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ABSTRACT

Aquatic plants and physical-chemical characteristics were studied in 34 lakes at altitudes
ranging from tropical (77 m) to high-alpine (4,950 m) in the Himalayas of Nepal. The
water chemistry was dominated by HCO;~ among anions, and by Ca*" and Mg®" among
cations. Criteria related to total phosphorus, total nitrogen, and chlorophyll showed that
lakes in the High Himal (HH) and High Mountain (HM) regions are oligotrophic, while
those in the Middle Mountains (MM) were oligotrophic to hypereutrophic, and Terai
(TE) lakes were eutrophic to hypereutrophic.

Aquatic macrophytes occurred in 28 lakes, up to an altitude of 4,750 m. Both species
richness and diversity of aquatic macrophytes showed approximately linear decreases
with increasing altitude. The study region exhibits a relatively high proportion of
monocotyledonous helophytes and hyperhydates, as is typical of aquatic macrophytes on

the Indian subcontinent.

A canonical correspondence analysis of the steepest altitudinal gradient (CCA-1)
suggested that the strongest abiotic influences on the distribution of macrophytes are
associated with water temperature, substrate quality, altitude, pH, transparency, and
conductivity. Two more restricted CCA analyses examined a shorter altitudinal gradient
of 70 m to 1500 m. The CCA-2 analysis (all plants) and CCA-3 (only euhydrophytes)
found that the most important abiotic influences were associated with temperature, lake
surface area, suspended solids, bicarbonate, and dissolved phosphorus. These results
suggest that relatively local influences are different from those that have a regional basis,
but that climatic influences are key along altitudinal gradients. The temperature gradient
in the CCA distinguished Arcto-tertiary floristic elements of the HH and HM regions
from the more widely distributed temperate and tropical species of the MM and TE

regions. This observation is also supported by the results of a cluster analysis.

xi
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1. INTRODUCTION

Plant community ecology deals with variations in the distribution and abundance of
assemblages of plant species. It also examines intrinsic characteristics of plant species
that affect their acquisition and use of resources, as well as extrinsic factors influencing
resource availability, which can be abiotic or biotic in origin. As such, extrinsic and

intrinsic factors integrate to affect the structure and dynamics of plant communities.

Among the complex of extrinsic environmental factors, the relative strengths of abiotic
and biotic ones vary with the temporal and spatial scales under consideration. However,
the integrative quantification of the influences of these factors on biodiversity at various
scales has not yet been advanced much (Huston and McBride, 2002). Until common
drivers are recognized to allow extrapolation from relatively local to more extensive
levels, studies addressing the large scales of landscape or region are required to answer
specific questions at these scales (O’Neill and King, 1998). Within this context, studies

of regional environmental gradients provide an opportunity to explore ideas and models
about influences on the structure and function of ecosystems, allowing assessment of

their utility and potential application to large scales (Burke et al., 1998; Burke, 2000).

Spatial variation in the structure and function of ecosystems is profoundly evident on
landscapes, at both latitudinal and altitudinal scales. Gradients of resource availability
are often parallel to those of climatic factors — on a global scale, more than 8§0% of the

variation of regional plant-species richness is accounted for by climatic factors (Francis
1



and Currie, 2003). A similar phenomenon is apparent for terrestrial vegetation in
mountainous regions, where elevation-related climatic gradients ranging from tropical to
high-alpine may be expressed over lateral distances of only several tens of kilometers

(Whittaker and Niering, 1975; Singh et al., 1994; Martens et al., 2001).

Studies of this sort have not yet, however, been made of aquatic plants in lakes along a
steep altitudinal gradient. Within this context, the present thesis examines variations of the
distribution and abundance of aquatic plants and assesses them against the physical-
chemical characteristics of lakes along a steep altitudinal gradient, ranging from tropical to

high-alpine environments, within a lateral distance of less than 100 km.

1.1 Regional limnology and aquatic macrophytes

The study of regional limnology is useful and necessary because the characteristics of lakes
and their biota vary according to physical-chemical influences of their geological origin,
basin morphometry and climate, as well as biogeographical influences associated with
species complement and ecological interactions among taxa (Wetzel, 1983; Naiman ef al.,
1995; Abell et al., 2000; Riera et al., 2000; Heino, 2002). The study of regional limnology
also has important implications for the management of lakes and their resources, including
study of the potential effects of climate change on freshwater ecosystems (Schindler, ef al.,

1990, 1996 a, b; Magnuson et al., 1997).

Lakes vary considerably in their physical, chemical, and biological characteristics, even
within a particular so-called “lake-district” having relatively uniform conditions of basin

origin, catchment geology, climate, and species complement. Early studies of waterbodies



in a particular, relatively uniform, lake-district were made by Birge and Juday (1911),
Thienemann (1925), Naumann (1932), and Likens (1985). More recently, limnologists
have also been studying much wider gradients of limnological conditions across various

lake-districts (Kratz and Frost, 2000; Riera ef al., 2000; Webster et al., 2000).

For instance, Seddon (1972) studied more than 70 lakes in Britain ranging from coastal to
montane (to several hundred meters of elevation) to investigate the use of aquatic
macrophytes as limnological indicators. Similar studies across lake-districts have been
made by Rarslett (1991), and Heegaard et al. (2001). Trans-district studies of macrophytes
have also been made in lotic habitats (Riis et al., 2000; Lougheed et al., 2001; Murphy et
al., 2003). In the present study, however, a particularly wide range of limnological habitats
and macrophytes is undertaken — along a steep altitudinal gradient ranging from tropical

to high alpine in the Himalayan region of Nepal.

1.2 Aquatic macrophytes and their communities

For the purpose of this study, aquatic macrophytes (i.c., larger aquatic plants) were
restricted to herbaceous aquatic‘vascular plants. These plants have important ecological and
economic roles in freshwater ecosystems (Sculthorpe, 1967; Carpenter and Lodge, 1986;

Engel, 1988; Haslam et al., 1998; Cronk and Fennessy, 2001).

As a group, macrophytes typically increase in abundance and then decline along lake
trophic gradients (i.e., ranging from ultra-oligotrophic to hypertrophic). They may also
modify cascading trophic interactions in aquatic communities and influence nutrient

cycling (Jeppesen et al., 1998). Aquatic plants often have a wide-ranging dispersal ability



and they may colonize new habitats, such as reservoirs, within a few years if their habitat
requirements are met (Macan, 1977; Odland, 1997). Macrophytes may also be used as
indicators of ecological integrity, because of their importance to aquatic invertebrates,
fishes, and other animals (Glowacka ef al., 1976; Fowler and Robson, 1978; Kovacs, 1992;

Dvoiék, 1996; Palmer and Roy, 2001; Schneider and Melzer, 2003).

Aquatic plants are in intimate contact with the environmental conditions of lakes, through
their root system and particularly their foliage, which is immersed in or floating on an
aqueous medium. It is well known that patterns of species composition and relative
abundance of macrophyte communities respond strongly to variations of environmental
conditions within and among waterbodies, and the factors controlling the distribution and
abundance of aquatic plants have long been of interest to scientists (e.g., Pearsall, 1920;
Sculthorpe, 1967; Spence, 1967; Hutchinson, 1975; van der Valk, 1987; Rodwell, 1995;
Moss, 1998). Along these lines, numerous studies have examined variations in the local
distribution and abundance of aquatic plants and compared them with environmental
conditions. Key North American studies include: Moyle (1945), Catling et al. (1986),
Jackson and Charles (1988), Srivastava et al. (1995), Lougheed et al. (2001), while
European ones are: Seddon (1972), Palmer et al. (1992, 1994), Onaindia et al. (1996),
Jeffries (1998), Linton and Goulder (2000), Willby et al. (2000) Boedeltje et al. (2001),

Heegaard et al. (2001), and Willby e al. (2001).

Aquatic macrophytes can indicate the trophic status of a waterbody (Schmedtje and
Kohmann, 1987; Schneider and Melzer, 2003). European ecologists have classified

aquatic plants into indicator categories according to their relationship with trophic



statug of their habitats (Linkola, 1933; Seddon, 1972; Pietsch, 1980; Wiegleb, 1081;
Mikirinta, 1989; Jensén, 1994; Toivonen and Huttunen, 1995; Schneider and Melzer,
2003). In ultra-oligotrophic lakes, the number of macrophytes species and their biomass
are typically low, while in hypertrophic waters aquatic plants may disappear because of the

lack of light penetration (Phillips ef al., 1978; Blindow, 1992).

Hydrochemical factors in addition to nutrients also influence the distribution and
abundance of aquatic plants. Calcium concentration, alkalinity, and conductivity are
considered key influences on macrophytes in oligotrophic Norwegian lakes (Brandrud and
Mjelde, 1997). Other studies have found that water pH is a principal factor (Iversen, 1929;
Catling et al., 1986; Heitto, 1990; Brandrud and Mjelde, 1997). Depending on the complex
of waterbodies and conditions studied, other environmental factors may also be related to
variations in macrophyte composition and abundance, including salinity, insolation, light
regime within the waterbody (which is influenced by turbidity and shading), temperature,
basin slope, physical disturbances affecting water-level fluctuations and substrate stability,
and quality and quantity of sediment (Pearsall, 1921; Haller et al., 1974; Hutchinson, 1975;
Barko and Smart, 1983, 1986; Keddy, 1983; Chambers and Kalff, 1985; Duarte et al.,
1986; Duarte and Kalff, 1986; Chambers, 1987; Nilsson and Keddy, 1990; Barko et
al.,1991; Ellenberg et al., 1992; Hellsten and Rithimédki, 1996; Andersson, 2001). Also
important are the regional species pool, dispersal vectors, and biological influences such as
competition, allelopathy, herbivory, and pathogens (Lodge, 1991; Wilson and Keddy,
1991; Gopal and Goel, 1993; Gaudet and Keddy, 1995; Hofstra et al., 1999; Gross ef al.,

2001 ). Within any waterbody, macrophytes and their communities are also influenced by



the spatial and temporal heterogeneity of the habitats available (Sculthorpe, 1967;

Hutchinson, 1975; Duarte et al., 1994).

In mountainous regions, surface waters are exposed to strikingly different environmental
conditions, depending on altitude-related factors, the geological nature of the catchment,
and the disturbance regime (Jenkins et al., 1998). Although not yet quantitatively studied
over a steep altitudinal gradient, these environmental variations can be expected to have a
profound influence on the floristic composition and relative abundance of macrophytes in

lakes in mountainous regions.

1.3 Influence of environmental gradients on the distribution and abundance of species
Various studies of plant communities have examined species distributions along gradients
of resource availability within habitats (Whittaker, 1975; Tilman, 1982; Jongman et al.,
1995). Ecologists have often used indirect gradient analysis (Whittaker, 1967) as a non-
parametric technique to analyze relationships among plant species, their communities, and
environmental factors. The uses of multivariate techniques in studies of ecological
gradients have been widely facilitated by the publication of several textbooks (Gauch,
1982; Greig-Smith 1983; Pielou, 1984; Digby and Kempton, 1987; Jongman et al., 1995;
Kevin et al., 2000) and the related articles (Hill, 1973; Hill and Gauch, 1980; Palmer, 1993;

ter Braak, 1994; ter Braak and Verdonschot, 1995).

Ordination, cluster analysis, and canonical correspondence analysis (CCA) are multivariate
methods that have been used to characterize environment gradients in data sets in aquatic

ecology (Birks et al., 1994; Toivonen and Huttunen, 1995). CCA is also used as a means to



analyze multidimensional niches and to study seasonal and spatial variations in
communities (Snoeijs and Prentice, 1989; Bakker et al., 1990; Anderson et al., 1994).
Moreover, CCA can be used to assess the degree to which multivariate community patterns

can be related to associated variations in environmental factors (Kautsky and van der

Maarel, 1990; Heegaard et al., 2001).

The environmental tolerances of species of aquatic plants have been estimated by
correspondence analysis of various species-environment data sets (Seddon, 1972; Palmer et
al., 1992, 1994; Heegaard et al., 2001). For instance, in a study of Welsh lakes, a principal
components analysis was used to derive a gradient explaining the species and communities
of macrophytes characteristic of dystrophic, oligotrophic, mesotrophic, and eutrophic
waterbodies, as well as species that are generalists (Seddon, 1972). Often, such wide
variations of chemical characteristics of lakes are associated with the kinds of

anthropogenic activities occurring in local and regional catchments (e.g., Heegaard e al.,

2001).

1.4 Objectives

Assessments of freshwater biodiversity are sparse worldwide, and are particularly lacking
in developing countries (Crow, 1993; World Resources Institute, 2000). Although the
lowlands of the Indian subcontinent are floristically rich in terms of aquatic macrophytes,
the mountains of northern India, Nepal, and Tibet have not been well studied (Gopal,
1990). In Nepal, the distribution and abundance of aquatic macrophytes are much less
well studied than other taxonomic groups in waterbodies (Bajracharya, 1998; Shrestha and

Janauer, 2000).



Understanding the relationships among aquatic macrophytes and altitude-related abiotic

environmental factors will be useful in predicting the likelihood of plant invasions of

impoundments associated with the development of hydroelectricity, irrigation, and

aquaculture. This knowledge is also important to understanding the factors influencing

biodiversity patterns in waterbodies.

The present study is intended to examine the following broad objectives related to aquatic

plants in Nepal :

to obtain basic information on regional limnology in relation to variations of
altitude, over a range extending from 77 m to higher than 4,980 m in the Himalayas
of Nepal;

to observe the patterns of distribution and abundance of species of aquatic plants in
lakes along this steep altitudinal gradient;

to use statistical and mathematical analyses to determine the apparent influences of
key environmental factors on the distribution of macrophytes and their

communities.

The following broad research questions were examined in this research:

How do the physico-chemical attributes of lakes and their local environment vary
with changes in altitude in the Himalayas?

Do the presence and abundance of aquatic plants and their communities vary with
altitude in the Himalayas?

Do variations in the abundance and distribution of aquatic plants mathematically

relate to variations in abiotic environmental conditions?



2. MATERIALS AND METHODS

2.1 Introduction to study area

This study was conducted in a region bounded by latitudes 26° 36" to 28° 13" and
longitudes 84° 05'to 87° 30", and ranging in altitude from 77m to 4,980m. The study area
is in the kingdom of Nepal, within the basins of the Kosi and Narayani Rivers of the
greater Ganges drainage (Figures 2.1 and 2.2). The study area is in the central part of
the Hindu-Kush Himalayan arc, which stretches from Karakoram in eastern Pakistan to
Assam in northeastern India. The 34 lentic habitats studied (hereafter referred to as
lakes) are identified using local names according to toponymic criteria, and are also
coded with a regional identifier and progressive number from east to west. The
geographical coordinates and altitude of each lake are also provided, so its identification

is unequivocal (Table 2.1).

2.1.1 Geological background

The geo-morphological history of the Himalayas suggests that the region emerged from
the Tethys Sea during Paleocene-Eocene times (58-66 MY ago), as the result of the
geological collision of the Indian plate (derived from the breakup of the Gondawana
landmass) moving from the south with the more massive Euro-Asian plate (Stocklin,
1980; Zeitler et al., 1982; Molnar, 1986). The higher Himalayas originated in the Miocene
(24 MY ), as did major river systems and a monsoon climate. During the Pleistocene
(1.7 MY), the Mahabharat range was uplifted and later the Churia range (Sharma,

1997). These thrusts developed the high Himalayan ranges lying over the Main Central
9
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Thrust (MCT) region, successively followed by the Main Bounday Thrust (MBT) and
Himalayan Frontal Fault (HFF) to the south (Gansser, 1964). The High Himalaya lies
above MCT and is dominated by hard rocks of gneiss and schist beneath a High
Himalayan Crystalline Series (HHCS). This complex is also overlain by the Tibetan
Himalayas at a transitional contact, which includes a series of epicontinental sedimentary
rocks ranging from Lower Paleozoic to Lower Tertiary. The High Mountains and Middle
Mountains (Mahabharat range) lie close to the main boundary thrust, and are dominated
by Lesser Himalayan metasediments consisting of dolomite, limestone, magnesite,
marble, phyllites, quartzite, and schist. To the south of the High Himalaya, the Churia
Hills lie above the HFF, and further to the south lies the Indo-Gangetic lowlands and

plain.

The Himalayas are the youngest major mountain system in the world, and they are still
rising. The ongoing orogeny, coupled with recent and modern advances and retreats of
alpine glaciers, result in glacial lakes being formed and suddenly drained by catastrophic
outbreaks (Jokulhlaup), perhaps in response to regional and global warming. Presently,
most glaciers in the Khumbu region of eastern Nepal are in rapid retreat, and fourteen
large outbreaks of glacial lakes have been reported in the region since 1964 (Vuichard
and Zimmermann, 1986; Ives, 1986; Yamada, 1993; recently, structures have been
installed at some vulnerable lakes to prevent these catastrophic events, and none have
occurred in the region since 1993). The recent rate of place impact (or lateral contraction)
across the Himalayas is 17.5 mm/yr, and the rate of slip of the Indian plate beneath the
Tibetan one is 20.5 mm/yr (Bilham et al., 1997). Uplift of the Himalayas continues at

about 1 mm/yr (Zeitler et al., 1982; Iwata ef al., 1984).
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The average surface warming of the Indian subcontinent was about 0.4 °C during the
period 1902-1982 (Hingane et al., 1985). Overall, the warming since 1970 has averaged
about 0.03 °C/year in the lowlands of Nepal, but 0.06-0.12 °C/year in alpine
environments (Shrestha er al., 1999). The trend in surface warming has been broadly
consistent with global climate change, and is expected to further increase by more than 2

°C over the monsoon region during the next century (Lal ef al., 1992). In response to the
regional warming, the glacial equilibrium elevation in the central Himalayas has been
rising at a rate of 10-15 cm per year (Kotlyakov and Lebedeva, 1998). The most recent
glacial maximum (GM) is close to 3100 m at Langtang Valley, where glaciers now
terminate at about 4500 m (Shiraiwa and Watanabe, 1991). These overall changes during
recent Himalayan ontogeny and warming have resulted in the creation of many relatively

young lakes in early stages of ecological development (Loffler, 1969; Lami et al., 1998).

2.1.2 Phytogeography

The number of identified flowering plants in Nepal is about 6,500 species, dispersed
among 203 families (Hara er al., 1978, 1982; Hara and Williams, 1979; WCMC, 1994;
Press et al., 2000). More precisely, Koba et al. (1994) list 5,806 species (this has been
extended to 6,452 species through new records and different taxonomic treatments;
Akiyama et al., 2002; 2003). Nepal ranks tenth among Asian countries in the total

richness of plant species (BPP, 1995), and 31* globally (WCMC, 1994).
g

Nepal lies at an intersection of major floristic regions of Asia — it is the meeting point of

the drier western and central Asiatic floral province and the humid Sino-Japanese one.
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The southeast Asiatic province also penetrates to the foothills of eastern Nepal, while the
African-Indian desert province attenuates in western Nepal. The boreal/montane
Palearctic floristic region is extensive in northern Nepal above 3000 m, and the
Paleotropical region (Oriental realm) in the southern lowlands. The tropical elements of
southern Nepal occur in an east to west running warm belt known as Terai, and they are
typical of the floristic regions of the Indo-Gangetic plains and possess widespread north-
Indian elements. The somewhat distinctive floras of the eastern and western Himalayas

merge in central Nepal (Stearn, 1960).

Phytogeographic classifications of Nepal, based on various authors, show that the study

area lies:

1. between the Kali Gandaki and the Sapta Koshi zones in the Central Himalayas

(Schweinfurth, 1957);

2. in the Central Region (83° 0" - 86° 30" E), slightly overlapping the Eastern Region

(Stearn, 1960);

3. between the Gandaki and Koshi river systems (Banerji, 1963); in Terai, Bhabar,
dun valleys and outer foothills, and the midlands and southern sides of Himalayan

ranges (Stainton, 1972); and

4. in the “Domaine centre nepalais” (from the longitude of Dhaulagiri to that of the
Arun valley at about 87° 10° E; Dobremez, 1972). Dobremez’s (1972) central
domain in the southern Himalayas has the highest diversity of flowering plants

in the region (Shrestha and Joshi, 1996).
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2.1.3 Limnology

The study of lakes, or limnology, was established as an area of science in Europe and
North America at the end of 19™ century. In the 1980s, the International Lakes
Environment Committee (ILEC) launched a “Survey of the State of World Lakes,”
which developed information on more than 500 lakes in 73 countries, including physical-
chemical data on limnological conditions and trophic characteristics. Two lakes from
Nepal (one of which, Lake Phewa, was sampled in the present study) were included in

the ILEC study (http://www.ilec.or.jp).

Synoptic accounts of the limnology of India include those of Ganapati (1957), Tripathi
and Srikandar (1989), Mishra and Trivedy (1993) Unni (1993), Sugunan (1995) and
Vijaykumar (1999). Accounts of high-altitude Indian lakes of the Kumaun, Kashmir, and
Sikkim Himalayas are in Kaul (1977), Zutshi and Vass (1978) Sharma and Pant (1979)
Khan and Zutshi (1980), Vass et al. (1989) Venu et al. (1990) and Zutshi (1991). In
comparison, there have been few studies of high-altitude lakes north of Nepal, in the
Himalayas of Tibet and adjacent India (Hutchinson, 1937; De Terra and Hutchinson,

1934; Liu and Sharma, 1988).

Lakes in Nepal have been studied sporadically, mostly in the lowlands and middle
mountains (Hickel, 1973a,b; Ferro, 1978; Okino and Satoh, 1986; Nakanishi et al., 1988;
Aizaki et al., 1987; Lohman ef al., 1988; Jones et al., 1989; McEachern, 1994; WMI and
TUCN/Nepal, 1994; Rai, 1998, 2000; Bhatt ez al., 1999). Loffler (1969) was the first to study

high-mountain lakes. In general, lower-altitude tropical and subtropical lakes are shallow
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oxbows, polymictic, and relatively productive, while high-altitude ones are generally

deep, dimictic to cold polymictic, oligotrophic, particularly phosphorus-limited.

2.1.4 Physiographic zones and classification of lakes
The study area covers all major physiographic zones of Nepal (Table 2.2), as described in
the official Forest Sector Master Plan (HMG/Nepal, 1988), viz:

e High Himal

e High Mountains

¢ Mahabharat and Midland

e Churia Hills (Siwaliks)

o Terai
The upper regions of the Churia Hills, however, do not have lakes because of their
predominant well-drained geomorphology of coarse-textured, stony, shallow soil. In
addition, the Churia Hills are similar to Terai in terms of climate and vegetation (and is
sometimes referred to as Inner Terai), and so for the convenience of study these two
zones are merged here into one (within the altitudinal range of 70 to 500 m). This results
in four physiographic study regions, based on gradients of surface temperature, insolation
regime, precipitation, and overall climate (Kaddha, 1967; Sharma, 1990; Jha, 1992). The
shallow lakes in the study regions range from continuously warm polymictic lakes at low
elevation, to cold polymictic lakes at the highest elevation, and the deep lakes are
dimictic and monomictic in the HH and MM region, respectively (Figure 2.3). This

encompasses much of the global variation of lake types, from equatorial to alpine/arctic,

but all occurring within a relatively restricted area of Nepal.
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2.1.4.1 High Himal lakes (HH)

The sampled lakes in the High Himal (HH) region occur above 4,000 m and are glacial in
origin, being dammed by lateral and/or end moraines formed during the most recent
advancing stage of the neo-glaciation period between the 15™ and 19" centuries. Lakes
Al to A9 are in the Everest region in the eastern Himalayas, and Lakes A10 to A12 are in

the Langtang region (Table 2.2).

