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Abstract

Non-Negative Matrix Factorization (NMF) is a very useful tool to reduce dimension

of data in machine learning and data mining. But it is an unsupervised learning

method. To extract more discriminant information in the training data and improve

the performance of classification, we developed a new supervised NMF method. We

combine feature matrices from different classes as the feature matrix for the whole

data and fit a non-negative Poisson regression to calculate the weight matrix. Our

method is tested on the animal dataset and moving picture dataset. The experimental

results show that our supervised NMF could greatly enhance the performance of NMF

for classification.

vii



List of Abbreviations and Symbols Used

Symbols and Abbr. Description
X data matrix
W Feature matrix
H Weight matrix

OTU Operational Taxonomic Unit
NMF Non-negative matrix factorization
BIC Bayesian information criterion

viii



Acknowledgements

I would like to express my gratitude to all those who helped me during the writing

of this thesis. I gratefully acknowledge the help of my supervisors, Dr. Hong Gu and

Dr. Toby Kenney, who have offered me valuable suggestions in the academic studies.

In the preparation of the thesis, they spent much time to encourage me and guide

me even though they are very busy. They also read through each draft of the thesis

and provided me with inspiring advice. Without their patient instruction, insightful

criticism and expert guidance, the completion of this thesis would not have been

possible.

I also owe a special debt of gratitude to all the professors in this department. From

their devoted instructions and enlightening lectures I have benefited greatly and get

academically prepared for the thesis.

I would finally like to express my gratitude to my beloved parents and friends who

have always been helping me out of difficulties and supporting me no matter when

and where.

ix



Chapter 1

Introduction

1.1 Background

Microbes are everywhere, and we are becoming more aware of the many different

roles they play. However, we still have limited understanding of the functioning of

microbial communities. We are now aware that microbes do not function in isolation,

and the community structure of the microbes is the key to understanding the effects

of various microbes.

It seems that in many cases, differences between different types of microbial com-

munities (for example, the communities in the guts of healthy and sick people) are not

attributable to a single microbe, but rather to the overall structure of the community.

It is therefore critical to devise models which take into account this overall structure.

The goal of this thesis is to present some first steps towards this type of model.

Usually, the microbes data are counts of different Operational Taxonomic Units

(OTUs), species distinction in microbiology (Wooley 2012) [15]. Considering the

difficulty and examples of collecting data and the huge number of related OTUs,

the data always consists of hundreds or even thousands of variables but only a few

observations, which means p� n (p is the number of variables and n is the number

of observations). We can not apply classical models to this kind of data because of

high variance and overfitting. This thesis explores methods to reduce the dimension

of data without losing too much important information.

To deal with this kind of problem, unsupervised learning methods like principal

components analysis (PCA) and vector quantization (VQ) are now usually used to

reduce dimension and pick up main features of the data. But the results from PCA

or VQ usually contain negative numbers which are hard to interpret naturally. So in

the microbial communities’ case, we prefer nonnegative matrix factorization (NMF).

However, like other dimension reduction methods, NMF extracts the most signif-

icant features from the data but these sometimes are not what we are interested in.
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So to get certain specific information, a supervised learning NMF should be used.

1.2 Review of NMF

1.2.1 NMF

Non-negative matrix factorization (Lee and Seung 1999) [6] is a dimension reduction

method for non-negative data (usually count data). The idea is to represent each data

point as a mixture of features. Given a non-negativem×n matrix X, we approximate

X ≈ W ×H

where W is a non-negative m× k matrix and H is a non-negative k×n matrix. This

means that each column of X is a non-negative linear combination of the features

(columns of W ). In our analysis, X is the microbes data with counts of OTUs or

genes. Xij means of the jth observation, the ith type of OTU or gene appear Xij

times. Here k is the number of metavariables, also called the number of types in this

thesis. k determines the complexity of the model, thus it is a tuning parameter in

this context. Usually k is chosen such that (m + n)k < nm, so that we reduce the

dimension significantly (Lee and Seung 1999) [6].

For the approximation, Non-negative matrix factorization (NMF) is usually per-

formed to maximize the Poisson log-likelihood of the data,

L(W,H) =
∑
i,j

(Xij log(WH)ij − (WH)ij) ,

where (WH)ij is the Poisson mean forXij (Hastie, Tibshirani and Friedman 2009) [25].

But Euclidean distance can also be used as a criterion in some cases(Lee and Seung

2001) [7].

Figure 1.1 shows an example (Lee and Seung 1999) [6] in which NMF is used in

image data analysis, and is compared with the application of other methods such

as principal components analysis (PCA) and vector quantization (VQ) in the same

data. The database contains 2429 facial images, each face consisting of 19×19 pixels,

which means the data is a 361 × 2429 matrix. So here for the m × n matrix X,

m = 361, n = 2429. Each method applies an approximate factorization of the form

X ≈ W × H. As shown in the 7 × 7 montages, all three methods have learned a
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set of r = 49 basis images. Black pixels correspond to positive values and red pixels

correspond to negative values. A particular instance of a face shown at the top right is

approximately represented by a linear superposition of basis images. The coefficients

of the linear superposition is a 7× 7 grid shown next to the montages. On the right

side are the resulting superpositions.

VQ

× =

NMF

=×

PCA

=×

Original

Figure 1.1: Facial image

Lee and Seung (1999) [6] pointed out that NMF has the advantage of interpretabil-

ity, because it tends to identify sparse features, and describe each data point as a

mixture of a small subset of the relevant features. Also, unlike PCA and VQ, it takes

account of the non-negative nature of the data.

Then various authors have extended the NMF problem to include additional con-

straints. For example, smoothness constraints have been used to regularize the com-

putation of spectral features in remote sensing data (Piper 2004) [13] and sparsity
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constraints are useful when the degree of sparseness in the H or W matrix needs to

be controlled.(Hyunsoo Kim and Haesum Park 2007) [12].

