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Abstract

The detection of atypical data in a dataset, using a linear wrapper approach is the
focus of this research. Atypical points are considered to be the misclassified points
that the proposed algorithm (Atypical Sequential Removing: ASR) finds not useful to
the classification task. They may include outliers and/or overlapping samples. The
majority of the available atypical detection techniques apply a filter approach in
which there is no requirement for the filter to be consistent with the classifier in use.
The fastest available wrapper techniques, on the other hand, have a quadratic running
time which is prohibitive in practice for sample subset selection. The approach
presented in this research is a linear wrapper technique that, instead of using any
predetermined criteria, uses only the classifier itself and a performance measure to
identify atypical points in the data. As a result, it is expected to be more consistent
with the classifier in use. Using a cross validation scheme, ASR manages to give a
reliable test performance while identifying and ranking the atypical points in the
whole dataset. To ensure that ASR does not remove informative misclassified points,
Ada-boost was compared with S-boost (trained with the data without atypicals). The
results showed that when a significant portion of misclassified points were removed
from the training set, S-boost had a very close performance to Ada-boost. In the
comparison between ASR and the Mahalanobis filter method, the results shows that
ASR was more accurate in identifying atypical points, it was more consistent with the
classifier in use by keeping its performance as high as the classifier with no removal
from the training set, and it was able to remove 30% more points than the
Mahalanobis filter. However, the assertions in the literature (removing some points
from the training can enhance the performance of classifiers) were not confirmed for
overall performance under the experimented linear wrapper. Experiments on 20
benchmark datasets and 7 classifiers show promising results and confirm that this

linear wrapper method has some advantages and can be used for atypical detection.
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i Introduction

“To study the abnormal is the best way of understanding the normal.”

— William James (1842-1910)

One of the oldest subjects in data analysis is the study of atypical detection methods (e.g.,
outliers), their effect on subsequent inference, and the decision on what to do with them
(Millar and Hamilton, 1999). In general, outliers are the points that lie reasonably far
from the cluster of their claimed class. Comments by Bernoulli, (in 1777, as referenced
by Beckman and Cook, 1983, in their outstanding paper on outliers) indicate that
discarding unusual cases was common practice more than 200 years ago. There have
been long debates in different disciplines such as medicine, statistics, and in machine

learning on how to handle abnormal cases and it is still a subject of debate.

Unfortunately, there does not seem to be a standard terminology for the concepts related
to atypical points. Authors have often taken liberty in using different terms that match
better to their definitions and approaches. While the term outlier is commonly used,
novelty data (Scholkopf et al., 2000), ambiguous data (Trappenberg, et al., 1999),
irrelevant examples (Blum, 1997), atypical examples (Hashemi and Trappenberg, 2002),
inconsistent examples (Gamberger et al., 1996), and other terms have been used to refer
to either similar or somewhat different concepts. The best way to understand what

different terms mean seems to be through the context in which they have been introduced.
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For instance, the terms ambiguous data (Trappenberg, et al., 1999), inconsistent examples
(Gamberger er al., 1996), to some extent mislabeled data (Brodley and Friedl, 1999), and
overlapping samples all refer to the points that have almost the same values for features

but different class labels.

In this research, atypical points are defined from the point of view of the classifier. The
general definition of atypical points is as follows.

Given an inducer I, and a dataset D with labeled instances, an atypical subset
Dasg, is a subset of D such that the generalization performance of the induced

classifier C = I(D — Dayy) is maximal.

Hence, atypical points, as defined in this research, can be two kinds: outliers and
overlapping samples. Outliers lie reasonably far from the cluster of their corresponding
class in the problem space while overlapping samples are usually close to the boundary of
their class and members of more than one class fall in the overlapping region. Outliers,
themselves can include noise and the exception points (valid points with feature values
far from the rest of their class). The interest of this research is only in the detection of
atypical points from the classifier point of view and not in separating different kinds of

atypicality.



1.1 The importance of outliers

Generally speaking, research on outliers is important from at least three aspects. In some
classification applications like credit card fraud detection, credit approval, insurance
claims, network intrusion detection, irregularities in gene expressions, etc., the detection
of outliers is considered to be the objective of classification (Ripley, 1996; Han and

Kamber, 2001).

The second aspect is to have a reliable method in enhancing the quality of data by
removing the outliers from the data. This can increase the confidence factor (CF) and
perhaps enhance the performance of the classifier trained on such data. Generally, the
farther the location of a point from the center of the cluster of its class, the less confidence

we have for the assignment of its class label (more chance of being an outlier).

The last, but not the least important aspect is the possible contribution of outliers in better
understanding the domain: they can be noise, they may suggest lack of a discriminative
attribute for certain examples in the data, or the birth of a new class in the application
domain. Finding examples that do not belong to one of the available classes can lead to
the discovery of new classes (Ripley, 1996) or concepts from data in an inductive manner
(Jude and McClelland, 1989). This is one of the exciting issues in incremental learning as

it provides insights into the evolution of concepts within a particular domain.



1.2 The importance of overlapping samples

The same three aspects are applied to the overlapping samples too. Instances in the
overlapping regions are the ones we are less sure about and would like to have a better
method of classification for them. There are cases in the real world where more
discriminative attributes can be obtained with a higher cost. In medical or automobile
diagnostic systems, we can obtain such attributes (e.g. perform medical tests) only when
necessary: if the query case falls in the overlapping region (Komorowski and @hm,
1999). In fact, Conversational Case-Based Reasoning (CBR) (Aha, ef al., 2000) is an
example of such systems in machine learning. When presented with a query case,
Conversational CBR asks for the value of an attribute (not given in the query) only if the
case cannot be answered with a high confidence (an overlapping sample or an outlier
case). Locally feature weighting (Wettschereck et al., 1997) and instance weighting
(Wilson and Martinez, 2000a), in lazy learners, are also machine learning problems that
can benefit from the detection of overlapping samples. Assigning weights can be a time
consuming process. In locally weighted learning, to save the time and possibly increase
the performance, weights can be fine tuned only for the overlapping samples for which

the leamer has shown less confidence.

The second aspect (data cleaning), can be performed by removing the overlapping
samples that do not contribute to the classification task positively. Indeed, since the

number of overlapping samples is often greater than the number of outliers and they are



closer to the boundary of classes, they may have more effect on the decision function then

the outliers. Thus, removing some of them may help smooth the decision function too.

For the third aspect (the possible contribution of atypical points in better understanding
the domain), overlapping samples may provide more evidence and material than outliers
for further studies in the domain area. Overlapping samples violate the basic assumption
in the mainstream classification that an instance must belong to only one class. This
violation is either because the classifier cannot find a proper rule to separate the classes or
it is a problem embedded in the data. Only in the latter case, overlapping samples may
imply the discovery of a new class or lack of a discriminative attribute, and perhaps noise,
in the data. This is similar to outliers that can be either exceptions (informative) or just
noise (not informative). For instance, Figure I-1 shows a simple case of overlapping; a
third dimension (a missing attribute) can perhaps separate the two classes. For example,
weights of men and women overlap but each instance can belong to only one class, so we
need a more discriminative feature. Note that outliers are often far from each other and
do not tend to make a cluster in the problem space; besides, the number of overlapping
samples is often more than outliers. Therefore, overlapping samples may provide more

material for further study in the problematic datasets.



Figure I-1. Overlapping region for two rectangular classes.

1.3 Overview of the thesis

The atypical detection methods developed so far are mainly based on the preprocessing
filter approach. In principle, there is no requirement for the filter to be consistent with the
classification method (Blum, 1997; Brodley and Friedl, 1999). As a result, it is possible
to filter out some examples from data that are not atypical from the classifier algorithm
point of view. These points may be harmless to the classifier or even helpful, as they
might carry information that could have increased the quality of the classifier if they had
been kept in the training set (John, 1995). A solution to this problem can be the use of
wrapper methods that, unlike filters, try to keep the atypical detection scheme consistent
with the classifier in use (Blum, 1997). While filters use predetermined criteria like
distance/similarity values or entropy measures, the wrapper approach can use only the
classifier itself and a performance measure to discover atypical points in the data. In

Section II, filter and wrapper methods are discussed in more detail.



From the study of methods dealing with atypical points (outlier detection, noise reduction
...) two points can be drawn. First, what to do with atypical points in terms of
keeping/removing them in/from the training and test sets has been a decision (dilemma)
that researchers have struggled with and have taken different approaches. This is
discussed in Subsection 2.4. The second interesting point is that there are assertions in
the literature that removing some points from the training set can lead to better classifiers
with higher performance (discussed in Subsection 2.3). Not only our experimental results
did not support this idea (under the constraints of our linear wrapper system), but also, to
the best of the author’s knowledge, all the reports of increase in performance due to the

removal of atypical points, so far, fall in one of the following 3 categories.

1. The performance increase is insignificant or has happened only in certain datasets.

2. It has been measured in a cleaned test set (hard-to-classify examples were already
removed from the test set). For instance, in (Trappenberg and Back, 2000), the
reported improved performance is not really generalization accuracy (1 -
classification error) on the intact test set. But it is the confidence in classification,
expressed as accuracy, which has improved for a subset of the test data (not the whole
test data). Hence, those legitimate results should not be mistaken with the
performance improvement that we generally refer to in machine learning as the
generalization accuracy.

3. The performance increase is due to cleaning the noise injected only to the training set

(test set was kept clean) as in (Wilson and Martinez, 2000b) and Brodley and Friedl



(1999). This is a popular case that the author thinks needs more consideration and

will be explained in Subsection 2.3 too.

In the latter case, it is true that if the test set is also corrupted, measures of performance
cannot be interpreted easily (or may not be reliable anymore). But we have to be clear
about the difference between the efficiency of a filter and the concept of increase in the
generalization performance as a result of atypical removal. It seems that this difference
has not been taken seriously in the literature and deserves more attention. Although these

two may be expressed both as accuracy, they are two separate measures.

When we inject noise into the training set and show that the performance of the classifier
trained on the filtered training set is higher than the classifier trained on the corrupted
training set, we may correctly conclude that filter efficiency (expressed as a change in
accuracy) was observed. But this has nothing to do with the generalization accuracy of
the classifier. In practice, it is hard to imagine if we ever need to inject noise to the data
and then look for a way to remove it; but we do like to reduce the noise (or more
generally, atypical points) already embedded in the data without injecting extra noise into
it. If we do filter the original training data, and achieve a better test performance
compared to the training on the original training data, then we can rightfully declare that a
higher generalization accuracy is obtained. The only case when these two measures are
truly equal is when no noise (0% noise level) is added to the training set and a filter is
applied to the original data. Please note that since, in machine learning, often the

“generalization performance’ is referred to as “performance” or ‘“accuracy,” it is
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misleading to use these words to show the efficiency of a filter without clarifying the

subject.

In most reports of filtering in the literature, the case of filtering the original data (0%
noise level) is either neglected or paid less attention while it seems to be the most relevant
case to show if filtering has any effect on the generalization performance of the classifier.
To the best of the author’s knowledge, when no noise (0% noise level) was added, on a
reasonable variety of datasets and classifiers, there has been no report that the classifiers
trained on the filtered training data were significantly better than the classifiers trained on
the unfiltered data (in terms of their generalization error). Thus, whether or not cleaning
the original training set can make classifiers with higher overall performance (on an intact
test set) than the baseline classifier (trained on unclean and uncorrupted data) is still an
open question. By overall performance, we mean the performance on a reasonable

number of datasets (noisy and regular) and variety of classifiers.

In Section III, coverage-performance curves (as the initial work in this research) to
measure the effect of atypical removal and the concept of sample subset selection (SSS)
are introduced. The issues associated with these curves and the problems with making a
wrapper approach to SSS applicable clarifies what features are preferable in a more

desired algorithm.

The main obstacle in using a wrapper method in sample subset selection for atypical

detection is that of time complexity. This is a serious problem even in the feature subset

9



selection (much smaller search space): “For all but the smallest problems, the space of
possible feature subsets is too large for brute-force enumeration of all possibilities, and
we must resort to heuristic search” (Kohavi and John, 1997). In Section I, there is a
detailed discussion on this issue. Note that, in sample subset selection, datasets usually
consist of a few hundred to several thousand instances. The size of the search space in an
exhaustive search is exponential with (2¥ ~ 1) states where N is the number of instances in
a dataset. Even the greedy methods like sequential algorithms (backward elimination or
forward selection) with a quadratic running time are still prohibitive in practice. Because
each state represents a subset of the training data, a training session is repeated over each
subset of the data. The total running time of the search, hence, will be the running time of
the subset selection algorithm times the training time complexity of the classifier in use.
Even the fastest available wrapper solutions (with quadratic running time) are not
practical for most datasets for atypical detection. That is why the approach presented in
this research as a linear wrapper method in sample subset selection can be quite beneficial

for atypical detection.

Overall, based on the initial efforts made on atypical detection in this research, we would

like the proposed algorithm to have the following features.

e To be able to identify and rank the atypical points from the classifier point of view.
e To offer a reliable measure for the generalization power of the classifier after

removing atypical points. Identifying the atypicals for the whole dataset is preferable.
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e A running time of lower than quadratic in the required number of training sessions
(linear preferably).

e To have a cut off point for the removal process (non-monotonic performance
function).

e To avoid the classification of imbalanced data with small disjuncts that happens
usually in atypical detection.

e To be general enough that the classifiers without a reject-option can also be used.

In Section IV, the definition of atypical points as well as the proposed solution to identify
them in a dataset is presented. The methodology and the developed algorithm (Atypical
Sequential Removing: ASR) are discussed in detail. The time complexity of the
algorithm is also presented. Besides being a linear wrapper technique, the proposed
method can identify and rank the atypical points in the whole dataset without sacrificing
the validity of the generalization error. This is done by employing a cross validation
scheme in response to the dilemma of handling atypical examples within training and/or
test sets. The proposed wrapper algorithm is also general enough to be used even with

classifiers with no reject option (like the typical support vector machine: SVM).

In Section V, the experimental setup and the experimented datasets are explained. A total
of 20 datasets and 7 classifiers were used in this research. The selected performance
measure is the prediction accuracy as it is the most commonly used one. However, a
single number (accuracy) cannot show if among the points removed by ASR, there are

not some points that are not really atypical or if it has left some atypicals in the training
11



set. To study this effect, a comparison of two ensemble techniques (Ada-boost and S-
boost) was performed. Ada-boost is a standard boosting technique that tries to make
good use of all misclassified points. S-boost is the same technique but atypical points
have been removed from its training set. For instance, if ASR removes some
misclassified points that could have been useful to the boosting process, then Ada-boost
should perform better than S-boost. The result shows that while a significant portion of
misclassified points were removed from the training set, S-boost had a very close
performance to Ada-boost indicating that ASR has generally been successful in removing
atypical points. Another comparison was designed, in Section V, between ASR and a

widely used filter method, the Mahalanobis filter.

In Section VI, the results of these experiments are presented in the form of 3 groups of
tables: ASR and baseline; Ada-boost and S-boost; and ASR and the filter method. The
discussion of all the obtained results is given in Section VII. For instance, the
comparison of ASR and the filter method shows that ASR was more accurate in
identifying atypical points, it was more consistent with the classifier in use by keeping its
performance as high as that of the baseline (the classifier with no removal from the
training set), and it was able to remove 30% more points from the dataset than the
Mahalanobis filter. Removing more points, everything else equal, is a positive point for
an atypical detection method. The fact that, unlike the filter method, ASR does not
degrade because of the removal process is another positive point. The concluding

remarks as well as the ideas for future work are presented in Section VIIL
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il Atypical detection and instance reduction in the

literature

First of all, the goal in discussing the work of other researchers and pointing out the
potential for improvement is not, by any means, to discredit their merits. Their work and
effort are appreciated; the author sees them all as the steps taken for better understanding

the subject.

Atypical data is often a source of concem in any classification process. Atypicality can
manifest itself in two different ways: outliers and overlapping samples. Outliers, as an
important kind of atypical data, have attracted researchers’ attention for a long time.
Although, at least to some researchers, recognizing a data point as an outlier is still a
subjective issue, there seems to be an agreement on the definition of outliers. Ripley
(1996) defines outliers as “examples which did not (or thought not to have) come from
the assumed population of examples.” Barnett and Lewis (1994) have almost the same
definition for outliers: “an observation (or subset of observations) which appear to be
inconsistent with the remainder of the set of data.” Most definitions of outliers specify
that such examples raise the suspicion that they are from a different distribution than the
rest of the dataset; in other words, they lie reasonably far from the cluster of their claimed
class in the problem space. Outliers themselves can be simply noise or the exceptions

that are the true members of their class; for instance, an exceptionally tall camel is still a
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camel even though most of its features may be more similar to the giraffe class.
Separating exceptions from noise is a key issue (Brodley and Friedl, 1999) and because it
can involve domain knowledge some authors leave this decision to the human expert

(Guyon, et al., 1996).

Overlapping samples has been discussed in the literature under different names. As
mentioned earlier, the terms ambiguous data (Trappenberg, et al., 1999), inconsistent
examples (Gamberger et al., 1996), to some extent mislabeled data (Brodley and Friedl,
1999), and overlapping samples (Hashemi, 2002) all refer to the points with almost the
same attribute values but different class labels. Overlapping samples present a type of
atypicality different from outliers; they do not show any inconsistency with the other
members of their own class (Hashemi and Trappenberg, 2002). Hence, outlier detection

techniques cannot distinguish them.

In this Section, two main approaches (filter and wrapper methods) to the problem of
detecting atypical points are briefly described. Each approach has its own pros and cons.
Please note that the distinction between wrapper and filter methods in feature subset
selection (John, et al., 1994), is explained as open loop and closed loop in statistics, and
as performance and preset biases in feature weighting (Wettschereck ez al., 1997). The
same distinction can be made in the detection of atypical points. Hence, in this research

we choose the terms wrapper and filter as they are more commonly used.
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2.1 The filter method

Numerous methods can be classified as filter methods for outlier or atypical detection.
The main characteristic of these methods is that they act separately from the learner

(classification or regression module). The filter process is depicted in Figure 1I-1.

Training R PR o] Cleared Learning
data i > Gata : algorithm

-
-

Figure II-1. General procedure to filter the data.

Usually, filters are fast methods that use some predetermined criteria to identify potential
outliers. Hence, they can be used as pre-processing techniques in classification or
regression. The criteria that define potential outliers can be statistical, distance/similarity-

based, or entropy-based.

Statistical techniques assume a probability model for the dataset and try to find potential
outliers using some kind of discordancy test. In order to decide if a point is an outlier or
not, statistical tests (like Chi-squared) with certain predetermined criteria are usually

performed. Any change in the underlying assumptions (e.g., Chi-squared distribution)
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and in the value of a parameter (e.g., o, significance level) in these filters may change the

outcome of the outlier identification process.

Distance or similarity-based techniques are the most versatile in both classification and
regression. Cluster analysis techniques are often used to identify and give ranks to the
points that are far from the population. Mahalanobis distance (Ripley, 1996) is a well-
known filter that will be explained in detail. Wilson and Martinez (2000b) provided a
survey on filter methods of instance reduction techniques for KNN-type algorithms. For
instance, edited nearest neighbor rule removes each instance from the training set if it
does not agree with the majority of its k nearest neighbors (k = 3 usually). Use of
unsupervised learning can be seen, for instance, in 1-class SVM for novelty detection
(Scholkopf et al., 2000). The results often vary based on what similarity function and

what norm has been used (e.g., Ly, L, or Ly).

Entropy-based techniques are also used for outlier detection. One example is robust
decision trees proposed by John (1995) in which a pruned tree is used to classify the
training data. The misclassified points are removed from the training set and training is
repeated till all points in the shrunk training set can be classified correctly by the last

pruned tree.

Williams, et al., (2002) took a kind of semi-supervised learning approach (where the
training data has already been divided into outliers and non-outliers classes). They

applied a replicator neural network (RNN) for outlier detection. RNN uses the features in
16



the dataset as both input and output nodes of the neural network. After training, RNN is
indeed a compressed representation of the dataset. This approach employs multi-layer
perceptron neural networks with three hidden layers and the same number of output
neurons and input neurons to model the data. A measure of outlier factor of individuals is
then developed as the average of reconstruction error for all features of individual data
points. For scalability the RNN is trained with a smaller training set and then applied to
all of the data to identify outliers. They make a comparison of RNN with two parametric
(statistical) methods and a mixture-model clustering. The statistical methods are the
Donoho-Stahel estimator and Hadi94. The Donoho-Stahel method is a robust
multivariate estimator of location and scatter and Hadi94 is a bulk parametric method that
applies Mahalanobis distance. Their 5 statistical test datasets contain only 20 to 85
examples. They also used data mining datasets with much more number of examples.
Surprisingly, they considered 239 examples of Wisconsin Breast Cancer dataset
(members of Malignant class) as outliers —to accommodate their binary classification
without facing imbalanced data problem! This seems to be an awkward approach since
the dataset is well-known of being one of the best-behaved datasets and has 683 examples
and 2 classes: Benign and Malignant. The members of Malignant class are quite
legitimate data points. Their report does not show any comparison of RNN and a binary
classifier for the prediction accuracy. Their results show that despite claims to the
contrary in the data mining literature, some existing statistical outlier detection methods

scale well for large datasets.
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Brodley and Friedl (1999) developed an ensemble filtering technique to improve
classification accuracy by improving the quality of the training data. Like Wilson and
Martinez (2000b), they added class noise (change of class labels of some examples) to the
training data only while keeping the test set clean. Their focus was on identifying such
mislabeled training points and removing them from the training process. Trappenberg
and Back (2000) have used the idea of adding a new class IDK (I Do not Know) to the
number of classes, ¢, and to classify atypical points into the IDK class. In their work, a
KNN is used to learn IDK points from the training data and another classifier (e.g., a
neural net) is used to classify the test data into ¢ + 1 classes. If the majority of K
neighboring points (in KNN) do not agree on the class of a point it will be classified as

IDK. Their scheme, as a filter method, is explained here.

On training data:

1. IDK detection by a KNN = c+1 classes (IDK class for some of the training data)

2. Train classifier2 (e.g., a neural net) with ¢ + 1 classes.

On test data:

1. Use the trained classifier2 (c+1 classes) on the test data.

Despite its advantageous simplicity, this scheme faces two major issues. The first issue is
that once some of the points in the test set are assigned to the IDK class, we have no
direct way of measuring the test performance of classifier2. In other words, we cannot

evaluate the predictive ability of the scheme although it may increase the confidence in
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the classification of non-IDK points. The second point is that there may not be enough
data points for the IDK class. Hence, to train classifier2 we have to deal with imbalanced

data problem.

