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Abstract

Nitrogen is a limiting resource in marine ecosystems that directly impacts the pro-

ductivity of marine life. Values of δ15N extracted from down core sediments are used

as a proxy measure of nitrogen in past marine environments. We analyzed historic

δ15N records from around the world, covering time periods that ranged 125,000 to

5000 years ago. The Kalman smoother was used to extract the true signal of δ15N

from the noisy observations. Applying multivariate techniques, we found both global

and regional signals of δ15N . From the principal components analysis we found global

signals characterized by sharp increases in δ15N values that began 60,000 and 20,000

years ago. Using k-means clustering, we identified cores with statistically similar

δ15N signals that were in close geographical proximity. These findings suggest that

there may be both global and regional forcing of the marine nitrogen cycle.
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Chapter 1

Introduction

Nitrogen is the seventh element on the periodic table and is a key element in ocean

biogeochemistry. Fixed forms of nitrogen, when in short supply, are known to be a

limiting factor in marine productivity [1]. It is not surprising, then, that changes in

nitrogen levels in the ocean over time are an important area of study for oceanogra-

phers. By understanding how the processes that affect nitrogen levels have changed

through geological time (e.g., the past 125,000 years), oceanographers can get a better

sense of how marine ecosystems faired over that time and what future anthropological

changes could mean for our planet.

1.1 The Marine Nitrogen Cycle

All organisms in the ocean require nitrogen as well as carbon and other elements

as nutrients for food and energy. The vast majority of nitrogen is in the form of

nitrogen gas (N2), which most living beings are not capable of using [1]. These

organisms require other organisms to convert the N2 gas into a form that they can

use. There are also organisms that will reconvert these fixed forms of nitrogen into N2

gas. The transformation of nitrogen between these different states is what is known

as the nitrogen cycle.

Overall, there are two processes that predominantly determine the amount of fixed

nitrogen the ocean. These processes are nitrogen fixation and denitrification. Nitro-

gen fixation is the process by which N2 gas is eventually converted into nitrate or

ammonium that can be used by phytoplankton to make organic matter [1]. Phyto-

plankton are food for more complex organisms, and form the base of the marine food

chain. Phytoplankton use this ”fixed nitrogen” to make organic tissue from carbon

1
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and other elements. This means that the nitrogen cycle has an influence on, and is

influenced by the carbon cycle. Denitrification is the reverse of nitrogen fixation in

that it is the process by which nitrogen is converted from biologically accessible nitro-

gen species back into N2 gas, and is lost from the ocean to the atmosphere. The rates

of nitrogen fixation and denitrification determine how much nitrogen is available in

the ocean at any given time and, as a result, ultimately regulate marine productivity

and thus, marine carbon dioxide (CO2) fixation.

The nitrogen cycle in the ocean has therefore been of interest to many oceanogra-

phers and marine biochemists. A particular area of interest has been to measure the

impact of humans on the marine nitrogen cycle. Humans have started to artificially

fix nitrogen for use in soils, which gives plants on farms and gardens more nutrients

to grow. The amount of fixation done by humans has rivaled that of the fixation of

nitrogen done by marine organisms [1, 2]. A second reason is the impact that the

nitrogen cycle has on climate change. Nitrous oxide (N2O), which is created in both

nitrification and denitrification, is a potent greenhouse gas, and when it is created

some of it can escape the ocean and goes into the atmosphere [1]. Having more N2O

in the atmosphere would speed up the effects of climate change.

1.2 Studying Nitrogen in Past Environments

Commonly, researchers who investigate how nitrogen behaved in the past, look at the

behaviour of nitrogen in specific periods in time: glacial (ice ages) and interglacial

(the transition from the glacial to the next glacial period). One reason for looking

at these periods in particular, is that they are easier to date and analyze as they are

well recorded in sediments on the ocean floor [1]. A second reason is that they offer

researchers a real life or ”natural experiment” setting in which observations range

from a stable equilibrium state in a glacial time period, then transition to a state of

rapid change in an interglacial time period, before returning again to a stable state

in the next glacial period.

There is no direct record of the historic levels of nitrogen in the ocean [1]. Instead,
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there is a proxy measurement that is based on the two stable isotopes of nitrogen.

These two stable isotopes are 15N , which is very rare, and 14N , which accounts for

99.63% of all nitrogen. Using these two stable isotopes of nitrogen, an isotopic ratio

is calculated and is expressed in terms of (δ15N) as follows:

δ15N = (
15N/14NSample

15N/14NAir

− 1) ∗ 1000PPT (1)

where the ratio in the air is used to standardize the results, and PPT stands for

parts per thousand. The isotope ratios in the sample are determined on dry ocean

sediments sampled from the ocean floor.

The nitrogen isotope ratio does not give a measurement of the level of nitrogen in

the ocean per se. Rather, it indicates which process was more active in a particular

region. For example, in areas where denitrification is the driving force, δ15N values

tend to be higher. This is because the process of denitrification uses the 14N prefer-

entially over the 15N . When this process is the driving force, it leaves behind higher

than normal levels of 15N , which increase δ15N . Conversely, in areas that have very

high rates of fixation, δ15N tends to be much lower. The average δ15N of N2 gas is 0

PPT, whereas the mean δ15N of nitrate in the ocean is 5 PPT. No isotope fraction-

ation occurs during nitrogen fixation. Therefore, nitrogen fixation is adding nitrogen

with relatively lower nitrogen isotope ratio to the ocean, overall lowering the δ15N

of mean oceanic nitrate. This means that in an area where there are higher levels of

δ15N , the denitrification rate might have been larger than the nitrogen fixation rate.

In much of the ocean, however, the δ15N signal is determined by different utilization

of nitrogen species, a process that fractionates isotopes as well.

1.3 Previous Research

As discussed above, when studying the marine nitrogen cycle in the past, researchers

use δ15N as a proxy measurement. In their 2013 paper, Tesdal et al. [3] compiled

173 downcore records of ocean sediments, most of which included measurements of
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δ15N (153). The geological locations of these core samples can be seen in Figure

1.1. (Note that the world map graphic used in this and all subsequent figures where

locations are indicatted, were generated using the maptools package in R. [4]) The

individual records were collected by a number of different researchers and represent

different periods of time.

Figure 1.1: Location of all cores with δ15N measurements (n=153).

The ages associated with each δ15N measurement were retained from the original

sources, unless an age measurement was not provided. It should be noted that there

is a sampling bias in this data set as most of the samples were collected in areas of

interest to the original researchers, who selected areas where nitrogen cycle processes

of interest were known to be present. It should also be noted that the farther back

in time the measurements are the less accurate they are believed to be (i.e., δ15N

measured 5000 years ago are considered more accurate than δ15N measured 100,000

years ago).

In addition to compiling this data set, Tesdal et al. [3] conducted a clustering

analysis to group samples of δ15N into regions. They looked at cores within 100

km of defined reference cores, and looked at their similarities based on their means

over a defined time period. In order to do these comparisons, they had to place
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the observations on a constant time line that was the same across all cores being

investigated. They used interpolation to estinate δ15N where the values were missing.

For cores within the 100 km radius, they found that differences in the δ15N were

relatively small.

When looking at any time series sample there is an amount of error associated with

the observations that are made. It is impossible to make 100% accurate observations

as the methods of measurement and the calibrations made to collection devices can

add in some error. This holds true for the observations of δ15N discussed by Tesdal

et al. [3].

In another research paper, Galbraith et al. [5], grouped the cores in this data set

into 16 clusters based on the known oceanographic biological provinces and common

δ15N signal. To summarize a few of these regions, there were three on the west coast

of the Americas (one in South America, Central America and North America).

1.4 Thesis Goals

The main goal of this thesis is to try to expand on the research of Tesdal et al. [3]

and Galbraith et al. [5], by approaching the data set from a purely statistical point

of interpretation, without prior assumptions, in an attempt to extract the true signal

of δ15N values from the noisy observations over three time periods. The noise in this

case is the error in the observations that is due to the measurement of δ15N and not

the natural variability of δ15N itself. The difference between these two errors will

be discussed more in Chapter 2 when we talk about state space models. By doing

this analysis, we aim to get a better understanding of changes in the nitrogen cycle

(mainly fixation and denitrification rates) through time.

The first time period of interest, named interglacial 1 (IG1), covered the time span

of 30,000 - 5,000 years ago. This time period looked at the time from the last glacial

maximum to almost the present, i.e, including a glacial-interglacial transition. Our

second time period was called the glacial time period, which covered the time span of

70,000 - 30,000 years ago. The glacial time period represents the time when the Earth
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was in the most recent glacial cycle. Finally, we looked at the time period we called

interglacial 2 (IG2), which spanned from 125,000 to 5,000 years ago. This time period

covered both the previous two time periods as well as the preceding interglacial cycle.

These three time periods were chosen because they covered the glacial and interglacial

cycles that the majority of oceanographers are interested in.

To achieve our main goal and make accurate comparisons based on these data,

we needed to extract the signal of δ15N and conduct a multivariate analysis to find

dominant signals over the defined time periods and in certain regions over those time

periods. As a first step, we aim to ensure that any differences observed in δ15N values

represent a change in state rather than a change associated with unequal time step

intervals or missing values. Here, we are specifically concerned with the mixture of

two error terms: measurement (or observation) error and process error. Measurement

error is the error associated with the measurement of the observation; that is, the error

that can be attributed to the techniques for sample collection and the determination

of the δ15N values at each time point. The process error is the error associated with

the statistical process itself, that is how much variability is there in the state from

one time step to the next. It is important to separate out the measurement error

because it could affect the analysis by providing inaccurate measurements of the true

state (underlying statistical process). This could lead to results that do not reflect

the true signal of δ15N but instead reflect the methods used to measure the data,

depending on the amount of measurement error in the observations. In Chapter 2 we

will discuss techniques used to separate these two errors, as well as the methods for

establishing a constant time line and dealing with missing data.

Our second step will be to look for dominant signals over the defined time periods

and in certain regions over those time periods using multivariate analysis techniques.

We will use principal component analysis to determine whether there is a global

dominant δ15N signal - i.e., one that is not distinct to a particular region. Using this

technique, we aim to account for the majority of the variance in the signals of δ15N

over a given time period in a small number of principal components (signals). That



7

is, we hope to take all of the cores that cover a respective period (e.g., 60 cores) and

reduce them to just those signals that represent the time period as a whole (e.g., 3

signals). To see if there are any distinct signals in particular regions, we used the

k means algorithm. This algorithm will allow us to compare, between cores, the

extracted values of δ15N at each time point in order to create defined clusters of

cores that share similar signals. We will be looking to see if these clusters of cores

with similar signals are also located in similar geographic regions. The multivariate

techniques will be described in greater detail in Chapter 3.



Chapter 2

Univariate Analysis

The goal of this chapter is to extract the true signal of δ15N from the noisy observa-

tions. This will allow us to get accurate measurements of δ15N signals for all of the

cores that cover their respective time periods and will set up the data to be used in

a multivariate cluster analysis (Chapter 3). To accomplish this we first constructed

a constant time line for each distinct time period. This was necessary because each

core sample provides a unique time line of observations, varying both in the number

of observations and the time intervals between observations (the latter even within a

single core). To make meaningful comparisons between cores, the comparisons must

be made at the same points in time. Establishing a constant time line with regu-

lar intervals could help to make sure that any changes in δ15N found in sequential

intervals are not influenced by variations in the size of the intervals. However, by

imposing a fixed time line, there will be a number of time points with missing a

δ15N value for a given core. Allowing missing values could, in effect, be the same

as allowing unequal intervals between observations. Therefore, our second task was

to fill in missing data on the constant time line. Finally, and most importantly, we

extracted the true signal of δ15N from the noisy observations. Each observation of

δ15N has a certain amount of error associated with it: observation error (error due to

the measurement processes itself), which could lead to inaccurate or false results, and

process error (the error associated with the natural changes in δ15N through time),

which is part of the process we want to measure. It is important to our analysis that

we separate these two errors.

All three of these issues need to be addressed before we move on to the multivariate

analysis and compare changes in the δ15N ratio between cores within the three defined

time periods (Chapter 3). We want to ensure that any differences found are based

8
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on actual differences in the δ15N and not based on the varying time steps, missing

values, or error in observations due to the collection and measurement process. By

solving the problems described above (and in more detail below), we are increasing

the likelihood that differences found between cores in the multivariate analysis will

be based on differences in the true signals of δ15N values alone.

It should also be noted that, due to the large number of data sets and the fact

that there are three time periods of interest, all of the described techniques were

automated; that is, instead of looking at each core individually over the three time

periods, the techniques were set up to run over all data sets in a one-size-fits-all model.

However, as a first step, we ran some basic statistical analysis and data visualization

on the raw data to see if any patterns were evident.

2.1 Data Visualization

We first looked at the mean and slope of δ15N values over each time period. The

mean δ15N as well as the slope of δ15N were calculated for each core that covered

the given time period. These values were then plotted on a global map to see if cores

that were geographically closer together shared similar values for these two statistics.

2.1.1 Inter Glacial 1 Period - 30,000 to 5,000 Years Ago

In total, 78 cores covered this time period. As shown in Figure 2.1, we can see that

the mean of δ15N values in cores that are close together geographically are similar.