1.2.2 Algorithm for NMF

Lee and Seung (2001) [7] gave two different multiplicative algorithms to compute

NMF. One is to minimize the conventional least squares error and the other one

is to minimize the generalized Kullback-Leibler divergence. They also proved the

monotone convergence of both algorithms using an auxiliary function similar to that

used to prove the convergence of the Expectation-Maximization algorithm. This

guaranteed that a locally optimal solution for NMF could be found. The second

multiplicative algorithm is supplied below.

Hkl ← Hkl

∑
i

Wik
Xil

(WH)il

Wik ← Wik

∑
l

Xil

(WH)il
Hkl

Wik ← Wik∑
j Wjk

The iteration of the update rule starts with non-negative values of H and W. Those

update rules constrain the W and H matrices to be non-negative and also the column-

sums of W to be 1. This sum constraint reduces the degeneracy associated with the

invariance of WH under the transformation W ← WΛ,H ← Λ−1H, where Λ is a

diagonal matrix.

This multiplicative algorithm, as the first iterative algorithm for NMF, is the most

well-known update algorithm and is usually used as a baseline to compare with other

new algorithms. However, in practice, its low speed to converge has been shown

several times. Also, it needs more iterations and more computation in each iteration

than other popular algorithms like gradient descent and alternating least squares

algorithms.

To speed up the original multiplicative algorithm, many authors have modified the

algorithm. For example, Gonzalez and Zhang (2005) [8] found a way to accelerate

this algorithm but they had a problem with convergence. Lin (2005) [4] solved the
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convergence problem to guarantee the convergence of iteration, but his method needed

more work per iteration than the original one which made his algorithm even slower.

Several alternative strategies have been presented later such as the gradient de-

scent algorithms (Chu 2004) [18]. Actually, the multiplicative update algorithm is a

kind of gradient descent method too. The basic gradient descent algorithm for NMF

is:

H = H − εH
∂f

∂H

W = W − εW
∂f

∂W
.

where f is the objective function. In our case, it is the log-likelihood function. εH

and εW are step size parameters. This algorithm always depends on the step size in

the negative gradient direction. The problem is to choose the values for εH and εW .

Hoyer (2004) [21] proposed choosing 1 as both of their starting values and multiplying

them by 1/2 at each iteration. This is simple but does not maintain the non-negative

restriction. The W and H matrices may become negative during the iteration.

Then Shahnaz (2006) [9] suggested to set the negative elements to 0 after each

iteration. This is commonly used to prevent the W and Hmatrices’ elements becoming

negative. But this projection method usually made the analysis more difficult, and

sensitive to the starting values of W and H. Without a careful choice of initial values

of W and H, it often leads to a poor factorization. Lee and Seung (2001) [7] proposed

a better choice for the stepsize but made the algorithm really slow.

The third most popular algorithm is the alternating least squares. This algorithm

followed a least squares step. It was first used by Paatero and Tapper (1994) [22].

This algorithm confirms that if one matrix in W and H is given, the other matrix

could be found by using a least squares computation. The algorithm is as follows.

W = argmin
W≥0

f(W,H),

H = argmin
H≥0

f(W,H)

Here f is the objective function which in our case is the log-likelihood function.
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This approach is the ”block coordinate descent” method in bound-constrained

optimization (Bertsekas 1999) [5]. This algorithm minimizes one block of variables

under constraints while fixing the other blocks. NMF is the simplest case with only

two block variables which are W and H. Also when we set all negative elements from

the iteration to be 0, and remain 0 in the following iterations, we can highly speed up

the algorithm. This also makes the algorithms more flexible, and keeps the process

from a poor path.

Berry(2006) [20] summarised these three methods and compared them in his pa-

per. No matter which algorithm we choose, one issue we must address is choosing the

number of types, k.

1.2.3 Choosing the number of types

The choice of the number of types is an important problem which can significantly

impact the results of the analysis. Among the methods available, three methods

similar to Bayesian informatin criterion (BIC) methods (G Schwarz 1978) [11] are

used most widely (Stoica 2004) [23]. BIC is based on the likelihood function and

introduces a penalty term for the number of parameters in the model.

Let W (k) and H(k) be the result of the NMF when k is chosen to be the number

of types. So W is m× k and H is k × n.

X̂(k) = W (k) ×H(k).

Under the assumption that the model errors or disturbances are independent and

identically distributed according to a normal distribution and that the boundary

condition that the derivative of the log-likelihood with respect to the true variance is

zero, the BIC could be calculated as (Priestley 1981) [19]:

BIC = n log(||X̂(k) −X||2) + k log(n).

Then the three similar methods are:

BIC1(k) = log(||X̂(k) −X||2) + k
m+ n

mn
log(

mn

m+ n
),

BIC2(k) = log(||X̂(k) −X||2) + k
m+ n

mn
log(c2),
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BIC3(k) = log(||X̂(k) −X||2) + k
m+ n

mn

log(c2)

c2
,

Here c = c(m,n) = min(
√
m,
√
n), and ||A|| = (tr(A′A))1/2 = ||A||F

To find the best k, compute the BIC for a range of values of k and the BIC

value usually initially becomes smaller when k turns larger as the WH fits better for

larger k. While after a critical value, the BIC become larger as the model becomes

overfitting. The k value corresponding to the smallest BIC value is the optimal

number of types.

The likelihood part is based on Normal distribution here. It is straight forward

to replace Normal assumption by other distributions. We changed the assumption to

Poisson distribution and applied the BIC method to our data, but the plot of BIC

values does not show a pattern. This makes it difficult to choose a value for the

number of types. So we develop a new method to choose the number of types in our

thesis.

1.3 Summary of the thesis

In this thesis, we first apply NMF to microbiome data sets, and show that it does

extract useful features in some cases (Chapter 2). However, in other cases, there is

room for improvement. We therefore proceed to develop a supervised version of NMF

for identifying distinguishing features (Chapter 3). In this chapter, we also develop

non-parametric method for choosing the number of types. Finally in Chapter 4, we

demonstrate the effectiveness of this method on both real and simulation data.



Chapter 2

Applying NMF to microbiome data

2.1 Choosing the number of types

Let k be the number of types. Here to avoid overfitting, we calculate the Poisson

log-likelihood for each k value.

