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Abstract

This thesis considers the hydrodynamic solution of the linear wave interactions with
a floating body at zero-speed conditions in a water body of infinite depth. The
initial-boundary-value problem was linearized about the mean position of a body,
and derived as a boundary integral equation for solving exterior velocity potential
using Green’s theorem and the impulsive Green’s function in the time domain. In
order to minimize time and errors in numerical evaluation, this thesis introduced the
alternative solution of the time-domain free-surface Green’s function based on the
power series expansion method. The analytical forms in term of a power series were
derived from the ordinary differential equation that were proven to be the solution
of the original infinity integral of the time-domain free-surface Green’s function. The
purpose was to speed up the convergence of the summation of an infinite series in
the numerical computation. Based on the analytical form developed, it was possible
to perform procedure that speed up the evaluation of convolution integral involved
in the boundary integral equation. Moreover, the singularity integral of the Rankine
source was regularized and a numerical scheme using global discretization technique
for regularized boundary integral equation with Gaussian quadrature was proposed.
Analytical surface as well as Non-Uniform Rational B-Splines (NURBS) surfaces were
employed to represent the body surface mathematically. Computed impulse response
function and hydrodynamic coefficients due to radiated waves for a floating sphere
and ellipsoid were compared with published results. The comparison was reasonable
for all cases.
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Chapter 1

Introduction

1.1 Background

In the design of a floating or submerged body, i.e ships, submarines, offshore struc-
tures etc, the ability to predict wave-induced motions and hydrodynamic loads is
an essential requirement. Severe body motions can limit operability, affecting safety
as well as comfort. Fxtreme wave-loads may lead to structural failure. Study of
the wave-body interaction problem has been conducted actively over the last several
decades. The domains in which numerical analysis of wave-body interaction takes
place ordinarily are the frequency and time-domain. For a particular problem, one
domain may be more convenient than the other and they can be related through the
use of Fourier transforms.

The problem can be linearized by assuming motion to be small and time har-
monic. The resulting boundary-value problem is solved using singularity distribution
on the mean body boundary. The principal difficulties in the prediction of wave-body

interaction in time domain analysis arise from:



e the evaluation of the time-domain free-surface Green’s function,

e the computation of the convolution integral involved in the boundary integral

equation,
e the singularity behaviour of the boundary integral equation, and

e the minimizing of numerical error due to discretization of the body.

1.2 Literature Review

One of the first studies on linear time-domain analysis of wave-body interactions
was reported by Finkelstein (1957). This was improved through the introduction of
an impulsive response approach was introduced by Cummins (1962). Adachi and
Ohmatsu (1979) solved the two-dimensional problem in water of infinite depth, as
well as Tkebuchi (1981) and Yeung (1982). Some numerical results of the two- and
three-dimensional problems were presented by Jami and Pot (1985) who used a finite
element method. Newman (1985) used time-dependent ring sources to solve impulsive
response motion of an axisymmetric circular cylinder. Added mass and damping
coeflicients were obtained using Fourier transform of the impulsive response following
Wehausen (1971).

Other works that took a linear time-domain approach include Korsmayer (1988),
on the linearized radiation problem without forward speed, Ferrant (1988) for the
submerged bodies case; and Liapis (1986), Beck and Liapis (1987), King (1987),
King et al. (1988) on the general linearized problem with zero and constant forward

speed. Results for large body motion have been obtained by Beck and Magee (1990),



who adopted the panel method to discretize the body surface and solve the problem
numerically following Hess and Smith (1964). In the panel method, the body surface
was discretized into finite number of panels, and each panel is defined by a plane or
quadratically curved surface formula. In this way, over each panel, a collocation point
is obtained, and the source density or potential distribution, which is assumed to be
constant is determined.

The higher-order panel method developed by Maniar (1995) used a B-spline tech-
nique. Higher-order methods allow for linear or quadratic panels and first- or second-
degree polynomial distribution of source densities or potential over a panel. A similar
approach, with several modifications, has been undertaken by Lee et al (1998). Dan-
meier (1999) presented a geometry-independent higher-order method. Lee and New-
man (2001) used a B-spline to represent the velocity potential. However, in numerical
schemes those methods still produce some errors, first, because of the approximation
of the surface geometry, and second, because of the assumed location of a source
density distribution on each panel. The error might be reduced if the geometrical
data of the body is taken from the original surface formulation, and the collocation
points are adjusted on the curvature of the surface. Qiu (2001) proposed a panel-free
method in order to minimize errors due to the geometrical approximation and an
assumption of source strength distribution on the panel. In his work, the boundary
integral equation in terms of source strength was desingularized before discretizing
the body surface, following the method outlined by Landwaber and Macagno (1969).
Globally, Gaussian quadrature over the exact body geometry was conducted to eval-
uate singularity of the integral. Non-Uniform Rational B-Splines (NURBS) surface
was used to represent geometry of the body.

In the inital boundary-value problem with a linearized free-surface condition,

Green’s theorem is derived to solve the velocity potential of a floating or submerged



body. The original equation of the time-domain free surface Green’s function, in
terms of an infinity integral equation, has been given in analytic form by Wehausen
and Laitone (1960). However, Ferrant (1988) noticed that the evaluation of the free-
surface Green’s function was excessively time-consuming; about 80 percent of the total
CPU time was required to evaluate the boundary integral equation (Magee ,1991).
Indeed, reduction of evaluation time of the free-surface Green’s function without com-
promising computational accuracy is the main focus of any follow-up research.

Several previous studies have explored an alternative expression for the free-surface
Green’s function, based on the original integral equation. Newman (1985) has derived
the technique by which the domain of free surface Green’s function is divided into a
number of regions wherein, depending on the arguments, ascending series, asymtotic
expansion or a combination of these, and two-dimensional economized (Chebyshev)
polynomial approximation were utilized. The improved version of this method has
been employed by Lin and Yue (1990), and Bingham (1994). Liapis and Beck (1985)
has proposed three different regions that were series expansion, asymtotic expansion,
and Filon quadrature. King (1987) has followed with the additional Bessel function
expansion regions on free surface Green’s function evaluation.

Ferrant (1988) has proposed a new computational technique, i.e., a tabulation
method, that obviously can reduce the computational time significantly. This method
essentially pre-computes of the free surface Green’s function on a grid of p and 7
once for all domains. The computed data was stored in several permanent files in
tabulation format. A simple bilinear interpolation was used to carry out the value
for each calculation. Motivated by the need to further reduce computational costs,
a vectorized computational approach was introduced by Magee and Beck (1989),
and it was followed by Newman (1991) and Lin and Yue (1990) who applied on a

supercomputer. An innovative approach was developed by Clément (1998a). He



proved that the free surface Green’s function is a solution of a fourth-order ordinary
differential equation (ODE), and Runge-Kutta method could be adopted (Clément,
1998b) to evaluate the ODE Green’s function numerically. Clément (1998b) has
used the ODE-integration methods to evaluate the boundary integral equation of the
seakeeping problem. Clément (1998b) showed that the Runge-Kutta method can be
used to evaluate ODE Green’s function more rapidly than the tabulation method and
the series expansion method. Although the accuracy of the Runge-Kutta method for
the ODE Green’s function evaluation is reasonable, it does not give much advantage
for the analytical form of ODE Green’s function. Because of numerical errors, it
can be reduced only by decreasing the time step. However, this increased the total
evaluation time. There appears to be room here to propose an alternative approach

closer to the analytical solution.

1.3 Objectives and Scope of the Thesis

The primary objective of this thesis is to develop an analytical form in which to
evaluate the time-domain free-surface Green’s function. The analytical form is derived
based on ODE Green’s function developed by Clément (1998a), expanded into a power
series expansion. The purpose is to improve the accuracy and to reduce the length of
time taken in evaluation of the time-domain free-surface Green’s function.

Secondly, based on the analytical form of the free-surface Green’s function, a
numerical procedure to carry out the convolution integral involved in the boundary
integral equation is performed. The accuracy and efficiency of the approach developed
are demonstrated by comparison against the Runge-Kutta method and a tabulation

method.



Thirdly, the singularity of the boundary integral equation is regularized based on
Landwaber and Macagno’s approach (1969) for solving the exterior velocity potential
problem. An analytical surface, as well as Non-Uniform Rational B-Splines (NURBS)
surface, are developed to represent the geometry of the body surface mathematically,
in which the Gaussian points can be generated over the body surface globally. Follow-
ing this, a numerical scheme for regularized boundary integral equation with Gaussian
Quadrature is imposed.

Fourthly, floating bodies -spherical and ellipsoidal- are evaluated respectively. The
results of the new approach are compared against the available analytical solution, as
well as other numerical methods. The superiority of the new approach is illustrated

in terms of root mean square (RMS) error and elapsed time (ET) for several cases.

1.4 Overview of the thesis

This thesis is divided into six chapters. After the introductory chapter (Chapter 1),
Chapter 2 gives the mathematical formulation of the linear initial-boundary-value
problem for the wave-body interaction. In the linear problem, the body bound-
ary condition and the free-surface condition are linearized in which the time-domain
Green’s function approach is used to satisfy both conditions. The boundary integral
equation is derived using Green’s identity and the impulsive theorem in order to find
the velocity potential. The regularized method is applied to remove the singularity
involved in the boundary integral. The transient free-surface Green’s function which
is involved in the boundary integral is evaluated in Chapter 3 analytically. In Chapter
4, the numerical solution of the boundary integral equation is performed using the

one-panel method. Numerical results for the case of motion of a floating sphere and



ellipsoid are presented in Chapter 5. Conclusions are given in Chapter 6.
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The co-ordinate system shown in Figure 2.1 illustrates the problem under consid-
eration. The Cartesian co-ordinate system Ozyz is fixed to the mean position of the
body in space. The z-axis is vertically upwards and through the center of gravity of
the body. The z and y lie in the undisturbed plane of the free surface and the origin
is at the midship at z = 0, in a semi-infinite fluid, S,,. The fluid domain is denoted
by Q, the free surface by Sg, and the body surface by Sg.

The rigid-body motion is described by the six-component vector 7j, of displace-
ments and rotations from initial position. The six components of the motion of the
body are: n; = surge, 1, = sway, and 773 = heave due to translation, ny = roll, 75 =

pitch, and ng = yaw due to rotation.