Tsola Tso (A1) is a lake formed by damming of the lateral moraine of the Tsola Glacier.
Tso Rolpa (A9) was formed at the terminus area of the Trakarding Glacier (a debris-
covered glacier) and is dammed by its lateral and end moraines. The Gokyo lakes chain
(A2, A3, A4, A5) is hydrologically connected by a series of waterfalls and streams that
drain the meltwater of the Ngojumpa Glacier on the southern slopes of Cho-Oyu
Mountain. All of these lakes have watersheds with bedrock dominated by gneiss with
quartz nodules and intrusions of granites (Bortolami, 1998). Their watersheds are

sparsely vegetated with alpine tundra.

Three lakes (A6, A7, A8) were sampled from a chain of five waterbodies at Panch
Pokhari, in an alpine zone with rocky and scree terrain and scattered tundra. Three other
lakes (A10, A11, A12) are located in the Langtang region in the Central Himalaya. The
geology of their catchments is pelilite gneiss consisting of mica, garnet, quartz, and

feldspar. These lakes occur close to the limit of alpine tundra.

The hydrogeological setting of lakes Al, A6, A7, A8, and A9 have primary (or vertical)

porosity associated with their fluvioglacial and fluvial deposits and slope debris. Their
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permeability determines the residence time of water and fluctuations of depth. These
types of lakes are formed as a superficial aquifer supported by alluvial drift from the
tributaries, and are hydraulically dependent on their hydrographic network (Bortolami,
1998). The aquifer is recharged by precipitation and snowmelt, and subordinately by
seasonal melting of glacial ice. Due to the coarse character of the substrate, the aquifer is

subject to glacial lake outbursts and events of mass erosion.

All other lakes sampled in the High Himal occur in aquifers that are impermeable or that
have secondary (lateral) porosity that provides more physical stability of the boundary,

depth, and bottom substrate (Bortolami, 1998).

2.1.4.2 High Mountain lakes (HM)

The High Mountain (HM) lakes lie between the heavily populated middle mountains and
the almost unpopulated High Himal, within an altitudinal range of about 2,900 to 3,600
m. The dominant rock types include schist, quartzite, and gneiss in formations that are
relatively resistant to weathering and erosion. This zone is generally covered by
temperate evergreen forest dominated by Abies, Pinus, and Rhododendron, but the cover
is patchy as a result of disturbances by humans. Lakes are infrequent in this region and

mostly occur in perched depressions.

Gupha Pokhari (B1), Ram Pokhari (B2), and Mauwa Pokhari (B3) occur in the eastern
districts of Terhathum and Dhankuta. Salpa Pokhari (B4) lies in the Sankhuwasabha
district at the border of the Makalu Barun National Park. Phokte Tal (B5) lies in the

Solukhumbu district within Makalu Barun National Park.
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2.1.4.3 Middle Mountains and midland valley lakes (MM)

This zone comprises a network of ridges and valleys, with the lakes occurring within an
altitudinal range of 643 to 1272 m. The lakes are mostly distributed on valley floors and are
generally tectonic. Phewa Tal (C5), Begnas Tal (C4), and Rupa Tal (C3) lie in Pokhara
valley with watersheds predominantly sedimentary in structure (Gansser, 1964). The
Pokhara valley contains extensive quaternary deposits of metasediment of Precambarian
to Cambrian age, mainly composed of phyllite. Phewa, Begnas, and Rupa are blocked
lakes formed by terraces intruded into rivers. Their sources of water are inflow streams
and groundwater springs, and the lakes have potential for fishery development (Hickel,
1973 a; Nakanishi ef al., 1988; Lohman et al., 1988; Jones et al., 1989; FDD, 1992). Lakes
Tau Daha (C2) and Nag Daha (C1) are located in the southwest of the Kathmandu valley, and
are filled by the summer monsoon and by groundwater springs. The catchments of the

middle-mountain lakes are covered by a mixture of forest and agricultural land.

2.1.4.4 Siwalik and Terai lakes (Terai; TE)
The Terai zone is a plain at 60 to 330 m extending from Chure and Bhabar to the northern
Indian border. Terai represents 14% of Nepal, is composed of quaternary alluvial

deposits, and is about 70% under agricultural use.

Most lakes in the Terai region are ox-bows or other natural impoundments of rivers. Seven
ox-bow lakes were studied within the Koshi Tappu Wildlife Reserve (KTWR) — a Ramsar
site and its vicinity, in a low-lying area with alluvial deposits of fine sand, silt and clay

(Ohta and Akiba, 1973). The sampled waterbodies were: D1 (Tower lake); D2 (Lake-2,



24

KTWR); D3 (Lake 6, Titri Gachi), Kamal Kund (D4), Pathari Pond (D5), Pathari Pool
(D6), and Kushaha Nahar (D7). The Kushaha Nahar is an impoundment with a relatively
high degree of human disturbance in its watershed, while the other waterbodies are

natural and have mosaics of subtropical riverine forest and wetlands in their watersheds

Other Terai lakes were Dhakre tal (D9), Tamar tal (D11), and Devi tal (D12) are in the
Royal Chitwan National Park (RCNP), in a region of sal forest (sub-tropical humid
Shorea robusta). These lakes are ox-bow or old-channel lakes with watersheds of
wetland within sal forest. Beeshajar tal — a Ramsar site (D10) is outside of RCNP, and
was developed by the construction of irrigation works. Barahawa Tal (D8) is located in

an urban area of Gaur municipality, and is subject to human influence.

2.1.5 Climate
The study region is characterized by extreme differences of climatic conditions, which
can be aggregated into five south-to-north running zones along elevational gradients (Jha,
1992):

1. tropical and subtropical

2. warm temperate

3. cool temperate (montane)

4. alpine tundra

5. high alpine (little or no vegetation)
The tropical-subtropical bio-climate zone corresponds to Terai, and the high alpine to the

High Himal.



25

Most of Nepal experiences a monsoon climatic regime typical of South Asia. About 90%
of the variation of surface temperature can be statistically explained by elevation
(Nayava, 1980; Chalise et al., 1996). The lapse rate of temperature with altitude is
0.52°C/100 m (Dobremez, 1976). Figure 2.4 shows ambient temperature gradients in
response to altitude in hot and cold months; these have a great influence on
physiographical zones. Figure 2.5 shows the variations of air temperature and
precipitation at meteorological stations within my sampling regions; they all indicate
pronounced seasonal variations of temperature and rainfall, but the amount of

precipitation is lowest at the high altitudes.

Seasonal weather differences in the Himalayas depend on a strong thermal anticyclone
known as the “Tibetan High” that occurs in the upper troposphere during the monsoon
season, and on the strength and location of the subtropical jet stream during the rest of the
year (Yasunari, 1976). From October to May, the axis of the sub-tropical westerly jet
stream is generally just south of the Himalayas; disturbances steered by this system travel
eastward and cause gales and blizzards on the peaks (Barry, 1981). This cold weather

typically freezes the surface of lakes above 5,000 m.

Climate in Nepal consists of wet and dry periods in response to the monsoon, which
occurs from mid-June to mid—September and supplies more than 80% of the annual
precipitation, most intensely during July and August (Figure 2.5). The drying period
starts slowly in the post-monsoon season ( September to January ) and then intensifies

to the pre-monsoon ( February to May ), by which time some shallow lakes have lost
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Figure 2.5 Mean temperature and precipitation at the closest meteorological stations
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Biratnagar airport (1999-2001); Middle mountains (MM) is represented by
meteorological data at Kathmandu airport (1999-2001); High Mountains (HM)
is represented by meteorological data at Chalse station (1995-1996). High
Himal (HH) is represented by meteorological data at Khumbu valley (1994-
1996).

Sources of data: Biratnagar and Kathmnadu (unpublished meteorological
stations reports of the Department of Hydrology and Meteorology,
HMG/Nepal); Chalse (Department of Hydrology and Meteorology,
HMG/Nepal, 1999); Khumbu valley (Tartari et al., 1998a).
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considerable depth and area. Overall, precipitation in Terai averages 1,400mm/year,
while the Middle Mountains and High Mountains have less, and the High Himal are
relatively dry. Annual precipitation in the Middle Mountains can be variable. For

example, the Kathmandu valley had 144-147 mm in 1998 and 1999, but only 117 mm in

2000 (Figure 2.6).

The Terai lakes (70-300 m) are located in a subtropical area and have a mean annual
temperature of 24° C, with a monthly high in June of 30° C and a low in January of 14° C.
The Middle Mountain lakes (500-2000 m) are in a warm temperate climate and have a
mean temperature of 18° C, with a monthly mean of 23° C in July and 10° C in January.
The High Mountains (2,900 to 3,600 m) have a cool montane climate with mean
temperature of 12° C, a monthly high of 16° C in July, and a low of 10° C in January. The
High Himalaya lakes sampled (above 4,000 m) have a mean temperature of 7° C, with
10° C in July and-5° C in January. [Note that the climatic data for the HH region are from
the Pyramid Observatory Laboratory at 5,050 m in the Khumbu valley of the Everest
region (Tartari ef al., 1998 a), and that for the HM are from the Chalse station

(Department of Hydrology and Meteorology, HMG/Nepal, 1999)].

2.2.6 Research calendar
The data set consists of seasonal samples collected from the study lakes at various times
from October 1998 to June 2001. The sample means were averaged within three climatic

sg€asons:

¢ pre-monsoon (February to May)
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e monsoon (June to September)

e post-monsoon (October to January)

Samplings were done during mid-day hours in calm sunny days to minimize the diurnal
effects. Five sub-samples of 0.5 liter of waters were collected from the five random
points of a macrophytes bed just above sediment, and were then mixed to make a
composite sample for chemical analysis. The seasonal means were the results of five
composite samples taken from five different prominent macrophytes beds within a lake
for the pre monsoon, monsoon and post monsoon seasons. Only the post monsoon
samples were not collected in Lake no Al, A3, A6, A7, A8, A9 due to the thick ice

covering.

The seasonal means were averaged over the entire study period to obtain lake means,
which were the basic unit for characterization and comparison among lakes and
vegetation data. Figure 2.7 shows the times when the various lakes were sampled. Note
that all of the lakes sampled in the HM and HH regions were extremely remote, and some

of them required as long as one to two weeks of trekking to reach and sample.

2.3.1 Physical and chemical methods of water analysis

The composite water samples collected on macrophyte beds were brought to the laboratory
in nalgene bottle pre-cleaned with distilled water and rinsed several times with composite
water sample. Analyses of the composite water samples from all lakes were made in the

field or laboratory according to standard methods (A.P.H.A., 1995), unless otherwise stated.
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Water temperature was measured in epilimnion region only using a handheld
thermometer, and conductivity with a temperature-corrected Fisher (C-33) probe.
Transparency was determined with a 20-cm Secchi disc, averaged over two
measurements. pH was measured with colour-sensitive pH strips (Merck , range 5.5-9.0;
graduation 0.5 pH unit) and using a handheld Hannah pH meter (HI 9214). Conductivity

and pH were re-analyzed in the laboratory to verify the field results.

Other variables could not be analyzed in the field. The samples were divided into sub-
samples of 50 and 100 ml and preserved according to the specific determination to be
performed later in the laboratory. The sub-samples were treated following the

recommendations of A.P.H.A. (1995), as follows:

e chilling in an icebox, for analysis of calcium, magnesium, sodium, potassium,
chloride, sulphate and phosphorus;

e acid preservation (40% H,SO4 added in the field to achieve pH <2) for analysis of
total and dissolved nitrogen. Samples were neutralized with equivalent additions

of NaOH prior to digestion in laboratory.

The chemical determinations used were as follows:
e calcium, magnesium, sodium, and potassium were determined by flame atomic
absorption analysis
e Dbicarbonate was determined by carbonate-hydroxide titration.

¢ chloride was determined using a spectrophotometric method (argentometric)
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e sulphate was determined using a gravimetric method (BaSO,)
e total suspended solids (TSS), non-volatile suspended solids (NVSS), and volatile

suspended solids (VSS) were analyzed gravimetrically after passing through

Whatman 934 AH filters (particle retention 1.5 p m).

e Total suspended chlorophyll was collected by filtration through Whatman GF/C
filters (particle retention 1.2 p m) and analyzed according to the fluorometry
methods (Knowlton, 1984; Sartory and Grobbelaar, 1986). Samples were stored
in dessicant (silica gel) in the field till analyzed in laboratory in Kathmandu.
Filtrate from chlorophyll processing was used for dissolved fractions of nutrients
(DN and DP) while whole water was used for the total nutrients (TN and TP) by
the processes as below:

e phosphorus (total and dissolved) was analyzed after Prepas and Rigler (1982)

e nitrogen (total and dissolved (nitrate plus ammonium) was determined by second

derivative analysis of persulphate oxidized samples (Crumpton et al., 1992).

Replicate outliers samples were eliminated prior to data analysis, if their differences from
the mean value exceeded the test accuracy (1pg.L™" for P and 50 1pg.L' for N) and two
times the variation observed for all replicates from the lake on the same sampling date.
Also, the values observed in the analysis were cross-examined with the values published

for the lakes, where they were available.

Substrates (excluding cobbles, boulders and large rock, which were visually estimated)

from lakes bottom below each macrophytes bed were sampled. 100 gm sediment from
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each sample was air dry at 105 °C for 24 hours and then broken up with a wooden roller,
without grinding, to keep the natural particles unbroken. Then the sediment samples were
sieved through tiers of specified size mesh for different grain sizes. Sediment classes
were assigned based on the percentage of pedological components (based on size) and
their position in the soil triangle (dimensionless units after Soil Survey Staff, 1951) as
follows: (I) clay = 0.5; (II) silty clay = 1.0; (III) sandy clay = 1.5; (IV) clay loam = 2.0;
(V) silty clay loam = 2.5; (VI) sandy clay loam = 3.0; (VII) loam = 3.5; (VII) silt loam =
4.0; (IX) sandy loam = 4.5; (X) loamy sand = 5.0; (XI) silt = 5.5; (XIII) sand = 6.0;

(XIV) pebble = 7; (XV) cobble = 8; (XVI) boulder = 9; (XVII) large rock = 10.

2.4 Vegetation analysis

In this study, aquatic macrophytes are defined as vascular, non-arborescent, flowering
plants, whose photosynthetically active parts are submerged in water permanently or for
at least several months each year, or are emergent, or float on the water surface. Aquatic
macrophytes have been broadly classified according to life-form and systematics by
Sculthorpe (1967), Cronk and Fennessy (2001), and Cook (1996) into the following

groups (Table. 3.3.1);

(1) Emergent (Emer);
(D Helophyte (Hel) = terrestrial plants which tolerate submergence including
Tenagophyte (Ten), whose juvenile are submerged and adult usually

terrestrial.

(T1) Hyperhydate (Hyp) = emergent aquatic whose lower parts always in water.
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(2) Submerged (Subm);
(I) Haptophyte (Hap) = macrophytes attached but not penetrating substrate.
(ID Rosulate (Ros) = submerged macrophytes, bottom rooted, leaves in a rosette
(eg. Isotids).
(III)  Vittate (Vit) = submerged macrophytes, bottom rooted, leaves cauline
(eg. Eleodid).
(3) Floating —leaved (F-L)
(I) Ephydate ( Eph) = bottom rooted macrophytes with floated leaves.
(4) Free- Floating (F-F);
() Plankton (Pla) = Free swimming macrophytes under the surface water.

(I1) Pleustophytes = Free floating macrophytes at the surface of water.

Non-destructive sampling measures were used, as is required within the protected areas
of Nepal. The frequency of the species presence was scaled into classes based on the ratio
of the summed lengths of stands of a particular species to the whole shoreline. The
overall abundance was estimated by the average percent cover of the lake surface area by
plant species within quadrats placed in representative stands of obvious “communities”.
Ten to twenty (depending on the size of the lake) quadrats of 1 m?* were sampled within
each community. Total cover could not exceed 100%. The entire water column was
considered, but estimation was made of all layers within the column to do this. In shallow
water this was done while standing and looking over the quadrat, while in deeper water it
was done from a small boat and by snorkel diving. Subsequently seasonal sampling was

conducted at the same sites with the help of a geographic positioning system. The mean
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abundance values within the various communities were used to calculate an area-
weighted average for of the lake. Frequency and abundance estimations of the entire lake
were subdivided into seven cover-class categories using the classification system of

Toivonen and Huttunen (1995) as follows:

Table 2.3 Scales used to quantify the frequency and abundance of plant species in 28
lakes in various altitudinal gradients in Nepal.

Frequency Class | Frequency Abundance | Abundance Percentage
class range

1 Very rare 1 Very sparse <1.5%

2 Rare 2 Sparse 1.5-3%

3 Fairly rare 3 Fairly sparse 3-6%

4 Occasional 4 Scattered 6-12 %

5 Fairly frequent |5 Fairly abundant | 12-25 %

6 Frequent 6 Abundant 25-50 %

7 Very frequent | 7 Very abundant | 50-100 %

Quantity index values were used in the multivariate analyses (see below), which were

derived values using the formula:

Qi= (fita) -1

where Q; is a quantity index, and f; and a; are frequency and abundance values on scales

of 1-7 ( Table 3.3.1) for the ith species. The quantity index employs a geometric scale
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from 1 (the species being very rare and very sparse) to 13 (very frequent and very
abundant). Because frequency and abundance scales are geometric with the
multiplication factor 2, a difference of one unit in the index means that the total cover of

species is, on average, two times greater (Toivonen and Huttunen, 1995).

2.4.2 Identification

Plant species were identified using published flora and by visiting herbaria in Nepali
universities and the national herbarium. Studies of the aquatic flora of Nepal began in the
early 19™ century, with the surveys of F.B. Hamilton and N. Wallich (Don, 1825), who
reported some macrophytes in their collections. Other studies are those of Burkill (1910),
various joint expeditions of University of Tokyo and the Department of Plant
ResourcessHMG/Nepal (1966-1991; published in Bulletins of the Society of Himalayan
Botany, Tokyo, and the Department of Plant Resources, HMG, Nepal), Joshi (1973),
Rajbahandari (1982), Yadav et al. (1983), Regmi and Ranjit (1985), Dangol ef al. (1986),
Sah, (1993, 1997), WMI and TUCN/Nepal (1994), Siwakoti and Verma (1995), Oli
(1996), Shrestha, P. (1996), Shrestha, R. (1996), Shrestha (1997), Bhandari (1998), and
Dangol and Lacoul (1998), Lacoul and Lacoul (2002). Shrestha (1999) compiled 187

species in a comprehensive list of aquatic macrophytes of Nepal.

A comprehensive “Flora of Nepal” has not yet been published. To identify plants in this
study, information was obtained on the taxonomy and distribution of aquatic macrophytes
of the region in the works of Hooker (1872 - 1887), Hara (1966, 1971), Hara et al. (1978,

1982), Hara and Williams (1979), Shrestha and Joshi (1996), Shrestha (1999), and
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Press et al. (2000). Cook (1996) also included the aquatic plants of Nepal in their book on
macrophytes of the Indian sub-continent. Plant specimens were examined at the National
Herbarium (of Nepal), in the Department of Plant Resources (HMG/Nepal), and in the

Ministry of Forest and Soil Conservation (HMG/Nepal).

2.4.3 Species diversity and similarity
Species diversity for individual lakes was calculated by Shannon diversity index
(Margalef, 1958):

H’=—%p; log pi where, p;= ny/N;

That is, P;j is the proportion of total abundances of all species that occurs as species i.

The community similarity between lakes was calculated by the Jaccard coefficient of
community (Mueller-Dombois and Ellenberg, 1974), as follows;

CCj=C/S1+S, - C

where S and S; are the number of species in communities 1 and 2, respectively, and C is

the number of species common to both communities.

2.5.1 Data analysis

2.5.1.1 Descriptive Analyses

Descriptive statistics were calculated for limnological and species data. Averages,
standard deviations, regressions, and correlations of variables were calculated using the
statistical packages Statistica (version 5.0) and SPSS (version 10.0). ANOVA was used

to compare variables in different altitudinal regions, with Tukey post-hoc tests. The non-
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parametric tests, Kruskal-Wallis followed by Mann-Whitney, were used to examine

region-wise seasonal variations of environmental variables.

2.5.1.2 Multivariate Analyses

The classification of species data (the quantity index, Q;) was done using the
| TWINSPAN polythetic divisive classification method (Hill, 1979; Gauch, 1982) on PC-
ORD (version 4; McCune and Mefford, 1999). The default values of the programme were
used, except that the cut levels for the pseudospecies set to 0, 3, 6, 10, and 12 (Qi-values),

and the minimum group size for division to 5.

All ordinations were performed using the computer program CANOCO (version 4; ter
Braak and Smilauer, 1998). The theory underlying the statistical approaches used here is
summarized in Jongman et al. (1995). All environmental variables were tested for non-
normal distribution. The data for environmental variables were transformed as log;o (x+1)
prior to analysis, to reduce skewness of their distribution, with the exception of pH
(which is already a logarithmic variable). Principal component analysis (PCA) was used
to summarize the major patterns of variation within the environmental data. PCA is an
indirect ordination technique used to obtain a low-dimensional representation of
multivariate data, so that they may be examined visually and any obvious structure
identified (Everitt, 1978). The results are presented as a PCA correlation biplot, in which
variables with high positive correlations generally have acute angles between their biplot
arrows. The length of an arrow indicates how strongly the variable is related to the

ordination (ter Braak, 1994).
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Detrended correspondence analysis (DCA) was used to identify major gradients of
variation in the macrophyte species data. DCA data consisted of 28 sites, 177 macrophyte
species. DCA is an indirect gradient analysis that summarizes patterns of variation within
a complex dataset and reveals relationships among species assemblages (sometimes
referred to as “communities”) (Hill and Gauch, 1980). DCA provides an effective but

approximate ordination for a unimodal response model in two or more dimensions.

Unimodal ordination techniques were used because the length of the environmental
gradient was >3 - 4 standard deviation as determined by DCA (ter Braak and Smilauer,
1998). Data for DCA, CA and CCA were all performed with down-weighting of rare
species and biplot scaling (ter Braak and Smilauer, 1998). Species abundances were not
square-root transformed, as this resulted in little difference in the overall variance
explained in the CA and CCA compared to the untransformed data. The key variables
determining species distributions that were chosen in forward selection also did not

change.