L(W,H) =
n∑

i=1

m∑
j=1

(Xij log(WH)ij − (WH)ij) ,

W is an n × k matrix and H is a k × m matrix. As k become larger, the log-

likelihood value will become larger. But after a certain value, the log-likelihood will

increase more slowly which means the increase in the number of types will not bring

more information to the analysis results. It is shown as a graph of log-likelihoods

against k. So we choose the value where the curve does not increase significantly as

the number of types increase.

The method involves the following steps:

1 Calculate the log-likelihood values for k types for a range of values of k.

2 Plot the log-likelihood values versus k.

3 Find the elbow point at which the curve becomes flat.

4 Set k equal to the value at that point.

2.2 Application of NMF

We apply standard NMF on three datasets: the animal dataset (Muegge 2011) [3],

the IBD dataset (Qin 2010) [14]and the moving picture dataset (Caporaso 2011) [16].

We show the results in the form of weight matrix plots.

8
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2.2.1 Results for animal data

The animals dataset (Muegge 2011) [3] contains gut metagenomes extracted from

n = 39 animals. The metagenomes include 1239 different types of genes (categorized

by EC number). The animals can be classified into four types: Carnivore, Foregut

fermenting Herbivore, Hindgut fermenting Herbivore and Omnivore. There are 21

herbivores, 11 omnivores and 7 carnivores.

We choose the number of types for the animals data using the above method. We

calculate log-likelihood for each k from 1 to 39 and the results are shown in Figure

2.1.

0 10 20 30 4079
00

00
83

00
00

number of types

lo
g

lik
el

ih
oo

d

Figure 2.1: Animals data log-likelihood values

We see that here 8, 9 or 10 may be the appropriate value for k. So we perform NMF

with types 8, 9 and 10. Then we plot each weight matrix H to see the classification

result. We find that the points could be separated best when the number of types is

9.

To display this separation graphically, we project onto a 2-dimensional plane. We

use an interactive software package (SimplePlot, which will soon be available from

Toby Kenney’s website www.mathstat.dal.ca/~tkenney/) to manually select the

best projection by moving the features (represented by crosses on the figure) around
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the plane until the data show the best separation. The advantage of using interactive

software is that it is easier to identify non-linear separation if that is more appropriate

for a particular dataset.

Figure 2.2 shows the weight matrix plot for 9 types.

Figure 2.2: animal dataset classification for 9 types. Blue points are Carnivores,
red points are Foregut fermenting Herbivores, green points are Hindgut fermenting
Herbivores and yellow points are Omnivores.

Figure 2.2 show the Carnivores are totally separated from others and the other

three types are separated with a few overlapping points. This means NMF reduces

the high dimensional animal data to 9 features and still retain enough information to

identify the different classes of animals.

2.2.2 Results for IBD data

In medicine, inflammatory bowel disease (IBD) is a group of inflammatory conditions

of the colon and small intestine. It arises as a result of the interaction of environmental
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and genetic factors. A number of studies have shown that alterations to enteral

bacteria can contribute to inflammatory gut diseases (Coghlan 2012) [2].

We apply NMF to one dataset related to IBD (Qin 2010) [14]. The data consists of

2804 metagenomes sequenced from faecal samples from 124 individuals, 99 of whom

are healthy, the others are suffering from IBD. They come from different countries and

in different genders and ages. We want to see whether the structure of microbiome is

associated with the disease state.

We choose the number of types for the IBD data using the above method. We try

k from 1 to 20 and get Figure 2.3.
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Figure 2.3: IBD data log-likelihood values

From the plot, we see that the curve keeps going up. 14 may be the number of

types that works better than others, so we try 12, 14 and 20 to do the NMF and plot

the weight matrices to see the results of the analysis. None of the three plots show a

pattern of separation. The Figure 2.4 shows the result for 14 types as an example.

The two classes are totally mixed together which means NMF does not identify

any distinguishing features here.
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Figure 2.4: IBD dataset for 14 types. The red points here are individuals suffering
from IBD and the blue points are healthy individuals.

2.2.3 Results for moving picture data

The moving picture data (Caporaso 2011) [16] is the most detailed investigation of

temporal microbiome variation to date. It consists of a long-term sampling series from

two human individuals at four body sites; gut, tongue, right and left palm, over 396

time points. Person 1 was measured at 135 time points and person 2 was measured at

261 time points. The total number of variables (OTUs) across all samples was 15685.

In spite of this extensive sampling, no temporal core microbiome was detected, with

only a small subset of OTUs reoccurring at the same body site across all time points

(Caporaso 2011) [16].

We apply NMF to the guts data and tongues data from this moving picture

dataset.

Results for tongues data

For the tongues data, there are 135 observations from person 1 and 373 observations

from person 2. First we try type values ranging from 1 to 20 on the dataset to choose
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an appropriate number of types.

Figure 2.5 shows the log-likelihood values for tongues data.
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Figure 2.5: Tongues data log-likelihood values

From Figure 2.5, we think 10 or 11 may be appropriate for the tongue dataset. So

we try NMF on 10 types and 11 types. Both results do not achieve good separation

between samples from the two individuals. The classification results for 10 types are

shown in Figure 2.6 as an example.

Here we see that we cannot separate the samples from the two individuals. That

means the features given by NMF could not separate the two individuals well.

Results for guts data

The guts data consists of 131 observations from person 1 and 336 observations from

person 2. We use the same methodology above to choose the number of types. Figure

2.7 shows log-likelihood values for guts data.

From the plot, we see that 6 or 7 could be chosen as the number of types for guts

data. Then we perform a NMF with 6 types and 7 types on the guts data. They

both give good separation so we choose the smaller number of types. The results for

6 types are shown below in Figure 2.8.
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Figure 2.6: Tongues dataset for 10 types. The blue points are from individual 1 and
the yellow points are from individual 2.

We see that the data could be well separated. That means 6 features could

distinguish two individuals’ guts.

