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Abstract

This thesis focuses on two of the most critical problems in the field of anisotropic
diffusion (AD), viz. automatically stopping the diffusion process and selecting a
suitable threshold for edges, that remained unsolved since AD theory was intro-
duced in 1987 [171].

Over-smoothing of semantically meaningful features occurs very easily with Tra-
ditional AD (TAD) filters if the number of iterations is not carefully selected. Our
research explains why TAD approaches do not act as might be expected from cur-
rent AD theory. Idempotent AD (IAD), a new interpretation of AD using the
non-negative part of the derivative of flux (DF) to control the smoothing strength,
is proposed. A behavioral analysis is presented in detail of the AD process along
the whole gradient magnitude due to the conduction function (CF). The analysis
shows that a mathematically well-posed, a mathematically ill-posed or an idempo-
tent diffusion process can be produced by the same CF. A criterion for selecting
the CF is created. A threshold is proposed for true edges. We show the form of
the discrete version of AD (DAD) whose solution converges to that of its continuous
counterpart stably and consistently. Our proposed IAD keeps meaningful edges
throughout the diffusion process with noise being smoothed, thereby making the
experimental results agree with AD theory for the first time since 1987.

Choosing a suitable threshold is very important for AD techniques because it
controls which edges are preserved. Determining this threshold with gradient-
magnitude-based edge estimator (GMEE) is image dependent and becomes very
complex with the appearance of noise and changes in illumination. This stubborn
problem is avoided by the proposed idempotent, direction-consistent AD technique
(IDCAD). This new technique uses a new criterion for implementing AD, combin-
ing the merits of a direction-consistency-based edge estimator (DCEE) and those
of IAD. DCEE has low sensitivity to noise because regions containing edges show
much more consistent edge directions as compared to regions of noise. Our algo-
rithm implements IAD on noise regions located by DCEE.

Experiments carried out on 1D and 2D images with both artificial and real images
validate the effectiveness of the proposed IAD and IDCAD techniques.

Xv



Chapter 1

Introduction

The concept of AD, first introduced by Perona and Malik (P-M) in 1987 [171], has led
to a considerable amount of research into its theory and practical applications [243].
The AD technique is distinguished from other image processing techniques in three
significant and desirable ways. It implements noise-smoothing and edge-preserving
simultaneously, can be implemented in hardware, and is suitable for unsupervised
computer vision tasks. If combined with very large scale integration (VLSI) tech-
niques, AD filters avoid the speed restrictions of serial operations, thereby making

feasible the implementation of real time image processing at low cost.

The two of the most critical problems of 1) automatically stopping the diffusion
process and 2) selecting a suitable value for the threshold for estimating edges re-
main unsolved since the introduction of AD theory in 1987 [171]. The first problem,
over-smoothing resulting in meaningless results, occurs very easily with current AD
techniques if the number of iterations or the stopping criterion is not preset care-
fully. The selection of the stopping criterion or iteration count is usually image
dependent. The second problem, choosing a suitable threshold, makes the imple-
mentation of AD very image sensitive. Research into this problem has mostly been

based on gradient-magnitude-based edge estimators (GMEE) that are not good at
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distinguishing edges from noise with high intensity gradients. Both problems make
implementing AD for practical computer vision very problematic. Our research has

concentrated on exploring solutions for both of them.

Among the ways of dealing with the first problem, simply restricting the number of
iterations is popular [2, 23, 25, 33, 47, 134, 136, 185, 214, 224, 213, 230]. The smooth-
ing is stopped manually when “good” results, in which noise seems to be removed
while edges have not been blurred obviously, appear. The number of iterations is
both image-dependent and person-dependent. Believing that there is an “optimal”
state in the AD process is the basis for considerable research [131, 132, 206, 207].
These approaches regard AD as a process of improvement and then deterioration
of the resultant image. Finding out the conditions under which degradation is
going to take place is the goal of the work. However, there is no guarantee that
the AD process acts in this way. A fidelity term may be used to restrict the
over-blurring [47, 48, 83, 84, 180, 231). The fidelity term controls the similarity
between the results and the original images. This method is problematic because
of the empirical parameters, and noise still remained in results. Considerable work
has been carried out on the conduction function (CF) that controls the diffusion
process. The CF has been modified and a number of new CFs have been pro-
posed [30, 31, 83, 84, 85, 132, 201, 220, 240, 242, 249, 254, 256, 257]. The most
recent significant progress was made by Gilboa et al. [83] who showed the behavior
of AD within a partial range of gradient magnitude. Research on the behavior over

the entire range of gradient magnitude is one of the topics of this thesis.

The discrete version of AD (DAD) has not been discussed enough since the intro-
duction of AD theory in 1987 [171]. Among the large number of published papers
on AD research, very few of them deal with the numerical aspects of AD [213,

231, 233, 235]. The behaviour of DAD proposed by Perona and Malik (P-M) has
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been explained under certain conditions [80, 109, 171, 182]. Whether the solution
of this discrete version converges to that of its continuous counterpart stably and
consistently, however, has not been shown. The continuous formulation of AD is
ill-posed [249, 254] while this discrete version acts as a well-posed system except
for “staircasing” that is the only practically observable instability [233, 234]. Thus
there is a very interesting consequence: that DAD does not agree with its continuous

counterpart is accepted as a paradox in AD research.

Our first proposal, idempotent anisotropic diffusion (IAD), creates a new crite-
rion for the selection of the CF with over-smoothing being prevented. IAD uses the
non-negative part of the derivative of flux (DF) as the CF for the diffusion process,
TAD is one result of our research on AD in both the continuous domain and the
discrete domain. We studied the effect of the flux produced by various CFs on
AD behaviour unlike previous work that concentrates on the CF only. Based on
this, we provide a detailed behavioral analysis of the AD process throughout the
whole gradient range. We show that a mathematically well-posed, a mathemati-
cally ill-posed or an idempotent diffusion process can be produced by the same CF.
These three results correspond to when the flux is increasing, decreasing or constant,
respectively. In the first case, smoothing is carried out and gradient magnitudes
are consistently reduced to zero. The second case is a divergent diffusion process
that eventually disappears with sufficient iterations. For edge preservation and en-
hancement, this unstable diffusion process should be exploited. The “staircasing”
effect, regarded as either a useful feature or a drawback of AD techniques, occurs-
mainly in this range. The third case keeps the result image with no smoothing
being applied. We show that two thresholds, edge threshold 7, and noise threshold
T,, are essential to the success of AD. Gradient magnitudes less than 7, will be
smoothed while those larger than T, will be kept. We show that the traditional
edge threshold K, is actually the noise threshold T,,. For Gradient magnitudes
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between T, and 7., both smoothing and enhancement are possible. We explain
why there is no guarantee that edges are kept by traditional AD (TAD) techniques.
We show that smoothing is applied to varying degrees over the whole image and
the whole gradient magnitude range by TAD techniques because threshold T, is not
incorporated in previous approaches. Since oversmoothing can occur from the first
iteration, methods of seeking the “optimal” conditions to stop the diffusion process

become moot.

Negative CFs that “move intensity uphill” are also explored. We show that they
produce an unstable, divergent diffusion process and make the results unpredictable.
Distortion cannot be avoided even with a fidelity term to control the similarity be-

tween the results and the original images.

Little research has been conducted on the discrete version of AD (DAD) since
it was proposed by P-M in 1987 [171]. We address AD in the discrete domain
because previous DAD approaches do not act as AD theory expects. According
to AD theory [169, 171, 249], noise is smoothed by forward diffusion while edges
are preserved or enhanced by less, zero or even backward smoothing. Under such
selective smoothing, edges should survive the diffusion process. This is far from
being the case with current DAD. We show a form of DAD that converges to its
continuous counterpart stably and consistently. A new numerical scheme using the
non-negative part of the DF is proposed to control the smoothing strength. This
DF shows significant advantages in implementing the desired AD operation, provid-
ing a stable diffusion process guaranteed by the “Maximum Principle”, and avoiding
the distortion resulting from negative diffusion coefficients (DCs). The proposed
IAD technique using this DF acts as AD theory expects, removing noise and trivial

details and enhancing/preserving edges at the same time.
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In our second proposal, we indicate that the problem of selecting a suitable value
for the threshold is nearly impossible within the space of methods based on gradient
magnitude because it is a problem intrinsic to gradient-magnitude-based edge esti-
mators (GMEEs). We avoid this stubborn problem by creating a new criterion to
conduct AD, employing the edge direction. We propose a new algorithm, idempo-
tent, direction-consistent anisotropic diffusion (IDCAD) that combines the merits

of IAD and those of direction-consistency-based edge estimators (DCEEs).

DCEE is much better than edge estimators based on gradient magnitude since
DCEE reflects directly the spatial characteristics of real edges. These estimators
are based on the fact that noisy regions exhibit high variation in edge direction while
regions containing edges show high consistency in edge direction. They are immune
to changes of intensity and have low sensitivity to noise. In contrast to traditional
implementations of AD, in which region boundaries are located by gradient magni-
tude, DCEE locates the regions for conducting AD. Smoothing is implemented on

regions of noise while regions deemed to contain edges are preserved.

The effectiveness of our proposed IAD and IDCAD techniques is illustrated by
experiments carried out on 1D and 2D images on both artificial and real images.
With our IAD technique, AD behaves for the first time as AD theory predicts, with
semantically meaningful features being kept and noise smoothed throughout the
diffusion process. The challenging problem of automatically stopping the diffusion
process is solved because the results produced by IAD are idempotent. In contrast,
diffusion never ceases with TAD techniques if the number of iterations is not preset.
AD performance is improved significantly with the proposed IDCAD because of its
low sensitivity to noise. Gradient-magnitude-based anisotropic diffusion (GMAD),
however, is unable to smooth certain high-gradient-magnitude noise. One signifi-

cant point is that our proposed algorithm uses the same set of parameters to process
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all images, while GMAD thresholds must be adjusted for every image for good re-

sults.

This thesis addresses two of the most critical problems in AD research. In the
chapter “Background”, firstly we introduce the basic concepts of AD. Then a com-
prehensive overview of field of AD is presented. This overview includes research on
AD theory, current AD techniques, AD’s relationship with other image processing
techniques, implementing AD in hardware, fields of application, types of images,
image dimensions and image color, etc. Previous research related to the two top
issues is studied in detail. For convenience, a summary of current AD research into

these two problems is presented.

In chapter “Idempotent Anisotropic Diffusion”, we show the reason why over-
smoothing of semantically meaningful features occurs very easily with TAD tech-
niques if the number of iterations has not been carefully selected. Then research on
AD behavior in both the continuous domain and the discrete domain is conducted,
and TAD is proposed with the non-negative part of DF to control the smoothing
strength. Experiments are conducted with a number of CFs to test the proposed

IAD techniques.

In chapter “Idempotent, Direction-Consistent Anisotropic Diffusion” we explain
why the threshold K is difficult to determine when using GMEE. We show that
combining the merits of IAD and those of DCEE permits unsupervised applications

of AD to a large variety of image processing tasks.

A summary of this thesis, with discussion of future work, is presented in chapter

“Conclusion and Discussion”.



Chapter 2

Background

2.1 The Basic Concepts of AD

2.1.1 The Idea of AD

Anisotropic diffusion (AD) is an efficient, nonlinear and selective image smoothing
technique. It should smooth noise and trivial parts of images and preserve their
semantically meaningful features at the same time. Its basic idea is to encour-
age smoothing within homogeneous regions while discouraging smoothing across
boundaries or edges. Because of its significant merits of noise removal and edge
preservation, considerable research [243] has been devoted to the theoretical under-
standing and practical applications of this method since it was first proposed by

Perona and Malik (P-M) in 1987 [171].

2.1.2 Formulation of AD

In their pioneer research, Perona and Malik proposed the AD equation as [169, 170]:

% = div(c(z,y, t)VI) = c(z,y, ) Al + VcVI (2.1)
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where:
I = intensity value of a pixel,
div = divergence operator,
v = gradient operator,
A = Laplacian operator,
c(z,y,t) = conduction function (CF) that computes the spatiotemporally lo-

calized diffusion coefficient (DC).

w A
(&)

1.0

Gradient

Figure 2.1: A typical diffusion coefficient function

The function ¢z, y, ) is chosen to be a function of the gradient magnitude:

e(z,y,t) = g(IVI(z,y, 1)) (2.2)

where g(-) is used to make a first estimate of the location of edges. Function ¢(z, y, t)
is a nonnegative, monotonically decreasing function of gradient magnitude, of the
form of the curve shown in Figure 2.1. This function should satisfy ¢(0) = 1 and
mli_{nw g(z) = 0 so that more diffusion is carried out within normally homogeneous

regions of low gradient magnitudes while less or even no diffusion takes place in
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regions normally containing edges and having high gradient magnitudes.

The following two functions were proposed for function g(-) [169]:

g(IV 1) = eFY (2.3)
and
1
vI|) = e 2.4
9(IVI1) = oy (2.4
where:
IVI|| = gradient magnitude,
K = threshold.
W T
Heat Diffusion
b
X

Figure 2.2: Heat diffusion. T: Temperature; X: Position

K should be chosen to reflect the range of gradients in the image. We denote
flux as ¢(VI) = ¢(VI)VI. AD theory is derived from heat equation [238]. For
simplicity, a one-dimensional example of heat diffusion, as in Figure 2.2, is used for
explanation of the term “flux”. Assume the bar in the lower part of the figure is

insulated from its environment, and its original temperature distribution is given
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by the curve in the upper part of the figure. Temperature will be re-distributed
with time. Heat diffuses from high-temperature areas of the bar to parts of low
temperature. The flow of heat is dependent on the temperature difference between

these parts. A good explanation of the physics can be found in [233)].

The diffusion process in image processing is somewhat similar to heat diffusion.
Flux indicates the “How” of intensity between pixels. This flow of intensity is due
to the local gradient of the image [141]. There exists a threshold K as Figure 2.3
such that flux increases monotonically for |[VI|| < K and decreases monotonically
for ||VI|| > K. Thus, selection of K should reflect the “strength” of edges. Ideally,
the AD filter should apply smoothing in regions whose gradients are less than K,

reduce smoothing strength in regions near edges and finally stop smoothing at edges.

Flux

-8 -K Gradient

Figure 2.3: A typical flux function
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2.1.3 The Discrete Version of AD

For a 1D signal, the discrete approximation of the AD operator is:

' =1+ Neg, - Vil +cr - VeI (2.5)
where:
i = pixel position,
3 = discrete time step,
A = g scalar within the range of 0 < A < % for controlling the rate of
diffusion,
L, R = directions, to the left and right respectively,

= difference between the nearest neighbors as given by:

Vil = Lia—1;
Vel = Lin—1;

(2.6)
The diffusion coefficient is calculated by:
cr, = 9(lIVrIl)
. = g(IVeLll)
(2.7)
where:
g(-) = the conduction function (equations (2.2) to (2.4)).

The 4-nearest-neighbors discrete approximation of the AD operator as suggested

by Perona and Malik is:

I =1+ Mey - VI +cs - Vsl +cp- Vel +ow - Vil (2.8)
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where:
i, = pixel position,
= discrete time step,
A = a scalar within the range of 0 < X < % for controlling the rate of
diffusion,
N, S, E, W = directions in North, South, East and West respectively,
Vv = difference between the nearest neighbors given by:

Vnliy = Iiju— L
Vslij = lij1—1i;
Veli; = L, — I

Vwl; = Li;~1I;;

(2.9)
and the diffusion coefficient is approximated by:
vy = 9(IVNL;lD)
ctsi,j = g(HvsIzt,jH)
g, = 9(IVeLl)
cw, = 9(IVwlill)
(2.10)

2.1.4 Expected Merits of AD

AD is distinct from other image processing techniques in three significant, desirable

characteristics.

1. It is a nonlinear, selective smoothing technique. When it is used in image
processing, it should provide noise smoothing while simultaneously preserving

edges, which is nearly impossible for most image processing techniques. With
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the AD technique, smoothing is encouraged within homogeneous regions while

discouraged across boundaries or edges.

2. Its algorithm structure makes possible local implementation in parallel hard-
ware. If implemented in VLSI, AD filters avoid the speed restrictions of
serial operations in software, thereby making feasible the implementation of

real-time image processing (RTIP) at low cost.

3. Its ability of keeping semantically meaningful image feature throughout the

diffusion process makes suitable for unsupervised computer vision systems.

2.1.5 Criteria of AD

The basic requirement for AD filters is that they possess the ability to treat noise

and edges differently. The criteria used for evaluating AD techniques are [169]:

“1. Causality: Any feature at a coarse level of resolution is required to possess a
(not necessarily unique) “cause” at a finer level of resolution although the re-
verse need not be true. In other words, no spurious detail should be generated

when the resolution is diminished.

2. Immediate Localization: At each resolution, the region boundaries should
be sharp and coincide with the semantically meaningful boundaries at that

resolution.

3. Piecewise Smoothing: At all scales, intraregion smoothing should occur

preferentially over interregion smoothing.”
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2.2 State of Art

2.2.1 Research on AD theory

Since the concept of AD was first introduced by P-M in 1987 [171], a considerable
amount of research has been devoted to the theory and practical applications of this
method for processing images. Up to now, about two hundred relevant papers have

been published. They have concentrated on:

e understanding the mathematical properties of AD and its related variational

formulations,
e exploiting its relationships with other image processing techniques,
o extending or modifying AD for specific applications or for improvement, and

e combining AD with other image processing methods for image enhancement.

An overview of the research in AD is presented in the following two sections.
Work in this field has been categorized into two groups: theoretical understanding
of AD, and the applications of AD. The former is presented in this section while

the latter will be discussed in section 2.2.2.

Because research on AD has been conducted in such diverse directions and areas,
we need to sub-divide both groups again. This section presents an overview of re-
search on the theory of the algorithm, modified or extended AD, AD in combination
with other image processing techniques, AD’s relationship to other image process-
ing techniques, and implementing AD in hardware. Although previous research into
AD theory addressed certain kinds of problems, the theoretical algorithm of AD is
much more closely related to the major issues of AD research that we selected for
our research. Thus it is to be discussed together with the top problems of AD in

section 2.3.
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Modified AD or Extended AD

AD has been used in a wide range of applications because of its capability to combat

noise while preserving semantically meaningful features [4, 102, 140, 198, 221, 245].

Lee et al. [125, 126] extended 2-D AD to 3-D AD with time sequences as the third
dimension to remove noise in video sequences. The flickering effect is reduced be-
cause the correlation between frames has been considered. However, their method
has the problem of finding a good trade-off between removing noise and preserving

edges.

Maeda et al. [140] use region boundaries instead of gradients to control the dif-
fusion process. In their scheme, boundaries are found by detection and linking of
edges before AD is applied. Their method is problematic to implement because

there is no guarantee that edges are detected correctly.

Besides only using 4-nearest neighbors in vertical and horizontal directions, Wong et
al. [240] also consider the other 4-nearest neighbors in the diagonal directions. They
declared that it improves the directionality properties of AD. Sensitivity to the ef-
fect of noise and the need for a stopping criterion are still problems. Further,

however, their approach is more costly in calculation.

Instead of using the input images directly, Acton et al. [4, 198] use the results
of morphologically filtering the image to remove noise within the image. This ap-

proach is discussed in detail in “Problem2” in section 2.3

A modified AD algorithm proposed by Huang et al. is interesting [99]. Instead
of smoothing original images directly, their scheme implements AD on an energy

space which is the same size as the original image and is created by the intensity
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difference between pixels in the original image. The parameters, such as thresholds
for lowest energy, highest energy and initial energy, are determined empirically and
depend upon the size of image. Also, since the diffusion process is conducted by
a gradient-magnitude-based method, it is still sensitive to the effects of noise and

scene illumination.

Other modified AD approaches are proposed by Neoh et al. [153], Teo et al. [216,
217] and Pardo et al. [163, 164], who used AD to diffuse probability space instead of
filtering the image. Normally this method is applied for a special reason. For ex-
ample, Teo et al. state that because these cortial magnetic resonance images (MRI)
should be segmented into only a limited number of classes, smoothing the raw image
data directly is not as good as diffusing the probability space of pixel classes. They

declared that their method resulted in a significant speed improvement.

Torkamani-Azar et al. [220] proposed a modified AD algorithm that adjusts some
parameters during the diffusion process. They set A in equation (2.8) to a large
value for the first several iterations so as to achieve high processing speed. In later
iterations, A is decreased according to the noise level in the image so as to keep
desirable information. Their method sounds plausible but is difficult to carry out.
One problem is how to determine suitable values for the large A and small A, both
of which are strongly dependent upon the content of images to be processed. The
other problem is that they have not explained how and under what conditions the

large value of A should be reduced.

Monteil et al. [148] proposed a modified method, adaptive nonlinear AD, in which
they select the value of K automatically and adaptively. Their main contribution is
a strategy to control the “pinhole effect”, an undesirable smoothing effect at edges

caused by a pixel or group of adjacent pixels with gray-levels of intermediate value
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near a sharp transition region. However, several parameters in their functions must
be determined empirically. Further, the algorithm exhibits blocking artifacts since

the image is divided into non-overlapping blocks.

AD in Combination with other Techniques

AD has been combined with other image processing techniques [9, 11, 186, 45, 57, 69,
71, 103, 109, 166, 199, 218]. Acton et al. [9, 11} combined AD with the resolution
pyramid. In their scheme, the low resolution image representation is used to guide
boundary detection at high resolution. It is similar to P-M AD except that an
averaging filter is applied first. By their method, moreover, there is a strict restric-
tion on the size of images so that pyramid calculations can be conducted. Jin et
al. [109] proposed using the central limit theorem to select the threshold K. Their

approach is discussed in “Problem2” of the major issues of AD research in section 2.3.

Instead of using a defined function of the gradient to determine the DC directly,
Aja et al. [13] calculate the parameter through a rule table set up by fuzzy reasoning.
The construction of the rule table for the fuzzy DC, however, is dependent upon the
application domains in a non-obvious way. The method for setting the parameters
has not been given. Though it enhances the capability for resisting speckle and
additive Gaussian noise, the algorithm is more complicated and it still has the same

problem of overblurring as P-M AD.

You et al. [244, 247] proposed a class of fourth-order partial differential equations
to reduce the “blocky” effects appearing in most AD-processed images. However,
their method tends to produce speckle artifacts that need to be removed by another

algorithm.
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Wavelets have also been incorporated with AD [166, 70]. Fontaine et al. [70] de-
clared that wavelet-based multiresolution expansions give compact representations
of images with piecewise smooth intensity distributions, and the use of wavelet im-
proves the estimation of edge threshold K by assigning a small K to high contrast
regions and a large K to low contrast regions. Their algorithm, however, is com-
plex because the computation had to be carried out in both the spatial domain and

wavelet domain iteratively.

Relationship of AD to Other Image Processing Techniques

A group of papers studied the relationship of AD to other image-processing tech-
niques [8, 39, 167, 168, 188, 191, 202]. The AD technique belongs to the class of
algorithms based on partial derivative equations (PDEs), which include AD, mean
curvature motion [45], the min/max flow technique, active contours or snakes, etc.
A detailed description of PDE-based image processing techniques can be found in
[5]. Sapiro [189] tried to explore the mathematical and qualitative relationship be-
tween AD and other PDE-based operators while Kornprobst et al. [116] compared a

group of nonlinear image operators including AD on their mathematical foundations.

The relationship between AD and local monotonicity has been investigated by
Acton who used 1-D signals [6]. Fischl et al. [67] compared AD with the median
filter and a Green’s function approximation. Ramponi [179] presents certain rela-
tionships between AD and rational operators while Barash [24] shows the similarity

between AD, adaptive smoothing and bilateral filtering.