First CCA was started with 28 sites, 177 macrophyte species and 23 environmental
variables. Prior to CCA analysis, the species and environmental data were screened to
identify and eliminate redundant and/or superfluous environmental variables, as well as
extreme (outlier) data. In all ordination analyses, samples having extreme values in the
environmental variables have more influence on the results than the central samples (ter
Braak, 1994). The extremity of the position of the sample in the multivariate space of the

environmental variables was examined using leverage diagnostics in CCA (ter Braak and



41

Smilauer, 1998). No samples were found in extreme positions for the selected

environmental variables having >8-times the average leverage.

The relationships among macrophyte species assemblages and environmental variables
were further explored using canonical correspondence analysis (CCA) (ter Braak, 1986,
1996). CCA is a direct gradient technique that enables a simultaneous representation of
sites, environmental variables, and species in low-dimensional space (ter Braak, 1987).
CCA can be used to identify environmental variables that statistically account for
variation in the species data. Species are assumed to have unimodal response surfaces,
and the ordination axes are constrained to be linear combinations of the environmental
variables. In all CCAs performed in the present study, the species scores were scaled to

be weighted averages of their site scores.

Canonical coefficients and intra-set correlations were examined to estimate the relative
contributions of particular environmental variables to the CCA ordination axes (ter
Braak, 1996). The forward-selection option was used in the CCA to determine the
minimal set of environmental variables that explain statistically significant proportions
of variation in the macrophyte species data (ter Braak, 1996). This procedure is
analogous to the selection process used in stepwise multiple regression (ter Braak,
1996). At each step, the statistical significance of the variable added in the course of the
forward selection was tested by means of a Monte Carlo permutation test (500
unrestricted permutations). This test replaces the F-test and t-test used in forward

selection in univariate multiple regression (ter Braak and Smilauer, 1998). Variables
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were considered statistically significant if the permutation-test derived a P value

<0.05.

To reduce the influence of strongly correlated environmental variables, I performed a
series of constrained CCAs in which each environmental variable was selected as the sole
variable and the significance of the first axis tested using a Monte Carlo Permutation test.
Only significant (P<0.05 in a 500-permutation analysis) variables were retained.
Following this, the variables were checked for high-variance inflation factors (a VIF =20
indicates a variable is perfectly correlated with another; ter Braak and Smilauer, 1998)
and eliminated sequentially, beginning with the variable having the highest VIF. Of the
remaining variables, only those identified as significant (P<0.05, 500 permutations) using
the forward selection options in CANOCO were included as active variables in the CCA.
The same procedures were repeated for the CCA-2 and CCA-3, after removing many
redundant variables to maintain the number of variables (n-2), where n is number of
samples. For the data set of 17 lakes in CCA-2, only 15 environmental variables were
selected after removing redundant variables. CCA-1 involved analysis of all lakes having
macrophytes, while CCA-2 involved altitudinal regions TE and MM, and CCA-3 only

involved euhydrophyte species (submerged, floating-leaved, and free-floating species).



3. RESULTS

3.1 Physical characteristics of the study lakes

3.1.1 Altitudinal distribution (ALT) and watershed area (WSA)

Figure 2.3 shows the altitudinal distribution of the study lakes, which range from
77 m.a.s.] (in the Koshi Tappu Wildlife Reserve) to 4,980 m (Ngojumba Lake, Gokyo).
Table 2.2 illustrates the characteristics of the physiographic zones in which the lakes

occur, in terms of climate, vegetation, and bio-geographic realm.

All of the lakes sampled in the High Himal (HH) alpine region lie above the treeline (ca.
4,200 m) and below the permanent cover of ice and snow (ca. 5,600 m; Figure 2.3). The
largest watersheds in HH are those of Tso-Rolpa (7,760 ha) and the four lakes in Gokyo
region (7,400-7,710 ha), followed by those in Langtang region (4,250-4,680 ha). The

smallest watersheds are those of the three Panch Pokhari lakes (Table 2.1).

The High Mountains (HM) region occurs in the montane (boreal to cool-temperate)
climatic zone of the high Himalayas. Phokte Tal (6,500 ha) and Ram Pokhari (300 ha)

have the largest and smallest watersheds, respectively, in the HM region (Table 2.1).

The Middle Mountain (MM) lakes occur within a warm-temperate to subtropical
climate zone of an extensive valley floor in the middie mountain zone, within densely
populated areas of the greater Kathmandu and Pokhara regions. Phewa Tal has the
largest watershed (11,000 ha) in the MM region and Tau Daha and Nag Daha have the

smallest ones (<100 ha).
43
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The Terai lakes (TE) are in the southern lowlands of Nepal, close to the border with
India, in a tropical climatic zone dominated by sal (Shorea robusta) and sissoo
(Dalbergia sisso). The TE region is densely populated, but most of the sampled lakes are
within protected areas with relatively small anthropogenic influences. The only exception
is Barahawa Tal, located within an urbanized area. It is extremely difficult to estimate the
indistinct watershed areas in the Terai region, because most lakes are oxbows affected by
seasonal riverine overflow in flat terrain. In general, however, watersheds in the TE
region are smaller than in the mountain regions, and generally <500 ha in area. Two
lakes, however, Tamar Tal and Devi Tal, have relatively discrete watersheds in hilly sal

(Shorea robusta) terrain of 450 ha and 746 ha, respectively.

3.1.2 Lake surface area (SA)

In the HH region, Tso Rolpa is the largest lake (140 ha) and Tso Mengma (3.4 ha) the
smallest (Table 2.1). Lake Tsola-Tso, also in the HH, has a seasonally variable surface
area of 30-110 ha, depending on the timing of the monsoon and snow/glacial melt. In the
HM region, the largest lake studied is Salpa Pokhari (14 ha) and the smallest is Ram
Pokhari (2.5 ha). Lakes in the MM region have a much larger average surface area than in
other study regions. Lake Phewa is the largest lake studied, with a surface area of 524 ha,
followed by Lake Begnas (374 ha). The smallest lake studied in the MM region is Nag
Daha (2.1 ha). The largest lake studied in the TE region is Beeshajar Tal (59 ha) and the

smallest is Lake 2 in the Koshi Tappu Wildlife Reserve (1.6 ha).
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A one-way ANOVA with Tukey’s HSD (honest significant difference) for unequal N
(Spjotvall/Stoline test; Table 3.1) showed that lakes in the HH, HM, and TE regions do
not differ significantly in surface area. Lakes in the Pokhara area within the MM region
are significantly larger (p <0.05) than those in the other altitudinal study regions,
including those of the Kathmandu area of MM. The region-wise seasonal areas showed

non-significant (p <0.05) changes along seasons (Appendix 3).

3.1.3 Maximum depth (Zax)

The deepest lake sampled in the HH region is Tso-Rolpa (56 m) and the shallowest Tso-
Mengma (1.3 m) (Table 2.1). Tsola-Tso is exceptional in the HH region for its seasonal
variations of depth, which ranged from 8 to 16 m (see Léffler (1969) for similar

observations of this lake).

The deepest Zmax sampled in the HM region is Salpa Pokhari (16 m) and the shallowest
Ram Pokhari (1.6 m). In the MM region the deepest Z,.x was in Lake Phewa (24 m) and
the shallowest Lake Rupa (6 m). In the Terai region Z.x ranged from 1.4 to 3.6 m.
However, the Terai lakes varied seasonally in depth depending on the stormflow from the
monsoon. For example, Beeshajar Tal varied in Zyax from 1.4 m in the pre-monsoon to

2.5 m during the monsoon season (Appendix 2).

In general, lakes in the HH region are much deeper than those in other altitudinal regions
(Table 2.1). A one-way ANOVA (Table 3.1) showed that Z. of the HH lakes is
significantly deeper than in other altitudinal groups, while Z. of the TE lakes is

significantly shallower, and Z,y of lakes in HM and MM do not differ (p <0.05). For all
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lakes ( regardless of altitudinal zone ), the seasonal variation of Zy,x Wwas not significant

(p >0.05). The non-parametric tests of region-wise seasonal data showed that Z,,, does
not differ significantly among the HH, HM and MM regions (p <0.05; Appendix 3). But,
the TE lakes showed significant differences (p <0.01) in their Z y,x between the monsoon
season and the pre- and post-monsoons, but no differences between the pre- and post-

monsoon seasons.

3.1.4 Water temperature

Surface water temperature of the lakes changed both seasonally and with altitude. Among
the study lakes, the coolest surface temperature during the growing season was in
Ngojumba Lake in the HH region (4.8° C; altitude 4,980 m; Appendix 2; note that this
was the warmest surface temperature attained by this lake during the study period). Local
people informed me that this lake is frozen over for seven months of the year. The
warmest surface temperature in the HH region was in Dudh Pokhari (12° C); this is also
the highest lake (4,750 m) supporting any macrophytes. According to local people, most

lakes in the HH region are frozen over for 5-6 months of the year.

Lakes studied in the HM region ranged in surface temperature from 7.2° C to 7.8° C
during the post-monsoon (late autumn), and from 13° C to 16° C during the monsoon. In
the MM region, the post-monsoon surface temperature differed between lakes in the
Kathmandu valley (8.6° C - 9.4°C) and the Pokhara valley (15.9° C -19.8° C), but they
were similar during the monsoon (25.8° C to 29.8° C) and in the pre-monsoon (24.9° C to

29.8°C).
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In the Terai lakes surface temperature was 27.5° C - 31.2° C during the pre-monsoon,

30.7° C-33.6° C during the monsoon, and 17.9° C - 21.1° C during the post-monsoon.

For the entire data set, surface temperature differed significantly (p <0.05) among the
altitudinal regions (Table 3.1). The region-wise seasonal surface water temperature on
non-parametric tests also showed significant differences (p <0.01; Appendix 3), being

warmest during the pre-monsoon to monsoon, and coolest in the post-monsoon season.

The overall relationship between surface water temperature and altitudinal position of the
lakes is negative ( Figure 3.1 ). The mean annual surface temperature is about 28°C at

200 m in Terai, and it declines with altitude at a lapse rate of 0.4°C per 100 m.

3.1.5 Transparency (Zs)

Transparency of lakes in the HH region is highly variable, depending on whether there is
a local input of glacial water having a high concentration of suspended solids. Bhairav
Kund has the greatest transparency, with a Secchi depth of 14.0 m, while in Tso Rolpa it

is only 0.16 m because of the influence of glacial flour (Appendix 1).

The transparency of lakes in the HM, MM, and TE regions is similar (ANOVA and
Tukey’s comparison; p <0.05; Table 3.1). Lakes in the HH region have significantly
deeper transparency than in the other regions, although as previously noted this varied
greatly among lakes in the HH. The region-wise seasonal transparency is not significantly

different for HH and HM lakes. However, transparency was significantly less (p <0.05;
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Appendix 3) between the monsoon season and both of the pre- and post-monsoon in MM

and TE lakes (the pre- and post-monsoon transparencies were not significantly different).

There was a strong log-linear relationship between transparency and total suspended
solids (* = 0.78; Figure 3.2) among the 34 study lakes, but a weak relationship with

chlorophyll (r? = 0.09; Figure 3.3).

3.2 Chemical characteristics of the study lakes

3.2.1 pH

The pH of lakes in HH region was circumneutral (average pH = 7.0). Lakes in the HM
region were acidic (average pH= 5.9), with the most extreme value being pH 5.6 in Salpa
Pokhari during the monsoon. Lakes in the MM and TE regions were slightly alkaline,
with pHs of 7.8 - 7.9; the most extreme value was pH 9.2 in Rupa Tal in the post-
monsoon. The HH and HM regions were significantly different (ANOVA; p <0.05) from
each other and from the MM and TE regions (MM and TE did not differ). Region-wise
seasonal pH values were significantly less (p <0.05; Appendix 3) for all lakes during the
monsoon compared with other seasons, but the pre- and post-monsoon seasons were not

different.

3.2.2 Conductivity
The average conductivity of lakes in the HH region was 25.5 pS/cm, and in HM it was

31.3 uS/cm (difference not significant). The most extreme values were in high-
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transparency lakes in the Langtang area of HH, with only 6.9 pS/cm ( only about
double the conductivity of distilled water). Conductivity was significantly higher
(p <0.05) in the MM region, averaging 101 pS/cm; the most extreme values were Tau
Daha in the Kathmandu valley with 296 pS/cm in the pre-monsoon, and Lake Rupa in the
Pokhara region with 25.3 pS/cm during the monsoon. The Terai lakes had an average
conductivity of 157 pS/cm (significantly higher than other regions), with a range among
lakes of 72 to 360 uS/cm. The seasonal variation of conductivity in the HH region was
not significant (p >0.05; Appendix 3). In contrast, lakes in the HM, MM and TE regions
had significantly different (p <0.05) conductivity during the monsoon, compared with the
pre- and post-monsoon (the pre- and post-monsoon were not significantly different).

Conductivity was lower during the monsoon in HM and MM lakes, but higher than in the

TE region.

3.2.3 Ionic concentration

The ranking of total-ion concentrations (in me/l; Table 3.2) shows that calcium and
bicarbonate are consistently dominant; in the HH region calcium dominates, and in other
regions it is bicarbonate. Sulphate ranks third in total ions in the HH, but is lower in the
other regions, while magnesium and sodium are of moderate importance. Potassium and

chloride equivalent concentrations are consistently low.

The mean calcium concentration was relatively low in the HH (3.9 mg/l) and HM (3.6
mg/l) regions, being 3-4-times higher in the MM (12.1 mg /1) and TE (17.6 mg/l) (Table

3.1). The differences between HH/HM and MM/TE are significant (ANOVA; p <0.05).



53

Table 3.2 Rank of cations and anions in order of average quantities (me/l) of sampled
water from different regions. Parenthesis gives the value with standard

deviation.
Region 1 2" 34 4" 5 6" 7™
\Rank
HH Ca™ HCOy i a Mg K CL
019012 | (0.19+0.12) | (0.10£0.03) 0.04£001) | (0.03£0.01) | (0.01£0.01) | (0.012001)
Pre- Ca™ HCO; | SO& Na" g™ K’ CL
MONSOOIL (023£012) | (022+012) | (0.09%0.02) | (0.03£001) | (0.03£0.01) | (0.012001) | (©O1:001)
Monsoon Ca™ HCOy SO~ Na' Mg i CL
0.17£009) 0.160.10) 0.09+0.02) ©.04£001) | (0.03+£0.01) | (001£0.01) | (©OL£001)
Post- Ca™ HCOy SO~ Na' Mg”* K CL
monsoon 018+0.13) | (0.18£0.13) | (0.11£002) | (0.04£001) | (0.03£0.01) | (0.01£001) | (OO1£001)
HM HCOy Ca”’ i o SO~ CL K’
021£003) | (0.18+£004) | (0.08+0.02) | (0.08£0.03) | (0.060.01) | (039+002) | (0.01+001)
Pre- HCO;y Ca™ Mg”* Na' S04~ CL K
monsoon (023+002) | (021£003) | (0.08£0.03) | (0.08£001) | (0.06+0.01) | (0.04£0.02) | (0.01+0.002)
Monsoon | HCO; a a o a CL *
017£003) | ©.13£002) | (0.09+0.02) | (0.08£003) | (0.06+0.01) | (0.04+002) | (0.01:0.002)
Post- HCO5y Ca™ Na' Mg~ SO~ CL K’
monsoon | ©2+00) | (020+002) | (008£001) | (008003 | (0.06+0.01) | (0.04:002) | (001:0001)
MM HCOy Ca™ Mg”* Na" CL K’ SO4~
1.04£092) | (065+064) | (024£022) | (021=0.14) | (0.12£0.10) | 0.04+004) | (0.01£0.004)
Pre- HCOy a Mg Na' CL’ K" SO4~
monsoon (LI1£097) | (066+0.72) | (026+024) | (022+0.14) | (0.12£0.12) | (0.04£004) | (0.0130.004)
Monsoon | HCOy Ca™ Mg™ Na' CL * SO~
0.93+090) (0.51+0.50) ©02+£0.19) (0.18+0.13) 0.11£0.09) | (0.04+0.03) | (001£0.004)
Post- HCOy a - ¥ - K SO~
monsoon | (10709 | (064£069) | (0265024) | (022£015) | (0.12£0.11) | (004£004) | (0010.005)
TE HCO3- a2+ 2+ + + - SO42-
(154+083) | 088+ 063) | (049+043) | (023+023) | (0.07+0.05) | (0.02+005) | (0.02+£0.02)
Pre- HCO5 Ca™ Mg~ Na' K* CL SO~
monsoon (1.63+09) 0.88£067) | (052£051) | (024+025) | (0.08£0.05) | (0.03£0.04) | (0.02:002)
Monsoon HCO5 Ca™ g2+ " - CL” SO42'
(132+058) | (0.79+044) | (041£026) | (0.19+0.19) | (0.08+0.04) | (0.03£0.05) | (0.02+0.02)
Post- HCOy Ca” Mg Na' K S04~ CL
monsoon (1.66+0.94) (0.98+0.74) | (0.52+0.47) (0244:024) | (0.07+0.05) | (0.02+0.02) | (0.02+004)
Total HCOy Ca™ Mg™ Na SO~ K CL
. (0.82+0.88) (051£056) | (024£034) | (0.14£017) | (0.05£0.04) | (0.042004) | (0.04:0.06)
sites
WORLD | HCO;5 Ca*’ Mg~ Na' SO~ CL K
% 0.96) 0.75) 034) 027 0.23) 0.22) (0.06)

* Mean composition of surface water of the world (Wetzel, 1983).
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The highest value (35.9 mg/1) was observed in Tau Daha in the Kathmandu Valley (MM),
and the lowest (0.67 mg/l) in Sarswati Kund (HH). Region-wise seasonal calcium values
showed no significant differences in TE (p >0.05; Appendix 3), but in the HH and HM
regions were significantly higher in the pre- and post-monsoon than during the monsoon.

The MM region was only significantly higher in the pre-monsoon compared with the

monsoon.

The mean magnesium concentration was lower in the HH (0.35 mg/l) and HM (0.95
mg/l) regions than in the MM (2.9 mg/l) and TE (5.9 mg/l) (Table 3.1). The differences
between HH/HM and MM/TE are significant (ANOVA; p <0.05). The highest value
(16.7 mg/l) was observed in Beeshajar Tal in Terai, and the lowest (0.19 mg/1) in Bhairav
Kund and Sarswati Kund (HH). Region-wise seasonal magnesium values for the pre-
monsoon season was significantly higher (p <0.05; Appendix 3) than during the monsoon
and post-monsoon in the HH and HM regions. In the MM region both pre- and post-
monsoon values were higher (p <0.05) than during the monsoon. No significant

differences were observed for seasonal values of magnesium in TE lakes.

The mean sodium concentration was lower in the HH (0.86 mg/l) and HM (1.9 mg/l)
regions than in the MM (4.8 mg/l) and TE (5.2 mg/l) (Table 3.1). The differences
between HH/HM and MM/TE are significant (ANOVA; p <0.05). The highest value
(20.7 mg/l) was observed in Barahawa Tal in TE, and the lowest (0.68 mg/l) in a glacial
lake, Tso Rolpa, in HH. The region-wise seasonal sodium concentration showed lower

pre-monsoon values (p <0.05; Appendix 3) than during the monsoon in the HH and HM
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regions. In contrast, in the MM and TE regions sodium values were less (p <0.05) during

the monsoon than in the pre-monsoon.

The mean potassium concentration was lower in the HH (0.50 mg/1) and HM (0.34 mg/l)
regions than in the MM (1.6 mg/l) and TE (2.9 mg/l) (Table 3.1). The differences
between HH/HM and MM/TE are significant (ANOVA; p <0.05). The highest value (7.3
mg/l) was observed in Barahawa Tal in Terai, and the lowest (0.17 mg/1) in Gosian Kund
and Bhairav Kund in HH. The region-wise seasonal potassium concentrations showed no

significant differences for most of the regions (p >0.05; Appendix 3).

Bicarbonate is the dominant anion in all of the altitudinal regions, followed by sulphate
and chloride in much lower equivalent concentrations (Table 3.2). The mean bicarbonate
concentration was lower in the HH (11.5 mg/l) and HM (12.6 mg/]) regions than in the
MM (63.2 mg/l) and TE (93.9 mg/l) (Table 3.1). The differences between HH/HM and
MM/TE are significant (ANOVA; p <0.05). The highest value (186 mg/l) was observed
in Devi Tal in Terai, and the lowest (2.4 mg/l) in three lakes in HH. The region-wise
seasonal concentration were lower during the monsoon than in the pre- and post-monsoon
in the HH, HM and MM regions (p <0.05; Appendix 3). There was no significant

seasonal change in the TE lakes.

The mean sulphate concentration was higher in the HH (4.6 mg/l) and HM (3.1 mg/l)
regions than in the MM (0.36 mg/l) and TE (1.0 mg/1) (Table 3.1). All differences among
regions are significant (ANOVA; p <0.05). The lowest value (0.15 mg/l) was observed in

Tau Daha in MM, and the highest (5.6 mg/l) in Tsola Tso in HH. The region-wise seasonal
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concentrations were not significantly different for HM, MM and TE lakes (p >0.05;
Appendix 3), but in the HH lakes were higher during the post-monsoon than in the

monsoon or pre-monsoon (ANOVA; p <0.05).

The mean chloride concentration did not vary consistently among the altitudinal regions.
It was higher in the MM (4.2 mg/1), followed by HM (1.4), TE (0.85 mg/l), and HH (0.20
mg/l) (Table 3.1; all differences are significant at p <0.05, except HM = TE). The lowest
value (0.11 mg/l) was observed in Dudh Pokhari in HH, and the highest (8.8 mg/l) in Nag
Daha in MM. The region-wise seasonal concentrations were not different for HM, HM
and MM lakes, but in TE lakes were significantly higher (p <0.05; Appendix 3) during

the monsoon season than in the pre-monsoon and post-monsoon.

The average total cation concentration (Ca** + Mg** + Na' + K'; region-wise value
dispersion is shown in Figure 3.4) varied as follows:

e HH 5.6 mg/l 0.27 me/l

e HM 6.7 0.35
e MM 215 1.1
e TE 317 1.7

The differences between HH/HM and MM/TE are significant (ANOVA; p <0.05).

The average total anion concentration (HCO; + Cl” + SO,%; region-wise value dispersion
is shown in Figure 3.4) varied as follows:
e HH 8.0 mg/l 0.29 me/l

e HM 178 0.66
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e MM 677 1.16
e TE 958 1.58

The differences between HH/HM and MM/TE are significant (ANOVA; p <0.05).

In general, the TE region had relatively high concentrations of cations and anions,
particularly during the monsoon, while the monsoon values for the HH, HM and TE

regions were relatively lower than in other seasons (Figure 3.5).

