nln[ 5@ ) (2.12)
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If Nln(—s‘s—’(%;l) = xz(l—a/2),then§hig,,=d 1(1—a/2)isthe (1-a/2) critical value

of a chi-squared distribution with one degree of freedom. A similar procedure is used to
find &, ,, but constraints d <& are considered. Tutorial articles on generalized profiling

may be found in [51, 52). The procedure was programmed in MATLAB, using the
function FMINCON to solve the constrained optimization. The prediction errors were
calculated using the function PE, utilizing back casting (i.e. using the model to predict the
initial conditions). One potential problem is that some less efficient estimators may only
approximate the maximum likelihood esﬁmates, which would result in the likelihood
intervals being too narrow. Further, it assumes that the global minimum is found, but for
nonlinear optimization there is no guarantee that this is true, i.e. the search algorithm may

become stuck in local minima.
2.2 Residual based bootstrapping

Efron introduced bootstrapping in 1979 as a flexible method for estimating the
sampling distributions of some statistic 7. The statistic 7 is used to estimate the
population parameter @ . The original bootstrap method was based on a set of
independent and identically distributed (iid) observations sampled from some distribution
F. The sampling distribution of T(F) will be a function of the unknown population
probability density. The basic idea of bootstrapping is to use the plug-in principle, which
replaces the unknown population distribution with the empirical

distribution ' determined from the observations. The empirical distribution function
places equal probability on each of the observations. Instead of repeating many

experiments, which is equivalent to resampling from F, we resample from F. Thus,in

the “bootstrap world” F' becomes the population distribution and we are concerned with
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determining the sampling distribution of 7' (F) . In some simple cases, it is possible to
analytically determine the sampling distribution 7T (ﬁ’ ) . However, it is more common for

the distribution of T'(F") to be approximated via simulation. This approach can be applied

regardless of the complexity of the estimator, and essentially replaces difficult
mathematical analysis with a computer intensive approach. Starting from a random
sample size of N, a bootstrap sample of equivalent size is generated by sampling from the
empirical distribution with replacement. The resulting bootstrap sample of size N is
meant to mimic a random sample drawn from the original population. If B bootstrap
samples are generated, the statistic of interest is then calculated for each of the B different
bootstrap samples. This results in an empirical distribution for T (F) allowing its
moments and percentiles to be determined. Methods for relating the distribution obtained
via bootstrapping T(I:“) to the real world distribution T'(F) are described in the sequel.
This thesis presents an empirical comparison of different bootstrap methods in estimating
the bias, variance, and confidence intervals of the minimum variance benchmark. The
closed-loop settling time is also studied. Good introductions to bootstrap techniques can

be found in [53, 54]. An extensive bibliography of bootstrap applications is provided in
[55].

This thesis utilizes residual bootstrap re-sampling methods to estimate the
probability distribution of the minimum variance and settling time benchmarks.
Bootstrapping methods were originally designed for iid data. However, the data collected
in control situations will typical contain some serial correlatioh. To account for this
correlation, the estimated residuals are resampled as opposed to resampling from the
observed process outputs. The key idea behind the proposed bootstrap technique is
explained through Figure 2-1 and Figure 2-2.

As shown in Figure 2-1, the closed-loop system is excited by a particular realization of
the disturbance variates, a;. This results in an observed set of output data, y,. A time series

model, i, such as an ARMA is fitted to the output y,. The output may have to be
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differenced a number of times prior to the model fitting to ensure stationarity. The

performance measure of interest, @, will be a function of the time series modél
parameters. A point estimate, ) , of @ is calculated from the time series model . The
estimated residuals, 4,,4,,4;,...., are also calculated from the one step ahead prediction
errors of {7 . Once the time series model has been determined, the bootstrap simulated

experiments may be performed as shown in Figure 2-2.

The residuals are re-centered to have a mean value of zero, and are then randomly

sampled with replacement. Variables corresponding to a bootstrap sample are denoted by
the traditional superscript *. A given bootstrap sample, a”, is filtered through the

impulse response model ¢ . This results in $,”, which is treated as a new set of

observations. A new time series model, i, is then fit to §,”. Once the new time series

model is found, an estimate for the control performance measure @ may be calculated.
The above procedure is repeated B times, for each of the bootstrap samples taken from

the original estimated residuals. This results in B estimates of the performance measure,

&' , which can then be used to estimate the bias, variance and percentiles of d.
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Figure 2-2, Bootstrap sampling, and estimation of the distribution for .
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There are two sources of error in the bootstrap method: The first is the simulation error
resulting from the use of a Monte Carlo simulation to approximate 7" (ﬁ) . This error can

be reduced by increasing B. However, this also increases the computational effort.
Typically, values of B around 50-200 are suitable for estimating variance, and around
1000-2000 bootstrap samples are required for estimating confidence intervals [56] .
Larger values of B are required for accurate confidence intervals so that good

approximations of the distribution tails can be obtained. The second source of error is due
to statistical error, which results from F = F . One approach is to use a large sample size,

in which case F* will be a better approximation of F. Another method to handle this error
is to use pivotal statistics. The distribution of pivotal statistics does not depend on any
unknown quantities. Hence we would expect the distribution of a pivotal statistic to be

the same under sampling from ForF.

2.2.1 Estimation of bias

The bootstrap estimates may be used to approximate the bias of the estimator @ .
The estimated bias can then be used for bias reduction. A simple bootstrap estimate for

bias is:

B
bias' ~1/BY @/ - ® (2.13)

jA

The estimated bias is simply the difference between the average of the bootstrap

estimates, and the observed value. Hence, the bias corrected estimate, &)bc , is given by:

A A B A‘.
D, =20-1/BY & 2.19)
j=1
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A bias less than 0.25 standard errors can usually be ignored [56]. It should be
remembered that bias is only an estimate of the true bias. It is possible that the bias

reduction will inflate the standard error of the estimator.
2.2.2 Estimation of variance

The variance of a statistic is a good overall measure of its uncertainty. B bootstrap
samples from the estimated residuals are used to estimate B values of the statistic. The
bootstrap estimate for the standard error, s.e, is: ‘

sey =41 /(B—l)(i [D" —1/Bf P2 (2.15)

i=1 =1

2.2.3 Estimation of confidence intervals

There are several different methods for determining the confidence regions via
bootstrapping. We will consider the standard, bootstrap-t, percentile, and the bias-

corrected percentile (BC) methods.
Standard error method

If we assume the statistic 7 to be normally distributed, then we may use the
bootstrap estimate of the standard error to find a confidence interval for @ . Typically,
analytical expressions for the standard error will not be available, and we will rely on the

bootstrap approximation. The (1-a )*100% confidence interval is given by:

(D-20"7se;) < ® < (D+20"se,) (2.16)
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where z*'?is the 100(1- & /2)th percentile of a standard normal distribution. For the
95% confidence intervals, &= 0.05, and z®™ =1.96. The advantage of this method is
that the standard error can be calculated relatively quickly, and it is reasonable for
statistics that are close to normal. The confidence interval may be adjusted for bias as

follows:
(D-bias*-z"se,) < ® < (D-bias*+z"se, ) @2.17)

Typically, the statistic of interest is only approximately normally distributed for finite
samples or may appear skewed. The normal method ignores the actual shape of the
bootstrap distribution. Egs. (2.16) and (2.17) should not be used for distributions that
appear non-normal. | The following methods generally improve the accuracy of the

estimated intervals.

Bootstrap-t method

The bootstrap-t (also referred to as the percentile-t) method of generating
confidence intervals is a generalization of the well-known student-t statistic. We could
attempt to develop intervals for &' - D, however experience has shown that by
studentizing the statistic more stable confidence regions are produced [57]. This means
that our bootstrap distribution of @ will not be a strong function of the underlying
distribution from which the bootstrap samples are drawn (i.e., it is an approximately
pivotal statistic). This is important since the estimated residual distribution is only an
approximation of the true residual distribution. Let,

T =(®"(b) - D)/ se, (b) (2.18)

Then the 100(1- & }% confidence interval is approximated as:
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O-T' Ve, <O D-T" e, (2.19)

Note that a nested bootstrap will be necessary for estimating the standard deviation,
se,(b)’, for each of the bootstrap samples. This is performed by bootstrap sampling from

each of the original bootstrap samples. As reported in [56], around 25 nested bootstrap
samples are sufficient for estimating the standard error. However, around 1000 bootstrap |
samples are required for accurate estimation of confidence intervals. This requires 25,000
cycles for generating bootstrap-t confidence intervals. Another disadvantage is that the
bootstrap-t intervals can behave erratically, and are sensitive to the scale used.

Experience has shown that for the bootstrap—f method to work well the variance should be
stabilized [58]. If this is not the case, then the variance stabilizing bootstrap-t method

[56, 58] could be used, but won’t be considered here. An advantage of the bootstrap-t
method is that it takes into account the actual shape of the bootstrap distribution.

Percentile and bias corrected percentile methods

In the percentile method, the bootstrap percentiles are used to determine the limits

of the confidence interval. This method is predicated on the existence of a normalizing
monotone transformation for (3 = g(<'i)) , such that it has a mean g(®) and a variance that
does not change with g(®). It is interesting to note that this transformation need not be
known in order to use the percentile method. The percentiles are obtained by ordering all
of the bootstrap estimates for @ . Consider B bootstrap estimates ®",®", &%, ..., &7,
then the & -percentile is given by P, =(B+1)ax ™ ordered value. Thus the (1- )*100%

confidence interval is:

(For2s Ban) (2.20)
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This method requires the existence of a transform, which converts the bootstrap

distribution to a symmetric distribution. However, frequently there is no such

transformation. Hence, this method works best when the distribution of @ is
approximately symmetric [59]. In addition, this method assumes that the estimator is

unbiased. To account for biased estimators, the bias corrected (BC) method is used. The
BC method assumes a monotone transformation exists such that ﬁ' -¢'5 and ;3—- ¢ are’

N(-bo,0%) . Let T be the cumulative function of a standard normal distribution, then
the BC confidence interval is; '

(- F,) (2.21)

where, @ =[(22,+2) , & =T (22, +2-"%),and 7, =T FE LDy,

The symbol # represents the number of bootstrap estimates which are less than d.

In all of the following examples, the ‘true’ distributions of f and 7, are determined via a

Monte-Carlo simulation with 50,000 repetitions. Note, the bootstrap method only utilizes
the information contained in a single set of observations of sample size N. The Monte-
Carlo results provide a basis of comparison for evaluating the performance of the
bootstrap procedures. Time series identification was performed using the ARMAX
function in MATLAB.

2.2.4 Examples

In all of the following simulated examples, the “true’ distributions of £ and T, are

determined via a Monte-Carlo simulation with 50,000 repetitions. Note, the bootstrap
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method only utilizes the information contained in a single set of observations of sample
size N. The Monte-Carlo results provide the ‘gold-standard’, to which other results will

be compared.

Consider the following case, which is taken from [29]:

0.33

G(z)=—o— D=4 - 2.22
@) =067 N
-1
Gav=1~—“-9‘-‘-zf1 (2.23)
1-0.67z |
-1 :
Cy= 07047z 224)

0.33-0.1z" -0.232

C(z”') is the transfer function of the controller. The theoretical value of & is 1.52. Unless
otherwise stated the innovations are distributed as N(0, 0.36). A (5,0,5) ARIMA model is

used to model y,. Figure 2-3 provides a comparison of the sampling distributions of

&' determined via bootstrapping to the true sampling distribution of f for sample sizes
ranging from 50 to 1000. The distribution of .f * appears to closely mimic the true

distribution of f . It is important to note that the bootstrap distribution may be centered at

a different location than the true distribution, providing an estimate for the bias via Eq.
(2.13).