After analyzing information loss in images undergoing fine-to-coarse transforma-
tion, Ferraro et al. [65] show that in the case of applying AD, information loss is

less than in the case of isotropic diffusion because AD shows more respect for edges.
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A group of image processing methods work in a similar manner to AD. Saint-
Marc et al. [182, 183] proposed using a very small averaging mask, whose coeffi-
cients reflect the degree of discontinuity, to smooth images. They declared that
their method acted similarly to AD but was more stable. Their technique is a kind
of modification of P-M AD by averaging the diffusion coefficients. Thus it cannot
avoid the same problems as those of P-M AD: the termination of the diffusion pro-

cess and selection of a suitable edge threshold.

The electric retina is a kind of realization of AD in hardware [21]. Its object
is to incorporate AD into low level vision processing for a low computational cost
implemented in a parallel architecture. It is fast but poor at removing noise. The
simulation results are presented within 35 iterations because there was no stopping

criterion for the diffusion process.

Izquierdo et al. [105, 106, 107] used weighted Gaussian filter kernels to selectively
smooth images. They treat an image differently by dividing it into three types of
regions based on disparity variations and intensity variations. They declared that
their algorithm shows some AD properties but is not as complex as P-M AD. One
problem of their method is how to determine the parameters for the three types of
regions. As the size of the image to be processed becomes large, requirements for
memory to store relevant information for pixels become considerable. Also, their

approach is not easy to implement in parallel hardware.

Implementing AD in Hardware

One of the most desirable aspects of the AD method is that it can be carried out

in a parallel implementation. In implementing AD in software, however, the serial
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nature of any algorithm repeated at each pixel makes the computation extremely
costly. Time is required for regularizing and preserving the intermediate image for
every diffusion step. This makes it unsuitable for applications in real-time systems.

Up to now, very few papers have discussed implementing AD in hardware.

Andersen [21] uses AD in his proposed silicon retina model and Gijbels et al. [82]
in their board-level structure for non-linear diffusion of images. However, neither
provided a description of their implementation in hardware. Gijbels’ model works
in the digital domain. It needs memory to store intermediate pixel values. For

simplification, their algorithms are approximated by piecewise linear functions.

Certain CMOS structures implement nonlinear diffusion and have similar charac-
teristics to those of AD [258, 193]. Sawaji et al. [193] suggested using a resistive
fuse implemented by a floating gate MOS transistor. This is very attractive for
it can implement nonlinear diffusion with a small number of transistors. In their
design, only two pairs of floating gate MOS transistors were used for each resistive
fuse. However, they did not provide a means for determining the essential param-

eters (such as K) in their strategy.

Gulino [91] suggested an analog circuit topology for implementing AD by using
the consistency of direction of the gradient as an indicator of regions containing
edges. He simulated his proposed circuit with a 10 by 10 image grid and states that
the results showed that it could eliminate image noise while preserving image edges.
In his design approximately 1000 transistors were required for each pixel because he
used a collection of available circuits to implement the various functions. Such a
large number of transistors is a problem for practical applications in VLSI because

of low fill-factor and large chip size, leading to high-cost devices.
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2.2.2 Applications of AD

In this section our main object is to present an overview of the range of applications
for AD in the field of image processing. Individual comments about their effective-
ness are not given as much as in the discussion in section 2.2.1. The applications
of AD is summarized by application, source of the image, image dimensions and the

use of colour .

A wide range of applications for AD have been developed since its introduction.
The technique has been applied, extended or modified in these applications. In
most of the published papers, AD is used as an image pre-processing step or is
combined with other image processing techniques. Although certain improvements
are claimed in these papers, their common drawback is their strong dependence upon

operator interaction. Results are unpredictable without this intervention, because:

1. The diffusion process will not stop without operator intervention or operator-

defined limits.

2. Smoothing is applied along the whole range of gradient magnitudes including
noise and valid edges. Thus, edges are continuously smoothed from the first
iterations. This oversmoothing will become both obvious and unacceptable

without operator-defined limits on the number of iterations.

In this case, results are actually a product of carefully selected parameters and a

priori knowledge of the content of the particular images to be processed.

Field of Application

We discuss AD applications in two groups: applications in processing medical im-
ages and applications in processing other images. This classification was chosen

because medical image processing is a major application area for AD [3, 20, 12, 21,
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922, 28, 32, 35, 36, 37, 53, 60, 63, 74, 75, 80, 94, 96, 109, 117, 119, 120, 121, 122, 128,
133, 145, 149, 153, 156, 165, 186, 192, 196, 217, 216, 219, 227, 228, 229, 241].

Application in medical images A number of applications are concerned with
the study of the brain [22, 75, 145, 217, 216, 228, 229]. Teo et al. [217] proposed
a system to segment gray matter and create a connected representation of the gray
matter for functional visualization, while Vinitski et al. [228, 229] used AD in study-

ing the distribution of specific abnormal tissues in the brain.

Another significant application of AD in medical image processing is the diagno-
sis of cardiac pathologies [28, 63, 120, 121, 122, 186]. Research is focused on the
detection of the heart contour, determining motion of the ventricular wall, and es-
timating heart wall thickness. In these approaches, AD is mainly used as an image

preprocessing step.

Filtering mammographic images with AD has been studied [37, 38, 128]. Li et
al. [128] applied AD twice in their scheme. The first AD step is used to remove the
background from mammographic images, and the second AD step enhances micro-

calcifications in the resultant images.

Segmenting lesions in dermatoscopic images has also been done [53, 196]. Besides
the employment of AD, another algorithm is needed for removing hairs if lesions are

covered by hairs.

Vazquez et al. [227] used AD to extract neuron boundaries while Neoh et al. [153]
applied AD to classify pixels based on neurons’ activities. Applying AD to enhance

the contrast of medical images has been studied by Boccignone et al. [32, 35, 36].
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Several other fields have also been researched. Pathak et al. [165] used AD to de-
tect prostate boundaries for diagnosing prostate disease. Haris et al. [94] employed
AD in the extraction of vessel regions and boundaries in angoigraphic images for
assessing the severity of arterial stenoses. Paplinski [162] applied AD in processing
posterior capsular opacification (PCO) images that are used to present the back
surface of the lens implanted during cataract operation. Using morphological AD
to track leukocytes in in vivo video microscopy has been carried out by Acton et al.

[4] for studying inflammatory disease.

Other Applications In this group, most papers aim for an improvement in image
processing technique, and are not aimed at a specific application [16, 41, 42, 56, 62,
69, 71, 103, 111, 112, 114, 127, 130, 156, 212, 225, 236, 246, 252, 251, 253, 259]. AD
has been applied, extended or modified in these applications. In the segmentation
of images modeled by Markov random fields, Zhang et al. [259] declared that they
removed the necessity for selecting the optical scale and simplified the computation
by applying AD to derive a multi-scale representation of images. Burkle et al. [41]
extended AD in flow visualization for time-dependent vector fields. Izquierdo et
al. [103] detect the main image contours at places where the second derivative of
the AD preprocessed image crosses zero in object segmentation. Ford et al. [71]
showed that AD and directional interpolation could be combined as complementary
strategies with AD smoothing noise and directional interpolation removing alias ef-

fects in structured areas.

There are a group of authors who clearly indicated their application. In the field
of topography, Inglada et al. [101] used AD as an image pre-processing step to esti-
mate the depth and underwater bottom surface while Sohh et al. [205] applied AD
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to monitor and extract ice-sheet margin. AD was also applied for labeling remotely
sensed images by Fernandes et al. [64] and for estimating the velocities of vehicles

moving in poor weather conditions [184].

The application of AD also has been extended to deal with video sequences
[103, 104, 126, 178]. Lee et al. [126] applied AD to remove noise and flickering
effects in video sequences while Izquierdo et al. [104] extract moving objects from
AD-processed image sequences. Qian et al. [178] perform background replacement
in video images without using a physical screen. In their proposal each pixel is
classified as foreground or background in a probability map. AD is used to process

the probability map to reduce classification errors.

Image compression should benefit much from the applications of AD. Some pa-
pers [115, 211, 250] suggest that a high compression rate and better image quality

could be achieved if AD is applied as an image preprocessing step.

Wang et al. [230] used AD to smooth calligraphy in their processing of Chinese
characters. Interesting applications of AD are given by Giakoumis et al. [81] and
Yang et al. [242]. Giakoumis et al. used AD to fill cracks in images of paintings.
Yang et al. added a bias term to the standard AD to remove bIocking effects and

conceal lost blocks in degraded images.

Source of Images

The AD technique has been applied to various types of images. Besides digital
cameras, numerous other image sources have been used. They include synthetic
aperture radar images (SAR) [77, 101, 166, 205], remotely sensed images [64], mag-
netic resonance images (MRI) (25, 1, 92, 75, 145, 186, 191, 217, 216, 228, 229], ultra-
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sound images [3, 52, 136, 165, 209, 256, 257, images obtained by electron microscopy
[227], echo-cardiographic images [28, 63, 121, 122, 123], X-ray images [109, 119, 128],
infrared images [10], Raman microscopic images [133, 134], images collected by laser-
scanning confocal microscopes [20], images produced by computer tomography (CT)

[74], and images produced by Positron emission tomography (PET) [22, 60].

Certain kinds of images show poor signal-to-noise rate (SNR). Vazquez et al. [227]
said that images obtained from electron microscopy are extremely noisy. Images
captured by a charge coupled device (CCD) [125] suffer from a kind of noise artifact
that can be classified as quantum non-stationary noise having Poisson statistics.
Steen et al. [209] declared that AD is very important for the success of volume

rendering in medical ultrasound images due to the substantial noise found in them.

Raman microscopic images {133, 134] are produced by a chemical imaging tech-
nology that provides information about both the spatial distribution of structures
and their chemical construction. The SNR of Raman images is very low due to

weak Raman signals.

Image Dimensions

Applications of AD in 3 dimensions have been explored [20, 28, 40, 49, 60, 63, 101,
103, 186, 228, 229]. They show that AD theory also holds in the 3-dimensional case.
Santarelli et al. [186] proposed an algorithm which segments MRIs prefiltered by
AD for 3D detection and tracking of cardiac wall motion. Vinitske et al. [228] used
AD to correct for partial volume effects in 3D segmentations of brain tumors in MRI.

AD was also applied to 3D topographical reconstruction of underwater bottom [101].
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Image Color

Most of the images processed by AD techniques are monochrome. Recently, sev-
eral authors [26, 50, 137, 138, 187, 196, 194, 195, 201, 215] extended the range
of AD application from processing monochrome images to processing colour im-
ages. Chambolle [50] proposed using AD to individually process colour images
as three separate independent components. All three components must be taken
into account because certain colour components may not give large gradients [196].
Guillermo et al. [187] take the directions and magnitudes of the maximal and min-
imal rate of change in the vector-image into account for controlling the diffusion
process. Lucchese et al. [137, 138] and Bei et al. [215, 26] split colour images into
chromaticity and brightness components and implement AD and segmentation on
them individually. They produce the final processed colour images by combining

the two resulting separate images.

2.2.3 Research on AD Implementation in Hardware

This section is worth a detailed description, not only because implementing AD in
hardware for RTIP at low cost is our final goal, but also the benefit it will bring
to the field of image acquisition, image processing and image transmission. Up to

now, however, this field remains largely untouched.

The Role of Edges in Image Processing

Edges of an image contain some of the most essential information about the im-
age. Edge detection is a crucial initial step for many image processing techniques
[27, 51, 154, 226], such as feature extraction, object recognition, segmentation and

compression as applied in robot and machine vision. Another significant attribute
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of edges is that calculations on edges is a lower computational burden than calcula-

tions on the whole image.

An image filter makes edge detectors and image processing much more efficient
if the filter is able to remove noise while preserve the meaningful features of the
images. Possessing these two properties simultaneously is nearly impossible for
most image filters [43]. The AD technique not only reaches these two goals at the
same time, but also possesses another significant characteristics of being able to be
implemented in parallel hardware. An AD filter operation can be carried out very

quickly if the algorithm is implemented in VLSI.

Problem of Conventional Methods for RTIP

A typical RTIP system is shown in Figure 2.4. Scenes are captured digitally or
converted to digital signals through an A /D converter, then transmitted to the image
processing system [19, 144]. The image processing system is normally composed
of digital signal processors (DSP), application-specific integrated circuits (ASIC)

and/or computers. Such an architecture has several problems for real-time image

Image
Scenes Camera Processing
Systems
Parallel r;'b- Serial Data
image >
acquisition LA i\, Transmission

Figure 2.4: A convential real-time image processing system
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processing:

Speed:

Complexity

As Figure 2.4 shows, scenes are acquired in a parallel way but trans-
mitted to the digital image processing system serially. The require-
ments for communication, storage and processing generated by the
huge amount of input image data are difficult to meet. Consider a
low-resolution, image-processing system for fruit inspection at a rate
of ten fruits per second [14], for example. Six color pictures are re-
quired from different angles for each fruit, each at 256x256 pixels at 8
bits. The input image data is 94 Mbyte/s flowing from the camera to
the image processing system! This data volume increases rapidly if
higher performance is required, such as for an industrial production
line inspection system [200] where input images may be 512x512 with
24-bit color or greater.

Many sophisticated chips (memory modules, analog to digital (A/D)
converter, DSP and relevant control circuitry) are needed to deal
with the huge data volume. The higher the processing rate that is
required, the larger the number of components that is needed, and
the more complex the system becomes. For example, the number of
processors required for the fruit inspection system is determined by
the time available and the time one processor takes to perform the
image processing task. However, increasing the number of processors
does not mean a proportional increase in performance due to bus
contention between these processors. When the system reaches the
point of bus saturation, calculation rate cannot be improved even if
additional processors are added. Obviously, the huge input image

data flow is a bottleneck for the application of current RTIP systems.
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Cost These chips (A/D, DSP, microprocessor, etc.) are normally expen-
sive. This means that conventional RTIP systems are costly for real-

time image processing.

AD Implemented in Hardware

AD can be implemented in hardware as Figure 2.5 shows. A capacitor C on each

4]

¢(+)” on

every arm acts as a kind of variable resistor that controls the smoothing rate. It has

w() | 20 | e |
I . - =

pixel “0” holds the charge corresponding to the brightness of that pixel.

Figure 2.5: A two-dimensional grid structure implementing AD in hardware

an I -V characteristic as Figure 2.6 proposed in Chapter 3 “Idempotent Anisotropic

Diffusion ”. A brief overview of such a system is given here. The proposed ¢(-)
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divides the gradient range into two intervals: a positive diffusion function within the
range of gradient magnitudes less than K, and a negative diffusion function in the

range of gradient magnitudes greater than K. The positive DC implements noise-

Gradient
s

Figure 2.6: Recommended flux ¢(-) for anisotropic diffusion

removal within the range [0 K;), and smoothing and edge-enhancement within the
range (K; K). It will be shown that a negative DC produces an unstable diffusion
process and should be restricted. These two ranges are treated differently because
the proposed ¢(-) function is bimodal, with noise being smoothed while edges are
preserved and enhanced.

Let us take a close look at the process of AD. For every pixel of an image
except for those on the margins, its 4 nearest neighbors are as shown in Figure 2.7.
I;; stands for the intensity value of the center pixel. Its value at the next step is
dependent upon its relationships with its four neighbors in directions E, W, N and
S respectively. For example, if the difference between I; ; and I; ;. (intensity of its
north neighbor) is within K, smoothing is to be implemented between the center

pixel and its north neighbor. If the difference is within the range (K; K), smooth-
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Figure 2.7: Detailed structure of a pixel and its neighbors in AD hardware

ing or enhancing is to be carried out. On the other hand, if the difference between
I; ; and I; j_; (intensity of its south neighbor) is larger than K, enhancement will be
implemented. In this way, anisotropic diffusion is carried out between the center
pixel and its neighbors. AD can be implemented for every pixel in the image by
using this regular structure. Thus, a high image processing speed can be achieved

with this pixel-parallel implementation.

2.3 The Major Issues of AD Research

Though considerable research has been devoted to AD, it is still a long way from
practical application to image processing, especially for computer vision tasks in

which the machine makes decisions. Two major issues remain unsolved since the
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concept of the AD theory was proposed in 1987: 1)automatically stopping the dif-

fusion process and 2)choosing a suitable value for the threshold for edges.

2.3.1 Problem 1: Automatically Stopping Diffusion
The Problem: Over-Blurring

With current AD techniques, over-blurring of semantically meaningful features oc-
curs very easily if the number of iterations is not selected carefully. Without a preset
number of iterations, diffusion never ceases. This finally produces an uniform grey
result with no edges at all! This problem is illustrated in Figure 2.8'. Figure 2.8(b)
shows a result obtained by a current AD technique after 5000 iterations. It shows
that the image is smeared and edges are badly damaged. Poorer results can be
expected with more iterations since the smoothing does not end until an uniform

grey result is produced.

Current Approaches

The most common way to treat this problem is very simple: restrict the number
of iterations before the effect of over-blurring becomes apparent {7, 33, 34, 47, 79].
In this way, smoothing is stopped manually if “good” results have been produced.
There is no standard for such “good” results. Images in which noise seems to be
smoothed while edges have not been blurred obviously would be accepted as “good”
results. The number of iterations depends on the content of images and people’s
sense of “goodness”. Generally, the number of iterations is not larger than 100 in

the papers published.

L4alumgms”, a test image in the Matlab image processing toolbox, is used as a sample image

added with Gaussian noise (mean = 15 and ¢ = 15).
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(a) Original image

(b) Result of Over-blurred Image

Figure 2.8: Problem of over-bluring for current AD techniques
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A plausible solution to this problem seems to concern the diffusion coefficient (DC)
produced by the CF because it controls the diffusion process. Considerable research
into the effects of the CF function on convergence and on selection of the CF has
been carried out [248, 109, 124, 175, 246, 249, 254, 255]. You ef al. [249, 254, 255]
regard AD as a process of dissipating energy with time. They treat it as a process
that minimizes an energy function based on the shape of the energy surface. They
demonstrated that a unique global minimum of the energy functional will lead to
well-posed AD while a number of global minima distributed densely on the image
space can cause ill-posed AD. Their research has been complemented by Hollig et
al.’s work on the diffusion equation [98] which states that an 1-D AD process is

well-posed if and only if:

(z-c(z)) >0 (2.11)
where in image processing:
z = gradient magnitude defined as equation (2.9)
c(z) = CF function as in equation (2.3) or (2.4)

You et al. developed an additional condition for anisotropic diffusion for the case
of 2D images:

Jim z-c(z) # 0 (2.12)

where z and c¢(z) have the same meanings as in equation (2.11).

You et al. believe a CF function, c(z) = %, guarantees a well posed AD. Since

this CF cannot deal with the case of z = 0, they recommend a CF as follows:

c(z) = {

T = a parameter specified for different applications.

if z<T,
if z>T

(2.13)

Qi R

where:
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This function seems problematic in practical application since it produces con-

stant (except in the range [-T T]) flux along the whole gradient magnitude.

Black et al. [30, 31] adopted three functions (the Lorentzian function, Tukey’s
biweight function and Huber’s minimax function) as the CF. Tukey’s biweight
function is good because it forces the diffusion to zero for gradient magnitudes

larger than a certain range.
2
1— (&) <K,
@y ={ U @F) . lbl<Ke 214)
0 otherwise

where:

K, = the threshold.

Torkamani-Azar et al. [220] tried to make improvements by working on both the
CF and the parameter A in the discrete version of AD (equation (2.8)) simultane-

ously. In their proposal, the CF is:

oz, y,1) = l“él_e—kruammcyn (2.15)
where:
kq = parameter controlling the DC function,
G;,Gy = gradient magnitude components in x and y direction respectively.

They state that both A and k; should be specific to each image and adjusted during
the diffusion process. A small k; is more effective at removing noise and so it is
chosen for images with low SNR, while a large k; is more reasonable for images
with high SNR because it does not smooth as much. Because SNR increases with
smoothing, at the beginning of smoothing a large A should be employed for a high
speed, and in the later iterations it should be reduced to weaken the smoothing

effects for keeping the best results.
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Both of the parameters are image-sensitive. As well as the selection of the thresh-
old, k; and the function that describes ) as a function of iteration number must be

determined. Their results were restricted to only 20 iterations.

Creating an automatic stopping criterion is another way to stop AD that is at-
tractive to many researchers [131, 132, 207, 206]. They noticed that as diffusion
proceeds, images are improved. It seems that versions of resultant images could be
optimal after a certain number of iterations, and then degrade afterwards. Their
basic idea is to find the conditions that indicate this optimality. Knowing these
conditions, the diffusion process could be stopped when they occur to keep the best

results from over-blurring.

Lin et al. [132] proposed a function to measure local smooth levels. For pixel

(1, ), their smooth-level-measure function is:

S = % (2.16)
where:
S = smooth level measure function,
N, = number of pixels deemed as smoothed within the neighborhood of
pixel (2, ),
N, = total number of pixels within the neighborhood of pixel (4, 7).

They regard a pixel as smoothed if it satisfies:

1. Its gradient magnitude is less than a threshold defined for edges, such as the
“K” in equations (2.3) and (2.4). K is determined by a selected percentage

of the whole range of gradient magnitudes in the image.

2. Its second order derivative is less than another threshold Kj.

They state that the value of .S in equation (2.16) increases with successive iter-

ations as Figure 2.9 shows. They created an automatic diffusion stopping criteria
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Figure 2.9: Automatic stopping time defined in the research of Lin et al.

by choosing:
T = Ky * Ty (2.17)

T, = number of iterations when diffusion ends,
T, = number of iterations when noise is believed to be smoothed,

K; = ascale controlling the number of iterations.

All the parameters (K, K1, K5), however, are image sensitive and are determined

heuristically.

Liang et al. [131] proposed a method to automatically stop the diffusion process

by incorporating a noise estimator. For pixel (i, 7), their noise estimator is:

_ fz(ayﬂ:')’)
(o, B,7) = ﬁwfy(a’,y) (2.18)
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where:
n(-) = noise estimator function,
o = direction of pixel (i, ),
= parameter controlling the strength of noise estimator,
= distance from pixel (¢, 7) to a neighbor pixel,
f.() = function of zero-crossing of second order derivative,
fo(-) = function of gradient magnitude.

Their noise estimator is mainly based on both the gradient and the second order
derivative, to help make a judgment about the location of edges. Smoothing is
stopped on pixels either with significant gradient magnitude or having a significant
zero-crossing of a second-order derivative. Parameters in equation (2.18) need to be
selected carefully. For example, a large 8 will remove weak edges and small struc-
tures while a small § can enhance trivial details and produce “staircase” effects.
Experimental results of 60 iterations with noise still remaining in them, however,

are presented for their proposed method.

Researchers realize that when to stop is crucial to AD techniques. Solo [206, 207]

developed a complex optimal stopping-time estimator for a 1-D signal as follows:

1 &, 5, 27
Ry, = —ﬁ;ei — 0"+ W (2.19)
with
o foT
wp = t'race( ];y ) (2.20)
{ i
e = f() —FO(5) +e (2.21)

where:
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R, = -estimator of stopping time,

N = number of pixels,

€; = white Gaussian noise of zero mean and variance o2,
f(:) = input 1-D signal.

He declares that his proposal is the first to create an automatic stopping criterion
for AD. He states that a minimum number of iterations can be found on the curve
of Ry, obtained by calculating equation (2.21) step by step. His research has been
deeply influenced by the work of others on the effect of the CF. He treats their
conclusions as theorems. His proposed estimator is empirical and requires a set of

parameters that are chosen or known in advance.

