Learning Dynamic Stereotypes for
Effective Autonomous Agents

By

W. Joseph Maclnnes

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
at
Dalhousie University

Halifax, Nova Scotia
December 2003

© Copyright by W. Joseph Maclinnes, 2003

3

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-89810-5
Our file Notre référence
ISBN: 0-612-89810-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

DALHOUSIE UNIVERSITY

INTERDISCIPLINARY STUDIES

The undersigned hereby certify that they have read and recommend to the Faculty of
Graduate Studies for acceptance a thesis entitled “Learning Dynamic Stereotypes for
Effective Autonomous Agents” by W. Joseph Maclnnes in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Dated: /specr;mbgr 19, 2003

External Examiner;

Research Supervisors:

Examining Committee:

Departmental Representative:

1i

DALHOUSIE UNIVERSITY

DATE: Dec 19 2003

AUTHOR: W. Joseph Maclnnes

TITLE: Learning Dynamic Stereotypes for Effective Autonomous Agents
DEPARTMENT OR SCHOOL: Interdisciplinary

DEGREE: Ph.D. CONVOCATION: May YEAR: 2004

Permission is herewith granted to Dalhousia Univmsﬁy to circuiate and to
have copied for non-commercial purposes, atits dlscretmn the above lile uponthe
requests of individuals or institutions.

Signéture of Author

The author reserves other publication rights, and neither the thesis nor
extensive extracts from it may be printed or otherwise reproduced without the
authors written permission.

The author attests that permission has been obtained for the use of
copyrighted material appearing in the thesis (other than brief excerpts requiring only
proper acknowledgment in scholarly writing), and that such use is clearly
acknowledged.

iit

Table of Contents

Listof Figures o i i i ittt e e e vi
Listof Tables i i vii
ABSIract e e viii
Listof Abbreviations e ix
Acknowledgments e X
Chapter 1: Introduction it iiiirinnnnennnnnnnn 1
Chapter 2: Background i 9
UserModeling ittt 9

] () 11, 1 PP 10
Machine learning forusermodeling oLl 15
Multiagent Systems0ttt inie i enneennennnns 17
Adversarial Modeling 19
Adversarial problemsolvingo liiiinLL, 20
Gender and spatialability Lol 24
Chapter 3: Proposal e e e 28
Dependent Variables il 34
Independent Variables il 36

Within Subject it 36

Between Subject e 37

Summary and Predictions i i 38
Software e 38

Human e e e 39

Chapter 4: Methods it iiananrnnann 41
. N 41

AgenS e i i s 45
Deterministic Finite-State Automata(DFA) 48

Neural Networkttt e e 51

Human e 55

Transfer Control Protocol (TCP) uiii i iiiiiinnann 56

Mixture Of EXPEFIS .. oo ettt e et i et enenennenaennns 58

Recursive Modeling i, 62
Experiment Design 65

v

Chapter 5: Resultsand Discussion 71

Overview and Descriptive Statisties 71
ACCUIACY ..ottt it ittt ittt ettt e ettt 72
Effectiveness Score it i 83
Experiment 1 o i i e 83

Software perspective i i i 89

Human perspective 91

Experiment 2 e 95

Believability Rating i 99
Experiment 1 i i 99

Experiment 2 e e 105

Combined Performance i, 106
Chapter 6: Conclusion i 110
Experiments ittt i e, 110
Software Perspective 110

Human Perspective uiiniiiiiiininiuinennennn 113
Contributions 115
Fature Work e 116
Appendix A - UML classdiagram i i 118
Appendix BSereen Shots 119
Appendix CSamplecode e 123
Appendix D Data transformation/training pseudo-code 124
Appendix E Agent Summaryt e e 125
Appendix F Definitions i 127
References e e 128

List of Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8§

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Figure 28
Figure 29
Figure 30
Figure 31

Comparison of MOE theory and implementation 32
Overhead of Hebb/Williamsmazeccoivinan.. 43
Multi agent interaction ottt i 47
DFAstatediagramcouitiiniiii it 49
Neural Net structureoin vt ittt et e i i ns 52
Prediction triangulation it 54
Standard deviations of cluster/stereotypesooht, 72
ANOVA foraccuracyoiiniiiiiiii i it inaans 76
Accuracies of algorithms with gendereffect 77
Accuracy data splitbycluster il 78
Accuracy with experience and gender interaction 80
Histogram of experiencecciiiiiiiniinnnneonns 81
Histogram of game completiontime, 85
Effectiveness with time by gender interaction 86
Histogram of completion time by gender 87
Effectiveness fortenalgorithms it 88
Four effectiveness diagrams with recursioneffects 89
Effectiveness for algorithmandgender 91
Gender by experience interactioniviiiiiii i, 92
Effectiveness vs Believability scatterplot 94
E2 Effectiveness withorderand time 97
E2 Effectiveness with algorithm and orderofmatch 97
E2 Effectiveness order of match and recursion 98
Effect of knowing and prior gaming withopponent 101
Believability of algorithms o i il 103
Believability, recursionand prior LAN 103
Believability, recursion and experience difference 104
Believability in experiment two acrossmatch 105
Various combined performanceresults 106
Combined performance by experience 107
Recursion, algorithm and network experience 108

vi

List of Tables

Table 1
Table 2

Neural net results

...

Divisionof cluster datacii ittt it

vii

Abstract

This research looks at novel combinations of machine learning techniques and models
of human performance to create software agents that were both efficient and believable. It is
the proposal of this dissertation that by using machine learning techniques that mimic cognitive
theories of game playing, opponent modeling and deception, that improvements can be made
with the performance of software agents. In addition, human traits will be examined as
between-subject variables to explore individual differences in this spatial environment.

Experiments were run pitting various combinations of human and software agents
against each other in duels within the virtual arena. Three different intelligent software agents,
each using three levels of recursive modeling were tested against human participants with three
dependent variables. Each algorithm was tested for base accuracy in predicting its opponent’s
position, its effectiveness in fighting a human opponent and, its believability in portraying a
human opponent (this last measure can be seen as a limited scope “Turing Test’).

It is interesting to note that the algorithm that performed the best on the accuracy
measure was not able to translate that result into effectiveness. The algorithm that modeled
human stereotyping and deception, however, not only performed far better on the measure of
believability, but on effectiveness as well. Due to the lack of a direct link between the three
measures, researchers and programmers should consider their objectives carefully before
choosing an algorithm for their agents. In addition to these software results, it was shown that
of the individual differences observed in this study, experience in spatial computer games

played a larger role in performance than the gender of the participant.

viil

List of Abbreviations

MOE Mixture of Experts

DFA Deterministic Finite-state Automaton
ANOVA Analysis of Variance

Al Artificial Intelligence

ML Machine Learning

ix

Acknowledgments

To Ray Klein, for creating an oasis of true learning within your lab. You showed me
what it means to be a scientist in every sense of the word. I will always remember the
friendship and trust you offered by letting a programmer in on your research. You will
continue to be a very big influence in my life and career for many years to come. To Norm
Scrimger, for being a great co-supervisor, and for making me sweat the details when I didn’t
want to. Sometimes the advice you appreciate most is the advice you disagree with. (And I
take it all back if you correct the grammar in this acknowledgment page...).

Many thanks to the rest of my committee, Evangelos Milios, Peter Gregson, and
Paddy McMullen. To Evangelos, thanks for being on my committee, for great advice, and
for going out of your way to make sure I always felt like I had a home at Computer Science.
To Paddy for the advice, understanding, and for giving me a home base in Psychology. Peter,
I am grateful for the perspective that you brought to my degree. Mike Jenkins for agreeing
to come to Halifax to be my External during a very busy time of the year. You’ve given me
some excellent questions to ponder in my future research. To Fay Cohen and Carolyn
Watters, I couldn’t have picked two better associate deans. You both made my years as an
interdisciplinary student enjoyable.

Special thanks to Irina, for being part of my work, my school and my life. I think you
are the only person who read my thesis that didn’t have to. I am looking forward to reading
yours. Brad, your thorough code testing saved me embarrassment on more than one
occasion. It meant even more considering how much you hate computer games. Tom (The
Bhudda), for always pointing out the obvious, especially when I couldn’t see it. (And for
reminding me it’s the journey, not the destination).

Tracy for advice, friendship, advice, and the occasional grad house beer when I really
needed it (and did I mention advice?). You paved the way by showing that it could be done
(and occasionally even how to do it...) Mary Ellen for being an awesome office mate, and
for reminding me to stick to what’s important both in and out of school. And Martin for
giving me such a cool nick name (Joey Mac in case anyone wants to start using it...). Save
me a seat in Belize if you get there first. Elizabeth for helping me when I really needed it.

To Patti, for occasionally having to organize yet another absent minded academic. To Susan

for helping me run off a little steam. Billy Schmidt and John Christie for paving the way for
the computer Science invasion to Ray’s lab. Billy, your friendship and ethical standards were
an inspiration throughout my degree. Kori for swapping stats help for clustering advice.

To Natalie, Ron and Terry; the friends of my youth who stuck with me. Thank you
for pretending not to be surprised by what I’ve been able to accomplish.

Special thanks to my mother, Ruth, and in memory of my father, Ron. They believed
in me when I was still skipping high school. To my Grandmother Ruth whose warm heart
and generosity has made her ‘Nanny Ruth’ to an entire lifetime of friends. In memory of my
Grandmother Muriel, I hope [still have half the wit and intelligence at 45 that she had at 90.
In memory of my Grandfather Bill, who always said I would either be a millionaire or in jail
by the time I was thirty. I'm still not sure which would have made him prouder.

Last but not least, special thanks to Lynn.

“Don’t let school get in the way of your education”, Mark Twain.

X

Chapter 1: Introduction

Research in Human-Computer Interaction (HCI) is unique in that it offers insight fromtwo
different perspectives. Not only does the software provide information about human traits, but the
human participants can shed light on the software algorithms. The goal of this dissertation is to
implement and test a variety of opponent modeling solutions in a novel multi-agent environment.
It is hypothesized that implementations which consider human modeling and deception will hold a
distinct advantage over otherimplementations, and that different factors may influence performance
depending on what criteria is used to measure the success of an algorithm. The software agents
will also be used to model human traits during these interactive duels. In particular, the more
advanced agents will be trained with regard to the current spatial task and recent literature on
gender and experience. Both human and software perspectives will be tested by observing duels
between a variety of human and software combatants in a virtual arena.

Traditional Human Computer Interaction (HCI) consists, in generic terms, of a command
by the human user, a response to that command by the software on a computer, and possibly some
sort of feedback to show the user the results of the action. For consistency, the user will hereafter
be referred to as a human agent and the software within which any agent resides, the environment.
An agent (or autonomous agent) is any entity that is capable of instigating an action in the
environment and perceiving the results of that action. This process of agent interaction would
repeat indefinitely until the program was shut down or the agent ceased entering commands.

Earliest computing machines relied on punch cards for this user input, but such input was

eventually replaced by keyboards and command line interfaces. With research into interface tools

2

such as the desktop and the mouse, graphic user interfaces allowed for more intuitive control of the
environment. Although environments have progressed a great deal in the way that they interact with
the agent, they still follow the basic flow of agent input, response and feedback.

Other changes in computing environments influenced the number of agents that could
interact in a single environment. The earliest punch card systems, of course, were restricted to a
single user and a single task at a time. Early command line and even GUT’s started off the same
way, but eventually progressed so that multiple users could performmultiple tasks at the same time.

The goal, however, was to maintain the illusion that any given human agent was the sole operator

ofa single environment whose focus was directed entirely by that agent. The usualscenario includes
creating multiple, virtual desktops for each of the human agents to control. Any shared resources
between these desktops are kept hidden from the users. It could be said that multiple programs,
processes and threads could easily be interpreted as agents in these environments. Even though
these multiple processes bore a strong relationto multiple autonomous agents in practice, they were
usually deemed successful if this nature was transparent to the user. Another key difference is that
these threads, while existing autonomously, were initiated (ultimately) by a single human user.

Multi-agent environments differ from typical interaction in a number of significant ways.
Two or more agents inhabit these environments, and both have the ability to independently interact
(inhabit, modify, perceive) with the environment at essentially the same time. The independence
is a key criterion, suggesting that neither agent has complete control of the environment since one
or more agents are changing that environment simultaneously. Given these conditions it is

impossible for an agent to completely predict the full results of its own actions, let alone those of

another agent.

Although some environments may allow for many agents withdiffering levels of control over
the environment, this research will be limited to such environments where all agents have equal
ability to change and observe the environment. There is no direct control over the environment,
since multiple agents may be attempting to change and interact with this environment, independent
of the goals and actions of the other agents. Secondly, multi-agent environments allow for
interaction between both hljman and software agents. Although a software agent ultimately had
its origins with a human programmer, it is still defined by its ability to interact with the environment,
independent of other agents. It has its own goals and objectives, and the same ability to sense the
environment and act upon it.

It is important to note at this point that not all environments have a true separation of agent
and environment as is suggested here. Programs can ‘cheat’ by allowing software agents access
to information that human agents could not know, and allow actions that are not possible. Some
environments do keep all agents on an equal footing, while for some it is only important that they
appear to do so. This research focuses on environments which treats all agents equally. This not
only offers a true comparison, but it also provides for a more modular, replaceable nature of the
agents. Although the process by which each agent arrives at its actions will clearly be different,
they are identical from the perspective of the environment.

Examples of this type of multi-agent system do exist throughout the history of computers,
but usually in very specialized systems where such interactions are common. Very early computer

games, such as Pong, allow for many combinations of both human and computer agents interacting

4

with little concern for whichis which. Both are capable of playing virtual ping pong, and both are
capable of simultaneously observing and effecting the state of the virtual table. The state of the
environment is not defined by the actions of either agent, but by a combination of both.

Large scale multi-agent domains first started appearing in the early days of the internet.
Multi-User Domains (MUDs) achieved a cult status among many when the internet was still text
based. Users would create agents with personalities to interact with other agents on-line. This
tradition continues today in the form of Massively Multiplayer Online Role Playing Games
(MMORPGs) that add virtual avatars and a healthy mix of human and software agents.

Although it is not the focus of this research, it is not hard to imagine a different theme for
the common desktop approach to traditional computing. An environment with obvious,
autonomous agents could transform the user into guiding the interface rather than controlling it.
New autonomous agents could be created to performtasks, and report once completed. Current
research has already begun on shared desktops that allow multiple human agents simultaneous
control over the same desktop environment.

Software agents become critical in all of these environments to maintain a minimum level
of interest and functionality. They can provide a way to communicate to the software environment
without destroying the feel of the virtual world (reporting a rules violation in an on-line ‘western’
to a software agent sheriff). Software agents are often provided as opponents in competitive
multiplayer games. They can also provide a base level of interaction when human agents are in
short supply.

Although game-like environments are the most popular multi-agent environments, they are

5

not the only ones. Training simulations often require the trainee to interact with others in the
leaming process. Simulated operating rooms require software patients that react like the real thing
and combat flight simulators require computer opponents to battle. On-line trading environments
where software agents are being used to improve on human stock predictions are also being
researched.

The world wide web itself can actually be seen as a very large scale multi-agent
environment. Human and software agents already browse, search and modify the web on a daily
basis. Since a multitude of agents are perceiving and affecting the web simultaneously, it is in a
constant state of flux and very hard to predict. The web contains examples of collaborative
interactions (a software search agent guiding a human agent) as well as numerous types of
competitive interactions (a virus agent trying to ‘fool’ an anti-virus program).

The contributions of this dissertation are as interdisciplinary as its origins. The tools
developed to make this research possible are no small part of what this dissertation offers to the
field. ‘OpenRT", the graphic engine developed to test the theories put forward is a fully functional,
open source environment for conducting cognitive research. Many options and modules were
developed and made available for this tool including two and three-dimensional environments, real
time components, basic physics, object loading, space partitioning, Fourier transforms, and cross-
platformand multiplayer capability. Although all of these modules were not used in the experiments
discussed in this dissertation, they are available components of the overall project. Experiments
in this dissertation make use of the three-dimensional engine, basic physics modeling and

multiplayer support. Although real time support was not added for various reasons, the ﬁming

capabilities proved moré than sufficient.

The other significant tool set developed for this research was a collection of Artificial
Intelligence (AT) and Machine Learning (ML) techniques used to control the autonomous, software
agents in the multiplayer game. Although not all techniques were novel in and of themselves,
combinations in which they were used demonstrate interesting possibilities for many of these
algorithms. The Mixture Of Experts (MOE) solution in particular goes through a number of stages
that take it fromraw observational data to a very effective agent’s ‘brain’. This process makes use
of unsupervised clustering algorithms to partition the data. These partitions were then used to
create the specialized experts used in the MOE. The neural network solution as well as the smaller
sub-experts are basic feed-forward/back-propagation neural nets whose input layers have been
modified to help interpret the temporal component of the opponent modeling. This dissertation also
demonstrates that these particular algorithms were not arbitrarily chosen. Cognitive theories on
game playing and success in opponent modeling among humans were researched and aided in the
choice of machine leaming solutions. Literature on stereotypes, deception and recursive modeling
have all played a role in the development of these solutions. The MOE in particular was chosen
as the more advanced modeling technique due to its high degree of overlap withthe processes that
are believed to be important in human opposition modeling.

Finally, but certainly not least, this research uses the tools described above to get a better
appreciation of the factors that are important in certain types of multi-agent environments. A
variety of human participants were tested and traits were recorded for each one. The

aforementioned algorithms (Neural network, MOE) as well as a simple Deterministic Finite State

7

Automaton (DFA) were used as the brain for software agents competing against humanagents in
game-like three-dimensional duelling arenas. Performance against all of these algorithms was
measured along with the recursive depth of the modeling. In addition to these controls, a number
of between-subject, independent variables were observed to determine their influence in these
multi-agent environments.

A significant contribution actually lies in the dependent variables chosen to measure
performance of the different algorithms and recursive levels. The first two measures were chosen
both as a tie-in to current literature and for their usefulness in many agent environments. The
accuracy of the algorithm, measured as the simple distance fromthe opponent’s predicted location
provides a straightforward measure of an agent’s capabilities. The effectiveness of an agent,
measured by its ability to defeat its opponent, is arguably a more meaningful measure, but also
more difficult to determine the cause of any success since it is influenced by factors outside of the
agent’s control. Finally the believability of an agent is a dependent variable that is rarely
measured, but very important in a number of situations. This research measures all three variables
since it may be just as desirable for a software agent to mimic a human’s performance as it is to
exceed it.

Not only will this research look at these performance measures with regard to all of the
variables mentioned above, but also to the relationships between the measures themselves. There
may be situations for which all three measures cannot be optimized simultaneously and in fact, may
even be conflicting. It is not hard to imagine a scenario where the most effective solution also

displays the least human-like behavior and vice-versa. Since human beings are not always the most

efficient, a perfect algorithm will not capture the natural variance inherent in human behaviour.

Chapter 2: Background

This dissertation calls on theory from a variety of disciplines within computer science and
cognitive psychology including user modeling, machine learning, agents, multi-agent environments,
machine learning for user modeling, opponent modeling and recursive modeling. An overview of
relevant literature fromeach of these areas will be provided, followed by a summary and proposal

of how they will be tied together in this dissertation.

User Modeling

Applications of user modeling usually fall under one of three categories. User interfaces
(especially adaptive or intelligent user interfaces) attempt to model the user in order to improve the
ease and/or effectiveness of the (human/computer) interaction. Data mining also benefits from
modeling since an accurate model of the user’s behaviour and preferences can significantly reduce
the scope of searches. Finally, multi-agent systems will benefit from successfully modeling human
agents with whom they interact. Collaborative systems could cooperate more effectively by
modeling their team-members and competitive environments would benefit by correctly anticipating
their opponent’s actions. It is in this final scenario - multi-agent, competitive environments - that
this dissertation proposes to develop and test dynamic stereotypes. Specifically, modeling
performance will be tested using competitive multi-agent games, building on the environment and
work from Maclnnes (2001).