2.3 Summary

Here we can see that although standard NMF works for animals dataset and guts

dataset, but it does not perform well on IBD dataset and tongues dataset. The

reason is that unsupervised NMF has a weakness that it could only preserve the

structure in the data that is the most significant, while sometimes this is not what we

want to get. In the next chapter, we modify NMF to identify the different features

for different classes. This should allow us to more easily distinguish samples from

different classes. In other words, we will develop a new supervised learning method

based on NMF.
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Figure 2.8: Guts dataset for 6 types. The blue points are from individual 1 and the
yellow ones are from individual 2.



Chapter 3

Supervised NMF

3.1 Supervised NMF method

3.1.1 Review of Fisher NMF

In order to solve the above issue and improve the classification performance, more

constraints should be added to NMF. A few authors have tried to add the Fisher

constraint to the NMF to exploit more discrimination information for classification.

Wang (2004) [26] proposed a novel subspace method using Fisher linear discrimi-

nant analysis (Belhumeur 1997) [24]. Fisher defined the separation between these two

distributions to be the ratio of the variance between the classes to the variance within

the classes(Fisher 1936) [1]. The Fisher linear discriminant analysis is a method to

maximize the ratio of the between-class scatter and the within-class scatter. Wang

imposed Fisher constraints on NMF to get a new subspace method called FNMF

(Fisher Non-negative Matrix Factorization). As we know in NMF, each column of

weight matrix H is in one-to-one correspondence with a column of the original matrix

X. The FNMF aims to maximize the between-class scatter (SB) and minimize the

within-class scatter (SW ) of H. The two scatters are defined as below:

SW =
1

C

C∑
i=1

1

ni

ni∑
j=1

(Hj − ui)(Hj − ui)
T

SB =
1

C(C − 1)

C∑
i=1

C∑
j=1

(ui − uj)(ui − uj)
T

Here ni is the number of vectors in the ith class, C is the number of classes and ui is

the mean of classes i in H, ui =
1
ni

∑ni

j=1Hj.

So the divergence function of X from its approximation WH is the objective

function for FNMF:

17
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D(X||WH) =
∑
i,j

(Xijlog
Xij

(WH)ij
−Xij + (WH)ij) + αSW − αSB.

where α is a constant greater than 0.

To minimize the above function, Wang (2004) [26] gave the following update rules

for which he proved convergence.

Hkl ← −b+
√
b2 + 4(

∑
il

XikH ′
kl∑

kWikH ′
kl

)(
2

niC
− 4

n2
i (C − 1)

)

Wkl ←
Wkl

∑
j Xkj

Hlj∑
k WklHlj∑

j Hlj

Wkl ← Wkl∑
kWkl

where b = 4
niC(C−1)

∑
j(ukj − (uki − H′

kl

ni
))− 2

niC
uki + 1

Experiments based on the Cambridge ORL database (Wang 2004) [26] show that

the FNMF works better then NMF for classification.

In the following years, many other supervised NMF methods were developed most

of which were based on the FNMF.

One issue with FNMF is that it loses the interpretation of NMF. We develop a

new approach to supervised NMF based on the idea that each class is based on its

own features.

3.1.2 Developed supervised NMF

From the metadata we know the observations are from different classes. Our objective

is usually to find the differences between the structures from the two classes. It is

true that each class of data contain most of its own information and could be best

described by its own feature matrix. So one way to distinguish features for different

classes is to fit a feature matrix for each group separately and then combine them

together. For example, if data X has t classes,

X =
(
X(1), X(2), · · · , X(t)

)
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X(1), X(2), · · · , X(t) are t classes of observations.

X(1) ≈ W (1) ×H(1)

X(2) ≈ W (2) ×H(2)

· · ·

X(t) ≈ W (t) ×H(t)

Here W (i) and H(i) are the feature matrix and weight matrix for X(i). Both W (i) and

H(i) are non-negative. To get the hidden structure of different classes in the whole

data, we combine these feature matrices together and call this combined feature

matrix for the whole data the W matrix.

W = (W (1),W (2), · · · ,W (t))

It is straight forward that W is non-negative as all W (i) are non-negative. This W

matrix contains all the features for each class. By maximizing Poisson log-likelihood

L(W,H) =
∑
i,j

(Xij log(WH)ij − (WH)ij,

we can get the weight matrix H for our fixed W matrix. An iterative algorithm for

fitting H will be described in Section 3.2.

3.2 Algorithm for supervised NMF

As the W matrix is already non-negative, we need an algorithm which will keep the

elements in H matrix non-negative and maximize the log-likelihood function subject

to this constraint.

3.2.1 Newton’s method

In optimization, Newton’s method (Avriel 2003) [17] is applied to the derivative of a

function to find its zeros. So here, it can be used to find the weight matrix H which

maximizes the Poisson distribution’s log-likelihood function. For each observation

Xj, the log-likelihood function is:
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L(Hj) =
∑
i

(Xij ln(WH)ij − (WH)ij)

The gradient of the log-likelihood function is:

∇L(Hj) =
∑
i

(Xij
Wi

(WH)ij
−Wi)

The Hessian matrix for log-likelihood function is:

HessianL(Hj) = −
∑
i

(Xij
Wi

TWi

(WH)ij
)

The iterative scheme is:

Hj = Hj − [HessianL(Hj)]
−1∇L(Hj)

So if the initial values for the iterative scheme are positive, the H will remain pos-

itive during the update. So the solution is a non-negative matrix H which maximizes

the log-likelihood function.

However, when we apply this Newton’s method to the real data, one issue is that

the algorithm has a problem with convergence. It is a challenge to find an appropriate

initial value for the iterative scheme to converge. Hence we develop a new algorithm

to calculate the weight matrix.

3.2.2 Poisson regression coefficients selection method

After obtaining the features separately for each class, the combination of these fea-

tures is used as the W matrix for the whole data. As we assume that the data are

Poisson distributed and the W matrix is already fixed in the last step, finding the H

matrix is a constrained Poisson regression problem on W . The idea is to maintain a

list of the non-negative coefficients and fit a standard Poisson regression with identity

link on the columns of W matrix corresponding to the coefficients in the list. We aim

to find a list so that all coefficients are non-negative, and adding another feature to

the list cannot improve the likelihood and still maintain the non-negative constraint.