The bootstrap estimates of bias stabilized after 100-200 bootstrap replications
(Figure 2-4). The bias estimates behaved quite erratically. This result is consistent with
[56], which warns that the variance of the bias estimate can inflate the variance of the
bias corrected estimator. In Table 2-1, the column of averaged bias estimates were
determined by calculating the bias estimate (B = 200) for 20 different realizations and

then averaging the results. On average the bias estimates are good for intermediate



sample sizes (N <500), but it does not appear to be able to resolve the smaller biases
which occur for sample sizes smaller than 500. Thus the bootstrapping method may not

provide a proper correction to the performance index.
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Table 2-1: Bootstrap estimates of bias.

Average
N True Bias | Bootstrap
Bootstrap

50 0.22 0.28 0.40
100 0.11 0.03 0.13
200 0.041 0.065 0.045
500 0.0041 0.018 0.022
1000 | 0.0036 0.010 0.0085

The bootstrap provided more reliable estimates for the variance, and 95%
confidence interval. In the following comparisons, all methods utilized the same.
realization for each N. The bootstrap took around 100-200 replications for the estimated
variance to stabilize (Figure 2-5). All of the methods provided reasonable estimates of the
variance for larger sample sizes (Table 2-2). However, for N = 50 both the normal and
linearization methods underestimated the true variance by an order of magnitude. The
parametric bootstrap was performed by sampling from a mean zero normal distribution
with a variance equal to the estimated residual variance. There was little difference
between the parametric and nonparametric bootstrap estimatés. Note that it is important
to obtain good estimates from small samples since in practice the process data may only

be stationary over short intervals.
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Table 2-2. Comparison of variance estimates.

Bootstrap Bootstrap
True Variance Normal | Linearization
N Parametric | Nonparametric
50 0.42 0.56 0.55 0.038 0.046
100 0.052 0.091 0.087 0.034 0.052
200 0.017 0.029 0.029 0.019 0.020
500 0.0058 0.0082 0.0080 0.0067 0.0071
1000 0.0027 0.0032 0.0031 0.0028 0.0029

Next, the different bootstrap methods of estimating a 95% confidence interval for

fare compared. A sample size of N = 1000 was used, and for the bootstrap-t method 100
nested bootstrap replications were used to estimate the standard error. Figure 2-6 shows
the upper and lower limits of the bootstrap 95% confidence intervals. Since these
bootstrap confidence intervals only approximate the true interval, the actual coverage will
not be exactly 95%. The term ‘coverage’ refers to the actual percent of times an interval
(generated in a similar fashion) will contain the true value of £ under repeated sampling.
The actual coverage of the bootstrap intervals is plotted in Figure 2-7. All of the bootstrap
methods improve as B is increased, and around 2000-4000 bootstrap replications are
required to get stable estimates of the confidence intervals. The bootstrap-t and bias
corrected percentile methods are generally considered more accurate than the other
bootstrap intervals considered in this paper. The true coverage after 4000 bootstrap
replications was 96.1% for both the bootstrap-t and bias corrected percentile methods,
respectively. In this case, it is hard to justify the extra computational burden imposed by
the bootstrap-t method. It is important for the intervals to have accurate coverage if they

are to be used in hypothesis testing to detect significant changes in performance.
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The deviation from normality is apparent in the quantile-quantile (Q-Q) plots of
f * (Figure 2-8). The percentile and bootstrap-t methods can accommodate deviations

from normality. The Q-Q plots suggest that our estimator is asymptotically normal, but
deviates from normality for smaller sample sizes. Methods based on normal intervals

should be used with caution for smaller samples.

The bootstrap (bias-corrected percentile, and bootstrap-t) confidence intervals are
compared to the normal, linearization, and likelihood methods (Table 2-3). For larger
sample sizes all methods provides similar limits that closely match the true upper and |
lower bounds. For N = 50 both the normal and linearization methods appear to provide
accurate limits, but these should be treated with suspicion since they are based on an
inaccurate variance estimate. If the normal and linearization methods had estimated the
variances exactly, they would result in intervals (1, 2.78) and (1.17, 2.07) for N =50 and
100, respectively. Comparing these results to the true intervals, it is clear that the
assumption that g,‘? is normally distributed is not appropriate. Even for N = 50, the
bootstrap method provides a reasonable estimate of the limits, while the likelihood
interval has shifted further to the right of the true limits. The bootstrap-t method is
slightly more accurate than the bias-corrected percentile method, at the cost of increased
computation. Parametric versions of bootstrap-t and bias corrected percentiles confidence

intervals were similar to the non-parametric counterparts.
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Table 2-3. Estimated 95% confidence intervals.
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True 95% Bias
N £ Bootstrap-t | corrected Normal Linearization Likelihood
Interval percentile
50 1.51 | (1.0,1.90) | (1.0,1.97) | (1.05,2.09) | (1.13,1.89) | (1.09,1.93) (1.21,2.21)
100 | 1.62 | (1.0,1.90) | (1.22,2.21) | (1.19,2.39) | (1.26,1.99) | (1.18,2.07) (1.21,2.31)
200 | 1.62 | (1.30,1.81){(1.32,1.89) | (1.32,1.92) | (1.36,1.89) | (1.34,1.90) (1.37, 2.00)
500 | 1,61 | (1.44,1.74) | (1.44,1.77) | (1.46,1.78) | (1.45,1.77) | (1.44,1.77) (1.43,1.73)
1000 | 1.54 | (1.43,1.63) | (1.43,1.64) | (1.43,1.65) | (1.43,1.64) | (1.43,1.64) (1.42,1.66)

Lower limits less than 1.0 are truncated to 1.0.

Consistent with [2], it was found that the methods were robust for slight
deviations of the innovations from normality. There was little change in the performance
when the innovations were distributed as a student-t distribution with three degrees of
freedom. However, when the innovations were distributed uniformly on the interval [-0.5,
0.5] the sample size at which the normal and linearization methods failed to reasonably
estimate the variance increased to N=100. In this case, the true variance was 0.066, and
the bootstrap, normal, and linearization estimates were 0,061, 0.017, and 0.024,
respectively. The true 95% confidence interval was (1.0, 1.60), and the bias-corrected
percentile bootstrap and likelihood intervals were (1.02, 1.62) and (1.11, 1.85),
respectively. The bootstrap method provided a better estimate of the interval.

Confidence intervals may be calculated by all of the methods. Increased confidence
in the results can be obtained if all methods provide essentially equivalent results. For
small sample sizes if the methods provide different results, it is suggested that the

bootstrap result will be more reliable. Certainly, if the residuals deviate strongly from
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normality (a testable hypothesis), then the non-parametric bootstrap should be used. The
advantage of the linearization approach is that the calculations can be performed
relatively quickly. However, it should only be used when the index is distributed ‘
normally. A few hundred bootstrap replications could be performed to check if this is a
reasonable assumption. When using the linearization approach it is important to keep in
mind the limitations of the method used to estimate the covariance matrix of the model
parameters [51]. Just as most statistical methods perform poorly with small samples,
eventually so will the bootstrap. However, the bootstrap has performed well even with
the relatively small sample size of N = 50. The likelihood technique should be limited of
course to maximum likelihood estimators, or close approximations thereof. This
highlights one further advantage of the bootstrap method; it can be applied to any

computable estimator, maximum likelihood or otherwise.

Using the same system as described by Eq. (2.22) to (2.24), the bootstrap variance

of the closed-loop settling time was examined. The closed-loop settling time, 7,, will be
defined by selecting £ =0.3. Thus 7, =7. Any settling times greater than 300 were

rejected in both the Monte Carlo and bootstrap simulations. The nonparametric bootstrap
estimates of the variance required anywhere from 2000-50,000 replications for result to
stabilize (Table 2-4), which is significantly higher than the minimum variance index. The
bootstrap provided reasonable estimates of the variance. It may be of interest to
interpolate the settling time between sampling intervals, thereby allowing the settling
time estimator to become differentiable (numerically) with respect to the model
parameters. In this case, a Delta method approximation for the variance could be

examined.
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2.3 Handling uncertainty in the model order

The sampling distribution of an estimator represents the variation of results under
hypothetical repeated experiments. Since the process is random, by definition each }
experiment under identical conditions will lead to a different performance index. In
earlier studies, the same model order has been used for each imaginary repeated
experiment. This assumption is not realistic, since in practice the user must use some
criteria (e.g. AIC) to select the model oi'der. Therefore, the model order will behave
randomly. In this thesis it is shown, through Monte Carlo simulation, that this extra
uncertainty translates into a significant effect on the uncertainty of the minimum variance
performance index, In addition, it is shown that the bootstrapping framework, easily

allows for consideration of uncertainty in the model order.

By using the same example as given by Eq. (2.22) to (2.24), a sample of size N =
200 was generated. For simplicity, the AIC was used to select the optimal AR model. It
was found that the AIC indicated a model order of ARIMA (9,0,0). A Monte Carlo |
simulation was used to determine the sampling distribution under the assumption that for
each imaginary experiment, the user always selects a model structure of ARIMA (9,0,0).
The Monte Carlo simulation was then repeated allowing for the selection of the optimal
AR model with orders from one to twenty. For both of the Monte Carlo simulations
10,000 replications were produced. The resulting normalized distributions of the
minimum variance performance index are shown in Figure 2-12. The variance of the
index under the ARIMA (9,0,0) was 0.013, with a mean value of 1.35. However, when
the model order uncertainty is considered, the variance almost doubled to 0.023, and the
mean changed to 1.40. Therefore the uncertainty in the model order significantly
increased the variance, and slightly reduced the bias of the performance index. The

histogram of model orders is shown in Figure 2-13.
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The earlier methods for estimating the unéertainty of the performance index have
not considered the uncertainty of the model order, and it is not clear how this additional
uncertainty can be incorporated into these methods. In contrast, the bootstrap framework
allows the inclusion of the uncertainty in model order (Figure 2-14). In the bootstrap
algorithm, after each new realization §," has been generated, the AIC is determined for

model orders ranging from one to twenty, and the optimal structure is selected. Using
4000 bootstrap replications it was found that the bootstrap estimate of the variance was
0.031. For a sample index of 1.4, the true 95% confidence interval is (1.16, 1.75), while
the bias corrected percentile method provided a reasonable estimate of (1.14, 1.67). The
other bootstrap estimates of the 95% confidence limits are shown in Figure 2-15. Due to
the extra computational burden of model order selection, the bootstrap-t was not

considered.
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CHAPTER 3 MODEL PLANT MISMATCH (MPM)

It is well known that the explicit use of a process model in designing a controller can
significantly improve controller performance. Naturally, the performance of model-based
controllers (MBC) will be intimately linked to the quality of the process models. If some
performance measure indicates poor performance, e.g. [11, 33, 34, 36, 48, 60], the root
cause must be diagnosed. Some common causes of poor performance are: model plant
mismatch (MPM), the physical limitations imposed by the process interactor matrix and
spectral  characteristics of the disturbances [33, 60], poor = tuning,
instrumentation/equipment failures. MPM may arise from a poorly identified model,
and/or changes in process or operating conditions. It is important to detect MPM since it
can lead to degradation of performance and instability. Further, more accurate models
allow the controllers to be tuned more aggressively, resulting in better performance.
Therefore, this chapter will focus on diagnosing the presence of MPM

