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ABSTRACT

Water’s unusual properties have continuously fascinated researchers from
different areas. Yet, in spite of the vast amount of information collected to date, the
fitting together of all the different pieces into a coherent picture has proven to be
extremely difficult. A detailed account of isotopic effects, as a specific example of these
problems, requires the inclusion of the quantum nature of the protons.

Methods based on Feynman’s path integral representation of statistical mechanics
have been extensively used to calculate equilibrium properties of quantum systems in
condensed phase. They allow standard classical methods, such as molecular dynamics, to
be used for the simulation of an otherwise quantum system at finite temperature.
Furthermore, approximate quantum dynamical information has also become available
through the use of the centroid molecular dynamics (CMD) methodology.

In this thesis, a CMD methodology for systems of rigid bodies is developed by
introducing the concept of an orientational centroid and by designing an algorithm that
samples homogeneously the quantum mechanical orientational uncertainty while
ensuring centroid conservation. This rigid body-CMD technique, which is significantly
more efficient than the standard CMD method, is extensively applied to the study of
quantum effects in liquid water and ice Ih.

Quantum effects on the equilibrium and dynamical properties of liquid H,O and
D,0 are studied and are shown to agree with previous results. The present method
dramatically improves the agreement with experimental isotopic differences relative to
those obtained with classical simulations. Quantization is found to significantly affect the
properties of liquid water over a wide range of temperatures, especially in the low
temperature region. An unusual behaviour of the quantum mechanical molecular
uncertainty is identified and its relationship to the local environment is determined. The
“effective tunneling” in liquid water is directly characterized as part of a detailed analysis
of the interrelationship between structure and dynamics. Quantum effects in ice Ih are

also investigated in detail and are found to be significant.
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1. INTRODUCTION

A microscopic understanding of matter has been the challenge of many scientists
for several centuries. With the progress of science and technology the focus has evolved
from gases to matter in the condensed state (ie. liquids and solids). The recent
development of a variety of experimental techniques and the advancement of the
theoretical methods available have permitted a remarkable improvement in the

understanding of liquid and solid structures as well as their dynamical properties.

Computer simulations, in particular, have played a major role in the microscopic
understanding of matter. Their versatility, adaptability and applicability to different
system models have produced many insightful results and have significantly impacted
our knowledge of condensed matter. Computer simulations are not aimed to substitute
experiments but to complement their findings. The main reason why they are very useful
in scientific research is because they provide a level of microscopic detail of a model
system that is beyond the scope of today’s experimental techniques on real systems. In
fact, computer simulations allow us to investigate the influence of a certain property in a
system’s behaviour by studying the model system in the presence and absence of that
specific property. In this way, they create a virtual but fruitful scenario where our very
basis of assumed knowledge can be challenged with a careful and consistent plan of

“computer experiments” where the main theoretical tool is statistical mechanics.

Classical statistical mechanics [1-3] is often used to probe the relative

arrangement of atoms and molecules in condensed phase [4-6]. The Born-Oppenheimer



approximation allows us to decouple the electronic and nuclear motions and, after
averaging over the electronic degrees of freedom, to center attention on the remaining
problem of sampling the statistical configurations of the nuclei, within the effective
interactions induced by the averaged electric potential. In general, the potential surface on
which the nuclei move should be found by performing a Boltzmann weighted sum over
the electronic states. However, the electronic states of most systems are usually
dominated by the lowest energy levels and the result of averaging out the quantum
fluctuations of the electrons yields the ground state Born-Oppenheimer energy surface.
Classical mechanics then becomes a useful tool to study the spatial configurations of the
nuclei, since they are much heavier than the electrons. The relatively high mass of nuclei
implies that the quantum uncertainties in their positions are relatively small at ambient
temperétures, and as a result can be reasonably considered as classical particles. In this
context, additional constraints can be applied, for example the use of rigid models in a

molecular liquid result in a distance constraint over pairs of nuclei, etc. [4,6].

There are, however, circumstances where the quantum nature of the nuclei is
relevant; such is the case of the protons in water. Methods based on Feynman’s path
integral representation of statistical mechanics [7,8] can account for the nuclear
uncertainty. These methods can utilize standard classical statistical techniques such as
Monte Carlo and molecular dynamics for the simulation of a quantum system at finite
temperature by providing an isomorphic classical system [9,10]. This isomorphism,
which is established through the canonical partition function, has been extensively used

to calculate equilibrium properties of systems in condensed phase [9-16], including liquid



water [12-15] and ice [16]. The inclusion of the proton uncertainty in liquid water
simulations via path integral simulations and its impact on equilibrium properties have
been investigated in rigid [12,14] and flexible molecular models [13,15]. The effect of the
proton uncertainty on the structure of liquid water was found to be equivalent to the
structural effects associated with raising the temperature about 50 degrees [12], and

therefore non-negligible.

In the context of path integral methods, approximate quantum dynamical
information has also become available through the use of effective potentials and the
centroid molecular dynamics (CMD) methodology [17,18]. This later methodology,
while reproducing equilibrium properties, also allows the calculation of (approximate)
quantum time-dependent properties and is particularly accurate in systems where the
behaviour is close to the classical limit. Using this technique, Lobaugh and Voth [19]
determined estimates for the equilibrium and dynamical properties of quantum water.
They found that quantum time correlation functions decay faster than the corresponding
classical ones [19], consistent with the expected tunneling behaviour in liquid water [12].
The results obtained with an effective potential technique [20] based on the Feynman-
Hibbs variational treatment agree reasonably well with the more accurate but

computationally more expensive CMD method.

Liquid water and ice, as is well known, have been the focus of much research
attention from scientists and engineers over many decades [21-24]. Their importance in
living systems and the environment, together with their unique properties, has continued

to fascinate researchers from many different fields of study. In spite of the apparent



molecular simplicity of water and the vast amount of experimental information available,
which is constantly being increased by the addition of new data from a wide range of

techniques, a coherent assembly of the different pieces has proven to be extremely

difficult.

Although both rigid and flexible water models have been used to simulate liquid
water [25-26], it is well known that most bulk properties are very well reproduced
without the inclusion of molecular vibrations. Very recently, first principles simulations
of rigid water [27] have been found to reproduce experimental results well, while the
inclusion of flexibility in the water model appeared to impact negatively on this
agreement. Furthermore, quantum simulations on rigid models [12,14] have confirmed
that more than 90% of the bulk effects of quantization appear to be due to the
orientational degrees of freedom. This can be understood as a consequence of the fact

that the water molecule has small inertia moments but a relatively large total mass.

This thesis is primarily concerned with the development of a method that includes
both the quantum mechanical uncertainty of the proton in the context of a rigid molecular
model and the calculation of (approximate) real time dynamical information. This
technique, called rigid body centroid molecular dynamics, can be thought of as resulting
from the removal of vibrations within the context of the original CMD method. The
principal advantage of this methodology is that the number of degrees of freedom
required in the simulation is decreased significantly; classically by excluding the
vibrational motion, and quantum mechanically from the use of a significantly lower value

of the discretization parameter, P (due to the rigid rotor treatment of the molecule).

4



Consequently, the simulation is dramatically less expensive to perform computationally
without significant loss of physical insight. This approach also allows the dynamics of the
translational degrees of freedom to be treated either classically or quantum mechanically
according to the nature of the system under consideration. Additionally, this thesis
presents the results of the extensive application of this method to the simulation of

quantum effects in liquid water and the most common form of ice, ice Ih.

A description of this thesis is in order. Chapter 2 provides the definitions and
some basic concepts used in the microscopic characterization of liquids and solids, as
well as describes the method of molecular dynamics as a useful simulation technique.
Chapter 3 briefly reviews the physical properties of liquid water and ice, the molecular
models that have been used to study them, and ends with a discussion on the limitations
of the application of classical statistical mechanical methods. Chapter 4 details the
different ways in which quantum mechanics may be included in the investigation of
many body problems, and incorporates an extensive discussion of path integral methods
and their application to water. Chapter 5 reviews the exact formulation of the centroid
theory and discusses the centroid molecular dynamics approximation, as well as its
implementation. In Chapter 6 the implementation and testing of the rigid body-CMD
method is presented. The extensive application of the rigid body-CMD method to liquid
water is discussed in Chapter 7, which includes analyses of the isotopic effect and the
temperature dependence of the quantum effects, as well as a characterization of tunneling
in water. The study of quantum effects in ice Th is presented in Chapter 8. The

conclusions and future directions are presented in Chapter 9.



2. UNDERSTANDING CONDENSED MATTER

The study of matter in condensed state has a long and rich history, from both the
theoretical and experimental standpoints. From early observations of Brownian motion to
recent neutron scattering experiments, experimentalists have worked to improve our
understanding of the structure and particle dynamics that characterize liquids, solids and
amorphous states. At the same time theoreticians have tried to construct simple models
that explain how atoms and molecules behave; whether they are constrained to remain
closely packed within the attractive fields of their neighbours or have sufficient thermal
energy to escape the lattice confinement of a solid and still remain dominated by the
attractive interactions. This chapter will briefly review some basic concepts of statistical
mechanics, experimental methods and the technique of molecular simulation that are

applicable to both liquid and solids, referring eventually to aspects of water.

2.1. BASIC CONCEPTS OF STATISTICAL MECHANICS

Statistical mechanics is the microscopic theory of many-body systems [1-3]. It
provides the means to establish the connection between the microscopic and macroscopic
(or thermodynamic) descriptions of a system. Considering an atomic description for
notational simplicity the microscopic state of a classical system is specified by the N

positions, r E(rl,---,rN), and N momenta, pN = (.- pN). The values of these

variables define a phase space point in a 6N-dimensional space named the phase space.



Equilibrium statistical mechanics prescribes that the properties of the system can
be calculated as averages of the appropriate observables over the appropriate phase space

probability density. For a closed system at constant temperature and volume, the

probability density of observing a specific configuration (rN ,pN) is given by [2]

exp[— pH(r™ p" )]

Pr(rN,pN) =

) /I eXPl'ﬁH (rV.p" )]drN dp"’ @.1)
where
N
A" - 51; lep"[z W), (22)

is the Hamiltonian of the system and g =1fkpT .

The normalization of the probability density in Equation 2.1 leads us to the

concept of the classical canonical partition function [1-3]

Z= W { fexp[—ﬁH(rN P )]dr” dp", (2.3)

where the factor 1/ N !(Znh)w is taken into account such that Equation 2.3 is recovered
when the quantum canonical partition function is taken to the classical limit. Hence,

according to the prescription of statistical mechanics, a particular observable A(rN, pN)

can be calculated as



rN ,pN)

(4)= -;— I fA(r"’ oY )e"’g g drVdp" . 2.4)

Some thermodynamical properties, however, cannot be expressed as averages of
certain functions of the coordinates and momenta of the constituent particles. For

example, the Helmholtz free energy is defined in statistical mechanics by [1-3]

F=——ﬁ1—logZ(T, V,.N). (2.5)

Since F is the thermodynamic potential for a system with 7, ¥ and N fixed, and since (as
we know from thermodynamics) all remaining thermodynamic functions can be obtained
by differentiation of F, Equation 2.5 provides the link between statistical mechanics and
thermodynamics. Indeed, thermodynamic properties can be formally expressed in terms
of the corresponding differentiation of the canonical partition function. In order words,
the canonical partition function, Z(T,V,N), is the essential statistical quantity of a

system in equilibrium [1-3].

From Equations 2.1 and 2.2 it is clear that the probability density can be
factorized into kinetic and configurational components. Thus, the probability of finding

the system in a particular coordinate configuration r” = {rl,- -y rN}, independently of the

momenta configuration, is given by [1-3]



exp[ BV(rl, )]

f fexp[ (5, Ty }:lrl...drN.

prV (rl,

(2.6)

The probability density function, given in Equation 2.6, serves as a source for defining
various atomic distribution functions associated with various atomic arrangements. We
shall be interested mainly in the pair distribution function, which is the probability
density of simultaneously observing two particles in the configuration (rl,rz). From
Equation 2.6 one obtains, by integration over the configurations of the remaining N-2

particles [2],

Nif--f exp[ pV(x;,.. rN)]dr3 dry
(N -2) f [ exp[ BV(ry....,ty ]drl dry

PP (n.r,) @.7)

The factor N'/(N-2)! arises since we have exactly N! I/(N-2)! ways of selecting two out of
N particles to occupy the configuration (rl,rz) . It is obvious that, if p = N/V, in absence
of interactions p(z)(rl,rz)z pz, for large N. It is then convenient to introduce the

following definition [2],

g(r.r,) = p——}(o—zl—-z—), 2.8)

which for a homogeneous system becomes g(rl L) = g(rl 2) . This function, g(r1 ,), is the

so-called spatial distribution function and describes the average environment that

surrounds an atom in the system. Very frequently, however, the structure of a liquid or a



solid is described in terms of the radial distribution function, which is the result of an

angular average of g(rl 2) [2,5],1.e.

8(r) =f§” Jo &eiz)atds . 29

This function describes the structure of the system and it is characteristically different for
liquids and solids. Equations 2.8 and 2.9 can be generalized for a molecular system where
the dependence of the interaction on the positions and orientations of the molecules needs
to be taken into account. This is, in fact, the case for water, due to the relevance of

hydrogen bonds in the intermolecular interaction.

The total potential energy of a many-body system, V(rN ), an essential ingredient

of any microscopic theory of matter in condensed phase, may be divided into terms
depending on the coordinates of individual particles, pairs, triplets, etc. according to the

expansion [1,2]

V(rl,...,rN)=2Vl(ri)+ EVZ(ri,rJ-)+ 2‘13(1;,rj,rk)+.,., (2.10)

i Igi<j=N 1si<j<ksN

The first term in Equation 2.10, Vl(ri), represents the effect of an external field on the

system, and the remaining terms represents the molecular interactions. However, in
practice, the first term can often be neglected and the contributions from three-body, four-

body, etc. terms are incorporated into the theory by defining an effective pair potential,
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V. fr» which fulfills the condition [2,4]:
Vit oty) = 3 Vdna). @.11)
I=i<j<N

This equation implies that the electronic fluctuations on each atom are relatively small,
and therefore pair decomposability is a good approximation. If, on the other hand, the
atomic charge fluctuations on the atoms were large, the resulting energy function will

effectively couple together more than pairs of particles.

Finally, it is important to note that the properties in any system at equilibrium
fluctuate spontaneously with time (unless they are constants of the motion like V and N
in this case). It turns out that those fluctuations in time are very closely related to various
properties, such as transport coefficients, through the concept of time correlation
Junctions. Letting A(¢) stand for some dynamical variable, then A(0) denotes the
instantaneous value at certain initial time. The time correlation function of variable 4 at

time ¢ is defined by [2,4,5]
£) = (A(0) A(1)) = = [ fA(O'rN PN Al p" )e'ﬁ A N)drNde . Q1)
Z 4 b b b

As an example of the use in a dynamical property, the diffusion coefficient, D, is given by

[4,5]
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1

D= 3_Zdt(vi(t)- v,(0)) = }ilggl; (1) - r,.(o)lz), (2.13)

where v(t) and r; (t) are the center-of-mass velocity and position of molecule i,

respectively.

2.2. EXPERIMENTAL METHODS.

The experimental methods most often used in condensed matter can be separated
into two broad categories which depend on the scale of measurement: macroscopic or
microscopic [5,28]. The macroscopic properties are usually determined experimentally
with considerably accuracy, however, the analysis of microscopic properties is, generally,
somewhat sensitive to certain assumptions made about the intermolecular potentials, etc.
The determination of thermodynamic properties like energies or caloric capacities is an
examplé of macroscopic measurement. Another class of macroscopic measurements is
related to transport coefficients. The shear viscosity, bulk viscosity and thermal
conductivity are some examples of these quantities where a variety of experimental
methods exist [28]. Information at a microscopic level can be obtained with spectroscopic
methods like nuclear magnetic resonance (NMR), infra-red spectroscopy (IR), etc. They
are examples of microscopic measurements. Naturally, both types of measurements,
macroscopic and microscopic, are complementary and are required for the consistent

understanding of condensed matter systems [4,5,6].
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Among the variety of microscopic measurements radiation-scattering experiments
are especially important, at least from the theoretical point of view. Two scattering
techniques, in particular, can be distinguished: X-ray diffraction and the scattering of

thermal neutrons [2,21,28].

22.1. X-ray scaftering

X-rays have wavelengths comparable to the spacing of atoms in crystals (about
100 pm) so they are diffracted by crystal lattices. However, the long-range periodicity of
a crystal lattice is not a necessary requirement for the production of diffraction effects.
The short-range positional and orientational correlation between molecules in a liquid is
sufficient to cause interference effects between waves scattered from atoms in different
molecules [5,28-32]. Therefore, while the information that comes from X-ray diffraction
in solids allows us to specify their internal symmetry, the diffraction pattern of a liquid

also contains information about these short-range spatial correlations.

The special feature of X-ray scattering experiments is the fact that the energy of
the incident radiation is much greater than the thermal energies of the molecules and the
scattering process is effectively elastic. This makes it impossible to study time-dependent
phenomena [5,28], but valuable information can be gained about the static structure of the

fluid [29-32].

X-ray scattering probes the distribution of electron density in a sample through

13



the relationship [28-32]

NE
DSCS = <|E b, exp(-ik -r,-)
: i=1

>, (2.14)

where DSCS is the differential scattering cross-section, the sum is over the N, electrons

in the sample, b, is the scattering length for a single electron, the {r;} are the positions of
the electrons, and Kk is the momentum transfer for the scattering process. The application
of this formula requires that various corrections to the experimental data are made in order
to account for effects such as incoherent scattering, beam polarization, multiple scattering,

and container absorption [30,32]. With all this considered the cross-section can be written

in the form [5,28]
DSCS = Nb*S(k), (2.15)

where Nb? would be the scattering from N independent nuclei and S(k) represents the
effect of correlations. S(k) is called the structure factor and is related in a simple way to

the Fourier transform of g(¥) [2,5,28], that is
Sk)=1+p fexp(—ik ‘r)g(r)dr, 2.16)

where p is the density.

222 Neutron scattering

In contrast to x-ray scattering, in the case of thermal neutrons the energy of the
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incident particle is comparable with kT and the scattering cross section can therefore be
measured as a function of energy, as well as momentum transfer. By this means, it is
possible to extract information on wave number and frequency-dependent fluctuations in
liquids and solids at wavelengths comparable with the spacing between time-dependent
processes in liquids [5,33-38]. However, the technical difficulties are formidable and the

interpretation of many of these experiments can be difficult [33,34].

One important feature of neutron scattering, which is relevant to liquid water, is
related to the phenomena of coherent and incoherent scattering [5,6]. The coherent
scattering, which is useful for the analysis of liquid structure, is the result of the
interference between the incident and the scattered waves, those scattered waves coming
from a isotopically pure collection of nuclei of spin zero. The incoherent scattering can
then arise in two ways: first by having isotopes of the same element with different

scattering lengths, and second, due to the presence of nuclei with spin different from zero

[6].

An important case of spin incoherence is that of hydrogen [6,33,34]. The
products of the scattering amplitudes and weighting factors for parallel and anti-parallel
spins are almost equal but of opposite phase. Thus, constructive interference cannot
occur and the scattered wave escapes from the sample without being modified by
interference effects. Table 1 gives the neutron scattering cross section for hydrogen,

deuterium and oxygen. We see that the scattering from light water will be mainly by the
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hydrogen nuclei and will be almost totally incoherent. The scattering from heavy water
will be from both the deuterium and the oxygen and it will show strong interference
effects. Thus, most of the information on the structure of water comes from the data on
heavy water (in contrast, x-rays will be scattered almost wholly by the oxygen atoms
[32]). In the last two decades an important improvement of the use of the isotopic
substitution technique has occurred and corrections for inelastic scattering have been
developed, producing neutron scattering experiments for light water consistent with other

experiments and computer simulations [33-38].

Table 2.1. Coherent and incoherent scattering cross-section for the atomic components
of light and heavy water [3].

Isotope Oy Oon
‘H 79.7 1.79
H 2.2 54
0 0.0 4.24

2.3. COMPUTER SIMULATIONS

The technique of computer simulation has played a major role in the microscopic
understanding liquids and solids, including the structure and properties of water in liquid
and solid phases. Its usefulness rests ultimately on the fact that it provides a complete
and detailed atomistic description of the model system under study, which is otherwise
still unattainable through experimental methods on the real system. Further, the results
may be regarded as essentially exact for a given intermolecular potential on well-defined

models, thereby eliminating the ambiguity that invariably arises in the interpretation of
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experimental data on real systems. Still, molecular simulations are distant from traditional
“pencil-and-paper” theoretical work and are carried out in a quasi-experimental fashion. In
order words, a “computer experiment” is performed on a representative idealized material,
where some parameters have been specified in advance, to answer a practical question.
The result is naturally subject to scrutiny with a healthy air of skepticism like any

experimentally measured data.

Two distinct approaches of molecular simulations are available and have been
widely used: the Monte Carlo method of Metropolis et al. [39] and the method of
molecular dynamics pioneered by Alder and Wainwright [40]. These two approaches are
interrelated by the so-called ergodic hypothesis, which states that an average over an
ensemble is equivalent to a time average [1-3], i.e.

_ N N
-é— ffA(rN, pM)e pritr™p )drNde — tim L[ A(t)ar. 2.17)

t—>owf

The Monte Carlo method samples the phase space randomly according to the appropriate
probability density whereas the molecular dynamics method describes a phase space

trajectory.

2.3.1. Molecular dynamics methodology

The relation between molecular dynamics and statistical mechanics is established
through the Liouville Theorem, which guarantees that so long as the dynamics is described

by Hamilton’s Equations the microcanonical phase space density is stationary [41,42].
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Therefore, the motion of the phase space point can be considered as being determined by

Hamilton’s equations [5]

. OH p;
[
and
. oH

where H is given by Equation 2.2. Thus, given a certain initial phase space point the
molecular dynamics method samples in a deterministic fashion the phase space, in
contrast to the Monte Carlo method where the phase space points visited have no

particular time ordering.

In practice, however, Equations 2.18 and 2.19 are solved approximately with a
convenient numerical technique. Within the many approximate techniques, one commonly
used is the Gear predictor-corrector method [4]. Briefly, this method proceeds as follows.
Starting with an initial set of positions, momenta, accelerations and the time derivative of
the acceleration (i.e. r(z), p(z), a(r) and b(z), respectively) the next configuration is

predicted by Taylor expanding in time the known configuration,

r,(t+ Ar) =r(t)+imt-zAt +-z-l-£2€-)-At2 +P(6L)At3
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p,(r+Ar)= plt) + ma(t)Ar + m_l_)é_t_) A
a,(r +Ar) = a(t) + b(t)Ar

b,(z+Ar)=bl(z) (2.20)

Here, the vectors r(z), p(z), a(r) and b(t) can be considered 3-dimensional referring to a
particle (or 3N-dimensional referring to the whole system). The predicted position

r,(¢+ Ar) is used to calculate the force acting on the particle F(z+At). Then, the

difference between the predicted and corrected accelerations can be defined by

F(z + Ar)

Aa(t+ Ar) =a (1 + Ar)-a (¢ +Ar) = —

—a,(t+ Ar). (2.21)
This difference is used to correct each predicted variable such that

r(1+At)=1x,(t + A1) + coAa(t + Ar)

Pt + M) = p, (£ + Ar)+ c ha( + At)

(2.22)

a(t+ A1) =a (¢ + Ar) + cpAa(r + Ar)

b (¢t + Ar) = b, (¢ + Ar) + c3Aa(r + Ar)
In this way, the predicted configuration is improved by enforcing Equation 2.19, where

clearly, ¢; =1. The values of ¢y, ¢; and c; can be chosen conveniently to ensure
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optimum stability and the accuracy of the trajectories [4]. Additionally, variations on this
methodology are easily implemented such as including more (or fewer) positions

derivatives, more predictor-corrector iterations, etc. [4]

Hence, the microscopic dynamics of the system can be followed and the phase
space sampled in the way described above. However, since Hamilton’s equations
conserve energy, this method is limited to systems characterized by constant E, V' and N
(i.e. microcanonical ensemble). In order to carry out constant temperature simulations, for
example, a thermostating scheme needs to be included [6,42]. While several different
thermostating methods exist in the literature, here two of the most widely used, the

Gaussian [43,44]] and Nosé-Hover thermostats [45,46], will be considered.
The Gaussian thermostat [43,44] replaces Equation 2.19 by the following form
p,(1)= () + A(1)p:(1) , (2.23)

where A(z) resembles a viscous damping parameter but here can take both positive and

negative values. On the other hand the time derivative of the kinetic energy needs to equal

zZero,

N .
p;(0)p,(r) _
;——-——-——mi =0. (2.24)

Substituting Equation 2.23 in Equation 2.24 give us an explicit form for the A(7), i.e.
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, (2.25)

Therefore, the dynamics is carried out employing Equations 2.23 and 2.25. A new
variable, and a new equation, has been added to the system (to one of the equations of
motion) such that the conservation of the kinetic energy is enforced. These equations of
motion sample the so-called iso-kinetic ensemble (NVKP, where P is total momentum)

[43,44].

However, in the canonical ensemble the kinetic energy of the system is not
constant but instead fluctuates in the appropriate way about its average value. An
alternative set of equations has been shown to generate the canonical ensemble
distribution of states [45,46]. In this method, known as the Nosé-Hoover thermostat,

Equation 2.19 is replaced by
p; (1) = F(r) - A(1)p;(¢), (2.26)
with

3

B

2
b _
m

M=

, (2.27)

)= —;-( ‘

1

where Q = 3th‘ / B and £, is the bath relaxation time. Here A(z) can be interpreted as a

coupling parameter between the dynamical system and a thermal reservoir, the latter
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having a conveniently chosen time relaxation parameter. Hence, the molecular trajectories
are modified by the inclusion of an extra term in the acceleration equation, like in the
Gaussian thermostat, but with a weaker coupling between the system and the thermal

reservoir.

The Nosé-Hoover thermostat, as presented above, fails in small or stiff systems
[47]. In order to tackle these scenarios, this method is improved by thermostating the
thermostat parameter itself, the new thermostat can also be thermostated, etc., leading to
a chain of thermostats [47]. For the case of M thermostats in the chain, Equations 2.26

and 2.27 transform into the following series of equations:

pi(1)=F(1) - 4 (), (1)

1 Np
=‘Q-(§'n7-—) M(£)2y(2)

(2.28)
: 1 1
At )_-é—(QJ v —E)‘Aj(’)lm(’)
A (t)=-—-(Q X -'I‘J
M QM M-17vM-1 /3 H

where Q) = 3Nt§ / p and Q; = tg / p for 2= j=<M.It is important to note that it is only

the first thermostat that interacts with all the particles, therefore, in large systems the

addition of the extra thermostats is relatively inexpensive since they form a simple one-
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dimensional chain.

Similarly, it is possible to carry out simulations at constant pressure by coupling
the system to an external reservoir (or barostat) and allowing the volume to fluctuate
accordingly. In fact, this barostating method was first published by Anderson [48] and
was followed by Nosé’s work on thermostats [45]. Clearly, the isothermal-isobaric

ensemble can also be simulated with the combined use of a thermostat and a barostat [42].

232 Calculation of properties

In a MD simulation successive time steps are correlated and do not contain
significantly new information. In this case it is sufficient to store and/or analyze
information from every 5 or 10" time step. A MD simulation produces a substantial
amount of useful information, and it is normal to store vectors of the positions
(orientations), velocities (angular velocities), and forces (torques) for each molecule, as
well as the instantaneous values of all the calculated properties. The information stored in
a MD simulation is time ordered and can be used to calculate the time correlation

functions (Equation 2.12) [4,41].

The radial distribution function, g(), is formally defined by Equation 2.9, but can
be simply thought as representing the number of atoms at a distance r from a given atom
compared with the number at the same distance in an ideal gas at the same density. g(r)
can be calculated as follows. For a given configuration the minimum (nearest) image

separations, r,;» of all the pairs of atoms are calculated. These separations are sorted into a
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histogram where each bin has a width ér and extends from r to r+dr. The i and ji
separations are sorted simultaneously, and the calculation is limited to a certain maximum
distance (say half of the box-length). When all the configurations have been processed, the
histogram must be normalized to calculate g(7). An analogous sorting technique can be

applied to the spatial pair distribution functions [4].

A wide variety of time correlation functions can also be calculated based on their
definition, Equation 2.12. Suppose we are interested in a mechanical property, 4(#), which
may be expressed as a function of particle positions and velocities. A(#) might be a
component of the velocity of a particle, for example. From the simulation data, A(#) will
be available at equal intervals of time Af; typically At will be a small multiple of the time
step used in the simulation. Using / to label successive stepé, i.e. t=lAt, the definition of
time-average over the period LAt, allows us to write the time correlation function of A(?)

as [4]
Caa (') = {A(2")A(0)) = % i At + IA1)A(IAr). (2.29)
=0

The calculation may be repeated for different values of ¢', and the result will be a
correlation function evaluated at equally spaced intervals of time Az apart, from zero to as

large a value as is required [4].

The calculations of static and dynamic properties are subject to systematic and

statistical errors. Sources of systematic errors include sized-dependence, poor
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equilibration, etc. These should, of course, be estimated and eliminated where possible. It
is also essential to obtain an estimate of the statistical significance of the results.
Simulation averages are taken over runs of finite length, and this is the main source of

statistical imprecision in the mean values obtained.

It is often possible to analyze statistical errors in quantities such as (A), (6A2),

by assuming that A(?) is a Gaussian process [4]. This Gaussian assumption is reasonable
if the quantity of interest is essentially the sum of a large number of statistically
independent quantities (this is the central limit theorem of probability). For example, the

mean value (A) can be estimated by
1 &
()= {4, =+ >a, (2.30)
=0

1z : .
where A = pr f:) A(tol +1)dr and {A,} are consecutive short averages (over the period ')

of the quantity A(z). The value ' can be chosen such that the quantities {A,} are

statistically independent. Consequently, a calculation of the standard deviation of the set

{Al} gives an estimate of the statistical error associated with a run of length #'L.

Naturally, as L — oo this statistical uncertainty goes to zero [4].
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3. LIQUID WATER AND ICE

Due to the importance of water, there have been numerous books, reviews, etc.
discussing and examining its properties, structure, and applications [21-26,49] in both its
liquid and solid phases. Consequently, the discussion within the present chapter will

focus only on some details pertinent to this thesis.

The chapter is organized as follows. Section 3.1 presents an overview of some of
the most important physical properties of liquid water and hexagonal ice. In Section 3.2,
water models and their properties are discussed. Finally, Section 3.3 considers the

limitations associated with classical simulations of water.