The discrete version of AD (DAD), however, has not been sufficiently researched
since AD theory was introduced in 1987 [171]. Among the large number of pub-
lished papers on AD research, very few of them deal with the numerical aspects of
AD [213, 231, 233, 235]. The 4-nearest-neighbors discrete AD operator proposed
by P-M, equations (2.8) to (2.10), has been widely employed in AD’s applications
and research up to today [4, 5, 8, 6, 9, 10, 11, 13, 21, 23, 24, 30, 42, 60, 81, 63, 91,
92, 109, 127, 132, 133, 134, 140, 147, 163, 169, 171, 175, 178, 179, 184, 197, 198, 199,
213, 220, 224, 256, 240).

The performance of the discrete version of AD, however, does not agree with its
continuous counterpart. According to AD theory [171], both forward diffusion and
backward diffusion should be carried out in the image so that it can implement
noise-removing and edge-preserving/enhancing at the same time. It should be able
to enhance and keep edges throughout the diffusion process since no or only inverse
diffusion is supposed to apply on them. No edge, however, is able to survive the dif-
fusion process carried out by P-M DAD if the number of iterations were not limited

in advance. This results in a very interesting fact in AD research. The continuous



CHAPTER 2. BACKGROUND 40

formulation of AD is ill-posed [249, 254] while this discrete version acts as a well-
posed system except for “staircasing” as the observable instability [233, 234, 235].
The disagreement between the discrete version of AD and the continuous version of
AD has been accepted as a paradox. There has not been much research carried out

on DAD but wide application of P-M DAD.

Modifications have been proposed for P-M DAD. A fidelity term to deal with the

problem of oversmoothing is used by many researchers in simulating their propos-

als [47, 48, 83, 84, 180, 231].

I = div(c(z, y,t)VI) — M1 — Ip) (2.22)
where:
Iy = the original image,
A = the fidelity term.

The fidelity term controls the difference between the result image and the original
image. A small fidelity term gives more freedom for the result image while a large
one requires greater similarity between the result image and the original image.

However, choosing a value for A is image dependent.

Several authors sought to make the parameters, such as the scalar A or the Gaus-
sian Gy, time dependent [129, 201, 220, 237]. Their goal is high processing speed
in the first iterations and gradually reduced smoothing strength with time to keep
desirable information. Determining the values of the parameters and how they

change are problematic.

P-M DAD has been explained under various ways [80, 109, 171, 182]. It has been

inferred from the continuous version of AD with restrictions that the DC coefficients
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are non-negative and they must sum to unity [91, 182]:

da-1)+@)+fGE+1) =1 (2.23)
with
0 < c(i—1),d(),f6+1)<1 (2.24)
where:
c() = conduct coefficient,
t = simulation time step,
i = pixels’ position.

or under the requirement that the discretized space steps are one exactly [80, 109,

171]:

Arz = 1

(2.25)
Ay = 1

A critical question that whether the solution of this discrete version converges to
that of its continuous counterpart stably and consistently, however, has not been
given. We believe that the DAD, an area remaining nearly untouched since it was
proposed for AD research, should be addressed for its importance in validly imple-

menting proposed AD schemes.

2.3.2 Problem 2: Finding a Suitable Value For Thresholds
The Problem: No Distinction Between Noise And Edges

Making filters more robust to noise is not a problem specific to AD techniques. It
is a problem common to methods dependent upon the gradient because the gradient
is not reliable. In some case, when noise is substantial or speckle noise is present,

noise and edges cannot be distinguished based on gradient magnitude. In such a
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case noise will be enhanced instead of being removed. In order to reduce the un-
certainty caused by noise, contextual information from neighboring pixels should be

incorporated into the AD algorithm.

Ideally, threshold K should be chosen on the basis of the “strength” of edges.
Choosing a global parameter for K does not work well with the diverse, spatially
varying conditions in typical images. For current AD techniques, determination of
a suitable value for K is a problem because it is image dependent and becomes very

complex with the appearance of noise and variable intensity levels.

This problem is shown clearly in Figure 2.10. It shows the edges detected from
Figure 2.8(a) by a noise estimator recommended by Perona and Malik. This estima-
tor has been employed widely in AD research for the determination of the threshold
K. It assigns K a value based on a percentage of total pixels in an image. In
Figure 2.10(a), for example, 90% of pixels are regarded as noise, and so K is selected
to retain 10% of the pixels as edge pixels. If K is selected so that there are many
edge pixels, most edges are detected but noise is unavoidably detected as edges at
the same time, as shown in Figure 2.10(a). Setting K to reflect a lower percentage
of edge pixels (Figure 2.10(b)), less noise is detected but parts of edges are also
missed. Thus, gradient-magnitude-based edge estimators (GMEE) are sensitive to
the effect of noise. A difficult, usually impossible, trade-off between detecting edges
and not including noise must be made for all image processing techniques based on
GMEE.

Current Approaches

Research on edge detection has been conducted widely in the field of image pro-

cessing. In this review the focus is on methods applied in the area of AD research.
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(b) Edges detected by choosing K based on 96%

Figure 2.10: Problem of detecting edge based on gradient magnitude.

43
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GMEE detects local changes in an image. The principle is illustrated in Figure 2.11,
which uses a 1-D signal for explanation. For the edge in signal f(z), there is a lo-
cal peak in its first derivative f’(z), and a zero-crossing in its second derivative
f"(z). GMEE locates the edges of an image by detecting the maximum of gradient
magnitude and/or zero-crossing in the second derivatives. Instead of detecting the
exact point where the gradient magnitude reaches a peak or the second derivative
crosses zero, in practice an interval defined by a threshold is used to determine edges
because of illumination fluctuation. This threshold should be selected carefully so
that only pixels with strong edge information are regarded as edges. As Figure 2.11
shows, signals within the interval [a b] will be all regarded as edges because their

gradient magnitudes are larger than the preset threshold K.

f(x)ﬂ
X
Fed Threshold _ _ _ . _
T
o
o
Lo
Lo X
acb B
f"(x) :

Figure 2.11: Principle of edge detection by gradient
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The way of choosing the threshold based on a percentage, used widely in the
field of AD research, has already been illustrated in Figure 2.10. It consists of the

following steps:

1. Calculate the absolute values of the gradient magnitudes throughout the im-

age.

2. Assume a certain percentage of the pixels in the image to be edges.
3. Get the smallest gradient value from the pixels regarded as edges.
4. Set K equal to the value of the smallest gradient got in step 3.

5. Repeat step 2~4 until an acceptable result is produced.

Determining K in this way is very image-dependent process.

Using a histogram to determine a value for K is another popular method [29,
87, 139, 223]. Jin et al. [109] proposed an adaptive nonlinear diffusion scheme
by using the central limit theorem to choose the threshold. They declared that
methods based on the histogram are not good because these methods require a bi-
peak histogram for the determination of K, and this assumption is not met for most
images. To deal with single-peak histograms, Jin et al. assume that the background
has either a Gaussian or a Rayleigh distribution. When the number of background

pixels is large enough, a Gaussian distribution is used:

1 2 —p)?
p(z) = e~ (0 > 0) (2.26)
2ro

with

Ho= I}?’S‘(si) (2.27)
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o =[S s~ p)p (2:28)
=
where:
8; = the sampled data
i€ § = pixels on the same side of the histogram against the mean value.

A Rayleigh distribution is employed if the number of background pixels is not large

enough.

:c2
Tz if zz>0

(e > 0) (2.29)
0 otherwise

<3
o~
8
S
f
ey
e
]

with

1€
—_ 4-7 2
e 5 IJ,

Bo= \/§ Tes(si) (2.30)
o
where s; and ¢ € S have the same meaning as in equation (2.28).

In implementing their proposed algorithm, one has to determine:

1. the number of background pixels that is more suitable for employing the Gaus-

sian model instead of Rayleigh model, or vice versa, and
2. the size of mask optimal for processing the image.

Their scheme is designed for handling single-peak histograms with the assumption
that there is only one object and background in the processed image window. No

consideration is given to the case if the histogram contains more than two peaks.

Some authors sought to make the diffusion process less susceptible to noise [89,

90, 120, 237]. Catte et al. [46] modified the AD equation (2.1) to:
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O dinlg IV (Go = DIV (2.31)

where:

G, = (Gaussian smoothing operator of scale o.
This equation smooths the image with a Gaussian operator to reduce the effects of
noise before estimating the location of edges. It yields more consistent performance
by estimating the gradient of the smoothed image G, * I. Though it shows an
improvement in dealing with ramp edges in comparison with Perona and Malik’s
operator, it removes true detail edges and causes distortion, especially if noise is

considerable or if GG, is large.

That using Gaussian operators of the same scale throughout the diffusion process
is not reasonable has been noticed [129, 237]. With iteration, the image becomes
more smoothed, thus edge confidence in subsequent versions of the image has been
increased. Whitaker ef al. [237] modified the algorithm of equation (2.31) by de-
creasing the scale parameter with time to create Go(;). However, determining the
decrease rate of G, is problematic. If G, decreases too slowly, it does not have
much effect and may still let important edges be smoothed. On the other hand, if it
decreases too quickly, unwanted luminance fluctuations may not be smoothed. They
did not suggest a method for choosing o () to get optimal results. Also, they no-

ticed that even without noise, “staircase” effects can arise in areas with low gradient.

Other image processing techniques have been borrowed for dealing with this prob-
lem [4, 57, 109, 175, 177, 198), such as the method of using wavelets for choosing
K [166, 70], discussed in section 2.2.1. In the morphological AD proposed by
Acton et al. to preserve certain shapes at certain scales [4, 198], the CF (2.3) is

modified to be:
_(Lv{iuoB)e Bl 2
e K

g(IvI|)) = (2.32)
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where:
B = structuring element,
IoB = the morphological opening of I by B,
IeB = the morphological closing of I by B.

Morphological operators are used before detecting edge locations. The morpho-
logical filters are used to eliminate noise and its effects while distorting regions as
little as possible. This method shows some improvement in the performance of
estimating edge locations if the structuring element is set appropriately. Choosing

B and K is image dependent.

Dang et al. [57] combines the symmetric nearest neighbor (SNN) filter, an image
enhancement technique, with the AD filter. The SNN filter uses both spatial and
intensity information within the neighborhood of the pixel of interest. It deals only
with pairs of pixels that are symmetrically opposite about the pixel of interest and
have the closest intensity values to the pixel of interest. They state that the SNN
filter is good at removing noise while preserving edges, thus reducing the AD filters’
sensitivity to noise. In their proposed scheme, several other thresholds need to be

determined as well as K.

Gregson [89] suggested a way to estimate the location of edges by using the con-

sistency of gradient direction as an indicator of edge region.

G|
E{d*?} =2 1-13‘{'E ’”H 2.33
@ =2)1-p{EE 233
where:
E{a?} = the expected angular variation,
Gn = gradient magnitudes of pixels within the pixel of interest.

Gradient direction is one of a pixel’s attributes and has been largely ignored in

edge detection. The proposed algorithm (equation (2.33)) is less sensitive to noise
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and is independent of image intensity. This approach is much better than using
the gradient magnitude as the indicator of an edge region as it reflects directly the
spatial characteristics of real edges. Its computational complexity and the selection

of block size, however, are of concern for real-time applications.

Weickert proposed a coherence-enhancing anisotropic diffusion technique (CEAD)
that employs orientation instead of direction to implement smoothings [232]. He
defined that “gradients with opposite sign share the same orientation, but point in
opposite directions.”. He suggested a structure tensor for calculating the average

orientation as follows.

Jo(Vu,) = K, * (Vu, ® Vu,) (2.34)
where:

Jo = the structure tensor, also called as interest operator or second-moment
matrix,

* = convolution operator,

K, = a Gaussian filter with a scale p that should reflect the characteristic of
the texture,

® = product operator,

Vu, = gradient computed from a version of the image smoothed by a Gaussian

filter with scale o.

The common smoothed gradient Vu, is replaced by equation (2.34) that experi-
ences Gaussian filtering twice. The production after the first smoothing, Vu,QVu,,
is used to prevent the gradients of opposite sign from cancelling each other when
the average gradient is calculated within the neighbourhood of a pixel. This re-
sult is smoothed again by the second smoothing factor K,. The eigenvalues of the
structure tensor, yy, -+, lin, are used as a measure for a coherence x defined as:

. T (2.35)

i=1 j=i+1
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Weickert states that the x is used to control the smoothing strength and his CEAD

may be carried out by the following way:
Owu = div(DVu) (2.36)

where:

D = the diffusion tensor that controls the smoothing strength.

The eigenvectors of D are assigned in the same way as J, and are constructed as

follows:
M=a for i=1,---,n—-1, (2.37)
and for 7 = n:
o' for k=0,
A= o (2.38)
a+(l—-a)e = otherwise
where:
C = a threshold for measuring the coherence,
@ = a positive parameter € (0, 1) for keeping the smoothness of the structure

diffusion tensor.
Weickert recommends using a look-up table to implement the algorithm. His

method is based on a processed version of the image smoothed by Gaussian fil-
ters that blur signals though it reduces the sensitivity to noise. Parameters (the
Gaussian filter scale p and o, the positive parameter o and the threshold C) are
image-dependent. Implementing this algorithm in hardware would be difficult due

to its complexity.

2.4 Summary of Current AD Research

Considerable research on AD has been conducted since it was first introduced. It

is encouraging to see that AD has already been used in such a wide range of appli-
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cations and applied to such a large variety of images.

Research in automatically stopping the diffusion process is very challenging and
remains open. In a typical AD process, at first AD removes noise and undesirable
details. If it could be stopped at this point, an improved image would result.
However, normally diffusion continues and the image is blurred and degraded. Also,
the number of iterations for diffusing the image is different from one region to
another. In regions of small fluctuation of gradient, only a few iterations are
enough. On the other hand, regions of large gradient need more iterations due to
their low DCs. Obviously, knowing when to stop the diffusion process is critical to
the success of implementing AD. Three ways have been used or exploited to deal

with this problem in the literature:

1. simply stopping the diffusion process with a preset number of iterations, thus

the effects of over-blurring are not easy to observe,

2. studying the characteristics of the CF, in the hope of finding a good DC

function that controls the smoothing strength as AD theory expects, and

3. seeking a criterion for automatically stopping the diffusion process when the

result are “optimal”.

The discrete implementation of AD first proposed by P-M has been used contin-
uously since it was proposed in 1987. It is known that this DAD acts differently
from its continuous counterpart. However, this is accepted as a paradox with very

little further research undertaken on it.

Making edge detectors more robust to noise is an old problem for all image pro-
cessing techniques based on gradient magnitude. It is also very important to the
success of AD filters. A problem common to edge detectors for current AD filters

is to select a suitable value for the threshold K. This threshold divides an image
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into two groups: noise and edges. The performance of AD filters is dependent upon
the selection of K because it determines in what way a pixel will be treated: being
smoothed or being preserved/enhanced. For current AD filters, the determination
of K is still empirical. It is image sensitive, and so the lack of a “goodness” measure
prevents application of AD to computer-vision tasks where it is the machine that

makes decisions.

In the field of AD research, methods for determining the threshold are mainly as

follows.

1. Select K to detect a desired percentage of the total pixels in the image. This

is the dominant approach due to its easy implementation.

2. Filter images with other image processing techniques before estimating edge
locations for implementing AD smoothing. In this way performance of edge
estimators could be improved to some degree. Such methods mitigate the
difficulty of selecting the threshold, but at the cost of implementing these

pre-processing techniques and their side effects.

3. Employ other techniques, such as methods based on histogram, wavelet or edge
direction etc. Difficulty in implementing these schemes and the complexity of

their algorithms are the main concerns.

Another very attractive AD research field is its application to real-time systems.
AD meets the requirement of real-time applications since one of the most desirable
aspects of the AD algorithm is that it can be carried out in a parallel implemen-
tation. Among the published papers concerning AD, however, very few of them
are concerned with implementation in hardware. In a software implementation, its
intrinsic iterative nature at each pixel makes the computation extremely costly. As

a result, software implementations are not suitable for real-time systems, because



CHAPTER 2. BACKGROUND 53

software implementation does not exploit the inherent parallelism of the algorithm.
Research into theory and implementation for hardware realization of AD is neces-

sary for implementations of AD that provide real-time performance.

In conclusion, research on the problem of automatically stopping the diffusion
process, and on finding an edge detector that is robust to noise, are prerequisites to
the application of AD techniques for computer vision systems, especially for RTIP

systems.
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Idempotent Anisotropic Diffusion

The basic idea of AD is to encourage smoothing within regions while discouraging
smoothing across boundaries or edges. If an image is processed under such an AD
principle, features finally left in the image after AD processing should be meaningful
edges. Edges should survive the AD smoothing process because weak or no smooth-
ing should be applied to them. However, traditional anisotropic diffusion (TAD)
techniques do not behave in the manner predicted by AD theory. Under TAD,
meaningful image features cannot be preserved if the number of diffusion iterations
is not carefully selected [2, 13, 23, 80, 109, 147, 179, 185, 246, 255, 261]. In a typical
TAD process, over-smoothing occurs very easily, blurring semantically meaningful
features. Instead of preserving or enhancing edges, TAD filters continually smooth
all parts of an image, although to varying degrees. Without a preset number of
iterations, diffusion never ceases. Determining the stopping criterion for the AD

technique is extremely problematic [132, 207, 206].

This section addresses overblurring, one of the most critical problems. The dis-
cussion is in two parts: a review of TAD and our proposed IAD. In the first part, the
behavior of TAD techniques is discussed, and why current approaches do not act as

desired is analyzed. The proposed IAD covers three topics: analysis of AD behavior
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along the whole range of gradient magnitude, a discrete version of AD (DAD) that
agrees with its continuous version, and finally, our proposed IAD technique that

solves the problem of overblurring.

3.1 Analysis of Traditional Anisotropic Diffusion

3.1.1 TAD Techniques: A Form of Averaging Filter

Equations (2.8)-(2.10) do not permit AD to behave in the desired manner. Accord-
ing to AD theory, if an image is processed by the AD technique, more smoothing
should occur in areas with gradients smaller than the threshold K shown in Fig-
ure 2.3 while less or no diffusion is implemented for edges with gradients larger than
the threshold. Because the flux curve in Figure 2.3 is positive over the whole gradi-
ent range, it should be noted that as a result, semantically meaningful edges could
be smoothed at each iteration even if their gradient magnitudes are much greater
than K. This means that with each iteration, they will be smoothed by increas-
ingly greater amounts. Edges disappear if the number of iterations is not carefully
chosen. Also, it is hard to tell when the point of optimum diffusion is attained,
where noise has been removed while edges are preserved. Selection of the number
of iterations is empirical and image-dependent. Finding a stopping criterion is a

challenge for TAD research.

It may be that such an optimal diffusion result can never be attained with TAD.
As equation (2.8) and Figure 2.3 show, the total change for a pixel in each iteration
is the sum of changes in four directions. How TAD acts is clear if we consider those
changes individually. The positive DC function produces smoothing at every pixel
as Figure 2.3 shows. No matter how slight the smoothing in high-gradient regions,

the gradients in those regions are reduced. At the first iteration, smoothing is slight
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in regions deemed to contain edges. With successive iterations, however, smoothing
becomes ever greater, finally causing edges to disappear.

Let us take a close look at the theory for TAD. Here we denote It . as the

maz

maximum intensity value within the neighborhood of a pixel at position (z,5) at

iteration %

Ifnaw = maw{ i z+1,]7 Izt 1, z,_7+1’ ] 1} (3.1)
where:
I = intensity value of the center pixel,
Ii11; = neighbor pixel in the east,
I,_1; = neighbor pixel in the west,
I; j+1 = neighbor pixel in the north,
I; ;-1 = neighbor pixel in the south.

It .. is the minimum intensity value within that neighborhood:

I:mn - mln{ 3,77 z+1 _77Izt 1,57 z,_7+17 _7 1} (32)

where factors bear the same meaning as in equation (3.1).

If’;fl is the new intensity value of the pixel at position (i, j) after the next iteration.

We show that I/t satisfies:

Irtnzn — Izt—JH < I:na.a: (33)

From equation 2.8 and the restrictions for A and the DC function, the right in-
equality of equation (3.3) can be reached by:

I = I+ M- Vel + Ady - Vel + Acg - VsI + Ay - VI
= If(1 = Mch +dy + s+ i)

Mg B +oy L+ ch - Iyi+cy-Iy )
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< I (L= Mcg + iy + dg + ciy)) + ML (g + ey + ¢ + ciy)

= I

max

(3.4)

In a similar way, we can get the left inequality of formula (3.3).

Thus, edges are not enhanced because pixel intensity is always “moved” toward

a lower intensity neighbor. This is clearly a form of averaging filter.

3.1.2 Review of Current Ways

Now let us look back on the methods for dealing with the problem of over-blurring
summarized in section 2.4. The most popular way, restricting the number of it-
erations, is a kind of “ostrichism”. Here “ostrichism” does not bear any negative
meaning. It simply indicates the fact that “over-blurring does not exist because it

is set not to be seen”.

That TAD does not agree with AD theory has been ignored since the introduction
of the AD concept. Edges cannot be preserved or enhanced if smoothing is applied
to them unless no smoothing or smoothing is run backwards. Research on the ef-
fect of the DC function does not seem to recognize that a positive DC function over
the whole range of gradient magnitude can never stop the diffusion process before

everything has been smoothed.

You et al.’s work on the convergence of the CF [249] has influenced much research
into seeking a DC function. You’s conclusions are treated as theorems. Here for

convenience equations (2.11) and (2.12), one of their conclusions about conditions
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for a well-posed AD for 2D image, are rewritten as follows.

(VIc(VI) > 0 (3.5)
dm Ie(vI) # 0 (3.6)
where:
VI = gradient magnitude defined as equation (2.9),
c(-) = DC function as equation (2.3) or (2.4).

The second condition tells us that the flux should never be zero while the first one
indicates that the flux increases monotonically, or at least that there is a constant
flow of flux corresponding to the case of (VI-¢(VI)) = 0. Under this theorem, they
proposed a CF (equation (2.13)) and declared this CF guarantees a well posed AD
process. However, this CF does nothing to an image because it produces constant

flux over the whole range of gradient magnitude except for z € [T, T].

Finding an automatic stopping criterion sounds more plausible if there exists an
optimal result where noise has been removed while edges have not been over blurred.
The AD process is assumed to evolve in such a way. Whether there is an “optimal”
point in the diffusion process is not shown. The essential question, does AD act in
the assumed way, has never been answered but is taken for granted. Let us use the
smooth-level-measure function S in equation (2.16) in section 2.3 for example. The
essential part of the idea is to find the time “T,” from the second derivative of S
shown in Figure 2.9, when noise is believed to have been smoothed. The problem
is that there is no guarantee that the curve of the second derivative of the smooth-
level-measure function is always similar to the curve of Figure 2.9(b), and so there
may not be point 7. A simple check can be carried out by assuming a smooth-
level-measure function as S = 1 —e~* for ¢ > 0, a monotonically increasing function
starting from S = 0 and going to S = 1. Its second derivative is S” = —e~%. No

such T, exists for it.
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In the end, we would like to compare TAD with the median filter, which is em-
ployed widely as a pre-processing filter to remove noise and speckles from raw images
for real time image processing systems [15, 59, 95, 97, 78, 151]. Median filtering is
also a nonlinear image smoothing technique. It is good at removing spike noise and
not blurring edges too much. It replaces the current pixel by the median of a set of
ordered values consisting of the intensity values within its neighborhood. It satisfies
inequality (3.3) as well. Clearly TAD acts in a manner similar to the median filter.
The difference is that the TAD techniques extend the range of intensity values for
replacing the central pixel, without the restriction of only using the median within
that pixel’s neighborhood. As with the median filter, there is no guarantee that

edges are not smoothed by TAD.
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3.2 Behavioral Analysis of Anisotropic Diffusion

Although nearly two hundred papers relevant to AD techniques have been published,
only a few of them discuss how the CF affects the AD process [169, 171, 83, 84, 85,
249, 254]. Research into AD theory cannot be considered to be complete until an

understanding of the effects of the CF is gained.