Unlike the above work, in some systems that use two classifiers, the user cannot change
one or both classifiers. Hashemi (2002) introduced a scheme to generate coverage-
performance curves using a probabilistic neural network (as a fixed filter) for atypical

detection with another classifier (SVM).

All these methods (filters) share one characteristic: the atypical detection module is either
separate from the classification method or it was designed to work with a certain classifier
only. For instance, using a filter designed based on mutual information may work well
with a decision trees but removing the filtered points from the training set may be
downgrade other classifiers. If we are almost sure that the atypical detection module is a
suitable one for the given dataset, like when we know that data follows certain
distribution reasonably well, the use of such a technique can be helpful. In reality,
however, this is hardly the case; and we often try different classifiers on the same data to
choose one. That is why the consistency between the classifier and atypical detection
technique becomes important. Use of an entropy-based technique may filter out some
points that could have been useful for a neural net or a distance-based technique may
remove the points that might have been informative for a decision tree. Users may not
know (or may not be able to change) the norm used in their classifier while different

norms give different results. Hence, it is worth studying the techniques that detect the
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atypical points according to the inductive bias of the classifier in use so that they can be

used with almost any classifier.

2.2 The wrapper method

To identify atypicals, unlike filters, a wrapper method does not use any predetermined
criterion that may change its outcome. Instead, it uses only the classifier itself and a
performance measure to determine atypical points in the data. Hence, it tries to keep the
atypical detection scheme consistent with the classifier in use. Figure II-2 shows the
interaction between the search algorithm and the learning algorithm (a classification

scheme or a regression model) in the wrapper approach.

Search
f‘> algorithm
Training
data
r T >
Lean.nng Cleaned
algorithm data

Figure II-2. The procedure in the wrapper approach.

The search (subset generation) algorithm provides the learner with the candidates that are
to be evaluated. A candidate (a state) is a combination of the examples in which certain

points are removed (potential atypicals). The objective is usually to maximize the
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performance of the learner. Hence, for a given performance criterion, wrapper methods

differ mainly in their strategies in choosing candidate sets.

The wrapper approach is generally far more expensive computationally and that is why it
has not been explored in atypical detection yet. With the advance of high-speed
computing the process that would take a week 10 years ago, may take only seconds today.
This allows us now to study wrapper approaches to atypical detection and investigate the

possible advantages of such techniques.

As Kohavi and John (1997) declared, the closest formulation to the wrapper method was
the search of the bias space approach which dates back to Provost (1992). The work of
Skalak (1994) is considered as the first case in using a wrapper approach in instance
selection (Kohavi and John, 1997) as opposed to feature selection. To detect prototypes
for the KNN algorithm (when k = 1), he showed that very few prototypes may suffice
sometimes. According to Skalak (1994), a small number of prototypes can achieve
comparable or superior predictive accuracy based on two speculations: (1) noise
reduction; and (2) overfitting prevention as only a small number of examples are

considered as prototypes.

His method starts with a priori specification of the number of prototypes (predetermined
by the user and usually chosen as a small number in the order of the number of classes)
and uses a simplified genetic algorithm approach to search for the best prototypes. When

the clusters of classes become a little more sophisticated (such as having disjuncts of a
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class or the case of a cluster inside another cluster) his method faces difficulty because
the method is suitable only for datasets with widely spaced classes that exhibit a high
degree of internal coherence and external isolation (Skalak, 1994). Both issues
(predetermined number of points and the assumption of simple and well-defined feature
space) prevent his methbd from being used in atypical detection where we do not now the

number of atypical points in advance and datasets are supposed to be problematic.

In a survey of machine learning methods to find irrelevant examples, Blum (1997)
categorized Boosting and Windowing as wrapper techniques for instance selection. In
windowing, a classifier is trained on a random sample of the training data. Then the
classifier tests the rest of the training data and a random subset of its misclassified points
is added to the original sample and training is renewed. This process is repeated till all
training data can be classified correctly by the classifier. Blum’s categorization is more
from a sampling view point and certainly not from atypical detection. For instance, for
Boosting the paper asserts “by paying more attention to more informative examples
(misclassified points in last trials) the classifier can increase the rate of learning.” The
approach taken in the present study is different from that of Blum’s Boosting and
Windowing. They are not considered as wrapper methods for atypical detection. This is
because Boosting and Windowing at the end of their process, do not identify atypical
(outlier or irrelevant) points in a dataset. Indeed they assume that the dataset is rather

clean, which is the opposite of what we assume in atypical detection.
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2.2.1 Error-reject curves

The concept of error-reject tradeoff curves is rather close to wrapper methods for atypical
detection. Chow (1970) introduced this technique for the first time in order to increase
the confidence of classifying the test examples. The main idea is that examples close to
the decision boundary —the ones we are less sure about— are not classified. They are
rejected and might be classified by hand or by another classifier. This limits the classifier
to answer only when Confidence/Certainty Factor (CF) is above some pre-specified limit
(threshold). So, it is necessary for the classifier to have some kind of approximate
posterior probability (reject option) in addition to the hard, unambiguous assignment of
labels. By changing the threshold and obtaining new performance measures on test data

we can compute an error-reject curve.

Figure II-3 shows the general form of error-reject curves. Performance can be any
measure such as accuracy (1 — error rate), precision, sensitivity, etc. Reject rate, (1 —~
coverage), is the fraction of the test points that were rejected from the classification and
varies between zero and a value for which the performance reaches its highest value. In
practice, the curve may not be as smooth as what Figure II-3 depicts, but it is always

monotonic.

Although the main purpose in the original design of error-reject curves was not atypical
identification (Chow, 1970), it is logically sound and has been used to handle the removal

of atypical and ambiguous data (Trappenberg, et al., 1999), and to produce an ordered list
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of them ranked by, for instance, the estimate of their posterior probability. Unfortunately,
because of its monotonicity, the curve does not give a clue as to when to stop the removal

process. Issues with error-reject curves will be discussed later.
Performance
1 /

0 Reject rate

Figure I1-3. Error-reject tradeoff curve.

2.3 The quest for performance increase

In classification (unlike regression) a performance increase measured on the training set is
not considered to be important by itself as it might be too optimistic (Witten and Frank,
2000). It is, however, the performance on the unseen test data that determines the
predictive ability (the generalization power) of a classifier. Hence, in the classification
literature, when the words “performance” and “accuracy” are used, they really mean

“generalization performance” or “prediction accuracy” unless otherwise is specified.
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The race for performance increase seems to be a pivotal idea in most studies somehow
related to atypical detection, while there is a point here that has not been addressed well
in the literature. Some authors have reported that the removal of some points from the
data can enhance the classification performance. In this Section, we examine some of
those assertions to see what they have really shown in their reports. Studying their
reports carefully, we show that one cannot maintain, based on the reported results, that
the rqmoval of some points have led to classifiers with a significantly higher
generalization performance overall; for a reasonable number of datasets (noisy and non-
noisy) and a variety of classifiers. We will check this point in our experimental results as

well.

To the best of the author’s knowledge, all the reports of increase in performance, so far,
are either indeed insignificant, in a cleaned test set (hard-to-classify examples were
removed from the test set), or the cases when some level of noise was injected to the
training set. In the latter case, when no noise (0% noise level) was added to the training
set, the classifier trained on the filtered training data was either inferior or almost the
same as the classifier trained on unfiltered data. Thus, whether or not cleaning the
training set can make a classifier with higher performance (on an intact test set) than the
baseline classifier (trained on unclean and uncorrupted data) is still an open question. In
the following, we examine some of the reported cases from the above 3 categories to

clarify the subject.
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2.3.1 Cleaning the test set

In the work of Trappenberg and Back (2000), explained before, we noticed that certain
points are given the label IDK and on the test data, these points are not considered as
misclassified. The authors conclude that the identification of an IDK area and re-
classifying the data (both the training and test sets) can lead to a drastic reduction of false
predictive classification. Trappenberg, et al. (1999) also assert “... This implies that there
is a small number of ambiguous data which should be omitted to achieve considerable
improved performance.” The concept of error-reject curves, as shown before, shows that
there is monotonic relationship between the removal of hard-to-classify points and the
increase of accuracy. Hashemi and Trappenberg (2002) pursued the same idea and
modified error-reject curves into CP curves that gave the bounds (minimum and
maximum) on accuracies achievable by a classifier if hard-to-classify points are to be

removed from the test set.

It is noticeable that in all these examples, the reported improved performance is not really
generalization accuracy = (1 — classification error) which is on the intact test set. It is
indeed the confidence in classification, expressed as accuracy, which has improved for a
subset of the test data (not the whole test data). Hence, those results should not be
mistaken with the performance improvement that we generally refer to in machine

learning (generalization accuracy).
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2.3.2 Injecting noise to the training set

In this case, the test set is kept intact but the training set is altered. In noise reduction
techniques, it is customary to add different levels of noise (e.g., 0%, 5%, 10% ...) only to
the training data and keep the test set clean (Wilson and Martinez, 2000b). It is true (and
understandable) that if the test set is also corrupted, measures of performance cannot be
interpreted easily (or may not be reliable anymore). In general, noise can be added to the
attribute values (attribute noise) or to the class label (class noise) as in the work of

Brodley and Friedl (1999).

The usual scheme in the study of noise reduction techniques is as follows. Some level of
noise is added only to the training set; then the filter! is applied to the training set and two
training sessions are done with the noisy data and the cleaned training data. This leads to
two classifiers: classifier s, trained with noisy data and classifier f, trained with the
filtered data. The 3™ classifier (baseline) is sometimes trained on the original training set
(no noise, no filter). To show the efficiency of the filtering process, the performance of
two classifiers (s and f) on the intact test set (with no noise added) is measured and
compared. If the classifier f performs better than the classifier s, then they conclude
rightfully that the noise was reduced through the filtering process. Different filters and

noise levels (e.g., 0%, 5%, 10% ...) can be studied this way.

However, in the case of identifying atypical examples:

! Filter here was not used as opposed to wrapper; it simply means any instance or noise reduction system.
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e We do not add any noise to the training data but we are looking for the atypical
points already in the data (0% noise level).

e We do not know, in advance, if atypical points are outliers or not; even if they are
assumed to be outliers, we do not know if they are exceptions or noise. Hence,

the test set should be kept intact.

The above two issues show that a good comparison can be done between the results of
any atypical identification method (such as the one presented in this research) and any
noise reduction technique in the case of 0% noise level only. It is in 0% noise that a noise
filtering system tries to identify the possible noise already in the training set (without
injecting extra noise) and measures the effect of its removal (from training) on the intact
test set. This is basically the same process we plan to perform in our atypical detection

system too.

To clarify more about the kinds of training and test sets w.r.t. noise reduction methods,
we try to explain the issue in a slightly different way here. Let classifier(x, ¢) denote the
classifier trained on the training data which is explained by two variables: x noise level
injected (in %); and the binary variable ¢ showing if cleaning was done on the training
data (c = 1), otherwise ¢ = 0. Hence, the baseline classifier is denoted by classifier(0, 0).
To the best of the author’s knowledge, in the area of noise reduction, the reports of
performance increase (on the intact test data) comes from the comparison of the
classifier(x, 0) and the classifier(x, 1) where x # 0. More interestingly, the highest

performance reported in these studies is often the case of baseline, i.e., the classifier(0, 0).
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Please, note that when we have an overall performance increase (over a reasonable
number of datasets) between the classifier(x, 0) and the classifier(x, 1) when x # 0, it does
not mean that the performance will necessarily increase when x = 0 (no noise injection)
and ¢ changes from O to 1. Indeed, the latter case needs its own experiment. Any
expectation such as “removing atypical points from the original training data should
increase the test performance because it does when we clean the injected training data™ is
indeed comparing apples and oranges. Please note that we usually do not know the kind

of noise (and its level) already embedded 1in the data.

The above distinction is very important and may be explained by the following. At the
beginning of the process the training set and the test set have almost similar distributions
(as a result of partitioning or cross validation over a dataset). When we add noise only to
the training set (changing its distribution), the noise reduction process essentially tries to
bring the training data back to its initial state. The result is often a new distribution more
likely closer to that of the initial one or the test set. Hence we can expect a performance
increase going from the classifier(x, 0) to the classifier(x, 1) when x # 0. But when x =
0% noise is added (unfiltered training and test data have almost the same distribution), the
change in the training data, done by instance removal, is more likely to make the filtered
training set more different from the test set. As a result, for 0% noise, we may not see the
same performance increase anymore. Although this may be the general trend, however,

we should note that:
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e It does not mean that there cannot be any subtle reduction in the training set that
can make the classifier(0, 1) better than the baseline, classifier(0, 0).
e Even identifying the subset of misclassified points that their removal can keep the

performance of classifier(0, 1) as high as classifier(0, 0) is still beneficial.

Wilson and Martinez (2000b), in their comprehensive overview of instance selection
techniques for exemplar-based leamers (KNN-based filters), tested their generalization
accuracy against the test set that was not polluted with noise. Once 10% class noise
(change of the class labels of 10% of the data) was added only to the training set, some of
their noise reduction techniques were able to show better performance (on the intact test
set) than the classifier for which training was troubled by noise without filtering. When
no noise was added to the training data, all their tested instance reduction techniques
showed generalization accuracies weaker than that of the baseline (a KNN with 0% noise

in the training data and no filtering).

This only supports that cleaning the training set that is already polluted can be a good
idea. Interestingly, the accuracy of the baseline without any noise stayed the maximum

among all the instance reduction algorithms used in their study (with or without noise).

Almost the same distinction should be made about another interesting work by Brodley
and Friedl (1999). They also added class noise to the training set alone and reported that
filtering the noise significantly improved the classification accuracy for noise levels up to

30%. Although this statement is true on the cases they experimented, we cannot
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generalize it to the case when no noise was injected to the training set. That is, this
improvement in accuracy for sure can show the efficiency of the cleaning process but it
can hardly support any change in the prediction (generalization) accuracy. The method
they introduced for identification errors (filter precision) relies on the case when the
number of corrupted instances in data M, is known. Therefore, the given error estimates

cannot be used for 0% noise level.

They also found that when no noise was injected, filtering did not make a significant
difference even though there was no guarantee that the datasets themselves were noise
free. The only dataset which shows that noise filtering made a positive difference was
“road segmentation” data. Despite of the efforts to get the dataset, it became known that

it is no longer available.

Therefore, in the above examples filter efficiency (expressed as a change in accuracy)
was indeed observed. Concerning the generalization performance (for which we have not
seen any significant support for a positive change), in practice, it is hard to imagine if we
ever need to inject noise to the data and then look for a way to remove it; but we do like
to reduce the noise (or more generally, atypical points) already embedded in the data
without injecting extra noise to it. Unfortunately, this distinction is not clear in the
literature at all, so that one can easily get the impression that performance has been
increased significantly by removing some points from the training data. The only case

when these two measures (filter efficiency and generalization performance) are truly
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equal is when no noise (0% noise level) is added to the training set and the filter is

applied to the original data.

2.3.3 Insignificant performance improvement

Similar to the cases of 0% noise in the works of Wilson and Martinez (2000b) and
Brodley and Fried! (1999), John (1995) also experienced that Robust-C4.5, specialized in
the removal of outliers, degraded performance in some datasets by throwing out points
that seemed to be outliers but were indeed valid points. On average, on 21 benchmark
datasets, after removing outliers from its training data, Robust-C4.5 performed (accuracy
= 84.88%) almost as well as C4.5 (accuracy = 84.42%). Duch, et al. (1999), also showed
that removing some points from the training set can lead to smaller number of rules but

almost the same accuracy for the test set for some benchmark datasets.

The case of Skalak (1994, 1993) is somewhat different. He asserted that “it is possible to
maintain or even improve nearest neighbor classification accuracy on out-of-sample data
by selecting only a small handful of instances as prototypes.” Although he achieved a
significant improvement in some of his results, his study is too specific to make a general
conclusion. His experiments consist of only one classifier (one-nearest neighbor, which
leaves enough room for improvement and may overfit easily) and 4 datasets which
exhibit a high degree of internal coherence and external isolation (Skalak, 1994). This
means in their datasets, each class has no disjunct cluster (no islands) and all classes are
highly separable. He also declares that “such an ideal separation of classes moots the
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selection of a prototype, since any instance in an isolated class may give perfect accuracy
via a nearest neighbor algorithm.” Therefore, although his results inspire more research
on the number and quality of training instances, it can hardly be conclusive to be

generalized to other datasets or classifiers.

Considering the above discussion, the least we can say is that whether or not cleaning the
training set, generally (not a specific dataset or a classifier), can make classifiers with
higher performance (on an intact test set) than the baseline classifier (trained on unclean

and uncorrupted data) is still an open question.

2.4 Dilemma of handling atypical examples within training and

test sets

Some of the algorithms that deal with atypical cases, in general, and outliers in particular,
have either kept atypical cases in the training set or discarded them from the test set.
However, both these choices have problems associated with them. Keeping them in the
training set (as in error-reject curves) can be problematic as these points can be influential
and may degrade the performance of the classifier. Concepts like masking and swamping
(Barnett and Lewis 1994) from the literature on outliers in regression analysis support this
idea indirectly. In classification, Duch, et al. (1999), showed that a small number of
logical rules that covered the majority (not all) of training examples in some benchmark
datasets were enough to obtain high test accuracies. To cover the rest of the examples,

the number of rules would explode while accuracy would not increase significantly.
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Eliminating atypical cases, on the other hand, from the dataset (both training and test sets
as in CP curves and only the test set as in error-reject curves) is done to increase the
confidence of prediction and reduce their influence over the decision function. However,
this often leads to another problem: loss of vital information, since “one person’s noise
could be another person’s signal” (Han and Kamber, 2001) that is true from both
applications and machine learning point of views. While studying astronomical data, in
1777, Daniel Bernoulli faced the same issue and wrote, “I see no way of drawing a
dividing line between those that are utterly rejected and those that are wholly retained; it
may even happen that the rejected observation is the one that would have supplied the
best correction to the others...” (Barnett and Lewis, 1994). In fact, John (1995)
experienced the same issue when Robust-C4.5 degraded performance in some datasets by
throwing out points that seemed to be outliers but they were indeed perfectly good data
belonging to under-represented patterns. Moreover, removing some hard-to-classify
points from the test set is problematic to measuring the generalization performance of the

classifier; and measures obtained this way are not reliable.

As one can see, deciding on what is to be included or removed from the training and test
sets is not a straight forward decision at all. Besides, when reporting performance
increase, it seems that we need to be clearer in what we really mean. As a matter of fact,
these decisions affect the basic setting for all related experiments and should be decided
carefully. That is why different interpretations of performance improvement were

explained in the previous Section. As a solution, Trappenberg, et al. (1999), introduced a
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performance measure which gave different weights to non-classification of the removed
points and correctly classified points. Their performance measure is application-
dependent, and the user is to choose a scaling function and the value of the required
parameter. As a result, their approach does not seem to be straight forward and

understandable to all users.

Considering the above problems, the approach in this research (as it will be explained in
Section IV) is to stick to 0% noise level and intact test set so that the calculated accuracy
is reliable for generalization too. To solve the dilemma, we can search for a subset of
misclassified points such that their removal from training alone can maintain the
classification performance or perhaps enhance it. As for the test set, we can only remove
the points that the domain expert has agreed on. Without such permission, the test set
should remain intact. Since we need to identify the atypical points in the whole dataset
(both the training and test subsets), a K-fold cross validation scheme is proposed to keep
the training and test subsets separate. The detailed explanation of the proposed wrapper

technique for atypical detection is presented in the solution section (Section IV).
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Il Coverage-performance curves and sample subset

selection

In this research, the initial attempts to identify atypical points and to show the effect of
their removal led to the development of coverage-performance (CP) curves. In this
Section, we explain how CP curves are the modification of error-reject curves and clarify
the problems associated with these curves for atypical detection. The expectation for
performance improvement as a result of atypical removal is discussed and the dilemma of

keeping atypical instances within the training and the test sets are explained.

Sample subset selection is also briefly explained as the basic idea that our wrapper
method is built on. Finally, based on the shortcoming of the previous methods, the
features we would like a wrapper algorithm for sample subset selection to have is

explained as the goal of this research.

3.1 Coverage-performance (CP) curves

In the conventional form of error-reject curves, training is done only once and it is the test
set that shrinks gradually. Hashemi and Trappenberg (2002) removed the rejected points
from both training and test sets allowing them to retrain the classifier each time a new test

removed some points and, thereby, reduce the influence of atypical points on the training
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process. They called the obtained curve the coverage-performance (CP) curve. The work
of Fumera and Roli (2002) also shows that retraining can enhance the performance in
error-reject curves in which the test set is cleaned too. In this Section, the calculation of
CP curves for two generated datasets with overlapping samples is presented in more

details.

Overlapping (ambiguous) samples, as a kind of atypical data, may cause a serious
problem to the classification task. The first generated example is shown in Figure III-1.
Figure III-1A shows a training dataset with two attributes and 50 datapoints for each of
two classes. The first attribute, x;, varies uniformly within the interval [-0.8, 0.2] for
class 1 and [-.02, 0.8] for class 2. The second attribute, x;, is also uniformly distributed
within [0, 1] and is included only to help to demonstrate the data. Due to the overlapping
attribute values in x;, there is no way to train an algorithm to classify the data points in
the region x; = [-0.2, 0.2] because data points in this region have equal probability to
belong to either of the two classes. Thus, even if an algorithm produces no error in the
training set, the upper bound in classification performance on the test set in this example
is only about 80%; i.e., 100% in the non-overlapping regions (60% of data), and 50% in

the overlapping region (40% of data). Thatis, 1.0 *0.6 +0.5* 0.4 =0.3.
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Figure IlI-1. Example of uniformly distributed overlapping samples. (A): training data; circles are
class 1 and squares are class 2. (B): The classification of training data. (C): The classification of test
data; false classifications are marked with solid symbols.

Figure II-1B shows the result of training a support vector machine (SVM) applying a Rbf
kernel function; all training examples are correctly classified. Figure III-1C shows the
result of applying the trained SVM on test data; only 80% of the data were classified

correctly.

The second dataset was derived from normally distributed data (Gaussian). For Gaussian
data, x; has the variance of o2 = 1 and the mean values of -1 and 1 for class 1 and class 2,

respectively. The second attribute, x,, is also uniformly distributed within [0, 1].