It has been noted that while there is significant work in assessing the performance of
controllers, there has been less research in the area of diagnosing the root causes of poor
performance [11]. Many of the methods used to diagnosis MPM provide a ‘yes/no’
answer with respect to MPM, and do not specify the parameters or the subset of models
that are mismatched in the case 6f multivariable systems. Univariate systems were
considered in [6],where it was shown that if the disturbance is white noise then cross
correlation between the prediction error and input u will be zerd if the model is perfect.
However, this is not true when the more realistic case of colored noise (i.e. white noise
passed through a linear filter) is considered. Therefore, set-point dithering has been used
to test for correlation between the set-point and prediction error [6]. A significant
correlation would indicate the presencé of MPM. Their method is applicable to SISO
systems. In this thesis, I have extended their method to evaluate MPM for multivariable
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systems. A multivariable chi-squared test on the output and prediction errors has been
suggested to help diagnosis MPM in [7]. In [8, 9] the multivariable complementary
sensitivity functions are identified in the frequency domain, and are compared to their
design speciﬁcations. Any significant differences would imply the presence of MPM. A
prediction index, which compares the minimum achievable prediction error variance to
the actual variance, has been proposed in [10]. A benchmark relevant for model
predictive controllers proposed in [11] compares the achieved to designed cost functions.
A significant change in this benchmark would be due to changes in the process or
unmeasured disturbance characteristics. Hence, it does not distinguish between ‘process
mismatch and disturbance model mismatch. Since it is common practice to use a simple
step disturbance model in the controller design, this method would always indicate
mismatch even if the process models were perfect (unless the disturbance was actually a
step disturbance). This thesis considers methods that are insensitive to disturbance model
mismatch. In [12] the control loop is opened so that a disturbance model may be
identified. The loop is re-closed, and a time series model is fit between the white noise
driving the disturbance and the output error. If the time series model for the output error
is equal to the disturbance model then no MPM is present. Any difference between the
two models would result from MPM or changing disturbance characteristics. This method
has the advantage that it doesn’t require any external excitation, but it is sensitive to
changing disturbances, and the control loop must be initially opened to identify the
disturbance model. They briefly mention that different subsets of the inputs can he held
constant to determine which specific inputs are mismatched. The idea of holding certain
subsets of the inputs to aid in identifying which models are mismatched was also
proposed by Webber and Gupta [61] and is further explored in this thesis. By adding a
perturbation signal to the set point, the camulative sum change detectors were used to
determine if performance degradation was due to deterministic disturbances or control
relevant systems changes [62]. An interesting series of papers that detect abrupt changes

in model parameters in the presence of varying disturbance dynamics has been presented -
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[63, 64] . A two-model divergence algorithm is used in [64]. In [63] output error models

were used to reduce the sensitivity of the detection scheme to time varying disturbances.

Several different approaches are adopted in this thesis. Of course careful
parametric modeling [14, 65] can be applied to the closed loop, and the resulting model
can be compared to the existing model that would provide an explicit description of the
MPM. This type of identification requires expertise and is time consuming. The main
idea behind all the methods is to avoid a rigorous parametric identification, and to use
non-parametric techniques that can help indicate if such a careful parametric modeling is
required. In some cases methods are presented for correcting specific parameter

mismatches.

In the next sections, an overview of the two most common methods of controller
design that explicitly utilize a process model, model predictive control (MPC) and
internal model control (IMC) is presented.

3.1 Model predictive control

MPC was introduced by industry in the 1970’s to handle constrained multivariable
control problems. Previously the state-space methods, such as Linear Quadratic or Linear
Gaussian Regulation (LQR or LQGQ), of the 1960’s were very popular in the aerospace
industry. However these methods were not readily adopted by the processing industry
[66, 67]. In the processing industry, the optimal operating point is frequently at the
constraint boundaries. Previous control methods could not safely account for the
multivariable interactions and constraints so the operating points had to be a safe distance
away from the optimal point. To maximize profit in an uncertain and dynamic market it is
important to have a control method which safely allows the operating point to be moved
close to new optimal operating points while satisfying operating constraints. Therefore
MPC’s ability to handle multivariable interactions and constraints was very attractive to
industry. MPC technology has been successfully applied in many industrial settings,
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mainly in refining or chemical processing plants. As of 1999 it was estimated that MPC
was used in over 4500 different applications[68]. Several industrial applications of MPC
are described in [69]. The power of MPC is evident when applied to multivariable
systems. The largest reported application of MPC as of 2003 is to a 603x283 system [68].
It is claimed that part of MPC’s popularity is due to the fact that it is easy to understand
[69]. Good overviews of MPC are found in [67, 68, 70-76]

MPC algorithms make explicit use of a model to predict the future response of the
process over a finite horizon. In this thesis, I only consider MPC algorithms that utilize
linear models for prediction. Most MPC algorithms use a receding or moving horizon
strategy: An optimal input trajectory is determined on line over a finite control horizon at
each control instant. Only the first move of the input trajectory is actually applied to the
process, and the whole procedure is repeated at the next control instant. Figure 3-1
graphically depicts the receding horizon method. The free response represents the effect
of past moves. The free response is adjusted by adding a bias term, which usually is the
difference between the measured value of y (y,) and the predicted value of y (7, ) at the

current control interval. This bias term is sometimes referred to as the adjustment term.
This procedure of updating the prediction assumes any mismatch is the result of a step
disturbance, and provides feedback for the controller. The current and future control
moves from k to k+M-1, where M is the control horizon, are determined by minimizing
the sum of squared errors between the set point and the predicted response of y over the
prediction horizon N,. Since the open-loop optimization is solved online at each control
instant a certain amount of time is required for numerical processing. The chemical
processing industry is dominated by slow processes, which allows adequate time to
determine the solution. However, the sampling time should be small to address
disturbances. To help reduce the on-line computational effort, simplified model
predictive control (SMPC) has been proposed [77]. In SMPC, a control horizon of one
(M=1) is considered and the error is usually minimized only at a single point over the

prediction horizon.
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The most common forms of MPC used in industry are based on Dynamic Matrix
Control (DMC) [78] , and Identification and Command (IDCOM) also referred to as
Model Algorithmic Control (MAC) [66]. DMC uses step response models to predict the
future behavior of the process, and IDCOM utilizes impulse response models. While the
state space approach is popular in academic research, not many commercial packages
utilize the state space approach [68].Both methods assume that a step-disturbance is
responsible for any mismatch between the predicted and observed output. While this is a
simplistic assumption, it does lead to offset free tracking for step changes in the set point
or disturbance. In practice the constraints have usually been handled through ad-hoc |
methods [68] .

To explicitly handle constraints, the DMC problem was reformulated as a
quadratic programming (QP) problem referred to as QDMC [79, 80]. QP problems are
attractive since they are convex, and can be solved easily with existing methods such as
interior point or active set methods. IDCOM was also reformulated as a QP problem
called IDCOM-M [81]. DMC has also been formulated as a linear programming (LP)
problem célled LDMC [82]. Further details may be found in [83, 84]. A detailed

overview of the various commercial MPC packages is provided in [68].

3.2 Dynamic matrix control

This thesis considers the unconstrained form of DMC. First the unconstrained
SISO DMC is described, followed by the MIMO case. Further details on the derivation
of the DMC control law may be found in [78, 79]. The truncated step-response model
used for prediction is:



57

Ns-1

Y = Z HAu,,  +H\uy, v (3.1)

i=1
where:
k is the present control instant
H; is the i step response coefficient,
Yi+1 is the predicted value of y at instant k+/
uy is the input at instant k,

and N is the number of time steps for the process to settle.

Let M be the control horizon, then the N,xM dynamic matrix 4 is defined as:

H 0 0
H, H, :
A=\H, H, H, (3.2)
LHN HN—I HNP—M+1_

The control action that minimizes the predicted error in the least squares sense is:

Au=(A"A)"4A"e , (3.3)

where e is a N, dimensional vector of the predicted errors between the set point and the

free response over the prediction horizon. Au is a M dimensional vector containing the
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present (Au') and future control moves (Au’, j =’2, 3,...M ) . Only the first control move,

Au', is implemented, and the rest are discarded. This is an unconstrained solution. Move
suppression is introduced to reduce the magnitude of changes in the manipulated
variables and improve robustness to modeling errors. Move suppression is implemented

by increasing the diagénal elements of the 47”4 matrix.

The MIMO solution is developed naturally from the SISO case. Let N, and N, be
the number of outputs and inputs respectively. The MIMO dynamic matrix is:

[ Au Alz A]N, ]
4 Ay 5
A=| 4, A, : 3.4
_AN,1 Asz < AN,N,, i

where 4j;is the SISO dynamic matrix between the i output and j* input. The MIMO
DMC control law is:

Au=(A"A)y"A"e (3.5)

However, now eand Au are stacked column vectors of dimension N xN,and M x N,

respectively. More specifically:

Au=[Auy Au, -+ Auy, T (3.6)

e=[e e, ---eNy]T 3.7
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where Au, = (Au}, Au?,...,AuM), with i=1,2,..N,,and ¢ =(¢},e?,....¢,"), with

i=12,..N,.

3.3 Internal model control

IMC provides a general framework for MPC. The relationship between IMC and
DMC, MAC, and other control methods is described in [85]. They also provide an
analysis of the stability for IMC structures. Figure 3-2 shows the IMC structure in which

the model G and the plant G are in parallel. The signal ¢ is fed back to the controller,

and is comprised of two parts: the model mismatch @ = GG , and the disturbance v:

£=8+v (3.8)

The IMC structure is particularly useful when studying model mismatch. IMC controllers
are designed by inverting the minimum phase portion of the process, applying a filter for
robustness and by ensuring that the resulting controller is proper [85-87]. Some important
properties of IMC controllers include: zero offset for step loads/setpoint changes if the
controller gain is the inverse of the process model gain, and for stable processes with

perfect models the closed loop is stable if the controller is stable.
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Figure 3-2. IMC structure.
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Let @ be the model mismatch matrix, defined by the relation 6 =G —G . The closed loop
transfer functions are:

e=(1+00)'00r+(I+0Q) 0 u,+(I+6Q)" v (3.9)
u=I+Q0y"'Qr-(I+00)" Q0 u,~(I+Q0)" gv (3.10)
y=G(I+Q0)'Qr+G(I-I+00)"'00)u, +(I-G(I+00) " Q) (3.11)

where 7 is the setpoint, u, is the input dither signal, v is disturbance, y is output, ¢ is the
prediction error, Q is the controller, and finally G and G are the process and model
transfer function matrices respectively. Equations (3.9) to (3.11) are valid for univariate

or multivariate systems with the proper replacement of scalar elements with vectors or

matrices.
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3.4 The difficulty in detecting model-plant mismatch

From Figure 3-2 one may assume that the presence of model mismatch may be
detected by simply monitoring the prediction error signal, £ . If there is no disturbance
then the signal & does represent the effects of model mismatch. For systems with no
noise, examination of the signal £ would directly indicate the presence of model
mismatch. However, disturbances are always present, thus there are a couple of

difficulties in this approach:

-A large £ does not indicate a large @ since it may be the result of a large

disturbance signal, or it may be due to a small model error with a large magnitude u.

- The traditional open-loop validation method of testing for correlation between
the input u, and prediction error £ will fail because the feedback structure causes the

input to be correlated to £ even when the model is perfect.

- For MIMO systems, there is a model between each of the inputs and the outputs.
So there are NyxNy models between the different input-output pairs and any one of these

may be mismatched.

In a MIMO system ¢ is a vector, £ =[g,, &,:*,&, ' whose elements represent
¥y

the error signal for each output. These elements represent the cumulative error in a
particular output due to all of the inputs. Under conditions of no disturbance (or low
amplitude disturbances) ¢ would provide direct information about which output is -
mismatched. For example if & =&, =0and g, # 0 then we would know that models for y;
and y, contain no mismatch, but at least one of the models for y; is mismatched. This

does not provide enough information to determine which specific model used to describe

y3 is a problem. We wish to determine which specific input-output pairs of y; are
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mismatched. Since linear models are used the superposition property applies for
Vi=12,..N,:

¥, =Gt + Gy + Gy ..+ Gy uy,. (3.12)

where G, is the model between the i output and the j* input. In DMC G, is

parameterized as a step-response model.

The following sections presents the various methods developed in this thesis for
diagnosing MPM. The first section considers univariate systems, and the second section

considers multivariate systems.