The overall charge balance between positive and negative equivalents was rarely greater
than 15% for the HM, MM and TE regions, but it could be more than 20% in the HH
(Figure 3.6). Note, however, that this balance does not account for anion charges
attributable to nitrate and organic anions, which were not quantified in this study.
Seasonal differences between mean total cations and total anions did not differ

significantly among seasons (ANOVA; p <0.05; Figure 3.7).

A correlation matrix among ionic species is presented in Figure 3.8. There were strong
positive correlations between all cations and bicarbonate (p <0.01). Chloride did not
show significant relationships with divalent cations, but it did with monovalent ones.
Sulphate showed weak or insignificant relationships with other ions. Calcium plus

magnesium showed a strong relationship (= 0.95) with bicarbonate (Figure 3.9).

3.2.4 Suspended solids
The mean total suspended solids (TSS) in the HH (20.1mg/1), HM (9.8 mg/l), and MM

(7.3 mg/1) regions were lower than in the TE (54.9 mg/1) (Table 3.1). The differences
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between HH, HM, and MM are not significant, but all are different from TE (ANOVA; p
<0.05). The highest values were observed in Tso Rolpa and Tsola Tso lakes (147 and 96
mg/1, respectively) close to melting glaciers in the HH region, and the lowest (0.58 mg/l)
in Gosain Kund in HH. The TSS values were significantly higher (p <0.01; Appendix 3)
during the monsoon than during the pre- and post-monsoon seasons for all regions,
except for HM where the post-monsoon values did not showed significant difference with

the monsoon values.

The mean volatile suspended solids (VSS) were lower in the HH (0.91 mg/l1) region than
in the HM (4.9 mg/l), MM (5.0 mg/l) and TE (7.6 mg/l) (Table 3.1). The differences
between HH, HM, and MM are not significant, but the HH is different from TE (ANOVA;

p <0.05). The highest value (15.2 mg/1) was observed in Barahawa Tal in Terai, and
the lowest (0.25 mg/l) in Ngojumba in HH. The VSS values were significantly higher
(p <0.01; Appendix 3) during the monsoon than during the pre- and post-monsoon
seasons for TE, MM, and HH, but there were no significant differences among seasons in

the HM region.

The mean non-volatile suspended solids (NVSS) were lower in the HH (19.1mg/l) and
HM (4.9 mg/l) and MM (2.3 mg/1) regions than in TE (32.6 mg/l) (Table 3.1). However,
the differences among the mean regional values were not significant (Fo s, 31 = 16.3). The
highest values (146 and 92 mg/1) were observed in Tso Rolpa and Tsola Tso lakes in HH
region, and the lowest were in Salpa Pokhari (0.25 mg/1) and Gosain Kund (0.26 mg/l) in

the HM and HH, respectively. The seasonal values of NVSS were significantly higher
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during the monsoon than during the pre- and post-monsoon in all regions (p <0.05;

Appendix 3).

3.2.5 Nutrients

The mean total nitrogen (TN) in the HH (162 pg/l) and HM (172 pg/l) regions were
significantly lower than in the MM (461 pg/l) and TE (608 pg/l) regions (ANOVA;
p <0.05; Table 3.1). The highest mean value (983 pg/l) was observed in Tau Daha in MM
region and the lowest (35 pg/l) in Tso Rolpa in HH. The values of TN varied seasonally,

but the patterns were not consistent among altitudinal regions.

The mean total dissolved nitrogen (DN) in the HH (111 pg/l) and HM (122 pg/l) regions
were lower than in the MM (306 pg/l) and TE (395 pg/l) (ANOVA; p <0.05; Table 3.1).
The highest mean value (656 pg/l) was observed in Tau Daha in MM region and the
lowest (24 pg/l) in Tso Rolpa in HH. The values of DN varied seasonally, but the patterns

were not consistent among altitudinal regions.

The mean total phosphorus (TP) in the HH (9.1 pg/l) and HM (5.5 pg/l) regions were
lower than in the MM (51.8 pg/l) and TE (97.9 pg/l) regions (ANOVA; p <0.05; Table
3.1). The highest mean value (160 pg/l) was observed in Barahawa Tal in TE region and

the lowest (2.6 pg/l) in Tso Rolpa in HH. The values of TP varied seasonally, but the

patterns were not consistent among altitudinal regions.

The mean total dissolved phosphorus (DP) in the HH (4.1 pg/l) and HM (2.8 pg/l)

regions were lower than in the MM (19.2 pg/l) and TE (31.4 pg/l) regions (ANOVA;
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p=<0.05; Table 3.1). The highest mean value (43.3 pg/l) was observed in Tamar Tal in TE
region and the lowest (1.3 pg/l) in Tso Rolpa in HH. The values of DP varied seasonally,

but the patterns were not consistent among altitudinal regions.

There was a moderately strong relationship (r*= 0.72) between the TN: TP ratio and log
TP concentrations among the study lakes (Figure 3.10), but that with log TN was weak

(Figure 3.11; r*= 0.29).

3.2.6 Chlorophyll

The mean total chlorophyll (CHL) was lower in the HH (1.3 pg/l) and HM (3.0 pg/l)
regions than in the MM (18.1pg/l) and TE (10.2 pg/l) (ANOVA; p <0.05; Table 3.1). The
highest mean value (38 pg/l) was observed in Tau Daha in MM region and the lowest
(0.18 pg/l) in Tso Rolpa in HH. The values of CHL varied seasonally, but the patterns

were not consistent among altitudinal regions.

There was a strong log-linear relationship between CHL and TN (r*= 0.65; Figure 3.12)
among the study lakes, with both variables generally increasing in lower altitudes (i.e., in
MM and TE). The relationship is strengthened when Lake Tsola Tso (HH region) is
removed from the dataset (r* = 0.74); this lake is close to a glacier that contributes high
TSS and turbidity that result in anomalous productivity. The relationship of CHL and TP
is somewhat weaker (> = 0.57; Figure 3.13), and is also improved (r* = 0.61) if Tsola Tso

is not included in the dataset.
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Table 3.3 shows the distribution of lakes among trophic categories based on mean
indicator values of TN, TP, CHL, and TRANS. In general, the HH and HM lakes are
largely in an oligotrophic condition, with a few being mesotrophic (that is, if anomalous
predictions related to TSS associated with glacial flour are disregarded). Lakes in the
MM region are more variable, ranging from oligotrophic to hypereutrophic. The TE lakes
are generally more productive than waterbodies in the other regions, being mostly in a

eutrophic to hypereutrophic condition.

3.3.1 Distribution of aquatic macrophytes

A total of 177 species of aquatic macrophytes was observed in this study. Macrophytes
were observed in 28 out of the 34 lakes studied, but were absent in 6 of the highest-altitude
waterbodies. The species present comprised: (1) one macroalga, Nitella sp.; (2) six Bryophytes
in six families; (3) eight Pteridophytes in 7 genera and 6 families; (4) 65 dicotyledonous plants
in 39 genera and 26 families; and (5) 97 monocotyledonous plants in 55 genera and 16 families
(Appendix 4). Out of the 55 families of aquatic plants observed, 39 families were represented
by a single genus, and 23 families by one species. Figure 3.14 shows the number of genera
and species among major taxonomic groups. The family Cyperaceae represents 32% of
the monocot species and 18% of the genera, followed by Poaceae (28% of monocot
species and 34% of genera). The Scrophulariaceae represents 14% of the dicot species

and 10% of the genera, followed by Asteraceae (9% of species and 15% of genera).

Six high-altitude lakes in the HH region did not harbor any aquatic macrophytes: Lake
Tsola Tso ( Al ), Lake Ngojumpa ( A5 ), three lakes in Panch Pokhari ( A6, A7, A8 ),

and Lake Tso-Rolpa ( A9 ). Other lakes in HH region supported only 1-3 of flowering
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Figure 3.14 Number of genera and species represented by different families of aquatic
macrophytes in total sampled lakes.

70



71

macrophytes, which are here reported for first time in lakes above 4,700 m anywhere in
the world. The highest records are for Ranunculus trichophyllus, a submerged eleodid
that occurred in three high-altitude lakes (A2, A3, A4; at 4,680-4,750 m) in the Gokyo
region of Sagarmatha (Everest) National Park. Another eleodid, Callitriche palustris,
occurred in Sarswati Kund (A12; 4,068 m) in the Langtang region. In addition, the
widespread grass, Festuca ovina, occurred sparsely in the shallow littoral zone of lakes in
the Langtang region. Other grasses and Juncus species were observed in shallow littoral

zones of the majority of lakes in HH, particularly close to the inflow and outflow streams.

The HM region is relatively poor in species of aquatic macrophytes. Lakes Salpa Pokhari,
Gupha Pokhari, and Mauwa Pokhari had only 4-7 species each, and at a low cover. The
Sphagnum-fringed lakes Ram Pokhari and Phokte Tal supported macrophytes similar to
those in bog habitats, being dominated by bryophytes such as Sphagnum spp. and

Drepanocladus spp. along with graminoids such as Carex and Juncus species.

The species richness of aquatic macrophytes was much higher in MM lakes, particularly in
the Kathmandu and Pokhara valleys, where a total of 78 species was recorded. Lake Rupa
was the richest in species (47 present, with a high overall cover), followed by Lake Phewa

(40 species). Lake Begnas had the lowest number of species (20 species) in the MM region.

The Terai region (TE) had the greatest species richness, with 139 species recorded. Two
lakes with a seasonal, lotic, overflow influence had the highest observed number of
macrophytes: Lake Beeshajar Tal had 85 species and Kushaha had 80 species. The

species richness in other lakes in the TE region ranged from 17 to 46 species.
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Figure 3.15 shows that 55% of the aquatic plants identified were Monocotyledonae
followed by Dicotyledonae (37%), Pteridophytes (4%), Bryophytes (3%) and Macroalgae
(1%). The percentage distribution of major taxonomic groups in the four altitudinal
regions is shown in Figure 3.16. The HH region had 3% of the 65 species of
Dicotyledonae in this study, followed by HM (6%), MM (43%), and TE (80%) ( note that
some species occurred in more than one altitudinal region). A similar trend was seen in

Monocotyledonae: HH (2%), HM (13%), MM (41%), and TE (80%).

The depth-range distribution of macrophytes shows that 78% of the species occurred in
water shallower than 50 cm (Figure 3.17). Figure 3.18 shows that most species
occurrences were in the shallow littoral zone (<15 cm), although this varied by altitudinal

region: 50% in HH, followed by 82% in HM, 38% in MM, and 60% in TE.

In Terai, the greatest depth at which macrophytes were found was only 2 meters, due to
the commonly murky water and shading effects of floating and emergent plants in the
lakes. In the MM region, there is a heterogenous depth distribution of macrophytes, with
Trapa quadrispinosa, a floating-leaved plant, rooted as deeply as 5 m in Rupa Lake.
Among the submerged species, Ranunculus trichophyllus in lakes in Gokyo (HH) and
Vallisneria natans in Lake Phewa (MM) colonized more than 4 m below the surface,

although most submerged species occurred no deeper than 2 m.

Overall, the growth form of aquatic macrophytes was dominated by Helophytes (58%),

followed by Hyperhydates (17 %), submerged (13 %), floating leaved (6%) and free-



73

Macro-algae (0.6)
Bryophytes (3.4)
b Pteridophytes (4.5)

Monocotyledonae (54.8) Dicotyledonae (36.7)

Figure 3.15 Taxonomic groups of aquatic macrophytes in total lakes (percentage values
are in parenthesis ).
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Figure 3.17 Rooting depth range grouping of aquatic macrophytes. Percentage values
are in parenthesis.
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Figure 3.18 Percentage share of different groups categorized on the basis of rooting

depth distribution of aquatic macrophytes in different regions with plant
growth habit.
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floating (6%) (Figure 3.19). The TE region was dominated by shallow-water growth
forms such as Helophytes and Hyperhydates, while the MM was rich in submerged
forms, The generally shallower lakes in the HM were dominated by Helophytes, and the

deep and clear HH lakes by submerged species (Figure 3.20).

Overall, 53% of the macrophyte species are annuals, and 47 % are perennial in lifespan.
The annuals were somewhat richer in Terai (80%) and MM (35%), and lower in the HM
(35%) and HH (3%) regions of the total annuals (94 species). Perennials also show a

similar trend in distribution with altitudinal zones (Figure 3.18).

3.3.2 Macrophytes richness and diversity

Lakes in the TE region have higher levels of Shannon diversity (Figure 3.21). Beeshajar
Tal (D10) and Kushaha Nahar (D7) had the highest diversity among the Terai lakes,
while the lowest values were in three lakes in the Koshi Tappu Wildlife Reserve (Lakes:
D1, D2, D3). In the MM region, Rupa Tal (C3) has the highest species diversity and
Begnas Tal (C4) the lowest. In the HM region, Phokte Tal (B5) had the highest diversity
and Gupha Pokhari (B1) the lowest. Most lakes in the HH region had only one species;

only Sarswati Kund had 3 species.

The Jaccard coefficient of community similarity showed a moderate degree of similarity
among lakes in the TE and MM regions (CC; = 0.32). There was little similarity between
TE/MM lakes and those in the HM region (CC; <0.07) or in the HH (CC; = 0.02), or

between HM and HH (CC; = 0.04).
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Figure 3.19 Growth forms distribution of aquatic macrophytes in total lakes.
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Spearman rank correlation coefficients among environmental variables and species
richness (Appendix 5) show strong relationships with bicarbonate (0.72), substrate
quality (-0.71), water temperature (0.70), altitude (r = -0.68), conductivity (0.64), pH
(0.62), and nutrients (N and P; range 0.55-0.67), but not for lake surface area (0.11; ns).
Altitude, surface water temperature, conductivity, and nutrients showed stronger
relationships to the richness of helophytes + hyperhydates, compared to euhydates.

However, the euhydrophyte relationships are stronger to pH and substrate quality.

A log-transformed multiple regression analysis (Table. 3.4) between species richness (as
dependent variable) and key physical factors (independent variables) showed a negative
relationship of macrophytes with altitude, and a positive relationships with water

temperature.

Table 3.4 Multiple regression responses of the log species richness as dependable

variable to log environmental variable of lakes as independent variables.

Independent variable

r2

B F p
Altitude (m) -0.77 0.59 38.2 0.01**
Lake surface area (ha) 0.063 0.004 1.2 0.01**
Maximum depth (m) 0.55 0.28 11.42 0.01%*
Temperature (°C) 0.91 0.83 127.5 0.01**
Secchi Transparency (m) -0.72 0.52 28.5 0.01**

The beta and coefficient of determination for surface water temperature showed the
strongest relationship (Figure 3.22; = 0.91; 1 =0.83), followed by altitude (Figure 3.23; =
-0.77; = 0.59) and Secchi transparency (B= -0.72; r* = 0.52) (all p<0.01). Lake surface area
did not have a significant relationship with species richness (= -0.06; 1 = 0.004), when
considering all lakes in the various altitudinal zones. Within the TE region, however,

surface area has a strong relationship with species richness (Figure 3.24; > =0.79).
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Figure 3.22 Species richness of macrophytes as function of the surface water temperature
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Linear regression (n = 28):
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Figure 3.24 Species - area relationship for aquatic macrophytes in lakes of various
regions with a table with values of the regression analysis with different
combinations.
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3.4 Mutivariate analyses

3.4.1 Principal Components Analysis (PCA)

A correlation biplot of the principal components analysis (PCA) of the environmental
variables is shown in Figure 3.25. The analysis is dominated by the first axis, which
had an eigenvalue of 1,=0.61 and accounted for 69% of the variance (of the first four
axes). Eigenvalues for other axes are weaker: second 1,=0.12; third A3=0.10; fourth
24=0.055. The first two principal components account for 82% of the variance, and they

exhibit the main patterns of variation in the environmental data.

The environmental variables TN, DN, TP, DP, and temperature are positively
correlated with axis 1. Altitude, substrate, chloride, maximum depth, Secchi value, and
surface area are strongly negatively correlated with axis 1 (Figure 3.25).The variables
NVSS, TSS, VSS, calcium, and conductivity are strongly and positively correlated with
axis 2, while pH and Secchi depth are most strongly negatively correlated (Figure

3.25).

The first PCA axis contrasts the cold, oligotrophic, amictic/dimictic lakes of high
altitude (HH and HM regions), which occur on the left of the diagram, with more
eutrophic, mono/polymictic, warm, lower-altitude lakes (TE region; on the right-hand
side) (Figure 3.25). Within the group of HH lakes, those having macrophytes present
(solid circles) and without (empty circles) ordinate as a broad group. Axis 2 separates
acidic, turbid HM lakes from those with circumneutral pH in the HH region and large

clear lakes of MM regions.
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Figure 3.25 Principal component analysis (PCA) correlation biplot

of

environmental variables among the 34 lakes from all regions. Lakes
represented by shaded circle, square, diamond and upright triangle are the
lakes in HH, HM, MM and TE regions with macrophytes respectively. The

open circles are the lakes without macrophytes in HH region.
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The overall display of Figure 3.25 suggests a distinction between high-altitude,
oligotrophic, neutral to acidic, coldwater lakes, from low-altitude, higher-conductivity,
alkaline, meso-eutrophic, warmwater lakes. This mathematical expression implies a
strong influence of altitude and catchment geology on the environmental variables

under consideration in this study.

3.4.2 Two-way Indicator Species Analysis (TWINSPAN)

The first three levels of the TWINSPAN clustering of macrophyte species are
summarized in Figure. 3.26. The first two major divisions segregate the HH and HM
lakes from MM and TE lakes. The indicator species for this main division is Juncus
allioides. The HM lakes are separated from HH on the basis of Sphagnum spp and
without it. As an indicator option to Sphagnum spp. another species Fimbristylis
schoenoides further separated the remaining HM lakes, and Hydrilla verticillata the
MM and TE lakes. The third division segregates the HH lakes on the basis of
Ranunculus trichophyllus, and the MM from the TE lakes with the indicators Lemna
perpusilla and Pistia stratiotes. The TWINSPAN classification clearly separated the
species based on the temperature gradients. The classification separates the cold
tolerant arcto-tertiary floral elements of the HH and HM from widely distributed
temperate and tropical species of MM and TE regions. Further, it separates the
tropical species such as, Lemna perpusilla and Pistia stratiotes as the indicator
species of TE lakes. Except to temperature, pH also showed importance in separating

HM lakes with other lakes, with the presence Sphagnum species in the former lakes.
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3.4.3 Detrended Correspondence Analysis (DCA)

The first two axes of the DCA accounted for 26.4% of the total variation (eigenvalues
M=0.93 and A,=0.49, respectively, and gradient lengths of 7.64 and 3.26 standard
deviation units) (Figure 3.27 & 3.28). The length of an environmental gradient >3-4 SD
units implies that most taxa in the dataset have a strong unimodal environmental

response, and suggests that CCA is an appropriate method for ordination (ter Braak and

Smilauer 1998).

When interpreting the percentage variance accounted for by an ordination, it is
important to remember that the objective is not necessarily to achieve 100 %, because
part of the variance is due to “noise” in the data (due to a large number of taxa and
many zero values; ter Braak, 1994). Therefore, even an ordination that explains a
relatively low percentage of the variance (in this case, 26.4%) may represent the data
well (ter Braak, 1986). In general, the statistical validity and stability of the
ordination is more important than the amount of variance explained (ter Braak, 1988;
Pienitz et al., 1995). Moreover, the ordination is more stable if the eigenvalue of the
third axis (A3=0.191 in the DCA reported here ) is smaller than that of the second axis

(ter Braak, 1994).

The major purpose of my DCA analysis was to validate the unimodal environmental
response, as a prerequisite for proceeding to a canonical correspondence analysis (CCA).
As such, the ecological results of the DCA are not discussed here, because this is

redundant with the results of the CCA.
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Figure 3.27 Axis 1 (horizontal; A; = 0.93) and 2 (vertical; ; = 0.49) of detrended
correspondence analysis, DCA ordination segregating the lakes (based on
species data set) on the altitudinal gradient. The lakes represented by shaded
circles, squares, diamonds and upright triangles are the lakes in HH, HM, MM
and TE regions with macrophytes respectively.
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Figure 3.28 Axis 1 and 2 of DCA showing species distribution for the ordinated lakes in

figure 3.27. Refer to appendix 4 for an explanation of the species symbols. Some
data points were plotted slightly off- center to avoid overlap of symbols. Several
species clusters are represented by numbers as below plotted at the location of
their overlapping centroids:

01 = Bly aub, Lim ses, Pot pec; 02 = But lat, Cal par, Cyp alt, Cyp esc, Ele con, Ele dul,
Naj min, Nit muc, Ric flu, Utr aus; 03 = Ory ruf, Per lap; 04 = Hip vul, Nas oft; 05 =
Cera tha, Eri cin, Pan rep; 06 = Iso ele, Lee hex; 07 = Alt ses, Hygr ari, Lud ads, Sch
muc; 08 = Lem tri, Lob als, Ory sat, Pol ple, Ran rep; 09 = Mar cre; 10 = Fim dic, Pyc
san; 11 = Pte vit; 12 = Cen asi, Fim squ, Pha kar, Sac spo; 13 = Alt phi, Cae axi, Com dif,
Cyp com, Ecl pro, Hyd dub, Lin ant, Set pal; 14 = Cyp dig, Cyp rot; 15 = Cyp comp, Cyp
exa, Cyp ten, Ipo car, Hyg sal; 16 = Cen min, Lud hys, Lud per, Sci kys, Ver aqu; 17 =
Cer mur, Nym hyd, Typ ang; 18 = Ami axi, Cent coc, Cyp dis, Ech col, Eny flu, Fim mil,
Isa glo, Jus qui, Lin ana, Lim chi, Lin pus, Lip chi, Mur nud, Rot ind, Sph zey; 19 = Aes
asp, Hyg aur, Iso cor, Old cor, Old dif, Ott ali, Sac myo, Sag gua, Typ ele, Zeu str; 20 =
Coi lac, Cya pur, Ech sta, Hel ind, Lin cil, Lin pro, Lud oct, Pan psi, Pas fla, Pas pun, Pyc
pum, Sac int, Spi iab; 21 = Azo pin, Lem per; 22 = Ipo aqu, Kyl ber, Pis str; 23 = Fim
aes, Hem com.
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3.4.4.1 Canonical Correspondence Analysis (CCA)

The eigenvalues of the first two CCA-1 axes are A = 0.82 and A, = 0.41, and the species—
environment correlations for the same axes are high (0.96 and 0.87), indicating a strong
relationship between the distribution and abundance of macrophyte species and the
measured environmental variables. The first two axes captured 25% of the total variance
of the macrophyte data, and 55% of the variance in the species-environment relationship.
Monte Carlo permutation tests (500 unrestricted permutations) of the first two axes
indicate that both are statistically significant (both p <0.01). Forward-selection and
unrestricted Monte Carlo permutation tests indicate that six of the 23 environmental
variables made statistically significant contributions to explaining variance in the data of
macrophyte species. The most significant of these contributions was surface water
temperature (which captured 8.1% of the total variance explained by the initial 23
environmental variables), followed by substrate (8.0%), altitude (5.8%), transparency

(5.5%), conductivity (4.6%) and pH (4.5%).