Research on the effects of CF is very important to AD theory because the AD
process is dependent upon the selection of the CF that controls the “smoothing
strength” over the whole image. Ideally, the CF should be able to produce more
diffusion in noisy areas and areas containing trivial detail and cause no smoothing
or even run diffusion backward at boundaries so as to preserve or enhance edges.
Clearly, researching the effect of the CF is especially important for a mathematical

understanding of the AD process and will lead to an understanding of how to choose

a suitable CF.

The most recent progress in researching the effects of CF is reached by Gilboa
et al. [83] in their research for a forward-and-backward diffusion (FAB) technique.
They succeeded in showing that, as Figure 2.6 shows, a gradient magnitude remains
trapped in the range between the two extrema [—K1 K1] if it is in this interval
initially. Where this gradient magnitude will go, however, was not discussed. Also,

explanations for other parts of the gradient range are not given.

3.2.1 AD Behavioral Analysis in Continuous Domain

The basis of our proposed approach is to use the derivative of flux directly to deter-

mine the diffusion coefficient (DC). Denote flux as ¢(I;) = ¢(I;,1)I, and treat it as
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one function. Thus in the 1D case the AD equation (2.1) can be rewritten as:

ol 0
ot = ”agc(c(Imt)Iw)
= 2wy
= Gp(Ip) e (3.7)

where ¢, () is the derivative of flux (DF).

In Figure 3.1, showing a typical DF curve, “S” stands for the point where the flux
is small enough to be ignored. This agrees with most practical applications that

have a limit to resolution. As seen in Figure 3.1, the possible values of the DF can

L.
0

-8 _E 0 E s Gradient

U

Figure 3.1: Derivative of flux

be grouped into three ranges:

>0 for lI;| € (-K K) and |[|#0,
DF{ <0 for |Lle (K S) and |L]e(-S - K), (3.8)

=0 otherwise
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To understand the performance of our approach, an analysis of the effects in each

range is needed.

Case: DF >0
Assume that I(z,t) is continuous in a bounded square I': {a <z < (,0<¢< T}
For simplicity, we assume that the DF is a constant, a®, thus the AD equation is

rewritten as:

oI ,0%I
and:
I(z,0) = u(x) (3.10)

where u(z) is the original image.

Denote the Fourier transforms of I(z,t) and u(z) with respect to = as follows.

Hw,t) = FlI(z,?)] (3.11)
t(w) = Flu(z)] (3.12)
Apply the Fourier transform to equation (3.9) to get:
oI o o7
= - I 1
5 a’w (3.13)
which meets the initial condition:
I(w,0) = @i(w) (3.14)
The solution to equation (3.13) is:
I(w,t) = G(w)e~®" (3.15)

so the solution to equation (3.9) can be found from the inverse Fourier transform of

equation (3.15):

I(z,t) = FYI(w,)]
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2

AR
= F Y uw)] * F e ¥
= u(z)* F e wzt]

The second factor on the right side of equation (3.16) is:

1 oo
f‘—— [ -0 wzt] — 57_;/:— e—-a wzte]wmdw
1

= — /oo e (cos(wz) + jsin(we))dw.

2 J-

. _n2,,2 . . .
Since e ¥ tsinwz is an odd function of w,

Fle @] = %/_oo e *cos(wr)dw
1 22
= 2a\/_‘e 1%
From equations (3.16) - (3.18) we have:
(@=x?
Iz,t) = Za\/—‘ u(A)e” S

63

(3.16)

(3.17)

(3.18)

(3.19)

This solution has been derived with the assumption that I(z,t) satisfies the con-

ditions of the Fourier transform. Thus we need to prove that if it is a valid solution,

it must satisfy equations (3.9) and (3.10).

Since u(z) is continuous and bounded in I, there must be a number M > 0 such

that:
lu(z)| < M

For the solution, both its first derivative with respect to x:

) w(N)e~ S

261\/— (2a2t

and its second derivative with respect to z:

* (’\ - 93)2 1 (@=2?
QCL\/’—/I'— - ( 4:(1»4tg - ZU,Zt% 'U:(/\)@ %t d\

(3.20)

(3.21)

(3.22)
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are uniformly convergent for ¢ > 0. Thus the order of integral operator and deriva-

tive operator can be exchanged. Placing the solution into equation (3.9) we get:

oI 1 e ((z—A)? 1 S L0
—3—{ = Za\/']_r [_oo (-——-———*4a2tg - 5;%) U()\)C da d)\ =a 5;5 (3.23)

This shows that the solution satisfies equation (3.9).

If the solution meets the initial condition (3.10), then for an arbitrary zp in the
original image u(z), there should be I(z,t) — u(zy) when z — zg and ¢t — 0. Thus,
we need to show that for an arbitrary € > 0, there should be a é; > 0 and a d; > 0,
which makes:

|I(z,t) — u(zo)| < € (3.24)

when [33 — iL‘QI < é; and t < 6,.

With the variable replacement:

A—z
= 3.25
ey (3.25)
equation (3.19) can be rewritten as:
1 ©o 2
I(z,t) = — u(z + 2avtp)e ™™ du (3.26)

N
and so, with the boundary condition of equation (3.10), u(zo) can be expressed as:
i o]
u(zg) = W /;oo w(zo)e ™™ du (3.27)

Thus:
Iz, t) - ulzo) = ‘;};— [ e + 20Vip) — (ool #an (3:29)

For a given € > 0, choose a N large enough to make:

G /T

/N e "dy < oM (3.29)
-N
/_ ety < %g (3.30)
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Because u(z) is continuous, then for a fixed N there must be a §; >0 and a d3 > 0

that, when |z — x| < &; and ¢ < d,, makes:
lu(z + 2avtp) — u(z)| < § (-N < u<N) (3.31)
So:

I(@,1) - u(zo)| = l——\/l;—; [ o + 2078 — ulza) e+ dy

< o [ fluto+ 20vE)| + fule) e d
+ 7= [ lule + 20vi) — ula) e dy
+\/i7—f /Nw{lu(ﬂﬂ + 20v/tp)| + u(zo) [} d
€ € N 2 €
< 2MW+3—\/_—7;/_N6 du+2M
< S48 (3.32)

3 3 3
Equations (3.23) - (3.32) show that equation (3.19) is a valid solution for equa-
tion (3.9) with the initial condition of equation (3.10).

Now, we can consider the behavior characteristics of equation (3.19). From

equations (3.19), (3.20) and (3.25) we get:

1 oo _@=»?
I(z,t M aZt dA
’ (x )' 2a+/ 7t /-—oo ¢!

7l
M

IN

-4,

IN

< (3.33)

This shows that the solution is convergent and bounded for a positive DF.

Finally, let us evaluate the behavior characteristics of the gradient function in

equation (3.19). From equations (3.19) to (3.21) and (3.25), we have:
oI 1 el z ~@=0?
N /_oo ( %) u(A)e™ e dA

lim
t—o0

Oz

. A—
= lim
t—o0 2a2t
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. 1 gy 2
= lim poy Lw]u(m+2aﬁu)ue ldu
= 0 (3.34)

This shows that, with a positive diffusion coefficient, smoothing is carried out

continuously with time until no non-zero gradients exist.

Case: DF <

For a negative DF, equation (3.9) can be rewritten as:

oI , 01
Following the same procedure as for the case of DF > 0, we get:
% = a’w?l (3.36)
and
T(w,t) = d(w)e®™’ (3.37)

Clearly equation (3.37) is divergent with t and therefore I(z,t) must be as well.
This shows that AD is an unstable diffusion process for DF < 0.

Case: DF =0

When the diffusion coefficient is zero, equation (3.9) can be rewritten as:

oI _

5 =0 (3.38)

and its solution is:
I =u(z) (3.39)

where u;(z) is the image when the DF is zero. In this case, the AD filter does

nothing.
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Based on these results, we get:
Conclusion: There are three kinds of diffusion process: mathematically well-
posed, mathematically ill-posed and no diffusion. They correspond to fluz increasing
with gradient magnitude, flur decreasing with gradient magnitude, and flux of zero

respectively.

Now, we explore the change of gradient magnitudes during AD. A typical DF
shown in Figure 3.1 is employed for the discussion. We examine the interval [0, oc)
because the flux function has odd symmetry. S stands for “Stop”, indicating the
region where the flux is small enough to assume that flux is zero in [S, oo). Thus

we explore the interval [0 S].

Differentiating both sides of equation (3.7) with respect to z yields:

ol

= bozl2y + b ligs. (3.40)

With the assumption that I(z, t) is continuous and bounded inT" : {z € (—o0 o0), £ >
0}, the order of differentiation can be exchanged. To evaluate the behavior of the

gradient with respect to time, equation (3.40) is rewritten as:

= %It—x (3.41)
As Figure 3.1 shows, the derivative of flux is:
>0 for z€ (0, K),
$z4 <0 for z € (K, S), (3.42)
=0 otherwise
and the second derivative of flux is:
<0 for z€ (0, E),
$zzq >0 for z € (E, 9), (3.43)

=0 otherwise
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So:
<0 for z € (0, E),
boollq >0  for z€(E, S), (3.44)
=0 otherwise

Thus, the first term on the right side of equation (3.41) affects the AD process
in two different ways in the range (0, S). Smoothing is carried out by moving the
gradient toward zero in the first interval (0, F) and edge enhancement is imple-

mented in interval (E, S).

Now, we consider the effect of the second term on the right side of equation (3.41)

by itself to simplify our discussion. Ignoring the first term, we get:
oI, p 0?1,
ot~ T° Ox?

This equation has the same form as equation (3.9). Thus, I, is bounded and conver-

(3.45)

gent in the range (0, K) but divergent in (K, S). Note that the same conclusion
could be reached for the interval [—S, 0]. Since I, < |I;(z,0)| and equation (3.44)

produces nothing but smoothing in (0, K], we come to:

Conclusion: Smoothing is carried out in the interval (—K, K). Any non-zero
gradient magnitude within this interval at the beginning of AD will eveniually reach

a value of zero.

Gradient behavior in (K, S) is more complex, because E is in the interval (K, S5).
Since the second term on the right hand side of equation (3.41) produces a divergent
solution for I;, but equation (3.44) implements both smoothing and enhancement
in this interval, there is no guarantee on the direction of changes to these gradient
magnitudes. Balance between the effects produced by equations (3.44) and (3.45)

may move a gradient toward zero as noise, or may enhance it. So we come to:



CHAPTER 3. IDEMPOTENT ANISOTROPIC DIFFUSION 69

Conclusion: In the intervals (K, S) and (=S, —K), the diffusion process is
unstable. Any gradient magnitude within these intervals at the start of AD may be

smoothed to zero as noise or enhanced as an edge.

This shows that the interval (K, E) generates undesirable uncertainties in the
result images. Clearly this interval should be restricted if it is exploited for edge en-
hancement. Observed “staircasing” effects [47, 237], the creation of edges in smooth
intensity “ramps”, takes place in (K, S). With the assumption that the flux is
zero in [S, ©0), the image remains unchanged after the diffusion process finishes in

(=S, S). Thus, we come to:

Conclusion: The diffusion process stops modifying the image when the only

gradients within the interval (=S, S) have zero magnitude.

Clearly, the threshold “S” is very important for applications of AD because it
defines the value of edge gradient magnitudes to be preserved. Edges, however,
are not preserved if S is made too large. This is because the AD process is cir-
cumscribed by the “Maximum Principle” [155] which states that all of the maxima
belong to the initial conditions. S should be selected to be the minimum value
for semantically meaningful edges. Without a correct setting for S, attempts to
create a general-purpose criterion for AD will fail. S should be called the “edge
threshold” T,, while “K”, the traditional threshold for edges, should be called the
“noise threshold” 7;,. T, is important for applications in which a certain range of

gradient magnitudes should be treated as noise.

A new interpretation of AD behavior in the whole range of gradient magnitudes
is developed in the previous with the aid of the Fourier transform. We showed that

AD is composed of three different processes: a mathematically well-posed smoothing
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process, an ill-posed unstable process that could generate edge enhancement, and a

process that does not change the image.

The conditions for generating the “staircasing” effects are discussed. We showed
that the prerequisite for creating a stopping criterion for the challenging problem of
oversmoothing does not exist, because there is no gurantee that edges do not suffer
from being smoothed with the first iteration. Negative CFs should be used carefully

for they can produce unpredictable results.

A threshold that results in zero flux is found to be very important to the quality
of resultant images and is proposed for the first time. The edge threshold defined in
TAD techniques is renamed the “noise threshold”, because it actually denotes the

range in which smoothing is carried out.

3.2.2 A Criterion For The Conduction Function

Finally, we propose a criterion for selecting the CF to implement AD:
Any convenient function can be used as the CF if it produces the desired fluz, that
increases monotonically in the range [0, T,/ and decreases monotonically in the

interval (T, T.]. T. and T, are the thresholds for edges and noise respectively.
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3.3 A Discrete Form of Anisotropic Diffusion

The P-M AD is paradoxical. While their discrete form does not agree with its
continuous counterpart, nonetheless it has been widely used to the present. The
problem is that the discrete form performs smoothing on edges not predicted by the

continnous AD theory.

This section focuses on connecting the continuous and discrete forms of AD.

3.3.1 Continuous Version of Anisotropic Diffusion

We first address the P-M discrete version of AD (DAD). For simplicity, we consider
the 1D case along the x axis. Assuming that ¢; = cg, from equation (2.5) we get

the P-M 1-D discrete equation:

It = I deg(If, — 200+ 17 )
= I} 4+ ML -2+ 1)
= I+ )AL (3.46)

where: )\ = Ac; for later convenience.
Equation (3.46) is significantly different from equation (2.1). Equation (3.46)
agrees with the first term on the right hand side of equation (2.1), but does not

contain the second term.

As discussed in Section 3.2.1, the derivative of flux should be used to control the
diffusion process. Assume an image of a step edge at arbitrary orientation. Without
loss of generality, we assume a neighborhood coordinate frame such that the edge is

parallel to the y axis so that we may treat this as a 1D problem. Denoting flux by
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(1) = (I, t)I,, equation (2.1) can be rewritten as:

ol 0
ot = ?(C(Iw t)Iw)
SR
= ¢ (Ip) sz (3.47)

The DF is considered to be one function and is used for the DC. Now let us
consider the DF’s behavior.

0
¢y = %‘(zc(m))

= c(z) + 2z c,(z) (3.48)

Here z, instead of I, is used for convenience. The first summand c(z) is a non-
negative, monotonously decreasing function starting at ¢(0) = 1, with zli_{nw c(z) =0.
Assume both ¢(z) and its derivative ¢;(z) are continuous functions. For the second

term, the boundary values are:

T - €g(Z)|g=0 =0 (3.49)
and
lim z-¢,(z) = lim clz)
Z—+00 z—o0 [ng
=0 (3.50)

cz(z) is negative. With the assumption of continuity, there is a number M > 0

such that:
lz-c(z)| < M (3.51)

with:

M = |min{z - cz(z)}] (3.52)
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M is dependent upon c(z). For example, M equals | — 2| and | — | for the P-M
CFs of equations (2.3) and (2.4) respectively.

With equations (3.49) to (3.51), we find that the second term is negative except
at its boundaries. The DF is a function starting at ¢,(0) = 1 and ending at
giinoo ¢.(z) = 0, typically in the form as shown in Figure 3.1. It implements the

desired operations of noise removal and edge preservation and enhancement. Neg-

ative values of DF are not employed due to their side-effects.

3.3.2 AD Behavioral Analysis in Discrete Domain

Now let us look for a discrete form of AD that corresponds to equation (3.47). Since
a negative DC creates an unstable diffusion process, we concentrate on the numer-
ical formulation of equation (3.47) for positive derivative of flux. For simplicity,
we consider a 1-D signal and assume that the DF is a constant a®>. With these

assumptions, equation (3.47) can be rewritten as:

B—I%’%’—Q = az?—ia(;—’fl (3.53)
with
I(z,t)|=0 = u(x) (3.54)
where:
u(-) = the original image.

To form the difference equation of a continuous imagein R : {zx € [0 [ ],t €
[0 T}, divide the continuous image evenly in space into N parts with step Az = £,
and numerically approximate the continuous diffusion process by time step Af. In
this way we create a discrete representation of the image. The value of I(z,t) at

position 7 and time k is represented in the discrete domain as:
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If = I(2,1) |omina,t=kat (3.55)
where:
1 = pixel position,
k = time, based on unit Af.

and the values of its partial differentials are denoted as:

( 8Nk afaa:,t
o/t t \z=iAzt=kAt
821)k . It (3-56)

Er

i Oz r=1Az,t=kAt

Assume I(z,t) is sufficiently smooth in R. Using Taylor’s series, a pixel at

position ¢ and step & is:

k+1 _ Tk k 21 (., .
IL—IZ._ (61) = éi?_M th < t< tep (3.57)

At o), 2 o =

Ih —20f+1F, (0] * _ (Az)? 0*1(Z, 1)
(Az)? 02 12 ozt
;- Az <ZT<z;+ Az

i

(3.58)

Placing the partial differentials at (iAz, kAt) from equations (3.57) and (3.58)
into equation (3.53), we get:

L7 I plfa 2P I8, MOT(@,0) _ ,(Ac) 03 1)

At Az 2 e " 12 orf (3.59)
which meets the original conditions:
I} = u(iAz) (i=0,1,2,---,N = 1) (3.60)

Assume that the right hand side of equation (3.59) is zero. With this assumption,
AD equation (3.53) is approximated by:

I - IF _ a2jz‘k+1 i
At (Ax)?

=0 (3.61)
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with
I? = u(iAx) (1=0,1,2,---,N - 1) (3.62)

Equation (3.61) is based on the assumption that the right hand side of equa-
tion (3.59) is zero. Clearly the solutions of equations (3.59) and (3.61) are different.
We use symbol I(z, 1) to distinguish between them. When equation (3.61) is used
to approximate AD equation (3.53), the error due to discretization, also called the

cut-off error, is:

ST T Y T2 T aat (3.63)
With:
At
=a’ 3.64
A=a (Ba)? ( )
the numerical approximation of AD is:
I = ATE + (1= 20 IF 4+ ATE (3.65)
with
I? = u(iAz) (1=0,1,2,---,N — 1) (3.66)

Is this a suitable approximation to the continuous equation (3.53)7 First, let
us consider the convergence of this discrete approximation algorithm. Its solution

should converge to the solution of equation (3.53) as Az — 0 and At — 0.

Theorem: Assume that a continuous solution of equation (3.58) exists in R : {z €

[01],te[0T]}, and that continuous partial derivatives %, g:—{— ezist, then the

solution approzimated by equation (3.65) converges to that of equation (8.58) if

A<z (3.67)

[N R
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Denote by I¥ and I¥ the solutions of the CAD and DAD at point (iAz, kAt)

respectively. The difference of these two solutions due to discretization is:

V;szf—fzk ('12:07172)"'7N—1)

From equations (3.59) - (3.66),

A GV R VE
At ¢ (Az)? —

which meets

V2=0 for i=0,1,2,---,N —1.

Introduce two constants for our discussion:

10%1(z, 1)
M1 = max‘-z——at;——
a® 0*1(z, 1)
Mo = ma i e

and let:

M = MlAt -+ Mg(AZE)z,

It is clear that:
¥l < M for i=0,1,2,-+-,N—1.

Rewriting equation (3.69) as:

VI = VA + (L= 20V + AVE, + Atef (1=0,1,2,

and denote its maximum value at time kAt as:

V¥ = maz|V}F| (¢=0,1,2,---,N=1)

(3.68)

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

(3.74)

. N—1) (3.75)

(3.76)
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From equations (3.75) - (3.76) and the restriction for A\, we get:

“/ik+ll

Thus we get:

IA

IAVE, + (1= 20)VF + AV | + MAY

IN

AVEL+ I = 20V + [AVE | + [ M A

IA

IAVE| + (1 — 20)VF| + |AVF| + | M At

IA

VP 4+ MAt (i=0,1,2,---,N—1)

VEHL < VE 4+ MAL

This is a recursion equation and its solution is given by:

Since V; = 0 and

Wwe can say:

Let:

yhtl V4 MAt

IA

V1 L aMAL

IN A

IA

VOt (k+1)MAL

(k+1)At< T

M2a2

VEL < MT = (M1 + ) TAt.

2
L=(M1+Mf\“ )T

and note that it is independent of k, thus:

VL < LAt (i=0,1,2,---,N=1)

77

(3.77)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

This shows that the difference between the solution of the DAD and that of the

CAD converges to zero as At — 0. Thus, the solution of discrete AD converges to
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the solution of the continuous AD.

Because there is a cut-off error at every step that also affects the solution of the
next step, this solution is actually an approximation of the solution for discrete AD.
Though the deviation between them may be very small at one step, its accumulation
could result in a poor solution or even make the calculation process uncontrollable.

Now let us address the stability and consistency of the discrete version of AD.

The Lax equivalence theorem [58] provides a relationship between the concepts
of convergence, stability and consistency. It states that a scheme converges if and
only if it is consistent and stable. The discussion above shows that the proposed
discrete version of AD is convergent, and so its solution converges to the solution of

CAD stably and consistently.

Now, we can rewrite the discrete version to correspond to its continuous counter-

part, equation (3.53), as follows:

I8 = IF 4 \(Ih, 208+ IE ) (3.84

with
I? = u(iAz) (1=0,1,2,---,N = 1) (3.85)

This shows, although for a simplified case, that the DF should be used to form

the DC for control of the diffusion process.
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3.3.3 Discussion

P-M DAD does not use the derivative of flux. Still consider the 1D case. Equa-
tions (3.84) and (3.46) share the same form but with a significant difference. In
equation (3.84), A is a function of the DF, Az and At. When equation (3.84) is
used to approximate its continuous counterpart, it gives convergent, stable and con-
sistent results if A < £. In equation (3.46), ) is a product of a constant and the CF
itself. With this positive CF controlling the smoothing strength over the whole gra-

dient range, it is difficult, if not impossible, for edges to survive the diffusion process.

The advantage of P-M DAD should be emphasized even though it does not agree
with the continuous case. First, when it was proposed, it was an improvement
to smoothing techniques in comparison with linear filters with the introduction of
spatially variable smoothing strength. It implements selective, nonlinear smooth-
ing, with different smoothing strength for different gradient magnitudes. We would
rather call it a semi-AD because smoothing is also carried out on large gradient
magnitudes that should be treated as edges, though the smoothing strength for
large gradient magnitude is much smaller than that applied on the noise area if a
suitable threshold is selected. Second, it exhibits good stability due to the positive
diffusion coefficient, although with a sacrifice in its performance. It is guaranteed
by the “Maximum Principle” [169, 155] that using a positive diffusion coefficient
produces no new maxima or minima in the diffusion process. Finally, good results

may result if the iterations are stopped in time.
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3.4 Idempotent Anisotropic Diffusion

3.4.1 Idempotent Anisotropic Diffusion Algorithm

Based on the discussion above, in the 1-D case the AD equation is:

0
a_a:l;“(c(lma t)1;)
= 5-9)

= ¢ (I;)  Ipy (3.86)

It =

Its corresponding spatiotemporally discrete version is proposed as:
I = I+ Mo(l) - I,

= I+ eI {(Fn - ) - I - 11,)}
= I+ Ao (I (IE, — 1Y) + Mo (IE)(IE, — IY)

(3.87)
where:
i = the pixel position,
A = ascalar € R* for controlling the rate of diffusion,
t = discrete time step,
R, = directions, to the right and left respectively.

