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Abstract

The decision tree method has become very popular because it can efficiently accom-

modate a large amount of data with a mixture of different types of variables, missing

data and many irrelevant predictors. Trees also can be graphically presented and eas-

ily explained. However, the weaknesses of the decision tree model are high variance

and lower predictive accuracy. These problems have been substantially improved by

the tree ensemble-based methods: random forests and boosting trees. In this study,

tree and tree ensemble-based methods, as well as logistic regression are reviewed and

are applied to the Nova Scotia Atlee Perinatal Database to predict fetal growth ab-

normalities such as infants with birth weight small for gestational age or large for

gestational age. It was found that predictive accuracy of the boosted tree model is

better than both random forests and decision trees, but this model does not show

much improvement over logistic regression.
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Chapter 1

Introduction

1.1 Fetal growth abnormalities

Abnormal fetal growth may have both short-term and long-term consequences in

neonates. Infants with abnormal birth weight account for the majority of mortality

and morbidity in neonates born at term (Das, 2014). Infant growth is commonly

assessed by comparing the infant’s birth weight to that of an age- and sex-specific

reference population of infants. An infant with a birth weight below the 10th percentile

(small for gestational age, SGA) or above the 90th percentile (large for gestational age,

LGA) for gestational age and sex is commonly considered to be at a higher risk for

perinatal mortality and morbidity. In 2008, approximately 43,000 infants in Canada

were born SGA or LGA, accounting for 8.1% and 11.1% of livebirths, respectively

(Public Health Agency of Canada, 2012). Infants born SGA are at a higher risk for

developing hypoglycaemia, hyperbilirubinaemia, respiratory distress, polycythaemia,

thrombopenia, and necrotizing enterocolitis than their appropriate for gestational age

counterparts. Infants that are LGA are at a higher risk for prolonged and complicated

labour due to physical size and subsequent birth injury, the need for assisted delivery

or cesarean section, asphyxia, meconium aspiration, and other postnatal problems

(Minior, 1998 and Longo, 2012). Fetal growth is influenced by maternal health and

health behaviors (such as excess pre-pregnancy weight and gestational weight gain,

gestational diabetes, and smoking during pregnancy), e.g. obese mothers or mothers

with high pregnancy weight gain are more likely to have a LGA baby, while mothers

who smoke during pregnancy or have severe gestational diabetes are at higher risk to

deliver a SGA infant (Nohr 2008, De Vader SR, 2007, Siega-Riz, 2009 and Van, 2001).

Therefore, predicting (abnormal) birth weight for gestational age of infants can help

clinicians plan for high risk deliveries and can inform policy makers how changes in

maternal health and health behaviors influence rates of fetal growth abnormalities.

1
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1.2 Diagnostic testing

SGA and LGA can be treated as qualitative responses. There are many possible

classification techniques, or classifiers, that one might use to predict a qualitative

response. Logistic regression is the most commonly used method in health research.

In this study, we will explore more computer-intensive methods such as classification

trees, random forests, and boosting for neonatal outcomes based on the same sets of

predictors.

Classifiers will be evaluated by the properties of diagnostic tests, including sensi-

tivity, specificity, positive predictive value, negative predictive value, and likelihood

ratio. The first four measures have long been used in clinical epidemiology, but they

only summarize the characteristics of a population, and are of limited value for use in

individual patients. The likelihood ratio is more clinically useful since it can be inter-

preted at the individual patient level and allows clinicians to estimate the probability

of disease for any individual patient given the test results. A clinically meaningful test

will provide a high positive likelihood ratio (LR+ ) and a small negative likelihood

ratio (LR−).

All these measures are related to true positive (TP), false positive (FP) (type

I errors), false negative (FN) (type II errors) and true negative (TN) rates in the

confusion matrix (Table 1.1).

True Class

Disease+ Disease- Total

Predicted Class
Test+ True Positive (TP) False Positive (FP) P*
Test- False Negative (FN) True Negative (TN) N*
Total P N

Table 1.1: Confusion Matrix.

In our study, “Disease+” in Table 1.1, refers to the women who actually deliver

SGA (or LGA) babies, while “Disease-” refers to the women who do not actually

deliver SGA babies. “Test+” and “Test-” stands for the predicted (or test) results of

those having SGA (or LGA), and not having SGA (or LGA) babies, respectively.