In total, this subset of significant environmental variables extracted 24.4% of the total
variance in the species data. The results of the CCA with only these six forward-selected
and significant variables are given in Table 3.5 and are illustrated in Figure 3.29 and 3.30
as macrophyte-environmental biplots. On the variable and lakes biplot (Figure 3.29), the
length of the environmental vectors indicates their relative importance in explaining
variation in the macrophyte data, and their orientation indicates their correlation with the
ordination axis. By comparing the arrow lengths, one can examine the relative

importance of the measured lakewater variables.
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Figure 3.30 CCA-1 ordination diagram showing the species distribution to relate with

five forward selected environmental variables in figure 3.29. Refer to appendix 4
for an explanation of the species symbols. Some data points were plotted slightly
off-center to avoid overlap of symbols. Several species clusters are represented by
numbers plotted at the location of their overlapping centroids as follow:

01 = Aes asp, Cya pur, Cyp pil, Ipo aqu, Lob als, Lud oct, Nym ste, Pas pun, Pol ple, Pyc fla, Sac
myo; 02 = Nel nuc, Ory sat, Pan psi, Ran rep, Spi iab, Typ ele; 03 = Cen min, Coi lac, Ech col, Hip
vul, Lin cil, Nas off, Naj gra, Old dif, Pot oct, Pot pec, Tra nat, Val nat; 04 = Equ deb, Ech sta, Fim
mil, Hel ind, Hygr ari, Iso cor, Lin pro, Mur nud, Old cor, Pas fla, Pyc pum, Rot rot, Sac int, Zeu str;
05 = Aes ind, Azo imb, Cyp rot, Hyg aur, Hyd dub, Lud ads, Nym ind, Per lap, Sal mol, Sch muc,;
06 = Ali pla, Cer dem, Pas scr, Ran sce, Sag tri; 07 = Alt phi, Cent coc, Cyp dis, Fim acs, Fim sqa,
Ipo car, Kyl ber, Lin ant, Lip chi, Ory ruf, Per hyd, Pyc san, Sag gua, Spi sin, Sph zey, Utr aur; 08 =
Alt ses, Ami axi, Eny flu, Eri cin, Fim dic, Hyd ver, Iso glo, Lee hex, Jus qui, Lim chi, Lin pus, Lin
ana, Ott ali, Pot cri, Rot ind,; 09 = Com ben, Cyp dig, Hem com, Mon Vag, Pas dis, Phy nod, Sch
jun; 10 = Amm bac, Cae axi, Com dif, Cyp com, Cyp iri, Sac spo; 11 = Cen asi, Ecl pro, Ele atr, Eri
pro, Lem per, Mar cre, Oen jav; 12 = But lat, Cyp alt, Ele con, Flo sca, Per bar, Set pal, Spi pol, Utr
gib; 13 = Azo pin, Cal par, Cera tha, Cyp esc, Eic cra, Ele dul, Pan rep. Per gla, Pha kar, Pte vit, Tra
qua, Utr aus; 14 = Cer mur, Iso ele, Nym hyd, Sci kys, Typ ang; 15 = Lud hys, Lud per, Pot nod,
Ver aqu; 16 = Cyp comp, Cyp exa, Cyp ten, Hyg sal; 17 =Naj min, Naj muc, Ric flu, Zan pal.
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Table 3.5 Summary statistics for the first four axes of the CCA-1, with 28 active sites
from the HH, HM, MM, and TE regions, 177 macrophytes species, and six
forward-selected environmental variables.

Axis | Axis | Axis | Axis Total
1 2 3 4
Eigenvalue 0.82 0.41 0.38 |0.22
Species—environment correlations 0.96 0.87 0.98 |0.91
Cumulative % variance of species data 16.3 244 319 |36.7
explained
Cumulative % variance of species- 36.5 547 | 714 | 822
environment relation
Sum of unconstrained eigenvalues 5.07
Sum of all canonical eigenvalues 2.26
Inter-set correlation of significant
environmental variables with axes
(1) Altitude (Alt.) 0.54 031 | 0.64 | -0.31
(2) Substratum quality (Subs.) 0.84 0.19 |-0.17 | -0.18
(3) Conductivity (Cond.) -0.45 |-022 |-044 | -0.42
4 pH -043 |-047 | 0.14 | 0.27
(5) Secchi transparency (Z) 0.56 |-0.19 | 0.53 | 0.26
(6) Surface water temperature(Temp.) |-0.84 |-0.28 |-0.19 | 0.24

Each taxon on the biplot (Figure 3.30) approximates its weighted average optimum

relative to other taxa. However, because we have many species ordinated closely together

for lower-altitude lakes (i.e. in MM and TE), the taxa are tightly arranged as a cloud.

Therefore, this initial analysis is most useful in separating higher-altitude (HH, HM)

lakes from lower-altitude (MM and TE) ones.

The analysis shows that taxa occurring in the HH region are most significantly related to

high Secchi transparency and coarse substrate and are positioned on the right side of

axisl (Figure 3.30). In contrast, commonly encountered macrophytes of the MM and TE

regions with warmer climate, higher pH, and higher conductivity are located as a tight

cluster on the left side of the diagram.
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The eigenvalues of the first two CCA axes, constrained to the six most important
explanatory variables, are 0.82 and 0.41, and they account for 24.4 % of the total variance
of the macrophyte data (Table 3.5). The species-environment correlations of CCA axis 1
(0.96) and axis 2 (0.87) are high, and these two axes capture 54.7 % of the total variance
in the species-environment relationship. The eigenvalues for the macrophytes data are
only slightly lower than those of a CCA featuring all of the original 23 environmental
variables, suggesting that the six forward-selected variables provide a good
representation of the overall ecological patterns within the entire dataset. Moreover, the
constrained analysis (six variables) yielded higher eigenvalues than a CCA using all 23
environmental variables, also suggesting that the forward-selected variables provide a

good representation of the overall ecological patterns.

The first two axes are both significant (p<0.002), as indicated by Monte Carlo
permutation tests. Axis 1 is most strongly related to surface water temperature and
substrate quality (inter-set correlations are -0.84 and 0.84, respectively), while
transparency and altitude have moderate influences ( inter-set correlations are 0.56 and
0.54, respectively). The first axis separates alpine and sub-alpine lakes of HH and HM
(on the right side of Figure 3.29) from subtropical and tropical lakes in MM and TE

regions (on the left).

Axis 2 is most strongly related to pH (inter-set correlation is -0.47), and it helps to

segregate acidic lakes of HM region from other lakes. The HM lakes are relatively cold,
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acidic, and support such cold-tolerant acidophilous species as Sphagnum spp, Fontinalis
spp, Drepanocladus fluitans, and generalist grasses and sedges of that climatic belt, such
as Eriocaulon napalense, Fimbristylis complanata, Fimbristylis schoenoides, and Juncus
bufonius. In comparison, the HH lakes are circumneutral and cold and have submerged
species, such as Ranunculus trichophyllus and Callitriche palustris, along with high-
altitude wetland species, such as Festuca ovina and Juncus allioides in their shallow

littoral zone.

The warmer lakes in MM and TE are separated by an altitude — temperature gradient of
axis 1. As the first CCA ordination covered the entire range of climatic zones along a
large altitudinal gradient, the many spécies in these lowland regions clustered tightly
together as a data cloud. Therefore, a subsequent ordination was performed using data
only for lakes in MM and TE regions, in order to examine the influence of environmental

variables in these lower-altitude climatic regions.

3.4.4.2 CCA-2 Ordination of Lakes in the MM and TE Regions
A second ordination was carried out on lakes in the MM and TE regions. All seventeen
lakes were incorporated, but redundant environmental factors were removed to bring the

variable number to fifteen.

The eigenvalues of the first two CCA-2 axes are A; = 0.39 and A, = 0.25, respectively, and
the species—environment correlations for the same axes are high (0.98 and 0.97),

indicating a strong relationship between the distribution and abundance of macrophyte
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species and the environmental variables. The first two axes capture 28.3% of the total
variance of the macrophyte data, and 55.4% of the variance in the species-environment
relationship. A test of significance using Monte Carlo permutation tests (500 unrestricted
permutations) showed that the first axis is significant at p = 0.03, and the full analysis of
four axes at p = 0.002. Forward-selection and unrestricted Monte Carlo permutation tests
indicate that five of the 15 environmental variables made statistically significant
contributions to explaining variance in the macrophyte data. The most significant
contribution was surface area (which captured 8.8% of the total variance explained by the
15 environmental variables, followed by TSS (8.3%), temperature (8.0%), bicarbonate

(7.5%) and dissolved phosphorus (5.5 %).

In total, the subset of five forward-selected environmental variables extracted 76.0% of
the total variance in the species data. The results of the CCA-2 with only these five
forward-selected and significant variables are given in Table. 3.6 and are illustrated in
Figure 3.31 and 3.32 as macrophyte-environmental biplots. Each taxon on the biplot
(Figure 3.32) approximates its weighted average optimum relative to other taxa.
However, because many species are ordinated closely together, the taxa are tightly

arranged as a data cloud, which have been separated for convenience in the biplot.

Commonly encountered macrophytes of the MM and TE regions are located as a tight
cluster on the left side of the diagram in the previous ordination (Figure 3.32). The
analysis shows that taxa that occur in the MM have a strong resemblance to those in the

TE region. MM taxa and lakes are, however, separated on the basis of multivariate
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responses to cooler temperature, low bicarbonate, low phosphorus, and low total

suspended solids, against the relatively smaller surface areas of lakes in the TE region.

Table 3.6 Summary statistics for the first four axes of the CCA-2, with 17 sites from the
MM and TE regions, 15 environmental variables, 165 macrophyte species
(helophytes, hyperhydates and euhydrophytes), and five forward-selected
environmental variables.

Axis Axis Axis Axis 4 | total

1 2 3
Eigenvalue 0.39 0.25 0.22 0.20
Species—environment correlations 0.98 0.97 0.90 0.94

Cumulative % variance of species data 17.0 28.3 38.1 46.9
explained

Cumulative % variance of species- 333 55.4 74.6 92.0
environment relation

Sum of unconstrained eigenvalues 2.25
Sum of all canonical eigenvalues 1.15

Inter-set correlation of significant
environmental variables with axes

(1) Surface area (SA) 0.70 -0.61 -0.10 | -0.24
(2) Surface water temperature (TEMP) | -0.57 | -0.72 0.15 0.28
(3) Bicarbonate (HCO3) -0.60 0.17 0.55 | -0.39
(4) total suspended solids (TSS) -0.71 | -0.01 | -0.59 0.15
(5) dissolved phosphorus (DP) -0.51 0.16 | -0.18 | -0.35

The eigenvalues of the first two CCA-2 axes, constrained to the five most important
explanatory variables, are 0.39 and 0.25, and account for 28.3% of the total variance of
the macrophyte data. The species-environment correlations of CCA-2 axis 1 (0.98) and
axis 2 (0.97) are high, and these two axes capture 55.4% of the total variance in the
species-environment relationship. The eigenvalues for the macrophyte data are only
slightly lower than those of a CCA featuring all of the original 15 environmental
variables, suggesting that the five forward-selected variables provide a good

representation of the overall ecological patterns within the data. In contrast, the
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Figure 3.31 Axis 1 (horizontal; A; = 0.39) and 2 (vertical; A; = 0.25) of canonical

correspondence analysis (CCA-2) ordination diagram showing the lakes
distribution in relation to five forward selected environmental variables to relate
with species distribution in lakes of MM and TE regions.
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Figure 3.32 CCA-2 ordination diagram showing the species distribution to relate with

five forward selected environmental variables in figure 3.31. Refer to
appendix 4 for an explanation of the species symbols. Several species clusters
are represented by numbers plotted at the location of their overlapping
centroids as follow:

01 = Cyp pil, Ory sat, Ran rep; 02 = Cyp rot, Sag tri, Vet ziz; 03 = Azo pin, Ele atr,
Pte vit; 04 = Lem per, Pas scr, Spi sin; 05 = Alt phi, Cer mur, Com dif, Cyp comp,
Cyp dig, Ecl pro, Era uni, Fim aes, Lud hys, Lud per, Set sal; 06 = Cae axi, Cyp com,
Cyp exa, Cyp iri, Cyp ten, Hyg sal, Ipo aqu, Ipo car, Kyl ber, Lin ant, Mar pal, Nym
hyd, Sci kys; 07 = Aes asp, Cya pur, Hel ind, Lud oct, Oxy esc, Pas fla, Pas pun, Pyc
pum, Spi iab; 08 = Coi lac, Ech sta, Fim sch, Iso cor, Lin cil, Lin pro, Pan psi, Sac
int, Sac myo, Typ ang, Typ ele, Zeu str; 09 = Ech col, Hyg aur, Mur nud, OId cor,
Sac ind; 10 = Cent coc, Cyp dis, Isa glo, Jus qui, Lim chi, Lin ana, Lip chi, Ott ali,
Rot ind, Sag gua; 11 = Iso ele, Lee hex, Naj gra, Pan rep; 12 = But lat, Cyp alt, Ele
con, Utr gib; 13=Naj min, Pot pec, Zan pal.
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constrained analysis (five environmental variables) yielded higher eigenvalues than a
CCA using all 15 variables, also suggesting that the forward-selected variables provide a

good representation of the overall ecological pattern.

The first two axes are both significant (p<0.01), as indicated by Monte Carlo permutation
tests. Axis 1 is most strongly related to total suspended solids, surface area, bicarbonate,
and dissolved phosphorus (inter-set correlations are -0.71, 0.70, -0.60 and -0.51,
respectively). The first axis separates lakes in the MM region with relatively large surface
area, low TSS, and high bicarbonate from the shallow, turbid lakes in the TE region. The
large MM lakes are meso-eutrophic and harbor species intolerant of hypereutrophic
conditions, such as Callitriche stagnalis, Zannichellia palustris, Nitella mucronata, Blyxa
aubertii, Potamogeton pectinatus, and Najas graminea. These species are absent in small
eutrophic MM lakes in the Kathmandu valley, as indicated by their position along the
vector for dissolved phosphorus. Many of the widespread species, viz. Hydrilla
verticillata, Potamogeton crispus, Ceratophyllum demersum, Lemna minor, Persicaria
barbata, and Persicaria hydropiper, which are able to tolerate increasing levels of
eutrophication, occupy a central position in the diagram (Figure 3.32). The majority of
species on the left side of the ordination diagram are helophytes and hyperhydates, which

require higher amounts of nutrients.

Axis 2 is most strongly related to surface temperature (inter-set correlation -0.72). Within
the MM region, axis 2 segregates two lakes in the Kathmandu valley from three

largelakes in the Pokhara valley. Some species show a strong affinity to warmer water
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temperatures on axis 2, particularly Cyperus iria, Ipomoea aquatica, Ipomoea carnea,

Lemna perpusilla, Pistia stratiotes, Sacciolepis myosuroides, and Typha elephantina.

3.4.4.3 CCA-3 Ordination of True Hydrophytes (submerged, floating leaved and free
floating macrophytes) in the MM and TE Regions

A third ordination, CCA-3, used MM and TE data only for submerged, floating-leaved,
and free-floating macrophytes (i.e., for “true” hydrophytes, with helophytes and

hyperhydate species eliminated from the dataset).

The eigenvalues of the first two CCA-3 axes were A; = 0.34 and A, = 0.17, respectively, and
the species—environment correlations for the same axes are high (0.96 and 0.89), indicating
a strong relationship between the distribution and abundance of macrophyte species and the
measured environmental variables. The first two axes captured 31% of the total variance of
the macrophyte data, and 61% of the variance in the species-environment relationship. Monte
Carlo permutation tests (500 unrestricted permutations) of the first two axes indicate that both
are statistically significant (both p <0.01). Forward-selection and unrestricted Monte Carlo
permutation tests indicate that five of the 15 environmental variables made statistically

significant contributions to explaining variance in the data for macrophyte species.

The most significant of these contributions was total suspended solids (which captured 7%
of the total variance explained by the initial 15 environmental variables), followed by
bicarbonate (6.6%), surface area (6.4%) dissolved phosphorus (5.0%) surface water

temperature (3.8%).
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Table 3.7 Summary statistics for the first four axes of the CCA-3, with 17 sites from the
MM and TE regions, 15 environmental variables, 40 macrophytes species
(submerged, floating-leaved, and free-floating), and five forward-selected

environmental variables.

Axis 1 | Axis2 | Axis 3 | Axis 4 | total

Eigenvalue 0.34 0.17 0.14 0.11
Species—environment correlations 0.96 0.89 0.89 0.93
Cumulative % variance of species data 20.8 31.0 39.6 46.3
explained
Cumulative % variance of species- 40.8 60.9 78.0 91.1
environment relation
Sum of unconstrained eigenvalues 1.64
Sum of all canonical eigenvalues 0.83
Inter-set correlation of significant
environmental variables with axes

(1) Surface area (SA) 0.73 -0.09 | -0.50 |-0.06

(2) Surface water temperature (TEMP) | -0.46 026 | -0.34 | 0.25

(3) Bicarbonate (HCO3) -0.50 | -0.56 0.29 |-0.42

(4) total suspended solids (TSS) -0.85 030 | -0.24 | 0.06

(5) dissolved phosphorus (DP) -0.57 020 | -0.24 | 0.10

In total, this subset of five significant environmental variables extracted 76.0% of the

total variance in the species data. The results of the CCA with only these five forward-

selected and significant variables are given in Table 3.7 and are illustrated in Figure 3.33

as macrophyte-environmental biplots.

Each taxon on the biplot (Figure 3.33) approximates its weighted average optimum

relative to other taxa. The TE lakes are remarkably segregated from those of the MM

region in terms of vertical gradient; this is an improved result in comparison with the full

dataset, which also includes emergent and hyperhydate species. MM lakes are recognized

by having relatively low total suspended solids, low bicarbonate, low phosphorus, and

low temperature, in comparison to lakes in the TE region.
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Figure 3.33 Axis 1 (horizontal; A; = 0.34) and 2 (horizontal; A, = 0.17) of canonical
correspondence analysis (CCA-3) ordination diagram showing the ‘true’
hydrophytes (submerged, floating leaved and free floating macrophyte species)
distribution in relation to the sites and five selected environmental variables

from lakes in MM and TE regions.
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The eigenvalues of the first two CCA-3 axes, constrained to five explanatory variables,
are 0.34 and 0.17, and account for 31% of the total variance of the macrophyte data. The
species-environment correlations of CCA-3 axis 1 (0.96) and axis 2 (0.89) are high, and
these two axes capture 61% of the total variance in the species-environment relationship.
The eigenvalues for the macrophyte data are only slightly lower than those of a CCA
including all 15 environmental variables, suggesting that the five forward-selected
variables provide a good representation of the overall ecological pattern within the
dataset. In contrast, the constrained analysis (five environmental variables) yielded higher
eigenvalues than a CCA using all 15 variables, also suggesting that the forward-selected

variables provide a good representation of the overall ecological pattern.

The first two axes of CCA-3 are both significant (p<0.01), as indicated by Monte Carlo
permutation tests. Axis 1 is most strongly related to total suspended solids, surface area,
dissolved phosphorus, and temperature ( inter-set correlations are —0.85, 0.73, —0.57, and

—0.46, respectively). The first axis separates MM lakes from the TE lakes, similar to the

CCA-2 analysis.

Axis 2 is most strongly related to bicarbonate (inter-set correlation is 0.56). The TE lakes
are relatively warmer with high total suspended solids and they support many free-
floating and fewer floating-leaved species. Relatively nutrient-rich sites were dominated
by Pistia stratiotes, Lemna perpusilla, and Nymphoides hydrophylla, while moderately
nutrient-rich sites with high TSS were dominated by Azolla pinnata, Wolffia globosa,

Hydrocharis dubia, and Nymphoides indica. The species at the center of the ordination
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diagram (Figure 3.33), such as Eichhornia crassipes, Spirodela polyrhiza, Hydrilla
verticillata, Salvinia molesta, Ceratophyllum demersum, Potamogeton crispus and
Lemna minor, were widely distributed in both regions. Their abundance depends on the
TSS and nutrient content of water bodies, particularly for Eichhornia crassipes. The
number of submerged species is less and dominated by low light-requiring species such
as Hydrilla verticillata and Ceratophyllum muricatum. Many submerged species that can
tolerate deep, clear water, such as Vallisneria natans, Potamogeton pectinatus, and
Zannichellia palustris, were absent in TE lakes, possibly because of the high turbidity of

the water.



4. DISCUSSION

4.1 Physical limnology

The properties of aquatic habitats in mountainous environments are influenced by
regional and local climate, geology, disturbance regime, and land use, including the
variations of these factors with altitude. These factors affect critical habitat qualities
related to hydrology, morphometry, water chemistry, and benthic substrate, which in turn

influence biological diversity and community structure.

In Nepal, most lakes occur in two altitudinal regions: the High Himal (HH) of the glacial
mountains and the low-altitude Terai (TE) with ox-bow lakes. There are fewer lakes in
the High Mountain (HM) and Middle Mountain (MM) regions, although some of those in

the MM are quite large (Bhandari, 1998).

Cole (1979) reported a strong and positive statistical relationship among surface area,
mean depth, and volume in an analysis of morphometric data from a world-wide sample
of 500 lakes. In this study, however, the relationship between log mean depth and surface
area was not strong (’= 0.35). In particular, study lakes in the HH region have a higher
ratio of depth : area than similar-sized lakes in the HM, MM, and TE regions. This is
because the alpine HH lakes are evolved from the deep trenches formed by lateral and

end moraines on a glacial tongue.

104
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The largest lake in Nepal, Lake Rara (area 980 ha, altitude 3,000 m), is in the HM region
of the far western part of the country, while the deepest lake is Tilicho (95 m) in the HH
region (Okino and Satoh, 1986; Aizaki et al., 1987). The deepest lakes samples in the
present study were also in the HH region: Bhairav Kund (Zmax= 60.0 m), Tso Rolpa (56.5
m), and Dudh Pokhari (45.3 m). Loffler (1969) suggested that 30 m is the maximum
depth of lakes in the Mt. Everest region of the HH, but 25% of my lakes in this region
were deeper than this, including Lakes Tilicho (95 m), Imja (47 m), Thaulagi (42 m), and
Lower Barun (46 m). Hutchinson (1937) also reported deep HH lakes in the Himalayas:

Lake Mansarovar (82 m) and Moriri Tso (76 m).