3.5 Univariate systems

This section examines the transient response of the prediction error to set point
changes for SISO systems. This work was motivated by our previous work [13], where
we noticed that certain patterns can be associated with parameter mismatch in first order
plus dead time process models. The purpose is to check if the certain patterns in the
prediction error may be used to diagnosis the model mismatch, without resorting to more
complicated closed-loop identification methods. It is found that gain mismatch leads to a
distinctive pattern, however it may be difficult to distinguish between dead-time and time
constant mismatch. Also, this section shows that the patterns can depend on the controller
tuning. For simplicity and clarity, no disturbances are considered at this time. However,
the presence of disturbances will require that the set point change is large enough to
provide a good signal to noise ratio in the prediction error, which is a standard
requirement for any transient analysis. This can be addressed by using a small magnitude

dithering signal on the set point and using a correlation analysis. First order plus dead
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time (FOPDT) models will be considered since a large number of processes in the
chemical and petroleum processing industry may be well approximated using such a

model.

Consider the following control system:

__ TS+l (3.13)

where K is the model gain, D is the model delay, and 7 is the model time constant. Let

the triplet m = (I% ,7/10, D/ 4) define the mismatch. The IMC tuning parameter is
selected as A = 4. Figure 3-3, Figure 3-4, and Figure 3-5 show the response of the
prediction error to pure gain, time constant and dead time mismatch respectively.
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Figure 3-3. Prediction error pattern for + 30% gain mismatch.
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Figure 3-4. Prediction error pattern for + 30% time constant mismatch.

45

50

66



0.4 T T T T T T T T

N m = (1,1,1.5)

0.2

0.1

Prediction Error

m = (1,1,0.5)

031

_0.4 1 | ! | N L 1 !

0 5 10 15 20 25 30 35 40
Time

Figure 3-5. Prediction error pattern for + 50% dead time mismatch.
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It is clear that if only gain, time constant or dead time mismatch is present, then
the transient analysis of the prediction error provides information if the respective
parameter is over or underestimated. And this provides the user with a simple indicator if
the parameter should be increased or decreased. For example, if the time constant is over
estimated then the prediction error shows a slow increasing trend, which then decays to
zero. If the time constant was underestimated then it would show an initial negative trend.
However, the exact patterns also depend on how conservatively the controller is tuned. If
the controller is very sluggish (A= 15) then the pattern for dead time mismatchcan
appear similar to that for time constant mismatch (Figure 3-6). Hence it may be difficult
to distinguish between time constant and dead time mismatch unless the initial patterns
are generated for the controller tuning being used. However, as shown below, gain
mismatch has a special characteristic that may be detected even in the presence of other
mismatched parameters. Also, a simple method for correcting the dead time mismatch is

presented.
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Figure 3-6. Prediction error pattern for dead time mismatch with detuned controller.
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Consider the SISO internal model control (IMC) structure in Figure 3-2. All
transfer functions are assumed to be proper, and linear time invariant (L TI). From
Equation (3.9) it is clear that if there is no MPM, then the transfer functions ¢/r and

& /u, will be zero. Identification of these transfer functions will obviously provide

information concerning the MPM. Under closed-loop operating conditions the
identification of these two transfer functions is effectively open-loop. This is because the
input 7 and 4, can be chosen to be statistically independent of the disturbance v. This
allows the use of traditional open-loop identification methods such transient response

analysis or correlation analysis to detect MPM under closed-loop conditions. Since the
controller Q and process model G are known, the process G may be back calculated from
g/r or £/u,. It may be noted that (G- G) is simply the additive uncertainty term used

in robust control. Once the transfer function £/r is identified, then Equation (3.14) may
be used to update the model.

S =305 ) | G149

where 17, is the estimated transfer function £/r, (é)ow and (G)NEW are the old and

updated model, respectively. Thus with 7., the detection of MPM is immediate: if

y,, =0, then there is no MPM present, otherwise the old model may be updated using
Equation (3.14).
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3.5.1 Gain and Dead-time Correction

In this section, a simple iterative procedure is described which can detect gain and
dead-time mismatch for SISO MPC independent of the model order or parameterization.
If the gain is under-estimated then the controller will make overly aggressive control
actions possibly leading to instability, and when it is over-estimated the control
performance becomes sluggish. Closed-loop stability is especially sensitive to dead-time

mismatch.

Result 1:

If 0, G, G, and the closed-loop response y=g/r are all stable LTI systems, and
K, =1/ K (for offset-free tracking), then |

K.
K, =1-2% (3.15)
G
an
K, =(K;~—5) (3.16)
G N

where K ,K%, Ky, K,.and K; are the gains of w,, =¢/r, y,=¢/u,, the process,

er

controller, and model respectively.

Corollary 1:



72

Assuming that K; >0, and K, >0then,

K;>K, < K, >0 3.17)
K;<K; < K, <0 (3.18)
K;=K, & K, =0 (3.19)

Thus, by identifying the gain of y,, one can determine if the model gain is overestimated
or underestimated. Appropriate corrections can be made to the gain, and i, re-identified

to ensure the model gain is satisfactory. Appropriate results are easily derived for

negative gains.

Theorem 2:

If D <D then the dead-time of w,, is equal to D. (3.20)

If D> D then the dead-time of y,, isequalto D. 3.21)

Proof:
In Equation 1, if D<D ,then D may be factored out as:

E Py ~Dibt A 1
2 =4 %0(g*°G" -G")* —
r 7700 1+0(¢™°G-q7"G)
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where G’ represents the transfer function with the delay factored out. Since the controller
Q and the second term on the RHS have no delay, then the dead-time of £/r is D. A

similar reasoning may be applied in the case D2D.

Theorem 2 may be used as a guide for adjusting the model dead-time. If £/r has
a dead-time equal to the model dead-time D, then the model dead-time may be increased
slightly until the delay of &/r stops matching D. If the delay of £/7 is not equal to D,
then this implies that the model dead-time is overestimated. In this case D may be

reduced until the delay of &/r starts to match D. The results of Theorems 1 and 2 also

apply for continuous systems.

The advantage of the above methods for correcting delay and gain are that they do
not require any transformations of the closed-loop model &/r to determine thé
mismatch. Thus, it does not require detailed knowledge of the controller, or any further
processing. The gain and delay of &/r are used directly to indicate mismatch, and to

determine if the gain or delay is over/under estimated.

Transient analysis through ‘bump testing’ may be sufficient for identifying &/r
since this method can provide good estimates of the gain and dead-time. This approach
relies on making a large enough perturbation such that the signal to noise ratio is large
enough to allow easy identification of the process dynamics. The advantage of transient
analysis is that is it simple, and intuitive. However, large perturbations may excite
nonlinearities, and disturb the product quality. In these cases, one may use a correlation
analysis to estimate the impulse response since it requires smaller perturbations. For the
correlation analysis, it is important that the inputs are chosen to be statistically
independent of the disturbance. The advantage of correlation analysis is that it is a
nonparametric approach, which avoids the problems associated with model order
structure.
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The correlation analysis is now described. More detailed information about the
correlation analysis may be obtained from [65]. If the model is assumed to be a finite
impulse response (FIR) truncated after P intervals (which is reasonable for stable
processes), then the response y(k) is related through the impulse response g(k) to the
input u(k) and a disturbance v(k) as:

P-1

(k) = Zg(i)u(k—i)+v(k) (3.22)

Assuming the series is ergodic and stationary, then the cross-correlation between the

input and output Ry,(7) may be calculated as:

R, (7) = E[y(k)u(k - 1)] (3.23)
R, (7)= E g()Efu(k - Du(i — )]+ E[v(k)u(k — )] (3.24)

If the input is statistically independent of the disturbance, and has zero mean, then
Elv(k)u(k -7)]=0, and

P-1

R, (@)=Y g@R,,(r-i) (3.25)

i=0
If the input is white noise with variance o, then

R, (r-i=c* =0

3.2
=0 7=#0 (3.26)

which simplifies Equation(3.25). The impulse response coefficients may simply be

calculated as:

g()=R,,(k)/ R,,(0) (G.27)
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Example:

The above methods will be demonstrated using the following SISO process

example from [88]:
B (10s +(f)z;slie1;!:3s +1) (3.28)
which is modeled with
G= 13*Q2s+1e™ - .29)

(125 +1)(5s+ D35 +1)

It may be noted that the gain is overestimated, and the dead-time is underestimated.
Mismatch also exists for two of the system poles. The following IMC controller system
is obtained after inverting and adding a robustness filter:

2
Q=(12s+1)(5s+1)(3s+1)( 1 ) (3.30)
1.3*(2s+1) 10s+1
The disturbance is modeled as the following transfer function
T a (3.31)
4s+1 )

where a is white noise with a mean zero, and variance of 0.1. The disturbance is therefore
coloured noise. The step responses of the process and the model (Equation (3.32)) are
shown in Figure 3-7. The model is mismatched, and in particular the model has an
overestimated gain mismatch, and an underestimated dead-time. For the identification of

v, = &/r, a white noise dithering signal of zero mean and variance 0.5 was applied to

the set-point r (Figure 3-8). Data was collected using a sampling rate of 0.5, Using
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MATLAB’s system identification toolbox, a correlation analysis was performed resulting
in an estimated step response for ¥/, . The estimates of K, and the dead-time of y/,, are

—0.31 and around 4-5 respectively. From Equation (3.18) it is known that the gain is
overestimated, and using Equation (3.15) the process gain is estimated as 1.3/1.31=0.99.

The model and controller are updated to account for the improved gain estimate. The

estimated dead-time of y,, is 2-3, which is close to D (note that since the sampling time

is 0.5 the time must be divided by 2 in Figure 3-9). From Result 2, this implies that D is
too small. D is increased to 4, and the resulting impulse response estimate of v, is

shown in Figure 3-10. The 99% confidence intervals estimated via MATLAB are also -
shown to aid in the determination of the delay. It is not critical to exactly estimate the
delay, but to determine if the delay of y_, is increasing with D, which would indicate
that the model delay is still underestimated. Since the delay has increased from about 2-3
to about 5 we would determine that the delay is still underestimated. When the model
delay is increased to 6 (F igui’e 3-11) the estimated delay of i, is also seen to increase to
about 6-8. Again this indicates that the delay is still underestimated. When the delay was
changed to 8, none of the impulse response coefficients were statistically different from
zero (Figure 3-12). The model error is so small at this point that it cannot be resolved

unless more data are collected or the signal to noise ratio is increased. This would

indicate that the delay is not correctly estimated. If the delay is further increased to
greater than 8 it would be observed that the delay of i_, is no longer a function of the
model delay, which also indicates that 8 is the correct delay. Theorem 2 implies that the

dead-time of the model should be equal to 8. A comparison of the step responses of the

original model and the improved model is shown in Figure 3-13.
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Figure 3-7. Step response of process and model.
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A method has been presented to detect and correct for gain and dead-time
“mismatch using closed-loop data. The identification of the model between the set-point
and prediction error is effectively open loop, which allows the use of standard
identification techniques such as transient analysis or correlation analysis. The

nonparametric methods allow for good estimates of the dead-time and gain ofy/_, , which

can then be used to update the process model’s dead-time and gain. To correct for other
forms of mismatch some parametric methods of identification can be used, and with
knowledge of the process model and controller, an estimate for the process may be
calculated.