For 2D digital images, the AD equation can be interpreted as follows:

It = d'LU(C(Imeat)V‘[)
= div(e(le, I, 1) (Ii + I,7))
= V-c(I,, I, L7+ L,7)

= ("“7’ + "'y_]) * (C(Ixa Iya t)ImZ'F C(Im Iy: t)ly;)

= ¢ (Io)lox + ¢' (L) Iy (3.88)
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where:

5‘, 5 = unit vectors in the directions of x and y respectively.

A 4-nearest-neighbor discrete version is proposed for it as:

Y=L+ M& (VeI )Vell; + 8 (Vw i ) Vwll;
+¢ (VNI;]-)VNIZ-’J- -+ ¢ (Vs )Vs ]} (3.89)

where all subscripts, superscripts and parameters bear the same meaning as in equa-

tion (2.8).

To verify this discrete formula, assume that ¢'(Vel};) = ¢'(VwlI};) = ¢pw (VI};)
and ¢'(VnIf;) = ¢/ (Vsit;) = ¢hys(VIE;) for simplicity. Then:

¢ (Vell VeIl + ¢ (Vwll,)Vwll; = Oow(VIL) (VeI + Vi)

¢EW( )( i+1,5 It +It Iit,j)

= QZSEW(V ])( +1,7 z] (It Iz?—l,j))
¢EW(

VI, (3.90)

Vi

and

§ (VNI )N+ 8 (VsIi)Vsll; = @ys(VIL) (VNI + Vsl

(VE 11 If~+If'_1—I:~)
(

(

7
- ¢'NS

= S VI ])( i+l T ( _7 1))
= ¢ys(VI; )L, (3.91)

So equation (3.89) is in a form as follows that agrees with equation (3.88).

L5 =L+ Mw (VI Ly + dvs (VI )y } (3.92)
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3.4.2 Assessment of The IAD Scheme

The determination of the DC function is very important to AD techniques. The
proposed IAD technique is evaluated with respect to the criteria described in Sec-

tion 2.1.5 based on the effects of DC function.

1. Causality, the first criterion for AD filters, requires that no fictitious edge
is produced when the resolution reduces. This is met by the positive part of
the flux’s derivative, except for the “staircasing” effect for which more research is
needed [54, 237]. This is because the AD process is circumscribed by the “Maxi-
mum Principle” [155] which states that all of the maxima must only belong to the
initial conditions. There is a problem, however, for the negative part of the flux’s
derivative to meet the criterion of causality. It does not obey the “Maximum Prin-
ciple” and generates an unstable diffusion process by running backwards smoothing.

Obviously, this part should be removed or restricted.

1.0

ki ow ke O Gradxentk

0 \/—-

Figure 3.2: CF curve of the “Gilboa” FAB filter
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Backwards diffusion has been studied by some researchers [76, 83, 84, 85, 173,
174, 201, 203, 204]. Gilboa et al. [83, 84, 85] proposed a CF as in Figure 3.2 that

runs forward-and-backward diffusion (FAB) and produces a flux similar in form to

Figure 2.6:
o
=13 (Z)r 1+ (=FKjpm (5:99)
where:
K; = a parameter controls the forward “force”,
Ky = a parameter controls the backward “force”,
1o = for a balance between the forward and backward “force”,
w = width of the negative CF,
n,m = parameters control the shape of forward and backward factors.
They recommend a formula to calculate these parameters [83]:
a< ﬂKLﬂ'ﬂ for any 0 < w < Ky — K, (3.94)

n=4, m=72,

where:
MAG = the mean absolute gradient.
In their experimental results, this rule was not followed and the determination of

these parameters was image dependent.

Another problem is that significant distortion occurs due to the wide region of
negative values with their CF. Adding a fidelity term is helpful for mitigating the
distortion [83, 231}:

0
L= —o¢(I;) — MI -1 3.
¢ = 5-¢(I) = AU~ o) (3.95)

where:
A = the fidelity term.
The fidelity term restricts the difference between the result and the original image.

A small X gives more freedom for the result while a large A requires more similarity
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between the result and the original image.

Thus, the benefit produced by the negative part of the flux’s derivative should be
considered carefully with respect to both its advantages and disadvantages. The
behavior analysis in Section 3.2.1 shows that gradient magnitudes within the neg-
ative range keep moving intensities “uphill” until they go out of this range. The
problem is that sometimes it is hard for a gradient magnitude to go out of the range
due to the interactions with its neighbors. This may lead to undesired results even
with certain restrictions added. Based on the above discussion, we recommend
considerable caution, restricting the negative part of the flux’s derivative to a small
range, and only if there is a clear benefit. For example, the range of negative value

is set within 10% of the edge threshold.

2. Improvement of the second criterion, immediate localization, is shown clearly
by comparing Figure 3.1 with Figure 2.1. The TAD equation treats the range
[0, K] as noise and applies smoothing. The IAD method divides the range into
two parts with a noise threshold 7,. Gradient magnitudes in the part less than
T, are smoothed as noise, while the gradient magnitudes in the other part may be
smoothed or enhanced. Figure 3.1 shows that diffusion diminishes as gradient mag-
nitudes approach the threshold, and stop exactly at the threshold. As the gradient
magnitude increases in the range (K, S), the IAD filter runs diffusion “backwards”,
enhancing edges. With our recommendation of restricting the negative part to a
small range, large gradient magnitudes are kept throughout the diffusion process as
edges. On the other hand, as Figure 2.1 shows, the TAD equations continue to
cause smoothing in the range (K, oo). This causes edges to be blurred, and finally

to disappear.

3. With respect to the final criterion, piecewise smoothing, the IAD equations
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implement the desired selective diffusion. IAD can produce a mathematically well-
posed, a mathematically ill-posed or an idempotent diffusion process. These three
results correspond to when the generated flux is increasing, decreasing or constant
respectively. In the first case, smoothing is carried out and gradient magnitudes are
consistently reduced to zero. The second case is a divergent diffusion process that
eventually disappears with sufficient iterations. As for the third case, semantically
meaningful edges are kept by the AD filter throughout the diffusion process. By
controlling the unstable diffusion process, TAD filter implements piecewise smooth-

ing and realizes the goal of noise removal and edge preservation/enhancement.

The TAD equations do not stop smoothing over the whole image. They im-
plement the strongest smoothing within a close range of the threshold defined for
edges. Only edges with gradients much larger than the threshold may remain nearly
“untouched” at the beginning. Here we use the word “nearly untouched” because
they are actually smoothed, although very slightly. However, even such a state is

not able to last for a long time because no edge can withstand continual smoothing.
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3.5 Experiments

Experiments have been carried out on both 1D signals and 2D images, with a num-
ber of CFs employed for different purposes. The CFs were scaled so that the fluxes
generated by them are similar. For example, the ranges of the monotonically in-
creasing fluxes produced by the two P-M CF's are different if the same threshold K,

is used.

3.5.1 Source of Test Images

Both real images and artificial images were used in our experiments. The artificial
image is simple but allows the experiment be controlled easily, while real images are

employed for the following reasons:

e Diverse, spatially varying conditions in real images cannot be designed.
That a technique works with an artificial signal does not means it is able to

work the complexity of real images.

e Our final goal is to apply the AD technique to real images, and so real

images should be used for testing and evaluation.

Artificial Image
Art: A synthetic image containing curves, lines, ramps and corners.
Real image
Lab: A picture of 256x240 pixels taken of the former CVIP Lab.
Labld: An 1D image consisting of a horizontal line in the “Lab” image.
Lena: A standard test image (256x256 pixels) in the field of image

processing.



CHAPTER 3. IDEMPOTENT ANISOTROPIC DIFFUSION 87

3.5.2 Simulation Functions

Experiments are designed to study AD behaviors with different CFs for different
types of fluxes and compare the performance of idempotent anisotropic diffusion
(IAD) filters and traditional anisotropic diffusion (TAD) filters. Floating-point

simulation of a number of functions was carried out.

1 b
AT
ED )
N \\ - Epoen
.\_ ‘\ - Exponenﬁal

0.8f \‘\"'- \ lllll iy
W NN " Ty
. 3 \\ - Tukey

R
0.6+ SN
N, \\
N w
N
AR
0.4} g
vy
\\;\
N
\\
0.2f RN
NLoNe el
) ~o e
o oo T
0 . I | A
. = 100 1%0 “0
Gradient

Figure 3.3: Conduction functions in this experiment

We explored the two P-M CFs (equations (2.3) and (2.4) ), Tukey’s biweight
function (2.14), FAB diffusion ( equations (3.93) and (3.94) ) proposed by Gilboa
et al. [83], their scheme of adding a fidelity term to restrict the distortion (equa-
tion (3.95)), and two simple “straight line” CFs. The definitions of the “straight
line” CFs in the interval [0 oc) are as follows:

c(z) =

{1 for 0<z<K, .96)

0 otherwise

and
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(3.97)

— 2 for 0<z< K,
C(:L‘):{ Ke - -
0

otherwise
For convenience the CFs used, given by equations (2.3), (2.4), (2.14), (3.93),
(3.95), (3.96) and (3.97), are called as “exp”, “frac”, “Tukey”, “GFAB”, “fidel”,

“const” and “ramp” respectively. They are summarized in Figures 3.3 and 3.2.
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Figure 3.4: The “Mono” fluxes produced by each CF

Experiments are designed based on the desired flux shown in Figure 2.6. The

following results were sought:
1. AD behavior under a monotonically increasing flux as shown in Figure 3.4.
2. AD behavior using the flux’s derivative for the CF.

3. AD behavior under a mixed flux shown in Figure 3.5 containing both a mono-

tonically increasing flux and a monotonically decreasing flux.
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4. Comparison of IAD and TAD techniques. IAD is realized by our proposed
discrete version for AD with the range of negative DC set to zero. Its flux is in
the shape as in Figure 3.5 that shows the desired feature of ill-posed diffusion
process in constrast to the interest only on well-posed process [249]. TAD is
realized by the P-M numerical approximation algorithm, the most commonly

used discrete version for AD (equations (2.5) to (2.10)).
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Figure 3.5: The “Mixed” fluxes generated by the CFs

The curve of the flux’s derivative (Figure 2.6) has the same basic shape as that of
FAB diffusion (Figure 3.2). Thus they are considered together. For convenience,
these types of flux’s curve in Figures 3.4, 2.6, 3.5 are called “Mono”, “FAB” and
“Mixed” respectively. “Mixed” flux is produced by the non-negative part of DF
while “Mono” flux contains only the monotonically increasing part of “Mixed” flux.
CF's are scaled so that their fluxes can be comparied with each other. For example,
the intervals of monotonically increasing fluxes produced by equations (2.3) and
(2.4) are [0, %] and [0, K] respectively. To make them produce the comparable

fluxes, set Ky = %
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3.5.3 Experiments on 1D signals

Firstly, the CFs are scaled to produce the “Mono” fluxes within the same range as
shown in Figure 3.4, and are set to zero outside this range. T, is selected under the
assumption that a given percentage of the pixels in the image are edge pixels [171].
In this experiment we chose 20%. Figures 3.6 and 3.7 show the results. Note that
all five “Mono” CFs produced identical results when AD became idempotent. In
our experiment, if the total change for a resultant image remains unchanged within
a preset resolution e for at least one hundred consecutive iterations, we consider it
to be idempotent on this solution. For 1-D experiments € = 1075, Note also that

the number of iterations for each CF to result in AD idempotency is different.

Table 3.1: Iterations for “Mono” DCs to give idempotent results

CF Exponential | Fraction | Tukey | Constant | Ramp
Iterations 1989 1993 1989 2023 1983

After ten iterations, there are clear differences in the results with the five CFs. As
the results show, the edges are clearly defined by 100 iterations, as can be seen if we
compare the results at 100 iterations with the final results. In other words, typically
the work for edge preservation is performed early in processing 1D signals. Further
processing makes the image increasingly smoother by implementing smoothing in

the areas of noise and trivial details.

Secondly, we looked at AD behavior with the flux as in Figure 2.6, when the CF
incorporates negative values. CF equations “exp” and “GFAB” shown in Figure 3.2
were used. The “exp” is derived so that it generates flux as shown in Figure 2.6.
The maximum smoothing force F; must be larger than the maximum enhancing

force | — Fe| to maintain the stability of smooth regions [83].
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We considered the behaviors of the AD process with respect to the interval
(K, S), the width of negative flux range. To emphasize this, we call it “Mixed” flux
plus a negative range of CF of different widths. The threshold T, for “exp” is set by
assuming 20% of pixels in the image are edge-pixels. Parameters for the “GFAB”
CF were calculated by equation (3.94) proposed in [83]. Also, the performance of

“fidel” is considered so that the effectiveness of FAB diffusion could be addressed.

Results in Figure 3.8 show that selection of the negative CF region is important
to the quality of resulting images. A narrow range may help to preserve edges. A
wider negative region, though it sharpens edges, creates distortion. This can be
seen by comparing the results for different widths. As Figures 3.8(g) and (h) show,
the distortion can occur in the first few iterations. The “GFAB” filter exhibits
similar behavior as shown in Figure 3.9, but with significant distortion due to its

wide range of negative CF.

Adding a fidelity term as in equation (3.95) is helpful for mitigating the distortion.
The fidelity term restricts the difference between the result and the original image.
Results in Figure 3.10 show, however, that noise or trivial detail is also kept after
the fidelity term is included. It shows that the results are also dependent upon the
selection of A. Tests for a small range of values for A shows that the determination
of this fidelity term is problematic. The distortion and the number of iterations
to make the diffusion process reach idempotency are dependent on both A and the

width of the region of negative CF.

Results on the effect of negative CF show that it is damaging to the quality of
resultant images, especially when the CF is negative over a wide range of gradient

magnitudes. Thus the range of negative CF should be restricted.
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- We evaluated AD using CF's that produce the “Mixed” fluxes shown in Figure 3.5.
Based on the experimental results when the CF incorporates negative values, in this
experiment the range of negative CF is set to zero width. Figures 3.11 and 3.12
show the results at 10 and 100 iterations and the final results when AD became
idempotent. All CFs produce the same final results except for the “frac” CF that
has one additional edge at the top right corner. Again, edges are identified early
in the diffusion process. Table 3.2 shows the number of iterations required to reach

idempotency.

Table 3.2: Iterations for “Mixed” DCs to give idempotent results

CF Exponential | Fraction | Tukey | Ramp

Iterations 1682 1688 1697 | 1680

The effect of edge enhancement by the “Mixed” flux is clear by comparing its
results with those produced by the “Mono” fluxes (Figures 3.6, 3.7, 3.11 and 3.12).
More edges were enhanced due to the monotonically decreasing flux in region (K;, K)
of the “Mixed” flux shown in Figure 2.6. The comparison of the “Mixed” DC filter
and “Mono” flux filter is shown in Figure 3.13. It shows that the “Mixed” flux
keeps not only the meaningful edges but also avoids the distortion as produced by
FAB filters. This “Mixed” flux, probably with a small range of negative CF, is now
called the idempotent anisotropic diffusion (IAD) filter.

The proposed IAD technique was compared with the TAD techniques in detail as
shown in Figures 3.14 and 3.15. The advantage shown in IAD diffusion, however,
is not gained if T, is ignored as in TAD techniques. That is equivalent to setting
T, = oo. With only the traditional edge threshold 7, for the edges to be kept, the



CHAPTER 3. IDEMPQOTENT ANISOTROPIC DIFFUSION 93

AD technique produces meaningless results with no edges left (Figure 3.15).

Comparing the ramps in these two figures (Figures 3.14 and 3.15) marked with
“x” we note that the IAD filter indeed preserves and enhances edges. A profile of the
resultant image has already been roughly created within the first ten iterations with
semantically meaningful edges being kept. Further iterations continue to smooth
regions and enhance edges. In contrast, the TAD filter continually smooths edges

until they disappear. No matter how steep an edge, it will eventually disappear.

Histograms (Figures 3.16 and 3.17) show the corresponding intensity distributions
and gradient distributions for the 1D signals processed by IAD and TAD filters re-
spectively. “Frequency” indicates the number of pixels with the same intensity value
or gradient value as a percentage of the total number of pixels in the image at the
indicated number of iterations. Figure 3.16(a) shows the redistribution of intensity
produced by IAD. The subfigure “Original” in Figure 3.16(a) presents the original
intensity distribution of this 1D image. The process of re-distributing intensity
continues until IAD reaches the idempotent state. As the subfigure “Idempotent”
in Figure 3.16(a) shows, intensity has been re-grouped, and is still widely distributed
after IAD filter reaches the stable state.

Figure 3.16(b) and Table 3.3 show the corresponding gradient histogram. Limited
by the width of the paper, Table 3.3 records gradient in groups with more detailed
attention paid for the noise range. In the experiments, the threshold was K = 4
that is emphasized in Table 3.3. At the beginning, as Table 3.3 shows, pixels whose
gradient is zero coustitute about 16% of the image. After IAD reaches the idem-
potent state, the zero-gradient pixels are about 80% of the image. In other words,
TAD has removed most of the noise and trivial details in the image. The remaining

20% of pixels are shared by edges with different gradients.
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Table 3.3: Gradient re-distribution produced by IAD in 1D experiment
Gradient magnitude
0 1 2 3 4 5 6 7 |8~10 |11 ~15|2>16
Original 156.8 | 26.8 | 17.1 | 136 | 88 | 5.7 (2.6 {04 3.5 3.5 2.1
T=10 51.3 1 24.1 | 1.3 | 0.0 | 3.1 |5.7{3.9]| 2.2 3.1 4.0 2.2
T=102 7501 35 | 00 | 00 {0644 }39]|22 3.5 4.4 2.4
Idempotent | 78.1 | 0.4 | 0.0 | 0.0 |0.6 | 48 | 3.5 | 2.2 3.1 4.4 2.8
Table 3.4: Gradient re-distribution produced by TAD in 1D experiments
Gradient magnitude
0 1 2 3 4 5 6 7 |8~10111~15|2>16
Original 1568 272 | 175 | 136 | 8.8 | 5.7 2.6 | 0.4 3.5 3.5 2.1
T=10 342 1395145 53 {22|0.0,00]|04 1.3 0.0 2.4
T=102 b44 (373 64 | 0.0 {0.010.0]|00}0.0 0.0 0.0 1.8
T=103 76.3 (226 0.0 | 0.6 {0.0)0.0|0.0}0.0 0.0 0.0 1.0
T=10% 98.1 | 1.8 { 0.0 { 0.0 |00 00|00 0.0 0.0 0.0 0.0
Idempotent | 100.0 | 0.0 | 0.0 | 0.0 {00 /00|00 (00| 0.0 0.0 0.0

Figure 3.17(a) shows the convergence process of intensity values of pixels with

TAD. Finally, as its subfigure “Idempotent” shows, every pixel has the same in-

tensity value, the average of the total intensity of the image.

Figure 3.17(b) and

Table 3.4 illustrate the corresponding process showing the loss of gradients and hence

edges.
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3.5.4 Experiments with 2D images

Experiments on 2D images are more complex than those on 1D signals. Many
more iterations are required for the AD process to reach the idempotent state. We
explored AD behaviors with CFs “Mono”, “Mixed”, FAB and TAD techniques.
Figures 3.18 to 3.25 show results with the synthetic image of Figure 3.18(b). This
image is obtained by adding Gaussian noise of zero mean and o of 10% of the max-
imum gradient magnitude to the noise-free image Figure 3.18(a). Figures 3.26 to
3.33 are the results for image “lena” and Figures 3.34 to 3.39 are the results with
image “Lab”. Different resolutions are tested with € = 1073 for “Art” and “Lena”

while € = 1075 for “Lab”.

All the results show that for 2D images, AD behavior is similar to 1D behavior,
but apparently the processing is much more complicated. In 2D image processing,
edges collapse more easily than in the 1D case because every pixel is affected by its
neighbours. The “Mixed” flux shows much better performance in keeping edges
than “Mono” flux, although some of edges, such as the edges on lena’s hat, may
be regarded as undesirable “staircases”. The “Mono” flux is not good at keeping
edges because it applies the strongest smoothing for gradient magnitudes near T,
while the “Mixed” flux implements edge enhancement and stops smoothing at these
values. This is clearly shown by the results of Figures 3.18, 3.19, 3.24, 3.25 and
Figures 3.30 to 3.33. Results with TAD techniques in Figures 3.22, 3.23, 3.26, 3.27,
3.36 and 3.37 exhibit the problem that occurs when a zero-flux threshold for true
edges is omitted. Figures 3.20, 3.21, 3.28, 3.29, 3.34 and 3.35 show the unpre-
dictable processes produced by negative CF employed in FAB techniques with noise
still remaining. The diffusion process is uncontrollable even with a fidelity term.

Determining the number of iterations is strongly image-dependent.

As for the 1D case, detailed analysis with statistical data is also given to com-
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Table 3.5: Gradient re-distribution produced by IAD in 2D images

Gradient magnitude
0 1 2 3 |4 5~8[9~19120~29{30~39|2>40
Original | 78 | 232 | 200 | 131 | 81 | 141 91 27 13 1
T=10 | 152|346 | 157 | 88 |49 | 78 79 28 14 1
T=10® |326 | 402 | 72 | 23 {14 | 30 82 29 13 3
T=10% | 513|289 |21 | 5 |10 | 24 78 33 15 5
T=10* | 667 | 155 | & 3 19 24 71 36 21 7
T=10° | 761 | 63 | 4 2 19 22 65 37 20 11

pare IAD with TAD on 2D images. Results from “Lab” are used for calculation.
Figure 3.39 and Table 3.5 show the gradient results from our TAD filter. Gradient
magnitude of 9 is the threshold for edges and is emphasized in bold font. Be-
cause the number of pixels in 2D image is much larger than in 1D experiments,
“Frequency” for recording the histogram is normalized by 1000. As in the 1D ex-
periment, the most semantically meaningful features have been kept in the diffusion
process by IAD. Though more time is needed to process the 2D image, this clearly
shows how our IAD behaves in the expected way, preserving and enhancing edges,

removing noise and trivial details.

The 2D gradient results of the TAD filter are shown in Figure 3.37 and Table 3.6.
From subfigures 3.37(b) to 3.37(f), edges are continually removed. Though there
are still some pixels with high gradient magnitudes kept in subfigure 3.37(f), the

image is meaningless.

Intensity histograms and gradient histograms for the 2D image results from IAD

and TAD are calculated in the same way as for 1D results, with some modifications.
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Table 3.6: Gradient re-distribution produced by TAD in 2D images

Gradient magnitude
0 1 2 3 |4|5~8|9~1920~29[30~39|>40
Original | 78 | 232 | 200 | 131 | 81 | 141 91 27 13 1
T=10 | 150 | 349 | 168 | 100 | 56 | 82 57 20 11 0
T=10% | 275|405 | 128 | 72 |41 | 47 11 9 9 0
T=10% 405 | 417 {116 | 35 | 9 5 0 0 0 0
T=10* | 519 | 413 | 54 | 7 | 2 1 0 0 0 0
T=10° | 829 | 170 | 0 0 |0 0 0 0 0 0

An extra subfigure showing the detail for non-zero gradient is added. The num-
ber of iterations needed for both AD approaches to reach the idempotent state is
much larger than for 1D signals. Though both approaches did not reach the idem-
potent state in 10° iterations, both intensity histograms and gradient histograms
(Figures 3.40 to 3.43) show the same conclusion as for 1D results. The subfigure
“t = 10%” in Figure 3.40 shows that TAD has packed all pixels into a small intensity
range. Its corresponding gradient histogram (two subfigures marked “t = 10%” in
Figure 3.41) shows that all gradients have magnitudes of zero or one. On the other
hand, subfigures “¢ = 10%” in Figure 3.42 shows that our IAD approach causes pixels
to be grouped at a wide range of intensity values. Table 3.5 tells us that more than

ten percent of the pixels are kept as edges.