For example, the three cores on the southwest coast of South America have similar

means (9.72, 10.77 and 8.82), which are also quite large when compared to the rest of

the cores. The cores on the southwest coast of Africa also have similar means (6.65,

6.79, 5.40 and 5.80), but are much smaller than those on the South American Coast.

This is consistent with the findings of Tesdal et al. [3] in their clustering analysis,

which showed that cores within 100 km circles were not very different and that the

greatest variability in mean values occurred in the Arabian Sea, off the northwest

coast of South America near the equator, and on the northern coast of Africa in the
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Atlantic Ocean.

Looking at the slopes of δ15N values (Figure 2.1), based on ordinary least squares

regression, it can be seen that the vast majority of cores (63 of 78) have a positive

slope (depicted with a blue circle), indicating that the majority of the δ15N values

increase as we go from 30,000 to 5,000 years ago. This again is consistent with the

finding in Tesdal et. al. [3] that older observations of δ15N have values that were

smaller than more recent observations.

Figure 2.1: a) Plot of the magnitudes of the means of the cores that span the inter-
glacial 1 time period. b) Plot of the magnitude of the slopes that span the interglacial
1 time period. Red circles indicate a negative slope (decreasing trend), while blue
circles indicate a positive slope (increasing trend) in δ15N as time goes from 30,000
years ago to 5,000 years ago.

A smaller set of cores (15 of 78) have decreasing δ15N values. However, it was
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noted that most cores with negative slopes (12 of 15) were very close to 0 (< 0.06).

Three cores, two in the Southern Ocean, stood out with unusually high negative

slopes (magnitude over 0.1).

Figure 2.2: a) Plot of the δ15N values vs time for the MD 84-552 core. b) Plot of the
δ15N values vs time for the MD 84-641 core. c) Plot of the δ15N values vs time for
the MD 88-773 core.

In Figure 2.2, we take a closer look at these three cores. The plots show a general

overall pattern in each core. Between 30,000 and 20,000 years ago the δ15N values tend

to be relatively stable (around 5.5 to 7 PPT). Sometime between 20,000 and 15,000

years ago the δ15N values began to decrease, reaching values of about 3 PPT between

10,000 and 5,0000 years ago. Based on this visual analysis, one could speculate that

these three cores may have shared a common historic event that caused the δ15N

values to drop rapidly about 15,000 years ago.
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2.1.2 Glacial Period - 70,000 to 30,000 Years Ago

Looking at the glacial means in Figure 2.3, just as they were in IG1, the cores that

are closer together appear similar in magnitude. This is best demonstrated by the

two cores with large means on the west coast of South America and the grouping

of cores with smaller means around the northeast of Africa in the Indian Ocean.

Again, staying consistent with Tesdal et al. [3] , as with IG1, we see that the means

for the cores on the west coast of South America are larger than most of the other

cores. However, the cores located in the Arabian Sea, off the northwest coast of South

America near the equator, and on the northern coast of Africa, in the Atlantic Ocean,

still take on a wide range of mean values, as they did in IG1 and in Tesdal et al. [3] .

Several cores had negative slopes, but none were as large as those observed in

the IG1 time period. Most cores had a positive slope, which is again consistent with

Tesdal et al. [3], but the magnitudes of the slopes seem to have decreased from those

in the IG1 time period.

2.1.3 Inter Glacial 2 Period - 125,000 to 5,000 Years Ago

In the last time period of interest (which encompasses the previous two time periods),

the same trends continue and are even more evident. Cores that are closer together

have similar means. For example, the cores in the Arabian Sea and off the northern

coast of South America now have roughly equivalent means, whereas in the previous

time periods, there were more cores in these regions with more variation (Figure 2.4).

Generally, over this time period, the slopes of the δ15N tend to be positive, indicating

that δ15N values tend to get higher as we get closer to the present.

The visual analysis of the raw data suggest that, generally, δ15N values trend

upwards over the three time periods and that cores that are geographically closer

together appear similar. This was in agreement with the analysis done by Tesdal

et al. [3]. It also became clear from the data in Figure 2.2 that some cores have

observations in shorter intervals of time than others (for example, see cores MD 84-

552 and MD 88-773), and that some cores have large gaps between observations (for
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Figure 2.3: a) Plot of the magnitudes of the means of the cores that span the glacial
time period. b) Plot of the magnitudes of the slopes that span the glacial time period.
Red circles indicate a negative slope (decreasing trend) while blue circles indicate a
positive slope (increasing trend) in δ15N as time goes from 70,000 years ago to 30,000
years ago.

example, in MD 84-641 there is a 7000 year gap between observations around 20,000

years ago).

2.2 State Space Models

In this section we plan to use a state space model to extract the true underlying

signal of the δ15N values. To do this we will separate the error in the observations

from the error in the statistical process itself, while at the same time, filling in the

gaps of missing δ15N values on our constant time line. State space models aim to
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Figure 2.4: a) Plot of the magnitudes of the means of the cores that span the inter-
glacial 2 time period. b) Plot of the magnitudes of the slopes that span the interglacial
2 time period. Red circles indicate a negative slope (decreasing trend) while blue cir-
cles indicate a positive slope (increasing trend) in δ15N as time goes from 125,000
years ago to 5,000 years ago.

obtain an accurate measurement of the state at a given time point t, (xt), based on a

weighted average between an observation of δ15N at that time, (yt), and an estimate

from the stochastic process at that time, (xt|t−1). This weighted average is based on

the variances of the two components, where the component with the smaller variance

has the most weight. State space models can be used to separate the observation

error, which we want to remove, from the process error (hence, signal extraction).

The algorithms and equations used in this section were sourced from Shumway and

Stoffer [6].
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For this analysis the stochastic process that was used was the random walk. This

is the simplest model that could be used to model the underlying statistical process

(δ15N signal). The set of equations that will be used for the state space model are as

follows:

xt = xt−1 + vt vt ∼ N(0, Q) (2)

yt = xt + wt wt ∼ N(0, R) (3)

Here, vt represents the process error. The process error is associated with natural

changes in δ15N , such as changes in nitrogen fixation and denitrification rates. This

is the error we are interested in studying as it represents how much nitrogen levels

change in the series. Measurement error is represented as wt. This is the error that

is associated with the data collection process and has nothing to do with changes in

the δ15N values over time. Rather it is the error added into the observation by the

process used to collect and measure the data. When looking at these two equations,

the only two unknowns that need to be estimated are the variances Q and R for the

state and observations respectively.

Using a state space model we aimed to do two things: (i) create a likelihood of Q

and R based on the observations of δ15N ; and (ii) obtain estimates of the true δ15N

signal. For each core in each time period we will obtain both a likelihood and state

estimate from our state space model.

A state space model was our method of choice because of its ability to separate

observation from process error. Other methods such as interpolation, splines and

nearest neighbour search (which will be described below), would be able to place

our value on a constant time line, but, would not be capable of separating out the

observation and process errors. When it comes to using splines we would need to set

the number of knots (break points in the data) which would affect how ”smooth” our

state estimates are. Using state space models we will let the data and the parameters

determine the amount of smoothing instead of a pre-decided number of break points.
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2.2.1 Observation Error (R) and Process Error (Q) Distributions

Before moving on with the state space model estimation of Q and R, we first decided

to get a rough idea of the distributions of these two parameters based on all of the

cores we had available. This would give us a reasonable understanding of the range

of values that could be expected from any estimation we would make.

Observation Error Distribution

In order to get an idea of the distribution of the observation error, a variogram was

used. Variograms, used for irregular sampling intervals, are used in spatial statistics

and are equivalent to the auto-covariance function in time series. A variogram looks at

closely related points within certain distances and computes the covariance between

those points. That is, it looks at the covariance of the observations based on the

distance (in time) they are from each other. To do this we use the variog() function

in the geoR package for the statistical program R [7,8]. When fitting a variogram, the

estimate of the observation error variance is known as the nugget. The nugget is the

value on the variogram at which the distance is zero (the y-intercept). By getting an

estimate of the nugget for each of the cores we will be able to generate a distribution

of observation error variances.

Even with the variograms values calculated, they were very challenging to fit to

a variogram model. This is illustrated in Figure 2.5 where it can be seen that the

variograms take on many different shapes. As we are dealing with a large number

of data sets, it would be very difficult to find a single variogram model that fits all

of the data sets. Therefore, instead of fitting a variogram model, a regression line

was fit to the first four points (the four smallest distances) of the variogram. These

four smallest distances varied between cores. The nugget was then estimated as the

intercept of this regression line and was the estimate of R for that core. This approach

was acceptable as, at this point, we were only trying to get a rough idea of what the

observation error was.
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Figure 2.5: Variograms for four cores.

Once all cores had an estimate of the observation error (R), we generated a his-

togram of the results. The histogram showed a skewed distribution and was fitted

with a log-normal distribution with a mean of 0.10 and a standard deviation of 0.07

(see Figure 2.6). These results were lower than expected as it was believed that the

observation error variance would be 0.2 at a minimum (M. Kienast personal commu-

nication).

In Figure 2.6, we see two cores (shown as large blue circles) with large observation

error estimates in the Mediterranean Sea. The other estimates are so small compared

to these two that they do not even show up visibly on the map, which means the

estimated observation error was much larger in these cores than in the rest. Looking

just at these two series (see Figure 2.7), we see that core MD 84-641 had periodic
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Figure 2.6: a) The magnitude plot of the observation error estimates (nuggets) ob-
tained from the variograms. b) Histogram with overlaying log normal distribution
with mean = 0.1, and standard deviation = 0.07.

behavior which could cause periodic variograms. In the core ODP 964’s variogram,

that the first four data points created a negative slope instead of a positive slope.

This means that our regression line will be increasing instead of decreasing as it

moves towards zero. Also, looking at both cores, we saw that there were not many

observations at short distances (i.e., distances less than 1000 years apart). This is a

good example of how the observation error cannot be estimated the same way for all

cores. In the cases described above, the large observation error estimate likely had

more to do with the method used to make the estimation than with actual observation

error.
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Figure 2.7: Raw data plots and variograms showing cores with unusually high es-
timates of the observation error. a) The δ15N values plotted against time for MD
84-641. b) The variogram plot for MD 84-641. c) The δ15N values plotted against
time for ODP 964. d) The variogram plot for ODP 964.

The Process Error

In this section we discuss the techniques used to get a get a rough estimate of the

magnitude of the process error. As discussed above, the process error is an estimate

of how much the state can vary (increase or decrease) in one time step. The time

steps within and between series are not all of the same length. This could lead to

conflicting results if we compute the difference in δ15N on an interval of 1000 years

and compare it, with equal weight, to a difference in δ15N based on 100 years. Before

calculating the difference in δ15N from one time step to the next, we first had to deal

with the irregular sampling intervals in the data sets.
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One of the problems encountered with this data set was that the observations

were not separated equally on the time axes within and between the cores. Within

a single series, the time steps (jumps) between observations did not occur at equally

spaced intervals. As a result, when measuring how much δ15N changes from one time

point to another, any differences observed could be a matter of different time gaps

between intervals and not changes in actual δ15N values. Similar problems were noted

between cores, which did not capture observations at matching time points. Again,

this is problematic because to compare changes in δ15N values between cores, those

comparisons need to be made over the same specific period of time (e.g., between

10,000 and 9,000 years ago). If not addressed, this could lead to findings that suggest

changes in the nitrogen fixation and denitrification rates occur more rapidly in one

core than in another when, in fact, the changes were simply measured on differing

time scales.

As can be seen in Figure 2.8, the observations of δ15N are not uniformly distributed

on the time axis. If we compare the cores ODP 1240 and CD 38-02 (panels b and d),

it can be seen that between 20,000 and 15,000 years ago, both series of δ15N values

increase by about 2 PPT. However, we can also see that over that 5000 year interval,

ODP 1240 had almost four times as many observations as CD 38-02. Looking only

from one observation to the next, it may seem that δ15N increases more rapidly in

core CD 38-02 than in core ODP 1240, when in fact the time intervals in the latter are

shorter. This can be particularly problematic when trying to compare process errors.

Since the process error is a measurement of how much the δ15N signal can vary from

one time step to the next, if different cores don’t follow the same time intervals then

comparisons of the process error will be based on the time gaps and not on the δ15N

signal. To solve this problem we put the data on a regular interval time line so that

the spacing between δ15N measurements was not only consistent within the core but

also between cores, allowing meaningful comparisons to be made.

For this analysis we put the data on a constant time line with a time step of 1000

years. The unit of 1000 years was deemed the most logical choice as it was the base
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Figure 2.8: Sample plots of the δ15N observations from cores covering the interglacial
1 time period.

unit of measurement. Still, the observations of δ15N values do not fall precisely on

this time line at the designated time points. (This was not a problem based on the

interval selected but on the non-synchronous nature of the raw observations.) For

example, there are no observations at exactly 8000 years ago. A nearest neighbor

search was used to put all of the δ15N values onto the created constant time line. We

chose nearest neighbor because it is a relatively simple algorithm for solving problems

like this. It is also worth noting that the 1000 year time step continues to have missing

values, but when we tested the time line with shorter time steps the number of missing

values increased.