Sensitivity is the proportion of those with disease who test positive (true positive

rate). Specificity is the proportion of those without disease who test negative (true
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negative rate). Therefore, these rates can be expressed as

sensitivity =
TP

P
=

TP

TP + FN
;

specificity =
TN

N
=

TN

FP + TN
.

The positive predictive value expresses the proportion of those with positive test

results who truly have disease. The negative predictive value expresses the proportion

of those with negative test results who truly do not have disease. In other words, the

positive predictive value is the probability that they truly have disease given that a

patient tests positive, and the negative predictive value is the probability that they

truly do not have disease given that a patient tests negative. Thus, these rates can

be expressed as

positive predictive value =
TP

P∗ =
TP

TP + FP
;

negative predictive value =
TN

N∗ =
TN

TN + FN
.

The positive likelihood ratio is the probability of a person who has the disease testing

positive divided by the probability of a person who does not have the disease testing

positive. The negative likelihood ratio is the probability of a person who has disease

testing negative divided by the probability of a person who does not have the disease

testing negative. These likelihood ratios can be expressed by

LR+ =
TP rate

FP rate
=

sensitivity

1− specificity
;

LR− =
FN rate

TN rate
=

1− sensitivity

specificity
.

The higher the positive likelihood ratio and the lower the negative likelihood ratio,

the better the classifier.

The classification techniques we will be considering produce a probability that the

case is SGA or LGA. The threshold is the value of the probability beyond which the

case is classified as SGA or LGA. Varying the classifier threshold changes its true

positive and false positive rate. Therefore, the above measures from a diagnostic
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test rely on a single threshold to classify a test result as SGA or LGA. The optimal

threshold will be selected based on the receiver operating curve (ROC).

The ROC curve is considered a useful tool for comparing different classifiers, since

it takes into account all possible thresholds. The true positive rate (sensitivity) is

plotted versus the false positive rate (1-specificity) across a series of cutoff points of

a diagnostic test, and shows the trade-off between sensitivity and specificity when

the decision threshold changes. A high threshold corresponds to (0,0), while a low

threshold corresponds to (1,1) in the space. Since the upper left corner represents

100% sensitivity and 100% specificity, the optimal threshold to discriminate the two

classes of subjects is the value corresponding to the point on the ROC curve nearest

to the upper left corner.

The overall performance of a classifier, summarized over all possible thresholds, is

given by the area under the ROC curve (AUC). The AUC ranges from 0.5 to 1. The

upper and lower bounds correspond to the ROC curve passing through the upper

left corner (0, 1) and the 45 degree diagonal line (which corresponds to a random

guess), respectively. Hence, the larger the AUC, the better the performance of the

test. Hosmer and Lemeshow (2000) pointed out that a general rule for assessment

of discrimination performance for a classifier by AUC is that if AUC = 0.5: no

discrimination; if 0.7 ≤ AUC < 0.8: acceptable discrimination ; if 0.8 ≤ AUC < 0.9:

excellent discrimination; if AUC ≥ 0.9: outstanding discrimination.

1.3 The dataset

The dataset that we will use to build the prediction models and compare prediction

accuracy of different models is the Nova Scotia Atlee Perinatal Database (NSAPD).

The NSAPD contains records on approximately 50,000 infants born in Nova Scotia

between 2004 and 2012. The dataset selected for the purpose of the current study

provides data on birth weight, gestational age, infant sex, and potential predictors

of SGA/LGA such as maternal pre-pregnancy BMI, smoking, sociodemographics,

and maternal health conditions during pregnancy. Ninety percent of the cases are

randomly assigned into training data and the remaining 10% of the cases are used as

test data. We will build models based on the training data and validate the model

using the test data.
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The primary outcomes for our study will be SGA and LGA. Infants will be cat-

egorized as SGA (< 10th percentile for gestational age and sex) vs. not SGA, and

LGA (> 90th percentile for gestational age and sex) vs. not LGA using the Canadian

birth weight reference values by Kramer et al (2001). We define two binary response

variables sga and lga. We code sga = 1 as SGA and sga = 0 as not SGA. Similarly,

we code lga = 1 as LGA and lga = 0 as not LGA. The predictors that we use are

listed on Table 1.2.

The structure of the thesis is as follows. The logistic regression model is intro-

duced in Chapter 2. We will use this model to predict the SGA and LGA birth weight

categories. Chapter 3 provides a theoretical overview of the classification and regres-

sion tree model. In Chapter 4, the random forest is described. Chapter 5 describes

the gradient boosting method. The main results are summarized and discussed, and

suggestions for future work are made in Chapter 6.
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Chapter 2

Logistic Regression

Logistic regression is the most commonly used method for predicting a qualitative

response in health research. We will introduce logistic regression theory first and

then apply it to predict SGA and LGA.

