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Abstract

The Theory of Atoms in Molecules (AIM) developed by Bader is a wonderful extension
of quantum mechanics to chemistry. It gives a quantum definition for atoms (open
systems) in molecules, showing that they are bounded by zero-flux surfaces in the
gradient vector field of the electron density. This remarkable result supports an important
hypothesis in chemistry, which is the basis of chemistry as an experimental science:
molecules are formed by the union (chemical bond) of atoms. Therefore, AIM serves to
gain insight into many areas of chemistry including the characterization of the valence
shells of atoms in molecular systems and the characterization of weak interactions in
molecular systems. The results presented in this thesis demonstrate the use of AIM as an
interpretative tool in inorganic and organic chemistry.

The valence shell of the fluorine atom in its compounds has not been fully characterized
from a theoretical point of view. A detailed characterization of the valence shell charge
concentration (VSCC) of fluorine through AIM 1is reported to provide a simple
explanation for several intriguing facts in the chemistry of fluorine. Furthermore, a new
empirical approach for the evaluation of fluorine-fluorine spin-spin coupling constants
(JFr) in aromatic compounds is proposed as well as a complete AIM characterization of
these aromatic systems.

Weak interactions make great contributions and play determinant roles in the stability and
energetics of important molecular systems such as polyaromatic systems and inclusion
complexes of cyclodextrins. A characterization of the weak interactions in terms of AIM
parameters provides insight into the chemistry of these types of molecular systems.
Several weak interactions in several difluorinated polyaromatic compounds and in the
inclusion complex of p-chlorophenol inside a-cyclodextrin are reported and characterized.

The concept of resonance is especially useful for systems containing delocalized
electrons and has been used to explain many phenomena in chemistry. A detailed study
by means of AIM of the resonance effect exhibited in systems where a halogen is
adjacent to a carbon-carbon double bond is carried out. Moreover, a comparable study of
the respective saturated halohydrocarbons and hydrocarbons, as well as the related
unsaturated hydrocarbons is also carried out. Several observations that are consistent with
the presence of the halogen resonance effect in compounds where the halogen is bonded
to a carbon-carbon double bond are reported.

The thermolysis of many B-hydroxyl compounds has been studied experimentally and
theoretically. A mechanism involving a six-membered cyclic transition state where the
hydrogen of the hydroxyl group interacts with the oxygen of the carbonyl group has been
proposed previously. The proposed mechanism is studied for a series of P-hydroxyl
aldehydes. Rate constants and activation energies are reported as well as a study of the
influence of tunneling on the reaction rates. The electron density at the ring critical points,
population analyses by atoms in molecules (AIM) and natural bond orbital (NBO)
methods, as well as atomic energy analyses, are used to gain insight into this interesting
mechanism and into the effects of substituents.
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Chapter 1 Introduction

The study and calculation of atomic and molecular properties from first principles is one
of the central problems of chemistry. Nowadays theory complements experiment, the
results are interpreted in terms of existing theories. The interplay between experiment and
theory leads to the formulation of new theories and the design of new experiments.
Furthermore, theory provides insights into many areas, such as atmospheric reactions and
the calculation of properties of species with a very high reactivity, that are not obtainable
from experiments alone.

Theoretical chemistry is a valuable tool to deal with all those problems which are
untreatable by experimental methods. The basis of theoretical chemistry is very well
supported by the quantum theory developed at the beginning of the last century by Planck,
Einstein, Born, Schrédinger, Dirac and Heisenberg. The great development that we enjoy
today in the area of theoretical chemistry would not have been possible without the
tremendous developments in computer technology. The availability of powerful
computers has led to the birth of a new field known as computational chemistry. It
facilitates the development of models for the interpretation of biological processes such
as enzymatic reactions and photosynthesis. Furthermore, computational chemistry plays
an important role today in the design of new drugs and chemical compounds as well as in
the determination of structure-activity relationships. The role of computational methods
in drug design and biopharmaceutical chemistry will continue to increase for the
foreseeable future.

The main goal of this thesis is to apply the Atoms in Molecules (AIM) theory developed

by Richard Bader to specific topics in inorganic and organic chemistry as well as to NMR.



AIM theory provides a connection between experimental chemistry and the quantum
theory of electronic structure. In fact, AIM theory through its dependence on the
important theorems of quantum mechanics provides a basis for many models whose
origins are rooted in experimental chemistry. For example, the topology of the electron
density (p) in terms of the gradient vector field (Vp) provides evidence of the main
chemical concepts such as atoms, molecules and chemical bonds as well as molecular
structure where the ring and cage structures are clearly defined. As a consequence,
several properties of atoms in molecules, such as energy, dipole moment, etc., can be
determined, and several properties of the chemical bonds such -as strengths and =
character (which is very important to describe the chemical behavior of unsaturated and
aromatic systems) can be estimated. Furthermore, it can be said that the electron pairs of
the Lewis model and valence shell electron pair repulsion model (VSEPR) find their
theoretical justification in the topology of L=-V*p (the negative of the Laplacian of the
electron density). These two models still play a remarkable role in the interpretation of
experimental results in inorganic and organic chemistry. The theory of atoms in
molecules also recovers from a theoretical point of view the additivity and transferable
properties of the functional groups of atoms in molecular systems, as evidenced by
experimental results. It allows the characterization of chemical compounds into families
by which organic chemistry is structured.

This thesis, apart from this introductory chapter, contains 10 more chapters and one
section for the list of references. Chapter 2 is divided in two parts. The first one describes
the basic aspects of quantum chemistry as well as the main ab initio methods that are

used to obtain the electron density (Hartree-Fock (HF), Configuration Interaction (CI),



Coupled-Cluster (CC), Density Functional Theory (DFT) and Moller-Plesset (MP)). The
second part describes briefly how to obtain the electron density from experiment (X-Ray
Diffraction).

Chapter 3 presents an exhaustive discussion about the quantum theory of atoms in
molecules. In this chapter, it is demonstrated that an atom defined by the theory of atoms
in molecules (attractor plus its basin) is an open quantum system. Furthermore, most of
the AIM parameters such as critical points (attractors, bond, ring and cage critical points),
bond paths, ellipticity and interatomic surfaces are also defined. The topology of L=-V?p
and its connection with the Lewis and VSEPR models, which is one of the most useful
results of AIM theory, are discussed. Finally, a list of several properties, such as atomic
energy, dipole moment, atomic charge, etc., that can be obtained by AIM theory; is
provided.

Chapter 4 presents a detailed characterization of the valence shell charge concentration
(VSCC) of fluorine in methyl fluoride through AIM theory. The study was carried out by
use of several ab initio (HF, CISD, MP2, MP3 and CCD) methods with a large basis set
(6-311++G(2d,p)). Moreover, a comparison between the VSCCs of fluorine and
neighboring elements in the periodic table such as carbon, nitrogen, oxygen, silicon,
phosphorus, sulfur and chlorine is presented.

Chapter 5 describes a new empirical approach for the evaluation of fluorine-fluorine spin-
spin coupling constants (Jrr) in aromatic compounds. The correlations between Jrr and
the delocalization index calculated within the framework of AIM theory and with the
fluorine-fluorine internuclear separation are investigated for a data set consisting of 33

coupling constants spread over a range of 85 Hz.



The closed-shell fluorine-fluorine bonding interaction in aromatic compounds is
characterized on the basis of the electron density in Chapter 6. Furthermore, several
other weak closed-shell interactions are reported and characterized including F~C, FO
and C~C interactions, hydrogen bonding, dihydrogen bonding, and hydrogen-hydrogen
bonding. This study represents another example of the usefulness and richness of the
bond path concept and of the theory of atoms in molecules in general.

A type of cage critical point (CCP) that has remained so far only a mathematical
possibility is reported for the first time in Chapter 7. A CCP enclosed by two ring
surfaces is found in a single ring in three derivatives of 1,12-difluorobenzo
[c]phenanthrene. The Poincaré—Hopf relationship is satisfied in each case.

Chapter 8 reports a study of the inclusion complex of p-chlorophenol inside o-
cyclodextrin (a-CD) by the theory of atoms in molecules. A quantitative comparison of
some AIM properties of isolated p-chlorophenol (PCP) and the inclusion complex (PCP-
CD) is presented and some weak interactions within tﬁe host-guest complex are
characterized. Furthermore, electrophilic aromatic substitutions on the p-chlorophenol in
the isolated state and inside a-CD are compared.

A detailed study by means of the theory of atoms in molecules of the resonance effect
exhibited in systems where a halogen is adjacent to a carbon-carbon double bond is
presented in Chapter 9. A comparable study of the respective saturated halohydrocarbons
and hydrocarbons, as well as the related unsaturated hydrocarbons is also carried out.
Furthermore, a study about the electrophilic aromatic substitution in o and f-

halonaphthalenes is presented.



Chapter 10 reports a theoretical study of the thermolysis of B-hydroxyl aldehydes. The
proposed mechanism for the thermolysis of several -hydroxyl compounds, such as f-
hydroxyl ketones, B-hydroxyl esters, etc., is studied for a series of B-hydroxyl aldehydes.
Rate constants and activation energies are reported as well as a study of the influence of
tunneling on the reaction rates. The electron density at the ring critical points, population
analyses by the atoms in molecules (AIM) and natural bond orbital (NBO) methods, as
well as atomic energy analyses, are used to gain insight into this interesting mechanism
and into the effects of substituents.

Chapter 11 presents the global conclusions and describes the two directions for future
research, The first future direction is focused mainly on an AIM study based on the
negative divergence of the quantum stress tensor of the cis and trans forms of CeHs,
CioHi2; and Cyj4Hj6 in order to gain insight into the conductivity properties of
polyacetylene-type of systems. The second future direction is a comprehensive study of
all homonuclear combinations of the first row (Li-Li, Be-Be, B-B, C-C, N-N, O-O and F-
F) and the second row (Na-Na, Mg-Mg, Al-Al, Si-Si, P-P, S-S and CI-Cl) of the periodic
table, except for the noble gases, to generalize the correlation between bond lengths and

PBCP.



Chapter 2 Electron Density from Theory and Experiment.
2.1 The Electronic Problem.

The non-relativistic treatment of any problem that involves particles requires the solution
of the Schrédinger equation. Most of the cases in quantum chemistry are related to the
study of molecules and chemical reactions where the electrons play the main role; and to
interactions that are independent of time. Thus, Chapter 2 is concerned with the solution
of the time-independent Schrédinger equation:

A¥(r,R)= E¥(r,R) 2.1

A

where r and R represent the position vectors of all electrons and nuclei, respectively. H

is the Hamiltonian of the system formed by n electrons and N nuclei:

A 1o, &1 ) L& Z,Z,
H=—~;5V,.—-;2M V; ZZ—+ZZ-—+ZZ R 2.2)

A tlAl;A tlj>1y A=1 B>1

The first two terms in equation 2.2 represent the kinetic energies of the electrons and
nuclei, respectively, the other three take into account the electron-nucleus, the electron-
electron and the nucleus-nucleus interactions.

With the exception of a few special cases, equation 2.1 cannot be solved exactly and
therefore approximate methods based on the variational theorem and perturbation theory
[1] have been developed. Thus, the ab initio methods can be classified, depending upon

which method they use, into variational or perturbative methods.



2.1.1 Adiabatic Approximation.

The mass of a nucleus is much greater than the mass of an electron and therefore the
electrons move at much higher speeds than nuclei. This statement, which is supported by
experimental observations, leads to the adiabatic approximation, according to which the
motion of the nuclei is neglected. In essence this approximation eliminates the correlation
between the motion of nuclei and electrons and simplifies the solution of the time-
independent Schrédinger equation [2].

Under this approximation the term that represents the kinetic energy of the nucleus can be
neglected and the last term in equation 2.2 will be a constant, which does not imply any
problem in the solution of the Schrédinger equation because it is shown by quantum
mechanics [1] that the addition of a constant to an operator does not change its
eigenfunctions; and its eigenvalues are modified by the simple summation of the constant.

Then the electronic problem consists of solving the following equation:

I—i elec \Pelec (r’ R ) = Eelec (R )\P elec (r’ R) (2'3)
where
A "1 n N 7. A ] no. nonq
H=-%=-V!- —+ — =Y h+ — 24
i—Zl 2 i=1 ; r; ; SR [ i=1 j>1 Ky @4

The single particle operator ﬁi introduced in equation 2.4 represents the kinetic energy of

an electron and the potential energy in the average field of all nuclei. The electronic wave

function ¥, (r,R) depends explicitly on the coordinates of all the electrons and

elec

implicitly on every fixed arrangement of nuclei.



2.1.2 The Hartree-Fock Theory.

The HF approximation [2,3], also called the independent particle model, is the ab initio
method most widely used in the study of atomic and molecular electronic structure. It is a
variational method where the trial function is a Slater determinant of spin orbitals and an
optimization process is carried out until the spin orbitals yield the minimum value of the
energy.

A Slater determinant (equation 2.5) satisfies the antisymmetry principle according to
which the wave function for describing a system of fermions must change sign under the

permutation of any two fermions. Fermions are all the particles with half-integer spin.

e = (1) 2y, Oy, @) (1) @5)

; functions are the spin orbitals and # is the number of electrons in the system.
Applying the variational method and the orthonormality condition of the spin functions

leads to a set of equations that are known as the Hartree-Fock equations given by

~

Py, =&y, (2.6)
where
Fo=h +Y v™ (i) Q@.7)
J
~ 1 Z
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F is the Fock operator and the €; are the orbital energies. J ; and K jare the Coulomb

and exchange operators, respectively, and in general the last term of the Fock operator

represents the effective potential seen by the electrons in the i™ orbital

Ly

Jy=(w;lr|vs) (2.10)

A

Kj =<V/j |r1;1ﬁ12

w;) (2.11)

where P, is the permutation operator, which acts on the right side and permutes electrons
1 and 2.

The HF equations can be only solved iteratively because they depend on the orbital ;.
When they are applied to atoms the solutions are the well-known atomic orbitals.
However the solution of the HF equations for polyatomic systems is impractical and
therefore it was suggested by Roothaan [4] to simplify the solution of the HF equations
for molecules by expanding the molecular orbitals (y ;) in terms of a basis of atomic

orbitals (¢ ) which is known as the MO-LCAO approximation
v, = z Cuf, (2.12)

where M is the number of the atomic orbitals (or, more generally, a set of basis functions)

and the C, are the expansion coefficients which are determined by applying the

variational method. The results are the algebraic Roothaan-Hall equations

M
e, (F,-S,,)=0 v=1,2..M (2.13)
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Cyv, F,v and Sy, are elements of the coefficient matrix, Fock matrix and overlap matrix
({9ul9v)), respectively. The Fock matrix elements in the case of closed-shell systems are

given by
U 1
Fyv = Huv + ; Puv [:(¢p¢v '¢l¢a )_E (¢y¢}, l¢v¢o‘ ):| (2‘14)
where the matrix elements of the core Hamiltonian are given by

H, :<¢”]—%V2+Z%|¢V> (2.15)

A

occ

and P, = Z 2C,,C, is an element of the density matrix.

i=1

2.1.2.1 MO-LCAO and Basis Functions.

In all MO calculations the selection of the atomic orbitals used to expand the molecular
orbitals is very important. There are two main criteria used to select the basis set; the first
one consists of how many terms in the expansion are required to get an accurate
representation of the molecular orbital and the second one is purely related to the efficient
evaluation of the two-electron integrals [2].

The two types of atomic orbitals that have been used the most widely are the Slater-type

atomic orbitals [5] (STO) and the Gaussian-type atomic orbitals [6] (GTO). The STO

¢, are more physical because they are more closely

functions, which take the form e
related to the exact solution of the Schrédinger equation for the hydrogen atom. Thus,
they are much better than the GTO functions with respect to the first criterion. However

they are expensive computationally. On the other hand the GTO functions, which are of
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the form ™ , do not describe very well the atomic orbitals in regions close and far from
the nucleus, but their mathematical properties for calculating integrals make them
extremely efficient [2] with respect to the second criterion. The GTO functions conduce
to a rapid integral evaluation due to the Gaussian product theorem, which states that the
product of two GTOs on two different centers is a third GTO on a center between the first
two centers.

The solution that has been proposed for this dilemma is to represent the STO (¢) of the
molecular expansion as a linear combination of primitive Gaussian (g) type functions that
are all of the same type (i.e., s, p, d, ...). This is known as a contraction scheme and it is

represented by equation 16:

6, =3d,8,(a,) 2.16)

where L is the length of the contraction, d,,, and o, are the contraction coefficient and
exponent, respectively. All these parameters are defined and obtained by using a specific
contraction scheme at the atomic level.

A minimal basis set uses the least number of basis functions to describe the atomic orbital
(contraction scheme, STO-LG). The most used minimal basis set is STO-3G in which the
STOs are expanded in three primitive Gaussian functions. These types of basis sets are
inexpensive and they are applied to calculations of quite large molecules. However,
minimal basis sets are not sufficiently flexible to yield accurate results. For some
purposes, minimal basis sets provide useful qualitative information.

Most of the calculations undertaken today use the split-valence basis sets (commonly

referred to as Pople basis sets) where the number of basis functions per atom is increased.

11



For example, the double-zeta split-valence basis set 6-31G indicates that each atomic
core orbital is described by a single contraction of six GTO primitives, and each valence
shell orbital is described by two contractions (basis functions), an inner one with three
primitives and an outer with one primitive (splitting of the valence shell). Split-valence
basis sets allow for more flexibility in the description of the valence electrons than
minimal basis sets. Additional flexibility in the basis set is acquired by further division of
the valence shell as in the case of 6-311G (an example of a triple-zeta split-valence basis
set).

The Pople basis set notations described above can be modified to extend the accuracy of
the calculation by adding polarization functions, e.g., 6-311G(d,p): d primitives are added
to atoms other than hydrogen and p primitives are added to hydrogen as well.
Polarization functions (functions of higher angular momentum) account for the distortion
of the atomic orbitals in the molecular environment (displacement of charge away from
the nucleus) to provide additional flexibility. Another modification in this notation
accounts for the inclusion of diffuse functions, e.g., 6-311++G(d,p): a single plus sign
indicates that diffuse functions (s and p) are added to atoms other than hydrogen and the
second plus implies that diffuse s functions are added to the basis set for hydrogen. These
functions allow the orbital to occupy a larger region in space, and are particularly useful

to describe systems such as anions where the electrons are loosely bound.

2.1.3 Electron Correlation.

The HF approximation has been shown to be successful in the description of many

molecular systems, however when high accuracy is required this method presents severe

12



limitations. In particular the HF method is inadequate for the calculation of ionization
potentials, dissociation energies, excited states and transition states energies.

In essence the HF model is an independent particle model which neglects the correlation
between electrons. Therefore the creation of new methods that include the electronic
correlation effect is necessary in order to obtain results in agreement with experiment.
The correlation energy for a system is defined as the difference in energy between its
exact non-relativistic energy and the energy calculated by the HF method in the limit of a
complete basis set. However the most widely used definition of correlation energy is that
given by Lowdin [7] where the correlation energy for a system is defined with respect to
a specific Hamiltonian, and it is the difference between the eigenvalue of the Hamiltonian
and the expectation value obtained by using the HF approximation.

There are two ways of introducing the electronic correlation effect within the framework
of the variational method. The first one is to construct a wave function as a linear
combination of Slater determinants; configuration interaction and coupled-cluster
methods are examples of this approach. The second one is through the Hamiltonian
where accurate Hamiltonians are constructed; the density-functional methods belong to
this approach.

The perturbation methods provide an alternative approach to the treatment of the
electronic problem, based on perturbation techniques to solve the Schrodinger equation
which include by themselves correlation effects. The Mgller-Plesset perturbation method

is the most widely used method of this type in quantum chemistry.
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2.1.3.1 Configuration Interaction.

The CI method is conceptually the simplest ab initio method that takes into account the
correlation effect between electrons [2,8]. The key idea of this method is to use as the
trial wave function a linear combination of Slater determinants and to determine the
coefficients by the variational method.

The CI wave function can be written in the following way:

¥+ Y T CP

i<ja<b

|¥o) = Coe [P ) + 2. CF W)+ (2.17)

XN
1

where |¥/") represents the single excitations in which an occupied orbital has been

substituted by a non-occupied orbital “a”. The |‘P,~j"b) represent the double excitations.
The expansion continues with higher order excitations.

In principle, if the linear combination 2.17 is not truncated and the basis set is complete,
the obtained energies will be exact not only for the ground state but also for the excited
states. When the complete series of determinants with a specific basis set is used, the
method is called full CI.

In practice, to carry out a full CI calculation is almost impossible because of the high
computational cost. Therefore to limit the number of determinants, taking into account
the purposes and the level of accuracy of the calculation is required. For instance the CIS
method (takes into account only single excitations) is used to calculate molecular
electronic spectra (UV). The CID method takes into account only double excitations, and
as was shown by Watson [9] in 1960, includes some of the correlation energy.
Unfortunately, the truncation of the CI expansion has the size-consistency problem,

which in essence means that the energy calculation of a system where two molecules are
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infinitely separated (no interaction) is not the same as if the two molecules were
calculated as independent systems. To deal with this problem there must be included in
the expansion higher levels of excitation even though they make very small contributions

to the energy and other properties.

2.1.3.2 Pair and Coupled-pair theories.

There are two main reasons for the success of the pair and coupled-pair theories in the
solution of the electronic problem. The first reason is related to the fact that the
Hamiltonian, equation 2.4, only contains one and two—electron operators. The second one
has to do with the Pauli principle; it requires that only electrons with opposite spin can
occupy the same point in space.

The correlation energy by using a full CI wave function and applying the intermediate

normalization [2] is:

E,, =22 Co (¥, |HY") (2.18)

a<b i<j
where the C;b are the double excitation coefficients that appear in the equation 2.17. The

correlation energy expression can be written as:

E, =Ye ,where e; =y CP (¥, |A¥") (2.19)

i<j a<b
represents the contribution of all the possible excitations of every pair of spin-orbitals.
Even though this decomposition simplifies the problem to a sum of contributions of spin

orbital pairs, it is necessary that all the full CI wave function coefficients be known in

order to be able to calculate C;” .
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The independent electron pair approximation (IEPA) developed separately by Sinanoglu

[10] and Nesbet [11] provides a suitable scheme to calculate approximately the energy of
every electron pair independently. Therefore the C;” can be calculated without knowing
all full CI wave function coefficients under the IEPA.

The IEPA consists of the construction of a wave function specific for every electron pair
by using the simple approach of neglecting the other electron pairs in the system and

considering the possible excitations of a particular electron pair

|¥,) =W )+ 2 CP |25 (2.20)

a<b

The energy of the system represented by the above wave function is:

Ey=(¥u |H| ¥ )+e; =Eye +e, (2.21)

y

The procedure to calculate the energy of every electron pair (E;) is the linear variation

method. It consists of expanding the Hamiltonian operator in the subspace of ¥, and all

the double excitations of the equation 2.20, solving a matrix eigenvalue problem to obtain
the lowest eigenvalue.

The IEPA does not suffer from the size-consistency problem (see CI section) and it is not
a variational method; thus, it leads to overestimation of correlation energies. Also, it has a
deficiency which apart from neglecting the interaction between electron pairs makes the
method more limited; it is not invariant under unitary transformations of degenerate
molecular orbitals.

Cizek and Paldus [12] developed an alternative that incorporates the correlation between

electron pairs, called the coupled-cluster approximation (CCA). In essence this method
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considers the double, quadruple, sextuple, etc, excitations (even excitations) from the full

CI wave function.

)= Con e+ LRGP 3 T

i<j a<b i<j<r<s a<b<ec<d

Wl .. (2.22)

ijrs

The main approach of this method is to represent the higher excitation coefficients such
as quadruples, sextuples, etc, as products of double excitation coefficients, a fact that is
true in non-interacting systems [2]. Because of this assumption, carrying out a similar
procedure to TEPA leads to a set of nonlinear equations, which make the method
computationally expensive.

Finally, CCA is one of the most rigorous methods in quantum chemistry giving extremely
good results for those systems whose sizes allow the application of the method. Moreover,
unlike IEPA, it does not have the size-consistency problem and it is invariant under a

unitary transformation.

2.1.3.3 Density Functional Theory.

The electron density (p) plays a very important role in the comprehension of the
electrostatic forces, which are responsible for the formation and stability of the molecules.
A key event in the development of the density functional theory occurred with the
formulation of the theorems [13] of Hohenberg and Kohn in 1964.

From the form of the electronic Hamiltonian, equation 2.4, it is not difficult to realize that
all the properties of a system are determined by the number of electrons and their external

potential

(2.23)

v(F) = Z,
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Therefore, the first Hohenberg and Kohn theorem states that the external potential is
determined unequivocally by p. Moreover, p determines the number of electrons in a

system and thus p also defines the kinetic energy 7(p), potential (o) and total energy

E(p) of the system:
Elp]=T{p]+7, o] +V.[p] = W@ o)dr + Fy [ o] (2.24)
where
Fulp]=1{p]+V.[p] = T{p] + Jp] + E..[ ] (2.25)

Fox [p] is an universal functional because it only depends on the internal Hamiltonian,

which is the same for all the systems with the same number of electrons. J [p] and E,. [p]

are the repulsion between electrons and exchange terms, respectively.

The second Hohenberg and Kohn theorem states that for any trial p where Iﬁ(F )iF =n,

the ground state energy that is determined by g will be always higher than the real
ground state energy of the system.

E, <E[p] (2.26)
However, obtaining an expression for the universal functional is extremely difficult, and
the search for this universal functional, or at least the best approximation to it, is one of
the fundamental goals in the development of better DFT methods.
Many models, which can be traced to the work of Thomas and Fermi [13], attempt to
provide an explicit formulation of the universal functional (TF and related models),
including those by Ludena [14] and Perdew [15]. However another kind of approach
arose from the initial idea of Kohn and Sham [16]. They proposed to calculate the kinetic

energy T(p) of the system as if they were close noninteracting particles and to include the
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difference in the exchange term E,. [p]. Therefore the electron density is expressed in

terms of new orbitals ()

p(f)=glw,-(f)|2 (2.27)

which are obtained by the solution of the following set of single particle equations

|:_%V2 TV (77)]'//;' =&Y, (2.28)
where
r' o0FE
Vo (r) =v(F)+ j |’r_0 (_rf), dr' + 57 ("rﬁ) (2.29)

It must be stressed that the exact form of E,, [p] is still unknown, and the propositions of
different approaches for this term characterize the many different DFT methods (B3LYP
[17,18], B3P86 [17,18], B3PW9I1 [17,18], etc).

From the computational point of view, the DFT methods are the most efficient methods
that take into account the electron correlation. Furthermore, DFT methods offer great
advantages for very big systems such as polymers, proteins, etc. DFT methods account
for about 90 percent of the published applications to biological molecules and materials

science,

2.1.3.4 Moller-Plesset Theory.

The Moller-Plesset perturbation theory (MPPT) uses Rayleigh and Schrédinger
perturbation theory [19], to solve electronic structure problems. In this theory the

Hamiltonian is divided in two parts:
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H=H9 16V (2.30)
where 7 (© is the zero-order approximation to the real Hamiltonian of the system, and its
eigenfunctions and eigenvalues are known. 14 represents the perturbation to the system or
the perturbing Hamiltonian, and 8 is the order parameter in terms of which the energy and
wave functions are expanded (n represents the energy state that is being analyzed, for

instance if n=0 it is the ground state, n=1 refers to the first excited state, and so on):

E, =EQ +8EP” +5°E® +... (2.31)
W)= #O)+ 8| WD)+ 87| PP ) +... (2.32)

The expressions for the zero, first and second-order corrections to the energy are given by

A

E® = (n®|f1

n®) (2.33)

EY = (s

7|n®) (2.34)
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P L D

(2.35)

79 and m© are the known eigenfunctions of 7.
Essentially, the MPPT assumes the perturbation as the difference between the real

Hamiltonian and the HF Hamiltonian

7O =gﬁ‘(i)=znl:[ﬁ(i)+v’” ) (2.36)

i=

2553 Y R0 237)

i=1 j>i
The Hartree-Fock wave function is taken as the zero-order approximation, and & is
assumed equal to 1. Thus the HF energy is obtained by summing the zero and first-order

corrections of the Rayleigh-Schrédinger perturbation theory.
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It is necessary to point out again that MPPT is not a variational method such as Hartree-

Fock, CI and DFT.

2.1.4 Geometry Optimization

All the ab initio methods described above provide an expression within the adiabatic
approximation for the energy of the system depending upon the position of all the nuclei
in the system. This function is known as the potential energy surface.

In order to carry out a reliable geometry optimization it is very important to choose a
good initial guess for which the SCF equations are solved and the energy gradient of each
of the nuclear coordinates is constructed [19]. The directions of highest decrease are
indicated by the energy gradients, and they define the variation of the structure with
respect to the nuclear coordinates of the system. The procedure is repeated until a
stationary point is reached, or in other words, when the energy gradient of each nuclear
coordinate is zero. Some of the best known methods to explore the potential energy
surface in order to find stationary points are: Fletcher-Powell, quasi-Newton (Berny
Optimization), DFP (Davidson-Fletcher-Powell) and Newton-Raphson [20].

The characterization of the stationary points in this potential energy surface is carried
through the so called Hessian matrix, which is an array of the second derivatives of the
energy with respect to all the nuclear coordinates. The diagonal elements are the second
derivatives with respect to the same nuclear coordinate and the off-diagonal terms are the
crossed second derivatives. A stationary point is a minimum if all the eigenvectors
produced by the diagonalization of the Hessian matrix are positive. When the stationary

point exhibits one, and only one, negative curvature it is a transition state. Points with
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more than one negative curvature are not important in chemistry. In practice, the
equilibrium structures (minima in the potential energy surface) are distinguished from
transition states (first-order saddle points) by an analysis of the harmonic vibrational
frequency [21]. For example, equilibrium structures exhibit all real frequencies, whereas

transition states exhibit exactly one imaginary frequency.

2.2 Electron Density from Experiment (X-Ray Difraction).

Crystallinity is a highly ordered three-dimensional state whereof a macroscopic substance
is constructed of a large number of species. These species can be one or more types of
atoms, molecules, ions or even a complex assembly of molecules. In all crystals there is a
volume element which is representative of the whole system. It is called unit cell. The
unit cells can be viewed as the bricks from which the crystal is built. In general, they are
characterized by six parameters, three axial lengths (a, b, ¢) and three interaxial angles (o,
B, ) [22,23].
A crystal exhibits a three-dimensional periodic electron density where the electron
density of the unit cell is repeated through the whole lattice. Therefore, defining p, g and
r as the unit cell dimensions, the electron density in a crystal has the following property
[22]:

plx+p,y+q.z2+r)=plx,y,2) (2.38)
When a diffraction experiment is carried out, a simple inverse relationship between the
spacing in the real lattice and the spacing of the reflections is observed. Therefore, it is
not difficult to calculate the dimensions of the unit cell in crystalline materials by the

analysis of the spacings in the reflections. This new space of the reflections is called
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reciprocal lattice because of the relationship with the real lattice; 4, k and / are its discrete
set of coordinates and they run from -co to o as x, y and z. Thus, the electron density can

be related to a function in the reciprocal space by a Fourier series in the following way:
plxy,2)= % SN Fhk,I) expl-27i(hx +ky+1z)] (2.39)
h k1

where V is the volume of the unit cell and the expansion coefficients F(h,k[) are the
structure factors. The intensity of the reflections can be measured by the diffraction
experiment, and they are equal to the square of the structure factors F(4,k,1).

An expression for the structure factors F(h,k,[) can be obtained by applying the inverse
Fourier transform to equation 2.39. It will be a function in the reciprocal space, which

depends on the electron density in the real space.