So we developed the Poisson regression coefficients selection method. For each

observation X.j = (X1j, X2j, · · · , Xmj), we keep fitting a Poisson regression on the
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feature matrix W and remove the variables corresponding to the negative coefficients

in coefficients vector H.j = h1j, · · · , hkj until all the coefficients are non-negative.

Using the remaining variables we calculate the log-likelihood value. Then we test a

removed variable by adding it back and compare the new log-likelihood value to the

old one. If the new value is greater than the old one, we add this variable back to

the remaining variables and repeat the above steps, otherwise we remove this variable

and test the next one.

For each observation Xj, the algorithm follows these steps:

1 Fit a Poisson regression with identity link but without intercept on W with the

initial value of Hj set as the coefficients of linear least square regression of Xj

on W . Eliminate those variables corresponding to negative coefficients.

2 If any variables were removed, go back to step 1 until all the coefficients are

positive. In the end, the matrix consisting of remaining variables is W+. Since

X, W and H are all non-negative, the resulting W+ cannot be empty.

3 Calculate the log-likelihood for W+.

L(W+) =
m∑
i=1

(
Xij log(W

+Hj)i − (W+Hj)i
)
,

where (W+Hj)i denotes the ith element of the vector W+Hj

4 Add one variable in the removed pool to W+, denote the new feature matrix as

W+
new and calculate the log-likelihood again.

L(W+
new) =

m∑
i=1

(
Xij log(W

+
newHjnew)i − (W+

newHjnew)i
)
,

where Hjnew = (Hj(1 − ε), ε), ε is a very small positive number close to 0. In

our case, we use 10−7 as the value of ε.

5 Compare L(W+) with L(W+
new), if L(W

+) < L(W+
new), use this new W+

new com-

posed of W+ and the new variable to repeat steps 1 to 5. Otherwise remove

this variable and try to add another variable in the removed pool to W+ and

repeat step 4 to 5, until all removed variables have been tried.
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In detail, the steps could be described as:

For each observation Xj (a column in X), we first fit the Poisson regression on

W to get the unconstrained coefficients, then remove negative ones and remove the

corresponding feature variables in the W matrix.

Repeat this procedure until there are no negative coefficients left.

Calculate the log-likelihood value using these remaining variables of W matrix,

we call the remaining variables the positive W matrix.

Next we add back one removed variable each time into the positive W matrix and

calculate the new log-likelihood value. to decide if this variable will be added back,

we do not need to refit the Poisson regression when calculating the new log-likelihood

value. As the old coefficient matrix is a local maximization for the log-likelihood

function with the remaining variables, the corresponding point is on the contour line

and the derivative at that point should be 0 with respect to all remaining variables.

When we add another variable with a small positive coefficient into the system, if

we are near to the original maximum, the log-likelihood for the new point will either

increase or decrease, depending whether the derivative is positive or negative. So

if we want to see whether a variable could increase the log-likelihood, we can just

add a very small weight ε for the new variable, then calculate the new log-likelihood

with the new rescaled weight matrix. We need to rescale the Hjnew vector, so that

H ′
jnew

1 = X ′
j1, 1 = (1, 1, · · · , 1). This is because we assume the data follow the

Poisson distribution, so the sum of the observation Xj should be equal to the sum of

its mean vector WHj. As each column of W has unit sum, H ′
jW

′1 = H ′
j1 = X ′

j1.

We compare this new log-likelihood value with the old one. If it decreases, the

derivative is negative which means point with positive weight on the new variable will

decrease the log-likelihood. Then the new variable should not be added. If the new

one is larger than the old one, add this variable into the positive W matrix and do a

Poisson regression on this new positive W matrix again and repeat the above steps

until no variable can be added.

In this way, we can make sure that each time we decide to add a new variable

to the positive W matrix, the likelihood becomes larger. This procedure keeps the

log-likelihood function increasing under the constraints that all elements remain non-

negative.
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To see that the algorithm will converge, a key point is that our algorithm is only

dealing with the discrete part of the optimization, and the Poisson regression takes

care of the continuous optimization. Since we are optimizing over a finite number

of possible sets of positive variables, convergence is guaranteed by the fact that each

step increases the likelihood.

3.3 Choosing the number of types

3.3.1 Review of Wilcoxon rank-sum test

When the data can not be assumed following a normal distribution, the t-test is not

appropriate for comparing two samples to assess whether they have the same mean.

The Wilcoxon ranked test (also called the Mann-Whitney U test) is a nonparametric

test for this situation, especially when one population tends to have larger values

than the other. (Wilcoxon F. 1945) [10]

It is assumed that:

1 All the observations from both samples are independent from each other,

2 The responses can be compared,

3 The distributions of both groups are equal under the null hypothesis,

4 Under the alternative hypothesis, the probability of an observation from one

population (X) exceeding an observation from the second population (Y) is not

equal to 0.5.

To do a Wilcoxon rank-sum test, perform the following steps.

1 Rank the data. That means replace the data by their ranks, from smallest to

greatest. For example, the data are:

Sample 1: 500 560 700 680 630 660

Sample 2: 650 510 560

they will be replaced by their ranks

Sample 1: 1 3.5 9 8 5 7
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Sample 2: 6 2 3.5

If there are two (or more) tied values, like (560, 560), their ranks are both the

average of the ranks that would be assigned if they were different.

2 Calculate the Wilcoxon statistics Rs, as the sum of ranks in the first sample.

In the example, Rs = 33.5.

Let n1 and n2 be the number of observations in the first and second sample.

Here n1 = 6, n2 = 3.

The mean and variance of Rs under null hypothesis are

μRs = n1(n1 + n2)/2,

σRs
2 = n1n2(n1 + n2 + 1)/12.

So here μRs = 27, σRs
2 = 15. Rs is approximately normally distributed.

3 The observed test statistic is

Zobs =
Rs− μRs

σRs

=
33.5− 27√

15
= 1.678

Here the null hypothesis is: both distributions for the two samples are the same.