3.1. PHYSICAL PROPERTIES OF LIQUID WATER AND ICE.

Water, which is the only chemical compound that occurs naturally (on earth) in
the three principal physical states, solid, liquid and vapour, has been the focus of study of
scientists and engineers from many different areas. An enormous amount of work has
been published about the structure and properties of liquid water [21-26] and ice [49].
This section, consequently, will simply provide a brief and general overview of some of

their most relevant properties.

The origin of the often unusual properties of liquid water and ice begins, of
course, with the water molecule, which contains ten electrons, eight from the oxygen
atom and one from each hydrogen atom. Due to the presence of the hydrogen nuclei the

electronic charge is not distributed symmetrically around the oxygen nucleus. It is drawn
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towards the hydrogen nucléi but not sufficiently to neutralize their charge. The peculiar
properties of liquid water and ice are very much due to the fact that the molecule is bent
[21-24]. (This shape is a consequence of the nature of the electronic ground state wave
function.) Then, the molecule has an electric dipole moment oriented along the bisector
of the H-O-H angle with the negative side on the oxygen. The center of mass of the
molecular electronic distribution is slightly shifted from the oxygen nucleus, and this fact
is incorporated in the electrostatic component of some empirical pair potentials to be

introduced in the next section.

For free molecules, the dipole moment has been measured to be 1.8546 debyes
(=[6.186+0.001]x10* Cm) [50] and the experimental values of bond length and bond
angle are known to be 0.9572+0.0003 A and 104.52+0.05°, respectively [51]. In the
liquid phase at 300 K and 0.1 MPa, the bond length increases to 0.996+0.016 A and the
bond angle changes to 101+5°. The molecular dipole moment in liquid water has also
been predicted to be higher than in the vapour phase [52]. The water molecule also
changes when going from the liquid to the solid phase but to a lesser extent than from

vapour to liquid. The bond length in ice Ih at =20°C, for example, is 0.985 A [49].

Ice Th, the most usual form of ice, is obtained by freezing water at atmospheric
pressure or by direct condensation of water vapour above about —100°C [49]. There are,
nevertheless, at least 13 crystalline phases of ice that have been observed under different
conditions of pressure and temperature. The number “I” was assigned by Tammann [53]

following his discovery of the first of the high pressure phases of ice, and the “h” is
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commonly added to distinguish it from a metastable cubic variant called ice Ic [49].

Figure 3.1. Basic structure of ice Th [54].

The basic structure of ice Th is shown in Fig. 3.1. It can be understood as being
formed by two chair-form hexamers (opposed) on two horizontal planes or by three boat-
form hexamers (opposed) on three vertical planes. The vertical direction is distinct from
the directions in a perpendicular plane. Although the figure shows well-ordered hydrogen

bonds, in reality their distribution is arbitrary and constantly changing [54].

Fig 3.2 shows a phase diagram for the equilibrium between ice Ih and the liquid
and vapour phases of water [54]. The cross in the liquid region indicates that water is a
liquid at ambient conditions. The triple point, where the three phases are in equilibrium,

is at 273.16 K by definition of the Kelvin scale of temperature; the corresponding
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pressure is 611.7 Pa [49] (interestingly, ice Ih has two other triple points). The melting
curve has a negative slope with the melting point at atmospheric pressure being 273.15 K,
and this value is taken as the zero point of Celsius scale of temperature. The negative
slope of the melting curve (not well seen in Fig 3.2 due to the logarithm scale in the
pressure axis) is a consequence of a peculiarity, the fact that water expands on freezing

[since Clapeyron equation states (dP/ dT) = (Aﬁ / TAV)].
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Figure 3.2. Phase diagram of water [54].

The hydrogen bond, being the primary intermolecular force in water, is ultimately
a majo; contributor to the characteristic anomalies of liquid water. Hydrogen bonding
represents the interaction between the hydrogen atom of one molecule and the oxygen
atom of a neighbouring water molecule, and produces the associated nature of liquid

water. Thus, compared with other low molecular weight substances, water has a wide
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liquid range of 100 K. Another indication of the existence of strong intermolecular
interactions in liquid water is the relatively small value of the latent heat of fusion, which

is only 15% of that of vaporization [23].

Water has a 50% larger heat capacity in the liquid (75.2 Jmol'K™") than in the
solid and vapour states [23]. This anomalous behaviour can be shown to be due to a
relatively large temperature dependence in liquid water structure, which is a direct
manifestation of the inefficient packing of the water molecules. Indeed, its tetrahedral
order leaves relatively large spaces unoccupied at the expense of a large hydrogen bond
energy; the disruption of this balance by temperature explains the unusually large
temperature dependence of the water structure. Furthermore, in non-associated liquids
higher pressures lead to more closely packed arrangements and more order. However, in
liquid water, its ordering can decrease with increasing pressure due to the rupture of the
local stl;ucture. The fact that increasing the pressure (or the density) can lead to less order
in water is directly related to the density maximum exhibited in the liquid phase at
3.93°C and 1 atm pressure [49]. This connection is most easily established through the

well-known Maxwell relationship (d5/9P); = ~(9V/T), .

The anomalous behaviour observed for water, like the compressibility minimum
and density maximum, is most pronounced in the low pressures range, 1-200 bar.
However, water appears perhaps more like other low molecular weight liquids where its

transport properties, like thermal conductivity and diffusion, are concerned [23,49].

The replacement of the hydrogen by its heavier isotopes, deuterium and tritium,
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has important effects on some water properties. In relation to H,O, the triple point of D,0O
is shifted to 3.82 °C [55] and to 4.49 °C for T,0 [56]. Additionally, the temperature of
maximum density is 11.2 °C [55] for D,0 and 13.4 °C for T,0 [57] all of which suggests
that T,O and D,O appear to have stronger hydrogen bonding than H,O. Still, perhaps the
most compelling evidence of stronger hydrogen bonding in the “heavier” waters is their
enthalpies of vaporization; 10.52 kcal/mol for H,0, 10.87 kcal/mol for D,O and 10.93
kcal/mol for T,O [58,59]. In Section 3.3 it will be seen that these changes in the
equilibrium properties of water by isotopic substitution cannot be explained within the
limits of classical statistical mechanics and are considered a manifestation of quantum

effects.

3.2. MOLECULAR MODELS OF WATER.

The starting point in a computer simulation is the specification of the molecular
model, which defines the kind and nature of the interactions within the system. This
section will provide a general overview of water models and their relationship to the
properties of water. Special attention will be given to three rigid water models, since they

will be used in the simulations presented in Chapters 6, 7 and 8.

After more than three decades of water simulations, a wide variety of water
models has been proposed and used to examine the properties of liquid water [25,26]. A
vast majority of the models are empirical and mimic the hydrogen bond interaction with a
combination of an attractive (coulombic) interaction and a short-range repulsive term.

The attractive interaction, well approximated with classical electrostatics, is usually
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modeled with point charges in the nuclei (eg. SPC [60]), or by using one or more
additional sites located in the molecular plane (eg. TIP4P [61]) or out of it (eg. ST2
[62,63]). The electronic repulsion between molecules is usually taken into account with
the use of a Lennard-Jones potential centered on the oxygen, which also includes the
dispersion energy. There are some exceptions, where for example an exponential is
preferred to the Lennard-Jones repulsion term (eg. NSPCE [64]). The charges and the
repulsion-dispersion parameters are chosen such that some properties of liquid water at
ambient conditions (density, heat of vaporization, etc) are recovered with a MD or MC

simulation,

Since the earliest calculations it has been consistently found that, in order to
reproduce a number of liquid state properties, the dipole moment of the water model had
to be higher than the gas phase value. For example, the rigid models mentioned above,
SPC, TIP4P, ST2 and NSPCE, have dipole moment values of 2.27, 2.18, 2.36 and 2.18
D, respectively [25,26,60-64]. However, the experimental value of the dipole moment in
liquid phase is believed to be in the range 2.6-3.0 D [65,66], although the concept of a

molecular dipole moment in liquid water is not well defined formally.

Table 3.1 shows the parameters of two commonly used rigid water models. The
SPC/E [67] model only contains 3 charge sites located on the atoms, while the TIP4P
[61] contains an additional site and no charge on the oxygen. The TIP4Pew model [68], a
recent reparameterization of the TIP4P potential, is also included in Table 3.1. It is worth
noting that, in spite of the similarity between the TIP4P and TIP4Pew models, the results

obtained can be rather different (for example the latter has a 67 % self diffusion
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coefficient) [68]. This example illustrates how sensitive the properties of simulated liquid
water are to the potential parameters, and the challenge that a model’s construction

entails [25,26].

Table 3.1 Parameters of some rigid water models.

Parameter SPC/E TIP4P TIP4Pew
r(OHY/A 1 0.9572 0.9572
HOH/deg 109.42 104.52 104.52
q(O)/e -0.8472 0 0
qH)/e 0.4238 0.52 0.52422
QMYA - -1.04 -1.04844
R(OM)Y/A - 0.15 0.125

Another way to describe water interactions is by allowing for molecular
vibrations, with the so-called flexible models. Flexibility can be included by adding
harmonic or anharmonic potentials for bond length and bond angle in an existing rigid
model (eg. SPC/F [23]) or by defining a new set of potentials (eg. CF [70]). The
intramolecular potentials are chosen such that the model reproduces the values of the
vibrational modes and is able to account for the frequency shift in going from gas to
liquid phase. Interestingly, a number of flexible models predict a narrowing of the HOH
angle in the liquid phase in relation to the gas phase which seems to be a consequence of
the molecular environment in the bulk liquid. However, this fact has not been totally
clarified experimentally [71], and it has been argued that a formation of hydrogen bonds
tends to rearrange the electrons around the oxygen atom leading to a slight relaxing of the

HOH angle [26]. On the other hand, since the dipole moment in a flexible model changes
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from gas to liquid phase, a comparison between the results obtained from a flexible and a

rigid model is not entirely straightforward.

Another important component of the water-water interaction is believed to be
associated with induced moments, which leads us to the class of polarizable models.
These models can be constructed by choosing the charges on the sites of a (rigid or
flexible) water model to be in agreement with the gas phase dipole moment and assigning
a point polarizability to the oxygen atom (e.g. SPCP [72], PTIP4P [73], CKL [74)).
Alternatively, polarization effects have also been included in some water models by
allowing fluctuations in charges according to the local electric field (e.g. SPC/FQ [75],
TIP4P/FQ [75]). However, polarizable models have not proven to be clearly better than
the previously described (non-polarizable) models. It is not obvious how to assign a
polarizability value, nor how to account for the fact that the electrostatic potential of the

water molecule may not be very accurately described with site charges.

Another way to confront the complexity of the interaction in water is by using a
potential function that results from an analytical fit to an ab initio calculation. The
parameterization in these models, known as ab initio models, is carried out by calculating
the interaction in dimers, trimers or higher order clusters (e.g. MCHO [76], NEMO [77]).
Since the interaction energy is a very small fraction of the total energy, a very accurate
calculation is required, and still this approach may not capture the collective behaviour of
the bulk phase. As a consequence, some authors have preferred to use ab initio
calculations in order to assign, for example, the polarizability of a model with fluctuating

charges (e.g. PPC [78]); such a model is a combination of the empirical and ab initio
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approaches. The natural next step in this discussion is the so-called ab initio molecular
dynamics method, however this method as a quantum simulation technique is discussed

in Section 4.1.

Generally speaking, it is safe to say that although significant progress has been
made in the understanding of the molecular interactions leading to better potential
models, a lot more work needs to be done, as no single water model has been

demonstrated to reproduce the details of the properties of real water [26].

3.3. CLASSICAL AND QUANTUM APPROACHES.

In spite of the advances achieved in the understanding of liquid water, it is
important to recognize that there are limitations associated with the classical approach
implied in a standard molecular dynamics simulation. This section will discuss the

intrinsic limitations of a classical simulation of liquid water.

Formally, the classical canonical partition function can be written in the following

form [1-3]

1 N N N N
“= gy eXp["ﬁ K(p )] a0 [ eXp["ﬁ Y )] a, 3.1
where the factorization

PN RY) _ -pK(p") (s (3.2)

has been used in the definition given by Equation 2.3. In fact, the momentum term in
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Equation 3.1 can be further factorized and integrated. The configurational integral in

Equation 3.1, however, cannot be easily integrated because the potential V(rN) couples

all the particle coordinates together.

Now, since the pressure follows the relation P = ~(dF/dV) v 1> using Equations

2.5 and 3.1 we can calculate the equation of state of the system from [2]

P = (ﬂ(l;‘l/z ) s %(m{ exp[—ﬁV(rN )] ar }) . (3.3)

This relationship implies that, within the limits of classical statistical mechanics, the
equation of state of a system is independent of the mass of the particles that constitutes it.
As a consequence (assuming that the electronic structures of the hydrogen, deuterium and
tritium atoms are identical) the equation of state of the liquids H,O, DO and T,O should
be identical. However, the experimental situation reveals that there are noticeable

differences between the isotopic waters (see Section 3.1).

In order to understand on physical grounds how quantum mechanics affects liquid
water, it is interesting (to try) to imagine why the freezing of D,O occurs at higher
temperatures than H,O. According to the uncertainty principle, the positions of the
hydrogen atoms are blurred over a distance Mn—z, which for a proton at room
temperature corresponds to a length of about 0.3A, whereas for deuterium (and tritium) it
is much less. It is then reasonable to believe that the diffusiveness of the location of the

protons, in relation to deuterium, introduces additional disorder in the fluid, which
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consequently only crystallizes at a lower temperature. Incidentally, the freezing

temperature of T,O is still higher than that of D,0 in agreement with this argument.

From a formal point of view, the failure of classical statistical mechanics is due to
the factorization in Equation 3.2. In quantum mechanics, such a factorization does not

occur because the relationship [2]
et = e (34)

is only valid when the operators ;\1 and /A!Q commute, assuming that A = Al + /32 The
commutation of the kinetic and potential operators is, in general, prevented by the
uncertainty principle, which establishes a relation of non-commutativity between
momentum and position. In fact, as will be seen in Section 4.2, the factorization of the
Boltzmann operator of quantum statistical mechanics constitutes a route to perform

quantum simulations via path integral methods [7-10].

From a practical point of view, water models are constructed by fitting the
charges on the nuclei to recover the properties of liquid water. However, the proton
charges in real water are slightly diffused and, as a consequence, the interaction is
“softer” than for classically localized charges. Therefore, if a model is aimed to
reproduce the experimental H,O properties, the assumption of classical proton
localization needs to be compensated with an effective lowering of the charges. As a
result, empirical models constructed with classical simulations will underestimate

hydrogen bonding. On the other hand, ab initio models also assume proton localization

37



and therefore cannot correct for this problem.

Other equilibrium properties such as the average interacting energy and the radial
distribution function (see Equation 2.9) are also independent of the mass according to
classical statistical mechanics. In contrast to these equilibrium properties, the dynamical
properties calculated in a standard molecular dynamics simulation do change with
isotopic substitution due to the fact that the mass appears in the dynamical equations of
motion (see Section 2.3.1). However, this change, due to the mass difference, is not
enough to account for the experimental difference between the isotopomers H,0 and D,0
[19,20]. This is further evidence of the necessity of the inclusion of quantum effects in

liquid water.
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4. QUANTUM SIMULATIONS OF LIQUID WATER AND ICE

Classical MD simulations are based on the approximation that all the particles
move in time according to the laws of classical mechanics. The great advantage of the
application of classical mechanics is that the equations of motion can be solved easily,
even for systems containing a large number of atoms. However, the applicability of
standard MD simulations is limited to molecular scenarios where quantum effects can be
neglected, i.e. when the potential energy can be given as a local function of the particle
coordinates. In many circumstances, the quantum nature of electrons and protons has to
be considered in order to achieve a realistic description of the dynamics of the system.
Since a full quantum treatment of all degrees of freedom is not possible within a

reasonable computational effort, the need for approximate techniques becomes evident.

In this sense, it is possible and sensible to take advantage of the mass difference
between electrons and nuclei, and uncouple their motions. This schematic picture allows
us to organize quantum simulations in two main categories. First, ab initio simulations
where the electrons are treated quantum mechanically and the nuclei evolve classically.
Second, path integral simulations where the nuclei are treated quantum mechanically and
the electrons are taken into account through effective interaction potentials. The
combination of these two techniques is also possible, leading to the ab initio path integral
simulation method. This chapter will review the above methods in the same order as
mentioned. It is important to note that the organization of the chapter does not follow the

historical order in which quantum simulations of liquid water and ice appeared in the
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literature; instead I prefer a more pedagogical approach beginning with the simpler

techniques and continuing with the more intricate ones.

This chapter does not attempt to review all the methods that have been employed
in quantum simulations. The still evolving field of quantum dynamics includes many
well-established methodologies (like wave-packet techniques) and many somewhat less
well-known or new strategies (like the mixed quantum-classical approach), an evaluation
of which is beyond the scope of this thesis. Therefore, the discussion focuses on those
methodologies that have been used to examine quantum effects in liquid water and ice,
including equilibrium and dynamical properties. At the same time the presentation in
Section 4.2, in particular, will provide many relationships and analysis that will be of
utility in the upcoming chapters. The centroid molecular dynamics method, which will

only be briefly presented here, is the focus of the next chapter.

4.1. AB INITIO MOLECULAR DYNAMICS.

In MD simulations, the interaction energies and the forces acting on the atom
determine the simulation results. The closer these are to reality, the more reliable (closer
to those of the experiment) the simulation results are expected to be. To achieve this, MD
simulations can be combined with high level ab initio calculations to compute the
potential energies and forces needed in MD simulations. This category of simulations is

called ab initio molecular dynamics simulations (AIMD) [79].



AIMD simulations can be implemented in the following way. At each time step of
a MD simulation, an independent ab initio program is called to calculate the quantities
needed, such as the total interaction energy, forces on the atoms, etc. The quantum
calculations could involve Hartree-Fock molecular orbital (HF-MO) [79], full
configuration interaction (CI) [80], or density functional theory (DFT) [81] calculations,
among others [79]. In principle, any ab initio quantum calculation can be incorporated
into AIMD, provided that they give the very accurate inter-atomic energies and forces
needed in MD. Unfortunately, these calculations are still impractical for use as standard
methods for general systems. The principal reason is that ab initio QM calculations (of
the necessary accuracy) are simply still very time-consuming. In a typical QM calculation
corresponding to each MD time step, a large number of integrals, related to the electronic
coordinates, must be evaluated and a self-consistent field (SCF) calculation carried out in
order to find the “best” electronic state of the system [80]. Since the minimum number of
time steps required by a MD simulation is usually a few tens of thousands, this method

can be used only for limited systems.

Within each QM calculation, the electronic state W is optimized so as to
minimize the energy of the system. It is possible to optimize ¥ using methods other than
SCF methods. One of the simplest ways is the steepest descent (SD) approach [82],
which changes the approximate wavefunctions according to the direction of the local
downhill gradient of energy. An improvement of this method, the conjugate gradient
minimization method, has been incorporated into DFT calculations and has been used in

AIMD simulation to study some systems (like clusters, etc.)[83].
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4.1.1. Car-Parrinello molecular dynamics of liquid water

One of the most promising techniques in quantum simulation was published by R.
Car and M. Parrinello [84] in 1985. They presented a unified scheme, combining
molecular dynamics and density-functional theory, that is able to perform ab initio MD
simulations where, in principle, the only assumptions are the validity of classical
mechanics to describe ionic motion and the Born-Oppenheimer approximation to separate

nuclear and electronic coordinates.

In this method the electronic state, ¥, is considered a classical dynamical
variable and a fictitious dynamics is used to optimize the ¥ . In their scheme, DFT [81] is
used to calculate the total interaction energy and the forces, and a very efficient way is

described to find the Kohn-Sham orbitals {‘l’i}- The fictitious dynamical optimization of
{lpi} and the real atomic MD are run in parallel with a very short time step, where the
nuclei move from one conformation to another and the electronic states {Ill i}

automatically “optimize” themselves to the states appropriate to the new conformation.

Formally, the fictitious dynamics of Car-Parrinello (CP) can be derived from the

following Lagrangian [84,85]
1 . | S ¥
L=2 Zfzf i (r)f dr + Z_Z_MIR% - E[{w;}, R}]+ 2 Ai,j(fd”/’i (c)y ;(r) - 5ij)’ “.1

where u is a fictitious “mass”, related to the fictitious “kinetic energy” (first term) of the

electronic variables. In Equation 4.1, £ is the occupation number of Kohn-Sham orbital i,
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M, the mass of the nucleus /, and in the last term {A,.J} is a set of Langrangian

parameters introduced to maintain orthonormality of the Kohn-Sham orbitals.

The dynamical equations from the Lagrangian are [84]

MR, =- oH fwi}.{R}]

ry 4.2)
and
. (9 ife R
wy; = - {u;lg'*{ l} +2Ai,jw,-(r)- 4.3)
i j

Equation 4.2 describes the classical motion of the nuclei (ions), while Equation 4.3

describes the “classical” motion of the Kohn-Sham orbital {1/1,.}. It is interesting to note
that when u — 0, Equation 4.3 reduces to the Kohn-Sham equation and accordingly the
energy density functional reduces to the adiabatic energy. In principle, the smaller the u,
the closer {TP,} approaches the adiabatic states. In fact, in Car-Parrinello molecular
dynamics (CPMD), u cannot be set to zero because there would not be dynamical
optimization of {’Pi}- Usually, the size of u is chosen so that the deviation of {1/1,.} from

the adiabatic states has a negligible effect on the MD simulation, while it still allows as

large as possible a time-step [82].

In the CP scheme, the electronic variables are optimized dynamically so that the

quantum SCF calculations are avoided. However, similar to conventional AIMD, CPMD
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still needs to treat a large number of integrals related to electronic coordinates. For this
reason, the current implementation of CPMD use two techniques: plane waves as a basis
set and the pseudopotential approximation [79]. It should be pointed out as well that
CPMD was originally developed for solid state applications, an area where plane waves
are widely used. (In fact, the first application of the CPMD method in water focused on

ice Ic and high pressure ice phases [86]).

The initial application of the CPMD scheme to aqueous systems was in a
simulation of liquid water [87]. This simulation made use of the supersoft
pseudopotentials introduced by Vanderbilt [88] and gradient corrections to the local
density approximation. Vanderbilt pseudopotentials allowed them [87] to represent the
electron valence orbital in terms of plane waves using a relatively small energy cutoff in
the plane wave expansion [87,88]. Furthermore, gradient corrections were shown to
improve dramatically the description of hydrogen bonding in DFT. Their results are
encouraging insofar as they show that DFT was able to reproduce reasonably well some
of the main static and dynamical properties of liquid water. The estimated diffusion
coefficient was found to be in the correct range, 10° cm’s'. However, they found some
quantitative dependence of the results on the choice of the gradient correction. The results
for the pair correlation function were satisfactory overall, although the O-O separation

was observed to be too short.

This initial CPMD study was followed by a more extensive study [89], where 64
molecules (rather than the 32 molecules employed in [87]) within (truncated octahedron)

periodical boundary conditions were used to calculate bulk properties. Parameters such as
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the molecular dipole moment [90] and the oxygen-oxygen pair correlation function, when
compared with experimental results showed acceptable agreement. More recently,
Grossman and co-workers [91] have assessed the accuracy of several approximations
within the CPMD method with a series of simulations of light and heavy water. They
found negligible differences in the structural properties of the room temperature liquid
obtained using the Perdew-Burke-Ernzerhof (PBE) or the Becke-Lee-Yang-Parr (BLYP)
functionals, and relatively small, although not negligible, size effects when using 32 or 54
molecules in the simulation cell. The authors identified a range of values for the fictitious
electronic mass () entering the CP Lagrangian for which the electronic ground state is
accurately described. They concluded that the use of u <340 a.u. for H,O and
u =760 a.u. for D,O yields trajectories and average properties that are independent of
the value chosen. At the same time, structural properties were found to artificially depend
on u if values outside this range are chosen. Finally, they found the oxygen-oxygen radial
distribution function to be overstructured compared with the experimental result and the

diffusion coefficient to be about 10 times smaller than for real water.

The CPMD method has also been used to simulate liquid water at ambient
conditions in the context of a rigid body approximation [27]. Naturally, this approach
allows one to access considerably longer time scales by utilizing a larger (about three
times) time step than that typical for ordinary CPMD simulations. Interestingly, the
authors found that the structural properties and diffusion coefficients obtained with a
rigid model are in better agreement with experiment than those determined with fully

flexible model simulations.
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It is important at this point to stress that there is a clear difference between CP
simulations and the purpose of this project. In the CP approach the quantization appears
in the description of the interatomic interaction (the ground electronic state) and the
behaviour of the atoms (or molecules) follows a classical dynamics (see Equations 4.2
and 4.3). However, our interest is in the quantization of the molecular motion itself, and it

is here that the path integral methods play an essential role.

4.2. PATH INTEGRAL METHODS.

This section will review the path integral methods in statistical mechanics [7,8],
with particular emphasis on liquid water and ice simulations. Before discussing previous
work, the path integral Monte Carlo (PIMC) [9,92,93] and the path integral molecular
dynamics (PIMD) methods are introduced [9,94,95]. In order to keep the notation simple,
the description below will assume a quantum particle in one dimension, unless indicated

otherwise,

4.2.1. General background

The quantum canonical partition function can be written in position coordinates as
Zs= Tr{e“ﬂ” ] = [dxx £ )x). (4.4)

Assuming that the Hamiltonian operator is simply a sum of the kinetic and potential

~

operators, i.c. H = T+ ‘7, Trotter’s theorem [96] allows the following factorization [95],
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) , A . ap
o P _ lim [e—ﬁV/ZPe—ﬁT/Pe—ﬁV/ZP _ @.5)

P>

(The proof of this theorem is rather involved, for a more comprehensive treatment see

reference 97). Using a complete set of momentum and position eigenvectors, each of the

elements of this product can be written as

e-(ﬁf/)/2Pe-(ﬁf)/1ne-(/3€/)/2p
= [ [dp, [ dxy|x "2 |py ) e P72 X (4.6)

= f dxlf dplf dlexl )e_ﬂv(x])/zpe_ﬂ”%/zmpe_ﬁv(xz)/zp (x1|P1)(P1|x2)(x2| -

Then, the infinite product in Equation 4.5 becomes

llmfdxl fdxp+1 fdpl fdPP|x1>

P—o0

P

o H {e~€V(xk)/ 2t/ 2me—sV(xk+1)/2<xk [P X |xk+1)}(xP+l |
k=1

4.7

where £ = /P . Using the product of the position and momentum eigenstates, ie. [98]

__ezpkxklhe—ipkxk+1 Ih = __l_eipk (.Xk—)Ck +1)/h (4.8)

(xk |Pk)(Pk |xk+1> = o o >

the path integral representation of the Boltzmann operator is obtained

e P —hm(z—l—) fdxl fdxp+1 fdpl fdpplxl)

P—s>»

(4.9)

{ —sV xk /2 —spk 12m —8V(xk+1)/2 tpk(xk xk+1) h}(xp 1|
41+

T:jw
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This equation can be written in a simpler form by noting that

L mP _ 2
[dpe 2 =(___2"’"P )ze ) (4.10)

B

and

(ST

P _ mP i(xk—Xk 1)2
2 ; *

. -spk/2m+1(xk—-xk+1)pk/h _ mP Zﬁhz f=1

fdpl fdPPLIl{e }’ ( ¢

. (411
B :

Hence, we finally get

(' ‘e—ﬁﬂh")“ hm (2@%) fdx'z fdxp
. exp{_%[(x' i et (g xf')z]} @12)
x exp{— % [% V(x')+ V(xy)+- +V(xp) + -;— V(x")” ,

which substituted on Equation 4.4 gives

Z= fdx(xlel3 |x)= hm(Zm‘z )f fdxp

P P

} (4.13)

where xp,; = x;. Equation 4.13 is the discretized path integral form of the quantum

canonical partition function [9,10,95]. It is clear here that the partition function of a
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quantum particle is equivalent to the classical configurational partition function of P

classical particles with potential U(x1 ..xpif ), i.e. [9]

2 7]
_ __T_P_ —ﬁU(xl...xp;ﬁ)
ZzZp = [23-5[3;32) f...fdxl...deB N (4.14)
where
mP F 2 1 F
Ul 3p3B) = 3 3 sk =)+ 5 X VUw), (4.19)

Thus, the quantum system is said to be isomorphic [9,10] to a classical P-particle cyclic
chain “polymer” in which each particle & interacts with its neighbours k-1 and k+1

through a harmonic potential with force constant mP[r*B*, and each particle k
experiences the potential V(xk)/P. Figure 4.1 shows schematically the case of two

quantum particles, i and j, that interact through a classical potential, the straight lines, and

between their beads through harmonic potentials, the “wavy” lines [4].

According to Equation 4.15, the root mean square (rms) bond length for a free
chain is proportional to ([a’h2 /mP)l’z. Hence, classical isomorphism will be a good

approximation only if the potential, V(x), does not vary strongly over the rms bond
length. If ois a characteristic distance specifying the length scale on which V(x) changes,

then
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2

_<«<P, (4.16)

mog

and we see that the lower the temperature (ﬁ "]) , the larger P must be. In practice one

empirically determines and uses a value of P beyond which the thermodynamic

properties do not effectively change [9].

Figure 4.1. Illustration of the interaction between two quantum particles in the path integral

isomorphism. The wavy lines represent the harmonic interactions between beads and the
straight lines represent the interatomic potential [4].

The calculation of the thermodynamic expectation values in terms of path

integrals follows almost automatically. Suppose we wish to compute the expectation

value of an operator A= ;l(x) By definition, the expectation value of Ais [1,2]

50



()= g xtelie 109 = s faval)eke 1), (@.17)

where a(x) is the corresponding eigenvalue of the operator A acting on the coordinate

eigenstate. The corresponding path integral form is [95]

o o 2] g g

xa(xl)exp{ 5 2 (e xk+1)2+§v(xk)ﬂ

(4.18)

P
Z
fdxl---fdxp

where is important to remember that xp,; = x;.