F(hk,1)= jp(x, b2 z)exp[Zm’(hx +ky+ lz)]dxdydz (2.40)

Therefore, the structure factors can be obtained from theory by substituting model
electron density in equation 2.40. It is exactly in this way in which the refinement of
structures in crystallography is carried out, by comparing the structure factors obtained
through model densities and through experiment. A residual factor (R-factor) is defined

to measure quantitatively the difference between both ways

2

F,

calculated

F observed | -

Y IF,

observed
An accurate experimental electron density is achieved when the R-factor obtained is less

R - factor = (2.41)

than 0.002.
The first approach that was implemented to produce model densities was based on the

independent atom model (IAM), where molecules are approximated as the superposition
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of spherical atomic densities. It is known as the promolecule approximation. There are
several assumptions inside this approximation. For example, no electronic excitations and
transfer of charge between atoms is allowed, as well as the spherical atomic symmetry is
conserved. The most difficult task is to build the density within the unit cell, for example,
to define the position and number of atoms in the unit cell. This is carried out by
analyzing the chemical information of the crystal, specifically what types of atoms form
the crystal. Therefore, under the promolecule approximation the expression for F(h,k,1)
(Equation 2.40) will be in terms of atomic densities, and it can be written by assuming the

atoms centered at x;, y; and z; such as [22]:

X =Xx-%
y=y-y (2.42)
2 =z-z

in this new form:

F(h,k,0)= Z exp[27zz' (hxj +ky; +lz, )}{ J P, (x', 5,2 exp[27u'(hx'+ky'+lz')]dx’ ay' dz'} (2.43)

Y

which can be written as follows:
Fik,1)=Y £, expleai(hx, +ky, +12, )| (2.44)
j
where

fi= I P, (x', ',z exp[27zi(hx'+ky'+lz‘)]dx’ dy'dz' (2.45)

f; is known as the atomic scattering factor, and it is calculated by quantum mechanical

methods. The values of f; depends on the type of atoms and on the Bragg angle, and

they are tabulated in Volume II of the International Tables for X-ray Crystallography.
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The breaking of spherical symmetry of the atoms due to the interaction with the other
atoms or by the formation of a chemical bond introduces significant errors in the
elucidation of the structure using the promolecule approximation. Therefore, this
approximation leads to acceptable results for heavy atoms where the core electrons
dominate the scattering of the X-rays relative to the valence electrons and the distortion
of the electron density from the spherical symmetry is not severe [25]. In the case of light
atoms, the distortion is considerable and the results using the promolecule approximation
are in general inaccurate [24,25], specifically for hydrogen atoms where an acceptable
determination of their positions is not possible.

To consider the deformation of the electron density due to the interaction with the other
atoms of the systems or by the formation of chemical bonds, aspherical multipolar
formalisms have been developed [24,26,27]. One of the most used is the formalism of
Hansen and Coppens [24,25,27,28], where the atomic electron density is expressed as a

sum of three terms.

Ina

x !
pato = Pcore pcore + PvalenceKSpvalence (IG")-I- z K'3 Rl (K' r)z IJImi dlmi (0’ (0) (246)
m=0

1=0
The first and second terms account for the contribution of the core electrons and the
valence electrons, respectively. The third term accounts for the valence deformation. The

P’s refer to population coefficients and they satisfy the following condition:

!
P+ Ponce + z P, =total number of electrons of the atom or ion (2.47)

core va,
m=0

The peore and Pyaience for light atoms or ions are calculated using the Hartree-Fock method,
whereas for heavy atoms or ions the relativistic Hartree-Fock method is used to account

for relativistic effects [24,25,27,28]. R; is a Slater radial function with energy optimized
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exponents, and the parameter k¥ scales the coordinates to provide radial contraction or
expansion flexibility to the valence shell. The dj,+ are density-normalized real spherical
harmonic functions expressed in polar coordinates which describe the aspherical features

of the density. Substituting equation 2.46 into equation 2.45, an expression for the

aspherical multipolar atomic scattering factor (fj) is obtained. Thus, the structure factor

F(h,kI) expressed as a function of these new scattering factors results in the following

equation:

F(h: ka l) = Z [Pj,corefj,core (H)+ Pj,valencefj,valence (H / K)]
J

+ 47:1'"2“ i Pyi' (. )d e (B y Nexpl2ri(hx, + oy, +12, T, (1, k,1)  (2.48)

1=0 m=0
where fjcore and fvaience are the Fourier transforms of pjcore and g vatence, respectively,

(j,) is the I" —order Fourier-Bessel transform of R;, and the dj» are spherical harmonics

expressed in reciprocal space polar coordinates. The Tj(h,k,l) are the temperatures which
are introduced to measure the extent to which every atom j oscillates around the position
specified in the model due to thermal vibrations. The use of this aspherical model of
atomic density makes a significant contribution to the refinement of chemical structures

determined by the X-ray diffraction experiment.
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Chapter 3 The Quantum Theory of Atoms in Molecules.
3.1 The Topology of the Electron Density.

Open systems are those systems that can interchange charge and momentum with their
surroundings. Quantum mechanics establishes the properties of open systems when they
are bounded by a zero-flux surface in the gradient vector field of the electron density
(Vp, Equation 3.1). From elementary calculus the gradient V of a scalar function, p (r) in
this case, at a point in space is a vector pointing in the direction in which p (r) undergoes
the greatest rate of increase and having a magnitude equal to the rate of increase in that

direction.

Vp=id—p+jd—p+kd—p 3.1
de " dy dz

In essence the theory of Atoms in Molecules (AIM) developed by Bader [29] is a
wonderful extension of quantum mechanics to chemistry. It gives a quantum definition
for atoms (open systems) in molecules, showing that they are bounded by a zero-flux
surface in the gradient vector field of the electron density. Therefore, it is the topology of
a physical observable, the electron density, that determines the boundaries of an atom in a
molecule, which in turn determine its shape and its properties. This remarkable result
supports an important hypothesis in chemistry, which is the basis of chemistry as an
experimental science: molecules are formed by the union (chemical bond) of atoms.

When the electron density is analyzed in molecules (it could be from experiment or from
theoretical calculation), specifically the plot of Vp, it shows trajectories coming from

infinity and terminating at nuclei or points where Vp is equal to zero. Indeed the
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trajectories of Vp come from and terminate in regions or points where Vp = 0 (infinity
and critical points). It should be borne in mind that p is a function in three dimensions,
and Vp has to be zero in the three dimensions in these critical points [29,30].

The forces exerted by the nuclei on the electron density dominate the topology of it, thus,
the electron density exhibits a maximum at the position of each nucleus. The nuclei are
considered as attractors of Vp, and the regions in the space that contain one attractor and
are enclosed by a surface of zero flux formed for all the trajectories of Vp that originate
and terminate in points where Vp = 0, except the position of the nuclei (attractors), are
called basins (2). These basins contain all the trajectories of Vp that terminate at the
contained attractor coming from any point in the space. Therefore the analysis of Vp
produces a partitioning of the total space of a molecular system into subspaces formed by
one attractor (nucleus) and its respective basin. Each subspace defines an atom in the
AIM theory.

Any critical point in the electron density distribution is characterized by its rank and
signature [29,30]. The characterization of a critical point is carried through the so-called
Hessian matrix evaluated at the critical point in question. The Hessian matrix is a 3x3
array of nine second derivatives of p where the diagonal elements are the second
derivatives in the same direction and the off-diagonal terms are the crossed second

derivatives (Equation 3.2).

o’p o’p 9'p
ox*  Oxdy Oxoz

2 2 2

Alr)=| 2L 22 9P (3.2)
oyox Oy 0yoz
o’p 0*p 0%p
0z0x 0zoy 0z°




Since the Hessian matrix is real and symmetric, it can be diagonalized to give the
associated Hessian matrix. Essentially the procedure of diagonalization is equivalent to
finding the eigenvectors that define the axes of a new coordinate system where the off-
diagonal elements of the Hessian matrix are zero. It should be kept in mind that in three
dimensions there can be points where the Vp = 0 in two dimensions, which will make the
Hessian matrix diagonal in two dimensions. The only critical points of interest are those
which make the Hessian matrix diagonal in three dimensions. This associated matrix is

denoted by A (r;) and it is given by:

2
Zf 0 0
" A 0 0
A=l 0 Z2 o | =0 4 o0 (3.3)
oy
5p 0 0 4
0 0
02" ),

where Aq, A, and A3 are the eigenvalues of the associated Hessian matrix (the curvatures
of the density with respect to the new coordinate system). An important property that has
to be mentioned is that the trace of the Hessian matrix is invariant to rotations of the
coordinate system.

The rank of a critical point is determined by the number of non-zero eigenvalues (or
curvatures) of the associated Hessian matrix evaluated at the critical point, and the
signature is the algebraic sum of the signs of the eigenvalues. A positive eigenvalue
indicates that the function is a minimum in the direction defined by its associated
eigenvector, and a negative sign indicates the opposite. In most molecular systems, p is
antisymmetric with respect to the bond critical points. Thus, the behavior of p in the

direction defined by an eigenvector and in the opposite direction to it is different. For
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example, the direction defined by a positive eigenvector indicates the largest increase of a
function (p); in the opposite direction p also increases but not as in the direction defined
by the eigenvector (A function only presents the same behavior in both directions when it
is symmetric with respect to the evaluated point.)

Bond critical points have rank = 3 and signature = -1, and are denoted by (3,-1). The
eigenvector with a positive sign represents the direction in which p is a minimum, it
defines a trajectory in Vp that links the two nuclei of the atoms. This trajectory is known
as a bond path. It represents a line of maximum density between the bound nuclei and it
can be considered as a universal indicator of bonding. The set of trajectories that
terminate at a bond critical point (and at a ring critical point depending upon molecular
system) define the interatomic surface (IAS) that separates the basins of the neighboring
atoms. An interatomic surface is one of zero-flux in the gradient vector field of the
electron density since it is formed by all the trajectories of Vo (r) that do not terminate at
the position of the nuclei. This property is the necessary and sufficient condition for the
development of the theory of atoms in molecules from first principles. A more detailed
analysis about this important condition will be provided in the next section.

Even though the electron density at the center of a nucleus is zero, each nucleus defines
the terminus of the Vp trajectories. The nuclei represent local maxima in the electron
density and are classified as (3,-3) critical points.

All the topological properties of the electron density in the molecular systems discussed

above are clearly illustrated in Figure 3.1.
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Figure 3.1 Topological characterization of the electron density in BF; molecule (included
with the permission of Dr. Chérif Matta).
(a) Bond critical points, bond paths, contour map of the electron density, Vp
trajectories and interatomic surfaces.
(b) A three-dimensional view of the interatomic surfaces.
However, not all the (3,-3) critical points are nuclei. In clusters of lithium and sodium
(3,-3) critical points have been found at the bond midpoint [29]. These maxima are called
non-nuclear attractors, and they exhibit a small value of p relative to the nuclei.
Therefore, the nuclei in these clusters of lithium and sodium are not linked by a BCP but
two BCPs and a non-nuclear attractor. The BCPs are exhibited between each nuclei and
the non-nuclear attractor, and they appear on the trajectories of Vp that connect each
nucleus with the non-nuclear attractor. The electronic charge is loosely and delocalized in
regions dominated by the non-nuclear attractors and it can be useful to explain the
conducting properties of clusters of metals.

Ring critical points are characterized by rank=3 and signature =1 and denoted by (3,+1).

The two positive eigenvalues define a surface formed by all the trajectories of Vp
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generated at the ring critical point; this surface is called the ring surface. The ring critical
point is present in all the structures where the bond paths form a ring, therefore the
existence of this critical point is the necessary theoretical condition to classify the
structure of a certain compound as a ring. Cage critical points are denoted by (3, +3) and
are inside the volume engulfed by two or more ring surfaces.
The Poincaré—Hopf relationship defines a algebraic relation between all the critical points
that can coexist in a molecule and it is given by:

n-b+r—-c=1 (3.4)
where n stands for number of attractors, b for the number of bond critical points (BCP), r
for the number of RCPs, and ¢ for the number of CCPs. The set {n, b, r, ¢} for a given
molecular system is known as the characteristic set of that system. Equation 3.4 holds for
a non-periodic system such as an isolated molecule or molecular complex. The violation
of the Poincaré—Hopf equality means that a further search for the missing critical point(s)
is necessary [29,30].
One important parameter of the AIM theory is the ellipticity [29,30] of a bond, which is
defined as (A1/A2) -1, where A and A; are the two negative curvatures at the bond critical
point in decreasing order of magnitude. Curvature at a certain point gives an idea of how
a function decreases or increases in the vicinity of this point. A small negative curvature
indicates a small decreasing of the function, and a small positive curvature indicates a
small increasing of the function; the opposite when their values are great. Therefore small
negative curvatures represent high accumulation of charge through the axis defined by

the corresponding eigenvalue, and specifically, the eigenvector with A, curvature defines

the direction of highest concentration of p. Thus, the ellipticity serves to quantify how p

32



is preferentially distributed in the perpendicular plane to the bond formed by the two
axes, which at the same time are defined by the two eigenvectors with negative
curvatures A; and A,. In other words, the ellipticity is a suitable parameter to determine
the m character of the bonds.

Probably the AIM result that contains the most chemical information is the Laplacian
[29,31,32] of p (Vzp), especially the (3, -3) critical points on the topology of the negative
of the Laplacian. It should be kept in mind that the characterizations of charge
concentrations in terms of critical points is always carried out through L, which is equal
to -Vzp, to make the analysis of the results easier. The Laplacian of the electron density is

the trace of the Hessian matrix, and it is given by:

v ple)=v vplr)= 220, 2 a;’frh 7 k) 35)

The Laplacian of the electron density (V2p) plays a central role in analyzing and
understanding the reactivity and geometry of compounds [29]. In regions where V2p<0
the charge is locally concentrated, whereas in regions where V20>0 the charge is locally
depleted. A chemical reaction is defined by AIM theory as the interaction between
regions of charge concentration with regions of charge depletion. The line of approach of
the two reactants is one that minimizes |V*p, - Vp,.

AIM studies of the Laplacian also exhibit shell structure for isolated atoms [29,48]. The
valence shell of an atom is divided into two regions. The outer region exhibits positive
values of V2 p whereas the inner one presents negative values of V2p. This inner region is

called the valence shell charge concentration (VSCC).
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It can be said that the electron pairs of the Lewis model find their theoretical justification
in the topology of L or in other words the topology of L describes the valence shells of
atoms in molecules in such a way that is consistent with the Lewis model. This model is
frequently used to predict geometries and the stability of compounds as well as reaction
paths.

The critical points in L are obtained in the same way as those of p, through the
diagonalization of the Hessian matrix [29,30]. The most important critical points in the
topology of L are those characterized by rank=3 and signature =-3 denoted by (3, -3) and
by rank=3 and signature=-1 denoted by (3, -1). The (3, -3) critical points are maxima and
correspond to the points of highest concentration of charge. These local maxima in three
dimensions in L can be considered to represent the electron pairs of atoms in molecules
of the Lewis model, which is the basis of the valence shell electron pair repulsion model
(VSEPR) for the prediction of molecular geometries [29]. The (3, -1) critical points are
known as link points and can be associated with the bond critical points in the topology
of p. The link points are maxima in the two dimensions perpendicular to a line that joins

two (3, -3) critical points in L topology and a minimum along this line.

3.2 The Zero-Flux Surface and Proper Open Quantum Systems

A zero-flux surface in the gradient vector field of the electron density is a surface (S)
where a normal vector n (r) to the surface is orthogonal to the gradient vector field Vo (r)
at every point on the surface. This boundary condition is defined by the following
equation:

Vp(r)-n(r)=0 VvV res(Qr) (3.6)
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where Q refers to the atomic basin. This equation plays a central role in the quantum
theory of atoms in molecules because it is the necessary condition for the definition of an
atom as a proper open quantum system. In general, the atomic surface consists of an
intersection of a number of interatomic surfaces that produces a partitioning of the
molecular space into a disjoint set of mono-nuclear regions (atomic basins). This is a
consequence of the fact that each nucleus acts as an attractor in the gradient vector field
of the electron density. Thus, those trajectories of Vp (r) that do not terminate at the
position of the nuclei form the interatomic surfaces, separating one atomic basin from the
other and having the condition of zero-flux surface in the Vp (r) field [29,30].

A molecule can be viewed as a collection of atoms linked by bond paths as was explained
in the last section. Therefore, atoms can be considered as subsystems of the molecular
system. In the quantum mechanical description of subsystems, the analysis of the
bounded surfaces that limit one subsystem from the others has to be taken into account.

For example, consider the following expression:
v (wrw)=v. (Ve + v (ve)
=(V2e W+ (VW) + 29" - v 3.7)
By doing some transformations on equation 3.7 and substituting ¥ *¥ by p, one obtains:

“levier c e vie| vt ve-vip (3.8)

69
14

Multiplying both sides of equation 3.8 by —#> / 4m and summing for the ‘7 electrons in

the system, it is obtained the following expression is obtained for the many-electron case:

__Tﬁ— [‘I’VZ‘P*+‘P*V2‘P]-'—;£-ZV .V LI’—-——Z—ZVZ 3.9
i i _2mi i i 4m & iP .

4m,'
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The electrons are fermions (semi-integer spin), therefore W has to be antisymmetrized.
Moreover, the electrons are indistinguishable particles, thus, N times the average of an
one-electron operator is equal to the average of a sum of N one-electron operators. The
average of each one-electron operator term in equation 3.9 is obtained by integrating over
the space coordinates of all the electrons but one, and summing over all the spins [29,30].
This mode of integration will be denoted by | dt’, and it will be used elsewhere in this

chapter. As was explained above, the result of the integration is then multiplied by the

number of electrons to obtain:
h’ 2t o2 h’ . n’ 2

-Zn;der'[\Pv,.\P +¥ V,.‘P]zﬁNfdr‘Vi‘P -V,.\I’—Zn—;der'Vip (3.10)
Where the LHS term and the first RHS term are kinetic energy densities, and they are
denoted by K (r) and G (r), respectively. The second RHS term is a function of the
Laplacian of the electron density, and it is denoted by L (r). Since Vp (r) vanishes at
infinity, V?p (r), which is equal to V-Vp (r), also vanishes. Therefore, an integration of
equation 3.10 over all space will cancel L (r) and will result in the equality K = G = T,
where K is the Schrédinger kinetic energy, G is the gradient kinetic energy and T is the

well defined kinetic energy. However, integration of equation 3.10 over an arbitrary

subsystem Q
K(Q)=G(Q)—§2—der'V-Vp=G(Q)—L(Q) (3.11)
m g

would result in a non-physical result (K (Q) # G (L)), and the kinetic energy of the
subsystem (7 (€)) would not be well-defined if the bounding surface of Q does not

satisfy the condition of zero-flux surface in the Vp (r) field. In order to make this
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statement clearer, the volume integral of equation 3.11 can be transformed to a surface

integral using the divergence theorem of Gauss.
2
K©Q)= G(Q)—T NqdS(Q,r)Vp n(r) (3.12)
m

Therefore, S has to be a zero-flux surface in the Vp (r) field to obtain a well defined
kinetic energy (K (Q)= G(Q)=T(Q)).
Bader and Beddall in 1972 obtained a remarkable result by studying the behavior of the
kinetic energy density [33]. They demonstrated that when the electron density of a proper
open system is transferable, the kinetic energy density is equally transferable. However, it
is necessary to prove that the virial theorem applies to an atom in a molecule to state that
the total energy of this atom E (Q) is also transferable. The virial theorem in general
establishes that the average kinetic energy of a system (or subsystem) is equal to the
negative of the average of the total energy of the system. In the case of an atom in a
molecule it will be enunciated in the following way:

7(Q)=-E(Q) (3.13)
In consequence, the electron density determines the form of an atom in a molecule and its
contribution to the total molecular energy. It means that two atoms with similar
distributions of the electron density in their basins will contribute similar amounts to the
total energy [29,30].
Another consequence of application of the virial theorem on a subsystem, which in this
case is an atom in a molecule, is that the total energy of the molecule (and the kinetic

energy) can be partitioned into additive atomic contributions.

E=-YEQ) (3.14)
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Therefore, the additivity and transferability are two fundamental properties that the
empirical atoms exhibit, and they are consequences of the fulfillment of the virial
theorem on an atom in a molecule. The demonstration of the virial theorem on an atom in

a molecule will be presented in section 3.4.

3.3 The Coincidence of the Topological Atom and the Quantum Atom

The mathematical requirement for Hermiticity of an operator Ais
fw (awhir = [(29) war (3.15)

where ¥ can be all the functions defined in the space of functions in which A is defined.
The non-Hermiticity of an operator’s average over subsystem consists of one the most
important distinctions, in a quantum mechanical sense, between a subsystem and its total
system. The formation of fluxes in property currents across the surface defining its
boundaries is responsible for the lost of Hermiticity. An atom is a subsystem of the
molecular system, and it can exchange fluxes of properties (energy, etc) with the
surroundings through its bounding surface. Therefore, all the operators, when they are
integrated over the basin of an atom (Q), lose their Hermiticity. This statement is made

clear using the Heisenberg equation of motion, which determines the evolution of an

operator A over time:

ﬁ%:ﬁwl[ﬁ, A)+(237) (3.16)
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where the first LHS term is the commutator of the Hamiltonian and the observable

A (property). Suppose that A does not have an explicit dependence on time to make the
derivation easier, thus, the second RHS term is zero.

The commutator term of equation 3.15 can be rewritten in the following way:
<‘{"[H 21]\}'> - <LP‘HA"P> - <‘11|AH}1P> (3.17)
Utilizing the Hermiticity property (<a|/i'b> = <b‘2!a>*) and the Schrédinger equation
H l ‘I’> = EV, one obtains:
(el ) ={oe| ) (i)
- E<‘P‘A|\P> - E<‘P‘A"P> =0 (3.18)
Therefore, when the integration is performed over the whole space the commutator will

be always equal to zero whether ¥ is an eigenfunction of the operator A or not. In other

words, the Hamiltonian and A do not have to commute to obtain the average of the
commutator over the whole space equal to zero. But this average can no longer be

assumed when it is integrated over any subsystem:
<LP\[H A]‘P>Q =(v|Aaw) -(¥|iaw) =0 (3.19)
To continue with the derivation in a simple way, assume that H describes the motion of

a single particle under the influence of a scalar potential V(r):

H= -(K]VZ +7(r) (3.20)

2m
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This does not cause loss of generality since the many-electron case can be obtained by

the insertion of N | d7’. The potential energy operator in H is areal quantity, and it does
not involve derivatives. Therefore, its contribution in the average commutator 3.19 will

be canceled out. Rewriting equation 3.19:

<‘P

A, i) =iidr[(v2w*)ﬁw—w*v2(ﬁw)]

= 5’% [arv (o )aw - wv(aw) (321)

Transforming the volume integral into a surface integral using Gauss’ theorem yields:

(|la, 4] v) =qas@, ){ (v )aw - ‘PV(A‘P)]} n(r) (3.22)

which is equivalent to:

<‘P|[H 21]\11>Q = -indds(@,r)j, n(r) (3.23)

where j4 is the quantum mechanical current density for the observable A through the

surface, and it is defined by the following equation:

i ()= -2%; ¥ v(aw)-(ve Jav) (3.24)

As can be seen in equation 3.23, the commutator term (‘Pl [ﬁ , .;1] "I’) Qdoes not vanish

for an open system, and it depends on the quantum mechanical current density for the
observable in question through the surface. This result demonstrates clearly the difference
between the open systems and the closed systems where this commutator is equal to zero.

In order to yield a physical (real-observable) result, equation 3.23 should be rewritten
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adding the complex conjugate terms to each side of the equation and dividing by two to

compensate for this summation:
1] oo 1 .
5{% <‘Pl[H A]\P>Q + cc} =2 H ds(@.r)j, -n(r)+ ce| (3.25)

Thus, whenever Hand A do not commute, there is a flux in the property density of A

across the surface defined by the surface term in equation 3.25. Note that if A is equal to

1, the quantum mechanical current density will be expressed as

i) == [ ve —wve] (3.26)
2mi

Schrodinger in 1926 considered the one electron system “Hydrogen Atom” to obtain the

time-independent Schrodinger equation (H|¥)=E¥) [34]. He stated that the wave
function (‘¥) which describes the hydrogen atom has to be such a function that makes the
“Hamilton integral” ( I dr{h2T (g, 6‘P/6q)+‘P2V}) of the system stationary with the
normalization constraint I‘Pzdr =1. T(q,0¥/8q) is the kinetic energy, and V is the
potential energy (-e2 / 1). Therefore, the energy functional (J [\¥']) for this one electron
system is defined by:

J[w]= | d{%vw* V(P + A}F\P} (3.27)

where the constant A is the Lagrange multiplier for the constraint on ‘¥, which is

identified with the negative of the total energy of the system (£ = -1).
The statement of Schrédinger can be rewritten in the following way: the wave function

(W) to describe the system has to make the functional J[¥] a minimum or the

41



infinitesimal variation of this functional (6 J[\¥']) equal to zero. This generalization to the

many-electron system is straightforward.

However, a variational definition was needed for a subsystem in order to describe the
quantum mechanics of an atom in a molecule. Such a generalization of the Schrédinger’s
derivation was carried out by Srebrenik and Bader [35,36]. They defined a corresponding

energy functional for a subsystem €2:

2

Glv,Ql= | drBl— Vv 4 (- E}qu} = [drf (2, V) (3.28)
Q m Q

A variation (infinitesimal change denoted by 8) of G [W¥,Q2], which is a function of both

¥ (W) and V¥ (V") has to include the variation of the bounding surface. ¥ and ¥ are

treated as independent variables, therefore, cc terms will appear in the final expression

for the variation of the functional:

56w, Q)= J dr[(g—;jaty + (%javqf} +qdS(@Q.r)f x8S(@Qr)+cc  (3.29)

By doing several transformations equation 3.29 can be shown to yield [35]:

36w, Q)= [ar[HY - E¥ ¥ +{as(@, ‘P)K%)V‘P (r)o¥ + £ x85(Q,r) | +ce

Q

(3.30)

Consider a system where the bounding surface is at o (total system). Thus, the second
RHS term vanishes by requiring that there is no electron density at r = o, and then, ¥

and V¥ are equal to zero. Therefore, for such a system equation 3.30 is reduced to:

5G[¥, Q)= [ar[H¥ -~ B ¥ + cc (3.31)
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5G[‘I’, Q] must be equal to zero to make the Hamilton integral of the system stationary,
as was stated by Schrodinger in 1926. In consequence, the bracketed term in this equation
must vanish, and it will yield the two conjugate Schrédinger equations:

BY = EY and BY* =E¥" (3.32)
Therefore, it can be concluded that the first term in Eq. 3.31 will not contribute to G for
a subsystem as well as a total system (system with the bounding surface at o) because

Schrodinger’s equation applies at any point of variation. Thus, at any point of variation

equation 3.30 is reduced to:

2

G, Q)= q‘ ds(Q, r)[[-;‘—jw* (r)o¥ + f(F, V¥)x 85(Q,1) | + ce (3.33)
m

Equation 3.33 shows that the variation of the energy functional does not vanish. It

depends on two terms involving its bounding surface. However, this equation is not

useful to obtain a general physical result because the second surface term cannot be
calculated. Therefore, an alternative expression for f (‘¥,V'¥) involving the Hamiltonian
operator H is formulated where the complex conjugate term is taken into account, thus, f
(¥,V¥) appears twice in the equation. Also, using equation 3.10, which relates the two
forms of kinetic energy density, rewritten for the one-electron case, one has:

21 (¥, V¥)= [(ﬁw)‘qlpy*ﬁﬂ—zw*\y+2(ﬁ2—]v2(ly*w) (3.34)

dm

and since Schrodinger’s equations are applicable, equation 3.34 is simplified to:
hZ
f(¥,v¥)= (ﬂwp(r) (3.35)
m

Substituting this expression in equation 3.33, yields:
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s6[¥.Q]=qas(, r)[(%}(zw* -n(r)o¥ + 58(Q, r)V? p):l +cc (3.36)

This is an important result which clarified the physical interpretation of our problem
because it shows that the variation of the energy functional depends on the Laplacian of
the electron density. However, it is not possible to make further progress in obtaining a
general variational principle from this expression 3.36 for an arbitrary region in the
space. Therefore, we need to restrict our subsystem Q to satisfy a particular variational
constraint on the form of the open system. It is demonstrated next that equation 3.36 is
transformed into the atomic statement of the hypervirial theorem for such a subsystem. A
trial function @ is used to introduce the variational constraint.

Before proceeding with the demonstration we should recall that the topological definition
of an atom implies the zero-flux surface condition (equation 3.6). In other words, an atom
is a region of space bounded by a surface satisfying the zero-flux condition.

A region Q(®) is defined in terms of the trial function @ that is bound by a zero-flux

surface in Vp,, , where the trial density is defined as:
Po = [dr D*® (3.37)

Q(®D) is required to be continuously deformable into the region Q('¥'), which is the region
associated with the atom, as @ tends to . In consequence, the region Q(®) represents
the atom in the system which is described by the trial function @, and Q(¥) represents
the atom when the system is in the state described by ¥. Therefore, we have to impose

the variational constraint for Q(®) at all stages of variations, which is:

[V?p, (x)dr =0 (3.38)

Qo)
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In other words, it means that all admissible @ fulfill condition 3.38, which implies that:

8| [V2po(r)dr|=0 (3.39)
Qo)

Similar to equation 3.29, the variation 3.39 requires a variation in the surface of Q as well
as the variation of the integrand. Therefore, the variation in the surface Q has to be equal

to the negative of the variation of the integrand, or vice versa, in order to obtain 3.39

equal to zero:

P Jaseks(@nole) =~ farofy o] (3:40)
= —%JdrV-[V‘P"é‘P+‘P*V6‘P] (3.41)

- % Jas(@r)veov + 'Vor]nlr) (3.42)

as can be seen the change from volume integral in 3.41 to surface integral in 3.42 was
performed utilizing the Gauss’ theorem. Then, substituting the RHS of equation 3.42 into

3.36, yields:
‘PQ]- {ds Ve oy - s(Ve) nir)+ec  (3.43)

Equation 3.43 is a statement of a physical principle because it shows that the
Schrédinger’s energy functional can be expressed in terms of the surface integral of the
quantum mechanical current density (equation 3.26). For example, the variation of

equation 3.26 yields:

5 jr)= % [e*s(vw)-(ve ow] (3.44)
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Therefore, the Schrédinger’s energy functional can be rewritten to show clearly its
dependence on the quantum mechanical current density (j (r)) by substituting 3.44 in
3.43:

sG[¥,Q]= —fzh—cfds (Q,r)5j(r) n(r)+ cc (3.45)

However, the equivalence between the expression for the variation of the subsystem
energy functional (SG[‘P, Q]) and the variational derivation of the hypervirial theorem for
an atom in a molecule has not been demonstrated to this point. For this purpose, we need
to consider the variation of W to be generated by the action of an operator on itself.
Schwinger uses infinitesimal unitary transformations, which apply separately to the
observables and the state function of the system, to generate all possible physical changes
in the mechanics of a quantum system [37]. The operator for an infinitesimal unitary
transformation and its inverse (its Hermitian conjugate) are given by:

U=1-2¢ and U =i+%@ (3.46)

where ¢ is an infinitesimal and G is any linear Hermitian operator (observable), which is
referred to be the generator of the infinitesimal transformation. The effect of these unitary
transformations defined by 3.46 on ¥ and ' generates the infinitesimal variations
represented by 3.47:

& A & A

é‘Pz—;GIP and &P*"-—‘;GIP* (347)

Then, it is convenient to define a quantum mechanical current density for the property
associated with the operator G since the variation of ¥ and ¥ (8¥ and 8Y) is

generated by G . The expression for this quantum mechanical current is given by:
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o) =2 v(6w)- (Ve fov] (3.48)

2mi

and now the expression for the variation of the energy functional in terms of j,, (r) is:

5G[‘P,Q]=—%cde Q,r)j, () n(r)+ ce (3.49)

By comparing 3.49 with the expression derived previously for a subsystem statement of

the hypervirial theorem (Equation 3.25), we can write:
eli Aooa
5GP, Q= -> {}% <\1}] [H, G] l‘P>Q + cc} (3.50)

This is a remarkable result, and it is known as the atomic statement of the principle of
stationary action for a stationary state. It applies to a system with its bounding surface at
infinity (total system) and also to all the open systems in which the bounding surface
satisfies the zero-flux condition in the gradient of the vector field of the charge density.
Therefore, it can be applied to an isolated atom, an atom in a molecule and to any linked
atoms or grouping of atoms. Thus, it can be said that the zero-flux condition expressed in
equation 3.6 makes possible the definition of the topological atom as a quantum system.