3.5.2 Manual online update of first order + dead time model parameters

This section examines if the results of the previous section can be used to manually
update a first-order plus dead time (FOPDT) approximation to a higher order system. A
FOPDT model has three parameters: the gain, dead time and tinie constant. These models
are used to approximate high order over-damped systems, which commonly occur in the
chemical and petroleum industry. The basic idea is that if the gain and delay can be
suitably corrected then any remaining mismatch should be a result of time constant
mismatch. Assuming that the gain, and dead time have been previously corrected using
the above methods, then any pattern similar to Figure 3-4 in the prediction error is a
result of time constant mismatch. The time constant may be adjusted until there is no
significant pattern indicating time constant mismatch left in the prediction error. This
would involve an iterative process in which the time constant is increased or decreased
according to the information in the prediction error pattern. Note that the controller is
redesigned with each change in time constant. When the pattern flips its sign, then it is an

indication that the time constant was increased or decreased too far. We consider an
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example where the true process is not a FOPDT, but a thirdv order over-damped process
given by:

e—3s

= 3.33
35 +9s? +5s+1 ( )

The open-loop step response of Equation (3.33) is shown in Figure 3-14. Visual
inspection reveals that a delay of 3, gain of 1, and a time constant of 5 would be
appropriate for approximating the system via a FOPDT model.

The following controller and initial model were used:

A 25
0= ,\T‘H—l G=O.7e
- K(5s+1 10s+1

(3.34)

The output response to a unit set point change is shown in Figure 3-15. From Figure 3-15
the delay is estimated to be 3, and hence from Equation (3.21) the model dead time
should be changed from 2 to 3. The prediction error response is shown in Figure 3-16,
and displays a positive gain, which from Result 1 indicates that the gain is
underestimated. The model dead time is changed to 3, the gain is increased slightly, the
controller is redesigned, and the test is repeated. These steps are repeated by making

small adjustments to the model gain until the apparent gain of the prediction error is zero.
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Figure 3-14, Step response of process given by Equation (3.33).
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The gain of the prediction error appeared to be zero when the model gain was increased
to 1.0 (Figure 3-17). Ignoring the small negative ‘blip’ at t = 4, the main pattern in Figure
3-17 indicates that the time constant is overestimated. The model time constant is reduced
from 10 to 7, and the new prediction error pattern is shown in Figure 3-17. The peak at t
= 15 is reduced from 0.24 to 0.15, which indicates an improvement, however there is still
an indication that the time constant is mismatched. Therefore the time constant is further
reduced to 5. Now the pattern indicates no time constant mismatch. If the time constant
had been reduced too far, say to 2, then the peak would flip to the opposite side indicating
the time constant has been reduced too much.
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Figure 3-17. Prediction error patterns after the gain and dead time have been corrected. a:
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Thus the new model is K = ,7= 5,15 =3 which corresponds well with what is expected

from Figure 3-14. The model’s step response before and after the updating is shown in
Figure 3-18. This method provides simple visual indicators that may be used to adjust a
FOPDT model online
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Figure 3-18. Comparison of step responses of the models before and after to the true

system.
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3.6 Multivariate systems

This section considers the diagnosing of MPM in multivariable systems
operating under closed-loop conditions and determining the subset of models that need
re-identification. Consider, for example, Dynamic Matrix Control (DMC) [78], which
utilizes one step response model for each input-output pair. DMC with ten inputs and ten
outputs would have 100 (10x10 = 100) step response models. We wish to determine
which specific subset of input-output pairs should be candidates for re-identification.
Accurately re-identifying all of the process models is an expensive, intrusive, and time-
consuming effort, which requires a relatively high degree of specialized knowledge. A
large part of the difficulty lies in the proper selection of the model structures for the
development of parsimonious parametric models. Hence, it would be useful to have
simple preliminary screening tools that can provide information as to which specific
subset of models should be considered for re-identification. Ideally, the methods should
be minimally intrusive, and allow for the process to remain under full or partial control.

The goal of this section is to present methods to determine which elements éy in the

model transfer function matrix,é are mismatched and should be considered for re-

identification. G,.j refers to the transfer function between output i and input j.
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3.6.1 Detecting rows and columns with MPM

Stanfelj used the cross-correlation between r (or u;) and ¢ to distinguish between
disturbances and model error [9], However as shown in this section, for MIMO systems
this approach must be modified if it is to help pinpoint which particular models are
contributing to the MPM. This section examines what happens to the covariance or cross-
correlation between the external dithering signal u, and the prediction errors when a row
or column of G does not contain any MPM. The purpose is to determine which columns
and rows in G contain MPM. Then we can infer which subset of models should be
candidates for re-identification. Consider a 3x3 model transfer function matrix shown in
Figure 3-19. If only a single row and column are detected as containing mismatch (Figure

3-19(a)) then it is unambiguous as to which model contains the mismatch, in this example

é33 . If for example, we identify Rows 1 and 3 and Columns 1 and 3 as containing MPM

(Figure 3-19(b)), this would indicate that models é" , éu , CA¥31 R é33 may be mismatched.

1 12 G
G =||Gy, G22 Gy
31 32 G,
(@ (b)

Figure 3-19: Examples of row and columns containing mismatch in a 3x3 model transfer

function matrix.
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Proof.

Using the so-called ‘push-through’ rule A(I +B4)™ =(I +AB)™ 4, and setting = 0
e=(I+600)"'0u,+(I+60Q)' v=0(I+00)'u,+(I1+6Q)" v

Now, if row,8 =0 then row, (9(1 +06)" ) =(

Therefore,

£ = Zudj -0+§":v,-[(1+0g)‘1]

Jj=1 i

g, = gudkvj[(ueg)‘l]

i

Taking expectations on both sides yields (if Uy, is independent of the disturbance v):

E(gu,)=0 Vk=12,.n AAA

RESULT 2:

If col@=0 then the covariance at all lags between u i and each of the

gVj=12,...,nwill be zero.
The proof follows similar lines as in the above proof and is not shown.

Therefore using Results 1 and 2, the rows and columns of G which contain MPM
may be identified by examining the cross correlation at different lags between #, and the
&. An advantage of this method is that no assumptions are made concerning the
disturbance, other than it is independent of the dithering signal. This will make the tests
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more robust against changing disturbance dynémics. The procedure is demonstrated
‘through the following examples.

Example 1:

Consider the Shell oil fractionator 3x3 system adapted from [76]:

(4.05¢7° 1.77¢2  5.88¢7°)
50s+1 60s+1 505 +1
~18s ~14s ~15s
G= 5.39¢ 5.72e 6.90¢ (3.39)
505 +1 60s+1 405 +1
4387  4.42¢78 7.2

\ 33s+1 445 +1 195 +1 Y,

A stochastic disturbance is modeled as:

1 1 1
455 +1°25s+1°19s +1

v=G,a=diag( Ya (3.40)
where a is a 3x1 column vector of mean zero white noise, and covariance matrix

Z, =diag(0.001,0.001,0.001), G, is the disturbance transfer function. A zero-order hold

with a sampling time of 7 = 10 is used to discretize the system. An unconstrained DMC
controller with a prediction horizon of 50 and control horizon of 3 intervals is used to
control the system. The diagonal elements of the dynamic matrix are multiplied by a
factor of 1.01 for move suppression. The DMC controller is designed using the nominal

system given by Eq. (4). However, now consider that the process G; changes:
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539" 6.1e77"
= =

= 3.41
2 505+1  45s+1 (341)

Thus the model G,, now contains MPM. A mean zero white noise signal with covariance
matrix X, =diag(1.0,1.0,1.0)is applied to u; for 2000 samples. If desired each

component of the vector u; may be excited one at a time, resulting in a larger number of

experiments. A smaller dithering signal may used if balanced by collecting more points.

The sample cross-covariances between & and u,at lag k are calculated as:

Coray, (B = le Ig & +B)-5)u, (-7, k=0,1..N-1 (3.42)

t=l-k

where N is the number of samples collected, and &, and ,ﬁd, are the average values of
g, and U, respectively. The cross-covariance may be normalized by the individual

variances to become the sample cross-correlation:

Cﬁ‘z gy (k)

oug, (K) =
Top-u, () JC.®[C, ., ©

(3.43)

The sample cross-correlations between & and u; and 95% confidence intervals are shown

in Figure 3-20. Only Rows 2 and Column 1 show any cross-correlation significantly

different from zero, indicating that model én is mismatched.
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Figure 3-20. Cross-correlations at various lags between & and dithering signal u, for

example 1. The 95% confidence intervals are also shown.
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This example considers that the following three models, G,), G,,,G;, are mismatched:

539¢71%  6.1e7"
= (3.44)
50s+1 455 +1
572¢™ 572¢7M
n = (3.45)
60s +1 505 +1
438 6.1e73%
31" 2 (3.46)
33s+1 455 +1

A similar experiment was run as in Example 1. The sample cross-correlations are

shown in Figure 3-21. Since there are significant correlations for Rows 2 and 3, and

Columns 1 and 2, there are four models that may have mismatch, namely ém , ézz , Gy,

é32. These four models may be flagged for re-identification, or we may try to further

reduce this set of candidate models by operating under partial control where a subset of

the manipulated variables are held constant during the testing procedure described in the

next section
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example 2. The 95% confidence intervals are also shown.
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and dithering signal uy for
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3.6.2 MPM detection under partial control

Our previous work [13]Jexamined holding one input constant at a time to help
determine which model is mismatched. The original method utilized a doublet (step
up/hold/step down) set point trajectory, and visual examination of the resulting transient
response of the preditition error. The strategy was that if a particular input that
corresponds to a mismatched model is held constant, then the prediction error should
exhibit no pattern. In this thesis, this approach is extended by using a correlation analysis.
Moreover, it is shown that it may be necessary to hold subsets of the inputs constant
instead of holding a single input constant when several models are mismatched. The

proposed method has the following advantages:

o The process is not disturbed as much since the input is a small amplitude
dithering signal applied to the setpoint or input signal. The transient analysis
approach must implement a large enough step change in the setpoint for the
pattern to be visible in the presence of noise. Futher, the large step can excite

nonlinearites, which is avoided in the correlation analysis.

o The estimates are more robust to disturbances. The original pattern may be
hidden in noise, unless a large signal to noise ration is used, which may upset
the plant, and excite nonlinearites. The original method has to be repeated
several times to average out the effect of disturbances.

o Instead of visual inspection of the patterns, the correlation between input

dithering signal and prediction error is used which is less subjective.

The following 3x3 MIMO example problem is considered to illustrate the detection

of imperfect models:
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1 -3s 4 -5s -3 -3s
¢ ¢ s+l
10s +1 125 +1 s u,(s) VI(S)

»(s)
2 ~2s -3.6 —4s 3 -3s
= e 4 U, s +iv, (S
O 10531° Bse1° 9541 2(5) () (3.47)
V5(8) -2 1 B -3 uy(s) v,(5)

e (4 (4
125 +1 14s+1  8s+1

An initial steady state: u;=1, u=1 and us=1, is used. The adjustments are
normalized with respect to the corresponding steady state values of output, y (y1s=2,
Vass=1.4, y3=4). The measurement noise v,(s)is considered to be normally distributed

with mean zero and a standard deviation of 1% of y;s.

The original procedure in [13] to detect the input-output pairs that contain
mismatched parameters consists of applying doublet changes simultaneously to the set-
points of all the controlled variables. Then one can see which adjustment term (i.e. bias)
is activated, that is, becomes non zero. If the i adjustment term (for the i output) is
activated, then it means the mismatch is in the i row of the process transfer function
matrix. Once the row(s) containing the mismatch are identified, the doublet changes in
the set-points are repeated by holding one of the manipulated variable constant (at its
initial steady state) at a time over the duration of the doublet change. If the mismatch is in
the j column of the matrix in Equation (3.47), then the corresponding activity in the
adjustment term will disappear when the /® manipulated variable is held constant. The
doublet should be of long enough duration such that errors due to gain mismatch have

enough time to reveal themselves.