38



3.1.1 Separation scheme and CP curves

Generally speaking, CP curves can be calculated in both filter and wrapper fashions.
Hashemi (2002) introduced a scheme to generate CP curves in a filter method. The
wrapper scheme to generate CP curves was proposed by Hashemi and Trappenberg
(2002). This scheme tries to separate atypical points from both the training and the test
sets using an arbitrary classifier with the provision of being able to detect atypical points
in its training process. The scheme is based on partitioning the data into the training and

test subsets; it is summarized as follows.

On training data:

1. Train classifier 1 using all the training data.
2. Use the information from classifier 1 to divide all points into 2 classes: A (typical)
and B (atypical).
3. Train classifier 2 on the training data with new labels (A and B); classifier 2 is
atypical detector (separator).

4. Train an additional classifier 3 on only A (typical data) using their original labels.

On test data:

5. Use classifier 2 to remove potential atypical data from the test set (cleaning test

data). we get 2 classes Al and Bl.
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6. Use classifier 3 for the classification of Al data. Use original labels to calculate the
performance measures. Note that Bl (atypical poinis in the test set) is not

classified by classifier 3.

In the second step above, they use some measure to separate the ambiguous data points.
This can be done by, for instance, assigning a threshold on posterior probability m
probabilistic classifiers, the number of same-class data points found in a KNN algorithm
(Trappenberg and Back, 2000), or choosing the bounded support vectors (BSVs) in the
case of a SVM (Boser, et al., 1992). The function of classifier 2 is to separate the
ambiguous data from the typical ones. In their experiments, they calculate in addition to
the performance of classifier 3 (SVM3) in step 6, the performance of classifier 1 (SVM1)
in the same step in order to compare the performance of these two classifiers. Note that
SVM3 is trained on the clean training data and that both SVM1 and SVM3 are tested on

the cleaned test data (A1).

The coverage versus performance (CP curve) is calculated to find out how many and
which data points to take out from a dataset to have a better classification on the cleaned
(typical) data. In general, a CP curve is calculated by first taking out some minimum
number of atypical examples in step 2, finishing through step 6, and repeating this process
from step 1 to take out some more potentially atypical points from the training set. The
reason for such a gradual approach is that (1) atypical points can be influential and

training should be repeated for any new subset of training data; and (2) we do not know,
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in advance, which points are atypical. Coverage is calculated from the test data as

coverage = (number of examples in class A1) / (total number of examples in test data).

Every classification algorithm that can somehow distinguish atypical data from regular
(typical) data can be used in the above scheme. A SVM classifier was chosen by
Hashemi and Trappenberg (2002) with an Rbf kernel function. The involved parameters
include C and 0. C determines the tradeoff between minimizing the training error and the
model complexity; and parameter o of the Rbf function defines the nonlinear mapping
from input space to some high dimensional feature space. The authors took a fixed &
(obtained initially by parameter optimization) and apply different C values. Each C value
gives a different number of bounded support vectors (BSVs) on the training data. BSVs
are the most qualified candidates for being atypical data points if their number is chosen
properly. This is because they have the largest Lagrange multipliers (Boser, et al., 1992).
Note that the number of atypical points is often unknown and that a CP curve can be used

10 estimate it.

Each time a new C is chosen, they start from step 1 (training with all training data). Thus,
points on the CP curve are independent of each other. They found that the resulting
coverage by varying C is very sensitive to the C value, leading to clusters with examples
around large and small coverage values. To get a sufficient number of examples for
intermediary coverage values, they repeated the experiments with different datasets

(generated with different random seeds) 100 times.
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Figure III-2. Coverage performance (CP) curves. Curves without markers are theoretical limits and
the ones with markers are experimental results for normally distributed data (A) and uniformly
distributed data (B).

In Figure III-2, there are two sets of CP curves representing the results from the datasets
with normally distributed (A) and uniformly distributed data (B). In each of these results,
the set of monotonically increasing curves represent the performance as measured by the
number of correct classifications relative to the number of classified examples (cleaned

data). In contrast, the decreasing curves represent the performance as measured by the
42



number of correct classifications relative to the number of all examples, including non-
classified examples. In other words, the non-classified data are simply considered as
misclassifications in this performance measure. The curves above thus represent the
bounds on any reasonable performance measure. That is, y1 and y3 (increasing) curves
represent the highest accuracies achieved by the classifier (SVM) and y2 (decreasing)
represent the lowest accuracies SVM can obtain if some % of points are removed from
the test data. The solid lines without any marker on them represent the theoretical limits
of the performance measures, which can be calculated analytically for these examples

considering the known distribution.

Note that, in the above method, the increasing curves do not count the atypical points
removed from the test set, in their test performance; also, the decreasing curve considers
them as misclassified. In other words, they show the two bounds on the prediction
accuracy: the increasing curves are too optimistic and the decreasing curve is a too

pessimistic estimate of generalization error.

There is another problem with the above scheme that prevents most classifiers from
benefitting from it properly. In step 3, classifier 2 (atypical detector) is trained on a
highly imbalanced dataset. For instance, a dataset like Breast-cancer with some 680
points may have less than 15 atypical points. In general, atypical points (especially
outliers) may not make a well defined cluster and can be in different locations of the
problem space (small disjuncts). Trying to detect atypicals by a classifier trained on such

an imbalanced dataset with small disjuncts is known as a problematic approach
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(Japkowicz, 2003). Although cost-sensitive classification (not available to all classifiers)
has been proposed as a solution to imbalanced data, it is still considered as an open
problem (Japkowicz, 2003). Hence, a scheme that relies on such an atypical detector is

not advisable.

3.2 Issues with error-reject and CP curves

Error-reject and CP curves can be used with most classifiers. However, if one of the
objectives of using these curves is to obtain atypical points, there are certain issues to

consider:

1. The evaluation (test) of the classification task becomes problematic because
difficult points are gradually removed from the test set. Such a performance is not
a reliable measure of generalization error.

2. The curves are always monotonic, not giving any help to the user as to when to
stop the removal process. We know that removing the points till the end of the
curve (100% performance) is most likely an erroneous idea as these points carry
information and discarding them all from the training set may lead to a poor
classifier. Note that most of these points are usually in the region where the
boundaries of classes are located. But error-reject and CP curves were not

designed to answer the question of where to cut off the removal process.

44



3. If a classifier is not equipped with a reject option (like the typical SVM),
computing the curve is troublesome, as was reported in (Hashemi and
Trappenberg, 2002).

4. Working on imbalanced data with small disjuncts for atypical detection can be

problematic.

3.3 Sample subset selection (SSS)

Detection of a subset of examples (samples) as atypical can be seen as a sample subset
selection problem. Feature subset selection (FSS) has been the main area of subset
selection so far. Similar to FSS, in which we search for a subset of features with certain
qualities (to satisfy an objective function), the term sample subset selection (SSS) is used
in this research to refer to the problem of finding a subset of examples in a dataset to
satisfy the objective function. Although the developed algorithms in FSS are for feature
selection, as long as they deal with subset selection, in general, they may be used in SSS
as well. Atypical detection can be seen as a sample subset selection problem. The
wrapper method presented here is rather similar to feature subset selection proposed by
Kohavi and John (1997), except that their wrapper method has a quadratic running time in
terms of the number of features. In a survey of feature subset selection methods, Dash
and Liu (1997) identified at least three basic parts to any typical FSS method. These parts

can work either iteratively or interactively and include:

1. asubset generation procedure to generate the next candidate subset,
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2. an evaluation function to evaluate the quality of the current subset,
3. stopping criteria to decide when to stop (e.g. no further increase in evaluation

function).

Subset generator (search algorithm) searches the space of feature subsets (sample subset
in SSS). Points in this space (different combinations of features or subsets) are called
states. There are, generally, three kinds of search algorithms: exhaustive (exponential),
sequential algorithms (backward elimination, forward selection, etc.), and randomized
algorithms. The evaluation function inputs a state and outputs a numeric evaluation. The

search algorithm’s goal is to maximize this function.

In a wrapper approach to subset selection, the evaluation function is the performance of
the learner and the objective is usually to maximize this performance. In a filter approach
to subset selection, the search and evaluation algorithms determine the set of features (or
samples) without the classifier being consulted. Filter methods usually use a class
separability index as the evaluation function; it measures the degree to which classes are

separated and internally cohere.

FSS is basically a search (optimization) problem in a feature set of size n and there are (2"
— 1) states (subsets of one or more features) that can be searched exhaustively to find the
optimal feature subset. The number of possible states (features) is usually in the range of
10 to 100; except in full text document collections where it is often much larger. Even for

medium-sized n, size of the search space (2") is a huge number and an exhaustive search

46



is prohibitive in practice (Dash and Liu, 1997). As a result, researchers have applied
heuristic searches, simplifying assumptions, or even randomized searches (Kohavi and
John, 1997; Dash and Liu, 1997; Miller, 1990) as their feature subset generation

procedure.

Sample subset selection (SSS) is also a search (optimization) problem in a training set of
size N and there are 2" — 1 states (subsets of one or more examples) that can be searched
exhaustively for the optimal points to be removed. Unlike FSS, in SSS the number of
possible states (examples) is usually in the range of a few hundred to several thousand; in
the case of information retrieval it is in the range of many thousands. This makes the size
of the search space in SSS dramatically huge. Note that an increase of only 10 (in n or N)
will result in about 1000 times more states than the previous number of states to be
searched. That alone can explain why researchers have not tried wrappers on sample
subset selection for atypical detection so far, considering that wrapper methods require
many retraining sessions that is computationally expensive too. It is indeed like finding a

number of needles in a hay stack.

There are techniques like branch-and-bound to skip possibly some states in subset
selection (Miller, 1990). For instance, accepting N/2 as a minimum size of the training
data in inductive learning (as a stopping criterion), the number of states in a branch-and-

bound technique is reduced to (2™*

- 1). Still, the remaining number of states is larger
than what we can search exhaustively. Considering only the misclassified points as the

only candidates for removal also reduces the number of states; yet in most datasets an
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exponential search algorithm is far from being a practical option in SSS. For example, a
dataset of size 1000 and an error-rate of almost 15% will give at least N = 150
misclassified points. The size of the search space (2" = 1.427e+45) is still far from a

practical size for a wrapper method.

Generally speaking, other than exponential algorithms, there are two other kinds of
algorithms available for subset generation: randomized algorithms (such as GA: genetic
algorithms) and heuristic (sequential) algorithms. Skalak (1993) used GA to identify
prototypes for one-nearest neighbor algorithm. A simpler GA search strategy (random
mutation hill climbing: RMHC) can be found in (Skalak, 1994). The main difference
between RMHC and a standard hill climbing (or steepest ascend) search is that in RMHC
the length of the binary string representing the chosen subset of data (that is the number
of points in the subset) is fixed in advance and mutation is done to find the best evaluated
subset. In RMHC, unlike the regular GA approach, different mutations of only one
individual (one random initialization of the binary string) are searched for the best
evaluated subset. In GA, many individuals are mutated to generate a better final subset
(Skalak, 1993). The number of mutations (100) was chosen as a very small number for

this type of approach (Skalak, 1994).

Randomized algorithms may randomly ignore some of the atypical points that are
important to us (in some applications, identifying atypicals is the objective and more

important than the performance). Besides, the ranks of removed points are also an
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important piece of information that may not be obtained in randomized search.

Therefore, we consider only the sequential algorithms.

The time complexity of a sequential algorithm is O(m*) (John, et al., 1994) where m is the
number of all candidates in the dataset. Thus, when candidates (examples whose removal
from training is tried in SSS) are limited to the misclassified points, the overall running
time of an inductive classifier used in a wrapper method for sample subset selection will
be increased by a multiplicative factor of O(m*) in the worst case of sequential
algorithms. For example, when m = 150, we need to retrain the classifier (1502 = 22,500)
times. If cross validation is performed, the running time will be increased accordingly.
To the best of the author’s knowledge, this is the fastest available wrapper method. For
some classifiers like SVM with nearly a quadratic running time, this can be still
prohibitive in practice. Hence, we need to reduce further the time complexity of our SSS

process.

Sequential algorithms are greedy algorithms that can be either forward selection or
backward elimination. Consider the set of N = 26 letters of the alphabet (a, b, c..., z) that
we would like to find the optimal combination of letters. In forward selection, we start
with an empty set and try all 26 letters individually; the one which gives the highest
evaluation value (say h) is chosen. Then we try all the 25 2-item sets (h and another
letter) and choose the best among them. This process goes on till the stopping criterion is
reached. In backward elimination, we start with the full set of letters and each time we

remove one letter from the set. The stopping criterion can be, for instance, no more
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evaluation value (performance) improvement as we add or remove one more letter. But
this imposes the assumption of monotonicity to the objective function that adding more
letters can only increase the performance. One can also continue adding or removing
letters one by one till all letters are in the subset and choose the subset with the best
evaluation value. This can increase the performance as well as the time complexity of the
search by a factor of 2 of O(N?) that is still better than the exhaustive search with o@R" -
1). When there are a large number of features, instead of removing one at a time, some
sequential algorithms, like SBS-SLASH, remove a group of features together (Dash and
Liu, 1997; Miller, 1990). This can be a good idea for SSS to reduce the size of the search

space.

3.4 The goal (what is needed)

Based on what was mentioned in the previous Section as the requirements to make a
wrapper approach to SSS applicable and to address the issues with error-reject and CP

curves, we may consider the following six points as the goal for the proposed solution.

1. A time complexity lower than quadratic is preferable. Even the quadratic
complexity of sequential algorithms is not good enough for SSS. We would like
to remove points in group.

2. The ranks of the removed points are also important; we like to know which points

are more atypical than the others.
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3. For any given dataset, we would like to identify the set of atypical points for the
whole dataset without damaging the validity of the test process (generalization
error). This was also a concern with respect to error-reject and CP curves when

used for atypical detection (mentioned earlier).

The following three features also come from our discussion on error-reject and CP

curves. They are repeated here for completeness.

4. There should be a cut off point for the removal process (non-monotonicity).

5. The methodology of removing atypical points should be so general that even
classifiers without a reject option such as the typical SVM can be used.

6. As atypical points are usually in minority in a dataset, it is preferable to avoid

classification of imbalanced data with small disjuncts for atypical detection.
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IV Solution: Atypical Sequential Removing (ASR)

To address the requirements for atypical detection mentioned in the previous Section, the
proposed method for sample subset selection is explained in this Section. Like any subset
selection technique, first we need to define what subset of examples we are looking for

and then discuss the methodology applied to identify such points in a dataset.

4.1 Definition of atypical points

Atypicality, in this research, is defined from the classifier point of view. The formal

definitions of atypical points are given here as follows:

Definition 1

Given an inducer I, and a dataset D with labeled instances, an atypical subset
Dasp, is a subset of D such that the generalization performance of the induced

classifier C = I1(D —Day) is maximal.

A problem with the above definition is that it leads to an unmanageable search space: @
— 1) states where N is the size of the training set. As it was discussed in Subsection 3.3, a
possible shortcut is to consider the set of misclassified points as the only candidates of

atypicality. This can be effective because it reduces the number of states dramatically
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with minimal loss of information: we have no case against the correctly classified points
(they are typical from the classifier view point). Also, for some algorithms such as SVM,
removing all within boundary examples (non support vectors) from the training set does
not degrade the classifier at all; so, we should not mistaken them with the atypical points.

As a result, our definition of atypical points is modified as follows.

Definition 2

Given an inducer I, and a dataset D with labeled instances, an atypical subset
Dasp , is a subset of the misclassified set M such that the generalization

performance of the induced classifier C = I(‘D — Dayp) is maximal.

In this definition, the misclassified set M is the set of all the examples misclassified in an

iterative process on the training data till the stopping criteria (e.g., state of zero training
error) is reached. This set is usually larger than the points misclassified after a single
training session; and it helps to capture almost all apprehensive examples to prevent the
possible loss of information because of not considering the correctly classified points.
Please note that there is no guarantee that the maximum performance will be necessarily
higher than the performance of the baseline classifier (with no removal from its training

set).

Atypical points usually contain both outliers and overlapping samples. Outliers lie
reasonably far from the cluster of their label class in the problem space while overlapping

samples are usually close to the boundary of their class and members of more than one
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class may fall in the overlapping region. In both cases, to fall in the above definition,
atypical points must lie outside of their class boundary (misclassified). There is no
attempt in this research to separate outliers from the overlapping samples. The distinction
between outliers and genuine exceptions is not performed here either. This is because

atypical points are defined here from the classifier point of view.

The term atypical and the logic behind the above definition were borrowed from medical
practice. In Medicine, when the findings about a patient (case attributes) do not conform
to the norm of the disease (d1), the case is called atypical. This does not necessarily
mean that the case does not belong to the disease d1 (so, we keep atypicals in the test set
under the class dl); but it puts the case in a collection of atypical cases. If a cluster of
atypical cases is found -in time- that may lead to the recognition of a new branch or a new
kind of the disease (d2) by the approval of an authorized body of the domain experts.
Only then, cases of d2 can be considered as true outliers to d1. Examples are abundant:
Dementia with Lewy Bodies, Hepatitis C (non-A, non-B), atypical or type 1.5 Diabetes,
and hard to diagnose diseases like Lupus and Addison’s disease are some examples of the
atypical clusters which are given new labels. Severe Acute Respiratory Syndrome (SAR)

was also an atypical pneumonia.

More interestingly, an atypical case for physicians in one region may be a very typical
case in another. Even different experts in the same region may have their own different
views on some subjects. So, atypicality only reflects the view of an expert (particular

classifier) who has worked on the cases. By analogy, we must keep atypical detection
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and their ranking consistent with the classifier in use. Also, calling cases “outlier” is the
task of an authorized body of the domain experts (or perhaps a collection of different
classification algorithms for some applications) but finding ranked atypicals can be done

from the view point of a single classification algorithm.

4.2 Methodology

After defining atypical points in the context of wrappers, given in the previous Section,
we explain the algorithm that tries to identify them in this Section. A modified version of
sequential backward elimination was developed to satisfy the time complexity
requirement. In this wrapper approach, the classification algorithm itself is used for the
evaluation function as in the work of Kohavi and John (1997). A common objective
function is to maximize prediction accuracy; however, any other performance measure

can be used in this approach.

Misclassification can happen in both training and test sets. But we are only allowed to
remove points from the training set because changing the test set damages the
performance measure (evaluation) of the classifier. To find the atypical points in the
whole dataset (both training and test sets) without sacrificing the evaluation (test) of the
classifier, a cross-validation (CV) scheme is proposed. This scheme is presented in Table

IV-1 and explained in the following.
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4.2.1 Atypical Sequential Removing (ASR) algorithm

ASR is a modified version of sequential backward elimination that tries to reduce the
complexity of the standard backward elimination. The input to this algorithm is an
arbitrary classifier, a performance measure such as generalization accuracy (as the
evaluation function) and the dataset in question. The objective is to identify the set of
atypical points in the dataset so that their removal from the training set will benefit or (at
least) not damage the test performance of the classifier. The outputs of the algorithm are
the set of atypical points in the dataset, average performance measures (e.g., accuracies)
with and without removing atypicals, and ranks of atypicals (their frequencies in the K-

fold process).

In summary, the presented algorithm identifies the atypical points in the training set in
three steps. The first step is to find the misclassification set (the set of all the examples
misclassified in an iterative process on the training data till the state of zero training error
is reached). The second step is to group and rank the misclassified points. The third step
is to identify the atypical points by removing the misclassified groups from the highest
rank to the lowest. The atypical points are approximated as the groups that their removal
has caused the maximum performance in a validation set. The performance of the
classifier trained on the cleaned training set (ASRAcc) is then calculated as well as the
performance of a baseline classifier (blineAcc) trained on the whole training set. The
comparison of ASRAcc and blineAcc can show how well the detection of atypical points

was approximated. According to our discussion on the quest for performance increase
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(Subsection 2.3), if ASRAcc is greater than or almost equal to blineAcc, then the

approximation can be accepted.

Table IV-1. K-fold CV scheme for ASR algorithm.

fori= 1K,
trainset: Tr(i) & testset(i) « Data; % divide data into training and test sets
train classifiert on Tr(i); % classifiert = baseline
blineAcc(i) « test classifiert1 on testset(i); % baseline accuracy
[coverage, misclpnts, misciNos] «— getMisclfd(irainset); % get set of Misclassifieds
misclRanks < getRank(coverage, misciNos); % ranking misclassifieds

[Atypicals{i}, Coverage(i)] < getAtps(trainset, misclpnts, misciRanks};
% getAtps finds atypicals (not monotonic)
Trclean(i) «— remove Atypicals{i} from trainset(i);

train classifier2 on Trclean(i); % classifier2 = ASR
ASRAcc(i) « test classifier2 on testset(i); % ASR accuracy

end

blineAcc « mean(blineAcc); % average over K values

ASRAcc « mean(ASRAcc);
avgnAlps < mean(size(Atypicals));

Table IV-1 presents a pseudo code of ASR. For each fold of a K-fold cross validation
(CV), accuracies with and without removing atypicals are calculated and the set of
atypical points —~within the training set of the current fold— are identified. In detail, the

following is done in each fold.

Data is divided into training (Tr(i) in the pseudo code) and test sets. The first classifier

(classifiert that is our baseline) is trained and tested against the test set. All training
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sessions are done in a standard form (with parameter optimization for overfitting
prevention, if necessary). Note that the test set (testset) has nothing to do with any of the

three used functions: getMisclfd, getRank, and getAtps.

Extracting misclassified set (getMisclfd function):

The purpose of this function is to gather all misclassified points (misclpnts) and to record
the order of their misclassification that is, the time (order) of their rejection to be used for
ranking in getRank function. Training and removal of misclassified cases from the
training set is repeated till we reach the stopping criteria. The behavior of the getMisclfd
function is monotonic, like an error-reject curve, but it updates its training after each
removal. Figure IV-1 shows this process. The first removal points are the ones that were
misclassified in the first training. Training for the 2" time is done on the points correctly
classified in the 1* training. The 2™ removal points are the ones that were misclassified

in the 2™ training. This process repeats till we reach the stopping criteria.

I correctly classified _»

/

stopping state 2™ removal

Figure [V-1. Extracting the set of misclassified examples.
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The stopping criteria are either zero training error, the removal of all members of a class,
or removing 50% of the size of initial training set. Please note, zero training error is not
reached at a single training session and must not be mistaken with overfitting. In fact, by
removing misclassified points from the training set the chance of overfitting due to

outliers becomes even less.