While many collaborative modeling projects make extensive use of user questionnaires as

a base for the user model, competitive environments offer an additional difficulty/challenge by not

9

10

being able to getassistance fromthe user being modelled. Infact, the user may hide or masquerade
their behaviour. Also cooperative modelers may suggest options to the user that may or may not
be taken; the competitive modeller has only its own recommendations with which to make its
decision. The modeller, in effect, needs to achieve the same (or higher) accuracy with less

information.

Stereotypes

One of the pioneer works in the user modeling literature and definitely one of the most cited
is Rich’s paper on using stereotypes for user modeling (Rich, 1979). Although stereotypes had
been used prior to 1979, this prior work focussed on stereotypes as they applied to human
cognitive understanding. Rich, however, suggested that the usefulness of stereotypes could be
extended to models of computer users. Since the rationale behind stereotypes is that the world is
far too complex to understand (and remember) without simplification and categorization of the
details, the same benefits could be achieved by computers.

Richimplemented ‘Grundy’, a system that attempted to model users in order to predict the
user’s preference in books. User models were implemented as a series of ‘facets’ that represented
individual facts about the user. Contained within each facet is a rating that shows the bias towards
or against this attribute, a rating that reflects the certainty (probability) of this aspect, as well as the
justification for the belief in this aspect. Therefore, the grouping
“education;5;900;INTELLECTUAL” would represent a facet for a user that suggests an interest

in educational material with a value of 5 (high) and a rating of 900 (also high) with the justification

11

being that the user activates the INTELLECTUAL stereotype. Stereotypes get activated in this
system by one of a number of triggers. A trigger can be any event in which the user interacts with
the system. Many triggers will be activated at the beginning of a session in which Grundy asks the
user a series of personal questions. Triggers can also be activated later in the session during the
system’s normal interaction with the user, either confirming, adding or modifying assumptions that
were made earlier.

Stereotypes also contained these facets, but of the ‘typical’ member of that group.
Whenever a stereotype is triggered, the values of that stereotype are added to the user’s profile.
The value and rating of facets that coexist in the user’s profile are adjusted according to whether
they confirm or conflict with those found in the stereotype. All stereotypes were arranged using a
Directed-Acyclic Graph (DAG) going from the most generic to specific. The DAG was
implemented as apposed to a tree to allow for any child stereotype to be specifications of more
than one parent (more generic) stereotype. This is important since activating a stereotype also
activates all of its generalizations.

Although much has been said recently about the inflexibility of stereotypes inuser modeling,
Rich did make attempts to implement learning within the stereotypes. As new information is
acquired about members of a givenstereotype, the values and ratings of the facets may be adjusted
to reflect that new information.

Although it was not implemented in Grundy, Rich even suggests ways to which new
stereotypes may be learned using classification techniques in use at the time. Although no statistical

analysis was done on the effectiveness of this system, Rich did demonstrate that the number of

12

successful book recommendations nearly doubled by using Grundycompared to randomselection.

Machine learning

Machine learning is an area of computer science and a specializationof artificial intelligence
(AD. While traditional Al tended to focus on systems that made extensive use of expert
knowledge (expert systems), machine learning techniques attempt to focus on how the computer
can solve problems with less need for expert guidance. In fact, machine learning algorithms are
often classified by the extent to which they need human intervention. Although all machine learning
algorithms learn by observing examples of the type of problems that they are to solve, some
algorithms need extra information in the form of what those samples mean.

Supervised algorithms are those that need to be shown a solution (or result, or label) for
every sample problem seen during training. The goal of these algorithms is to be able to determine
the result for similar but unknown problems once the training is complete. For example, a
supervised machine learning algorithm used to solve math equations would be shown a number of
equations along with their solutions. The algorithm would learn from these, and then be able to
predict the answer to previously unseen equations.

Unsupervised leamning algorithms however, are used to divide training samples into similar
groups without any need for labelling or supervision (Russel, 1998). These algorithms are often
called clustering or mixture modeling algorithms. The algorithm is merely provided a distance
measure that can be used to determine the degree of separation between samples, and it partitions

or clusters the samples based on this measure. Unsupervised learning has no need of humaninput

13

to pre-label examples as one category or another as supervised learning does, but neither does it
come up with such labels on its own. The result of the clustering is a collection of groups that are
statistically similar, but it may be difficult for human analysis to determine why.

Reinforcement leaming also tries to predict the result of an action in order to maximize the
chances of achieving an outcome, reward, or utility. One difference between this and previous
learning styles is in the inability of the reinforcement algorithm to determine the immediate reward
of any single step. Chess is a good example, since the consequences of any single move of a game
are unknown at the time of the move. Even when the consequences are known, (checkmate) it
may not be clear which prior moves caused that particular consequence - each move contributes
to the out come of a game, but very rarely decides it. This would be difficult for a supervised
leaming algorithm, since the results of every action are needed to train the algorithm.
Reinforcement leaming recognizes this difficulty and tries, through various means, to determine the
connection between actions and longer term results.

The duelling arena used inthese experiments is robust in that it combines potential examples
of all three machine learning problems. Firing and accuracy could be handled by a supervised
learning algorithm since the results of any actionare clear and precise. Strategy and move selection
could fall under reinforcement learning since the results of a choice at the current time may or may
not effect the outcome of a match at a later time. The area of machine learning that relates most
closely to the learning of stereotypes comes from the clustering literature (also called concept
learning or mixture modeling). The clustering algorithm that will be the focus of this research allows

not only clustering of data but novel arrangement and use of those clusters that will be shown to fit

14

with Rich’s stereotypes.

Jacobs and Nowlan (1991) proposed that dividing a data set into clusters or subsets may
be beneficial as initial processing for a leaming algorithm. Using neural networks to cluster letters
in a vowel discrimination task, the authors first divided the data using a single neural network
(‘gating network’) into four subclasses of data, then used each of these subsets to train four other
neural networks as experts (‘expertnetworks’) for their individual areas. The series of local experts
were shown to have performed at par with a single multilayer neural net, but the local expert
solution reached this performance with half of the number of training epochs.

Although standard neural networks are ideal for recognizing patterns, temporal pattern
recognition (patterns that develop over time) has typically been seen as a problem for neural
networks. Mozer et al. (1993) demonstrate a number of possible neural net architectures that are
well suited for adapting to this type of problem. All of these models contain the typical features
associated with a neural network, but in addition, they also incorporate some form of short term
(implicitymemoryfromwhich temporal patterns may be detected. The two solutions for solving this
problem that were considered for this research were recurrent networks and traditional feed-
forward/back-propagation networks with discrete time stamps. Recurrent networks (such as an
Elman network (Elman, 1990)), model temporal information by feeding some portionof the hidden
layer back as input for the next time stamp. In this way, training samples from a previous time can
influence the current training cycle. A second solution uses traditional feed-forward/back-
propagationnetworks, but for each training sample feeds some discrete number of samples through

as input simultaneously. Although these methods may seem similar, the recurrent net feeds pre-

15

processed information (hidden layer probabilities) back as input, while the discrete-time network

uses multiple instances of the raw data.

Machine learning for user modeling

Recent work in machine learning for user modeling has attempted to learn not only group
membership, but the group models themselves. Doppelganger (Orwant, 1996) was an attempt to
learn and adapt these group models based on user behavior, and in turn to use these models to
predict the behavior of future users. This system was used to model user preferences across a
variety of applications. Doppelganger will be covered in greater detail than the rest since it bears
the greatest resemblance to this dissertation.

Doppelganger used a pragmatic (bottom-up) user modeling system as opposed to the
cognitive models used in many previous systems. Although inferences may have been made about
a user’s cognitive state, they were done without forming a formal cognitive model. Doppelganger
was also implemented as an on-line distributed agent, meaning that a version of the modeler existed
on many machines and each modeled a user in slightly different ways (eg. a user’s home and work
computer would share data, but not necessarily form the same model). Applications or other agents
would then query Doppelganger using a client/server architecture. Although this opened some
security concerns over the privacy and access of a user’s information, the author did take a number
of steps to achieve a high level of security.

Information was fed to Doppelganger via a number of software and hardware sensors.

Since the information from these sensors may have often been incomplete or erroneous, an

16

accuracy estimate was provided with each sensor. Although the majority of Doppelganger’s
sensors were unobtrusive, the system did allow for user prompting by sending a query to the user
over email and parsing the response, if any, for useful information.

Doppelganger attempted to borrow fromthe stereotype literature by using what the author
called ‘communities’. These were typical stereotypes found in many user modeling applications
with the difference that membership in these communities was not “all or nothing”. Users belonged
to all communities based on a matter of degree. These communities were also not static, as they
were computed as the weighted averages of their membership (or user models). The communities
were therefore somewhat dynamic, changing as the user base changed. As with Rich’s
stereotypes, however, the communities were still limited to a pre-defined number. A set collection
of labeled communities were defined at programcreation, and only the membership of these groups
was adjustable.

Doppelganger used a variety of learning techniques linked, in part, to the different sensor
input streams. Examples of these techniques given in Orwant (1996) include: beta distribution,
linear prediction, and Markov models. The beta distribution was used for boolean inputs (sensors)
and accepted a string of examples of the boolean variable and used the meanand variability of the
distribution to determine the expected value and its probability. Note that there was no order given
to these samples and therefore, equal weight is given to all sensor input regardless of recency.

Linear prediction was a method used by Doppelganger which did contain memory. In
particular, cyclical patterns such as login times were used to help predict a user’s behavior. Much

work could be done in advance if the system knew when the user was likely to log in next so this

17

learner predicted future patterns (with decreasing accuracy into the future) based .on previous
repetitive (though not necessarily perfect) patterns.

Finally MarkovModels were also used (Orwant, 1995) for situations that were dependent
on the current state of the system and the user. Weighted probabilities were once again used to
determine (predict) which state the user (or system) was likely to enter based on the current state
information (busy, idle, etc.). Doppelganger used eight Hidden Markov Models to describe the
types of states that were likely for its users. These states resemble stereotypes very closely and
include, for example: hacking, idle, frustrated, writing, learning, playing, concentrating, image
processing, and connecting. The system used its sensors to determine which state a user was likely
to be in, and from there, which Markov model/stereotype most closely described the user’s
behavior pattern.

There are two areas in which the Doppelganger system may be compared to stereotypes:
Communities and Hidden Markov develop models of the user’s state. Although Doppelganger
did allow for dynamic models in the former, the latter were static. Even with the dynamic
communities, however, there were a fixed number of communities (22) with set labels (artists,
children, students, etc.). The communities were only dynamic in that their predictions may have

changed based on the changing behavior of their membership and that their membership was not

binary.

Multi agent systems

Alexandros Moukas (1997) used user-modeling techniques in an evolving multi-agent

18

system. The multi-agent system was developed to model user’s preferences in web browsing and
suggest new web pages to improve the user’s performance and experience. The system created
an evolving systemof agents that competed and cooperated ina limited-resource environment. The
two types of agents that inhabited this environment were informationfiltering agents’, which were
responsible forthe user’s profile, and ‘informationdiscovery agents’, whichcontrolled the gathering
of information.

Information was gathered about a user by observation (browser bookmarks, history files)
and direct questioning. In order to address ethical and privacy issues, the author also allowed users
to view and modify their profile at any time.

Since these agents were adaptive, the filtering agents responsible for a given user changed
as that user’s goals and preferences changed. Since each user had their own closed system of
agents, these changes only applied to the current user. Agents adapted and mutated using genetic
learming techniques and performance of the agents was inferred by observing the user’s interaction
with the environment. Filtering agents received credit for good choices and lost credit for bad
choices. Filtering agents also ‘payed’ information retrieval agents that were used for good results.

Although stereotypes were not mentioned in this article, similar constructions called
‘packages’ were used. These were pre-trained collections of agents that reflected an interest in
a particular area such as ‘Agents’, or ‘Soccer’. The user could, at any time, add one of these
packages to their profile to express a new interest. As with Doppelganger, these packages

(stereotypes) were pre-defined (pre-labeled and set number).

19

Adversarial Modeling

Bums & Vollymeyer (1998) researched participant’s models of other human opponents
and their utility in competitive games. The authors extended this study to include recursive models
up to the second order (“What I think that my opponent thinks of me”). They referenced Thagard
(1992) for proposing the need for recursive modeling in competitive games.

Pairs of participants were asked to play a purely adversarial two-player game in which an
‘avoider’ selects a number from one to three and the ‘chooser’ tries to select the same number.
A sliding payoff matrix assigned positive and negative scores based on the success of each
opponent. It was a ‘zero-sum’ game from a game theory perspective, meaning that random
selection of responses should have led to a tie. Optimal strategy, however, as shown by game
theory, put the advantage with the avoider.

Modeling was measured by self-report using descriptive assessment pairs (humorous-
serious, negative-positive, hard-soft, rational-intuitive, and risk taking-risk avoiding) on a seven
point scale. Each participant was asked to rate themselves (zero-order), their opponent (first-
order) and how they thought their opponent would rate them (second-order). The authors argued
that relative performance was more important than absolute performance which they used as
Justification for calculating all scores as relative for the two players involved. Only relative first-
order and second-order modeling accuracy was used for analysis and only second-order was

positively correlated to performance.

20

Adversarial problem solving

Thagard (1992) proposed to demonstrate the cognitive processes necessary for successful
opponent modeling. He used ECHO, a connectionist model of explanatory coherence, to simulate
examples of opponent modeling and deception. Thagard looked at a wide variety of examples for
opponent modeling from diverse areas such as war strategy, business and game playing.

The author began the analysis by listing some common ‘rules’ of Adversarial Problem
Solving (APS). They included:

a. Constructing a model of the opponent (inéluding situation, past

behavior, competitiveness and attitude toward risk among others)
b. including second degree modeling. (Opponents model of you)

c. use of this model to infer an opponent’s plan, and inclusion of this
plan in your model

d. use of the revised model to devise plans that the opponent may not
expect

e. finally, taking steps to conceal this planfromthe opponent. Thagard

claimed that only the last two steps are unique to adversarial problem
solving.

This research considers Thagard’s most important contribution to be his discussion of
deception. It was in this article that the author suggested second-order modeling was critical for
successful deception. It is necessary to understand how the opponent will interpret ones actions
in order to cause an erroneous interpretation.

Thagard raised a veryimportant point whenhe suggested that this recursive model required
very little extra representation (space/memory) due to the necessary assumption that the opponent

has roughly the same cognitive abilities as oneself. In competitive-agent environments where

human and software agents were designed to be interchangeable, this assumption was often not the

21

case. Thagard’s research does not suggest the likely outcome of the modeling however, when the
opponent’s cognitive ability is not known such as with the proposed limited scope Turing test
(believability measure).

Laird (2000) used agents from the popular game ‘Quake’ in an attempt to add anticipation
to the autonomous agents (QuakeBots). QuakeBots have been used with increasing frequency for
competitive agents due to their complex environments, well defined rule sets as well as the
interchangeability of human and computer agents. The Quake environment also had the added
difficulty of being a real-time (as opposed to turn based) competition. Any model of a plan must
have included time information to have been effective.

The author saw a need for anticipation with his intelligent bots after many attempts to
improve performance by adding very specific ‘scenarios’ as models of opponent behavior. These
scenarios were fixed, pre-programmed and relied completely on the author’s observation of the
bot’s past performance against opponents. ‘Anticipation’ was thought to allow the Quake-bot to
determine and respond to its opponent’s moves dynamically.

The author didn’t explain the architecture of the intelligent Quakebot, but it seems to have
been a hierarchical state machine with some measure of planning incorporated for the anticipation.
Planning may have been implicit, however since it was stated that there was no automatic
progression fromone state to the next, with each action selected by continually testing the current
situation. Although the algorithm could ‘look ahead’, its decision was based on the current state
of the environment.

In order to add anticipation to the Quakebot program, the author first had to add the

22

capability to model the opponent. Assuming the opponent used a similar state machine to its own
(the author not only assumes a similar representation but also similar goals and tactics), the
Quakebot assumed the role of the opponent until it produced a useful predictionor determined that
there was not enough information with which to predict. This was determined by how much
information the bot knew about its opponent, as well as how useful the prediction was likely to be.
For example, anticipation was not used when the bot did not know where its opponent was or
when the next move was obvious (avoid a shooting opponent). Also, the opponent model did not
appear to be a complete duplicate of its own state machine, but only the uppermost level of the
behavior hierarchy.

The author creates three new sub-states to take advantage of this anticipation; Hunt,
Ambush and Deny-powerup. These new states were activated if it was seen that the bot could
reach a position prior to the anticipated arrival of its opponent. Some learning was incorporated
into the algorithm in the form of ‘chunking’. This process allowed the system to pre-compile a set
of rules that were shown to be effective on repeated occasions and avoided the need for the
modeling step under repetitions of this situation, possibly saving critical time. The author also
mentioned possible extensions to his algorithm using; recursive, enemy specific and adaptive
anticipation. No results were shown on the effectiveness of adding anticipation, but it was
mentioned repeatedly throughout the article that an agent’s believability should play at least the
same importance as its effectiveness.

Maclnnes et al. (2001) demonstrate the use of recursive modeling of software agents in

an adversarial environment. In many adversarial environments, agents need to model their

23

opponents and other environmental objects in order to predict their actions and outperform those
opponents. In this work, the authors used Deterministic Finite Automata (DFA) for modeling
agents and assumed that all the actions performed by agents were regular. Every agent assumed
that other agents used the same model as its own but without recursion (a necessary assumption
to avoid infinite recursion). The objective of this work was to investigate if recursive modeling
allowed an agent to outperform its opponents that were using similar models.

The authors developed a 3-D “Quake-like” engine to test recursive modeling of
autonomous “Quake-Bots” or in their case “Maze-Bots”. Each agent had imperfect knowledge
of the world, using the same perceptions that a human agent would have, although in mathematical
form. Sight was limited to a fifty-five degree field of view, perception was blocked by walls, and
agents could ‘hear’ the other agent if a gun was fired. Agents had unlimited bullets in their guns,
but a second shot could not be fired until the current shot hit an object, making accuracy a very
important variable.

Each bot differed only in the depth of recursion it used in its modeling process. Levels from
zero to three were tested with each bot fighting the others a total of fifteen times. Level zero
recursive bots did not model their opponent at all; level one modeled their opponent; level two also
modeled what their opponent thought they were going to do and so on. During the firstexperiment,
opponent modeling did improve maze-bot performahce but the optimal depth of recursionwas one.
Depth two and three recursion, while better than zero, were significantly worse than depth one.

Considering the importance of shooting accuracy to the prediction function, the authors

made an attempt to improve this function to test the unexpected first results. Since any bot who

24

modeled where their opponent was going to be, had to use this location in an attempt to try
to‘shoot ahead’ of their target, this calculation was critical. Infact, any slight error in this function
would be compounded with deeper recursion since it would be used at every recursive depth. In
a second experiment the authors improved the accuracy and retested the Maze-bots. With the
small increase in accuracy, the recursive bots still performed better than with no opponent
modeling, but the optimal recursive depth actually improved depth two before a decline in
performance was noticed. Since depth two in this study was the theoretical level stated in cognitive
research, the optimal depth was found to be at the level where deception was to occur (Thagard,

1992).

Gender and spatial ability

Although a variety of variables will be discussed withregard to individual differences in the
course of this research, none have the volume of research background associated as with gender
differences in spatial ability (O’ Keefe, 1978; Galea, 1993; Astur, 1998; Gron, 2000; Shore,
2001; Choi, 2002). Although this may seem a controversial topic at first glance, research (this
dissertation included) is focused on understanding what differences, ifany, exist and how to use this
information to avoid bias in future spatial tasks.

A few of the following references deal with navigation strategy and not spatial ability itself.
It should be noted that these are included insofar as these tasks are a sub-group of spatial task and
that this task contains a navigation component. Itis not suggested that this is a navigation task, but

only that skill in maze navigation will aid in finding and defeating an opponent.