Some of the lakes had remarkable seasonal variations in depth. For instance, Lake Tsola
Tso (at 4,512 m in the HH), a natural impoundment in moraine, showed an 8-m difference
in water level between the pre-monsoon and post-monsoon seasons. This is similar to the
observation of Tartari et al. (1998 b), although Léffler (1969) reported an amplitude of 16
m for this lake, suggesting great inter-annual variation (Lo6ffler’s observation was the
maximum possible, because it corresponds to the height of the moraine barrier forming the
lake). The difference between recent observations of Tsola Tso and those of Liffler may be
due to differences in the monsoon, or to a reduction of depth by the mass deposition of
glacial debris from the surrounding moraine. De Terra and Hutchinson (1934) also

reported large annual variations of water levels in HH glacial lakes of nearby Tibet.

The HM lakes in this study are mostly perched waterbodies (i.e., headwater lakes with no

obvious surface outflow), and their depth depends on site factors associated with location.
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Salpa Pokhari is the deepest lake (15.8 m) studied in the HM region; the others have a
maximum depth less than 7 m. The large size of the MM study lakes is due to their
location in broad, relatively flat valleys. All of the Terai lakes are ox-bow and shallow
(<4 m), with a relatively large surface area. These low-altitude lakes are subject to
relatively high rates of siltation associated with soil erosion caused with human activities

in their catchments (Ghimire and Uprety, 1990).

Seasonal variations of water temperature occurred in all study lakes, but were most
extreme at high altitude. Water temperature has both direct and indirect influences on the
physico-chemical and biological characteristics of lakes (Welch, 1952; Hutchinson,
1957). In the Himalayas, seasonal differences of both air and surface-water temperature
are caused by variations of a subtropical high-pressure belt, and show marked effects of
altitude (Tartari ef al., 1998 a). In the HH region, seasonal weather variations depend on a
strong thermal anticyclone in the upper troposphere, known as the “Tibetan High,” during
the monsoon season, and on the strength and location of the sub-tropical jet stream at
other times. Within these regional Himalayan influences, particular valleys have distinct
climatic conditions, depending on elevation, area, orientation, and presence of a glacier
(Yasunari, 1976). These local effects are superimposed on the regional, altitude-related
influences on climatic factors. Beyond the local variability, however, there is a strong
relationship of altitude and air temperature in the Nepalese Himalayas, with a lapse rate
of -0.46°C/100m (Dobremez, 1976 ), somewhat smaller than in the Alps of Europe
(-0.55 "C/100m; Landolt, 1992). In the present study, the lapse rate of annual-average

water temperature of the study lakes was -0.40°C/100m.
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An unusual observation in HH lakes was the minimal changes in water temperature of
surface water during the 5-7-month ice-free season. Chikita et al. (2000) made a similar
observation, and found that it extended to a depth of 10 m. This observation is likely due
to these alpine lakes being relatively well-mixed by wind. In addition, solar irradiance is
relatively constant during the year in subtropical latitudes (ca. 12.4 MJ m™; Tartari et al.
1998 b). Additional factors influencing lakewater temperature include proximity to a
glacier, the presence of permafrost, and effects of aspect and watershed morphometry on

insolation and wind velocity (Chikita ez al., 1999, 2000).

All the HH study lakes displayed dimictic or cold-polymictic variations in their thermal
stratification. High-altitude lakes at equatorial latitudes may display amixis, if
permanently ice-covered, not affected by stirring by wind, and occurring higher than
about 6,000 (Cole, 1994). In the Himalayas, monomictic behavior is observed in deep,
cold, high-altitude lakes, although dimictic stratification may occur in HH lakes with
moderate depth (Loffler, 1969; Okino and Satoh, 1986; Aizaki ef al., 1987). Summer-
mixed, dimictic lakes of the type in this study of the HH region are also known as cold

thereimictic lakes (Bayly and Williams, 1973).

Lakes Tau Daha, Rupa, and Nag Daha (all in the subtropical MM region) are polymictic
and have a similar depth of about 6 m (Hickel, 1973 a & b). Two deeper MM lakes in the
Pokhara valley, Phewa and Begnas, however, are warm monomictic (Nakanishi et al., 1988),
which is common for deep low-latitude lakes that circulate during the cooler winter but

are stratified during the summer. Cole (1994) suggests that warm monomixis is a
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common occurrence south of about 40° latitude in situations where lakes are deep and
sheltered enough to stratify during the summer. The seasonal stratified phase occupies
more than 70% of the year in most deep, monomictic, low-latitude, tropical lakes (Talling

and Lemoalle, 1998).

The TE lakes were shallow polymictic and had a consistent temperature. Their turnover
is influenced more by wind events and daily fluctuations in temperature than by seasonal
change. In some of the ox-bow lakes and impoundments studied (D4, D7 and D10),

seasonal variations in water temperature were caused by intrusions of river water.

Water transparency has a large influence on light penetration, which in turn greatly
affects the distribution and development of aquatic macrophytes. Transparency in lakes is
mostly affected by colour of the water, particularly due to dissolved humic substances
and phytoplankton, as well as turbidity associated with suspended solids (Hutchinson,
1957; Tilzer, 1983). Secchi-depth is a simple and robust way to characterize the optical
properties of lake water (Scheffer, 1998). The lakes in the HH region are much more
transparent than those in the HM, MM, and TE regions. The highest Secchi transparency
(14 m) was for Bhairav Kund (at 4,250m), a value that ranks among the clearest in the

world (Scheffer, 1998).

The studied lakes showed a seasonal variation of transparency (Appendix 3), similar to
observations in other studies of Nepalese waterbodies (Aizaki et al., 1987; Nakanishi ef

al., 1988; Bhatt et al., 1999; Sah et al., 2000; see also Kaushik et al., 1990 and Kant



109

and Raina, 1990 for data from mountainous India). In general, the transparency was
lowest during the high-flow of the monsoon season, compared with the pre-monsoon and
the post-monsoon. The post-monsoon transparency was generally somewhat higher than
in the pre-monsoon, because of the relatively high concentrations of nutrients that favor
the productivity of phytoplankton. The dominant effect on transparency during the
monsoon is due to suspended silt and clay associated with the high water flows. This
influence is greater than that of the phytoplankton minimum during the monsoon, when

high water flows cause a washout of algal biomass (Zafar, 1986; Khondker and Parveen

1993).

For lakes that are not excessively turbid or dystrophic, transparency is sometimes used as
an indicator of trophic status (Forsberg and Ryding, 1980). According to the proposed
transparency threshold values of Forsberg and Ryding (1980), only 67% of the HH and
20% of the HM lakes in my study are in an oligotrophic condition, while in the MM
region 80% of the lakes are eutrophic to hypereutrophic, as are 91% of the TE lakes
(Table 3.3). In mountain water bodies with high values of suspended inorganic solids
(Ghimire and Uprety, 1990), chlorophyll concentration is a preferable indicator of trophic

status (see below).

Total suspended solids (TSS) in water bodies are contributed by particles of different
sizes, ranging from relatively coarse to fine, and from inorganic to colloids of organic
complexes and plankton. In this study, the high TSS during the monsoon season was due

to inorganic silt and clay entering the waterbodies with high-flow, erosive runoff of
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stormwater. A key observation supporting this conclusion is the high ratio (about 6:1)
during the monsoon of non-volatile suspended solids (NVSS, an indicator of inorganic
particles) to volatile suspended solids (VSS, indicator of organics). During the post-
monsoon, the decrease in TSS is due to sedimentation and decreased erosion. During the
pre-monsoon, the NVSS is relatively low but VSS is high because of the abundance of
phytoplankton (see Appendix 2 for seasonal data on chlorophyll). Similar observations
for low-latitude lakes have been made by others working elsewhere on the Indian sub-

continent (Shastree ef al., 1991; Kaushik and Saksena, 1999).

4.2 Chemical limnology

Biochemical cycles in lakes are not closed systems — substances are imported from the
watershed and the atmosphere, and are exported via outflow, evaporation, and
sedimentation (Hutchinson, 1957; Drever, 1997, Lampert and Sommer, 1997).
Depending on the balance of these processes, a lake may be increasing or decreasing in

its stock of particular substances.

Lakewater conductivity, a function of total dissolved ionic substances, increased
markedly from high to low altitudes (Table 3.1). High-altitude catchments typically have
shallow soil and steep slopes that allow percolating water to pass quickly, reducing the
residence time during which ionic substances can be dissolved from the substrate. This,
along with a relatively short growing season and predominantly slow-weathering,
crystalline, silicate mineralogy, results in ionically dilute lakewater. In contrast, lower-

altitude catchments have relatively deep soil and gentle slopes that allow a more extended
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contact between minerals and percolating water, which along with a perennial and warm
growing season and a dominant calcareous mineralogy results in higher rates of
weathering and a relatively high ionic strength of lakewater (Drever and Zobrist, 1992;

Drever, 1997; Skjelkvale and Wright, 1998).

As expected, my observations on conductivity are paralleled by those of total ions in the
lakewaters studied, which are considerably more dilute in high-altitude waterbodies than
in low-altitude ones (Table 3.2; note that sulphate is an exception to this general
observation about ions and altitude; see below for additional discussion). The high-
altitude HH lakes had the lowest average concentration of total ions (5.6 mg/l), which
increased in lakes at lower altitude, as follows: HM lakes (average 6.7 mg/l), MM (21.1
mg/l), and TE (31.7 mg/l). The more-than five-fold difference in total-ion concentration
between the high-altitude and low-altitude lakes is due to the same key factors noted

above for conductivity.

The strong influence of surficial geology and weathering on water chemistry is suggested
by data on ionic composition, which show an almost 1:1 relationship between the
concentrations (in microequivalents) of bicarbonate and principal divalent cations (i.e.,
HCO5™ versus Ca*" + Mg?*; 1 = 0.95; Figure 3.9). This observation supports the
suggestion of Stallard and Edmond (1983) that the weathering of carbonate minerals
would lead to a 1:1 balance between Ca + Mg and bicarbonate on an equivalent basis.
A large-scale, regional study of the Ganges-Brahmaputra and Indus Rivers has shown

that about two-thirds of the dissolved cations are derived from carbonate weathering, and
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the rest from silicate minerals (Krishnaswami ef al., 1992). Although high-altitude areas
of the Himalayas (such as HH and HM) have extensive silicate rocks and little carbonate
in their recently deglaciated watersheds, the carbonates are relatively reactive and have a
strongly disproportionate influence on the chemistry of surface waters (Blum et al., 1998;
Tartari ef al., 1998 b ; Thornton er al., 2001). Anderson et al. (1997) came to a similar

conclusion about alpine watersheds in North America.

The predominance of bicarbonate among anions, and of divalent cations (particularly
calcium), is consistent with previous studies of non-acidic lakes in Nepal (Lohman et al.,
1988; Jones et al., 1989; McEachern, 1994; Jenkins et al., 1998, Tartari ef al., 1998 b),
river systems in the Ganges basin (Raymahashay, 1996), and non-polluted lakes in India
(Hutchinson, 1937; Kaul, 1977). The results are consistent with regional surveys linking
patterns of surface water chemistry with those of surface geology ( Naumann, 1929;

Duarte and Kalff, 1989; Skjelkvéle and Wright, 1998).

In many parts of the world, regions with dilute, low-alkalinity surface waters (which lave
little acid-neutralizing capacity; ANC) are vulnerable to anthropogenic acidification caused
by LRTAP ( the long-range transport of atmospheric pollutants ) (Freedman, 2003). This
is true of low-altitude surface waters in regions with silicate rocks, such as much of
eastern North America, as well as many alpine areas. This study region in South Asia,
anthropogenic emjssions of SO, are increasing due to rapid industrialization, and the
resulting LRTAP could result in acidification of high-altitude surface waters (Thornton et

al., 2001). The relatively high concentrations of sulphate in my study lakes in the HH and
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HM regions might also be related to LRTAP, or possibly to local effects related to

surficial mineralogy.

Most lakes in Nepal are neutral to alkaline in reaction (Jones et al., 1989), but the lakes
studied in the HM altitudinal region are slightly acidic (around pH 5.6) and have highly
variable concentrations of solutes and nutrients depending on local watershed conditions,
including anthropogenic disturbances. Jenkins ef al. (1998) believe that streams in this region
have become acidic because of their dilute water and small ANC (the latter being due to
the largely siliceous surficial geology; Thornton et al., 2001). However, the acidification of
surface waters is also related to other sources of acidity and ANC, such as humic substances,
sulfide reduction and oxidation, nitrogen cycling, the ionic chemistry of aluminum and
iron, and the influence of acidiphilous Sphagnum species (Clymo 1984; Shotyk, 1988;
Freedman, 2003). Some of these influences may be important in these lakes in the HM

region, which have dilute water and some of which have Sphagnum species present.

The HM region of Nepal lacks thorough limnological research, other than a study of Lake
Rara in far-western Nepal (Okino and Satoh, 1986). Lakes in eastern Nepal have not been
previously examined, although there are a few studies of streams (Jenkins et al., 1998).
Therefore, these results on five lakes in the HM region, and the observation that they are

somewhat acidic, are unique.

In general, nutrient concentrations in the studied lakes increased with decreasing

altitude. The total mean nitrogen (TN) and dissolved nitrogen (DN) were clustered
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into two regional groups (i.e., HH-HM and MM-TE, with no significant differences
within groups), with a 2-4-fold increase in the MM-TE region (Table 3.1). Phosphorus
behaved similarly — compared with HH and HM lakes, the mean total phosphorus (TP)
in MM-TE lakes was higher by more than 5-fold and 9-fold, respectively (Table 3.1).
The difference in dissolved phosphorus (DP) is similar, with MM-TE lakes having an
average concentration 5-10-fold higher than the HH-HM. As might be expected on the
basis of these differences in nutrient concentration, the mean chlorophyll concentration

was 5-9-times higher in the MM-TE lakes than in the HH-MM ones (Table 3.1).

These observations are consistent with the generalization that watersheds with
sedimentary or alluvial surficial geology have relatively high rates of nutrient export to
lakes (as is typical of the MM and TE regions ), while those with igneous and
metamorphic geology have lower rates (typical of HH and HM) (Dillon and Kirchner,
1975; Duarte and Kalff, 1989). In addition, anthropogenic influences of agriculture,
settlements, and industry mainly occur below 2,000 m in Nepal (Jha and Lacoul, 1999;

Lacoul, 2000).

Other researchers working in the region of high Himalayas have suggested that lakes are
ultra-oligotrophic, with very low concentrations of dissolved minerals and nutrients,
limited biomass of phytoplankton and zooplankton, and no macrophytes (Hutchinson,
1937, Loffler, 1969; Aizaki et al., 1987; Gasso et al., 1993; Manca et al., 1994; Manca et

al., 1995; Tartari et al., 1998 b). My observations are generally similar, but with the
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notable exception that some of my study lakes in the HH region supported species of

aquatic macrophytes.

Most limnological studies in Nepal have examined low-altitude lakes in the MM and TE
regions (Jones et al., 1989; McEachern, 1994; WMI and TUCN/ Nepal, 1994; Rai, 1998;
Bhatt e al., 1999; Rai, 2000). This is because of the potential of those waterbodies for
fishery development and their sensitivity to eutrophication caused by the high human
populations in their watersheds (more than 70% of the 23 million people in Nepal live in
the MM and TE regions; HMG/Nepal, 1988). Lakes in these regions are similar in most
characteristics of chemical limnology, even though they occur in different physiographic

zones over an altitudinal range of 70 m to 1,400 m.

Lake Titicaca, located in Peru and Bolivia, is the most thoroughly investigated low-
latitude, high-altitude lake for nutrient limitation, and nitrogen is considered to be
limiting to its primary productivity (Wurtsbaugh et al.,1992). In the HH region, both
phosphorus and nitrogen concentrations appear to be limiting (Table 3.1). Lake Titicaca
has rather high levels of total dissolved phosphorus, possibly because of extensive

development of its watershed for agricultural and residential purposes.

In general, the concentration of TP is less than 10 pg/l in waterbodies not affected by
anthropogenic influences (Holtan ez al., 1988). In this study, Thola Tso and Panch
Pokhari-1 (Bau) in the HH and HM regions have a TP concentration higher than 10

ng/l, with Tshola Tso being exceptionally high (17 pg/l), possibly because of an
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influence of eroded clay and silt from a glacier adjacent to the lake. The mean TP in the
HH and HM study lakes (average of 7.3 pg/l) is similar to that of mountain lakes in
Europe (around 2-7 pg/l; Psenner, 1989; Marchetto et al. 1994; Camarero et al., 1995;
Mosello et al., 1995; Skjelkvale and Wright, 1998; Kopagek et al., 2000) and North
America (2.5-14.5 pg/l; Schindler, 2000). In summary, all studied lakes in the HH
and HM regions are low in nutrient concentration and are oligotrophic or ultra-
oligotrophic (see also Okino and Satoh, 1986; Aizaki et al., 1987; Tartari et al.,

1998 b).

The concentrations of TP are considerably higher in lower-altitude waterbodies of the TE
and MM zones. The TP concentration of MM lakes averaged 52 pg/l (maximum 110 pg/l
in Lake Taudha), while in TE it was 98 pg/l (maximum 159 pg/l in Lake Barahawa Tal)
(Table 3.1 and Appendix 1). These TP concentrations support a relatively high
productivity and biomass of algae and macrophytes in the generally eutrophic to

hypereutrophic lower-altitude lakes.

Both point and non-point sources are important causes of anthropogenic nutrient loading
to water bodies in lowland Nepal and elsewhere in South Asia, except for lakes remote
from human settlements (Richey, 1983; HMG/Nepal, 1992; Jha and Lacoul, 1999;
Lacoul, 2000). Especially important is the nutrient loading associated with human and
livestock sewage, runoff of fertilizer, soil eroded from cultivated land, and in some local

places, industrial inputs.
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The studied lakes in the various altitudinal regions differed in general land-use:

e the TE lakes are mostly located in protected areas with relatively fertile
lowland catchments in Sal (Shorea robusta) forest and reed-dominated
(principally Phragmites communis and Saccharum spontaneum) floodplains,
although some also receive water from agricultural drainage

e the MM lakes are in watersheds supporting intensive agriculture

o the HM lakes are located in catchments dominated by natural mixed-species
forest, and the HH lakes are in seasonally grazed alpine tundra or rocky

catchments.

It is well known that higher rates of nutrient loading are associated with both pastoral and
agricultural land-use, compared with watersheds supporting natural ecosystems (Dillon
and Kirchner, 1975; Duarte and Kalff 1989; Collins and Jenkins, 1996). These
differences in land-use obviously contributed to the observed patterns of nutrient
concentration, and were cumulative with the natural gradient of decreased nutrient
loading with increasing elevation (Brylinsky and Mann, 1973; Schindler, 1978).
However, the terraced paddy agriculture commonly practiced in the MM region is rather
similar in nutrient export to natural wetlands, and exports fewer nutrients than the

forested Terai watersheds (Bhandari, 1998).

The primary productivity of the TE lakes appears to be more limited by the availability of
nitrogen than of phosphorus, as indicated by an average N:P ratio of 6.2 (range 2-15;

Table 3.1; a ratio <10 indicates N limitation; Forsberg and Ryding, 1980). This is similar
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to observations of lowland lakes throughout southern Asia (Fernando, 1984). All of the
TE lakes were eutrophic or hypereutrophic in terms of phosphorus and chlorophyll
concentrations; some, however, ranked as mesotrophic or even oligotrophic by nitrogen
criteria, further suggesting that their productivity was limited by available N (Table 3.3).
The nitrogen-limiting condition of TE lakes is probably the result of relatively high P
loading which lower the ratio of N:P as is typical of drainage from landscapes covered
with tropical forest (Bruijnzeel, 1991). However, morphometry and internal loadings

were also likely important in determining the nutrient status of TE lakes (Osgood, 1988).

Most of the lakes in the MM region (60%) are mesotrophic to eutrophic in terms of
criteria related to total phosphorus (Table 3.3). More than 80% of the lakes in HH and
HM regions are oligotrophic in terms of all criteria (i.e., those related to total nitrogen,

total phosphorus, and chlorophyll).

4.3 Distribution of aquatic macrophytes

A total of 177 species of aquatic macrophytes was encountered in 28 of the 34 lakes
studied (the other 6 lakes lacked aquatic plants; Appendix 6). This total includes 48% of
the 339 species of aquatic plants known to occur in Nepal where macrophytes comprise
about 6% of the total vascular flora of the country. Aquatic angiosperms account for 34%
of the macrophyte species (470 species) reported from the Indian subcontinent (Cook,
1996), which represents about 50% of the global species (Lavania et al., 1990). The 91
observed genera of aquatic angiosperms in my study is equivalent to 22% of the global

number (407 genera; Cook, 1990).
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About 2-3% of the 2.5 x 10° species of angiosperms in the world are aquatic plants
(Cook, 1990; Philbrick and Les, 1996). In comparison, 6% of the vascular flora of Nepal is
comprised of aquatic plants. This is a smaller value than reported for some temperate
countries (e.g., 11% in Denmark and 10% in Britain; Moeslund et al.,1990; Preston and
Croft, 1997), but higher than in neotropical countries (<1% in Ecuador and Peru; Young and
Leon, 1993; Jergensen and Leon, 1999). The relatively high richness of aquatic macrophytes
in Nepal may be due to the greater richness of Poaceae and Cyperaceae compared to other
parts of the world (Table 4.1), as is typical of the Indian sub-continent (Bor, 1960; Jain,

1986).

Only three endemic species of aquatic macrophytes are reported from Nepal: Eriocaulon
exsertum, E. kathmanduense, and Rotala rubra (Shrestha and Joshi, 1996), but none of
them were observed in the study lakes. According to Lavania et al. (1990), the Indian
subcontinent supports 41 endemic species of aquatic macrophytes (although these authors

noted only one endemic species from Nepal).

Only 4% of the Nepali species (15 species) have a cosmopolitan distribution (Figure 4.1).
As expected, the aquatic and wetland species of Nepal show a strong affinity to those of
India. In particular, the macrophyte flora of lowland Terai is a biogeographic extension of
that of the Indo-Gangetic plain; many species also occur widely in Southeast Asia
(including Indonesia; although few range south of Wallace’s Line; Scott, 1989). In
contrast, there is relatively little resemblance to the aquatic flora occurring on the dry

Tibetan Plateau, even though it is only slightly north of this study area. This reflects both



Table 4.1 Proportional

macrophytes in world and Nepalese wetland environment.
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occurrence of monocotyledonae and dicotyledonae

Dicot Monocot Ratio
World
Estimated number of species : 165,000 50,000 3.3:1
Estimated number of genera ! 9,515 2,703 3.5:1
Estimated number of family ! 318 65 4.9:1
Genera with aquatic species 192 212 0.9:1
Families with aquatic species 44 34 1.3:1
Genera with aquatic species
(excluding Alismatidae) > 192 159 1.2:1
Genera with aquatic species excluding
Alismatidae,Cyperaceae and Poaceae) * 192 67 2.9:1
Nepal
Estimated number of species 4603 (75.7 %) | 1476(24.3 %) | 3.1:1
Estimated number of genera 1168 (77.2 %) | 346 (22.8 %) | 3.4:1
Estimated number of family 3 173 (83.6 %) | 34 (16.4 %) 5:1
Total wetland species compiled from 148 (43.6%) | 191 (56.4%) 0.77:1
Flora database
Genera with aquatic species 63 72 0.87:1
Families with aquatic species 36 22 1.6:1
Genera with aquatic species 63 69 0.9:1
(exl. Alismatidae)
Genera with aquatic species 63 36 1.7:1
(excluding Alismatidae, Cyperaceae and Poaceae)
Species encountered in present study 65 (40.1%) 97 (59.9%) 0.67:1
Genera with aquatic species 39 56 0.7:1
Families with aquatic species 26 16 1.63:1
Genera with aquatic species
(excluding Alismatidae) 39 53 0.73:1
Genera with aquatic species
(excluding Alismatidae, Cyperaceae and Poaceae) | 39 25 1.56:1

Genera for which there is incomplete estimate of the number of aquatic species have been

excluded from these comparisons.
' compiled from Cronquist, 1981
> compiled from Cook, 1990

> Press et al., 2000
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the differences in aquatic habitat ( De Terra and Hutchinton, 1934 ), as well as the high

Himalayas and Tibetan dry plateau serving as barriers to plant migration and distribution.