Each observation of δ15N was grouped to the closest time point on the constant
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time line. In the event that an observation was equally distant from two time points,

the observation was placed at the highest time point. For example, an observation at

8,200 years ago would be placed at 8,000 years ago on the constant time line, while

observatins at 8,500 years ago and 8,700 years ago would be placed at 9,000 years

ago on the constant time line. If two or more observations within the same core were

closer to the same time point, the mean value was used for the observation at the

designated time point. An example of the outcome of the nearest neighbour search

can be seen in Figure 2.9.

Figure 2.9: Plots showing the original (a) data for core ME33-NAST and the same
data after the application of the Nearest Neighbour Search (b).

The nearest neighbor search was completed for each of the three time periods. In

order to be included in the analysis for a given time period, the core data set had to
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have at least one observation within ±1,000 years of both the start and end point of

the time period (i.e., for inclusion in the IG1 period, a core needed to have at least

1 observation between both 4000-6000 years ago and 29,000-31,000 years ago). This

was done to ensure that, if a core was selected for analysis for a given time period, it

had data that covered the entire time period. After putting all of the cores onto the

constant time line, it was found that 78 of the cores spanned the IG1 time period,

55 spanned the glacial time period and 35 spanned the IG2 time period. There are

other methods that can map data to a constant time line (such as interpolation), but

we were satisfied with the results of the nearest neighbour search.

Figure 2.10: Process error distributions showing the first difference absolute values
for each of the three time periods: (a) interglacial 1, (b) glacial, and (c) interglacial
2.
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Having established a constant time line, the next step was to get a benchmark

for what the process error should be by calculating all of the first differences for the

respective time periods. This would give us an idea of how much δ15N can vary from

one time step to the next. However, despite being grouped on the constant time

line, the majority of cores still had missing values of δ15N at various time points

(i.e., no observation near one or more of the regular time intervals, even after the

nearest neighbor search). Consequently, the problem of unequal time gaps between

δ15N values remained. As stated above, comparisons between cores that do not have

measurements at the same time points can make meaningful comparisons between the

cores difficult. Therefore, for the calculation of first differences, only δ15N values that

were 1,000 years apart were used (i.e., there were no comparisons between sequen-

tial observations made between 7000 years ago and 5000 years ago). Once the first

difference values were stored, a histogram was created, as displayed in Figure 2.10.

Here we see that in all 3 time periods the majority of first differences are below 0.5.

This indicates that we should not see fluctuations of δ15N of more than 1 PPT over

1000 year intervals when we do our parameter estimations. It is important to note

that this is a rough estimate of the process error, since we have not yet separated the

observation and process error this estimate has some observation error in it as well.

2.2.2 State Estimation

By conducting the previous analysis on the observation error and process error, we

now have a rough idea of what to expect from the state estimation. The Kalman

filter method was chosen to estimate these two parameters. These estimations will be

based on maximum likelihood estimation through the use of the residuals from the

Kalman filter state estimates. The Kalman filter is one of the simpler methods for

analysis of state space models, which is why it was chosen for this first attempt at

analyzing the cores. If the Kalman filter gives estimates of Q that are larger than 1 on

a consistent basis it could indicate that the Kalman filter estimation is not working
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properly.

The Kalman Filter

The Kalman filter is an algorithm that is used to get an estimate of the state at a

given time. It works by using the state estimate from the Kalman filter at time t-1

and the observed value of δ15N (if present) to get a weighted average (the estimate

of the state), and an uncertainty estimate.

In order to get an estimate of the state at time t, there needs to be an estimate of

the state from the Kalman filter at time t-1. The estimate of the state at time t-1 will

be denoted as x̂t−1|t−1. This estimation is done in two steps: the forecast step and the

measurement step. The estimate of the state at time t-1 has a variance of Pt−1, which

will be defined later. In the forecast step an estimate of the state is calculated using

the estimate of the state at the previous time only. This is done by using equation

1. Next the variance of x̂t|t−1 needs to be calculated. The forecast variance will be

represented as Mt and is calculated using the following equation:

Mt = Pt−1 +Q (4)

where Pt−1 = [R−1 +M−1
t−1]

−1 (5)

In the second step, the measurement step, the estimate of the state at time t, x̂t|t,

is calculated using the equation:

x̂t|t = x̂t|t−1 +K(yt −Dx̂t|t−1) (6)

where K = PR−1 (7)

The multiplier K is known as the Kalman gain. The Kalman gain is what applies

the weighting between the forecast mean and the observation at time t. As can

be seen from the equation for K above, the Kalman gain is a ratio between the

observation error variance and the forecast variance. Here, it is important to note
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that we are dealing with a scalar case; there is no multivariate component to the

estimation process. If the forecast variance is much larger than the observation error

variance then the Kalman filter estimates will be closer to the observation than the

forecast estimate. If the situation is reversed, the Kalman filter estimates will follow

the forecasted estimates more closely. Using this algorithm we can get estimates of

the state at all time points from t=2,...,N.

One thing to note about the Kalman filter is that it only takes into account the

past value. It does not use any information about the future observations (i.e., xt+1

has no effect on xt, but, xt is used to calculate xt+1). Since we actually have all of

the observations, we were also able to apply the Kalman Smoother, which uses all of

the data, past and future, to get an estimate of the state.

Kalman Smoother

The Kalman smoother is an extension of the Kalman filter, in which an estimate of

the state is made based on both past and future observations that were collected.

This is the estimate of the state that we want as it takes into account all of the

information that we have available. This new estimate will be represented as xt|N .

By using both the past and future observations at time t, our intention is to get a

more informative estimate of the state at time t, as all of the information that was

available in the data was used.

The algorithm for the Kalman smoother is as follows:

1. Run the Kalman filter and have estimates of xt|t, Pt and Mt for all t = 0,..,N.

2. Starting with the estimates at time t=N, run the Kalman filter backwards

through the data (N-1 to 0), with the following adjustments to the equations

K∗
t = PtDPt+1|N ∼ the Kalman Gain

Pt|N = Pt +K∗
t (Pt+1|N −Mt+1)K

∗T
t ∼ Smoother Variance

x̂t|N = x̂t +K∗
t (x̂t+1|N −Dx̂t) ∼ Smoother Estimate of the State
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These estimates of the state from the Kalman smoother will be the values used for

the analysis of the cores. This algorithm is simply running the Kalman filter in reverse

time and using the state estimates from the Kalman filter as the ”observations”. As

a result of this procedure, δ15N values were estimated for every time point on the

constant time line such that there is no longer any missing data. Comparisons of δ15N

values (between and within cores) will now be possible as all series are now populated

with values on identical time lines with no gaps in the data. With techniques now in

place to separate the process and observation error, all that remains is to get estimates

of these two parameters (R and Q) using the Kalman filter likelihood.

2.2.3 Parameter Estimation

The first attempt to get estimates for R and Q was done using maximum likelihood

estimation (MLE) using the Kalman filter. The log likelihood of the Kalman filter is

as follows:

l =
N∑
t=1

ln(Mt +R)− (yt − xt|t−1)
2(Mt +R) (8)

(Recall that Mt comes from equation 4.) For each core, the goal will be to find the

values of R and Q that maximize the log likelihood function. To make sure that the

Kalman filter likelihood was working properly, data were simulated under controlled

conditions. The data were simulated using the following values: N=1,000, R=0.28

and Q=0.6. After the data were simulated, pairings of R and Q values were sent

through the likelihood. There were 100 values for both R and Q, where both started

at 0.01 and went as high as 1 by increments of 0.01. In total there were 10,000 R

and Q pairs that were tested. After running through the 10,000 pairings the MLEs

came out to be 0.241 and 0.621 for R and Q respectively. This is illustrated in Figure

2.11. Based on these results, as well as other numerical experiments with parameter

recovery, it was concluded that the Kalman filter likelihood was working properly.
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2.2.4 Joint Estimation of Error Terms

Knowing that the Kalman filter likelihood was working properly, it was time to run

the δ15N through the MLE estimation process using the R function optim as the

optimizer. When this analysis was completed, we became aware of a troublesome

problem relating to the parameter identifiability. In almost all cases, for all three

time periods, the observation error gravitated towards zero. This caused the Kalman

smoother to essentially connect the dots between δ15N values because the MLE esti-

mate for the observation error variance was so small. In a number of other cases the

reverse happened where the process error Q was so low that the Kalman smoother

almost completely ignored the observations altogether. Figure 2.12, which shows the

joint likelihood for core CD 38-02, provides an example of this.

Figure 2.11: Simulated Joint Likelihood.

In this figure, we can see that the observation error (R) is on the zero bound.

Even when bounds were placed on the observation and process error, in many cases

the MLEs came out to be values very close to one of the bounds. Looking at the
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Figure 2.12: CD 38-02 Joint Likelihood.

Kalman smoother fit, based on these estimates in Figure 2.13, it is shown that when

the observation error is under-estimated, the Kalman smoother just connects the

observations. This is telling us that, in this particular core, there is no observation

error and all of the error comes from the statistical process - which is very unlikely.

To test whether this was simply due to the smaller sample sizes, more simulations

were conducted. When originally testing the Kalman filter likelihood, we used a

sample size of 1000 observations and were able to get back our original parameters.

Ten additional simulations were carried out with Q = 0.6 and R = 0.28 using six

different values for N, including N = 26 (sample size for the IG1 time period), 41

(sample size for the Glacial time period), 60, 80, 100 and 121 (sample size for the

IG2 time period). The sample sizes of 60, 80 and 100 were used to bridge the gap

between the glacial sample size and the IG2 sample size. We found that the Kalman

filter was not nearly as accurate as it was when N = 1,000, but the errors did not

tend to go to the extremes like in the real data. As Figure 2.14 shows, Q and R took
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Figure 2.13: Kalman smoother estimates for CD 38-02 with confidence bounds based
on the results of the joint estimation of Q and R. The black circles are the δ15N
values generated from the nearest neighbour search. The blue line is the Kalman
smoother estimate, while the green lines are the credible regions for the Kalman
smoother estimates.

on a wider range of values when N = 26 compared to when N = 121. This means

that the smaller the sample size the less accurate the Kalman filter estimates will be.

It is also important to note that these simulations were completed using no missing

data. For an actual series of δ15N values, it would rarely be the case that a full set

of observations would be available for the core (e.g., 26 observations for a core in the

IG1 time line). This further complicates the analysis as it lowers the sample size even

more than in the simulations, impacting the accuracy of the estimates.

We found that under completely controlled situations, where all of the statistical

assumptions (such as normal errors) were met, the MLE estimation worked very well,

even in smaller sample sizes. However, when moving away from simulated data,

the estimates obtained were very low and were not consistent with the belief that

the observation error was a minimum of 0.2. Possible explanations for these results
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Figure 2.14: Plots of the results of the simulations of different sample sizes. The
black horizontal line represents the true values of Q (a) and R (b). The black circles
represent the means of MLE estimates of the 10 simulations at each sample size. The
red circles are the mean +1 standard deviation and the mean -1 standard deviation
based on the same created from the 10 MLE estimates at each time point.

are that, in the Kalman filter, the R and Q trade off with each other, or that the

errors might not be normally distributed, as was assumed. As we felt we had a

better understanding of the observation error, we determined to fix its value and only

estimate the value of Q, the characteristics of which were of more interest to us.

2.2.5 Process Error Estimation

Recall that when looking at the histogram for the observation error and the log-

normal distribution that was fit to it (see Figure 2.6), the mean was 0.10. This was
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considerably lower than was expected (about half of the minimum value). However,

our estimates were based on a one-size-fits-all approach, so it was possible that the

calculated mean might be off. Rather than use the mean of the log-normal distribu-

tion, a simple average (0.28) of the observation error estimates calculated in Section

2.2.1 was used. This value seemed reasonable based on the prior belief that 0.2 was a

minimum threshold. This results in the following equations for our state space model:

xt = xt−1 + vt, vt ∼ N(0, Q)

yt = xt + wt, wt ∼ N(0, 0.28)

.

Having fixed the observation error, the only random component of the equations

left to be estimated was Q. The analysis described above was repeated, but this

time only trying to estimate Q. This resulted in an improvement in the cores where

the Kalman smoother had followed the data too closely. Building on the previous

example, when re-plotting the results for core CD 38-02, as seen in Figure 2.15, the

Kalman smoother estimate no longer connects the dots but rather follows a slowly

varying trend. However, fixing the observation error, did not solve the problem

when the process error was underestimated. In cases where the process error had

been underestimated (value near 0), those cores still had process error estimates that

were very low and continued to ignore the observations. In these cores the Kalman

smoother fitted a relatively straight lines that did not fit the data appropriately. In

many cases where this problem persisted, the cores were removed from the analysis.