The advantage of the IAD filter over the TAD filter is illustrated clearly if the
result images are shown in 3-D view. As Figure 3.45 shows, the IAD filter generates
terraced fields on the image with edges kept or enhanced. These fields get more and
more flattened with successive iterations. On the other hand, edges are kept being

broken down by the TAD filter as shown in Figure 3.44. The final point of high
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intensity left on Figure 3.44 (f) will collapse too if more iterations are implemented.

We have evaluated the effects of CF along the whole gradient magnitude range.
Results show that:

e Two thresholds, T, and T, are essential for implementing AD. With only the
traditional threshold K, there is no guarantee that edges do not suffer from

smoothing from the first iteration.

e A CF can implement smoothing, null diffusion, bounded unstable diffusion,
and unbounded unstable diffusion. The CF can be selected based on the
desired flux, thereby extending the range of functions used for CFs and making

the selection of CF easy.

e Negative CF is dangerous to the quality of results unless its width is controlled

cautiously.

e The flux’s derivative makes the discrete version produce the desired IAD when
the range of its negative value is set to zero or restricted to a small interval;
while the commonly used P-M discrete formula of AD cannot avoid smoothing

edges.

e Generally, significant diffusion occurs in the early stage.
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Figure 3.6: Results produced by CFs generating “Mono” fluxes.
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Figure 3.7: Results produced by CF's generating “Mono” fluxes.
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Figure 3.8: Results of “Mixed” flux plus a negative CF of different widths.
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A bl

(a) Original image (b) Result att =10

(¢) Result at t = 10? (d) Result at t = 10°
(e) Result* ot t = 10 (f) Idempotent* at t = 228

Figure 3.9: Results produced by the “Gilboa” FAB filter. “x” are the results after
a fidelity term is included with A = 0.05 [83].
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(g A=01latt=10 (b) A = 0.1 at idempotent(t = 116)

Figure 3.10: Results of “fidel” of different A.
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Figure 3.11: Results produced by CFs generating “Mixed” fluxes.
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Figure 3.12: Results produced by CF's generating “Mixed” fluxes.
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Figure 3.13: Comparision between results of “exponential” of different flux.
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{a) Original image (b) After 2 iterations
{c) After 4 iterations (d) After 6 iterations
(e) After 8 iterations (f) After 10 iterations

(g) After 102 iterations (h) Idempotent at 1688 iterations

Figure 3.14: 1D results from the TAD filter.
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Figure 3.15: 1D results from the TAD filter.
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Figure 3.16: Histogram results from the IAD filter on 1D signal.
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(a) Original gradient (b) Gradient of the test image

(c) Result at t=10 (d) Result at t=102

(e) Result at t=10% (f) Idempotent at t=7428

Figure 3.19: Gradient results produced by the “Mono” flux.
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(a) A=01latt=35 by A=09att=10
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Figure 3.21: Gradient results by the “Gilboa” FAB filter with a fidelity term A
added.
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(a) Gradient of the test image (b) Result at t=10

(c) Result at t=102 (d) Result at t=10°

(e) Result at t=10* (f) Idempotent at t=14559

Figure 3.23: Gradient results produced by the traditional AD techniques.
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(b) Result at t=10

(c) Result at t=102 (d) Idempotent at t=372

Figure 3.24: Image results produced by the “Mixed” flux.
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(a) Gradient of the test image (b) Result at t=10

(c) Result at t=102 (d) Idempotent at t=372

Figure 3.25: Gradient results produced by the “Mixed” flux.
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(a) Original image (b) Result at t=10

(c) Result at t=102 (d) Result at t=10°

(e) Result at t=10* (f) Idempotent at t=46162

Figure 3.26: Results produced by traditional AD techniques.
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(e) Result at t=10* (f) Idempotent at t=46162

Figure 3.27: Gradient results produced by traditional AD techniques.
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at { = 30

(e} A=01att=15 () A=09att=60
Figure 3.28: Image results by the “Gilboa” FAB filter with a fidelity term A added.
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(a) A=0latt=5 (b) A=09at t =10

() A=0latt=15 (f) A= 0.9 at ¢ = 60

Figure 3.29: Gradient results by the “Gilboa” FAB filter with a fidelity term A
added.
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(a) Original image {(b) Result at t=10

(c) Result at t=102

(d) Result at t=10°

(e) Result at t=10* (f) Idempotent at t=107960

Figure 3.30: Results produced by “Mono” flux.
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(e) Result at t=10* (f) Idempotent at t=107960

Figure 3.31: Gradient results produced by “Mono” flux.
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(a) Original image

(c) Result at t=102 (d) Result at t=10%

(e) Result at t=10* (f) Idempotent at t=27566

Figure 3.32: Results produced by the “Mixed” flux.
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(a) Original gradient (b) Result at t==10

(e) Result at t=10* (f) Idempotent at t=27566

Figure 3.33: Gradient results produced by “Mixed” flux.
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(a) x=0l1latt=5 (b) A=09ati=5

{(c)A=01latt=10 (d)A=09att=10

(e) A=01att=230 ) A=09att=90
Figure 3.34: Image results by the “Gilboa” FAB filter with a fidelity term A added.
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(a) A=01latt=5 M) A=09att=5

(©) A=0.latt=10 (d) A= 09 at t = 10

() A=0.1at¢t=30 ) A=09att=90

Figure 3.35: Gradeint results by the “Gilboa” FAB filter with a fidelity term A
added.
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(a) Original image (b) After 10 iterations

(c) After 10? iterations (d) After 10? iterations

(e) After 10* iterations (f) After 10° iterations
Figure 3.36: Results of TAD on 2D images.
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(a) Original image (b) After 10 iterations

(c) After 10? iterations (d) After 103 iterations

(e) After 10? iterations (f) After 10° iterations

Figure 3.37: Gradients resulting from the TAD on 2D images.
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(a) Original image (b) After 10 iterations

(c) After 10? iterations (d) After 108 iterations

(e) After 10* iterations (f) After 10° iterations

Figure 3.38: Results of IAD on 2D images.



CHAPTER 3. IDEMPOTENT ANISOTROPIC DIFFUSION 132

(a) Original image (b) After 10 iterations

(c) After 102 iterations (d) After 103 iterations

(e} After 10* iterations (f) After 10° iterations

Figure 3.39: Gradients resulting from the IAD on 2D images.
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Intensity Histograms of Original Image And Results From TAD
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Figure 3.40: Intensity Histogram of Image Results from TAD.
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Figure 3.41: Gradient Histogram of Image Results from TAD.
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Intensity Histograms of Original Image And Results From IAD
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Figure 3.42: Intensity Histogram of Image Results from IAD.



CHAPTER 3. IDEMPOTENT ANISOTROPIC DIFFUSION 136

Frequency

Gradient Histograms of Original Image And Results From IAD

Gradient

Figure 3.43: Gradient Histogram of Image Results from IAD.
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Figure 3.44: Three-dimensional view of resulted intensities by TAD.
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(a) Original image (b) After 10 iterations

(e) After 10* iterations (f) After 10° iterations

Figure 3.45: Three-dimensional view of resulted intensities by IAD.



Chapter 4

Idempotent, Direction-Consistent

AD

Edge detection is the first step in discovering information from an image. Edges
are very important for estimating the structure and properties of objects and for
identifying their features in images. Edge detection has continued to be an active

research field in image processing.

Edges indicate areas in an image where there are significant local intensity changes.
In image processing, an image can been regarded as composed of regions of different
intensity levels. A good edge detector is expected to be able to locate only the
boundaries between the different regions as edges. Of course, it is unreasonable to
expect that an edge detector does not make any wrong decisions. An edge found
by an edge detector may be a true edge or a false edge. Also, an edge in an image
could be detected or missed by an edge detector. A good edge detector should have
a high probability of making correct detections and a low probability of making false

detections, even when images are very noisy.
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4.1 Analysis of Gradient-Magnitude-Based
Anisotropic Diffusion

K plays a very important role in conducting the diffusion process. It determines
the fate of every pixel of the processed images. The problem of choosing a suitable
value of K to guide the diffusion process has remained open since the concept of

AD was introduced in 1987.

4.1.1 Why Most AD Methods Detect Edge by Gradient

Among the research on AD, nearly all approaches use gradient magnitude for esti-

mating edge locations to conduct the smoothing process. This is because:

1. Traditionally, edges have been regarded as discontinuities in gradient magni-
tude or sharp local change in image intensity. Detecting edges by gradient
magnitude seems more straightforward and easier to understand. Typically
edge detectors have been developed for measuring peak values in the first
derivative, or sometimes zero-crossing in the second derivative. Published
literature has concentrated on discussion of gradient-magnitude-based edge
detectors (GMEE) with methods employing edge direction almost always ig-
nored [44, 88, 113, 108, 142, 152, 176].

2. In digital image processing, edge detection usually proceeds by first convolving
the image with convolution masks. These masks approximate the first or the
second derivative operation. They are easy to implement. If edge detection
techniques that are not based on gradient magnitude require more calcula-
tion, they meet with resistance. Thus, though it is known that in principle
it is difficult to develop a GMEE not susceptible to the effects of noise, new

edge detection methods have been sought, but most are still based on gradient
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magnitude.

4.1.2 The Difficulty of Choosing K

Determining the threshold K is the dominant problem for implementing AD since
the stopping problem was solved by the proposed IAD technique. What makes the

determination of a suitable value for K so difficult?

Noise is one of the major problems that make it so hard to find a suitable value
for the threshold K. Image filters based only on pixels’ gradient magnitudes do
not distinguish noise from meaningful edges. High gradient noise, if its gradient
magnitude reaches the threshold defined for edges, will be treated in the same way
as edges. It will be preserved or even enhanced throughout the diffusion process.
Such gradient-magnitude-based smoothing techniques are susceptible to the effects
of noise and tend to generate erroneous edge information. Unfortunately, this draw-

back is a problem intrinsic to GMEE.

Another factor that has an immediate influence on the threshold is the change of
intensity. Changes of intensity have a direct influence on the value of the threshold.
The threshold scales with intensity. For example, we are required to process a group
of photos that have been taken of the same scene but at different times, such as in
the morning and in the afternoon. We have to choose different thresholds carefully
for every photo because of its unique illumination intensity. This can easily be
shown by equation (2.3), which is is rewritten here for convenience:
—(Lgy?

g(IVI])=e (4.1)

where:
|VI|] = gradient magnitude,

K = threshold for conducting the diffusion.
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Apparently, a constant K is not able to track changes of illumination intensity.

Determining a suitable threshold is so sensitive to image content that one cannot
tell whether a pixel of high gradient magnitude is part of an edge or just noise. a
priori knowledge is helpful for determining the threshold K for gradient-magnitude-
based anisotropic diffusion (GMAD). Even if a threshold is chosen carefully for
an image, it is inevitable that large-amplitude noise pixels will be also detected.
Requiring some knowledge about the image in advance makes AD unsuitable for
implementing many computer vision tasks where it is the machine that must make
the decisions. This problem is intrinsic to GMAD and is nearly impossible to solve
using smoothing and GMEE, thereby making difficult the implementation of AD
techniques in dealing with tasks in computer vision. Obviously, this stubborn
problem, inherent to GMAD, is the motivation for a new criterion for the AD tech-

nique.

4.1.3 Review of Ways of Choosing K

The most common way of choosing K, by basing it on a percentage of image pixels,
is easy to carry out. It provides a simple and effective way for researchers to test
their proposed scheme. The main concern is that it is sensitive to the effects of
noise. Pixels with high gradient magnitude are all detected as edges although some
of them could be due to noise. It also requires knowledge of the number of edge

pixels in the image.

Applying a filter to smooth the image before anisotropic diffusion makes the dif-
fusion process less susceptible to noise. This method yields more consistent perfor-
mance by estimating the gradient of the smoothed image, of course at the cost of

implementing these filters and their side effects. For example, by implementing a
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Gaussian filter in advance, though it shows an improvement in the performance of
edge detection, true edge locations tend to be shifted or distorted, especially when

noise is considerable or a Gaussian filter with a large spatial support is employed.

Of methods employing other techniques to assist choosing K, using a histogram
is popular, but it is not able to deal with the diverse conditions in real images. In
principle, what it makes is a trade-off between detecting edges and non-edges. In
other words, the K it determined will unavoidably treat part of noise as edges and
part of edges as noise. The problem of sensitivity to noise, together with suscepti-
bleness to changes of illumination intensity, makes the application of GMAD to the

tasks of computer vision very problematic.

Incorporating contextual information may be a solution for choosing K. Of these
techniques, using edge direction may provide a reliable way to separate edges and
noise. The scheme of using edge direction to locate edge regions was presented
as early as in 1993 [89]. But its merits have been ignored in most research for
edge detectors during the years. The direction-consistency-based edge estimator
(DCEE) is more robust to noise than GMEE. It distinguishes noisy areas from
areas containing edges by their difference in edge direction consistency. In the next
section, our proposed idempotent, direction-consistency-based anisotropic diffusion

(IDCAD) exploits the merits of DCEE and shows its advantages over that of GMAD.
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4.2 Itempotent, Direction-Consistent Anisotropic

Diffusion

4.2.1 Gradient’s Attributes

“Edgeness” is a local property of a pixel and its immediate neighborhood. Two
attributes can be used to describe “edgeness”: gradient magnitude and gradient

direction. For two-dimensional images, the gradient is defined as the vector:

Vi,

[ or
= | & } (4.2)

with gradient magnitude:

VL, = /G + @ (4.3)

and gradient direction:

G
Q) = tan"" (a—i) (4.4)
where:
1 = intensity value of a pixel,
V = gradient operator,
z,y = position of pixel.

Gradient-magnitude-based image processing techniques are based on only one of
the attributes while our proposed IDCAD presented in the following section exploits

both of them.
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4.2.2 Direction-Consistency-Based Anisotropic Diffusion

As discussed before, GMEE algorithms have the stubborn problem of selecting a
suitable value for the threshold to divide pixels in an image into two groups: uni-
form regions and edges. Choosing the threshold is image dependent and is often
complicated by the presence of noise which is introduced during the process of im-
age capture, image transmission or even image processing. In other words, GMAD

cannot been expected to be immune to the effects of noise.

The other attribute of a pixel, the edge direction, carries useful information about
that pixel and is very helpful for determining the locations of edges. Edges differ
significantly from noise in terms of gradient direction. This can be illustrated with
Figure 4.1 which picks out two squares of size 5x5 for explanation. Region “A” is
a flat area consisted of noise while region “B” contains an edge. Figure 4.2 shows
gradient vectors for both regions. As Figure 4.2(b) shows, in areas immediately sur-
rounding edges, the pixels exhibit high gradient-direction consistency, while in areas
of noise as Figure 4.2(a), the pixels show high variation in their gradient directions.
As discussed in [89]: “an image edge is a curve through points having attribute gra-
dient magnitudes sufficiently large and gradient directions approximately orthogonal
to the tangent to the putative edge curve.”. In other words, gradient direction con-

sistency can be used as a new criterion to locate regions containing edges in images.

This is the basis of the DCEE approach.

In the following discussion of our proposed IDCAD algorithm, we assume that the
signals to be processed are two dimensional images. For every pixel in the image,
both the x gradient component and the y gradient component are calculated. They
are expressed as a vector for each pixel and are the basis for calculating the direction

consistency.
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Figure 4.1: Two squares used for showing their differency in edge directions

Note: “A”: A noisy area; “B”: An area containing an edge
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(b) In region “B” containing an edge

Figure 4.2: Gradient vectors
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The magnitude of the sum of gradient vectors and the sum of the gradient vector

magnitude in a neighborhood of the pixel are as follows, respectively:

2 27 3
M1 = ( > Gi,,-,h) + ( > Gi,,-,,,) (4.5)
(ig)€n (i,5)€n
M2= Y /G},+Gi, (4.6)
(i,4)en
where:

1, ] = the pixel’s position,
Gijn = gradient component in horizontal direction for the pixel (4, j),
Gijy = gradient component in vertical direction of the pixel (3, j),
n = spatial neighborhood of pixel (i, j).

The similarity between the magnitude of the sum of gradient vectors and the sum
of the gradient vector magnitude can be used as an indicator of direction consis-
tency. If M1 and M2 for pixel (%, j) are similar, this pixel is considered to be within
an area of high gradient direction consistency and thus will be treated as a part of
an edge. On the other hand, if its M1 is much less than its M2, that pixel will
be deemed to be noise due to its low gradient direction consistency, and so it will
be smoothed. This is clearly presented in Figure 4.3 which shows that the sum
of gradient vectors of the noise region “A” is much different from that of area “B”
containing an edge. The sum of gradient vectors is drawn with a thick arrow while
the gradient vectors of each square are drawn in thin arrows. Thus for the pixel
(4,7), the ratio p of M1 to M2 can be employed to measure the gradient direction

consistency within its neighborhood:

M1
P=9 (4.7)
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(a) Of the noisy region “A”

(b) Of the region “B” containing an edge

Figure 4.3: Sum of the gradient vectors
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Equation (4.7) clearly shows that p is totally unaffected by the changes of inten-
sity levels. This makes the use of p more realistic for real image processing. It is
clear that 0 < p < 1since M1 < M2. Obviously, the larger p is, the higher the pos-
sibility that the pixel is part of an edge. It is unlikely that high gradient magnitude
noise will be treated as part of an edge due to its small value of p. Based on edge
direction consistency, DCEE shows much better performance than those strategies
based on gradient magnitude because of its immunity to changes of intensity and low
sensitivity to noise. Using DCEE, we can construct a robust anisotropic diffusion
technique based on edge direction consistency. It is much better than using the
gradient magnitude as the indicator of an edge region because it reflects directly the

spatial characteristics of real edges.

Based on the regions of high p value, smoothing is implemented using IAD with

the DC function as follows.

o(z,y,t) = e~ &’ (48)
where:
¢(z,y,t) = the DC function controlling the smoothing process,
K = threshold for edges.

The proposed IDCAD strategy has been developed by combining the merits of
DCEE and those of the IAD technique. DCEE shows much improved performance
in locating edge regions and being robust to noise. It conducts IAD for removing
noise and preserving edges. Although DCEE makes choosing K much easier, the
size of the region for consistency estimation must be selected. The IAD technique,
though it belongs to the group of GMAD algorithms, prevents over-blurring and
keeps the meaningful features of images throughout the diffusion process. IAD is

applied to noisy regions detected by DCEE.
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4.3 Experiments

4.3.1 Source of Test images

Experiments are carried out on two real images: “lena” and “cameraman” which
are widely used in the field of image processing. Image “lena” is used as a standard
for image processing techniques [150]. It is used to test various image processing
algorithms due to its mixture of features: straight lines, curves, shading, bright re-

gions, flat regions, texture regions, strong edges, weak edges and more.

TAD, based on the gradient magnitude edge estimator, is used to draw a compar-
ison between IDCAD and GMAD. Models of noise commonly used in images are
white noise, Gaussian noise, impulse noise and salt-and-pepper noise. Here we have
chosen Gaussian noise for our experiments because Gaussian noise “is a very good
model for many kinds of sensor noise, such as the noise due to camera electronics”
[108] and “Gaussian noise is a very good approximation to noise that occurs in many

practical cases.” [208].

4.3.2 Simulation Functions

For digital images, masks provide a practical way of approximation to the deriva-
tives. For the gradient magnitudes, standard edge-detector masks include Roberts
operators, Sobel operators, Prewitt operators, Frei-Chen operators, etc. Masks of
size 3x3 are better in dealing with noise and more convenient in implementation
than masks of size 2x2. Of 3x3 edge detectors, Sobel masks is used for our experi-

ments due to their convenience of calculation.

The performances of GMAD and IDCAD filters are compared in the experiments.

Floating-point simulations have been implemented with the following simulation
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Figure 4.4: 3x3 Sobel operators.

functions:
GMAD filter Using equations (4.1), (3.89), (2.9) and (2.10)
IDCAD filter Using equations (3.89) and (4.5) - (4.8)

4.3.3 Analysis of Experimental Results

Figure 4.5 contains the original images and gradient images obtained with the Sobel
operator. Figure 4.6 shows the images after adding Gaussian noise of mean = 10
and ¢ = 15. Here we should note that IDCAD uses the same set of parameters
throughout the experiments on both original images and noisy images, while for
GMAD the value of the threshold had to be adjusted for every image to achieve a
good result. Figure 4.7 presents the regions located by direction consistency. They
act as indicators for conducting smoothing process. Experimental results on both
images show the same conclusion. Thus for simplicity, we use the results on image

“lena” for our explanation.

As for the original image, the GMAD technique implements anisotropic diffusion
based on the gradient magnitudes shown in Figure 4.5(b). The IDCAD technique
uses a map of regions located by DCEE shown in Figure 4.7(a) to control the diffu-
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sion process. Despite a few strong noise pixels, both of the subfigures, Figure 4.5(b)
and Figure 4.7(a), locate the boundaries of regions properly. If a suitable threshold
is chosen carefully for GMAD, we can expect that both GMAD and IDCAD pro-
duce good results. This can be seen in results Figures 4.9 and 4.8. The feather is
much more smoothed in Figure 4.9 then in Figure 4.8 because of its high gradient
magnitudes but low direction consistency. Note that several spots caused by strong
noise pixels remain in the resultant images from GMAD as the gradient images in

Figure 4.8 show. Figures 4.11 and 4.10 shows this difference clearly.

The difference becomes more obviously in the noisy images. By comparing Fig-
ure 4.5(b) with Figure 4.6(b), we note that some edges are damaged by noise. This
means that noise regions with high gradient magnitudes will inevitably be treated
as edges by GMAD. As Figure 4.12 shows, GMAD is unable to smooth the high
gradient magnitude noise, and removes part of the edges damaged by noise. Due to
its low direction consistency, noise does not produce such a significant effect on edges
estimated with DCEE, even for high gradient magnitude noise. In Figure 4.7(a) and
(b), it is seen that edges remain complete and clear for both the original and noisy
images due to their high direction consistency. Figure 4.13 shows that the results
of IDCAD were almost completely insensitive to the added noise. This shows that

edge direction consistency is a better edge estimator than gradient magnitude.

Finally, it is worthwhile to emphasize the improvement in robustness to noise
made by IDCAD. IDCAD uses the same set of parameters throughout all experi-
ments on all images while GMAD had to have the value for the threshold adjusted
for each test image for good results. IDCAD shows its advantages over GMAD

through its low sensitivity to noise.
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4.3.4 Experiment Results

(¢) Original image “Cameraman” (d) Gradient magnitude of (c)

Figure 4.5: Original images for the experiments
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(c) Noisy image “cameraman” (d) Gradient magnitude of (c)

Figure 4.6: Noisy images for the experiments
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(a) For original image “lena”

(c) For original image “cameraman” (d) For noisy image “cameraman”

Figure 4.7: DC maps estimated by DCEE
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(a) At iteration 10

(e) At iteration 10° (f) Gradient magnitude of (e)

Figure 4.8: Experiment results obtained by GMAD on original image “lena”.
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{a) At iteration 10

(e) At iteration 10° (f) Gradient magnitude of (e)

Figure 4.9: Image and gradient results obtained by IDCAD on original image “lena”.
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(e) At iteration 10% (f) Gradient magnitude of (e)

Figure 4.10: Experiment results obtained by GMAD on original image “camera-

man”,
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(a) At iteration 10

(c) At iteration 102

(e) At iteration 103 (f) Gradient magnitude of (e)

Figure 4.11: Experiment results obtained by IDCAD on original image “camera-

man”.
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(a) At iteration 10

(c) At iteration 10%

(e) At iteration 103 (f) Gradient magnitude of (e)

Figure 4.12: Experiment results obtained by GMAD on noisy image “lena”.
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(a) At iteration 10

(c) At iteration 102

(e) At iteration 10° (f) Gradient magnitude of (e)

Figure 4.13: Experiment results obtained by IDCAD on noisy image “lena”.
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(a) At iteration 10

(c) At iteration 102

(e) At iteration 10° (f) Gradient magnitude of (e)

Figure 4.14: Experiment results obtained by GMAD on noisy image “cameraman”.
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(a) At iteration 10 (b) Gradient magnitude of (a)

(c) At iteration 10%

g
.