The isomorphic classical system can be simulated by either Monte Carlo

techniques [92,93] or molecular dynamics [94,95]. In Monte Carlo the configurations can
be sampled from the distribution of the classical isomorphism, exp[— BUp (xl XxpsP )]

This is called path integral Monte Carlo (PIMC). Estimators of various quantum
observables can then be averaged over the configurations sampled. Although this appears
to be straightforward, complications can arise, and it is often necessary to make careful
choices of estimators. The question of convergence of the properties of the quantum
systems as a function of P must be addressed. It is important to realize that, in general,

different properties converge differently as P is varied [9].
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A different method for simulating quantum systems can be obtained if Equations

4.14 and 4.15 are written in the form [9,95]

1

mP FI2 p g \?
o (hﬁhz) n( 2n'm]’c) [dpy...fdpp [dx,... [dxpexp[-BH].  (419)

k=1

where
j2 P2
H= Yy s U(x,...xp: B). (4.20)
k=1="%

It is clear that independent of the choice of {m}c}, integration over (dp1 ...dp,,) yields
Equation 4.14. In fact, {m}c} can be adjusted for convenience. Since the above

Hamiltonian gives rise to the following classical equations of motion for the beads,

X, = oH[dp
x = oH/f k} —1...P, 4.21)

Pr == 0H| dxy
classical MD methods can be used to simulate the equilibrium properties of quantum
systems [9,95]. Indeed, starting from a given state (dx, ...dx,,,dpl...dp,,), a fictitious
dynamics is generated by numerical integration of the equations of motion. The values of
the thermodynamic properties are obtained by averaging the corresponding estimators
over this trajectory provided that ergodicity holds. Such molecular dynamics calculations

are called path integral molecular dynamics (PIMD) [9,95].
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Within PIMD, the partition function need not be calculated in Cartesian
coordinates. In fact, for large values of P this is expected to be inefficient since the
harmonic term becomes dominant while the contribution from the external potential is
attenuated (see Equation 4.15). This problem is overcome with a coordinate
transformation in the Hamiltonian. Natural and commonly used coordinates are the
normal modes, which uncouple the harmonic motion. This transformation is especially
useful in the context of the so-called centroid molecular dynamics method [17,18]
(discussed below), since the centroid variable becomes uncoupled from the internal
motion of the chain. Alternatively, the so-called staging coordinates [99] uncouple the
harmonic terms and additionally allow us a convenient way to assign the appropriate
masses to each degree of freedom such that the staging modes move on the same time

scale, thereby leading to very efficient phase space sampling [99,100].

It is also important to note that whereas standard MD will generate a
microcanonical distribution, the form appearing on Equation 4.19 requires a canonical
sampling. In order to ensure that a proper canonical distribution is generated, Equations
4.21 (or the equivalent ones obtained through the coordinate transformation mentioned
above) must be coupled to a thermostating method. Although several thermostating
methods exist in the literature [4,6,42] experience has shown that the Nosé-Hoover chain

[47] is a very effective one (see Section 2.3.1).

It is important to recognize, at this point, that the classical trajectories in PIMD
(or PIMC) have nothing to do with the real dynamics of the quantum system. The

dynamics in this isomorphic system simply provides an algorithm for generating the

53



partition function and thus allow the calculation of the equilibrium properties of the
system [9,95]. The simulation of the real time dynamics of a quantum system is a much
more complicated (and still open) problem. Sections 4.2.4 and 4.2.5 below will briefly
describe two approximate techniques that have been used to calculate time correlation
functions in liquid water. A more rigorous discussion of quantum dynamics via centroid

path integrals is postponed until Chapter 5.

Finally, the continuous limit of the path integral representation of the partition
function is found by evaluating the limit in Equation 4.13. Introducing & = BA/P, the

exponent in that equation becomes [7,95]

2
B e e Y

P—wpl1| 2B g0 h 2 £

1 1 (4.22)
=1, (% () + V[x(r)])dr == L[x(r)]dt ,

where the integrand defines the Euclidean Lagragian, L(x,x). Therefore, Equation 4.13

transforms into [7,95]

L x(z
Z(p.v)= 0)- ﬁh)fDX(r)e Akl (4.23)

P>

p
7
where the notation lim(zmﬁ};z) dx;---dxp = Dx(t) has been used. The symbol
b

f (0)=x{ ﬁl)’l)x(r)[. ..] represents an integration over all cyclic paths starting and ending at
X({U)=X
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point x, and includes an integral over this point. The imaginary time or Euclidean action,

§[ x(z)], is defined as [7,95]

S[x(@)]= jf " t(x{z),x@)Mr . (4.24)

The equations given to this point can be easily generalized to a many body
quantum system where spin statistics can be neglected. This is a very acceptable
approximation for liquid water (and ice) over the temperatures of interest in this thesis. A

discussion of spin statistics in path integrals can be found in reference [101].

4.2.2. PIMD simulations of liquid water with flexible models.

The first PIMD simulation of liquid water was carried out by Wallqvist and Berne
[13]. They used a central force potential with the internal vibrations of the molecule
modeled by a set of Morse potentials [102]. In reference [13], each atom was discretized
with only 3 beads and 216 molecules were used to simulate liquid properties. The
simulations were equilibrated and run for 7.5 ps using a time step of 0.25 fs at 300 K. The
problem of ergodicity was handled with a periodic re-sampling of the velocities

according to the Maxwell-Boltzmann distribution.

Even though this early attempt underestimated the quantum effects (due to the
low value of the discretization parameter) they found the quantum water to be less
hydrogen bonded than classical water. This observation was based on a typical definition
of the hydrogen bond [13]. They integrated the probability of a pair of molecules with an

interaction energy up to —4 kcal/mol and found this number to be higher in the classical

55



than in the quantum liquid. This result was consistent with the softening observed in the
quantum pair distribution functions, i.e. go-0, go-u and gun; in comparison with the

classical simulations.

More recently, Stern and Berne [15] examined quantum effects in liquid water by
performing PIMD simulations on a flexible and polarizable water model that was
optimized from ab initio calculations. The use of an ab initio parameterized potential
avoids the implicit inclusion of quantum effects that takes place in the parameterization
of empirical water models using classical simulations. In reference [15], the oxygen
atoms were treated classically (i.e. P=1) and convergence in the average system energy
was observed when the protons were discretized with P=24 beads. In other words, the

partition function and the PIMD Hamiltonian transform to

1

Z,=| 2 Plzﬁ BN ) fant Lo v oxf-pH] @2
P\ 2apit) LA\ 27m Jdpr fdxiz” ([ dpo o expl-P (4.25)

and

2 P (k)P )
__Po py . muP () 0V L) P,
H= 2 + 2 -—-—2mk + 2h2/32 (xH Xy ) + PU(xH Xy ,xo) , (4.26)

instead of Equations 4.19 and 4.20, where the position and momentum coordinates of the
oxygen and hydrogen nuclei are denoted here by xp, x%‘) , Po and p%‘), respectively. It

is important to note that Equations 4.25 and 4.26 were first published in the work of

Lobaugh and Voth [19] in a slightly different context (see Section 4.2.5).
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The equations of motion employed in reference [15] were integrated using the
staging mode [97] with a Nosé-Hoover chain [47] thermostat in each degree of freedom
to ensure convergence. The simulations were performed using 125 water molecules at
298.15 K and showed again that the quantum liquid is less structured and has smaller
binding energies than the classical one. Additionally, quantum effects did not appear to
significantly modify the average induced dipole moment for a polarizable model,

although the distribution was found to be broader.

4.2.3. Pl simulations of liquid water and ice with rigid models.

In order to extend the formulas presented above to the case of rigid bodies it is
useful to introduce a slightly different notation. If we define a free propagator from point
X, to point x;,; in the time i /P as [7]

1
mP \?

2nh% 8

Po(xk X180/ P) =

XP{- i (xk = X+l )2} J (4.27)

2 Bh?

Equation 4.13 can be rewritten as

Lv(n)

= lim fdx; - fdxpn ol x> xe, 13871 Pe (4.28)

P—oo
Written in this form the generalization is easily done by introducing a six-dimensional
coordinate X that represent the position and orientation of a rigid object (if the object is
linear X has 5 dimensions, if additionally the object is constrained to rotate in a plane, X

has 4 dimensions). Hence, the canonical partition function becomes [12]
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P
Zp(B) = [dX; -+ fdxpH{po(xk,xmﬁ/f’)exp[—%U(Xk)}}, (429)
k=

where Xp,; =X and U (Xk) is the potential energy of the rigid object with coordinates
X, . Clearly, this partition function converges to the correct quantum result as P

increases.

Since free propagation implies no coupling between translations and rotations, the

free propagator py(Xy, Xy, 18/ P) in this multidimensional space factorizes, i.e. [12]

00 X »Xa13B1P) = Po (0 Tis13 B PIP0 (R4, R 13 B/P). (4.30)

where

il -r,m)z], 431)

mP A2
Teet;BIP) = | 5=
pO(rk rk+1 ﬁ/ ) [Zﬂhzﬁ) exp 2h2ﬁ

is the straightforward extension of Equation 4.27 to three dimensions and
00(Rp> L1 BIP) is the free orientational propagator, in which €, is the orientational
coordinate. Neglecting the possibility of multiple rotations, the free orientational
propagator in imaginary time can be approximated by [12]

LT (9, Q)
2sin($ (R, Q1)

Po (R Q13 8/P) = € )eXP[(~1/h)SFA(£2k,9k+1;ﬁ/P)], (4.32)

where
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P
Sra(Q4-Qp41381P) = z—ﬁh(nln)rz(gk’gkﬂ)a (4.33)

is the fixed axis action, C is a constant, n is the rotation axis that joins Q; with Q,;,

I‘(Qk,Q 4+1) is the arclength of this rotation and I is the inertia tensor of the rigid

molecule,

If we combine Equations 4.29-4.33 we finally obtain the discretized form of the

canonical partition function of a rigid quantum object [12]

3PP Ix I
mzﬁ) (ﬁhlsz) [y fdrp[dD -+ [dQp

-mP e,
m (I‘k—rk”)z} ( k k+1)

2028 25in[ 3T (R4, 24 1] (4.34)
P(nin
Xexp| - z(ﬁhz)rz(gk,gku) exp "éU(rstk)}

If we assume that the position of the center of mass of the beads is about the

same, ie. Iy ~I, =---=Tp, and that the intermolecular potential does not change
significantly over the small range of displacements of the center of mass of the molecule
Le. U(rk,Qk) = U(rl,Qk) for all &, an integration over dr,---drp can be carried out in

Equation 4.34 to obtain
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(4.35)
rz(gk’gkﬂ)

exp[—--gU(r,Qk)

The system described by this equation differs from that of the Equation 4.34 in that all
the members of each polymer ring have the same center of mass position r, but the
orientations remain different, in general. The generalization of Equations 4.34 and 4.35 to

multiple particles is straightforward [12].

This was the approach followed in the first quantum simulation of liquid water by
Kuharsky and Rossky [12]. They carried out PIMC simulations of liquid H,O and D,0 at
ambient conditions on the ST2 [62,63] water model. Since Equation 4.35 treats the center
of mass classically and Equation 4.34 treats the center of mass quantum mechanically,
the influence of treating the center of mass motion classically or quantum mechanically
was also assessed. This study was later complemented with PIMD simulations of light
(H20) and heavy (D;0) liquid water based on the ST2 [62], SPC [60] and TIP4P [61]

models.

A discretization parameter as small as P=3 [12], later revised upward to P=5 [14],
was judged to be satisfactory for quantizing the rotations for a small test case, an isolated
water dimer at room temperature. The simulations were carried out with systems of
roughly one hundred water molecules. As expected, the classical liquid was observed to

be the most structured, light water the least structured, and heavy water in between. For
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example, in the radial distribution functions the maxima decrease and the minima
increase in height, and both shift to larger distance as the system becomes more quantum
mechanical. These effects are even manifest in the oxygen-oxygen radial distribution
function and not just in the partial radial distribution functions for the much lighter H or
D atoms. In addition, the heavier the nuclei, the smaller the librational motion. This leads
generally to more linear hydrogen bonds (HO- H---OH,) between the water molecules
for classical water compared to light (quantum) water. The structural quantum effects
were attributed mainly to the orientational degree of freedom rather than the center-of-
mass motion of the rigid bodies. Furthermore, it was found that changes in structural
properties in going from classical to quantum water were roughly comparable to the
changes which accompany a 50 K temperature increase of the liquid [12]. Viewed in this
way, one can conclude that the quantum effects on the structure of liquid water at

ambient conditions are not negligible.

Equation 4.34 has also been used to simulate ice Th near its melting temperature
[16]. With the water-water interaction represented by the SPC [60] model, average
equilibrium properties such as potential energy, radial distribution functions and
structural factors were computed as functions of temperature. The authors found a value
of P=5 to be sufficiently large to obtain converged results in comparison to simulations
with P=10. The radial distribution functions exhibited a softening when going from
classical to quantum systems, closely resembling that observed previously in liquid
simulations. Interestingly, the difference between the classical and the quantum

intermolecular energy was found to increase as the temperature was lowered. Finally, the
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authors roughly estimated the melting temperature for the classical system to be about
280 K while for the quantum system to be about 260 K, implying that quantization

decreases the melting temperature of the SPC water model.

4.2.4. Feynman-Hibbs variational approach.

It is now useful to review the Feynman-Hibbs variational treatment [7,8], leading
to a definition of an effective quasiclassical pair potential, an approach that has been
recently applied to liquid water [20]. This treatment begins by writing the path integral

form of the partition function (see Equations 4.23 and 4.24) as

2p.v) - Dafe)exp| [ (22 + Vx(e)] o 436

)= 0y P ado ' ‘
Introducing [7,8]
; -18'[x(7)]
- h

Z(B:V) = [ oroxion® Dx(7), (4.37)

we have

f (0)=x O3 Epy

(4.38)

( RELE) ] [x(f ]}>
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where the notation ()S indicates a path integral average. However, since for a real

function f(x), (ef (x )) > & ) we obtain [7.8]

F<F'+ E%(S[x(t)] - 8Tx()])... (4.39)

This minimization principle states that if we substitute the exact interacting potential of
the system by a family of simpler potentials, we could optimize within this family to get

the best one. Feynman suggested the adoption of the potential V[xo], where [7,8]

1 g
%o = gp X (4.40)

(i.e., the mean value of the Euclidean path) such that the partition function gets a classical

form given by

e (fﬁh_i)f e P, 4.41)

Evaluating (with the help of some algebra [7,8]) the second term in the right hand

side of Equation 4.39 we have

Zg-lg(S[x(r)]—S'[x s (;ﬂ {V[x()]- Vo] }dr)/

{ %)=V } ~P(x0) g (4.42)

G ,

where
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W(x0)=(———) [V * g (4.43)

It is important to note that Equation 4.43 is simply a Gaussian average of the exact
interaction potential that includes the mass of the particle and the temperature of the

system [7,8].

According to Equation 4.39, the best form of V(x,) is the one that minimizes its

right hand side. Performing a variation on the right hand side of Equation 4.39 (using

Equations 4.41 and 4.42) we get

V(xy e P V(XO)de
o =
- fe'ﬁv(xo)dxo

(4.44)

and

a{ﬁlﬁ(s[x(r)] _ S'[x(r)])s,} ]

f{-ﬁéV(XOIW(xO) - V(xo )]— 6V(xo)}e_ﬁ V(% )dxo
fe bodaxy (4.45)

fW(x)- V(xo)]e—ﬁv(xo)dxo x [- BoV(xole ' 1)axy
[ fe—ﬁ"(xo)dxo]z '

Thus, if the sum of Equations 4.44 and 4.45 is set to zero, we find the solution

-+

V(xo) = W(xo). This result demonstrates that the best interaction potential associated to

the centroid variable is the one obtained by a Gaussian average of the classical potential
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as given by Equation 4.43 [7,8]. In practice, the integral in Equation 4.43 may be difficult
to solve depending on the shape of the interaction potential (for example, the Lennard-
Jones potential is infinity at zero). An approximate solution to this problem is obtained by
Taylor expanding the classical potential to second or higher orders. The expansion to

second order leads to the so-called quadratic Feynman-Hibbs effective potential [103].

Quantum effects in liquid water have been investigated with MD by

implementing the Feynman-Hibbs effective potential as represented by [20,103]

2 v'(r.
k) o))+ £ () 222 »

where the prime and double prime are the first and second derivatives with respect to 7,

respectively, and Vjpy is the quadratic Feynman-Hibbs (QFH) potential. Equation 4.46

is written in a three dimensional form and its dependence on mass (the reduced mass
m = mf2 for identical particles) and temperature, along with the presence of Planck’s
constant, are the result of the effective average potential accounting for the uncertainty in
position between a pair of particles. The thermodynamics, the structure, and the dynamics
of light and heavy water were evaluated [20]. Not only was the variation of the heat of
vaporization observed between light and heavy water well reproduced, but the drift of the
temperature of maximum density in going from classical water to heavy and light water is
in agreement with the experimental trends. Quantization appeared to soften significantly
the structure of the liquid, especially in the first coordination shell where the tetrahedral

arrangement between a central molecule and its nearest neighbours relaxes somewhat.
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Quantization also appeared to increase the diffusivity of water molecules by a
relatively large factor. In simulations of supercooled water, a strong dependence in the

ratio Dy, ofDp,o was found when decreasing temperature, an observation corroborated

by experimental data [102]. Finally, the comparison of these results [20] with other
simulation studies based upon the path-integral simulation techniques [12,19]

demonstrates that the Feynman-Hibbs approach can be a reasonable and efficient method.

One of the advantages of the Feynman-Hibbs method is that time dependent
quantities can be evaluated within a MD run. More precisely, keeping the gross features
of quantum effects along the trajectory, the FH effective potential becomes a quantum
correction to the classical potential by including the effects of “zero level vibration” and

tunneling.

There are, however, a number of limitations associated with this approach. First,
the exact interaction potential between atoms is assumed to be known in a sufficiently
simple analytical form such that Equation 4.43 can be employed to obtain the effective
interaction potential between centroids. Second, the use of the minimum principle
(Equation 4.39) guarantees the best approximate result to the thermodynamic properties
only, which is useful but approximate nonetheless. Third, the dynamics is assumed to
remain completely classical but in an otherwise quantum corrected potential. This last
approximation is only reasonable very near the classical limit. In addition, it is important

to note that although the effective potential depends on the particle mass and the
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temperature of the system, it is independent of the local environment of the particles,

something that can play an important role in many condensed matter systems.

An important final point with respect to this effective potential technique is that it
suggests that the centroid variable may be an ideal candidate for further development of a
quasi-classical description of a quantum mechanical system. An intuitive discussion of
such an approach is presented immediately below and will lead to the so-called centroid

molecular dynamics method.

4.2.5. Centroid Molecular Dynamics simulation of liquid water

The variational method presented above could be improved if, instead of using
Equation 4.43, we obtain the effective potential in a calculation on the fly and propagate
the centroid in a otherwise classical form. Such an approach leads to the centroid
molecular dynamics method [17,18,105-111]. Performed in this way, the calculation will
be significantly more expensive than the Feynman-Hibbs effective potential technique,
however there are several benefits associated with proceeding in this fashion. In fact, all
the deficiencies noted in the previous section are improved or eliminated with the CMD
method. This section introduces the CMD method as way of improving the Feynman-
Hibbs approach. A more detailed discussion of the approximations involved in the CMD

approach is postponed until Chapter 5.

Using Equation 4.23 the partition function can be written as
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Z=( il )ifp (x,Mx, , (4.47)
27ph? errerTe

where

p(x.)= (ZJrﬁ L ) 2 o x(ﬁ)‘Dxé(xc - xo)exp{—S[x(r)]/h} (4.48)

defines the centroid density, and the variable, x;, is defined by Equation 4.40.

With the partition function written as in Equation 4.47, the centroid variable
becomes the relevant variable from which effective potentials, that take into account the
imaginary time path fluctuations of the quantum system at the specified temperature, are
derived. Indeed, the centroid is the classical-like coordinate for which the perturbation
theory has no first-order correction [7] and where a variational approach can be used to
improve on the perturbation expansion [7,8]. More recently, Cao and Voth [106] have
introduced a diagrammatic representation for the perturbation expansion of Equation 4.48
and have used standard renormalization techniques to improve on the perturbative

method.

By introducing the definition

Vorlxe) = —-ll;ln[pc(xc )] (4.49)
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where V, (xc) is the exact centroid effective potential, the partition function in Equation

4.47 can be rewritten as

-

m z
Z= (W) fdxc exp{—ﬁVeff(xc)}, (4.50)

It is important to note that the effective potential as described by Equation 4.49 is
completely general. CMD uses this potential as the surface on which to propagate the
centroid classically. In other words, the centroid trajectories are generated by the

effective classical-like equations of motion [17,18,105-111]
mix,(t) = - —5—=——, (4.51)

where the centroid force, ——dVeﬁc(xC )/ dx, , is a quantum mechanical mean force for the

centroid given by [109]

&,

i =- IS ] . (4.52)
fx(0)=x(ﬁh)®x(r)6 (x, =xg)e®

dvﬁ(xc) L(O):x( ph) DX(T)‘S(XC - xo){dV[x(O)]/dxC}e-";l;S[x(r)]

(4

In practice, the centroid force needs to be evaluated at each simulation step by
performing a separate path integral calculation, either via PIMC or PIMD. If the PIMD
method is chosen, the combination of Equations 4.51 and 4.52 indicates the coupled use

of real and imaginary (or Euclidean) time, respectively. It can be shown (see Chapter 5)
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that the real time evolution of the centroid according to this prescription leads to an

accurate representation of the exact quantum time correlation functions [105,110].

In this manner, Lobaugh and Voth [19] have evaluated dynamical quantities such
as the mean-square displacement or the time correlation function of atomic velocities, in
addition to the equilibrium properties for liquid water using a flexible potential model. In

their work, the calculations were carried out using path integral molecular dynamics

(PIMD) and the Hamiltonian

P | (k)
o Pb PR myp

k) VL1 (P,
= — - —U ;o : , )
amg * 2| 2m, +2h2[3’2 (rH ry ) + P (rH Iy ro) (4.53)

where the proton and oxygen coordinates and momenta of the water are ry, 1y, py and
Po, respectively. This Hamiltonian is the three-dimensional version of Equation 4.26,

which implies that the oxygen was treated classically and the hydrogen quantum
mechanically. A substantial difference between the work of Lobaugh and Voth [19] and
that of by Stern and Berne [15] (in Section 4.2.2) is that the former utilizes two
interconnected MD algorithms. The approach taken by Lobaugh and Voth [19] was to
divide the real (or centroid) time into many small centroid moves. At each of these small
time steps, a separate PIMD calculation is then run to obtain the average centroid force.
The latter PIMD calculation is run with constraints on the Cartesian positions of the
centroids and without moving the classical degrees of freedom. Typically, a small
number of PIMD time steps was necessary to average the centroid forces for each small

centroid time step.
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A modified flexible version of SPC/F2 [19] was used for the intermolecular
interaction between the water molecules. In agreement with other work the quantization
of this flexible model led to a liquid system that was somewhat less structured and
exhibited less hydrogen bonding than its classical counterpart. Additionally, the
calculated quantum time correlation functions were shown to decay faster than the
classical ones. For example, the single molecule rotational relaxation times, as well as the
collective dielectric relaxation time constant, were smaller for the quantized system,

indicating faster dynamics due to nuclear tunneling [19].

4.3. AB INITIO PATH INTEGRAL MOLECULAR DYNAMICS

The ideas of Sections 4.1 and 4.2 can be unified. In the context of the Born-
Oppenheimer approximation it is possible to treat both the nuclear and electronic degrees
of freedom quantum mechanically [95,112,113]. By including the electrons and nuclei

explicitly, the partition function for a system can be written as [95]

Z= [, 0160 PV O, (0yor, (o) D)

cexpl- 17 de Rylin(o) * K50 + V{0 (0) Vel () + i), 459

where ry and r, are multidimensional vectors representing the nuclear and electronic
configurations. The symbols Ky ,K,, Vyy , V,, and V,y represent the nuclear kinetic

energy, the electronic kinetic energy, the nuclear interaction, the electronic interaction

and the nuclear-electronic interaction functions, respectively.
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It is convenient, however, to define the functional Z[ry(t)] as

Z[rN ] f r, (B4) e(r)exp{—%jfhdr[lfe(re(r)

(4.55)
+ Vee(l'e(‘b’)) + VeN (I'e(’!,'), I.N (T))]}’

such that the partition function is recast in the form

Z=J;'N(O)=r1v(ﬁh)®r (r )CXP{—"IH dr[KN ry(T ))+ VNN ry(t ]}Z[rN ] (4.56)

It is interesting to note that Z[rN(r)] is the so-called influence functional [7], and is

identical to the electronic partition function of the system. Assuming that only the

electronic ground state, with energy ¢, (rN) , is relevant [2,95]
—ﬁe -PBeglr
Zry] = E ) g Peolen), (4.57)

Substitution of Equation 4.57 into Equation 4.56 leads to

Z= er (O)er(ﬁh)iDrN( )exp{_ ! fﬂ dr[KN ry(T))+ Vg (y(7)) + eo[rN(r)]]}. (4.58)

It is easily seen that Equation 4.58 is the generalization of Equation 4.23 for more than
one nucleus (where the electronic energy is shown explicitly). Therefore, the partition
function above can be written in a discretized form and the path integral can be carried
out via molecular dynamics. However, the external potential in Equation 4.58 includes

the calculation of the electronic ground state surface energy &, (rN). In the discretized
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picture this implies that the electronic ground state eigenvalue eo(rN) needs to be

evaluated at each imaginary time slice i.e. at P different nuclear configurations.
Unfortunately, electronic structure calculations are already expensive for a single nuclear
configuration (especially when dealing with a system of sufficient size that mimics a
liquid or a solid). One positive aspect of this problem is that the P electronic calculations

are independent, and as a consequence, can be performed in a parallel fashion

[95,112,113].

This ambitious approach was used by Chen and co-workers [114] to study
hydrogen bonding in liquid water under ambient conditions. The authors used 64 water
molecules in a cubic box and a DFT approach for the ab initio calculations of the
interatomic interactions. A fictitious electronic mass of 500 a.u. was employed and the
path integral was discretized with P=16 beads on the hydrogen atoms. Interestingly, the
results from this work indicate that the previously reported (in path integral simulations
[12-14]) “softening” of the interaction potential may be at least partially overcome by an
increase in the molecular dipole moment that arises, reportedly, when both nuclei and
electrons are treated quantum mechanically. However, since no energies were reported,
the extent of the suggested cancellation of these effects is unknown, as well as its
relationship with the well-known experimental fact that the enthalpy of vaporization of

D,0 is about 1.4kJ/mol [115] higher than H,O.

Finally, it should be clear that, in principle, the centroid molecular dynamics

methodology could also be implemented in conjunction with an ab initio evaluation of
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the electronic structure. The interest in such a method (again) arises because it allows one
to extract dynamical information. However, such a calculation has not been carried out
due to the tremendous computational effort that a full quantum mechanical treatment
entails. This is clearly another reason to develop efficient alternatives to the usual CMD

method, one of the principal aims of this thesis.
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5. CENTROID DYNAMICS AND THE CMD METHOD

Path integral methods have been a valuable tool for the study of quantum effects
in many-body systems. The isomorphism between the canonical distribution of a
quantum system in equilibrium and a classical ring of quasi-particles allows the use of the
Monte Carlo or molecular dynamics methods, standard tools of classical statistical
mechanics, to solve the quantum mechanical problem. This relationship between classical
statistical mechanics and quantum mechanics is particularly powerful if one is interested
in a quasi-classical description of a quantum system. In such a case, the notion of a path
centroid variable [17,18] is an important concept due to both its intuitive physical
meaning and the convenience of the mathematical structure of the theory that amounts.
This chapter will review the so-called path centroid perspective and will establish the
applicability and limitations of the CMD method. Section 5.1 presents a careful
discussion of the exact formulation of centroid dynamics while Section 5.2 is devoted to
the approximations implied by the centroid molecular dynamics method as well as a
description of its implementation. For notational simplicity the description in this Chapter

refers to a particle in a two-dimensional phase space x-p.

5.1. EXACT FORMULATION OF CENTROID DYNAMICS

From the discussion in Sections 4.2.4 and 4.2.5, it is understood that the centroid
variable allows a classical-like calculation of equilibrium quantities in statistical systems.
Additionally, it may seem intuitively reasonable that it should also be possible to extract

dynamical information from the centroid dynamics as long as the system remains close to
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the classical limit. In order to clarify the accuracy of the CMD method for the calculation
of equilibrium and dynamical properties, the phase space formulation of the Feynman
path centroid density [108] is utilized. The presentation below is based essentially on the
work of Jang and Voth [18,110,111]; for an alternaltive approach on centroid dynamics

see reference [116].

5.1.1. The centroid densily in phase space and the centroid variables

The uncertainty principle makes the concept of phase space somewhat
problematic since particles cannot simultaneously have a well-defined position and
momentum. However, functions that bear some resemblance to phase space distribution
functions have been extensively used in the study of quantum mechanical systems. The
most popular of these distribution still seems to be the Wigner distribution function [117],
however some other representations exist since convenience is the basic criterion for the
choice of a distribution function for a particular problem [118]. Thus, it seems reasonable

to start with the quantum-mechanical distribution function represented as [110]
o an(” dge ()b 5.1
qu(x,p) = Tr[;f_w dnf_w d&e (x x)"'"'l(P P) , ( )

where €, n, x and p are scalars and x, p and H are the position, momentum and
Hamiltonian operators, respectively. Two arguments can be given to rationalize this

choice. First, integration over the scalars x and p gives the quantum partition function, 1.e.

fdx fdppqm(x, p)= thTr[e'ﬁH ] = 27hZ . (5.2)
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Second, Equation 5.1 is closely related to the Wigner distribution function [110]
o ©  ig(x-x)+in(p-p) -pH (5.3)
o —Tr[znf_mdnf_wdge e )

which has been used quite extensively to study the properties of quantum systems [118].

The initial strategy is then to show that pqm(x, p), given in Equation 5.1, is just the
centroid density in phase space i.e. pqm(x, p)= pc(xc, pc). In order to write pqm(x, p) in

path integral form it is possible to follow the relations 4.5-4.12 analogously.