As the main conclusion of this section we can say that the topological atoms have been
proved from first principles to be proper open quantum systems. Therefore, they can be
identified with the atoms of chemistry since the principle of stationary action establishes
for the proper open quantum system that their properties are additive and transferable

[38]. The additivity property is expressed by the following equation:

M= M(Q) (3.51)

where M is any molecular property and M(Q) is the corresponding additive atomic

counterpart. This result is precisely what makes the theory of atoms in molecules so
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powerful, the coincidence in properties between the topological atom and the atoms in
chemistry or, in other words, the connection between experimental chemistry and the
quantum theory of electronic structure of chemical systems. In experimental chemistry
there are many instances where the values of several properties, such as the heat of
formation, the electric polarizability or the magnetic susceptibility, can be expressed in
terms of additive group contributions. This additivity is also exhibited by using the
definition of group by the theory of atoms in molecules in theoretical calculations. For
example, calculations in linear hydrocarbons have demonstrated that the total energy of
the hydrocarbons can be expressed as a sum of the energies of the methyl and methylene
groups [29]. This additivity principle is satisfied to within experimental accuracy.
Furthermore, the linear hydrocarbons are examples where the density distribution of an
atom or group is essentially transferable between systems [29]. In conclusion, the
quantum theory of atoms in molecules recovers the ancient concept of atoms as the

building blocks of matter.

3.4 The Atomic Virial Theorem

The virial theorem of an atom is derived using the atomic statement of the principle of
stationary action, which was presented in last section. Equating 3.49 and 3.50 to put it in

a more general way, we obtain:
{}i{ M[H ’ G]‘P>Q * Cc} = [fas(@ )i () nle)+cc] (3.52)

The virial operator f-p, where ¥ and p are the position and momentum operators for a

single electron, is used as the generator of the infinitesimal unitary transformation
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[

(G =#-Pp). Therefore, we obtain for the LHS term of 3.52 by inserting £, evaluating
the commutator and multiplying by N/2 to the both sides of the resultant equation by N/2,

the following:

% ){% (e -plw) + cc} - —ZN[%L[HT far[vviw + (Voo o]

+N_[dr Idf"{’*(—r -VV}P
Q

=2T(Q)+7,(Q) (3.53)
The first term of the RHS of 3.53 is twice the average electronic kinetic energy of the
atom T(Q) defined in equations 3.10 and 3.11. The second term is the integrated value of
the virial of the Ehrenfest force acting on an electron in the basin of the atom €, which in

other words is the average effective potential field felt by an electron in an atom Q.
Now working on the RHS term of 3.52, we evaluate the surface integral and multiply by

N/2 to yield:
% as(@ 1), ) n)+ o]

__Nh2
dm

Jas(@.r) [ar ¥ V(e VE)-VE* (- V) + PV Ve )- Vel V)

——Jas(@ r)r.&(r).n(r)_%g{ds(g, £V plr) n(r) (3.54)

The identity V(r-V¥)=V¥+r-VV¥ was used to obtain the final result. The second
term of the RHS of equation 3.54 is L(Q), as defined in equation 3.11 in section 3.2. The

negative of the first term on the RHS of equation 3.54 is labeled Z4(€2), and it is the virial
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of the Ehrenfest forces exerted on the surface of the atom Q. The quantum stress tensor

&(r) is defined for the many-electron case as:
h2
5()=-N— [ar V(P + V(T W+ VIV -V ) (3.55)
m

which can be reduced to the one-electron case by performing the integration and dividing
by N. The quantity 6(r)-n(r) is the outwardly directed force per unit of the surface, and
r-(r)-n(r) is the virial of this force, which integrated over the surface yields the virial
of the Ehrenfest forces exerted on the surface of the atom Q:
2 =]ds(Q.r)r - 5(r)-n(r) (3.56)

Equating equations 3.53 and 3.54, and taking into account that for an atom L(QQ) = 0
(second term of the RHS of 3.54) since its bounding satisfies the zero-flux condition in
the gradient of the vector field of the charge density, one obtains:

-27(Q)=7(Q)+ % (Q)=2() (3.57)
77(Q) is the total atomic virial, and it has two contributions; one from the basin and the

other one form the bounding surface, which is the expected physical result for a proper
open system.

The electronic energy of an atom E,(QQ) can be defined by:

E (Q)=T(Q)+7(Q) (3.58)
where T(Q) is the well defined kinetic energy of an atom as was mentioned in section 3.2
and 77(Q) is the total atomic virial. For a system in electrostatic equilibrium where there

are no external forces acting on the nucleus of each basin €, the virial of the system is
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equal to the potential energy (¥) of the system. Therefore, equations 3.57 and 3.58 can be

re-expressed under this condition in the following ways:
-21(Q)=7(Q) (3.59)

E(Q)=E,(Q)=T(Q)+V(Q)=-T(Q) (3.60)
where V() can be referred to now as the potential energy of atom Q and E(Q) is the
total energy of atom Q.
Equation 3.58 is a remarkable result. The equation represents a quantum mechanical
spatial partitioning of all of the interactions in a molecule: electron-electron, electron-
nuclear and nuclear-nuclear into a sum of atomic contributions (equation 3.14).

Specifically, we just need to calculate the well-defined kinetic energy of each atom in the

molecule to obtain the total energy of the molecule.

3.5 Atomic Properties

The atomic average of an observable 4 under the quantum theory of atoms in molecules
is given by:
A@)=(A) X far Idr'[‘l”’A‘Pﬂ-(A‘P)*‘P} (3.61)
a 24
But we can define the corresponding property density for an observable A, as:
p,(r)== _I;. fav [‘{’*A‘P + (A\P)* \P] (3.62)
and rewrite the expression for the average of a property A over an atomic basin Q as:

AQ)= [dep,(r) (3.63)
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Some atomic properties calculated by the theory of atoms in molecules are presented

below:
1- The atomic electron population (N (Q)) is obtained by setting A=1 in which case
p,(r) > plr) to yield:

N(Q)= [plr)z (3.64)

Q
2- The net atomic charge (g (€2)) is calculated obviously by subtracting N (Q) from
the nuclear charge Zq,.

9(Q)=2,-N(Q) (3.65)
3- The atomic volume (v (Q)) is the region of space enclosed by the intersection of
the bounding surface of the atom and an envelope of the charge density of some value.
The commonly value used for this envelope is p = 0.001 atomic units (au).

4- The average of the radial distance of an electron from the nucleus of the atom is

calculated by setting 4=r,:

Q)= [roplr)dr (3.66)
Q
5- The atomic dipolar polarization (M (2)), which is also known as the first atomic

electrostatic moment, is obtained by averaging the vector rq, with the center of the

coordinate system at the position of the nucleus, over the charge density of the atom:

M(Q)=—e IrQ p(r)dz . (3.67)

M (Q) is a three-dimensional vector, and it can be decomposed into its three

components (x, y, z) in the following way:
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M. -e J xp(r)dr
M(Q)=—e jrﬂ plr)dr =M , 1=l e I yp(r)dr (3.68)
M. —e I zp(r)dr

Q
M (Q) provides a measure of the extent and direction of the dipolar polarization,

which in essence measures the departure from spherical symmetry of the atom in

question.

3.6 Closing Remarks.

Figure 3.2 shows a summary scheme of Chapters 2 and 3.

X-Ray Diffraction Electronic Structure
HF, MP2, CI, DFT, CC, etc

Experiment\ / Theory

Electron Density
A1)

'

l Quantum Theory of Atoms in Molecules I

~ N

Zero-Flux Condition ] Bond Path, Critical Points and Ellipticities I Laplacian of theElectron Density

Vip ()
Atomic and Molecular Properties Geometry, Chemical Structure Chemical Reactivity and Description of the
(Energy, Dipole Moment, etc) and Features of the Chemical Bonds Valence Shell of Isolated Atoms and Atoms
(strength, conjugation and distance) in Molecules (VSEPR Model)

Figure 3.2 Summary scheme of Chapters 2 and 3 (taken and modified with the
permission of the author from the Ph.D thesis of Dr. Chérif Matta [24]).
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Chapter 4 A Theoretical Study of the Fluorine Valence Shell in Methyl Fluoride

4.1 Introduction

The chemistry of fluorine has fascinated chemists since its isolation in 1886 by Moissan
after nearly 74 years of continuous effort [39]. This interesting halogen is the most
electronegative element having the highest primary ionization potential (IP) and the
smallest atomic radius (r.,y). However there is a curious anomaly between the fluorine
and chlorine atoms, the electron affinity (EA) of the chlorine atom is greater than that of
the fluorine atom, but fluorine is more electronegative than chlorine. This fact is
rationalized in inorganic ehemistry books by the small size of the fluorine atom and the
resultant high concentration of charge that makes it difficult to accept another electron
[40,41]. Table 4.1 summarizes these features of fluorine by providing some atomic
properties of the halogen atoms [40]: the covalent or atomic radius, the ionic radius, the
van der Waals radius, the 1onization potential, the electron affinity and the

electronegativity.

Table 4.1. Some atomic properties of the group 17 elements.

Element Low(A)  1x(A) 1w (A) IP (eV) EA (eV)  Electronegativity®
F 0.71 1.36 1.50 17.4 3.4 3.90
Cl 0.99 1.81 1.90 13.0 3.6 2.95
Br 1.14 1.95 2.00 11.8 3.4 2.62
I 1.33 2.16 2.10 10.4 3.1 2.52

(a) Mulliken-Jaffé values in Pauling units [40].

54



The quantum theory of atoms in molecules (AIM) provides a consistent framework to
characterize bonding and the finer details of molecular electron density distributions [29].
The Laplacian of the electron density (V2p) plays a central role in AIM theory and yields
valuable information on bonding through its topology, especially via the critical points in
L (L=-V*p). As was discussed in Chapter 3, the analysis of L provides insight into many
features of isolated atoms and atoms within molecules. For example, the characterization
of the valence shell charge concentration (VSCC) of the fluorine atom in its compounds
through AIM theory provides a simple explanation for the weakness of the F-F bond in F»,
which is explained traditionally by the repulsion between the lone-pairs of each fluorine
atom [40,41]. The VSCC has also been shown to account for the geometry of the H,F*
ion (£HFH=114°) [42] and the HF polymer (£LHFH=110°) [42]. Also, it explains the
very high coupling constant Jgr that exists in compounds where the fluorine atoms are
separated by more than three bonds but are close spatially. This fact is explained through
the so-called through-space FF coupling [43,44,45,46].

There are several publications that describe the valence shell through AIM theory in
isolated atoms [29,47,48,49] and in covalent molecules [29]. In view of the importance of
fluorine, the scarcity of literature discussions on the VSCC of this element in its
compounds is surprising. In their study of the topology of the Laplacian distribution of
the F, molecule, Chan and Hamilton [50] located areas of charge concentration in the
valence shell of fluorine. They also showed that bond formation has little effect on the
valence shell shape of the fluorine atom. Gillespie et al. [51] in their study on fluorides of
transition metals also showed charge concentration in the valence shell of fluorine.

However, in each case the regions of charge concentration in the valence shell of fluorine
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were not characterized as (3, -3) critical points of the negative of the Laplacian. Bader
[29] discussed this anomaly of L in fluorine, which is exhibited in almost all of the cases
studied so far. In fact, hydrogen fluoride is the only molecule in which Bader reports a
bonded maximum in the VSCC of fluorine [29]. It is interesting that a Hartree-
Fock/AIM study by Oliferenko et al. reports four (3, -3) critical points in the L topology
of the fluorine atom in CH3F, three non-bonded maxima and one bonded maximum [52].
The small basis set used by these workers (3-21G) casts doubt as to the physical reality of
their findings, however.

In the light of these apparent inconsistencies, a detailed characterization of the VSCC of
fluorine in CH3F through AIM theory was carried out, with an emphasis on the global
maxima in L and the critical points that link these maxima. Moreover, the VSCCs of
carbon and silicon in CHy4 and SiH,, respectively, were examined as well as nitrogen,
oxygen, phosphorus, sulfur and chlorine in their methyl compounds in order to compare

with the fluorine case.

4.2 Computational Details

The optimization of the molecular geometry of CH3F and characterization of the VSCC
of the fluorine atom was performed with several ab initio methods (CISD, MP2, MP3 and
CCD) and the 6-311++G(2d,p) basis set. All calculations were performed with the
GAUSSIAN 98 program [53].

The CISD/6-311++G(2d,p) level of theory was used to carry out the VSCC comparison
with the other compounds. The location of the maxima of L and characterization of the

critical points as well as the calculation of the atomic populations were carried out using
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the EXTREME and PROAIM programs belonging to the AIMPAC program package
[54]. The graphs were obtained by using Molden [55]. Gauss View 2.1 was used to

visualize the locations of the maxima and link points.

4.3 Results and Discussion

4.3.1 Characterization of the Fluorine Valence Shell in CH;F.

Figure 4.1 summarizes some of the main results for CH3F. The most heavily shaded
regions in Figure 4.1(a) represent the areas of charge concentration in a HCF plane.
Figure 4.1(b) shows a graphical representation of the non-bonded maxima (indicated by
small lines) and link points (indicated by dots) on fluorine. Figure 4.1(c) shows a three-

dimensional plot of L in a HCF plane.

Link Point Non-bonded
Maximum

H
c .
|
H
(a) ' (b) (c)

Figure 4.1. Characterization of the fluorine valence shell in CH;F.
(a) Contour map of L in a HCF plane.
(b) Graphical representation of the maxima (indicated by small lines) and link
points (indicated by dots) on fluorine.
(c) Relief plot of L in a HCF plane.
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As can be seen in Figure 4.1(b), the maxima in the VSCC of the fluorine atom assume a
tetrahedral spatial arrangement. Moreover the optimized structure is a staggered
conformation, corresponding to less interaction between the maxima of L and the carbon-
hydrogen bonds. The link points are eclipsed with respect to the hydrogen atoms. These
results are consistent with the VSEPR model [42].

Table 4.2 provides the distances of the maxima and the link points to the fluorine atom
(the radius) as well as the electron density (p) and the negative of the Laplacian at the
maxima and at the link points for the fluorine atom in CH3F as computed with four levels
of theory. There are no appreciable differences between the three maxima and between
the three link points and, therefore, we only report the maximum and the link point of L

indicated in Figure 4.1(c).

Table 4.2. Characterization of non-bonded maxima (non-bonded charge concentrations)
and link points for the VSCC of fluorine in CH3F by several ab initio methods
with the 6-311++G(2d,p) basis set.

Method Non-bonded maxima Link points

rd) - V2p (aw) p (au) 1) -V?p (au) p (au)
CISD 0.3028 9.468 1.4954 0.3028 9.421 1.4940
CCD 0.3027 9.474 1.4954 0.3028 9.428 1.4941
MP2 0.3027 9.477 1.4953 0.3028 9.432 1.4940
MP3 0.3028 9.472 1.4954 0.3028 9.426 1.4941

As can be seen in Table 4.2, the four methods yield remarkably similar results. This is
another example of the well-documented insensitivity of AIM analysis to the level of
theory [29]. The non-bonding surface of maximum concentration of charge in the VSCC

of fluorine in CH3F can be considered as a hemisphere of radius 0.303 A with an almost
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constant value of V?p and p on its surface. This negligible distortion of the VSCC of
fluorine induced by bonding is consistent with the findings of Chan and Hamilton about
the distortion of the fluorine VSCC by the formation of the F, molecule [50].

The CH3F results are anomalous in the sense that there is no bonded maximum in the
fluorine VSCC (it has only been reported for the HF molecule [29]). To appreciate this
point it is helpful to consider the results for CH;Cl, in which a bonded maximum of the
chlorine VSCC lies on the line joining chlorine and carbon. This position for the bonded
maximum is consistent with the simple picture presented by the VSEPR model because it
minimizes the interaction with the non-bonded electron pairs. A unique feature of CH3F
is the presence of a (3, +1) critical point in the fluorine VSCC on the direct line that joins
fluorine and carbon, 0.336 A from F with L=3.51 au and p=1.059 au. The distances
between nitrogen and oxygen and their bonded maxima in CH3NH, and CH3;OH,
respectively, are greater by 0.045 A and 0.041 A than the distances between oxygen and
nitrogen and their non-bonded maxima. This fact suggests a difference in the fluorine
case around 0.036 A. Hence, this (3, +1) critical point is located approximately at the
expected position for the bonded maximum of the fluorine VSCC. The eigenvector
analysis shows that the eigenvector with a negative eigenvalue (which indicates that L is
a maximum in this direction) is on the line that joins fluorine and carbon. Therefore, L is
a minimum in both perpendicular directions to this line. Figure 4.2 characterizes the (3,+1)
critical point of the fluorine VSCC in CH;F with respect to the eigenvector directions.
Figure 4.2(a) shows a graphical representation of CH3F and Figure 4. 2(b) illustrates the

location of the (3,+1) point and the eigenvector directions.
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(2) (b)

Figure 4.2. Characterization of the (3,+1) critical point of the fluorine valence shell in

CH;F with respect to eigenvector directions.

(a) Molecular graph of CH5F.

(b) Locations and directions of the eigenvectors at the (3,+1) critical point in

L. Eigenvector 3 has a negative eigenvalue.

The AIM results are insensitive to the level of theory and therefore, appreciable changes
in the VSCC of fluorine at even higher levels of theory are not expected. For a bonded
maximum to appear in the VSCC of fluorine in CH;F, link points on the VL trajectories
that link the bonded maximum with the non-bonded maxima must also exist. The VSCC
of fluorine is very compact and characterized by large charge concentration and electron
density and therefore it lacks the flexibility required for the appearance of these necessary
link points on the VL trajectories. Thus, a (3, +1) critical point will be found instead of a
bonded maximum because it will be a maximum in the line that connects fluorine and
carbon, but it will be a minimum in the perpendicular directions to this line. These

perpendicular directions are tangents to the VL trajectories that connect this (3,+1)

critical point with the non-bonded maxima (Figure 4.2).
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4.3.2 VSCC Comparison.

Figure 4.3 summarizes results for CHs, CH;NH,, CH;0H, CH3;PH,, CH3SH and CH;Cl.
The most heavily shaded regions in Figure 4.3(a) represent the areas of charge
concentration, the outer one being the valence shell charge concentration (VSCC). Figure
4.3(b) shows a graphical representation of the non-bonded maxima of L topology
indicated by small lines and Figure 4.3(c) shows the link points in a HCX plane. The
three-dimensional plot of L in a HCX plane Figure 4.3(c) indicates the locations of

bonded and non-bonded maxima as well as the locations of the link points.

Link Point

H
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Figure 4.3. Characterization of the valence shells of carbon, nitrogen, oxygen,
phosphorus, sulfur and chlorine in CH3X, where X=H, NH,, OH, PH,, SH and
CL
(a) Contour map of L in a HCX plane.

(b) Graphical representation of the non-bonded maxima indicated by small
lines, the bonded maxima are on the lines that connect the atoms.
Graphical representation of the link points in a HCX plane that are shown
in part (c):

1- links two bonded maxima.
2- links one bonded maximum and one non-bonded maximum.
3- links two non-bonded maxima.

(c) Three-dimensional plot of L in a HCX plane.
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All the optimized structures shown in Figure 4.3(b) are staggered conformations, which
minimize the interaction between the maxima and the hydrogen-carbon bonds. In the
figure, the link points are minima of L in the line that connects two maxima, and maxima
in the two perpendicular directions to this line. Therefore, the locations of the link points
must represent the least electrostatic interaction with the other maxima in the system.
Figure 4.3 shows that all the compounds exhibit two link points in the HCX plane except
CH;0H and CH3;SH. Because of the symmetry of CHs, CH3NH,, CH3PH; and CH;Cl
molecules, the link points in the HCX plane minimize the interaction with the rest of the
bonded and non-bonded maxima (bonded and non-bonded electron pairs). In the cases of
CH3;0H and CH3SH, the link points were not found in the HCX plane because it does not
represent the least electrostatic interaction with the bonded maximum directed toward the
hydrogen atom and the non-bonded maximum. All these results are consistent with the
VSEPR model as was also shown in the CH3F case.

Tables 4.3 and 4.4 describe VSCC of carbon, nitrogen, oxygen, fluorine, phosphorus,
sulfur and chlorine atoms at the CISD/6-311++G(2d,p) level in their respective
compounds. Table 4.3 provides the radius and area of the maxima, the angles between
them as well as the negative of the Laplacian and p values at the maxima for the
compounds (the calculation of area between maxima is very well explained in page 266
of Bader’s book [29]). Table 4.4 describes all the found link points for the same

compounds in terms of distances to the nucleus, p and -V*p
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Table 4.3. Characterization of bonded maxima and non-bonded maxima for the VSCCs

of nitrogen, oxygen, fluorine, silicon, phosphorus, sulfur and chlorine atoms
by CISD/6-311++G(2d,p) in CH3X.

CH;-X
Bonded maxima (b) Non-bonded maxima (nb)
X  #b r p -V Angle () Area Angle(°) #nb r p -V Angle(®) Area
A) () (am) <bAb (A» <bAnb (A (@) (au)  <nbAnmb A»
H 4 0528 0295 123 109.5° 0.740
NH, 22 0437 0476 212 107.6™ 0.504° 111.1% 1 0392 0579 287 0.414¢
1* 0436 0442 167 108.3% 0.503° 110.3°
OH I* 0378 0735 3.16 105.2° 0.355" 105.6* 2 0341 0968 5.62 130.6 0.327
1> 0380 0.690 253 0.353° 103.8%
F NOT FOUND 3 0303 1495 947 116.1° 0.251
PH, CHARGE TRANSFER 1 0.760 0.136  0.36 1.653
1* 0815 0155 033 98.3° 1.610 119.7
SH 1" 0760 0222 068 1022 1.393 105.9* 2 0685 0202 063 129.7 1.343
1* 0727 0194 046 1.282 106.4"
Cl 1 0661 0248 057 104.8° 1.070 3 0626 0276 0.88 13.7° 1.064

a- Bonded charge concentration between the heavy atom and hydrogen.

b- Bonded charge concentration between the heavy atom and carbon.

c- Average angle

d- The area was calculated by assuming the bonded maximum (not found) lies on the direct line between fluorine
and carbon.

e- As the VSCC of the phosphorus does not exhibit a bonded maximum in the P-H bond at this level of theory, the
angles and area of the charge concentrations were calculated by assuming imaginary bonded maxima on the direct
line between phosphorus and each hydrogen.
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Table 4.4. Characterization of the link points for the VSCC of nitrogen, oxygen, fluorine,
phosphorus, sulfur and chlorine atoms by CISD/6-311++G(2d,p).

CH;-X
Link Points
X #L Ta p -V
N (auw) (au)
H 4 0.521 0.207 0.19
NH, I* 0.420 0452 1.38
1 0.423 0.438 1.35
1¢ 0.429 0.418 0.87
2° 0.430 0.412 0.87
OH 1? 0.345 0.898 4.55
2 0.369 0.754 2.91
2 0.378 0.694 2.52
1° NOT FOUND
F 3 0.303 1.494 9.42
PH, 1° 0.802 0.095 0.08
SH 1° 0.697 0.172 0.41
2 0.714 0.164 0.26
2 0.714 0.162 0.27
1° NOT FOUND
Cl 3 0.627 0.275 0.86
3 0.652 0.227 0.40

a- Link point between non bonded charge concentrations.

b- Link point between hydrogen bonded charge concentration and non-
bonded charge concentration.

¢- Link point between carbon bonded charge concentration and non-bonded
charge concentration.

d- Link point between hydrogen bonded charge concentration and hydrogen
bonded charge concentration.

e- Link point between hydrogen bonded charge concentration and carbon
bonded charge concentration.

As can be seen in Table 4.3, the fluorine atom presents the smallest radius of the non-
bonded maxima. It also presents the highest values of the negative of the Laplacian and p,
being almost twice the negative of the Laplacian and p values of the oxygen atom that
has the second highest. These results are expected; it is well known experimentally that
fluorine is the smallest atom of the atoms considered herein [40,41], and as a

consequence it has a large concentration of charge in its valence shell. The angle analysis
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shows the tetrahedral form of the valence shell of the fluorine atom and the rest of the
analyzed elements in their respective compounds.

The analysis of maxima and link points serves to characterize the distortion of the VSCC
by the formation of a bond. As was seen in the above section, the maxima and link points
in the fluorine valence shell in CHsF present very similar radii, p and -V?p values.
Otherwise, the VSCC of carbon is considerably perturbed by the formation of the four
hydrogen carbon bonds and is very far from the spherical surface of constant values of p
and -V2p that exist in the isolated carbon atom [29]. The non-bonded part of the VSCC of
chlorine in CH;Cl is close to a sphere of constant p and -Vzp on its surface. It is similar
to that of fluorine in shape but considerably larger in radius and is approximately one
order of magnitude lower in p and -V*p. Generalizing, the distortion of the VSCC due to
the bond formation decreases in the order of carbon, nitrogen, oxygen and fluorine in the
second period of the periodic table, and in the order of silicon, phosphorus, sulfur and
chlorine in the third period of the periodic table.

As an aside, it should be noted that transfer of charge from phosphorus to hydrogen was
found in CH3;PH,. This result is not expected because charge transfer in PH; at the HF/6-
21G(d,p) level is not observed [29]. However, a calculation on PH; at the CISD/6-
311++G(2d,p) level was carried out and yielded the same behavior as in the CH3PH, case.
The transfer of charge from phosphorus toward hydrogen connected to phosphorus is
noted by a large value of atomic population in these hydrogen atoms (Ny (Q2) =1.602) and
by the lack of bonded maxima between phosphorus and hydrogen atoms. This result is

consistent with the fact that PHj is a strong reducing agent [41].
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Finally, it is important to note that all attempts to reproduce the results of Oliferenko [52]
were unsuccessful. In particular, bonded maxima in the fluorine VSCC of CH;F were not
located (Table 4.5).

Table 4.5. Characterization for the fluorine VSCC in CH3 in terms of charge

concentrations (bonded and non-bonded maxima) and link points at the HF/3-
21G, HF/6-31++G(d,p) and MP2/6-311++G(2d,2p) levels of theory.

Non-bonded maxima Link Points
7 7
Tmax (A) -Vp(au)  p(aw) Tmax (A) -Vp (aw) p (au)
HF/3-21G 0.301 7.64 1.50 0.301 7.63 1.50
HF/6-31++G(d,p) 0.293 11.65 1.56 0.293 11.61 1.56
MP2/6-311++G(2d,2p) 0.303 9.48 1.50 0.303 9.43 1.49

4.4 Conclusions

The valence shell charge concentration (VSCC) of fluorine in CH3F has been
characterized by AIM theory at several levels of theory. The AIM results are remarkably
insensitive to the level of theory (CISD, CCD, MP2 and MP3). The fluorine VSCC
exhibits three clearly defined non-bonded maxima in L. Analysis of the angles indicates a
tetrahedral form for these maxima and it supports the geometric structures of HF" ion
and HF polymer. The link points are at the same distance from the nucleus as the maxima
with almost the same p and -V’p values. The non-bonding surface of maximum
concentration of charge in the VSCC of fluorine in CH;F can be considered to be a semi-
sphere of constant electron density and charge concentration. Therefore, it can be stated
that the formation of the carbon-fluorine bond in CH5F has little effect on the fluorine

VSCC.
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Instead of finding a bonded charge concentration in CH3F, a (3, +1) critical point in L
approximately localized at the expected position for the bonded charge concentration was
found. This is contrary to an earlier report [52]. On the other hand, the locations of the
maxima and link points are consistent with the VSEPR model in all the analyzed
compounds, including the (3,+1) critical point in the fluorine VSCC.

The fluorine VSCC is the most compact, with considerably larger values of p and -Vp
than the other atoms. These observations are consistent with the suggestion that the
surprisingly long bond in the F, molecule is due to the strong electrostatic interaction that
exists between the non-bonded electron pairs (non-bonded maxima) of the two fluorine
atoms. Also, this characterization supports the lower electron affinity of fluorine relative
chlorine. The chlorine VSCC is larger with lower values of p and -Vzp than that of
fluorine, which makes the acceptance of an electron easier. Finally, this characterization
of the fluorine VSCC supports the explanations given for the so-called through-space FF
coupling where the coupling between the fluorine atoms depends on the locations of the

electron pairs on the fluorine atoms.
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Chapter 5 Fluorine-Fluorine Spin-Spin Coupling Constants in Aromatic
Compounds: Correlations with the Delocalization Index and with the Internuclear

Separation

5.1 Introduction

In view of its importance in the elucidation of long-range interactions in organic and
bioorganic rigid molecules (see, for example, Gakh et al. [56] and references therein), the
fluorine-fluorine coupling constant (Jgr) is a particularly interesting property to calculate.
In general, the Fermi contact interaction is the dominant mechanism by which spin
information is transmitted between nuclei with spin I=% (such as 'H, '>C, "*N and "’F)
and thus determines, in large part, the magnitude of their J-coupling interaction (also
known as scalar spin coupling) [57,58,59]. The electron density at or near such a nucleus
is perturbed to favor an antiparallel orientation of electron spins with respect to the spin
of the nucleus. In other words, near a spin 2 nucleus, there is a net excess of a- or p-
spin density. This spin information is then transmitted through space by means of the
mechanism of exchange which embodies the Pauli exclusion principle. When a second
nucleus senses this perturbation in its immediate vicinity, it responds by adopting either a
parallel or antiparallel orientation which differs in energy and thus leads to an energy
splitting observed as the J-coupling constant. The coupling constant can be positive or
negative depending on whether the state with antiparallel or parallel nuclear spins is the
lower in energy, respectively.

In general, the calculation of J-coupling constants is not trivial [60,61,62]. The prediction
of NMR properties, especially coupling constants, usually requires very large basis sets

with at least triple-zeta quality and supplemented with diffuse and polarization functions.
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One important factor to consider is the behavior of the basis set near and at the nuclei,
since that is where the Fermi contact interaction takes place. The electron density
exhibits marked maxima at the positions of the nuclei, maxima that constitute cusps if
one neglects the finite nuclear size, as is the common practice in quantum chemistry. The
presence of nuclear cusps poses a challenge to contracted Gaussian basis functions and
necessitates the use of a large number of primitives and/or the use of Slater-type basis
functions. This problem is encountered specifically in the calculation of spin-spin
coupling and does not arise, for instance, in the calculation of nuclear shielding constants
[60]. The convergence of spin-spin coupling constants with the extension of the basis set
has been analyzed at the multiconfigurational self-consistent-field level for HF and H,O.
It was found that only correlation-consistent basis sets augmented with tight s functions
converge smoothly and yield accurate indirect nuclear spin-spin couplings [63].
Additional challenges arise from the high computational costs associated with the
calculation of the other interactions contributing to the scalar coupling constant, namely,
the paramagnetic spin-orbit, diamagnetic spin-orbit, and spin-dipolar interactions
[60,61,62].

The calculation of the coupling constants involving fluorine is generally more
problematic than for other nuclei in view of the possible relative importance of
contributions other than the Fermi contact interactions in some of its compounds
[64,65,66]. These difficulties led several groups to propose empirical approaches for the
fast estimation of J-coupling constants such as Jgr correlations with distance [67,68] or
with properties derived from the topology of the electron density [69]. The primary goal

of this chapter is to describe an alternative empirical model, but with foundations in
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physics, which has the potential to provide a fast prediction of the Jrr coupling constants.
The standard Pople basis sets that behave well on average (as opposed to specifically at
the position of the nuclei) are used, and thus a major problem in the calculation of spin-

spin coupling constants is circumvented.

5.2 Theory of Delocalization of Electrons

The extent of spatial localization or delocalization of electrons has long been known to be
determined by the Fermi hole [70]. The Fermi hole is the physical manifestation of the
Pauli exclusion principle, it measures the extent of same-spin density exclusion at a point
r, given a reference electron present at r; [70]. If the density of the Fermi hole is
localized near the reference point, then all other same-spin electrons are excluded from
this region, and the reference electron is localized at r;. In contrast, if the Fermi hole is
spread into a region around r; far from r;, the location of the reference electron, then
there is a significant reduction in the probability of finding other same-spin electrons in
the vicinity of r;, which implies that the reference electron is "smeared" or delocalized
between r; and r,. In Hartree-Fock (H-F) theory the Fermi hole is equal to the exchange
density (the quantity in the curly brackets in equation 5.1) divided by the corresponding
spin-density p°(r). Thus, the Fermi hole is given by [68]:

R, ==, 3 {0, 1)0,(6)0505)0,(5, )}/ p°(x) (5.1)
where o = o or 3, the double-sum runs over o-spin orbitals ¢. The Fermi hole, when
integrated over all space of the second electron, yields -1e corresponding to the complete

removal of one electronic charge. At r;=r, this quantity reduces to -p°(r;) and thus

excludes same-spin density from the position of electron 1. When the exchange density
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(P°(r)h°(r,ry)) is integrated over all space with respect to the coordinates of both
electrons it yields -N°, the negative of the total number of o-electrons, i.e., the total Fermi

correlation of o-spin electrons. If now the integration is performed over a bounded
region of space, it will yield the total Fermi correlation within this region denoted by

F°(4,4) and given by [70]:

F°(4,4)= Ldrl Ldrzpc(rl)hc(rl’rz)
==>" > [ dn [ dn, (6] ()0, (005 ()0, (x, )

=33 5 (52)
where S;(4)=S;{A) denotes the overlap of a pair of spin orbitals over a region 4. The
limiting value of F°(4,4) is -N°(4), the negative of the o-spin population of 4, implying
a complete localization of N o-electrons within 4 since these electrons do not exchange
with electrons outside 4. The total number of electrons localized within 4 is called the

localization index, M(A), and is given by [71]:

A(A) =

F*(A4, A)] +|Fﬂ(A, A)\ (5.3)

The limit of total localization, where the localization index equals the total electron
population contained within A4, i.e., AM(A)= N(4), can never be reached as the electrons
will always be delocalized to some extent outside of region 4.