(e) At iteration 103 (f) Gradient magnitude of (e)

Figure 4.15: Experiment results obtained by IDCAD on noisy image “cameraman”.
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Conclusion and Discussion

5.1 Conclusion

In this thesis, we proposed a novel AD technique, idempotent, direction-consistent
anisotropic diffusion. It consists of solutions to two of the most critical problems
that remained unsolved in the field of AD research since the AD theory was intro-
duced in 1987. Our first proposal, the IAD technique, is a new interpretation of
AD. The challenging problem of over-oversmoothing is prevented, thereby making
the experimental results agree with the AD theory for the first time since 1987.
Our second proposal, the IDCAD technique, creates a new criterion for implement-
ing AD. It provides a solution to the stubborn problem of choosing a suitable value

as the threshold and makes AD much more robust to noise.

To develop the TAD strategy, our research has been carried out on AD in both
the continuous domain and the discrete domain. Unlike current AD research that
is mainly based on the CF, a unique viewpoint is proposed in our study in which
AD behavior is derived by the flux. We show for the first time in both the contin-
uous domain and the discrete domain that the DF should be employed to control

the smoothing strength. The importance of a threshold for preserving the edges



CHAPTER 5. CONCLUSION AND DISCUSSION 166

throughout the diffusion process is emphasized for the first time since 1987. Our

technique has the following significant distinguishing features.

e It agrees with AD theory with a desirable combination of forward smoothing
implemented in noise regions and zero/backward smoothing carried out on

edges.

e It solves the difficult problem of determining a stopping criterion with its
idempotent behavior. Thus there is no need to worry about over-blurring
since semantically meaningful features will be kept throughout the diffusion

process.

o A side-effect of using a negative DC is avoided with the “Maximum Principle”

being obeyed.
e The simple algorithm allows for implementation in highly parallel VLSI.

We analyzed the TAD technique and showed that it does not preserve or enhance
edges, but continually smooths the image. The result is a meaningless image. Ex-
periments carried out on both 1D signals and 2D images show that the proposed
TAD technique has the desirable attributes of preserving edges, enhancing edges,
removing noise and flattening trivial details. In contrast, TAD filters continually

smooth until a uniform grey image is produced.

In our second proposal, the IDCAD technique, gradient direction consistency, a
largely unused but valuable attribute of pixels, has been exploited in conducting the
diffusion process. It improves the performance of the IAD technique by distinguish-
ing edges from high-gradient noise. It is based on the idea that edges and noise
behave differently with respect to gradient direction consistency. Qur proposed
IDCAD implements smoothing based on regions located by using the consistency of

gradient direction as an indicator of an edge region. This approach reflects directly
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the spatial characteristics of real edges and is much better than operators using only
the gradient magnitude as the indicator of an edge. Regions likely to contain edges
will be preserved and the other regions will be smoothed. This is different from

GMAD in which the exact positions of edges are required.

Choosing a suitable threshold to conduct AD is a stubborn problem inherent to
the AD technique based on GMEE. Even if a threshold is determined carefully,
certain kinds of high gradient magnitude noise will be treated inevitably as edges by
GMAD techniques. Our proposed IDCAD conducted by DCEE avoids this prob-
lem. Noise, even with a high gradient magnitude, will be smoothed by IDCAD

because it does not exhibit high direction consistency.

Besides the benefits that the AD technique brings to the field of image processing,
our final goal is to implement AD in real time image processing (RTIP). Our
proposed idempotent, direction-consistent AD combines the merits of IAD and those
of DCEE. This technique distinguishes itself from common AD techniques in the

following ways:

1. Meaningful features of images will be kept throughout the diffusion process.
This quality of not over-blurring is very useful, especially when AD is employed

in hardware for real time image processing.

2. An edge estimator based on direction consistency has immunity from changes
of intensity levels. One application, for example, is the monitoring of scenes
of interest, where the camera captures the same scene but with different illu-
mination intensity levels. It is very hard for GMAD to deal with such tasks
because of the need for adjusting the value of the threshold. Also, DCEE is
much less susceptible to the effects of noise than GMEE.

These merits make it realistic to conduct AD in real time image processing.
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In the end, we would prefer using our experimental results over writing to sum-
marize our contributions to the field of AD research. Figure 5.1 shows the improve-
ments in image results, their corresponding gradient results and the DC maps used
to conduct the AD. Experimental results are all taken at 2x10? iterations. The DC
map used to conduct the GMAD comes from a threshold that regards 95% percent

of pixels in the image as noise.
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5.2 Future Work

Implementing AD for dealing with tasks of computer vision has shown promise with
the proposed solutions to its remained major problems. However, it is still a long

way from practical application. More research is needed in the following areas.

5.2.1 Improving the performance of IDCAD

The basic DCEE is not good at detecting corners or noise areas with approximately
the same edge directions. The corner, for example, behaves much like noise in
edge direction. Corners act as one of the basic elements for image understanding
and pattern recognition. Considerable research has been conducted on detecting
corners due to the essential information that they bear. A thorough study of the
available strategies for detecting corners will be helpful to find a way to deal with

the problem, thus improving the performance of IDCAD.

A flat area with edge direction in approximately the same direction is another
problem of DCEE. This could generate incorrect edge indications. Though it is
similar to regions containing edges in gradient direction consistency, noisy regions
behave much different from regions containing edges in gradient magnitude. For
example, it is unlikely for a flat area to have a local gradient magnitude peak. The
difference in gradient magnitude between noisy regions and regions containing edges

is a valuable means of solving this problem.

The IDCAD algorithm is more complex than that of GMAD. This is because it
requires that the contextual information be included when making an edge decision.
We may have to accept this fact since IDCAD makes it more realistic to apply AD

to tasks in machine vision and RTIP. Of course this does not mean that there is no
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simpler way to realize the IDCAD strategy. We expect the performance of DCEE
and IDCAD to be improved continually with time.

5.2.2 Implementing AD in VLSI - The Next Hot Topic

The most desirable advantage of AD technique has not been exploited completely
if it is not combined with VLSI. The ideal way is to construct a system-on-a-chip.
This covers several research areas: image acquisition techniques, image processing

techniques, electrical circuit theory and VLSIL

CMOS imagers and charge coupled device (CCD) imagers are the two most pop-
ular solid-state image sensors constructed from silicon [239]. Both sense light in
the same way by converting incident photons into electronic charges. CMOS image
sensors are more suitable for implementing AD than the CCD image sensor for the

following reasons:

1. One significant advantage of CMOS sensors over CCD sensors is their ability
to have the desired functions integrated onto a single chip. This makes CMOS
sensors more suitable for “smart” cameras that implement image sensing and

image processing together.

2. Another advantage of CMOS sensors over CCD sensors is that CCD sensors
need a clock with strict clock amplitude and shape. This has the drawbacks
of specialized clock driver circuits, multiple supply voltage, high power dissi-

pation and hence high cost.

3. CMOS sensors use the basic VLSI technology while CCD sensors need spe-

cialized manufacturing processes.

4. The performance of CMOS sensors has been improved continually and are

acceptable in practice. For example, fixed-pattern noise (FPN) used to be a
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problem of CMOS images [72]. It is produced by uniform/zero illumination
and is fixed in position in the generated image. Solutions have been proposed
for it [110, 158, 172], and it has already been reduced to acceptable levels
[61, 100].

Camera-on-a-chip products based on CMOS sensor are already available. Nor-
mally they consist of a lens, photo sensor and related control circuits including
functions such as readout, signal processing, analog-to-digital conversion and inter-
facing, etc. Understanding of research in this field [73, 118, 157, 160] is useful for

the implementation of AD in hardware.

Our goal is a camera-on-a-chip with the ability to remove noise and preserve and
enhance edges, and to output essential information for subsequent high-level image
processing at low cost and low energy dissipation. Such a system combines image

sensing and image processing intimately.

New theory needs to be developed for constructing such a system-on-a-chip imple-
menting AD. It must have low energy dissipation with high calculation effectiveness.
Current image processing operations are normally carried out in the digital domain.
These digital strategies are energy-hungry. Mead [143] noticed the fact that a tran-
sistor is orders of magnitude more effective than a digital computer/circuit in the
energy cost for doing an operation. In digital schemes, normally much more than
one transistor is needed. Not only do these transistors consume energy, but also

the traces on the chip need energy to be charged/discharged.

Another factor that makes a difference in energy consumption is the method of
operation. Making algorithms more local could reduce the power dissipation. Bio-
logical image sensor systems deal quite well at low energy dissipation with real time

image processing which demands very high computation. Understanding the prin-
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ciple of biological image sensor systems will be very helpful due to their superiorities

to digital image sensor systems [146].

AD can be implemented in local parallel structures and VLSI provides the way of
integrating the desirable functions on a chip. This provides promise of developing
smart cameras for dealing with many tasks of computer vision, especially of RTIP

at low cost.
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Appendix A
Programs for TAD

The following programs were written as functions of “cvlab” !

civeseeseses.. TAD for 1 dimensional signals ..............

/* tadl Implementing float point 1 dimensional traditional
anisotropic diffusion using diffusion function
exp(-x*x/K/K). %/

/* source = input image for processing.
result = output image after processing.
iter = number of iteratioms.
xs = the width of input image.
thresh = value of threshold in percent of gradient range.
wtime = time for showing the intermediate results.
accu = resolution of filter */

/* prompt: source, result, iter, xs, thresh, wtime, accu
format: %d %d %d %d %f %d Uf
menu:
helpfile:
prototype: int tadl (int source, int result, int iter,
int xs, float thresh, int wtime, float accu); */

#include "cvemd.h™

Lécylah” is an image processing environment developed by Dr. P. H. Gregson
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#include "math.h"
#include <stdlib.h>
#include "stdio.h"
#include <time.h>
#define XS xs

void _tadl (void)
{ int source, result, iter, xs, wtime;
float thresh, accu;

source = *((int *) arglist[0l);
result = x((int *) arglist[1]);
iter = *((int *) arglist[2]);

s = %((int *) arglist[3]);

thresh = *((float *) arglist[4]);
wtime = *((float *) arglist[5]);
accu = *((float *) arglist[6]);

tadl (source, result, iter, xs, thresh, wtime, accu);

)

int tadi (int source, int result, int iter, int xs,
float thresh, int wtime, float accu)
{ int x, y, xsize, ysize, type;
int i, j, k, t1=100;
long t=0,t2=0,k1;
float a[XS],al[XS1, bl2], c[2], m, mi;
time_t timel, time?2;

/* i: number of pixels whose gradient magnitudes are large
than the threshold defined by ‘thresh" =*/

getsize (source, &xsize, &ysize, &type);
form (result,0,xsize,ysize,type);

i=(int) ((1.0-thresh)*(xsize-1));

/* read data from the input image */

for (x=0;x<xsize;x++)
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{ k=0;
for (y=0;y<ysize;y++)

if (getpix(source,x,y)==0)

k++;
alx]=(float)k;
al[x]=alx];
putpix(k,result,x,0);

/* get m, the threshold #/

for (x=1;x<xsize;x++)

200

putpix(abs(getpix(result,x,0)-getpix(result,x~1,0)),result,x,1);

putpix(getpix(result,1,1) ,result,0,1);

while(i>0)
{k=0;
for (x=0; x<xsize; x++)
if (getpix(result,x,1)>k)
{ k=getpix(result,x,1);
J=%;

}

putpix(0,result, j, 1);
i--;

for (x=0; x<xsize; x++)
if (k==getpix(result,x,1))
{ putpix(0,result, x,1);
i=--;
}
}

m=(float)k;

/* main program beginnig */

/* j: stop diffusion process if the differences between
successive smoothing processes are larger than 10 times

continuously.
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ki: number of iteratioms. */
3=0;
/* allx] holds the updated */
for(ki=0;ki<iter ;ki++)

{ for(x=1;x<xsize-1;x++)

{ bl0] = alx+i]-alx];
bl1] = a[x-1]-alx];

"

for (i=0; i<2; i++)
c[il=exp(-pow(b[il/m,2));

mi=0.0;
for (i=0; i<2; i++)
mi+=b[i]l*c[i];

mi/=2.0;

allx] += mi;

if (fabs(ml)>accu)
jH+s

b

++1;
/* control the time for showing temporary results */
time (&timel);
do {time (&time2);
}while (((int) difftime(time2,timel)) < wtime);

/* continuing diffusion? */

if (j==0)
{ if (t2+1==t)
{ t1--;
printf("the %dth time total change = O\n", 100-t1);
}
else

{ t1=99;
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printf("the first time total change = 0\n");
}
t2=t;
}

/* monitor the diffusion process */
printf ("T=%1d N=d\n",t,j);

/* stop diffusion process? */
if (t1 >= 0)
for (x=0;x<xsize;x++)
alx]=allx];
else
ki=iter;
}
return (TRUE);
}

veveerasasess. TAD for 2 dimensional images ..............

/* tad2 Implementing float point 2 dimensional traditional
anisotropic diffusion using diffusion function
exp(-x*x/K/K). */

/* source = input image for processing.
result = output image after processing.
xsize the width of image to be processed.
ysize = the height of image to be processed.

iterl = if iterations are large than 100000.

iter2 = times the image will be filtered.

thresh = value of threshold in percent of gradient range.
wtime = time for showing the intermediate results.

accu = resolution of filter */

/* prompt: source, result, xsize, ysize, iterl, iter2, thresh,
wtime, accu
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format: %d %3 %d %4 %d 4d %Uf Y44 %f

menu:
helpf
proto

ile:

type: int tad2 (int source, int result, int xsize,
int ysize, int iteri, int iter2, float thresh,
int wtime, float accu); */

#include "cvemd.h"

#include "math.h"

#include <stdlib.h>

#include "stdio.h"

#include <time.h>

#tdefine XS xsize

#define YS ysize

void _tad2 (void)

{ int source, result, xsize, ysize, iterl, iter2, wtime;
float thresh, accu;
source = *((int *) arglist[0]);
result = *((int *) arglist[1]);
xsize = *((int *) arglist[2]);
ysize = *((int *) arglist[3]);
itert = *((int *) arglist[4]);
iter2 = *((int *) arglist({5]);
thresh = *((float *) arglist([6]);
wtime = *((int *) arglist[7]);
accu = *((float *) arglist[8]);
tad2 (source, result, xsize, ysize, iterl, iter2, thresh,

wtime, accu);
}

int tad2 (int source, int result, int xsize, int ysize, int iteri,

{ int x
int
long t
float

int iter2, float thresh, int wtime, float accu)
, ¥, XS, ys, type;
i, j, k, ki, k2,t1=100,t2=0, t3=0;
=0 ;
a[Xs][ysl, bl4], cl4],*pl[3];

203
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float m, ml, *buf;
time_t timel, time2;

char filtert[16]="times";
int *pl;

FILE *fp;

getsize (source, &xs, &ys, &type);
form (result,0,xs,ys,type);

/* allocate space for recording temporary data */

buf = (float *) farmalloc (3L*xs*sizeof(float));
if (buf == NULL)
{ response ("Unable to allocate buffer space for
2D float point traditional anistropic diffusion");
longjmp (jumpbuf, 1);
}

for (x

= 0; x < 3; x++)
plxl =

buf+x*xs;

/* k: number of pixels whose gradient magnitudes are large
than the threshold defined by f‘thresh" x*/

k=(int) ((1.0-thresh)*(xs-1)*(ys~1));

form (result,0,xs,ys,type);

/* get the gradient magnitude defined for edges */

for (x=1;x<zs-1;x++)
for (y=1;y<ys-1;y++)
putpix(getpix(source,x-1,y)+getpix(source,x+1,y)
+getpix(source,x,y+1)+getpix(source,x,y-1)
-4xgetpix (source,x,y) ,result,x,y);

while(k>0)
{ k1=0;
for (x=1; x<xs-1; x++)
for (y=1; y<ys-1; y++)
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if (abs(getpix(result,x,y))>k1)
{ ki=abs(getpix(result,x,y));
i=x;
3=y;
}

putpix(0,result, i, j);
k-—;

for (x=1; x<xs-1; x++)
for (y=1; y<ys-1; y++)
if (ki==abs(getpix(result,x,y)))
{ putpix(0,result, x,y);
k--;
}
}

m = (float)ki;

/* Creating array for implementing float point operations */

for (x=0;x<xs; X++)
for (y=0; y<ys; y++)
alx] [yl=(float)getpix(source,x,y);

/* main program  */

/* k: stop diffusion process if the differences between
successive diffusion processes are larger than tl1 times
continuously.

ki: in case if more than 100000 iterls are required.
k2: times of iterls. */

k=0;

for(ki=0;ki<iteri;ki++)
for (k2=0; k2<iter2; k2++)
{ for(y=1;y<ys~1;y++)
{ for (x=1;x<xs~-1;x++)
{ b[0] = alx+1][yl-alx][y]l;
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bl1] = alx-11[y]-alx]ly];
b[2] = alx][y+1]-alx][y]l;
b[3] = alxlly-1l-alx]lyl;

for (i=0;i<4; i++)
clil=exp(~1.0*b[i]/m*b[i] /m) ;

mi=0.0;
for (i=0; i<4; i++)
mi+=bl[il*c[i];

mi/=4.0;
*(p[1l+x)= a[x] [y]+m1;

if (fabs(ml)>accu)
{ k++;
t2++;
}

}

if (y>=2)
{ for (x=0;x<xs;x++)
alx] [y-11=x(p[0]+x);

pl2]=plo0];
pl0l=p[1];
pl1l=p[2];

}

else
{ pl[21=pl0];
pl0l=p[1];
pl1l=p[2];

}

if (y==ys-2)

{ for (x=0;x<xs;x++)
alx] [yl=*(p[0]+x);

}
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/* monitor the process of diffusion */

++t

printf ("T=%1d; N=%d\n",t,t2);

/* control the interval of showing each result */

time (&timel);
do {time (¥time2);
}while (((int) difftime(time2,timel)) < wtime);

/* determining whether continue diffusion  */

if (k==0)
{ if (t3+1==t)
{ t1--;
printf ("The %dth time meet the accuracy requirement.
\n", 100-t1);
}
else
{ t1 = 99;
printf("The first time meet the accuracy requirement.\n");
}
t3=t;

if (ti==0)
{ ki=iteri;
k2=iter2;
}
£2=0;
k=0;

/* Record iterations */

pl=filtert;
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if ((£fp = fopen(pl,"ab")) == NULL )
{ printf("cannot open file\n");
exit(0);
}

fprintf(fp, "1dy, t-100);
fprintf(fp,"\n",0);
fclose (fp);

return (TRUE);
}



Appendix B

Program for AD by CF's of
“Mono” flux

The following program was written as a function of “cvlab”. !

/* adi Implementing 1D AD with the CF producing only increasing fluxx*/

/* itertion = times the image will be filtered, set at the beginning.
edge = the threshold for edge (percentage of pixels).

accu = smoothing is stopped if the difference is less than the

accu for 100 times */

/* prompt: source, result, iteration, edge, accu

format: %d %d %d %Uf #f

menu:

helpfile:

prototype: int ydfbl (int source, int result, int iterationm,
float edge, float accu); */

#include "cvemd.h"
#include "math.h"
#include <stdlib.h>
#include "stdio.h"
#include <time.h>
#define K 1

void _adi (void)

Lécylah” is an image processing environment developed by Dr. P. H. Gregson
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{ int source, result, iteration;
float edge, accu;

source = *((int *) arglist[0]);
result = *((int *) arglist[1]);
iteration = *((int *) arglist[2]);
edge = *((float *) arglist[31);
accu = *((float *) arglist[4]);

i

adi (source, result, iteration, edge, accu);

}

int adi (int source, int result, int iteration,
float edge, float accu)
{ int x, y, xsize, ysize, type;
int i, j, k, k1, k2, t1=99;
long t=0,t2;
float al[300]1,a1[300], bl2], cl[2], m, mi, w;
time_t timel, time2;
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/* i: how many pixels are treated as edges: (l-edge)’ of total pixels

getsize (source, &xsize, &ysize, &type);
form (result,0,xsize,ysize,type);

i=(int) ((1.0-edge) *(xsize+1)) ;

for (x=0;x<xsize;x++)
{ k=0;
for (y=0;y<ysize;y++)
if (getpix(source,x,y)==0) k++;

al[x]=(float)k;
allxl=alz];
putpix(k,result,x,0);

}

/* get m, the threshold */

for (x=1;x<xsize;x++)

putpix (abs (getpix(result,x,0)-getpix(result,x-1,0)),result,x,1);

putpix(getpix(result,1,1) ,result,0,1);
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while(i>0)
{k=0;
for (x=0; x<xsize; x++)
if (getpix(result,x,1)>k) {k=getpix(result,x,1); j=x;}

putpix(0,result, j, 1);
i--;

for (x=0; x<zsize; x++)
if (k==getpix(result,x,1)) { putpix(0,result, x,1); i--; }
}

m={(float)k;

/* main program beginnig */
for (k2=0;k2<K;k2++)
for (k=0; k<iteration; k++) /* k control the times of iterations =*/
{ for(x=1;x<xsize-1;x++) /* calculating b[2]=dEW, c[2]=cEW */
{ b[0] = alx+1]-alx];
b[1] alx-1]-alx];

for (i=0; i<2; i++)
if (fabs(bl[il)>m) c[i]l=0.0;
else c[i] = 1.0;

mi=0.0;
for (i=0; i<2; i++) mi+=b[ilxc[i]l;

allx] += m1/4.0;

}
b[0] = al1]-al0];
b[1] = alxsize-2]-alxsize-1];

for (i=0;i<2; i++)
if (fabs(b[il)>m) c[i]=0.0;
else ¢[i]=1.0;

ai[0] += b[0]*c[0]/2.0;
allxsize-1]1 += bl[1]*c[1]/2.0;
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/* up to new, alfx] is updated while a[x] still contains data of
last time */

/* continuing diffusion? */
3=0;

for (i=0;i<xsize;i++)
if (fabs(ailil-alil) >= accuw)  j++;

if (j==0)
{ if (£2+1==t)
{ t1--;
printf ("the %dth time = O0\n", 99-t1);
}
else
{ t1=9;
printf("the first time = O\n");
}
t2=t;
}

printf ("T=%1d N=Yd accu=Yf\n",t,j,accu);

if (t1 >= 0)
for (x=0;x<xsize;x++) alx]=allx];
else {k=iteration;k2=K;}

} /* End of the main programing */

/* saving the result */
form (result,l,xsize,ysize,type);
for (x=0;x<xsize;x++)
{ i=(int) (floor(al[x]+0.16));
for (y=0; y<i; y++) putpix(0,result,x,y);
}

return (TRUE);
}



Appendix C
Programs for IAD

The following programs were written as functions of “cviab” !

ceeeviessess.. JAD for 1 dimensional signals ..............