2.2 Initial Boundary Value Problem

The problem here deals with a floating body on the free-surface in a semi-infinite fluid
without forward speed. The amplitude of motion is assumed small, and the linearized
time-domain analysis applicable. The fluid is assumed incompressible, inviscid, and
irrotational, and the fluid velocity in terms of the velocity potential, ¢(z,y, z;t) can

be written as

U =Veé(z,y,2t) (2.1)

The governing equation of motion is given by the Laplace equation:

V2p(x,y,z;t) =0 (2.2)
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Analyzing the linear body motion without speed, the unsteady oscillation body is
considered. The potential, ¢(x,y, z;t) due to unsteady motion is then defined by

separating into two distinctive parts, such as:

¢z, y,2;t) = drlz,y, 1) + dp(z,y, 2;t) (2.3)
where,
6
Or(z,y,2:t) = Y drl(x,y, 2 t) (2.4)
k=1
o1, ..., 06 = the velocity potential due to radiated wave

(surge, sway, heave, roll, pitch, and yaw respectively)

¢p = the velocity potensial due to diffracted wave

The diffraction potential consists of an incident wave potential,¢;, and the scattering

wave potential, @7, yielding

¢plz,y, z;t) = o1z, y, 2;t) + ¢2(z, 9, 23 t) (2.5)

Since the amplitude of the wave elevation is assumed small compared to its charac-
teristic wave length, the free-surface condition can be linearized. On the free-surface,

the dynamic boundary condition is
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dp(z,y, 2 t)

=0 =0 2.6
5 + gg on z (2.6)

and kinematic boundary condition is

op(z,y,2t) 0I5

e —55-—0 onz =0 (2.7)

where ¢ is the free-surface elevation. Combining the Eqn (2.6) and Eqn (2.7), the

linearized free-surface boundary condition may be expressed by the single equation,

Od(x,y,z;t)  O¢(x,y,z1)
ot? g Oz

=0 2=0 (2.8)

where g is the acceleration due to gravity. Without the fluid viscosity, the no-flux
condition must be imposed on the body boundary, which is defined that the normal
velocity of the fluid must be equal to the normal velocity of the body boundary

enforced on the exact position of the body surface, Sp(1):

%%LQ - for k=1,2,..,6 (2.9)
T
Oprlz,y,zt) 941

on on
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where 7) is an instantaneous velocity of a point on the body surface, and n, is an

outward unit normal to the fluid, out of the body surface defined as

iy = {n1,n2,n3}
FX ’f_ik = {77,47 N, TL6}
Fo= (2,9,2) (2.11)

The fluid velocities on free surface caused by the body must go to zero such as,

Vo(x,y,z;t) — 0 R=1/2?2+9y? — o0 onz=0 (2.12)

and the boundary condition on the bottom is obtained as

=0 2~ —00 (2.13)

Two initial conditions are required, since the free-surface condition is second order in

time.

op(x,y, z; 1)

=0 on z =0, t <t (2.14)
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where fy is some arbitrary starting time for the fluid motions it will be taken to be

zero in the radiation problem and —oco in the scattering problem.

2.3 The Boundary Integral Equation

The hydrodynamic or radiation forces on the body surface are investigated, and only
the potential ¢, with £k = 1,2...6 on the body surface is needed. The values of ¢,
on the free surface and at infinity vanish [see Appendix A]. The body surface can
be represented as distribution source velocity potential. The source potential is also
known as the transient Green’s function denoted as G. We define P(zp,yp, 2p) as a
field point and Q(zg, o, zo) as a source point, in the Ozyz co-ordinate system. The
transient Green’s function, G, is given in analytic form by Wehausen and Laitone
(1960) and it was split into two terms. The first term represents the potential at the
field point P at time t due to an impulsive source at the point ) at time 7. The
second term represents the wave system that are generated by impulsive source in

underwater disturbance. The expression of G is:

G(P,Q;t —7) = 6(t — T)Go(P,Q) + H(t — T)F(P,Q;t — 1) (2.15)

where 0(t—7) is the Dirac delta function; H(t—7) is the Heaviside unit step function;

the Rankine source is,

Co(P,Q) = — — — (2.16)
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and the memory effect is

F(P,Qit —7) =2 /O " Jo(kR)eH Jhg sinfy/kg(t — 7)]dk (2.17)

with R = \/(;Ep —z0)? +{yr —vyqg)?); ( = zp + 20} TPg = \/R2 + (zp — 2¢)?; and
Tpy = VE?+ (2 Jy is the Bessel function of the zeroth order.

Since the Green’s function as potential source moving under a free surface, the
Green’s function solves the following boundary value problem of the free surface

hydrodynamic, which are a Poisson’s equation
VLG(P,Qit —7) = ~4nd(P — Q)8(t —7),  fort>0, 2g<0  (2.18)

Initial condition

G(P,Q;0) =0, %S—_;—(P, Q;0) =0, for 2o <0 (2.19)
Boundary condition
0*°G oG )
Infinite condition
lim [VG(P, Qst — )] =0, (2.21)

The boundary integral equation for solving the velocity potential is derived by

applying the Green’s second identity, in the fluid domain 2.
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/V {c,bk(Q, TIVAG(P,Q;t — 1) — G(P.Q;t — 7)V4i(Q, T)}va

?bk

*/ {QS" (@73 GUDQL‘ m) =GP @5t =) (@, T)}dSQ (2.22)

where the volume V is bounded by Sg, and Sg = Sp + Sp + S«. Sp, Sr and
S are body surface, free surface and bounding surface at infinity, respectively. Left
hand side of Eqn (2.22) can be simplified satisfying for Poisson’s equation (2.18) and

Laplace’s equation (2.2); and using equivalent of the impulsive formula [see Rahman

(1991)] yields:

—aro(Pst=n) = [ {ol@n; G(P@tw) (2.23)

0
- 5%(@,7>G<P,@;t—v>}ds@ Peq

Considering the field point on the body surface, Sg, Eqn (2.23) is integrated both
left and right hand sides of Eqn (2.23) with respect to 7 from 0 to ¢, and then using

the impulsive formula [see Rahman (1991)] yields,

— (P, 1) / dT/sB { @G POt —7) (2.24)

nQ
P

- Ge@NAPQit- )}dSQ; P& Sp
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We obtained the integral representation of the velocity potential in the fluid domain
2, in terms of a mixed distribution of sources and normal dipoles on Sg. Now
substituting Eqn (2.15) into Eqn (2.24), and satisfy the Dirac delta function and the
Heaviside step function. Therefore, the boundary integral equation to evaluate the

velocity potential, ¢ is obtained as

2mdp(P.t) + /SB o@D, t)ﬁnQ< Lo )dSQ

TrQ TPQ

O, 1 1
— /SB@ %é(@,t)(——— — —)dSq

- /dT/ {an@. %(P,@;t—ﬂ

Eqn (2.25) is in the typical form of a Fredholm-Volterra integral equation for the
unknown potential on the body surface. The Fredholm kernel which is a Rankine
source or singular part of Green’s function is independent of time, and it can be
evaluated for one time at ¢t = 0 for all time evaluations. The Volterra kernel is time
dependent so that the evaluation of the kernel which is the memory part of Green’s
function is performed for each time step for ¢ > 0. However, the difficult part of
Eqn (2.25) evaluation is to solve the singularity of integral and the memory effect of
Green’s function F involved in the convolution integral. The singularity integral will
be evaluated by using the regularized approach in the next section. The analytical
procedure to evaluate the memory effect of Green’s function will be demonstrated in

detail in Chapter 3.
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2.4 Regularized Boundary Integral Equation

It is shown in Eqn (2.25) that the free-surface effects, F(P;t, Q;7) are absent in the
limit ¢ = 0. The integral equation involves only the singular part or the Rankine ring
source and its negative image above the free surface. The general Regularized method
solution for the potential flow problem which is based on Landweber and Macagno

(1969) will be extended. Therefore, when t = 0, Eqn (2.25) can be rewritten as:

21 (P, 0) +

3(Q.0) 5 — L )asg

Se(t) 8nQ TPQ Tpo

= [ #5745 (2.26

T

where ¢, (Q) = %(Q, 0), and by adding and subtracting of Eqn (2.26), yields,

210 = [ {0@:0¥a| -+ -] e~ a@[ -+ -] Jas
-2 [ {#@0%a[ -] Ao~ ai@]; -] Jase (2.2

Introducing the Gauss flux theorem states that the flux through a closed surface due
to a unit source on the same surface is 27 such as [See Jaswon and Symm (1977) for

details],

TLQdSQ = 27 (228)

1 1
h¥la i
58 TPQ  TPQ



and substituting it into Eqn (2.27) yield,

1 1 1

arou(Pi0) = [ {[ex(@:0) - au(Ps0)| Vg

TpQ TpQ

1 +dS,
TPQ]} @

TPQ

2 [ ooz -[] - a@

By adding and substracting of Eqn (2.29) with the following term,

5(Q) { 1 1
(P + HdS
/SB Qk( )6(]3) TpPQ TPQ @
and introducing the potential constant ¢, given as,

b= [ 8@

1
+ —«}dSQ
SB TQ T@

SNV PR
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1

TPQ

(2.29)

(2.30)

(2.31)

where 4(()) is the potential distributed on Sp which makes the body surface an

equipotential surface of potential ¢, and satisfying the following integral,

Therefore, Eqn (2.29) can be summarized as
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sron(Pi0) = [ {[8:(@0) - (P10 Vo | + —-] g

e TpPQ

- [w@ - a3 [+ s s+ )

- 2 {a@ove[=ia-a@[=]}dsa )

TPQ TPQ

An iterative formula for finding § of Eqn (2.32) may be written as,

» 1 _ 1 17
s (Py = §*N(P) +§;r—/9 {5(k)(Q)Vp E;‘r %}-”P
1 1
— 5PV, [__ + _] .ﬁQ}dSQ (2.34)
TPQ  TPQ

The discretizing of Eqn (2.33) and (2.34) with Gaussian quadrature will be performed
in Chapter 4.