So for the alternative that two distributions are different, the p-value is

P (|Z| > 1.678) = 2× 0.0475 = 0.095

This means under the level of 0.05, we could not reject the null hypothesis.

3.3.2 method for choosing the number of types

The number of types for each class of observations should be chosen to best describe

its own class but not to describe other classes or noise. For discrimination purpose,

the number of types for each class should be chose to best separate the classes.

Thus in order to choose the best number of types for the first class, we will look

the deviance statistics to see how well the chosen types will fit the first class better

than other classes. Since the types are chosen from the first class, to make the
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comparison objective, the deviance statistics need to be calculated on a test set of

the first class. The deviance statistics are not Normally distributed, thus we will

use the Wilcoxon rank-sum test based on the deviance statistics to test how well the

classes are separated. For each class, we will try a sequence of values for the number

of types and find the best value to discriminate this class from other classes.

We use a 2-class data case as an example to illustrate the ideas. We use a r-

fold cross-validation on training data for both classes. In each cross-validation, we

separate training data into training fold and test fold. To choose number of types for

class 1, we apply the following steps to a range of values for k:

1 For each fixed value k, fit k types on the training folds from class 1 to get W .

2 Fit the remaining test fold data from class 1 and one fold of data from class 2

on W .

3 Calculate the deviance for each fitting.

4 Use a Wilcoxon ranked test on these deviances to get Z-values.

5 Sum the values of Z statistics from all different cross-validations. The sum of Z

statistics should follow a normal distribution with mean of zero and standard

deviation of
√
r.

6 Choose the smallest k for which the sum of Z-value is within one standard devi-

ation of the largest sum of Z-value, where the standard deviation is estimated by

treating the Z-values from the different folds as a sample from the distribution.

By using r-fold cross-validation and combined Z-value, we can effectively increase

the power of this test, which is particularly important when number of observations

is small.

3.4 Prediction

With the fixed W , we apply the above algorithm on training data to calculate the

training H and on test data to calculate the test H. After getting H matrix, we have

effectively reduced the dimension from m to k. We can use an off-the-shelf supervised
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learning method to predict the class labels since k < n. Let Y be the response variable

such that Y = 0 if this observation is in class 1, and Y = 1 otherwise. In the following

chapter, we treat this training H as new variables and perform a logistic regression

on H. We choose logistic regression because of its simplicity. The trained logistic

regression model can then be used to do prediction on the test H.



Chapter 4

Application of supervised NMF

4.1 Simulation

4.1.1 Simulation Design

We simulate data according to our proposed model. As the data follow a Poisson

distribution with mean (WH)ij, to generate these data, we first generate the mean

WH.

The mean is a linear combination of different features (different columns of W).

So we fix W . We use the features obtained by applying NMF to the two classes in

the IBD dataset (Qin 2010) [14].

We generate the H matrix by generating each entry from a uniform distribution

on [0, 1] then normalizing the column vectors so that the column sums of H are equal

to the column sums of IBD data.

The WH gives us the mean and we add four levels of noise to the product WH.

The noise is normally distributed with mean 0 and four different standard deviations.

noise0 : sd0 = 0

noise1 : sd1 = sd(W )/4

noise2 : sd2 = sd(W )/2

noise3 : sd3 = sd(W )

Here the sd(W ) is a vector of standard deviations for each row of W. This is a vector

of length m (the number of genes or OTUs) which measures the variability for each

type of gene or OTU across different people.

The column of WH plus the noise is the Poisson mean we use in the simulation.

Each element of X is generated by independent Poisson distribution with the mean

given by above mean matrix.

27
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We simulate data with number of types 2, 5, 10 for class 1 and 3, 6, 9 for class

2. So the number of different combinations is 9 in total. They are 2&3, 2&6, 2&9,

5&3, 5&6, 5&9, 10&3, 10&6, 10&9. Considering the different noise levels, we have 36

scenarios. For each scenario, we simulate 25 replicates. In each replicate, we simulate

200 observations for each class. Then we separate the data into two parts: the first

200 observations as the training data and the other 200 as the test data.

4.1.2 Simulation Results

We choose the number of types from the training data using a 10-fold cross-validation

and the method in Section 3.1.3. The Tables 4.1-4.6 summarize the results for the

number of types chosen by our methods. Tables 4.1 -4.3 summarize the results for

the number of types chosen for class 1. And Tables 4.4-4.6 summarize the results for

the number of types chosen for class 2.

class 2
2 types for class 1

maximum minimum mean sd

3 types

noise0 7 2 2.24 1.0116
noise1 5 2 2.20 0.7071
noise2 6 2 2.72 1.2083
noise3 10 2 2.76 1.6653

6 types

noise0 7 2 2.4 1.1547
noise1 7 2 2.32 1.0296
noise2 6 2 2.44 1.0033
noise3 8 2 2.88 1.6663

9 types

noise0 9 2 2.4 1.4434
noise1 8 2 2.36 1.3191
noise2 9 2 2.36 1.4399
noise3 7 2 2.44 1.0832

Table 4.1: Simulation summary of the predicted number of types for class 1 with the
true number of types for class 1 being 2

The Tables show that the algorithm tends to output slightly larger values than

the true number of types in most scenarios, but the true number of types mostly are

within one standard deviation of the mean of chosen number of types. When the

true number of types is 10, the chosen number of types is always smaller than 10.

The reason is that 10 is the largest value among the range of values we tried when

choosing the number of types. We will try values from 1 to 12 or even larger numbers
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class 2
5 types for class 1

maximum minimum mean sd

3 types

noise0 9 5 6.04 1.1358
noise1 10 3 6.72 1.4583
noise2 9 5 6.44 1.1576
noise3 10 5 7.12 1.6411

6 types

noise0 9 5 6.92 1.2557
noise1 10 5 6.52 1.5843
noise2 10 5 6.84 1.3441
noise3 10 4 6.4 1.8708

9 types

noise0 9 5 6.56 1.4166
noise1 10 5 6.76 1.4166
noise2 9 5 6.92 1.4978
noise3 10 4 6.84 1.7243

Table 4.2: Simulation summary of the predicted number of types for class 1 with the
true number of types for class 1 being 5

in the future to see if the results will improve. The Tables also show that in most

replicates, when the noise level become higher, the difference between the mean and

the true number of types will increase. The results demonstrate that our method is

quite effective in finding an appropriate number of types.