25

Early research in this area (O’ Keefe, 1978) oftenfocused on the traditional view that men
tended to excel at math and spatial tasks, while women tended to excel at language. Although
these gender differences are still reliably found in most tasks, recent evidence (Voyer 1995;
Maclnnes, 2001; Voyer, 2000) exists for learning effects and mitigating factors in the results in
addition to some biological causality. One of the major factors that has been suggested is a
difference in strategy employed by menand women (Dabbs, 1998; Harris, 1978; Lawton, 1994).
Where women tend to use a strategy of landmarks, men are believed to use more cardinal
coordinates. This is also referred to as ‘Route’ (F) versus ‘Map’ (M) strategy with neurological
differences based inthe Hippocampus (O’Keefe and Nadel, 1978). This explanation was adopted
in recent papers on spatial tasks within virtual environments including the Hebb/Williams mazes
(Shore, Stanford, Maclnnes, Klein and Brown, 2001) and The Morris Water maze (Sandstrom,
1998; Astur, et al.1998).

Biological and neurological accounts of these differences have been explored using novel
(non-standardized) virtual mazes. Gron et al. (2000), used complex computer generated mazes
with landmarks while subjects’ brain activity was monitored using functional Magnetic Resonance
Imagery (fMRI). In addition to significant gender differences in completion time, the authors found
that men and women use different areas of the brain during navigation. While both sexes had a
great deal of overlap inareas that were common in spatial navigation, they differed in that men also
showed activation in the left hippocampus and women activated the right parietal and right pre-
frontal cortex. An (oversimplified) summary of these results may reflect strategy differences since

the prefrontal activation in women would be useful as working memory kept landmark information,

26

and the reliance on the hippocampus for men may reflect episodic memory needed to process
multiple geometric cues.

Choietal.(2002), have also discovered links between spatial ability and testosterone levels
in men. Men and women were tested for maze performance while recording strategy information
and testosterone levels. Men with higher levels of testosterone showed a stronger inclination to
report using cardinal directions, while testosterone in women had no effect. It was not reported,
however, if this also lead to improved performance on the spatial task.

Recent behavioral experiments have also looked into this question with equally interesting
results. Three studies (Sedighian, 1996; Maclnnes, 1999; Voyer, 2000) have demonstrated that
experience in spatial tasks is just as, if not more, important than gender in some of these spatial
experiments. Voyer, using a number of spatial tasks, also asked subjects about their preferences
for a variety of toys and sports involving a spatial component. It was found that the gender
differences were not significant when considered with certain combinations of preferences for toys
and sports. Maclnnes (2001), using the same Hebb/Williams mazes as Shore et al. (2001) also
found evidence for experience as a limiting factor on gender differences in maze completion time.
Although men tended to be faster than women, it was experience in three-dimensional computer
games that was the critical factor. MacInnes hypothesized that these results differed from Shore
et al. in two respects. MaclInnes had one female subject who rated herself as ‘high’ for gaming
experience (and this subject performed at par with men of the same rating), while the Shore et al.
study had none. Slight changes to the maze itself made the environment closer to the games which

it emulated (collision detection was modified to be the same as the first-person shooter ‘Quake’),

27

which may have removed undue variance in the experienced players masking an effect of
experience in the Shore et al. experiment.

Finally, a meta-analysis of results in spatial tasks by Voyer (1995) has shown a reduction
in gender differences over recent years. This is certainly due to short term changes (learning,
upbringing, lifestyle, environment, task, etc.) since evolutionary explanations are very unlikely to
progress so quickly. It should be noted that evolutionary explanations for gender differences
should not be confused with the biological or neurological results found above. It has not been
shown (in this research) whether testosterone and brain differences between menand women were
a product of nature or nurture. What is clear from this data is that experience and other social
factors influence gender differences in spatial ability but that some of these differences may be

genetic.

Chapter 3: Proi)osal

It was the intent of this dissertation to test a series of Al algorithms in their ability to model
human opponents in a game-like, competitive environment. A number of software tools were
implemented including a three-dimensional, multi-agent environment and all intelligent algorithms
used as the brains for the software agents. Rationale for choice of algorithms will be described
here, but the implementation will be discussed in chapter four (Methods).

The first algorithm was based on a straight forward, state machine known as a
Deterministic Finite State Automaton(DFA) (Minsky, 1968). DFAs are often an attractive option
since they are (relatively) simple to implement and provide behavior that is very easy to understand
and model. All behavior is hard-coded during implementation and the decisions of the algorithm
can be completely predicted by the internal state of the algorithm and the external state of the
environment at any moment in time.

The attraction of this type of algorithm, apart fromits simplicity, is in knowing exactly how
an agent will behave in a known situation. The designer of an agent can tailor the behavior of the
agent exactly as they see fit under certain key conditions, such as determining the optimal turn ratio
to fire at an opponent. The particular DFA in question also had the advantage of having data
available from DFA versus DFA recursive matches in the proposed environment (Maclnnes,
1999).

These advantages quickly turn into hindrances, however, since all possible combinations
of state and environment must be hard-coded into the algorithm. It quickly becomes apparent that

for large or complicated environments, the only choices are to create very complex rule sets, or

28

29

to make them more generic and less correct for any specific scenario. The lack of variety can also
cause problems in competitive situations since the DFA’s patterns, no matter how complex, are
rigid and open to discovery and exploitation by an opponent. DFA opponent modeling suffers
similar restrictions since the DFA must assume that its opponent is another finite state machine.

It was decided that the DFA would consist of two primary states, search and fight. While
the fight state used information about the oppdnent inits decision-making process, the search state
did not. Since the DFA could only use its own state and the state of the environment in its
decisions, it could treat the opponent as any other environment variable, but only when the
opponent was visible.

The second agent tested was based on a neuralnetwork, trained on observations of human
opponents. Attempts were made to maintain the advantages of DFAs while improving on their
shortcomings. The base algorithm maintained the DFA for much of the agent’s decision making,
but a predictive neural network was used in certain areas to improve the algorithm’s core
performance as well as its opponent model.

The focus of the neural network was to predict the opposing agent’s current and future
location in the arena. The neural network accepted information about a human agent’s recent
locations and used this information to predict the opponent’s location. To simulate a temporal
component while keeping the benefits of a feed forward/back propagation neural net, the five most
recent time samples were used for the input layer (see methods and figure 3 for details). The
network could theoretically predict to an infinite time in the future by using its current prediction as

input to guess at two (and so on) time samples in the future, but it would reach a stage where

30

compounding errors would negate any benefit from such a prediction.

Since the ‘pure’ DFA was unable to use any information apart from the environment in its
search state (effectively blind search), the neural net took over and tried to predict where an
opponent could have been when the sensors provided no information. Since this would only be
effective for a limited time after the last sighting, a time limit was used before the agent went back
to blind search. Since the neural network could easily be tested to determine its accuracy over time
with limited information, the time limit was determined by choosing an acceptable degradation in
accuracy.

A second spot where the neural network was used was in the firing calculations of the fight
state. Where the DFA assumed the opponent was another DFA, it shot at a location where it
would go if it were being fired at. Although it could calculate distance and proper lead time for a
moving target (for recursive levels higher than one), it always assumed that the target was traveling
straight ahead (usually correct for a DFA). The neural net however, used its predictive ability to
shoot where it thought the opponent was likely to be.

Traditional stereotyping, as it applies to user modeling, refers to an attempt to model user
behavior by determining a user’s membership in one of a set of pre-defined groups. Behavior of
these stereotypes could be used to supplement or replace the model of an individual when that
model was found to be lacking or erroneous. Early work in stereotypes restricted learning to
determine group membership (Rich,1979) from a set of predefined models. Models such as
Beginner, Novice, and Expert would be developed off-line and an attempt would be made to

match each user to their appropriate stereotype in an on-line matching process.

31

Static stereotypes (Rich, 1979; Orwant, 1995), however, lead to a number of potential
problems. The most serious of which is usually the problem that the stereotypes themselves need
to be known beforehand. Since the groups must be defined during development, there is usually
little data from whichto base the groupings. It usually fell to the developer’s biases alone to decide
on the quantity and labels of the stereotypes. These stereotypes tended to be very vague and
potentially poorly representative of a user’s actual performance. Also, an accurate stereotype may
degrade as a user’s performance and preferences change overtime. A user may gradually become
more experienced, they may suddenly shift goals or preferences, or an opponent may change
tactics in an attempt to utilize deception. All of these shifts reflect the difficult machine learning
problem of ‘concept drift’ (Widmer and Kubat, 1996) where the concept to be learned or
modeled changes over time.

This proposed research attempted to extend earlier work on user modeling with
stereotypes (Rich, 1979; Orwant, 1995) by allowing a clustering algorithm learn these groups
dynamically. A hybrid, K-means clustering/ Kohonen Self Organizing Map (SOM) was used on
the training data (observations of human patterns). A single dimensional, ten unit k-means clusterer
was implemented to provide distinct edges for the ten potential clusters. This algorithm was then
modified to allow for the smoothing process found in typical SOM algorithms (Kohonen, 1982)
to allow for higher mobility of training samples early in the learning process.

The same data that were used for the neural network was fed through this clustering

32

Recursive
Model

1
| | |]
Stereotype | | Stereotype | | Sterectype | | Sterectype

MOE

l I | |
Expert Expert Expert Expert

Figure 1 The similarities between theory of recursive modeling and

implementation of an MOE were critical in the choice of machine

learning technique.
algorithm producing a series of smaller, yet more similar and specialized sub-groups. The theory
was that these clusters would represent different styles of play, or opponent stereotypes. Since
these clusters represent opponent strategies, the theory and the mathematics of the clustering
algorithm both predict less deviation within these smaller groups than in the overall data. This
prediction was tested and reported in the results section. Although it is tempting to label these
clusters as ‘styles of play’ or ‘strategies’ it should be emphasized that formal labeling of these
groupsis a very difficult process. Although clustering algorithms in general are excellent at grouping
similar behavior, it is not always obvious what these groups actually mean.

The algorithm that most closely resembles recent theory onuser modeling and deception,

however, is the Mixture of Experts (MOE) with its similarities to stereotyping and recursive

33

modeling (figure 1). The clustering stage, mentioned above, was used to create specialized data
sets which became a series of experts.

The motivation and expectation for using this algorithm was that these experts would
provide for more precise modeling of user behavior. At the very least, it should (Jacobs, 1991)
provided the same accuracy with less training required due to the reduction of variance in the
training samples. This separation of behavior had the additional advantage of allowing the agent to
choose one of these experts to determine its own choice of action.

The problem of concept drift was also handled by only modeling the opponent’s recent
history. Once the clustering produced workable stereotypes in the off-line phase, it was simple to
compare an opponent’s current behaviour to these stereotypes on-line. Again, the accuracy of the
algorithm suggested that the ten most recent samples be used by this process.

The stereotypes themselves were implemented as a series of feed-forward/back-
propagation neural networks. Since the environment was dynamic and opponent’s patterns may
only become clear over time, a time-sensitive neural net was used as with the neural net agent.
The nature of the domain (real-time games) and the possibility of concept drift suggest that a time
sensitive neural net should be used. This was also an ideal way to implicitly incorporate planning
inthe model. (Klapper-Rybicka et al., 2000; Mozer, 1993). Classification was performed in two
stages: Off-line clustering used to determine which samples will be used to train the different
Net/Stereotypes; and on-line classification used to determine to which Net/Stereotype the current
user belongs (Jacobs & Nowlan, 1991).

Everyagent solutionwas tested in a series of matches against human opponents according

34

to the following experimental design. Volunteer participants were brought in two at a time and
asked to compete against a series of agents (one opponent at a time) in a multi-agent competitive
arena. A potential human opponent was present in an adjoining room for all matches, so each
participant could not determine whether they were competing against a human or software agent.
This arena was based on the virtual maze used for MaclInnes (1999), but modified to allow for new

software agents as well as Human/Human agent matches across a TCP network.

Dependent Variables

Since the success of an agent depends as much on the goals of the environment as the
quality of the algorithm, a number of dependent variables will be measured in this research.
Accuracy, effectiveness and believability usually play a role in the performance of a software agent,
but often in differing degrees depending on the goals of the environment and the preferences of the
human agent.

The accuracy of the software agent was measured by its ability to predict its opponent’s
position given its current state and (for some algorithms) its past behaviour. This measure most
closely resembles what is typically used to judge the performance of a machine learning algorithm,
and is also the most clear cut ininterpretation. The algorithm that predicts its opponent’s position
with the smallest error, measured in two-dimensional Euclideandistance was judged to be the most
accurate algorithm. Although this dependent variable was the simplest to measure, its usefulness
on its own may be limited. In a dynamic environment, the ability to foresee an opponent’s location

is only as useful as its ability to make use of that information. An agent whose sole purpose is

35

prediction of location would be best weighed by this measure. A good example would be an on-
line trading agent whose only purpose is to predict price trends and report the results to a human
agent for final decision.

The effectiveness of an algorithm, although linked to accuracy, is more useful in
determining the performance of an agent as a whole in this environment. This measure looks at
how well an agent is able to compete with human opponents and is determined by the agent’s score
(number of kills) out of five in each of the matches. Although this is influenced by the accuracy
score from above (a more accurate algorithm should be more effective), it also includes the ability
of an algorithm to make use of the accuracy information. Both of these measures were used since
accuracy can be said to measure the algorithm where effectiveness can be said to measure the
agent. This is the typical measure of an agent’s goodness in many multi-agent environments
including computer games. It is usually assumed that the tougher an agent is to beat, the better it
is.

The final dependent variable, believability, looked at how well the software agent can
impersonate a human agent under similar conditions. At the end of every match, participants were
asked to rate their opponent as to whether they thought it was human or computer and how
confident they were in that guess. Since every participant played both human and software
opponents, there were three possible scores that could be used for this variable. First, the original
score as entered by the user gives a number in the range from one (very uncertain) to five (very
certain) with a positive number reflecting a guess of human and negative reflecting a guess of

computer opponent. Second, an absolute difference from the ‘perfect’ answer would contain all

36

of the information above, but also allow a comparison of human and computer opponents. For
example a score of zero would be a correct guess and negative ten would be the lowest score
(highest error) possible.

The final measure would again be for computer opponents only, but would be the
difference between two Turing scores by that humanagent. Earlier scores could have been faulty
or variable since different people may give varying scores to the same level of believability. The
idea behind this last score was that the Turing score for a software opponent reflected how well
analgorithm mimicked human behaviour, and the Turing score for a human opponent reflected how
observant or varied the personwas doing the rating. By subtracting the Turing score for the Human
opponent fromthat of any particular software opponent we get a score of how ‘Less than Human’
(LTH) any software algorithm was for each participant.(LTH = Human Turing - Software Turing;
and was calculated separately for each of the nine software opponents) This would be a relative
score showing how much more or less human the software bots were versus the humans
themselves. This score was more closely related to the typical Turing test since it takes into
account individual differences in how accurate people are in spotting human opponents in this task.
The theory is that the believability of an agent should be tempered by how critical a person is in

judging this attribute (reflected by this rating on actual humans).

Independent Variables
Within Subject

Every subject played the same set of ten matches as every other player. One match was

37

against a human opponent to achieve a base line for the variables mentioned above, and the other
nine were against software agents. In addition to the human/software split for opponents, each of
the remaining nine matches were fought against the three agent algorithms at three different levels
of recursion. DFA, neural net, and MOE were all implemented with zero (no recursion), one and
two levels of recursive opponent modeling. Level two recursion was chosen as the highest level
due results from Maclnnes (1999), which suggest that optimal results are achieved at recursive
level one or two depending on the accuracy of the prediction. This was deemed sufficient since
none of the algorithms are likely to achieve better prediction than when the opponent’s strategy is
known (DFA vs DFA). Finally, one pair of expert subjects was run in the study a number of times
ina single evening to determine if the results found would be reliable over prolonged exposure (this

final variable was for Experiment two only, see methods and results for details).

Between Subject

A number of other variables, while not able to be controlled in the design, were stll
observed as between-subject variables. Since learning advantages can be important in any study,
three different variables for this were recorded for consideration. Each subject was asked to rate
their computer game experience as a measure of leaming in these environments prior to this study.
The order of the opponents was randomized for each pair of subjects to determine if learning
influenced performance within the ten matches themselves. This randomization was the same for
each pair of subjects since it was necessary to give each pair the same sequence to synchronize

the human versus human match.

38

Due to previous literature of gender differences in spatial ability, the sex of each participant
was recorded for analysis. Even within this environment itself, Shore et al. (1999) found significant
gender differences while MacInnes and McCabe (2001) did not. Since the question in both cases
became the importance of gender versus game experience, every effort was made to acquire a
strong selection of participants withall possible combinations. While it is often difficult to find male
participants who rate themselves as having low game experience, it is even more difficult to find
females who rate themselves as high. It was decided that the best chances to find a strong cross
section without biassing the sample too greatly was to recruit participants from the Faculty of
Science and the Faculty of Computer Science at Dalhousie University.

Other information was gathered about the participants to ensure that it was not influencing
the results. Although not necessarily of interest to the study, it was necessary to determine the

effect, if any, on the dependent and even other independent variables.

Summary and Predictions
The approach, summary and predictions of this dissertation is approached from two

perspectives, the human and the software, and are discussed below

Software
The Mixture of Experts (MOE) algorithm, then, uses a variety of machine learning and Al
algorithms to achieve its goals. Traditional Al is represented by the DFA which still forms the core

of all of the algorithms tested. Unsupervised learning is used to cluster user behaviour into dynamic

39

stereotypes, which may enhance the algorithm interms of effectiveness and believability. Modeling
the other’s behaviour should assist in defeating that opponent, and using models learned from
human observation should make for a more human-like agent. Supervised leaming is used to train
the neural networks to predict the next location of an opponent. This should have an impact on
both algorithms (Neural net and MOE) that use these predication methods. Finally, reinforcement
leaming uses these predictions to help the agent succeed in its longer-term goals against the
opponent. A variety of solutions are used for this, including temporal input to the neural nets as
well as recursive modeling itself.

Although the primary goal of this research is to determine which factors influence the
‘goodness’ of software agents in competitive, multi-agent systems, there are also a number of
expectations that need to be examined. It is often believed that machine learning techniques that
model cognitive processes can be superior to those that do not. Given this outlook, it is reasonable
to assume that the neural network should outperform the DFA and the MOE in particular should
outperform them both in many of the important measures. Given the nature of the dependent
variables, however, it is not unreasonable to assume that different algorithms will perform differently
under different measures. Although accuracy and effectiveness are closely tied, believability is
more elusive in its origins, and may conflict or even interact with effectiveness and to a lesser extent

accuracy.

Human

From the human perspective, our agent interaction should be able to speak to individual

40

differences in spatial ability. Since computer games are highly spatial tasks, this research will look
at a number of individual traits as between subject-variables, with focus on gender and experience.
Recent evidence has pointed to a combination of biological and learning explanations for gender
differences in spatial tasks and spatial strategy (usually focusing on navigation). Although
confounds exist innearly every study looking at experience and gender (due to confounds that exist
in the population), it is expected that the gender effect will be reduced or eliminated based on

participant’s prior experience.

Chapter 4: Methods

Two agents at a time were able to traverse the maze while engaging in a shooting duel with
eachother. To establish a connection with current literature (Laird, 2000) and current applications,
the theme and feel (but not the graphics) of the arena were designed to resemble “first-person
shooter’ multi-player computer games. While previous research (MacInnes, 2001) looked at
competition of multiple software agents, these experiments always contained at least one human
agent. Human versus software agent matches were implemented on a single computer, while
human versus human matches were implemented on two computers over a small network. This
allowed players to compete while being in different physical locations.

The remainder of this section will discuss three distinct areas of this experiment’s methods;
the construction of the three dimensional arena that was used as the multi agent environment; the
creation of the agents used in the experiment and the machine leaming algorithms used to guide

them; and finally the experiment used to test the software agents and human agents.