It may be noted that the magnitude of the bias term (adjustment term) depends on
the degree of mismatch and the amount of movement in the corresponding manipulated
variable. The change in the variance of the bias term over the duration of the doublet can
provide additional clues in detecting the mismatched pairs. If the mismatch is in the j*

column, then the variance in the adjustment term will get reduced when the ;®
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manipulated variable is held constant. The above discussion has assumed that there is
only one mismatched model. If the mismatch occurs in more than one column of the
same row, then more than one manipulated variable will need to be held constant at a

time. Now the detection procedure is tested by considering the following two cases:

Case 1: Let us assume that the y;i(s)/ui(s) model contains a 30% gain mismatch, i.e.,
Kmodet = 1.3 X Kprocess. A doublet change in all three set-points is made at time =10. The
responses of the output variables and normalized adjustment variables are shown in
Figure 3-22 and Figure 3-23, respectively. Figure 3-23(a) shows that the adjustment for
y displays a pattern consistent with gain mismatch. The adjustment terms for the other
two outputs show very minor activity due to the disturbance. Next, the same doublets are
applied in the set-points, but ui, uj, and us, are held constant one at a time over the
duration of the set-point changes (Figure 3-24). Figure 3-24(a) shows that the pattern
previously observed for the adjustment for y, is absent when #; is held constant. The
normalized variance is reduced to 0.0024 from 0.162. Figure 3-24(b) and (c) show the
bias terms for y; for the same changes in set-points when #, and u3, respectively, are held
constant. In these cases the pattern observed in Figure 3-23(a) reappears pointing to a

gain mismatch in the y;(s)/u;(s) model.
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Figure 3-22. Response of the outputs to doublets changes in set-points when y;(s)/u;(s)

model contains 30% gain mismatch.
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Figure 3-23. Response of the adjustments in the three outputs to doublet changes in set-

points when y;(s)/u;(s) model contains 30% gain mismatch.
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Figure 3-24. Response of the adjustments in y; to doublet changes in set-points when

y1(8)/u;(s) model contains 30% gain mismatch and one of the manipulated variables is
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held constant at a time. (a), (b), and (c) show the adjustment in y; when u, #,, and us,
respectively, are held constant for the duration of the doublet.

Case 2: Now let us assume that the y,(s)/u3(s) model contains a 30% mismatch in time
constant, i.e., Tmodd = 1.3 X Tprocess- A doublet change in all three set-points is made at

time =10. The responses of the normalized adjustment variables are shown in Figure
3-25. Figure 3-25(b) shows that the adjustment for y, displays a pattern consistent with
time constant mismatch. The adjustment terms for the other two outputs show very minor
activity due to the disturbance. Next, the same doublets are applied in the set-points, but
uy, t, and w3, are held constant one at a time over thé duration of the set-point changes.
The results obtained are shown Figure 3-26. Figure 3-26(c) shows that the pattern
previously observed for the adjustment for y, is absent when 3 is held constant. The
normalized variance is reduced to 0.0022 from 1.49. When u; and u, are held constant
(each individually) the pattern observed in Figure 3-25(b) reappears, indicating a time
constant mismatch in the y.(s)/u3(s) model.
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Figure 3-25. Response of the adjustments in the three outputs to doublet changes in set-

points when y(s)/us3(s) model contains 30% time constant mismatch.
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Figure 3-26. Response of the adjustments in y» to doublet changes in set-points when
y2(s)/uz(s) model contains 30% time constant mismatch and one of the manipulated
variables is held constant at a time. (a), (b), and (c) show the adjustment in y, when u;, us,

and u3, respectively, are held constant for the duration of the doublet.
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The previous two examples demonstrated the basic principle of holding the inputs
constant to help detect MPM. The method is now adapted to consider a small dithering
signal instead of a step change in the set-point, and is combined with the results from

Section 3.6.1.

RESULT 3:

Consider an output i. If all of the inputs which correspond to a mismatched models for

the ith row of the trasnsfer function matrix are held, then there will be no correlation

between setpoint r and ¢,

Proof.
Consider prediction error &, The proof follows directly from :
&= 011(“1)"'012(”2)+9i3(u3)+"'+vi

Let J be the index set which contains the elements of mismatched models, i.e

6,20 VjeJ.Ifthe y are held Vj € J then ¢ =v, and
E(gr)=E@(v)=0 AAA
Result 4:

If all o’s are held except u;, and only uy is excited, then the correlation between uy and

&, will be non-zero if and only if 8, # 0.
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Proof.
If all i:’s are held except u;, and only u, is excited, then
&, =0,(u +u;)+v,
E(gu,)=E@uu,)+E@ uu,)+E(Vu,)=
Hence,
E(gu,)=0

only if 8,=0 ' AAA

Result 3 may be used to further reduce the subset of candidate models for re-

identification. Similar results hold for the correlation between & and uy if the

correspondsing u;’s are set to zero as the manipulated variables are held constant. Result
4 may be used to pinpoint which specific models are mismatched, however there is a
significant loss of control involved in holding all except one manipulated variable
constant. This one variable will be responsible fof controlling all of the ouputs. However,
if a diagonal controller is designed, then the free manipulated variable may be used to

control one of the outputs considered the most important.

However, as we exapnd on Example 2 from Section 3.6.1, it is not always
necessary to hold all possible subsets of the manipulated variables to pinpoint the
mismatched models. Consider first holding #; constant (from Example 2 it is clear that u;
is not contributing to any of the mismatch), and set u4; to zero. There is no correlation in
Row 3 any more, so this identifies G3; as the only mismatched model for y;. Since we
know that G>; is not mismatched, then the correlation in Row 2 implies that model G»; is

mismatched. However we are still uncertain about model G2;. To test this model u, can
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be held. In this case Row 2 and Column 1 showed significant correlation indicating that
also model G, is mismatched. Note that this method does not depend on a particular set

of parameters being mismatched, but is sensitive to differences between the process and

model.
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Figure 3-27. Cross-correlations at various lags between & and dithering signal u, for

example 2, with U1 and ud] set to zero. The 95% confidence intervals are also shown.
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The previous methods provide a yes/no answer concerining mismatch. While
yes/no approaches have been the subject of recent articles [12], in practice all models will
have some degree of mismatch due to model order reduction or undennodcling.
Furthermore, is desirable to have more than a yes or no answer to the degree of
mismatch. To answer these questions we can still use the information collected from
experiments with external dithering signals in the correlation analysis approach which
does not require the control engineer to estimate model orders. This approach is
combined with a seive bootstrap to determine confidence bands and is the subject of the

next chapter.
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CHAPTER 4 DETECTION OF MODEL MISMATCH THROUGH
CORRELATION ANALYSIS

Correlation analsysis is a standard non-parametric technique for system
identification [16, 89], and has been used in engineering applications [15].It leads to large
dimeniosnal models, and is not considered as accurate as prediction error methods [16].
However, a significant advantage is that, other than the truncation point, no model
parameterizations need to be made by the practioner. Corrleation analysis was quite
popular in the 1960’s (e.g [90-92]), but modern focus has been on methods which provide
parametric models for controller design [93]. Since DMC and IDCOM directly utilize the
step and impuslse response functions, direct estimation of the impulse response function
can be useful in these cases. Moreover, for screening model mismatch, a rigourous
parametric identification is not needed. A quicker and easier method for screening

mismatch is provided by correlation analysis.

One would like to determine if the mismatch is statistically significant. The
statistical properties of the ‘other’ nonparmetric methods (i.e. frequency response
methods) in closed-loop identification has been studied in [94, 95]. However, there has
been little attention paid to the statistical properties of closed-loop estimates using
correlation analysis. Therefore, a bootstrapping method for estimating the uncertainty in
the impulse response and process gain is developed in this thesis. The method is first
devloped for open-loop SISO systems, then for MIMO open-loop systems, and finally for
closed-loop MIMO systems. This method will provide a method for testing which models
contain statistically significant errors. Ultimately, this chapter presents a method for
estiniating the degree of model mismatch in the time domain, and the uncertainty of that

estimate.
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4.1 SISO open-loop case

Nonparametric finite impulse response (FIR) or step response models, while not
parsimonious, are being used in some popular model predictive control schemes such as
DMC or IDCOM [76]. FIR models can provide reasonable estimates of the process gain,
time delay, and dominant time constant. Further, the estimated impulse response can aid
in the selection of suitable parametric models for subsequent fitting via prediction error
methods. Impulse or step responses estimated via transient analysis are sensitive to
disturbances, and can require inputs with large magnitude. Therefore, impulse and step
models are better identified using correlation analysis [15] or least squares optimization
[14]. This section considers univariate correlation analysis, and presents a sieve bootstrap
method for estimating the uncertainty of the FIR coefficients or functions of the
coefficients (e.g. steady state-gain).

It is important to have an estimate for the variance of the coefficients under
repeated hypothetical experiments. That is to know how much the coefficients would
vary if the experiments were to be repeated under identical conditions,. An analysis for
the finite sample impulse response error covariance matrix was developed in [16] for the
case of white noise inputs (or prewhitened inputs) . The resulting equation in [16]
requires a priori knowledge of the impulse response coefficients. Typically, the estimated
impulse response coefficients are substituted for the actual coefficients. The analytical
approach and new proposed bootstrap methods are compared via Monte Carlo
simulations. If the input is not assumed to be white noise, then an analysis similar to the
one in [16] would be considerably more complicated. The bootstrap approach presented
here can estimate the variance for either case as it replaces difficult analyses with a
computer intensive approach. In the sequel, Monte Carlo simulations are presented which
demonstrate that the variance of the non-prewhitening approach can be significantly

smaller than the prewhitening approach. And it is found that the bootstrap method can
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provide good estimates of the variance. The estimated steady-state gain is usually of
importance, but it can be analytically tedious to calculate the variance of the gain from
the covariance matrix of the individual impulse response coefficients. Again, this

difficulty is easily by-passed via the bootstrap approach.

Bootstrapping was introduced by Efron in 1979 [5] as a flexible method for
estimating the sampling distribution of a function of independent observations. Good
introductions to bootstrapping methods may be found in [53-56]. One method for
handling observations with serially correlated data is to resample blocks of data [96, 97].
However, proper selection of block length is difficult. The other standard method is to
reduce the observations to a set of independent and identically distributed (iid) data, and
resample from the new iid data (for example see [53, 54, 98, 99]). Since the data have
been reduced to independent variates, the random sampling does not destroy any serial
correlation. This is typically accomplished by fitting a model whose prediction errors are
iid. However, the prediction errors from a model fit via correlation analysis are not iid in
the presence of coloured noise. To maintain the non-parametric flavour of correlation
analysis, the nonparametric sieve bootstrap [100, 101] is applied to the prediction errors,
in which an infinite dimensional autoregressive (AR) process is approximated by a
truncated AR model. This allows a computer intensive method to be developed for
estimating variance of the impulse response coefficients, or functions thereof such as the

process gains.
4.1.1 Correlation analysis

Consider a stable linear time invariant system disturbed by a coloured stochastic process:

N,
y(6) =D, g@u(t —i)+v(r) @4.1)

i=0
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where y is the process output, u is the process inpﬁt, v is the disturbance, and g are the
impulse response coefficients to be identified. It is assumed that the disturbance is

generated by white noise filtered through a stationary and invertible linear filter.

By multiplying both sides of Eq.(4.1) by lagged inputs (i.e. u(#-k)) and taking
expectations, it may be shown that [16}:

) - G,V

W) \sapy o o) BAD

where ¢ are the estimated impulse response coefficients, and ¢,, and ¢, are the sample

cross covariance and auto covariance, respectively. For a sample size of N, the

covariances are estimated via:

N-max(k,0)
a-y,,(k)=ﬁ > ye+ku@ | 4.3)
i=l-min(k,0)
lN—k ‘
é, (k)= ~ D u(t+kyu() . 4.4)

=]

If the input is white noise, then Eq. (4.2) simplifies to :
g(k)=¢,,(k)/¢,(0) 4.5)

If the input is not white noise, then the impulse response function can be

determined by solving Eq. (4.2), or a pre-whitening approach can be adopted [102]. Let
w(z™") be some filter that reduces the input to a sequence of iid data, a@). w(zh)is

determined using standard time series analysis techniques.