Ranking misclassified points (getRank function):

Misclassified points are ranked according to the order (time) of their misclassification.
The purpose of this function is to rank the misclassified groups so that they can be
searched in by a computationally light search (getAtps function, linear in our case) in the
next step. Ranking atypical points is not done here. Vectors coverage, and misciNos are of
the same size; coverage is the proportion of number of points left in training after every
removal to the initial number of points in the training set; and elements of misciNos show
how many points in misclpnts are associated with any entry in coverage. Since more than
one point may be misclassified in a single test, a group of points can have the same
misclassification rank. For instance, if it takes 3 trials to reach the stopping state in
getMisclfd, the first group of misclassified points is given rank 3, the second rank 2, and
the third rank 1. Assuming there are 100 points in the training set initially, the inputs:
coverage =[1 .96 .93 .92] and misciNos =[0 4 3 1] will generate the output: misciRanks =[3 3
3 3 2 2 2 1] that shows the ranks of all points misclassified in getMiscifd function . The

higher the rank number, the more likely the points are atypical.
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Finding atypicals (getAtps function):

Not all misclassified groups within the list are to be removed, as some may carry useful
information to the classification task. In order to find out which group(s) to be removed
from the training set, we perform backward elimination from the highest to the Jowest
ranked groups using a 2™ level k-fold CV on the training set. This validation process
starts by removing the group with the highest rank and measuring the performance using
the 2" level k-fold CV on the training set. Then the 1** and the 2" highest rank groups
are removed and performance is measured. This process continues till all misclassified
groups are removed from the training of the 2" Jevel CV. The maximum performance in
this sequence determines which groups (subset of the training set) to be removed from
training. This CV acts as subset evaluation, that is the evaluation of the objective
function (maximum performance). It is part of the search method and has nothing to do
with the outer CV loop, which is for the purpose of test (generalization power). The
output of this function (Atypicals{i}) are the points that their removal has caused the best
performance inside getAtps. We hope to see a non-monotonic behavior from getAtps.
Since groups are removed in sequence, the algorithm is called Atypical Sequential

Removing (ASR).

Finally, construct a clean training set, Trclean, train classifier2 on it, and test on the test set.
Note that classifiert and classifier2 are of the same kind and only their training data is
different. Since the atypical points are the best to be removed from the training set, we
denote Trclean = (training set — atypicals). A single training of classifier2 is finally done

on Trclean and it is tested against the unseen test data. The obtained accuracy is called
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ASRAcc(i), which is then averaged over its K values. The same averaging is done for

baseline accuracy.

In the ASR algorithm, subset generation is done in two functions (getMisclfd and
getRank). The result of these two functions is the identification of misclassified points
that are in groups with a specified rank for each group. Thus, subset generation is more
elaborate than a traditional sequential algorithm, however, the overall time complexity is
significantly less than quadratic. The complexity of getMisclfd is O(ntrains . ic), where
ntrains is the number of times training is done in getMisclfd and fc is the time complexity
of the classifier in use. The average of ntrains for the different datasets and the classifiers
used in this research is about 5. Hence, subset generation is still a linear process but it
turns our combinatorial problem into a linear search. Since we know which points are
grouped together and also the ranks of the groups, now we can perform our subset
evaluation as a linear search to find atypical points. Subset evaluation is done mainly in
getAtps function. FEvaluation function (check of performance) is also used within
getMisclfd function for subset generation. The stopping criteria are used in getMisclfd
function (either zero training error, the removal of all members of a class, or 50% of the
size of initial training set). However, in getAtps there is no stop and we perform an

exhaustive search by trying the removal of all groups sequentially considering their ranks.

In K-fold CV (unlike holdout and bootstrap methods) all examples of a dataset have equal

chance of being in the training and test sets. Hence, the possible change in the final rank
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of atypical points, due to the order of data, is less than what may be obtained using

holdout or bootstrap methods.

4.2.1.1 Time complexity of ASR and the applied heuristics

The overall time complexity of ASR can be computed for two cases. The first case 1s
when we do not use any inner loop cross validation (CV) in getAtps function. Since the

complexity of getAtps would be the same as that of getMisclfd, we have:

O(K (2 . ntrains . tc)),

for a K = 10 folds (outer loop) and an average of ntrains = 5 (this is the average for the
datasets and classifiers used in this research), we have O(100 . zc). The second case is

when we use a k-fold CV within getAtps function. In that case, we have:

OKK ((k + 1) . ntrains . tc)),

for a K = 10 folds of the outer loop, an average of ntrains =5, and k = 5 for the CV inside
getAtps function, we have O(300 . 7¢). Therefore the complexity of ASR is still a linear
factor of the time complexity of the classifier in use (¢c). This feature of ASR makes this
research viable. As explained in Subsection 3.3, the running time of the fastest available

wrapper method (a conventional sequential algorithm) with an average error rate of 15%
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is at least’ 0(22,500 . tc). Hence, roughly speaking, ASR is at least 22500 / 300 = 75
times faster than the fastest available wrapper method for the average of datasets and

classifiers used in this research.

To make the search for atypical points computationally feasible, we have applied three
heuristics in ASR. The first heuristic is the focus on the set of misclassified points only,
as explained in getMisclfd. Since we collect all the misclassified points till the state of
zero training error, this heuristic seems to be very reasonable. The second heuristic is in
the method of ranking misclassified points: a group of points misclassified together have
the same rank. As a result, in getAtps, points with the same rank are removed at the same
time. This makes ASR less precise because the problem is indeed combinatorial
optimization and removing a group of points that were misclassified at the same time can
affect the quality of the results. The third heuristic happens in getAtps. In backward
elimination, once some points are removed we cannot bring any of them back into the
next subsets. This also causes ASR not to be precise. More time consuming techniques
like sequential replacement algorithms (Miller, 1990) can be used to modify the latter

problem.

> We used “at least” because with 15% error-rate and |dataset| = 1000, we have |misclassified set| >150
(since the iterative process of collecting misclassified points continues till zero training error is reached);

beside, cross validation was not considered for the sequential wrapper.
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4.2.1.2 ASR with the check option

It is not necessary to remove some points each time that one fold of the ASR scheme
runs. Some classification algorithms, like local learners (KNN, CBR ...), may not be
good at finding the examples that have a negative influence on the overall performance.
Hence, it is beneficial to have an option to check if removing atypicals is possibly useful.
In Table IV-2, a simple check option is presented that tries to prevent a classification
algorithm from performing lower than its baseline. The ASR algorithm with the check
option (Table IV-2) follows exactly the same procedure as the regular ASR (Table IV-1)

except for the part added for the check option.

The training set for the baseline classifier has no removal. In the check option, we
compare the training accuracy of the baseline classifier, TrAccbline, with TrAccASR, which is
the accuracy of classifier2 (ASR classifier) on the whole training set of the current fold
(Tr(i)). Note that, generally, ASR is trained on a smaller set than the baseline but they are
tested on the same dataset. If (TrAccASR + &) >= TrAccbline, then we can accept the removal
process. Otherwise, calculation will be as for the baseline (no removal). The tolerance

value, &, can be used for numerical and randomness inaccuracies (1e — 6, for instance).
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Table IV-2. K-fold CV scheme for ASR algorithm with the check option.

fori= 1K,
trainset: Tr(i) & testsei(i) « Data; % divide data into training and test sets
train classifier1 on Tr(i); % classifier1 = baseline
blineAcc(i) « test classifiert on testset(i); % baseline accuracy
[coverage, misclpnts, misciNos] « getMisclfd(trainset); % get set of Misclassifieds
misciRanks < getRank(coverage, misciNos); % ranking misclassifieds

[Atypicals{i}, Coverage(i)] < getAtps(trainset, misclpnts, misciRanks);
% getAtps finds atypicals (not monotonic)
Trclean(i) < remove Atypicals{i} from trainset;

train classifier2 on Trclean(i); % classifier2 = ASR
TrAccASR « test classifier2 on Tr(i); % ASR accuracy on training set
TrAccbline « test classifier? on Tr(i}; % baseline accuracy on training set
if TrAccASR >= TrAccbline, % check option
ASRAcc(i) « test classifier2 on testset(i); 9% ASR accuracy
else
ASRAcc(i) «- blineAcc(i); Atypicals{i}=[1; % 1o removal
end
end
blineAcc « mean(blineAcc); % average over K values

ASRAcc «+ mean(ASRAcc);
avgnAtps « mean(size(Atypicals));




V Experimental setup

Seven classifiers were used in this research. They include:

1. SVM (support vector machine with Rbf kernel function and equipped with parameter
optimization), (Vapnik 1995, 1998; Burges 1998); the Matlab interface (OSU-SVM)
to the LibSVM implementation (Chang and Lin, 2002) was used. In LibSVM multi-
classification is done by 1-vs.-1 (pair wise) method. The optimization of 2 parameters
was done by the in-home implementation added to OSU-SVM Matlab interface.

2. KNN (that optimizes for its k);

3. CART (classification and regression trees; its Matlab implementation), (Breiman, et al.,
1984);

4. NB (Naive Bayes);

5. QB (quadratic Bayesian);

6. LDA (linear discriminant analysis), (Krzanowski, 1998); and

7. QDA (quadratic discriminant analysis).

Each classifier was tested on twenty datasets with different sizes; with some exceptions
such as QB and NB that had a problem with the Dermatology dataset. For the datasets
with size <= 1000 examples, repeated stratified 10-fold CV was used. The algorithm in
Table IV-1 was run for K = 10 (10-fold CV). K = 10 was recommended by Kohavi

(1995) as the best empirical number for accuracy estimation and model selection. This
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was also repeated 5 times to reduce the randomness in the results. Between each of 5
iterations, the data was shuffled randomly. When the dataset has size > 1000, K = 2 was
chosen and only 1 iteration was done to save time; in large datasets usually the estimate
of variance of the performance is not high and there is no need for many cross-validations
(Kohavi and John, 1997). K = 2 is still more reliable than simple partitioning as it
reduces the effect of uneven representation in the training and test sets (Witten and Frank,
2000; and Kohavi, 1995). Indeed, for the same reason 10-fold CV is the standard method

of evaluation practically (Witten and Frank, 2000).

We are mainly interested in investigating the behavior of the ASR algorithm without the
check option. Once the regular ASR generates satisfactory results for a classifier, there is
no need to experiment with the ASR with the check option because they are basically the
same. In the case of a significant degradation in the performance of a classifier (from its
baseline to its ASR results), one may be interested in experimenting with the ASR with
the check option. A thorough comparison of the results with and without the check

option is a subject for future studies.

5.1 Ada-Boost and S-Boost

Although the performance measure (accuracy for its popularity) can show how ASR
performs compared to the baseline case which has no removal from the training set, we

do not know if the removed points (atypicals) carry some useful information to the
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classifier in use. One reasonable way to test this issue is to train 2 boosting ensembles:
one with the training set without any removal and the other with the training set after

removal of atypicals, and then to compare their results.

In boosting, the ensemble is the collection of base classifiers put together as a series that
tries to focus more on the misclassified points by giving them more chance to be learned
by the next classifiers in the series (Schapire, et al., 1998). In bagging, however, the
ensemble works as parallel; the training data is chosen randomly with replacement and
any example has an equal chance to be chosen (Breiman, 1996). Since in ASR we deal
with selected misclassified points, boosting (not bagging) is a natural choice to
investigate if there is useful information in the removed points. Disagreement among
base classifiers is the pivotal idea in all ensemble techniques (no gain if base classifiers
are identical). This has been shown analytically in (Krogh and Vedelsby, 1995) and
empirically by Opitz and Shavlik (1996). A major source of disagreement is the
misclassified data; note that disagreement on an example implies that at least one of two
classifiers has misclassified the example. In other words, disagreement is always

associated with misclassification. That is why boosting focuses on misclassified points.

When Ada-boost is applied to the Subset of data without atypicals, we refer to this as S-
boost. So, Ada-boost and S-boost follow exactly the same procedure and use the same
test set but different training data. We are interested in observing the difference in the

performance of these two.
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Hence, if we have removed a significant number of misclassified points from the training
data, boosting may not perform as well unless the removed points are not useful to the
classification algorithm (atypicals). On the other hand, unlike bagging, boosting
ensembles are rather sensitive to noise (Optiz and Maclin, 1999). Although their
performance is generally better than bagging, when the dataset is problematic they may
degrade substantially. This can be seen from the result of this research as well.
Therefore, when we have removed atypical points from the training set, boosting may not
degrade as much showing that some of the removed points were indeed atypicals. If it
does, or if it degrades even more, then there are still atypicals in the training set and/or

there are useful typical points in the removed set (which causes more degradation).

Both boosting cases were also treated as the baseline and ASR in terms of K-fold CV and
number of iterations. So, we have 50 ensembles at the end for each of two boosting cases
(when |dataset| <=1000) for which the results were averaged at the end. Different authors
have recommended different ensemble sizes (number of bootstrap resamples) as the
highest number practically necessary (Schapire, et al., 1998 and Breiman, 1998). The
highest value (25) from among the suggested ones: 10, 15, and 25 (Opitz and Maclin,
1999) was chosen for our experiments to make sure that Ada-boost has sufficiently

reduced test set error and nearly asymptoted to a plateau.
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5.2 Comparing ASR with a filter method

ASR, as a wrapper method, can be compared with a well-known filter method to see if
our wrapper method can perform as expected. We employed a widely used filter method
(Mahalanobis distance measure) to extract outliers from the datasets. The comparison
can be done on the quality of the cleaned training data. That is, when the clean data is
used for training, we compare the quality of the classifier trained on the data cleaned by
the filter with the classifier trained on the data cleaned by our wrapper method (ASR).
Also, the more points a method (filter or ASR) can remove the cleaner the training data if

their corresponding performance is almost the same.

5.2.1 Mahalanobis distance, a filter for outlier detection

Mahalanobis distance (Ripley, 1996) is one of the widely used measures for outlier
detection. In general, Mahalanobis distance is a measure of distance between two points
in the space defined by two or more correlated variables. Each example in a
multidimensional input space can be plotted as a point. Also, one can plot a point
representing the means for all attribute values of a certain class. This "mean point” in the
multidimensional space is also called the centroid of the class. Mahalanobis distance
(Md) is the distance of an example from the centroid in the multidimensional space,

defined by the correlated attributes. Md can be written as follows.

Mdyx) = [(x —m,)" 8. (x —mo)]'"?,
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where Md,. (scalar, dimensionless) is the Mahalanobis distance of the point x (feature
vector) from class ¢. Often we use squared Md, skipping the sqrt operation. S, represents
the within-class covariance matrix, T stands for transpose, and m, is the vector of the
means of the attribute values for class ¢. If attributes are uncorrelated, it is the same as
the simple Euclidean distance (S, will become a diagonal matrix with elements

representing the variance of each attribute).

One of the main reasons Mahalanobis distance is used is that it is sensitive to the
correlations between attributes in the training data. When the attributes are correlated, the
axes in the input space can be thought of as being non-orthogonal; that is, they would not
be positioned perpendicular to each other. In addition, since Mahalanobis distance is
measured in terms of standard deviations from the mean of the training examples (m.),
the distance values give a statistical measure of how well the query feature vector (x)
matches (or does not match) the original examples of class ¢. Hence, one way to detect
outliers is to calculate Md of a set of points from themselves and sort them out (Bamett
and Lewis, 1994). In classification, it can be more accurate to calculate Md values for
each class separately (a covariance matrix for each class as opposed to a pooled
covariance matrix for all the training data) and then sort out the Md values. The outliers
detected in this research, as the result of using Md (filter method), follow this method. If
the number of examples in a class is small, then calculating a pooled covariance matrix
can be more appropriate because calculating a separate covariance matrix may become

instable numerically (singularity problem) and may show high variance in estimation.
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Since Md > 0, the cutting point to separate outliers from other points can be determined
by Chi squared distribution. The Chi squared distribution is skewed to the right. The two
parameters of Chi squared distribution are [p, df]. For outlier detection, it is conventional
to use p = (1 - o), o = 0.01, and df = degree of freedom = number of attributes in

examples.

Mahalanobis distance is also the basic idea behind discriminant analysis. Once we have
the centroid vectors for the classes, we can calculate the Md between a query point and all
the centroid vectors. The smallest Md can determine the estimate of the class label for the
query. In Linear Discriminant Analysis (LDA), a pooled covariance matrix for all
training data is used while in Quadratic Discriminant Analysis (QDA), a separate
covariance matrix is calculated for each class. They give the optimal Bayes rules when

the within class data is normally distributed.

5.3 Description of datasets

The 20 datasets used in the study are summarized in Table V-1. They vary across size
(number of examples in the dataset) and kinds of attributes (continuous, discrete or both).
Among the 20 datasets used, 3 are artificial (generated). All datasets, except for GenNor
and GenUni, are chosen from the UCI data repository (Blake and Merz, 1998) from
which their documentation can be obtained. The emphasis in choosing datasets was on

well-behaved datasets (high accuracies can be achieved) and problematic ones as well as
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different sizes. The sizes of the datasets are given with their name to distinguish which
version of the dataset was used here. It also helps to compare the coverage values, in the

tables of the following Sections, without referring back to this table.

Table V-1. Summary of the datasets used in this research. The names with italic font are
generated datasets. The numbers in the parentheses are the number of instances.

Attributes
Name (size) Classes | continuous discrete

AbaloneAll3(4177) 3 7 1

Balance-scale(625) 3 4 0
BCancerW(683) 2 9 0
Chess(3196) 2 o] 36
Cmc(1473) 3 9 0
Crx1(653) 2 6 9
Dermatology(358) 6 33 1

DiabetesPima(768) 2 8 o
Ecoli(332) 5 6 0
GenNor(300) 2 2 0
GenUni(300) 2 2 0
Haberman(306) 2 2 0
Hcleve(296) 2 6 7
Iris(150) 3 4 0
lonosphere(351) 2 33 0
LiverBupa(345) 2 6 0]
SegmentationAll(2310) 7 18 0
Splice1(3190) 3 o 60
Thyroid(7200}) 3 6 15
Vehicle(846) 4 18 0

AbaloneAll3 is a modified version of the Abalone dataset. The class label is the age of a
kind of sea shell (Abalone). According to the domain expert samples are highly
overlapped and the dataset lacks necessary attributes to estimate the age of abalone.

Originally there were 29 highly imbalanced classes. The modified version groups the data
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into 3 classes: C(1:8) into class 1 (1407 examples), C(9,10) into class 2 (1323 examples),

and C(11:29) into class 3 (1447 examples).

The Balance-scale dataset is a nonlinear classification problem. It has previously been
used in cognitive psychology experiments. The class label can be found by calculating
the greater of (left-distance * left-weight) and (right-distance * right-weight). If they are

equal, it is balanced (3" class).

In the Chess (king-rook-vs-king-pawn) dataset, the target is to predict the outcome of the
game (the class label) given input attributes, as a set of possible moves of black and white

pieces.

Cmc (Contraceptive Method of Choice) is a subset of a socio-economic survey. The

dataset is highly undeterministic with possible overlaps between classes.

The Crxl (credit card approval) dataset is the same as crx dataset without 37 rows

(examples) with missing values that were omitted.

In the Ecoli dataset (Protein Localization Sites), 4 examples with missing values were
removed. Also, 2 last classes were removed because each had only 2 instances out of
336. The instances of the class with 5 instances (omL) were given to its closest class

(om). As aresult, 8 classes were reduced to 5 classes.
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The GenNor dataset was derived from Normally distributed data (Gaussian) with two
classes and two attributes. The first attribute has the variance of 6° = 1 and the mean
values of -1 and 1 for class 1 and class 2, respectively. The second attribute is uniformly

distributed within [0, 1] and has no effect on class membership.

The GenUni dataset was derived from uniformly distributed data with two classes and
two attributes. The first attribute varies uniformly within the interval [-0.8, 0.2] for class
1 and [-.02, 0.8] for class 2. The second attribute is also uniformly distributed within [0,

1] and has no effect on class membership.

Haberman's Survival dataset is from a study conducted between 1958 and 1970 on the
survival of patients who had undergone surgery for breast cancer. This dataset is another
good example of problematic datasets as it lacks the necessary attributes (as in abalone) to
predict the class value. The two attributes used here are the patient’s age and the number

of positive auxiliary nodes detected.

Iris and BCancerW (breast cancer Wisconsin) are two well-known and well-behaved
datasets. Hcleve (heart Cleavland) and Diabetes Pima are also well-known datasets. In

Hcleve, 7 instances with missing values were removed.

The LiverBupa (Liver disorder from BUPA Medical Research Ltd.) dataset is another
problematic dataset. The highest accuracy obtained on LiverBupa, using mixture of

experts, is about 70%.
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In the SegmentationAll dataset, the training and test sets of Image Segmentation data
were combined to make a single dataset. In this dataset, instances were drawn randomly
from a database of 7 outdoor images. The images were hand-segmented to create a class
for every pixel. Each instance is a 3x3 region. Each of 7 classes (brickface, sky, foliage,

cement, window, path, and grass) has 330 instances.

Vehicle is from a study to see if 3-D objects (4 types of vehicles) can be recognized from
2-D images. So, there is no or very little noise but not enough attributes. The accuracy
obtained, using 10-fold cross validation and Ada-Boosting on a back propagation neural

network, was about 80.5% (Maclin and Opitz, 1997).
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VI Experimental results

There are three groups of tables in this Section. The first group (Table VI-2 to Table
VI-8) compares the performance of baseline (bline Acc) with that of our wrapper method
(ASR). The second group of tables (Table VI-10 to Table VI-16) compares Ada-boost
(Abst) with S-boost (Sbst) and the baseline (bline). All values are in percent and rounded
off to one decimal point, except for nAp and the last column (ntrains) in group 1 tables.
The third group of tables (Table VI-18 to Table VI-24) shows the comparison of the

result of a filter method with that of ASR.

In Subsection 6.1 Tables of group 1, also given are: p-values from McNemar’s test;
average Coverage; average number of atypicals (nAfp) in the training set of size: 9/10 of
data for the datasets with size < 1000, and 1/2 of data otherwise; the ratio of nA#p to the
average number of misclassifieds (nAtp/nMiscl); and the average of number of times
training was repeated in the getMisclfd function (ntrains). All averages, except for p-
values, are over K * number of iterations. Coverage is the proportion of points left in the

training set after removing atypicals.