Assuming that the Hamiltonian operator is simply a sum of the kinetic and

A

potential operators, i.e. H = T+V , by application of Trotter’s formula [96] we know that

N N . P
i _ o e—(ﬁV—zEx)/?.Pe—(ﬁT-—trp)/Pe—(ﬁV—z&)/ZP | (3:4)

P

One of the elements in this product can be written as

e—(ﬁ\?—i&fc)/ZPe—(ﬁT —inﬁ)/Pe-(ﬁV—igfc)/ 2P

- s fdnf dl ), Ie-(ﬁv-isf)/zplplxpl Ie—(ﬁr-inﬁ)/Pe-(ﬁV-ia)/ZPlxzxxzI 5
7,
(55-"1; 7””)/Pe-(ﬁv(xz)-isxz)/zi.n(x1

- fdxlfdplfdlexlk (pVe)-iee) /ZP XA X |

Thus, the product in Equation 5.4 becomes
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oEXH-PH _ i fdxl"'fde+1 ---fdpl"'fdpplx1>

P> 0

P
y {e—ev(xk )/ 24183 12P —ep} 1 2ms inpy | P

(5.6)
k=1

e—sV(xk+1)/2+i§xk+1/2P(xkka)(pk |xk+1>}(xP+1| )

where ¢ = /3/ P. Introducing the scalars x. and p, (as x and p in Equation 5.1) and

integrating over & and 1 we have

fdgfdmlgx e Jeinlbpe b hrnfdxl fde+1 [dpy: fdpPlxl)

P>
~iEx,—i L -eV(x )/ 2+i8x, 2P —gp? [2m+inpy | P
deé‘fdne ¢ npcn e e Pk 3
k=1

o~V (5 )/ 2418214 12P (x| X e |xk+1)}(xP+1 |

= 1imfdx1---fdxp+1--fdp1 --'fa'pplxl)

P—o0
P
- k)
fd%‘fdne ~i&x, - nwvc‘,v,gkzl()%+ ¢ 1)/2Pemk21pk/P
P
xn{e—ev(xk)/Ze—spk /2me—sV(xk+1)/2(xkka)(pk |xk+1)}<xp+1|
k=1
e }}i_ﬂfdx1"'fdx1>+1‘“fdpl"fdpl’lxl)é(xo -x,)8(po - Pe)

Xl—l‘ {e—-sV(xk)/Z —epk /2m —EV -xk+1 /z(xk |Pk )(pk |xk+1)}(xp+1|
where the relationships
P
[ dneXP{i n{(}lpk / P) - ch - 278(py - pc) (5-8)

and
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P
fdfgexp{i;:[ S (% + a1 ) (2P - x, } = 2708(xy - x,), (5.9)
k=1
have been used together with
1
Po ‘I;(Pl +py+-+pp) (5.10)
and
|
=7 5x1+x2+~--+xp+§xp+1 . (5.11)

Introducing the product of momentum and position eigenstates (Equation 4.8) we
obtain the path integral representation of the quantum distribution function given in

Equation 5.1, namely [110]

pc(xc »Pe ) = Tr{q’a(xc’pc )} > (5.12)

where

c,pc __fdgfd x Xe +n1(p pc)-—ﬁH

= }gnoo(-z-a-lr-h-) fdxl ---fdxp+1---fdp1 ---fdpp|x1)5(x0 ~x,)8(po - pe) (5.13)

P
XH {e—sV(xk )/Ze—epf /2me—£V(xk+1)/2€ipk(xk —Xp41 )/h }(
k=1

xP+l‘

The similarity between Equations 5.13 and 4.9 indicates that the operator (ﬁ(xc, pc) is the

centroid constrained Boltzmann operator in phase space.
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From Equations 5.2 and 5.12, it immediately follows that the partition function

can be written as

2= [P (x..p.). (5.14)

Equations 5.12 and 5.13 are, clearly, the phase space equivalent of Equation 4.48.
However, the centroid constraints given by equations 5.10 and 5.11 have appeared this
time as a natural consequence of the mathematical manipulations rather than by the

intuitive arguments given in Section 4.2.5.

Equation 5.13 can be written in a way that is simpler, and more closely related to
the discussion in the Sections 4.2.1 and 4.2.5. To achieve this, we need to perform an

explicit integration over the momenta. The integration in Equation 5.13 over p; is

1 mP(ﬂ+xk—xk+1)2

fd e—eplz/2m+inp1/P+i(xk—xk+1)p1/h =(2ﬂ7l;1P ze 26\ P h
R (5.15)
(zﬂmpji "%“(g?+_;ll("k‘xk+1)) Zﬁhz(xk"xkﬂ)
= -——ﬁ e ’

where Equation 5.8 has been employed to replace the delta function in the momentum.

The P integrations over momenta yield

s 2 . .
fdpl "fdpPH{e—Epk 1 2m+ inpy | P +i( X =Xg41) Pr /h}
k=1

(5.16)

2
l(xk A4l

(V7R

2 P
3 ( ZJImP) ge—%(n%f(xl ~Xpyy )) 'é;%?k

-
B

80



Integrating Equation 5.16 over 7 yields

m g 21 ; N TP I

m

Combining Equations 5.13, 5.16 and 5.17 we finally obtain [110]

(5.18)

where

P

(x'B(x %"y = (2—”:—1-2-/-3-)7 lim ( mb )dexz...fdxpé(xo -x;)

P-co\ 277" B

x exp{— %%[(x’ ~x) 4ok (xp - ) ]}

coxp|-L[Lv)+ Viag) s+ V(ap) o L]} 619

J;Y(ﬁh)=lx" Dx(t)8(x, - xo)exp{-S[ x(r)] / h},

in which the limit P—sco has been taken in the last equality. In view of Equation 5.12, we

actually have
(5.20)

where
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m

po(x.) = (Zmzﬁ) 2 fx(o)=x(ﬁh)DX(T)6(xc — xg)exp{-S[x(z)}/ n}. (5.21)

The result in Equations 5.20 and 5.21 exhibits the desired classical form, and
coincides with the analysis provided by Feynman and discussed in Section 4.2.5. In fact,
Equation 5.21 is identical to Equation 4.48. Hence, it becomes clear that the quantum
mechanical distribution in Equation 5.1 is the centroid density; in other words, the
Boltzmann operator can be expressed in centroid form through Equations 5.1 or

Equations 5.20 and 5.21.

How are other operators represented in centroid form? Interestingly, other
operators are expressed in centroid form through a different procedure than the one that
has been used for the Boltzmann operator. This is in contrast to the case of the Wigner
prescription where all the operators are manipulated in the same fashion. However, some
differences are expected since the Wigner transform of the Boltzmann operator involves a
product with the Boltzmann operator itself (see Equation 5.3) whereas this is not the case
within the centroid approach (see Equation 5.1). On the other hand, the Wigner transform
of the Boltzmann operator is not always positive definite (which has led to the use of the
Husimi functions [118,119]), but the centroid density is, and in that sense is very much
classical-like. It has been argued [110] that, the property of positivity of the centroid
distribution (in contrast with the Wigner distribution) suggests that some of the quantum
mechanical information has been lost, and that is why auxiliary quantities are needed to

recover full information.
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It seems reasonable at this point to define the operator 3C(xc, pc) in the following

way [110]
SC('xC"I)C)Eé(xC’pC)/ pC(xC’pC)’ (5'22)

since this definition allows us to write

Loos ffdx .4, Pl c,pc) ) (5.23)

This relationship means that the canonical ensemble can be considered to be an

incoherent mixture of the operator Sc(xc, p.) with different position and momentum
centroids, having a probability density given by pc(xc, pc)/ Z . Examining Equations

5.18, 5.19 and 5.22 we note that Sc(xc, pc) is hermitian, and that its diagonal elements in

the coordinate representation are positive. However, positive definiteness is not
guaranteed in general [110], which is why this operator is known in the literature as a

“quasi-density operator” (QDO) [110].

With the interpretation given above for the canonical ensemble, it becomes

possible to establish a correspondence between the operator A and the centroid variable

A,

A =Tr{. (0 2 A}, (5.24)

utilizing the identities
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dx dpc

(5P ) = T {f [Lep, (s p )3 o )i}
= —;—Tr{e“ﬁHﬁ} = (A).

()= SIS

(5.25)

Thus, the centroid average of A, is identical to the canonical average of 4. These

definitions allow us to establish a strategy to calculate equilibrium averages in the context
of the centroid constrained representation of quantum statistical mechanics. Hence, the

position and momentum operators yield the corresponding variables [110]
X, = Tr{ Ax..p. )J?} (5.26)

and
= {3 (xe.p. ). 5.27)

where it is clear that the position and momentum centroids are the average position and

momentum of the state represented by 6c(xc, De ).

The centroid force is also of crucial importance. In order to define the centroid
force, it is first noted that if one changes the path variable in Equation 5.19 to

y(t)= x{(t) - x,, it becomes

pc(xf)'cfym) ton > (_fﬂ dr)e v, (528)
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where x) —x, = —Bl-h— jfh y(t)dt , Dx(r) = Dy(r) and C is a short notation for the constant.

Further,

&i—cS[y(r) + xc] = dxic{jfh-rg-ji(‘v)df +jfh V[)’(‘”) +xc]d7}

=th_d-x6_l.c_v[y(r)+xc]dr= -—ﬂ)ﬂhF[y(r)+xc]dr,

(5.29)

where Equation 4.24 has been used. The derivative for the centroid density is then

d
dx

pc(xc) = ny(

0)=y(pn

c

1
)’DY(T)B(E o- Y(T)df)
.. (_ S[y(r)+xc])

h

dx,

C

expi-S|yt) +x |/ A
{ [y( ) ] } (5.30)
1

- y(0)=y(ﬁh)Dy(r)6(-ﬁﬁ O_y(r)dr)

X (—;—jth[y(r) + X, ]dr) exp{—S[y(r) + xc]/ h} ,

which is equivalent to

d 1 [t
dx, " C(xc)=Cfx(o)=x(ﬁh)Q)x(r)a(xo"XC)('M;H ' [x(f)]df)e T w3

Cc

Accordingly, using Equations 5.19, 5.22 and 5.31 it is possible to obtain an

expression for the centroid force
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Defining a centroid potential of mean force as
1
ch(xc) = —Eln{pc(xc)}a (5'33)

the centroid force of Equation 5.32 can be written as

d
E:(xc) = —TV (xc). (5.34)

Clearly, ch(xc) is the centroid effective potential defined in the Section 4.2.5 (of

Equation 4.49). Similarly, it is possible to define the centroid Hamiltonian as the sum of

the centroid kinetic energy and the centroid potential energy [110], ie.
H=T+V. (5.35)

It is interesting to note that V,,, (xc) is in general different from V.

5.1.2. The time evolution of the centroid variables

The next step in the present discussion is the time evolution of the centroid

variables introduced in the previous section. Using the Heisenberg representation of the
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osition operator, i.e. (1) = ™' 3¢ ' and taking into account Equation 5.24 we can
p P g q

write that the average centroid position is given by [110]

)=(3) = ffdx Ap. Pe c’Pc)Tr{é(xc,pc)eiﬁt/h;ce-iﬁt/h} (5.36)
or
ffd’;jgc pele.p C)Tr{é(t;xc,pc)fc}, (5.37)
where
8(1x e pe) = Mo xupe ). (5.38)

Therefore, the time evolution of the centroid variable can be expressed as
x(t) = Tr{5(t;xc, pc)fc}, (5.39)

which transforms Equation 5.37 into [110]

()= (&) ffd’;:ifl’c Pe c’pC)xc(t). (5.40)

This result means that although the centroid variables evolve in time (see
Equation 5.39), when this trajectory is averaged according to the centroid distribution the
stationary canonical average is recovered. It will be seen later that these centroid

trajectories contain information on the dynamical spontaneous fluctuations of the
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ensemble, but before we get into the calculation of quantum time correlation functions, it

is interesting to look at the time evolution of some other centroid variables.

From Equation 5.38, one knows that the time dependence of the QDO is governed

by the quantum Liouville equation [110]
d : ifr, 2
Eac(t;xc’pc)= "’;.;[H’(Sc(t;xc’ pc)]a (5.41)

where the time evolution is governed by a time independent Hamiltonian 24 , which in

general may be different from H. Thus, for a general centroid variable without explicit

time dependence we have

d ~

d N -
—4.(1) = Tr{zt-éc(t;xc, p. )A} - ;—Tr{ac(t;xc, rJH. A]}_ (5.42)

Two special cases of Equation 5.42 are of interest [110], ie.

o= (5.43)
and

d, 2 N

. (;t(t) =F(1)= Tr{é(t;xc,pc)F(x)}. (5.44)

This result is remarkable. A comparison with Equations 2.18 and 2.19 reveals the
classical-like appearance of these formulas, which can be interpreted as the centroid

version of Ehrenfest’s theorem [120]. It is important to note, however, that the centroid
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force is not a function of the position centroid at time ¢ only (as can be see from the

second equality of Equation 5.44).

An additional significant result is obtained by applying Equation 5.42 to the time

~

dependent centroid Hamiltonian H_(¢)= T r{éc(t;xc, p)H ']

.(0) = H,(2). (5.45)

In the classical limit, the centroid position and momentum becomes the classical position
and momentum of the particle and the centroid Hamiltonian goes to the the classical

Hamiltonian [110].

As the last step, it is important to show that the centroid time correlation functions
can be related analytically to the Kubo transformed quantum time correlation functions

[121]. This connection is relevant because the usual quantum time correlation function,

A

C AB(t)=(A(t)f3(O)), is related to the Kubo transformed quantum time correlation

~ Kubo
) , in frequency space by [105,107,121],

function, (1§A(t)

I(w) = (rw/2)] coth(mwf2) + ]I (w), (5.46)

where I(w) and I"°(w) are the Fourier transforms of the quantum and Kubo

transformed correlation functions, respectively.

Let’s see then, how the centroid time correlation function is related to the Kubo

transform quantum time correlation function. (The proof presented below was given by
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N. Blinov and P. N. Roy [122]). It is convenient to begin with the definition of the Kubo

transformed quantum time correlation function [121],

~n Kub ~{B-wA ~ _yf At~ -ifl
(BA()) e —%ﬁ_lh Tr{e (B-)Hl g -ul ,iflt 3, ’H’}du. (5.47)

Using [123,124]

- BE’ __fﬂ —(ﬂ—u)ﬁ’?_{?[: —ufl’
(Me o€ o e du (5.48)

for the derivative of the exponential of an arbitrary operator with respect to a parameter

and applying it to the operator H=H- i()»/ ﬁ)l}, we obtain

10 _givirk 1 ~(B=)H 2 ~uf)
(______e ﬁH+lAB) - e(ﬁ u)HBe quu.

P L prdo (5.49)
Taking into account that (according to Equations 5.1 and 5.2) [122]

Equation 5.47 can be written as

( )Kubo _ ffdx AP, {( fdai (F-x. J+in(p-p. )~ /3f1+il.§)

ez‘ﬁt/’ie—il?t}. (5.51)
A=0

For the particular case of a linear operator B = a;X +a,p, where g; and a, are scalars,

we obtain [122]
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Kub dx.dp, (1 ;
(BN - e e )|

y Tr{ f fd&dneig(’z’xc Yein(p-pe)-BH ifls } ,~ifk }

wed o 5.52)
p < p.(x00pe )B Tr{é(t;xc, Pe )eiH’/A{e‘th}

——ff
-l

dx dp
<0 (xcr P )BA (¢).

This result proves that the quantum time correlation function can be obtained in a
classical-like fashion by following the time evolution of the centroid variables. The
extension of Equation 5.52 to non-linear operators B has also been accomplished in
reference [125], however, it should be noted that in the case of diffusion coefficients,

relaxation times and certain other observables this result is sufficient.

5.2. THE CENTROID MOLECULAR DYNAMICS METHOD (CMD)

It is important to recognize that the relationships presented thus far, in Sections
5.1.1 and 5.1.2, are the exact result of analytical manipulation. In Section 5.1 it has been
shown that the canonical ensemble can be expressed by a set of initial positions and
momenta centroids sampled according to the equilibrium phase space centroid
distribution function. The determination of this equilibrium centroid distribution function
is not difficult, however, the exact quantum dynamics of the centroid variables requires
the solution of the quantum Liouville equation (Equation 5.41). Therefore, in the case of
many-bpdy systems approximate methods are necessary. In this section, the CMD

approximation is presented. The discussion focuses first on the motivation and
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justification of the CMD method and it is followed by an analysis of the CMD
implementation.
5.2.1. The CMD approximation

It is clear from Section 5.1 that the essential element in the centroid formalism,
including the dynamical evolution of the centroid variables, is the QDO. Thus, the CMD

method relies on the following approximation to the time evolution of the QDO [111],
6C(t;xC’pC) = 5C(xc(t)’p6‘(t))’ (5.53)

where the calculation of the phase space trajectories, x.(t) and p.(t), is carried out

according to Equations 5.43 and 5.44. Utilizing Equations 5.20 and 5.32, this
approximation implies that F.(¢) is only a function of the centroid position, x,(f).

Equations 5.43 and 5.44 then take a closed form [111], ie.
mi, = p.(t) = Tr{é(xc(t), (1)) f;} (5.54)

and
po = Fepplt) = Tr{é(xc(t), pc(t))ﬁ} - F(x.(). (5.55)

This last equation indicates that the approximate centroid force is determined by the
instantaneous centroid position with a functional form identical to the one at zero time.
Since the zero-time centroid force is the negative gradient of the centroid potential of

mean force (see Equation 5.32), the CMD potential can be defined to be [111]
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1
Vemp = cm(xc)= —Eln{ c(xc )}' (5.56)

Thus, the CMD approximation indicates a classical time evolution of the phase space

centroids on the quantum centroid potential of mean force, Viyyp . This approximation,

originally proposed on an quasi-intuitive level (see reference [18,105]), is exact in the
harmonic, classical and free particle limits (ie. Equation 5.53 becomes an identity)

[110,111].

There are two general and notable cases where the CMD approximation is
reasonable. First, when the fluctuations about the centroid are independent of the centroid
location (like in the harmonic oscillator where the CMD approximation is known to be
exact [110]). In fact, in any system in condensed phase where linear response theory is a
good approximation CMD would be applicable (since only when the quantum
fluctuations about the centroid are independent of its motion the response is linear) [110].
The second case is when the system exhibits strong regression behaviour because the
form of the QDO remains close to its form at =0 as the particles (centroids) move [111].
For example, when the system approaches the classical limit the QDO “shrinks” to zero
and it cannot deviate from its =0 value. Therefore, systems where the CMD method is a
good approximation are those reasonably close to the classical limit and where linear

response theory is a valid approximation.

An important property of CMD is that, if the system is ergodic, the method will

generate exact equilibrium averages [111], i.e.,
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lim & for diA (1) = (4), (5.57)

T=>0T

where
A () = T8 (. (1), 5. (1) A} (5.58)

This property can be easily verifed from Equations 2.17 and 5.25 and the fact that

3c(xc(0)vpc(0)) = 5c(xc ’pc) .

It is interesting to note that, although the exact time dependent centroid
Hamiltonian is a constant of motion according to Equation 5.45, the CMD method, in
general, does not conserve this quantity. This has been shown in reference [111] and it is
a point of departure for improvement of the CMD method, or the design of alternative

approaches within the centroid framework.

5.22. The CMD implementation

CMD resembles classical MD in many aspects, and this similarity (which is
particularly useful for present purposes) is better seen in the discretized picture. In the
discretized picture the continuous path is approximated by P beads, and this
discretization parameter is chosen such that the calculation is sufficiently well-converged
to the P — o limiting result. The Hamiltonian for a discretized quantum particle can be

written as (see Equations 4.15 and 4.20) [9]
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1 (5.59)

P
2
H = El 2m hzﬁz( xk+1) “';

V(x)|.

where p, and x; are the momenta and positions of the beads. The kinetic term in
Equation 5.59 is completely arbitrary (arbitrary moments and masses) and allows one to
define a Hamiltonian with which to carry out the path integral evaluation via a molecular
dynamics simulation. The second term in the Hamiltonian is the potential due to nearest-
neighbor harmonic coupling between beads that arises from the free particle part of the
density matrix (see Section 4.2). The last term is the interaction felt by each bead due to
the external potential, where in condensed phase simulations this contribution is usually
the intermolecular interaction. In writing Equation 5.58 we have assumed we have only

~ positional coordinates and translational motion.

In the discretized path integral picture (i.e. for finite P), the path centroid variable
is identical to the center of mass of the isomorphic polymer of classical quasiparticles (or

beads) such that (see Equation 5.11) [17]

1 i (5.60)
k=1

Thus, a constraint is a necessary ingredient of the dynamics defined by the Hamiltonian

in Equation 5.59. A molecular dynamics algorithm designed to carry out this centroid-

constrained path integral calculation can be described as follows. The total force acting

on the bead k, F, can be expressed as F; = F, + F;, where F, and F; are the forces
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associated with the quantum and intermolecular potentials identified in Equation 5.59,

respectively. Furthermore, CMD defines the force acting on the centroid as

C

1 £ (5.61)
- Z

It is then this force that must be averaged over the path fluctuations (i.e. in
imaginary time). To obtain the force acting on the beads (this is the force that will govern
the motion of the beads relative to the centroid) it is necessary to subtract the centroid

force from the total force acting on each bead:

(5.62)

Thus, it becomes clear that this formulation of CMD is equivalent to requiring

(5.63)

2 F bead

Obviously this condition will conserve the total linear momentum of the P beads, and if

this sum is set to zero as an initial condition, i.e.

(5.64)

P
2P =0,
=

the centroid or “beads’ center of mass” will be a conserved quantity in the dynamics. The
use of thermostats on the beads, however, leads to a slightly different form of Equation

5.64. It turns out that this interpretation of the implementation of the CMD method will
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be very helpful in applying this method in the context of rotational motion, which is the

main goal of the next chapter.
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6. THE RIGID BODY-CMD METHOD

Path integral methods have been successfully used in the simulation of water, as
has been pointed out in Section 4.2. A variety of techniques in this context have been
applied to calculate equilibrium and dynamical properties of liquid water and of ice,
including the rigid body approximation (see Section 4.2.3) and the centroid molecular

dynamics method for flexible molecular models (see Section 4.2.5).

This chapter develops and discusses an approach that allows the implementation
of the CMD method for treating explicitly the rotational uncertainty in the motion of a
rigid body. This methodology, called rigid body-centroid molecular dynamics, is
applicable to the 3-dimensional rotation of any arbitrary rigid object and, consequently,
can be used to simulate condensed phase systems close to the classical limit (i.e at
relatively high temperature). Section 6.1 provides the torques acting between the
molecular beads according to the discretized picture of the path integral formalism of
quantum statistical mechanics. In Section 6.2 the implementation of the rigid body-CMD
method is described in detail; in addition, the definition of the orientational centroid and
some subtle issues associated to its conservation are also addressed. Finally, in Section
6.3, the successful application of this technique in the simulation of a simple molecular

(water) system is demonstrated.

6.1. TORQUES IN QUATERNION FORM

This section starts with a simple and straightforward derivation of the classical

rotational equations of motion in quaternion form [126]. The development below
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stresses the simplicity of the quaternion approach to rotational motion, and in particular,
allows us to specify the structure of the torques in quaternion form. The Appendix
reviews some of the most important mathematical properties of quaternions and their
relation to rotation operators, as well as the notation. Once a general equation for the

torques is obtained a specific expression for the torque acting on the beads is determined.

Let us consider the rotational motion of a rigid body. In this case, the Lagrangian

becomes [128]

1, 2
L=K——V=—2-21iw- -V(Q), (6.1)

i=1

where K is the rotational kinetic energy and V(Q) is the component of the interaction

potential, which depends only on the orientation of the rigid body, Q. If we choose the

quaternion parameters as the generalized coordinates, the Lagrange equation for the

quaternion coordinate g; is

—-——==0, 2
dq, dt & 6.2)

39K ow, dV d{SdK ow, IV
2___.__._______. — i —| =0, 6.3)
o ow, dq; dq; di\&w, dq; 9q;

where w; is a component of angular velocity and the sum is over the components x, , z

and j=0,1,2,3 (see Appendix). Since the potential energy V(Q) only depends on the
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object’s orientation and not on any “velocity”, i.e. (aV/aq j) = 0, Equation 6.3 reduces to

- (6.4)

Now, the principal angular velocities are related to the time derivatives of the

quaternions by [129] (see Appendix for details of its derivation)

wy - q0 92 9| |42
Wy -9 - @ | |4 i~
=2- 1. | =2-E-g=w. (6.5)
w3 9 - 90 &K |93
0 92 a0 B 9] |9

If we differentiate the components of w =0 +w in Equation 6.5 with respect to g ; and

q; we have
w [ w [ ow ow ‘
— =24 | |T=h=-24| |=*=2g¢ | |=F=-24,
aq, dq, aq, dq,
ow ) o ow
<———2=—2q2 P9 ——2-=2,q3 SN il . o [ <—-2-=..2q1 L (6.6)
94, gg)l aq, 0q,
ow. ) ow. ow
— =24, '—3=2% —3="21 —2 = -2g,
aq, dq, J 9q, dq, J
and
[ ow [ ow [ ow aw
—=-2g, —+=2gq, — = -2¢, — =2q,
94, dq, 0q, 9q;
ow ow, ow.
| S22, | 1222 {2he o2yt 122224 67
aq, 33)1 0q, 43
ow ow
—= = -2q, —= -2q, —=12g, — =2q,
1 94, )19, )L 9, ) 194
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Then by substituting Equations 6.6 and 6.7 into Equation 6.4 and using

dK . .
— = Ijw; = L; for each quaternion parameter g;, we can write the compact form

i

. . ) ) . 9,

9 -9 49 =q,| |L 9% ~% % =4 |L v

. . . s _ + . T

4. 9 4 q% q _ L Y ds 493 P G| L; _ 0?/1 . (68)

B 9 9 =G| | L qs 9o ~91 =q,| |L, v

-4 —G -4 =4] |0 ~ -6 -4 45] [0] |9

2 | ) 3 2 1 ) 3 ﬂ
945 |

where L; is clearly a component of the angular momentum vector, L. From Equation 6.8

it is easy to obtain the equations of motion, which can be expressed in quaternion form as

L=—EN-2%8-E&-L, (6.9)

D |

where

) B"_V_-
g,
v
aq
vl
g3
v
| 94 |

-
i
)
]

, (6.10)

o S5~
o L5

and E7 is the transpose of the time derivative of the matrix E defined by Equation 6.5.
It is important to recognize the quaternion character of Equation 6.9. However
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because of Equations 6.10 it is obvious that i =0+L and L =0+L whereas N isnota
pure quaternion in general. Equation 6.9 was first published and used by Evans [126,131].
He observed that the evolution of the angular momentum can be determined knowing the
initial angular momentum, the particular orientation of the rigid body and having
evaluated the derivatives in N. It is clear then (by comparison with Equation A-25) that

the principal torques in quaternion form, T, are defined by [126]

~

T==-2N. (6.11)

N f—

As previously noted by Evans [129,130], the quaternion parameters, in contrast to
Euler angles, give equations of motion without singularities. This is simply due to the fact

that E only becomes singular when g; + > + g5 +¢- =0, but this never occurs because

of the quaternion unitary constraint g_ + g’ + q22 +¢; =1 (see Appendix).

Now we proceed to the derivation of the torque acting on the beads of a free rigid
quantum object, which requires the evaluation of N from the interaction potential.
According to the discretized path integral formalism, in addition to the intermolecular
interaction, there is an interaction between beads that arises from the discretization of the
kinetic part of the Euclidean Lagrangian (see Section 4.2). One way of obtaining the form
of this bead’s interaction (maybe the simplest) is by using the free real time orientational
propagator [97,132] in imaginary time. This is achieved by employing the identity
t = ~iffh in the real time orientational propagator, which has been derived by L.

Schulman [97,132]. In fact, this identity allows one to switch from quantum mechanics
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(real time) to statistical mechanics (imaginary time) and was used by Feynman [7] to find
Equation 4.27 from the real time translational propagator already derived by him [7]. (It
is also possible to switch back to quantum mechanics from statistical mechanics by using

the identity B =it/h. [7,97])

By transforming the free orientational matrix of a spherical top [97,132] to

imaginary time in discretized form employing the identity ¢ = —if#/P we have

32

P T(k,k +1)
Q;,Q,.1;BIP) =
Po(Q4. Q.13 B/ P) 2pH? 2sin[-%I‘(k,k+1)J
(6.12)
B IPT%(k,k +1)
XEXP| oo |SXP| -3 ’
81IP 2r°B

where / can be approximated by 3/, 1,1, and ['(k,k + 1) is the arclength between beads k

and k+1 [ie. T(k,k+1) = P(Qk,9k+1), see equations 4.32 and 4.33]. From Equation 6.12

the interaction between beads can be found to be

Vikk+1)=

IPT2(kk+1) 1 (kk+1 IPT2 (k,k +1
IPrkk+1) ln( (ke +1) )= k1) 613

w2 B 2sin| 3T (k. k+1)] mIpT

where the second term in Equation 6.13 has been neglected since at the temperatures of
interest it is much smaller than the first term. It is important to note that the

approximation in Equation 6.13 is not a requirement of the present method.

The arclength (in Equation 6.13) can be related to the quaternion parameters [127]

by T'(kk+1)=2arccos(;,,), where x,; = g6 gb+ g gk +g5*1g% +gs g% is the
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scalar element of the composite quaternion between g, and g;,;, and

i E(q(’;,q{c,qg,qg) Grest _(q16+1,q1’°+1,q§+1,q§+1) are the quaternion parameters that

specify the orientations of the beads & and k+1, respectively.

Using Equations 6.10 and 6.13 it is then possible to show that

~ 2IP T(kk+1)
hZ'BZ Jl"' Xk+l2

[-at*! (@20390) + 5" (11540) - 44" (@9290) - 46 ™ (103 )]
6116131610
| 2oz (4t (029390) - aF (@150 - @5 (an020) - @b (01205 619

-4t (a20590) - ™ (a19300) + 43" (@1 90) - 96" (qlqzqs)]
219290

[-ai*! (020590) - 5™ (a193d0) - 45 (019240) + 46 (119295 )]

| 19243

where the unitary constraint on the quaternion parameters (see Appendix) has been used
and the label & has been dropped since there is no chance for confusion. From Equations
6.11 and 6.14 we finally find the expression for the torque acting on the bead & about its

x, y and z axes due to the bead k+1, specifically

t,

II

2IP T(k,k+1) ( k+l K+l K+l k+1)

B9y Tq9o91 +t9293 — 49190
h2/32 '\ﬁ - Xk+12
2IP T(kk +1)

by = Sy e (003 ~ 03t +qiah ™ + 026" (6.15)
y .
np? Jl—an
2IP T(k,k+1) k+l K+l k+l k+1

t

rmm—— - + - :
LY m(ch(lz D91 +t49093 939 )

Obviously, analogous terms arise due to the bead &-1, which is also coupled to the bead £

through the potential of Equation 6.13 [133].
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It is worth noting that the final form for the torques depends on the particular
convention chosen for the description of the rotational motion. This dependence is taken
into account through the matrix E in Equation 6.5 (see Appendix A for details on the
derivation of this equation) since N only depends on the relative orientation between two

beads (k and k+1) and is independent of the convention chosen.