2.1 Theory

For data (yi,xi), i = 1, . . . , n, xi = (xi1, . . . , xip), we assume that the response Yi for

each of observations has the Bernoulli distribution

p(Yi = yi) = pyii (1− pi)
1−yi , (2.1)

where the parameters

p = (p1, . . . , pn)
′

must be estimated from the data. The logistic regression model is established by

introducing the logistic function

pi =
exp(β0 +

∑p
j=1 βjxij)

1 + exp(β0 +
∑p

j=1 βjxij)
, (2.2)

to relate the probability to the predictors, xi, where

β = (β0, β1, . . . , βp)
′

is the p+ 1 dimensional vector of parameters to be estimated.

We maximize the likelihood function to estimate β. If Y1, Y2, . . . , Yn are indepen-

dent, the likelihood function is given by

L =
n∏

i=1

pi
yi(1− pi)

1−yi . (2.3)

7
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The log likelihood function for the parameters β is given by

l(β) =
n∑

i=1

[yiηi − log(1 + eηi)], (2.4)

where ηi is the logit function of pi defined by

ηi = logit(pi) = log(
pi

1− pi
).

In logistic regression the logit function of pi is linearly related to the predictors,

ηi = x′
iβ.

To maximize the log likelihood function l(β), we set its derivative to zero and

solve the p+ 1 likelihood equations

∂l(β)

∂β
=

n∑
i=1

[x′
i(yi − pi(β))] = 0. (2.5)

When the first component of x′
i is 1, the first likelihood equation specifies that

n∑
i=1

yi =

n∑
i=1

pi(β). This means that the sum of the fitted probabilities must equal the number

of cases for yi = 1, or that the average fitted probability must equal the proportion

of cases for yi = 1 in the dataset.

To solve the likelihood equations (2.5), we use the Newton-Raphson algorithm,

which is equivalent to the iteratively reweighted least squares (IRLS) method. Thereby

the maximum likelihood estimator of β̂ of β is obtained.

By substituting β̂ for β in equation (2.2), for subject i, we estimate a woman’s

risk of having an SGA baby according to

p̂i =
exp(β̂0 +

∑p
j=1 β̂jxij)

1 + exp(β̂0 +
∑p

j=1 β̂jxij)
, (2.6)

For any threshold r (0 ≤ r ≤ 1), we calculate the number of subjects for which

p̂i > r and assess the performance of the logistic regression model as a diagnostic test.
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2.2 Results

2.2.1 SGA

We start with the univariate analysis for every predictor listed in Table 1.2. The

univariate analysis is based on simple logistic regression and the χ2 test using the

training data. The test statistic, degrees of freedom (df ), and the P value are listed

in Table 2.1 in order of ascending P value and decreasing change in deviance.

Variable df Odds Ratio 95% CI Change in Deviance P value

smk 3 587.86 <2.2e-16
pwtgain3 2 486.27 <2.2e-16
prvbig 1 0.11 (0.077, 0.162) 294.34 <2.2e-16
ppwtstat 3 227.84 <2.2e-16
parity 3 122.15 <2.2e-16
prvlbw 1 2.23 (1.910, 2.580) 91.614 <2.2e-16
matage 1 0.97 (0.963, 0.975) 94.954 2.20e-16
prvcs 1 0.63 (0.554, 0.716) 55.275 1.05e-13
ses5 4 59.981 2.93e-12
pihyp 1 1.59 (1.384, 1.817) 40.107 2.40e-10
hyp 1 1.94 (1.400, 2.633) 14.542 0.0001371
chabus 1 2.58 (1.623, 3.921) 14.415 0.0001466
prvgdm 1 0.70 (0.460, 1.004) 3.7639 0.05237
gdm 1 0.81 (0.665, 0.985) 4.4507 0.03489
dm 1 0.70 (0.430, 1.065) 2.7332 0.09828
rural 1 1.05 (0.967, 1.131) 1.263 0.2611
psych 1 1.00 (0.728, 1.342) 6.78e-05 0.9934

Table 2.1: Univariate regression analysis for SGA.