Arena

The arena used for all testing in this dissertation was a three-dimensional, graphical
representation of a small two-dimensional maze. It was based on OpenRT-3D, a three
dimensional graphics engine designed for cognitive testing and was based on the real-time code
used in OpenRT (Maclnnes, 2001). The engine was written in C++ and uses the OpenGL
graphics library for all rendering. Although the base OpenRT was written for multiple platforms,

this version of the arena was implemented to maximize performance on a Windows [copyright]

41

42

computer. As discussed in Maclnnes (2001), measures were taken to maximize real time
performance of this application and minimize interruption from the operating system, but due to the
special requirements of this experiment, less strict real-time strategies had to be used in some
circumstances.

OpenRT was able to create a soft (not guaranteed), real-time environment withmillisecond
accuracythrough a number of system settings and by implementing a custom window classforeach
environment. In the Windows environment, OpenRT was able to minimize interruption from the
operating system by a) avoiding the Windows messaging loop b) increasing the application priority
¢) disabling the mouse cursor redraw, and d) using specialized high speed libraries for drawing and
user input. These methods enabled the application to reduce operating system interrupts to less
than one millisecond duration throughout a testing period of nearly one and a half hours (Maclnnes,
2001). Standard applications can experience interrupts for one hundred milliseconds or longer.

Since the above strategy involved minimizing operating system influence, it could have
negative performance implications on the network connection used in some of the experiments.
Priority settings for the application could not be changed, for example, since OpenRT set itself as
having a priority that was higher than the operating system itself. The windows messaging loop
could also not be bypassed due to the nature of the network connection. A ‘Peek Message’ loop
was implemented to replace both of these methods (see appendix C for sample code). In this
system the application ‘peeked’ at the windows messaging loop to see if any messages were
queued and dealt with them if necessary. All remaining computer time was used to ensure the

maximum responsiveness of the application. This kept the interrupts to a level that was acceptable

43

SO as to maintain the pre-determined refresh rate of thirty frames per second.

Input and drawing techniques were also used from MacInnes (2001) to enhance precision
timing capabilities. Direct Input (copyright, Microsoft) was used for keyboard input and OpenGL
was used for high speed rendering of graphics. Both of these software development kits (SDKs)

were developed, in part, to allow computer game programmers fast and regulated access to

gl

4

Figure 2 First four of the
twelve Hebb/Williams maze,
comner alcoves represent the
start (S) and goal (G) of the
mazes. Figure taken from
Shore et al. (2001).

hardware on the computer that would not have been accessed directly in other software.
Although the feel and control of the arena was designed to mimic a typical computer game,
the layout itself was taken from the set of twelve Hebb-Williams mazes [Hebb et al., 1946] used
to study spatial intelligence in animals. These were chosen due to availability, the simplicity of the
layout, and to allow for easy comparisons to studies looking at gender differences [Shore et al.,
2001} and computer game experience [Maclnnes, 2001b]. Mazes one through four were used

to train various computer algorithms in experiments Oa and Ob. Maze two was used for

44

experiments one and two (see figure 2 for maze layouts, and Appendix B for snapshots) since it
was the first maze in the sequence in which a majority of the maze was not visible from a single
position.

Textures for walls consisted of a repeating chiseled rock pattern and the floor used brown
tiles. Corner alcoves had red and green roofs to provide limited landmarks within the arena. The
bots were simple, three-dimensional polygon depictions of a basic walking robot. The legs were
cylindric tubes that produced an animated walking motion when the bot was in motion. The body
was a simple sphere, chosen to simplify the sphere-based collision detection algorithm. A
protruding ‘happy-face’ mask was attached to the front of the bot to allow visual detection of a
bot’s current facing.

Measurements were made in arbitrary ‘units’, since their only purpose was for relative
calculations. The arena measured 60 units along each side and 5 units in height, with alcove walls
in opposite corners having a length of 5 units. Agent’s viewpoint was fixed at 1 unit above the
floor, moved at a speed of 0.01 units per millisecond, and turned at 0.05 degrees per millisecond.
Bullets traveled 5 times faster than agents at 0.05 units per millisecond. To get a perspective on
these numbers, assuming the perception that the bot is moving at a ten kilometer per hour run, then
3.6 units were roughly equal to one meter. It should be emphasized that this conversionis based
on a convenient estimate of perceived speed and is not indicative of the physics of the arena.

All code used in these experiments was written for this or previous experiments by the
author. A number of open source projects were consulted for the implementation of some

portions, and ideas were used as a basis for some portions. Complete code (nearly ten-thousand

45

lines) for this dissertation has also been released as open source, and can be found at

http://www.cs.dal.ca/~macinnwj [Online ref, 2003]. Also, see Appendix A For a full Unified

Markup Language (UML) class diagram developed during the design of this project.

Agents

The software version used for testing allowed for two autonomous combatants, or agents,
in an arena at any time. Although a variety of agent types were implemented (see below), they
were all equipped witha common set of abilities and restrictions to ensure fair matches, regardless
of opponent. Since the purpose of these experiments was to test human and computer agents on
an equal footing, it was important to ensure that neither had an advantage based solely on the
information they received, or restrictions on how they could use it. All agents, regardless of type
had the same perceptions of the arena (sensors) and the same ability to change the environment
(effectors), they only differ in how they use this information (see appendix E for agent summary,
and software states). Although human and software agents received this information in different
forms (humans received visual feedback while software received mathematical information), it was
decided that the fairest comparison was allowing the optimal feedback for each bot and will be
discussed in greater detail for each agent. Forcing the software agents to use visual feedback
(although not impossible) would be akin to forcing humans to navigate through a purely
mathematical representation of the arena.

Agents had access to sensors that allowed them both visual and auditory feedback from

the environment. All agents were restricted to a first person perspective, 55° field of view (FOV)

46

and could not see through walls. Agents could hear gunfire from either agent, a bumping sound
when two agents collide and the sound of either agent dying. Representation of all agents
comprised of a white sphere with a happy face mask, all on two blue legs. Legs were animated
to produce a walking motion to improve the visual illusion of running. Diameter of the agent sphere
was 0.5 units, and the bullets, only visible when fired, had a diameter of 0.05 units.

Each agent had a weapon that fired a single bullet at a time, and appeared as a bright
yellow sphere. Bullets traveled five times faster than agents (0.05 units per millisecond), and had
a radius of 0.05 units that was used in determining collisions. Bullets always traveled straight,
continuing in the direction that the agent was facing at the time of firing. Bullets continued their full
life span until they collided with a wall or another agent, at which time it disappeared and a new
bullet was available for fire. Although agents never run out of bullets, they only had one bullet
active at any time. Although real bullets may travel faster than five times the speed of a running
person, this projectile was designed to model some common video games often use slower paint
balls, rockets, etc. The slower movement also allowed for more defensive strategy on the part of
the participants than a more realistic velocity bullet.

Effectors on the world consisted of five simple commands; move forward, move
backward, turn left, turn right and fire the gun. These commands could also be givena number at

a time for a combined effect (e.g. left and forward moved the agent in a sweeping arc). All

47

ent Agent
Sensors

Environment
ffectors

Figure 3 Two agents interacting within the same environment. Note that

neither agent can completely control (no predict) the resulting

environment state.
commands were acted upon the current state of the agent in a predictable way according to the
simple physics of the arena. Velocity was measured according to the time lapse since the previous
state and moved the agent in the specified direction. Time based velocity was chosen to ensure

consistent movement in the case that thirty frames per second could not be achieved (this tumed

out not to be a problem due to the real time considerations mentioned above. Frame rate was
consistent to thirty frames per second, with a standard deviation of less than7.0x 1073

milliseconds).

As seen in the UML class diagram (Appendix A), every agent has access to a ‘brain’,

48

whose sole purpose was to use previous sensor information to produce effector commands for the
current state or action. The ‘brain’ component was designed to allow for easy transition between
agent types, and also provide a simple method of incorporating new controlling algorithms in the
future using. By taking advantage of inheritance and polymorphism within the C++ language, any
brain component could be interchanged with any other as long as all implemented the functionality
of the base brain class. At its most generic level, this brain could be thought of as a black box that
converted sensor information into output control (see figure 3). At the time of testing, only two
agents (Human and DFA) had this brain implemented as its own component, but all had a
conceptual brain that served the same function. It is important to note that there was no difference
in the results of these two approaches, except that the encapsulated brain component would be

easier to modify and replace.

Deterministic Finite-State Automata(DFA)

Deterministic Finite-State machines were imported nearly complete fromMaclInnes (2001)
to be used as the base for the simplest of the computer agents. A C++ class was implemented to
wrap the previous implementation and allow for easier integration with the current project. Since
data was already available for DFA versus DFA matches, it was determined to be a good base
line for computer versus human matches. The basic machine used for the DFA monitored the state
of the world and actions of the other player. Since game theory states that two players are in
constant interaction, the output of this model was the action to be taken by the agent ar that

moment and planning only occurred (implicitly) in the selection of discrete actions. The recursive

49

component (covered in detail below) added knowledge of ‘;he opponent to this decision in an
attempt to produce a more successful action (since this and other computer algorithms are based
on the perspective of the computer agent, ‘opponent’ for all of these algorithms will hereafter refer
to the human agent). A number of DFA’s were tested, all using the same model, but differing only
in the level of recursion used to predict its opponent’s next move.

The DFA algorithm is so called because only the current properties of its environment are
used in decision making (state machine), properties of environment uniquely determine which state
the agent is inas well as all transitions between states (deterministic), and there are a limited number
of such predefined states (finite). The DFA used, consisted of two major states: Search state (the
default state) and Fight State. Search state occurred whenever the agent was unable to determine

the actions of its opponent (not in sensor range). In this state, all the actions of the agent were

P
. ‘-"f‘. T “\"-‘.
., -~ Y
., /.’ ‘
T x"’——"\
'y h\' ‘o bt |
AT glit
5 - .H ot Y ' i..'l
S s S
{ |
1
5 !
".‘ /
- i
HA 5 S HS
\. — J'.
~ K -
*_f' ‘.‘
1 End |
R "f

-

Figure 4 DFA state diagram. Fight and
search are the main states when the opponent
is present(P) and not present respectively. End
state occurs when either opponent hits (H) or is
shot (S).

50

decided based on the information gathered from the environment. As soon as any sensor provided
information about the opponent, the agent entered Fight state. There was also an insignificant End
state entered at the end of each match (See figure 4). Since true DFAs only based decisions on
the current state of the algorithm, it was decided not to include estimates of opponent’s position
within the search state. It was left to other algorithms to predict an opponent’s current position
based on previous information.

The prediction function used in the fight state was at the very heart of the opponent
modeling however, it was only possible to estimate where the opponent would be. When
opponent modeling occurred, the algorithm would assume that the opponent was a state machine
identical to itself. Since the DFA search state was a simple straight line (unless interrupted by an
obstacle), triangulation was used to estimate the opponent’s position. A triangle was imagined with
vertices containing the Agent's current position (A), the opponent's current position (B) and the
opponent's anticipated future position. Substituting the known distance (Dist), the known angle (@)

along with the ratio of agent movement to bullet movement(x,5x) to the law of cosines we get:

(5%X)* = X%+ D*-2XDcos®) or (1)

24X?% + 2XDcosl8) - D* =0 (2

since X is the only unknown in this polynomial we can solve using the quadratic formula.

X = (— b Ab* - 4ac)/2a 3)

51

(Where X is the predicted distance the opponent will travel before bullet contact) When opponent
modeling did not occur, the DFA fired at the opponent’s current location.

Within these states themselves, there exist a number of rules and transitions based on
perceptions of the DFA about its environment and opponent. The default state within the search
state was blind search, and consisted simply of moving in a straight line until an obstacle moved
the agent into the avoid state. When an obstacle, such as a wall, blocked the agent’s path, the
avoid state recommended a turn in a direction based on the minimal angle to avoid the obstacle
(whichever direction would bypass the obstacle in the least time). In this way, it was the layout of
the arena that determined the search path that the DFA would use.

The fight state was further divided into three sub-states and evaluated in the following
order; shoot, evade and align. Shoot fired a bullet as long as the agent was aligned with the
position estimate discussed above, evade would attempt to move the agent out of the way when
an opponent fired and align (the default) would turn the agent toward the location to which the

shoot state preferred.

Neural Network

The neural network agent used the DFA as a base class to define much of its default
behavior but overrode some key properties in order to improve its performance against human
opponents. The neural network was incorporated into both the search state and the fight state of

the agent, and aided in the prediction of the opponent’s position in both cases. In the search state

52

layerSze= 23 x 8 x 3

Figuare 5 Structure used for both neural net and the experts of the
MOE algorithms. Input contained five time samples of previous
opponent observations and output was the predicted observation for
the next time stamp. Input and output layers were consistent across
algorithm, but number of hidden layers and nodes per layer varied
to suit the optimal training for that algorithm.

it would suggest possible opponent locations to supplant the DFA’s blind search. In the fight state
(if modeling was used) the network predicted the opponent’s future location to be used for firing
calculations. Although the neural network was trained offline (not during match time), the trained
network was then fast enough for on-line, real-time prediction.

The neural net was a standard feed-forward, back-propagation network that allowed for
continuous variables in both the input and output layers. Two hidden layers, each with eight nodes,

used the basic sigmoid activation function

53

1
l+e

f(x) = —=
and a learning rate of 0.25 on the back propagation of error. The output layer consisted of three
nodes representing the opponent’s predicted position in terms of the change inlocation along two
arena axis (aX, aZ) and the change in facing direction (a0). The difficulties inherent in true
recurrent neural networks (Elman, 1990) were avoided by simulating a time component with the
input layers. The five most recently observed, discrete time samples of opponent information were
used in the input layer, in addition to global information about arena version and whether the
opponent was visible and firing. Each of the five input time samples used Cartesian coordinates
for positional information along with nodes for directional facing and change in time (aT) since the
last sample. Time information was included since velocity (and therefore future position) was
calculated based on time, and the neural net could learn any anomalies in the preset thirty frames
per second. The input layer, then, consisted of a total twenty-three nodes, four-by-five time
sample nodes élus three for global information (see Figure 5). Using a traditional feed
forward/back propagation neural network, but including the variables of a static number of recent
time samples to the input layer was to allow for some measure of implicit planning in the network.
This would simulate the temporal component of a recurrent neural net without getting the
convergence difficulties inherent with their use.

The neural network was trained using data obtained fromobservations of eight participants

54

involved in multiple matches with the DFA as an opponent (see experiment zero below). This
produced over thirty thousand time samples of agent positional data that were used as input to the
neural network training algorithm. All data were converted from absolute observation to relative
(e.g. X->aX) and normalized to fall within the observed minimum and maximum for those data

before being fed to the network. Unless otherwise specified, all neural networks were trained on

¢

Figure 6 diagram of neural net firing prediction. The
initial arrow represents an opponent’s starting
position and the curved line represents a neural net’s
predicted future path of the opponent with the star
being the end point after X time samples. The
triangulation algorithm from the neural net used the
straight line as an estimate, but with the agent moving
at a proportionately reduced speed.

ninety percent of the data and tested on the remaining ten percent. While other learning rates (o)
were tested, 0.25 consistently produced the best results. Networks were trained to the point
where over-fitting was observed, or until improvement rate was minimal.

The search state for the neural network agent was divided into two sub-states; directed

55

and undirected. The undirected state was identical to the simple DFA ‘blind’ search, and was the
default when lack of information prevented a directed search. Any time that the opponent was not
in view, but the agent had some information on the opponent (recent sightings, opponent firing), the
neural network would be consulted to provide a best estimate as to an opponent’s location, and
proceed to that spot in the arena. Directed search would cease when sufficient information was
not available, or when the agent reached this estimated location with no further information.

Fight state was also augmented using the neural net by including neural net predictions into
the firing angle. When opponent modeling was used (recursion greater than zero), opponent’s
position was estimated using the results of the Neural net instead of the straight line assumption in
the DFA. The law of cosines was still used to calculate the preferred alignment angle, but the
opponent’s heading was replaced with the direction vector to the neural net’s prediction, and the
velocity of the opponent was calculated as using the predicted distance of that vector. Thisallowed
for calculations to use straight line trigonometry to predict firing angle even though the neural net’s
predicted path would likely be erratic over time. The assumption is that a curved path can be
simulated with a straight path at a lesser velocity as long as you only care about the point of

intersection (see figure 6).

Human
Every match in the current set of studies had at least one of the two agents as human and
it provided the basis by which all other agents were measured. The information interface to the

human was designed the same way as for computer-controlled agents, except that sensors and

56

effectors were fed to and from a human participant. The brain component was used to relay this
information, but its job was merely to poll the keyboard for user input and send sensor information
to speakers and monitor. Input/output issues will be discussed briefly here since they formed the
basis of the human agent’s effectors and sensors.

Keyboard input was handled through measures suggested by Macinnes (1999).
Microsoft’s Direct Input (copyright) was used to poll the keyboard for input without needing to use
the window’s messaging loop (freeing more time for graphics in the ‘peek’ message loop). Direct
access to the current keyboard state also allowed the software to register more than one key press
at a time during any givenstate. The four keyboard arrow keys, typically controlled with the right
hand, matched the four movement commands available to all agents, and the space bar was used
for the fire command.

Sensors for the human visual component were displayed via a computer monitor (see
experiment details below for specs on equipment used in these tests). All information was
displayed to a full screen, OpenGL window with the same first-person perspective field of view
as the computer agents. Hardware acceleration and double buffering were used to ensure fast,
quality updates of the display, and drawing was synchronized with the vertical retrace of the

monitor to prevent tearing of the image.

Transfer Control Protocol (TCP)
The TCP player used the transfer control network protocol to communicate witha second

computer to forward sensor input and effector output. This agent can actually be thought of as a

57

type of human agent since the only time it was used waS when a human agent was competing with
a second human agent on a different computer. The ‘brain’ of this agent is merely a shell that
requests information and provides updates to a human agent on the other machine. Every human
versus human match, then, is comprised of two human agents and two TCP agents; one
human/TCP combination on each of the two computers.

TCP agents are also the only minor exception to the rule that agent output consists of only
five boolean commands. To avoid potential computation differences in the resulting location on
different machines, the TCP agent relied on its human counterpart to do calculations on the output
keys that would be received by the TCP agent as final maze coordinates. This also prevented
having to send time stamp and velocity information over the network which helped reduce network
traffic. This is not a problematic difference with other agents since TCP agents are merely a local
representative of human player that is using the standard effectors and sensors.

The TCP agent was implemented using a C++ encapsulation of the Windows Winsock
libraries (portions based on sample code from[Barron, 2000]). Subjects were randomly assigned
to the role of client or server on the network, although this process was completely transparent and
irrelevant to performance after the initial connection. Relevant agent information was converted
to TCP packets and sent and received on every frame. Winsock connections, like most network
connections force a choice between speed of information delivery and chance of packetloss. In
order to minimize agent location error, the choice was made to guarantee packet delivery and
order, and accept possible time delays. As seen with the frame rate standard deviation (above),

this turned out to be a non-issue.

58

Mixture of Experts

The same normalized data used for training the neural network was also used to train the
agent based on the Mixture of Experts (MOE) (see appendix D). As with the neural network, its
basic structure was based on the DFA, but certain behavior was overriddenwhen extra information
from the MOE was available. Like the neural network, the search state and shooting sub-state
were enhanced using predictions from the MOE. The individual experts also had the benefit of
being usable in the overall fight state. As with the neural network, the MOE algorithm was trained
off-line, but consulted on-line in real-time.

Like the neural network agent, the MOE went through a number of steps in an off-line
training process. First, all data went through a clustering process design to group similar behavior.
A hybrid, Kohonen Self Organizing Map (SOM)/ K-means algorithm was used to cluster the data
as the first step for creating the experts. While a typical SOM is an excellent way to represent high
dimensional data on a two-dimensional map, it oftendoes not produce distinct clusters needed for
this procedure. The smoothing procedure, however, produces excellent results and has the added
benefit of keeping similar clusters close together. Since a SOM can be implemented as a smooth
K-means clusterer, the two were combined, taking properties of each.