McNemar’s test (Ripley, 1996) is a nonparametric test of proportion. It is designed for
the test of binary outcomes (correct and incorrect classifications) and uses a binomial
distribution. In McNemar’s test, when the performance of two classifiers are compared,

concordant pairs (the instance for which two classifiers have the same answers) are
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discarded and only discordant pairs are considered. In discordant pairs, correct
classifications for classifier A are exactly incorrect classifications for classifier B. When
the number of elements in the discordant pairs vector is large (>100, in the
implementation of this research), a parametric approximation like Normal approximation,

is used to get around the numerical problem of calculating very large factorials.

For McNemar’s test, a p-value is calculated for each iteration and averaging is done over
the number of iterations. The shown results are for 1-tailed test. For an individual item,
let 1 be the probability of classifier A classifies correctly given that only one of A or B
can classify correctly. Therefore, the hypotheses are: H, (Null hypothesis): "population
mean, p = 1/2", ie., two classifiers are the same. H, (alternative): "u > 1/2", e.g,
(number of correct classifications in classifier A) > (number of correct classification for
classifier B); or A is better than B; in the following tables, this is shown as MCcN,

Pv(A>B).

Note that p-values do not provide us with a simple Yes or No answer; they provide a
sense of the strength of the evidence against the null hypothesis. A p-value is basically a
measure of how much evidence we have against the null hypothesis; the lower the p-
value, the stronger the evidence. A low p-value for the statistical test points to the
rejection of the null hypothesis because it indicates how unlikely it is that a test statistic as
extreme as or more extreme than the one given by the experiment will be observed from
this population if the null hypothesis is true. For instance, McN, Pv(A>B) = 15%, means

that if the population means were equal as hypothesized (under the null), there is a 15%
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chance that a more extreme test statistic would be observed (A better than B) using our
experiments on this population. If you agree that this is enough evidence to reject the null
hypothesis, you conclude that there is significant evidence to support the alternative
hypothesis (or A is better than B). The researcher (or reader) decides what significance
level to use —that is, what cut off point will decide significance (domain dependent). The
most commonly used level of significance is o = 0.05. When the significance level is set
at 0.05, any test resulting in a p-value under 0.05 would be statistically significant.

Therefore, you would reject the null hypothesis in favor of the alternative hypothesis.

When the p-value is too high, it means that we cannot reject the null hypothesis (not

enough evidence). When the performance of two classifiers are the same (discordant

pairs vector is empty), NaN is generated.
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6.1 Tables of group 1: ASR and baselines

To make the descriptions of the column headers easily accessible, the descriptions for the

Tables of group 1 are given in Table VI-1.

Table VI-1. The descriptions of column headers for tables of group 1.

Z
o)

Column header

Description

1 dataset(size) The name of dataset and its size

2 bline Acc The average accuracy of the baseline (no removal), (%)

3  ASRAcc The average accuracy of the ASR classifier (with removal), (%)
4 McN, Pv(bI>ASR)  McNemar’s p-value, if baseline is better than ASR, (%)

5 McN, Pv(ASR>bl) McNemar’s p-value, if ASR is better than baseline, (%)

6  avg Coverage The average coverage, (%) of points left in the training set

7  avgnAtp The average number of atypical points in the training set

8 nAtp/nMiscl (%) of points in the misclassified set that were found as atypical
9  avg ntrains The average no. of times training was repeated in getMisclfd
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Table VI-2. Comparison of baseline and ASR for SYM.

SVM . _ AsR .
bline| ASR McN, Pv  McN, Pv avg avg nAip/ avg

dataset(size) Acc | Acc (bI>ASR) (ASR>bl) Coverage nAtp nMiscl nirains
AbaloneAll3(4177) 66.0 65.5 2.7 97.3 69.3 6415 973 5.5
Balance-scale(625) 97.9 98.0 62.7 48.0 99.7 16 556 16
BCancerW(683) 96.9 969 66.0 56.8 98.0 122 685 2.8
Chess(3196) 99.0 989 313 93.8 99.9 20 1000 25
Cmc(1473) 53.4 518 1.2 98.8 61.2 286.5. 100.0 55
Crx1{653) 85.3 853 52.5 512 91.6 495 645 3.1
Dermatology(358) 97.4 97.0 48.5 71.7 99.2 27 391 3.1
DiabetesPima(768) 77.1 76.8 45.9 57.5 79.7 140.8 91.6 4.4
Ecoli{332) 87.9 86.1 75.5 36.9 911 26.8 863 3.6
GenNor(300) 85.4 88.0 67.3 46.1 87.8 329 873 3.4
GenUni(300) 79.8 80.7 65.7 45.0 82.1 48.3 88.1 3.3
Haberman(306) 742 749 64.5 46.8 65.4 954  90.7 3.2
Hcleve(296) 834 839 66.0 42.2 87.8 32.7 837 3.8
Iris{150) 96.1 956 56.7 65.6 98.4 22 627 25
lonosphere(351) 94.8 945 48.3 66.1 99.1 29 3886 3.0
LiverBupa(345) 70.3 7086 57.2 45.8 82.1 55.6 984 3.6
SegmentationAll(2310) 85.1 94.7 8.7 95.2 97.3 31.0 878 4.5
Splice1(3190) 96.0 95.7 12.6 92.4 96.9 49.5 900 3.5
Thyroid(7200) 97.3 975 92.0 12.1 99.3 260 946 3.5
Vehicle(846) 83.8 834 40.1 60.9 96.6 257 8438 3.7
Average: 859 858 483 61.5 89.1 783 805 3.5

Table VI-3. Comparison of baseline and ASR for KNN.

KNN =

bline | ASR McN,’F”v MEN, Pv avg' avgy nAtp/ aQL

dataset(size) Acc | Ace (bI>ASR) (ASR>bl) Coverage nAtp nMisci ntrains

AbaloneAli3(4177) 63.1 624 9.0 91.0 65.9 7135 854 10.0
Balance-scale(625) 90.3 853 0.0 100.0 94.1 332 731 2.0
BCancerW (683) 97.0 987 424 69.0 97.1 17.9 8586 3.6
Chess(3196) 90.8 908 NaN NaN 100.0 0.0 0.0 9.5
Cmc(1473) 499 470 0.4 99.6 53.8 341.0 837 14.0
Crx1(653) 791 77.9 30.4 70.0 95.4 26.9 189 6.8
Dermatology(358) 955 955 61.1 57.1 97.6 7.7 500 4.0
DiabetesPima(768) 75.1 74.8 46.6 55.1 75.3 1712 844 8.5
Ecoli(332) 875 87.8 56.9 56.5 91.1 26.7 695 45
GenNor(300) 84.9 85.7 66.2 451 85.9 38.0 923 4.0
GenUni(300) 775 76.3 37.6 66.0 78.9 57.0 904 45
Haberman(306) 75.8 74.8 39.4 68.5 64.5 979 842 43
Hcleve(296) 82.0 824 61.5 49.1 84.9 404 859 4.0
Iris(150) 95.3 947 51.2 711 97.5 3.3 550 2.8
lonosphere(351) 845 8456 54.5 54.0 93.8 19.8 354 37
LiverBupa(345) 63.4 639 54.6 47.4 67.2 102.0 782 7.3
SegmentationAll(2310) 92.8 95.2 99.9 0.0 99.8 2.0 1.9 8.5
Splice1(3190) 814 743 0.0 99.9 99.8 25 04 18.0
Thyroid(7200) 947 94.7 NaN NaN 100.0 0.0 0.0 5.5
Vehicle(846) 72.5 68.9 4.1 95.9 82.2 136.2 485 10.8

Average: 81.7 80.7 39.8 66.4 86.2 918 56.1 6.8



Table VI-4. Comparison of baseline and ASR for CART.

CART _ASR

bline | ASR McN, Pv ”McN,ﬁPv avi avg nAth\ 'avg

dataset(size) Acc | Acc (bI>ASR) (ASR>bl) Coverage nAtp nMiscl nirains

AbaloneAli3(4177) 627 628 523 477 67.9 6700 1000 25
Balance-scale(625) 79.3 79.7 99.9 25.0 96.9 173 989 1.3
BCancerW(683) 945 951 75.3 328 96.8 19.7 93.8 25
Chess(3196) 99.1 99.1 25.0 99.9 99.3 10.5 1000 25
Cmc(1473) 541 54.1 50.0 61.0 56.1 324.0 1000 25
Crx1(653) 864 86.2 49.9 55.0 87.3 745 968 2.1
Dermatology(358) 945 949 65.8 54.4 97.6 7.7 969 22
DiabetesPima(768) 749 757 69.5 33.6 78.6 148.1 99.2 2.7
Ecoli{332) 799 826 82.0 229 87.9 36.4 896 3.0
GenNor(300) 82.8 816 405 72.7 87.5 339 925 2.3
GenUni(300) 80.7 7886 322 73.0 85.5 390 9238 2.7
Haberman(306) 723 715 450 68.1 80.7 532 1000 1.7
Hcleve(296) 78.3 78.7 60.9 47.3 84.8 405 965 23
tris(150) 93.6 9368 565 65.7 97.1 39 771 24
tonosphere(351) 89.4 888 426 69.6 92.4 240 910 22
LiverBupa(345) 675 674 50.6 51.6 783 67.4 87.2 25
SegmentationAll(2310) 94.0 944 67.6 324 97.9 238 7456 3.2
Splice1(3190) 94.4 929 0.0 100.0 97.4 415 500 25
Thyroid(7200) 99.4 995 97.1 9.0 99.7 95 1000 20
Vehicle(846) 68.7 69.2 61.6 38.4 79.5 157.0 89.3 4.9

Average: 82.3 823 56.2 53.0 87.5 90.1 913 25

Table VI-5. Comparison of baseline and ASR for Quadratic Baysian.

QB ASR L

bline ASR I'\IIcH:N,ka‘ ﬁMcN,V Pv avg évg ‘hAtpl avg‘

dataset(size) Acc | Acc (bI>ASR) (ASR>bl) Coverage nAtp nMiscl ntrains

AbaloneAli3(4177) 61.4 619 82.9 171 60.2 831.0 9256 9.0
Balance-scale(625) 919 919 NaN NaN 100.0 0.0 0.0 2.0
BCancerW (683) 952 95.0 47.1 65.7 97.8 13.5 317 4.6
Chess(3196) 66.7 667 NaN NaN 100.0 0.0 0.0 6.5
Cmc{1473) 52.2 520 271 84.6 99.0 7.5 1.6 4.5
Crx1(653) 80.6 80.3 19.8 96.4 98.8 6.8 5.1 5.9
DiabetesPima(768) 741 738 49.0 52.6 74.8 174.3 934 5.6
Ecoli(332) 575 57.0 1.1 99.9 99.6 1.1 2.1 2.0
GenNor(300) 85.3 86.0 69.6 394 86.7 359 897 2.9
GenUni(300) 79.3 80.0 68.9 42.3 82.4 476 855 28
Haberman(306) 752 74.1 36.4 73.1 65.9 24.1 778 7.4
Heleve(296) 826 815 19.6 87.5 95.0 13.4 289 4.2
Iris(150) 972 972 63.7 63.0 98.9 1.5 533 2.1
lonosphere(351) 90.8 908 56.5 53.8 98.0 6.4 440 2.0
LiverBupa(345) 80.7 59.6 38.5 61.5 99.3 2.1 1.4 6.2
SegmentationAll(2310) 62.3 62.3 NaN NaN 100.0 0.0 0.0 1.5
Splice1(3190) 848 84.7 50.0 99.9 99.9 1.0 1.3 25
Thyroid(7200) 955 968 99.9 0.0 94.3 203.5 986 5.5
Vehicle(846) 85.3 84.6 32.5 69.1 90.3 73.9 945 5.4

Average: 778 771.7 41.7 62.9 91.6 79.7 422 4.3



Table VI-6. Comparison of baseline and ASR for Naive Bayes.

bline | ASR McN, Pv McN, Pv avg avg nAtp/ avg
datasel(size) Acc | Acc (bI>ASR) (ASR>bl) Coverage nAtp nMiscl ntrains
AbaloneAll3(4177) 578 575 13.3 90.6 78.0 459.0 50.0 50
Balance-scale(625) 916 916 NaN NaN 100.0 0.0 0.0 1.0
BCancerW(683) 96.3 96.3 NaN NaN 100.0 0.0 0.0 4.0
Chess(3196) 66.7 66.7 NaN NaN 100.0 0.0 0.0 6.5
Cmc(1473) 471 487 25.6 83.8 97.4 19.5 3.8 3.5
Crx1{653) 80.2 802 NaN NaN 100.0 0.0 0.0 71
DiabetesPima(768) 75.7 75.7 47.2 58.3 96.6 235 117 11.0
Ecoli(332) 63.2 £3.2 NaN NaN 100.0 0.0 0.0 1.2
GenNor(300} 853 853 58.1 75.4 90.3 263 654 2.6
GenUni{300) 79.9 80.7 69.1 40.6 80.0 541 972 3.2
Haberman(306) 746 743 48.6 62.9 84.5 98.0 803 8.3
Hcleve(296) 83.0 832 49.7 66.0 98.2 4.8 9.8 4.1
Iris(150) 952 952 60.9 60.9 98.1 2.6 457 24
lonosphere(351) 80.6 805 43.3 85.0 92.8 228 359 2.5
LiverBupa(345) 547 537 46.7 62.6 91.9 25.1 15.6 4.3
SegmentationAli(2310) 72.6 72.5 31.3 93.8 98.3 19.5 52 2.5
Splice1(3190) 84.8 3847 50.0 99.9 99.9 1.0 1.3 2.5
Thyroid(7200) 95.3 968 99.9 0.0 945 197.0 821 7.0
Vehicle(846) 454 48.7 92.9 7.1 44.8 421.8 92.9 6.2
Average: 75.3 75.4 52.6 63.4 90.8 72.4 319 4.5

Table VI-7. Comparison of baseline and ASR for Quadratic Discriminant Analysis.

QDA

bline| ASR McN, Py McN,Pv__ avg _ avg

nAtp/ avg |
dataset(size) Acc | Acc (bI>ASR) (ASR>bl) Coverage nAtp nMiscl ntrains

AbaloneAll3(4177) 614 6814 100.0 100.0 100.0 0.0 NaN 16
Balance-scale(625) 2916 91.8 57.7 54.7 95.7 24.4 65.3 7.1
BCancerW(683) 90.3 947 99.9 0.2 63.1 2272 529 8.16
Chess(3196) 88.7 88.7 1000 100.0 100.0 0.0 NaN 15.5
Cmc(1473) 494 494 57.0 57.0 97.0 225 53 4
Crx1(653) 80.6 80.7 515 511 83.8 95.5 76.2 8.22
DiabetesPima(768) 66.8 86.8 100.0 100.0 100.0 0.0 NaN  10.96
Ecoli(332) 855 859 63.2 47.4 89.2 324 83.3 5
GenNor(300) 852 857 67.6 422 86.8 35.6 99.6 2.84
GenUni(300) 79.7 788 450 68.9 84.4 42.1 99.2 3.06
Haberman(306) 71.8 73.1 72.5 38.1 87.0 35.8 34.8 9.18
Hcleve(296) 77.7 76.8 38.2 69.1 83.1 451 775 8.8
Iris(150) 975 875 70.5 72.5 99.3 0.9 64.5 3.32
lonosphere(351) 61.1 61.1 100.0 100.0 100.0 0.0 NaN 4.06
LiverBupa(345) 69.1 686 476 68.4 98.1 58 92 6.3
SegmentationAll(2310) 89.1 89.2  100.0 50.0 992.8 2.0 2.1 9
Thyroid(7200) 915 915 1000 100.0 160.0 0.0 NaN 2
Vehicle(846) 84.3 83.8 37.9 64.0 91.3 66.4 83.1 7.4

Average: 79.0 79.2 72.7 65.8 92.2 353 57.9 7.3



Table VI-8. Comparison of baseline and ASR for Linear Discriminant Analysis.

LDA

Bl ASH WG, Py WO Pv—_avg —avgnAlpl —ave

dataset(size) Acc | Acc (bI>ASR) (ASR>bl) Coverage nAtp nMiscl ntrains
AbaloneAll3(4177) 61.8 615 21.6 78.4 81.8 380.0 787 7
Balance-scale(625) 702 702 100.0 100.0 100.0 0.0 NaN 3.12
BCancerW(683) 96.3 96.2 900 96.3 99.9 0.9 956 332
Chess(3196) 934 934 1000 100.0 100.0 0.0 NaN 9.5
Cmc(1473) 48.9 488 50.0 66.1 98.9 8.0 3.6 8.5
Crx1(653) 84.0 86.1 88.0 12.4 8186 1086 98.1 3.46
Dermatology(358) 96.7 964 536 78.8 99.3 23 947 266
DiabetesPima(768) 76.3 763 516 54.1 87.0 900 953 582
Ecoli(332) 88.6 886 1000 100.0 100.0 0.0 NaN 582
GenNor{300) 853 857 638 47.8 86.1 376 989 2.8
GenUni(300) 793 788 679 40.6 81.1 51.0 996 2.68 |
Haberman(3086) 741 752 884 39.6 55.0 1242 96.9 54
Hcleve(296) 78.0 799 688 34.8 80.3 525 822 6.48
Iris(150) 98.0 98.3 888 725 99.7 0.4 1000 2
lonosphere(351) 86.0 864 617 48.0 90.6 299 951 3.74
LiverBupa(345) 634 628 399 62.0 90.0 31,1 316 5.18
SegmentationAll(2310) 91.7 920.8 0.0 100.0 95.5 525 532 4.5
Thyroid{(7200) 63.1 69.2 100.0 0.0 804 7055 498 8.5
Vehicle(846) 77.9 77.0 292 72.5 86.5 103.56 895 598
Average: 79.6 80.1 654 63.4 89.1 93.6 789 5.1



6.2 Tables of group 2: Ada-Boost vs. S-boost

The datasets are divided into the ones for which blineAcc >= AbstAcc (i.e., Ada-boost

has not helped in classification accuracy) and the ones for which blineAcc < AbstAcc

(i.e., Ada-boost has helped in classification accuracy). This was only done to get a sense

of how each dataset was perceived by the classifier. That is, if the baseline classifier has

learned the dataset enough (the upper portion of Tables) or if there was still information

in the misclassified points that could be learned by a boosting process that focuses on

misclassified examples (the lower portion of Tables). To make the descriptions of the

column headers easily accessible, the descriptions for the Tables of group 2 are given in

Table VI-9.

Table VI-9. The descriptions of column headers for tables of group 2.

No Column header

Description

McN, Pv(Abst>Sbst)

McNemar’s p-value, if Ada-boost is better than S-boost, (%)

McN, Pv(Sbst>Abst)

1 dataset(size) The name of dataset and its size

2 bline Acc The average accuracy of the baseline (no removal), (%)

3 Abst Acc The average accuracy of Ada-boost, (%)

4 McN, Pv(Abst>bl) McNemar’s p-value, if Ada-boost is better than baseline, (%)
5 Sbst Acc The average accuracy of S-boost (no atypical), (%)

6

7

McNemar’s p-value, if S-boost is better than Ada-boost, (%)
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Table VI-10. Comparison of Ada-boost and S-boost for SVM.
- Ada-boost Vs S-boost

SVM

bline| Abst McN, Pv Sbst McN, Pv McN, Pv
dataset(size) Acc | Acc (Abst>bl) Acc (Abst>Sbst) (Sbst>Abst)

AbaloneAll3(4177) 66.0 | 65.7 79.5 85.2 15.7 84.3
Balance-scale(625) 97.9 979 64.1 98.0 71.5 52.3
BCancerW({683) 96.9 | 96.0 931 98.7 82.9 26.7
Chess(3196) 99.0 {98.8 97.5 987 33.9 79.8
Cmc(1473) 53.4 | 52.7 877 519 15.2 84.8
Crx1(653) 85.3 | 84.1 79.0 854 68.8 33.0
Dermatology(358) 97.4196.3 87.0 96.1 491 65.9
DiabetesPima(768) 77.1176.5 71.1 76.4 50.1 51.8
Ecoli(332) 87.9 | 86.1 92.1 88.1 82.5 240
GenNor(300) 85.4 | 845 815 857 73.1 35.7
GenUni(300) 79.8 | 79.6 55.6 79.9 57.0 49.8
Haberman(306) 7421742 53.0 74.9 59.8 47.9
Heleve(296) 83.4 819 81.3 83.2 69.5 37.8
Iris(150) 96.1 | 96.1 70.0 85.9 62.0 63.7
lonosphere(351) 948 1938 84.7 95.2 82.6 27.6
LiverBupa(345) 70.3 1 68.6 76.0 694 56.6 455
Splice1(3190) 96.0 | 93.3 99.9 95.5 99.9 0.0
Thyroid(7200) 97.3 | 97.1 95.6 97.5 98.9 1.1
Vehicle(846) 83.8 182.6 84.8 83.7 737 26.7

sub Average: 85.4 | 84.5 80.7 85.1 63.3 441
SegmentationAli(2310) 95.1 [ 96.3 0.1 95.7 8.3 94.7

sub Average: 95.1 | 86.3 0.1 95.7 8.3 94.7

Total Average: 85.9 85.1 76.7 85.7 60.5 46.7



Table VI-11. Comparison of Ada-boost and S-boest for KNN.

KNN Ada-boost Vs S-boost

biine| Abst McN, Pv_Sbst _McN, Py McN, Pv

dataset(size) Acc | Acc (Abst>bl) Acc (Abst>Sbst) (Sbst>Abst)

AbaloneAll3(4177) 63.1160.0 99.9 61.7 99.4 0.6
Balance-scale(625) 90.3 {825 99.9 77.5 0.8 99.3
BCancerW(683) 97.0193.8 99.9 96.0 97.6 4.1
Cmc(1473) 49.9 |1 48.3 90.7 48.8 10.9 89.1
Crx1(653) 79.1 | 771 85.7 78.1 66.5 34.7
Dermatology(358) 9551913 99.9 g2.1 67.6 43.0
DiabetesPima(768) 75.11716 96.5 74.4 90.3 9.7
Ecoli(332) 87.5]78.4 99.9 85.9 99.2 1.3
GenNor(300) 84.9178.4 99.4 85.7 98.4 2.6
GenUni(300) 77.5|75.4 80.8 76.1 56.2 45.0
Haberman(306) 75.8173.3 85.3 74.0 63.3 445
Hcleve(296) 82.01786.1 96.7 79.5 76.2 26.1
Iris(150) 95.3191.7 98.9 93.7 83.3 30.2
LiverBupa(345) 63.4 | 60.9 81.3 862.1 63.3 36.7
Thyroid({7200) 94.7 192.5 99.9 92.5 NaN NaN
Vehicle(846) 725(71.0 83.9 67.9 10.0 90.0

sub Average: 80.2 | 76.4 93.7 77.8 65.5 371
Chess(3196) 90.8 | 94.1 0.0 94.1 NaN NaN
lonosphere(351) 845 |84.9 47.4 85.8 66.8 42.6
SegmentationAll(2310) 92.8 | 93.9 1.3 94.8 99.9 0.1
Splice1(3190) 81.4182.6 5.1 73.3 0.0 99.9

sub Average: 87.4 | 88.9 13.5 870 55.6 47.5

Total Average: 81.7 78.9 776 798 63.9 38.9



Table VI-12. Comparison of Ada-boost and S-boost for CART.