6.2. THE RIGID BODY-CMD METHOD

The discussion presented in Section 5.2.2 can be extended to the treatment of a
collection of rigid objects [133]. For present purposes it is sufficient (although not
necessary) to assume that these bodies possess a classical-like mass but a relatively small
(quantum-like) inertia moment at a certain finite temperature. It is clear that the
coordinates of any of these rigid objects can be specified by a (unique) center of mass
position and a quantum (uncertain within a certain neighborhood) orientation. As a
consequence, an effective potential can be defined by introducing the concept of an
orientational centroid and by taking into account the (molecular) orientational uncertainty
by analogy to the Cartesian development [133]. Thus, in view of the similarity in the
physical meaning of the translational and rotational centroids, the calculation of
equilibrium and dynamical properties can be carried out by evaluating the centroid forces
and centroid torques according to the CMD approximation. However, the extension of the
centroid methodology to rotations [133], while initially appearing straightforward, also
has several subtleties, not the least of which is the well known non-commutativity
property of finite rotations. Additionally, in resolving the problem, three frames will be

required to describe rotations, the laboratory frame with respect to which the centroid
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moves, the centroid frame with respect to which the beads move, and the local frames of

the beads.

6.2.1. A dynamics with constraints

Analogous to the translational case, a rotational Hamiltonian can be defined for a

single quantum rotor in a classical potential as [133]

JEa| [rerekan] 1o (6.16)
(Y 252 +=V(r,g,)|,
21’ 21’ 212' 2B P

where the first (kinetic) term is, as before, arbitrary, the second term is of a quantum

e

=1

nature (discussed in Section 6.1), and the third term is due to the external classical
potential which depends on the center of mass position (r) and the beads’ orientational

coordinates (the quaternions, {cik}). It is worth noting the similarity between Equation

6.16 and its translational analog Equation 5. 59.

The torque due to the harmonic orientational coupling between beads,
T (tx,ty,t ) acting on a particular bead k&, was derived in Section 6.1 (see Equation
6.15). Clearly, the total torque, T, acting on the bead & of a particular molecule also
includes a torque, T,, due to the intermolecular orientational interaction, i.e.

T, =T, + T, . Analogous to the translational case, we can define T,f ead _ T, - T., where

the centroid torque is [133]
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1 & (6.17)

Therefore, the orientational centroid can be conserved dynamically by requiring

the sum of the torques acting on the beads to be zero in the centroid frame [133]

o bead (6.18)

ST =0,

k=1

and by imposing the initial constraint on the angular momentum sum in the centroid

frame

P (6.19)

where L, is a vector with components Ly, L, ; and L, ; (see Equation 6.16).

One of the differences between these equations and the ones (written in Section

5.2.2) for translations is related to the frame of reference. The torque T,, as given by
Equation 6.15, is in bead k principal frame whereas the calculation of T,; is carried out in

the laboratory frame. Moreover, the constraint on T,f cad given by Equation 6.18 is in the

centroid frame while the bead’s equations of motion are integrated in the principal frame.
Therefore, the knowledge of the relative orientation between the different frames is
crucial and quaternions are also particularly useful in this context. In order to illustrate

this one may ask “what is the orientation, g, of the bead k in the laboratory frame if the

centroid orientation in the laboratory frame is known to be g, and the orientations of the
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bead k and the centroid with respect to an arbitrary frame are known to be g; and g,,
respectively?” The relative orientation of the bead with respect to the centroid is given by

Geomp = qk[qc ]_1 where G, is known as the composite quaternion [129]. Thus, the

—~

answer is Gg = Geompqo = @k[qc] 12161. If the arbitrary reference frame is conveniently
chosen to be the centroid frame, that is g, = (1,0,0,0), we obtain gy = §;q,. Proceeding
in this manner the bead’s dynamics can be carried out by evolving the orientations g,
with centroid frame g, = (1,0,0,0). The bead’s orientation in the laboratory frame is
given by g, which is easily calculated once the centroid orientation in laboratory frame,
g, , is known. As will be seen later, there are some other benefits associated with the

choice g, = (1,0,0,0).

The rotational equations of motion for bead % in the principal frame (that is in

bead k frame) can now be written as [4]

—_

1
9k = 5 S Wi (6.20)
and

L, =T _w, xL, (6.21)

where Equation 6.20 have been derived in the Appendix (see Equation A-20 or Equation
6.5) and Equation 6.21 is the usual rotational equation of motion [4,128] (equivalent to

Equation 6.9). Clearly, these equations of motion can be integrated with a convenient
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numerical technique such as the Gear predictor-corrector algorithm [4] (see Section 2.3).

It is instructive to analyze the dynamics generated by Equations 6.18, 6.20 and
6.21 in the absence of external torques, i.e. T, =0, for particular numbers of beads,

where it is assumed as an initial condition that the beads are all aligned (and Equation

6.19 is satisfied).

i) P=1. As expected the classical limit is reached and the centroid describes the

motion of the particles in a classical sense. There is no bead dynamics.

T2 = T or that the torques

ii) P=2. In this case, it is easily shown that
acting on the beads exactly cancel. In fact, Equation 6.15 implies that this

cancellation occurs naturally. Thus, the dynamics conserves the centroid.

iii) P>2. In this case the interpretation of the constraint can no longer be easily
pictured physically, due to the non-commutativity property of orientations. All
that can be said is that the P orientations will disperse with (imaginary) time while

still satisfying the constraints.

It is important to note that, in general, the force between molecules depends on
their relative orientation (as is the case for water). As a consequence a centroid force will
also need to be calculated. The calculation of the centroid force is carried out with the

three-dimensional version of Equation 4.66 in a straightforward manner.

According to the discussion in Section 4.2.1, the efficiency of the path integral

evaluation is significantly improved with the use of a thermostating scheme. By using a
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Nose-Hoover thermostat chain [47] on each bead, Equation 6.21 transform into the

following set of equations (see Equations 2.28)

L (1) = T (£) = wir) x Ly (1) = A1 ()L (2) +8(0)

{Li,km Ba) Ly (r)} _3(P-1)

T T B

4

) Mg () 2 (2)

(6.22)
: 1 1
)’k,j(t) == (Qj—l)\'%c,j—l(t) - 'E) - }‘k,j(t))"k,jﬂ(t)

(QM—lA%c,M—I(t) - ?13') ,

where Ay, Ay ; and Ay y are the parameters of the thermostat chain for bead k. Due to

the centroid constraint the total number of degrees of freedom is 3(P-1) and
consequently, Oy = 3(P - l)tg / B and Q; = tg / B for 2 = j < M. The vector S (in principal

frame) in the first equality of Equations 6.22 is calculated with the following centroid

frame equation

1 P
)= 7, ZAk : (6.23)

Equation 6.23 ensures the preservation of Equation 6.19 in the thermostated dynamics.
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6.22. The orientational centroid and its conservation

Using the torques derived in Section 6.1 and those due to the external potential, in
conjunction with the centroid constraints, a dynamics (thermostated or otherwise) can be
generated such that the “orientational neighborhood” is sampled and the average centroid
torque (and the centroid force) estimated. Further, according to the discussion presented
above, since all the beads can be started with the same orientation, the initial common
bead orientation is actually the initial centroid orientation. It is then relevant to ask “what
is the centroid orientation at a time T later?” An answer to this question requires a

definition of the orientational centroid.

The orientational centroid can be defined as that orientation, g, that minimizes

the function G(c}c) , where [133]

_ 6.24)
6(3.) - (

T%(3..d1)

N R

and F(E]‘C,(}k) is the rotation angle (or arclength) between the centroid orientation and the
orientation of bead k, g . With this definition one can obviously find the centroid of a set

of orieﬂtations through a Monte Carlo search that exploits this minimization condition as
a criterion for rejection/acceptance of trial centroid moves. Convergence is then achieved
by finding that trial centroid that can no longer be improved. Such a search procedure
also allows one to confirm centroid conservation at any stage of a CMD simulation.
Other niinimization algorithms designed to average quaternions have also been published

recently [134]. It is interesting to note that a similar minimization algorithm could be
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implemented for the determination of the translational centroid; however, it is much
easier to find it analytically by using Equation 5.60. Unfortunately, an analytical
deﬁnitibn for the orientational centroid is not known. Moreover, the definition of an
orientational centroid given above may have numerous other applications that have

explicit orientational dependence.

Clearly, Equation 6.24 is just the application of least squares on spherical
distances, I", and can also be used to argue for the existence of the centroid (or

minimum). According to a usual real analysis theorem [135], since the function G((}C) is

real and continuous, and by the compactness of its domain (the 4-dimensional sphere), it
has a minimum value. The uniqueness of this minimum, however, is not guaranteed in
general. In fact, there are obvious situations where more than one minimum may exist;
for example, if the P (4-dimensional) points are homogeneously distributed around the

“equator” then the function G(éc) minimizes at both the “north” and “south” poles.

However, if all the points lie in a common hemisphere one may expect intuitively to find
a unique minimum. Indeed, this result has been recently proven [134] for an arbitrary but
finite number of dimensions although this proof will not be presented here (since it

involves the use of exponential mapping and other elements from Lie theory).

Interestingly, as an important difference in relation to translational motion, the use
of Equation 6.24 allows one to find that the constraints given by Equations 6.18 and 6.19
(and 6.23 in the thermostated dynamics) are not sufficient to ensure the exact
conservation of the centroid (in a MD simulation using finite size time steps as will be

seen explicitly below). Indeed, as the bead dynamics proceed one observes that the
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real centroid drifts slightly from the original or ideal orientational centroid [133]. This
small drift occurs as a consequence of small errors arising from the lack of commutativity
of finite rotations [128] and can be eliminated by exploiting the geometric properties of
the quaternion parameters. On the other hand, finite rotations can not be avoided in
molecular dynamics simulations since the integration of the equations of motion must be
carried out numerically. The question of how to conserve an orientational centroid is then
posed, without loss of generality, in the following form: if we let the centroid be the

quaternion g, = (1,0,0,0), can we find a set of bead orientations that satisfies this

centroid ?

This problem is solved by representing the orientation of one bead in terms of the

orientations of the remaining beads [133]. The two-bead case is straightforward; the
beads are inverse quaternions of each other, g, =g, : (this case becomes obvious because
it reduces to a one-dimensional problem, involving a single rotation angle). A simple
proof can be given as follows: let us define a transition quaternion, g, , that transforms ¢
into g,, as g, =g,q;. Then, since g, =g; !, we have g, = 3(qy )—1 = §,4, , which means
that in order to transform ¢, into g,, two identical transformations need to occur. It

should be intuitively (or according to Equation 6.19) clear that the centroid defined by
two orientations is some orientation located symmetrically between them. Thus, we find

that g, = ‘/6:1:61 =g,q; = 1 where 1 is the unit quaternion (1,0,0,0). In other words, if two

beads are inverse quaternions of each other their centroid is the quaternion (1,0,0,0) =1.

A solution for the three-bead case begins by defining (see Appendix) [133]

113



g = cos(6, /2) + u; sin(6,/2) (6.25)
and
Gy =cos(6,/2) +u,sin(6,/2), (6.26)

where 6; and 0, are the rotation angles, and u; and u; are the rotation axes of the

quaternions g; and g, respectively. It is interesting to examine first their relationships

for two simple cases:

1) If u; =u, =u, then the rotation axis of the third bead u; = —u, and its
rotational angle 6;=6,+6,. Furthermore, if additionally 6, =-6,, the

quaternion g3 becomes the unit quaternion, i.e. the centroid itself.

2) If the angle between u; and u; is 2n/3 and 6, =6, = 0, then 6; =0 and

ll3 = —lll - ll2 .
In general, the third quaternion (that satisfies the centroid T) is given by [133]
3 = cos(63/2) + uysin(65/2), (6.27)

where

0s = 67 +62 +26,0,(u;-u,) (6.28)

and
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| sin(6,/2) hr sin(6,/2) e

) 6, | g 6, (6:29)
u, + W,].
lsin(6,/2) ' sin(6,/2)

Due to the cyclic nature of the rotations, Equations 6.27-6.29 can become ill-conditioned
if all the orientations are not confined to one hemisphere [133]. This limitation however is
not a problem in simulations closed to the classical limit where the quantum rotational

uncertainty is small.

In principle, relationships similar to Equations 6.27-6.29 could be found for more
than three beads, however iterative procedures based on the two-bead and three-bead
expressions are easily implemented for an arbitrary number of beads [133]. For example,

let {cjk} be a set of P orientations. From §; and g, and using the three-bead formula
(Equations 6.27-6.29) we find a third (temporary) quaternion, denoted here bY Gremp- It is
then clear for the case P=3 that ¢; = temp- From the discussion of the two-bead case this
result implies that the influence on the centroid of the quaternions §; and g 1s equivalent
to (or can be substituted by) a single bead, specifically (atemp )_1, which obviously
together with g3 = g,,,,, conserve the centroid 1. For the case of four beads, we proceed

in a similar fashion. First we calculate Gtemp from the bead quaternions g; and g,, then

-1
using (@temp) and g3 (and Equations 6.27-6.29) we calculate a new Qtemp Which in this
case equals g,. In general, for P beads it is necessary to calculate Qiemp P -2 times. The
first gy, is calculated from §; and g, as before. Subsequent remp are calculated by

-1
using (@temp) from the previous step and the next bead, and finally at the last step
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4 p = Gremp- This procedure can then be used in addition to the dynamical constraint on

the torques described above (see Equations 6.18 and 6.19) to guarantee conservation of
the centroid during the integration of the beads’ equations of motion. It is important also
to remark that the above procedure could be utilized in a Monte Carlo algorithm to
determine sets of bead quaternions that satisfy the centroid, thereby providing an

alternate means for the evaluation of the constrained path integral.

Finally, before moving into its applications, it is interesting to reflect on a more
formal justification of the rigid body CMD-method. In relation to the centroid theory
discussed in Chapter 5, it would be nice to be able to provide a similar analytical
justification of this rotational version (based, for example, on a quasi-density operator).
However, the conceptual problems associated with path integrals in curved spaces are
formidable [97]. The multiple connectivity of the orientational space (which is directly
related to its curvature) demands the use of topological techniques, which were in fact
used by Schulman [97,132] in the derivation of the real time propagator of a spherical top
(real time version of Equation 6.12). Schulman wrote in his book (page 214 on reference
[97]), “If you like excitement, conflict and controversy, especially when nothing very
serious is at stake, then you will love the history of quantization of curved spaces”. It is
then understandable why one needs td invoke topological arguments [like the

compactness of the domain of G(c}c)] to argue about the existence of the centroid (and

with some restrictions, its uniqueness). Topological methods, however, cannot provide
the means to calculate the orientational centroid. Thus, the very existence of an

analytical solution for the beads’ orientations such that they conserve the centroid
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(1,0,0,0) =1 (given in equations 6.27-6.29) and the property of associativity of these
equations seems almost like a mathematical curiosity. It is worth mentioning that
Schulman’s work was certainly inspired by Feynman who wrote in his delightful book on
path integrals (page 355 on ref [7]), “...path integrals suffer most grievously from a
serious defect. They do not permit a discussion of spin operators or other such operators
in a simple and lucid manner. ... It can be handled if the amplitudes and quantities are
considered as quaternions instead of ordinary complex numbers, but the lack of

commutativity of such numbers is a serious complication.”

6.3‘. TESTING THE METHOD WITH A SIMPLE SYSTEM

We turn now to explicit results of calculations designed to demonstrate the
success of the methodology described in the previous section. An isolated TIP4P [61]
water molecule coupled to a thermal bath at 298 K is examined in the absence and
presence of an external homogeneous electric field. The electric field is defined to be in
the z direction and is approximately equal in magnitude to the average local field present
in liquid water (~2 V/A) [136]. The required path integral evaluation was carried out for
different numbers of beads (between 3 and 6) and in every case each bead was coupled to
a Nosé-Hoover chain thermostat [47] of length 4 (see Equations 6.22). The simulation
utilizes 256 otherwise independent water molecules being controlled with a single
thermostat [46] to allow for appropriate fluctuations in the single-molecule kinetic
energies in field-on conditions. The equations of motion were integrated using a 4™-order

Gear predictor-corrector algorithm [4] and real time step sizes of 1 fs and 0.125 fs for the
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Figure 6.1. Time dependence of the average rotation angle between the beads and between
the beads and the centroid. The solid lines correspond to the bead-centroid angle and the
dotted lines correspond to the bead-bead angle, both in radians. The dashed line in (a)
corresponds to the bead-centroid angle in a system with a smaller imaginary time step. (a)
Results from dynamics utilizing only Equations 6.18-6.20, 6.22 and 6.23. (b) Results
obtained utilizing Equations 6.18-6.20, 6.22, 6.23 and 6.27-6.29.
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classical and the quantum simulations, respectively. Further computational details are

given in the next chapter.

Fig. 6.1 shows the time behavior of the instantaneous rotation angle (averaged
over the 5 beads of all 256 independent molecules) between the beads and the centroid
orientation for field-free isolated molecules as a function of centroid steps. The drift in
the centroid orientation (manifested as a consistently increasing value for the bead-
centroid arclength) is clearly observed in Fig. 1(a), where only the conditions required by
Equations 6.18-6.20, 6.22 and 6.23 have been utilized, is due to the non-commutativity of
finite rotations. The smaller drift obtained by using a smaller imaginary time step (see
Fig. 6.1(a)) confirms this explanation. It is important to recall that, although finite
rotations do not commute, infinitesimal rotations do commute [128], and as the time step
is decreased the drift decreases as well. In Fig. 6.1(b), which only shows the results from
the simulation with a normal bead time step, this drift has been eliminated by the further
application (to each set of 5 beads) of the iterative procedure discussed in the context of
Equations 6.27-6.29. In this study this procedure has been implemented by correcting a
randomly selected bead orientation at every step of the constrained dynamics. It should
be noted that the correction required at each step is always very small (as is implied by
Fig. 6.1 (a)); consequently its impact on the equations of motion is small and any heating
effects are easily controlled by the thermostat [133]. We have chosen to correct for the

centroid at every imaginary time step to minimize such effects.

A requirement of CMD is a homogeneous sampling of the imaginary time phase

space. Fig. 6.2 shows probability distributions representing the quantum mechanical
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rotational uncertainty of a water molecule as mapped by the algorithm in the absence and
presence of the electric field. The discrete values from the simulation appear to follow
exactly the continuous lines that represent the expected normalized Gaussian form
(including its angular differential element). In Fig. 6.2 we also see that the influence of
the field is to slightly contract the quantum mechanical angular distribution (i.e. as

expected the external potential slightly contracts the quantum uncertainty).

0-02 AR LA L A R I L A AL AN IR DL A DL A L AL L BN R T R
P(r) ]
0.015 | -
0.01 ~ o
0.005 -
0 0.05 0.1 0.15 0.2 0.25 0.3
T (radians)

Figure 6.2. Probability distribution of the bead-centroid angle of a water molecule. The
triangles represent results from a simulation carried out in the absence of a field, and the
squares are results obtained in the presence of a field. The lines are the ideal distributions
fitted to the data.
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Figure 6.3. Dipole moment orientational distributions of the water molecule as a function of
cos(cat), where a is the angle between the dipole and the field vector. (a) Results for quantum
mechanical calculations at different P. The solid, dot-dashed and dashed lines represent P=6,
P=5 (which overlaps with P=6 line) and P=3, respectively. (b) Classical (dotted line) and
quantum (solid line) distributions.
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The probability distribution for the orientation of the molecular dipole moment in
the presence of the external field and its dependence on P, the discretization parameter,
are shown in Fig. 6.3. As can be seen in Fig. 6.3(a), results from quantum calculations
with different values of P demonstrate that convergence is achieved at rather low values
of the discretization parameter; in particular, the results at P=5 become indistinguishable
from those at P=6. Fig. 6.3(b) compares the probability distributions for the orientation of
the dipole moment obtained from classical and quantum simulations. The broadening

observed in the distribution from the quantum system is clearly a manifestation of

quantum dispersion.
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Figure 6.4. Classical (dashed line) and quantum (solid line) normalized time correlation
functions for the x component of the angular velocity.

One of the principal benefits of the CMD approach is in its ability to characterize

the quantum dynamics. The application of CMD to translational degrees of freedom has
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established a strategy for the calculation of (approximate) quantum time correlation
functions [105-111]. This strategy (see Equation 7.3) can be applied in the context of the
rotational centroid provided that the system is close to the classical limit and the
interactions are not strongly anharmonic [105,110,111]. The classical and quantum time
correlation functions for the x component of the angular velocity for water molecules in
field-on conditions are shown in Fig. 6.4. As expected we see that the effect of

quantization is to reduce the structure in this function.
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Figure 6.5. Convergence of the centroid force and the centroid torque on a molecule in
liquid water as a function of the MD imaginary sampling. The dashed line represents a
randomly selected component of the force and the solid line represents a randomly selected
component of the torque.
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In order to consider a more realistic application for the present methodology, a
preliminary liquid water simulation at 298 K has been performed. The TIP4P water
model with a discretization parameter, P=5 was used. (A complete description of these
calculations and their results will be given in the next chapter). Fig. 6.5 illustrates the
convergence of the forces and torques within a CMD simulation where the axes and the
molecules have been selected at random. The relative errors shown in Fig. 6.5 are the
relative differences between the current running average and the “exact” (long-time)
average, where the “exact” values were determined from a simulation consisting of 10°
imaginary steps. We see that to obtain reasonably converged forces and torques a few
thousand steps are required in the imaginary time sampling. This makes the application of
the so-called “primitive” CMD approach (where well-averaged forces and torques are
required for each centroid step [137]) computationally very demanding; however
utilization of the “adiabatic” CMD approach [137] requires considerably less
computational effort to produce a smooth dynamical trajectory. It is also evident from

Fig. 5 that the centroid torques converge more rapidly than the centroid forces.

In summary, the CMD method has been extended to the rotations of rigid bodies
by designing an algorithm that in a context of a molecular dynamics simulation samples
homogeneously the orientational neighborhood associated with their quantum degrees of
freedom. This algorithm ensures that the rotational centroid (or the average orientation of
the set of beads) remains constant at each step. To help achieve this, a general definition
for the average orientation (rotational centroid), as well as a straightforward procedure

for determining it numerically, have been provided. The methodology that has been
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presented here will be particularly advantageous for the quantum simulation of the
dynamical properties of (simple) molecular systems in condensed phases and near their

classical limit (such as liquid water or ice), within the rigid body approximation, as will

be demonstrated in the next two chapters.
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7. QUANTUM LIQUID WATER

Our understanding of liquid water has benefited from the progress made in the
area of computer simulation, including the advent of quantum simulations. A number of
path integral simulations studies of the equilibrium and/or dynamical properties of liquid
water has been reported to date (see Section 4.2) employing both rigid and flexible water
models. The purpose of this chapter is to present the results of quantum simulations of
liquid water obtained using the rigid body centroid molecular dynamics methodology
described in Chapter 6. This chapter is organized as follows. Section 7.1 presents the
details of the simulation methodology and a number of parameterization tests carried out
in the implementation of the rigid body-CMD method. In Section 7.2, the results obtained
for equilibrium and dynamical properties of light and heavy water are presented,
including an analysis on model dependence. In Section 7.3, the results of equilibrium and
dynamical properties of simulated liquid H,O over a temperature range from -35 to
100°C are examined to assess the temperature dependence of the quantum effects.
Finally, in Section 7.4, tunneling behaviour in water is examined through the use of

oxygen-oxygen spatial distribution functions.

7.1. SIMULATION DETAILS AND PARAMETERIZATION OF THE METHOD

Classical molecular dynamics simulations were performed for liquid water at
25°C. A Gaussian thermostat [43] was used to control the temperature of 256 molecules
that interact through the TIP4P [61] pair potential at a constant density of 0.997 g/cm.

The Ewald summation technique [4] with conducting boundary conditions was employed
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together with a truncated octahedrom simulation cell in combination with periodic
boundary conditions. The equations of motion were integrated using a 4™ order Gear
predictor-corrector algorithm [4], in which the rotational degrees of freedom were
represented with quaternions [129,130]. Quantum simulations were performed under the
same conditions with the additional bead dynamics controlled with a separate Nosé-
Hoover chain thermostat [47] for each bead and the appropriate bead constraints (sece
Section 6.2). The time steps used in the classical and quantum simulations were 1 fs and
0.125 fs, respectively. The imaginary time dynamics was carried out with a time step of
0.5 fs with inertia moments (for each axis) on each bead twice that of the real molecule.
The classical and quantum simulations were equilibrated for 0.1 ns and averaged for 0.5

ns. All quantum simulations started from well-equilibrated classical configurations.
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Figure 7.1. Convergence of the intermolecular potential energy of the liquid H,O system as
a function of the path integral discretization parameter, P.
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The convergence, with respect to P, of the quantum simulations of liquid water is
very clearly seen in the average interaction energies presented in Fig. 7.1 (where the
value of P=1 is the classical result). It is important to have demonstrated convergence,
particularly when examining isotopic effects in quantum simulations. In Fig. 7.1, we have
included an error bar estimate for each value. Although the values for P=3 and 4 account
for a significant part of the quantum effect, convergence is only attained for P=5 and 6

where the average potential energies are the same within the statistical error.
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Figure 7.2. Convergence of the oxygen-hydrogen radial distribution function of liquid H,O
with respect to the value of the discretization parameter, P. The results represented by a
dotted line, a dashed line, dotted-dashed line and solid line correspond to the values P=3,4,5
and 6, respectively.

Further evidence of the convergence of the results with respect to P is obtained by
checking other equilibrium and dynamical properties of the liquid. Fig. 7.2 shows the

convergence of the oxygen-hydrogen radial distribution function for simulations
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Figure 7.3. Behaviour of (a) the linear and (b) the angular velocity time correlation
functions for different values of the discretization parameter P. The dotted line, the dashed
line and the solid line correspond to the values P=4,5 and 6, respectively.

carried out with values of P=3,4,5 and 6. The simulation with P=3 differs only slightly

(shifted towards more classical behaviour) from the results for P=4, 5 or 6, which are

otherwise indistinguishable. Fig. 7.3 demonstrates the similarity in the translational and

rotational velocity time correlation functions for P=4,5 and 6, where again the curves for

P=3 (not shown in this figure) demonstrate slightly shifted behaviour. From this analysis
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we can conclude that the use of a value of P=5 for the discretization parameter provides
converged results in the present quantum simulations of both liquid H,O and D,O. It is
important to note that in previous equilibrium PIMD calculations of Rossky and co-
workers [14] with rigid water models, convergence was also observed with P=5. We also
remark that this relatively low value of P required for convergence is one of the assets of
the present rigid-body approach; the value of P for the quantum description of the
hydrogen in water is typically more than 20 [15,19] (Ref. [114] is an exception to this

since P was set to 16, however convergence was not demonstrated).

There are essentially two ways to evaluate path integrals via molecular dynamics
coupled with the centroid evolution [137]. In the primitive algorithm the centroids have a
classical-like time step, and are only propagated further once sufficiently well converged
average (centroid) forces and torques have been accumulated; in the adiabatic approach a
very small centroid (real) time step is used together with very small bead masses (relative
to the real centroid mass) such that the beads move much faster than the centroid. The
adiabatic approach is significantly more efficient and is usually implemented [137] on
suitable coordinates that uncouple the centroid motion and the bead motion (normal
coordinates). In the present study a “quasi-adiabatic” approach has been chosen. In this
approach a small number (i.e. 1-5) of steps in imaginary time are performed for every
small centroid time step [19]. A number of tests to address its reliability were carried out.
A centroid time step (0.125 fs) significantly smaller than the usual classical time step was

chosen and several values for the number of imaginary time steps were tested. It is clear
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Figure 7.4. Convergence of (a) the linear and (b) the angular velocity time correlation
function for different quantum steps per centroid step. In both graphs, the solid line and the
dashed line correspond to 3 and 5 quantum steps, respectively.

that the results should be independent of the number of imaginary time steps performed at

each real time step provided that a small enough real time step has been chosen and that

convergence (in the adiabatic sense) of the centroid forces and centroid torques has been

achieved. It was found that structural functions such as gou(r), or the average energies,

are unchanged with the use of 3 or 5 imaginary steps (this explicit comparison is not
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shown). A more challenging test is perhaps in the dynamical properties; results for the
linear velocity and angular velocity auto-correlation functions are shown in Fig. 7.4. The
results obtained with 3 or 5 imaginary steps are identical within the estimated errors. As a
consequence, 3 imaginary time steps were used for each real time step in all remaining
simulations. We remark that testing utilizing the primitive algorithm (with 300 imaginary
steps per regular centroid step) confirmed the validity of our quasi-adiabatic

implementations of CMD [138].

7.2. ISOTOPIC EFFECT

In this section, the results of classical and quantum simulations of liquid H,O and
D,0 at 25°C are presented [138]. The discussion begins with an examination of the
equilibrium properties of TIP4P water and is followed by an analysis of the dynamical
properties of this same water model. Finally, the results presented are compared with

those obtained for two other rigid water models.

7.2.1.  Equilibrium properties

The oxygen-oxygen and oxygen-hydrogen radial distribution functions were
calculated for H,O and D,0 via the classical MD and rigid-body CMD techniques; they
are presented in Figs. 7.5 and 7.6. These structural functions, as determined from
classical molecular dynamics, are essentially identical for H,O and D,O (see Section 3.3),
and thus it is not necessary to include the classical D,O radial distribution results in all

further analysis.

132



25 |-

0

15 |

05 L N

ok.,]‘.l....1....1.,..1...,1.
4 6

2 3 7 8

5
r(A)
Figure 7.5. Oxygen-oxygen radial distribution function for the three systems: classical water

(dotted line), quantum H,O (solid line) and quantum D,O (dashed line), all at ambient
conditions.

Fig. 7.5 compares the oxygen-oxygen radial distribution functions for classical
H,0 and quantum H;O and D,0. As expected, the quantum H,O is the least structured
and the classical H,O (D;0) is the most structured, while the quantum D,O result lies in
between. Hence, it is clear that as the system becomes more quantum mechanical there is
effectively a softening of the structure with diminished peaks and raised valleys. This
trend agrees with previous quantum simulation results performed on either flexible
[13,15,19] or rigid water models [12,14], although the present results exhibit much better
convergence (as can be seen in the insert of Fig. 7.5), presumably due to the longer length
of real time simulation. The oxygen-hydrogen radial distribution functions, shown in Fig.