A one-dimensional grid of ten nodes was used inorder to create well-defined end clusters.
Although a growing (self-sizing) SOM may have been more effective, a static size was deemed
sufficient to determine the feasability of the idea itself. Source code was left sufficiently modular to
allow for easy substitution if warranted in future work. Smoothing was done in several steps as if

the structure were a one-dimensional SOM that produced more natural and gradual movement of

59

data from one cluster to another. As is often done with both algorithms, a random central point
(with the same dimensionality as the sample data) was assigned to each node to seed the start of
the process. Distance from this central point was used as the relative measure of fit for each data

sample, and data were assigned to the node (/) with the least distance.

minl.(lx - wil)

Distance was measured as the sum of all the differences between the node’s central point (w), and
the current data (x). Since data were pre-normalized, equal weight was givento all dimensions of
the data. The process of assigning all data to its closest cluster was considered one iteration of the
algorithm. After each iteration, each cluster would re-adjust its central point to reflect the central
tendency of all samples within that cluster. Each dimension within the central point became the
mean of the data for the dimension.

Fifty-thousand iterations were completed on the data, with gradually decreasing size in the
number of adjacent nodes used for the smoothing effect. The smoothing factor determined how
many clusters’ means would be influenced by a particular data point. For example, at the start of
the algorithm, a data point would not only influence the new mean of a cluster to which it was
assigned, but also the N nearest nodes in either direction of the one-dimensional map. Throughout
the fifty-thousand iterations, this smoothing factor started out as five (five nodes on either side, if
applicable) and gradually reduced to zero after every ten-thousand iterations. This meant that by
the end of the iterations, data would only influence the node to which it was assigned. These

clusters were then fed into the neural net training algorithm described above in order to produce

60

the Mixture of Experts (separate neural nets) instead of a single, large neural network.

As an added benefit to this separation, each network was able to choose parameters
different from those that optimized the large, overall network. As with the neural network above,
trial and error was used to determine optimal values for parameters such as the learning rate, the
number of hidden layers and the number of nodes per hiddenlayer. Table 1 lists the optimal values
for each expert compared to the same values for the main neural network (Expert zero is omitted
since the clustering algorithm assigned no data to this node).

The gating mechanism for the mixture of experts was a simple recency algorithm that
looked at the opponent’s recent actions and chose the expert that most closely resembled that
behavior, Fifty frames (one and two-thirds seconds) was chosen due to accuracy results from
neural net predictions (see results section). Although an additional neural net is often trained to
serve as a gating network with this algorithm, the lack of ‘correct’ response for training back-
propagation made the recency algorithm the more straight-forward alternative.

The MOE was used completely different prediction in the search state and the firing sub-
state than did the neuralnet. Instead of a single network predicting these locations, the MOE brain
chose the expert that most closely resembled the opponent’s most recent (fifty, see above) actions,
and used that as the predictive network. As with all discussed algorithms, only data observed
through the agent’s sensors was used in these determinations.

In addition to these modifications, the MOE agent also had the unique opportunity to use
these experts to choose its own movements. All information was saved and available with these

experts including the modal movement for each expert in terms of the effector keys most often

61

pressed to produce that expert. These keys could then be used as the MOE agent’s own choices
when they would produce the most desired move. Since directed search was already optimized,
and undirected search would benefit little from this idea, It was determined to incorporate this idea
into the overall fight state of this agent. Not only was the opponent’s position predicted using these
experts, but all experts and DFA states were polled prior to choosing movement keys and the
solution that most closely resembled the desired new position was chosen as the winning output.
It should be noted that this was not possible for the basic neural net agent since there would only
be one ‘modal’ move for the agent since all data were used in the training of that network. Since
the modal move was rarely a unanimous winner for any of the experts, an output key sequence was

chosen weighted by the frequency that a particular key sequence produced that expert.

Hidden Nodes per Iterations Net Net
layers hidden layer req’d Accuracy Accuracy

(training) (testing)

Neural Net 2 10 10000 92.39% 90.80%
Expertl 2 10 3300 94.07% 92.03%
Expert2 2 15 4100 92.86% 88.98%
Expert3 2 8 2900 95.00% 86.23%
Expert4 2 8 6800 92.52% 89.78%
Expert5 2 8 3000 91.71% 85.71%
Expert6 2 8 8100 90.35% 89.66%
Expert7 2 8 5700 95.10% 92.17%

62

Expert8 8 6100 92.53% 88.34%
Expert9 i5 9000 91.82% 84.12%
Table 1. Training statistics for individual experts

Recursive Modeling

All intelligent computer agents were capable of simulating some form of opponent
modeling, and using that model to determine its output. Although some of these models were
developed offline (e.g. neural net, MOE), the creation and use of these models was restricted to
information that the agent would have access to in the course of a match (from its sensors). This
modeling could assume that the opponent used a decision structure identical to its own (has the
same brain), such as the DFA, or it may develop a model based on data that was observed in
previous matches and constructed off-line, such as the neural net or MOE.

Each of the three different computer algorithms tested were implemented with three
different levels of recursive modeling. The recursive component of the opponent model tried to
incorporate different levels of information about the match. Level-zero recursion was the base level
and, in effect, did not model the opponent at all. The only information that was used to determine
the agent’s actions were its own state and the state of the arena. Although the opponent’s current
position was used in these calculations, its current state (intent) was not. Level-one recursion was
the first level at which true opponent modeling took place. The level-one agent considered its own

state, the state of the arena, as well as the predicted state of its opponent. It attempted to

63

incorporate what it thought its opponent would do into its own actions. At level-two recursion, all
information from the previous levels was used plus the agent attempted to determine what its
opponent thought the agent will do.

A good example of this recursion in action was the align sub-state within the fight state.
A level-zero recursive agent would only consider where its opponent was at the moment of trying
to align for a shot. Alevel-one agent would attempt to determine what the opponent is doing and
align to where the opponent was likely to be when the bullet arrived. A level-two recursive agent
would also shoot where the opponent was likely to be, but it also included how the opponent was
likely to react to what the original agent was doing in this calculation. It is important to note,
however, that any model created in this recursive process is notitself recursive (agent’s assume that
their opponent’s model is not recursive). This assumption was necessary to prevent infinite
recursion from taking place.

Although the recursive process was the same for all agent types, information that the agent
was capable of including in this recursion was different across computer algorithm. The DFA,
being the simplest of the algorithms was also the simplest recursive model. As with Maclnnes
(1999), the agent simply assumed that its opponent was a DFA with the exact same rules and
states as itself. Recursion simply consisted of literally ‘putting itself in its opponent’s shoes’ and
deciding what it would do in its opponent’s place. Although this simplistic model was capable of
using recursion on any of its states, it was only productive to do so in the fight state. Since the
search state did not use opponent information (search was blind), creating a model of that

opponent would have served no purpose.

64

The neural network placed similar restrictions on the states in which recursion was
conducted, but for different reasons. The fight state remained recursive, much the same as the
DFA, but with the neural net predicting opponent positioninstead of assuming the opponent was
a DFA at the entry recursive level. If the fight state recursed beyond this first level, all further levels
(up to the maximum) were assumed to be simple DFAs. Neural net prediction was not used after
this point due to a limit on the information available to train a proper neural network. Ifthe neural
network agent were to create a neural net recursive model, it would need nearly a full second of
observation before being able to produce a single usable estimate. Second-order recursion would
become even more difficult, needing a full second of the agent observing its opponent observing
the agent The search state was also denied recursion even though a model of the opponent was
now used in the directed search sub-state. Although search was no longer blind in the directed
version, the agent could not use an estimate of where its opponent thinks it is when the opponent
could not see the agent. The neural net could only legitimately use test data from when it could see
its opponent seeing the agent, and this would be fight state , not search. The neural net could
be set with an educated guess, but a guess of the input would hardly be different than an educated
guess of the output of the network.

The MOE algorithm offered the most flexibility as far as recursive modeling. Since the
experts themselves were very comparable to the DFA states, they could often be used and
interchanged. Since the experts and the DFA states had well defined effectors associated with
them, the MOE could often poll both DFA states and MOE experts to determine which one

produced the closest to the desired result. This also allowed the MOE the use of these stereotypes

65

as different strategies for its own moves, which was not possible in other algorithms. In order to
prevent the agent from dramatically flipping between states and experts thirty times per second, a
constantly increasing likelihood of shifting was adopted. An agent would only consider changing
its expert prediction at a one percent cumulative chance every frame (i.e, thirty percent after one

full second).

Experiment Design

Four experiments in total will be discussed, although only data from the last two will be of
primary importance. The first experiment was a review of DFA agent research discussed in detail
in MaclInnes (1999). A review is included here since it provided a foundation for some of the
following experiments and provided a baseline performance for both humanand computer agents.
The second experiment was the first involving human agents, but in addition to providing data for
analysis (mostly on SOM effectiveness), its main purpose was to provide training data for the
algorithms used in other experiments. The final experiments tested all combinations of human and
computer agents and provided a majority of the user modeling data discussed in this dissertation.
Single sessions witha variety of subject pairs as well anin-depth multi-session test witha single pair
of subjects were conducted. Experiments will hereafter be referred to as EO-a (Maclnnes, 1999),
EO-b (training data), E1 (single session) and E2 (multi-session).

Experiment zero (a) consisted of duels between two agents (DFAs) in random virtual
environments of the same dimensions as the Hebb-Williams mazes. DFAs differed only in the level

with which they recursively modeled their opponent, varying from zero to three. Matches were

66

fought as the best out of fifteen wins, with all other details identical to current experiments.

Experiment zero (b), although tested against human agents, was not designed to gather user
modeling data. Since two of the three algorithms used in this research required a large pool of
observations with which the algorithms were to be trained, the previous version of the arena was
modified as a data gatheringtool. Human/DFA match capability was added, and the resulting code
was released on the web available for download. A request was attached to the site and
forwarded to various departments at the University for volunteers to download the program, and
return their output files. A score board was attached to the web site to try to increase enjoyment
of the experiment and to try increase the data return rate. Although win/loss performance data
were collected by the program, it was decided not to include it in the data from experiments one
and two due to the informal and varied, data collection methods.

Mazes one through four of the twelve Hebb-Williams mazes were used as the arenas.
Each subject fought once in each arena in a match that was the best out of fifteen kills. Since
performance data were notimportant, only the recursive level zero DFA was used as the computer
opponent in all matches. Observationand positional data fromboth the DFA and the human agent
were saved throughout the duration of every match and each arena. The data were output to a
special directory, which the participants were asked to return to the experimenter (via email, or
some other such method). Only data that were returned complete and intact were included as
observation data for training algorithms. Eight subjects contributed data over the period of one and
a half weeks.

Twenty volunteers (elevenmenand nine women) from the university and general population

67

participated in Experiment one. Two computers were placed in separate but adjoining rooms, to
prevent potential participant interaction outside of the virtual arena. Computers were networked
together over a standard one-hundred megabit (100Mb) TCP connection creating an independent
and isolated, Local Area Network (LAN). Neither machine nor the LAN were connected to the
university network or the internet. Computers were identical Pentium IV machines with the
following specifications: 2.4 GHz Pentium IV, one gigabyte of double-data rate random access
memory (DDR RAM), ATI Radeon™ 9000 pro video card with 128 megabytes of DDR video
RAM, 10/100 ethernet card, and a seventeen inch Viewsonic™ (VG700) monitor rnmning
1024x768 resolution. Components were chosen to maximize the likelihood of maintaining a
consistent thirty frames per second on both machines for the duration of the experiment. The
network card was the highest speed available at the university at the time of testing, the graphic
card was tested to be capable of rendering the arena at one thousand frames per second (when
not synchronized to the monitor refresh), and the monitor had a maximum frame rate of eighty-five
Hertz at the specified resolution.

Each participant played in a total of ten matches, where the objective of a match was to
maximize the number of times you killed your opponent while minimizing the number of times you
were killed. Each match began by placing the two combatants in random locations in the arena.
Combatants were instructed to search out and shoot their opponent as best they could using the
control keys (effectors) mentioned above. A match ended when the total kills for the two
combatants reached five. The ten matches in the experiment contained a single match against each

of the nine possible computer agents (three algorithms by three recursive levels) and one match

68

against the human opponent in the other room. Participants were unaware of the percentage of
matches which would be human and computer. Matches were pseudo-randomized in a way that
mixed the sequence of matches, but still allowed the same sequence for the two concurrent
combatants (they both needed a human opponent at the same time). At the start of the experiment,
each subject was asked to choose a number between one and one-hundred. These two numbers
were then multiplied together, and the result was entered into an input file and used as the seed for
the C++ random number generator found in ‘math.h’. Given the same initial seed, the C++random
number generator will produce the same random sequence for the two participants regardless of
machine or system clock. The ten matches lasted between twenty minutes and one-half hour,
depending on the speed of the combatants.

All matches were synchronized between the two computers, so they would start at the
same time regardless of whether the opponent was a local computer agent or a TCP agent. This
was to ensure that delay between matches would not give information about the coming TCP
opponent. This did introduce information about the match previously played, but this was less
problematic than information of future opponents. A long delay after a match tended to signify that
the previous match was not a human opponent since they likely continued playing after the local
match was ended. This information was not completely accurate, however, since players did spend
differing amounts of time answering between matchquestions, and since each player had to confirm
that they were ready to continue with a new match, it was possible that the previous human
opponent was merely taking a longer break.

Subjects were asked additional information about themselves, the individual matches and

69

the overall experiment in addition to the random number mentioned above. Since participants were
volunteers, and often volunteered in pairs, each pair of participants were asked at the start of the
experiment whether they knew each other and whether they had played any type of network
computer game together. No subjects were excluded due to this criteria but it was saved to be
included as part of the analysis. Other subject information included their initials, as well as a self
report on their relative computer game experience. Each participant was asked to rate this
experience on a scale of one to nine with one being never played computer games before and nine
being play computer games daily. During an intermission between each match, participants were
also asked to decide whether they believed their opponent was controlled by a computer, or the
human in the other room. A confidence score from one to five was also requested with five being
the most confident and one being the least. At the end of the entire experiment, participants were
asked to give their subjective impressions about the experiment. For example, the traits that they
used to distinguish between humans and computers, strategies theyused tofight in the matches, and
how many opponents did they think were human and computer. Participants were told on the last
question that it did not necessarily have to match the total of response numbers given in the post-
match questions if their opinions changed. Most questions were asked and recorded by the
computer through the course of the experiment. The random number and the post-experiment
discussion were the only questions asked and recorded by the experimenter.
Experiment two was identical to experiment one except for the participants and the

duration. In order to test the computer algorithms under expert scrutiny, two participants were

recruited to play in an extended version. Participants were selected who were familiar with the

70

controls of the arena, (but not these particular computer agents), who knew each other and had
played network games together, and who (in the experimenter’s opinion) were likely to rate
themselves as seven or higher out of nine on the computer game experience scale. The two
participants chosen were known to the experimenter, had both play-tested previous versions of the
arena, had played each other numerous times in computer games and rated themselves at eight and
nine on the niner point gaming scale. Although this selection process introduced obvious
experimenter bias into this experiment, it was deemed necessary in order to procure combatants
that would test the agents’ effectiveness and believability under these conditions. These participants
were tested in the exact same process as mentioned for experiment one, exceptthe experiment was

repeated three times over a period of two hours.

Chapter 5: Results and Discussion
Overview and Descriptive Statistics

A total of twenty subjects (ten male, ten female) participated two at a time in the
experiment. Two subjects (both male), participated in an extended version (E2) which looked at
patterns over three sequential runs of the experiment. The mean self reported experience level for
all participants was 4.11 on the one to nine scale. As expected, this differed across gender with
men having a mean of 5.75 and women at 2.80. Alpha (significance value) was chosen at 0.05,
although marginal values will be reported to indicate potential for future research.

Looking at each of the subject pairs, only two reported that they did not know their
opponent and fourteen reported never having played network games (LAN) with their opponent.
Both knowledge and LAN background was a requirement for the pair in Experiment two. The
high degree of familiarity between subjects was likely due to a number of factors. Subjects were
selected from two science faculties (Computer Science and Psychology) in order to maximize the
possibility of getting the best distribution of computer and gaming experience. Since experience
and gender were the focus of the study fromthe human perspective, knowledge was a less critical
variable. Since no range was given for prior knowledge of an opponent, this likely covered
possibilities from friend, to mere passing familiarity. Finally, the need for two subjects to volunteer
simultaneously, mayhave placed schedulingrestrictions which increased the likelihood of familiarity
in the subjects. The potential bias is deemed to be slight however, due to the likely range of prior
knowledge. This increased knowledge also reflects the usual applications of these multi-agent

systems where potential opponents are usually more than passingly familiar.

71

72

Accuracy

Before the three dependent variables were tested, it was decided to determine the benefits,
if any, of the Kohonen SOM that fed into the mixture of experts. Since the purpose of this step
was to create individual experts that were to model user stereotypes, it would only be effective if
the newly created sub-groups were better models than the overall data (these SOM graphs are
descriptive results most closely associated with EOb - training data). All data referred to within the
results section represents data that has been normalized to values ranging from zero to one in real
values. This was performed to allow for easier transition between the many algorithms used at each

stage of data processing and machine learning (The SOM in particular required normalization for

= Train
=== Tost
o Qutput b
Full K1 K2 K3 K4 K5 K K7 KB K9
Figure 7 standard deviations of samples within the overall data (Full)
compared to the Kohonen clusters (K1-9). Graphs show that the
clustering was effective on the experiment Ob training data (train), as
well as testing those clusters on the previously unseen data from E1
(test). Since the clusters were created only using the data from the

input layer of the neural net, it was decided to test on the output layer
as well.

standard Deviation

73

the distance measure to equate across attributes).

To test this effectiveness, the average standard deviation of each resulting group was
calculated and compared to the overall data. The standard deviation was first calculated for each
of the attributes of the data, thenaveraged across all attributes that were to be used as input for the
neural networks. Figure 7 shows the results of these calculations for the training data, the output
layer of the training data as well as the resulting data from experiments one and two.

First, as seen in the standard deviations of the data used to train the Kohonen SOM,
clustering the data had a definite effect on the expert groups. As expected with a clustering
algorithm that minimizes distance as its similarity measure, the standard deviations of the groups are
consistently less than the standard deviations of the whole. If nothing else, this is evidence
supporting the fact that the hybrid Kohonen SOM/ K-Means was effective as a clustering
algorithm.

Since the final neural networks would use this input data to predict the output data, it was
decided to see if the clustering (which was performed on the input attributes only) would have any
effect on the standard deviations of the output layer. If the clustering on the input layer alone had
a similar positive effect on the standard deviations of the output layer, it would be possible to show
early evidence of a predictive link between what would be the input and output layers of the neural
networks. Using the same clusters that were created with the input, Figure 7 shows that there is
also some improvement on the output data as well. Although the overall standard deviation and
the improvement of the clusters is less than for the input layer, it is still less than the standard

deviation of random samples (.28) within this normalized range (0.0 to 1.0).

74

The end result of this clustering of course, would be to use these clusters to test new data
with the MOE agent. The Kohonen Mean of each cluster would be used to sort the new data to
determine which expert (stereotype) would be the closest fit. In an effort to determine the benefits
of this strategy, the data from experiments one and two were run through the SOM using only the
means from the training clusters (The clusters and means were not retrained withthe new data, only
tested). The same standard deviations were then calculated for the resulting clusters and the results
are shown in Figure 7 as the test data. These new clusters did show improvements in the
stereotypes equal to those seen in the training data, suggesting that these clusters were just as
accurate in grouping new data fromas yet unseen people. This did not prove that all strategies and
stereotypes were accounted for within these groups, but it did suggest the strategies that were
represented were more closely approximated with the experts than with the overall data.

Immediately following the clustering process, feed forward, back propagation neural nets
were trained for the neural net and MOE algorithms. The data, in its entirety, was used to train and
test the neural net algorithm and each of the SOM clusters were used to train and test neural
networks to be used as an expert for the MOE. As with other implementations of MOE algorithms
(Jacobs, 1991), it was not necessarily expected that the MOE would outperform the neural
network. Since, in theory, a sufficiently complex neural network can model any pattern, dividing
the problem into simpler patterns should only serve to reduce the complexity of the neural network
needed.