(2 Yu() = a(t) | (4.6)
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The output is filtered using the same filter,

w(z )y =b(r) 4.7
The impulse response coefficients are then estimated by:

g(k) =&y, (k)/¢,(0) 4.8)

The estimator given by Eq. (4.2) and Eq. (4.8) will be referred to as the non-prewhitening
and prewhitening approaches, respectively.

For the prewhitening approach an analysis of the finite sample variance was
performed in [16]. For a sample size of N, the marginal variance of the K unpulse

response coefficient is glven as:

var(g (k) m—2 ) A’,/I‘,”(Z)) N_Zog(l) — Zk(N—lrl)g(nk)g(k 7) 4.9)
i#k ::6

Since the actual values of v and g(i) are unknown, they are replaced with their estimated

values.

4.1.2 Sieve bootstrap approach

Assume that the impulse response model has been identified. We would now like to
estimate the marginal variances of the impulse response coefficients. The main difficulty
in applying the bootstrap to the correlation analysis is that the prediction errors are not
white noise in the presence of coloured disturbances. Hence, the method of sieve
bootstrapping is applied to the estimated disturbance signal. The disturbance, v(?), may be
estimated by:
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0= 90~ 3 §Ou(t -1 | @.10)

Next the disturbance is modeled by using the method of sieves. The consideration
of semi-nonparametric models, such as infinite AR or MA models, leads to infinite
dimensional parameter spaces. For tractability, the infinite dimensional parameter space
is approximated by a series of finite dimensional spaces referred to as sieves. The optimal
approximation is determined by some criteria function. Consider a system that can be
described by an infinite dimensional AR model. Using the Akaike information criteria
(AIC) an optimal finite dimensional AR model is selected from a sequence of different

order AR models. Thus, a stable AR time series model, £(z™), is fit to $(7).

& (zYi(r) = ag) 4.11)

where a(t) is a sequence of iid data. Since the a(f) will be approximately independent,

they may be randomly sampled without destroying any serial correlation. Before the data
are collected for correlation analysis it is important to allow the system to achieve
stationarity. This is done via a “burn-in” process in which the system is excited for a
certain number of sampling instants (N;) before the data are collected. The following

procedure may now be used to estimate the variance for a sample size N:

1) Set j = 1. Generate a realization of the input, u(i):. , of length (N;+N).

2) Randomly sample with replacement (V;+N) samples from a(r). Call the

randomly selected set &(t); . Next a pseudo realization of v(?) is generated by:

W), =¢7(z7Ha ) 4.12)

3) Create a pseudo realization of the process output via:
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Y0, = Y 8Gw;- 1) +;(0) 413)

i=0

4) The correlation analysis is then applied to the last N values of u(i)'. and y(z')°. ,
which results in the j” bootstrap set of estimated impulse response coefficients,

- 80);.

5) Steps 1) to 4) are repeated B times. The marginal variances are then estimated as:

var(§(k)) s —————Z(g(k) ~—Zg(k), (4.14)
l==l
If desired, the complete error covariance of the impulse response coefficients can
also be determined at step 5, but this thesis considers only the marginal variances. Note

further, that no parametric assumptions about the disturbance are required to use this
method.

Frequently the steady state gain is of interest, hence it is important to assess the

uncertainty of the estimated gain. The standard error of the estimated gain, k ,can be

found from:

se(k),s = \j Z(k -——Zk) (4.15)

_[=1 1-1

where,

E=Y 80 (4.16)

i=1



123

4.1.3 Examples

This section presents several computer-simulated examples based on the following

system:
_ 0.09516 i
Y@= F ooz g2 MO 4.17)
1-4z"
v(z)= 6/ a(z). (4.18)

Where a is normally distributed with mean zero, and a variance of 0.1. Several different
standard inputs will be considered, viz white noise, autoregressive moving average

" filtered white noise (ARMA), and pseudo-random binary sequences (PRBS). In all cases
the settling time was taken as N, = 80. When fitting the AR model to the disturbance, no

model order greater than two was used.

First consider the simple case of an input, », randomly drawn from a N(0,1)
distribution (normally distributed with mean zero and variance one). For a sample size of
N =1000, Monte Carlo simulations were run with 10,000 repetitions. The Monte Carlo
simulations provide the ‘gold-standard’ for comparison. The resulting marginal variances
of the FIR coefficients are plotted as a function of lag in Figure 4-1. In this case both Eq.
9 and the sieve bootstrap provide good estimates of the marginal variances. However,
when the sample size is reduced to N = 200, Eq. (4.9) over predicts the variance for larger

lags, while the sieve bootstrap captures the trend in the variance (Figure 4-2).
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variance of estimated impulse response coefficient
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Figure 4-1. Variance for white noise input, N = 1000. — : Monte Carlo, x: Eq. (4.9), ¢:
sieve bootstrap.
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variance of estimated impulse response coefficient

lag

Figure 4-2. Variance for white noise input, N =200. — : Monte Carlo, x: Eq. (4.9), ¢:

sieve bootstrap.

80
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While the simplified form Eq. (4.8) is easy to apply, the full form, Eq. (4.2), is
demonstrated to provide a variance in the following examples. Consider an input
randomly sampled from a M(0,1) distribution. For a sample size of N = 500, the results
are shown in Figure 4-4. The use of Eq. (4.2) resulted in up to a 40% reduction in the
variance. For both cases the bootstrap method again accurately estimates the variance.

Next consider a random input described by the following time series ARMA model:

1-.82"
1-.57

u(z)= a(z) 4.19)
In this case Eq. (4.8) is applied to the input and output pre-filtered by the inverse of the
system described by Eq.(4.19). Solving the full set of linear equations (Eq. (4.8))
significantly reduced the variance at the extreme lags (Figure 4-5). Having a lower
variance at the initial lags would be helpful when estimating the process delay. Also, note

that Eq. (4.9) did not provide less accurate estimates of the variance.

Since the estimated FIR coefficients are not independent, it can be tedious to
calculate the variance of the steady state gain from the covariance matrix of the FIR
coefficients. Table 4-1 contains the true, and bootstrap estimates of the variance for the
steady state gain when using Eq. (4.8) to solve for the FIR coefficients. Note that for
larger samples the bootstrap provides good estimates. However for the sample size of N=
200 the estimate was not reliable. For a system with a settling time of 80, the sample

sizes of N = 500 or 1000 would be more appropriate.
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Figure 4-4. Variance for white noise input, N = 500. — : Monte Carlo (Eq. (4.8)), x: Eq.
(4.9), 0: sieve bootstrap (Eq. (4.8)), ---: Monte Carlo (Eq.(4.2)), a: sieve bootstrap (Eq.

4.2)).
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variance of estimated impulse response coefficient

- & .
2 . =i 5 o 1% s
7O e 0 e o, 0 o
o = q_,mm%'mh‘?agmﬂdh—\,gﬁpqi‘gpﬂnmﬂmﬂ, e o
1-8 | DD— x X \‘_'/, T ﬁDDCﬂg\’ E} -
! T ' g
16§ T D
xa:;( ) x PRI N x""xx“xxx‘%’
141 = x . Y
| 4,' x x Lxx . xx® [':]
1.2|d R i
1 1 i | 1 1 i L
0 10 20 30 40 50 60 70 80
lag

Figure 4-5. Variance for ARMA, N=1000. — : Monte Carlo (Eq. (4.8)), x: Eq. (4.9), ¢:
sieve bootstrap (Eq. (4.8)), ---: Monte Carlo (Eq. (4.2)), 0: sieve bootstrap (Eq. (4.2)).
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Table 4-1. Estimated and true standard deviation for steady state gain

N=200 | N=500 | N=1000
se(k) 045 | 041 0.30
se(k) s 0.18 0.45 0.26
4.2 MIMO open-loop case

Traditionally, multivariate correlation analysis is applied in a univariate fashion by
considering one input at a time [14]. However, to minimize the amount of time required
to perform the system identification experiments, and to account for possible input
correlation, it is desirable to apply the correlation analysis in a fashion that explicitly
accounts for the multivariate nature of the problem. Hence, the multivariate form of

correlation analysis has been derived in [103, 104].

Just as in the univariate case, prewhitening of the inputs can lead to a simplification
of the correlation analysis. It has been observed that using random binary inputs provides
some improvement over the non-prewhitening approach [104]. However the statistical
performance of multivariate correlation analysis approaches was not considered in [104].
This section extends the previous sieve bootStrap method to estimate the uncertainty
bands of multivariate impulse response functions and the confidence limits for the

process gain matrix determined via correlation analysis.
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The multivariate case can be treated as a number of separate multiple-
input/single-output identifications. It can be shown that [104]:

C,g=C,, (4.20)

where C, is a auto-covariance matrix of the inputs, g is a vector of impulse response
coefficients to be estimated, and C,, is a cross-covariance matrix of the inputs and the
output under consideration. If we have N,, inputs, then the above variables are described

as:

T =Thoy by oy -+ Py Py iy i =+ By Py Py By - P ] (4.21)
C," =[CCy C;...C,] (4.22)
C}T =1t 5 (0) €y (). ()] | (4.23)

C'uT =[Cu Cu2 Cu3"'CuNu] Cui =[Cuit Cui2 Cui3"'Cuip] (4.24)
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Cxy, © Cxy; D Cxiy; (-2) Gy v (—Ny) ]
D Gy, (0) Coy, (D ey (PN +D) v
Cuj =| €y, @D Cxpy, D Cry, @ ey (N, +2) (4.25)
| 5y (N) xy; N, =) Cxy; WNy=2) - Cxy; (V) A

Thus, once the co-variances from Equation (4.25) and the auto~-covariances from
Equation (4.23) are estimated (via their sample counterparts) the impulse response

coefficients may be calculated by solving Equation (4.20). Note that g represents the ith

~ impulse response coefficient between the output under consideration and the jth input.

The sieve bootstrap method will essentially be the same as outlined in Section
4.1.2; however the AR model fit to the disturbance estimates will become a vector
autoregressive model (VAR). Also special attention must be accorded to the sampling of
the residuals. VAR models are commonly used to model stationary multivariable time

series. They are flexible models parameterized by a single lag parameter b. Let Y()

represent a N, dimensional vector of multivariable time series observations:

Y@

Y (®)

Y(0) = = A\Y(t-D)+ Ay Y(t~2) +...+ A, Y(t~b) +a(t) (4.26)

Ty, ()

where A, isa Ny x N coefficient matrix, and a(?) isa Ny x1 column vector of mean

zero white noise with covariance matrix X . For example a VAR with three observed time

series with a lag of b =2 would be given as:
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1 1 1 2 2 2
Y, ay Gy Oq3 an &y O3 a(?)
2 2 2
Y,0) |=|ady @by ads |YE-D+|ad ad o |YE-2)+| ay(0) 4.27)
1 1 1 2 2 2
Y3() a3 a3 Qa3 az Qa3 as;z a3 ()

where

i i i

an ap O3
b i i
Aj=|lay ayp ap

i i i
a3y @3 0Oz

The VAR coefficients are usually determined via ordinary least squares. The
number of lags, b, to include can be determined by the AIC and verification that each of
the estimated residuals are independent (i.e., white noise). Further details on VAR
modeling may be found in [105].

Care must be taken when performing the bootstrap resampling of the residuals.
Each individual residual should be independent (e.g., g, is independent white noise),

however this does not mean that the various residuals do not have some cross-correlation

i.e., a; and a, may not be independent). To account for this cross-correlation the
1 2 pe

following sampling procedure is used for a sample size of N:
1) Letj be a N dimensional vector of random numbers between 1 to N.

2) The bootstrap residuals should then be @p,051ra, =[d1(7) 32 (J) d3(;)] where

is used as an indexing vector.