2.3 Metropolis Hastings

Even though using MLE while fixing the observation error gave reasonable results,

it would still be more ideal to jointly estimate both the Q and R values. To try

and get a good estimate of both, we decided to take a Bayesian approach. Bayesian

techniques are driven by using prior information known about a parameter to assist
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Figure 2.15: a) Kalman smoother estimates for CD 38-02 with confidence bounds
based on the results of the estimation of Q while R is fixed at 0.28. The black circles
are the δ15N values generated from the nearest neighbour search. The red line is the
Kalman smoother estimate. b) Plot of the log likelihood of Q for the core CD 38-02.

in the estimation process [9]. To this end, we put prior distributions on both Q

and R, so the likelihood of the parameters were based both on the data (Kalman

filter likelihood) and the parameters prior likelihood. This would help us investigate

whether adding a prior to the Q and R values would break the dependence structure

found in the maximum likelihood estimation. This was our last attempt to jointly

estimate the Q and R values.

The Bayesian technique used for this analysis was a Markov Chain Monte Carlo

(MCMC) algorithm, specifically the Metropolis Hastings. The Bayesian method re-

quires a prior (π) distribution of the parameters being estimated to weight how likely
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the values of Q and R are based on the prior information we know about them. In

this study we used a relatively uninformative prior, Uniform(0,1), for both Q and

R. Briefly, at each point in the Markov chain, we compared the likelihood of our

current parameters, θ = (Q,R), to the likelihood of a proposal set of parameters,

θ∗ = (Q∗, R∗), and randomly chose one with probabilities based on the ratio of their

likelihood. This procedure was done 6500 times, with the first 2500 dropped from the

data set as a burn in. The Q and R values at each of the remaining 4000 iterations

were stored. Distributions for both Q and R were generated from these stored values,

and the median was used as the estimate for the parameters (Q, R). A detailed

algorithm for the MCMC procedure can be found in the Appendix B.

Two problems arose when using this MCMC method. The first was that the chains

of Q and R were each highly correlated with themselves. This was due to θ∗ being

so close to θ. To decrease the amount of correlation between adjacent iterations,

we looked at the auto correlation function to find the lag at which the correlation

dropped below 0.2 (we called this lag value t∗). Once that lag value was found, we

sampled out every t∗th value of the chain for Q and R separately. This left us with

uncorrelated realizations.

The second problem was that the acceptance ratio was either too low or too high

in many cases. The acceptance ratio is the ratio of the number of times you accept

θ∗ over the total number of iterations of the chain. This was a byproduct of trying

to automate the analysis due to the number of cores we had. We set the proposal

to be the same for all cores, θ∗ = θ + N(0, 0.05). However, for many cores, this

increase/decrease jump was either too small or too large. Because of this, an adaptive

MCMC was created where the jump size could increase or decrease depending on how

far the acceptance ratio was from the ideal acceptance range (0.15 - 0.4). A more

detailed algorithm is located in Appendix B, as well as a plot that shows the difference

in the traces (i.e., of how Q and R change through progressing iterations) between

the two versions.

The algorithm that was used was created by Hartig [10, 11] and altered by the
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author. The original algorithm was modified in three ways: (i) an adaptive model

was created; (ii) it was based on the Kalman filter likelihood instead of a regression

likelihood; and (iii) the priors were changed to uniform distributions between 0 and

1 (the prior distributions for Q and R were independent of one another).

Figure 2.16: Simulated MCMC Results. a) Plot of the smoother estimate of the δ15N .
b) Histogram of the thinned Q chain from the MCMC analysis. c) Histogram of the
thinned R chain from the MCMC analysis. d) Trace of the Q chain from the MCMC
analysis. c) Trace of the R chain from the MCMC analysis.

To confirm that the MCMC algorithm was working properly, a chain was run on

simulated data of length 100 using the sameQ and R values from previous simulations:

Q=0.6, R=0.28. As shown in Figure 2.16, we were able to obtain a distribution

around our preset values, which indicated the MCMC was working as intended and

that we were able to use the MCMC to jointly estimate Q and R.
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2.3.1 Joint Estimation of Error Terms

When trying to jointly estimate the Q and R parameters using MCMC, once again

the same problem arose where Q and R were being underestimated, as can be seen in

Figure 2.17. When looking at the δ15N series plot itself, we can see that the blue line

indicating the Kalman smoother estimate is very reactive to the data points. It is not

completely connecting the dots but it still jumps up in large spikes when a data point

is present. When looking at the histogram it is shown that both Q and R have very

small errors associated with them (under 0.1). This is showing the same problem as

with the MLE estimation, where we were getting estimates of the measurement and

process error which were too low to be believable.

2.3.2 Process Error Estimation

Given that we could not break the dependence structure using the MCMC method,

we decided to see if using this method for estimating only Q would fix some of the

instances where maximum likelihood underestimated its value. To do this, observation

error variance was again set to 0.28 and the MCMC chains were run again. The

results were practically identical to the MLE estimates of the state. Consequently,

we decided to use the MCMC estimate of the state as the de-noised δ15N signals for

the multivariate analysis.

2.4 Acknowledgment of Unresolved Issues

The goal of this chapter was to extract the true signal of δ15N from the noisy obser-

vations in the core samples. We outlined the methods that were used to extract the

signals. However, a number of the problems we encountered were not fully resolved.

First, a number of cores in each time period still had underestimated process errors

forcing the smoother to almost ignore the observations. Second, by doing the nearest

neighbour search it should be noted that we lost some information from the obser-

vations by grouping them together (averaging). Finally, by fixing the measurement

error at 0.28 we added in a small amount of bias. Since all cores were not measured
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Figure 2.17: Real data MCMC Results. a) Plot of the smoother estimate of the δ15N .
b) Histogram of the thinned Q chain from the MCMC analysis. c) Histogram of the
thinned R chain from the MCMC analysis. d) Trace of the Q chain from the MCMC
analysis. c) Trace of the R chain from the MCMC analysis.

the same way and were collected by different researchers, it is unlikely the cores all

share the same observation error. Still, we made this assumption so that we could

break the dependence structure and carry on with the modeling. Acknowledging that

these problems persist, we decided to move on to the multivariate analysis.

As a result of the univariate analysis described in this chapter, we had a processed

data set that was ready for the multivariate analysis. That is, all of the time series in

the data set: represent the extracted signal of δ15N ; were on equivalent time scales

(within the designated time periods); and no longer had any missing values of δ15N .



Chapter 3

Multivariate Analysis

In this chapter, we aimed to get a better understanding of the changes in the ni-

trogen cycle (mainly fixation and denitrification rates) over three time periods using

multivariate analysis to compare and analyze the δ15N signals that were estimated

in Chapter 2. Such an analysis is useful because if we are able to find distinct signals

in the δ15N values, either globally or in specific regions, it might be an indicator

that an historic event occurred that impacted the nitrogen cycle in the ocean. This,

in turn, could lead to future research on why certain events had a larger impact on

some regions compared to others (i.e., some regions are less drastically effected by ice

ages).

We looked at all of the cores in each time period to characterize variability of δ15N

on the regular interval time scale. This was done to determine whether there was a

signal present in all or most of the cores, regardless of their geographical location,

which might be an indicator of global change in the marine nitrogen cycle. We also

wanted to group cores based on the smoothed δ15N values obtained in Chapter 2. This

could indicate regional variations in the marine nitrogen cycle that might not have

been present on a global scale. In their paper, Tesdal et al. [3] compared the means of

cores in 100 km predefined circles and found that the cores in those circles had similar

means of δ15N . We used the entire series of δ15N values on our constant time line,

rather than means, to group the cores with no distance limitation. This would result

in findings based on statistical characteristics in the full series (e.g., rapid fluctuations

instead of slow changes in δ15N), rather than groups within a defined distance.

38
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3.1 Methods

3.1.1 Correlations vs. Distance

Before we started with our cluster analysis, we wanted to look at the similarity of cores

that were close in geographical distance. The geographical distance was calculated

using the statistical package fossil in R [12]. If cores in closer regions have the same

δ15N variation, it would be a strong indication that the variation was related to

a change in the regional marine nitrogen cycle. To determine whether cores that

were geographically close had similar characteristics, the correlations between two

cores (at a time) were plotted against the global distance between them. One of the

shortcomings of using global distance is that it does not take into account whether (or

not) a land mass is crossed. For example, two cores could be really close together, but

separated by a land mass and, as a result, be in two completely different oceanographic

basins. In such cases, we might not expect the cores to be similar, despite their

geographic proximity. For this analysis, the correlations were based on the smoothed

estimates of the state from the MCMC analysis at each time point on our constant

time line (as described in Chapter 2). It is likely that the smoothing process, which

removes many of the small fluctuations in δ15N , will increase the correlations between

the series. Since this analysis is concerned with cores that are close together, we only

looked at cores that were 2,000 km or less apart from each other. By picking such a

short distance we hoped to limit the number of comparisons that crossed land masses.

3.1.2 Principal Components Analysis

Principal components analysis was used to determine whether any distinctive patterns

in δ15N were present in the cores over the time periods. In this analysis we were

looking for global signals that could define the respective time periods in their entirety,

not necessarily by geographical regions. The equations and algorithms in this section

came from the book ”Applied Multivariate Analysis” by Johnson and Wichern [13].

Principal components analysis is a statistical technique used to reduce the number
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of variables in the model, in our case cores, to a smaller number of variables that are

an orthogonal linear combination of the cores. By doing this, we hoped to be able to

explain the majority of the variance, in all of the cores, in just a few variables. That

is, if there was a dominant trend, such as the decreasing δ15N as you go back farther

in time found by Tesdal et al. [3], we might be able to account for the majority of

variances in all of the cores with that one trend.

For the principal components analysis, we first found the eigenvalues λi and eigen-

vectors (ei) of the correlation matrix, ρ, obtained for the p cores in a given time period.

The correlation matrix was used instead of the covariance matrix because we wanted

the analysis to be completed on the standardized variables. These eigenvectors are

orthogonal linear combinations of the p cores that make up the principal components,

as shown in the equation below:

Yi = eiX = ei,1X1 + ei,2X2 + ...+ ei,pXp (9)

where;

X = is a n x p data matrix of the δ15N series for the cores in that time period;

Yi = the ith principal component in a n x 1 vector;

ei = the ith eigenvector (n x 1).

The proportion of the population variance accounted for by the ith eigenvector

is equal to the ith eigenvalue divided by p. In order to find out which principal

components should be used, we ordered them based on their eigenvalues, from largest

to smallest. That is, the principal component with the largest eigenvalue is principal

component 1 (PC1) and the principal component with the smallest eigenvalue is

principal component p. We used the k principal components that accounted for the

majority of the total variance.

Principal components analysis gives us a number of interpretable results that could

assist us in understanding how the nitrogen cycle has changed in the past. The first

of these is the loadings which are located in the eigenvectors. The loading for the ith

principal component are the coefficients that designate the weight to which each core
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contributes to the score of the ith principal component. The score is the weighted

average, at a given time point, of the cores that cover the time period of interest.

By getting the score values for the ith principal at all time points we can identify the

signal of δ15N that the principal component represents. As we are using the corre-

lation matrix to calculate the eigenvalues and the loadings, our principal component

analysis is being done on the standardized variables. As a result, the loading values

indicate the correlation or importance of the core to the ith principal component.

This means that cores with a large positive loading for principal component 1, are

highly correlated with principal component 1.

3.1.3 K-means Clustering

We used the k-means clustering algorithm to define groups of cores that had similar

δ15N signals within each time period. Our goal was to create core clusters that could

characterize changes in the marine nitrogen cycle distinct to particular regions. The

k-means clustering algorithm is a simple technique used to group items (cores) into

distinct clusters by minimizing the Euclidean distance between the cores and the

mean of the cluster they are in. We grouped the p cores that covered a given time

period into k clusters based on the smoothed estimates of δ15N values at each time

point on the constant time line. For example, in IG1 there were 26 time points on

the constant time line: 30,000, 29,000,..., 5000 years ago. We grouped the cores into

clusters that minimized the sum of the squared Euclidean distance of δ15N from the

mean δ15N at each of the 26 time points.

The algorithm for this is as follows:

1. Assign the p cores into k clusters randomly, this will be our starting point.

2. Select the first core (this core will be called the ”active core”). Place the active

core in each cluster in successive iterations and calculate the summed distance

of δ15N from the mean δ15N value. After all of the squared differences have

been calculated for all of the iterations, assign the active core to the cluster in

which the summed distance was the smallest for the active core.
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3. If the active core was moved, recalculate the mean of the δ15N value in the

active core’s new cluster and recalculate the mean of the δ15N value in the

active core’s old cluster. If the active core was not moved, recalculation is not

necessary.

4. Repeat procedure with the next core.

5. Upon reaching core p, go back to core 1 and start the loop all over again.

The algorithm stops when a full loop is completed, from 1 to p, with no further

reassignment of cores among the clusters.

To determine the optimal number of clusters that should be used for a given time

period, we tried to minimize the sum of squares within the clusters. The smaller the

sum of squares, the more alike the cores within the clusters are. A scree plot was

created to plot the sum of squares within clusters against the number of clusters. In

each scree plot we looked at where the bend or elbow in the plot occurred (the point at

which the sum of squares within clusters starts to level off), and used that value as the

optimal number of clusters. The equations and algorithms in this section came from

the book ”Applied Multivariate Analysis” chapter 8, by Johnson and Wichern [13].