2.5 The Hydrodynamic Force

The hydrodynamic or radiation forces acting on the body due to the fluid disturbance
caused by body motion are found by integrating the pressure over the body surface.
The generalized force on the body in jth direction is given as:

F.R(t)-:/s p(P,t)n;dSp i=1,2,3 (2.35)
B

J
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where n;, representing the generalized unit normal as defined in Eqn (2.11), j =
1,2, 3 coresponds to the directions of the z,y, z axes respectively, and p(P,t) is the

hydrodynamic pressure is given by Bernoulli’s equation.

p(Pt) = —p(¢: + % IV + g20) + pa (2.36)

where ¢; denotes the partial differentiation on ¢ with respect to time ¢, p is the fluid
density, g is the acceleration of gravity, and zy is the z-coordinate of a point on the
free surface. Since the oscillatory motion of the body and fluid are assumed to be
small, the second-order terms of Bernoulli’s equation can be neglected, resulting in

the following equation,

O,

p(Pt) = —p— - (P.1) (2.37)

where ¢, is the potential which describes the fluid disturbance caused by kth mode
motion. The hydrodynamic force on the body in the jth direction due to arbitrary
motion in mode kth can be defined by substituting Eqn (2.37) into (2.35) in the
following form:

Oy,

R A
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2.5.1 Impulse Response Function

In this section, the hydrodynamic force as a result of the impulsive motion is formu-
lated. The body is defined as linear system in which the ship motion in each kth mode
represents an input and the hydrodynamic force is an output of the system. In this
case, the impulse response function represents the characterization of the body linear
system. The theory of impulsive-response function for linearized ship motions as in-
troduced by Cummins (1962) and elaborated by Ogilvie (1964), is followed. Ogilvie
(1964) proposed an instantaneous velocity of the body surface 7 is equal to §(t) and

decompose the velocity potential ¢y as,

(P, 1) = ¢ (P, 0)6(t) + ¢ (P, 1) (2.39)

where the first part on the right-hand side (RHS) of Eqn (2.39) represents the im-
pulsive part of body motion, which is the condition at ¢ = 0, and the second part is
the time history of the fluid disturbance caused by the initial impulse of the first part
which is the condition at ¢t > 0. Liapis (1986) show the potential for an arbitrary
forced motion in the k' direction is defined as the convolution of ¢ (P,t) with the

velocity of the motion, and it is expressed as,

0u(P.0) = [ 6u(Pyt — ryic(r)dr (2.40)

Fqn (2.40) can be also decomposed into two terms such as,
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800 = [ (P 0yir)ir (241
Dpyy = At¢;t>(P,t~T)ﬁk(7)dT (2.42)

Substituting both Eqn (2.41) and (2.42) into the right hand side of Eqn (2.39) and

considering the integration of delta function yield:

Bu(P1) = (P00 + [ 60 (Pt = ryi(r)r 243)

The hydrodynamic force acting to the body, F ff; is given, by substituting Eqn (2.43)
into Eqn (2.38) and considering the Leibnitz-rule of differentiation under integral sign

[see Wylie and Barret (1982) for details], yielding:

~FLt) = piclt) [ 6 (P,0)ngdSp + pie(t) [ o7 (P,0)njaSp
Sp Sp

t . a¢](€t) .
+ p/o ~/SB 5t (Pt — 7)1k (T)n;dSpdr (2.44)

and Eqn (2.44) can be simplified as:

~ ) = () + Mi(t) = [ KE (= (7 (245
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with
Pk = ﬂ/s 8y (P, 0)n;dSp (2.46)
B
Ni = o [ ¢ (P.0)m,ds, (2.47)
B
p gy
KR(t—1) = p /S (Pt = m)nydS, (2.48)

where (i, is the infinite fluid added mass, and is a function of the body geometry.
The term, A;j is the damping coeflicient, and it is a function of the body geometry.
K ﬁc(t) is an impulse response function for a linear system, and depends on time and

geometry of body, but it is independent of the past time history of the motion.

2.5.2 Added Mass and Damping

The motion of a floating body can be considered to be a harmonic function of time
with a frequency, w. The hydrodynamic force acting on a floating body for sinusoidal
motion in frequency domain is given as,

*}ZR]C(W) = ei”t(—wQAjk(w) -+ z'ijk(w) -+ Oj/;) (249)

Substituting n(t) = €' into (2.45), and neglecting the hydrostatic restoring force,
Cir, in Eqn (2.49), the time-dependent impulsive response function can be related to

the frequency-dependent coefficient as follows:
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. . t .
et ( —w A (w) + injk(w)> = th< — W g F iw g + w /o Kﬁ(T)E”“”dT) (2.50)
Equating real and imaginary parts of Eqn (2.50) yields,

¢
Ajp(w) = /ujkm—l/ Kﬁc(T)SiHWTdT (2.51)
w Jo

¢
Bj(w) = /\jk+/0 Kf,i(T)cosw'rdT (2.52)

where Aj(w) and Bj,(w) are the added-mass and damping coefficients of the linear

frequency domain respectively.



Chapter 3

The Transient Free-surface Green’s

Function and Analytical Solutions

In evaluating the boundary integral equation (Eqn 2.25), for ¢ greater than 0, the
free surface effect, F (P,Q;t), is considered. It is shown that the major part of the
total computing time required for the numerical computation of Eqn (2.25) is spent to
evaluate the F (P, Q;t) function because of the convolution integral. The F (P, Q;t)
function has to be evaluated for each location of the field, P, and source, @, at
every time step. Several approaches have been developed in order to reduce the
time consumed and the numerical error of F (P, Q;t) function evaluation. These were
reviewed in Chapter 1.

In this chapter, the F (P, @;t) function is formulated in terms of the natural vari-
ables F'(u, 3). Therefore, an analytical approach is developed to evaluate the F(u, 3,)
function, based on Clément’s approach (1998a). Since the new approach is developed
for the domain y > 0, the analytical expression for p = 0 and p = 1 are explored as

well to verify the new approach, respectively. Some numerical computations of the

25
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F(u, 3,) function evaluation are presented. The numerical performance of the new
approach is demonstrated in comparison to the established method,i.e.; tabulation
method and Runge-Kutta method, in certain cases. The implementation of the new

approach into the convolution integral equation solution is performed.

3.1 The Free-surface Green’s Function

As was mention in the previous chapter, the solution of the initial boundary value
problem with a linearized free-surface condition for the velocity potential to a floating
body is derived from the Green’s theorem. The fundamental solution of this case is
addressed to the source potential which satisfies the free-surface condition, i.e. the
free-surface Green’s function. The principal free-surface Green’s function has been

given by Wehausen and Laitone (1960) as,

F(P,Q:it) = 2/000 Jo(kR)e™\ kg sinfy/kat)dk (3.1)

where P(zp,yp, zp) is a field point and Q(zg, yo, z¢) is a source point, in the Ozyz co-

ordinate system, R = \/(CEP —20)*+ (yp —yg)?, ( = 2p+2g,Tpg = \/R2 + (zp — 20)?,
Tpo = VRZ 4+ (2, and Jy is the Bessel function of the zeroth order. Typical of Eqn
(3.1) is the infinity integral, and it is interpreted as transforms in wavenumber space
over the free surface domain. The time dependence is harmonic with a prescribed
frequency, w. Since the integrands are highly oscillatory, direct numerical integration
is inefficient, especially when the field point, P, and the source point, ¢}, are close to

the free surface. It is more convinient for analytical evaluation to non-dimensionalize
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the physical parameters with respect to g and rpg. The variable ¢ is replaced by 3,

and let write the new variables,

A= krpg; LL:—L; p=t
TPQ
Then,

gA

kR = 3J(1— ) Jho = |2

TPQ

1
kC = —Au; dk = —dA\
TPQ

Therefore, Eqn (3.1) can be re-written as

F(P,Qit) =2, [ Fi(u.5)
Pa

where

Fy(p,5) = [ Iy~ i) N)e™ Rsin(0v/R)a)

(3.2)

(3.3)

The parameter p relates the depth of submergence to the horizontal distance, R, with

the range value 0 < p < 1. The parameter, 3, is related to the phase of the generated
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Also, in the evaluation of boundary integral equation (Eqn 2.25), the normal of

F(P,Q;t) function has to be defined yielding

oF oF oF oF
Tz 824

e (P Q1) = a5 (PL Q) g o~ (P Q51) +

By rendering various terms non-dimensional, one obtains

OF [7 JCQ—CCP
g P @0 = =2 [ )

oF 9 Yo —Yrp
P, —2 ,
&yQ( Q;t) = W T TR Fy(p, B)

oF 5 [9
5,2@ (P Q t) 2 TPQ TPQRFS(M 5)

where

B ) = [ (/1= w0 avRsin(5vA)dN

(3.4)

(3.5)

(3.6)

(3.7)
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Fy(u,8) = /0 T (1 = 2N e AV A sin(BVA)dA (3.9)

3.2 Analytical Solution of F, F;, and Fj

The solution of Eqn (3.3), Eqn (3.8), and Eqn (3.9) can be expressed into nine terms
of fourth order ordinary differential equation. The procedure of derivation is based
on Clément’s approach (1998a) and it is described in Appendix B. The nine terms of

fourth order ordinary differential equation as the solution of Eqn (3.3) is

d*Fy A3 d*F ,d*Fy
zy 5 + z2(8 — B1) a5 + T3 T + z4(8 — 51) Rz
d’Fy d*Fy dFy
+z5(0 — B1) FRE + Zg a7 +$7(ﬁ_51)7{5(ﬁ)
dF:
where
T =1; Ty = p; x3 = pfy; Ty =75 L5 = 51;

(3.11)

= O]

1 7 7
Tg = 1534—4#3 T7 = Z; 758:151? Tg =

and subject to the initial conditions,
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dFy
By (p, = 0 — = U
1(/‘1’/0) O/ d/g (M?O) /’L)
d*Fy d*F,
= 0 = - 1 3.12
WL (1, 0) 0; 7 (1,0) = —=3p+ (3.12)

The solution of Fy(u, ) and F3(p, ) functions in Eqn (3.8) and Eqn (3.9) repec-
tively can also be expanded into nine terms similar to Equ (3.10). The nine variable

coefficients of Fy(u, 3) are described as

1 1
V1 =15 Yo =p; yz = pf; ys = U= 5&;

11 11 21

1 ‘
vo =B+ yr =15 ve =P v = (3.13)

subject to the intial conditions,

dF.
Fy(p,0) = 0; 2 (11,0) = 3/ 1 — pi2;

dp
d?* F, A F -
T W0 = 0 T 0) = (8 = 151 -2 (3.14)

and the nine variable coefficients of F3(u, ) functions can be defined as:

1 1
2 =1 29 = p; 23 = pf; 24 = AR 5/61;
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1 11 11 25
26 = Zﬁi‘z +4p; 27 = Rl —ﬁl %o = (3.15)
subject to the initial conditions
dF;
F: = 0; 0)=1-3
3(,0) = 0; i —= (1, 0) = T

d*Fy d*Fy .
— 0 = 151% — 9 3.16
d/32 ( 70) OJ dﬁB (/’L7 O) 51u /‘l ( )

3.2.1 The Power Series Expansion

Due to the fact that the Fy(u, 8) function shown in Eqn (3.10) is linear with variable
coefficients, the solution can be expanded in power series with respect to 3 = [,
where ; is a constant. The solution of Eqn (3.10) can be expressed in terms of a

power series as.