For example, consider a sample size of 5 points. The estimated residuals turn out to be:



Q0
Ll

A 5-dimensional vector of random numbers from 1 to 5 is generated, say:

j=

G143 2]

(43 4 1)
22 -1 -12
32 2 21
~13 05 5
L5 a2 -1

Therefore the bootsttap samples of the residuals will be:

pootstrap =

Example 1:

Consider the Shell oil fractionator 3x3 system adapted from [76]:

43 4 1
-13 05 5
32 2 21
(22 -1 -12

(32 2 2.1)

(4.05¢7° 1.77¢™  5.88¢77° )
50s+1 60s+1 50s +1
G| 339%™ 572 6.90e7*
50s+1 60s +1 405 +1
4387  4.42¢7 7.2
( 33s+1  44s+1  19s+1 |
A stochastic disturbance is modeled as:
1.2 1.52 1.14
v=Ha=dia R y—
B 55125541 275 41"
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(4.28)

(4.29)

(4.30)

(4.31)

(4.32)
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where a is a 3 dimensional vector of mean zero white noise with covariance matrix of
diag(0.5,0.5,0.5). The inputs are excited by a mean zero white noise input with
covariance matrix diag(1,1,1). Both a and the input # are normally distributed. The
results for a sample size of N = 3000 are shown in Figure 4-6. 10,000 repetitions were
used in the Monte Carlo simulations to determine the true distribution, and 4000
bootstrap replications were used. Note that the bootstrap provided a very close
approximation to the true uncertainty bound. Table 4-2 shows the bootstrap estimates of
the true standard deviation of the process gains compared to the true standard deviations
(determinded via Monte Carlo). Reasonable estimates of the standard deviation are
provided by the bootstrap method.
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Figure 4-6. Estimated impulse response and their associated 95% confidence bounds
determined via Monte Carlo (dashed) and bootstrap simulation (dash-dot).
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Table 4-2. Estimated and true standard deviation for steady state gain

Ji y2 B£]
uy 0.97,0.82 | 0.96,0.80 | 0.98,0.82
u; 1.27, 0.96 | 1.27,0.99 | 1.28,0.99
u3 0.94,1.04 | 0.95,1.00 | 0.96, 1.00

se(k) 5 » se(k)

In Figure 4-7 one can see how the confidence bands can help identify the process
delay. The estimated impulse response coefficient will be noisy and it will be difficult to
tell where the dead time occurs, but with the uncertainty bands the first coefficnet which
is statistically significant indicates the delay. Also, since one has the many different
realizations of the impulse response coefficents from the bootstrap simulations, the
uncertainty in the frequency domain may be obtained, which can be useful for robust

controller design.
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Figure 4-7. Estimated impulse response (solid) and the true 95% confidence bounds
determined via Monte Carlo (dashed) and estimated bootstrap confidence interval (dash-
dot) for the y;-u; model.
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4.3 MIMO closed-loop identification of model mismatch

Closed loop identification via correlation analysis has received little attention in the
literature. The statistical properties of the ‘other’ nonparmetric methods (i.e. frequency
response methods) in closed-loop identification has been studied in [94, 95]. However,
there has been little attention to the statistical properties of closed-loop estimates using
correlation analysis. Thus this section develops a seive bootstrap method suitable for
estimating the uncertianty in closed-loop identification when using correlation analysis.
The standard methods of closed loop identification include the direct, indirect, and joint-
input-output methods [14, 16]. The direct approach essentially ignores the presence of
feedback and directly fits a model between the input and process outputs. It is well
known that if the direct method is applied to correlation analysis that the inverse of the
controller is identified, thus the process is unidentifiable [106]. The indirect method
utilizes information about the controller to transform an indentified closed-loop transfer
function into the process transfer function. The disadvantage of this method is that the
controller transfer function must be known. Since this may not be true for mutlivariable
MPC we shall use the joint input-output method. In the joint input-output method two
closed-loop transfer functions are identified from a single experiment, and they are
combined to provide an estimate for the process model. The basic identification method

proposed in this section is described below:

An estimate for the misamtch matrix, 0 , may be obtained by the following steps:

1) Identify transfer function matrix between the setpoint 7 and manipilated variable u

u=Qr (4.33)
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2) Identify a transfer function between setpoint and prediction error.
e=11r | (4.34)
3) Calculate the inverse of 9)

6=11Q" (4.35)

Proof.

u=(I1+06)"'Qr=~Qr

O ~(QU+6Q)") = +60)0"

[

Now,
e=(I+6Q)"'00=00(1+600)" ~1ir
Therefore,

Q" ~80(1 +60) (I +60)0™ =6

Only one set of experimetns is required by exciting all three setpoints at once and

performing a multivariable correlation analysis. This feature allows time to be saved.

The resulting uncertainty will be estimated using the seive bootstrap approach.

The seive bootstrap method for the closed-loop identification is as follows:



142

1) Excite the setpoints, and then using multivariable correlation analaysis fit models
Q) and I1. Refer to Equations (4.34) and (4.35).

2) Estimate the disturbance variates via:
V(@) =&(t)-T1r(f) (4.36)
V@) =u(®)-Qr(f) 4.37)
where the above have approriate matrix dimensions for the system under consideration.
3) Using the AIC fit two AR time series models to the disturbances.
Alg W ©O=d'® | (4.38)
Al(g W () =d ) (4.39)

where A’ and A? are the AR time series model coefficent matrices. ¢’ and & are the

time series residuals. The residuals are calculated and stored for later resampling.

4) Bootstrap realizations of the closed loop prediction error, £(f), and input,

u(t) ,are found by :
E(t )bootstrap = ﬁr )+ vlbootstrap ® (4.40)
u(t)bootstrap = ﬁr(t )+ V2bootstrap ® (4.41)

where V' bootstrap » | =1 OF 2, are the boostrap realizations of the disturbances. They are

generated as follows:
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Use the resampling scheme described in Section 4.2 to generate boostrap

sampling of residuals a' () . Use the same random indexing vector to select

samples from a?(f). Call the bootstrap residuals albootstmp (¥) and

a* bootstrap (1) -Finally generate the disturbance variates :
1 1, -1YT o
V bootstrap 0= (A (g )) 4 bootstrap ®) (4.42)

Vsa0rap O =(A2G@™)” Pty ® (4.43)

5) Finally using mutlivariable correlation analysis, fit models f),,m,mp and fIbw,mp

to Equations (4.34) and (4.35). Then generate an estmate of the model mismatch

via:

ﬁ-l

=11 o o (4.44)

~
ebaotstrap bootstrap

Steps 4 and 5 are repeated as many times as desired. This produces a set of realizations

of ébw,,,,ap which mimics the real world variation in . Then confidence intervals and

variances may be calculated using the set of realizations of 6, -

Example 3.

Consider again the Shell oil fractionator 3x3 system adapted from [76]:



144

(4.05¢7° 1.77¢%  5.88¢7 )
50s+1  60s+1  50s+1
G 539¢7'%  5.72¢7  6.90¢7 4.45)
50s+1 60s +1 405 +1
4.38¢7%  4.42¢7% 72

\ 33s+1  44s+1  19s5+1

A stochastic disturbance is modeled as:

12 152 1.14
455 +1° 255 +127s+1

v= Ha = diag( )a (4.46)

where a is a 3x1 column vector of mean zero white noise, and covariance matrix

z,=diag(0.1,0.1,0.1), H is the disturbance transfer function. A zero-order hold with a
sampling time of T' = 10 is used to discretize the system. An unconstrained DMC
controller with a prediction horizon of 50 and control horizon of 3 intervals is used to
control the system. The diagonal elements of the dynamic matrix are multiplied by a
factor of 1.01 for move suppression. However the models used to design the DMC‘
controller contained mismatch in the following models:

539¢718 . 438718, 44272

G, =0.8* , Gy = 322
21 50s+1 ° 217 33541 0 2 445 +1

Therefore the y,-u; model has 20% gain mismatch, the y;-#; model has dead-time
mismatch, and the y3-u; model has 30% gain mismatch. A dithering signal on the
setpoints of mean zero normally distributed variates with co-variance of diag(0.5,0.5,0.5)

was applied simultaneously, and 3000 data points of closed loop data were collected.
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Impulse response models were fit between the dithering signal and the prediction error,
and also between the dithering signal and the manipulated variables ». The resulting

model mismatch & and the true 95% confidence band (determined via 6000 Monte Carlo
simulations) and the bootstrap estimates using 4000 bootstrap replications is shown in
Figure 4-8. The bootstrap intervals were determined using the normal-bootstrap method
described in Section 2.2.3. Note that the uncertainty estimated by the bootstrap is very
close to the true uncertainty band. The models with no mismatch can be identified by
examining the responses which are not statistically different from zero (i.e. their
uncertainty bands always contain zero). The models with mismatch are clearly identified
in Figure 4-8. Since the confidence bands are also presented, the engineer may decide to
use the estimated model error to correct the appropriate models if they decide that the
uncertainty bands are small enough to have strong confidence in the results. If large
confidence bands are present, then the results can be used to indicate which models
require re-identification via a more accurate method. This is an advantage over the
previous methods since the model error is quantitatively determined along with the
uncertainty of the estimates. Note, that after the responses had settled down, it was

* observed that the impulse response coefficients would sometimes diverge towards
infinity. Since this happened after the responses had already settled it is of little
consequence. This may be a result of imperfect unstable zero/pole cancellation between
the two estimated closed-loop transfer functions.



g 0.01 0.01
(7]
5
O
s
8
Bootll Tt ] g0 A
EVN 0% 8 10 V24 6 8 10
g 0.04
(]
g
3 002l . a
g 0 i .,ﬂ'”““-~//\\-v<._l/"/\\
g 0. ~ Y. SO ——
ET 246 8 10 %273 6 8 10
6
@
|5
e
8
2
a
5

0.02

-0.02

0.02

-0.02

0.02

-0.02

144

Figure 4-8. Estimated error of impulse response coefficient, and the true (solid) and

bootstrap estimates (dotted)
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CHAPTER 5 CONCLUSIONS AND FUTURE WORK

The statistical properties of the minimum variance controller index have been
estimated using bootstrapping techniques. These estimates need to be made by using
small samples since in practice the process data may only be stationary over short
intervals. The proposed procedures have demonstrated the ability to provide reasonable
estimates by using small sample sizes in case of normal and non-normal innovations.
These methods have broader applicability as demonstrated by estimating the variance of
the closed-loop settling time performance index while accounting for model order
uncertainty. The bootstrap estimated sampling distributions provided reasonable
approximations of the experimentally determined distribution functions.

The detection and correction of model plant mismatch has also been addressed in
this thesis. The iterative methods for univariate model based controllers can detect and
correct gain and dead-time mismatch. For multivariate cases, the cross-correlations and
partial control methods are used to detect the input-output pairs that are mismatched .
The proposed sieve bootstrap method can estimate the confidence bands for the estimated
impulse response functions in both open and closed-loop situations. The broader |
applicability of the proposed method also allows for estimates of the process gains to be
determined. The confidence bands can be used to detect the presence and extent of
statistically significant model errors.

Future work on bootstrapping the controller performance indices could include
methods to reduce the computational effort, so that the procedures may be implemented
in real time. In cases where the controller tuning is identified as the cause of poor control
performance, it would also be interesting to use the performance index in some fashion to
suggest which controller parameters should be retuned. For example, a method could be
developed that suggests that the controller gain should be increased or decreased based

on observation of the performance index. It would also be useful to be able to make the
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decision to re-identify a process model (and redesign the model based controller) as an
optimization problem. The optimization problem would balance the expected increase in
controller performance against the time and effort of the re-identification process. Also, it
could consider the uncertainty inherent in the identification method. For example, if it is
determined that the model gain is three percent too high, but the identification method
can only estimate the gain within 10%, then it is not reasonable to re-identify the process

model. Bootstrapping could play an important role in this type of decision-making.
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