Table 1 (page 60) shows the training accuracies of the neural network and MOE experts.

The data from the overall network as well as each of the SOM clusters were divided up into two

75

groups - ninety percent of the samples were used to train the neural net, while the remaining ten
percent were used to test the resulting network. Resulting accuracies for these two sets are found
in Table 1 in the training and testing columns respectively. All neural networks were trained until
there was a reversal in the test accuracy or no significant improvement in the training data over five
hundred training iterations. The rule for reversals was included to prevent overtraining of the
network which tends to improve the accuracy in the training data at the cost of accuracy on future,
untested data. These results show that while the smaller, specialized experts are not more accurate
than the overall network, many require the same or less complex internal structures and fewer
training iterations needed to reach optimal performance. Two-thirds of the experts required fewer
nodes per hidden layer than the full neural net to reach optimal accuracy while only two required
more. Every expert also required fewer training iterations to reach peak accuracy, and this result
was compounded when one considers that the experts had, on average, one-ninth of the training
samples per iteration. The column labeled ‘total training samples’ reflects the number of samples
used in training that expert (from the SOM) times the number of iterations used to train the
network.

Accuracy looked at each of the algorithm’s ability to predict an opponent’s next location
in the arena given its five most recent locations(except for the DFA, which by definition only uses
current information). Since variables such as gender and subject experience were not available
in experiment 0Oa and Ob (training experiments), only data fromexperiments one and two were used
for this analysis. Data were analyzed using a ten (time) by three (algorithm) repeated measures

ANalysis Of VAriance (ANOVA) with gender and experience as between subject variables .

76

Time refers to how far in the future the algorithm was tested, and was counted as how many
samples of one-sixth of a second from the current time. Experience was the self rated measure of
how often a subject played video games and was condensed from the original scores as follows:
one to three = low; four to six = medium; and seven to nine = high. Algorithm was the prediction
method including DFA, neural net and MOE. Gender, of course, was the sex of the opponent
being modeled. Analysis which only look at the MOE were also able to look at the differences
between the nine experts as a variable.

The ANOV A stated above resulted in every variable and interactionbeing highly significant
(P< 0.001) including the four-way interaction between experience, gender, time and algorithm.
Although large data sets themselves cannot create significant results, the over two-hundred-

thousand data points were more than sufficient to show every significant pattern within the data.

ANOVA Table for Time

OF SunofSquares Mean Square FVaue PVahe Lambda Power
Gendex(F) 1 249393 249393 415301 <0001 41530} 1000
Newbp 2 248031 124041 20656] <0001 41312} 1000
Alg 2 1220412402 614706201 | 102364275] <(001| 204728551| 1.000
Gender(F)* Newtp 2 416270 28135 34600 <0001 69320] 1000
Gender(F)* Alg 2 2431918 1215959 2024881 <0001 404.976] 1000
Newbp* Al 4 473333 118.333 19706] <0001 78822] 1000
Gender(F)* NewBxp * Alg 4 753.308 188327 31.361] <0001 125445] 1000
Subjec{Group) 217935 1308718257 6005
Tire 9 3336068203] 370774245 | 9529164101 <0001 | 8576247692| 1000
Time* Gendex(F) 9 173432 18270 49526| <0001 445733} 1000
Time* Newbp 18 176.777 981 252411 <0001 454.320] 1000
Time*Alg 18 5138288441 28546047 | 73365389 <0001 | 1320576963] 1000
Time* Gendex(F) * Newbp 18 233216 12.95% 33209| <0001 530382 1000
Time* Gender(F) * Alg 18 1093.689 60.761 156159 <0001 2810.860] 1000
Time* Newbp * Alg 36 352.306 9786 251511 <0001 9054527 1000
Time* Gender(F)* NewBp * Al 36 468.702 13020 33461] <0001 1204.508] 1.000
Time * Subjec{Group) 1961415 763175193 380

Figure 8 ANOVA of accuracy results for time (prediction), algorithm, gender
and experience.

77

Due to the number of significant effects, the entire ANOVA table is included as figure 8 instead of
listing all possible interactions. Graphs and descriptions of the base effects as well as some of the
more interesting interactions are discussed below.

Figure 9 shows the result of accuracy (Y axis) by time (x axis) split by both algorithm
and gender. As to be expected, the accuracy decreased for all conditions the further in time that
the algorithm tried to predict. This effect of time was robust and consistent, and will only be
mentioned further in how it interacts with other variables. Overall, the neural network algorithm
was superior to the MOE and DFA in its ability to predict future opponent positions withthe MOE
coming in a clear second.

The gender differences seen on the graph reflect the interaction of time, algorithm and

g- =O= NNET.M
8 ~@~ NNET. F
7 -4 DFA M
6 - ~ir DFAF] ,
5- -© MOEM ;

Accuracy
I
=
Q
m
iy

TO T1 T2 T3 T4 T5 T6 T7 T8 T9
Time

Figure 9 Accuracies (as Euclidean error) of the three different algorithms
across ten prediction samples. Data further split by gender to demonstrate
the algorithms’ differing abilities to predict the strategies of the two genders.

78

gender. Although not as large as the effects between algorithms, the gender effects were significant
and showed that different algorithms were better at predicting future location for different genders.
While the MOE and the neural net were more accurate for the men, DFA was more accurate for
the women. This data, when seen fromthe perspective of theories on navigation strategies, offers
converging evidence of different algorithms being more effective against the different strategies that
are attributed to men and women (landmark vs. spatial strategy).

Further evidence for this distinction was found within the MOE itself. Figure 10 shows the
time sequence data for the MOE only, divided by individual expert. The experts were fairly evenly
split between accurate (three, five, seven and eight), inaccurate (two, four, six and nine) and one
erratic (one) that may have been caused by predicting direction reversals. Looking at the

distributions of gender within the original SOM clusters (table 2), it seems that the clustering

,.
Echen i

E';él

.E'Q}h&.

=T g:""l ¥

Euclidean distance

L}

T T2 T3 T4 T8 T8 T7 TB T9 TiQ

Time
Figure 10 Accuracy of prediction for the nine MOE experts
(stereotypes). Note that only the MOE allowed for this type of split
analysis

79

algorithm has allocated the samples based in part on gender even though it was not one of the

factors
Samples M F M% F%
725890 444190 2817060 61% 39%
193330 110040 83290 57% 43%
168890 97560 71330 58% 42%
54550 39830 14720 73% 27%
44370 32940 11430 74% 26%
35690 28460 7230 80% 20%
149200 75180 74020 50% 50%
61510 45290 16220 74% 26%
6180 4630 1550 75% 25%
12170 10260 1910 84% 16%

Table 2 Number of training samples split by gender. The top

row represents the split in the overall data, while the remaining

rows are for the MOE experts.
involved in training, Clusters one, two and six had higher portions of samples from women than
that of the average, while the others have less. Since the MOE is less accurate at modeling women,
itis no surprise that the experts from these three clusters were two of the lowest accuracies and
the one with the most variability.

While the same pattern existed for the neural net and the opposite held true for the DFA

(better at predicting women’s location), neither algorithm was open to the same type of divided
analysis as shown with the experts of the MOE. Since the stereotypes represented by the MOE
were designed to reflect different strategies, it could be beneficial for future versions of this

modeling algorithm to include gender in the clustering and training of the experts when the

information is available.

80

Looking at the accuracy data again, but this time with gender, experience, and algorithm
as the variables (figure 11), we begin to see some of the interaction between gender and
experience. As seen in the ANOVA table, experience was a significant factor in accuracy
prediction, but the effect varied across all conditions. Once again, the neural net and the DFA
were nearly mirrorimages of each other. The DFA was better at predicting women’s performance
and this result got worse with more experienced opponents. The neural net however, performed

better against the men, and this result got better against the more experienced opponents. For these

= DFA ~@- DFA
- wmoe Male -@ moe Femoale
=iz NMNET i NNET
5 . - "
4.5 - ¥ & -~ i
1 L
47 L
3.5 1 L
9 |
8 ° |
< 2561 L
2 "
1.5 . . i
1 2 3
Experience
Figure 11 accuracy score by the experience of the participant. Split
by both gender and algorithm.

two algorithms at least, the effect of experience seemed to be consistent across gender -i.e. no
gender versus experience interaction within these two algorithms.

The MOE, however, showed very mixed results and clear interaction between gender and

81

experience (The fact that only one algorithm showed this interaction was indicative ofthe three-way
gender x experience x algorithm interaction). Overall, the MOE was better at predicting patterns
with male opponents and was also better against those with higher experience. The exception in
both cases was a reversal with participants who claimed mid-range game experience.

It is unclear what to make of this mid-range difference. Since the statistics were highly
significant, we will accept the results as accurately reflecting the truth, but any explanation will likely
require further testing. One possibility is that subjects who rated themselves in the medium range
of game experience, were more varied than those on the extremes. It is important to remember
that experience was a self report variable and could have been influenced by the fact that it was
subjective. Although data was anonymous, frequent players may have seen the need to downplay

their computer time (possibly out of habit), and low end gamers may have seen the need to

Count
a

Experience
Figure 12 Histogram of gender by experience. Although experience is
later transformed to a more appropriate bi-level variable, it is left here
as three to show the non-normal distribution.

82

exaggerate. Anecdotal evidence supports this. The case of two participants, for example, who
rated themselves as low experience, but also reported having played each other in competitive
network matches on a number of occasions. If problems in self report were causing bias, we
would have expected to see a higher variance in the mid group than at the extremes, but we in fact
saw the opposite trend: lower variance in the mid group.

One assumption that may not have been valid, was that experience was a linear scale with
a normal distribution. Taking a look at histograms for the distribution in men and women (figure
12). It was apparent that this bore further scrutiny. Male experience was clearly bimodal, and
women’s scores were skewed toward low. Mid-range scores in fact, accounted for less than
fifteen percent of all participants tested. The data shown were likely to be a accurate sample of
the real world distribution, since it matched data taken from Shore et al. (2001) and Maclnnes
(2001). Differences include fewer men with low gaming experience on both studies (skewed
toward high gaming experience), and the Shore et al. study had no female participants with high
gaming experience at all (The Maclnnes study, as with this research, had one).

Through the lack of a bias, and similarities with previous studies (Shore, 2001), it would
seem that this data was an accurate representation of the population distributionand reflected the
established preference for spatial tasks (games) among men (the relation between this preference
and spatial ability will be discussed later) The unusual data among opponents with mid-range
experience, then, was likely an artifact of two populations with very different gaming background
before the experiment and will add to the justification for transforming experience into a binary

variable.

83

Effectiveness Score

As mentioned previously the effectiveness of an agent was defined by the number of times
it was able to defeat its opponent in any best-out-of-five matchand the value ranged from zero to
five. Although the accuracy of an algorithm influenced this score (since a more accurate predictor
should be more effective), all three algorithms were able to use this information in different ways.
For example the DFA, by definition, was unable to use information from previous states in its
current decisions while both other algorithms could. Furthermore, the MOE had subdivided
stereotypes that could be (and were) used for its own moves (in addition to prediction), which the
neural net did not. It is worth noting in the following analysis that a ‘good’ score depended on the
perspective of a particular analysis. If we were determining which algorithm was better, a lower
score represented an improvement since that was the score against that agent. While analyzing
experience however, a higher score was better since the analysis switched to the human

perspective against that agent.

Experiment 1

The analysis of the effectiveness score was split into three stages. First, the between
subject variables were subjected to a factorial ANOVA,; this was followed by two repeated
measure ANOV As of the within subject (and relevant between subject data) variables and finally
alook at a few graphs of interactions between these groups. This division was necessitated by the

makeup of the data. Although the repeated measures ANOV A was the appropriate final analysis

84

for this experimental design, it precluded the inclusion of a few between subject variables. Since
the repeated analysis treated each subject as a single data point, variables that dealt with the
individual matches were lost.

Due to the large number of between subject variables and the scarcity of some of the
combinations, a full analysis of all variables was not possible. Even though most variables were
balanced at the base level, certain combinations of between subject data were not found. Usually
this would be a case for collecting more data to add to the study, but this would be unlikely to help.
One case inexample, was women who rated themselves as ‘high’ on computer gamingexperience.
This combination was only found with one subject in all four of these experiments. A review of
other similar study’s using this same graphics engine however (Shore et al., 2001; Maclnnes
(1999); plus other unpublished data) combine to over one hundred participants but only two in this
category, so even a large number of extra (random) subjects would be unlikely to increase this
category. To minimize this problem a number of variables were collapsed to fewer, but equally
relevant factors.

The first consideration for the factorial analysis was experience and was actually
represented by a number of different factors. The prior computer gaming Experience was
reported by each participant and was rated for the analysis as high or low (one-four, and five-nine
on the self report scale respectively). This transform kept a strong reflection of the original variable
as tested by regression (R=0.90). Since participant’s performance may improve as they duel with
the ten different opponents, the order that they experience the different algorithms was included

(hereafter referred to as ‘Practice’). Finally, since experiment two looked at longer term effects of

85

running in the experiment many times against the same human opponent, the ‘Sequence’ of the
experiments was also analyzed. (Note that ‘Practice’ refers to matches within an experiment and
‘Sequence’ refers to between experiments).

The time to complete a match (‘Duration’) measured the length of time in milliseconds that
it took for a subject to fight each opponent (all five kills). This variable required further

transformations to be used in a factorial ANOVA; to convert it to a discrete variable, and also to

0 40000 80000 120000
Time(ms)
Figure 13 histogram of match completion time.

deal with the skewed distribution (see figure 13). Time was first transformed into a Z score
reflecting the number of standard deviations a particular time was distant fromthe mean. This was
only partially effective since a few scores were more than two standard deviations greater than the
mean, but a Z of negative two was not possible due to the minimum boundary of zero. It was
decided to convert the time to a binary variable split evenly about the mean time to ensure fair

distribution and minimize the likelihood of empty cells for interactions. To ensure that this variable

86

was still an adequate representation of the original variable, a regression of the two measures was
performed. The new variable still held a strong reflection of the original with R = 0.798.

The effectiveness (factorial) ANOVA of gender x experience X practice X duration
showed a significant effect of gender x duration (F(1,249)=4.98,p<0.03) and a marginal effect of
gender x experience(F(1,249)=3.01,p<0.083). Again, limited group sizes did not allow for testing
interactions on the full set but interactions of up to depth two were tested. Gender and experience
were both legitimate in the repeated measures analysis, so they will be discussed in that more
appropriate forum.

The effect of gender by duration, shown in figure 14, demonstrates the factthatmentended
to do better at longer matches, while women tended to do better at shorter matches. These
differences were also reflected in the histograms for the two genders (figure15). While men were

evenly distributed, women tended to finish much faster than the men. This could easily have been

4
3871 - Male ,{]
164 — Female Lo 5

Effectiveness
I

(3]
A

I
®

o
&

Ecrly Lote

Match Completion Time

Figure 14 Effectiveness of participants based on how
early a match was finished. Data split by gender shows
women doing better the earlier they complete a match
while men tend to do better in longer matches.

87

F M F M
Durction Early Late
Figure 15 percentage of matches that finished early and late split
by gender. Since men and women did equally well, this is further
evidence for strategy differences.

indicative that differing strategies were being employed by men and women in this arena.

Effectiveness against opponent was analyzed with a repeated measures ANOV A as both
a ten factor (opponent) and a three x three (algorithm x recursion). The first analysis treated each
of the nine computer opponents as its own factor and allowed for comparison with human
opponents, and the second treated algorithm and recursion as separate variables, but did not allow
comparison with humans, since recursive modeling could not be measured (if it is being done) in
human opponents. It was with this second analysis that the full between/within ANOVA would be
shown.

In the ten factor analysis, including all computer and human opponents, the type of
opponent was marginally significant (F(171,9)=1.877, P<0.06) as seeninfigure 16. The score for

human opponents, as expected, was 2.5 and stemmed from the fact that human/human matches

88

1
Ly .7 A4
[N e
bt .
o o
E’i s R /'.’.
C B S
5 K *'/ .,'/"
cé S
E} A
= A
i =
Human DFA NET MOE

1 201 2 0 1 2
Figure 16 Effectiveness of agent for human, and the

3 software agents with their recursive levels. Each

agent is treated on par with humans in this analysis.
were always paired as one winner and loser witha five total score. Although none of the computer
agents reached this threshold of half wins, the non-recursive MOE and the non-recursive DFA
came close with just under and just over three wins respectively.

The human score was then removed and the remaining algorithms were analyzed in a three
(algorithm) x three (recursive level) repeated ANOV A along with gender, experience, whether
the opponents had played Local Area Network games previously (LAN), and whichopponent had
a higher rated experience (HigherEXP). The first four factors are self explanatory, but the latter
two bear mentioning. Although both of these variables were originally meant for the believability
ratings, it was decided that they may be relevant with analysis as well. The possibility of
information regarding the human in the next room affecting software’s believability was
straightforward, but affecting how you play againstthe software opponents was less so. However,
if knowledge could affect the opinion of an opponent, it could also affect the style and strategy

against that opponent and therefore the final score. Including all four variables for the effectiveness

and believability ANOV As also provides a greater continuity between analysis.

89

Software perspective

The main effect of recursion was significant (F(2,30)=6.517,p<0.005), and interacted with
LAN (F(2,30)=5.44,p<0.01), HigherEXP (F(2,30)=5.07,p<0.02) and algorithm
(F(4,60)=2.728,p<0.04) (Figure 17, A,B,C,D). Overall, RO, or bots which did not recursively
model their opponents had the fewest games against them than those whichdid recurse, regardless
of how deep the recursion (figure 17a). This pattern remained fairly consistent across all conditions
except for a few instances shown in the interactions above. Participants who did not play network
games (LAN) with their opponent prior to the experiment seemed to show no effect of recursion
at all. Those that had prior LAN experience showed most of the differences including a further

increase against agents at recursive level two (figure 17b). Splitting the data by whether there was

a e [44 .)
353 AL 23 -
“ [- LAN
n 3.z 4 L — Mg LA
5.3 1 oae]
L .
€ 3.2 . 241 :
Sk
31
3.
g % 57 204
q) ¢
C 28 zE
o (1] 1y [T [T 1 Kz
at :’Z{
Yy AT 28
% 1T oT 3 =
.yt 33 - NNE) 24 —Jy 1
v = i & Mot [4] -."""-N_]
347 [3z I
EES o) L
e B | @ y
3.] L 22 ‘ i
di % c}{1 il P — s thon Oop F
1 | 544]
23 ‘ i € Mot Worss
3 i 2
7R >
ff R3 R1 s [a1 R3

Recursion
T Figure 17 shows the various graphs for effects and interactions for effectiveness involving

recursion(R0O-R2). From left to right, top to bottom, they are the base effect (a), split by
€ LAN (b), algorithm (c), and whether the participant had less experience than their opponent
(d).

90

nce in experience levels between the two opponents (better thanones opponent), it was shown that
the lesser experienced of the two opponents was responsible for the recursive zero effect, with all
other conditions being nearly equal (figure 17d). Although it is difficult to say exactly what these
trends mean for agent design (and recursion in particular), it is clear that human player knowledge,
experience, and expectations have a large impact on resuits.

Although zero level (no) recursion was best overall (figure 17a) by nearly four-tenths of
a game, it was only the best for two out of the three algorithms (figure 17¢). Looking back at the
Maclnnes (1999) DFA results, we see nearly opposite results, likely due to the opponents
changing from being a DFA in Maclnnes (1999), to a human opponent in this study. This made
sense due to the greater difficulty in predicting human patterns than that of a finite state machine.
Maclnnes postulated that the error for less accurate predictors would have an additive effect with
increasing levels of recursion. The optimal level for recursive modeling would therefore be a
function of the accuracy and we would expect different algorithms to peak at different levels of
recursion. Looking at the recursive levels for each algorithm, we see that while the MOE and DFA
were optimal at level zero, the neural net peaked at recursive level one. This would seem to agree
with the prediction since the neural net was the most accurate of the three algorithms. The slight
increase in effectiveness at recursion two as well as the lack of a significant algorithm by recursive
level interaction in this study, however, suggested that there may have been more to the story than
this simple explanation. Although accuracy may have been an influence in algorithm effectiveness,
other factors seemed to have been at work.