Fi( i 28 =) (3.17)

Eqn (3.17) is expressed in first, second, third and fourth derivations, yielding

F(3) = a+ i Mg (8 — B

m=2



2@2+Z
603'}‘2 '—]_

24ay4 + Z m(m — 1)(m — 2)(m — 3)an (8 — G)"* (3.18)
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- 1 am(ﬁ ﬁl)

~2)am(B ~ /)"

Substituting Eqn (3.17) and (3.18) into nine terms of Eqn (3.10) and splitting it into

two terms, right hand side (RHS) and left hand side (LHS) for simplicity, one obtains

11

z Fy (ﬁ)

zo(f — B1) Fy (B)

z3Fy (5)

z4(B — 51 Fy ()
z5(0 — B1)F) (6)
26y (0)

z7(8 — B1) Y (B)
5 Fy ()

zo F1(5)

24704 + i z1(m + 4)(m -+ 3)(m + 2)(m + 1)

m=1

X a'm—i—l(ﬂ - ,ﬁl)m

zo(m + 2)(m + D)mam2(6 — 51)"

K

2
I

6235+ 3 za(m + 3)(m + 2)(m + Dansa(6 — A)™

m=1

Z zgm{m — Va, (6 — 6)™

m

8

81

.’E5<m + 1)7nam+1(/6 - ﬁl)m

3

260z + Yy 6(m + 2)(m + 1)amya(8 — H1)™

m=1
Z $7ma'm(/3 - ﬁl)m
m=1
zsar + Y zs(m+ Dami (6 — 61)™
m=1
Zgag + i To@m (0 — B1)™ (3.19)
m==1

Summation of all terms from the right hand side (RHS) as well as from the left hand
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side (LHS) of Eqn (3.19) is to be equal to 0. Summation of the first part of the first,
third, sixth, eighth, and ninth term of right hand side (RHS) of Eqn (3.19) gives a

relation between coefficients:

1
ay = - (6z303 + 2x6a9 + Tgay + Toagp) (3.20)
24331

Therefore, as, ag, ..., 4o can be formulated as,

1
Amyqg = p {5m+3am+3 + Sm+20m+2 + Smy10me1 + Smam} (3'21>
m-+-4

m = 1,2,3,., 00

where

Smed = zi(m+4)(m+3)(m+2)(m + 1)
Smyz = x3(m+3)(m+2)(m+1)
Smy2 = To(m+2)(m+ )m+ zg(m +2)(m + 1)
Sme1 = xs(m+ 1)m + zg(m+ 1)

Sm = xa(lm — 1)m + z7m + xg

In the numerical computations, the first four coeflicients of Fj(u, ) function, namely,

ag, a1, G2, G3, can be obtained from the initial conditions (Eqn 3.12), which is in term
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of the function Fy(f;) and its first three derivatives at initial time [, i.e.,

11

ag = F1(B1); a1 = Fi(B); ay = %Fln(ﬁl); ay = %FI (61) (3.22)

The coefficient, a4, can be obtained from Eqn (3.20). Based on Eqn (3.21), the
coeflicients as, ae, ..., aps in the series expansion of the solution can be easily computed.
The same procedure is also used to find b,, and ¢,,, which are the coefficients of the
series of F5 and F3 function solutions, respectively. Therefore, the solution of Fy, F

and F3 functions can be summarized respectively as:

My

Fi(p,B) = > an(B~F)" (3.23)

m=0
Mo

Fyp, 8) = Z_ b (6 — B1)™ (3.24)

M3

Fs(p, B) = > em(B—B)" (3.25)

m=0

where a,,, b,, and ¢, are coeflicients series, and, My, M and M; are total expan-

sion orders of series of Fy, Fy and Fj functions respectively. Finally F (P,Q;t) and

F,(P,Q;t) can be summarized respectively as:

My
FPQit) = O am(B—p)" (3.26)
m==0
My
Fo(PQit) = (Coflag + Cafiyg) D b8 — 51"

m=0
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Ms

+Cyflg Y (B — B (3.27)
m=0

where,

C] = 2 f
\ TPQ
¢, = o [T e—ur
TPQ PQR
Cy = =2 g Yo —Yp
PQ TPQR

Cy = 2, [—=
’I“PQTPQR

3.3 The Computation of Fi, Iy, and Fj

The computational results of Fy(u, 5), Fa(u, 5), and F3(u, ) functions are plotted on
Figures 3.1, 3.2, and 3.3 in domain 0 < < 1; 0 < < 12, respectively.

Consider now the Power series expansion method, which was investigated, quali-
tatively. The accuracy and the computing time of the new approach depend on the
time range AB. The time range, AG = § — [y is applied in order to speed up the
convergence of the summation of an infinite series in numerical computation. The
number of coeflicients in the series is obtained for each time range determined. With
the coefficients of series obtained, we can decide further any time step for simulation.
This is shown in the sketch of Figure 3.4. The computational tests are conducted
with different time range setup 0.5, 1, 1.5, 2 and 3, respectively in domain 0 < 3 <15

for p equal to 0, 0.5 and 1, respectively. The results are shown in Tables 3.1, 3.2, and
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Figure 3.3: F3(f, 1) function for 0 < p <1, 0 < g <12

3.3 that list data in terms of the total expansion order, M,,, of each time range and

the root mean square (RMS) error evaluation, where RM S is defined as

0 o <
3 = <R
e me R -t
S o=
= s 8
& = g
= s 3
+>
S 5
o} m %
> 2 8
A > U
2 S =
o~ < > ©
~ m L %
g n um =
=
=5 = o &
5 +©
[
_ = o 9
g 25 Z £
g ° - A
Py ) < o)
~— < = =
» - S =
=N 2 2 oz
oS o g
— =] S
o < =
I = . 15}
£ g E
N o | o
= E 2 5 =
i
X L £ = s
= < =
h % ~—
E + — —
T 2N
L2 g
¥ B E 2
_ o o =
g = 2 S
=8 =2 w9
T » =
~~ - -~
S = B
S

where (

Also, the tables show, the best time range, AS,

).

might be equal to 0.5 with small error as well as total number of expansion order.

3.10

(

analytical solution of Eqn

This time range is used in the next computation of Fy(u, ), Fo(y, 8), and Fs(u, 5)

functions.



Time step

Time range, Ap

A 4

11

= v

Figure 3.4: Time sketch

Table 3.1: The time range evaluation of Fy(u, 3) for 0 < G <15

Time range, A p=0 p=0.5 p=1
M., RMS | M., RMS M., RMS
0.5 32 | L.OOE-11 | 29 | 1.31E-15| 24 | 1.54E-16
1.0 42 | 1.06E-10 | 38 | 2.22E-15| 32 | 3.47E-16
1.5 51 | 1.04E-09 | 47 | 5.45E-15| 38 { 1.06E-15
2.0 59 | 4.66E-07 | 55 | 2.66E-14 | 43 | 2.52E-15
3.0 75 | 3.71E-05 | 72 | 8.49E-13 | 58 | 2.45E-14

38
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Table 3.2: The time range evaluation of Fy(u, ) for 0 < g < 15

Time range, AS p=20 w="0.5 =1
M., | RMS | M, | RMS | M RMS
0.5 32 | 6.56E-10 | 31 | 8.16E-15| 0.0 | 0.00E400
1.0 42 | 1.22E-08 | 40 | 1.14E-14 | 0.0 | 0.00E+00
1.5 53 | 6.65E-08 | 49 | 8.91E-14 | 0.0 | 0.00E+00
2.0 62 | 1.43E-05 | 59 | 3.86E-13 | 0.0 | 0.00E4-00
3.0 78 | 4.25E-04 | 75 | 1.54E-11| 0.0 | 0.00E+00

Table 3.3: The time range evaluation of F3(u, ) for 0 < 6 <15

Time range, AS p=0 p=10.5 p=1
M., | RMS | M., | RMS | M., | RMS
0.5 32 16.04E-10 | 31 | 647E-15| 25 | 1.73E-15
1.0 42 | 7.35E-09 | 40 | 1.73E-14 | 33 | 2.08E-15
1.5 51 | 3.26E-08 | 50 | 1.52E-13 | 39 | 5.46E-15
2.0 62 | 4.24E-05 | 58 | 3.22E-13 | 46 | 1.62E-14
3.0 77 | 1.95E-03 | 76 | 4.94E-11 | 62 | 1.55E-13

3.3.1 Analytical expression for p =0

It is shown in Figures 3.1, 3.2 and 3.3 that when both the source, ), and the field, P,
lie on the free surface (i.e. p = 0, zp = zg = 0), the function has oscillatory behavior.
Eqns (3.3), (3.8), and (3.9) reduce to term of first kind Bessel functions, and the same

expressions are given by Wehausen and Laitone (1960) as,

R B B LB (B
A0 = 55{4(5)7(F) + 4 (57 (F)) (3.29)
BB, BN LB (B, (B
B0.8) = 5550 (5)04(5) + T (5) 74 (F)
ﬁ2 ﬁQ [))2 ﬁQ
- (5) (T +34 ()14 (F)) (3:30)



Wﬂg 8 ,62 2 52 ﬁQ 52
B8 = —555{(gm ~ 74 (F)4(F) -3 (F) 1 (F)
52 52 62 ﬁ2 62
~a () - 5151 (F)) (3:31)

The Bessel function of arbitrary order in Eqn (3.29), (3.30) and (3.31) can be solved
numerically using recurrence relation with the series expansion for small arguments
and an asymptotic expansion for large arguments, following Zhang and Jin (1996).
Therefore, in order to show how the accuracy of the new approach, the compu-
tation of the Power Series of Green function (PSGf) is validated by evaluating of
the analytical expressions of Fy(0,pu), Fo(f, 1) and Fs5(f, 1) in domain p = 0 and
0 < B <15, with a time step of 0.1. The results are plotted in Figures 3.5, 3.6, and

3.7 respectively.