3.2 Results: Interglacial 1 (IG1)

In this section we describe the results of analyses using the three multivariate tech-

niques described above on the IG1 time period. We wanted to see if there was a

dominant trend that characterized the global marine nitrogen cycle over this time

period, whether neighboring cores had similar signals of δ15N , and to determine the

optimal set of clusters for the cores in this time period. Figure 3.1 shows the locations

of the 67 cores included in the analysis for this time period.

3.2.1 Correlation vs. Distance

Looking at the correlation vs distance plot for IG1 (Figure 3.2), it shows that even

cores that are 500 km apart are highly correlated with each other. For this correlation
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Figure 3.1: Plot of the locations of the 67 cores that were used in the multivariate
analysis of the δ15N values in the interglacial 1 time period.

Figure 3.2: Plot of the correlations between all pairing of cores that are within 2,000
km of each other in the interglacial 1 time period. On the X-axis is the distance
between the two cores and on the Y-axis is the correlation based on the 26 smoother
estimated observations of δ15N .
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analysis we did not standardize the series before calculating the correlation because

we were interested to see if overall trends were similar between cores. As Tesdal

et al. [3] found, the δ15N values increase over time, which could mean that the high

correlations are a product of this increase and not a product of short term fluctuations

in the series. As the distance between cores gets larger, the correlation values start

to spread out more and more, so that the majority of the cores within 100 km of

each other have positive correlations above 0.7. Once you move past the 100 km

mark, the correlations take on a wider range of values, but still maintain some highly

correlated pairings. If we expand the distance beyond 500 km, some high correlations

remained, but there was still a wide spread in correlations overall. Comparison of

distances this large would cross land masses and geographical regions. Since the goal

here was to see if cores that were closer together were highly correlated, these large

distance comparisons turned out to be of less interest, despite the fact that, in some

cases, even cores that were over 5,000 km apart had correlations values over 0.9. It

is important to recall that global distance is not the same as water distance, and

we did not try to distinguish between cores that were 1,500 km apart in the same

ocean versus those that were 1,500 km apart but which crossed land boundaries. Our

findings support the belief that high correlations between cores that are substantially

distant were based on the increasing trend in δ15N values rather than the short term

fluctuations of the series.

Looking at Figure 3.2, there are a surprisingly large number of very strong neg-

ative correlations. Digging deeper to investigate the potential cause, we saw that

in 13 of the cores the strong negative correlations were a result of decreasing δ15N

values as time moved towards the present. This is consistent with the results found

in the data visualization completed in Chapter 2. In that analysis it was found that

a number of cores had a negative (decreasing) slope with respect to time and δ15N .

There was one pairing of cores, located in the South China Sea, that had a negative

correlation under -0.8 (see Figure 3.2). These two core series were ODP 1144 and

SO95 GIK17924-3. Checking on these two cores it was found that these two cores
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had a very sharp increase over the time period (ODP 1144) and a very small increase

over the same time period (SO95 GIK17924-3). All of the δ15N values did not differ

by more than 0.28 so we cannot draw distinct conclusions from this finding. In fact,

all of the negative correlations shown in Figure 3.2 were associated with a core with

a negative trend over this time period.

Over the IG1 time period, the majority of cores have an increasing trend where

δ15N is increasing as time moves forward, resulting in large positive correlations

between most cores. However, cores like ODP 1144, that have decreasing δ15N as

time passes, are the cause of the negative correlations. It is notable that these cores

do not seem to be randomly placed throughout the oceans. Plotting the cores with

a negative slope, as in Figure 3.3, it can be seen that these negative trends (slopes)

can be found in the Southern Ocean and a number of smaller negative trends can be

found off the east coast of Russia. Even though the cores with this negative trend

Figure 3.3: Locations of the cores with negative trends (decreasing δ15N values as
time moves forward) in the interglacial 1 time period.

are not completely grouped together in one location, they do tend to appear within

close proximity to another core sharing the same feature. This could indicate that

there is a natural process at work in these select locations that might be causing this
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abnormality.

Figure 3.4: Scree plot of the eigenvalues from the principal component analysis for
the interglacial 1 time period, plotting the eigenvalues from largest to smallest.

3.2.2 Principal Components

In order to determine how many principal components are required to account for

the majority of the covariance structure, a scree plot was created. Looking at the

eigenvalues for the IG1 time period, it was found that only the first two principal

components seemed to account for the majority of the population variance. This can

be seen in Figure 3.4, where there is a significant drop off after the second eigenvalue.

In total, the first two principal components accounted for 91.5% of the variability,

with 70% coming from the first principal component and 21% coming from the second.
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When looking at the score plot of the first principal component, it shows that

the dominant signal in the IG1 time period is a large increase in δ15N starting about

25,000 years ago (Figure 3.5, panel c). When looking at the plot of the magnitudes

of the principal components, the predominance of large positive loading values (repre-

sented as blue circles) indicates that the majority of the cores share this characteristic

(Figure 3.5, panel b). This is in agreement with the data visualization conducted in

Chapter 2 and with the finding by Tesdal et al. [3] that δ15N decreases in value the

farther back in time you go. All of the cores shown to have a negative slope in the

Chapter 2 data visualization, were highly negatively correlated with the score plot

for principle component 1. Looking at the locations of the cores negatively correlated

with the first principal component (PC1) we can see that they are grouped in the

Southern Ocean and off the east coast of Asia.

Figure 3.5: Plots of magnitudes of the loadings for the first (a) and second (b) prin-
cipal component respectively for the interglacial 1 time period. The size of the circle
represents the magnitude (larger circle = larger coefficient) and the colour represents
the sign of the magnitude (blue = positive, red = negative). Score plots for the first
(c) and second (d) principal components.

The second principal component has adistinct ”V” shape (Figure 3.5, panel d).

It decreases from 30,000 years ago, reaching a minimum at 16,000 years ago, then
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begins to increase from 15,000 years ago, reaching its maximum at 5,000 years ago.

This principal component accounts for 21% of the variability in the core, excluding

the first principal component. Based on the principal component analysis from IG1

it can be said that the most dominant signal was a spike in δ15N values at around

25,000 years ago, which was present in 55 of the 67 cores.

3.2.3 K-means Clustering

The principal component analysis gave us a good understanding of the dominant

signal in the interglacial 1 time period; one of an increasing δ15N value starting around

25,000 years ago, with a few cores having a delay or head start on this increase. With

this knowledge, we attempted to group the cores for the IG1 time period based on

their smoothed δ15N values.

δ15N Magnitude Analysis

As a first attempt we simply tried to group the cores based solely on the smoother

estimates. Before doing any analysis based on the clusters, a scree plot of the sum of

squares within groups was done to determine the optimal number of clusters. Looking

at Figure 3.6, we see that the ”elbow” occurs at five clusters. Therefore, we used

five clusters for the analysis.

Figure 3.7 shows the locations of the cores that are within each cluster. The

only cluster that appears to be distinct to a geographic region is cluster one, which is

on the southwest coast of South America. In order to determine why this particular

cluster stood out we plotted the series within each cluster.

Applying the K-means algorithm to these series, cores with similar magnitudes

of δ15N values were grouped rather than cores with similar statistical characteristics

(i.e., trends). This can be seen easily in cluster 1 where there are only three cores

(Figure 3.8). When comparing the red and black series, we see that the increase

in δ15N starts 25,000 years ago for the black series and about 20,000 years ago for

the red series. Also, when comparing the green series to the red and black series, it
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Figure 3.6: Plot of the sum of squares within cores by numbers of clusters for the
interglacial 1 time period.

can be seen that while the red and black decrease over the last 5,000 years the green

series does not. From this we can conclude that the cores in cluster 1 were grouped

based on the sheer magnitude of the measurements of the δ15N values - i.e., they all

have larger δ15N values than the other cores shown in Figure 3.8, and they are the

only 3 series with δ15N values consistently above 8. Cluster 5, however, does seem to

show some similarity in statistical characteristics as it grouped all of the cores that

had the negative trend. Since the K-means algorithm only grouped the cores based

on magnitude, it was decided to standardize all of the series by subtracting the mean

and dividing by the standard deviation.
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Figure 3.7: Plots showing the locations of the cores within their individual clusters
(a-e) and with all clusters combined (f) in the interglacial 1 time period.

δ15N Trend Analysis

When the standardized series were used in the k-means clustering analysis, the op-

timal number of clusters also turned out to be five (see Figure 3.9). When looking

into the series plots within each cluster, the k-means algorithm clustered the cores

together based on their shape and not by their magnitude.

The cores in cluster 1 are all located in the Pacific Ocean, with a high concentration

off the west coast of the Americas (Figure 3.10). This group of 11 cores started to

spike at around 20,000 - 17,000 years ago (Figure 3.11). Another similar characteristic
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Figure 3.8: Plots of the δ15N series that fall within each of the five defined clusters
in the interglacial 1 time period.

in this group is that the δ15N values start to decrease at around 10,000 years ago.

Cluster 2 includes 5 cores that seem odd in that they do not tend to increase or

decrease and they are spread out all over the world. These clusters do not fluctuate

much and they do not have the strong spike that is prevalent in many of the cores

in this time period. The third cluster had a total of 13 cores. The signals of δ15N

were similar to those in cluster 1 in that a spike was seen in the majority of the

cores. However, in this cluster the spike occurred at around 15,000 years ago and,

unlike cluster 1, the δ15N values stabilize and do not start to decrease at 10,000

years ago. This signal appears in cores all over the world but appears to have a
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Figure 3.9: Plot of the sum of squares within by the numbers of clusters for the
standardized series in the interglacial 1 time period.

large concentration in the Arabian Sea. The cores in cluster 4 have a more gradual

increase of δ15N values. This looks like the first principal component and these cores

are located all over the globe. This is not surprising as this was the strongest signal

found in the principal component analysis, so it make sense that a large number (32)

of cores around the world would have this signal. Finally, the 6 cores in cluster 5 had

the strongest decreasing trend. Three of these cores were located in the Southern

Ocean and they all seem to fall into the eastern hemisphere.

Based on the cluster analysis, cores located off the west coast of the Americas

(cluster 1) show an increase in δ15N values about 5,000 years before the majority

of the cores in the Mediterranean Sea (cluster 3). Also the cores on the west coast
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Figure 3.10: Plots showing the locations of the cores within their individual clusters
(a-e) and with all clusters combined (f) in the interglacial 1 time period for the
standardized series.

of the Americas have a drop off in δ15N values around 10,000 years ago that is not

present in the cores in the Arabian Sea or any other cluster or region. The cluster

that stands out the most is the one in the eastern hemisphere (cluster 5), where a

steep decreasing δ15N signal was present (and is not present in other regions of the

world). This decrease happens at the same time the cores in cluster 1 start to increase.

Overall there was only one real cluster (cluster 1) that stood out geographically in

this time period. This may be a limitation of our smoother estimates; as was stated

in Chapter 2, the Kalman smoother did not perform well with the small sample sizes.
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Figure 3.11: Plots of the δ15N series that fall within each of the five defined clusters
in the interglacial 1 time period for the standardized series.

3.3 Results: Glacial

In this section we repeat the multivariate techniques for the glacial time period (70,000

to 30,000 years ago). When looking at the correlations for the glacial period, it is

clear that when we go farther back in time there are fewer series that cover this time

period. The locations of the 36 cores in this time period are shown in Figure 3.12



55

Figure 3.12: Plot of the locations of the 36 series used in the multivariate analysis for
the glacial time period.

Figure 3.13: Correlation vs. distance plot for the glacial time period.
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3.3.1 Correlation vs. Distance

The scatter plot shows that there are only 15 pairings of cores that are located within

500 km of each other (Figure 3.13). Still, we see a similar pattern among these cores,

as was seen in the IG1 time period; the correlation of cores within 500 km tend to be

highly positively correlated. The exception is that there is only one slightly negative

correlation and the remainder are above 0.5. From this we can say that cores that

are close together are highly correlated, so we should be able to find similarities in

these cores.

Figure 3.14: Scree plot of the eigenvalues from largest to smallest for the glacial time
period.
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3.3.2 Principal Component Analysis

Figure 3.14 shows that the elbow in the plot happens at the third principal com-

ponent. Collectively, principal components 1, 2 and 3 account for a total of 90% of

the variance (63%, 17% and 10% , respectively). As with IG1, we see that the first

principal component is the strongest signal by a wide margin.

Figure 3.15: Plots of magnitudes of the coefficients for the first (a), second (b) and
third (c) principal components in the glacial time period. The size of the circle
represents the magnitude (larger circle = larger coefficient) and the colour represents
the sign of the magnitude (blue = positive, red = negative).

When looking at the first principal component we can see that it is characterized

by a large decrease in δ15N values starting at around 60,000 years ago (Figure 3.16).

However, the magnitude plot shows that the majority of the cores are negatively
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correlated (Figure 3.15), which means that they have a sharp increase in δ15N values

at that time.

Figure 3.16: Score plots for the first (a), second (b), and third (c) principal compo-
nents in the glacial time period.