The measure of electron delocalization from region A to region B is determined by [71]:

F°(4,B)= | dr, [ dr,p® (5)h° (x,,)
== 2 [ [ dn, {07060, (6005 (5,)0,(r, )}

=2, 5;(4) S;(B) (.4
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in which it is clear that F°(4,B)=F°(B,4). The total extent of exchange between two
regions A and B is given by the delocalization index 8(4,B8) which measures the number

of electron pairs shared between A and B and which is given by [71]:

6(4,B)=2

F*(4,B)|+2|F*(4,B)| (5.5)
When these ideas are used in conjunction with the theory of atoms in molecules (AIM), a
theory which defines atomic regions (basins) in a molecule unambiguously, one can then
quantify localization of electrons within an atom or between two atoms in a molecule
[71]. The AIM theory is well-known and has been extensively reviewed in Chapter 3.
Here it is sufficient to recap that the quantum condition defining the boundary of an
atomic basin in a molecule is given by Vp(r)-n(r) =0 for all r on the surface [29] where
V(r) is the gradient of the electron density p, and n(r) is a vector normal to the surface.

The relationship between the hydrogen-to-hydrogen delocalization index &(H,H) and the
experimental proton-proton spin—coupling constants (Juyn) has been recently investigated
[72]. It has been shown that Jyy is linearly correlated with 8(H,H). The theoretical basis
for this correlation is the proportionality of 6(H,H) determined over the volume of two
hydrogen atoms to the product of the electron spin densities at the positions of the two
protons, a product proportional to the coupling constant. Thus, the expression relating
the Fermi contact contribution to the coupling constant between two nuclei Joy to the

exchange between the positions of the two nuclei is given by [73]:

2 (167phY 1
Jnn' == E [%ﬂj Valw E zizj<¢i(rl)6(rln)¢j(rl )> <¢, (r2)5(r2n')¢i(r2 )> (5~6)

in standard notation, where 3(r,) is a Dirac 8 function which picks out the value at ry,=0,

i.e., at the position of nucleus #, in any integration over the coordinates of the k™ electron.
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The contribution described by equation 5.6 is termed the "contact term" because it is
evaluated at the nuclei [73].

If, as in the case of hydrogen, one assumes that density at a fluorine nucleus is, on
average, proportional to the density within the basin of the fluorine atom one can then
write [72]:

(8,(r)8(x,)8, @) (8, (5)5(r,)8,(x,)) o

)
(8.r)8,0) (8, )4 (1,)),. = S, (B)S, (F).

Expression 5.7 is a reasonable approximation in the case of proton spin-spin coupling
since the basin of the hydrogen atom is primarily described by spherically symmetric s-
functions, which is not the case for the fluorine atom. Thus, there is no a priori reason to
assume that equation 5.7 will apply to fluorine or to any atom other than hydrogen. Quite
to the contrary, one would expect that the approximation in equation 5.7 will generally
fail for non-hydrogen atoms due to the presence of basis functions with non-zero angular
momentum in a primary (rather than polarizing) role. These non-zero angular
momentum functions increase the contributions of the other terms responsible for the J-
coupling, namely, the paramagnetic spin-orbit, the diamagnetic spin-orbit, and the spin-
dipolar interactions. It is therefore quite surprising that the approximation in equation 5.7
appears to hold for fluorine-fluorine coupling, as will be shown phenomenologically in
this chapter.

The correlation between the experimental Jyr and 8(F,F') was studied for the 30 aromatic

fluorine derivatives (and 35 coupling constants) shown in Figure 5.1.
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Figure 5.1. Chemical structures of the compounds constituting the data set employed in
this study. For compounds (18-20), the three different F-F coupling
interactions exist. These are labeled on the chemical structure of
compound 18 in italics, and the same labeling convention applies to

compounds 19 and 20. The labeling of these interactions corresponds to that
used in Table 5.1.
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While strictly speaking, the above formalism only acquires physical meaning within the
context of HF theory and can be readily extended to configuration interaction (CI)
theories [71], delocalization indexes calculated from Kohn-Sham (KS) orbitals [74] are
used herein. It has been shown on a number of occasions that delocalization indexes
obtained using KS orbitals exhibit similar numerical values and trends as those obtained
from HF and are systematically slightly higher than those obtained from CI

wavefunctions. (See Poater et al. [75] and references therein).

5.3 Computational Details

The geometries of all molecules have been fully optimized at the B3LYP/6-31G(d) level.
Single-deterimant KS  "wavefunctions” were obtained at the B3LYP/6-
311++G(d,p)//B3LYP/6-31G(d) level. The resulting wavefunctions were then integrated
using the PROAIM suite of programs [54] to obtain the atomic overlap matrices, which
were then processed using AIMDELOC [76] to obtain the delocalization indexes. All
electronic structure calculations were performed using the Gaussian 03 package [53].

Statistical analyses were carried out using the Minitab [77] and the Origin [78] packages.

5.4 Results and Discussion

Large spin-spin coupling between two fluorine atoms separated by more than three bonds
but which are spatially close is known as "through space coupling". Ernst and Ibrom
proposed that the magnitude of Jgr is related to the distance of separation of the two

coupled fluorine atoms in a simple way [67]:

Jgp mae® (5.8)
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where a and b are the fitting constants, and b<0. Mallory and coworkers [68] reported a
strong correlation (r2=0.991) of the form of equation 5.8 for several 1,8-
difluoronaphthalenes. These workers included 13 data points in the fitting, all chosen
from a set of 18 closely related derivatives of 1,8-difluoronaphthalenes. Significantly,
however, five compounds which could not be fitted to the above equation were excluded
from the fitting. The authors argue that the origin of this correlation is the sidewise
ovetlap of the fluorine 2p orbitals [68]. (See also [43]). In a more recent study, Peralta et
al. [65] concluded that the inability of fittings to equation 5.8 to accommodate these five
outliers is due to significant contributions from terms other than the Fermi contact term,
especially the paramagnetic spin-orbit coupling. These authors predict that enlarging the
data set is not likely to improve the regression model described in equation 5.8 [65].

A different approach was recently adopted by Alkorta and Elguero who relied on the
theory of atoms in molecules to predict Jir coupling constants from the total electron
density at the bond critical point (pscp) [69]. These workers report a strong linear
correlation between the coupling constants and ppcp (r2=0.983), but their expression also
includes a term proportional to the cosine of the dihedral angle F-C...C-F as a second
regressor. Alkorta and Elguero used a very small data set in their regression (only 6 data
points) leading to an elevated ratio of parameters to data points (1:3). Their approach,
while certainly very appealing, depends on the presence of a bond path linking the two
fluorine atoms, which often occurs in these compounds when the F-F distance and
angular orientations are favorable for F-F bonding. It is not clear how one can use their
expression when there is no bond path linking the nuclei in question. In contrast, the

delocalization index discussed in section 5.2 has a nonvanishing value between any two
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atoms in a molecule whether bonded or not, i.e., whether they share a bond path and an
interatomic zero-flux surface (equation 5.1) or not. In the case when two atoms do share a
bond path, the delocalization index has been shown to provide the basis for the definition
of a bond order [71,79,80]. The delocalization index between atoms sharing a bond path
has also been shown to be highly correlated with several bond properties including ppcp
[79].

In this chapter, a new empirical approach that incorporates and extends the data sets used
in previous related studies [68] is followed. Thus, the selected data sets included Mallory
et al's set of 1,8-difluoronaphthalenes [68], benzene derivatives, compounds with three
and four fused rings including those where the coupling occurs through an intervening
phenyl ring or oxygen atom [81] (compounds 19 and 20, respectively).

The purely geometrical correlation was tested first. A total of 35 data points were fitted to
an expression of the same form as equation 5.8, and the following result was obtained:

Jep =7.897x107 464w (5.9)

where Jgr is in Hz and F-F interatomic distances are in A and which yields a calculated-
experimental linear relationship with #’=0.94, SD=8.55, and an average absolute
deviation of 7.25 Hz. Figure. 5.2 displays the correlation between Jgr calculated from

equation 5.9 and experimental F-F distances.
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Experimental J FF (Hz)

Experimental JFF (Hz)

Figure 5.2. The correlation between Jgr calculated from equation 5.9 and experimental F-
F distances. (a) A plot of experimental Jrr coupling constants versus those
calculated from equation 5.9, which uses the F-F distance (dpf) as the sole
predictor. The plot corresponds to the following fit: Je=P% =

[*=0.96, SD=8.35, n=35]. (b) A plot of experimental Jgr

coupling constants versus those calculated from equation 5.11 which uses the

delocalization indexes (3(F,F’)) as the sole predictor (outliers are encircled).

The plot corresponds to the following fit: Jer=P" = 0.37+1.00x JerC?c,
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[*=0.77, SD=20.58, n=35].
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As one can see from the figure and the statistical indicators, the correlation is excellent.
The ability of distance alone to predict the experimental values with such a high
correlation coefficient is quite surprising, as mentioned at the beginning of this section,
due to the contribution of terms other than the Fermi term in the coupling interaction [65].
The correlation of Jgr coupling constants with the delocalization indexes was also
attempted, despite not knowing a priori whether the approximation embodied in equation
5.7 would hold in the case of the F-F coupling. If the approximation holds as in the case
of proton-proton coupling, then one expects a linear correlation of the form [72]:

Jgp=a + bx 5(F,F) (5.10)
where a and b are constants. Fitting the 35 data points to the linear model of equation
5.10 leads to:

Jop = -3.284+1303x &(F, F)) (5.11)

where Jgr is in Hz, 7°=0.77, SD=20.58, and the mean absolute deviation between the
calculated and experimental Jgr coupling constants is 14.66 Hz. The presence of two
outlying data points (See Figure 5.2(b)) reduces the overall quality of the fit. If one
excludes the two outliers from the correlation, one obtains a regression equation (a=3.696,
5=959.953) for which the fit is improved substantially with higher correlation coefficient,
a standard deviation cut by half (+*=0.85, SD=10.38, n=33), and an average absolute
deviation of 8.35 Hz. The two outliers are data collected from difluorophenanthrene
derivatives 28 and 29 where the two fluorine atoms are located in the bay region. In view
of the larger size of fluorine (compared to hydrogen), these molecules are highly twisted
to accommodate the two fluorine atoms in the bay region. The lack of space around the

fluorine is likely to cause significant departure from spherical symmetry of its electron
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density distribution. When the electron density of an atom adopts a nonspherical
distribution, the basin integral can no longer be assumed to be proportional to the density
at the nucleus. Thus, in cases of crowded fluorine atoms, the working assumption behind
equation 5.11, namely equation 5.7, is no longer valid which provides an explanation for

the irregular behavior of the coupling constants of compounds such as 28 and 29.

Within the exponential model, the correlation with internuclear distance provides better
statistics than the correlation with the delocalization index. The two models, however,

are not independent (though not collinear) and one finds:
S(F,F") =29.337 x g4 (5.12)

in which distances are in A. Figure 5.3 shows the correlation between the delocalization

index calculated directly and that calculated using the fit in equation 5.12.
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Figure 5.3. Delocalization indices (8(F,F”)) calculated directly and those obtained
through the exponential fit with distance (Equation 13).
8(F,F*) = -0.0015+1.0232x5(F,F)™ [;%=1.00, SD=0.0022, n=35].

Using 33 data points (after excluding the two ouliers around Jgg~170) and combining the

two regressors into one model leads to:

Jr =10.5 - 1216 €% +2509x 5(F,F') (5.13)

which is exponential with respect to distance and linear with respect to the delocalization
indexes, and where Jgr is in Hz and df is in A. Equation 5.13 leads to a good agreement
between calculated and experimental Jyr as can be seen from the statistics, Table 5.1, and

Figure 5.4 and a relatively small mean absolute deviation (4.05 Hz).
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Table 5.1. A comparison of calculated and experimental Jgr spin coupling constants in
Hz, listed along with the internuclear separations in A, and the delocalization

indexes.
F-F Jrr Jrr
Interaction dpp 10°x*(F,F) Exptl® Calc.® Residuals
1 2.5810 5.78 59.00 63.51 4.1
2 27721 3.74 36.70 2824 8.46
3 25128 6.59 83.50 7722 6.28
4 24916 7.04 8520 86.53 1.33
5 2.7357 4.10 28.40 3450 6.10
6 27314 4.03 3150 3253 1.03
7 27702 3.75 36.60 2843 8.17
8 2.7394 4.06 28.80 33.86 5.06
9 27120 4.24 32.10  36.05 3.95
10 2.5943 5.50 6190 57.74 4.16
11 2.5638 6.02 65.60 67.79 2.19
12 2.5655 5.92 66.10  65.57 0.53
13 2.5573 6.07 6740 68.58 1.18
14 2.5589 6.05 66.50 68.17 1.67
15 2.5600 6.06 6590 6843 253
16 2.5262 6.44 76.40 7489 1.51
17 2.7497 3.90 33.00 3071 229
18 4.9276 0.02 .10 231 1.21
18-1@ 5.4703 0.34 2280 13.82 898
18-2© 7.3578 0.01 1.10 999  8.89
19 5.1923 0.09 6.40 591  0.49
19-1© 5.4523 0.36 23.00 1430 8.70
19-2© 7.4881 0.00 1.30 9.89  8.59
20 5.2054 0.04 080 485 4.05
20-1© 5.4290 0.33 18.10 13.40 4.70
20-2© 7.4983 0.01 0.40 9.96 9.56
21 2.6964 3.73 20.80 22.16 136
22 47034 0.33 650 771 121
23 5.4435 0.36 17.60 1427 3.33
24 2.7049 3.69 19.80 21.76 1.96
25 27016 3.62 20.80 19.81 0.99
26 5.4438 0.36 1720 1419 3.01
27 4.6706 0.34 13.40 775  5.65
289 2.3884 9.02 174.0
291 2.3868 9.02 177.0

(a) Experimental values were collected from References [68,81,82,83]

(b) Calculated according to equation 5.13.

(c) More than one Jrr coupling interaction exists in the molecule. Labels of
these interactions are indicated on the structural diagram of compounds 18-
20 in Figure 5.1.

(d) Outliers, not included in the fitting, see text.
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Figure 5.4. A plot of experimental Jgr coupling constants versus those calculated from
eqn. 5.13 which uses both the F-F distance (drr) and the delocalization
indexes (8(FF)) as predictors. The plot corresponds to the following fit:
Jer®h = 0.02+1.00x Jpe~™ [%=0.96, SD=5.15, n=33].

5.5 Conclusions

Contrary to expectations, both the internuclear distance and the delocalization index yield
strong correlations with the experimental Jrr coupling constants, except in compounds
with crowded fluorine atoms. The correlations described in this chapter span a wide
range of coupling constants (84 Hz) and a variety of aromatic compounds, including ones
with phenyl groups or oxygen atoms intervening between the coupled fluorine atoms and
also including fluorines that are meta and para with respect to each other in a ring. When
the two descriptors are combined, they yield a regression model capable of accurately

reproducing the experimental Jgr coupling constants.
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Chapter 6 The Characterization of a Closed-Shell Fluorine-Fluorine Bonding

Interaction in Aromatic Compounds on the Basis of the Electron Density

6.1 Introduction

Halogen-halogen "short contacts" of the type C-X"X-C (where X = F, Cl, Br, or I) and
contacts of the type C-X"O, C-X"N , C-X"H-(C,N,0) or C-F"M (metal) have long been
known in X-ray crystallographic structures [84-89]. In the crystallographic literature, a
short contact between two atoms A and B usually signifies that the A~B distance is less
than the sum of their van der Waals radii [90]. More recently, several authors have
reported weak closed-shell bonding interactions between halogens on the basis of the
topological properties of the electron density. For example, Tsirelson et al. have
described a closed-shell bonding interaction between chlorine atoms belonging to
neighboring molecules in solid molecular chlorine crystals, the interaction that enables
solid chlorine to exist in the crystalline form [91]. Bach, Lentz and Luger [92] have
described weak intermolecular C-F~O and C-F~F-C bonding interactions in an electron
density study of crystalline pentafluorobenzoic acid at 110 K and using multipolar
refinement. In a recent theoretical study, Grabowski et al. [93] reported evidence for the
presence of intramolecular C-F~F-C and C-F~H-C bonding interactions based on the
topology of the electron density in fluorinated styrenes. In another recent work, Alkorta
and Elguero [69] found a correlation between the calculated electron density at the C-
F~F-C bond critical point and the through-space fluorine-fluorine spin-spin coupling
constant Jgr in six fluorinated organic compounds. The same group has also studied the
geometries, bond properties, and interaction energies of several classes of non-classical

bonding interactions involving halogens by means of density functional theory (DFT) and
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second-order Mgller-Plesset perturbation theory (MP2) calculations [94]. Recently,
correlations of the fluorine-fluorine spin-spin coupling constants with the spatial
separation and with the electron delocalization between the two fluorine atoms have been
reported (Chapter 5, [95]). During the course of the investigation, it was found that
relatively strong through-space coupling constants occur in those instances where the two
fluorine atoms are linked by a bond path. In all these studies, however, the F'F bonding
was either examined for a very limited number of molecules or was not the main focus of
the investigation. The ubiquity of the F"F bonding interaction, thus, calls for a
systematic examination, which is the purpose of this chapter. Furthermore, several other
interesting closed-shell bonding interactions, which are described herein, were found in
the course of the present investigation.

The properties of the electron (and energy) densities at the BCP have been shown to
succinctly characterize bonding interactions in an unambiguous manner [29]. Thus, the
electron density at the BCP (pgcp) provides a measure of the strength of the bonding (or
of the bond order) between two atoms [96,97]. Generally, pgcp > 0.20 au for shared or
polar interactions and < 0.10 au for closed-shell interactions, such as ionic and hydrogen
bonding and the interactions examined in this chapter.

The sign of the Laplacian of the electron density at the BCP, Vpgcp(r), indicates whether
the bonding is of the closed-shell or open-shell type. In a shared interaction, density is
accumulated between the nuclei and concentrated along the bond path so that pgcp is
large and Vngcp < 0 (since the two negative curvatures dominate the small magnitude of
the positive curvature). An example of a shared interaction is the C-H bonding for which

pace = 0.29 au and Vngcp = -1.1 au. For a closed-shell interaction density is removed
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from the region of contact of the two atoms and hence pgcp is small and Vzchp >(, an
example being the hydrogen bond N-H"O=C for which pgcp = 0.01 au and V2 pacp =
+0.03 au. Polar bonding as in C-X (e.g. X=O,N,F,") exhibits significant charge
accumulation between the nuclei typical of shared interactions, but in these cases the
Laplacian can be of either sign (for example, in this study the C™3.F%% bond is
characterized by pgcp = 0.26 au and V2pscp = +0.14 au). Polar bonding is dominated by
charge transfer, and the BCP falls in the region bordering the core of the electropositive
atom, unlike shared but non-polar bonding. These observations lead to the development
of a powerful model that predicts atomic and group electronegativity based on the
location of the BCP along the bond path [98,99].

Energy densities at the BCP determined by the one-electron density matrix (as opposed to
the density, its diagonal element) summarise the mechanics of a bonding interaction. As
was discussed in Chapter 3, the AIM theory defines a potential energy density
experienced by an electron at position vector r, also known as the virial field Z/(r). The
virial field is the average effective potential field felt by an electron in a many-particle
system. This field is negative everywhere and when integrated over all space yields the
total potential energy of a molecule in an equilibrium geometry. For a statiohary state,

the virial theorem may be expressed locally [29]:

[%jvzpm:ze(r)mr) 61

Since it is always true that G(r)>0 and Z7(r)<0, the local statement of the virial theorem

ties in the kinetic and potential energy densities to a term proportional to the Laplacian of

the electron density. When the theorem is applied locally at the BCP, interactions for
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which V2pgcp < 0 are dominated by a local lowering of the potential energy, while those

for which V2 pgcp > 0 are dominated by a local excess in the kinetic energy as measured
by the 2:1 ratio required for the satisfaction of Equation 6.1. Cremer and Kraka [100]
suggested the use of the electronic energy density:

H(r)=G(r) + Z(r) (6.2)
evaluated at a BCP (Hpcp = Gpep + #pcp) to compare the kinetic and potential energies
on an equal footing. The electronic energy density yields the total electronic energy
when integrated over all space. Hpcp assumes negative values for all interactions with
significant sharing of electrons, its magnitude reflecting the “covalent character” of the
interaction [100].

The presence of a bond path is always stabilizing and is mirrored by a "shadow" path, the
virial path, which is a line of maximally negative potential energy density in space
linking the nuclei of the two bonded atoms [101]. The appearance of a bond path upon a
conformational change entails a local lowering of the energy of the system, even when
this fact is disguised by a rise in the total energy caused by other energetic changes in the
molecule. For example, it has been shown recently that the twisting of biphenyl is driven
by the destabilization of the two carbon atoms connecting the two rings in the planar
conformation rather than due to a "steric non-bonded repulsion" between the ortho-
hydrogen atoms [102]. In the planar conformation, the ortho-hydrogen atoms are linked
by a hydrogen-hydrogen bond path and each is stabilized by 7 kcal/mol as a result. In the
planar conformation, the destabilization of the two carbon atoms linking the phenyl rings
exceeds the stabilization due to the HH interaction by a net ~2 kcal/mol when compared

to the twisted equilibrium geometry [102]. Similar hydrogen-hydrogen bonding has been
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shown to be a ubiquitous stabilizing interaction in angular polycyclic aromatic
hydrocarbons and in several other organic molecules [102]. As another example, the 1,3-
diaxial interaction in monosubstituted cyclohexanes has also been shown to reside in a
more subtle energetic balance than in the one offered in a typical organic textbook: The
origin of the energetic destabilization in monosubstituted cyclohexane resides in the
carbon skeleton, which overrides the energetic stabilization due to the close H"H contacts
[103]. It is concluded that a study of atomic energies complements the characterization
of the bonding since it allows one to uncover the local-atomic energies and their changes.
Finally, and as already mentioned, the electron density determined at the BCP, ppcp(r), is
a measure of the strength of bonding between the two atoms and, thus, is related to the
bond order (BO). An exponential relationship has been proposed to describe this
relationship [29]:

BO = exp[a(p,cp — b)) 63)
where a and b are constants characterizing each specific type of bonding. The bond order
signifies the number of electron pairs shared between the two bonded atoms. In the
previous chapter the sharing of electrons between two atoms was measured by the
delocalization index which is the magnitude of the exchange of the electrons in the basin
of atom A with those in the basin of atom B [71]. The delocalization index is defined
between any two atoms in a molecule, but for atoms sharing a bond path and an IAS, that
is, bonded atoms, it has been shown to be a measure of the bond order [71,80]. The
bond order is, thus, reflected in both the total electron density at the BCP and the
delocalization index between the two bonded atoms. These two measures have been

found to be highly correlated in the case of strong C-C bonding in polycyclic aromatic
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hydrocarbons [79]. Thus, one can calibrate Equation 6.3 using the delocalization index

rather than arbitrarily assigned bond orders [79]:

6(4,B) =exp [a(chp _b)] (6.4)

6.2 Computational Details

The geometries of all molecules have been optimized without constraints at the
B3LYP/6-31G(d) level, and frequencies were calculated at that level to ensure that local
minima have been located. Single-determinant Kohn-Sham "wavefunctions" [16] were
obtained at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level. All electronic structure
calculations were performed using the Gaussian 03 package [53]. The resulting electron
densities were analyzed using the AIMPAC suite of programs [54] to obtain the bond and
atomic properties and to prepare the contour and gradient vector field plots. The
molecular graphs were plotted using AIM 2000 [104,105]. The AIMDELOC [76]
program was used to calculate the delocalization indices from the atomic overlap
matrices. Statistical analyses and correlations were carried out using the Origin 6.1 [78]

and the Polymath 5.1 [106] packages.

6.3 Results and Discussion

6.3.1 Optimized Geometries and F-F Internuclear Separations

Figure 6.1 displays the set of molecules included in this study. All F*F and other closed-
shell interactions are depicted by faint lines. Compounds 1-17 are all derivatives of 1,8-

difluoronaphthalene (1,8-DFN), the numbering scheme of which is depicted in Figure 6.2.
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Figure 6.1. Chemical structures of the compounds constituting the data set employed in
this study. Closed-shell bonding interactions are denoted by faint lines.

Figure 6.2. Numbering scheme for the naphthalene ring system used in this study
exemplified with the 1,8- difluoronaphthalene molecule.

Contrary to what one might expect, the substituents have a significant effect on the F-F
distance. The F-F distance falls within the range from 2.492A (in compound 4) to

2.772A (in compound 2) spanning almost 0.3A. This distance depends on the nature of
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the substituents at positions 4 and 5 positions of naphthalene. Thus, in compound 4, the
naphthalene ring distorts to accommodate the bulky 1,4-dimethyl substituents, while in 2
the two fluorines are pulled apart due to the geometrical necessity of accommodating the
five-membered ring.

The geometry of the naphthalene skeleton in 1-17 can be viewed as a "pair of scissors"
formed by the C1-C10 and C8-C10 axes pivoting around the C1-C10-C8 angle. In the
parent compound 1,8-DFN (compound 1), this angle is 62° but in 4 it is only 60° with a
consequent shortening of the F-F distance. At the other extreme, the C1-C10-C8 angle
opens to 66° in compound 2 since the C4-C10-C5 moiety is part of a five-membered ring,
driving the two fluorine atoms apart to their maximal separation. The other molecules
fall in between these two extremes. In all cases, the scissors angle turns out to be an

excellent predictor of the F-F separation in compounds 1-17, as can be seen in Figure 6.3.

2.80
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270 |
2,65
2,60
2.55
250

F...F distance (A)

245
59.0 600 610 620 63.0 640 650 66.0
C1...C10...C8 (scissors) angle (degrees)

Figure 6.3. Regression plot showing the strong predictive power of the scissors angle (the
C1-C10-C8 angle) and the F'F distance.
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Compounds 1-17 are characterized by planar naphthalene ring systems and two C-F
bonds that are coplanar with the naphthalene rings and essentially parallel to each other.
In contrast, compounds 18-23 are no longer derivatives of naphthalene and the two C-F
bonds are no longer parallel. Compounds 19-23 further differ in that their two C-F bonds
are also no longer coplanar since these are highly crowded molecules which twist to
accommodate the two proximal fluorine atoms. No F*F bond paths are present in 24 and
25 which thus do not exhibit F"'F bonding interactions. Instead, F"C and F~O bond paths

were found in these two compounds and will be discussed separately in section 6.3.6.

6.3.2 The F"'F Bond Path

As was mentioned in Chapter 3, the bond path is a unique and universal indicator of
bonding interactions. Bonding is an all or nothing phenomenon, but wherever a bond path
links two nuclei it is always locally stabilizing in an equilibrium geometry. In general the
set of bond paths defining a molecular structure, the molecular graph, reproduces the
conventional Lewis structure. In addition, one of the major advantages of the bond path
as an indicator of bonding is that it is capable of detection of weak interactions of any
type: van der Waals, hydrogen bonding, dihydrogen bonding, etc. The literature is rich
with descriptions of topologically characterized non-conventional bonding. Examples of
bonding interactions which were reported on the basis of the topology of the electron
density include: (1) the bonding between two equivalent or similar closed-shell hydrogen
atoms (C-H"H-C), better termed hydrogen-hydrogen bonding interaction [102] to
distinguish it from the dihydrogen bonding in which one hydrogen atom plays the role of

the acceptor in the hydrogen bonding [93,107,108]; (2) bonding involving two non-
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equivalent hydrogen atoms or dihydrogen bonding (X-H*™H%-Y) [109,110,111]; (3) a
plethora of hydrogen bonding interactions [94,112-118]; (4) CI"Cl closed-shell
interactions in crystalline chlorine [91]; (5) a N=0O"0=N closed-shell interaction [119];
(6) weak FO and FF' intra- and intermolecular interactions [92,94]; (7) intramolecular
F~F interactions [69,93]; (8) metallic closed-shell interaction between two Mn atoms
[120]; and (9) several closed-shell OO and O™C interactions [120]. The absence of a
bond path has also been shown to be a decisive indicator for the lack of bonding despite
an unusually close spatial arrangement of a closed-shell carbon atom to a titanium atom
[121].

In this chapter one of these examples of a closed-shell interaction is described in detail,
an interaction which we show to be ubiquitous in crowded fluorinated compounds: the
F~F bonding interaction.

Figure 6.4(a) is a contour map of the electron density of 1,8-difluoronaphthalene (1,8-
DFN) in the molecular plane, Figure 6.4(b) is the corresponding gradient vector field
showing the lines of steepest ascent in the electron density, and Figure 6.4(c) is a plot of
the Laplacian showing regions of charge concentration and charge depletion.
Superimposed on these plots are the sets of bond paths linking the nuclei as well as the
intersections of the interatomic zero flux surfaces with the molecular plane (some of
these surfaces are indicated with arrows in the figure). Some atomic basins are
highlighted in color in Figure 6.4 to highlight their respective forms. Basins F1 and F8,
which share a bond path also share an IAS of zero-flux, are highlighted in yellow in the
figure. F1 shares an IAS with F8 and with C1, and F8 shares an IAS with F1 and C8.

The IAS from now on will be denoted by the vertical bar " | " between the two bonded
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atoms sharing that surface. For example, the IAS between F1 and C1 will be denoted by
"F1|C1" when we refer to the side of the surface facing the F1 basin and "C1|F1" to the
side facing the Cl basin. The C1 atomic basin is surrounded by three IASs
corresponding to its three bonding interactions: C1[F1, C1|C2, and C1|C9. The atomic
basin of C1 extends to infinity tailing between the F1 and H2 basins but ends abruptly at
the line where the basins of F1, C1, C9, C8, and F8 all meet. In contrast, Figure 6.4
shows that the basin of C4, also highlighted in yellow, surrounds the H4 basin (in the
plane of the figure) and extends to infinity on both sides. The same is true by symmetry
for C5 and H5. Thus, unlike F1 and F8 which share an IAS, H4 and HS are separated by
the tailing atomic basins of C4, C5, and C10. From this discussion, it is also clear that
the basins of C9 and C10 differ in a fundamental way: C9 is the only internal atom with
finite boundaries totally enclosed within this molecule, while C10 and all other atomic

basins are external atoms extending to infinity.
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Figure 6.4. (a) Electron density contour plot of 1,8-difluoronaphthalene in the molecular
plane. The set of contours from outside going inwards have the values of:
0.001, 0.002, 0.004, 0.008, 0.02, 0.04, 0.08, 0.2, 0.4, 0.8, 2.0, 4.0, 8.0, 20.0,
40.0, and 80.0 au. (b) Gradient vector field corresponding to the
contour plot. (c) Laplacian plot in the molecular plane. Solid contours denote
regions of charge concentration where V2p(r)<0 and dashed contours denote
regions of charge depletion V2 p(r)>0. Contours levels increase or decrease
from a zero contour in steps: £0.001, +0.002, £0.004, +0.008, +0.02, +0.04,
+0.08, £0.2, +0.4, £0.8, £2.0, £4.0, £8.0, £20.0, £40.0, +80.0 au.
Several atoms have been colored for the easy distinction of the form of their
atomic basins.
A comparison of the Laplacian plot Figure 6.4(c) shows that the F~F interaction exhibits
the same characteristics of typical closed-shell interactions (See Figure 7.15, on page 294
of Bader's book [29]). The Laplacian plots of closed-shell and shared interactions differ
radically. Thus, for a shared interaction, the valence shell charge concentration (VSCC)
of two atoms fuse into a continuous region of charge concentration between the atoms.
In a closed-shell interaction, on the other hand, the valence shells for the atoms are
clearly defined inside the basin of the two bonded atoms. The reader is asked to compare
the bonding region between the two fluorine atoms in Figure 6.4(c) with that between any
two carbon atoms or any carbon atom and its bonded hydrogen atom.
The F~F bond paths have been traced in all compounds 1-23 as can be seen from their
molecular graphs plotted in Figure 6.5(a, b). Figure 6.5(c) depicts the molecular graphs
of compounds 24 and 25, which show closed-shell weak interactions of the type FC (in

24) and F~O (in 25), interactions which will be discussed in section 6.3.6 below.
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Figure 6.5. Computed molecular graphs of the set of compounds presented in Figure 6.1.
Red dots on bond paths are the bond critical points (BCP), yellow dots are the
ring critical points (RCP), and green dots are cage critical points (CCP).
Spheres denote the positions of atoms: C = dark grey, O =red, N = dark blue,
H = grey, F = golden yellow, C1 = green, Br = light grey (the reader is
encouraged to also refer to Figure 6.1 to identify the different atoms and
bonds). The planes of some of the molecules have been tilted to show the
structure more clearly, which results in the distortion of the proportions
caused by perspective projection (e.g. some symmetry equivalent parts may
appear to have different sizes). Also, the molecular graphs of different
compounds are not necessarily plotted to the same scale. (a) Compounds in
which the F'F bond is essentially co-planar with the molecular plane, (b)
crowded twisted molecules, (c) compounds devoid of F'F bonding but
involving FC and FO closed-shell interactions.