Africa

Australia

Figure 4.1 Number of aquatic and wetland plants of Nepal, and their distributional
similarity to selected regions of the world. Each concentric circle represents 50
shared species; the inner solid circle represents the 15 cosmopolitan aquatic
species occurring in Nepal. Regional data were obtained from Cook (1996).

In general, the Himalayan phytogeographic region is a transitional zone between the

Palaeotropic and Holarctic realms. The mountainous regions of the Himalayas largely

support aquatic plants that are widespread in Central Asia and Eurasia, or that have their

closest relatives there. In contrast, aquatic plants of the lowlands of Nepal are mostly
widespread in the floodplains of the great rivers draining the Himalayas to the Indian

subcontinent (particularly the Brahmaputra, Ganges, Indus, and Sutlej Rivers), and

extending to the foothills and middle-altitude valleys of Nepal, particularly where paddy
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rice is cultivated (Cook, 1996). The distribution of species of aquatic plants in this study

is consistent with this pattern.

In Nepal, the ratio of genera of aquatic monocots to that of dicots is 1:0.87, only slightly
less than the global pattern (1:0.9; Table 3.2.2; Cook, 1990). The comparable ratio of
aquatic dicot:monocot species in Nepal is 1:0.77 (there are no comparable global data).
Although monocot genera and species generally dominate wetlands and lakes in Nepal,
the patterns differ on an altitudinal basis, with monocots being especially dominant in the

HM region (see also Table 4.1):

monocot:dicot genera monocot:dicot species
TE 1:0.67 1:0.70
MM 1:0.77 1:0.84
HM 1:0.36 1:0.36
HH 1:1.00 1:1.00

In general, shallow lacustrine habitats are dominated by emergent monocotyledon plants
(Sculthorpe, 1967; Hutchinson, 1975; Cronk and Fennessy, 2001). The relatively high
proportion of moncots in the TE, MM, and HM regions could be due to the prevalence of

shallow lakes. The reason for the particularly high dominance of monocots in the HM

region is not obvious.

Overall, 53% of the macrophyte species observed in this study are annuals, and 47% are

perennial in lifespan. Both the number and proportion of annual species are greater at
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lower altitudes, and are highest in the TE region (Figure 3.18). The Terai habitats are
severely affected by seasonal disturbances and high turbidity associated with the

monsoon, which generally favours annuals in aquatic habitats (Shipley et al., 1991).

The ability of species to become established and persist under the prevailing environmental
conditions is an obvious factor affecting the diversity of plant communities. The
establishment phase is critical, and the conditions that a given species requires to germinate
and become established may differ from those that favor older plants. The requirements for
germination and establishment have been named the “regenerative niche” (Grubb, 1977).
For aquatic plants, variable water levels are important in offering propagules an
opportunity to establish and make community composition temporally variable (Keddy,
2001; Cronk and Fennessy, 2001). For example, the seeds and seedlings of many aquatic
plants, particularly helophytes and hyperhydates, require drawn-down water levels for
germination and establishment. In this region, the particularly low water levels of the pre-
monsoon season favor the germination and establishment of many helophytes and
hyperhydates in lake-boundary habitats (particularly in TE and MM), and most macrophytes
then grow taller in synchronic response to rising water levels with the advent of the monsoon.
Shrestha (1999) suggested that the development of annual aquatic plants in Nepal is
dependent on the monsoon schedule, and that they produce seed in the post-monsoon season,

which then remain dormant until they germinate in the pre-monsoon of March-June.

It has been shown that the stabilization of the water level can reduce the plant species

diversity and affect vegetation types in aquatic bodies ( Keddy and Reznicek, 1986;
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van der Valk et al., 1994; Shay ef al., 1999). Lakes and impoundments generally have
relatively stabilized water levels. In the MM study region, Lake Begnas, a 374-ha
impounded natural lake, supported only 20 species of aquatic plants and Lake Phewa
(524 ha) 40 species. In contrast, non-impounded Lake Rupa (47 species; 116 ha)

supported considerably more species although being relatively smaller than two lakes.

Overall, the growth-form spectrum of aquatic macrophytes was dominated by
Helophytes, followed by Hyperhydates, submerged, floating-leaved, and free-floating
forms (Figure 3.19). The high proportion of Helophytes and Hyperhydates may reflect
the low transparency and shallow character of many of the study lakes (Appendix 1). The
TE region was dominated by shallow-water growth forms, particularly Helophytes and
Hyperhydates, while the MM was richer in submerged forms. The generally shallow
lakes in the HM region were dominated by Helophytes, and the deep and clear HH lakes

by submerged species.

Due to the exponential attenuation of light in water, depth is a critical factor affecting
the depth-distribution and species richness of submerged macrophytes (Hutchinson,
1975; Chambers and Kalff, 1985; Duarte et al., 1986; Stewart and Freedman, 1989;
Sand-Jensen and Borum, 1991; Middelboe and Markager, 1997). Depending on species,
the compensation point of submerged plants is 4-29% of incident light intensity
(Dennison et al., 1993). In the present study, 78% of the species encountered occurred
in water shallower than 50 cm, and 55% only in shallow littoral water <15 cm deep

(Figure 3.17).
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As a rule of thumb, submerged macrophytes will grow to depth of 2-3 times the Secchi
depth (Canfield et al., 1985; Chambers and Kalff, 1985). The depth-distribution of
macrophytes in this study was generally within this range of transparency. In the case of
the deepest occurrences of rooted macrophytes (5 m for Trapa quadrispinus and
Valisneria natans), the depths were 4- and 2-times the Sechhi depth, respectively. (Note,
however, that Trapa establishes from large nuts that sink to the bottom and allow
germinants to establish in relatively light-poor conditions. The 5-m depth occurrence of
Trapa in Lake Rupa is unusually deep for an emergent/floating-leaved plant, which in

temperate regions seldom grow in water deeper than 3 m (Canfield and Hoyer, 1992).

In the TE region, rooted macrophytes were not observed deeper than 2 m, due to the
prevailing low-transparency water and abundant shade cast by floating-leaved and
emergent plants. In the MM region, there was a wider range of depth distribution of
macrophytes, including the deepest records in this study, for Trapa quadrispinosa (5 m),
Vallisneria natans (5 m), and Ranunculus trichophyllus (4.5 m). In general, water
transparency was greater in higher-altitude lakes (Table 3.1), and it likely contributed to
the relative richness of submerged species in MM lakes. Transparency of the HM lakes is
highly variable; several have a low transparency because of the presence of DOC (humic

substances). Although transparency is high in the HH lakes, the cold temperature, ice

cover in winter, and ice-scouring in spring contribute to a low species richness.

Although some species in this study occurred at great depth (up to 5 m), there are records

of even deeper occurrences of aquatic plants in exceptionally clear lakes, particularly of
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certain Charophytes and Bryophytes, living plants of which have been found to >100m
(Middelboe and Markager, 1997). The deepest occurrence for an angiosperm macrophyte

is less, around 12 m, possibly because of intolerance of extreme hydrostatic pressure

(Hutchinson, 1975).

Although water clarity is the primary factor affecting the ability of plants to grow in deep
water, additional influences include temperature, irradiance, and length of the growing
season, all of which are typically greater at lower altitudes (Duarte and Kalff, 1986; Gasith
and Hoyer, 1998). In this study, warm water showed a greater depth distribution in the MM
region, and caulescent and rosette-forming macrophytes had their deepest occurrences there
compared to lakes at higher altitudes. Middelboe and Markager (1997) concluded that the
deepest-growing angiosperms are caulescent forms, but in this study of low-latitude lakes
they were joined by rosette-forming plants in deep water. Middelboe and Markager (1997)
also suggested that angiosperms are the deepest-growing macrophytes in lakes with low
transparency (Secchi transparency < 3 m), whereas bryophytes and charophytes grow
deepest in more transparent lakes. In this study, however, the deepest and most transparent
lakes occur in the HH region, and they support angiosperms rather than bryophytes and
macrophytic algae (except for clearwater Salpa Pokhari in the HM region, where
bryophytes occurred most deeply). This observation could be related to the low
concentrations of ions and nutrients and the persistent ice cover (and consequent low
irradiance) of the HH lakes; these factors may restrict the distribution of bryophytes and
macroalgae at high altitudes (similar observations have been reported in streams in the

Nepalese Himalayas; Ormerod et al., 1994; Suren and Ormerod, 1998).
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Examination of the distribution and abundance of macrophytes along gradients of lake
size, depth, and other environmental factors is complicated because plant development is
highly variable, even within and among lakes of similar morphometry (Sculthorpe, 1967,
Hutchinson, 1975). In this study, the species richness of aquatic plants showed negative
relationships with altitude, and positive relationships with surface water temperature
(Table. 3.4). Other studies have also found declines of species richness with increasing
elevation (Rerslett and Hvoslef, 1986; Rerslett, 1989; Rorslett, 1991) and with decreasing

temperature (Pip, 1979; Scheffer ez al., 1992).

In general, the number of species present increases with area of the habitat
(Arrhenius, 1921; Connor and McCoy, 1979; Rerslett, 1991) and decreases with
isolation of habitat “islands” (MacArthur and Wilson, 1967). One commonly used
relationship of species:area is S = cA® (the Arrhenius equation; where S is the
number of species, ¢ is constant, A is area, and z is the slope of a log/log relationship;
Williamson, 1988; Rosenzweig, 1995). In the present study, there is a weak
species:area relationship among lakes in the various altitudinal/climatic zones (Figure
3.24). Within the altitudinal regions, however, the relationship is stronger. In the TE
lakes, for example, the species:area relationship has a slope of 0.37 (% = 0.79).
Weiher and Boylen (1994) reported an Arrhenius slope of 0.23 for Adirondak lakes
and 0.29 for Danish ponds, and suggested that lower slopes in regional lakes were duc
to the size of the species pool. However, in a study of 641 lakes in Scandinavia,
Rorslett (1991) found little influence of either the regional species pool or latitude on

the Arrhenius slope. Rosenzweig (1995), in a wide-ranging review of species:area
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relationships, concluded that the form of the curve changes with spatial scale. If species
are dispersal-limited, then the local species richness will differ from that found by a
random sampling of the metacommunity. All species are dispersal limited at some spatial
scale, an effect that becomes increasingly important at larger scales (Hubbell, 2001). In
this study, the dispersal limitation is particularly pronounced in high-altitude regions (HH
and HM), where climate-related barriers and environmental stresses result in a dramatic
decrease in the species richness of macrophytes. Moreover, the aquatic plants occurring
in my high-altitude lakes are mostly cosmopolitan species as other aquatic organisms

(Manca et al., 1998).

The limits to dispersal of macrophytes in high-altitude lakes are related to cold water
temperature, seasonal ice cover, littoral scouring, and low concentrations of solutes and
nutrients (Suren and Ormerod, 1998), and perhaps to infrequent visitation by animal
vectors. Other studies of lakes (Loffler, 1969; Lami et al., 1998) and streams (Suren and
Ormerod, 1998) above 4,000 m in the Himalayas of Nepal have not observed aquatic
macrophytes. Interestingly, a paleo-limnological study of two lakes above 5,000 m in
the Everest region found that macrophytes had been present during several warm periods
within the past 2,600 years, but that they are no longer occur (Lami et al., 1998). In this
study, six high-altitude lakes in the HH region did not harbor any macrophytes, but
others supported 2-3 species: Ranunculus trichophyllus, Callitriche palustris, Festuca
ovina, and Juncus alloides. Of these species, J. alloides is widespread between 2,000-
4,650 m in the Sino-Himalayan floristic region and occurs from Punjab in the western

Himalayas through Tibet to Shaanxi and Hubei in China, particularly in marshy places,
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bogs, and streamsides (Miyamoto, 2002). Festuca ovina has a similar distribution in
rocky slopes and wet places of the high Himalayan region. These helophtes are riparian
elements that extend into lakes in shallow depths. Ranunculus trichophyllus (up to 4,750
m) and Callitrichia verna (up to 4,068 m) are also widespread species, and these
altitudinal records appear to be the highest observed for aquatic angiosperms (based on a

wide-ranging review of literature on alpine macrophytes).

The unusual occurrence of Ranunculus trichophyllus at 4,750 m is noteworthy. The
aquatic ecosystems of the HH region are extreme environments, in which physical
stressors associated with ice and snow (winter cover, scouring, and avalanche) and severe
climate are limiting factors for the dispersal and distribution of aquatic macrophytes —
these are habitats utilized by stress-tolerant species, sensu Grime (2001; see also
Chambers and Prespas, 1988; Campbell and Grime 1992; Korner, 1999; Yoshida, 2002).
In general, the phenology of high-altitude plants in the Himalayas is closely coupled to
the timing of snowmelt and other key seasonal events that initiate and end the brief
growing season (Pangtey er al., 1990). Moreover, Schindler et al. (1990, 1996a) notes
that relatively shorter periods of snow- and ice-cover of alpine lakes (as might be caused
by climate warming) enhance the exchange of gases and nutrients, wind-driven
circulation, and light conditions required to support the productivity of aquatic plants. In
fact, there is paleo-limnological evidence that macrophytes were more abundant in lakes
in the Everest region during warmer periods within the past 2,600 years (Lami et al.,
1998). In the present study, the possibly recent, abundant presence of R. trichophyllus in

a 44 ha lake at 4,750 m could, in fact, be a signal of recent warming, and warrants further



130

monitoring of aquatic plants in this and other high-altitude lakes in the region
(Sommaruga-Wograth et al, 1997; Kotlyakov and Lebedeva, 1998; Hughes, 2000;

Magnuson et al., 2000; IPCC, 2001; Quayle, 2002; Walther et al., 2002).

Crawley (1997) argues that niche specificity is greater under more extreme conditions,
and that tolerance of environmental stress and the disturbance regime also plays an
important role in the distribution and abundance of species (Grime, 1979; 2001). Out of
the six core developmental strategies suggested for alpine plants (K6rner, 1999), the one
dominant in sites with particularly long snow-and-ice cover is present in R. trichophyllus
— it involves leaf initiation and expansion before final snowmelt and rapid greening
and activation of photosynthesis immediately after release. Additional adaptations of
R. trichophyllus to its extreme alpine environments include its tolerance of sudden frost;
the ability to self-pollinate in bud; the presence of hexaploids that are interfertile with
other hexaploids (such as R. aquatilis), finely dissected leaves with high chlorophyll on
epidermal cells for efficiency of light absorption; an ability to use either CO, or HCO5™ as
a source of inorganic carbon for photosynthesis; tolerance of intense irradiation by UV-B;
and extreme vagility and colonization ability, including by fragmented vegetative tissues
(De-Yuan, 1991; Rascio, 1999; Barrat-Segretain and Gudrun, 2000; Bennike, 2000;

Birks, 2000). These attributes are important for R. trichophyllus to proliferate in high-

altitude Himalayan lakes.

Lakes in the TE region had greater species richness and diversity, particularly those with

seasonal lotic (riverine overflow) influences. This observation is consistent with
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suggestions that diversity increases with an intermediate disturbance regime (Connell,
1978; Tilman, 1988; Wilson and Tilman, 1993, 2002). The lowest diversity among the
TE waterbodies was observed in three lakes in the Koshi Tappu Wildlife Reserve in
which disturbance is frequent and intense due to wading and wallowing by wild water
butfalo (Bubalus arnae). Their movements in the lakes make the water turbid and uproot
plants, which reduces the diversity of submerged macrophytes. Another TE lake, Devi
Tal, had relatively low diversity in its littoral zone, possible related to wallowing and
feeding by rhinoceros (Rhinoceros unicornis) and elephant (Elephas maximus); this effect

was less evident in waters deeper than 1 m.

In the MM region, the lowest species richness was in Begnas Tal, likely because of recent
reservoir development that increased the water level, reduced shallow-water area by the
construction of embankments, and led to low nutrient levels. The effects of increased
water level and reduced shallow-water habitat on macrophytes are direct, but those of
reduced nutrient levels are more complex. Jeppesen et al. (2000) analyzed data for 71
shallow Danish lakes and found increase and decrease of species richness of macrophytes
in response to nutrient levels, particularly to the phosphorus gradients. In this study, the
three-fold difference in phosphorus concentration between Lakes Rupa (42 pg/l) and

Begnas (15 pg/l) in the MM region could be related to the smaller macrophytes richness

in the latter.

Species richness and diversity were lower in the HM lakes, and lowest in the HH ones. In

the HM region, the highest species richness was in Phokte Tal and the lowest in Gupha
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Pokhari, both mesotrophic lakes. These observed differences are possibly caused because
Gupha Pokhari is a small lake (6.5 ha) that is frequently disturbed by local people
drawing water and washing. The vegetated HH lakes are dominated by only 2-3 species
(other HH lakes lack macrophytes). The HH lakes occur in climatically extreme alpine
environments, which along with their recent origin (following deglaciation) and
oligotrophic status leads to a low level of species richness (Dobson ef al. 1997; Toivonen,
2000; Lodge, 2001). The glacially recent origin of these HH lakes is notable; other high-
altitude lakes that are older have more species of macrophytes present. For example, the
ancient alpine Lake Titicaca (Peru, Bolivia) has 23 species of macrophytes present,

including an endemic (Dejoux, 1994).

Factors influencing the levels of species richness and diversity within communities have
been attributed to the intensities of three clusters of environmental influences: stress,
competition, and disturbance regime (Grime, 1979, 2001). In this study, stress was not
studied by experimental means; rather, its intensity was inferred by correlative and
multivariate investigations. Still, it is apparent that the high-altitude lakes are subject to
more intensive and prolonged regimes of severe climatic stress, along with a low nutrient
availability, and this has resulted in the presence of few species. In comparison, the
lower-altitude lakes in the TE and MM regions, which are typically mesotrophic—
eutrophic, are characterized by environmental conditions in which biological interactions
(such as herbivory and competition) and disturbance have a greater influence on
community composition and the relative abundance of species (Grime, 1979, 2001;

Jeppesen et al., 2000). Overall, the high-altitude lakes are characterized by stress-
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tolerators and ruderals (sensu Grime, 1979; 2001), while low-altitude lakes are dominated
by competitors. In addition, the overall moderate regime of anthropogenic disturbance
and nutrient loading in the TE and MM regions appears to have contributed to the

dispersal and distribution of species (including non-native ones).

Reviews on the threats to the fresh water biodiversity show the importance of invasion
of non-native species, as invasion rate is accelerating with the changes in ecosystem
structure due to global warming (Parker et al., 1999; Kolar and Lodge, 2000; Sala et
al., 2000). Nepal is poor in endemic aquatic macrophytes (3 species) relative to Indian
subcontinent (41 species; Lavania ef al., 1990), but many aquatic angiosperms have
been naturalized to the aquatic habitats, as a weed in the paddy cultivated field and in
wetlands. Many exotics macrophytes observed in the country are either endemic to
Europe or Indo-Malayan region, but nuisance exotics are those endemics from South
America, such as, water hycinth (Fichhornia crassipes) and water cabbage (Pistia
stratiotes) having extensive cover in many lakes in TE and MM regions. These free-
flaoting macrophytes have significant impacts on submerged species distribution in

many lakes in the tropical to sub-tropical region.

Despite many aquatic macrophytes are known as weeds in paddy cultivation, they have
several important economic and ethno-botanical values. Herodatus, the Greek historian
described the practice of lilies seeds use in S centaury B.C. Similarly, Ayurveda, Unani
and Tibetan medicinal practices extensively use the parts of aquatic plants to cure

different ailments. Lacoul and Lacoul (2002) have compiled 77 aquatic species being



134

used for medicinal purposes in Nepal, and about 25% of macrophytes in the present
study shows the medicinal values. Except to the medicinal uses, culms of Trapa spp are
eaten as fresh fruit in Nepal. Also, dried chestnuts are grind to make flour for various
delicacies. The roots and seeds of Nelumbo nucifera are eaten by local people. Many

annual and biannual tall grasses are used as construction material in the villages.

4.4 Multivariate analysis

Hutchinson (1975) highlighted the importance of comparative studies of aquatic
macrophytes among waterbodies differing in limnological characteristics; such studies
are potentially valuable in understanding community-environment relationships. To this
general end, researchers have used multivariate methods to extract relationships among
macrophytes and limnological and watershed variables in various parts of the world
(Jensén, 1979; Catling et al., 1986; Jackson and Charles, 1988; Srivastava et al., 1995;
Riis, 2000; Boedeltje et al., 2001; Heegaard et al., 2001; Lougheed et al., 2001; Mackay
et al., 2003; Murphy et al., 2003). However, studies of this sort have not previously been

done on the steep altitudinal (but narrow latitudinal) gradients of the Himalayas.

In this study, a PCA result involving environmental factors (Figure 3.25) shows that
gradients of pH, conductivity, ions, and nutrients all change with altitude. Most of these
limnological variables show strong negative correlations with altitude; exceptions are
sulphate, chloride, lake area, maximum depth, transparency, and substrate quality
(coarser-grained at higher altitudes). In general, the HH and HM lakes have relatively

low concentrations of ions and nutrients, are large, deep, and transparent, and their
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productivity (indicated by chlorophyll) is low. Although investigating a much smaller
range of altitude, a study of macrophytes in 574 lakes in Northern Ireland also found
strong negative correlations for ions, nutrients, and chlorophyll, and positive ones for

lake area, color, and turbidity (Heegaard et al., 2001).