This means the most dominant signal in the glacial time period is a sharp increase

at about 60,000 years ago. After the sharp increase, the δ15N values begin to level

off. The second principal component shows that there is a large, almost immediate

increasing spike in δ15N values near the start of this time period (Figure 3.16). After

this sharp increase there is a sharp decrease that brings the δ15N values back down to

the initial levels. The signal from the third principal component has a sharp decrease

between 70,000 and 60,000 years ago, followed by an increase between 60,000 and

50,000 years ago, at which point it starts to decline again (Figure 3.16). This looks
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like the exact reverse of the second principal component.

Overall, the most dominant signal in the glacial time period is a steep increase in

δ15N around 60,000 years ago, which was present in some form in 33 of the 36 series.

After about 10,000 years of an increasing trend, the δ15N values tend to level off and

then start to decrease. This signal of δ15N accounts for 65% of the total population

variance in the cores.

Figure 3.17: Scree plot of the sum of squares within by the number clusters used in
the glacial time period.
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3.3.3 K-means Clustering

δ15N Magnitude Analysis

When clustering the cores based on the smoothed values, the result was similar to that

found in the IG1 time period; the algorithm simply grouped based on the magnitude

of the δ15N values. This is evident in cluster 2 as the light blue core shares similar

values of δ15N in terms of magnitude with the 5 other cores in the cluster, but it has

decreasing δ15N signal while the other 5 do not. It was determined, based on the

scree plot, that 5 was once again the ideal number of clusters (Figure 3.17).

Figure 3.18: Plots showing the locations of the cores within their individual clusters
(a-e) and with all clusters combined (f) in the glacial time period.
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Interestingly, even over this time period, the two cores off the southwest coast of

South America still had some of the largest values of δ15N . The smallest values of

δ15N were clustered around the northwest coast of South America and the west coast

of North America, as shown in Figures 3.18 and 3.19. This could be an indication

of two natural processes colliding causing the δ15N values in the northwest coast of

the Americas to be lower than the δ15N values in the southern hemisphere. This area

might be of particular interest as it has both the highest and lowest levels of δ15N in

the same general region.

Figure 3.19: Plots of the δ15N series that fall within each of the five defined clusters
in the glacial time period.
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δ15N Trend Analysis

To determine if there were any signals that might be distinct to a given region, instead

of just the magnitude of δ15N , the series were standardized. This analysis showed

that 5 was still the ideal number of clusters. There is no clear bend in the scree plot

shown in Figure 3.20. Despite this, we reasoned that it was appropriate to use 5

clusters in this period based on this scree plot and the previous clustering analysis.

Figure 3.20: Scree plot of the sum of squares within by the number clusters used in
the glacial time period based on the standardized series.

Looking at cluster 1, we immediately notice that the majority of the cores appear

in the Arabian Sea. In fact, five of the seven cores in the Arabian Sea are located in

this cluster (Figure 3.21). The signal itself appears to be characterized by a decrease

in δ15N values between 70,000 and 60,000 years ago, followed by a sharp increase
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Figure 3.21: Plots showing the locations of the cores within their individual clusters
(a-e) and with all clusters combined (f) in the glacial time period for the standardized
series.

in δ15N values between 65,000 and 55,000 years ago (Figure 3.22). That increase

was followed by a decrease in δ15N values over the rest of the time period that was

about half as large in magnitude as the increase. This looks fairly similar to results

of the first principal component. The cores in cluster 2 did not have decreasing δ15N

values between 70,000 and 60,000 years ago, but did have the same increase in δ15N

values between 65,000 and 55,000 years ago. Most of the cores in cluster 2 hit their

maximum peak closer to 50,000 years ago instead of 55,000 years ago (Figure 3.22).

The majority of the cores in this cluster did not have a decrease in δ15N after they
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Figure 3.22: These are plots of the δ15N series that fall within their respective clusters
for the standardized series in the glacial time period.

hit their maximum. Instead, they stayed around the maximum level of δ15N for the

remainder of the time period. Most of the cores in cluster 2 are located off the west

coast of North America and the northwest coast of South America. The cores in

cluster 3 were fairly spread out across the globe. The distinct signal in cluster 3 is

that the cores peaked at their maximum about 5000 years before cluster 1. However,

the cores in cluster 3 do share the same decrease in δ15N values after they hit their

peak. Cluster 4 has only two members and they are both located on the southwest

coast of South America. These cores are unique in that they are the only two cores

that have two distinct peaks. The interesting thing about these cores is that the black
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core seems to lag behind the red core by about 5,000 years, even though the cores are

very close geographically. Cluster 5 is also comprised of only two cores. This cluster

grabbed all of the cores that had a strong negative trend, which is unlike the majority

of the cores in this time period. Unlike the other clusters, the δ15N values in cluster

5 start to decrease between 65,000 and 55,000 years ago instead of increasing.

As with IG1, we were able to obtain a cluster that was predominantly made up of

the cores located in the North Pacific, off the west coast of the Americas (cluster 2).

This core was defined by the δ15N values not decreasing after they hit their maximum

peak. This indicates that the δ15N values were more stable on the west coast of the

Americas. A second distinct group appeared in the Arabian Sea (cluster 1). This

cluster was defined by a steep drop off of δ15N values after hitting its maximum. The

cores in cluster 3 were located all over the globe and were very similar to the cores in

cluster 1, but preceded the trends found in cluster 1 by about 5,000 years. There could

be natural process that caused this delay in cluster 1 or it could just be a byproduct

of the aging of the samples. Cluster 4 consisted of only two cores. This cluster was

defined as the only two series that had two distinct maximum peaks and should be

flagged for further investigation as the lag seen between the cores could be indicative

of a natural process or it could be based on the methods used for calculating the age.

Cluster 5 included the two cores that had an overall decreasing trend over the glacial

time period.

3.4 Results: Interglacial 2 (IG2)

In this section we repeated the multivariate techniques for the interglacial 2 (IG2)

time period (125,000 to 5,000 years ago) to identify any characterizing trends in δ15N

values, compare δ15N values in neighboring cores and determine the optimal set of

clusters. The IG2 time period includes 29 cores that cover both of the previous time

periods. When analyzing this time period, we were interested to see if the predomi-

nant increases from the previous two time periods would continue to be present.
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3.4.1 Correlations vs. Distance

The correlation plots for the IG2 time period show that there are very few cores that

are less than 500 km apart (Figure 3.23). This was to be expected as not many of

the cores in the data set had data points as far back as 125,000 years ago. In total

there were eight pairings of cores that were separated by 500 km or less. None of the

correlations are negative, and all but one is above 0.5. This means that 7 of the 8

pairings have fairly high correlations, which is consistent with findings in the glacial

time period.

Figure 3.23: Plot for the correlation vs. distance plot for the interglacial 2 time
period.

3.4.2 Principal Component Analysis

It was determined that 4 principle components accounted for 79% of the variability in

the cores. When looking at the scree plot of the eigenvalues (see Figure 3.24), the first
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two principal components were relatively close. This is different from the other two

time periods where there was a dominant signal that accounted for a majority (over

50%) of the total variability. In this time period, the first two principal components

(combined) account for 51% of the variability, which suggests that there is no single

signal that defines this time period.

Figure 3.24: Scree plot of the eigenvalues from largest to smallest for the interglacial
2 time period.

Looking at the first principal component (Figure 3.25), which accounted for 33%

of the variability, there was a significant drop approximately 60,000 years ago, followed

by a second significant drop at approximately 30,000 years ago. The magnitude plot

(Figure 3.26) for this principal component is full of red circles indicating a negative

coefficient for 27 of the 29 cores in this time period - i.e., they are negatively correlated
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with this principal component. The negative coefficient in these 27 cores means

that the two drops in δ15N values are actually increases. The increases appear at

approximately the same time as the dominant increases on both the IG1 and glacial

time periods. This principal component seems to be connecting the first principal

component for the previous two analyses. Once past the 70,000 years ago mark, the

score increased slightly followed by a moderate decrease from approximately 115,000

years ago to 125,000 years ago.

Figure 3.25: Score plots for the 4 principal components for the interglacial 2 time
period.

The second principal component (accounting for 28% of the variability) correlates

negatively with 15 cores and positively with 14 cores. This principal component is

signaling an increase in δ15N over the majority of the time period. It is characterized

by two large increases at 120,000 years ago and about 75,000 years ago, before a steep

decrease around 25,000 years ago. Looking at the magnitude plot for this principal

component, the most negatively correlated cores tend to be on the west coast of the

Americas.

The third principal component (accounting for 10% of the variability) starts off

with a sharp decrease followed by two distinct increases at around 115,000 years ago

and 95,000 years ago. After the second increase, the δ15N signal begins to decrease

slowly at 80,000 years ago, before decreasing rapidly at 60,000 years ago. For the
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remainder of this time period, the δ15N signal shows an increase, ultimately reaching

the same approximate level of δ15N that it started at. The magnitude plot shows

that this signal does not have a lot of weight off the west coast of the Americas. This

signal seems to be highly positively correlated with the cores on the west coast of

Africa and highly negatively correlated with the cores in the Arabian sea.

Figure 3.26: Magnitude of the coefficients for the principal components for the 29
cores for the interglacial 2 time period.

For the fourth and final principal component (accounting for 8% of the variability),

the overall trend appears to be one of a decreasing δ15N signal over the time period.

It starts with a steep increase over the first 10,000 years in the time period then slowly

decreases (with a few minor increases) over the next 60,000 years. After that long

period of a decreasing trend, the δ15N signal then starts to increase rapidly over the

next 20,000 years before decreasing again by about half the magnitude of the previous

increase. The cores in the Arabian sea and off the northwestern coast of Africa have

very strong negative correlations with this signal. In fact, only one core has a highly

positive correlation with this signal, located off the southwest coast of Africa. Once

again the magnitudes of the loading values are very small near the Americas, so this

signal does not have much weight in that region.
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3.4.3 K-means Clustering

δ15N Magnitude Analysis

The scree plot for the unstandardized series show that the cores in the IG2 period

were again grouped based only on magnitude. There were no geographically distinct

clusters that emerged, so we moved on to the standardized plots. The plots for the

k-means clustering can be found in Appendix A1.

δ15N Trend Analysis

Looking at the standardized k-mean scree plot there was again no real elbow in the

plot (Figure 3.27). So once again we used 5 clusters as it looked reasonable based

on the plot and that it would stay consistent with the other two time periods.

Looking at cluster 1, the 5 cores in this cluster had similar signals to those found

in the other two time periods (Figure 3.28). They were defined by a large spike in

δ15N values at both 15,000 years ago and 65,000 years ago. A steep decrease occurred

in each immediately before the glacial time period started. The cores in this time

period look stationary; the mean and variance, outside of the large dip at 60,000 years

ago, stays fairly constant across the time periods. Four of the 5 cores are located just

off the west coast of Africa (Figure 3.29).

Cluster 2, which contained 7 cores, was characterized by an upward trend over the

time period. Looking at the short term fluctuations, four of the cores (teal, yellow,

purple, and blue) all have sharp increases from 125,000 years ago until approximately

80,000 years ago (Figure 3.28). Following this they share the similar decrease at

80,000 years ago and the two increases at 60,000 and 25,000 years ago were seen with

cluster 1. However the red, black and green cores look different in that they do not

have the steep increase from 125,000 years ago to 80,000 years ago. Also after their

increase at around 65,000 years they level off and do not increase at the same rate as

the other 4 cores. These cores, which were located all over the globe (Figure 3.29),

were most likely grouped together based on this upward trend.

Cluster 3 has five cores, four of which, do not have much fluctuation in δ15N in
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Figure 3.27: Scree plot of the K-mean analysis for the interglacial 2 time period.

short intervals. The signals (excluding the black signal) are very smooth and have

a gradual upward trend over the time period (Figure 3.28). The black signal looks

very similar to the cores in cluster 1, with the exception that at approximately 15,000

years ago it had a sharp decrease instead of a sharp increase. The cluster 3 cores were

scattered all across the globe (Figure 3.29).

The 6 cores in cluster 4 share one common feature that is not present in the other

clusters. These cores have a steady decrease in δ15N values from 120,000 to 100,000

years ago, and tend to stay at this low level until they near the end of the time period

when spike back up (Figure 3.28). The cores in clusters 1 and 2 also show a dip in

δ15N values at the beginning of the time period, but reach values similar to the levels

at which they started frequently throughout the time period. The cores in cluster 4



72

Figure 3.28: These are plots of the δ15N series that fall within their respective clusters
for the standardized series in the interglacial 2 time period.

have the same dips and increase over the short term (i.e. increases in δ15N values at

60,000 and 20,000 years ago), but they do not get back to the high levels of δ15N

at which they started until the end of the time line. All but one of these cores are

located on the west coast of the Americas (Figure 3.29). It would be of interest to

look into why, over the middle section of this time time period the cores on the west

coast of the Americas could not reach the high levels of δ15N they had at the start

and end of the time period, while other regions were able to.

Cluster 5, which contains 6 cores, looks almost identical to cluster 1. The only

difference in the signals in the cores in cluster 5 is that they appear to lag behind the
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Figure 3.29: Locations of the cores in each cluster for the interglacial 2 time period.

cores in cluster 1 by about 15,000 - 20,000 years (Figure 3.28). Again, there could

be a natural cause to create this lag or it could simply be the way in which the cores

were aged. These cores were found mainly in the Arabian Sea (Figure 3.29). Further

investigation may be warranted to determine why cores in the Arabian Sea seem to

lag behind the cores off the west coast of Africa.