Smoking status on admission (smk), pregnancy weight gain (pwtgain3), previous

births with high birth weight (prvbig), pre-pregnancy weight status (ppwtstat), num-

ber of deliveries (parity) and previous births with low birth weight (prvlbw) showed the

strongest association with having an SGA birth, with the lowest P values and largest

change in deviance. Maternal age (matage), number of previous C-sections (prvcs),

area-level SeS quintiles (ses5), pregnancy induced hypertension (pihyp), pre-existing

hypertension (hyp), chemical abuse (chabus) and gestational diabetes (gdm) are less

important than the previous variables with larger P values and smaller changes in de-

viance, but are still significant. Previous gestational diabetes (prvgdm), pre-existing
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diabetes (dm), rural residence (rural) and psychiatric illness during pregnancy (psych)

are not significant at the 0.05 level.

The odds ratio with confidence interval for the 1 df predictors are added in the

above table. The 95 % CIs of the odds ratio for prvgdm, dm, rural and psych include

1, meaning that these predictors are not significant at the 0.05 level.

Multiple logistic regression was then used on all candidate variables listed in Table

1.2 to determine how they jointly predict SGA. The variables are listed in ascending

order of P values from the univariate analysis. The analysis of deviance table for this

model is shown in Table 2.2.

Variables df Change in Deviance P value

smk 3 587.86 < 2.2e-16
pwtgain3 2 421.01 < 2.2e-16
prvbig 1 257.20 < 2.2e-16
ppwtstat 3 94.86 < 2.2e-16
parity 3 139.23 < 2.2e-16
prvlbw 1 79.18 < 2.2e-16
matage 1 1.73 0.187908
prvcs 1 6.96 0.008344
ses5 4 18.28 0.001087
pihyp 1 82.33 < 2.2e-16
hyp 1 26.47 2.676e-07
chabus 1 1.66 0.197930
prvgdm 1 1.18 0.277964
gdm 1 2.69 0.100960
dm 1 2.20 0.137900
rural 1 1.19 0.274372
psych 1 1.14 0.286648

Table 2.2: Analysis of deviance table of the full regression model without interactions
for SGA.

The first six covariates: smk, pwtgain3, prvbig, ppwtstat, parity and prvlbw are

still the most important variables, due to their large change in deviance and low P

values. These changes in deviance are incremental, and represent the effect of a pre-

dictor after the previous variables are included in the model. prvcs, ses5, pihyp and

hyp are also statistically significant when they are added to the model. However, the

variables matage, chabus, prvgdm, gdm, dm, rural and psych are not statistically sig-

nificant when they are included in the model. Before excluding the insignificant terms
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from future consideration, interaction terms were added to the model and backward

elimination was performed using the step function in R. The Akaike information cri-

terion (AIC) was applied in the step function. It deals with the trade-off between

the goodness of fit of the model and the complexity of the model. At each step, the

candidate for dropping is the variable with the smallest AIC score. The final model

is the one with the minimum AIC score.

All possible two-way interactions were created from four biologically plausible and

significant variables: smoking status on admission (smk), pre-pregnancy weight status

(ppwtstat), pregnancy weight gain (pwtgain3) and parity (parity). Each of these

interaction terms was added separately to the model to determine its significance.

Three of the interaction terms were statistically significant and retained in the model:

one between smk and pwtgain3, one between smk and parity and one between smk

and pwtgain3. These are then added to the model, and the analysis of deviance table

is displayed in Table 2.3.

Variable df Change in Deviance P value

prvbig 1 294.34 < 2.2e-16
prvlbw 1 83.44 < 2.2e-16
matage 1 77.19 < 2.2e-16
prvcs 1 24.35 8.045e-07
ses5 4 37.87 1.191e-07
pihyp 1 36.40 1.608e-09
hyp 1 18.46 1.732e-05
chabus 1 9.03 0.002656
prvgdm 1 1.07 0.301254
gdm 1 1.81 0.178358
dm 1 3.56 0.059104
rural 1 0.69 0.406151
psych 1 0.20 0.6528
smk 3 471.96 0.652803
pwtgain3 2 428.00 < 2.2e-16
parity 3 139.64 < 2.2e-16
ppwtstat 3 97.15 < 2.2e-16
smk :pwtgain3 6 9.02 0.172249
smk :parity 9 12.14 0.205642
pwtgain3:ppwtstat 6 9.91 0.128447

Table 2.3: Analysis of Deviance Table of the Logistic Regression Model with Interac-
tions for SGA.
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None of the three interaction terms are significant when they are added to the

model sequentially. Furthermore an overall test for the three interactions is not sta-

tistically significant (ΔD = 31.07, df = 21, P = .07).