TWINSPAN clustering of lakes by species (Figure 3.26) produced a similar grouping of
waterbodies as the PCA based on environmental factors, segregating on the basis of
altitudinal-temperature gradients. Juncus allioides and Ranunculus trchophyllus, the
holarctic cold-tolerant species, are the indicator species of the HH region in the
TWINSPAN analysis. The HM region, particularly of eastern Nepal, is indicated by
Sphagnum species and graminoids of temperate bog habitats. MM and TE lakes share
cosmopolitan species of temperate and tropical biomes, indicated most strongly by
Hydprilla verticillata, and by the tropical species Lemna perpusilla and Pistia stratiotes.
The DCA ordination (Figure 3.27 & 3.28) of lakes by species resulted in a grouping
similar to that of the TWINSPAN analysis, segregating the waterbodies into four

altitudinal groups corresponding to the HH, HM, MM, and TE regions.

I conducted a canonical correspondence analyses on two different altitudinal scales. The
initial CCA-1 analysis covered the entire altitudinal gradient from 70m to 5,000 m,
extending from tropical to alpine zones (and including the HH, HM, MM and TE
regions). The CCA-1 analysis included 28 waterbodies (all with macrophytes present),
which supported 177 species, and investigated 23 environmental variables. The first two

axis of the CCA-1 analysis accounted for 24.4% of the variance of the species data, while
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55% of the variance of the species-environment relationship was accounted for by six
forward-selected environmental variables: surface-water temperature, substrate quality,
pH, altitude, transparency, and conductivity. The CCA-1 analysis distinctly separated the
macrophyte species of the HH and HM regions, but grouped those of the MM and TE

regions by forming a data cloud (Figure 3.30; species similarity = 0.44).

A second analysis, CCA-2, involved a more narrow altitudinal gradient (70 m to 1500 m,
extending from the tropical to warm-temperate zones, or from TE to MM) and included
17 waterbodies, 165 species, and 15 environmental variables. The intention of CCA-2
was to separate the species of the TE and MM regions that formed a data-cloud in CCA-1.
The first two axis of CCA-2 accounted for 28.3% of the variance of species data, while
55.4 % of the variance of the species-environment relationship was accounted for by
five forward-selected environmental variables: surface-water temperature, area, total
suspended solids, bicarbonate, and dissolved phosphorus. This analysis separated the TE

lakes from the MM ones, although the species do not separate as clearly (Figure 3.32).

The results of both analyses (CCA-1 and CCA-2) suggest that surface-water temperature
has the strongest influence on the distribution of macrophyte species along the altitudinal
gradient studied. This agrees with the generalization of Welch (1952) that: “no other factor
has so much profound direct and indirect influence on physico-chemical, biological,
metabolic and physiological behaviour of aquatic ecosystems than temperature”. The
influence of ambient temperature on the distribution of macrophytes and their community

structure is well known (Barko and Smart, 1981, Barko et al., 1982; Pip, 1979; Scheffer
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et al., 1992; Madsen and Brix, 1997; Rooney and Kalff, 2000; Heino, 2002). Also, a good
agreement has been inferred between accumulated degree-days sediment temperature for

emergence of vegetative propagules and geographical distribution of aquatic macrophytes

(Spencer et al., 2000).

High-altitude waterbodies, even in low latitudes, have cold water temperatures and little
seasonal variation of solar radiation, which eliminates species of warm water (Loffler,
1964, 1968; Carney et al., 1987; Pollingher and Berman, 1991; Green, 1995; Manca et
al., 1995, 1998). In general, the distribution of freshwater organisms and their
communities is related to both regional climate, as well as the specifics of geographical
location (Heino, 2002). This suggests that large-scale environmental factors determine
regional species combinations, by posing constraints on the distribution of species. In
Fennoscandia, the species richness of macrophytes decreases with increasing latitude and
altitude, and much of the variation (74%) is explained by mean July temperatures (Heino,
2002). In central North America, the species richness of macrophyte communities is also

most positively correlated with maximum seasonal water temperature (Pip, 1979).

According to Sculthorpe (1967), about 60% of the world’s macrophyte species fall into
one of the following three floristic groups: (i) cosmopolitan, (ii) north-temperate (Arcto-
tertiary derivatives), and (iii) pan-tropical (tropical-tertiary floral derivatives). The other
40% of species are mostly confined to a single continent, and are either temperate or
tropical in distribution. The CCA-1 analysis exhibits a clear demarcation between HH

and HM lakes, with dominance of Arcto-tertiary floral derivatives, and the MM and TE



138

lakes, with dominance by cosmopolitans and pan-tropical species. Arcto-tertiary species,
such as Ranunculus trichophyllus, Callitriche palustris, and Festuca ovina, and cold-
tolerant high-altitude species, such as Juncus allioides of Himalayan distribution, are
prevalent in the HH and HM regions. The pan-tropical and cosmopolitan species, such as
Azolla imbricata, Ceratophyllum demersum, Eichhornia crassipes, Hydrilla verticillata,
Nymphoides indica, Potamogeton crispus, Salvinia molesta, Spirodela polyrhiza, and
various grasses and sedges of the warm Indian subcontinent are of wide occurrence in the

MM and TE regions.

In this study, a gradient of benthic substrate quality was observed among lakes at
different altitude. The HH lakes have less clay/silt content and more coarse material,
while clay and silt dominate the substrate in MM and TE lakes. Substrate quality has a
well-known influence on the distribution and abundance of aquatic plants (Pearsall, 1920,
Anderson and Kalff, 1988; Duarte and Kalff, 1990; Barko et al., 1991; Ferreira, 1994;
Toivonen and Huttunen, 1995; Suren and Ormerod, 1998; Boedeltje et al., 2001),
particularly on emergent macrophytes (Weisner, 1991). In this study, the paucity of
clay/silt in sediment in the HH zone may pose a constraint on macrophytes, and may
relate to the presence of few helophytes and hyperhydates. The substrate types are related
to the geologic influences and human activities in the catchments, which play a decisive
role in substrate quality of inflowing streams and the lakes directly (Haslam, 1978;
Holmes, 1983; Ferreira, 1994; Toivonen and Huttunen, 1995; Crosbie and Chow-Fraser,
1999; Lougheed et al., 2001). The lakes in the lowland MM and TE regions have a
similar geology and intensive agricultural land-use, and their comparable benthic

substrates are not significant in segregating species in the CCA-2 analysis.
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Some studies have found that pH and related factors (such as alkalinity) can be an
important influence on the species richness of macrophytes (Fassett, 1930; Iversen, 1929;
Moyle, 1945; Catling et al., 1986; Jackson and Charles, 1988). Various surveys have
established floristic gradients extending from low-alkalinity/acidic lakes to strong
alkalinity and even saline ones. Here, only the HM lakes were slightly acidic (to pH 5.6),
and they are dominated by bryophytes, particularly Sphagnum species, as is common in
cool-to-temperate acidic lakes (pH 4.5-5.5) (Heitto, 1990). The species richness of
elodeids and charophytes is higher in hardwater lakes with pH >7, the latter mostly in small
clear ponds (Brandrud and Mjelde, 1997; Vestergaard and Sand-Jensen, 2000). The
predominance of isoetids in softwater lakes and of elodeids and charophytes in hardwater
ones has been reported from various regions of the world (Fassett, 1930; Moyle, 1945;
Spence, 1964; Seddon, 1972; Moeller, 1978; Keeley, et al., 1994). This pattern is reflected
in the physiological ecology of species, including their ability to utilize bicarbonate and/or
carbon dioxide as a source of inorganic-C nutrition, and nitrate and/or ammonium as
inorganic-N ( Wium- Anderson, 1971, Moeller, 1978; Keeley et al., 1994). The CCA-1
analysis showed a significant relationship of pH and macrophyte distribution, but this
was not important in the CCA-2 analysis because of the relatively narrow pH range (7.4 -
8.9) in that dataset. Similarly, other studies have only found a substantial relationship
between macrophytes and pH if a wide range of pH values was examined (Grahn, 1977;

Roberts ef al., 1985; Yan et al., 1985; Catling ef al., 1986; Rarslett, 1991).

Secchi transparency is another important factor in the CCA-1 analysis. This is also

reflected in CCA -2 by the influence of total suspended solids (TSS) in water, as the
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majority of the lakes studied in the MM and TE regions are shallow and turbid. (Across
the entire dataset, Secchi transparency is negatively correlated with TSS (r = -0.44;
p<0.05)). In CCA-1, transparency helps to segregate clearwater lakes and species of the
HH region from the relatively murky lakes of the HM, MM, and TE regions. Similarly, in
CCA-2, the TSS segregates most emergent and free-floating species of low-transparency
lakes of TE from clearer lakes of MM with many submerged species (such as Najas
graminea, Najas minor, and Nitella mucronata). Transparency has an influence on the
relative dominance of light-demanding helophytes and hyperhydates, compared with
submerged and floating-leaved species (Canfield et al., 1985; Skubinna ef al., 1995;
Toivonen and Huttunen, 1995; Vestergaard and Sand-Jensen, 2000; Squires ef al., 2002;

Nurminen, 2003).

The influence of conductivity on CCA-1 is consistent with other studies of macrophyte
communities, likely because of indirect relationships with nutrient availability (Seddon,
1972; Palmer et al., 1992, 1994; Brandrud and Mjelde, 1997; Khedr and El-Demerdash,
1997; Heegaard et al., 2001). In CCA-1, the conductivity gradient is represented by
bicarbonate (Appendix 5; r = 0.93; p<0.05) and dissolved phosphorus (r = 0.55; p<0.05)
and suggests a relationship of nutrients and species richness and distribution. In my CCA-
1 analysis, macrophytes aggregate into two broad groups on the basis of conductivity

along the altitudinal gradient:
(a) low-conductivity (27 + 14 pS.cm™ (mean + SD; n=17), oligotrophic lakes in the
HH and HM regions, with Callitriche palustris and Ranunculus trichophyllus as

representative species; and
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(b) high-conductivity (140 + 88 pS.cm™; n=17), mesotrophic-to-eutrophic lakes in
the MM and TE regions, with Hippuris vulgaris, Hydrilla verticillata, Lemna
minor, Lemna trisulca, Eichhornia crassipes, Paspalum distichum, Potamogeton
crispus, Potamogeton pectinatus, Urticularia vulgaris, and Zannichellia palustris,

being representative species.

The MM and TE regions are dominated by eleodids and emergent monocots, which can
utilize bicarbonate for photosynthesis, as can Hydrilla verticillata, Potamogeton crispus,

and many emergent monocots from other parts of the world (Prins and Elzenga, 1989;

Krabel er al., 1995).

At low latitudes, high-altitude freshwater ecosystems are characterized by low annual and
diurnal temperatures and little variation of solar radiation. The first two factors appear to
limit the distribution of most floristic and faunistic elements, resulting in low species
richness at higher altitude (Hunter and Yonzon, 1992; Ormerod et al., 1994; Suren and
Ormerod, 1998). This pattern of species richness is also observed with aquatic plants in
the present study in CCA-1. The decline in species richness is consistent with others
findings for macrophytes in temperate and tropical water bodies (Rarslett, 1989, 1991;
Ormerod et al., 1994; Suren and Ormerod, 1998; Heegaard et al., 2001; Heino, 2002). One
explanation for this altitudinal variation in species richness is the “energy hypothesis,”
which suggests that areas with greater energy availability provide a wider resource base,

allowing more species to occur (Tilman, 1982; Turner et al., 1996). Studies of the
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relationship between energy availability and species richness tend to fall into two broad
groups:
(a) those reporting hump-shaped relationships, in which species richness peaks at
an intermediate level of energy availability or productivity (Grime, 1973;
Tilman, 1982; Guo and Berry, 1998) (although Rappoport’s Rule and hard-
boundary theory may provide an alternate explanation; Stevens, 1989; Colwell
and Hurtt, 1994; Rahbek, 1995; Colwell and Lees, 2000);
(b) those reporting broadly positive relationships, in which species richness peaks
at the highest levels of energy availability, or in the warmest climate (Wright,
1993; Currie, 1991, Turner et al., 1996).
The humped-shaped relationship has been observed by various authors studying
terrestrial vegetation along Himalayan altitudinal gradients (Shrestha and Joshi, 1996;
Grytnes and Vetaas, 2002; Vetass and Grytnes, 2002). In contrast, my study of aquatic
plants in lakes approaches the latter hypothesis, with the highest number of macrophytes

species occurring in lowland TE lakes.

Alternatively, the “time hypothesis” of Pianka (1966) suggests that the low richness of some
habitats is a consequence of insufficient time available for species to colonize or recolonize
after an earlier ecological upheaval (Gaston and Blackburn, 2000). Compared with the low-
altitude lakes of the MM and TE regions, those of the HH and HM are relatively young, only
being available for post-glacial colonization since about the 17" century. This pattern is
also reflected in the small number of endemic aquatic macrophytes in contrast to the

higher endemism of the terrestrial vegetation of Nepal (Vetaas and Grytnes, 2002).
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The influence of lake surface area is strong in CCA-2, but not in CCA-1. This result is
consistent with the view of Rosenzweig (1995) that the form of the species-area curve
changes with spatial scale, and shows a strong relationship among lakes within a similar
climatic regime (Rerslett, 1991). In addition, Duarte ef al. (1986) found that the percentage
surface area covered by submerged plants is not a constant proportion of the lake area, but
tends to be smaller in bigger lakes (in a study of 139 lakes). In contrast, emergent
macrophytes colonized a rather constant proportion (7%) of the area, regardless of lake size
(Duarte et al., 1986). The significance of lake area in the CCA-2 analysis of MM and TE

lakes could be related to the dominance of those waterbodies by emergent macrophytes.

The key nutrients (nitrogen and phosphorus) affecting trophic status were not significant
environmental factors in the CCA-1 analysis, but in CCA-2 dissolved phosphorus (DP) had
a significant influence. However, the environmental data are incomplete with respect to
these nutrients, because there is no data on sediment chemistry, and this substrate is a
primary source of nutrients for rooted macrophytes (Barko and Smart, 1986; Barko, et al.,
1991; Jackson et al., 1994; Barko and James, 1998). The significant influence of DP in
CCA-2 could be indirect, and related to effects on transparency of high algal biomass at
high DP levels. In addition, dense beds of macrophytes may increase the rate of release of

DP from sediment, due to locally high pH caused by inorganic carbon dynamics (Bostrém

et al., 1982; James and Barko, 1991; James ef al., 1996; Barko and James, 1998).

Several relatively local studies have found that the trophic state of lakes is related to the

distribution of macrophyte communities (Jensén, 1994; Srivastava et al., 1995; Toivonen
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Huttunen, 1995). In Nordic countries, macrophyte species have been divided into broad
categories according to their apparent preference for nutrient availability and trophic
status, ranging from low (oligotraphents) to high (eutraphents) nutrient and trophic
indicators (Linkola, 1933; Jensén, 1994; Toivonen and Huttunen, 1995; Toivonen, 2000).
A similar classification has been used in central European studies (Seddon, 1972; Pietsch,

1980; Wiegleb, 1981; Mékirinta, 1989).

A third canonical correlation analysis, CCA-3, was conducted with only the
euhydrophytes (submerged, free-floating and floating-leaved species) in the MM and TE
regions, using 15 environmental variables as in CCA-2. The environmental variables
significantly influencing the euhydrophytes were the same as in CCA-2. The first axis
clearly segregated the species on the basis of nutrient gradients (HCOs3™ and TP). The
oligo-meso eutrophents Najas minor, Callitriche stagnalis, Blyxa aubertii, and
Potamogeton pectinatus are positioned at the extreme right of the ordination diagram
(Figure 3.33). Hydrilla verticillata and Nymphoides indica were centrally located in
habitats featured by high silt load and cultural eutrophication, suggesting a wider
ecological amplitude (Singhal and Singh, 1978; Papastergiadou and Babalonas, 1992). In
comparison, Azolla imbricata, Ceratophyllum demersum, Potamogeton crispus were
centrally located along with habitats with low silt and high nutrient loads (Uotila, 1971;
Sahai and Sinha, 1976; Gopal and Sharma, 1990). Ordinating on the left (Figure 3.33) arc
pan-tropical eutrophents such as Pistia stratiodes, FEichhornia crassipes, Monochoria

hastata, Nymphoides hydrophyllum, and Ceratophyllum muricatum (Little, 1966; Gaudet,

1979; Mitchell and Gopal, 1991)
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In any particular habitat, with its unique circumstances of substrate, water quality,
climate, and disturbance history, certain species will grow better than others and will be
community dominants. This study of a steep altitudinal gradient over a narrow altitudinal
range allowed the examination of a large range of environmental influences on species
distribution. In a steep altitudinal range of habitats, environmental factors that varied
widely had the greatest statistical and mathematical influence on the distribution of
aquatic plants (listed in order of relative significance, these are: temperature,
transparency, pH, alkalinity, and conductivity). Secondary analyses, involving narrower
environmental gradients, revealed that other environmental factors were more influential
at those scales, such as nutrients and surface area. It must be borne in mind, however, that
this research did not examine other potentially important environmental factors, such as
disturbance history and biological interactions among species (competition, herbivory,

parasitism, disease, mutualism, and allelopathy).



S. SUMMARY AND CONCLUSION

Physico-chemical characteristics of 34 lakes at altitudes ranging from tropical (77 m) to high
-alpine (4,980 m) were studied in the mountainous region of Nepal. The lake water chemistry
was dominated by HCO;  among anions, and by Ca** and Mg®* among cations. The average
conductivity for the lakes in the High Himal (HH) region was 25.5 puS/cm, compared with
31.3 uS/cm in the High Mountains (HM), 101.4 uS/cm in the Middle Mountains (MM), and
157.3 uS/cm in the low-altitude Terai (TE) region. Lakes in the HH, MM, TE regions had
moderate hardness, while those in HM were somewhat acidic. Total suspended solids
showed a stronger relationship to Seechi transparency than to chlorophyll concentration,
reflecting the inorganic turbidity of many lakes. Criteria related to total phosphorus, total
nitrogen and chlorophyll revealed that HH and HM lakes are largely oligotrophic, with a
few being mesotrophic. Lakes in the MM region are more variable, ranging from

oligotrophic to hypereutrophic, and TE lakes are mostly eutrophic to hypereutrophic.

Aquatic macrophytes were present in 28 lakes, up to a maximum altitude of 4,750 m in
the lakes in the Gokyo region within Sagarmatha National Park. The moderate hardness
of waters has favored the extensive proliferation of the eleodids in the study region. The
only moderately acidic water bodies occurred in the HM region, and these lakes

supported Sphagnum and Drepanocladus as well as certain graminoids.

Species richness and diversity of aquatic macrophytes showed a linear decrease with

altitude. The study region exhibits a relatively high proportion of monocotyledonous
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species, as is typical of aquatic macrophytes in the Indian subcontinent. Helophyte and
hyperhydate species are relatively rich compared to other euhydrophytes. The high
diversity of helophytes and hyperhydates in the littoral zone of lakes in the region could
be due to: (1) the region being rich in the grass and sedge families, (2) generally high
turbidity due to high rates of erosion in the region owing to steep mountain catchments,
and (3) severe anthropogenic damage, largely associated with extensive agricultural
practices that affect lakes by irrigation draw-down, flooding of paddy fields, introduction

of aquatic weeds, and trampling of the littoral and riparian zones by human and livestock.

High altitude observations of the species Ranunculus trichophyllus (as high as 4,750 m)
and Callitriche palustris (to 4,250 m) are the highest reports for angiospermic aquatic
macrophytes anywhere in the world. Both of these aquatic plants are widely distributed in
arctic and alpine environments, as are many species of phytoplankton and zooplankton in

the Himalayan region.

A canonical correspondence analysis of the steepest altitudinal gradient (CCA-1) showed
that the dominant abiotic environmental influences on the distribution of macrophytes
were: water temperature, substrate quality, altitude, pH, transparency and conductivity
(listed in order of decreasing strength). In comparison, the CCA-2 and CCA-3 analyses of
a shorter altitudinal gradient of 70 m to 1500 m (tropical to warm temperate climate)
found that the most important influences were temperature, lake area, total suspended
solids, bicarbonate, and dissolved phosphorus. This result suggests that relatively local

influences are different from those that have a large-regional basis. However, a strong
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climatic influence is ubiquitous in all of the gradient studies (CCA-1, CCA-2 and CCA-
3). This conclusion is reflected in the fact that surface-water temperature (annual
average) had the strongest influence over the altitudinal gradient from tropical to high
alpine climate. The temperature gradient distinguished Arcto- tertiary floristic elements
of the HH and HM regions from the more widely distributed temperate and tropical
species of the MM and TE regions. This observation parallels the distribution of tundra
components, such as Ranunculus trichophyllus, Callitriche palustris in the HH region
(these are Holarctic species that also occur in alpine tundra lakes), to the tropical
components such as Spirodela polyrhiza and Lemna perpusilla in TE. This observation is

also supported by the results of the TWINSPAN analysis.
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Appendix 5. Spearman rank correlations between environmental variables and the
species richness.

Variables N R t(N-2) p-level
ALT & TSPP 28 -.68 -4.73 .001
ALT & EUHY 28 -.59 -3.73 .001
ALT & HELO 28 -.70 -5.08 .001
SA & TSPP 28 11 0.55 .59
SA & EUHY 28 .20 1.05 .30
SA & HELO 28 .01 017 .987
MD & TSPP 28 -39 -2.20 .037
MD & EUHY 28 -.26 -1.35 .188
MD & HELO 28 -46 -2.62 .014
SUBS & TSPP 28 -71 -5.11 .001
SUBS & EUHY 28 =71 -5.16 .001
SUBS & HELO 28 -.68 -4.77 .001
COND & TSPP 28 .64 4.22 .001
COND & EUHY 28 .58 3.62 .001
COND & HELO 28 .66 4.45 .001
PH& TSPP 28 .62 4.07 .001
PH& EUHY 28 .64 4.27 .001
PH& HELO 28 .60 3.82 .001
SECC & TSPP 28 -48 -2.76 .010
SECC & EUHY 28 -41 -2.31 .029
SECC & HELO 28 -.52 -3.13 .004
TEMP & TSPP 28 .70 5.0 .001
TEMP & EUHY 28 61 3.9 .001
TEMP & HELO 28 .70 5.03 .001
HCO3 & TSPP 28 72 5.22 .001
HCO3 & EUHY 28 .67 4.64 .001
HCO3 & HELO 28 72 5.36 .001
TN & TSPP 28 .65 4.43 .001
TN & EUHY 28 61 3.96 .001
TN & HELO 28 .68 4.76 001
DN & TSPP 28 .55 3.37 .002
DN & EUHY 28 .53 3.18 .004
DN & HELO 28 57 3.57 .001
TP & TSPP 28 .63 4.19 .001
TP & EUHY 28 61 3.92 .001
TP & HELO 28 .66 4.44 .001
DP & TSPP 28 .67 4.60 .001
DP & EUHY 28 .64 4.22 .001
DP & HELO 28 69 4.81 .001
CHL & TSPP 28 a7 6.15 .001
CHL & EUHY 28 73 5.41 001
CHL & HELO 28 77 6.28 .001

Note: TSSP = total species; EUHY = euhydrophytes only (submerged, +tee floating + floating
leaved species) and HELO = helophytes + hyperhydates.
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