Chapter 4

Discussion and Conclusions

Oceanographers and marine biochemists are keenly interested in quantifying changes

in the fixed marine nitrogen inventory, and the processes that determine changes in

this inventory through geological time. Unfortunately, there is no actual, historical

record of the marine nitrogen inventory itself. However, researchers can measure the

processes that are known to increase (nitrogen fixation) or decrease (denitrification)

the levels of nitrogen in the ocean. δ15N is a ratio of the two stable isotopes of

nitrogen: 14N , which is very common, and 15N , which is rare. The ratio of these

two isotopes is expressed as δ15N (see equation 1). High levels of δ15N tend to

represent areas that have higher rates of denitrification (versus fixation). The process

of denitrification uses the more common 14N isotope preferentially, leaving higher

concentrations of the 15N isotope in the ocean. Lower levels of δ15N can represent

areas that have higher rates of nitrogen fixation (over denitrification). The process of

fixation does not have a preference as to which isotope is used so such areas produce

δ15N values lower than areas with high denitrification rates.

In a previous analysis of a database of 173 downcore records, a team of researchers

conducted a clustering analysis to group samples of δ15N into geographic regions and

found that cores within a 100 km radius of a defined reference core had similar mean

values of δ15N [3]. The multivariate analysis reported in this thesis, conducted on the

same database was designed from a purely statistical point of interpretation to char-

acterize the δ15N signals extracted from the noisy observations, without geographical

boundaries.

We conducted a univariate analysis that separated the process error (natural

changes in δ15N) from the observation error (error from the measurement of δ15N),

which was fixed at 0.28, to extract the true underlying signal of δ15N from all of

74
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the cores. As a byproduct of signal extraction, using the Kalman smoother, we were

able to place the data on a fixed interval time line across all cores, completing the

preparation for the multivariate analysis.

The multivariate analysis found that cores that were close in proximity were highly

correlated in all three time periods. Using principal component analysis, we found

that the two most dominant δ15N signals, present in most cores and in most regions,

were an increase in δ15N values around 20,000 years ago during the interglacial 1

period (IG1), and around 60,000 years ago during the glacial period. During the

interglacial 2 (IG2) time period, there was no single dominant signal; however, the

signals that were dominant in the IG1 and glacial time periods were both evident in

the IG2 time period.

The most dominant signal seen in any of the principal component analyses was

the sharp increase in δ15N seen in IG1 (accounting for 70% of the variance in that

time period). Since there were only two principle components (PC1 and PC2) in that

time period, we decided to look at whether cores that had similar loading values were

more similar than cores that had differing loading values. In the IG1 time period,

PC2 has a ”V” type shape. Cores that were positively correlated with both PC1 and

PC2 seem to have a delay in the increase that was seen in PC1 alone. Cores that have

a positive correlation with PC1 and a negative correlation with PC2 tend to have a

steeper increase in δ15N than seen in PC1 alone. To demonstrate, we plotted a core

with a highly positive correlation with both PC1 and PC2 (Figure 4.1). Here we

can see that this delays the increase, so the δ15N values start to increase at around

16,000 years ago instead of 25,000 years ago. If we look at a core that has a high

positive correlation with PC1 and a high negative correlation with PC2, we see that

it increases the amplitude of the increase - i.e., the δ15N values increase at around

25,000 years ago, but at a much faster rate.

In terms of clustering, the Americas were the only region that had a fairly distinct

grouping of cores across all three time periods. The Arabian Sea started to define

itself as a cluster in the glacial and IG2 time periods, while the cores on the coast of
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Figure 4.1: Plot of two series with different relationships to the first two principal
components. GeoB 1008 (blue line), located off the the coast of Africa has a positive
correlation with both principal components while ODP 887 (red line), located off the
coast of North America has a positive correlation with the first principal component
but a negative correlation with the second principal component.

Africa started to distinguish themselves in IG2.

4.1 Post Hoc Analyses 1 - Comparisons Between Time Periods

In Chapter 3, we clustered the cores based on their δ15N signals in the three different

time periods (IG1, glacial and IG2), but did not compare the findings between time

periods. In this section we will discuss and compare the grouping patterns between

the three time periods. In total there will be four comparisons: IG1 vs. Glacial,

IG1 vs. IG2, Glacial vs. IG2 and IG1 vs. Glacial vs. IG2. This post hoc analysis
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was conducted to determine whether cores that covered multiple time periods stayed

grouped together and if similar regions were defined in all of the time periods clusters.

4.1.1 Interglacial 1 vs. Glacial

For the comparisons made here we will be using the clusters in the glacial period as

our point of reference.

Cluster 1 in the glacial period had 9 total cores, 8 of which were also represented

in the IG1 time period. In this cluster there were two distinct groups that were also

clustered together in the IG1 period. The first group (group 1) consisted of four cores

in the Arabian Sea (MD 76-131, ME33 NAST, RC27-61, and SK117-GC8) that were

all in cluster 3 in the IG1 time period. The second group (group 2) consisted of three

cores that were present in cluster four of IG1. Of these three cores two were located

in the Arabian Sea (ME33 EAST and NIOP 38-02) and one was from the Americas

(CD 38-02).

In cluster 2 there were 15 cores in the glacial time period, but only 5 of them

were present in the IG1 time period. Of the 10 cores that were not in IG1, eight were

located by the Americas and two were located on the west coast of Africa. In this

cluster however there were only three cores that were clustered together in cluster 1

of IG1 (Group 3). Two of these cores were located by the Americas (MD 02-2524 and

TR163-31) and one by Asia (GGC27).

Cluster 3 had eight total cores, six of which were also in the IG1 time period.

Four of the six (group 4) were clustered together in cluster 4 of IG1. Three of these

were located in the Americas (NH22P, ODP 1017, W8709-8 PC) and one by Africa

(SU94 20bK).

In glacial time period, clusters 4 and 5 consisted of 2 cores each - in both cases one

core was present in the IG1 time period and one was not. As a result, comparisons

were not made for these two clusters.

In summary there were four distinct groups that were clustered together in the IG1

and glacial time periods. Two of these groups were predominantly made up of cores
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Figure 4.2: Plot showing the locations of the four groups of cores that were in the
same cluster in both the interglacial 1 and glacial time periods: group 1 (MD 76-131,
ME33 NAST, RC27-61, and SK117-GC8) is represented by the blue circles; group
2 (CD 38-02, ME33 EAST and NIOP 38-02) by the red circles; group 3 (GGC27,
MD 02-2524 and TR163-31) by the green circles; and group 4 (NH22P, ODP 1017,
W8709-8 PC and SU94 20bK) by the purple circles.

from the Arabian Sea (group 1 and group 2) while the other two were predominantly

made up of cores in the Americas (groups 3 and 4). This suggests that these core

groups behave similarly in the two time periods, which may indicate patterns of

change in the marine nitrogen cycles that are specific to those regions over those time

periods. Plots of the groups can be seen in Figure 4.2

4.1.2 Interglacial 1 vs. Interglacial 2

The comparisons in this section use the clusters in IG2 as the point of reference.

(Note that it is possible for a core to be represented in IG2, but not be represented in

IG1. The selection method for the IG1 group required cores to have an observation

of δ15N within 1000 years of 30,000 years ago. This was not a constraint on the IG2

time period.)

Cluster 1 in the IG2 time period consisted of 5 cores, all of which were included
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in the IG1 time period. In IG2, the cores were primarily located on the west coast of

Africa. Three of the five cores (group 1) in this cluster, all located on the west cost

of Africa, were also grouped in cluster 4 in the IG1 time period (GeoB 1008, GeoB

4240 and Su94-20bK). Another core located near Africa (GeoB 1016) from cluster 1

in the IG1 time period, also joined this group.

In Clusters 2 and 3 in the IG2 time period there were no groupings that were close

geographically. Of the seven cores in cluster 2, six were also in the IG1 time period.

There were two cores each from clusters 1, 3 and 4 in the IG1 time period, but none

of the pairing were close geographically. In cluster 3 there were two cores that shared

the same cluster in IG1 but again they were not close geographically (one from the

Mediterranean and one from Asia).

Figure 4.3: Plot showing the locations of the four groups of cores that were in the
same cluster in both the interglacial 1 and interglacial 2 time periods: group 1 (GeoB
1008, GeoB 4240 and Su94-20bK) is represented by the blue circles; group 2 (CD
38-02, ME0005A 24JC, ME0005A 27JC and OSP 887) by the red circles; group 3
(ME33 NAST and RC27 61) is represented by the green circles; and group 4 (ME33
EAST and RC27 24) by the purple circles.

Cluster 4 was comprised of six cores, all of which were in the IG1 time period as

well. Five of the six cores were in cluster 4 in the IG1 time period, four of which were

located on the west coast of the Americas (CD 38-02, ME0005A 24JC, ME0005A
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27JC and OSP 887) (group 2). A fifth core from the Americas (from cluster 1 in IG1)

joined the four above in the IG2 time period.

Cluster 5 was comprised of mainly of cores in the Arabian Sea (4 of 6), all of

which were in the IG1 time period. Two of the cores (group 3) from the Arabian Sea

(ME33 NAST and RC27 61) were in cluster 3 in IG1 and two others (ME33 EAST

and RC27 24) came from cluster 4 (group 4).

Again, there were four distinct groups that clustered together across the IG1 and

IG2 time periods. As with the previous comparison, the groupings were located in

the Arabian Sea and the Americas, with the west coast of Africa emerging as a new

group. This reinforces the idea that there may be oceanic processes at work in these

regions that respond to a common forcing. The location of the cores in these four

groups can be seen in Figure 4.3.

4.1.3 Glacial vs Interglacial 2

This comparison is the most interesting of the comparisons as it uses the two time

periods for which we had the most confidence in our estimates of the δ15N signal.

(Note again that it is possible for a core to cover the IG2 but not the glacial period

for reasons similar to those stated in Section 4.1.2.) Cluster 1 of the IG2 time period

included 5 cores. Three cores were in both time periods: two from cluster 3 in IG1

on the west coast of Africa (group 1; GeoB 1016 and SU94-20bK) and one from Asia

(MD 01-2386). Two remaining cores, neither of which were represented in the glacial

time period (GeoB 1008 and GeoB 4240), were also near Africa.

The seven cores in cluster 2 in IG2 were located all over the world. Of those, four

cores were present in the glacial time period, including two cores off the coast of Asia

(group 2; GGC27 and MR 98-05-3) in cluster 2, along with MD 01-2386 near Africa.

There were no other pairings in this cluster.

Cluster 3 only had one core that was in both time periods so no comparisons are

possible.

Cluster 4, which had six cores mostly located near the Americas, had a group of
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Figure 4.4: Plot showing the locations of the four groups of cores that were in the
same cluster in both the glacial and interglacial 2 time periods: group 1 (GeoB 1016
and SU94-20bK) is represented by the blue circles; group 2 ( GGC27 and MR 98-05-
3) by the red circles; group 3 (ME 0005A 24JC, ME 0005A 27JC, and ODP 887) by
the green circles; and group 4 ( ME33 NAST, ME33 EAST and RC27 61) the purple
circles.

four cores that came from cluster 2 in the glacial time period. Three of these cores

were located on the west coast of the Americas (group 3; ME 0005A 24JC, ME 0005A

27JC, and ODP 887).

In cluster 5, which had six cores, there were 3 cores that were in cluster 1 of the

glacial time period. All three of these cores were in the Arabian Sea (group 4; ME33

NAST, ME33 EAST and RC27 61). A fourth core from cluster 5, that was not in the

glacial time period (RC27 24), was also located in the Arabian Sea.

Four distinct groups clustered together across the IG2 and glacial time periods.

The groupings were located in the Arabian Sea, the Americas, the west coast of Africa

and near Asia. Again, this suggests that there may be natural processes at work in

these regions that allow these cores to continuously be grouped together independent

of the time periods. The location of the cores in these four groups can be seen in

Figure 4.4.
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4.1.4 Comparisons Across All Time Periods

Looking across all three time periods, there are two groups of cores that stood out.

The first consists of 5 cores on the west coast of the Americas: ME0005A 24JC,

ME0005A 27JC, ODP 887, CD 38-02 and TR163-31 (locations of the cores can be

seen in Figure 4.5). In this group, ME0005A 24JC, ME0005A 27JC and ODP 887

are clustered together in every time period. In the IG1 and IG2 time period CD 38-

02 is also clustered with the three cores identified above, but it is removed from the

cluster in the glacial time period. Core TR163-31 is clustered with the three cores in

the glacial and IG2 time periods, but not in the IG1 time period. Looking into why

TR163-31 was not grouped together with these cores in the IG1 time period it was

found that it had a decrease in δ15N during approximately the last 10,000 years of

the IG1 time period while the other cores in this group did not. This is the only real

substantial difference from the other cores. This 10,000 year time period accounts

for a third of the total time span of IG1, so it is not surprising that the TR163-31

core was not grouped with the others in IG1. The δ15N signal plots (Figure: 4.6)

show that these five cores do in fact have similar signals overall - all have a distinctive

decrease over the first half of the period and an increase starting at around 60,000

years ago that continues for the rest of the period.