CART ___ Ada-boost Vs S-boost

bline | Abst McN, Pv Sbst McN, Pv McN, Pv
dataset(size) Acc | Acc (Abst>bl) Acc (Abst>Sbst) (Sbst>Abst)

AbaloneAli3(4177) 62.7 |60.6 99.7 82.9 99.9 0.1
Balance-scale(625) 793 |77.2 93.1 77.3 68.5 50.0
Cmc(1473) 54.1 | 50.8 99.0 54.1 99.1 0.9
Crx1(653) 86.4 | 86.1 61.7 86.7 62.7 38.2
DiabetesPima(768) 749 173.6 77.9 75.8 86.4 13.6
GenNor(300) 82.8 | 82.0 715 82.3 58.5 50.2
GenUni(300) 80.7 | 79.4 71.0 78.7 43.5 60.2
Haberman{306) 72.3 1 70.1 80.7 70.0 57.1 54.8
Splice1(3190) 94.4 | 94.1 76.8 94.0 36.9 63.1

sub Average: 76.4 | 74.9 81.3 75.8 68.1 36.8
BCancerW(683) 945 | 96.6 2.5 96.1 38.3 719
Chess(3196) 99.1 199.2 50.0 99.1 41.9 729
Dermatology(358) 94.5 | 97.2 3.2 96.0 27.3 83.8
Ecoli(332) 79.9 | 86.6 0.5 83.2 13.3 90.8
Hcleve(296) 78.3 | 79.2 44.0 78.9 51.5 . 551
Iris(150) 93.6 | 94.7 42.5 93.7 44.9 74.2
lonosphere(351) 89.4 | 936 0.8 839.9 45 97.7
LiverBupa(345) 67.5 | 68.9 34.1 68.1 41.8 59.8
SegmentationAll(2310) 94.0 | 98.1 0.0 97.4 26.2 774
Thyroid(7200) 99.4 |99.5 9.2 99.5 50.0 69.6
Vehicle(846) 68.7 | 76.9 0.0 72.1 25 97.5

sub Average: 87.2 190.0 170 885 31.1 77.3

Total Average: 82.3 83.2 45.9 82.3 47.7 59.1




Table VI-13. Comparison of Ada-boost and S-boost for Quadratic Bayesian.

QB . AdaboostVsS-boost @
biine | Abst McN, Pv Sbst McN, Pv McN, Pv
dataset(size) Acc | Acc (Abst>bl) Acc (Abst>Sbst) (Sbst>Abst)

BCancerW (683) 952 | 95.1 555 951 50.3 58.2
Cmc(1473) 52.2 152.0 774 5186 313 76.8
GenNor(300) 8531853 62.5 854 57.5 55.9
Haberman(306) 7521747 77.9 75.3 67.8 44.4
Hcleve(296) 82.6 |82.6 56.8  82.1 34.8 78.0
lris(150) 97.2 | 98.7 90.0 965 59.1 62.4
lonosphere(351) 90.8 | 89.9 911 89.6 51.1 66.8
Vehicle(846) 85.3 1825 99.6 85.1 90.1 9.9

sub Average: 83.0 | 823 76.4 82.6 55.3 56.6
AbaloneAll3(4177) 6141619 2.8 61.9 45.4 548
Balance-scale(625) 919940 04 894.0 NaN NaN
Chess(3196) 66.7 | 94.7 0.0 94.7 NaN NaN
Crx1(653) 80.6 | 83.3 2.0 83.2 66.0 67.6
DiabetesPima(768) 741|748 30.4 747 50.6 51.1
Ecoli(332) 57.5|8189 0.0 81.7 6.3 99.9
GenUni(300) 79.3 1795 57.8 80.1 67.2 417
LiverBupa(345) 60.7 | 68.6 0.2 68.1 45.5 59.4
SegmentationAll(2310) 62.3 | 75.8 0.0 75.8 NaN NaN
Splice1(3190) 84.8 194.0 0.0 93.8 6.3 96.7
Thyroid(7200) 955 {95.8 0.0 96.1 94.8 52

sub Average: 74.1 | 82.2 8.5 82,2 47.8 59.5

Total Average: 77.8 82.3 371 82.3 51.5 58.0




Table VI-14. Comparison of Ada-boost and S-boost for Naive Bayes.

NB

bline

~ AdaboostVs S-boost
Abst McN, Pv Sbst

McN, Pv

McN, Pv

dataset(size) Acc

Acc (Abst>bl) Acc (Abst>Sbst) (Sbst>Abst)

AbaloneAli3(4177) 57.8 {576 84.7 57.2 3.4 98.1
BCancerW(683) 96.3 [ 96.2 672 98.2 NaN NaN
GenNor(300) 85.3185.2 71.9 85.3 72.2 59.7
GenUni(300) 79.9179.7 75.0 80.7 70.0 35.9
sub Average: 79.8 | 79.7 74.7 79.8 48.5 64.6
Balance-scale(625) 91.6{92.0 38.2 92.0 NaN NaN
Chess(3196) 66.7 | 94.7 0.0 94.7 NaN NaN
Cmc(1473) 47.1 | 48.2 8.5 47.8 25.7 74.3
Crx1(653) 80.2 1833 0.4 83.3 NaN NaN
DiabetesPima(768) 75.7 | 76.6 19.2 77.0 68.3 34.4
Ecoli(332) 83.2 |82.8 0.0 82.8 NaN NaN
Haberman(306) 74.6 | 75.1 39.2 75.1 57.5 50.5
Hcleve(296) 83.0183.2 54.6 82.7 36.0 74.7
Iris(150) 95.2 [ 959 48.8 95.2 47.4 72.9
lonosphere(351) 80.6 | 80.7 50.0 80.6 58.7 81.3
LiverBupa(345) 54.7 1 63.8 1.0 60.8 10.9 90.8
SegmentationAll(2310) 72.6 | 75.4 0.0 75.8 92.2 12.3
Splice1(3190) 84.8 | 94.0 0.0 93.6 6.3 96.7
Thyroid(7200) 953|954 11.9 95.9 100.0 0.0
Vehicle(846) 45.4 1 50.2 0.1 50.3 49.4 50.6
sub Average: 74.0 | 79.4 18.1 79.2 50.2 58.0

Total Average: 75.3 79.5 30.0 79.3 49.9 59.4
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Table VI-15. Comparison of Ada-boost and S-boost for QDA.

QDA [ Ada-boostVs S-Boosting -

bline Abst] McN, Pv |Sbst] McN,Pv__ McN, Pv

dataset(size) Acc Acc | (Abst>bl)| Acc | (Abst>Sbst) (Shst>Abst)

Cmc(1473) 49.4 493 61.0 487 75.6 32.2
Crx1(653) 80.6 79.2 75.8 82.5 94.8 5.3
Ecoli(332) 855 849 79.5 85.9 70.7 38.2
GenNor{300) 85.2 849 88.8 84.9 57.4 55.9
GenUni(300) 79.7 79.6 77.5 787 40.8 71.5
Hcleve(296) 77.7 750 85.3 78.7 68.6 38.1
fris(150) 975 975 70.0 97.7 81.6 65.6
LiverBupa(345) 69.1 69.1 56.8 69.5 64.4 48.5
Vehicle(846) 84.3 82.7 85.5 84.0 78.6 21.6
sub Average: 78.8 78.0 75.6 78.8 70.3 41.7
AbaloneAll3(4177) 614 616 29.5 818 100.0 100.0
Balance-scale(625) 916 935 3.7 92.4 252 87.7
BCancerW(683) 90.3 95.4 0.0 95.6 58.6 52.5
Chess(3196) 88.7 99.0 0.0 99.0 100.0 100.0
DiabetesPima(768) 66.8 72.4 0.0 72.4 100.0 100.0
Haberman{306) 71.8 747 3.9 75.2 63.1 50.6
lonosphere(351) 61.1 85.1 0.0 85.1 100.0 100.0
SegmentationAll(2310) 89.1 93.8 0.0 93.2 12.1 92.8
Thyroid(7200) 915 946 0.0 94.6 100.0 100.0
sub Average: 79.1 85.5 4.1 85.5 73.2 87.1

Total Average: 79.0 81.8 39.8 821 71.7 64.4



Table VI-16. Comparison of Ada-boost and S-boost for LDA.

LDA __ AdahoostVsS-Boosting
bline Abst| McN, Pv {Sbst| McN, Pv McN, Pv
dataset(size) Acc  Acc |(Abst>bl}| Acc | (Abst>Sbst) (Sbst>Abst)
Dermatology(358) 96.7 96.5 67.4 96.1 63.2 79.5
DiabetesPima(768) 76.3 757 77.3 76.7 77.2 246
GenNor(300}) 85.3 85.1 81.3 85.7 66.8 432
Haberman(306) 741 739 717 74.8 66.7 411
Iris(150) 98.0 97.2 97.5 g7.5 88.8 72.5
sub Average: 86.1 857 79.0 862 72.5 52.2
AbaloneAll3(4177} 61.8 634 0.0 63.6 74.9 251
Balance-scale(625) 702 86.0 0.0 88.0 100.0 100.0
BCancerw (683) 96.3 966 38.9 96.6 85.0 913
Chess(3196) 934 96.2 0.0 96.2 100.0 100.0
Cmc(1473) 489 50.8 1.0 50.0 16.1 89.3
Crx1(653) 84.0 852 22.9 86.1 68.3 32.1
Ecoli(332) 88.6 89.7 24.2 89.7 100.0 100.0
GenUni(300) 79.3 795 62.5 80G.1 66.2 47.2
Hcleve(296) 78.0 825 8.8 81.3 39.2 68.7
lonosphere(351) 86.0 879 17.4 86.9 37.9 70.6
LiverBupa(345) 63.4 647 23.8 65.5 57.5 47.6
SegmentationAll(2310) 91.7 92.3 57 91.3 0.6 99.7
Thyroid(7200) 63.1 85.1 0.0 85.8 97.0 3.0
Vehicle(846) 77.9 783 36.0 78.2 49.0 54.9
sub Average: 773 81.3 172 812 63.7 66.4
Total Average: 79.6 824 335 825 66.0 62.7

6.3 Tables of group 3: ASR and Mahalanobis filter

The Tables in this Section show the result of our comparison between the ASR wrapper
and the Mahalanobis filter to detect and remove atypical points. The first column shows
the dataset name and its size. The next three columns are the average accuracies obtained
for the baseline, the ASR, and the Mahalanobis filter (averaged over five times of 10-fold
cross validation). Columns 5 and 6 show the McNemar’s p-values for the comparison of
ASR and the filter method. The average number of points identified as atypical 1s given

in column seven (nAtp). The average number of outliers removed by the filter is in the
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eighth column (rOur). The average number of atypicals and the number of outliers are in
the training set (9/10 of data for the datasets with size < 1000, and 1/2 of data otherwise).
Note that nAip and nOut are averaged over (the number of iterations times the number of

folds) numbers.

It is noticeable that some datasets have problem with Mahalanobis distance in calculating
the inverse of covariance matrix. Hence, the average values (last rows of the tables) of
baseline and ASR may be different from what Tables of group 1 and 2 show. In
particular, for Dermatology dataset the inverse of covariance matrix could not be
calculated. For this dataset, the baseline of NB, QB, and QDA could not be calculated
either. Splicel dataset showed the same problem with LDA and QDA. Also the
blineAcc of SVM in Table VI-18 is a little different from those in Table VI-2; this is
because of a slight change in the range of C and ¢ parameters. To make the descriptions
of the column headers easily accessible, the descriptions for the Tables of group 3 are

given in Table VI-17.

Table VI-17. The descriptions of column headers for tables of group 3.

No Column header Description

1 dataset(size) The name of dataset and its size

2 bline Acc The average accuracy of the baseline (no removal), (%)

3  ASRAcc The average accuracy of the ASR (with atypical removal), (%)

4 FiltAce The average accuracy of (Filt), the classifier trained after
removing the outliers detected by Mahal. filter, (%)

5 Pv% ASR>Filt McNemar’s p-value, if ASR is better than Filt classifier, (%)

6 Pv% Filt>ASR McNemar’s p-value, if Filt classifier is better than ASR, (%)

7  ASRnAtp The average number of atypical points in the training set (ASR)

8  FiltnOut The average number of outliers in the training set (Mahal. filter)
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Table VI-18. Comparing ASR and Mahalanocbis filter for SVM.

SVM bline ASR Filt Pv % Pv % ASR Filt
Dataset(size) Acc Acc Acc ASR>Filt Filt>ASR _ nAip  nOut
AbaloneAll3(4177) 639 644 653 97.8 22 5940 990
Balance-scale(625) 97.4 977 974 48.6 59.9 1.6 3.6
BCancerW(683) 97.0 97.0 966 38.7 73.7 7.2 36.4
Chess(3196) 99.0 99.0 965 0.0 100.0 3.0 1525
Cmc(1473) 53.4 515 533 99.3 07 304.0 29.0
Crx1(653) 86.2 85.7 857 54.6 47.8 47.9 83.0
DiabetesPima(768) 773 76.9 77.1 50.8 51.0 150.0 422
Ecoli{332) 88.3 876 888 75.3 339 254 138
GenNor(300) 85.7 856 857 61.8 48.1 35.7 0.0
Genlni(300) 79.1 - 795 797 515 55.5 48.7 0.0
Haberman(306) 745 740 747 65.5 43.0 1015 72
Heleve(296) 84.0 846 833 46.8 62.7 312 202
Iris(150) 95.2 951 959 76.6 45.5 2.0 06
lonosphere(351} 94.1 936 936 53.2 58.8 22 56.8
LiverBupa(345) 69.2 69.8 682 34.1 68.2 51.9 187
SegmentationAll(2310) 95.8 958 93.2 0.0 100.0 0.0 1025
Splice1(3190) 96.0 96.0 9338 0.0 100.0 14.0 1470
Thyroid(7200) 975 97.7 963 0.0 100.0 20.0 4775
Vehicle(846) 839 834 828 37.7 64.0 352 205
Averages: 85.1 85.0 84.6 47.0 58.7 777 69.0
Table VI-19. Comparing ASR and Mahalanobis filter for KNN.
KNN bline ASR- Filt Pv % Pv % ASR Filt
Dataset(size) Acc Acc Acc ASR>Filt Fit>ASR nAtp  nOut
AbaloneAll3(4177) 63.1 624 630 872 12.8 7135 99.0
Balance-scale{625) 90.3 87.9 905 921 10.3 506 36
BCancerW(683) 97.0 968 97.1 77.0 35.4 146 36.6
Chess(3196) 90.8 90.8 905 26.0 74.0 0.0 1525
Cmc(1473) 49.9 47.0 50.0 99.7 03 3410 29.0
Crx1(653) 79.1 784 793 66.5 34.4 277 794
DiabetesPima(768) 75.1 748 745 433 578 1712 422
Ecoli(332) 875 874 877 650 47.7 288 139
GenNor(300) 849 855 850 508 60.8 379 00
GenUni(300) 775 76,5 773 594 43.7 568 0.0
Haberman{306) 75.8 749 764 724 37.2 969 7.3
Hcleve(296) 82.0 83.1 826 503 59.8 40.7 205
Iris(150) 95.3 94.9 95.1 58.0 62.4 3.5 0.6
lonosphere(351) 845 835 864 90.2 14.0 164 56.9
LiverBupa(345) 634 63.9 635 492 52.6 1020 18.9
SegmentationAll(2310) 92.8 95.2 92.0 0.0 100.0 2.0 1025
Splice1(3190) 814 782 776 194 80.6 25 147.0
Thyroid(7200) 94.7 947 924 0.0 100.0 0.0 4775
Vehicle(846) 725 699 720 851 14.9 140.0 20.7
Averages: 80.9 80.3 80.7 575 47.3 97.2 68.8
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Table VI-20. Comparing ASR and Mahalanobis filter for CART.

CART bliine ASR Filt Pv % Pv % ASR Filt
Dataset(size) Acc  Acc Acc ASR>Filt Filt>ASR nAtp  nOut
AbaloneAli3(4177) 621 629 629 550 450 646.0 1055
Balance-scale({625) 795 808 796 27.9 73.7 86.1 3.6
BCancerW(683) 945 949 940 313 76.6 200 366
Chess(3196) 98.2 98.2 983 804 28.4 14.0 1440
Cmc(1473) 54.1 541 524 4.4 95.6 3240 290
Crx1(653) 86.5 86.2 86.6 58.8 46.1 75.0 37.0
DiabetesPima(768) 749 744 745 517 49.9 1479 422
Ecoli(332) 79.9 818 809 399 68.1 36.0 139
GenNor(300) 82.8 819 831 67.3 44.0 34.6 0.0
GenUni(300) 80.7 789 806 70.8 35.7 40.2 0.0
Haberman(306) 723 717 723 645 44.7 75.4 7.3
Hcleve(296) 775 789 768 38.2 67.4 40.3 4.3
Iris(150) 93.6 949 939 441 75.9 4.0 0.6
lonosphere(351) 89.4 89.2 90.1 71.3 37.1 217 57.0
LiverBupa(345) 675 669 680 663 34.8 776 187
SegmentationAll(2310) 93.4 948 919 0.0 100.0 345 1025
Splice1(3190) 944 941 944 99.4 2.1 80.5 285
Thyroid(7200) 994 994 99.2 0.0 100.0 15.0 4775
Vehicle(846) 68.7 69.0 656 8.3 91.7 1479 207
Averages: 81.6 81.7 813 46.3 58.8 1011 594
Table VI-21. Comparing ASR and Mahalanobis filter for QB.
QB bline ASR Filt Pv % Pv % ASR Filt
Dataset(size) Acc Acc Acc ASR>Filt FiltbASR nAtp  nOut
AbaloneAli3(4177) 614 619 623 81.0 19.0 831.0 1055
Balance-scale(625) 919 919 573 0.0 100.0 0.0 3.6
BCancerW(683) 95.2 95.1 924 2.7 98.4 13.0 364
Chess(3196) 66.7 667 66.8 765 33.3 0.0 1440
Cmc(1473) 522 52.0 338 0.0 100.0 7.5 29.0
Crx1(653) 806 806 818 735 28.9 0.0 37.3
DiabetesPima(768) 741 738 739 515 50.7 1743 422
Ecoli(332) 58.0 58.0 676 989 1.1 0.0 13.8
GenNor(300) 85.3 86.5 853 329 75.6 35.9 0.0
GenUni(300) 79.3 793 795 509 57.2 51.8 0.0
Haberman(306) 752 746 754 69.0 38.9 98.1 7.2
Hcleve(296) 826 806 819 739 33.9 17.5 4.4
Iris(150) 972 975 972 57.1 73.7 1.3 0.6
lonosphere(351) 90.6 912 832 0.2 99.9 6.1 56.8
LiverBupa(345) 60.7 59.6 67.1 95.9 4.1 2.1 18.7
SegmentationAll(2310) 62.5 62.5 15.7 0.0 100.0 00 1025
Splice1(3190) 848 847 928 1000 0.0 1.0 28.5
Vehicle(846) 85.3 846 843 426 59.6 739 205
Averages: 76.9 76.7 721 50.4 54.1 73.0 362
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Table VI-22. Comparing ASR and Mahalanobis filter for NB.

NB bline ASR Filt Pv % Pv % ASR Filt
Dataset(size) Acc Acc Acc ASR>Filt Filt>ASR  nAtp  nOut
AbaloneAll3(4177) 57.8 575 57.8 88.1 119 459.0 1055
Balance-scale(625) 916 915 0914 61.3 69.5 7.1 36
BCancerW(683) 96.3 963 936 1.8 99.0 3.9 36.4
Chess(3196) 66.7 66.7 66.8 76.5 33.3 0.0 1440
Cmc(1473) 471 46.7 335 0.0 100.0 195 290
Crx1(653) 80.2 802 813 71.3 31.6 0.0 373
DiabetesPima(768) 757 757 744 250 75.2 3.5 422
Ecoli(332) 63.2 632 828 1000 0.0 0.0 13.8
GenNor(300) 853 84.9 855 70.2 48.7 19.2 0.0
GenUni(300) 79.9 807 798 400 69.8 54.1 0.0
Haberman(306) 746 743 749 66.9 43.2 98.0 7.2
Hcleve(296) 83.0 828 814 423 66.8 8.2 4.4
Iris(150) 952 952 953 69.8 66.1 1.8 0.6
lonosphere(351) 80.6 81.0 83.0 86.7 18.9 11.5 56.8
LiverBupa(345) 547 542 584 86.3 14.0 124 187
SegmentationAli(2310) 726 725 658 0.0 100.0 195 1025
Splice1(3190) 84.8 84.7 928 1000 0.0 1.0 28.5
Vehicle(846) 454 45.7 487 93.7 6.4 38.5 205
Averages: 741 74.1 749 60.0 47.4 42.1 36.2
Table VI-23. Comparing ASR and Mahalanobis filter for QDA.
QDA bline ASR Filt Pv % PV % ASR Filt
Dataset(size) Acc Acc Acc ASR>Filt Filt>ASR  nAtp nOut
AbaloneAll3(4177) 614 614 598 0.4 99.6 0.0 99.0
Balance-scale(625) 916 918 92.0 62.1 49.3 24.4 3.6
BCancerW(683) 90.3 94.7 833 0.0 100.0 2272 364
Chess(3196) 88.7 887 749 0.0 100.0 0.0 152.5
Cmc(1473) 494 494 476 25 97.5 22.5 29.0
Crx1(653) 806 807 778 16.3 83.9 95.5 83.0
DiabetesPima(768) 66.8 66.8 66.0 32.3 69.4 6.0 42.2
Ecoli(332) 855 859 859 56.9 55.2 32.4 13.8
GenNor(300) 852 857 853 440 65.2 35.6 0.0
GenUni(300) 79.7 803 796 47.4 63.1 38.0 0.0
Haberman(306) 718 73.1 735 59.2 453 35.8 7.2
Hcleve(296) 777 766 782 49.9 56.2 451 20.2
Iris(150) 975 973 973 62.2 67.8 0.7 0.6
lonosphere(351) 61.1 61.1 554 2.0 98.5 0.0 56.8
LiverBupa(345) 69.1 68.6 682 49.0 52.4 58 18.7
SegmentationAl{2310) 89.1 892 892 50.0 50.0 20 102.5
Thyroid(7200) 915 915 864 0.0 100.0 0.0 477.5
Vehicle(846) 843 839 84.0 55.8 46.4 66.4 20.5
Averages: 79.0 793 768 32.8 72.2 35.1 64.6
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Table VI-24. Comparing ASR and Mahalanebis filter for LDA.