In all cases the corresponding ring critical point(s) has (have) also been located and the
Poincaré-Hopf (P-H, equation 3.4) relationship verified [29]. Compounds 22 and 23 have
been found to possess an unusual topology with highly twisted a-helical rings formed as
a result of the F~F bonding interaction that gives rise to two ring critical points and a
cage critical point. The P-H relationship has also been verified for these highly unusual
ring topologies. The interesting topology of these rings is known to be a mathematical
possibility [29] but not found previously in an actual molecular system to the best of our

knowledge. This topic will be the subject of the next chapter [122].

6.3.3 Characterization of the F"F Bonding Interaction

Table 6.1 lists the bond properties of the F'F interactions in compounds 1-23.
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Table 6.1. F'F bond properties. All entries are in atomic units except bond lengths, and
bond path lengths (BPL) which are in A, 8(F,F") is the number of electron
pairs shared between the two bonded fluorine atoms, and € is dimensionless.

Cpd.  §(FF) rFF BPL  pace V’paer  Gace Zecp Heacp A A2 s €
1 0.0578 2.5810 2.5816 0.0146 0.0645 0.0152 -0.0142 0.0010 -0.0150 -0.0137 0.0931 0.0930
2 0.0374 2.7721 2.7743 0.0096 0.0434 0.0100 -0.0091 0.0009 -0.0092 -0.0055 0.0582 0.6639
3 0.0659 2.5128 2.5133 0.0169 0.0766 0.0178 -0.0165 0.0013 -0.0178 -0.0170 0.1114 0.0474
4 0.0704 24916 2.4921 0.0178 0.0813 0.0189 -0.0175 0.0014 -0.0188 -0.0183 0.1183 0.0280
5 0.0410 2.7357 2.7370 0.0104 0.0463 0.0108 -0.0100 0.0008 -0.0101 -0.0072 0.0636 0.4121
6 0.0404 2.7314 2.7328 0.0104 0.0467 0.0108 -0.0100 0.0008 -0.0102 -0.0071 0.0640 0.4402
7 0.0375 2.7702 2.7721 0.0096 0.0435 0.0100 -0.0092 0,0009 -0.0092 -0.0056 0.0584 0.6570
8 0.0406 2.7394 2.7407 0.0103 0.0461 0.0107 -0.0099 0.0008 -0.0100 -0.0070 0.0631 0.4347
9 0.0424 2.7120 2.7132 0.0109 0.0484 0.0113 -0.0105 0.0008 -0.0107 -0.0079 0.0671 0.3624

10 0.0550 2.5943 2.5949 0.0141 0.0624 0.0146 -0.0137 0.0010 -0.0145 -0.0129 0.0897 0.1199
0.0602 2.5638 2.5643 0.0152 0.0672 0.0158 -0.0148 0.0010 -0.0156 -0.0145 0.0974 0.0763
12 0.0592 2.5655 2.5660 0.0151 0.0669 0.0157 -0.0147 0.0010 -0.0156 -0.0144 0.0969 0.0828
13 0.0607 2.5573 2.5578 0.0154 0.0684 0.0160 -0.0150  0.0010 -0.0159 -0.0148 0.0991 0.0737
14 0.0605 2.5589 2.5595 0.0153 0.0680 0.0160 -0.0150 0.0010 -0.0158 -0.0148 0.0986 0.0728
15 0.0606 2.5600 2.5605 0.0153 0.0679 0.0159 -0.0149  0.0010 -0.0158 -0.0147 0.0984 0.0759
16 0.0644 2.5262 2.5267 0.0164 0.0739 0.0173 -0.0161  0.0012 -0.0172 -0.0163 0.1075 0.0519
17 0.0391 2.7497 2.7513 0.0100 0.0451 0.0104 -0.0096 0.0008 -0.0097 -0.0064 0.0612 0.5193
18 0.0605 2.3884 2.6318 0.0130 0.0557 0.0131 -0.0124  0.0008 -0.0143 -0.0133 0.0833 0.0759
19 0.0460 23872 2.6736 0.0118 0.0522 0.0123 -0.0115  0.0008 -0.0111 -0.0106 0.0740 0.046%
20 0.0902 24916 23884 0.0222 01085 0.0247 -0.0222 0.0025 -0.0260 -0.0251 0.1597 0.0350
21 00902 24875 23872 0.0223 01088 0.0247 -0.0223  0.0025 -0.0261 -0.0252 0.1601 0.0341
22 0.0644 2.6730 2.4927 0.0177 0.0864 0.0197 -0.0178 0.0019 -0.0170 -0.0137 0.1170 0.2422
23 00650 2.6311 24886 0.0178 0.0870 0.0198 -0.0179  0.0019 -0.0172 -0.0140 0.1182 0.2330

—
—

Max. 0.0902 2.7721 2.7743 0.0223 0.1088 0.0247 -0.0091  0.0025 -0.0092 -0.0055 0.1601 0.6639
Min. 0.0374 2.3872 2.3872 0.0096 0.0434 0.0100 -0.0223  0.0008 -0.0261 -0.0252 0.0582 0.0280
Avg, 0.0569 2.5991 2.6000 0.0144 0.0659 0.0153 -0.0141 0.0012 -0.0149 -0.0130 0.0938 0.2121
SD 0.0146 0.1146 0.1151 0.0036 0.0188 0.0042 0.0038  0.0005 0.0046 0.0053 0.0285 0.2056

In all cases, it is clear that this is a closed-shell interaction:

(1) The F-F internuclear distance is in the range of ~2.39 A to ~2.77 A, in other words
generally smaller than (or close to) twice the van der Waals radius of fluorine (2.7 A)
[90] and thus can be classified as "close contact" [88]. In all cases, the curvature of
the bond path is rather small, as can be seen visually in Figure 6.5(a,b) or from the
difference between the geometric bond length and the bond path length (BPL), Table

6.1, with a maximal difference of ~ 0.08% of the bond length.
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(2) pacp ranges from ca. 0.022 to 0.010 au, values an order of magnitude smaller than
that for a typical covalent bond. The small value of pgcp for the F'F bonding is
similar to moderate hydrogen bonding for which ppcp ranges from ~0.034 au in
H3N~HF to ~0.007 au in HCI"HF [114].

(3) V*p > 0 since the Laplacian is dominated by As, the positive curvature tangent to the
bond path, for such a closed-shell interaction (compare the magnitudes on A3 with

those of A; and A, in Table 6.1). Vzp ranges from ~ +0.11 to +0.04 au indicating very
little sharing between the two atomic basins, which leads one to anticipate small
delocalization between the basins of the two fluorine atoms.

(4) The delocatization index O(F,F') indicates indeed very little sharing between the
atomic basins of the two fluorine atoms. In the absence of charge transfer between
two bonded atoms, one can equate the delocalization index between them to a bond
order [71,80]. There is little or no charge transfer between the two fluorine atoms in
these compounds (even when the two fluorine atoms are not equivalent by symmetry),
and therefore the delocalization index can be interpreted as the F'F bond order. From
Table 6.1, we can see that the largest bond order in 20 is only ~0.09, i.e., only 0.09
pair of electrons is shared between the two fluorine atoms, but this value can be as
low as 0.04 pair for compound 2. The delocalization indices have been previously
shown to depend on both the internuclear separation and the angular disposition of
the two F-C bonds [95].

(5) As stated in the introduction, the total energy density (Equation 6.2) evaluated at the
BCP (Hpcp) is negative when significant sharing of electrons dominates the

interaction. In these cases, the potential energy density dominates the kinetic energy
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density at the BCP. From Table 6.1, one can see that the F"F interaction is
dominated by the kinetic energy density (which is positive everywhere) and Hpcp is
therefore always positive for this interaction as anticipated for a closed-shell
interaction with little sharing of electrons.

(6) For weak interactions, the ellipticity indicates the stability of the bond critical point
with respect to small geometrical changes such as those occurring during molecular
vibration. From Table 6.1, the values of € fall between ~0.66 and ~0.03, indicating
relatively stable critical points, which can also be concluded on the basis of the
relatively large distance between the F*'F BCPs and their respective ring critical point
ensuing from the bonding. (The separation between the RCP and the BCP is typically
around 0.7 A.)

From the above considerations, it is concluded that a weak F~F bonding interaction exists

in these compounds, an interaction which exhibits the hallmarks of a typical weak closed-

shell bonding interaction.
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6.3.4 Correlations Among the FF Bond Properties

The properties characterizing the F~F bonding reported in Table 6.1 are highly correlated

among themselves within the range of bond lengths studied (2.3-2.8 A). Some of those

correlations are displayed in Figures 6.6-6.9.
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Figure 6.6. A series of plots representing the dependence of (a) pace, (b) 8(F,F'), (c)
Vngcp, (d) Grep, (€) @acp, and (f) Hpcp on the internuclear separation. All
quantities in the plots are in atomic units except the internuclear distance
which is in A. No fit or statistical output is given for poor or irregular

correlations.
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Figure 6.7. A series of plots representing the dependence of (a) 6(F,F"), (b) Ggcp, (¢)
Zhep, and (c) Hpcp on ppep. All quantities in the plots are in atomic units. No
fit or statistical output is given for poor or irregular correlations.
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Figure 6.8. A series of plots representing the dependence of (a) Ggcp, (b) Zscp, and (c)
Hgcp on the delocalization index between the two bonded fluorine atoms
(6(F,F")). All quantities in plots (a-c) are in atomic units. No fit or statistical
output is given for poor or irregular correlations. The outliers have been
indicated by the respective compound numbers in (a) and (b). Plot (d) shows
the correlation between a measure of the departure of the bond path from
linearity (the difference between the internuclear separation and the bond
path length, in A) and the bond ellipticity.

Figure 6.6 shows the correlation between the internuclear distance (bond length) and
several properties. From this figure it is clear that pgcp of this weak closed-shell F*F

interaction decreases with distance, Figure 6.6(a). Figure 6.6(b) shows that the
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delocalization index decreases with distance in a similar manner as ppcp. Figure 6.6(c)
shows a decrease in the Laplacian at the BCP as a function of the internuclear distance.
The effects of the intenuclear distance on the energy densities at the BCP are displayed in
Figure 6.6(d-f). The kinetic energy density at the BCP decreases with the internuclear
distance (Figure 6.6(d)), but the potential energy density shows an opposing trend as it
becomes less stabilizing with an increase in the distance (Figure 6.6(e)). The behavior of
the total energy is dominated by the behavior of the kinetic energy, which decreases with
increasing internuclear distance (Figure 6.6(f)).

Figure 6.7 shows the correlation of the electron density at the BCP with the
delocalization index (Figure 6.7(a)) and with the energy densities (Figure 6.7(b-d)). The
delocalization index increases linearly with ppcp indicating the more delocalization the
more the accumulation of electron density at the BCP. The kinetic energy density
increases with increasing ppcp (Figure 6.7(b)) while the potential energy density becomes
more negative with pgcp (Figure 6.7(c)). There is a net increase in the total energy
density at the BCP as ppcp increases.

Figure 6.8(a-c) displays the correlation between the delocalization index and the energy
densities. Since ppcp and d(F,F') are highly positively correlated linearly (Figure 6.7(a)),
the energetic trends of d(F,F') are similar to those for ppcp plotted in Figure 6.7(b-d).
From Figure 6.7(b-d) and Figure 6.8 one concludes that the more accumulation of

electron density there is at the BCP, the more electron delocalization there is between the

two fluorine atoms, and the more the interaction is dominated by the kinetic energy
density. Thus, while an increase in delocalization and in pgcp is accompanied by an

increasingly stable potential energy density (more negative), this stabilization is
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overwhelmed by the increase in the kinetic energy density for the F*F closed shell
interaction. These trends are the reverse of those described for a typical strong shared
interaction such as the C-C bond where the total energy at the BCP drops with increasing
electron delocalization as well as with increasing electron accumulation at the BCP (see
Figure 1(h) of Ref. 79). This shows a fundamental difference in behavior between a
weak closed-shell interaction such as the F*F bonding and a typical shared interaction.
Finally, Figure 6.8(d) shows the correlation between the difference in the bond path
length and the bond path (the departure of the bond path from linearity) and the ellipticity.
The plot shows a strong linear correlation between the two quantities indicating that the
larger the departure from linearity the larger the ellipticity.

Finally, the data to Equation 6.4 were fitted to uncover whether the exponential
relationship which was shown to hold for strong covalent bonding [79], still holds in the

case of the weak F~F closed-shell interaction. The following fitted equation was obtained:
8(F,F') = exp[64.2532(ppcp — 0.0595)] (6.5)

which yields #*=0.959, showing that the relationship holds even for this weak F"F
interaction. The values of &(F,F') calculated from Equation 6.5 are plotted against those

calculated directly in Figure 6.9.
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Figure 6.9. A plot of the values of 6(F,F') calculated from pgpcp via Eqn (6.5) versus
S(F,F") calculated directly.

6.3.5 The Energetic Consequences of FF Bonding

As mentioned in the introduction, it is a general finding of the theory of atoms in
molecules that all bonding interactions are associated with a Jocal stabilization even when
the absence of such bonding in an isomer results in a lower total energy. To obtain an
estimate of the stabilizing contribution of a FF bonding interaction, we compare the
atomic energies in each of the two isomers: 1,8-difluoronaphthalene (1,8-DFN), which
contains one F"F bond path, and 1,5-difluoronaphthalene (1,5-DFN) which is devoid of
such an interaction.

The total energy of 1,8-DFN, the one containing the F~'F bonding interaction, is actually
higher than the 1,5-DFN isomer by 3.5 kcal/mol. A comparison of the corresponding
atomic energies (Equation 3.60) in the two isomers explains this rather unexpected result.
This comparison is given in the top panel of Figure 6.10. In the upper-left box of the

figure (1,5-DFN), a relative atomic energy is defined as the difference between the
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energy of the atom in question and the energy of the most stable atom of the same
element in the molecule. One can see that in 1,5-DFN, C1 (and the symmetry equivalent
C5) are the least stable carbon atoms in this molecule each being ~178 kcal/mol less
stable than atoms C9 or C10. The destabilization of C1 and C5 is due to a significant loss
of electron population (~0.46 €) to the neighboring more electronegative fluorine atom, as
can be seen from the comparison of atomic charges in the lower-left box of Figure 6.10

for this molecule.
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- 1,5-difluoronaphthalene

1,8-difluoronaphthalene

Relative Atomic Energies
(kcal/mol)

Difference in Atomic Energies
(E1,8-DFN-E1,5-DFN),

-7.2

Atomic Charges Atomic Charges

- 0.624 -0.814

Figure 6.10. Comparison of the relative atomic energies (top panel) and atomic charges
(lower panel) between the two isomers: 1,5-difluoronaphthalene (1,5-DFN)
devoid of FF interaction and 1,8-difluoronaphthalene (1,8-DFN) in which
an F~F interaction occurs. The relative energies shown on the upper-right
box for 1,5-DFN are given in kcal/mol and were calculated for each element
taking the most stable atom of that element as the one with zero-relative
atomic energy. The energies given for the 1,8-DFN isomer (upper-right
box) are the difference between the atomic energy in that isomer and the
corresponding atom in 1,5-DFN, given in kcal/mol. In 1,5-DFN, the
absolute energies of a fluorine atom is -100.38453 au, that of the most stable
carbon C9 (or C10) is -38.08982 au, and that of the most stable hydrogen
H3 (or H6) is -0.61007 au. The total energy of 1,5-DFN is -584.53192 au
and that of 1,8-DFN is -584.52637 au. The lower panel compares the AIM
charges of the two isomers (in au).
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From the figure one also finds that in 1,5-DFN, C1 and C5 are the only atoms other than
the two fluorine atoms with an appreciable net charge. The same is true about the charge
distribution in 1,8-DFN as can be seen from the lower-right box of Figure 6.10.

The upper-right box of Figure 6.10 displays the difference in the atomic energy between
the two isomers defined as:

AE(Q) = E13prv(€2) - E150m(Q), (6.6)
where Q is a pair of equivalent atoms in the two isomers. The comparison shows that the
fluorine atoms involved in the FF interaction in 1,8-DFN are more stable (as expected)
than the corresponding ones in 1,5-DFN by 7.2 kcal/mol each. In other words, the F*F
interaction contributes ~14 kcal/mol of stabilization to 1,8-DFB over 1,5-DFB. The
overall destabilization of 1,8-DFN with respect to its isomer can be traced to the carbon
skeleton, particularly C1 (and its symmetry equivalent C8) which is destabilized by 16.3
kcal/mol, C10 which is destabilized by 9.6 kcal/mol, and C9 which is destabilized by 3.2
kcal/mol. A bookkeeping of the differences in the atomic energies of the remaining

atoms in the molecule (which are more stable in 1,8-DFN) yields the total energy

differences between the two isomers, i.e. Z AE(Q)= +3.4 kcal/mol. The energetic

all atoms
destabilization of carbons 1, 8, 9 and 10 in 1,8-DFN with respect to 1,5-DFN can be the
result of higher charge separation and more significant geometrical distortion of the ring
system in 1,8-DFN to accommodate the two fluorine atoms in a relatively small space.
One cannot refer to the destabilization of C1,C9 and C10 in 1,8-DFN relative to the
corresponding atoms in 1,5-DFN as the result of a steric repulsion since there are no
forces operating in an equilibrium geometry. It must be also cautioned from the erroneous

identification of the Jocal stabilization energy of ~14 kcal/mol associated with the
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formation of a F~F bond path as a "bond energy": It is not. It is what it is: a local
stabilization energy. In fact, one cannot define a bond energy for the F*F bond in these
compounds since this bond cannot be broken without the concurrent breaking of other
bonds in the molecule.

To obtain an estimate for the F*F bond energy, an MP2(full)/6-31+G(d) geometry
optimization for a fluoromethane dimer was performed, in head-to-head C;, geometry
(H3C-F"F-CH3). The calculation reveals that there is no net binding since a geometry
optimization started with a F-F separation of 1.5 A results in an ever increasing
monomer-monomer separation. In a previous study, the interaction energy in the F-F...F-
H dimer has been found to be ~-0.3 kcal/mol at three very different levels of theory
(B3LYP/6-31G(d), B3LYP/6-311++G(d,p), and MP2/6-311++G(d,p)) and after
correcting for basis set superposition error (BSSE) [94]. The bond properties reported for
the F-F...F-H complex at the MP2 level (*FF'=2.713 A, Pacp=0.0073 au, VZABCP=O.O389
au) [94] compare well with one of the weakest F...F interactions reported in the present

study, the interaction in compound 2 (See Table 6.1).

6.3.6 Other Non-conventional Closed-Shell Bonding Interactions

An examination of Figure 6.5 shows, besides the F*'F bonding interactions, several other
non-conventional bonding interactions revealed by the presence of bond paths. The bond

properties of these interactions are collected in Table 6.2.
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Table 6.2. Bond properties of non-conventional weak bonding interactions. All entries
are in atomic units except bond lengths and bond path lengths (BPL) which are
in A, and ¢ is dimensionless.

Cpd. A”B FF BPL pace Vipsce  Gace Kecp “eer Hace M A2 A3 €
24 F".Cl 2.5997 2.6031 0.0175 0.0668 0.0155 -0.0011 -0.0144 0.0012 -0.0142 -0.0124 0.0933 0.1450
24 F".CZ 2.6147 2.6184 0.0170 0.0648 0.0151 -0.0011 -0.0139 0.0012 -0.0137 -0.0119 0.0904 0.1522
24 Frca 2.6126 2.6144 0.0169 0.0641 00149 -0.0011 -0.0138 0.0011 -0.0131 -0.0124 0.0896 0.0578
25 F"'Ol 2.5844 25850 0.0169 0.0722 00165 -0.0016 -0.0149 0.0016 -0.0166 -0.0154 0.1042 0.0833
25 F o2 2.6211 2.6218 0.0157 0.0657 0.0151 -0.0013 -0.0138 0.0013 -0.0152 -0.0136 0.0945 0.1153
25 F o3 2.6022 2.6029 0.0163 0.0689 0.0158 -0.0014 -0.0143 0.0015 -0.0159 -0.0144 0.0992 0.0992

3 C---C 2.8528 2.8767 0.0113 0.0385 0.0081 -0.0016 -0.0065 0.0016 -0.0085 -0.0052 0.0522 0.6455
13 HmBr 2.7108 2.8155 0.0133 0.0478 0.0100 -0.0019 -0.0081 0.0020 -0.0105 -0.0059 0.0643 0.7767
21 ural 2.6095 2.7508 0.0136 0.0551 0.0113 -0.0025 -0.0089 0.0025 -0.0113 -0.0047 0.0710 1.4149
15 H-uo 2.6615 2.8019 0.0085 0.0333 0.0070 -0.0014 -0.0056 0.0014 -0.0049 -0.0018 0.0399 1.6971
16 H"0 2.1344 2.1919 0.0208 0.0818 0.0176 -0.0029 -0.0147 0.0029 -0.0235 -0.0202 0.1255 0.1584

4 HUH 2.1087 24115 00117 0.0430 0.0087 -0.0020 -0.0067 0.0020 -0.0107 -0.0049 0.0586 1.1876
7 0 2.5062 3.4469 0.0065 0.0245 0.0048 -0.0013 -0.0035 00013 -0.0025 -0.0022 0.0293 0.1513

9 oo 1.9128 2.1240 0.0145 0.0531 0.0112 -0.0020 -0.0092 00021 -0.0150 -0.0103 0.0784 0.4562

A glance at the table reveals that these bonding interactions are weak to very weak,
having ppcp ranging from ~0.02-0.01 au. All of these interactions exhibit positive values
for Hpcp as well as positive Laplacians at the BCP and can therefore be classified as
closed-shell interactions. In all cases, these weak interactions result in ring(s) closure
with the concurrent appearance of the ring critical point(s). The satisfaction of the
Poincaré-Hopf relationship has been verified for each molecular graph as mentioned

previously. We shall now discuss each class separately.
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6.3.6.1 FC and F~O Interactions

Mallory et al. [81] describe two very interesting derivatives of anthracene (24, 25)
exhibiting unusually high fluorine-fluorine spin-spin coupling constants despite the
presence of an intervening phenyl group in 24 and a carbonyl oxygen in 25. (See
structures 24 and 25 in Figure 6.1 and the corresponding molecular graphs in Figure
6.5(c)). The three unusual bond paths traced in these two compounds have been labeled
clockwise as bond 1, 2 and 3 (Figure 6.1). A comparison of all the bond properties of
these six bonds reveals a striking similarity, even between the F"C and the FO sets of
bonds. Perhaps the most significant difference between the two sets is the difference
between the internuclear distance and the bond path length. The difference averages to
0.003A for the F~C set and only 0.001A for the F~O set. The FC set is therefore
characterized by more curved bond paths, as can be also discerned by visual inspections
of the molecular graphs of 24 and 25 in Figure 6.5(c). Alkorta, Rozas, and Elguero
reported an interaction energy of -0.67 kcal/mol in the F-F...OH, complex at the MP2/6-
311++G(d,p) level of theory after BSSE correction. The bond properties of this complex
(rFF'=2.641 A, pacp=0.0221 au, V?Apcp=0.0534 au) [94] are comparable with the F...O
bond properties we reported in Table 6.1 for compound 25. This similarity is particularly
interesting because in the F-F...OH, complex the F...O distance is free to vary with no
geometric constraints imposed by the rigidity of the molecular frame unlike in compound
25. The same group also report the results for the F-F...CO complex which at the BSSE-
corrected MP2 level are (#FF'=3.005 A, Pacp=0.0062 au, VZABCP=O.0268 au) [94], values
indicating a significantly weaker interaction than the ones reported here. Alkorta et al.

reported a -0.33 kcal/mol for the F-F...CO interaction [94].
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6.3.6.2 CC Interaction

The two sp-carbon atoms in compound 3 are separated by only ~2.9 A, much less than
the twice the van der Waals radius of carbon (3.5 A) [88]. The atoms are found to be
bonded by a weak closed-shell interaction exhibiting a significantly curved bond path.
The curvature of the bond path can be discerned from the molecular graph in Figure 6.5(a)
as well as from the relatively large difference between the bond path length and the

internuclear distance (~0.01 A).

6.3.6.3 C-H"X (X=Cl, Br), C-H"0=X (X=C, N), and C-H"H-X (X=C, O) Interactions

The last class of weak closed-shell bonding interaction found in this series of molecules
includes hydrogen bonding (in compounds 13, 15, 16, and 21), dihydrogen bonding (in
compound 9), and hydrogen-hydrogen bonding (in compounds 4, and 7). These provide
further examples of such interactions already known and fully characterized in the

literature [102,107-111,113,114,117,118].

6.4 Conclusions

The F*F bonding interaction is likely to occur in polyfluorinated aromatic compounds
when the F-F internuclear separation is 2.3-2.8 A despite the relative orientation of the
two C-F internuclear axes and whether these are coplanar with the ring system or not.
The presence of such bonding in 1,8-difluoronaphthalene (1,8-DFN) has been shown to
impart ca. 14 kcal/mol of stabilization locally, i.e., to the two fluorine atoms involved in

the bonding. The molecule is, however, less stable than its isomer 1,5-
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difluoronaphthalene (1,5-DFN) by ~ 3 kcal/mol, an isomer that lacks this bonding
interaction. The resolution of this apparent inconsistency is brought about by an atom-by-
atom comparison of atomic energies between the two isomers. The estimate of the
stabilization energy of the F'F bonding was obtained by comparing the atomic energies
of the fluorine atoms in 1,8-DFN with the corresponding energies of the fluorine atoms in
1,5-DFN, which lacks this interaction. Each of the fluorine atoms participating in the
FF interaction is 7.2 kcal/mol more stable than the corresponding fluorine atom in the
isomer devoid of F~F bonding. On the other hand, the comparison also reveals that four
carbon atoms in 1,8-DFN are significantly less stable than their counterparts in 1,5-DFN.
The sum of these relative atomic stabilization and destabilization energies over all the
atoms in the two isomers yields the net difference between the total molecular energies of
the two isomers (1,8-DFN is 3 kcal/mol less stable than the 1,5-DFN). Thus, the local
stabilization associated with the FF bond path should not be mistakenly identified as a
bond energy since the later implies a bond dissociation. It is impossible to achieve the
dissociation of an F*F bond in this series of molecules without the concurrent
dissociation of other bonds.

Several other interesting non-classical closed-shell interactions have also been found and
characterized in these compounds including F~C, F~O, C~C bonding as well as several
variants of hydrogen bonding, dihydrogen bonding and hydrogen-hydrogen bonding.

The present work is yet another testimonial as to the usefulness, power, and richness of

the bond path concept [123] and of the theory of atoms in molecules [29] in general.
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Chapter 7 The First Example of a Cage Critical Point in a Single Ring: A Novel
Twisted a-Helical Ring Topology

7.1 Introduction

Several crystallographic studies report short halogen-halogen contacts [84,87-89,124-126
and references therein]. Weak closed-shell bonding interactions between halogens have
also been described on a number of occasions on the basis of the topological properties of
the electron density [69,91-93,95,127]. Only recently, the intramolecular fluorine-
fluorine closed-shell bonding has been characterized in detail on the basis of the topology
of the electron density [127]. In the present chapter, this closed-shell bonding interaction
will be denoted by the symbol F-F. This interaction, when present in a difluorinated
polycylcic aromatic hydrocarbon (PAH), often results in the closure of an intramolecular
ring [127]. In most of the difluorinated PAHs previously studied, these rings are flat or
depart little from planarity and exhibit a single characteristic ring critical point (RCP). In
contrast, when the F-F bonding is present between two sterically crowded fluorine atoms
(as in the compounds depicted in Figure 7.1), the resulting ring is highly puckered. This
marked departure from planarity gives rise to a very unusual, yet mathematically possible,
topology of the ring's electron density. Instead of exhibiting a single RCP, such a highly
twisted ring is characterized by the emergence of two ring critical points and a cage
critical point (CCP). The emergence of the CCP together with the appearance of the
additional RCP are necessary for the satisfaction of the Poincaré-Hopf relationship
(equation 3.4).

In this chapter, the first example of an actual molecular system where a cage is bounded

by two ring surfaces is reported. This type of characteristic set remained only a
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possibility until now, as stated in 1990 by Bader on page 37 of his béok [29]: "While it is
mathematically possible for a cage to be bounded by only two ring surfaces, the minimum
number found in an actual molecule so far is three, as in bicyclo [1.1.1] pentane, for
example." To our knowledge, this statement (which was restated in 2000 [128])

remained true to the time of writing of the present chapter.

7.2 Computational Details

The geometries of the three molecules have been fully optimized at the B3LYP/6-31G(d)
level, and the frequencies were calculated at that level to ensure that local minima have
been located as evidenced by the lack of imaginary frequencies. Single-deterimant KS
"wavefunctions" were obtained at the B3LYP/6-311++G(d,p)//B3LYP/6-31G(d) level.
All electronic structure calculations were performed using the Gaussian 03 package [51].
Molecular graphs, envelope maps, and bond properties were obtained using AIM2000
[104,105]. Gradient vector field plots were prepared using Morphy98 [129,130].

VThe characteristic set of critical points for each one of the three compounds studied in

this work satisfies the Poincaré-Hopf relationship (Equation 3.4).

7.3 Results and Discussion

A case study of 1,12-difluorobenzo[c]phenanthrene (I) and two of its derivatives (4-
methyl derivative (I), and 4-cyano derivative (IIT)) are presented. These derivatives are
included in the study to ensure that this novel ring topology can survive upon inducing
steric and electronic asymmetry into the polycyclic aromatic hydrocarbon backbone, a

fact confirmed by our observations as described below. Figure 7.1 displays the atom
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numbering scheme used in this chapter along with the chemical structures of the three

compounds.

Bay region
F

14
:

15

I II I1I

Figure 7.1. 1,12-Difluorobenzo[c]phenanthrene (I), the parent compound with the
numbering scheme, 4-methyl-1,12-difluorobenzo[c]phenanthrene (1), and 4-
cyano-1,12-difluorobenzo[c]phenanthrene (III).

All three compounds exhibit the same unusual topology in the bay region: a cage critical

point enclosed by two ring surfaces in the same ring (Figure 7.2).
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Figure 7.2. Molecular graphs (set of bond paths and critical points) of the three molecules
defined in Fig. 7.1 I (a), II (c), and III (d). (b) represents a blow-up of the
region of interest showing the bay region ring involving the two fluorine
atoms. Colour code for atoms (large spheres): Carbon (black), hydrogen
(gray), fluorine (gold), nitrogen (blue). Colour code for critical points (small
spheres): Bond critical points (BCPs, red), ring critical points (RCPs, yellow),
and cage critical points (CCPs, green).