— Power Series Green function

+ Analytic Solution

Figure 3.5: Comparison of Fy(8, 1) function for p =0, 0 < § <15, Time step= 0.1
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700 ) .
— Power Series Green function

+ Analytic Solution

F,(B,)

-700 -

Figure 3.6: Comparison of Fy(0, 1) function for y =0, 0 < 4 < 15, Time step = 0.1

3.3.2 Analytical expression for =1

When the field point, P, and the source point, (), are at the same vertical axis which is
R =0, then 4 is equal to 1. The Bessel function in Eqn (3.1) will disappear when p =
1, and the Fy(f, p) function is expressed analytically as a confluent hypergeometric

function given by Clément (1998a) such as

2

mw,m:ﬁexp(—%)w«;-,g,% (3:32)

Equation (3.32) can be solved numerically using recurrence relation for confluent
hypergeometric function following Zhang and Jin (1996). This analytical solution
can be used to validate the accuracy of the power series Green’s function for Fi (03, p)

evaluation at ¢ = 1. The comparative results are plotted in Figure 3.8 at 0 < 8 <15
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— Power Series Green function

+ Analytic Solution

Figure 3.7: Comparison of F5(8, p) function for p =0, 0 < # < 15, Time step = 0.1

with a time step of 0.1.

Now, we compare the proposed method to other methods such as the fifth-order

Runge-Kutta method and tabulation method developed by Huang and Hsiung (1996).

The numerical comparison is presented in Table 3.4 in terms of Root Mean Square

(RMS) error for different time step, 0.1, 0.05, and 0.01, respectively. The RM S error

evaluation is used to measure the accuracy of numerical computational, and it can

be defined as:

RMS = |-y froeet 2% (3.33)
N pat F(])

exact

It is shown in Table 3.4 that a power Series of Green’s function gives better
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Figure 3.8: Comparison of F;(f, 1) function for g =1, 0 < g < 15, Time step = 0.1

Table 3.4: The RM S error for Fi(u, ) evaluation at 0 < 3 <15

Time step p=0 p=1
PSGf RK-05 | Tabulation | PSGf RK-05 | Tabulation
0.1 9.89E-13 {1 0.01197 | 6.13E-06 | 5.98E-12 | 0.00628 0.00032
0.05 9.89E-13 1 0.01193 | 6.13E-06 | 4.26E-12 | 0.00449 0.00060
0.01 9.89E-13 | 0.01191 | 1.28E-05 | 2.50E-12 | 0.00263 0.00420

accuracy compared to a fifth-order Runge-Kutta method or the tabulation method. In
evaluating with a power series of Green’s function, reducing the time step of numerical
computation does not much improve accuracy since the time range AfZ is fixed. This
differs from the common numerical method such as Runge-Kutta, where numerical
errors decrease with decreasing time step. The investigation of the tabulation method
(3.4) shows that the error increases when the time step is increased. The time step

used on tabulation is 0.1, and the errors originate from interpolation.
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3.4 The Convolution Integral Evaluation

In Eqn (2.25), two Coﬁvollltion integrals have to be evaluated on the right hand side.
The major part of the total CPU time requirement in the numerical computation of
(2.25) is to evaluate the convolution integral, which is the memory part of Green’s
function equation, F. The function F has to be evaluated for each location of the
couple points P and ¢} on the body surface at every time step, and also be stored for
the next time-step evaluation. In this section a power series of Green’s function is
applied to evaluate the convolution integrals and a computational test is conducted
to compare the accuracy of this approach to others. Let us rewrite both convolution

integrals of Eqn (2.25) in the form of

t

1(P.Q1) = [ @ F(P,Q;t — t,)dt, (3.34)

J(P,Q.t) = [ $(Q t1)Fng(P,Qst —11)dty (3.35)

<

where F(P,Q,t) and FnQ (P, Q,t) are expressed in Eqn (3.26) and (3.27), respectively.
The terms ¢(Q), t1) and ¢(Q, ;) are body boundary condition and a previous velocity
potential on body surface, respectively. Because q(@, 1) and ¢(Q,t1) are not contin-
uous, Eqn (3.35) and (3.35) might be solved numerically. Currently, there are several
methods available to evaluate convolution integral, and Trapezoid rule is the most
commondly used. The linear variation approach proposed by Kashiwagi (2000) is
used in order to keep numerical acuracy. By analytical derivation, we conclude Eqn

(3.35) and (3.35) can be performed numerically as,
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Ll AL

I(LAt) = F{ Q-+ 2(1&+1>FL~(5+1) + (a1 + 2¢1>FL~1} (3.36)
=0
LA
J(LAL) = ~~g{(gm +20101) P,y + (Sre1 + 200 Fo,_, | (3.37)

l

Il
o

where At is a constant time-step size, and t = LAt is the present time. The evaluation
of system output I(P, Q;t) and J(P,Q;t) with the input ¢(t) and ¢(t) respectively
which are assumed equal to sin(6t) are performed. However, the analytical solution
of Eqn (3.35) and (3.35) have to be developed in order to validate the numerical
approaches.

The analytic solution of the Eqn (3.35) can be performed by substituting an

alternative solution of F' function presented in Eqn (3.26) into Eqn (3.35) yields,
M t
[(P,Q;1) }: / Sin(67)(t — t,)™dr (3.38)

Because ¢(Q, t1) is a continuous equation, by using the recursive relation, Eqn (3.38)

can be solved analytically as,

In(P,Q;t) = Z_ am (P, Q)nz[% - %— /0 t(cos(6t1)(t—tl)m'ldtl] (3.39)
M m
n(P.Qi1) = 3 an(P.Qn[T /0 (sin(6t,) (¢t — t1)™ (3.40)

3
I
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and it can be simplified as,

I.(P,Q;t) = Zam(P,Q)nZ[E—%Hm-l} (3.41)
m=1
My m
ILn(P,Qit) = 3 an(P,Q)nz| o Ins (3.42)
m==1
with initial condition as
Io(P,Q:0) = ~%(cos(6t)—1) (3.43)
I(P.Q:0) = (sin(6r) (3.44)

At this point, computational tests for convolution integrals are presented. Numer-
ical tests are performed on a field point P(5,0, —1) and a source point Q(2,0,—1) in
the 0 < ¢ < 20 domain, conducted with different time steps, (At = 0.005, 0.01, 0.05
and 0.1 respectively). The advantages of the new approach are demonstrated by
comparing with the Runge-Kutta method, and the tabulation method developed by
Huang and Hsiung (1996). Power series of Green’s function (PSGf) with the extended
linear variation is compared with the fifth-order Runge-Kutta method and the tab-
ulation method, both combined with the trapezoidal rule in evaluating Eqn (3.35).
The results are plotted in Figure 3.9, and the numerical performance data (elapsed
time (ET) and root mean square (RMS) error) are presented in Table 3.5.

The elapsed time (ET) is a measure of the amount of time that has passed since the
program started. Elapsed time is usually close to the CPU time if the computer spent
the vast majority of its time executing the program. FElapsed time is evaluated by

setting the record time function at the start and end of the program, and subtracting
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Figure 3.9: System output for P(5,0,-1), Q(2,0,-1),0 <t <20, At =0.1

the former from the 1attér. (This program was run on a PC Pentium 1 Gb Mhz, 256
RAM).

Figure 3.9 and Table 3.5 illustrate the superiority of PSGf compared to the Runge-
Kutta method or tabulation method, especially when the time-step is decreased.
Although the RMS error for PSGf and Runge-Kutta appears almost indistinguishable
at time step of At = 0.1 and At = 0.05, the result at At = 0.01 shows the RMS error
for Runge-Kutta almost three times that of PSG{, and the elapsed times three to five

times greater.



Table 3.5: Numerical performances of the convolution integral evaluation

PSGf RK-O5 Tabulation
Time step with linear variation | with trapezoid rule | with trapezoid rule
ET RMS ET RMS ET RMS
0.1 0.0156 0.0308 0.8120 0.0306 1.7344 0.0775
0.05 0.0625 0.0079 1.3910 0.0079 3.0469 | 0.07158
0.01 1.3281 0.0009 7.2960 0.0023 44.5000 | 0.0087
0.005 5.1719 0.0008 15.406 0.0023 176.1875 | 0.0082
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Chapter 4

Numerical Implementation

In this section, a one-panel method to evaluate Eqn (3.1) is proposed. In this method,
the body surface is obtained as one panel, and the number of Gaussian quadrature
points are generated on the surface body. The Gaussian quadrature points, which are
used also as collocation points, are calculated exactly from the mathematical surface
definition of the body, and the potential distribution are determined at these points.
Since there are no exact mathematical surface available for the irregular shape of body
like ship, submarine, offshore structure etc., the NURBS (Non-Uniform Rational B-
Spline) is adopted in order to generate the body surface mathematically.

After discretized the body surface into a number of Gaussian points, the singular-
ity of the boundary integral in term of the potential distribution is regularized based
on regularized Green's formula introduced by Landwaber and Macagno (1969). In
order to simplify the solution, the discretized integral is decomposed into a linear sys-
tem of algebraic equations with two kernel matrices, [G] and [H], and the Gaussian
elimination method is used to solve the simulataneous equations to obtain unknown
potentials at ¢ = 0. The time integral of the boundary integral equation have to be

solved by using the time-stepping approach. The memory part of the Green’s function

49



o0

and its normal are computed at each time step and these quantities are stored in the
computer memory for use in the convolution term at subsequent times. The convo-
lution integrals involved in the boundary integral are evaluated by a linear variation

approach.