LDA bline ASR Filt Pv % Pv % ASR Filt
Dataset(size) Acc Acc Acc ASR>Filt Filt>ASR  nAtp nOut
AbaloneAli3(4177) 618 615 629 99.1 0.9 380.0 99.0
Balance-scale(625) 702 702 688 28.3 761 0.0 3.6
BCancerW(683) 963 962 96.0 455 73.1 0.9 36.4
Chess(3196) 934 934 923 0.2 99.8 0.0 152.5
Cmc(1473) 489 488 497 94.8 8.4 8.0 29.0
Crx1(653) 84.0 863 748 0.0 1000 1025 83.0
DiabetesPima(768) 76.3 758 756 49.0 53.6 100.0 422
Ecoli(332) 886 886 886 54.7 57.9 0.0 13.8
GenNor(300) 853 864 8586 41.3 70.6 36.8 0.0
GenUni(300) 79.3 802 794 36.8 68.9 46.6 0.0
Haberman(306) 741 741 743 55.4 53.2 121.0 7.2
Hcleve(296) 78.0 806 803 49.6 57.5 52.7 20.2
Iris(150) 98.0 98.0 98.0 70.3 71.9 0.4 0.6
lonosphere(351) 860 864 859 46.2 63.7 29.9 56.8
LiverBupa(345) 634 626 663 78.2 21.8 31.1 18.7
SegmentationAli(2310) 917 9608 905 23.8 82.9 525 1025
Thyroid(7200) 63.1 692 86.1 100.0 0.0 705.5 4775
Vehicle(846) 779 77.0 788 81.7 18.3 103.5 205
Averages: 78.7 79.2 79.7 53.0 54.4 98.4 64.6
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Vil Discussion of the results

In this Section, the obtained results from the experiments are discussed. We divide the
discussion into different parts like the way the experimental results were presented. The
first part, the discussion on the results of ASR and the baseline is presented and followed
by the discussion of the reject option results. In the next part, the results of experiment on
Ada-boost and S-boost are discussed. The last part is to discuss the results obtained from

the comparison between ASR and the Mahalanobis filter.

7.1 ASR and baseline

In Figure VII-1, the overall average accuracies of baseline and ASR for all datasets and
all classifiers (Table VI-2 to Table VI-8) are shown. Classifiers in Figure VII-1 are

ordered according to their performance measures.
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Figure VII-1. Average accuracies of baseline and ASR over all datasets.

The accuracies of ASR match very well with that of the baseline for all classifiers except
for KNN. This indicates that the ASR scheme has been successful in keeping the overall
performance level of these classifiers (averaged over all applied datasets). Keeping the
performance level almost the same as that of the baseline was the highest achievement
reported in the previous studies as well. In certain instances, however, ASR has
performed better than the baseline. Table VII-1 shows some of the datasets for which
ASR has been successful in particular (based on the results from Table VI-2 to Table
VI-8). In particular, the Thyroid data shows significant improvement under 4 classifiers
(out of 7). This further reduces the chance that such a behavior may be random and
reinforces that there may be a structure in the data that the removal of atypicals has
changed it towards the better performance. Unfortunately, all these datasets have more
than 3 attributes; so, plotting them is not possible. For instance, Thyroid data has 21

attributes and 3 classes.
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Table VII-1. Some of the datasets for which ASR has performed better than the baseline.

. baseline ASR Pv %
Classifier dataset accuracy accuracy (ASR>baseline)
SVM Ecoli(332) 87.9 89.1 36.9
SVM Thyroid(7200) 97.3 97.5 12.1
KNN SegmentationAll(2310) 92.8 95.2 0.0
CART Ecoli(332) 79.9 82.6 229
QB Thyroid(7200) 95.5 96.8 0.0
NB Thyroid(7200) 95.3 96.8 0.0
QDA BCancerW(683) 90.3 94.7 0.2
LDA Crx1(653) 84.0 86.1 12.4
LDA Thyroid(7200) 63.1 69.2 0.0

Note that for the majority of these datasets, the improvement in the test accuracy is

statistically significant (see the last column of Table VII-1). Also, for large datasets like

Thyroid, even a small change in accuracy can save many points from misclassification.

However, we are not presently interested in focusing on such results because what really

matters is the overall performance of ASR (average over all datasets).

The p-values from Table VI-2 to Table VI-8 are shown in Figure VII-2. The p-values are

far from showing something statistically significant.

In other words, considering the

results of this research, the null hypothesis that two classifiers (baseline and ASR) are the

same, cannot be rejected.
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Figure VII-2. Average p-values over all datasets.

As it was mentioned in Subsection 2.3 there have been assertions of performance
increase, in the literature, as a result of atypical removal. The above results shows that 1t
was not the case for average performance over all datasets under the constraints of our
wrapper method (a linear search as explained in Subsection 4.2.1). This is also in line
with what we discussed about those assertions (filter efficiency is not always the same as
generalization performance). Therefore, the best result achieved so far by removing
outliers, noise, or atypicals is to keep the overall (average) performance on the intact test
set almost the same as that of the baseline with no removal. The advantage of such a
process is the identification of atypical points that was discussed in Subsections 1.1 and

1.2

For KNN, however, the result is somewhat different compared to the others: the average
of all baseline accuracies for KNN = 81.7 and that of ASR = 80.7; p-values also show a
slight trend in favor of the baseline which is far from being statistically significant:

Pv(bline>ASR) = 40% which is far from a-level of significance = 5% or even 10%. It

101



may be because KNN is a local learner and outliers may have less impact on the decision
of local learners (they also gain less from removing outliers) and since the wrapper
approach makes its evaluation based on the performance of the classifier itself, it cannot

make a proper decision about potential outliers.

It is interesting to look at the average of ntrains for KNN, the last column in Table VI-3.
Recall that ntrains is the number of times training was repeated to reach the stopping
criteria e.g., zero training error in the getMisclfd function. The average of nfrains for
KNN is 6.8 which is the 2™ highest among all classifiers (after ntrains of QDA: 7.3) and
far from the average of the other 5 classifiers: (3.5 + 2.5 + 4.3 + 4.5 +5.1) / 5 = 3.98.
Hence, QDA and KNN have had a hard time to reach their zero training error state. The
average of ntrains for all 7 classifiers and all datasets is about 5.0. Also, the average of
Coverage values for KNN (86.2) is the minimum of that of all classifiers. Recall that
Coverage is the proportion of points left in the training set after removing atypicals. That

is, KNN has chosen more points, as atypical, than any other classifier.

Note that nAzps for KNN (91.9) is the maximum among all other classifiers although
LDA seemingly shows a slightly higher number (93.6). This is because LDA (and QDA)
could not complete their calculation for the Splice dataset. If we exclude the values of the
Splice data, for a fair comparison with LDA, the KNN results would be: average
Coverage = (86.2 * 20 — 99.8) / 19 = 85.5%; and nAtps = (91.9 ¥ 20 -2.5)/ 19=96.6. If
we perform the same calculation (excluding Splice dataset) for other classifiers, we obtain

average Coverage values for 19 datasets: 88.69, 86.98, 91.16, 90.32, and 92.2% for SVM,
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CART, QB, NB, and QDA respectively. The averages for 19 datasets for nAtps are 79.8,
92.66, 84, 76.1, and 35.3 for SVM, CART, QB, NB, and QDA respectively. This shows
that KNN has taken the most points as atypicals followed by LDA. These facts support
the idea that the drop of accuracy for KNN is due to its learning strategy (instance-based
learning). Nevertheless, using ASR even KNN has not fallen far behind its baseline (only
1 percent in accuracy which is important practically but not statistically significant). As

we will see in Subsection 7.2 this is fixed by using the check option for KNN.

It is noticeable that the drop of KNN was caused mainly by 3 datasets: Balance-scale,
Splicel, and Vehicle; and there is one dataset (SegmentationAll) for which ASR has
performed better than the baseline. To study what kind of points the ASR algorithm
removes, some detailed work, done on this case, is presented here. The baseline accuracy
(with no removal) for KNN was 92.8% and the accuracy of KNN with ASR was 95.2%,
and Pv(ASR >bline) = 0%. ASR performs 1 iteration of 2-fold CV on SegmentationAll
data (its size is 2310). This 2-fold CV generates two curves from the output of getAtps
function (each for 1 fold of the outer CV loop) which are shown in Figure VII-3. The
lower curve is for the first fold and no atypical was found in the training set (half of the
data); the upper curve corresponds to the second fold in which 4 points are introduced as

atypicals.
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Figure VII-3. Results of getAtps function on SegmentationAll data using KNN.

It is noticeable that the validation accuracy (within getAtps function) is slightly more than
93% but the test accuracy averaged over two folds is increased to 95.2 by removing those
4 points in ASR. Interestingly, the Mahalanobis filter has taken out an average of 102.5
points (205 points for the whole dataset) which hés decreased KNN accuracy from 92.8 to
92%. Further investigation showed that the 4 atypical points were not among the 205
points found by the Mahalanobis filter. The 4 atypical points were indeed the
duplications of two points: two points from class 2 (Cement) and two points from class 7
(Window). We needed a closer look at where the atypical points were located in the
problem space to study why they have been chosen as atypical by ASR and why they

have such effect on the classification performance.

A 3-D plot of the raw RGB values of all class 2 and class 7 members is shown in Figure

VII-4. RGB values are, more likely, the most discriminative 3 features among the 18 in

104



the image file. The duplicate atypical points are shown as a large circle (class 2) and a
large square (class 7). Figure VII-4 shows that class 2 atypical point is in a location with
not many members of its own class; it is positioned outside of the two islands formed by
the members of its class (one large island to its up and left side and a small island to its
down and right side). This idea is supported by Figure VII-7 (left) and Figure VII-8 as
well. Class 7 atypical point is at the end of the tail of its class distribution. Hence,
considering them as atypical (by ASR) is justified by the position of these points in the 3-

D plot.
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Figure VII-4. Raw RGB values for members of class 2 and 7 in SegmentationAll.

A 3-D plot of the RGB values of all class 2, class 7, and other 5 classes’ members is
shown in Figure VII-5. The mass of points from other 5 classes surrounding two atypical
points suggests that there can be plenty of points that two atypical points may have

influence in their classification.

105



160

i i 1 t I
140 = datac2 ) | | 1 Y

] 5 S RN [N UUpUP I W

® Atpch ) 1 ! [ INEERN
1 H

120 »  datac? ; ; : § ”_%“‘\:
B rvyr-—""777 [ 2T Moy
100 B Alpsc7 ’ i ' } oy
B dataothers |+ _ . _ i ___1______..4 ™o
i I \| i
1 | | AR
1 1 i [T
““““ r et el IR
} 1 ! [N
i ! ! N
“““““ ™ - - T T TR {\l
| | | Ny
i ! ! RN
————— = B e B Tl Py
' i t Ny
| ' ! RN
_____ L e ¥ ,\\l
i | ! Ity
| | | Py,
i O Y »‘\‘
h N N Ny
\ NN

__________________ A N\
N by \l

L

Figure VII-5. Raw RGB values for members of class 2, 7, and other classes in SegmentationAll.

Since SegmentationAll data has 18 attributes (and some of them revealed to be
redundant), PCA was applied to the dataset to plot them. Figure VII-6 shows the
histogram of the first principal component of all classes (all the dataset). The two
atypical points identified by ASR are plotted as white dots at the first PC = 1.617 for class
2 and the first PC = 2.617 for class 7. This plot shows how many other points (from other
classes) are close to the atypicals and, hence, may be mistaken by the presence of the
atypical points. SegmentationAll has the same number of examples (330) for all 7
classes. The fact that both these points are duplicated can have a significant effect in
misleading the classification of the close by points especially when K = 3 (in KNN) is
used. As Figure VII-6 shows, both atypical cases seem to have enough close by points
from classes other than their own to influence their classification. This supports what we

saw in Figure VII-5.
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Figure VII-6. The 1st PC in SegmentationAll data.

Figure VII-7 shows the first PCs only on the classes of atypical points separately. The
two atypical points are shown as white markers at the first PC = 1.617 for class 2 and the

first PC = 2.617 for class 7.
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Figure VII-7. The 1st PC for class 2 (left) and class 7 (right) in SegmentationAll data.
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Figure VII-7 shows that whether the class of atypical points was underrepresented close
to the position of those two points. While this can be the case for class 2, the class 7
atypical shows the opposite. This may suggest that perhaps being an outlier is less
important than being duplicate points that may be influential when they are close to many
points of other classes. In this case, even if the class of the atypical point is not

underrepresented, it can have a misleading effect on other classes.

Figure VII-8 shows the plot of the first PC against the second PC for all 7 classes. The
plot was zoomed in where the atypical point of class 2 can be seen clearly (shown as a
bold circle in the center of the plot). As Figure VII-8 shows, some members of class 1
and 7 may be misclassified by the two atypical points of class 2. We know that there is
no guarantee that the situation would be the same in the actual case (18 dimensional

problem space) but this may be a good approximation.
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Figure VII-8. The 1st and 2nd PCs zoomed in where class 2 atypical is located.
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Figure VII-9 shows the plot of the first PC against the second PC for all 7 classes,
zoomed in where the atypical point of class 7 can be seen clearly (shown as a bold circle
in the center of the plot). As Figure VII-9 shows, some members of class 1 and 3 may be

misclassified by the presence of two atypical points of class 7.
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Figure VII-9. The 1st and 2nd PCs zoomed in where class 7 atypical is located.

Overall, the case of SegmentationAll data shows an example of the kind of points ASR
considers as atypical. This example shows that an atypical point can be at the tail of the
distribution of its class. If there are enough examples of other classes and enough
examples of its own class close to the point, then the point is an overlapping sample and
may be influential (the case of class 7). In other words, if its negative effect on other
classes overcomes the positive effect on its own class, then it is negatively influential®. If

the area close to the point is underrepresented by the members of its own class, then it can

3 The misleading effect is not limited to the case when some members of other classes (in the
neighborhood) are classified as class 7, but dropping their true class from the majority is enough for

misclassification.
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be an outlier; but it can be influential if there are enough examples of other classes close
to the point (the case of class 2). For a classifier like KNN, duplicate points have

obviously more chance of being influential.

The ASR wrapper approach may not be a preferred method of atypical detection for
instance-based learners, like KNN, as the overall accuracy dropped by 1%. But KNN
provides an easier way of interpreting the plots and that is why we focused more on this
case. A survey of different instance reduction methods (somewhat related to atypical

detection) for instance-based learners is given in (Wilson and Martinez, 2000b).

Considering the average of all coverage values for SVM (89.1), the ASR accuracy is
achieved when removing almost 10% of the points in the training sets. In some datasets
like AbaloneAll3 and Cmc that are considered to be the most problematic ones, the
coverage value is lower (69.3 and 61.2) indicating that ASR has needed to take more
points to reach its highest performance. In the case of AbaloneAll3, the removal is done
till 97 percent of all misclassified points and in Cmc it goes all the way to 100 percent of

misclassified points.

In the Chess data the ratio of nAsp/nMiscl is also 100 percent but this is when there are
only 2 points to remove (all examples carry useful information). Considering the size of
the Chess data (3196), it is not disappointing. Chess data is deterministic, in the sense
that there is no uncertainty on the class memberships. For classifiers other than SVM, no

points were taken from Chess data; except for CART that has taken 10.5 points (decimal
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values in the number of points are due to averaging). The removal of zero points has
happened in the other 5 classifiers while their baseline accuracy is not very high (KNN,

90.8; QB, 66.7; NB, 66.7; QDA, 88.7; and LDA, 93.4).

The average values of ratio of nAtp/nMiscl (shown in Figure VII-10) are: 80.5, 91.3, 56.1,
78.9, 579, 42.2, and 31.9% for SVM, CART, KNN, LDA, QDA, QB, and NB,
respectively.  This clearly shows that getAtps function is not monotonic, unlike
getMisclfd or error-reject curves. If more misclassified points were added to the set of

atypicals, we would possibly see a drop in the test accuracy of ASR.

100

80 +r

60 -

O nAtp/nMiscl

40

20 4

SVM CART KNN LDA QDA QB NB

Figure VII-10. Average ratios of nAtp/nMiscl over all datasets.

The point that getAtps function shows a non-monotonic behavior (unlike error-reject and
CP curves) guarantees a cut-off point in removal process before it starts damaging the

validation performance on the training set. Figure VII-11 illustrates this point better on
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the DiabetesPima dataset, using KNN classifier. Every curve on Figure VII-11 is the
result of getAtps function on the training set of one fold of a 10-fold CV (i.e. 90% of the
data in the outer CV loop). On average, ASR has identified 171 points as atypical (84%
of all misclassified points). The DiabetesPima dataset is a problematic dataset with a

baseline accuracy of 75.1%; the average accuracy for ASR was 74.8% for KNN.
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Figure VII-11. Non-monotonic behavior of getAtps function on DiabetesPima dataset, using KNN.

Note that removing all the points in the misclassified set from the training set is not
necessarily a good idea as it may degrade the classifier. Also, there may be cases that
ASR does not need to remove any point at all. Figure VII-12 shows these two concepts
on the Chess data and the Crx1 (credit card approval) data using KNN classifier. A 2-

fold CV was applied on the Chess data and a 10-fold CV for Crx1.
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Figure VII-12. Results of getAtps function on the Chess and Crx1 datasets (left to right), using KNN.

The accuracy of the baseline KNN on the Chess data is 90.8% which is the same as the
ASR (no removal). The Chess data has 3198 examples. Removing all the points in the
misclassified set will cause a 5% drop in the validation accuracy in the Chess data and
almost 6% in the Crxl data. This further shows that getAtps function is not
monotonically increasing. The slight possible differences in the results presented in the
tables and in these figures are because for figures only 1 iteration was done while for

tables 5 iterations were performed for most datasets.

Another interesting point is that the average number of atypical points (shown in Figure
VII-13) is not very different for 6 classifiers (excluding QDA). This is while the average
number of misclassified points varies significantly (more than twice as much). QDA has
behaved very differently: among all classifiers, it has the maximum ntrains = 7.3 and the
minimum of nAtps and nMiscl (35.3 and 61.0 respectively). This unexpected behavior of
QDA needs to be studied in the future. Generally speaking, the weaker a classifier, the

more number of misclassified points it has picked up (see Figure VII-1 and Figure
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VII-13), yet, ASR has not been misled by the large numbers of misclassified points (as in
KNN, OB, and NB). It has chosen a portion that seems to be about reasonable for all

classifiers.
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Figure VII-13. Average numbers of atypical and misclassified points over all datasets.

At the end of a K-fold CV, ASR gives the list of atypical points obtained from the
removed points in all folds. This list can be sorted according to the frequency of these
points in all K-folds. Note that ASR can make this ordered list of atypical points that
covers the whole of the dataset (both training and test parts) without sacrificing the
legitimacy of test (evaluation) results. That is why CV is necessary in the ASR

algorithm.
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7.2 Check option results

ASR was able to perform as well as the baseline classifier, except for the case of KNN
that showed an average drop of 1% for all 20 datasets. ASR with the check option,
presented in Table IV-2, was introduced as a possible way out. The results obtained,
using the check option with the KNN classifier, are given in Table VII-2 and show that
the check option has solved performance degradation of KNN. The lower average
accuracies of ASR compared to that of baseline is not seen anymore (baseline total

average is 81.7%, see Table VI-3; and that of ASR is now 81.6%).

Another feature of the check option is that it is guaranteed to produce the number of
atypical points smaller than or equal to that of the regular ASR scheme. The smaller case
happens when the points prepared for removal, in some folds, become disqualified
because their ASR classifier cannot pass the check. In other words, the behavior of ASR
with the check option (in terms of its performance, p-values, and the number of removed
points) is always between that of ASR and the baseline classifier. As a result, we did not
pay much attention to the small differences between ASR with and without the check

option which can be a subject of future studies.

ASR with the check option was also tested on other classifiers and similar results were
obtained: fewer atypical points; and performance measures (accuracies) close to the
baseline classifier. The calculations of p-values, coverage, s-boost, etc. were not done,

however, for the ASR with the check option. For classifiers other than KNN, since
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accuracies of the ASR for these classifiers are already close enough to the baseline, we do

not need to repeat experiments for the ASR with the check option. So, all the results

presented in this research are from regular ASR unless otherwise specified (as in Table

VII-2).

Table VII-2. The accuracy of ASR after adding the check option for KNN.

KNN bline | ASR
datasel(size) Acc Acec
AbaloneAll3(4177) 63.1 83.0
Balance-scale(625) 90.3 20.3
BCancerW (683) 97.0 98.7
Chess(3196) 90.8 91.5
Cmg(1473) 49.9 49.86
Crx1(653) 79.1 79.3
Dermatology(358) 95.5 959
DiabetesPima(768) 75.1 748
Ecoli(332) 87.5 88.0
GenNor(300) 84.9 84.7
GenUni(300) 77.5 77.8
Haberman(306) 75.8 74.5
Hcleve(296) 82.0 82.2
Iris(150) 95.3 94.9
lonosphere(351) 845 85.1
LiverBupa(345) 63.4 62.9
SegmentationAll(2310)  92.8 929
Splice1{3190) 814 81.4
Thyroid(7200) 94.7 | 947
Vehicle(846) 72.5 718
Average: 81.7 81.6

116



7.3 Ada-Boost vs. S-boost

The Tables in the second group (Table VI-10 to Table VI-16) focus on the behavior of
Ada-boost algorithm on two different training sets (with and without atypicals). As a
reminder, when Ada-boost is applied to the Subset of training data without atypicals, we
refer to this as S-boost (Sbst in tables); and if the whole training data was used, as Ada-

boost (Abst in tables).