The molecular frames of these molecules are highly strained to accommodate the two

fluorine atoms in the bay region. As a result, the aromatic ring system in each of these

molecules adopts a distinctive staircase a-helical geometry. Each one of the four fused
six-membered rings (6-MR) belonging to the polycylic aromatic hydrocarbon (PAH) is
slightly twisted as a consequence of this general o-helical geometry. Each one of these
6-MRs belonging to the PAH backbone has a single ring critical point as is usually the

case for the overwhelming majority of ring systems. On the other hand, the 7-MR closed
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by the F-F bonding and involving the two fluorine atoms and C1, C13, C18, C17, and
C12 is highly puckered and is characterized by two ring critical points and a cage critical
point, Figure 7.2(b). The cage critical point appears in the fold created by two ring
surfaces, an upper and a lower, each with its own ring critical point. The visual
inspection of Figure 7.2 also demonstrates that the substituents at position 4 have a
negligible effect on the spatial disposition of the three critical points arising in the 7-MRs.
The plane of the gradient vector plot presented in Figure 7.3(a) contains the two fluorine
nuclei, the F-F bond critical point, the cage critical point and the two carbon nuclei C18

and C15 which all fall on the C;-axis of L.
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Figure 7.3. (a) A gradient vector field map showing the Vp trajectories in the plane
defined by the two fluorine atoms and C18 (C15 also falls on this plane) for
the 1,12-difluorobenzo[c]phenanthrene molecule. For clarity, two
representations of the molecular graph of this molecule indicating the plane in
question are displayed in (b). In the gradient vector field plot, the thick line
joining the C15 and C18 atoms as well as the two fluorine atoms are the bond
paths linking these pairs of nuclei. The intersections of the interatomic zero-
flux surfaces (IAS) with the plane of the plot are also displayed. In (a), the
red circles are the bond critical points (BCPs) and the green circle represent
the cage critical point (CCP). There is no ring critical point in the plane of the
plot. As can be seen from the two representations of the molecular graph in
(b), the two ring critical points (indicated by the small yellow circles) are
located above and below the plane of the plot (a).

Moreover, the bond paths of the F-F and of the C18-C15 bonding interactions also fall in

the plane of the plot of Figure 7.3 and are denoted by the thick black lines connecting the

bonded nuclei. The red circles in the figure indicate the positions of the bond critical
points. The intersection of the interatomic surfaces separating these two pairs of bonded
atoms and the plane of the drawing are also depicted in Figure 7.3(a) as thick lines
crossing the bond paths at the corresponding bond critical points. For clarity, the plane of
the gradient vector field plot (Figure 7.3(a)) is also shown in light gray on two views of

the molecular graph of I in Figure 7.3(b).

All the Vp trajectories in Figure 7.3(a) originate at infinity except the set which

originates at the cage critical point and terminates at each of the two fluorine nuclei, at

the F-F bond critical point, or at the nucleus of C18. The Vp trajectories originating at
the cage critical point and terminating at each of the two ring critical points are not shown
since the two ring critical points are out of the plane of this plot, one at one side of the
plane and the other on the opposite side (left part of Figure 7.3(b)). There are no

trajectories coming from infinity that reach the cage critical point since such a point is

completely enclosed in the molecular space.
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When two atoms are bonded, i.e. their nuclei are linked by a bond path, the bond path
defines the unique axis of the BCP and the two atoms share an interatomic surface. Ina
ring, the axis of a RCP is defined by the line created by the intersection of the interatomic
surfaces of the atoms forming the ring. Thus, the atoms in a ring all share a line. Finally,
atoms in a cage all meet at a point, the CCP, where all their interatomic surfaces intersect
[131].

Figure 7.4 displays another view of the molecular graph of I, but this time also including
the two unique trajectories linking the cage critical point to the two ring critical points, on
the two ring surfaces. The broken line connecting these three critical points is the line
where all the interatomic surfaces intersect, each RCP-CCP segment representing a ring
axis.

€
o

Gradient
paths linking
the CCP to

} A the two RCPs

o

Figure 7.4. Another representation of the molecular graph of I but with the gradient paths
linking the two ring critical points to the cage critical points also displayed.
Colour code for atoms (large spheres): Carbon (black), hydrogen (gray),
fluorine (gold), nitrogen (blue). Colour code for critical points (small
spheres): Bond critical points (BCPs, red), ring critical points (RCPs, yellow),
and cage critical points (CCPs, green).
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Table 7.1 summarizes the geometry of the 7-MR topological features in terms of the
distance matrix relating the cage critical point, the two ring critical points, and one set of
symmetry unique nuclear critical points (one half of the ring, the other being equivalent

by a 180° rotation around the C;-axis).

Table 7.1. Distance matrix defining the location of the cage critical point and the two ring
critical points in relation to other key critical points in a symmetry-unique half
of the seven-membered ring. (All distances are in angstroms).

CCP RCP1 RCP2 BCP F(1) C1 C13

(F-F)
CCP 0
RCP1 0.606 0
RCP2 0608 1.148 0
BCP (F-F) 0.885 1225 1226 0
F(1) 1.553 2.065 1416 1268 0
C1 1629 1.802 1728 1.734 1355 0
C13 1669 1.542 1758 2333 2389 1415 0
C18 1724 1.631 1.630 2.609 2911 2.541 1.450

One can see from the table that the CCP is appreciably distant from the two RCPs (by 0.6
A) and from the F-F BCP (by 0.9 A). The latter BCP is also well separated from the two
RCPs (by 1.2 A). These observations indicate a topologically stable set of critical points,
since when they are in close proximity (for example, 0.1-0.2 A) they may annihilate each
other during small geometrical changes akin to molecular vibrations.

Table 7.2 shows clearly the general trend of the electron density, which decreases in the

order of BCP > RCP > CCP.
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Table 7.2. Local properties of the electron density and of the energy densities at the cage
critical point, the ring critical points, and the F-F bond critical point in
compounds I, II, and II. All data are in atomic units.

pm) V@) G) Wr) H@)

CCP

I 0.0083 0.0515 0.0101 -0.0074 0.0027
II 0.0086 0.0538 0.0106 -0.0078 0.0028
10 0.0086 0.0538 0.0106 -0.0078 0.0028
iii® 0.0083 0.0533 0.0103 -0.0072 0.0031
RCC

0.0099 0.0490 0.0101 -0.0079 0.0022
® 0.0103 0.0515 0.0106 -0.0084 0.0023
m® 0.0101 0.0507 0.0104 -0.0082 0.0022
iii® 0.0100 0.0515 0.0105 -0.0080 0.0022
BCP(F-F)

1 0.0161 0.0768 0.0176 -0.0161 0.0016
I 0.0177 0.0864 0.0197 -0.0178 0.0019
10 0.0178 0.0870 0.0198 -0.0179 0.0019
iii® 0.0185 0.0881 0.0211 -0.0203 0.0009

(a) Lower case Roman (iii) refers to compound III but for an electron density
calculated with a smaller basis set (B3LYP/6-31G(d)) than the remainder of the
data, all calculated at the B3LYP/6-311++G(d,p) level of theory as detailed in the
"Computational Method" section.

(b) Since compounds IT and III are less symmetric than the parent compound I, the
two ring critical points, while very similar, are not symmetry-equivalent. The
differences between the properties of two non-equivalent RCPs were found to be
too small (in the third decimal) to warrant separate listing. We report averages in
these cases.

The Laplacian exhibits a decreasing order of charge concentration BCP > CCP > RCP.
An examination of the kinetic energy density reveals that electrons move faster at the
BCP than at either the two RCPs or the CCP. From the table one also can conclude that
substitutions in the PAH carbon skeleton appear to have minimal effects on the property
densities determined at the critical points characterizing the 7-MR. In order to assess the

sensitivity of the newly found unusual ring topology to basis set, the electron density of

III using a much smaller basis set (6-31G(d)) than the rest of the work presented here (6-
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311++G(d,p)) has been also analyzed. The density of III obtained with the small basis set
is denoted by iii. The analysis of iii reveals that the topology and geometric arrangement
of the critical points in the 7-MR is preserved with very little change. Furthermore, the
individual property densities also exhibit a marked basis set insensitivity as can be

gleaned from Table 2 by comparing the entries for III and iii.

7.4 Conclusions

A novel topological feature in ring systems is presented for the first time: A cage critical
point arising within the fold of two ring surfaces belonging to a single ring of bonded
atoms. The molecules in which this feature is observed are highly crowded difluorinated
polycyclic aromatic hydrocarbons in which the two fluorine atoms are in close spatial
proximity which leads to the appearance of a bond path linking their nuclei. The
appearance of the F-F bond path leads to the closure of a highly puckered seven-
membered ring in which two ring surfaces enclose a cage critical point. To the best of
the author’s knowledge, this is the first report of this type of cage critical point in a

molecular system.
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Chapter 8 The Host-Guest Inclusion Complex of p-Chlorophenol inside o-
Cyclodextrin: An Atoms in Molecules Study

8.1 Introduction

Since their discovery in 1891 by Villiers [132], cyclodextrins have stimulated research in
many fields. Moreover, they are used in many industries including the pharmaceutical,
biotechnology, food and cosmetics sectors [133]. This popularity is due to the fact they
are seminatural products that do not pose environmental risks [133].

Cyclodextrins (CD) are cyclic oligosaccharides which form a cavity with hydrophobic
character on the inside and hydrophilic properties on the outside [133-135]. The best
known are the a-CD, B-CD and y-CD which contain six, seven and eight glucopyranose
units, respectively. Modified cyclodextrins are effective templates for use in the chemical
synthesis of a large variety of molecular hosts. By suitable modifications it is possible to
design cyclodextrins to host a particular guest, which in turn leads to new areas of
supramolecular chemistry [133,134].

Modiﬁcations to the cyclodextrins result in a wide range of photochemical reactions,
which can be utilized in light harvesting molecular devices and photochemical frequency
switchers [136,137]. Furthermore, modified cyclodextrins in solution can be used as
molecular, temperature and pH sensors, and on surfaces cyclodextrins form semi-
permeable membranes and electrodes [138-144].

In this chapter a study of the inclusion complex of p-chlorophenol inside a-cyclodextrin
(a-CD) by the theory of atoms in molecules (AIM) is reported [29,30] that is based on

the topological properties of the electron density, denoted by p. A quantitative
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comparison of some AIM properties of isolated p-chlorophenol (PCP) and the inclusion
complex (PCP-CD) is used, and some weak interactions within the host-guest complex
are characterized. Furthermore, the electrophilic aromatic substitution on the p-

chlorophenol in the isolated state and inside o-CD is compared.

8.2 Results and discussion

As was explained in Chapter 3, a chemical bond (or interaction) between two atoms is
defined in AIM theory by the existence of a bond critical point (BCP) between the two

atoms and a bond path (trajectory of Vp), which contains the bond critical point and links

the two atoms. Weak interactions are characterized by low values of p at the BCP. The
goal of this chapter is to gain insight into the interactions between the guest compounds
and the cyclodextrins in inclusion complexes using AIM. This type of study can be useful
to predict qualitatively the solubility of compounds inside cyclodextrins by analyzing
their interactions with the cyclodextrin and to provide some qualitative information on
the strength of the bonding from the electron density at the BCP. One of the first
quantitative discussions of the relationships between AIM parameters and bond energies
was given for hydrogen bonding about twenty years ago by Boyd and Choi [96,97],
whose studies show strong correlations between some AIM parameters such as p and Vv
at the BCP and the hydrogen-bond energies.

For convenience the X-ray diffraction structure [145] of PCP-CD is used for the
calculations. A full geometry optimization would be computationally too expensive.
Single-determinant Kohn-Sham "wavefunctions" were obtained at the B3LYP/6-31+G(d)

level for PCP, with the same geometry that it has inside a-CD, and also for the inclusion
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complex (PCP-CD). Therefore, this study does not consider the geometry changes in PCP
produced by the inclusion in a-CD. The electronic structure calculations were performed
using the Gaussian 03 package [53], and the molecular graphs were obtained using AIM
2000 [104].

Figure 8.1 shows clearly the bond (BCP) and ring (RCP) critical points, as well as the
bond paths in the case of the isolated PCP. Figure 8.2 illustrates the molecular graph for

PCP inside a-CD.

(@ (b)

Figure 8.1. p-Chlorophenol
(a) The numbering scheme used in this study in p-chlorophenol.
(b) The molecular graph of p-chlorophenol.
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Figure 8.2. The inclusion complex of p-chlorophenol with the a-cyclodextrin.
(a) The p-chlorophenol inside the a-cyclodextrin viewed from above.
(b) Side view of the p-chlorophenol inside the a-cyclodextrin.
(c) The molecular graph of p-chlorophenol inside the a-cyclodextrin (the ring
and cage critical points are not shown to illustrate more clearly the weak
interactions between the p-chlorophenol and the a-cyclodextrin).
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The molecular graph of PCP inside a-CD is essentially unchanged from that of isolated
PCP, although many gradient trajectories that connect the nuclei of PCP and the nuclei of
a-CD can be observed. The gradient trajectories correspond to the weak interactions
between PCP and a-CD. For clarity, only the bond critical points are shown in the
inclusion complex (ring and cage critical points have been omitted).

Table 8.1 lists the electron density (p), the negative of the Laplacian® and ellipticities (g)

at some BCPs. Table 8.2 characterizes the RCPs in terms of p and -V>p.

Table 8.1. Electronic properties at some bond critical points of p-chlorophenol in the
isolated state (PCP) and inside a-cyclodextrin (PCP-CD) (in atomic units).

PCP P -V € PCP-CD P -V £
C,-Cl 0.2038 0.3164 0.0519 C,-Cl 0.2019 0.3134 0.0572
C,-OH 0.2803 0.3560 0.0192 | Cs,-OH 0.2817 0.3915 0.0197
O-H 0.3552 1.9155 0.0176 O-H 0.3552 1.9218 0.0175
C-C, 03138 0.8563 0.2256 C-C; 0.3131 0.8499 0.2269
C,-Cs 0.3157 0.8646 0.2028 Cr-C; 0.3154 0.8591 0.1995
Cs-Cq 0.3329 0.9935 0.2321 Cs-Cy 0.3332 0.9960 0.2254
C,-H; 0.3927 2.0213 0.0082 C,-H; 0.3945 2.0389 0.0076
Cs-Hs 0.3885 1.9734 0.0121 Cs-Hg 0.3900 2.0000 0.0104

Table 8.2. Electronic properties at the ring critical point of p-chlorophenol in the isolated
state (PCP) and inside a-cyclodextrin (PCP-CD) (in atomic units).

p -Vp
PCP 0.0214 -0.1733
PCP-CD 0.0217 0.1727

* Positive values of -Vp indicate concentration of charge, whereas negative values indicate depletion of
charge.
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Analysis of the bond critical points shows that there is no trend in the effect on the AIM
properties of PCP due to inclusion in the a-CD. For example, PCP exhibits BCPs in the
C;-C; and C,-C; bonds with higher values of p and -V?p in the isolated state than inside
o-CD, whereas the opposite is observed for the BCP of the C,-H; bond.

The ellipticity provides a measure of the n character of a bond [29]. As in the cases of p
and -V2p, there is no trend in the effect on the ellipticities of the bonds of PCP by the
inclusion in a-CD. For example, the ellipticity of the C;-C; bond in PCP is lower than
that of the inclusion complex PCP-CD, whereas the ellipticity of the C;-C4 bond is higher
in the isolated compound. In general, it can be concluded that the a-CD has a negligible
effect on the © character of PCP.

The electron density at the RCP is slightly higher in the inclusion complex than in
isolated PCP. Additional insight into the structure is provided by -V?p. In particular, the
isolated PCP exhibits a slightly more negative value of -V?*p than the inclusion complex.
This indicates a greater depletion of charge around the RCP in the isolated state than that
inside the cavity. Therefore, encapsulation of PCP by a-CD increases p at the RCP and

makes the charge around the RCP less depleted.

8.2.1 Topological characterization of the weak interactions

Figure 8.2 shows several bond paths connecting the hydrogen and oxygen atoms of the a-
CD with all atoms of PCP with the exception of the hydroxyl group and its bonded

carbon (C,) and Hy. These four atoms are not sufficiently inside the a-CD to produce a

weak interaction with the cavity (Figure 8.2 (b)). Table 8.3 provides p and - Vp at the
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“BCPs” for the weak interactions exhibited by chlorine (Cl(1)-Hep, CI(2)-Hep and CI(3)-
Hcp) and its bonded carbon of the benzene ring (Ci-Hcp).
Table 8.3. Electronic properties at the “bond critical points” of the weak interactions of

chlorine and C; of the p-chlorophenol with the a-cyclodextrin in the inclusion complex
(in atomic units).

PCP-CD P -V’
Cl(1)-H¢p 0.0038 -0.0124
Cl(2)-Hep 0.0044 -0.0148
Cl(3)-Hep 0.0032 -0.0112
Ci-Hep 0.0032 -0.0104

Figure 8.2 also illustrates clearly the unusual topology exhibited by the hydrogen atoms
bonded to C, and C¢ (H; and Hjo) in the benzene ring. For example, there are five bond
paths that connect Hyo with the nuclei of the a-CD. Three of them are weak interactions
with hydrogen atoms of the cavity (2.4 A average distance) whereas the other two are
with two oxygen atoms that connect two glucopyranose units (2.85 A average distance).
Comparison with Table 8.1 shows that p and -V?p are two and one order of magnitude
less with opposite sign (typical of a closed-shell interaction [29]), respectively, than those
for the BCPs between the atoms of the PCP. Therefore, they are classified as weak

interactions.

8.2.2 Electrophilic aromatic substitution

Bader and Chang in 1989 [146] carried out a study on the electrophilic aromatic
substitution in substituted benzenes based on the Laplacian values at the link points in the
valence shell of the carbon. These points, which by definition link the bonded charge

concentrations in the valence shell of the carbon, indicate that the charge concentration is
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a maximum in both directions perpendicular to the path that connects these two maxima
and a minimum along this line [29]. Thus, the link points exhibit the second highest
charge concentration of the VSCC (valence shell charge concentration) of the atom. Their
study predicts the observed directing and activating-deactivating effects of a substituent
in the electrophilic aromatic substitution. Following this idea, Castillo and Boyd (next
chapter) in their work on the resonance effect in o and B-halogen naphthalenes
corroborated the results of Bader and Chang. The relative location of these saddle points
in benzene derivatives are over and under the plane of the ring. Therefore, it is reasonable
to think of them as possible sites for electrophilic attack. Figure 8.3 illustrates the
location of these link points in benzene derivatives. Table 8.4 provides -V?p at the link
points for C, and C; (the values reported are the averages between the above and below

the plane carbon-carbon link points).

Figure 8.3 Atomic graph describing the link points of the VSCC of a carbon in benzene
derivatives. The maximum charge concentrations and the link points are denoted by
asterisks and dots, respectively. The solid link line is in the plane, the dashed link line is
above the plane and the gray link line is below the plane. R represents an atom or a group
of atoms.
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Table 8.4. -V2p at the carbon-carbon link points for C; and C3 of p-chlorophenol in the
isolated state (PCP) and inside a-cyclodextrin (in atomic units).

C, (0%}
PCP 0.1484 0.1705
PCP-CD 0.1493 0.1620

The hydroxyl group is a stronger ortho-directing group than chlorine, and, therefore, the
Cs position is more activated for electrophilic attack than the C, position. As can be seen
in Table 8.4, -V2p at the carbon-carbon link points is consistent with this experimental
fact [157]; C; exhibits a higher value of -V?p at the carbon-carbon link points than C; for
both systems. Similar results are obtained for the Cs and Cg positions. It can be seen that
the a-CD has a clear effect on the -V2p at those link points. The a-CD increases -V at
the link point of C; and decreases -V?p considerably at the link point of Cs. Thus, the
effect of encapsulation of PCP by a-CD is to make C; a little less reactive relative to C;
with respect to electrophilic aromatic substitution.

However, the hydrogens of the benzene ring, which are the leaving groups in the
electrophilic aromatic substitution and play a determinant role in the mechanism of the
electrophilic aromatic substitution [147], are attracted to the cavity by weak interactions.
This fact has to be considered in order to arrive at a general conclusion about the
electrophilic aromatic substitution in PCP-CD. Table 8.5 illustrates the values of p at the
“BCP” of the weak interactions exhibited by the hydrogens bonded to C; and C3 (H7 and

Hg), respectively.
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Table 8.5. Electron density at the “bond critical points” of the weak interactions between
the hydrogens H; and Hs of the p-chlorophenol and the a-cyclodextrin (in atomic units).

PCP-CD p
H7-Ocp 0.0088
H;-Hep 0.0041
Hg-Hep 0.0043

H; exhibits two weak interactions with one oxygen (H7-Ocp, 2.50 A) and one hydrogen
(H7-Hcp, 2.46 A) of a-CD, whereas Hg exhibits only one weak interaction (Hs-Hcp, 2.39
A) with the same hydrogen (Figure 8.2). H;-Hcp exhibits a similar value of p at its
“BCP” as Hg-Hcp. Therefore, the strength of these two weak interactions is assumed to
be similar on the basis of the results of Boyd and Choi [96,97]. H; has an additional weak
interaction with Ocp, which exhibits a similar distance between the atoms and almost
double the value of p at the “BCP” than the two weak interactions mentioned above.
Therefore, H; is more strongly bonded to o-CD than Hg and it is reasonable to suggest
that the leaving of H; should be easier than that of Hs.

It is predicted on the basis of the analysis of -V?p at the link points and the bonding
interactions exhibited by the hydrogen-leaving groups with a-CD that the C; position in
PCP-CD is more favorable with respect to electrophilic aromatic substitution than in PCP.
A similar prediction with respect to electrophilic aromatic substitution at C; cannot be

made due two opposing factors: encapsulation of PCP by a-CD decreases -V?p at the link
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points but also it produces several weak interactions between hydrogen-leaving groups
and a-CD which facilitate the leaving of the hydrogen and accelerates the reaction.

It is also predicted on the basis of the analysis of -V?p at the link points and the bonding
interactions exhibited by the hydrogen-leaving groups with o-CD that the ratio between
p-chlorophenol substituted at C; and Cj is greater in PCP-CD than in PCP. The facts that
the Cs position is more accessible to electrophilic attack (Figure 8.2 (b)) and that the o-

CD can be considered to be a competing site were not considered in this study.

8.3 Conclusions

Single-determinant Kohn-Sham "wavefunctions" were obtained at the B3LYP/6-31+G(d)
level for PCP, with the same geometry that it has inside a-CD, and also for the inclusion
complex (PCP-CD). The analysis of the bond critical points of PCP shows that there is no
trend in the gffect on the AIM properties of PCP due to inclusion in the a-CD. The
analysis of the RCP shows that the encapsulation of PCP by a-CD increases p at the RCP
and makes the charge around the RCP less depleted. Furthermore, several weak
interactions between PCP and o-CD were found and characterized.

The analysis in terms of link points of the VSCC of carbons and the bonding interactions
exhibited by the hydrogen-leaving groups with a-CD shows that the C, position of p-
chlorophenol in PCP-CD is more favorable than in PCP with respect to electrophilic
aromatic substitution (the same prediction holds for the Cs position). Furthermore, the
ratio between p-chlorophenol substituted at C, and Cs is predicted to be greater in PCP-

CD than in PCP.
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Chapter 9 An Atoms in Molecules Study of the Halogen Resonance Effect.

9.1 Introduction.

The electronic structure of certain classes of molecular species cannot be adequately
described by a single Lewis structure. In some cases, the actual electronic structure is a
weighted average of two or more Lewis structures, called resonance structures, and the
molecule is known as a resonance hybrid. The concept of resonance is especially useful
for systems containing delocalized electrons and has been used to explain many
phenomena in chemistry including several types of reactions and the stability and
physical properties of compounds.

The experimental observation that electfophilic substitution at the ortho and para
positions of halobenzenes (C¢HsX) is more facile than at the meta position is readily
rationalized by a halogen resonance effect. Thus, interaction of a halogen lone pair with
the p atomic orbitals that form the delocalized system of © bonds leads to the halonium
ion structures shown in Scheme 9.1. It is impossible to draw an equivalent resonance
structure for the intermediate formed by electrophilic substitution at the meta position of

a halobenzene.

Y H

(2) (b)

Scheme 9.1. Resonance structures for the intermediates formed by electrophilic aromatic
substitution of Y at the ortho (a) and para (b) positions of a halobenzene.
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Support for the standard interpretation of the experimental results is provided by MO
calculations [148], which clearly show a large contribution of the halogen to the =
bonding MOs. A similar effect is not observed in haloaliphatic compounds. In this
chapter the first analysis of the halogen resonance effect by use of the theory of atoms in

molecules (AIM) is reported.

9.2 The Theory of Atoms in Molecules and Resonance.

The AIM theory uses well-defined quantities derived from the electron density to provide
valuable insight into the electronic structures and properties of molecules [29,30,128].
Bader and Stephens [70] have studied the resonance effect in terms of F*(Q,Q’) and F
(©,Q2°), which are the delocalization functions of electrons with o and P spin,
respectively, between the basins of two atoms, Q and O’ (Equation 5.1). The relationship
between the delocalization index and bond order in the characterization of a chemical
bond has been discussed previously [71,79,80,121].

Bader et al. [149] used F*(Q,Q2’) to quantify the contribution of each resonance structure
in acyclic and cyclic hydrocarbons as well as the effect of substituents on delocalization
in aromatic systems. More recently, Gonzélez and Mosquera [150] reported a similar
study in pyrimidinic bases but in terms of the delocalization index (8 (Q2,Q2")) (Equation
5.2).

Several other authors have used AIM to study the resonance effect in many different
types of systems. For example, Okulik et al. have used AIM parameters to study the
“three-center two-electron bonds” exhibited by isobutonium [151] and n-butonium [152]

cations. Grabowski [153,154] and Gilli et al. [155] have used AIM analysis in terms of
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the electron density and the Laplacian at the bond critical points to explore the resonance-
assisted hydrogen bonds in malonaldehyde and ketohydrazone-azoenol systems,
respectively. Also, Borbulevych et al. [156] used the AIM theory to analyze substituent
effects in 4-nitroaniline derivatives.

In this chapter a detailed AIM study of systems where the halogen is adjacent to a
carbon-carbon double bond is presented. Moreover, a comparable study of the respective
saturated halohydrocarbons and hydrocarbons as well as the related unsaturated
hydrocarbons has been carried out. The molecules included in this study are shown in

Scheme 9.2, where X=F, Cl and Br.
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Scheme 9.2. Chemical structures of compounds included in this study, where X=F, Cl
and Br.

The first series consists of ethene (1-1), benzene (1-2) and naphthalene (1-3). The second
series consists of their four monohalo derivatives. The third series consists of the
saturated analogues of series 2, while the fourth series consists of the unsubstituted parent

compounds of the third series. The emphasis of our study is on bond critical points,
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ellipticities, Laplacian topology, delocalization indexes and population analysis for the
main atoms and bonds associated with the resonance effect.

A secondary purpose of this chapter is to perform an AIM study of electrophilic aromatic
substitution in the halonaphthalenes in order to complement Bader and Chang’s earlier
study of benzene [146]. An analysis of the link points of the carbon valence shell charge
concentrations (VSCCs) of the ring is used to predict the directing and activating-

deactivating effects of halogens in naphthalene.

9.3 Computational Details

All molecules were fully optimized at the B3LYP/6-311++G(d,p) level using the
Gaussian 03 package [53]. The characterization of the bond and ring critical points as
well as the maximum charge concentrations was carried out using the EXTREME
program while the atomic populations were performed by PROAIM. Both programs
belong to the AIMPAC package [54]. The AIMDELOC program was used to obtain the

delocalization indexes [76].

9.4 Results and Discussion

9.4.1 Valence shell characterization of chlorine in compound series two and three.

The characterization of the valence shell was carried out in terms of the (3,-3) critical
points of L (L=-V>p), which represent the bonded and non-bonded maximum charge
concentrations in the VSCC of an atom in a molecule. The locations of the (3,-3) critical

points of L provide theoretical support for the bonded and non-bonded electron pairs of
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the Lewis model [157-159]. Figure 9.1 illustrates the locations of the (3,-3) critical points
in the valence shell of chlorine in compound series two and three. The position of each
(3,-3) critical point is indicated by a vector whose origin is at the chlorine nucleus. In
order to illustrate the distortion of the VSCC in each case, Figure 9.2 shows the contour
map of the Laplacian for the plane that contains the halogen and the two carbons of
chloroethane and chloroethene.

Figure 9.1 shows clearly that the chlorine VSCC exhibits two non-bonded maxima in
series two and three non-bonded maxima in series three. Moreover, the missing non-
bonded maxima in series two are positioned optimally to delocalize the m cloud of the
carbon-carbon double bonds. Figure 9.1 also illustrates that the other two non-bonded
maxima are in the o plane of the carbon-carbon double bonds, which is a favorable
location for the delocalization of the missing non-bonded maximum charge concentration
into the © cloud. Furthermore, Figure 9.2 shows contour lines connecting the VSCC of
chlorine with the VSCC of carbon in chloroethene, signifying a greater distortion of the
VSCCs of chlorine and carbon in chlorethene than in chloroethane. This suggests a
greater sharing of electrons in the chlorine-carbon bond of chloroethene than in
chloroethane, and also suggests that the halogen resonance effect is a donor effect.

Table 9.1 describes the VSCC of chlorine in compound series two and series three in

terms of several electronic properties.
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Figure 9.1. Location of the maximum charge concentrations of the VSCCs of chlorine in
compound series two and series three. In each molecule the bonded maximum charge
concentration is directed toward the carbon atom bonded to chlorine and is labeled by 1.
Representations are as follows: (a) 2-1, (b) 3-1, (c) 2-2, (d) 3-2, (e) 2-3, (f) 3-3, (g) 2-4
and (h) 3-4

Countour line
connecting the
two VSCCs

- - -
-------

.............

(2) (b)

Figure 9.2. Contour map of the Laplacian of the electron density in the plane that
contains the chlorine and the two carbons. (a) Chloroethene and (b) Chloroethane. The
chlorine nucleus is on the left side in both cases.
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Table 9.1. Characterization of the maximum charge concentrations in the VSCCs of
chlorine in compound series two and series three in terms of the number of bonded
maxima (#b), the number of non-bonded maxima (# nb), radius (r), -V?p, p and average
angles between non-bonded maxima.”

Bonded Maxima

Non-bonded Maxima

Molecule 5 : . > : -
#b T -V°px10 px10" | #nb T -Vpx10 px10" | Angle (nb-nb)

1.185 8.52 2.78 152.4
2-1 1 1271 6.18 2.55 2

1.185 8.50 278

1.187 8.31 2.76 1152
3-1 1 1.265 5.76 2.45 3 1.187 8.31 2.76

1.187 8.30 2.76

1.185 8.47 2.78 153.1
2-2 1 127 6.09 2.53 2

1.185 8.47 278

1.188 8.19 2.75 115.5
3-2 1 1.261 5.74 245 3 1.188 8.21 2.75

1.188 8.21 2.75

1.185 8.47 278 153.4
2-3 1 1.271 6.03 2.52 2

1.185 8.49 2.78

1.187 8.21 2.75 115.1
3-3 1 1.258 5.73 2.51 3 1.188 8.19 275

1.187 8.21 275

1.185 8.47 2.78 153.7
2-4 1 1271 6.08 2.53 2

1.185 8.47 278

1.188 8.19 275 115.3
3-4 1 1.261 5.73 245 3 1.188 8.21 2.75

1.187 8.21 275

a- Radius in angstroms, -V>p and p in atomic units and angles in degrees.

The radii, -V?p and p at the bonded maximum charge concentration of the chlorine

VSCC are larger in series two than in series three. The same trend holds for the non-

bonded maximum charge concentrations, with the exception of the radii, which are

slightly larger in series three than in series two. The radii of the non-bonded maximum

charge concentrations are smaller in series two than series three, whereas -V?p and p

continue being larger. The decrease of the angle from series two to series three, indicates

the change of the chlorine VSCC from trigonal planar to tetrahedral. All these results
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support the fact that one non-bonded maximum is delocalized into the © cloud of the

double bonds in series two.

9.4.2 Comparison of the fluorine and bromine valence shells with chlorine in

compound series two and series three.

The bonded maximum charge concentrations of the VSCCs of fluorine and bromine in
series two and series three were not found at the level of theory used in this study. The
results are listed in Table 9.2. It is possible that the maxima would be found at higher
levels of calculation since it is known that the use of triplet-zeta basis set is the minimum
requirement to obtain consistent and topologically stable graphs of the Laplacian [160].