4.1 Discretization of Body Surface

Both the analytical surface and the NURBS surface procedures are employed to con-

struct the sphere and ellipsoid surfaces respectively.
4.1.1 The Analytical Surface

The exact surface definition of an 3-D Sphere is used to generate gaussian quadrature
points, which are also called collocation points. The potential, ¢, is assumed constant
and it is determined at each collocation point. There are two parameters,  and ¢,
which are used to locate collocation points on the surface of the sphere so that the
Jacobians are dependent on the collocation points. Considering a half body of the
sphere, the parameters 6 and g are divided into segments, 0 < 4 <27 and 0 < ¢ < 7,

respectively. The collocation points of the sphere with a radius, r, are obtained by,

Ti; = 7Tcost
yy; = rsinfcosyp (4.1)

zi; = -—rsinfsing



ol

The gauss-legendre quadrature with 8 and 16 points are used, and the total number of

collocation points for a half suface body is 8 x 8 = 64 and 16 x 16 = 256 respectively,

and its shown in Figure 4.1.

64 Gaussian points

A d bS5
GULTnLabn Lo

A

=]

I
SOAGO LI Loo

A & K

Figure 4.1: Hemisphere Gaussian quadrature points
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4.1.2 NURBS (Non-Uniform Rational B-Spline)

The body can be generated by NURBS surface based on the offset data as input, and
the following procedure is inspired by Sheng’s work (2003). The NURBS surface is

given as:

-

W(u,fu) = =0 20 Wi, Nip (W) Nig (V) A
ZTLD S o wi i Nip(u)Nj 4 (v)

(4.2)

where W(u,v) is the position vector along the the NURBS surface, A;; is control
point located at (X, ;,Y;;, Z; ;) associated with weight w, ;. N;,(u) and Nj,(v) are
the basis functions of degrees p and ¢ in u and v direction, respectively. The value of
the parameters u and v varies from 0 to 1.

The control points, /_fi,j for i = 1,...,m and j = 1,...,m, in Eqn (4.2) can be
defined, if the offset data points, Wy, for £k = 0,...,n and [ = 0,...,m, on the curve
surface are given. The nonuniform knot vectors, U and V have to be defined in order
to compute the basis functions, N, ,(u) and Nj4(v). Detailed description to find the
basis functions are presented by Piegl and Tiller (1997). Therefore, a system of two
linear functions is developed to solve Eqn (4.2) obtaining control points A}j.

Based on the number of control points, the weighting function, w; ;, is defined by
Legendre quadrature following Golub and Welsch (1969). Therefore, using Eqn (4.2),
the new points, W (z,y, z), on the NURBS surface of the new body, which are also
obtained as Gaussian points or collocation points, can be determined based on the
parameters v and v in which the number of points is adjustable. Three equations to

find the coordinate x,y, z can be expressed as,



o3

r=z(u,v) = Bu,v)X;;
y=y(u,v) = Bu,v)Y;

2= z(u,v) = B(u,v)Z;, (4.3)

where

i—0 Zy Lo Wi, g Nip(u) Niy(v)

B
(u,v) OE o wi; Nip(u)N; g(v)

The unit normal vector of the W’ is defined by the cross product of two unit tanget

vectors 1in 4 and v directions such as

-t —

A = ngi -+ nijr n.k=dxé (4.4)

where the unit tangent vector d and € are

Jdr- Oy- Oz

- 1

= i+ =g 4 —k| =dgi+d, d,k 4.5
ST i U v ek A Ty (4:5)
. 1 0z Oy- Oz - " -

e = g,v [a—z—i— %j 5—/{} = ezi +eyj + ek (4.6)
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and

therefore,

Ne = dye, —d,ey, Ny = d,e; —dge,, N, = dye, — dye, (4.7)

z

The Jacobian, J can be obtained as

4
1

(4.8)

and for integral equation solution the weighting function including jacobian can be

simplified as,

T, = =2t (4.9)

In order to illustrate the accuracy of the geometric approximation of NURBS
surface, the body surface of an ellipsoid, which is described mathematically below,

can be taken into consideration,
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=1 (4.10)

In the above equation, the parametric form in term of [, and € are presented as

/a2 — 2sing (4.11)

a% — % cos b, z =

=1, Y = 2

| O

a

with —a <[, < a and 7 < 6 < 27. The half ellipsoids having length to beam ratio,
a/b = 4 with two different draft which are the half length to draft ratio @/¢ as H = 4
and 2 are used in numerical computation. Using the NURBS surface, the collocation
points with weighting function including Jacobian can be generated based on the
offset data. The number of collocation points can be adjusted considering with the
time consuming and the accuracy of numerical computation. Figure 4.2 shows two
different ellipsoids with @ = 5 in 16 x 16 gaussiant points.

The accuracy of NURBS surface compared to the exact geometry is shown in
Table 4.1 in term of root mean square (RMS) error for different number of Gaussian

points. The RMS can be obtained as

1 n o m Z(e@act) - 7(71"u'rb5) 2
RMS = ( i o] ) (4.12)
n xm ¢:1j§::1 ZZ_(:fjmct)

where n and m are the number of gaussiant point in 2 and y coordinate system re-

act)

spectively, and :f?x is exact coordinate obtained from Eqn (4.10) based on NURBS

(nurbs)
i?j

and y (nurbs

i ) where it is described as

coordinate x
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Figure 4.2: Ellipsoid generated by NURBS with ¢ =4, and (a) H=4 (b) H = 2
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Table 4.1: The accuracy of NURBS surface due to exact geometry

RMS Error with different Gaussian points
8% 8 12x8 [12x12 |16 x16 | 32 x 32| 64 x 64
0.04370 | 0.0080 | 0.00372 | 0.00080 | 0.00011 | 0.000002
0.01243 | 0.01269 | 0.00286 | 0.0079 | 0.00120 | 0.00003

jusiRan

i

i
(SIS

4.2 Discretization of Integral Equation

After discretization of the body surface by Analytical or NURBS surface, the unknown
potential distribution, ¢, is computed by assuming a constant potential over each
Gaussian point. This means the number of unknown potentials are the same as
the number of Gaussian points over this body. The integral equation, Eqn (2.25),
therefore can be simplified into a system of algebraic equations, convenient for solving
the unknown potential. Since the body motions started from rest, a linear system
must be factored twice, once at ¢ = 0 and once at t > 0. These are the singularity

integral and the free-surface integral to be evaluated respectively.

4.2.1 Discretization of Singularity Integral

The Eqn (2.33) can be discretized into a linear system of algebraic equations, and it

is expressed in a matrix form as

[H][¢] = [G]ld] (4.14)

where
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— -~ N — — w —
Tt Ty TiaMls  Tii Ty . _
Hn‘ :2—2——3—le— Z (2j 3]+2J3J>ij fOl"'L:]

N — — — —
TUnJ rij,.nj X .
Hy; = Z = — >Ju,j for i £ j

flcw iy 27rrij 27?7“3.,
Gi‘i = Jw] + Z 5 5 2 ! )ij for ¢ = ]
Tt T Ty

1 1

Gy = > (“+

)ij for i # j§
j=lg#i i Ty

q; = T for k=1,2,..,6

:FXTij

qu = ¢kj for k = 1,2, ,6 (415)

where N is the number of Gaussian points and J,, denotes the generalized Jacobian
which includes a weighting function and differential area at the collocation point.
The integral equation of ¢ function, Eqn (2.34), can be discretized by using Gaussian

quadrature and decomposed into a linear system of algebraic equations as,

[64+] = [4][6Y] (4.16)

where

N — - s —
Tiils  Tyrg.7ls S
Ay = 1- Z <2333+ ”3 j)ij for 1=

T 5

j=Lj# \ T V]
N ~> — - -
Tig T Tirg Mg . .
Ay = ) < . + 3 Juw; for i £ j
j=1j#i \ ] V]



4.2.2 Discretization of Free-Surface Integral Equation

The equation (2.25) which involves the free-surface of Green’s function, can be dis-
cretized by number of Gaussian points N, reducing it to a linear system of algebraic
equations, which may be solved directly at each time step. The linear variation ap-
proach is used to carry out the convolution integral. The discrete form which must
be solved at each time-step, L, up to the last time Lp. The linear simulataneous

equations which must be solved are:

1][9) = (e[ + ] - e .17

where matrix [H], [G], and [g] are obtained on Eqn (4.15), and matrix [Ga} and {Gb}

are calculated as

1 - At Lr-(i+1 tr -1
o = S B[] 4 [} s
Gb~ = __.1“ S é_é{ [qﬁfz + 2¢f1+1} [F£L*(1+1)] + [¢tl+1 + 2¢tz} [FtL—L}}
’ 2m 6 n

=0

The matrix [F'] and [F}] are performed as,
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N My
ZTltj - Z Z t - tl wj
i=j=1m=0
N M (E _ :E) <y _ M3
— m (\tg — T
F}?:’Lj - Z {Zb;nj( R.. Ma; R, ny3)+26” “j}
i=j=1  m=0 ij ij
(t —t1)™ Ju,
Ry = (zj— )i+ —v)j (4.19)
where a;%, bfj- and ¢y are the coefficient series, M, My and Ms, are total expansion

orders of series, and ¢ is time stepping up to Ly. The summary of the numerical

scheme is explained in term of flowchart system in Appendix C.



Chapter 5

Numerical Results

The numerical method described in the previous chapter is now compared to a series
of analytical as well as numerical results. The results obtained by the present method
are validated against those of the classical analytical results. They are also compared
to other numerical computation results for a floating sphere, and semi-analytic results

for a floating ellipsoid.

5.1 A Sphere

The first set of numerical results are obtained by using the power series Green's
function added mass and damping coefficients on the floating hemisphere studied by
Hulme (1982). Hulme found the analytical solution to the radiation of waves for
floating half-submerged sphere in infinitely deep water by constructing an expansion
for the velocity potential in terms of a series of spherical harmonics. This study eval-
uate numerically the added-mass and damping coeflicients in heave and surge motion
that Hulme determined analytically. Hulme’s analytical results at zero forward speed

provide the first benchmark of the present method.
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The heaving added-mass coefficient, Asz in the frequency domain is transformed
using Eqn (2.51) from the impulsive response, K33. The damping coefficient in fre-
quency domain is obtained using Eqn (2.52) with neglecting zero time condition. Fig-
ure 5.1 represents the heaving added-mass coefficient, Az3, computed by the present
method and compared to Hulme’s result. As the comparison curve shows, the present
method gives a very good agreement with the analytical result. Comparison of the
heaving damping coefficient, Bss presented in Figure 5.2 further validates the new
method.