After the number of types are chosen, we perform a prediction on the test data

using the trained logistic regression model on the training data based on the chosen

number of types for each simulated data set. The prediction errors are shown in

Tables 4.7-4.10 for different noise levels. The tables list the average test error for 25

data sets. For example, 0.04 means 0.04% test error among total of 5000 observations.

In each table, the rows are the true number of types for class 1 and the columns are

the true number of types for class 2.

We find when the true number of types get larger, the prediction errors tend to

increase. That may be because we have chosen better number of types in the cases

the true numbers of types are small. But in total, the prediction errors are quite small

for all cases which means our supervised NMF method works well in prediction. The

applications of our supervised NMF on real data are shown in the next section.
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class 2
10 types for class 1

maximum minimum mean sd

3 types

noise0 10 7 8.72 0.8907
noise1 10 7 8.96 0.6758
noise2 10 7 8.72 0.7916
noise3 10 4 8.52 1.4177

6 types

noise0 10 7 8.72 0.6782
noise1 10 8 8.92 0.6403
noise2 10 6 8.92 0.9539
noise3 10 5 8.36 1.6042

9 types

noise0 10 6 8.68 0.8021
noise1 10 7 8.88 0.8327
noise2 10 7 8.64 0.8103
noise3 10 6 8.68 1.3450

Table 4.3: Simulation summary of the predicted number of types for class 1 with the
true number of types for class 1 being 10

4.2 Real Data Analysis

We apply this supervised NMF on the animal data (Muegge 2011) [3] and the moving

picture data (Caporaso 2011) [16]. The results are shown in the following subsections.

4.2.1 Animal data

We only use the carnivores and herbivores from the animals dataset (Muegge 2011) [3].

So the data we use here contains metagenomic sequencing of fecal samples from 28

mammals: 7 carnivores and 21 herbivores (Muegge 2011) [3]. As the number of

observations are too small, we do a 7-fold cross-validation on the whole data. Each

time we use 6-folds as training data and the remaining observations as test data. The

Z-values are plotted in Figure 4.1.

The plots show that when the number of types change from 2 to 5, the Z-values

stay the same. So 2 types are enough for both classes. Then we use the chosen

number of types to get the weight matrix for the training data and test data and

perform a prediction on the test data. The weight matrix for both training and test

data in one time of the 7-fold cross-validation is shown in Figure 4.2.
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class 1
3 types for class 2

maximum minimum mean sd

2 types

noise0 9 3 3.64 1.3808
noise1 6 3 3.52 0.8226
noise2 9 3 3.76 1.5078
noise3 7 3 3.8 1.3229

5 types

noise0 7 3 4.04 1.3064
noise1 7 3 3.64 1.1136
noise2 5 3 3.4 0.7071
noise3 9 3 3.92 1.6563

10 types

noise0 9 3 4.72 1.5948
noise1 10 3 3.92 1.7554
noise2 9 3 3.88 1.6155
noise3 10 3 4.36 2.0182

Table 4.4: Simulation summary of the predicted number of types for class 2 with the
true number of types for class 2 being 3

The plot shows that both training Carnivores and test Carnivores could be well

separated from Herbivores.

Both the training and test errors are 0 in each time of the 7-fold cross-validation

data split.

The prediction errors are all 0 means our algorithm could separate the two classes

of animals quite well. The huge number of variables in original data could be reduced

to 4 features (2 for each class), which means the classes of animals are determined by

four features. Also from the plot, we can also see that although we did not supervise

the distinction between the two types of herbivores, there is some reasonable degree

of separation between these classes.

4.2.2 Moving picture data

We also apply our method to the tongues data and guts data in the moving picture

dataset (Caporaso 2011) [16].

Tongues data

As the data are time based, we choose the first 70 time points’ observations of all

135 observations of person 1 and the first 190 time points of all 373 observations of

person 2 as training data. The rest data are test data.
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class 1
6 types for class 2

maximum minimum mean sd

2 types

noise0 10 6 7.12 1.09
noise1 9 6 7.16 1.0677
noise2 9 6 6.84 0.9866
noise3 10 6 8.24 1.5351

5 types

noise0 9 6 7 1.0000
noise1 9 6 7.88 1.3940
noise2 10 6 7.36 1.4399
noise3 10 5 7.72 1.4583

10 types

noise0 10 6 7.44 1.4457
noise1 10 6 7.68 1.2152
noise2 10 6 7.6 1.5
noise3 10 6 7.76 1.3317

Table 4.5: Simulation summary of the predicted number of types for class 2 with the
true number of types for class 2 being 6

We perform a 5-fold cross-validation on the training data to find the number of

types for both individuals. The Z-values are plotted in Figure 4.3.

The Figure 4.3 shows that 2 types are appropriate for person 1 as the mean Z-

value when number of types is 2 falls within one standard deviation of the Z-value

when number of types is 3. For person 2, 10 types are appropriate. Then based

on the 12 features, we get the training H and test H. The weight matrix of the test

data for 2 types from each class is shown in Figure 4.4 as this actually gives better

prediction than 210. The prediction errors for different number of types are shown in

Table 4.11.