Backward elimination for the variable selection using AIC was then carried out.

The final model obtained is

log[
p(sga = 1)

1− p(sga = 1)
] =β̂0 + β̂1 prvbig + β̂2 prvlbw + β̂3 matage+ β̂4 prvcs+ β̂5 ses5

+ β̂6 pihyp+ β̂7 hyp+ β̂8 gdm+ β̂9 dm+ β̂10 smk

+ β̂11 pwtgain3 + β̂12 parity + β̂13 ppwtstat

(2.7)

where the parameters β̂i, i = 0, 1, . . . , 13 are given in Table 2.4.

The analysis of deviance for the final model is demonstrated in Table 2.5. All but

two of the terms are significant at the 0.05 level.

From Table 2.4, the variables most strongly associated with SGA are smk, hyp,

prvlbm and pihyp. The odds ratio for smk < 0.5 pack/day (OR 2.60, 95%CI: 2.340-

2.878), smk >= 0.5 pack/day (OR 2.90, 95%CI: 2.541-3.285) and smkUnknown (OR

1.94, 95%CI: 1.646-2.284) indicate that when fixing other variables in the model,

women who smoke less than 0.5 pack/day have an odds of delivering an SGA infant

that is 2.60 times that of women who do not smoke, and women who smoke 0.5

pack/day or more have an odds of delivering SGA babies that is 2.90 times that of

women who do not smoke. In addition, women whose smoking status is unknown

have higher odds (1.94) of delivering an SGA infant than those who do not smoke.

The odds ratios for pihyp (OR 2.07, 95%CI: 1.792-2.385) and hyp (OR 2.69,

95%CI: 1.906-3.700) show that the mothers who have pregnancy-induced hyperten-

sion or pre-existing hypertension have much higher odds to deliver an SGA infants

than women with a normal blood pressure. The odds of delivering an SGA infant

for the mothers with pregnancy-induced hypertension is estimated to be 2.07 times

higher than those who do not have pregnancy-induced hypertension. The odds of

delivering an SGA for the mothers with pre-existing hypertension is estimated to be

2.69 times larger than those who do not have pre-existing hypertension.
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Variable Est. Odds
Ratio

95% CI Std.
error

z
value

Pr(>|z|)

(Intercept) -2.37 0.09 (0.075, 0.116) 0.111 -21.42 < 2e-16
prvbigYes -1.73 0.18 (0.120, 0.253) 0.190 -9.09 < 2e-16
prvlbwYes 0.79 2.20 (1.865, 2.587) 0.083 9.45 < 2e-16
matage 0.01 1.01 (0.999, 1.013) 0.004 1.65 0.098
prvcsYes -0.17 0.84 (0.732, 0.967) 0.071 -2.41 0.016
ses5Q2 -0.22 0.81 (0.720, 0.903) 0.058 -3.73 1.93e-4
ses5Q3 -0.13 0.88 (0.782 ,0.981) 0.058 -2.29 0.022
ses5Q4 -0.19 0.83 (0.742, 0.927) 0.057 -3.29 0.001
ses5Q5 -0.19 0.83 (0.738, 0.935) 0.061 -3.06 0.002
pihypYes 0.73 2.07 (1.792, 2.385) 0.073 9.98 < 2e-16
hypYes 0.99 2.69 (1.906, 3.700) 0.169 5.85 4.87e-09
gdmYes -0.18 0.83 (0.676, 1.019) 0.105 -1.74 0.082
dmYes -0.35 0.71 (0.431, 1.098) 0.238 -1.45 0.146
smk< 0.5 pack/day 0.95 2.60 (2.340, 2.878) 0.053 18.08 < 2e-16
smk>= 0.5 pack/day 1.06 2.90 (2.541, 3.285) 0.066 16.21 < 2e-16
smkUnknown 0.66 1.94 (1.646, 2.284) 0.083 7.97 1.61e-15
pwtgain3Inadquate 0.47 1.61 (1.454, 1.777) 0.051 9.27 < 2e-16
pwtgain3Excessive -0.51 0.60 (0.552, 0.659) 0.046 -11.12 < 2e-16
parityI -0.47 0.62 (0.567, 0.683) 0.048 -9.93 < 2e-16
parityII -0.48 0.62 (0.548, 0.695) 0.061 -7.95 1.87e-15
parityIII+ -0.56 0.57 (0.496, 0.650) 0.069 -8.2 2.47e-16
ppwtstatUnderweight 0.49 1.62 (1.425, 1.849) 0.066 -7.31 2.72e-13
ppwtstatOverweight -0.07 0.93 (0.844, 1.027) 0.05 -1.42 0.156
ppwtstatObese -0.29 0.75 (0.674, 0.831) 0.053 -5.42 < 5.88e-08