Figure 5.3 shows the surging added-mass coefficient obtained by the new method,
compared to Hulme’s analytical solution for a floating sphere. In the same floating
body case, the surging damping coefficient is again determined by the new method
and is analytically presented in Figure 5.4. The comparison between Figure 5.3 and
Figure 5.4 shows that the computational results of the new method are very close to
the analytical solution.

The non-dimensional response function for a floating sphere in heave and surge
motion were also computed. Numerical result, which is conducted by Cohen (1986),
is used as the second benckmark of the present method.

Figure 5.5 shows the non-dimensional memory function Ky3(t) \/;/—é /pA for a float-
ing sphere due to impulsive heave versus non-dimensional time ¢4/r/g. In the present
method, 8 x 8 and 12 x 8 gaussian points are generated by the NURBS on a half
sphere. The agreement between Cohen’s result and the calculation of the new method
is excellent.

The same comparison is also presented in Figure 5.6 for non-dimensional memory
function due to impulsive surge Kq1(¢) \/;"/_g /pA for various non-dimensional times
t1/7/g. Numerical results of Power Series of Green’s function compare very well with

Cohen'’s results (1986).
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Figure 5.1: Added mass coefficient in heave motion of a floating Sphere



0.4

~—8 x 8 gaussian points
0.35 4 + Hulme's result

o
w
L

0.25 -

0.15 -

Damping coefficient, B3
o
o

o
—y
!

0.05 -

Figure 5.2: Damping coefficient in heave motion of a floating Sphere
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Figure 5.3: Added mass coefficient in surge motion of a floating Sphere
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Figure 5.4: Damping coefficient in surge motion of a floating Sphere
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Figure 5.6: Non-dimensional surge impulsive response of a floating sphere
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Congidering the discretization error, Figure 5.7 demonstrates that the same num-
ber of Gaussian points generated by the analytical surface and the NURBS surface
for .a floating sphere due to impulsive heave for 8 x 8 Gaussian points. It is shown
that numerical results of the NURBS surface developed is very close to the analytical
surface with a relative difference (R.D) of about 1.28E-02 where R.D is formulated

as,

1Y (K~ KDL
RD = “N‘Z( analy' nurbs) (51)

Yet, the error of numerical computation decreased when the number of Gaussian
points increased, but unfortunetly it also influenced the time-evaluation by increasing
it. Figure 5.8 presents the time-evaluation of a floating sphere due to impulsive
heave, Kj3(t), for the different number of gaussiant points in which the time step
of simulation is about 0.1. The time-evaluation is presented in term of elapsed time
which is evaluated by subtraction of both time function set up at the first record
time function with the end of the program while the codes run on PC Pentium 4, 1
Gb Mhz, 256 RAM. The total time requirement of Ks3(t) evaluation is presented in
Figure 5.8 (a), and it was divided into the time-evaluation of the singularity integral,
the memory part of Green’s function and the convolution integral, as shown in Figures
5.8 (b) and (c), respectively. The total time-evaluation for 8 x 8 Gaussian points as
shown in Figure 5.8 (a) increased about 200 percent when the number of Gaussian
points was increased to 12 x 8. The relative difference (R.D) of presented in Figure

5.5 is very small, about 0.054.
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Figure 5.9 shows the different time-steps, At, used to evaluate K33(t). Although
the numerical error of the convolution integral decreased while the time step was
decreasing, the decreasing of the time step itself increased the CPU time-consumption.
The most time-consuming part of the numerical computation is the evaluation of the
convolution integral at At = 0.05 and At = 0.01. The computation time at At = 0.01
for the convolution integral was more than 40 times that taken at At = 0.05. This
shows the importance of optimizing the selection of Gaussian point numbers and
time step, in order to achieve high accuracy without excessively increasing less CPU

time-consumption.

5.2 Ellipsoid

Kim’s study (1965) provides a third benchmark for the numerical results obtained
by power series Green’s function in evaluating of added-mass and damping coef-
ficients of a floating ellipsoid. A half ellipsoid of length-to-beam ratio, a/b = 4
is tested evaluating the half-length-to-draft ratio, a/¢ at 2and 4. The computa-
tions are performed over a range 0 < a < 3.5 for the frequency parameter against
added-mass as well as damping coefficients. For heaving motion, the semi-analytical
result of Kim (1965) is read from the graphs for frequency parameter a, at a=
0,0.1,0.25,0.5,0.75,1,1.5,2.0,2.5, 3.0 and 3.5.

Figure 5.10 shows the heaving added-mass coefficient as a function of the frequency
parameter , a= aw?/g, for the ellipsoid having a/ ¢ = 2. The numerical result of an
8 x 8 Gaussian obtained by power series Green’s function is tested against Kim'’s result
(1965) as well as the strip method. The graph discloses good agreement between the

present approach and both Kim and strip methods. The same ellipsoid is used to
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obtain the damping coefficient due to impulsive heaving, and the results presented
in Figure 5.11. The graph shows good agreement between the present method and
Kim’s and strip methods.

Figure 5.12 presents the heaving added-mass coefficient for the ellipsoid a/b = 4
as a function of frequency parameter, a. Numerical results computed using an 8 x 8
gaussian points were validated against Kim (1965) as well as the strip method. Figure
5.13 shows the comparison for various heaving damping coefficients. Again, the results
agree reasonably well. Figure 5.10, 5.11, 5.12 and 5.13 also disclose that the values of
the added-mass as well as the damping coefficient were slightly greater for ellipsoid

of a/¢ = 4 compare to a/¢ = 2.
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Chapter 6

Conclusions and Recommendation

In the time-domain analysis, a major disadvantage stems from the memory effect on
computation time. Because of the memory-part of Green’s function and the necessity
to reiterate the computation of the convolution integral at each time step, the smaller
the time step, the longer the evaluation. Two techniques are proposed to reduce the
CPU time. The first is to minimize time-evaluation of the memory effect of Green’s
function. The second is by taking off the memory-part of Green’s function evaluation
from the convolution integral.

The analytical procedure to evaluate the memory-part of Green’s function intro-
duced in this thesis is based on power series expansions. Numerical experiments show
that the present method provides better accuracy and uses less CPU time than the
fifth-order Runge-Kutta method as well as the tabulation method.

A single panel technique is introduced to evaluate the seakeeping boundary inte-
gral equation. This technique assumes the body surface as one panel, and the number
of Gaussian points is generated on the surface body based on an analytical descrip-
tion as well as a NURBS surface. The distribution of potentials is obtained at those

points. The numerical experiment showed the present technique to be more accurate
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because approximation is not used in distributing potential over the body. Also, the
technique is simple and is easier to formulate.

In the numerical computation, error is reduced by increasing the number of Gaus-
sian points, but this also increases overall processing time. By reducing time-steps
in the numerical simulation, errors decreased, but overall processing time steeply in-
creased because of the time needed to compute the convolution integral. Selecting
the appropriate number of Gaussian points and time-step length increase the accu-
racy while decreasing overall processing time. And further improvement in reducing
numerical error and processing time might be addressed to the development of an

alternative method for the evaluation of the convolution integrals.
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Appendix A

Boundary Integral Equation over
Free-Surface and Infinity Bounding

Surface

A.1 The integral over free surface, Sp

Considering the integral over the free surface, let write boundary integral equation

as,

t oG
s = [ [ {e@ng rai-n (A1)
2

~ (@GP Qi = 7) dSe

On the free surface, both the velocity potential, ¢, and the Green’s function, G,

satisfy the linearized free suraface condition such as,
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a¢ oy oG, &G B
%(Qaﬂ——“—@ ), %(P,Q)f~7)—“57(13@t 7) (A.2)

Substituting Eqn (A.2) into Eqn (A.1), the integral over the free surface becomes:

: e,
ISF = —.»/dT/SF(T) {@(Q?T)W(PaQat"T)

22 @m0 @it -m)asy (A8)

It can be rearrangement as,

- -/ /SF(T) BT{ >?E§_(P’Q;t~ﬂ

2L nIG(P. @t~ ) }dse (A1)

Let introduce the transport theorem which can be applied for two-dimensional domain

such as:

d

8 .
o /SF(T) dSof(@,7) = /SF(T) dSQ‘g;f<Q,’T) + %L(T)dean(@ 7) (A.5)
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and let take

f@n={s@nSret-n-2@ncret-nl (e

Substitute Eqn (A.6) into Eqn (A.5), the total derivative in 7 of the integral over Sg

can be written as,

0 oG 5
/Sm?‘?ﬂd)(@ )5 (BQit—T) — G(P,Q;tw)g%(@r)]ds@g
d o y
- ZE/Spm #(@.7) aG(P Q;t—7)— G(P,Q;t —T)‘,Ef“(Q, m)]dSq

'"?[sm) 90, )BG(PQt 7) - (PQt-—ﬂgf(@,ﬂ}vnsz (A7)

where L is the curve defined by the intersection of the instantaneous body surface
Sp on the free surface, 2z = 0, and V,, is the two-dimensional normal velocity of a
point on L. The line integral which is last term of Eqn (A.7) obviously vanished,
when the body is fully submerged as well as when L is time invariant which is the
linear problem without forward speed. Consider to both cases the floating body and
submerged body with zero speed, Eqn(A.7) is substited into Eqn (A.4) with vanished

line integral, we may written for /g, as,

/dT /SF<T{¢QT (P,Q;t—71)

-%(;@(Q,T)G(P, Q;t—7)}dSq (A.8)
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Due to the initial condition for %—g = 0 and —gf% = (), so this term is zero.

A.2 The integral over infinity bounding surface,

Soc

We next consider the integral over bounding surface at infinity, let write boundary

integral equation as,

t oG
s, = [[ar [ {o@n5-(RQi-7)
o9

——%(Q,T)G(P, Qit—7)}dSg (A.9)

Since the potential, ¢ and the Green’s function, G, both being bounded at infinity
condition, the integral over infinity bounding surface in Eqn (A.9) is equal to zero

due to the Infinity condition.



Appendix B

Derivation of the nine terms fourth
order ordinary differential equation

of the free-surface Green’s function

Clément’s approach (1998a) introduced the procedure to derive Eqn (3.3) to be the
fourth order ordinary differential equation. Based on his procedure we expanded into
the nine terms fourth order differential equation in which the power series expansion

can be applied. Let us take Eqn (3.3) with the second and fourth derivatives.