Figure 4.4 shows that most of the observations could be separated correctly to

their own classes. Looking at just these 4 features, most of observations in tongues

data could be classified according to which individual they come from. And Table

4.11 show that the prediction error is smallest when the types are 22 for these two

classes. Thats different from what we get in our method. This may be because we use

a logistic regression in prediction, which may not be the best model for the tongues

data. We will nd a more suitable model for the data in the future. Looking at just

these 4 features, most of observations in tongues data could be classified according

to which individual they come from.
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class 1
9 types for class 2

maximum minimum mean sd

3 types

noise0 10 8 9 0.7638
noise1 10 8 8.88 0.6658
noise2 10 8 9.04 0.6758
noise3 10 6 8.92 1.0770

6 types

noise0 10 7 9 0.8165
noise1 10 8 8.88 0.6658
noise2 10 7 9.28 0.7371
noise3 10 7 8.64 0.8602

9 types

noise0 10 8 9.04 0.8406
noise1 10 8 8.92 0.7594
noise2 10 7 8.6 0.8660
noise3 10 6 8.88 0.9274

Table 4.6: Simulation summary of the predicted number of types for class 2 with the
true number of types for class 2 being 9

% 2 types 5 types 10 types
3 types 0.04 0.24 0.80
6 types 0.12 0.40 1.24
9 types 0.48 1.20 1.12

Table 4.7: prediction error with noise0

Each feature in feature matrix of tongues data is plotted in Figure 4.5.

Figure 4.5 shows that in each column of feature matrix, only a few elements,

around 18, are non-zero over 1151 elements in total. So the feature matrix of tongues

data is highly sparse and each feature is only consists of a few genes or OTUs. So

each observation is a combination of a few different super types in the type matrix

W. Our interpretation is that the super types with non-zero coefficients for a given

observation include the major community information for the observation.The bio-

logical interpretation of these features should be very interesting and will be pursued

later.

Guts data

Same as above, we choose the first 70 time points’ observations of all 131 observations

of person 1 and the first 190 time points of all 336 observations of person 2 as training

data. A 5-folds cross validation with our method of choosing number of types is
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% 2 types 5 types 10 types
3 types 0.06 0.54 0.76
6 types 0.34 0.34 1.22
9 types 0.44 1.10 1.04

Table 4.8: prediction error with noise1

% 2 types 5 types 10 types
3 types 0.00 0.42 0.68
6 types 0.10 0.56 1.08
9 types 0.54 1.20 0.80

Table 4.9: prediction error with noise2

applied on the training data. The results are shown in Figure 4.6.

As almost all the Z-values are the same for person 1, we choose 2 types for person

1. And for person 2, the Z-value for 2 types lies within one standard deviation of the

largest Z-value, so we also choose 2 types for person 2. Then we perform a prediction

on the test data. The results are shown in Figure 4.7 and the prediction error is

0.008811 for the test data.

We see that both training and test data are perfectly separated into two individ-

uals which means the distinguishing features of guts data are included in a matrix

consisting of 4 features. This matrix contains sufficient information for classification.

Each feature in feature matrix of guts data is plotted in Figure 4.8.

Figure 4.8 shows that in each column of feature matrix, only a few elements, less

than 20, are non-zero over 2563 elements in total. So the feature matrix of guts data

is highly sparse and each feature should consist biologically interesting signatures for

each of these two individuals.
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% 2 types 5 types 10 types
3 types 0.12 0.48 0.60
6 types 0.24 0.30 0.78
9 types 0.30 0.64 0.70

Table 4.10: prediction error with noise3
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Figure 4.1: Z-values for animal dataset. The left panel is Z-values for the herbivores
and the right panel is for the carnivores.

Figure 4.2: animals dataset weight matrix. The dark red points are training Foregut-
fermenting Herbivores and light red ones are test Foregut-fermenting Herbivores, the
dark green points are training Hindgut-fermenting Herbivores and the light green ones
are test Hindgut-fermenting Herbivores, the dark blue points are training Carnivores
and the light blue ones are test Carnivores.
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Figure 4.3: Z-values for tongues data. The left panel of Figure 4.3 shows Z-values for
person 1’s tongue and right panel shows Z-values for person 2’s tongue.

Figure 4.4: tongues data weight matrix. The dark blue points are training data from
person 1 and dark green points are training data from person 2, the blue points are
test data from person 1 and the dark yellow points are test data from person 2.
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training error prediction error
type 2× 2 0.01923 0.04032
type 2× 3 0.01923 0.07258
type 2× 4 0.03077 0.05242
type 2× 5 0 0.04435
type 2× 6 0 0.06048
type 2× 8 0 0.06048
type 2× 10 0 0.08065

Table 4.11: prediction errors for tongues data.
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(a) First column in feature matrix of tongues
data
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(b) Second column in feature matrix of
tongues data
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(c) Third column in feature matrix of tongues
data
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(d) Forth column in feature matrix of
tongues data

Figure 4.5: Plot of different features of tongues data
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Figure 4.6: Z-values for guts data. The left panel of Figure 4.6 shows Z-values for
person 1’s gut and right panel of Figure 4.6 shows Z-values for person 2’s gut.

Figure 4.7: guts data weight matrix. The dark blue points are training data from
person 1 and dark green points are training data from person 2, the blue points are
test data from person 1 and the green points are test data from person 2.
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(a) First column in feature matrix of guts
data
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(b) Second column in feature matrix of guts
data
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(c) Third column in feature matrix of guts
data
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data

Figure 4.8: Plot of different features of guts data



Chapter 5

Discussion

The results for simulation and real data show that our supervised NMF could re-

cover the correct number of types based on which a good classification results can be

achieved. The developed supervised NMF can effectively reduce the dimensionality of

the data to a non-negative and most often sparse data matrix, which contain sufficient

discriminative information for classification purpose. However, in both the animal

and moving picture data examples, classification is not the study purpose. For IBD

data, classification and prediction is important to some extent. In all metagenomic

data analysis, the common important purpose is to find the community structure

and function of different classes of objects. The effectiveness of classification based

on H matrix only confirms that the super-types in W matrix are important types to

describe the corresponding class of objects. A nice feature of NMF is that it is part

based factorization. Recall the facial example (Lee and Seung 1999) [6] in Chapter

1, each face can be decomposed into a linear combination of typical nose, mouth, eye

and so on. Thus W matrix is usually sparse too. These typical features are the com-

munity signatures for each class of objects in metagenomic analysis. Detailed work in

future is needed to map these community signatures in W matrix to the metabolite

pathways in the case that the data are metagenomic genes and to the phylogenetic

trees in the case that data are measurement of OTUs.
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