A second explanation for the lack of recursion effect in the neural net and MOE was that

91

recursive modeling was already included implicitly in the networks themselves. Since the neural
networks were trained on observations of human matches, these algorithms may have learned
recursion as it was (theoretically) used by the human agents. Any further attempts at explicit
recursion for these algorithms was ineffective due to the implicit recursion of the networks.
Algorithm itself was not significant, except in interaction with recursive level (discussed
above), and withGender (F(2,30)=3.455, p<0.05). Since the interaction with gender tells us more
about our gender question than it does about our algorithms, it will be discussed from the human

perspective.

Human perspective

The ANOVA showed no significant effect of gender (F<1.0), and the only marginal

3.8
3.6 1

3.4 -

Effectiveness score
£23
N

2.8 9

28 ; ‘ :
DFA NNET MCE
Figure 18Effectiveness of algorithm against both male (M) and
Female(F).

92

42)

4
5]
387
34]
32]

3
2.8 -
25
24

- Male
@ Fermndle

Effectivenass Score

1 2 3 4 K B
Experience

Figure 19 Effectiveness of participants based on their self-

reported computer game experience, also split by gender.

interaction with gender was with the software opponent in the match. As seen in figure 18, there
was little difference between men and women when fighting a DFA and MOE, but a significant
difference (0.7 of a game in favor of the men) when fighting the neuralnet. Strangely, these were
not the patterns we would have expected based on the accuracy data that showed that DFA’s
were better at predicting the location of women while the other two were better at predicting the
patterns of men. It is obvious that what an agent did witha prediction was at least as important as
the accuracy of the prediction itself.

It is interesting to note however that the MOE tended to perform better than the neural net
even though the net was clearly the more accurate of the two. The key difference may have been
that the accuracy score was averaged across a person’s complete match. The effectiveness score,
however, only needed accuracy in the brief time before a killing shot was fired.

One important non-result in the effectiveness data was the lack of significance (F<1.0) of

93

gender. Although there was a slight difference in scores between men (mean 3.42) and women
(mean 3.19) the statistics demonstrated that this was better explained by differences other than
gender. One difference that was predicted that may have explained this was experience, but this
also was non-significant (F<1.0). It may be hypothesized that the reason for this lack of
significance was due to increased variance due to the complexity of the task, or due to the lack of
data in certain key sub groups. The same may be said for the lack of a Gender effect, but looking
at the interaction of gender and experience (full scale) in figure 19, we clearly see that the driving
force in effectiveness was experience, and that if anything, women of high experience tended to do
better thantheir male counter parts. Again, this should only be seen as a trend towards experience,
and not a significant interaction. Although with these results it was highly unlikely that, givenmore
data, experienced female gamers would end up performing worse than their male counterparts.

The mostlikely explanations were that the limited size of the sample in this elite group were showing
women to be better when in fact they are the same, or if the difference was real, that the self-

selected nature of this group was driving the improvement

94

Since this experiment could have been seen as a dual task, it was decided to look for
evidence of a trade-off between effectiveness and believability. Subjects may have been dividing
limited resources in to the two tasks differently and may have been affecting the experience (or
gender) results with the tasks as separate measures. A regression of effectiveness by believability
(as compound variables) in fact did show a small (R=0.15) but marginal effect (F(1,160)-3.75,

p<0.06), but it was in the positive direction (Figure 20). Participants who scored well against their

Effectiveness = 3.248 + .033 * LTH; R*"2 = .023

5 s 80000 @ 80
41 $08089GS88O @0OCOO

34 2088 886800

® O
<

e0Ce8 @08 @8 & OC@
i{ ee ®e0 o |

Effectiveness score
N

-10-8-6-4I-2 0 2 4'6‘8.10
Believability(LTH)

Figure 20 scatter plot of effectiveness and believability, along
with the regression. Data further split by gender. Since
believability is represented by ‘Less Than Human’ (LTH), the
higher the score, the better the human participant did in guessing
the software opponents. '

computer opponents, tended to make more accurate judgements on the believability measure as
well. This pattern also seemed similar for both men and women. Further results and discussion

of effectiveness and believability relationships will be discussed more fully after the section on

95

believability by looking at a combined performance score.

The fact that women tended to finish matches earligr than men along with the different
ability for algorithms (and even experts) to predict strategy (as seen in the accuracy data), was
strong evidence for men and women using different strategies in these competitive environments.
Perhaps even more important was the fact that these strategies, although different, were just as
effective against these opponents. This result was consistent with research on gender strategy
differences in spatial tasks as well as research on the importance of experience over gender
(Maclnnes,2001). Although Shore et al. (2001) offered a counterexample of this effect, it was
likely due to increased variance in gamers with high experience caused by significant differences
in the environment with that of a typical computer game (collision detection of the Shore et al.
mazes was different enough fromtypical first-person-shooters that performance was likely hindered

for experienced gamers).

Experiment 2

Experiment 2 looked at a single pair of participants with very high gaming experience, who
were familiar with the Hebb-Williams mazes (although not this experiment), and had played LAN
games together prior to testing. Participants were tested in same experiment three times in
sequence with only the random order of opponents changed each time. Since Experiment one
produced what was likely a generous estimate of the abilities of these three algorithms, it was
decided that a more thorough test against highly experienced participants was needed to fully test

the limits of the algorithms.

9%

Since both participants were male, gender was no longer an issue for the analysis. The
remaining factors; recursive level, opponent type, the length of time of a match, the order a
match was played, and the new factor - the sequence of the experiment itself was subjected to a
factorial ANOVA. Due to the limited number of subjects (two) for Experiment two, it was not
surprising that there was a lack of significant effects, even limiting the interactions to level two.

Ideally, more subjects would have been added to this experiment to give power to the non-
significant trends. Unfortunately, the participants reflect a highly specialized group, in addition to
being required to show in pairs. Future studies could be organized around ‘LAN tournaments’ in
which just such game players arrive fromall over to compete in network computer game matches.
Given the caliber of players that usually attend these events, it should be relatively easy to find

volunteers for an experiment of this nature.

Order of ten reatches wihin aach gamas) Lengrh of dudl [within ecch mach)
44

4
4.2 7 - 42 -
£ 4
T 5.6 s
-_% 3.4 11 24
& 821 221
2.8 --- 15 - 25 1 -
J— 1
26 1 6-10 - 25 -
Be 24
i 2 3 3 2 ¥

Sequence of thres EZ2 gomes
Figure 22Effectiveness across the three games in E2. Results are shown split for order (1-5,
1-10) and length of dual (early/late). The first game in both cases show the majority of the
differences.

Some of the other non-significant ‘trends’ will be discussed in some detail, in particular
those that confirm or deny results from El1, or those that speak to the purpose of this study. The

effect of match time mentioned above, does have a qualifier. As would be expected, this effect is

5
O 4.5 i
5 |
o
. A
O35
= 3 . i
%::}] o DFA L
B ,
= 55 - ~f== NNET F

2 - : ;

Game 1 2 3

Figure 21Effectiveness score for the three games in E2 split by
software opponent.

98

tempered as players progress through the three experiments in sequence. As seen in figure 21b,
almost the entire effect of time existed in the firstof the three alone. Although fast matches hindered
these participants in the first, they adjusted for the second and third. The same held true for the
order of the matches, an overall non-significant difference and interaction, but the graph (figure 21a)
reflects a trend in that the first experiment order appeared to be a factor. Both of these trends,
while not significant, did demonstrate the speed at which these participants adapted to the
experiment. By the second run of the experiment, both results were nearly identical.
The (non-significant) order by algorithm interaction from E1 also continues the trend in E2.
Figure (22) shows a very similar trend in many details. The MOE performs better than the neural
net regardless of order (from one to ten within a game). The DFA as well, is the same whether it
appears early in the experiment or later. Both network based algorithms, however, start as being

as good or better than the DFA, but tend to perform worse in later trials than in early ones.

4.75 *
4.5 -
4.35 4
4 4
3.75 1
3.9 9

o
i

2751
2.5

Effectiveness Score
Y
(33

B

Ey]

(=]
i

2 .
RecursionRe R1 R2
Figure 23 Effectiveness of highly experienced E2 participants
across recursive opponent and split by order of the three games

played.

99

Although the MOE has a tendency to win more than the other algorithms in the first run of the
experiment, there seems to be little difference by the end. It may take different amounts of time to
develop strategies against these algorithms, but these experienced players do quite well against all
of them by the end.

As with experiment 1, the data was also subjected to a three (algorithm) by three
(recursion) repeated ANOVA for proper analysis. Only recursive level was significant and, as
with previous results, had no recursion as optimal. Although an analysis with sequence of matches
was not possible (due to a singularity in the ANOV A matrix), it did follow a now familiar trend with

these experienced players showing no differences by the third competition (figure 23).

Believability Rating
Experiment 1

The believability of an agent, as mentioned previously, was how capable the algorithm was
in fooling the human opponent into believing that the agent was also human and was gathered as
a limited scope Turingtest. Since much of this analysis looks at believability, an initial analysis was
conducted on how believable the human opponents were as humans. The first point of interest was
that people do not seem to be very good at spotting human opponents. Although the median guess
was a respectable positive three, the mean was actually +0.75 , just barely on the human side of
the Turing scale and actually less than the minimum correct guess (+1.0). An ANOVA (limited
to base effects and no interactions due to only one data point per subject) of this human data

showed no significant effect of any of the independent variables (All F’s < 1.0).

100

Participants in E1 had a better showing, however, witha mean guess of positive 3.3. This
result seemed entirely due to the first match with further matches averaging between four and five.
Although this interaction was not significant (F<1.0), it was likely due to the variance in the first
match alone. Highly experienced gamers from this study had little difficulty in identifying human
opponents after minimal exposure to the experiment.

Since we had ratings of how human an agent was for every opponent, there were many
possible ways to combine these “Turing’ scores to measure an agent’s believability. The true rating
itself, as recorded by the experiment was a number ranging from one to five and reflected least to
most confident. A positive or negative sign on that number reflected a guess of human or computer
respectively. Possibilities for a believability score included the raw Turing score, an error score
that showed how far the score was from a perfect guess, and finally a comparative that reflected
how close the agent came to the believability of actual humans. Each of the three possibilities will
be discussed below.

The raw Turing score was not appropriate for this analysis since it held no relation to the
human score of any particular subject, and also did not allow for comparison of software and
human agents due to the different base point. The Absolute Guess Error (AGE), calculated as five
minus score for humanagents and negative five minus score for software agents, was slightly better.
It allowed for comparison of all agents by comparing eachto its ‘optimal’ guess as a baseline, but
did not include reference to that subject’s best (albeit variable) guess for humans. It was decided
that the best choice for dependent variable in the believability analysis would be human-centric

measure in spite of the difficulties participants had in spotﬁng other humans. It was calculated by

101

subtracting each agent’s Turing score from the Turing score that the participant rated their human
opponent. This resulted in a relative rating of how much ‘Less than Human’ (LTH) an agent was
withsmaller numbers reflecting more believable agents and negative numbers suggesting agents that
were more ‘human’ than the humans. The AGE score, however, will be mentioned briefly for
thoroughness, in particular where it differs from the LTH score.

Asmentioned with the effectiveness analysis, whether someone had played network games
withan opponent was one of the between subject variables. One other piece information that was
gathered that was not used was whether opponents even knew each other. The two variables
could not possibly be tested since it was impossible for two people to have played each other in
a LAN tournament and not know each other and were therefor confounded by necessity.
Although they could not interact, the different patternof data between these two variables warrants
mentioning. As seen infigure 24 (A&B), these IVs show very different results. Figure 24A shows

anincrease in error when participants knew their opponent. This means thatcomputer opponents

4 5. r
a5 45 1)
; L 4 1 -
z ° 5] 3
= [3] !
£ *°] s] g
Ié 2] 2 -
‘2 1.5 -1.5"4 :‘
&] 1] ¥
5] g
5 T v 0
Don't Know NO LAN
Know LAN

Figure 24 Believability rating for both prior knowledge of human opponent, and prior LAN
experience with human opponent.

102

seem to have been more believable when participants knew the human opponent in the other room.
This may seem unusual unless the trait of anthropomorphizing is considered. People tended to give
human traits to inanimate objects (computer agents), and it seems reasonable to assume that this
may have increased when they were looking for traits of someone they were familiar with. This
was supported by subjects’ reflections after the experiment which included comments such as
“..Ah, I see what TS was planning...”. This effect, however was reversed when participants had
also played each other in competitive LAN games. This seemed to give participants extra
information about the opponent’s playing style which allowed themto more accurately determine
the non-human opponents.

As with effectiveness, believability was initially subjected to a ten factor ANOVA with all
opponents contributing equally. Since one of the assumptions of an ANOVA analysis is the
uniformity of variance, it was decided to use the AGE score instead of the LTH score for this initial
stage. Since the human opponent was the baseline for the LTH score, the resulting score for that
opponent would have a zero mean and zero variance that would have called into question the
validity of the analysis. The AGE score however uses the ‘ideal’ guess as the baseline, and still
allowed comparison across algorithm. There was no significant effect of algorithm (F<1.0) in this
base analysis.

Algorithm along withrecursion were thencombined with gender, experience, LAN, and
HigherExp in a three x three (within), two x two X two x two Repeated ANOVA withLess-Than-

Human(LTH) as the dependent variable, and again with limited interactions for the betweensubject

103

o / I

DFA NNET MOE
Figure 25 believability for the three different software
algorithms.

Believability (LTH)

marginal significance (F(2,30)=2.833,P<0.08). As we see in figure 25,

performance exceeded the others, with an average difference from the human score of less

Believability (LTH)

e NotWorse -

15 -6 Worse
2 -
Recursion R R1 R2

Figure 26 Believability of software agents by their recursive
level, split by whether the human opponent had a lower
experience rating.

than onerating point. The DFA was second withamean ofjustoverone and the neural net

was the least believable with a mean difference of over two rating points.

104

significance was due to the lack of power (0.362) as a between subject variable or do to the duel
nature of the task.

Significant interactions included recursion with LAN and recursion with HigherExp. Figure
26 shows that although zero level recursion performs better overall, this was not the case for all
groups. Participants who had played their human opponent in LAN games found the process of
recursion to create much less believable agents, while those without such experience found
recursive level two to be most believable. In fact they were found to be as believable as the human
opponents. This could have reflected the additional knowledge of such participants, but those who
answered ‘no’ may have played these network games, just not with their current opponent. It is
more likely that these LLAN pairs had knowledge about their each other’s style and that they were

more capable of spotting different agents.

Similarly, when an opponent’s experience rating was higher than their own, the optimal

5-

Retievability (LTH)

- . . -
Recursion RO R1 R2

Figure 27 Believability rating of each agent’s recursive level split

by whether the human opponents had played LAN games

together. LTH scores more believable agents as lower.

105

recursive level again shifted to level two which actually becomes more human than the humans
themselves (figure 27). It is likely that this was a reflection of the fact that many participants may
have had performance expectations of their opponents based on knowledge of whether their
opponent was better than they were. This may have shown through with a three way interaction

with recursion and LAN, but level two interactions were not possible.

Experiment 2

The only extra information gained from E2 with regard to the believability results was with

Jearning as the three experiments were run. The expert participantsfrom this experiment had similar

Liv]
R S T

[T i

B
|

Believabilty (LTH)

£ -
PR

Match 2 3
Figure 28 Believability of agents in E2 across the three
consecutive runs (Match). Note that with the LTH scale, a 10
reflects a perfect Turing guess on the human opponent as well as
a perfect guess on the software opponent. After the first match,
these expert players are not fooled by the agents.

106

troubles to other subjects spotting the computer agents inthe firstexperiment, but had little difficulty
in the final two (F(2,41)=4.92,p<.02). In fact, as seen in figure 28, subjects are near zero error

for both of the final two runs of the experiment.

Combined Performance

Due the lack (or near lack) of some expected results (experience) along with the significant
regression between effectiveness and believability, it was decided to try the analysis with a
combined ‘Performance’ score. Since participants knew that they were expected not only to
defeat their opponents, but also determine which ones were human, the experiment was essentially
a dual task design. To combine effectiveness an believability, each was first converted into a Z
score by calculating how many standard deviations an individual was fromthe meanfor that score.
These Z scores were then combined to create a new ‘Performance’ score. The resulting score was
then subjected to a three x three (within); two x two x two x two (between) ANOVA as were the
originals. As with the original scores, interpretation of the result depended on the perspective of

the analysis, a higher number was better as was seen from the human participant, but a lower score

o 4 b
T [2 o]
Q2 . 3 1
L. 3 L 24 L.
Bor . 3
8 ¢f 7] '
S C = J o o
2 <11 (.=] 3
=z 7] F ..] =
T o i F
5 2 4§ [il 3
£ ¥ 3 L 5]
L
ool -4 -1

35 HAFT (348 £l 4} R? R B’ L7

sy Pl] wWovsor

Figure 29 Graphs of the combined performance for algorithm, recursion as well as the
interaction.

107

was better when considering the performance of the agent (low score against that agent).

There was a marginal effect of recursion (F(2,30)=3.27,P<0.06), a significant effect of
algorithm (F(2,30)=3.53,P<0.05) as well as an interaction between the two
(F(4,60)=3.22,P<0.02). The trends (Figure 29) were also the same as those found in the individual
analysis: Recursive level zero was the best overall result; Mixture Of Experts (MOE) out performed
the other algorithms; and the neural network had a different pattern than the other two algorithms
in that recursive level one was optimal with a sharp drop at recursive level two. It is important
to note that the original analysis are still important in light of this combined score. While this result
suggests that both algorithm and recursionwere important for an agent’s performance, the recursive
level was more important for the effectiveness component while the algorithm had more influence

on believability.

From the human perspective, the first result (marginally significant) was the main effect of

)

Combined performance (Z

Low High
Experience
Figure 30 Participants who rated themselves as higher experience
performed far better than those who self-rated low.

108

experience (F(1,15)=4.18,P<0.06). As expected, those with high experience tended to perform
better than those with lower experience (Figure 30). The fact that it was not (or barely) significant
with the individual analysis was indicative of the way that different participants allocated resources
for the two tasks. The regression (effectiveness x believability) was positive, suggesting a
complementary relationship, but the variance added by different strategies and emphasis could
easily have caused the result described above. Another important side note was that despite 2 0.6
difference in mean standard deviation (Z score), there was still no significant difference between
the genders in terms of performance (F<1.0). While this difference may have been significant
without considering other variables the observed difference could be explained better by other
variables, such as experience.

As with earlier analysis, the interaction of LAN and recursion remained significant

F\—J,.ZE - 2 . & [
o 21 =€ AN i
S.,5] ® NolaN -_
o .] ‘
& 17 f
O - i
5

o o4t L S :
8 -5 :
fm

5] i
g-w- -
S =V R B S R

A DN M DN M DN M
Figure 31Combined performance score for each software agent
(algorithm and recursion) split by whether the participants had
played network games before.

109

(F(2,30)=7.94, P<0.002) as did the three-way interaction of Opponent x Recursion x LAN
(F(4,60)=2.72, P<0.04). Figure 31 demonstrates that recursive level two behaved differently
depending on prior LAN experience of the two opponents (as with the believability score in figure
26). The three-way interaction, however, was mostly driven by the MOE at recursive level O,
which seemed to cause more trouble for the LAN gamers than any other algorithm and more so

than for the non-LLAN participants.

110

Chapter 6: Conclusion
Experiments

One of the true benefits of Human-Computer Interaction research is the multiple
perspectives from which the data may be considered. Not only do the computer and software tell
us about human traits and preferences, but the human performance can tell us a lot about the
software. In a true interaction, information flows both ways as this research has clearly shown.