P f) = /O I/ = m2)A)e v/ A sin(BVA)dA (B.1)

_ﬁﬁil(ﬂﬁ) = [ gL = e X2 sin(VAg)ax (B.2)
%<u>ﬁ> = [ Iy L= e X sin(VAgdA (B:3)
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Introduce new variables, A = ¢/3% and d\ = dgq/3*, and substitute into Eqn (B.1),

(B.2) and (B.3) respectively as:

o0 ) qu
) = g [ h(Pg ) B i
d*F 00 — P
SEws) = 5 TR Ee i (B)
d*F 00 — uPN —ae
Aud) = 5 [T(EE ) E el (B9

Introduce another new variable, 8> = 1/v and # = 1/1/v, and substitute into Eqn

(B.4), (B.5) and (B.6) respectively to yield:

o) = /O°°J0( a1 = u2)v* e g P sin(\/)dg  (B.)
LR = [T aeay T sl (B)
ﬁ‘ld/)fl(u,v) = /OOOJ0< qy/1 )3/2 ~van g2 gin(\/q)dq (B.9)

f

The Bessel function J0(<vq\/1 - ;ﬂ) can be expressed in term of the Hypergeometric

Function as [see Abramowitz and Stegun(1964), Eqn 9.1.69]

Jo(vay/1 - uQ) = e"j”q\/mM(%, 1, 2jugy/1 — 12 (B.10)

Substitute Eqn (B.10) into Eqn (B.7), (B.8) and (B.9) respectively, yields



where

Wi(q,v,pn) = v32emvd

Equ (B.14) can be simplified as,

W (g, v, )

where,

oo

W (g, v, 1)q"*sin(y/7)dg

oo}

W (g, v, u)g*”* sin(/g)dg

[o.0]

W (q,v, 11)q**sin(y/q)dg

S o o

(M+j\/1—:;2—)]\/j<_;_’ 1,25ug\/1 — Iu‘z)

= v_Ae'f(”)M(a, b, g(v))
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Expression of Eqn (B.15) is the solution of Equn (B.17) which is the general confluent

equation [see Abramowitz and Stegun(1964), Eqn. 13.1.35]

2w df b dg 9. . d2g/dvi(v)ydW
dv2+{fu+2%(>+ g(v) dv 't~ () dg/dv()}

+{(L@(v)_%(v>_d9/d (U))(v+dv<v)> A(A-1)

g(v)dv dg/dv(v) o
2Adf  dAf  df\e a sdgy2
e g () = 5 (G} = (B.17)

Substituting Eqn (B.16) into Eqn (B.17) yields,

=4 )W =0 (B.18)

Therefore let

1
’U:-/B—2
d 1., d
w = 2"
d? 3.5d 1d
LR B.19
w = P ap T (B.19)

Substituting Eqn (B.19) into Eqn (B.18), yields:
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d*W d
10+ (3 — wa?) G + (o — duag + 35 W =0 (8.20)

Rearranging Eqn (B.20), by moving the term with variable ¢ to the right hand side,
yields:

1 d°W 7 _dW
T s F W = pgt T dﬁ = (¢* ~ 4B )W (B21)

Eqn (B.21) is divided by 8% Introduce 3, as constant, and by ’add and substract

technique Eqn (B.21) can be rearranged into ten terms as:

| dPW ZJAPW T dW
(/6 ﬁl) d62 +—/61(/3—51) dﬂg —ﬁl dﬁ‘? ‘(/B—ﬁl)‘d—ﬁ‘
7, dW L9 pg(B— 00 dW b dW ¢ 4pq
t s stV =" T e B oEVtEW (B.22)

Multiply both left and right hand sides of Eqn (B.22) by ¢'/?sin(,/g) and integrate

with respect to ¢, from 0 to oco.

16— 5 dﬁQ( |7 W e, v n)g sin(y@)da)

#3000 = )55 ([ W g sint )
ﬁl dﬁQ(/ W(g, v, p)g"/? sin(\/g)dg)

508 B35 [ Wig,v. e 2sin(y g
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20 ([ W a0 002 sin( )

+% ( /ooo W (g.v, 1)/ sin(/3)dq)

M(ﬁﬁ; ) d%(/om W(q,v, )g** sin(/q)dg)
+%€l?l%(/ooo W (q,v, 1)g*” sin(v/q)dq)
7%(/00 W (g, v, 1)g"” sin(y/7)dq)

SB[ W ) sin( ) (B.23)

Substituting Eqn (B.11), (B.12) and (B.13) into Eqn (B.23), yields

1 d’F 1 d*F dQF 7 dF'
7 (6= B 5 + 5AB— B g + 7 e Gl
7, dF 9 N (ﬁ ﬁl) d? F Mﬂl 2d2F1
_@1 dﬁ ZF RE d6< A dﬁ2> 52 cl,B< B dﬁQ)
4p d F:
L) - (- w2
Simplifying Eqn (B.24) into nine terms, this becomes:
d4F1 &R &R 1 Ld2 P
d*F 1 d*F'
N B + (38 +4)gm
F F
(ﬁ 51)d - 751d 3 9F1 =0 (B.25)

dp 3
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For the sake of simplicity, let us define

1 1
Ty =1 22 = 2y = pfy Te= o5 25 = S0
1 7 7 9
Tg = Zﬁf tdp zr =0 oy = 151; Ty = 7 (B.26)
Therefore substituting Eqn (B.26) into Eqn (B.25):
d4F d3F1 d3F1 d*Fy
dﬁ4 + z2(8 — B1) dﬁg FRE +24(8 — 1)? R
d2F1 d F1 dFl
dF
+x8d—ﬁl + zoF) =0 (B.27)

Following the previous step, the solution of Fy(p, 5) and Fs(u, ) functions in Eqn
(3.8) and Eqn (3.9) repectively can also be expanded into nine terms similar to Eqn
(B.27). The different nine variable coefficients of Fy(p, 8) and F3(u, §) functions can

be defined respectively as:

1
=1 yo= 1 yz3 = pb; ya= Y 5[31;
1 11 11 21
Yo = Zﬁlz +dp; yr = Y= —pB1; Y T (B.28)
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and

1 1
=1 m=p; 23 = pby; 2= 1; 5 = 551;
1 11 11 25
26 = Zﬁf +4p; 2y = i Zﬂl% 29 = (B.29)

In order to solve Eqn (B.27) the first four derivatives of [} are required as initial

condition. The following is the procedure to obtaine the initial conditions.

The Initial Conditions

Substitute J = 0 into the derivatives of F} in Eqn (3.3), and get,

“(1,0) = 0;

_ i [ “Ap it 7y, _
G0 = (—1)/0 oW1 — p2)e ™A dn,  §=0,1,... (B.30)

The integral expression of Eqn (B.30) can be expressed in terms of Legendre functions
of the first kind with degree a [see Gradshteyn and Ryzhik (1994);Eqn. 6.624.6 and
8.752.2].

/OOO JoO/1 = p2)e A% = T(a + 1) Pa(p) (B.31)
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So Eqn (B.30) become

d2iFl
dlgzi (Mv 0) - O:
d2i+1F1 ] ) ‘
d 2+ (1. 0) = (=1)'T(i + 2) Pra(p); 1=0,1,.. (B.32)

with 0 < g < 1 and Re(i +1/2) > —3. Gamma function on the right hand side of

Eqn (B.32) can be expressed as factorial,

T(i+2) = (i + 1)! (B.33)

Therefore substitute Eqn (B.33) into Eqn (B.32), yield

4% F
dﬁ%l(,u,O) = Oa
d2H o }
g W 0) = (DN D) i=01,.. (B.34)

The expression of the Legendre polynomial which is also known as Legendre functions
of the first kind while the degree is an integer, is defined as
(200 — 2k)

K
Falu) = g—”k““’“ 25k!(a — k)l(cx — 2k)! (B:35)
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where K = /2 if o is even or (o —1)/2 if « is odd. An alternative expression of Eqn

(B.35) is obtained as [see Spiegel (1968), Eqn. 25.2]

= 1)° B.36
Saat gy o T (B.36)

Po(pe)

which is often referred to as Rodrigues’s Formula. Hence the first three Legendre

polynomials are obtained as

: 1
B =1 B=p P =31 (B.37)
Finally the initial condition of Eqn (B.27) are,

dFy

F = 0, —2(u,0)=pu
1(/‘1’7 0) 07 d/@ (IJ?O) :u"
d*Fy Ry
. — 0 S 1 .

With the same procedure, the initial conditions of Fy and F3 functions can be defined

respectively as,

dF.
Fp,0) = 0 Eﬁ(u,O)=3m/1—u2;

d*F. d*F.
F W0 = 0 g0 = (31501 - p (B.39)
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and

0) = 0, — =1 - 3u%

Fy(p,0) 0 (1, 0) p

d*F: d3F. ‘

dﬁf (1,0) = 0 353—3(#, 0) = 154° — 9 (B.40)



Appendix C

Code sructure of Computation

The code sructure for the computational of hydrodynamics force of linearized floating

body motion in time domain is shown in Figure C.

101



102

Input: offset data of the body

v

Generate Gaussian points over the body surface with its normal,
Jacobian including weight function and Volume of displacement
using NURBS surface and Gaussian quadrature rule
(Xij» Yijs Zij» XRij, YNy, 205, Jwi, and V)

Set-up body boundary condition Set-up time step, time range and time
consider to the body motions maximum of numerical simulation
(fab) (At, AB, and tmax)
Evaluation of singularity integral Evaluation of the free-surface Green’s function
using Regularized method. analytically based on Power Series Expansions
(IG], [H], [q] and [}, -0) (F (i,j,t) and Fn (i),0))

v v

Storage into memory computer

v

Evaluation of the convolution integral
using Extended variation method A
([G.], and [Gyp])

v

Evaluation of Simultaneous equation using Time step
the Gauss Elimination method

[H] [¢]:> 0=[G] [q}+ [Gu]- [G]

v

Output: Velocity Potential

(1¢)c=0 2nd [9:>0)
v

Impulse Response, K

v

Added mass coefficient, Ay, [ Fourier transforms ——p! Damping coefficient, Bjx

Figure C.1: Flow chart of the hydrodynamics force computation in time domain