7.6, confirm the behaviour observed in g, (r). The peak at 1.9 A, associated with the

hydrogen bond, clearly shows that classical HO water exhibits the strongest
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hydrogen bonding, followed by the quantum D,0 and quantum H»O liquids, respectively.
The agreement between these results and previous simulations using flexible models
confirms the previous observation [12] that most of the quantum effect in water comes
from rotational uncertainty. Furthermore, the agreement between the present results and
previously reported PI simulations with rigid water models reaffirms a very important
property of CMD, that of generating equilibrium averages if the system is ergodic [111].
It is noteworthy that the simulations presented here are carried out with an orientational
centroid constraint, while those of Rossky and co-workers [12,14] utilized rigid body

quantum simulations where non-constrained path integrals were evaluated.
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Figure 7.6. Oxygen-hydrogen radial distribution function for the three systems: classical
water (dotted line), quantum H,O (solid line) and quantum D,0O (dashed line), all at ambient
conditions.
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The apparent softening of the intermolecular interactions found in the quantum
simulation results presented above (using a rigid model approximation) appear as a
consequence, exclusively, of the effect of quantum mechanics upon molecular
orientations. In liquid water, due to the low inertia moments of the molecule, there is a
quantum mechanical uncertainty associated with the orientation of the molecule (which is
directly related to the quantum uncertainty of the proton positions). Since in the context
of the rigid body-CMD method each quantum molecule is represented by a set of coupled
beads (which have the same center of mass but different orientations), the relative
orientation of the beads is a measure of the molecular orientational uncertainty itself.
Additionally, at high temperatures the molecular uncertainty becomes zero (i.e. the
system becomes classical) and therefore it is convenient to define the average bead
orientation (or centroid) as a reference orientation from which the beads expand to a

certain angle, T

In Fig. 7.7 the probability distributions of the bead-centroid angle I", as mapped
by the rigid body-CMD methodology, are shown. These probability distributions are
calculated by averaging over the angle (or curved distance) between each bead and the
respective orientational centroid for all beads and all molecules. Clearly, they represent
the quantum mechanical rotational uncertainty of the light and heavy water molecules in
their liquids. (It is noted that although this probability distribution is expected to have a
Gaussian shape if plotted versus the bead-centroid rotation angle through a particular

axis, when plotted versus the bead-centroid rotation angle on an arbitrary axis it
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Figure 7.7. Normalized probability distribution of the bead-centroid. rotation angle. The
circles and squares correspond to liquid H,O and liquid D0, respectively.

approaches zero for small angles as the differential element of the rotation angle goes to
zero). In this figure the symbols represent explicit data points, while the continuous lines
represent fits of these points to the expected Gaussian behaviour. The tails of the
probability distributions are expanded in the insert with a logarithm scale. As expected,
the H,O molecule has a significantly larger orientational uncertainty than the D,0
molecule, and this leads to an increased softening of the effective intermolecular potential
for HO in relation to D»O. The average orientational uncertainties (calculated as twice
the average rotation angle between the beads and the centroid) of the H,O and D,O
molecules are 11.3° and 8.9°, respectively, which is somewhat smaller than the value

derived from the estimated de Broglie wavelength (~0.3 A) of a free proton at room
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temperature. It is also apparent from Fig. 7.7 that the probability of finding an angle
between any bead and the centroid larger than n/2 (90°) is effectively zero, which is a

requirement for the existence of a unique rotational centroid in the present approach [133]

(see Section 6.2.2).

Table 7.1. Intermolecular potential energies (in kJj/mol) obtained in the classical and
quantum simulations of liquid water at 25°C.

Classical Quantum Relative shift (in %)
H,0O D,O Class/H,0 Class/D,0O
This work | -41.05:0.02 | -37.43:0.02 | -38.63£0.02 | 88 | 59
TIP4P® 419 391 | 399 67 | 48
SPC® 427 397 | 405 701 32
SPCIF® | 47513004 | 43.69:0.06 | - 80 | -
SPCIF,® | -49.44x0.04 | 4536005 | - 82 | -
MCDHO® | 4740:008 | 410:04 | - B35

(a) Ref. [14], (b) Ref. [19], (c) Ref. [15].

In Table 7.1, the values of the average potential energies obtained in the present
classical and quantum simulations are compared with previous calculations. The relative
change in the potential energy due to the rotational quantization for the present H,O and
D50 systems is 8.8% and 5.9%, respectively. It can be clearly seen that the classical-to-
quantum shift in energy for light water is essentially identical to the relative changes
found by Lobaugh and Voth [19] using the CMD methodology in an atomic approach on
a flexible model. Our relative changes for H,O and D,0 are, however, somewhat larger
than those reported by Rossky and co-workers [12]. It is worth mentioning that the
energy difference between the quantum D,0 and quantum H,O simulations is 1.2 kJ/mol,

and this result is very close to the difference in the experimental heats of vaporization of
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D;0 and H,O (1.4 kJ/mol [115]). Finally, is worth noting that although a very recent first
principles study has reported that the “softening” observed above is apparently
compensated by an increase in the molecular dipole moment [114], the quantitative
extent of this compensation is unknown, as is the relationship between their energies and

the experimental heats of vaporization.

7.2.2. Dynamical properties

Since the translational degrees of freedom have not been quantized, the
translational dynamical information of the present quantum simulations is immediately
available from the centroid time correlation function. The velocity autocorrelation
function for classical and quantum H,0 and D,0 systems is presented in Fig. 7.8. It is
apparent that there is a significant difference between the classical and the quantum
results of liquid H,O (see Fig. 7.8a). The principal changes seen in this function are the
loss of structure (i.e. a dampening of the oscillatory behaviour) and a shift of the maxima
and minima to longer times for the quantized system with respect to the classical

simulation result.

These differences are consistently smaller in the DO system, although still
noticeable (see Fig. 7.8b). In order to interpret this effect, we remark that the principal
intermolecular forces in water (hydrogen bond interactions) are very directional, but in
the quantum system the forces are averaged over the molecular rotational uncertainty.
These averaged (or centroid) forces are smaller than the classical ones, and consequently

they generate a more strongly dampened velocity time correlation function with
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Figure 7.8. Linear velocity time correlation functions of classical and quantum (a) H,O and
(b) D,0. The dashed lines correspond to classical results and the solid lines correspond to
quantum results.

maxima and minima shifted towards longer times. Hence, the quantum system is not only
less structured in space (as discussed above) but is also less correlated in time in

comparison with the classical system. We have also observed that for the Cartesian
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components of the velocity time correlation function (not shown), each of the individual
x,y or z components of the velocity time correlation function experience such
“softening”; however, there is no evidence of this shift being particularly larger in any

specific direction.

Table 7.2. Translational self-diffusion coefficients, in units of 10° cm?s, for TIP4P liquid

water at 25°C. The errors of the calculated values are about 1%. The experimental values are
from Ref. [139].

System D D, D, D, Exp
Class 3.58 3.36 4.25 3.14

HO oo ol ot o T 1 23
Quant 548 5.18 6.51 4.74
Class 3.45 3.22 4.14 2.98

DO e e 4 19
Quant 4.57 4.35 5.39 3.97
Class 1.04 1.04 1.03 1.05

HODO oo Lo 121
Quant 1.20 1.20 1.21 1.19

Table 7.2 presents the translational self-diffusion coefficients and their local
frame components obtained for the classical and quantum simulations of light and heavy

liquid water through the well known relationships [4,139],

Dy = fom([va (0)-€4(0)]-[valr)- e4(0) ]t (7.1)

and

D=

W

o (7.2)

where e,, are the unit vectors of the principal frame (a = x,y,z) and v,(z)- e, (0) is the
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o component of the linear velocity of the center of mass defined in the local frame at
t = 0. The local frame is defined such that the z axis lies along the axis of symmetry and
the x axis is in the plane of the molecule. As can be seen from Table 7.2 the quantum
self-diffusion coefficients are, as expected, larger than the classical values, the effect
being most pronounced for light water. The discrepancy between the absolute values and
the experimental results are due to the TIP4P parametrization of the water-water
interaction which, even classically, overestimates the self-diffusion coefficient. We note,
however, that the isotopic ratio of the self-diffusion coefficient from the quantum
calculations is significantly closer than the corresponding classical value to the
experimental isotopic ratio, which implies that the quantum simulations much more
accurately capture the differences between the dynamics of H,O and D,0. The isotopic
ratio obtained from our classical simulations with the TIP4P potential are in excellent
agreement with that previously obtained for the SPC/E model [139], confirming the

inability of classical dynamics to capture isotopic effects in liquid water.

The effect of quantization given as the ratio Dq””" / Dda” is in very good

agreement with previously reported results from CMD simulations. The ratio

DI‘Z‘Z’ / Ddass of 1.7+0.8 reported by Lobaugh and Voth [19] is statistically

indistinguishable from the present value of 1.53+0.09. Again, the significantly smaller

error bar arises from our significantly longer real time trajectories. We note that Guillot
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Figure 7.9. Components of the angular velocity time correlation function of liquid H,O. The
dashed lines correspond to the classical functions and the solid lines correspond to the
quantum results.

and Guissani [20] in their effective quantum potential simulations also found a ratio of
1.7, but have not reported error bars. It is important to emphasize that the roughly 50%

increase in the translational diffusion constant, in going from classical to quantum
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dynamics for liquid H,O, is even more dramatic taking into account that this effect is an
indirect consequence of the quantization (in the sense that is the rotational and not the
translational motion that has been treated quantum mechanically). The fact that the
orientational quantization is found to have a significant impact on the translational
dynamics is clearly a consequence of the strong coupling between the rotational and

translational motions of water molecules in the liquid.

In order to determine angular velocity quantum time correlation functions, we

recall that the CMD approach offers the possibility of extracting approximated quantum

correlation functions, (A(t)A(O)), from the centroid correlation function,

(A(C)(t)A(c)(O», which can be accumulated during the simulation. These two correlation

functions are related in frequency space by (see Equation 5.46) [19,105-111]

I(w) = (rw/2) coth(Aw/2) + 1)1 (w), (7.3)

where I(w) and I(c)(w) are the Fourier transforms of the quantum and centroid

correlation functions, respectively. In Fig. 7.9 the components of the angular velocity
time correlation function of liquid HyO as obtained from classical and quantum
simulations are shown. In the x component, we see a shift of the maxima and minima in
the quantum correlation function towards longer times with respect to the classical result.
In the y and z components, we additionally observe a very significant dampening of the

oscillations in the quantum functions relative to the classical ones.
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These observations are further clarified in Fig. 7.10 where the power spectra of
two components of the angular velocity time correlation function are shown. Since the z
and y components (which are oriented along the dipole moment and perpendicular to the
molecular plane, respectively) have similar time dependence (see Fig. 7.9) their power
spectra have a similar shape and we have chosen to include only one of them. The power
spectrum of the x-component, which is associated with the smallest inertial moment,
appears skewed towards higher frequencies while the y and z components have a more
symmetric shape. The observed bands at about 700 and 500 cm™, which are due to the
librational oscillations of the molecule in the liquid, are clearly shifted to lower

frequencies in the quantum simulation. This shift to lower frequencies observed in the
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Figure 7.10. Power spectra of the x and y components of the angular velocity time

correlation function of liquid H,O. The dotted lines correspond to the classical simulation
and the solid lines correspond to the quantum simulation.
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quantum simulation results is, obviously, a reflection of the slower oscillatory behaviour
in the quantum time correlation functions in relation to the classical behaviour, as seen in
Fig. 7.9. The dampening of the oscillations of the y-component of the quantum time
correlation function (see Fig. 7.9) appears in Fig. 7.10 as a decrease in the intensity of the
principal band in its power spectrum. These effects can again be associated with the
apparent softening of the interaction potential as a consequence of the CMD averaging of
the centroid torques, and as expected they were found to be smaller for D,O than for
H,O. The differences observed between the effects of quantization on the x, y and z
components of the angular velocity appear to be a consequence of the uneven impact of
the soffening within the (heterogeneous) local molecular environment (which will be
examined in detail below). It is interesting to point out that direct use of the centroid
angular velocity time correlation function instead of the approximate quantum time
correlation function (obtained from Equation 7.3) does not change the above
observations. This indicates that most of the effects of quantization are already captured
directly with the classical-like evolution of the centroid (due to the effective centroid

potential).

The single-molecule orientational autocorrelation functions, C; (t) and Cf (t),

defined as
Ci =(Ble(n e, (), (7:4)

where e, is the z-axis of the molecule (aligned with molecular dipolar vector) and B

denotes the Legendre polynomial of order &, were obtained from the present simulations

145



of the liquid H,O and D,O systems. Spectral functions were then calculated as [140]

IF =w?Re f: C(t)expliwt)dt. (7.5)

orientational correlation function

0 S S R W W S SN S RO A
0 0.5 1.5 2

1
time (ps)
Figure 7.11. Single molecule orientational correlation functions associated with the

Legendre polynomial of order k=1 or k=2. The dashed lines correspond to the classical
results and the solid lines correspond to the quantum functions.

The functions Cf(t), Cf(t), I (w) and I3 (w) determined for the liquid H,O
system are presented in Fig. 7.11 and Fig. 7.12. A significant increase of the rate of decay

is observed in Fig. 7.11 in the time domain behaviour of Cf (t) and C3 (t) from the

quantum simulations. A slight shift to longer times of the peak at about 0.1 ps is better

resolved in the frequency domain spectrum of Fig. 7.12 as a shift to lower frequencies of
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Figure 7.12. Spectral functions I; and I,. The dashed lines represent the classical results and
the solid lines represent the quantum curves.

the quantum result. The wide band located from 300 to 700 cm™ in Fig. 7.12 is
characteristic of the molecular librational motion of the molecular dipole in the liquid and
has been previously reported in Raman experiments [141] and in classical simulation
studies of light and heavy liquid water [140]. It is interesting to note that the shift
observed here is somewhat similar to the one reported previously in classical simulations
[140] and associated with an increase in the temperature of the liquid. The analogy
between quantum effects and the effects of raising the temperature, made in the early
simulation studies of the structure of quantum water [12], is discussed in Sections 7.3 and

7.4. As expected, it was also found that the shift associated with the softening of the
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potential is stronger within liquid HO than in DO in comparison to their classical

counterparts.

From the quantum and classical orientational auto-correlation functions, Cyf (t)

and Cé(t), relaxation times can be calculated and compared. The single molecule

orientational correlation times, or self-times, have been obtained by integrating the
00
appropriate autocorrelation functions, i. €. ¥ = ﬁ) Cy (t)dt. In this study the orientational

autocorrelation functions have been determined to sufficiently long times (2 ps) to allow
the dominant contributions to 7 to be obtained by direct numerical integration. The
appropriate tail corrections to the self-times were evaluated by assuming a simple

exponential decay in C,f(t) at long times.

Table 7.3. Molecular and collective (dielectric) relaxation times (in ps) for TIP4P liquid
water at 25°C. Experimental values are from Ref. [139].

System le 1:5 5
Class 2.790.03 0.9520.005 7ol
S P R 5 1 RS
Exp - - 33
Class 3.16+0.03 1 .073:0.065 7+1
D:0 Quant | 3334003 1058120005 T e
Exp i - 104
Class 1.13 1.13 1.0
D,0/H;0 o I Y R W T E g
Exp ) - 126
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The self-times values obtained, listed in Table 7.3, are similar to those reported
previously by other authors {19,139] and represent a further confirmation that the

diffusive motion in a quantum liquid is faster than in a classical one. For example, the

ratio (75 / 7"y was reported by Lobaugh and Voth [19] as 1.5+0.5 while in this
study we have obtained essentially the same value, 1.6+0.07, where the considerably
smaller errors bars arise from the much longer real time trajectories of the present work.
It is clearly seen from Table 7.3 that quantization sharply decreases the relaxation times
for liquid H,O, although it has a lesser impact in D,0, as expected and in agreement with

the results presented above.

The collective (or dielectric) relaxation times obtained from

1y - (M0 M(O) 06
0 M
for classical and quantum simulations of D,0 and H,O are also presented in Table 7.3. It
can be again seen that the impact of rotational quantization is quite significant, especially
in HO. While the absolute values obtained from the quantum simulations shift farther
from the experimental results, the isotopic ratios calculated from the quantum simulations
appear to approximate more closely the experimental isotopic ratio. However, the
relatively large errors associated with these collective relaxation times make it difficult to
draw any specific conclusions about the values of the ratios given in Table 7.3.
Nevertheless, the errors associated with the present results are considerably smaller than

those of other quantum simulation studies [19].
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7.2.3. Model comparison

It is important to demonstrate that the results presented in Sections 7.2.1 and 7.2.2
are sufficiently general, and consistent for several different water models. In order to
examine the dependence of the isotopic effects on the choice of water model, quantum
simulations were carried out on two other rigid water models, the SPC/E [67] and

TIP4Pew [68] potentials. The conditions under which these simulations were carried out
were identical to those used for the TIP4P model [61], results for which have already

been presented.
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Figure 7.13. Oxygen-oxygen radial distribution function of liquid SPC/E water at ambient

conditions. The dotted, solid and dashed lines correspond to the classical, quantum H,O,
quantum D,0 results, respectively.

Fig. 7.13 shows the oxygen-oxygen radial distribution function obtained in

classical and quantum simulations of light and heavy SPC/E water. The result for
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Figure 7.14. Oxygen-hydrogen radial distribution function of liquid SPC/E water at ambient

conditions. The dotted, solid and dashed lines correspond to the classical, quantum H,O,
quantum DO results, respectively.

classical D0 coincides with classical H>O and is not shown. Once again, one observes
that the classical system is more structured, followed by quantum D,0O and the least
structured quantum H,O systems. A comparison with Fig. 7.5 indicates that the effect of
quantization is qualitatively extremely similar. This observation is further confirmed with
the oxygen-hydrogen radial distribution function for SPC/E presented in Fig. 7.14. The
oxygen-oxygen and oxygen-hydrogen radial distribution functions for TTP4Pew also

qualitatively confirm these results (and are not shown).

A quantitative analysis of the model dependence can be carried out on values of
intermolecular potential energies, relative energy shifts and average molecular

uncertainties (calculated as in Section 7.2.1). Table 7.4 reports values obtained for these
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quantities for the SPC/E and TIP4Pew water models. The results indicate that the
TIP4Pew and SPC/E models show a slightly smaller quantum shift in the energy than was
found for TIP4P. The values calculated for the TIP4Pew water model are generally closer
to the values of the TIP4P potential. This result is reasonable considering that the
TIP4Pew [68] model is much similar to TIP4P [61] than is the SPC/E [67] model (see
Section 3.2). It is also interesting to note that the estimated values of the molecular
uncertainty are also slightly smaller than the ones presented previously for TIP4P.
Furthermore, it is reasonable to expect that the smaller the molecular uncertainty, the
smaller the quantum effects in the energy should be. This hypothesis is confirmed by
comparing the values of molecular uncertainty for light water presented in Table 7.4 with
the corresponding value of TIP4P. The energy shifts in quantum D0, on the other hand,

are less dependent on the estimated molecular uncertainty.

Table 7.4. Energies, relative energy shifts and quantum molecular uncertainties (see text)
values for the SPC/E and TTP4Pew water models at 25°C.

Ener Relative shift
Model System & Quantum
(kJ/mol) (%) uncertainty (%)
Class -45.93 - 0
SPC/E H,0 -42.33 7.8 10.7
Quant
D,O -43.48 53 8.5
Class -45.99 - 0
TIP4Pew H,O -42.11 8.4 11.0
Quant
D,O -43.58 5.2 8.9
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Table 7.5. Self-diffusion coefficients in 10 cm?s for the SPC/E and TIP4Pew water
models. The errors are about 1% of the reported values.

Model System D D, D, D,
Class H,O 2.49 2.30 3.25 1.93
Quant H,O 3.90 3.66 4.90 3.15
Class D,O 2.48 2.26 3.21 1.97
SPC/E
Quant D,O 3.34 3.09 4.29 2.64
Cl (H20/D,0) 1.00 1.02 1.01 0.98
Qu (H,0/D,0) 1.17 1.18 1.14 1.19
Class H,O 2.41 2.20 2.97 2.06
Quant H,O 4.07 3.90 4.93 3.39
Class D,O 2.37 2.18 2.94 1.98
TIP4Pew
Quant D,O 3.42 3.23 4.10 2.91
Cl1 (H,0/D,0) 1.02 1.01 1.01 1.04
Qu (H,0/D,0) 1.19 1.21 1.20 1.16

Table 7.5 reports the values of the self-diffusion coefficient obtained in the
classical and quantum simulations of liquid samples with the SPC/E and TIP4Pew
potentials. For the SPC/E model, the y component appears to have the smallest quantum
H,0/D,0 ratio, whereas in the TIP4Pew model it is the z component that is smallest.
However, since these differences are just at the limit of the estimated errors they may
well represent numerical noise. This is consistent with the fact that in the TIP4P results
all the components had essentially the same quantum H,O/D,0 ratio (see Table 7.2).
Importantly, the results show that, independent of the model chosen, the H,O/D,0 ratios
of the self-diffusion coefficients calculated through quantum simulations are in much

better agreement with experiment than the values determined classically. This indicates
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that the present quantum simulations, in comparison with the classical calculations, make
a significant improvement in relation to the description of the microscopic dynamics of

the system.

Table 7.6. Molecular and collective (dielectric) relaxation times (in ps) for the SPC/E and
TIP4Pew water models.

System T 75 Tp
Class H,O 4.14+0.03 1.405+0.005 10+1
Quant H,O 2.63x0.03 0.871+0.005 6=1
‘ Class D,0O 4.80+0.03 1.620+0.005 121
SPC/E

Quant D,O 3.53+0.03 1.172+0.005 10=1

Cl (D,0O/H,0) 1.16 1.15 1.2

Qu (D,0/H,0) 1.34 1.34 1.7
Class H,O 4.28+0.03 1.462+0.005 11x1

Quant H,O 2.42+0.03 0.811%0.005 6x1
Class DO 4.80+0.03 1.631+0.005 10+1
TIP4Pew

Quant D,0 3.44+0.03 1.160+0.005 9+1

Cl (D,0/H,0) 1.12 1.12 0.9

Qu (D,O/H,0) 1.42 1.43 1.5

The effect of quantization in the dynamics can be estimated with the

D;’;“O" / D;;Z‘g ratio. The results obtained for SPC/E and TIP4Pew water are 1.56 and

1.69, respectively. These values are in very good agreement with previously reported
results [19] and with the TIP4P ratio of 1.53 (see Table 7.2). This agreement is further
confirmation of the relevance of the quantum mechanical effects in the microscopic

dynamics of liquid water.
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Table 7.6 contains the calculated values of several relaxation times for the SPC/E
and TIP4Pew molecular models. The classical and quantum molecular relaxation time
ratios obtained for these two models are comparable with the ones obtained for the TIP4P
water potential (see Table 7.3). For the three models, the quantum ratios are significanlty
larger than the classical ones, in agreement with the expected faster dynamics in the
quantum system. Once again, quantization significantly increases the relaxation dynamics
of the system, in agreement with the results reported above for TIP4P water (see Section

7.2).

7.3. TEMPERATURE DEPENDENCE

Changes in temperature can be expected to modify the influence of quantization.
In the path integral picture this is clearly seen by noting that in the limit 8 — 0 (high
temperatures) the imaginary time “trip” collapses to zero (since = -ifffi) and the
quantum mechanical partition function approaches the classical one (see, for example,
Equation 4.36). Alternatively, since quantization introduces a softening of the
intermoiecular interaction (see Sections 7.2.1 and 7.2.3), it has been asserted [12] that the
effects of quantization in the structural properties of a system are somewhat analogous to
raising the classical system’s temperature. In liquid water, in particular, Kuharsky and
Rossky [12] found the structural properties of quantum liquid water at room temperature
to be similar to the structural properties of classical water 50 degrees hotter. This analogy
turns out to be a useful way to illustrate the importance of quantization in liquid water. In

this section, the discussion focuses on two issues. The increasing importance of quantum
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effects with the decrease of the temperature, and the analogy between quantum effects

and temperature changes.

Table 7.7. Details of the classical and quantum liquid simulations of TIP4P water.

TEMP (°C) SYSTEM RUN LENGTH (ns) | DENSITY (g/cm3)
Class 2
-35 0.973250%
Quant 1
Class 1.6 b
-20 0.993490
Quant 1
Class i b
0 0.999868
Quant 1
' Class 0.4 .
- 25 0.997075
Quant 0.5
Class 0.4 b
50 0.988066
Quant 0.25
Class 0.4 b
100 0.958384
Quant 0.25

(a) from references [143,1441,(b) from reference [145]

Quantum and classical simulations were carried out on the TIP4P water model
over a range of temperatures, from 100 °C to —35 °C. The classical simulations were
realized with a standard molecular dynamics code and the quantum simulations were
performed via rigid body-CMD. The run length and the (experimental) densities used in
the simulations are given in Table 7.7. The values at 25 °C (results presented in Sections
7.2.1 and 7.2.2) have also been included for completeness. It is important to note that the
length in real time and of the quantum simulations at 0, -20 and -35 °C was 1 ns. To help

achieve these long runs, the evaluation of the forces and torques for each bead was
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performed in parallel in the simulation code by using the Open-MP protocol (Open-Multi

Processing protocol [142]).

The oxygen-oxygen radial distribution functions at —20°C and 50°C for classical
and quantum liquid water are presented in Fig. 7.15. The classical results reveal that there
is a very strong temperature dependence of the maximum of this function at 2.8-2.9A (see
also Fig. 7.5). Although both maxima in the classical results decrease with quantization,
the effect of the softening of the structure is more pronounced at the lower temperature.
At 50°C, while the classical goo(r) retains some structure, the quantum radial distribution
function exhibits only a “nearest neighbor” first peak, which indicates that structural
quantum effects are still significant at this temperature. The oxygen-hydrogen RDFs (not

shown) confirmed the observations made in Fig. 7.15.
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Figure 7.15. Oxygen-oxygen radial distribution function of liquid TIP4P water at —20°C and
50°C. The dotted, dashed, dashed-solid and solid lines correspond to the —20°C-classical,
~20°C-quantum, the 50°C-classical and 50°C-quantum simulation results, respectively.
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Figure 7.16. Oxygen-oxygen (a) and oxygen-hydrogen (b) radial distribution functions of
liquid TIP4P water at 0°C and 50°C. The solid lines correspond to the quantum simulation
results at 0°C while the dotted lines correspond to classical results at 50°C.

A direct examination of the analogy between quantum and temperature effects is
made in Fig. 7.16. In this figure, the RDFs from quantum simulations at 0°C are
compared with the RDFs of classical liquid water at 50°C. The functions exhibit very
similar behaviour, in agreement with Kuharsky and Rossky’s observations [12]. It
constitutes clear evidence that quantum effects in liquid water are significant. The
quantum oxygen-oxygen RDF at 0°C has a slightly higher maximum at ~2.8 A in
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comparison with the classical oxygen-oxygen RDF at 50°C. The first peak in the
quantum oxygen-hydrogen RDF at 0°C, however, appears shifted slightly towards larger
radii in relation to the classical RDF at 50°C. These differences suggest that, although

the analogy is qualitatively valuable, its quantitative implications may change with the

property under examination.
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Figure 7.17. Average intermolecular potential energies in kJ/mol as a function of
temperature. The solid squares are values from the quantum simulations and the open
squares are the classical results.

The values obtained for the average potential energy in the classical and quantum
simulations are plotted in Fig. 7.17 as a function of temperature. At all temperatures, the
quantum energy is higher than the classical one, and the difference between them
increases when moving towards lower temperatures. Interestingly, the energy difference,
quantum-minus-classical, grows almost linearly in this temperature range indicating a

consistently smaller heat capacity for the quantum system in agreement with Kuharsky
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and Rossky results [12]. It is easily observed from Fig. 7.17 that the average energy from
the quantum simulation at —35 °C is very similar to the classical result at 25 °C,
suggesting a temperature “shift” due to quantization of 60 °C for this property. This
observation agrees with the analogy between the impact of quantum effects on the
equilibrium or structural properties and an apparent temperature increase [12], although

the shift is somewhat larger than the ones found in the RDF comparisons (Fig. 7.16).

The differences between the classical and quantum systems arise as a
consequence of the quantum mechanical molecular (orientational) uncertainty of the
quantum water molecule. Therefore, it is interesting to pose the question “how does the
quantum mechanical uncertainty in liquid water change with temperature?” It can be read
in virtually any textbook on the subject (see, for example, [1-3]) that the quantum
mechanical uncertainty of a particle’s coordinates (for example, in an atomic system) is
expected to grow when temperature is lowered. A simple and general rationale for this
behaviour is that a lower average kinetic energy means a lower uncertainty in momentum
and, as a consequence, a higher uncertainty in the particle’s position. This analysis is
strictly valid only for systems composed of weakly interacting particles. However, a
decrease in temperature will lead to an increased order and, in a system with relatively
strong interactions, this effect may be quite substantial. In such circumstances, the
potential energy may become sufficiently influential such that the quantum mechanical
uncertainty does not increase with the lowering of the temperature, but in fact remains

constant or even decreases.
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Figure 7.18. Probability distribution of the bead-centroid angle for ice Th at —~38°C (dotted
line) and liquid water at —35°C (solid line).

Let’s begin an exploration of the above mentioned question for water. Fig 7.18
displays the probability distribution of the bead-centroid average angle for ice-th and
liquid water at —38°C and —35°C, respectively. The details of the application of the rigid
body-CMD methodology to ice Th are discussed in the next chapter (although they are
very similar to those presented in section 7.1); the ice Th results are included in Fig. 7.18
as they are of particular relevance to the current discussion. Specifically, it is apparent
from those distributions that the molecular uncertainty is smaller for ice Ih than it is for
water at essentially the same temperature, indicating a significant influence of the local
molecular environment on the magnitude of the quantum mechanical orientational

uncertainty.
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Figure 7.19. Estimated molecular uncertainty of the water molecule in quantum liquid water

as a function of temperature (circles). The graph includes the estimated value for ice Th at
-38°C (square).

The basic shape of the probability distributions of the bead-centroid angle in
liquid water at other temperatures is essentially identical to those shown in Fig. 7.18 and
as circles in Fig. 7.7. Thus, it is more convenient simply to use mean values of these
distributions as a comparative measure of the molecular uncertainty. Fig. 7.19 reports the
behaviour of the quantum mechanical uncertainty of the water molecule (using the
average values of the corresponding distributions) as a function of temperature. Also
included in Fig. 7.19 is the value of molecular uncertainty for H>O ice-Ih at —38°C. In
this figure, we observe the expected increase in the quantum mechanical uncertainty
when going from 100 °C to about 0 °C; it is followed by a decrease of the quantum

mechanical uncertainty on further lowering of the temperature from about 0 °C to -35 °C.