Results are summarized below from both the human and the software agent’s perspective

Software Perspective

'The results reported from the training for the machine learning algorithms as well as their
use in various experiments have shown that all three algorithms were very effective under different
circumstances. DFAs, MOEs and neural nets were shown to have different strengths depending
on the task, the opponent as well as the external circumstances of its use.

The accuracy data, which most closely resembles a true machine leaming problem, tested
the three algorithms’ abilityto predict an opponent’s position based only on current and/or previous
state information. Although all three algorithms were able to do the task, the neural network was
the superior algorithm. The MOE performed the second best at this task with the DFA placing
third. The neural net was so effective, in fact that the error for predicting ten time samples into the
future was the same as for the DFA at only four time samples in the future.

Although the stereotypes based on the MOE solution were not as accurate overall as the

single neural net, it still contained training properties that made it a valuable solution. As would be

111

expected with a clustered solution the resulting stereotypes showed far less variance within the
groups than in the overall data. The experts trained from these groups were also able to train in
much less time than the overall neural net and with less complex network structures. Although it
was originally hypothesized that these stereotypes would be less susceptible to overtraining due to
the specialized nature of the data within the groups, many of the experts seemed to exhibit more
properties of overtraining on the test data. This may have been caused by not finding the optimal
network structure of these neural nets, the small amount of data in some of the smaller clusters, or
perhaps even the nature of the clustering process itself. In any event, this question would be ideal
for future research.

The most significant main effect on the effectiveness of the computer agents is from the
recursive level that agent used in modeling the opponent. Despite earlier work that showed an
advantage for recursive modeling betweentwo DFAs (Maclnnes 2001), this study found that no
recursion was optimal. Since it was hypothesized in MacInnes (2001) that the optimal level (and
drop off for higher level recursion) was due to compounding error as the recursion progressed, it
is reasonable to assume that this effect was due to the high error rates for these algorithms. Partial
support for this suggestion was found in the better than average recursive modeling of the highly
accurate neural network.

One of the major hypotheses of this paper, that a Mixture of Experts based on dynamic
stereotypes, would outperform other modeling algorithms met with success, but only in some of the
measures. As mentioned previously, the MOE did well in the accuracy tests, but not quite as well

as the single neural network. The MOE was able to train more efficiently (fewer hidden nodes,

112

fewer training iterations) than the neural network, and a few of the expert/stereotypes did perform
as well or better than the neural net even though the algorithm as a whole did not. The clustering
of the experts, however, did offer a number of insights into strategy that would be useful in future
research.

The effectiveness and believability data (when supported by the combined performance
measure) for the MOE was much more clear. The Mixture Of Experts was superior in both
measures and significantly superior in the combined performance measure. Of the other two, the
roles reversed with the neural net being the second most effective and the DFA the second most
believable. This trend was even more pronounced for participants who rated high on gaming
experience. Where inexperienced players were fooled (nearly) as often by the DFA, the experts
showed no problem identifying that they were playing the simpler algorithm. Experienced players
had nearly a one and a half fold increase in error for the MOE over the other two algorithms.

Although the MOE was not the most accurate opponent, it consistently rated highest n
performance foe both effectiveness and believability across all experiments. With the neural net
being the most accurate, it was interesting that it was not also the most effective. However, the
algorithms, by their nature, differed in how they were able to use the accuracy informationand the
stereotype separation of performance seemed to work very well for the MOE. It is also worth
noting that the accuracy scores were the average performance over the entire match. Effectiveness,
however, was most heavily influenced by the accuracy in the last second of a match (firing on the
opponent) and may have been slightly different than the average. Whatever the reason, the MOE

was a superior performer in both higher level performance tests.

113

Human Perspective

The MOE displayed a number of features that connected to the literature on gender
differences with spatial ability. While testing the basic accuracy of each algorithm, it was observed
that different algorithms performed differently depending on the gender of the opponent. Where the
MOE and neural net were better at predicting locations of male opponents, the DFA was better
at predicting women. This effect interacted with experience in that DFAs were better at predicting
less experienced opponents and the neural net was best against those withmore experience. The
MOE, interacted with both of these variables, predicting differently for each combination of gender
and experience.

Since the movements each participant make are a reflectionof the strategy they use against
these agents, we can look at these results as varying against the strategies that these different
opponents were using. In this light, the gender differences that we see in prediction, reflected the
different strategies that are hypothesized to be used by men and women. Further evidence for
these different strategies was found in the clustering data itself. The Kohonen SOM/ K-Means
hybrid seemed to differentiate data based, in part, by gender even though this was not a factor in
the distance measure used by the algorithm. Since the overall MOE did less well in predicting
women, it was no surprise that clusters with higher than average percentages of samples from
women, tended to be the least accurate and more variable than the others.

In spite of significant gender differences in accuracy, however, there were no significant
gender differences inhow effective these algorithms were in defeating opponents. Men and women

used different strategies, the three algorithms predicted these strategies to different degrees of

114

accuracy, but men and women performed equally well against all of these algorithms. Although
participants with different experience levels showed the expected effect, menand women of equal
experience did just as well against the computer agents. It is often more difficult to find women
in this category, but female computer game players seem to do just as well as their male
counterparts. Even though there are gender differences, there are no gender advantages in this
study.

The most obvious message of the believability data is that most people are not very
accurate at spotting human opponents in this environme;lt. The mean across all groups in the first
experiment was barely better than the midway point between a guess of human and a guess of
computer. Highly experienced participants from the final experiment did much better after some
exposure to the experiment - after the first run through the experiment.

An interesting result of the believability score was one that bore no relation to how well the
computer agent was programmed at all. Results have shown that participants were more likely to
think the computer opponent was human if they knew the ‘potential’ human opponent in the other
room. Just the thought that they may have been competing against their friend increased the amount
that they anthropomorphized the computer opponent. This trend was reversed, however, if the two
friends had also played computer LAN games together in the past. It seemed that knowledge of
each other’s behavior in similar games translated into better estimates of the friend in this new

environment,

Contributions

115

The first of the contributions of this research fall under the heading of tool development for
cognitive research. Over seven-thousand lines of code went into the creation of a virtual arena and
the agents that inhabit it. The environment was designed to be flexible enough to run a variety of
cognitive experiments and mimic many standardized settings including the Hebb/Williams mazes
(including the original version as well as this modified task). The timing of the code was researched
and optimized to be accurate to millisecond precision, even in a multi-tasking operating systemsuch
as Windows. The modularity of the C++ code allowed many possibilities for agent algorithms, only
a fraction of which had been implemented for these studies. In addition, all of this code had been
released to the scientific community as ‘Open Source’ in a bid to foster science and ease of
replication.

The algorithms used to create the ‘brains’ of the computer agents have contributed to the
literature for both machine leaming and user modeling. A relatively new approach was used to
provide dynamic, clustered input to the neural networks used in the Mixture of Experts. Although
this solution was not the optimal algorithm in all tests, it showed a great deal of promise, as well as
shedding some light on strategy differences within the participants.

Finally, this research gave preliminary data on which factors were important in modeling
users within these environments and under what conditions. The within-subject variables such as
algorithms and recursive level could be modified and improved depending on the desired result of
effectiveness and/or believability, but the between-subject variables usually cannot. Developers
of environments can control the program, but factors such as experience and gender cannot be

optimized, only understood. By working with the effects that these factors have on a system,

116

developers can better design environments, agents, competitors and collaborators that best suit any

particular combination.

Future Work

The four primary avenues for research stemming from this dissertation would be extending
the connection to the research on gender differences, replicating this research in other important
multi-agent environments, fooking more closely at experienced and inexperienced users as the two
distinct populations that they appear to be and improving the algorithms used for user modeling
(possibly hierarchical clustering and MOE).

With the host of new research being done on gender differences in spatial ability (in
addition to this dissertation), it would be beneficial for research to attempt to link the various
biological and social connections for these differences. With results linking testosterone with
gender differences, the success of researchers training away these differences, and the current
results showing the importance of experience, an interdisciplinary study looking at whether spatial
tasks (such as video games) increase testosterone levels may be warranted.

As mentioned earlier in this document, other competitive multi-agent systems exist that
could benefit from this type of research. Although these results should be indicative of other
environments, tests with training simulators and on-line trading environments could be an important
replication of these results.

Finally, due to the importance of experience in most of the results in these experiments,

studies thatlook specifically at each group may be warranted. Both subjective and objective results

117

of this research suggest that participants with differing experience levels look for very different
things when competing in these environments and will likely be better served by different computer
solutions. In addition to this, the goals themselves may differ across experience levels when looking
at these multi-agent environments in the real world. Whether it be for simulation, commerce or
game, it is likely that inexperienced participants would be looking for a ‘training’ opponent that
would help thembuild the skills needed for that environment. Expert competitors, however, would
likely be looking for an opponent that could give a proper challenge to their abilities. Competitive
algorithms are needed it whether it be a ‘Quake-bot’ that plays like an expert human, or a

simulated pilot that can participate in an accurate dogfight.

118

Appendix A UML

CApp

CView

ChMd2

CMaze X
<E>>
— <<>>
ClLavel CPlayer
CGLWindow 1.
1.¥
—|
<>
Renders to
d
renen® CHPiayer CCPlayar
CTexiureMgr CFont
<>,
NNat

LEI

Appendix B. Arena images 119

Appendix B.1 Side view of opponent from participant’s perspective

120

Appendix B.2 View of opponent’s ‘face’ from participant’s perspective. The face and
leg positions were cues to opponent’s current facing.

121

Appendix B.3 Distance view of opponent from participant’s perspective.

122

Appendix B.4 Overhead view of the fourth Arena (the one used in E1 and E2). Note
that this perspective is for demonstration purposes only, and was not available to human
or software agents during matches.

Appendix C: Peek-Message source code 123

int WINAF vwinMain{ HiINS tANCE nins //Win32 entry-point routine
HINSTANCE hPrelnst,
LPSTR IpszCmdLine,
intnCmdShow)

MSG msy; /1 Windows message structure

int Terminate=0;

CApp*MyApp; //one instance of application

{{create instance of application class

MyApp = new CApp(hinst);

fiset up new maze

if(iMyApp->NewlMaze()==-1) //problem creating new maze

:PostQuitMessage(0);

/Inow allow message loop -
while(}Terminate)//ICLOSEGLOBAL 8& GetMessage(&msg, NULL, 0, 0))

iffPeekMessage(&msg,0,0,0,PM_REMOVE))
switch(msg.message)

case WM_QUIT:
if (MyAppl=NULL)
delete MyApp;
Terminate = 1;
break;
case WM_SIZE :
//don't break, go right to paint
case WM_PAINT :
break;

liprocess local message
TranslateMessage(&msg);
DispatchMessage(&msg);
else
if(!CGIWindow::DXGetKey(DlK_ESCAPE)&&(MyApp->MazeFinished()<0))I/-1 is continue

/lupdate and render the maze
if(iMyApp->Update())//problem rendering

:PostQuitMessage(0);
}else
//delete old and start new maze
if(MyApp->NewMaze()==-1) //problem creating new maze
2PostQuitMessage(0);
}

}

return msg.wParam,;

Appendix D - Data transformation/training pseudocode

Neural
Net

Raw data from EOb. Each data sample
has a single set of coordinates reflecting
ahuman players positionduringamatch.
Since data was collected at 30 fps, each
sample represents 33.3 ms of time,

|

&

All attributes of each time sample are
normalized to the range 0.0..1.0. Time
samples are further organized so that
each sample now contains positional
datafrom6sequentialtimesamples. (5
input and 1 output for neural nets)

MOE

SOM/K-means hybrid partitioned all
samples onto a one dimensional map
based on minimizing the difference
between samples in any group. Data
cannowbetreated as separategroups
or as a single entity

reed-forward/back propagation neural
netsaretrainedwith5positionalsamples
as input and one as output. A large

network is frained with the overall data,
and smaller sub networks are trained
using the clusters above.

v
Final network weightsareincorporatedas
brains for autonomous agents. A simple
gating network is added to the MOE fo
choose between networks.

124

125

Appendix E Agent Summary

Interaction Human DFA NNET MOE

Sensors visual mathematical

-FOV 55°

-view Unlimited within the bounds of the arena. No visual information provided if

distance behind an intervening object (wall).

-input -Visual information 30 times | - visual information as absolute mathematical
per second through location information (only if within the FOV
computer monitor. Distance | above). Distance to walls, opponent facing
and facing information must | and location all provided as coordinate and
be interpreted from (non vector values.
stereoscopic) depth cues. -Auditory information provided as non-
-Auditory information direction boolean flags.
through non-directional
speakers.

Effectors 4 arrow keys plus space bar | 4 directional plus one firing signal. May be
for firing. Keys may be sent in any combination. Not sent through the
pressed in any combination. | keyboard, but received by the environment as
Received by the boolean signals.

environment as boolean

signals.

126

States DFA NNET MOE

(software

only)

Search -active when opponent not in FOV

-‘directed’ NA ‘Directed’ search after | as NNET, except

search any recent sensor gating mechanism

information. Move chooses optimal
directly to opponent’s | estimate
estimated location until

arrival or new sensor

information

-‘blind’ ‘Blind’ search uses only | ‘Blind’ search resumes | as NNET

search visible environment when estimate proven
information. Active as invalid
soon as opponent no
longer visible.

Fight -active when opponent in FOV

fire -command to shoot is given when bullet available and currently aligned with
preferred target location (align = true)

-align -changes direction of -as DFA, but estimate | -as DFA, but
agent to face estimated is based on neural net | estimate is based on
location of opponent. predicted location. MOE predicted
Estimate is current location.
opponent location for no
recursion, and
triangulated location for
one+ recursion

-avoid -turn to avoid bullet if not aligned and opponent firing

End -active when either agent is killed. Losing opponent is transported to

random location in arena.

127
Appendix F Definitions

Agent - An agent is anautonomous entity that interacts in its environment through its sensors (input)
and effectors (output).

Recurrent Neural Network - A neural network that is sensitive to patterns over time.

Bayesian Network - A probabilistic learning method that combines prior knowledge with
observed data.

Information Gain - The amount of knowledge to be gained by knowing the value of a given
attribute. The more random the attribute, the higher the information gain.

Overfitting - Creating a model of the training data that fits so closely that it is less capable of
modeling other data.

Markov Model - A descriptionof a process as a series of states. The probability of transition from
one state to any other depends only on the current state (no memory).

Deterministic Finite State Automaton (DFA) - An state machine (agent) in that transitions are

determined only by the current state (no probabilities).

References

Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance
bymenand women ina virtual Morris water task: A large and reliable sex difference. Behavioural
Brain Research, 93, 185190.

Barron, T. (2000). MultiPlayer Game programming. Prima Publishing, Roseville,
California.

Bums, B & Vollmeyer, R. (1998). Modeling the Adversary and Success in Competition.
Journal of Personality and Social Psychology. (75 No. 3) 711-718.

Carmel D. and Markovitch S. (1996). Opponent modeling in a multi-agent systems. In
G. Weiss and S. Sen, editors, Lecture note in Al, 1042: Adaptation and Learning in Multi-agent
Systems, Lecture Notes in Artificial Intelligence. Springer-Verlag,.

Choi, J. & Silverman, I. (2002). The relationship between testosterone and route learning
strategies in humans. Brain and Cognition, 50, 116-120.

Dabbs, J. M., Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation
strategy, and geographic knowledge among men and women. Evolution of Human Behavior, 19,
89-98.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14:179--211.

Fischer, G. (2001) User Modeling in Human-Computer Interaction. User Modeling and
User-Adapted Interaction ,11, 65-86.

Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality &
Individual Differences, 14, 53-65.

Ghahramani, Z. (2001). An Introduction to Hidden Markov Models and Bayesian
Networks. International journal of Pattern Recognition and Artificial Intelligence. 15 (1), 9-42.

Gron, G., Wunderlich, A., Spitzer, M., Tomczak, R. & Riepe, M. (2000). Brain activation
during human navigation: gender-different neural networks as a substrate of performance. Nature

Neuroscience, 3:4, 404-408.

Hamilton, D.L. (1979). A cognitive-attributional analysis of stereotyping. In L. Berkowitz
(ed.) Advances in Experimental Psychology.

128

129

Harris, L. J. (1978). Sex differences in spatial ability: Possible environmental, genetic, and
neurologicalfactors. InM. Kinsbourne (Ed.), Asymmetrical function of the brain (pp. 405-522).
Cambridge: Cambridge University Press.

Hebb, D. O., & Williams, K. A. (1946). A method of rating animal intelligence. Journal
of General Psychology, 34, 59-65.

Jacobs, R & Nowlan, S. (1991). Adaptive Mixtures of Local Experts. Neural
Computation. (3) 79-87.

Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps,
Biological Cybernetics 43 (1), 59-69.

Laird, J. (2000). It Knows What You’re Going To Do: Adding Anticipation to a
Quakebot. Presented at the AAAI Spring Symposium on Artificial Intelligence and Interactive
Entertainment, March.

Lawton, C. A. (1994). Gender differences inway-finding strategies: Relationship to spatial
ability and spatial anxiety. Sex Roles, 30, 765-779.

Maclnnes, J., Banyasad, O. & Upal, A.(2001). Watching Me, Watching You. Recursive
modeling of autonomous agents. Abstracts of the Canadian Conference on AI2001, Ottawa,
Ontario. p 361-364.

Maclnnes, J. & McCabe, J. (2001). The Rising Cognitive cost of Automation. Proceeds
of SELF-ACE, Montreal, Quebec. Oct.

Maclnnes, W.J & Taylor, T. (2001). Millisecond Timing on PCs and Macs. Behavior,
Research Methods, Instruments & Computers, 33 (2), 174-178.

Minsky, M. (1967). Computation: Finite and Infinitt Machines. Prentice-Hall, Inc.,
Englewood Cliffs, N.J., 32-66 (Chap. 3).

Moukas, A. (1997). User Modeling in a MultiAgent Evolving System. Proceedings,
workshop on Machine Learning for User Modeling, 6th International Conference on User
Modeling, Chia Laguna, Sardinia, .

Mozer, M. (1993). Neural net architectures for temporal sequence processing. To appear
in: A. Weigend & N.Gershenfeld (Eds.), Predicting the future and understanding the past.
Redwood City, CA: Addison-Wesley Publishing, 243-264.

130

O’Keefe, J and Nadel, L. (1978). The Hippocampus as a Cognitive Map. Oxford:
Oxford University Press.

Orwant, Jon. (1995). Hereterogeneous Learning in the Doppelganger User Modeling
System. User Modeling and User Adapted Interaction, 4(2):107-130.

Rich, E. (1979). User Modeling via Stereotypes. Cognitive Science (3), 329-354.

Russel, S and Norvig P. (1995). Artificial Intelligence: A Modern Approach. Prentice-Hall
publishing, 598-600.

Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different
distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351-360.

Shore D., Stanford L. , Maclnnes J. , Klein R. & Brown R. (2001). Of Mice and Men:
Using Virtual Hebb-Williams mazes to compare learning across gender and species. Cognitive,
Affective and Behavioral Neuroscience, 1(1), 83-89.

Thagard, P. (1992). Adversarial Problem Solving: Modeling and Opponent Using
Explanatory Coherence. Cognritive Science. (16) 123-149.

Turing, A. (1950). Computing Machinery and Intelligence. Mind, 236, P433.
Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial

abilities: A meta-analysis and considerationofcritical variables. Psychological Bulletin, 117, 250-
270.

Voyer, D., Nolan, C., & Voyer, S. (2000). The relation between experience and spatial
performance in men and women. Sex Roles, 43, 891-915.

Webb, G, Pazzani, M & Billsus, D. (2001). Machine Leaming For User Modeling. User
Modeling and User-Adapted Interaction. (11) 19-29.

Widmer, G & Kubat, (1996). M. Learning in the presence of concept drift and hidden
concepts. Machine Learning. 29, 69-101.