The non-bonded maxima charge concentrations for fluorine and bromine have similar
characteristics to that of chlorine. For example, the VSCCs for the two atoms exhibit two
non-bonded maxima in series two, whereas there are three non-bonded maxima in series
three. Also, the non-bonded maximum charge concentrations in series two are in a
favorable location for the delocalization of the missing non-bonded maximum charge
concentration into the w cloud. The radius of the non-bonded maximum charge
concentration increases from series two to series three, whereas -Vp, p and the angles
decrease. A decrease of almost 75% percent in the -V*p value for the non-bonded
maximum charge concentration in the bromine case is noteworthy. This result is expected

because bromine is considerably larger than chlorine and fluorine, and any displacement

of the same amount of electron charge involves larger volumes. Therefore, the

concentration of p decreases more significantly than in the cases of chlorine and fluorine.
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Table 9.2. Characterization of the non-bonded maximum charge concentrations in the
VSCCs of fluorine and bromine in series two and series three in terms of the number of
non-bonded maxima (# nb), radius (1), -V?p, p and average angles between non-bonded
maxima.’

Non-bonded Maxima
Fluorine Bromine
) ) . | Angle ) Angle
Molecule | #nb r -Vpx10 px10 Molecule | #nb r -Vp p
(nb-nb) (nb-nb)

0.569 9.34 1.52 1.567 | 0.82 1.65

2-1 2 157.0 2-1 2 1589
0.569 9.31 1.52 1.568 | 0.82 1.65
0.571 9.06 1.50 1.574 | 0.21 1.62

3-1 3 0.571 9.06 1.50 116.2 3-1 3 1.574 { 0.19 1.62 117.1
0.571 9.07 1.50 1.574 | 0.19 1.62
0.569 9.28 1.52 1.567 | 0.76 | 1.65

2-2 2 155.7 2-2 2 159.8
0.569 9.28 1.51 1.567 | 0.76 1.65
0.571 9.00 1.50 1.577 | 0.16 1.61

3-2 3 0.571 8.98 1.50 116.6 3-2 3 1.576 | 0.03 1.61 117.3
0.571 9.00 1.50 1.576 0.03 1.61
0.569 9.26 1.52 1.566 | 0.94 1.66

2-3 2 156.1 2-3 2 159.8
0.569 9.26 1.52 1.566 | 0.77 1.65
0.571 9.01 1.50 1.576 | 0.11 1.61

33 3 0.571 8.96 1.50 116.0 33 3 1.578 | 0.29 1.60 116.7
0.571 8.98 1.50 1.575 | 0.09 1.62
0.569 9.28 1.52 1.567 | 0.79 1.65

2-4 2 156.6 2-4 2 159.3
0.569 9.28 1.52 1.567 | 0.77 1.65
0571 8.97 1.50 1.577 { 0.16 1.61

3-4 3 0.571 9.00 1.50 116.6 3-4 3 1.576 | 0.03 1.61 117.2
0.571 9.00 1.50 1.576 | 0.03 1.61

a- Radius in angstroms, -V2p and p in atomic units and angles in degrees.

9.4.3 Characterization of the bonded maximum charge concentrations of the

carbons connected to halogens.

As was shown above, the VSCCs of the halogens are significantly altered by the
resonance effect. Hence, it can be expected that the VSCCs of the carbon atoms joined to

the halogen will also exhibit detectable modifications. Therefore, the VSCCs of these

154



carbon atoms for series two and series three with the three different halogens are
analyzed. Table 9.3 provides the results for the bonded maximum charge concentration of
the carbon bonded to the halogens.

Table 9.3. Characterization of the carbon-halogen bonded maximum charge

concentrations in the VSCC of the carbon connected to the halogen (fluorine, chlorine or
bromine) in terms of radius, -V?p and p for series two and series three.?

Fluorine Chlorine Bromine
Molecule | r | -V?px10' | px10! | Molecule | -Vpx10' | px10' | Molecule r Vpx10! | px10!
2-1 1.043 347 2.63 2-1 1.035 4.99 2.13 2-1 1.027 4.81 2.02
3-1 1.053 2.64 229 341 1.054 3.84 1.89 3-1 1.049 3.53 1.79
2-2 1.044 3.51 2.62 2-2 1.034 4.95 2.11 2-2 1.026 4.80 2.01
3-2 1.052 245 2.23 3-2 1.054 3.61 1.85 3-2 1.049 3.33 1.75
2-3 1.045 343 2.61 2-3 1.035 4.84 2.10 2-3 1.027 4.68 1.99
33 1.054 237 221 33 1.055 353 1.83 3.3 1.050 320 1.73
2-4 1.044 3.51 2.62 2-4 1.034 494 2.11 2-4 1.026 4.80 2.01
34 1.053 244 223 3-4 1.055 3.59 1.84 34 1.050 331 1.75

a- Radius in angstroms, -Vzp and p in atomic units,

As can be seen in the table, the systems with the resonance effect (series two) exhibit
smaller radii and greater values of -V?p and p at the maximum charge concentration of
the carbon bonded to the halogen than those without the resonance effect (series three).
This fact can be explained by the delocalization of the non-bonded charge concentration
in the carbon-halogen bond. The resonance effect plays a similar role in the unsaturated
aliphatic halohydrocarbon to that of the aromatic halohydrocarbon. There are no
appreciable differences with respect to radius, -V’p and p between the haloethene (2-1),

the halobenzene (2-2) and the halonaphthalenes (2-3 and 2-4), respectively. Fluorine
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produces the smallest value of -Vzp and the largest value of p at the bonded maximum
charge concentration of the carbon bonded to the halogen.

The carbon connected to the halogen in series two and series three in terms of the bonded
charge concentration contained in the carbon-carbon bond are analyzed in order to
investigate the halogen resonance effect on the carbon-carbon double bond in series two.
Also, the respective bonded charge concentrations of the carbons for the non-halogen
systems (series one and series four) are characterized to make illustrative comparisons.
Table 9.4 provides the results.

Table 9.4. Characterization of the carbon-carbon bonded maximum charge concentrations

in the VSCCs of the carbon connected to the halogen (fluorine, chlorine or bromine) in
terms of radius, -V>p and p for all four series.”

Fluorine Chlorine Bromine
Molecule r V¥ | pxio! Molecule r V% | px10' | Molecule r Vi | px10!
1-1 0.987 1.14 353 1-1 0.987 1.14 353 1-1 0.987 1.14 3.53
2-1 0.958 1.28 371 2-1 0.968 1.21 3.63 2-1 0.970 1.19 3.61
3-1 0.966 1.03 2.94 3-1 0.970 0.98 2.88 3-1 0.971 0.97 2.88
4-1 0.996 0.82 2.68 4-1 0.996 0.82 2.68 4-1 0.996 0.82 2.68
1-2 0.983 1.06 3.25 1-2 0.983 1.06 3.25 1-2 0.983 1.06 325
2-2 0.958 1.20 343 2-2 0.965 1.13 3.34 2-2 0.967 1.11 3.32
3-2 0.962 1.05 2.96 32 0.966 1.00 291 32 0.967 0.99 2.90
4-2 0.991 0.85 272 4-2 0.991 0.85 2.72 4-2 0.991 0.85 2.72
13(C) | 0982 | 109 3.34 13 (Cy) 0.982 109 | 334 | 1-3(C;) | 0982 | 109 | 334
2-3 0.957 1.23 3.52 2-3 0.965 1.15 343 2-3 0.967 1.13 341
33 0.962 1.05 2.96 3-3 0.965 1.00 2.92 33 0.966 0.99 2.90
43(Cy | 0991 | 085 | 272 a3(C) | 0991 | 085 | 272 | 43(C) | 0991 | 085 | 272
1-3(Cy) | 0983 | 108 334 13 (Cy) 0.983 108 | 334 | 1-3(C;) | 0983 | 108 | 334
2-4 0.957 1.23 3.51 2-4 0.966 1.15 343 2-4 0.968 1.13 341
3-4 0.962 1.05 2.96 34 0.966 1.00 291 3-4 0.967 0.99 2.90
43(Cp | 0991 | 085 272 43 (Cyp 0.991 085 | 272 | 43(Cp | 0991 | 085 | 272

a- Radius in angstroms, -Vp and p in atomic units.
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The VSCC of the carbon connected to the halogen in series two and series three exhibits
a bonded maximum charge concentration contained in the carbon-carbon bond with
smaller radii than the non-halogen systems (series one and series four). The radii are even
smaller in cases where the halogen resonance effect exists (series two). Moreover, series
two exhibits the greatest values of -V?p and p at these bonded maximum charge
concentrations. The values of -V2p and p for non-halogen unsaturated systems (series one)
are in between the two types of halogen systems (series two and series three). Fluorine
produces smaller radii and larger values of -V?p and p in its compounds than chlorine and
bromine. Slight differences are found between unsaturated aliphatic and aromatic
compounds in terms of -V?p and p values. For example, ethane (1-1) and chloroethene
(2-1) exhibit larger radii and greater values of -V?p and p than benzene (1-2) and

chlorobenzene (2-2), respectively.

9.4.4 Characterization of the carbon-halogen and carbon-carbon bonds.

It is well established that the electronic properties at the bond critical point provide
extensive information about a chemical bond [29]. Therefore, the characterization of the
bond critical points at the carbon-halogen bond in series two and series three for the three
halogens in terms of ellipticity, p and -V%p is carried out. The bond critical point at the
carbon-carbon bond was also characterized and a comparison with the carbon-carbon
bonds in series one and series four was carried out. The data in Table 9.5 indicate that the

ellipticities of carbon—halogen bonds are greater in systems where the resonance effect
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exists. For example, the ellipticity of the carbon—chlorine bond in chloroethene” (2-1) is
5.09x107 au (atomic unit), which is greater than the 1.40x10? au exhibited in
chloroethane (3-1). Moreover, the ellipticities are greater in halogen unsaturated aliphatic
systems (2-1) than in halogen aromatic systems (2-2, 2-3 and 2-4) for chlorine and
bromine. The opposite behavior is observed for fluorine.

Table 9.5. Ellipticity (g), p and -V?p of the carbon-halogen (fluorine, chlorine and
bromine) bonds for series two and series three.”

Fluorine Chlorine Bromine
Molecule | Bond | ex10® | px10' | -V2px10' | Bond | ex10? [ px10" | -V2px10" | Bond | ex10? | px10' | -V?px10'
2-1 C-F 7.36 249 1.44 C-Cl 5.09 1.94 2.84 C-Br 6.22 1.57 1.47
3.1 C-F 325 2.23 0.37 C-C1 1.40 1.67 1.87 C-Br 1.26 1.36 1.05
2-2 C-F 6.58 248 1.21 C-Cl 5.61 1.91 2.72 C-Br 6.37 1.55 1.44
3-2 C-F 1.02 2.18 0.63 C-Cl 0.86 1.61 1.64 C-Br 0.85 1.31 0.92
2-3 C-F 5.66 247 1.31 Cc-C1 573 1.90 2.64 C-Br 6.38 1.53 1.39
3-3 C-F 0.46 2.16 0.64 C-Cl 0.90 1.60 1.58 C-Br 0.76 1.28 0.84
2-4 C-F 6.12 2.48 1.20 C-Cl 571 1.91 2.72 C-Br 6.47 1.55 1.45
3-4 C-F 1.17 2.18 0.65 C-C1 0.90 1.61 1.63 C-Br 0.86 1.31 0.91

a- g, pand -V?p in atomic units.

The electron density at the bond critical point is also greater in systems where the
halogen resonance effect is present (series two). Fluorine produces the greatest value of p
at the bond critical point. There are no appreciable differences between halogen
unsaturated aliphatic and halogen aromatic systems in terms of p at the carbon-halogen
bond critical point. Similar behavior is observed for -V2p except that chlorine produces
the greatest values. -V?p values for halogen unsaturated aliphatic systems are slightly

greater than those of halogen aromatic systems for the three halogens.

* The direction of the eigenvector associated with the less negative eigenvalue is parallel to the 7 plane in
chloroethene
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Table 9.6 shows that series two exhibits greater values of ellipticities in the carbon-
carbon double bond than series one. For example, the ellipticity at the carbon-carbon
double bond in fluoroethene (2-1) is 4.20x10™" au, which is greater than the 3.32x10" au
exhibited in ethene (1-1). This observation can be explained by the delocalization of one
non-bonded maximum charge concentration by the resonance effect through the carbon-
halogen bond, which contributes to an increase in the electron density in the n plane of
the whole system.

Table 9.6. Ellipticity (), p and -V?p of the carbon-carbon bond adjacent to the halogen
for all four series.”

Fluorine Chlorine Bromine
Molecule £ px10! | -V?px10' | Molecule £ px10' | -V2px10' | Molecule £ px10' | -V?px10!

1-1 332100 | 3.44 10.27 1-1 332100 | 344 10.27 1-1 332100 | 3.44 10.27
2-1 420100 | 3.52 10.72 2-1 379107 3.47 1037 2-1 3.6810" | 347 10.34
3-1 415107 | 2.54 6.13 3-1 167102 | 248 58 31 93710° | 248 5.78
4-1 22410° | 241 5.49 4-1 22410° | 241 549 4-1 22410° | 241 5.49
1-2 2.0010" | 3.08 8.59 1-2 200100 | 3.08 8.59 1-2 2.0010" | 3.8 8.59
22 261100 | 317 9.1 2-2 2.3210" 3.1 8.65 22 2.2410" 3.1 8.6

3-2 438107 | 253 6.03 32 207107 | 247 57 3-2 140102 | 247 5.67
4-2 6.6110° | 239 531 4-2 6.6110° | 239 531 4-2 6.6110° | 239 531
1-3 242107 | 32 9.13 1-3 2.4210" 32 9.13 1-3 242107 32 9.13
2-3 3.0910" | 328 9.58 2-3 277100 | 321 9.14 2-3 269100 | 32 9.08
3-3 44510° | 253 6.04 33 244107 | 248 573 33 1.5210% | 246 5.65
4-3 59710% | 24 5.34 4-3 5.9710° 24 534 4-3 5.9710° 24 534
1-3 242107 | 32 9.13 1-3 2.4210™ 32 9.13 13 242107 3.2 9.13
2-4 3.1310" | 328 9.59 2-4 2.8110" 322 9.17 2-4 272100 | 321 9.12
3-4 430102 | 253 6.04 3-4 199107 | 248 572 3-4 131107 | 247 5.69
4-3 59710° | 24 5.34 4-3 597107 2.4 534 4-3 59710° | 24 534

a- €, p and -Vp in atomic units.

p and -V?p at the bond critical point of the carbon-carbon double bond are slightly greater

in series two than in series one, with fluorine yielding the greatest differences. Moreover,
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the carbon-carbon bond in series two exhibits considerably greater values of p and -V
at the bond critical point than those in series three. For example, fluoroethene (2-3)
exhibits values of 3.52 au and 10.72 au (p and -V?p), which are greater than the 2.54 au
and 6.13 exhibited in fluoroethane, respectively. These facts can be only explained by the
halogen resonance effect.

Furthermore, Figure 9.3 shows the contour map of the electron density in the plane that
contains the halogen and the two carbons in chloroethane and chloroethene. Greater
distortion of the 0.2 au contour line in chloroethene than that of chloroethane is clearly
evident. Therefore, the halogen resonance effect produces a greater amount of charge in
the area between the two atoms, which further demonstrates the donor character of the

halogen resonance effect.

0.2 au contour line 0.2 au contour line

(2) (b)

Figure 9.3. Contour map of the electron density in the plane that contains chlorine and the
two carbons. (a) Chloroethene. (b) Chloroethane.
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The ring critical points were also analyzed for the cyclic systems. The three halogens do
not produce any appreciable effects on p and -V?p at the ring critical points. Their values
are very similar to those of the non-halogen systems. Therefore, the presence of the
halogens in the systems does not make any appreciable difference in the characteristics of

the ring critical points whether the resonance effect exists or not.

9.4.5 Population analysis.

Table 9.7 lists the populations of the halogen and their adjacent carbons in series two and
series three. Clearly the populations of chlorine and bromine in series two are smaller
than in series three, whereas the population of fluorine remains constant at 9.62 au.
Notice that the populations of chlorine and bromine are still greater than their respective
atomic numbers (17 and 35). This suggests that the electron withdrawing inductive effect
of the halogens is stronger than the donor resonance effect. However, the fluorine

systems do not follow the same behavior.

161



Table 9.7. Populations of the halogens and their adjacent carbons in series two and series
three.*

Population
Molecule Atoms Fluorine Chlorine Bromine
Halogen 562 721 35.07
2 Carbon 5.56 597 611
Halogen 962 1728 35.18
3 Carbon 549 588 599
Halogen 9.62 17.22 35.08
22 Carbon 555 5.96 6.10
Halogen 9,62 17.30 3520
32 Carbon 552 589 5994
o Halogen 962 17.22 35.08
Carbon 5.55 5.96 6.10
Halogen 9.62 17.30 35.21
33 Carbon 5.46 5.96 6.00
Halogen Y3 17.22 35.08
24 Carbon 555 596 610
Halogen 9.62 17.30 3520
34 Carbon 5519 5.89 599

a- Populations in atomic units.

The populations of the carbons adjacent to the halogens are always greater in series two
than in series three. This is an expected result and restates the donor character of the
halogen resonance effect. The resonance effect produced by the delocalization of one
non-bonded maximum charge concentration of the VSCC of the halogens in series two
donates charge to the adjacent carbon, increasing its population. It makes the populations
of the carbons adjacent to the halogen in series two greater than the respective carbons in

series three where only the electron withdrawing inductive effect is present.
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9.4.6 Delocalization indexes.

As explained above, & (X,C) measures the sharing of electrons between a halogen and
carbon. & (X,C) is clearly greater in series two than in series three for chlorine and

bromine (Table 9.8).

Table 9.8. Delocalization indexes for the bonded halogen-carbon (& (X,C)) in series two
and series three.”

Molecule Fluorine Chlorine Bromine
2-1 0.850 1.125 1.158
3-1 0.813 1.028 1.051
2-2 0.826 1.092 1.121
3-2 0.787 0.985 1.003
2-3 0.823 1.087 1.114
3-3 0.784 0.980 0.989
2-4 0.825 1.092 1.122
3-4 0.786 0.984 1.001

a- Delocalization indexes in atomic units.

The same behavior is observed in the case of fluorine, although the difference is not as
great. These facts support the donor character of the halogen resonance effect in series
two which produces a higher sharing of electrons between the three halogens and their
bonded carbon than in series three. On the other hand, fluorine and bromine exhibit the
lowest and largest values of & (X,C), respectively. In fact, the sharing of electrons
between halogens and their bonded carbons in our systems is inversely related to the
eletronegativity difference between the halogen and its bonded carbon. For example, &
(Br,C) is greater than & (F,C) and & (CLC) in both series and the electronegativity

difference increases from Br-C to F-C.
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9.4.7 Electrophilic Aromatic Substitution in the o and B-halonaphthalenes.

In their study of electrophilic aromatic substitution, Bader and Chang [146] showed that
the Laplacian values at the saddle points, which link the carbon-carbon bonded charge
concentration in substituted benzenes, predict the observed directing and activating-
deactivating effects. These so-called link points exhibit the second highest charge
concentration of the VSCC of the atoms (second to the maximum charge concentration).
In benzene these points are above and below the plane of the ring. Therefore, it is
reasonable to think of them as possible sites for electrophilic attack. The location of these
link points in benzene is illustrated in Figure 9.4. In this study a similar study of

electrophilic aromatic substitution in the a and B-halonaphthalenes is carried out.

Figure 9.4. Atomic graphs describing the VSCC of a carbon in benzene. The maximum
charge concentrations and link points are denoted by stars and dots, respectively. The
solid link line is in the plane, the dashed link line is above the plane and the gray link line
is below the plane.

As in the benzene case, there are two saddle points that link the two carbon-carbon
bonded charge concentrations in the halonaphthalenes (one above and another below the

plane of the ring). However, the saddle points which link the hydrogen-carbon maximum

164



bonded charge concentrations are not always in the plane of the ring as in benzene
(Figure 9.4). All carbons of the ring except the bridging carbons in the halonaphthalenes
exhibit one hydrogen-carbon link point in the plane of the ring. Also, they exhibit two
hydrogen-carbon link points out of the plane of the ring, one above and one below. It can
be understood that one of the hydrogen-carbon link points that is in the plane in benzene
is split into two hydrogen-carbon link points in the halonaphthalenes due to the lower
symmetry. The location of the split of the link points alternates along the carbon chain.
For example, there are four hydrogen-carbon link points in the region between C; and C;
(the split of hydrogen-carbon link points for each carbon), and it repeats in the region
between C; and Cs4, Cg and C;7 and Cg and Cy. On the other hand, there are two hydrogen-
carbon link points in the region between C; and C; (the hydrogen-carbon link point in the
plane for each carbon), and it repeats in the region between C; and Cs. Figure 9.5
illustrates the location of the link points in the o and B-halonaphthalenes and Table 9.9
provides -V’p values of the carbon-carbon link points for the o and B-

halonaphthalenes.T’I

¥ The analysis of the hydrogen-carbon link points is not reported because it does not provide further insight.
Their properties do not change appreciably throughout the ring, and also, they are generally similar to those
of naphthalene for each halogen, Furthermore, their -V?p values are noticeably lower than those for carbon-
carbon link points. Thus, it is focused on the carbon-carbon link points because they should play a major
role as sites for electrophilic attack.

! Our analysis is performed in terms of -V>p to be consistent with the common practice in the literature, but
it must be noted that the opposite convention was used by Bader and Chang [146].
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Figure 9.5. Atomic graphs describing the VSCC of a carbon in the halonaphthalenes. The
maximum charge concentrations and link points are denoted by stars and dots,
respectively. The solid link line is in the plane, the dashed link line is above the plane and
the gray link line is below the plane.

Table 9.9. Values of -V?p for carbon-carbon link points in o and B-halonaphthalene.®

a~halogen F Cl Br B-halogen F Cl Br
C, 0.159 0.150 0.149 C 0.165 0.156 0.154
C, 0.135 0.136 0.136 Cs 0.150 0.146 0.146
C, 0.145 0.139 0.136 C, 0.136 0.136 0.137

a- -V2p in atomic units.

Experimental studies of electrophilic aromatic substitution [147] indicate that halogens at
the a-position (C;) in naphthalene are C, and C4 directing, whereas halogens at the f3-
position (C,) are C; and C; directing. As can be seen in the table, the link points with the
largest values of -V?p are in the VSCCs of C; and C4 in the case of the a-
halonaphthalenes. The a-fluoronaphthalene exhibits the greatest values, 0.159 for C; and
0.145 for C4, whereas the a-bromonaphthalene exhibits the lowest values 0.149 for C,
and 0.136 for C4. Thus, the electrophilic attack will preferentially occur at C, and C,,

following the trend F>CI>Br as demonstrated by experiment. However, our results are
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not absolutely consistent with experiment [147] because they predict that the electrophilic
attack will be more preferentially directed to position C; than to position C, in the o-
halonaphthalenes. Also, they predict a similar tendency of electrophilic aromatic
substitution at the C; and C4 positions except for the case of fluorine where there is a
noticeable preference of C; over Cs. The analysis for B-halonaphthalenes indicates a
preference for C, over Cs with the same trend as observed in the a-halonaphthalenes
(F>CI>Br). These results are consistent with experiment. Furthermore, the results predict
faster electrophilic aromatic substitution at the C; position of the $-halonaphthalenes than
at the C, position of the a-halonaphthalenes. These results are also consistent with

experiment [147].

9.5 Conclusions

The VSCCs of the halogens in compounds where the halogens are bonded to a carbon-
carbon single bond exhibit three non-bonded maximum charge concentrations (series
three). The location of these maxima can be considered to be tetrahedral. However, the
VSCCs of the halogens bonded to a carbon-carbon double bond exhibit two non-bonded
maximum charge concentrations in the sp’ plane of the carbons (series two). This
suggests an overlapping or delocalization of one of the non-bonded maximum charge
concentrations of the halogen into the n cloud of the carbon-carbon double bond by a
resonance effect. The systems with the halogen resonance effect exhibit smaller radii and
larger values of -V?p and p at the maximum charge concentrations of the halogens than
those in the systems where only the electron withdrawing inductive effect of the halogen

is acting.
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In the case of the sp” carbons bonded to the halogen in series two, their maximum charge
concentrations bonded to the halogen exhibit smaller radii and greater values of -V*p and
p than the sp> carbons bonded to the halogen in series three. Moreover, the maximum
charge concentrations of the sp® carbons bonded to the other carbon that forms the
carbon-carbon double bond in series two exhibit similar radii (in general slightly smaller)
and greater values of -V?p and p than the sp3 carbons bonded to the halogen in series
three. The values of -V?p and p for these carbon-carbon bonded maximum charge
concentrations in the four series of molecules follow the trend: 2>1>3>4.

The ellipticities, -V*p and p at the bond critical points for the halogen-carbon bonds are
greater in series two than in series three. Fluorine and chlorine produce the largest values
of p and -V?p, respectively. These facts clearly show the delocalization of charge from
the halogens to the sp> carbon. In the case of the carbon-carbon bond, the ellipticities at
the bond critical point are greater in series two than in series one (also true for series
three and series four). These results also suggest an overlapping or delocalization of one
of the non-bonded maximum charge concentrations of the VSCC of the halogens into the
7 cloud of the carbon-carbon double bond by a resonance effect. The p and -V?p values
exhibit the same behavior.

The populations of chlorine and bromine in series two are smaller than in series three
(larger than 17 and 35, respectively). This suggests that the electron withdrawing
inductive effect of the halogens is larger than the donor resonance effect. However, the
fluorine systems do not follow the same behavior. In the case of the carbon bonded to the
halogens, the populations are always greater in series two than in series three, which is

consistent with the donor character of the halogen resonance effect. Furthermore, the
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delocalization indexes between the halogen and its bonded carbon are larger in series two
than in series three, which shows that the halogen resonance effect contributes to the
sharing of electrons between the halogens and their bonded carbon.

The locations of the carbon-carbon link points of the VSCC in o and p-naphthalene is
slightly different than in benzene. The analysis of these link points in terms of -Vzp
shows that electrophilic aromatic substitution is more favorable in o-fluoronaphthalene
than in a-chloronaphthalene and a-bromonaphthalene. The same conclusion holds for the
B-halonaphthalenes. Also, the results indicates a preference for C; over Cs; in the f3-
halonaphthalenes. All these results are consistent with experiment.

In summary, several observations are reported that are consistent with the presence of the
halogen resonance effect in compounds where the halogen is bonded to a carbon-carbon
double bond. These observations include the missing non-bonded maximum charge
concentration in the VSCC of the halogens, the increase of -V?p and p in the bonded
maximum charge concentrations in the VSCC of the halogens and in the VSCC of their
respective bonded carbons, the electronic properties at the BCPs, the atomic populations,
and the delocalization indexes. Furthermore, these observations are consistent with

experimental results for electrophilic aromatic substitution in halonaphthalenes.
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Chapter 10 A Theoretical Study of the Thermolysis of B-hydroxyl Aldehydes.

10.1 Introduction.

The kinetics of the thermal decomposition have been characterized in many B-hydroxyl
compounds. The first experimental studies were carried out by Yates and Smith [161] in
1965 and by Yates and Quijano [162] in 1969. The latter studied the thermal
decomposition of B-hydroxy ketones and concluded that it is a first-order intramolecular
reaction in which the hydrogen of the hydroxyl group interacts with the oxygen of the
carbonyl group forming a six-membered cyclic transition state. Also, they analyzed the
effect of replacing the hydrogens on the carbon adjacent to the hydroxyl group by methyl
groups. The activation energies of alkyl B-hydroxy ketones were found to be about 30
kcal/mol, and the substitution of hydrogens by methyl groups was shown to accelerate the
rate of the thermolysis.

Subsequent experimental and theoretical studies in the gas and solution phases have been
reported for many B-hydroxy compounds such as B-hydroxyl ketones [163], B-hydroxyl
esters [164-168], B-hydroxyl olefins [169] and B-hydroxynitriles [170-172]. All studies
also included alkyl B-hydroxyl compounds and arrived at the same conclusions as that of
the primary ketone cases.

In this chapter a theoretical study on the thermolysis of a group of B-hydroxyl aldehydes
at the MP2(FC)/6-31G(d) and B3LYP/6-31G(d) levels is reported with the emphasis on
the activation energies and rate constants obtained by using transition state theory (TST)

[173]. Also, single-point calculations by both methods using the 6-311++G(d,p) basis set

were performed for the reactants and transition states. Alkyl B-hydroxyl aldehydes and
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chloro B-hydroxyl aldehydes were included in order to analyze substituent and electronic
effects. Furthermore, the theory of atoms in molecules (AIM) [29,30] is used to study the
topology of the electronic structure along the reaction path and to gain insight into this
interesting mechanism. The thermolysis for B-hydroxyl aldehydes has not been reported

previously.

10.2 Theoretical Background
10.2.1 Transition state theory.

The TST formula to calculate the rate constant is:

k., T OF E
k= K% QQRWI exp(—};;—;] (10.1)

where E,, is the activation energy, « is the tunneling factor, ks, 4 and R are the Boltzmann,
Planck and universal gas constants, respectively. Q is the partition function and 7 is the
temperature.

The proposed mechanism for the thermolysis of p-hydroxyl aldehydes is unimolecular
and does not involve radical species. Therefore, to calculate the partition function term it
is only necessary to compute the rotational and vibrational partition functions because the
electronic and translational partition functions [174] are the same for the reactant and
transition state and therefore cancel out. The equations to calculate the rotational and

vibrational partition functions are:

1 kBT 3/2 p 12
QR—;( P ) (Z?Ej (10.2)
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O =H hv
' 1—exp(— ij

(10.3)

k,T

where o is the symmetry number (which is equal to unity in our systems [173]), A, B and
C are the rotational constants and v is the vibrational frequency.

The tunneling factor calculations were carried out by assuming unsymmetrical Eckart
barriers [175,176]. In essence the calculation of the tunneling factor in terms of Eckart
barriers (which mainly depend on the imaginary frequency of the transition state among
other parameters such as the reaction temperature, activation energy and enthalpy of
reaction) is an improved version of the simplest methods of Wigner [177] and the
parabolic-type barrier tunneling corrections [178]. The Eckart barrier tunneling
calculation is still widely used even though more sophisticated tunneling methods such as
the multidimensional semiclassical zero and small-curvature methods [179] have been
proposed. In 1997 Truong demonstrated the fairly good accuracy of the Eckart barrier
tunneling calculation in his study of the hydrogen exchange reaction of methane in a

zeolite [180,181].

10.2.2 NBO analysis.

Natural bond orbital (NBO) analysis is a powerful tool to characterize bonds,
hyperconjugation effects, bond polarization, hybridization and atomic populations in

molecules [168,182-184]. The NBO population analysis is carried out in terms of natural

atomic orbitals (NAOs), which are the eigenvectors {(pi} obtained by the diagonalization

of the atomic one-center blocks of the one-particle density operator expressed in an AO
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basis {¢i}. Therefore the matrix representation of the one-particle density operator

expressed in the basis of NAOs is a diagonal matrix whose diagonal elements are the

orbital populations

P = [o " (e @)z dr, (10.4)
The NBO atomic populations are given by

W—pr (10.5)

where the summation extends over all NAOs.

10.3 Computational Details

The optimization of the geometries of the reactants and products and the exploration of
the potential energy hypersurface to determine the transition states and the reaction paths
were carried out at MP2 (FC) and B3LYP/6-31G(d) levels of theory. Single-point
calculations at MP2 (FC) and B3LYP/6-311++G(d,p) were also carried out. The ab initio
calculations were performed by using the GAUSSIAN 03 computational package [53].
Intrinsic reaction coordinate (IRC) calculations were carried out to ensure the validity of
the stationary points found (reactants, transition states and products). The energy barriers
are corrected for the zero-point vibrational energy (ZPVE). A modified version of the
numerical integration program of Brown [185] was used for the calculation of the
tunneling factors.