Note that the presence of misclassified points is an essential element for the boosting
process to increase the performance of the classifier. When the majority of misclassified
points were removed from the training set, the boosting process has little chance to make
a difference. Hence, S-boost should perform worse than Ada-boost unless the removed
~ misclassified points were not of much use to the classification task. Figure VII-14 shows
the average accuracies of the baseline classifier, Ada-boost and S-boost ensembles over

all datasets.

The interesting observation here is that although a significant number of misclassified
points are not present in the training set of S-boost (see Figure VII-10 and Figure VII-13),
it has performed slightly better than Ada-boost in SVM, KNN, and QDA; almost the
same in LDA, QB, and NB and slightly worse in CART (see Figure VII-14). The
corresponding p-values, in Table VI-10 to Table VI-16 do not contradict this observation.

This further shows that the points taken out by ASR did not carry useful information as
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far as the performance measure and the classifier in use are concerned. This statement is

nothing but our definition of “atypical points,” i.e., a sign of success for ASR.
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Figure VII-14. Average accuracies of baseline classifier, Ada-boost and S-boost ensembles over all
datasets.

For SVM, Ada-boost has hardly any positive effect. Only on one dataset,
SegmentationAll, Ada-boost does a better job than the baseline. One explanation for why
boosting works is that the combined classifier (the ensemble) increases the margin of
classification compared to the base classifiers (Schapire, et al., 1998); and since SVM has
already maximized the margin, there is no room for enhancement. But pushing SVM to
focus on the misclassified points has had a small cost, while a benefit was expected
because choosing a kernel function and SVM parameters were not optimized globally.

This cost is less when most of the misclassified points are not present in the training data.
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For KNN, overall, S-boost seems to be better than Ada-boost but neither one is better
than the baseline. The reason (or part of it) can be that, as explained earlier, KNNi1sa
local learner and is not expected to be good at finding the points that can influence its
performance globally. As a result, the struggle of boosting on learning misclassified
points better does not lead to a positive outcome. The same argument can explain, maybe

partially, why S-boost has performed somewhat better than Ada-boost.

In addition, in the datasets for which Ada-boost was stronger than the baseline (the ond
sub Average in Table VI-11), S-boost is weaker than Ada-boost. This means that perhaps
there has been some useful information for KNN in the points that ASR has taken away
from training. Also, the 1% sub Average of S-boost accuracy in Table VI-11 is
considerably smaller than the baseline. This means that maybe there have been still
problematic points (atypicals) for KNN that were not removed by ASR. In other words,
ASR has achieved something in terms of picking some atypicals (S-boost is somewhat

better than Ada-boost overall), but it has not done a perfect job.

In the case of CART, both S-boost and Ada-boost have done slightly better than the
baseline. However, the same conclusion as in KNN can be drawn. Since the 1* sub
Average of S-boost accuracy in Table VI-12 is smaller than that of baseline but larger
than that of Ada-boost, then ASR has been successful in removing some atypicals but it
has not found them all. Also, since the 2° sub Average of S-boost accuracy in Table

VI-12 is smaller than that of Ada-boost but larger than that of baseline, then ASR has
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been successful in not taking too many useful points from within the misclassified points

but perhaps some of those points were removed by ASR.

For both QB and NB, S-boost and Ada-boost are almost the same and they have done a
better job than their baselines. Since the performance of these two boosting ensembles is
the same, the removed points by ASR were not contributing to the classification task; that

is, they were rightfully removed.

For QDA, S-boost has done a better job than Ada-boost and both have shown better
results than the baseline. Since the 1% sub Average of S-boost accuracy in Table VI-15 is
the same as that of baseline and larger than that of Ada-boost, then ASR has been
successful in removing some atypicals but we do not know if it has found them all. The
p-values also show a considerable difference in favor of S-boost. Pv(Abst > Sbst) = 70.3
while Pv(Abst > Sbst) = 41.7. Moreover, since the 2" sub Average of S-boost accuracy
in Table VI-15 is the same as that of Ada-boost but larger than that of baseline, then ASR
has been successful in not taking useful points from within the misclassified sets (there is
no evidence that some of those points were removed by ASR). This is inline with the
finding that QDA had the minimum nA#ps. The case of LDA, is almost the same as that

of QDA.

Generally speaking, the results show that ASR has the ability to recognize and remove
some of the atypical points from training while keeping its test accuracy on the whole

dataset rather as high as the baseline classifier. This is, by itself, a significant
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achievement especially considering the generality and features of the proposed technique
(no need for a reject option; no need for extra criteria and performance measures; finding
atypical points for the whole dataset while keeping the test set intact; consistent with the

classifier in use, etc.).

Although all the points removed by ASR are from the set of misclassified points, there
seems to be some useful points removed by ASR and also not all atypical points were
removed by ASR. The main reasons for this imperfect result can be: 1. ASR gathers the
collection of misclassified points in groups (points with the same rank) because they were
misclassified together. There may be better ways to group misclassified points together.
If a classifier has a kind of reject option, this can be easily modified but to keep the
generality of the algorithm, we did not consider that option. 2. In getAtps we perform a
backward elimination. Once some points are removed we cannot bring them back into
the next subsets. This is problematic in combinatorial optimization problems like sample
subset selection. However, better solutions like sequential replacement algorithms are
more complicated and computationally more expensive. For the first study of subset
selection for samples (rather than features), the results seems to be promising. In the

future research the above two issues can be pursued.

7.4 Comparing ASR and filtering

Tables of group 3 (Table VI-18 to Table VI-24) give the results of the comparison

between when the points removed from the training set are identified by ASR and when
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removing outliers, identified by the Mahalanobis filter, from the training set. For the
outlier detection, the Mahalanobis distance was used with Chi-squared distribution and o

=0.01, significance level.

Figure VII-15 shows the average accuracies of the baseline, ASR, and the Mahalanobis
filter method over all applied datasets. The averages of the baseline and ASR may differ
slightly from that of Tables of group 1 and 2 because the Mahalanobis distance could not
be calculated for Dermatology dataset; inverse of the covariance matrix is sometimes

problematic.
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Figure VII-15. Average accuracies (over all datasets) of the baseline, ASR, and the filter method.

As Figure VII-15 shows, ASR can match the baseline accuracy somewhat better than the
Mahalanobis filter. There was 0.6% drop in KNN for ASR that could have been fixed by

the KNN with the check option (we did not use the check option results in this Section).
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Figure VII-16. The p-values comparing the performance of ASR with the filter method.

In Figure VII-16, the p-values comparing the performances of ASR with that of the
Mahalanobis filter method are shown. Please note that the lower the p-value, the more
evidence we have to reject the null hypothesis in favor of the alternative hypothesis.
There are two alternative hypotheses here for two 1-tailed tests: ASR > Filt (ASR has
performed better than the filter) and Filt > ASR (the filter has performed better than
ASR). The most evidence in Figure VII-16, is for QDA classifier showing that ASR has
performed considerably better than the filter. It is interesting to notice that accuracy
measure is not always consistent with p-values. For instance, QB has shown the most
decrease in accuracy for the filter but the p-values consider the QDA case more

significant.

More detailed information is given in Table VII-3.
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Table VII-3. Comparing average values for ASR and the Mahalanobis filter.

bline ASR  Filter
Acc Acc Acc

SVM 85.1 850 846 777 69.0
KNN 80.9 803 807 972 68.8
CART 816 817 813 1011 59.4
QB 76.9 767 721 730 36.2

NB 741 741 749 4241 36.2
QDA 79.0 793 768 35.1 64.6

LDA 78.7 79.2 797 984 64.6
average: 795 795 786 749 57.0

classifier nAtps nOutliers

Table VII-3 summarizes the result by giving the average accuracies and number of
removed points in all datasets. Columns 2 to 4 are the average accuracies obtained for the
baseline, the ASR, and the Mahalanobis filter (averaged e.g., over five times of 10-fold
cross validation). The average number of points identified as atypical is given in the 5t
column (nAtps). The average number of outliers removed by the filter is in the 6™ column
(nOutliers). The average number of atypicals and outliers are for the training sets (that is
9/10 of data for the datasets with size < 1000, and 1/2 of data otherwise) and averaged
over the number of iterations times the number of folds (for a dataset) and then over all
datasets. There is a change in the number of points removed by the filter (nOutliers)
although it should have been the same for all classifiers. This is because some classifiers
were not stable and did not finish the process for some datasets. The most instable cases

were QDA and LDA that had problem (calculating the inverse of the covariance matrix)
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with Dermatology and splicel datasets. The Mahalanobis filter could not finish with the

Dermatology data either.

The filter method performed well in NB and LDA classifiers. In LDA, perhaps the filter
takes the advantage of having almost the same inductive bias as the classifier and shows
1% increase in performance: 78.7, 79.2, and 79.7 for the baseline, ASR, and the filter
method, respectively. The average results, however, show that the removal of points,
identified by the filter, from the training set has caused almost 1% drop in the test
accuracy. While ASR has removed more points from the training set (74.9 vs. 57, that 1s
almost 30% more), its test accuracy is the same as the baseline. It is worth mentioning
that 1% may not be taken as a significant change but considering that 5 times iteration of
10-fold CV was done on most of the 20 datasets (to reduce the randomness in the results),
this drop can be considered as meaningful. The drop of accuracy of the filter method is

mainly due to QDA and QB classifiers.

It is interesting to note that the QDA is the classifier one expects to benefit most from the
removal of points identified by the Mahalanobis filter because they share a common
inductive bias (Mahalanobis distance) and follow basically the same calculation.
Nevertheless, the average performance of QDA has dropped from 79% to 76.8%. ASR
has been successful in controlling this drop by not letting more points to be removed from
the training set. Surprisingly, QDA is the only case for which ASR has removed even
fewer points than the filter: the average nAtps is 35.1 and the average nOutliers is 64.6 for

QDA; that is, ASR has removed 90% less points in this case. In other words, in the case
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of QDA, the filter method and ASR are both consistent with the classifier in terms of their
inductive biases but ASR has an extra advantage of stopping the removal process
whenever it may start damaging the performance of the classifier. The number of
removal by the filter is controlled by a predetermined criterion (o = 0.01 significance

level). That seems to be the reason why ASR did not allow performance degradation.

In the case of QB, the filter shows an average drop of almost 5% in performance (from
76.9% to 72.1%). In this case, ASR has removed almost twice as many as the filter
(nAtps = T3 vs. nOutliers = 36.2) without sacrificing the performance of classification.
This shows that removing more atypical points does not necessarily mean compromising
the performance as long as the points that have a positive contribution to the classification
task are not removed. The problem with the filter approach is that neither the number of
removal points nor which points to be removed is decided based on the consultation with
the learner (classifier). Even if the classifier and the filter share the same inductive bias,
the performance is still in danger because the number of removal may not be what the

classifier can afford to give up (the case of QDA).
Figure VII-17 shows, as bar lines, how many points each method (ASR and the filter) has

removed from the training sets averaged over all applied datasets. As mentioned earlier,

ASR has removed almost 30% more points than the Mahalanobis filter on average.
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Figure VII-17. Number of atypicals identified by ASR and number of outliers chosen by the filter.

It is worth mentioning that although ASR is able to identify more atypical points, it seems
that ASR chooses these points more selectively than a filter method. For instance, the
Chess dataset has 3196 examples (points), it is quite deterministic: it has no noise and
every example is a unique valid scenario. Yet, the Mahalanobis filter has chosen on
average almost 150 points as outliers from the training set (about 300 points in the whole
dataset). The baseline accuracy for the Chess data varies from 66.7% (for QB and NB),
88.7% (for QDA) to almost 99% (for SVM). So there were plenty of misclassified points
for ASR to choose from. The number of atypical points (nAtp) ASR has identified were 3
(for SVM): which were among the outliers as well, 14 (for CART): only 10 of them were

among the 300 outliers, and 0 (for all other classifiers).

Another interesting case was the case of SegmentationAll data with the KNN classifier.
ASR identified only 2 points as atypicals on average (4 points in the whole dataset).
Removing these points from the training set caused KNN to increase the baseline

accuracy from 92.8% to 95.2%. The filter chose 102.5 points as outliers on average (205
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points in the whole dataset). Removing the outliers from the training set caused KNN to
decrease the baseline accuracy from 92.8% to 92%. Surprisingly, none of the 4 atypical
points were among the 205 points identified as outliers by the filter. A detailed
investigation on these 2 duplicated atypical points (given in Subsection 7.1) showed that
one of them is located between the two islands (smaller clusters) formed by the members
of its own class (see Figure VII-18). The reason why the Mahalanobis filter does not
recognize it as an outlier is that it considers all the members of a class as one group
(sample). If they form different islands in the problem space, the points outside of the
islands may not be identified as outliers (by the Mahalanobis filter) when they are not in

the tail of the group distribution.
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Figure VII-18. Class 2 members and atypical points (bold circle) for SegmentationAll data and KNN.

Although such a clear behavior can only be seen in some cases, generally, ASR has

removed almost 30% more points than the filter and still produced 1.0% higher
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generalization accuracy than the filter. If both ASR and the filter had removed the same
number of points, the one with the higher performance would be considered more
accurate and more specific as to which points should be removed. Also, if both ASR and
the filter had the same performance, the one that had removed more points would be
considered more efficient and also consistent with the classifier in use. This is because by
removing more points it was more in risk of removing some informative points and
dropping the performance but it did not happen. Therefore, ASR is more consistent with
the classifier in use; it is more accurate and more specific in finding the atypical
examples. In other words, ASR knows better than the filter: how many points and which

ones to remove.

Considering the above findings, the following can be said about the comparison of the
Mahalanobis filter and ASR method. ASR knew better which points to remove and had a
better control on the number of points to be removed before damaging the performance of
the classifier. On average, ASR has identified 30% more atypical points than the
Mabhalanobis filter. The points removed by ASR were also more consistent with the
classifier in use; as a result, ASR has produced 1% higher performance than the
Mabhalanobis filter. All the points removed by the ASR are guaranteed to be either
outliers or from the conflict area of the problem space where more than one class claims
for the region (overlapping region). This guarantee comes from the fact that atypical
points are a subset of the misclassified set (by definition) but there is no such requirement
for the filtered outliers. Note that removing more points, by itself (everything else equal),

is more preferable for the possible goals of atypical detection (cleaning the data from
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noise, making a smoother decision function to act against overfitting, finding the possible

instances of a new class, etc.).

The Mahalanobis filter, on the other hand, is very fast (like many other filters) and ASR is
considerably slower because it is a wrapper method. The elapsed time for SVM was from
2.5 mins for Iris data to almost 50 mins for Thyroid data and exceptionally 140 mins for
Vehicle data; the average elapsed time was about 30 mins. This was on a PC with 2.4
GHz CPU and 512 Megs of RAM and included all the processes involved (baseline, ASR,
Ada-boost, S-boost, etc.). The average time for CART was almost as that of SVM. Other
classifiers were faster than SVM with an average of about 20 mins. This is while the

code was not optimized for speed and there is plenty of room for that.
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Vil Conclusion and future work

The main goals of this research were to develop a wrapper method for atypical detection
with a running time that allows sample subset selection to be practical and remove some
of the obstacles faced by the previous efforts. While the fastest available wrapper
(sequential) algorithm is quadratic, the presented algorithm (ASR) has a linear time. Our
analysis showed that ASR is at least 75 times faster than a standard sequential wrapper
averaged over the 20 tested datasets and 7 classifiers. A wrapper method is more
consistent with the classifier in use than a filter method. This consistency can be seen in
the way a wrapper technique works and the results of the comparisons between the two
methods. The filter approach applies one definition (predetermined criterion) to all
domains while the wrapper method finds atypical points by consulting the classifier in
use. Overall, considering the fact that ASR is only a linear approximation to an

exponential (combinatorial) problem, the obtained results seems to be satisfactory.

8.1 Conclusion

The experimental results obtained in this research did not support the assertions that
removal of atypical points can increase the generalization performance of classifiers
averaged over all datasets. Our closer look at the reports of performance increase as a
result of atypical removal also showed that the reported performance was either

confidence expressed by accuracy (and not the prediction accuracy) or the efficiency of
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the filter expressed by accuracy. As long as the generalization performance is concerned,
no evidence was found so far to support that overall performance can be increased as a
result of atypical removal. To the best of the author’s knowledge, for 0% noise in the
training data, the highest overall achievement, obtained so far, is the test accuracy almost

the same as that of the baseline.

For instance, in the study by Wilson and Martinez (2000b), when no noise was added to
the training data, all their tested instance reduction techniques showed generalization
accuracies weaker than that of the baseline (a KNN with 0% noise in the training data and
no filtering). Brodley and Friedl (1999) also found that when no noise was introduced,
filtering did not make a significant difference although there was no guarantee that the
datasets themselves were noise free. John (1995) also experienced that Robust-C4.5,
specialized in the removal of outliers, degraded performance in some datasets by

throwing out points that seemed to be outliers.

Therefore, the best achieved so far by removing outliers, noise, or atypicals is to keep the
overall (average) performance on the intact test set almost the same as that of the baseline
with no removal. In our experiments, there are some datasets for which the test accuracy
shows statistically significant improvement after the removal of atypicals; but we cannot
make a conclusion only based on such results when we are interested in the overall

performance.
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All classifiers using the ASR algorithm, after removing atypical points from their training
set, were able to keep their performance comparable to the baseline performance for
which training was done without any removal. In the case of KNN (a local learner), 1%
difference in the performance of ASR and the baseline was observed. Even this
difference was vanished when ASR with the check option was used. This shows that
ASR, as a wrapper method, is capable of identifying atypical points, as defined in this
research, and removing them from the training set without sacrificing the performance on
the intact test set. Considering that sample subset selection is a combinatorial problem
with an exponential number of possible state, for a linear approximation (ASR) the

obtained results are not disappointing at all.

Note that even if the solution represented in this research does not show any significant
increase in the test performances, logically, we cannot exclude the chance that with a
better algorithm and a finer search we may be able to enhance the test performance in the

future.

Further tests on all 20 datasets and 7 classifiers were conducted using two boosting
ensembles: one with intact training set (Ada-boost) and another with the atypical points
removed from the training set (S-boost). Since the presence of misclassified points is an
essential element for the boosting process to increase the performance of the classifier, S-
boost should perform worse than Ada-boost unless the removed misclassified points were
not of much use to the classification task. The results showed that when a significant

portion of misclassified points were removed from the training set, Ada-boost and S-
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boost ensembles had very close performance measures. This indicates that ASR is able to
extract atypical points from a dataset without taking most of the informative points from
the set of misclassified points. ASR may also have taken some points that are perhaps not
atypical points (it is not perfect) but it does generate about the same test accuracy as the

baseline classifier.

The comparison between ASR and the Mahalanobis filter method was also done. The
results showed that ASR was more accurate in identifying atypical points, it was more
consistent with the classifier in use by keeping its performance as high as that of the
baseline (the classifier with no removal from the training set), and it was able to remove

30% more points from the dataset than the Mahalanobis filter.

The proposed algorithm (ASR) has the following features:

1. ASR has a linear running time to approximate sample subset selection for atypical
detection. The closest wrapper methods are quadratic that is not practical for sample

subset selection.

2. In ASR, as a wrapper method, there is no predetermined criterion for atypical points
but they are found based on the possible negative effect of misclassified points to the
classification task. That is, ASR only uses the classifier itself and any performance

measure (like accuracy) to identify atypical points in the data. This is more consistent
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with any classifier in use and therefore, more cognitively sound from the Al point of

view.

. ASR finds atypical points for the whole dataset (training and test sets) while keeping
the test set intact, unlike error-reject and CP curves, by applying a cross-validation
technique. The results are more comprehensive and even more reliable than

partitioning data into training and test sets.

. ASR generates a non-monotonic curve that is useful for atypical removal. Unlike

error-reject and CP curves, ASR gives a cut off point for atypicals.

. ASR does not need an error-reject option (CF or posterior probability estimate) to
give ranks to the obtained atypical points, so it can be used for any classifier. The
rank of atypical points can be found easily, at the end, by considering their

frequencies in K-folds of the CV process.

. In ASR, there is no need for new performance measures. The cleaned dataset and the

trained classifier are free from the possible influence of atypical points.

. Compared to the Mahalanobis filter, ASR is more specific in identifying atypical
points, more consistent with the classifier in use by keeping its performance as high as
that of the baseline, and able to remove 30% more points from the dataset than the

filter. The points removed by ASR are always a subset of misclassified set.
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8. ASR is a non-parametric method of atypical detection. It has no pre-determined
parameter (such as o = 0.01) that may hurt the performance of the classifier. Our
experiments proved that even if there is no conflict in inductive bias of the classifier
and the outlier filtering method, a pre-determined parameter may cause the removal of

too many or too few points.

8.2 Future work

There are certain points that can help better understand and resolve the issues related to
atypical detection for a wrapper approach such as ASR. These points can be the subject

of the future research.

1. ASR removes the collection of misclassified points in groups because they were
misclassified together. This grouping method may not be in harmony with the
combinatorial nature of sample subset selection. Is there a different method of
grouping for subset generation that does not increase the running time of ASR? If
yes, how is its performance compared to that of ASR? One option, of course, is to
use the classifiers that have reject option (CF) to rank the points for removal. But
this makes the sample subset selection method less general and perhaps more time
consuming. Is the performance of such a wrapper method significantly better than

ASR?
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2. In getAtps we perform a backward elimination. In backward elimination, once
some points are removed we cannot bring them back into the next subsets. This is
a greedy approach and often reduces the quality of the result of any combinatorial
optimization problem. Better solutions like sequential replacement algorithms are
also available but they are more complicated and computationally more
expensive. One can try these algorithms and compare the results with ASR. Are
they practical for rather small datasets; is their performance better than ASR?
How about using genetic algorithms to search the space of possible subsets? Can

we use fast versions of GA with the ability to rank the atypical points?

3. The effect of atypical removal on the decision surface is also of interest. One
expects that the removal of typical points may help smooth the decision surface.
Can atypical removal prevent overfitting to some degree? This can be studied on
both generated and real datasets. In weaker classifiers, one may expect to see
more change in the decision surface after removing atypical points. Does the
process of atypical removal bring weaker classifiers closer to an optimal decision

surface?
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