The second distinct group was found in the Arabian Sea and consisted of four

cores: ME33 NAST, RC27 61, ME33 EAST and RC27 24 (locations of the cores can

be seen in Figure 4.5). ME33 NAST and RC27 61 were clustered together in every

time period. While RC27 24 and ME33 EAST were paired either with those two cores

or with each other in every time period that they covered. Looking at the signal plots

for these cores, it can be seen that they too are also all very similar to each other

over the three time periods in question (Figure: 4.7) .

4.2 Comparing our Clusters to Previous Groupings

As mentioned before, Galbraith et al. [5] clustered the samples in a previous study

based on the biological ”provinces” and common δ15N signal in surface sediments.
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Figure 4.5: Plot showing the locations of two groups of cores that were clustered
together across all time periods investigated: group 1 (ME0005A 24JC, ME0005A
27JC, ODP 887, CD 38-02 and TR163-31) is represented by the blue circles; and
group 2 (ME33 NAST, RC27 61, ME33 EAST and RC27 24) by the red circles.

In total they had sixteen clusters and they only looked at the IG1 time period.

The groupings were based on the location of the records only, and not on statistical

similarity. Here we will compare the results found in Galbraith et al. [5] to our results.

The first big difference in our results was the number of clusters. In our analysis we

only used five clusters in all three time periods while Galbraith et al. [5] used sixteen.

In the IG1 time period we were only able to distinguish 1 geographical region in

the west coast of the Americas. This one region encompassed cores that were located

in three clusters defined by Galbraith et al. [5]. Galbraith et al. had three clusters

one for the west coast of the Americas, for the west coast of Central America and

one for the west coast of North America. Our one cluster covered all three of these

regions so we did not find a difference in the cores located there.

When we looked into the clustering of the glacial time period we now had three

defined regions. One of which was located in the Arabian Sea. When comparing this

to the results in Galbraith et al. [5], they defined three clusters in the Arabian sea

compared to our one. Two clusters appeared in the Americas in this time period,
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Figure 4.6: Plot of the δ15N series of the five cores from the Americas: ME0005A
24JC (black); ME0005A 27JC (red); ODP 887 (blue); CD 38-02 (green); and TR163-
31 (purple).

one core consisted of two cores and was located on the west coast of South America.

This is in agreement with one of the Galbraith et al. [5] clusters. The second cluster

in the Americas consisted of cores on the west coast of Central and North America.

This again is a combination two clusters created Galbraith et al. [5].

Finally when looking into the IG2 time period we were able to distinguish three

geographical clusters. The first was one consisting of cores on North and Central

America. Again this was a combination of two clusters created by Galbraith et al. [5].

The second cluster was one in the Arabian Sea, again this cluster in the Arabian sea

was a combination of three clusters created by Galbraith et al. [5]. The final cluster

was one on the west coast of Africa. Again this was a combination of three clusters
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Figure 4.7: Plot of the δ15N series of the four cores from the Arabian Sea: ME33
NAST (black);, ME33 EAST (green); RC27 24 (blue); and RC27 61(red).

defined by Galbraith et al. [5].

Overall we were able to separate out similar regions to Galbraith et al. [5]. Gal-

braith et al. [5] defined the groups more precisely and narrower (geographically) than

our clusters. The clusters that we were able to obtain tended to cover large geograph-

ical regions (i.e. the entire west coast of the Americas) instead of a small portion of

the west coast. The reason for this is most likely due to the fact that our groupings

were based on the standardized series and we did not take the magnitude of change or

the absolute value of δ15N into account. Figure 4.6 shows that CD 38-02 (green line)

has much larger δ15N values than the other four cores. In their groupings, Galbraith

et al. [5] would have placed this core in a different cluster because of this magnitude,
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while we were just interested in the trends in the signals.

Overall our analysis found similar results to that of Galbraith et al. [5]. The

main difference the approaches taken were that Galbraith et al. forced cores into

groups based on their geographical regions, while we grouped only based on statistical

characteristics. Our analysis would be better suited to determining if there were any

distinct signals of δ15N in a given region because we did not use the core location

as part of the clustering criteria. However, if one was interested in determining a

regional mean for an oceanographic province, then the approach made by Galbraith

et al. [5] might be better suited. A future study could look at combining these two

clustering methods, that is redo the analysis that was conducted in this thesis on the

extracted signal of δ15N , taking into account both the magnitude and geographical

location of the δ15N signals.

4.3 Post Hoc Analysis 2 - Interglacial 2 Subset Cluster Analysis

While running the analyses described in Chapters 2 and 3, we noted that there were

a number of cores that we were able to fit accurately, but which did not show much

fluctuation in δ15N values. These cores were essentially a trend that did not fluctuate

much outside of the 0.28 observation error threshold - that is, all observations were

less than 0.28 apart. We decided to remove these cores as a second post hoc analysis

and run the cluster analysis on the IG2 time period again. We reasoned that this

might produce more defined regions. We chose to do this on the IG2 time period

because it was the only time period that appeared to start forming three distinct

groups (west coast of Africa, west coast of the Americas and the Arabian Sea) and it

was the time period we were the most confident in our estimates of the state of δ15N .

From this post hoc analysis, we obtained new clusters that included only the cores

off the Americas as well as one that included only cores on the west coast of Africa.

The four cores in the Arabian Sea were still grouped together, with a single core in

the Americas rounding out the group. This analysis showed that the cores that didn’t

have a wide range of δ15N were just being grouped with other cores that had a similar
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upward trends. They were not very similar and they may have been confounding the

clustering results. By removing these cores we were able to get more distinct groups

than we had with the original analysis. All figures for this result can be seen in

appendix A2.

4.4 Limitations

The univariate analysis was not accomplished without some complications. First,

our Kalman smoother did not perform well when there were a small number of data

points (under 40). As a result, we might not have as accurate measurements of the

δ15N signal in the IG1 time period. Second, we had a lot of missing data that we

needed to get estimates for on our constant time line. By condensing the data points

on the constant time line we lost some of the information, which could have impacted

the accuracy of the Kalman smoother estimates. Third, when we did the multivariate

analysis, we assumed that the process error was constant over the entire time period.

However when looking at some of the plots we can see that δ15N values increase and

decrease more rapidly over equal time intervals, which could indicate that the process

error is not constant over the entire time period (Figure 2.2). If this is the case

it would affect the accuracy of our Kalman smoother estimates. Another limitation

of this analysis is that we assumed steps to be constant and known. However, the

time line for each core is actually an interpolation between age fixed points (such

as carbon 14 dating); so it is, in a sense, a random variable. Therefore, the age

differences for each sample has some uncertainty in time that we did not account for.

Finally, and perhaps most importantly, is that a dependence structure was uncovered

in the process and observation error, which violated one of the assumptions we made

in order to use the Kalman filter. These two errors are not independent of each

other and this made estimation of the parameters (Q and R) based on MLE very

challenging. It also forced us to fix the observation error to break the dependence

structure. Even when moving to a Bayesian framework we were still unable to break

the dependence structure. If we had more information on the distributions of the
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process and observation errors we might have been able to break the dependence

structure through the use of priors. However, since we did not have this information

we were forced to fix the observation error at 0.28 to continue with the analysis.

Despite the problems summarized above, we obtained a reasonable estimate of

the true signal of δ15N . The estimates in the longer time periods are probably more

accurate than those in the shorter time periods, as it was shown that the more data

points we had the better we could recover the true signal. Even with the problems

stated above we were able to conduct a multivariate analysis that found numerous

interesting trends in the δ15N values as they changed through time.

4.5 Potential Areas for Future Investigation

Future studies on the signal extraction could try to remedy the problems stated in the

preceding paragraph. One approach would be to create an adaptive Kalman smoother

to account for the possible changes in the process error on the time line inside a given

core. This could lead to more accurate results as it would not force a single process

error on all points in the time line. Another line of investigation could try to fit a

model where it allowed the time steps to be treated as random or uncertain. Since the

time points we had were estimated from the data and not designated as the sample

was being collected, there is an amount of uncertainty surrounding them. Finally,

if we had more information on the process error and the observation error it might

be possible to make more informative priors that could help break the dependence

structure that we encountered throughout the parameter estimation process. As we

did not know much about the process and observation error distributions, we used a

relatively uninformative prior (a uniform distribution) which did help slightly with

the estimation process. If we could make a more informative prior we might be able

to break this dependence and jointly estimate the process error and observation error

variances instead of being forced to fix one.
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4.6 Conclusion

In conclusion, we were able to distinguish three distinct geographical clusters, one off

the west coast of the Americas, one in the Arabian Sea and one off the west coast of

Africa. These clusters became more distinct when the number of cores in the analysis

decreased (via some cores not covering longer time periods), and when we analyzed

the longer time periods (i.e.. glacial and IG2) where the Kalman smoother was

shown to be more accurate. In all three time periods it was found that the optimal

number of clusters was five, much fewer than the 16 used by Galbraith et al. [5]. This

could indicate that, in given regions, certain forcings caused similar changes in δ15N

values, regardless of magnitude of δ15N , that might not have been present in other

geographical regions. The cores that were grouped together off the Americas during

most of the time periods shared similar δ15N signals (see Figure 4.6). Similarly, the

cores that were grouped together in the Arabian Sea over most of the time periods

shared similar δ15N signals (see Figure 4.7). However, the signals from the Arabian

Sea were vastly different than the signals observed off the Americas. This provides

additional evidence that there are similarities between the δ15N records that are in

close geographical proximity - as shown by both Tesdal et al. [3] and Galbraith et

al. [5] - but also demonstrates that cores in different geographical regions have distinct

signals of δ15N . If, in the future, we find more accurate ways to estimate and denoise

the true signal of δ15N from the noisy observations (like the examples stated earlier in

this chapter) it could lead to more definitive results about the signals of δ15N and, in

turn, the changes in the nitrogen cycle that are unique to specific regions. Still, while

we were able to find distinct signals in two regions over most of the time periods, the

two most dominant signals observed were the two sharp increases in δ15N at 60,000

and 20,000 years ago. These signals are not confined to specific regions and were found

all over the globe, clearly indicating that the marine nitrogen cycling responded to a

common forcing at these times.
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Appendix A

Plots

A.1 Plots for the IG2 non standardized K means Analysis

Figure A.1: A Plot of the sum of squares within cores by numbers of clusters.
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Figure A.2: Plots showing the locations of the cores within their individual clusters
(a-e) and with all clusters combined (f) in the interglacial 2 time period for the non-
standardized series.
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Figure A.3: Plots of the δ15N series that fall within each of the five defined clusters
in the interglacial 2 time period for the non-standardized series.
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A.2 Plots for the interglacial 2 Standardized with selected cores

removed from the analysis.

Figure A.4: A Plot of the sum of squares within cores by numbers of clusters.
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Figure A.5: Plots showing the locations of the cores within their individual clusters
(a-e) and with all clusters combined (f) in the interglacial 2 time period for the
standardized series.



96

Figure A.6: Plots of the δ15N series that fall within each of the five defined clusters
in the interglacial 2 time period for the standardized series.



Appendix B

Markov Chain Monte Carlo Algorithm

How our MCMC worked was that you start off with initial values for the parameter,

θ, where θ = (Q,R) equals the vector (Q,R). Next you calculate a proposal set of

parameters θ∗ = (Q∗, R∗) which is equal to the initial parameters plus a little bit

of noise (θ∗ = θ + N(0, 0.05). For θ∗ you calculated the log likelihood based on the

Kalman filter log likelihood as well as the log likelihood of both Q and R based on

their priors and sum them up. This is known as the posterior distribution:

Posterior � el(θ)+l(π(θ))

Next the acceptance criteria is set by creating a ratio of the posterior likelihood

of θ∗ to θ, this ratio will be denoted by α.

α =
el(θ

∗)+l(π(θ∗))

el(θ)+l(π(θ))

At this point a decision had to be made whether to keep θ or θ∗ before moving to

the next iteration of the chain. To do this we use the α value as a biased coined flip

to determining which we keep based on the following conditions:

1. If α ≥ 1 then θ = θ

2. If α ≤ 1 then

⎧⎨
⎩
θ = θ∗ with probability 1− α

θ = θ with probability α

This means that the algorithm at each step keeps θ with a probability of α. This

procedure was done 6500 times and the first 2500 were dropped from the data set as

a burn in. The Q and R values at each of the 4000 iterations was stored and ”chains”

of parameters were used to get the estimates of Q and R.
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The adaptive algorithm followed the same procedure as above with one exception.

At every 100th iteration the MCMC calculated the acceptance ratio of the past 100

iterations (i.e., if we are one iteration 1000 then it looked at iterations 901-1000 and

computed the acceptance ratio of those 100 iterations). Based on the acceptance ratio

one of three steps was taken.

1. If acceptance >0.4 then we increase the proposal function jump to θ∗ = θ +

N(0, σ) ∗ 1.1.

2. If acceptance <0.15 then we decrease the proposal function jump to θ∗ = θ +

N(0, σ) ∗ 0.1.

3. otherwise θ∗ = θ +N(0, σ).