162



This behaviour may be described as a previously uncharacterized anomalous property of
water. The effect of diminishing the quantum mechanical uncertainty at lower
temperatures is hypothesized to be due to the increasing influence of the local molecular
structure, that more than offsets the direct influence of lower temperature. It is remarked
that a similar explanation is used to account for the density maximum exhibited by water

[146].
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Figure 7.20. Dependence of the estimated molecular uncertainty of the water molecule in
quantum liquid water as a function of the local structural parameter S, at —35°C.

In order to test this hypothesis, the impact of the local molecular environment on
the quantum mechanical uncertainty can be directly examined. For this purpose a local

tetrahedral order parameter, denoted S, , is introduced. It is given by [147]

3 3 4 12
S, =522[cos(y,m)+-§] , (7.7)
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lth

where y,, is the angle subtended at the central atom between the /™ and m™ bonds and

the factor 3/32 normalizes S, to the range 0 < S, <1. This order parameter is small for

molecules with a very tetrahedral (or ice-like) environment and grows for less tetrahedral

molecular environments [147]; in fact, an ice Ih crystal at —38°C returns an §, value

lower than 0.01. Thus, within quantum simulation the molecular uncertainty can be

calculated for molecules with similar local environments (as measure by S,) at a

particular temperature. Fig. 7.20 shows the dependence of the molecular uncertainty as a

function of the tetrahedral order in liquid water at ~35°C. In this graph, the first point

represents the molecular uncertainty (in radians) for molecules with an S, value between
0 and 0.02, while the second point is the uncertainty for molecules with an S, value

between 0.02 and 0.04, etc. It is clear that, although the quantum mechanical uncertainty
does not have a simple dependence on the tetrahedral order, it does change monotonically
with it. Moreover, molecules in a more ice-like environment have, at the same
temperature, a smaller quantum mechanical uncertainty than molecules in more
disordered (or less tetrahedral) environments. This clearly explains why the molecular
uncertainty in H,O ice-Th is smaller than in H,O liquid water (see Figs. 7.18 and 7.19).
These results are further evidence of the notable strength of the water-water interaction in

liquid phase, and the importance of the water structure in the properties of liquid water.

Since the behaviour observed in Fig. 7.19 resembles the dependence of liquid
water density with temperature, and since the calculations have been carried out at the

experimental densities, one might suspect that the density is somehow responsible for the
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Figure 7.21. Dependence of the average molecular uncertainty (circles) and the average
potential energy (squares) as a function of the density of liquid H,O at —35°C.

curvature of the molecular uncertainty for TIP4P water. The results shown in Fig. 7.21,
however, demonstrate that, at least at —35°C, the molecular uncertainty is not
significantly affected by changes in density (within the density range of interest). The
potential energy, on the other hand, seems to approach a shallow minimum at about 1.0
g/cm’, consistent with behaviour previously observed in classical simulations of liquid
water [148]. In the quantum simulations presented here, the TIP4P water potential is
effectively modified by the inclusion of the orientational uncertainty, and hence this
extremum is shifted somewhat relative to that of previously reported classical simulations

[148].
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According to the results presented in Sections 7.2.2 and 7.2.3 (as well as
previously reported quantum simulations [19,20]) quantization has a significant impact
on the dynamical properties of simulated water at 25°C. It is important then to analyze
the temperature dependence of quantum effects in the dynamical properties of liquid

water.
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Figure 7.22. Self-diffusion coefficient as a function of temperature. The circles, squares, and
triangles, represent the classical, quantum and experimental values, respectively.
Experimental values taken from ref [104]. (The dotted lines are a convenient polynomial fit
to aid the eye).

Fig. 7.22 shows the values of the self-diffusion coefficients as a function of
temperéture obtained from the classical and quantum simulations and compares them
with experimental results [104]. It is clear that classical simulations with the TIP4P
model overestimate the experimental values at all temperatures. The results from the
quantum simulations appear still further above the classical values. It is apparent from

Fig. 7.22 that the classical values decay slightly faster than the experimental ones,
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whereas the dependence of the quantum results with temperature exhibit a curvature and

resemble the experimental data.

An interpretation of a systematically higher diffusion coefficient in the quantum
simulation in relation to the classical liquid deserves careful examination. In a classical
MD simulation the forces and torques acting on a molecule are just the appropriate

derivative of the classical potential evaluated at the position and orientation of the
molecule (i.e. F, = (V(r)/or)_ and T; = (aV(Q)/dQ), ). Within the rigid body-CMD

method, the forces and torques acting on the centroid are an average of the local (or

classical) forces and torques over the appropriate uncertainty and can be written as
F,; = (( ov(r)/or), ) o, ™ (F) s, (7.8)
and
T,; = ((ﬁV( Q)/ 09)9) 0, (T)ro, (1.9)

where AQ; denotes the orientational uncertainty associated with the centroid i (Equations
7.8 and 7.9 are written in discretized form in Equations 5.61 and 6.17, respectively). This
averaging process leads to the relationships IFCJlS IF,I and rfc, ,-I < r[; | In other words, the
centroid must experience smaller forces and torques (in magnitude) than a classical
particle would, assuming the same configuration and potential for each. This result

implies that as the interaction becomes non-local it undergoes an effective “smoothing”

(the effective centroid interaction potential could in fact be calculated by the appropriate
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integration of Equations of 7.8 and 7.9 according to, for example, Equations 5.56 and
5.34). Therefore, the centroid dynamics evolve on a surface with higher minima and
lower maxima, in comparison with the classical potential surface. Since this “smoothing”
only occurs at the scale of the molecular uncertainty, the higher minima can be
interpreted as a zero-point vibration effect and the lower maxima as an “effective
tunneling”. The latter is certainly very much connected to the enhanced dynamical

behaviour of quantum water in comparison with the classical liquid.

The impact of quantization can be judged by using the (Quantum/Classical)
diffusion coefficient ratios. Fig. 7.23 shows the behaviour of the calculated ratios as a
function of temperature, as well as the ratios obtained by Guillot and Guissani [20]. The
results ébtained via rigid-body-CMD agree remarkable well with the ones published by
Guillot and Guissani [20], especially considering that this previous work used a different
model potential and simulation method (see Section 4.2.4). It is clear from Fig. 7.23 that
the effect of quantization grows quite significantly as the temperature of the system
decreasés. These results suggest that while the diffusive motion in classical dynamics is
very significantly impeded by lowering the temperature, the dynamics in the quantum
system is less affected. In other words, while a quantum molecule with a certain kinetic
energy is able to escape from the local environment of its neighbours, the classical

molecule with that same kinetic energy would remain trapped.
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Figure 7.23. Diffusion coefficient ratio (Quantum/Classical) as a function of temperature.
The solid squares are the calculated results whereas the circles are from reference [20].

Further confirmation of the increasing importance of quantum effects at lower
temperatures can be found by calculating the appropriate orientational relaxation times.
Fig. 7.24 shows the classical and quantum relaxation times as a function of temperature.
The values of 7; and 1, were calculated from the corresponding dipole time correlation
functions as described in Section 7.2.2. Clearly, the relaxation times are significantly
diminished in the quantum liquid in agreement with the observed faster dynamics. In
addition, the quantum effect becomes more important at lower temperatures. Fig. 7.25
shows the (Classical/Quantum) relaxation time ratios for 7; and 7,. In spite of the
difference in the absolute values of 7; and 7, (observed in Fig. 7.24), these ratios for 7;

and T, exhibit a very similar behaviour. Fig. 7.25 indicates that, although the relaxation
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Figure 7.24. Classical and quantum relaxation times 7 and 7, as a function of temperature.
The squares and circles correspond to the classical and quantum results, respectively.

times grow for both the classical and quantum systems, their growth is much more
pronounced in the classical system than in the quantum liquid. This result is in agreement

with the observations made previously about “effective tunneling” behaviour.
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Figure 7.25. (Classical/Quantum) relaxation time ratio as a function of temperature. The
square and the circles correspond to T and T, ratios, respectively.

It is clear at this point that, in general, a classical simulation is able to capture the
qualitative behaviour of liquid water over a range of temperatures. Nonetheless, quantum
mechanical uncertainty is an inherent property of real water systems. The quantum
simulations presented in this work account for it by including an orientational molecular
uncertainty. The consistent increase of the relative effects of quantization in the
dynamical properties of liquid water upon supercooling indicates that while quantum
effects are important at 25°C, their relevance grows dramatically as temperature is
decreased. The orientational uncertainty of the molecule allows for “effective tunneling”
which enhances the water molecule’s ability to make and break hydrogen bonds as well

as to respond faster to an evolving local molecular environment.
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7.4. “EFFECTIVE TUNNELING” IN LIQUID WATER

One of the major difference between classical and quantum simulations of water
is that the latter allows for “tunneling behaviour”. As has been discussed in Sections 7.2
and 7.3, its impact on the dynamical properties of water is significant. It is then relevant
to ask —what is the nature of this “effective tunneling” in water? In this section, an
unambiguous identification of the changes that take place in the local structure of liquid

water due to quantization is carried out with the use of oxygen-oxygen spatial distribution

functions (SDFs), gOO(rij)' This identification will then afford us a more complete

characterization of tunneling behaviour in quantum liquid water.

In contrast to the “one-dimensionality” of the radial distribution functions, the

SDFs expand the radial and angular coordinates of the interatomic separation vector, r;;,

and essentially become spatial maps that directly characterize the local three-dimensional
structure surrounding molecules in the liquid [149]. The analysis of SDFs has been used
previously in liquid water [149] and its solutions [150] and has lead to a better
understanding of the local structure. Kusalik and co-workers [149, 150] have clarified a
number of structural questions in liquid water by examining in detail the oxygen-oxygen
and oxygen-hydrogen SDFs at several temperatures. They have verified the strong
tendency for tetrahedral coordination of the nearest neighbours and compared it with the
approximate reconstruction of the pair distribution function from scattering experiments
carried out by Soper [36,151]. Kusalik and co-workers [149-150] have also identified an

interstitial feature responsible for the additional coordination in liquid water. Since this
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interstitial feature joins (bridges) the second and first coordination shells, it can be
considered to be the result of the continually forming and collapsing of the local

hydrogen bond network and therefore coupled to the mobility in the liquid [149,150].

Insterstitial water

First neighbour

Second neighbour

First neighbour

Second neighbour

Figure 7.26. Oxygen-oxygen spatial distribution function of classical liquid H,O at 25°C.
The isosurface corresponds to gOO(rij) =14.

Fig. 7.26 shows the oxygen-oxygen spatial distribution function of liquid water at
25 °C represented at the isosurface 800(127)” 1.4. The figure indicates the first and

second neighbours features, as well as the region associated with interstitial water. It is
important to note that due to the existence of two symmetry planes (the molecular plane

and a plane perpendicular to the molecule that contains the C, molecular axis) each
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feature is only labeled once in Fig. 7.26. A central water molecule has been included to
help in the visualization of the local frame. The relationship between the interstitial
coordination and the dynamics in liquid water has been directly tested within the context
of classical MD simulations [150]. By artificially restricting the movement from a
hydrogen donor to an interstitial position the self-diffusion coefficient was reduced
roughly by a factor of 2, providing further evidence of the important role of interstitial

water in water dynamics.

“Effective tunneling”

Figure 7.27. Oxygen-oxygen spatial distribution functions of classical (red) and quantum
(semi-transparent blue) liquid H,O at 25°C represented by the isosurface g, (rij) =14.

Fig. 7.27 shows a comparison (by superposition) of the quantum oxygen-oxygen

(semi-transparent blue) SDF and the classical oxygen-oxygen (red) SDF of liquid
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H,0 obtained from quantum and classical simulations at 25°C with gy (rij)= 1.4. We

first obéerve that within the first neigbours features the blue colour dominates the outside
surface while the red colour dominates inside (only the red colour inside the H-donating
feature is visible in the perspective visualized). Therefore in quantum water the first
neighbours are slightly shifted towards larger radii than in the classical liquid. The region
of “effective tunneling” is also identified in Fig. 7.27. In this region the probability
density of the quantum system has attained a value of at least 1.4, whereas for the
classical SDF is below this threshold (see also Fig. 7.26). It is important to note that this
region is associated with interstitial water and therefore to the mechanisms of diffusion.
The existence of this region of higher probability density in the quantum liquid is a direct
result of an effective barrier lowering. 1t takes place in the quantum simulation as a result
of the inclusion of the quantum mechanical orientational uncertainty in the water
interaction and is responsible for the enhanced dynamical behaviour of the quantum

molecules (see Section 7.3).

It can be clearly seen in Fig. 7.27 that the “effective tunneling” in liquid water is
mainly localized to a specific region in front of and behind the plane of the molecule.
More precisely, although quantization has little effect on the appearance of the well-
known tetrahedral coordination of water, it does lower the barrier between a H-bond-
donating neighbour (single cupped feature below the central molecule) and the
“interstitial” water (cf. Fig. 7.26). Consequently, water molecules in the quantum liquid
have a greater tendency to “jump” from a first-neighbour position to a second-neighbour

location. These result underlines the importance of interstitial coordination in the
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structure of liquid water and confirms further the connection between interstitial water

and the mechanism for molecular diffusion [149,150].

“Effective tunneling”

Figure 7.28. Oxygen-oxygen spatial distribution functions of classical (red) and quantum
(semi-transparent green) liquid D,O at 25°C represented by the isosurface g, r;)=14.

In Fig. 7.28, the superposition of the quantum SDF and the classical SDF of liquid
D,0 at 25 °C is shown. The isosurfaces in this figure also correspond to 800(‘2',‘) =14,
allowing a direct comparison with Fig. 7.27. As expected, the “penetration” of the
quantum spatial distribution function into the low-probability classical region is more

pronounced in quantum H,O (Fig. 7.27) than in quantum DO, leading to a smaller region

of “effective tunneling” in the latter. This result is naturally in agreement with the lower
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molecular uncertainty of D,0 in comparison with H,O (see Sections 7.2.1 and 7.2.2).

“Effective tunneling”

Figure 7.29. Oxygen-oxygen spatial distribution functions of classical (red) and quantum
(semi-transparent blue) liquid H,O at 50°C represented by the isosurface g, ;j)=14.

Since the structure of liquid water changes with temperature, it is interesting to

look at “effective tunneling” at other temperatures. Fig. 7.29 shows the oxygen-oxygen
SDFs of classical and quantum of liquid H,O at 50 °C with the isosurface goo("ij) =14.
The spatial structure of classical water is different from the classical structure at 25 °C.
The second neighbour features have almost disappeared in comparison with classical
water at 25 °C at the same threshold value (Fig. 7.27). It can be clearly seen (especially

due to the perspective of the Fig. 7.29) that the first neighbours features are shifted
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slightly outward in the quantum liquid. This observation is also valid for figures 7.27 and
7.28, and is a manifestation of the weakening in the attractive interaction that occurs
when going from the classical to the quantum system. The region of “effective tunneling”

is very clearly seen in this figure, and appears narrower than the one evident in Fig. 7.26.

Figure 7.30. Left- Oxygen-oxygen spatial distribution functions of classical (red) and
quantum (semi-transparent blue) liquid H,O at 0°C. Right- Oxygen-oxygen spatial
distribution functions of classical (red) liquid H,O at 50°C and quantum (semi-transparent
blue) liquid H,O at 0°C. All isosurfaces are represented by 800(‘27) =143.

As was discussed in Section 7.3, the effects of quantization have been compared
to the effects associated with raising the temperature [12], however some differences are
naturally expected (see Fig. 7.16). Fig 7.30 shows the oxygen-oxygen SDFs of quantum
liquid water at 0°C (left and right), as well as the oxygen-oxygen SDFs of classical liquid
at 0°C (left) and 50°C (right). All the isosurfaces in this figure are plotted at a threshold
of 1.43. The image on the left depicts the effect of quantization on the local structure of
water at 0°C, which is analogous to the effects described in Figs. 7.27 and 7.29 at higher

temperatures. The picture on the right compares the effect of quantization and the effect
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of temperature in the structure of liquid water (and so is analogous to Fig. 7.16). It can be
seen that the increase in temperature (going from the red-left to the red-right isosurfaces)
shifts the first neighbour features to larger separations very similar to the shift produced
by quantization. The gap between the interstitial and the H-donor first-neighbour features
also decreases when the temperature is raised although not to the same extent as
demonstrated by “effective tunneling”. The second neighbor features, on the other hand,
disappear on increasing the temperature of the system in qualitative agreement with the
diminished structure in the corresponding SDFs. However, the quantum SDF (on the left
of Fig. 7.30) exhibits some second neighbor features not apparent in the 50 °C classical

system.

Fig. 7.31 shows a slice of the classical and quantum oxygen-oxygen SDFs of
liquid H,O at —20 °C. Once again, the first neighbour regions are slightly displaced
towards larger separations in the quantum system with respect to the classical result. In
addition, one can see that the quantum mechanical tunneling analogous to that observed

at higher temperatures.

The spatial distribution function is related to a free energy by the well-known
relationship [2]; AF = —(1/8)Ing(r), where AF is the change in free energy associated
with the displacement of a molecule initially at infinity to the position r. Therefore, by
knowing the SDF values across the tunneling region, the free energy barrier can be easily
estimated. The values of free energy barrier in the classical and quantum systems are

plotted as a function of temperature in Fig. 7.32. It is clearly seen that the quantum
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Figure 7.31. A slice of the superposition of the oxygen-oxygen spatial distribution functions
of classical (red) and quantum (semi-transparent blue) liquid H,O at -20°C with a threshold
of 1.13.

system has, at all temperatures, an effective barrier lower than the classical one, in
complete agreement to the concept of tunneling. Additionally, it is observed that the
values of the classical system grow more rapidly with decreasing temperature than the
quantum results, again confirming that tunneling is more significant at lower

temperatures.
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Figure 7.32. Free energy barrier associated with molecular displacements across the

tunneling region in classical (circles) and quantum (squares) liquid water as a function of
temperature.

Finally, it is important to point out that, since rotational and translational motions
are very strongly coupled in liquid water, the orientational uncertainty associated with the
molecule has a strong influence on its translational behaviour. Therefore, the low inertia
moments of the water molecule cause the molecule to diffuse in a way that is

(qualitatively similar but) quantitatively different from its otherwise classical behaviour.
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8. QUANTUM ICE Ih

In the previous chapter the rigid body-CMD method was applied to the study of a
variety of properties of liquid water. In this chapter, this method is used to study the most
common (terrestrial) form of ice, ice ITh. The purpose is to demonstrate further the utility
and versatility of the rigid body-CMD methodology, as well as to investigate quantum
effects in high temperature ice. The chapter is organized as follows. In Section 8.1, the
results from parameterization tests are presented. Section 8.2 investigates the differences
between classical and quantum simulations of ice Th at 220 K for three different rigid
water models. Section 8.3 analyses the influence of temperature on quantum and classical
simulation results in the range from 160 K to 235 K. Finally, a preliminary study of

classical and quantum melting of ice Ih is presented in Section 8.4.

8.1. SIMULATION DETAILS AND PARAMETERIZATION

The classical simulations were carried out using a standard MD code, starting
from an initial ice Th crystal containing 360 water molecules (45 hexagonal unit cells) at
the appropriate density. The disordered proton arrangement of the initial configurations
was assigned using BF rules [152] such that the total dipole moment of the sample was
less than 5% of its maximum possible value. The Ewald method [4] was used with
conducting boundary conditions to handle the electrostatic interactions, with periodic
boundary conditions to simulate an infinite system. The quantum simulations were
carried out according to the rigid body-CMD methodology where the final classical ice

configuration was the starting point of the quantum calculations (as in Chapter 7). The
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bead dynamics were again controlled with a Nose-Hoover chain [47] thermostat of length
4. The imaginary time sampling was carried out with a time step of 0.5 fs with inertia
moments (for each axis) on each bead twice that of the real molecule. The quasi-adiabatic
implementation employed 3 imaginary steps on each classical step. In all cases, the
starting lattice was allowed to relax at constant temperature and pressure for 10 ps. Zero
pressure was applied using an Andersen barostat [48] in x, y and z directions to try to
avoid any stress in the lattice structure. After the equilibration period, the barostat was
turn off for the constant temperature and density production runs. The time steps used in

the classical and quantum simulations were 1 fs and 0.125 fs, respectively.

Since an extensive analysis of the parameters required for quantum simulations
was carried out for the liquid calculations (some of which are presented in Section 7.1), it
is possible to take advantage of this work by exploring the parameter space in the vicinity
of these previous values. The set of parameters includes the relaxation time of the Nose-
Hoover chain [47] thermostat, the bead inertia moments and imaginary time step size, the
number of quantum steps per real time step, the real time step size, and the number of
beads. Considering that classical simulations of liquid water and ice are technically very
similar, it is reasonable to expect that, in general, the parameters used in the quantum
liquid simulations will be very similar to the ones required for the simulation of quantum
ice. This hypothesis was verified by a number of tests which demonstrated that the results
were independent of the parameter value chosen within a reasonable range of the

parameter space. Some of the results obtained in those tests are presented below.
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Due to the differences in temperature between the liquid simulations of Chapter 7
and the ice simulations of this chapter, as well as the distinctive structure and dynamics in
the liquid and solid phases, runs with 5, 6 and 7 beads were carried out at 160 K (the

temperature of the coldest ice simulated in this work).

9,,()

r(A)
Figure 8.1. Convergence of the oxygen-oxygen radial distribution function for quantum H,O
ice Th (at 160 K) with respect to the value of the discretization parameter P. The results

represented by a dotted line and a solid line correspond to the values P=5 and 6,
respectively.

Fig. 8.1 shows the oxygen-oxygen radial distribution function of quantum H,0O
ice Th obtained in quantum simulations using 5 and 6 beads. As can be clearly seen, the
functions are essentially identical (and identical to the result for P=7, not shown). This
observation is further confirmed with the oxygen-hydrogen radial distribution functions
shown in Fig. 8.2. It is also apparent that the radial distribution functions of Fig. 8.1 and

8.2 are much more structured than the ones obtained in the liquid simulations, in
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agreement with the expected ordered arrangement of the molecules in ice in relation to

liquid water.

9,0
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Figure 8.2. Convergence of the oxygen-hydrogen radial distribution function of quantum
H,0 ice Th (at 160 K) with respect to the value of the discretization parameter P. The results

represented by a dotted line and a solid line correspond to the values P=5 and 6,
respectively.

F ig 8.3 shows the linear velocity time correlation functions obtained in quantum
simulations of ice Ih at 160 K with P=5 and P=6. It can be observed that the functions are
identical within their statistical errors. Additional comparison with other properties
confirmed that P=5 provided converged results. Consequently, all quantum simulations
were carried out with 5 beads. This result is not as surprising as it may first appear since
in Section 7.3 it has been already seen that the molecular uncertainty of ice at 235 K was
significantly lower than those of liquid water between 238 K and 373 K. As will be seen
later on in this Chapter, the molecular uncertainty of ice in the temperature range of

interest always remains smaller than that of liquid water.
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Figure 8.3. Convergence of the linear velocity time correlation function for quantum of H,O
ice Ih (at 160 K) with respect to the value of the discretization parameter P. The results

represented by a dotted line and a solid line correspond to the values P=5 and 6,
respectively.

8.2. QUANTUM EFFECTS AND MODEL COMPARISON

This section discusses the results obtained in classical and quantum simulations of
ice Th at 220 K on three rigid water models; TIP4P [61], SPC/E [67] and TIP4Pew [68]
(the same models used in Chapter 7 to study liquid water). An analysis on the structural
properties including radial and spatial distribution functions, energy and molecular
uncertainty is presented first. This is followed by a discussion of the linear and angular

velocity time correlation functions.
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Figure 8.4. Oxygen-oxygen (a) and oxygen-hydrogen (b) radial distribution functions of

classical and quantum TIP4P ice Ih at 220 K. The results represented by dotted and solid
lines correspond to the classical and quantum simulations, respectively.

Fig 8.4 shows the oxygen-oxygen and oxygen-hydrogen radial distribution
functions of classical and quantum simulations at 220 K with the TIP4P water model.
The oxygen-oxygen radial distribution functions (classical and quantum) exhibit a
maximum at 2.72 A in very good agreement with the experimental oxygen-oxygen
distance of 2.759x0.002 A at 223 K [153]. Both classical and quantum simulations gave

very similar values for these distances. As can be clearly seen in both functions, quantum
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ice exhibits decreased maxima and slightly raised minima, and thereby is less structured
than classical ice. It is also noted that, the first peak in the oxygen-oxygen and oxygen-
hydrogen RDFs is noticeably diminished by quantization. The maximum at about 4.6 A
in the oxygen-oxygen RDF, as well as the minimum at about 3.5 A in the oxygen-
hydrogen RDF, are slightly shifted outward in the quantum result compared with the
classical. Taking into account the scale difference in the plots of Fig. 8.4, one concludes
that the overall effect of quantization in both functions is comparable. On the other hand,
since the spatial correlation in a crystalline structure has a much longer range than in
liquid phase, the differences between classical and quantum ices are still noticeable at
distances of about 7 A, in contrast to the much shorter ranged structural effects seen in

liquid water.

Fig. 8.5 shows the results obtained in classical and quantum simulations of SPC/E
ice Ih at 220 K. Interestingly, although the classical oxygen-oxygen RDF is very similar
to the one obtained in the classical simulation of TIP4P ice (Fig. 8.4) the classical
oxygen-hydrogen RDF indicates that there are notable differences between the classical
TIP4P and SPC/E ices. Indeed, the peaks at about 3.9 A and 6.0 A, clearly noticeable in
the claSsical TIP4P oxygen-oxygen RDF in Fig. 8.4, are much smaller in the classical
SPC/E oxygen-oxygen RDF. The oxygen-oxygen and oxygen-hydrogen distances are still
similar to the ones obtained with the TIP4P model and experimentally [49]. As in the
TIP4P results, the softening of the structure when going from classical to quantum
simulations is apparent. It is also apparent that the softening of the structure due to

quantization extends over many angstroms. The results presented in Fig. 8.5 are
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qualitatively similar to the ones obtained by Garret and co-workers [16] using PIMC

simulations of Ice Th at 240 with the SPC model (see Section 4.2.3).
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Figure 8.5. Oxygen-oxygen (a) and oxygen-hydrogen (b) radial distribution functions of

classical and quantum SPC/E ice Th at 220 K. The results represented by dotted and solid
lines correspond to the classical and quantum simulations, respectively.

In Fig. 8.6, the radial distribution functions obtained in classical and quantum

simulations of TIP4Pew ice at 220 K are presented. The results are very similar to those
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obtained with the TIP4P water model shown in Fig 8.4. The effects of quantization are

comparable to those described previously in Figs. 8.4 and 8.5.
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Figure 8.6. Oxygen-oxygen (a) and oxygen-hydrogen (b) radial distribution functions of

classical and quantum TIP4Pew ice Th at 220 K. The results represented by dotted and solid
lines correspond to the classical and quantum simulations, respectively.

Fig. 8.7 shows the oxygen-oxygen spatial distribution functions of classical and

quantum TIP4P ice Ih at 220K. The isosurfaces correspond to goo(r,-j)= 2.8 and only

include the first neighbour features. The structural manifestation of the quantum effects

on the first neigbours is relatively small. We can see a slight shift outward of the H-
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accepting feature. However, the most notable effect is on the region that joins both H-
donating features where the quantum distribution “penetrates” slightly on the region with
classical lower probability. This result indicates that the motion of the water molecule in
the quantum lattice is slightly less restricted than in classical ice and is in agreement with
the observation (made from Fig. 8.4) that the former is a less structured solid. The
quantum effects here, however, are far less dramatic than in liquid water because

molecular diffusion in ice is absent.

Figure 8.7. Oxygen-oxygen spatial distribution function of classical (red) and quantum
(semi-transparent blue) TIP4P ice Th at 220 K. The isosurfaces correspond to g, (rij) =28

In the figure only the first neighbour features (r;<3.5 A) are shown.
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A quantitative comparison of the impact of quantization upon simulated ice at 220
K for all three models is presented in Table 8.1. The TIP4P water model exhibits the
largest relative energy shift followed by the TIP4Pew and the SPC/E models. These
results are in agreement with the observed trends in liquid water at 298 K (see Tables 7.1
and 7.4). The molecular uncertainty exhibits somewhat less model dependence than that
found in liquid water simulations. It is important to note that the energy shifts and the
molecular uncertainties observed for ice are consistently smaller than the corresponding
values obtained in liquid phase (see Table 7.4). According to the results presented and
discussed in Section 7.3, this is a consequence of the strong interactions between water
molecules, which prevents the beads from “taking advantage” of the effective weakening
of the harmonic (bead-bead) interaction (see Equation 6.13) implied in the lowering of
temperature. It is noted that the relative shift in energy obtained from PIMC simulations
of the SPC water potential at 220K by Garret and co-workers [16] is larger than the

values calculated in this work.

Table 8.1. Intermolecular potential energies (in kJ/mol) and quantum molecular

uncertainties (in degrees) obtained in the classical and quantum simulations of three water
models at 220 K.

Model Energy Relative shift (%) Quantum
Classical Quantum Uncertainty
TIP4P -50.84+0.02 -47.49+0.02 6.6 10.2
SPC/E -55.28 -52.44 5.1 9.8
TIP4Pew -58.48 -55.01 59 10.0
SPC* -50.6 -46.0 9 -

(a) PIMC results from reference [16]
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Figure 8.8. Components of the linear velocity time correlation functions for classical and
quantum TIP4P ice Th at 220 K. The results represented by the dotted and solid lines
correspond to the classical and quantum simulations, respectively.