The characterization of critical points was performed using the EXTREME program. The
PROAIM program was used to compute the atomic populations, atomic dipole moments

and atomic energies. Both programs belong to the AIMPAC package [54].
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10.4 Results and Discussion

10.4.1 Transition state characterizations and determination of kinetic parameters.

The mechanism suggested for the thermolysis of the B-hydroxyl aldehydes is shown in
Figure 10.1. It is very similar to those proposed for other f-hydroxyl compounds. Table
10.1 lists the bond distances in the reactants and the transition states at the MP2(FC)/6-

31G(d) level for several B-hydroxyl aldehydes.
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Figure 10.1. Mechanism for the thermolysis of B-hydroxyl aldehydes.
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Table 10.1. MP2(FC)/6-31G(d) bond distances (A) of the optimized structures of
reactants and transition states of p-hydroxyl aldehydes.

Structure 0,-C; Cr-C3 Cs5-Cy C4-0Os Os-Hs Hs-O4
Reactant-1 1.223 1.508 1.525 1.428 0.973 B.535
TS-1 1.303 1.386 2.012 1.282 1.386 1.105
Reactant-2 1.223 1.510 1.526 1.426 0.973 3.485
TS-2 1.304 1.388 2.017 1.283 1.358 1.108
Reactant-3 1.223 1.515 1.532 1.425 0.972 3.718
TS-3 1.306 1.392 2.045 1.285 1.347 1.120
Reactant-4 1.220 1.515 1.526 1.420 0.973 3.464
TS-4 1.299 1.388 2.033 1.279 1.343 1.117
Reactant-5 1.223 1.508 1.529 1.432 0.974 B3.440
TS-5 1.301 1.386 2.038 1.287 1.339 1.123
Reactant-6 1.225 1.507 1.542 1.437 0.975 3.039
TS-6 1.300 1.386 2.065 1.293 1.306 1.142
Reactant-7 1.222 1.512 1.521 1.392 0.976 3.369
TS-7 1.299 1.394 1.910 1.260 1.453 1.072

The 0;-C, distance and the C4-Os distance increase and decrease, respectively, from the
reactants to the transition states in all systems, representing the transition from a CO
double bond to a CO single bond and from a CO single bond to a CO double bond,
respectively. In all transition states, He is closer to O; than to O, and therefore, they can
be classified as late transition states. Furthermore, Table 10.1 shows that the C;-Cy4
distance increases from the reactants to the transition states for all systems, indicating the
breaking of this bond.

Quijano et al. [169] observed nearly planar transition states in their study of B-hydroxyl-
olefins, whereas the six-membered cyclic transition states in our systems are far from

planarity. The dihedral angles of the transition states are shown in Table 10.2. The C;-Cs-
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C4-0s, C4-Os-Hg-O; and 01-C,-C4-Os dihedral angles for system 7 are very different from

the average values for the other B-hydroxyl aldehydes. This fact will be discussed below.

Table 10.2. MP2(FC)/6-31G(d) dihedral angles (in degrees) of transition states of f-
hydroxyl aldehydes.

Dihedral Angles (°)
TS 0,-C,-C+-C, C;-C5-C4-05 | C3-Cy-Os-Hg C4+-O5-He-0, 0,-C,-C4-Os C,-C4-Os-Hy
TS-1 | -61.0 58.8 -30.5 9.2 7.4 22
TS-2 | -62.2 56.5 -27.9 -10.9 42 0.1
TS-3 | -67.9 60.6 -32.7 0.2 4.4 2.5
TS-4 | -60.5 58.6 313 2.7 6.9 3.2
TS-5 | -59.5 59.0 -32.2 55 9.7 4.2
TS-6 | -58.8 58.8 -33.0 23 10.7 -5.4
TS-7 | -57.0 46.5 -12.9 -39.9 25 10.2

In general the kinetics parameters of the ketones and aldehydes are very similar, which is
not surprising because they are both classified as being carbonyl compounds.
Experimental data for the thermolysis of B-hydroxyl aldehydes are unavailable. Therefore,
the experimental activation energies and rate constants for B-hydroxyl ketones were used
to compare with those of the B-hydroxyl aldehydes. In our work the activation energies
and rate constants for some alkyl‘B-hydroxyl ketones [162] at 206.5°C were used for the
comparison, thus, the rate constants for the B-hydroxyl aldehydes were calculated at this
temperature.

The activation energies and the rate constants for the alkyl substituted 3-hydroxyl ketones
are about 31 kcal/mol and 10™ sec”, respectively. The proposed mechanism (Figure 10.1)
involves the interaction between the hydrogen of the hydroxyl group and an electron pair

of the carbonyl oxygen to form a six-membered cycle. The B-hydroxyl ketones should
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have lower activation energies and greater rate constants than the B-hydroxyl aldehydes
because the electron pair on the carbonyl oxygen is more available in the ketone case due
to the positive inductive effect of the methyl group. The chlorine substituted -hydroxyl
aldehydes were included to analyze the influence of the negative inductive effect in this
mechanism. Furthermore, B-hydroxy aldehydes substituted at C3 and C4 were analyzed to
determine which position produces a larger contribution.

Table 10.3 summarizes the activation energies and the rate constants (not corrected by the
tunneling factor) for the thermolysis of B-hydroxy aldehydes at 206.5°C obtained with

the MP2 (FC) and B3LYP/6-311++G(d,p)// MP2(FC) and B3LYP/6-31G(d) levels.

Table 10.3. MP2 (FC) and B3LYP/6-311++G(d,p)// MP2 (FC) and B3LYP/6-31G(d),

respectively, activation energies and rate constants of B-hydroxyl aldehydes.

Activation Energy (kcal mol™) Rate Constant (s”)
System | MP2 B3LYP MP2x10° B3LYPx10°
1 363 31.1 3.566 8.373
2 35.1 29.3 19.001 83.311
3 34.8 29.3 36.109 100.895
4 37.8 31.3 0.861 8.112
5 35.0 29.0 17.872 99.801
6 33.0 26.3 99.974 1641.995
7 36.0 30.0 5.476 31.859

The MP2 activation energies and rate constants are about 5 kcal/mol greater and one
order of magnitude less, respectively, than the experimental results of similar B-hydroxyl
ketones. Table 10.3 also illustrates the same trends for the substitution in every position

except the case of chlorine at C4 (system 7). The B-hydroxyl aldehyde with chlorine
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substituted at C4 has a lower activation energy and greater rate constant, respectively,
than the unsubstituted B-hydroxyl aldehyde (this fact will be analyzed in detail below by
use of AIM theory). These results suggest that a positive inductive effect accelerates the
reaction.

The MP2 results in Table 10.3 show that the thermolysis of a B-hydroxyl aldehyde
substituted at C4 exhibits a lower activation energy than with the same substituent
substituted at C;. This result is expected because Cy is bonded directly to the oxygen of
the hydroxyl group which donates the hydrogen atom. When the oxygen atom begins to
donate the hydrogen atom, the s character of the oxygen valence shell increases, and the
oxygen atom becomes even more electronegative [31,186-189], withdrawing electron
density from the carbon. Therefore, a positive inductive effect at C4 plays a larger role in
the thermolysis than at C3 because the positive character at Cq is greater than at Cs. This
point is supported by the population analysis presented in the following section.

The B3LYP barriers are much lower (by as much as 6 kcal mol") and therefore the
B3LYP rate constants are much higher. This is similar to the results for B-hydroxyl
olefins, for which Quijano et al. [169] concluded that B3LYP overestimates the rate
constants.

Even though it is well known that the tunneling factor decreases as the temperature
increases [178], the analysis of tunneling gives information about the barrier shape and
also contributes to the analysis of substituents effects [190]. Table 10.4 reports the
tunneling factors as well as the corrected rate constants for the thermolysis of the seven

systems at 206.5°C at the MP2(FC)/6-311++G(d,p) // MP2(FC)/6-31G(d) level.
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Table 10.4. MP2(FC)/6-311++G(d,p)// MP2(FC)/6-31G(d) tunneling factors and
corrected rate constants of B-hydroxyl aldehydes.

System Tunneling Factor (x) Rate Constant (s')x10°
1 1.435 5.117

2 1.406 26.715

3 1.373 49,578

4 1.513 1.303

5 1.604 28.667

6 1.780 177.954

7 1.277 6.993

According to the tunneling criteria given by Bell,® the thermolysis of B-hydroxyl
aldehydes exhibits small tunneling factors and does not produce changes in the order
obtained from the uncorrected rate constants, Moreover, the tunneling factors show
clearly the positional dependence of substituent effects. For instance, methyl at C;
(systems 2 and 3) leads to tunneling factors smaller than the unsubstituted B-hydroxyl
aldehyde, whereas at C4 (systems 5 and 6) the tunneling factors are greater than in the
unsubstituted aldehyde. However, when the substituent is chlorine the opposite effect is
observed: system 4 and system 7 exhibit smaller and larger tunneling factors than the

unsubstituted aldehyde, respectively.

31 < k< 1.1 - negligible tunneling, 1.1 < x <4 - small to moderate tunneling, and 4 < « - large tunneling.'®
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10.4.2 AIM analysis.

In order to determine if the reactions occur through a six-membered cyclic transition state,

a topological study in terms of ring critical points was performed. Table 10.5

characterizes the ring critical points found for all the transition states. Figure 10.2 shows

the molecular graphs and the location of the RCPs and their three respective eigenvectors

for the seven systems.

Table 10.5. MP2(FC)/6-311++G(d,p) electron densities and eigenvalues at the ring
critical points of B-hydroxyl aldehydes.

5 Eigenvaluex10?
System px10
1 2 3

1 2.28 -1.91 6.63 8.94
2 2.32 -2.00 6.56 9.21
3 2.50 -2.26 6.59 10.00
4 2.27 -1.92 6.48 8.91
5 2.26 -1.84 6.53 8.67
6 2.28 -1.82 6.39 8.56
7 2.21 -1.72 6.88 8.53
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1(a) 1(b)

2(a) 2(b)

3(a) 3(b)
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4(2) 4(b)

3(a) 3(b)

6(a) 6(b)
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7(a) 7(b)
Figure 10.2. (a) Molecular graphs of the transition states of B-hydroxyl aldehydes, BCPs
in red dots and RCP in yellow dot. (b) Characterization of the ring critical points and the
eigenvectors in the transition states of PB-hydroxyl aldehydes. The seven systems are

defined in Figure 10.1 and eigenvectors are indicated in order of increasing eigenvalues
in accordance with Table 10.5.

In all cases eigenvector 1 is nearly perpendicular to the six-membered ring. This shows
that p is decreasing from the center of the ring in the perpendicular direction. Moreover
substitution at C4 decreases the curvature of p in the direction perpendicular to the ring
(eigenvalue 1), indicating a greater accumulation of p in the perpendicular direction for
systems 5, 6 and 7 than for the rest of the systems.

The electron density at the ring critical point (prcp) can be considered to be a criterion to
measure how much a substituent stabilizes or destabilizes the transition state. For
example, higher density at the RCP means stronger attractive interactions between the
nuclei and the electron density which in effect reduces the repulsion between nuclei, and
helps to stabilize the transition state. The prcp data yield the same trends as kinetics
parameters for substituents at Cz. For example, system 3 exhibits the largest value of p at
the ring critical point and the lowest activation energy while thevopposite occurs with

system 4. However, the same trend is not observed with substituents at C4. Systems 5 and
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6 exhibit very similar prep to that of system 1 even though their activation energies are
considerably lower. Also, system 7 exhibits lower prcp than system 1 even though its
activation energy is lower. Moreover, this criterion does not reproduce the trends when
the same substituent is at a different position (C; and C,). For example, systems 2 and 3
exhibit larger prcp than systems 5 and 6, respectively, even though their activation
energies are higher. These results also indicate that substituents at positions C; and Cq
play different roles in the thermolysis of B-hydroxyl aldehydes.

The electrostatic interaction between O; and Hg in the reactants should contribute to the
formation of the cyclic transition state. Therefore, it is reasonable to expect a greater

electrostatic attraction between these two atoms would accelerate the reaction. For this

. . . 40,9
reason, a point charge-interaction energy, U, = L , from the NBO and AIM

O~Hg

charges and the internuclear distance, was calculated as a first approximation (Figure

10.3). Table 10.6 lists the computed Upc values.

Table 10.6. The point-charge contribution to the interaction energy (Upc) in kcal/mol
obtained by NBO and AIM analyses at the MP2(FC)/6-311++G(d,p) level.

System NBO AIM

1 -20.3 -55.0
2 -20.6 -56.0
3 -19.3 -52.6
4 -19.8 -565.7
5 -20.8 -56.1
6 -23.9 -63.7
7 -21.3 -58.9
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Figure 10.3. NBO (N) and AIM (A) atomic charges (au) as well as the interatomic
distances (A) between O; and Hg for reactants of all the systems.
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The NBO charges differ considerably from those calculated by AIM. For example, the
NBO charges of O; are roughly half of the AIM values. However, both methods yield
similar trends. The NBO Upc values for B-hydroxyl aldehydes substituted at Cs3 and Cq4
follow the trends 2>1>4>3 and 6>7>5>1, respectively, whereas the AIM values yield
2>4>1>3 and 6>7>5>1, respectively. As suggested above, a larger negative value of Upc
indicates a greater attractive interaction, and therefore, it should correlate with faster
thermolysis. The results shown in Table 10.6 reproduce the trend obtained by analyzing
the kinetics parameters for B-hydroxyl aldehydes substituted at C; except that the
thermolysis of system 5 (Upc (NBO) = -20.8 kcal/mol, Upc (AIM) = -56.1 kcal/mol) is
faster than that of system 7 (Upc (NBO) = -21.3 kcal/mol, Upc (AIM) = -58.9 kcal/mol).
Furthermore, the Upc values for B-hydroxyl aldehydes substituted at C4 are more negative
than the respective ones substituted at Cs, and therefore, their thermolysis reactions are
faster, which is consistent with the kinetics parameters (Table 10.3). The Upc values for
B-hydroxyl aldehydes substituted at C; do not reproduce the trend obtained by analyzing
the kinetics parameters (Table 10.3).

As a second approximation, we calculated the dipole-moment interaction energy (Upm)
between the two atomic dipole moments of O; and Hg. Figure 10.4 indicates the direction
of the atomic dipole moments of O; and He in system 1. Similar directions were found for
the other systems. The standard equation which describes the interaction energy between

two dipole moments was used [191]:

_ [Ml(ol)'Ml (He)"3(M1 (01)'(301—1716 XMI(H6)'&01—H6 )]

3
d’o,-n,

U (10.6)
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where M; (O,) and M; (Hg) are the atomic dipole moments of O; and Hg, respectively,
ﬁol_ x, is the unitary vector which defines the line connecting O; and Hg and d o.-n, 1sthe

distance between O; and Hg. Table 10.7 lists Upc and Upym and the total interaction

energies (Uiora) for the seven systems.

Figure 10.4. Directions of the atomic dipole moments of O; and He in system 1.
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Table 10.7. The point-charge contribution (Upc) and the dipole-moment contribution
(Upm) to the total interaction energy (Uw) obtained by AIM at the MP2(FC)/6-
311++G(d,p) level. The values are reported in kcal/mol.

System Upc Ubm Utotal
1 -55.0 0.3 -54.7
2 -56.0 0.3 -55.6
3 -52.6 -0.5 -53.0
4 -55.7 0.3 -55.4
5 -56.1 0.2 -56.0
6 -63.7 0.0 -63.6
7 -58.9 -0.3 -59.2

The data in Table 10.7 show that Uiy, and Upc lead to the same trend, and the inclusion
of Upm has no effect on the trend. This suggests that the inclusion of higher electric
moments would have a negligible effect.

The theory of atoms in molecules partitions a molecule into atomic fragments and yields
an atomic energy associated with each atom [29,30]. Changes in atomic energies can be
used to determine the effect of substituents. Figure 10.5 illustrates the differences in
atomic energies between transition states and reactants for all atoms that form the six-
membered cyclic transition state. A negative value indicates a stabilization of the atom in
the transition state with respect to the reactant, whereas a positive value indicates the
opposite.

Comparison of systems 1, 2 and 3 indicates that the atomic energy of Cs is lowered
substantially by successive methyl substituents at Cs. In the case of system 4, the atomic
energy of C; (4.8 kcal/mol) is similar to that of system 1 (8.5 kcal/mol), but the
stabilization of C, in system 1 (-115.9) is greater by almost 9 kcal/mol than in system 4
(-107.1 kcal/mol). Therefore, chlorine at C; stabilizes C; less with respect to the
unsubstituted p-hydroxyl aldehyde, and it accounts primarily for the overall

destabilization of the transition state relative to the reactant introduced by the negative
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inductive effect of chlorine. With respect to B-hydroxyl aldehydes substituted at Cq, the
stabilization introduced by the positive inductive effect of the methyl group in system 5
relative to system 1 occurs mainly at Os. Moreover, C4 and Os are more stable in system
6 than in system 1. On the other hand, system 7 exhibits a very unstable C4 with respect
to system 1; the negative inductive effect of chlorine produces a large destabilization of
Cs. It is interesting to note that system 7 exhibits a much greater stabilization of O at the

transition state relative to the reactant than the rest of the systems.
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10.4.3 Anomalous behavior of 4-chloro p-hydroxyl aldehyde.

4-Chloro B-hydroxyl aldehyde behaves differently from the other six systems. For
example, the dihedral angles of the transition state of 4-chloro -hydroxyl aldehyde are
very different from the average of the other systems. Also, the tunneling factor is very
different. Moreover, it has the lowest prcp at the transition state, and it has larger Upc
values (NBO and AIM) as well as Ul (AIM) than the other systems with the exception
of 4,4-dimethyl B-hydroxyl aldehyde. Finally, 4-chloro B-hydroxyl aldehyde exhibits a
much greater stabilization of Oy in the transition state relative to the reactant than the rest
of the systems. All these results indicate clearly that a chlorine at C4 plays a totally
different role than a chlorine at C; in the thermolysis of B-hydroxyl aldehydes. The effect
of chlorine at Cs is very different from that at Cs, which is bonded to an oxygen that is
transformed from a single to a double bond during the reaction. This produces a
completely different type of chlorine-carbon interaction which constrains the geometry of
the system along the reaction path (Table 10.2) and introduces new electronic effects that

result in faster thermolysis than the unsubstituted B-hydroxyl aldehyde.

10.5 Conclusions.

The activation energies and rate constants for the thermolysis of B-hydroxyl aldehydes
have been calculated at the MP2/6-311++G(d,p) / MP2(FC)/6-31G(d) level to be
between 32 and 38 kcal/mol and 0.8x10™ and 1x10™ s, respectively. These results
indicate that the thermolysis of B-hydroxyl aldehydes is slower than the thermolysis of

similar B-hydroxyl ketones. The B3LYP method with the same basis set underestimates
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the activation energies and overestimates the rate constants for the thermolysis of the B-
hydroxyl aldehydes, in agreement with previous results reported for B-hydroxyl olefins
[169]. The inclusion of the effect of tunneling on the rate constants does not change the
trend obtained from the uncorrected rate constants but shows clearly the different roles
that C; and C4 play in the thermolysis and the effects of substituents.

The AIM analysis in terms of ring critical points and the topology of the electron density
shows that the transition state for the thermolysis of B-hydroxyl aldehydes is a six-
membered cycle. Furthermore, p at the ring critical points is a good criterion for
predicting the trends of the thermolysis rates in the B-hydroxyl aldehydes substituted at
Cs. On the other hand, the analysis of the electrostatic interaction between O; and He
accounts for the trends of the thermolysis rates in the B-hydroxyl aldehydes substituted at
Cs.

A positive inductive effect due to methyl groups, either at C; or Cs, accelerates the
reactioﬁ with respect to the unsubstituted B-hydroxyl aldehyde; the effect at C, is greater
than at Cs;. A negative inductive effect due to chlorine at C; retards the thermolysis.
However, with chlorine at Cy, the rate of thermolysis is accelerated and some anomalous

results are exhibited.
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Chapter 11 Global Conclusions

The theory of atoms in molecules (AIM) shows in a clear and accessible way the
connection between first principles (Hamiltonians, wave functions and the concepts of
quantum mechanics) and experiment (chemical processes and molecular systems). The
main concepts in chemistry as a science such as atoms, molecules, chemical bonds,
valence shells, and functional groups, are defined in a remarkable way by AIM.
Furthermore, the theory of atoms in molecules provides theoretical support for the
extremely useful valence shell electron pair repulsion model, a model which is
inseparable from the way of thinking of both experimental and theoretical chemists and
constitutes the basis for interpreting reaction mechanisms and developing new synthetic
schemes.

The results presented in this thesis in areas as diverse as NMR, kinetics and organic
chemistry, are just a small group of examples of the areas where the theory of atoms in
molecules can be applied. It really has no limits in the area of applications. Furthermore,
the theory of atoms in molecules can be very useful and has a strong impact in material
science, inorganic and coordination chemistry, and biochemistry which are the main
directions for future research.

The main conclusion of this thesis is that the theory of atoms in molecules is a very
valuable interpretative tool in chemistry, and it should be introduced to all students
irrespective of their area of specialization.

All the results presented in this thesis have been published in journals of high impact:

Chemical Physics Letters (Chapters 4, 7, and 8), the Journal of Chemical Information and
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Modeling (Chapter 5), the Journal of Physical Chemistry A (Chapters 6 and 10) and the

Journal of Chemical Theory and Computation (Chapter 9).

11.1 Future Directions

11.1.1 The Negative Divergence of the Quantum Stress Tensor and Conductivity.

The discovery of conducting plastics in the 1970s was a very significant event [192,193].
These plastic materials are polymers that possess very long chains of alternating single
and double bonds, and become conductors when reduced or oxided. This process is called
p-doping when electrons are removed from the material and n-doping when electrons are
inserted into the material [192,193].

The first reported plastic conductor was polyacetylene in 1977, for which Heeger,
MacDiarmid and Shirakawa were awarded the Nobel Prize in 2000. Polyacetylene is a
semiconductor in its natural state. The trans isomer exhibits a higher conductivity than
the cis isomer. They have been studied experimentally and theoretically, and have played
a dominant role in the comprehension of the conduction properties of these types of
materials.

In an effort to shed light on the electronic origin of the conductivity an AIM study based
mainly on the negative divergence of the quantum stress tensor of the cis and frans-
CioHi2 is being carried out. Also, systems such as cis and trans-C¢Hg and cis and trans-
CisH¢ are included to analyze the effect of increasing the chain length. To study the
effect of substituents on the conducting properties of the systems, which is one of the
main challenges in the synthesis of new conducting materials, cis and trans isomers of

CioHj, substituted with F, Cl, Br, NO,, CN, NH; and CHj; are being considered. All
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systems exhibit chains of alternating single and double bonds in a plane (assumed to be
the XY plane) and therefore, application of an electric field along the chain will give rise

to conductivity.
As was demonstrated in Chapter 3, the equation of motion for any observable A(r) in an

open system (assuming a stationary state) is given by equation 3.23:
<‘P‘[H 21]\11> = —inddS(Q,r)j , -n(r) (11.1)
Q

where j4, the quantum mechanical current density for an observable A, is defined by
equation 3.24.
The choice of A(r)as the electronic momentum operator yields the Ehrenfest force

(F(Q)), which is the force exerted on an open system [29,30,194]:
F(Q)=—{as(ry)-(r) (11.2)
where &(r), the quantum stress tensor, and is defined by equation 3.55. The quantum

stress tensor is a symmetric tensor and it is not incorrect to say that its analogue in
classical electrodynamics is the very well known Maxwell stress tensor [191].

Applying Gauss’ theorem to equation 11.2 yields:
F(Q)=- [ dv-5(r) (11.3)

The local form of this force law is:

F(r)=-V-i(r) (11.4)
F(r) is the force exerted on an electron at every point r in the charge distribution by the
remaining particles in the system.
The basic idea of this project consists of analyzing the direction and values of F(r) at

several points over the nuclei and bond critical points in the Z direction. Figure 11.1
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illustrates the molecular graphs as well as the directions of F(r) at 2 au above the carbon

nuclei and carbon-carbon bond critical points in cis and trans-CioHi,.

(d)

197



®

Figure 11.1. Molecular graphs (a and b) and the directions of F(r) at 2 au over the carbon
nuclei (c and d), and carbon-carbon bond critical points (e and f) in the cis and trans-
CioHj2, respectively.

As can be seen in Figure 11.1, the direction of F(r) at 2 au above the carbon nuclei and
the carbon-carbon BCPs in cis and trans-C;oH;; is perpendicular to the XY plane. The
same direction was found for the force at 0.5, 1.0, 1.5, 2.5 and 3.0 au above the carbon
nuclei and carbon-carbon BCPs in all systems. Therefore, it is reasonable to think that the
electron mobility generated by an electric field along the chains of alternating single and
double bonds is greater when the value of the perpendicular forces on points above the
XY plane are smaller. Electron mobility is directly proportional to the conductivity, and
therefore, molecules which exhibit smaller values of these perpendicular forces can be
considered to have higher conductivity.

The calculations of these perpendicular forces in cis and trans-Cg¢Hs, cis and trans-CioHi

and cis and trans-CisHi6 as well as in cis and trans-CyoH;, substituted with F, Cl, Br,
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NO,, CN, NH, and CHj are being carried out. A new version of the EXTREME program
belonging to the AIMPAC program package is being used to perform the calculation [54].
The available version of the EXTREME program has some inconsistencies in the
calculation of the negative of the divergence of stress tensor and reorientation of the

molecular geometries. These problems were fixed to develop the new version.

11.1.2 Bond Length and the Electron Density at the Bond Critical Point: X-X, Z-Z,
and C-Z Bonds (X = Be-F, Z = Na-Cl)

The estimation of bond properties from parameters at the critical points in the electron
density distributions of molecules has become a very popular area of research in the last
25 years. Specifically, the estimation of bond length from parameters at the bond critical
point (BCP) has received much attention. In particular, the electron density (p) at the
bond critical point has been used to estimate bond lengths.

There are several reports in the literature showing correlations of pgcp and bond length.
One of the first correlations was reported by Bader and co-workers in 1982 where the
authors showed a linear correlation between bond length and pgcp for C-C bonds in
ethane, benzene, ethylene and acetylene [195] at HF/STO-3G level. The linear
relationship was pj., =—0.184d . - +0.777 and it is a generalization of the bond order-
bond length relationship. Five years later Boyd and Choi carried out the same type of
analysis of heterobonds for the first time [196], namely, C-N bonds (HF/6-31G(d)) and
complexes of the type of R-C=N---HF and R-C=N---HCI (HF/6-31G(d)). Specifically in
the analysis of CN bonds, Boyd and Choi included systems with simple, double and triple

CN bonds as Bader did in the CC case, expecting the fulfillment of the bond order-bond
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length relationship in the CN case. All the analyses exhibited a linear correlation with a
correlation coefficient greater than 0.98. Therefore, the bond order-bond length
relationship was also established in the CN case.

However, a linear correlation cannot be true for a more complete set of systems because
it predicts negative electron densities for long bond lengths. Therefore, a power fit should
be more realistic than the linear fit, as shown by Knop, Boyd and Choi in a more general
study (HF/6-31G(d)) [197] with the following title: “S-S Bond Lengths, or Can Bond
Length Be Estimated by a Single Parameter?” in 1988. They analyzed S-S, O-O, Al-F
and Be-Cl and also re-fitted the data proportioned by the above reports of Bader and
Boyd. The correlation analysis showed a considerably better power fit between bond
length and pgcp than the linear fit. The main conclusion of this work was that deviations
from the power-law correlation depend on sampling problems, and that better designed
and more complete sample sets can be expected to vindicate the essential validity of the
power-law correlation.

In 1998 Alkorta and co-workers reported a similar correlation study between the electron
density at the BCP and the bond lengths to that of Bader about ethane, benzene, ethylene
and acetylene but at higher level of theory [198]. The systems were optimized at HF/6-
311++G(d,p) and single point calculations at B3LYP/6-311++G(d,p) were carried out to

calculate p at the BCP. A linear fit was again obtained ( pycp =—2.87d_ +2.23) with a

correlation coefficient of 0.995. Furthermore, they included an analysis on complexes
such as R-C=N----HF and R-C=N----HCI at the same level of theory used for the
hydrocarbons, where 10 and 7 systems were analyzed, respectively. A linear fit was

obtained for both cases with a correlation coefficient of 0.98.
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Two years later, Alkorta and coworkers [199] considered a broad range of compounds
such as a van der Waals and hydrogen bond interactions as well as typical covalent bonds.
Also, they divided the sets into types of chemical bonds, for example, H-H (n=12), C-H
(n=33), O-H (n=26), N-H (n=24), F-H (n=12), CI-H (n=25), Br-H (n=12), C-C (n=21), C-
O (n=12), C-N (n=11), C-S (n=6), C-Br (n=10), Br-N (n=14) and S-S (n=19). The
geometry and p at the BCP was either taken from experiment and ab initio calculations
(B3LYP/6-311++G(d,p) and MP2/6-311++G(d,p)). The authors had demonstrated
previously in two reports in 1998 and 1999, that the use of different ab initio methods
does not produce any significant loss statistically [200,201]. The statistical analysis in
terms of square correlation coefficient', standard deviation® and the Durbin-Watson” test
shows that the power and exponential fits properly correlate p at the BCP and the bond
lengths for each type of chemical bonds. Slightly better results were observed for the
exponential model.

In 2001, Knop, Rankin and Boyd reported a correlation study between the bond length
and p at the BCP in N’-H---N"’ hydrogen bonds [202]. The study was carried out at the
HF/6-31G(d,p) level for 63 compounds and MP2/6-31G(d,p) for 19 compounds. The
correlation analysis was performed on the logarithmically transformed functions, and it
showed acceptable correlations for both power and exponential fits at the two different

levels. The square correlation coefficients and standard deviations for power-HF and

'Coefficient of determination (0 < 1* > 1) is a measure of the degree of association between two variables.
Its maximum value corresponds to 1.

2Standard deviation (SD) is the square root of the mean of the squared deviations of member of a
population from their mean measures. It provides an idea of the average deviation of the fitted values to the
original set of data.

3The Durbin-Watson test (DW) measures the association of between successive residuals. For example, a
value of 2 signifies that the residuals are not correlated to each other.
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power-MP2 were 0.768 & 0.0159 and 0.967 & 0.0139. In the case of the exponential fit,
they were 0.770 & 0.0150 and 0.972 & 0.0127, respectively. However, significantly
better fits were obtained at the two levels of calculations when two separate regression
functions of the same type were used:
Power fit ——» In(p/p'")=a+blnd" +cin(d"/d') (11.5)

Exponential fit ——  In(p'/p'")=a+bd"+c(d""/d") (11.6)
where p’ and d’ are the electron density at the BCP and bond length for the N’-H bond,
whereas p>’ and d’’ are the electron density at the BCP and bond length for the H---N"’
bond. For example in the case of MP2/6-31G(d,p), the values of R? and SD were 0.999
and 0.0393 for the power fit, and 0.999 and 0.0454 for the exponential fit. The authors
stated that the universality of this finding has to be tested at higher levels of calculation as
well as by experiment. This result is remarkable because it shows that the parameter of
both bonds N’-H (covalent) and H---N’’ (hydrogen bond) are correlated. Grabowsky [203]
reached a similar conclusion for several types of hydrogen bonds X-H---Y (X=0O and F,
Y=0 and N) and showed that the hydrogen bond energy can be estimated from the
parameters of the X-H bond.
One year later, Knop, Rankin and Boyd carried out a detailed study about correlation
between parameters of both bonds to gain more insight in the correlation between N°-H
and H---N"” bonds [204]. They reported a strong linear correlation between p’ and p”” for
a set of 54 molecules at the MP2/6-31G(d,p) level (R*=0.983). Also, they reported a
strong exponential correlation between V2pscp’ and Vppcp”’ (R*=0.982).
In this project, a broader study and at a higher level of theory than that of Knop, Boyd

and Choi[197] is underway for all the homonuclear combinations of the first (Li-Li, Be-
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Be, B-B, C-C, N-N, O-O and F-F) and second rows (Na-Na, Mg-Mg, Al-Al, S.i-Si, P-P,
S-S and C1-Cl) of the periodic table with the exception of the noble gases. The objective
of the study is to generalize the correlation between bond lengths and ppcp. Furthermore,
a comparison between power, exponential and linear fits for all combinations will be
carried out. An extension of the study to the analysis of heteronuclear combinations (C-S,
C-CI, N-S, N-Cl, O-S, O-Cl, etc) is planed. Moreover, a multilinear relationship between
bond length and the formal molecular orbital electron occupancies in diatomic molecules

will be investigated.
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