/* iadl Implementing float point 1 dimensional idempotent
anisotropic diffusion using diffusion function
exp(~x*x/K/K). %/

/* source = input image for processing.
result = output image after processing.
iter = number of iterations.
XS = the width of input image.
thresh = value of threshold in percent of gradiemt range.
wtime = time for showing the intermediate results.
accu = resolution of filter */

/* prompt: source, result, iter, xs, thresh, wtime, accu
format: %d %d %d %d %f %d %f
menu:
helpfile:
prototype: int iadl (int source, int result, int iter,
int xs, float thresh, int wtime, float accu); */

L4cylad” is an image processing environment developed by Dr. P. H. Gregson
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#include *"cvcmd.h"
#include "math.h"
#include <stdlib.h>
#include "stdio.h"
#include <time.h>
#define XS xs

void _iadl (void)
{ int source, result, iter, xs, wtime;
float thresh, accu;

source = *((int *) arglist[0]);
result = *((int *) arglist[1]);
iter *((int *) arglist[2]);
xs = *((int *) arglist[3]);

"

thresh = *((float *) arglist[4]);
wtime = *((float *) arglist[5]);
accu = x((float *) arglist[6]);

iadl (source, result, iter, xs, thresh, wtime, accu);

}

int iadl (int source, int result, int iter, int xs,
float thresh, int wtime, float accu)
{ int x, y, xsize, ysize, type;
int i, j, k, t1=100;
long t=0,t2=0,k1;
float al[XS],a1[Xs]l, bl2], c[2], m, mi;
time_t timel, time2;

/* 1i: number of pixels whose gradient magnitudes are large
than the threshold defined by ‘thresh" */

getsize (source, &xsize, &ysize, &type) ;
form (result,0,xsize,ysize,type);

i=(int) ((1.0-thresh)*(xsize-1));

/* read data from the input image */
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for (x=0;x<xsize;x++)
{ k=0;
for (y=0;y<ysize;y++)
if (getpix(source,x,y)==0)
k++;
alx]=(float)k;
aillx]=alx];
putpix(k,result,x,0);

/* get m, the threshold */

for (x=1;x<xsize;x++)
putpix(abs(getpix(result,x,0)-getpix(result,x-1,0)) ,result,x,1);
putpix(getpix(result,1,1),result,0,1);

while(i>0)
{k=0;
for (x=0; x<xsize; x++)
if (getpix(result,x,1)>k)
{ k=getpix(result,x,1);
J=%;

}

putpix(0,result, j, 1);
i--;

for (x=0; x<xsize; x++)
if (k==getpix(result,x,1))
{ putpix(0,result, x,1);
i--;
}
}

m=(float)k;

/* main program beginnig */

/* j: stop diffusion process if the differences between
successive smoothing processes are larger than 10 times
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continuously.
k1: number of iteratioms. x/

j=0;
/* allx] holds the updated */
for(k1=0;ki1<iter ;ki++)

{ for(x=1;x<xsize-1;x++)

{ v[0] = alx+1]-alx];
bl[1] = alx-1]-alx];

[}

for (i=0; i<2; i++)
clil=(1-pow(b[i]/m,2)) *exp(-pow(b[il/m,2));

ml1=0.0;
for (i=0; i<2; i++)
mi+=b[i]*c[i];

mi/=2.0;

al[x] += mi;

if (fabs(mi)>accu)
jH+;

++1;

/* control the time for showing temporary results */
time (&timel);
do {time (&time2);
}while ({((int) difftime(time2,timel)) < wtime);

/* continuing diffusion? x/

if (j==0)
{ if (£2+1i==t)
{ t1--;

printf("the %dth time total change = 0\n", 100-t1);
}

else
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{ t1=99;
printf("the first time total change = 0\n");

}
t2=t;
}

/* monitor the diffusion process */
printf ("T=%1d N=}d\n",t,j);

/* stop diffusion process? */
if (1 >= 0)
for (x=0;x<xsize;x++)
alx]=allx];
else
kil=iter;
}
return (TRUE);
}

vevvseesse... IAD for 2 dimensional images ..............

This program was used also as the code for “Mixed” flux method and gradient-
magnitude-based anisotropic diffusion (GMAD).

/* iad2 Implementing float point 2 dimensional idempotent
anisotropic diffusion using diffusion function
exp(~x*x/K/K). */

/* source = input image for processing.

result = output image after processing.

xsize = the width of image to be processed.

ysize = the height of image to be processed.

iter = times the image will be filtered.

thresh = value of threshold in percent of gradient range.
wtime = time for showing the intermediate results.

accu = resolution of filter */
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/* prompt: source, result, xsize, ysize, iter, thresh,

wtime, accu

format: %d %d %d %d %d %f %d %f

menu:

helpfile:
prototype: int iad2 (int source, int result, int xsize,

#include
#include
#include
#include
#include
#define

f#idefine

int ysize, int iter, float thresh,
int wtime, float accu); */

"cvemd.h”
"math.h"
<stdlib.h>
"stdio.h"
<time.h>
X8 xsize
YS ysize

void _iad2 (void)
{ int source, result, xsize, ysize, iter, wtime;

float

source
result
xsize
ysize
iter
thresh
wtime
accu

thresh, accu;

*((int *) arglist[0]1);
*((int *) arglist[1]);
*((int *) arglist[2]);
= *((int *) arglist[3]);
*((int *) arglist[4]);
*((float *) arglist[5]);
*((int *) arglist[6]);
*((float *) arglist([7]);

It

iad2 (source, result, xsize, ysize, iter, thresh,
wtime, accu);

}
int iad2
{ int x,

(int source, int result, int xsize, int ysize, int iter,
float thresh, int wtime, float accu)

Yy, Xs, ys, type;
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int i, j, k, k1,t1=100,12=0;
long t=0,k2,t3;

float alXS][YS], bl4]l, c[4],*pl[3]1;
float m, mi, *buf;

time_t timel, time2;

char filtert[16]="times";

int *pil;

FILE *fp;

getsize (source, &xs, &ys, &type);
form (result,0,xs,ys,type);

/* allocate space for recording temporary data */

buf = (float *) farmalloc (3L*xs*sizeof(float));
if (buf == NULL)
{ response ("Unable to allocate buffer space for
2D float point traditional anistropic diffusion");
longjmp (jumpbuf, 1);
}

for (z

= 0; x < 3; xt++)
plx] =

buf+x*xs;

/* k: number of pixels whose gradient magnitudes are large
than the threshold defined by ‘‘thresh" x*/

k=(int) ((1.0-thresh)*(xs-1)*(ys-1));

form (result,0,xs,ys,type);

/* get the gradient magnitude defined for edges */

for (x=1;x<xs~1;x++)
for (y=1;y<ys-1;y++)
putpix(getpix(source,x-1,y)+getpix(source,x+1,y)
+getpix(source,x,y+1)+getpix(source,x,y-1)
-4xgetpix(source,x,y) ,result,x,y);

while(k>0)
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{ k1=0;
for (x=1; x<xs~-1; x++)
for (y=1; y<ys-1; y++)
if (abs(getpix(result,x,y))>kl)
{ ki=abs(getpix(result,x,y));

i=x;

J=Y;
}

putpix(0,result, i, j);
k——;

for (x=1; x<xs-1; x++)
for (y=1; y<ys-1; y++)
if (kl==abs(getpix(result,x,y)))
{ putpix(0,result, x,y);
k--;
}
}

m = (float)kl;

/* Creating array for implementing float point operations */

for (x=0;x<xs; x++)
for (y=0; y<ys; y++)
a[x][yl=(float)getpix(source,x,y);

/* main program  x/

/* k: stop diffusion process if the differences between
successive diffusion processes are larger than tl times
continuously.

k2: number of iterations.  */

k=0;
for (k2=0; k2<iter; k2++)

{ for(y=1;y<ys-1;y++)
{ for (x=1;x<xs-1;x++)
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{ b[0] = alx+1][yl-alx][yl;
bl1] = alx-1][yl-alx]1lyl;
bl[2] = alx][y+1]-alx][y];
b[3] = alx][y-1]-alx][yl;

for (i=0;i<4; i++)
c[il=(1.0-2#b[i]l/m*b[i]l/m)*exp(-b[i]/m*b[il/m) ;

mi1=0.0;
for (i=0; i<4; i++)
mi+=b[i]*c[i];

mi/=4.0;
*(p[1]+x)= a[x][yl+m1;

if (fabs(ml)>accu)
{ kt+;
T2++;
}

}

if (y>=2)
{ for (x=0;x<xs;x++)
alx] [y-1]1=x(p[0]+x);

pl[2]=p[0];
pl0l=p[1];
plil=pl2];

}

else
{ p[2]=p[0];
plol=p[i];
pl1l=p[2];

}

if (y==ys-2)

{ for (x=0;x<xs;x++)
alx] [yl=*(p[0]+x);

}
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/* monitor the process of diffusion */

++t ;

H

printf ("T=%1d; N=Yd\n",t,t2);

/* control the interval of showing each result */

time (&timel);
do {time (&time2);
Jwhile (({(int) difftime(time2,timel)) < wtime);

/* determining whether continue diffusion  */

if (k==0)
{ if (t3+1==t)
{ t1--;
printf("The %dth time meet the accuracy requirement.
\n", 100-t1);
}

else
{ t1 = 99;
printf ("The first time meet the accuracy requirement.\n");

}
t3=t;

if (t1==0)
k2=iter;

t2=0;
k=0;

/* Record iterations */

pl=filtert;
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if ((fp = fopen(pl,"ab")) == NULL )
{ printf("cannot open file\n");
exit(0);
}

fprintf (fp,"%1d", t-100);
fprintf (fp,"\n",0);
fclose (fp) ;

return (TRUE);
}



Appendix D
Programs for GFAB

The following programs were written as functions of “cvlad” !

.....GFAB with no fidelity term added for 1D signals .....

/* Implementing forward-and-backward diffusion proposed by Gilboa.
The fidelity term is not employed */

/* itertion = times the image will be filtered, set at the beginning.
accu = smoothing is stopped if the difference is less than the
accu for 100 times */

/* prompt: source, result, iteration, accu

format: %d %d %d %f

menu:

helpfile:

prototype: int gfabl (int source, int result, int iterationm,
float accu); */

#include "cvemd.h"
#include "math.h"
#include <stdlib.h>
#include "stdio.h"
#include <time.h>
#idefine K 1

lécylgh” is an image processing environment developed by Dr. P. H. Gregson
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void _gfabl (void)
{ int source, result, iteration;
float accu;

source = *((int *) arglist[0]);
result = *((int *) arglist[i]);
iteration = *((int *) arglist[2]);
accu = *((float *) arglist[3]);

it

gfabl (source, result, iteration, accu);

}

int gfabl (int source, int result, int iteration, float accu)
{ int x, y, xsize, ysize, type;
int i, j, i1, k, ki, k2, t1=100;
long t=0,t2, k3=0;
float al[300],a1[300], a2[300], bl[2], c[2], m, ml, m2, m3, m4, w;
time_t timel, time2;

getsize (source, &xsize, &ysize, &type);
form (result,0,xsize,ysize,type);

/* get m, the MAG =x/

for (x=0;x<xsize;x++)
{ k=0;
for (y=0;y<ysize;y++)
if (getpix(source,x,y)==0) k++;
a[x]=(float)k;
al[x]=alx];
a2[x]=alxl;

putpix(k,result,x,0);

}

for (x=1;x<xsize;x++)
putpix (abs(getpix(result,x,0)-getpix(result,x-1,0)) ,result,x,1);
putpix(getpix(result,1,1) ,result,0,1);

for (x=0; x<xsize; x++)
k3 += getpix(result,x,1);
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k = k3/xsize;

printf ("MAG=Yf\n", m=(float)k);
ml = 2,0%m;

m2 = 4.0%m;

W = m;

m3 = 0.5%mi/(m2+w);

/* main program beginnig */
3=0;
for (k2=0;k2<K;k2++)
for (k=0; k<iteration; k++) /* k control the times of iterations */
{for(x=1;x<xsize-1;x++) /* calculating b[2]=dEW, c[2]=cEW */
{ bl0o] = alx+1]-a[x];
b[1] = al[x-1]-alx];

for (i=0; i<2; i++)
cli]l = 1.0/(1.0+b[i]/m1*b[i]/mi*b[i] /mi*b[i]/m1)
- m3/(1.0+(b[i]-m2) /w* (b[i]l-m2) /wx (b[i]l-m2) /wx (b[i]-m2) /w);

m4=0.0;
for (i=0; i<2; i++) mé4+=b[il*c[i];

allx] += m4/4.0;

}
b[0] = a[1]-al0];
bl[1] = alxsize-2]-a[xsize-1];

for (i=0;i<2; i++)
clil = 1.0/(1.0+b[il/mi*b[i]/mi*b[i]/mi*b[il/mi)
- m3/(1.0+(bl[i]-m2) /ux (b[i]-m2) /w*x(b[i]-m2) /wx (b[i]-m2) /w);

a1l0] += b[0}*c[0]1/2.0;
allxsize-1] += bl1lxc[1]/2.0;

/* up to new, all[x] is updated while a[x] still contains data of
last time */

/* continuing diffusion? */
for(x=0;x<x8ize;x++)
if (fabs(al[x]-alx])>accu) j++;
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if (j==0)
{ if (t2+1==t)
{ t1—;
printf("the %dth time = 0\n", 100-t1);
}
else
{ t1=99;
printf("the first time = 0\n");
}
t2=t;
}

if (t1 >= 0)
for (x=0;x<xsize;x++) { alx]=allx]; j=0;}
else {k=iteration;k2=K;}
} /* End of the main programing */

/* display the result */
form (result,l,xsize, ysize,type);

i1=0;
for (x=0;x<xsize;x++)

if ((int)(floor(al[x]+0.16)) < il)
i1 = (int) (floor(al[x]+0.06));

il=abs (il);

if (i1==0)
{for (x=0;x<xsize;x++)
{ i=(int) (floor{(al1[x]+0.06));
for (y=0; y<i; y++) putpix(0,result,x,y);
}
}
else
{for (x=0;x<xsize;x++)
{ i=(int) (floor(allx]+0.06));

if (i>0)
{ for (y=il; y<i+il; y++) putpix(0,result,x,y);}
else

{ for (y=ii-1; y>il-abs(i); y--) putpix(0,result,x,y);}

227
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}
return (TRUE);

}

.......GFAB with fidelity term added for 1D signal .......

/* Implementing forward-and-backward diffusion proposed by Gilboa
with the fidelity term "A" added x/

/* itertion = times the image will be filtered, set at the beginning.
accu = smoothing is stopped if the difference is less than the
accu for 100 times */

/* prompt: source, result, iteration, accu

format: %d %d %d %f

menu:

helpfile:

prototype: int gfab2 (int source, int result, int iteration,
float accu); */

#include "cvemd.h"
#include "math.h™
#include <stdlib.h>
#include "stdio.h"
#include <time.h>
#define K 1

#idefine A 0.1

void _gfab2 (void)
{ int source, result, iteration;
float accu;

gource = *((int *) arglist[0]);
result = *((int *) arglist[i]);
iteration = *((int %) arglist[2]);
accu = *((float *) arglist[31);
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gfab2 (source, result, iteration, accu);

}

int gfab2 (int source, int result, int iteration, float accu)
{ int x, y, xsize, ysize, type;
int i, j, i1, k, ki1, k2, t1=100;
long t=0,t2, k3=0;
float al300],a1[300], a2[300], bl[2], c[2], m, mi, m2, m3, m4, m5, w;
time_t timel, time2;

getsize (source, &xsize, &ysize, &type);
form (result,0,xsize,ysize,type);

/* get m, the MAG =/

for (x=0;x<xsize;x++)

{ k=0;
for (y=0;y<ysize;y++)

if (getpix(source,x,y)==0) k++;
al[x]=(float)k;
allx]=alx];
a2[x]=alx];

putpix(k,result,x,0);

}

for (x=1;x<xsize;x++)
putpix(abs (getpix(result,x,0)-getpix(result,x-1,0)),result,x,1);
putpix(getpix(result,1,1) ,result,0,1);

for (x=0; x<zsize; x++)
k3 += getpix(result,x,1);

k = k3/xsize;

printf ("MAG=%f\n", m=(float)k);
mil = 2.0%m;

m2 = 4,0%m;

W = m;

m3 = 0.5%m1/(m2+w) ;

/* main program beginnig */
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3=0;
for (k2=0;k2<K;k2++)
for (k=0; k<iteration; k++) /* k control the times of iterations */
{for(x=1;x<xsize-1;x++) /* calculating b[2]=dEW, c[2]=cEW */
{ vl0] = alx+1]-alx];
bl1] = alx-t]-alx];

for (i=0; i<2; i++)
clil] = 1.0/(1.0+b[i]/m1*b[i]/mi*b[i] /mi*b[i]/m1)
- m3/(1.0+([i]-m2) /wx (b[1]-m2) /w* (b[i]l-m2) /w*x (b[i]-m2) /w);

m4=0.0;
for (i=0; i<2; i++) mé+=bl[il*cl[i]l;

mS = Ax(alx]-a2[x]1);
mS = m4/4.0 -m5;

alf[x] += mb;
}
b[0] = alt]l-a[0];
bl1] = a[xsize-2]-alxsize-1];

for (i=0;i<2; i++)
cli] = 1.0/(1.0+b[i]/m1*b[i]l/m1*b[i]/m1*b[i]/m1)
- m3/(1.0+(b[i]-m2) /w* (b[i]-m2) /wx(b[i]-m2) /wx(b[i]-m2) /w);

m5 = Ax(al0]-a2[0]);

m5 = b[0]*c[0]/2.0 -m5;

ai[0] += mb;

mbS = Ax(a[xsize-1]-a2([xsize-1]);
m5 = bl1]l*c[1]/2.0 -m5;
al[xsize-1] += m5;

/* up to new, allx] is updated while a[x] still contains data of last time

*/

/* continuing diffusion? #/
for(x=0;x<xsize;x++)
if (fabs(al[x]-alx])>accu) j++;

if (j==0)
{ if (t2+1==t)
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{ t1-—;
printf ("the %dth time = O0\n", 100-t1);
}
else
{ t1=99;
printf ("the first time = 0\n");
}
t2=t;
}

if (t1 >= 0)
for (x=0;x<xsize;x++) { alx]=allx]; j=0;}
else {k=iteration;k2=K;}

} /* End of the main programing */

/* Enter the part of display */
form (result,l,zsize, ysize,type);

11=0;
for (x=0;x<xsize;x++)

if ((int) (floor(a1[x]+0.16)) < il)
i1 = (int) (floor(al[x]+0.06));

il=abs(il);

if (i1==0)
{for (x=0;x<xsize;x++)
{ i=(int) (floor(al[x]+0.06));
for (y=0; y<i; y++) putpix(0,result,x,y);

}
}
else
{for (x=0;x<xsize;x++)
{ i=(int) (floor(ai[x]+0.06));
if (i>0)
{ for (y=il; y<i+il; y++) putpix(0,result,x,y);}
else

{ for (y=il-1; y>il-abs(i); y--) putpix(0,result,x,y);}
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return (TRUE);
}



Appendix E
Program for IDCAD

The following program was written as a function of “cvlab” !

/* dcad implementing anisotropic diffusion conducted by
direction consistency based edge extimator  */

/* prompt: source, result, iter,xsize, ysize, thresh resolu
format: %d %d %4 %d %d %f %f
helpfile:
menu:
prototype: int dcad (int source, int result, int iter, int xsize,
int ysize, float thresh, float resolu) ; */

#include "cvemd.h
#include <stdio.h>
#tinclude <stdlib.h>
#include <math.h>
#idefine XS xsize
#define YS ysize
#idefine 0OS 10

void _dcad (void)
{ int source, result, iter, xsize, ysize;
float thresh, resolu;

source = *((int *) arglist[0]);
result = *((int *) arglist[1]);
iter *((int *) arglist[2]);

L«cylab” is an image processing environment developed by Dr. P. H. Gregson
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xsize = *((int *) arglist[31);

ysize = *((int *) arglist[4]);
thresh = *((float *) arglist[5]);
resolu = *((float *) arglist[6]);

dcad (source, result, iter, xsize, ysize, thresh, resolu);

int dcad (int source, int result, int iter, int xsize, int ysize,
float thresh, float resolu)
{ int x, y, xs, ys, type, n, nl, t1=100, ki;
long t=0, k;
float deltax[XS][YS], deltay[XS][YS], coeff[XS][YS], a[XS][YS];
float sumx, sumy, sumv, b[4], c[4], diffulXS][YS];

getsize (source, &xs, &ys, &type);
form (result,0,xs,ys,type);

/* read in image for float point operation */

for (x=0;x<XS;x++)
for (y=0;y<YS;y++)
alx] [yl=(float)getpix(source,x,y);

/* calculate deltax, deltay and magnitude array */

for (x=1;x<XS-1;x++)
for (y=1;y<Y¥S-1;y++)
{ deltax[x] [yl=alx+1] [y-1]1+2.0*a[x+1] [yl +al[x+1] [y+1]
-a[x-1] [y-11-2.0*a[x~-1] [yl -al[x-1] [y+1];
deltay[x] [yl=a[x-1] [y+1]1+2.0*a[x] [y+1]+al[x+1] [y+1]
-a[x-1]1[y-11-2.0%a[x] [y-1]~a[x+1] [y-1];

/* calculate coefficient array */

for (x=2;x<XS-2;x++)
for (y=2;y<YS~2;y++)
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{ sumx = 0;
sumy = 0;
sumv = Q;

for (n=-1;n<=1;n++)
for (nl=-1;ni<=1;ni++)
{ sumx += deltax[x+n] [y+n1];
sumy += deltay[x+n] [y+ni];
sumv += sqrt(deltax[x+n] [y+ni1]*deltax[x+n] [y+n1]
+deltay [x+n] [y+ni1]*deltay [x+n] [y+ni]);
}

coeff[x][y] = sqrt(sumx*sumx+sumy*sumy)/(sumv+0S) ;

/* calculate the DC array */

for (x=0;x<XS;x++)
for (y=0;y<YS;y++)
{ sumx = coeff[x][yl/thresh;
diffulx] [y]=(1.0-sumx*sumx)*exp (-1.0*sumx*sumx) ;

}

/* opearte diffusion */

for(k=0;k<iter;k++)
{ k1=0;
for (x=2;x<XS-2;x++)
for (y=2;y<Y¥S-2;y++)

{ bl0l=alzx+1][yl-alx][y];
bl[1l=alx-1]1[yl-alx][yl;
b[2]=al[x] [y-1]1-alx]1[y]l;
b[3]=alx] [y+1]1-alx][y];

c[0]=(diffulx] [yl+diffulzx+11[y1)/2.0;
c[1]=(diffulx] [yl+diffulx-1][y])/2.0;
cl2]=(diffulx] [yl+diffulx] [y-11)/2.0;
c[31=(diffulx] [yl+diffulx] [y+11)/2.0;

sumx = 0;
for (n=0;n<4;n++)
sumx += b[nl*c[n];
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sumx = sumx/4.0;

if (sumx > resolu)
ki++;

coeff[x][y] = alx][y]-+sumx;

/* monitor the diffusion process */

printf ("T=%d, N=¥d\n", k, k1);

/* stop diffusion process? */

if (k1==0)
{ if (t+1==k)
{ t1--;
printf("The dth time meet the accuracy requirement.
\n", 100-t1);
}
else
{ t1 = 99;
printf("The first time meet the accuracy requirement.\n");
}
t=k;
}
k1=0;
if (tl==0)
k=iter;

else { for(x=0;x<XS;x++)
for(y=0;y<YS;y++)
{ alx][yl=coeff[x][y]l;
if (fabs(diffulx][y])>0.001)
diffulx] [yl*=(1-exp(-10*xdiffulx][yl));
else diffulx][y]l = 0;
}
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return (TRUE);
}