The present rigid-body-CMD methodology allows the calculation of
(approximate) quantum time correlation functions. Fig. 8.8 shows the components of the

velocity time correlation function obtained in classical and quantum simulations of TIP4P
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Figure 8.9. Fourier transform of the components of the linear velocity time correlation
functions for classical and quantum TIP4P ice Ih at 220 K. The results represented by dotted
and solid lines correspond to the classical and quantum simulations, respectively.

ice at 220 K. In the quantum functions, the maxima and minima are displaced slightly

towards longer times with respect to the classical functions. This behaviour is particularly
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noticeable in the y component. Quantum effects are better observed in the power
spectrum of these functions plotted in Fig. 8.9. Since these power spectra are directly
related to the translational motions of the centers-of-mass, the peaks shown in Fig. 8.9
have been previously identified experimentally by incoherent inelastic neutron scattering
experiments [154] and have also been reported in classical molecular dynamics
simulations of ice Ih [155,156]. The low frequency peak corresponds to the transverse
acoustic phonons, the intermediate region to the longitudinal acoustic modes, and the
high frequency peak to the optic modes [154,155]. The overall shape of the spectra agrees
reasonable well with experiment [154]. The effect of quantization is manifested in a
rather small, but consistent, shift to lower frequencies, and appears slightly more
pronounced on the y component. Since the y axis is perpendicular to the molecular plane,
this result is congruent with some of the observations made in Fig. 8.7 about a more
pronounced quantum effect in the H-donating features of the local molecular structure.

The shape of the classical and quantum spectra remains otherwise about the same.

The components of the angular velocity time correlation functions were also
computed and are shown in Fig. 8.10. A dampening in the functions is observed as well
as a displacement of the maxima and minima to longer times. The power spectrum of
these functions, which contains information about the librational motion of the water
molecule in the lattice, is given in Fig. 8.11. The broad bands observed are indicative of
the complexity of this motion. The x component extends to higher frequencies in
comparison with the other two components as a result of having the lowest inertia

moment. These librational bands have also been determined experimentally [154] and
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Figure 8.10. Components of the angular velocity time correlation functions for classical and
quantum TIP4P ice Th at 220 K. The results represented by dotted and solid lines correspond
to the classical and quantum simulations, respectively.

reported in previous classical molecular dynamic simulations [155,156]. The translational

bands can also be seen in Fig. 8.11 at lower frequencies with much lower intensity, which
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indicates that there is some weak coupling between translational and rotational motions in

ice.

30

P

%
(9]
o
3
3
)
3
o)
3
—

20

Intenéity

10

T T T T Y T T T T T T T T TR TR

—f
e

y-component
40

30

Intensity

20

10

;ll(r1|lxlllllrllvllllln!

SCTSSS O B
—

30 Zz-component

20

Intensity

10

AN ETEENS ETE RS R RN NSNS E Wl WS W)

200 400 600 800 1000 1200
freq (cm™)
Figure 8.11. Fourier transform of the components of the angular velocity time correlation

functions for classical and quantum TIP4P ice Ih at 220 K. The results represented by dotted
and solid lines correspond to the classical and quantum simulations, respectively.

o
o?llllslllo]lll!llllIllllllllll‘ll]l

197



The effect of quantization, a 30-50 cm™ shift to lower frequencies, is much more
pronounced in these rotational functions than in the power spectra of the translational
motion (see Fig. 8.8). This is, however, expected because the orientational coordinates
are directly affected by quantization. The shift, on the other hand, seems to be
comparable for all three components. To the best of the author’s knowledge, these shifts
have not been previously reported in the literature. They can only be calculated via path
integral simulations (due to the fact that they are associated with the proton uncertainty),
however equilibrium path integral calculations do not contain real time dynamical
information. It is in these circumstances that the concept of the centroid becomes most

useful.

The quantum effects on the lattice vibrations were also examined for the SPC/E
and TIP4Pew models. The power spectra obtained for classical and quantum SPC/E ice at
220 K are presented in Figs. 8.12 and Fig 8.13. Fig. 8.12 displays the power spectra of
the components of the linear velocity time correlation functions, whereas Fig. 8.13 shows
the corresponding power spectra of the components of the angular velocity time
correlation function. The results are again very similar to those obtained for the TIP4P
model. There is a shift to lower frequencies that is much more pronounced in the
librational band than the one experienced by the lower frequency modes. The results for
the TIP4Pew model (not shown) are analogous to the ones presented above and are a

further confirmation of the reported behaviour.
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8.3. TEMPERATURE DEPENDENCE

It is interesting to analyze how temperature modifies the influence of quantization
in ice. The general behaviour expected according to quantum statistical mechanics (and
in particular in the path integral picture) was discussed in Section 7.3; as temperature
increases the quantum effects become smaller. In this section, the results from quantum
and classical simulations of ice Th carried out with the TIP4P water model over a range of

temperatures from 160 K to 235 K are presented.

The oxygen-oxygen radial distribution functions of ice Th at 160 K and 235 K for
classical and quantum liquid water are presented in Fig. 8.14. The maximum of the first
peak, at about 2.8 A, exhibité strong temperature dependence in the classical functions, as
well as in the quantum results. The influence of quantization is apparent at both
temperatures. While the changes in the first peak due to quantization are somewhat
similar at both temperatures, the changes in the second peak, between 4 A and 5 A, are
more pronounce at 235 K. Quantization, additionally, shifts these peaks slightly towards
larger distances. It is important to note that, overall, the effect of the softening of the

structure in this functions appears more pronounced at the higher temperature.

Fig. 8.14 shows the classical and quantum oxygen-hydrogen radial distribution
functions of ice Th at 160 and 235 K. Quantum effects, manifested as a softening of the
functions and as a slight shift of the main features to larger distances, are apparent at both

temperatures. Both effects are associated with a diminished attractive interaction in the
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Figure 8.14. Oxygen-oxygen radial distribution functions of liquid TIP4P water at 160 K (a)
and 235 K (b). The dotted and solid lines correspond to the classical and quantum,
simulation results, respectively.

quantum system in comparison with the classical ice. The effect of “structure-softening”
appears to impact specific structural features somewhat differently at different
temperatures, For example, the third peak (between 3.4 and 4 A), is more strongly

affected by quantization at the lower temperature, however, this effect in the fourth peak
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(at about 4.6 A) is more pronounced at 235 K. Consequently, the effects of quantization

on these functions were judged to be comparable.

T T

@)

g,

g (1

rA)
Figure 8.15. Oxygen-hydrogen radial distribution functions of liquid TIP4P water at 160 K
(a) and 235 K (b). The dotted and solid lines correspond to the classical and quantum,
simulation results, respectively.

The results obtained for the average intermolecular potential energies (in kJ/mol)

in the classical and quantum simulations of TIP4P ice Ih are plotted as a function of
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Figure 8.16. Intermolecular potential energy in kJ/mol as a function of temperature. The full
squares are the results from the quantum simulations and the squares are the classical results.

temperature in Fig. 8.16. Clearly, the intermolecular potential energy is higher for the
quantum simulations than for the corresponding classical ones for all the temperatures
studied. It is important to point out that whereas the absolute shift in energies is smaller
in ice than in water (see Fig. 7.17), described as an equivalent temperature shift it is
larger in ice (85 K vs 60 K for liquid water). The (Quantum-Classical) potential energy
difference for ice does not increase with the lowering of the temperature as in liquid
water, but in fact decreases slightly as can be seen in Fig. 8.17. This is indicative of a
higher heat capacity for the quantum crystal in comparison with classical ice. Fig. 8.17
indicates that, in the temperature range studied, the largest absolute quantum effects do
not occur in the lowest temperature ices, but in fact at an intermediate region where the

liquid and the solid phases meet. This result is in disagreement with Garret and co-
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workers [16], where it was noted that the impact of quantum effects in the energy grows
when temperature decreases. Moreover, at the temperatures where both phases coexist,

the quantum effects in the energy are bigger in the liquid phase than in ice (also see Fig.

8.22).

5 i 1 T T
8 45 | e
o
o
£ °
© .
e 4 | [ O R
L A
— [ N
= i .
oy i .
" N
g 35 | . -
z" & .
g
<) o

. .
3 L g g -
"’
25 i i 1 L X ] 2 1 L L I i 2 L L 1 1 i L n ]
150 200 250 300 350
TK

Figure 8.17. Quantum-minus-classical intermolecular potential energy difference (in
kJ/mol) as a function of temperature. The full squares are the ice results and the circles are
the liquid results (from Fig. 7.16).

It is reasonable to expect that the trends observed for the intermolecular potential
energy with temperature are, at least qualitatively, related to the molecular uncertainty. In
Fig. 8.18, the molecular uncertainty is plotted as a function of temperature, where this
graph also includes the results obtained in quantum simulations of liquid water (see
Section 7.3). Interestingly, the molecular uncertainty in ice decreases when the
temperature is lowered; this is also consistent with the previous observation that the

intermolecular potential energy difference decreases with temperature. According to the
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discussion in Section 7.3, this behaviour of decreasing molecular uncertainty when
temperature is lowered is a consequence of the strength of the confining potential

determined by the local molecular environment.
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Figure 8.18. Estimated molecular uncertainty of the water molecule in quantum ice Ih as a

function of temperature (squares). The graph includes the values for liquid water (dots) from
Fig. 7.19.

The dynamical behaviour was also extracted from the present ice simulations and
compared at different temperatures. The power spectra of the linear velocity time
correlation function of classical and quantum ice at 160 and 235 K are shown in Fig.
8.19. It can be seen that the higher frequency band shifts slightly towards lower
frequencies with increased temperatures. Quantization, on the other hand, also shifts the
spectra towards lower frequencies, and its effect is more pronounced in the higher
frequency bands than on the other features of the spectra at both temperatures. The power

spectra of the angular velocity time correlation function of classical and quantum ice Th at
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160 K and 235 K, shown in Fig. 8.20, reveals a consistent shift of their principal
(librational) band towards lower frequencies at both temperatures. The quantum effects

on these functions appear very similar at both temperatures.
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Figure 8.19. Fourier transform of the linear velocity time correlation function for classical
and quantum TIP4P ice Th at (a) 160 K and (b) 235 K. The results represented by dotted and
solid lines correspond to the classical and quantum simulations, respectively.
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Figure 8.20. Fourier transform of the angular velocity time correlation function for classical
and quantum TIP4P ice Ih at (a) 160 K and (b) 235 K. The results represented by dotted and
solid lines correspond to the classical and quantum simulations, respectively.
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8.4. CLASSICAL VS QUANTUM MELTING: PRELIMINARY RESULTS

In this final section, the results from “computer experiments” of ice melting are
presented. The discussion is intended to be a preliminary evaluation of the differences
between the mechanical phase transition that occurs when super-heated ice Ih melts

following a classical or a quantum dynamics.

Both “experiments” (classical and quantum) were carried out starting with a well-
equilibrated configuration of simulated ice Th at 235 K. The temperature was then
increaséd in 5 degrees increments, allowing for 2 ps of equilibration and 10 ps of
averaging at each step. This procedure was repeated until a phase transition was detected.
The point immediately before the identified phase transition, as well as those after it,
were equilibrated for a total of 40 ps and then averaged over 10 ps. This equilibration
period of 40 ps allows us to establish a Well-deﬁned mechanical phase transition
temperature, Tmpn, Where the super-heated ice remains crystalline over the observation
time at temperatures lower than Ty and is observed to melt for temperatures at or above
Tmph. The thermodynamic melting temperature, Tr, is the temperature at which the bulk
liquid and solid phases are in equilibrium. Thus, for our “melting experiment” T, would
correspond to the melting temperature where the transition occurs after an infinite
equilibration time. Therefore, these two temperatures must satisfy the relationship
Tmph>Tm, which implies that any calculated value of Tmpn Will be strongly influenced by

kinetic factors. An accurate determination of the thermodynamic melting temperature,
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would only be possible from a much more extensive simulation study, for example, of

heterogeneous systems [157,158].

T 1 1 L] T T T
08 s |
_____ . ’.___n
v
i A
-~ : H
b
o 06 | 4
ﬂ
8
(=)
04 | i
02 | i
A
..... P WU - S |
B g oo T
0 L Bope@ep gy @R B B e !
240 250 260 270 280 290 300
Temp (K)

Figure 8.21. Dependence of the value of the oxygen-oxygen RDF at 3.44 A as a function of
temperature for the classical and quantum melting of ice Th. The results represented by open
squares and solid squares correspond to classical and quantum simulations, respectively.

Fig 8.21 shows the value of the oxygen-oxygen radial distribution function at
3.44A obtained from appropriate series of classical and quantum simulations as a
function of temperature. The existence of a near-zero value in this function for ice is very
closely related to the essentially zero diffusion coefficient of the crystalline phase. In
liquid water, however, the oxygen-oxygen RDF has a minimum slightly less than 1 at this
distance. The radial distance 3.44 A demarcates a reasonable limit between the first and

the second coordination shells, a region that is crucially different in ice and liquid water.

. 44 . I .
Indeed, the integral 47p ji rzgoo( r)dr , which represents a coordination number, gives
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the values 4 and about 4.5 for ice and liquid water, respectively. This extra-coordination
in the liquid is due to the interstitial water [149] (see Section 7.4). The parameter
goo(r = 3.44) was used first by Garret and co-workers in a PIMC simulation of ice Ih

melting [16].

According to Fig. 8.21, the mechanical phase transition occurs just above 290 K
in the élassical simulation and just above 255 K in the quantum “experiment”. This
difference of about 35 degrees should be an upper bound of the expected shift of the
thermodynamic melting temperature. This result is in qualitative agreement with that
reported by Garret and co-workers [16] on the SPC water model. They noted that
quantum SPC ice Th melts at 260 K and classical SPC ice Th at a 20 degree higher
temperature. Their mechanical phase transitions, however, were not as sharp as the ones
in Fig. 8.21 and lead them to conclude that the use of classical simulations in water for
temperatures of 300 K and above is justified. The results shown in this work however do

not verify this conclusion.

The results of Fig. 8.21 are further confirmed by Fig. 8.22. The latter figure shows
the intermolecular potential energy (in kJ/mol) obtained in the classical and quantum
melting “experiments” as a function of temperature. The figure also includes well-
converged values of the intermolecular potential energy obtained for classical and
quantum ice, as well as classical and quantum liquid water. These latter values, which are
the result of much longer simulations, serve to confirm the quality of the results obtained

in the melting processes. Fig. 8.22 verifies that the intermolecular energy difference
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Figure 8.22. Average intermolecular potential energies (in kJ/mol) as a function of
temperature for the classical (open squares) and quantum (solid squares) melting of ice Th.
The graph also includes well-converged values of classical (open triangles) and quantum
(solid triangles) ice at 235 K and classical (open circles) and quantum (dots) liquid water.

between classical and quantum ice is smaller in ice than in liquid water. This observation
is in agreement with the results presented in Section 8.3 but differs from the conclusions

of Garret and co-workers [16] on classical and quantum melting of SPC ice Ih.

Finally, it would seem that this (thesis) work would not be complete without the
inclusion of some illustrative examples of quantum and classical liquid water and ice
configurations. Fig. 8.22 shows two instantaneous molecular configurations, taken from
the classical melting runs at temperatures of 290 K and 295 K. Fig. 8.23, on the other
hand, shows two instantaneous molecular configurations from the quantum melting
experiment at 255 K and 260 K. Since the figures only represent an instantaneous

coordinate “measurement”, they do not necessarily reflect fully the inherent properties of

212



A e e e s el premAal s csb vl p s o el o el
T 3 S pa— .

L] 51 N

3 i

o &

o i

& 8]

6l . .

Figure 8.23. Instantaneous molecular configurations of classical ice Th at 290 K (lefi) and
the resulting liquid water at 295 K (right).
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Figure 8.24. Instantaneous molecular configurations of quantum ice Th at 255 K (left) and
the resulting liquid water at 260 K (right).

o

the system from which they have been taken (something that can only be achieved
otherwise with the appropriate statistical averaging). Nevertheless, the much colder
quantum ice seems to exhibit slightly more disorder than the higher temperature classical

ice, in agreement with expectations.
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9. CONCLUSIONS

In this thesis, the development of a CMD methodology for systems of rigid bodies
has been presented by introducing the new concept of an orientational centroid and by
designing an algorithm that samples homogeneously the quantum mechanical
orientational uncertainty. Due to the subtleties associated with the orientational space,
this development is by no means a direct or straightforward extension of the standard
CMD method. Since the only explicit requirement is the validity of a rigid molecular
model, this method is expected to be advantageous for quantum simulations of simple
molecular systems (such as HO, NH;, CHa, etc.) in condensed phase and near their
classical limit. The requirement of rigidity provides a very significant increase in
computational efficiency by taking advantage of the absence of vibrations and a lower
value of the discretization parameter P. The rigid body-CMD method permits the
calculation of equilibrium and dynamical bulk properties of the system; it should be
applicable to the study of a number of processes (such as melting, crystallization,
solvation, etc) where molecular vibrations might be considered of minor importance. It is
worth noting that although the applications carried out in this thesis employed only
empirical molecular models, this method could be implemented in conjunction with more
complex models or even with the appropriate quantum mechanical electronic evaluation
in an ab initio path integral centroid molecular dynamics simulation. Such an approach
could significantly benefit from the enhanced efficiency arising from the approximation

of rigidity as demonstrated in this thesis.
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Naturally, the rigid body-CMD method has some limitations, a detailed analysis
of which can be useful in order to identify the scenarios where the method can be used
and the expected accuracy of its application. One of the most important assumptions is
that the existence of an orientational centroid and the guarantee of its conservation imply
that the quantum time correlation functions can be calculated according to the CMD
prescription (see, for example, Equation 7.3). This assumption can be tested by doing a
comparative study on simple systems with this and other methods (like for example,
CMD). The implementation of the rigid body-CMD method as presented in Chapter 6
may also be improved. A suggestion along this line is to implement dynamical constraints
on the rotational equations of motion (Equations 6.20 and 6.21) based on a time
derivative of Equations 6.27-6.29 and the appropriate generalization for more than three
beads. The dynamics generated by the resulting equations of motion should be superior to

the dynamics of those implemented for this work (for example, it may precisely conserve

energy).

This thesis presents and discusses the results obtained from an extensive
application of the rigid body-CMD method on liquid water and ice Ih. Since this work
reports the first study where rigid body-CMD has been applied to the simulation of a
model liquid system in which the molecules have been treated as rigid bodies,
considerable attention was paid to the parameterization and characterization of the
methodology. Liquid water at room temperature was investigated using simple (rigid)
water models, primarily the TIP4P potential. The systematic examination of the isotopic

effects in the bulk properties of liquid water, reveals that this approach, has successfully
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reproduced the results for the equilibrium and dynamical properties of light and heavy
water as obtained from experiment and from previous path integral simulations. It is
shown that the removal of the vibrational degrees of freedom, accompanied by the
relatively low value of the discretization parameter (P=5) required for convergence, allow
the present approach to be significantly (at least 20 times) faster than standard CMD. The
technique, at the same time, recovers at a quantitative level essentially the full effect of
quantization observed previously in quantum simulations with flexible models. This also
implies that even within quantum dynamics, flexibility does not play a critical role in
determining the bulk properties of liquid water. Furthermore, as a result of the
considerably enhanced computational efficiency of the rigid-body CMD simulations, it
was possible to generate significantly longer real-time trajectories with the accompanying

reduction in the statistical errors in the properties of interest.

Explicit inclusion of the orientational degrees of freedom additionally allows a
quantitative analysis of the rotational uncertainty of the H,O and D,0 water molecules
and its effect on the components of the angular velocity time correlation function. As
expected, a notably larger impact of quantization was observed in H,O than in D,0. Its
inﬂuenge on rotational dynamics, particularly librational motion and dipole relaxation
times, is consistent with a "softening" of the intermolecular interactions. The
enhancement of the linear self-diffusion coefficient (by roughly 50%) at ambient
conditions is an indirect effect of quantization and reflects the importance of rotational-
translational coupling in the dynamics of liquid water. In addition, simulations with two

other models further verified the results obtained for TIP4P liquid water. After all, the
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quantum mechanical uncertainty of the protons is an inherent property of nature that
manifests itself in liquid water, and its effects should be reproducible for any water-like
molecular model (of reasonable quality). This study confirms that, whereas classical
simulations are unable to, quantum dynamical calculations, can within a rigid-body

approximation, reproduce the known isotope effects in water.

The simulations carried out at several temperatures allowed us to realize the
increasing importance of quantum effects in the equilibrium and especially in the
dynamical properties of water in the supercooled region. The curious behaviour of the
molecular uncertainty of water with temperature and its relations to the local molecular
environment was also uncovered. In addition, the phenomenon of “effective tunneling” in
liquid water was characterized in an unambiguous manner, and its relationship to the
mechanism of diffusion was revealed. The distinction between the impact of quantum

effects and the increase in the temperature was also established.

The investigation of the quantum effects in ice Th served to complement the liquid
water study. It was found that although the impact of quantization in energy was
equivalent to a temperature increase of about 80°C, the molecular uncertainty in ice Ih
was smaller than the one found in liquid water. This later observation was consistently
verified for three different models and (with TIP4P) at several temperatures. The shifts
associated with the impact of quantization on the low frequency modes were also
reported. In order to illustrate the simulation of a process where the rigid body-CMD
method might be of use to provide important physical insights, the preliminary results of

a comparative study of classical and quantum melting of ice Th were also presented.
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There are many other studies that can be performed. It would be interesting to
study the dependence of the molecular uncertainty in liquid water at higher pressures
where water behaves more like a “normal” liquid. It is also interesting to evaluate the
isotopic effects in ice by studying D,O, which would provide further possibilities of
comparison with experiments. The investigation of other (higher pressure) phases of ice
could also be of interest. The melting temperature of ice Ih could be calculated more
accurately by studying the coexistence of liquid water and ice. Liquid water
crystallization may also be an important (and technically achievable) process for which to

apply the rigid body-CMD method.

One of the most important conclusions from this work, that should be relevant for
the community interested in the simulation of liquid water and the development of water
models, is that the quantum mechanical uncertainty of the protons in water have an
important effect on the water properties. Therefore, a systematic improvement in the
description of liquid water by the use of increasingly accurate model potentials in
classical simulations or ab initio molecular dynamics approaches is, at the very least,
limited. Any such technique makes an explicit assumption of proton localization which

have been shown here to be non-negligible.

Finally, in the introductory chapter of this thesis an argument was made for the
utility of computer simulations. Among other advantages, computer simulations allow us
to create an artificial situation where the importance of the parameters of interest can be
tested. This thesis has made extensive use of this concept by “turning on” and “turning

off” an essential property of nature, the quantum mechanical uncertainty. This fictitious
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procedure has permitted a direct analysis of the importance of quantum effects in water.
It is my hope that this thesis has made some contribution in the understanding of liquid

water and ice and that the rigid body-CMD method will continue being applied in some

other relevant contexts.
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APPENDIX. QUATERNION PARAMETERS AND ROTATIONS

Mathematical properties of quaternions

A quaternion, as the name suggests, may be regarded as a 4-tuple of real numbers,

that is as an element of R* [127]. In this case one would write § = (99-91-92- %) Where
do> 491> 95 and g3 are simply real numbers or scalars. There is also an alternative way of
representing a quaternion, by defining its scalar part to be some real number g, and its
vector part by q, which is an ordinary vector in R?, q = ig; + jg, + kg3, with i, j, and k

as the standard orthonormal basis in R®. Then, a quaternion g is the sum [127]

g =qy +ig, + jq, +Kkg;. (A-1)
This quaternion will exhibit the following properties [127].

i) Equality

If g =q +ig, + jg, +Kq; and p = py +ip, + jp, +Kkp;, then ¢ = p if and only if

90 = Po> 91 = P1> 92 = P and g3 = p;. (A-2)
ii) Addition

g+P=qo+py +ilg +p)+ ila; + o) +klgs + ps3). (A-3)
iii) Multiplication

220



cq = cqqy +icq; + jeg, +kegs, (A-4)

where ¢ is a scalar.

Pd=pyqo -P'q+poq +9o P+ Pxq, (A-5)
i j k
where pxq=|p, p, ps| and since this term is not commutative, neither is the
9 % 4

quaternion product. The product of quaternions pg = ¥ may be written using the algebra

of matrices,

[T Po —P =Py —Pi} |9

" _ b P - D _ 7 (A-6)
nl |k, s o -p| %)

I3 P —-P, D P q3

It is important to notice that Equations A-5 and A-6 arise by the use of the relationship
i7 = j2 o g ijk = ~1, which implies that quaternions are a generalization of complex

numbers [127].
iv) Complex conjugate
The complex conjugate is defined as
9%=qo-iq, - J9; - kg, (A-7)

and using results above (Equations A-5 or A-6 and A-7) it is easily shown that
(pg)*=g*p*.
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v) Norm

The quaternion norm is given by

N@ =lgl=Va'd=vai +at + a5 +45 - (A-8)

It is clear that if a quaternion has norm 1 each of its components must have an absolute
values less than or equal to 1. Such quaternions are called urnit or normalized. 1t is easy to

show [127] that the norm of a product is equal to product of the norms,

N%( pg)=N 2 (p)N 2 (g). It then follows that the product of two unit quaternions is again a

unit quaternion.
vi) Inverse

The quaternion inverse is defined as

o~

~1-1
Civrrs (A-9)

It is obvious that if ¢ is a unit quaternion then its inverse is equal its complex conjugate,

Another useful way of writing a unit quaternion is [127]

q=qy+q=cosf +using, (A-10)
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where -1 <0 =<m and u = -|3—| = ——q—e Within this form, there is an explicit reference to a
sin

vector and an angle, the parameters that one expect to find in a rotation operator; the

similarity with the polar representation of a complex number is noteworthy.
Quaternion rotation operator and angular velocity

There is a one-to-one correspondence between vectors (say v) in R® and
quaternions with the form v = 0 + v [127]. Such quaternions are called pure quaterions.
In the equations below it will be assumed that the vector notation in a quaternion product

is implicitly represented by its corresponding pure quaternion.

It can be proven that a vector v in R3, written in a quaternion form V=0+v—=v,

suffers a rotation in this space when the following operator is applied [127]
W=gvq =R,(v), (A-11)

where ¢ is a unit (non necessarily a pure) quaternion and w =0 + w — w. With the aid

of some simple vector algebra it is possible to derive such a result,
W=gvq =q(v-q+qov-vxq)
=qo(V'D-q(goV- VX P+ go(GV -V *x P+ (V- QPG+ gx(gV-VXxq) (A-12)
where the rule for quaternions product (Equation A-5) has been applied. It is clear that,

9o(V'@D-q-(gV-vxq)=0, (A-13)
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which means that the quaternion w is just a vector. Now using

- 6) . (0)
=cos| — | + vsin}| = |, A-14
1 (2 2 (A-19)
where 6 1is related to the angle of rotation and u is the rotation axis, we may write

W=qov-2q,(vxq) +(V-qQ)q —qxVxq=

0)? 0\ . 6 . 6\* 6\
=|cos—| v-2|cos—||sin=|(Vx u) +|sin—| (v:@)u-|sin—| uxvxu
2 2 2 2 2

2

(eos®) v s [0d) & (-2)2 (-9)2.
—(cosz) v - (sin@)(vx u) + sin (v-uu- sin— v+ sin (v-u)u

2
= Z(Sin g—) (v-u)u - (sin 8)(v x u) + (cosf)v

= (v-wu - (sin@ X vxu) +(cosf)(v -(v-u)u). (A-15)

Equation A-15 is the well known rotation formula [128] of a vector v around an axis u
through an angle 6 (note that the rotation angle is twice the angle that appear in the

quaternion representation, Equation A-14).

It is now possible to find the time derivative of a quaternion [127]. Since any two
rotations can be written as a resultant one (Euler’s theorem [128]), then any two unitary
quaternions may be related by some transition quaternion. Therefore, we may relate g(¢)

and g(t + At) by
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gt + A = g AF (D), (A-16)

A A . . .\ .
where Ar(t) =cos(—-—2-0£) + v(?) sin(—zg-) is the incremental transition quaternion. Its

rotation angle is Ao about an axis defined by the unit vector v(t).

Consider an infinitesimal variation of the rotation angle,
AF @)= cos(éﬁ) + V(1) sin(—Aﬂ) =1+ v(t)—A—a-. (A-17)
2 2 2
Then,
qt+ A = c}(t)(l + V(t)-A-Zg) ,

and defining dq _ . 4i+AD-q()

, we obtain [127]

dj _ . AV _Gow

dt Aa—0  2At 2

(A-18)

where w(t) = is the angular velocity vector. In matrix form the derivative of a

v(iHAa
At

quaternion (Equation A-6) may be written as

— == 11 (A-19)
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If one defines an initial quaternion, ¢, as q = g +ig; — j¢, +kg; the formula A-19

transforms into

do do -@1 49 -493{|0
dg q 11 ¢ q -q3; 49 w
e A S P B A N e (A-20)
d |=q| 2|-% & 9o 9| ™2
g3 93 42 9 4o ] |ws
Solving for the angular velocity one obtains
0 90 9 92 ~4 9o
W — —
o9 49 9o 9 q q; ’ (A-21)
W, 4, 493 49y 4| |79
W 93 4, 4 9 qs

which can be transformed into a more convenient form after some matrix manipulations,

w 4 9% 9 ~4||%
w _ _ .
2| _ o 9 5 9 9| ‘.11 ' (A-22)
Wy 4 49 9% ~93] |49
0 q, 49 4G 4 %

Equation A-22, appearing as a natural consequence of the application of the mathematical
properties of quaternions, was derived by Evans (see Equation 27 in reference [129]) in a
different way; Evans uses the simplicity of the orientation metric as a guide to the
associated simplicity of the equations of motion. The definition of
g = q +ig; — jg, + kg3, used by Evans and here, is conventional. It is important to note

that the relationship
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4191+ 929, + 995 + 9.9, =0 (A-23)

has a clear physical interpretation, as the time derivative of the normalization property of
unit quaternions (Equation A-8). This equation appears added as a dynamical constraint

in Evans’s derivation [129].

Evans found [129,130] quaternion parameters to be more efficient than the
conventional Euler angles in the evaluation of the rotation matrix and their numerical
stability. The reason behind this fact is simple; the principal angular velocity is related to

the time derivatives of the Euler angles, ¢-6-y, as follow {128],

w; sin@siny  cosy O] |¢
|wy | = |sinfcosy -siny Of- 6 1. (A-24)
Wy cos @ 0 1] |y

Then, for example, when 6 =0 the orientation matrix is singular and its inverse does not
exist. Thus, although the rotational equations of motion expressed in Euler angles are

simple [128],

Li=T+ (1, - I)wyws
l‘a = T2 + (13 et 11)W3W1 (A‘ZS)
Ly = T + (1, - Bww,,

where Li is the time derivative of the angular momentum, 7; is the torque and /; is the

principal inertia moment about axis i, respectively, the singularities associated with the

use of Euler angles as generalized orientational variables are a severe drawback.
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In contrast, Equation A-22 (the quaternion analog of Equation A-24), which can
also be written as w =2-E-§, never fails because in order for E to be singular it is
necessary that q(f + ql2 + q22 + q;" =0 which severely violates the unitary character of the

quaternion.
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