Table 2.4: Coefficients and odds ratios of the final regression model for SGA. The
second column shows the estimates of coefficients.
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Variable df Deviance P value

prvbig 1 294.34 0.0000
prvlbw 1 83.44 0.0000
matage 1 77.19 0.0000
prvcs 1 24.35 0.0000
ses5 4 37.87 0.0000
pihyp 1 36.40 0.0000
hyp 1 18.46 0.0000
gdm 1 2.30 0.1295
dm 1 3.74 0.0532
smk 3 476.98 0.0000
pwtgain3 2 427.12 0.0000
parity 3 141.17 0.0000
ppwtstat 3 97.39 0.0000

Table 2.5: Analysis of deviance table of the final regression model for SGA.

The odds ratio for prvlbwYes (OR 2.20, 95%CI: 1.865-2.587) shows that mothers

who previously had an infant with a birth weight less than 2500g have 2.20 times the

odds of delivering an SGA infant than those who did not have an infant with a birth

weight less than 2500g.

Variables pwtgain3 and ppwtstat are also quite strongly associated with SGA

birth. The odds ratios for pwtgain3Inadequate (OR 1.61, 95%CI: 1.425-1.849) and

pwtgain3Excessive (OR 0.60, 95%CI: 0.552-0.659) indicate that mothers who have

inadequate pregnancy weight gain have higher odds of delivering SGA babies than

those who do have adequate weight gain, while mothers who have excessive pregnancy

weight gain have lower odds of delivering SGA babies than those who have adequate

pregnancy weight gain. The odds ratios for ppwtstatUnderweight (OR 1.62, 95%CI:

1.425-1.849), ppwtstatOverweight (OR 0.93, 95%: 0.844-1.027) and ppwtstatObese

(OR 0.75, 95%CI: 0.674-0.831) reveal that women who are underweight before preg-

nancy have increased odds of delivering an SGA infant than those who have normal

weight, while women who are overweight or obese before pregnancy have lower odds

of delivering an SGA infant than those whose weight are normal .

matage was not statistically significantly associated with SGA birth in the final

model.

prvbigYes is strongly negatively associated with of SGA births. The odds ratio
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for prvbigYes(OR 0.18, 95%CI: 0.120-0.253) shows that mothers who have previously

given birth to an infant with a birth weight greater than 4080 g have much lower odds

of an SGA birth than those who have not had a infant larger than 4080 g birth weight

previously. parity is also quite strongly negatively associated with SGA birth. The

odds ratio for parity shows that multiparous women (i.e. with one or more previous

pregnancies) have lower odds to deliver an SGA infant than nulliparous women (i.e.

women in their first pregnancy).

Other variables such as prvcsYes, ses5, gdmYes, dmYes are associated with a

lower odds for women to have SGA babies. The odds ratio for prvcsYes (OR 0.84,

95%CI: 0.732-0.967) indicates that mothers who previously had a C-section have lower

odds of delivering an SGA infant than those who did not have previous C-sections.

For variable ses5 (area-level income quintile based on the woman’s residence census

dissemination area), women in the 2nd to 5th quintile have lower odds of having an

SGA baby than those in the lowest quintile. The odds ratio for gdmYes (OR 0.83,

95%CI: 0.675-1.019) indicates that the odds ratio of delivering SGA for mothers who

have gestational diabetes is lower than that for mothers who do not have gestational

diabetes. The odds ratio for dmYes (OR 0.71, 95%CI: 0.431-1.098) indicates that the

mothers who have pre-existing diabetes have lower odds of delivering an SGA infant

than those who do not have pre-existing diabetes.

In order to evaluate overall performance of the final logistic regression model for

SGA and to identify the optimal threshold for the predicted probability, the ROC

curve of this model on the test data is plotted in Figure 2.1.

Figure 2.1 illustrates the true positive rate (sensitivity) as a function of false posi-

tive rate (1-specificity) when the threshold for predicted probability changes. Because

the curve is above the line of equality, this ROC curve demonstrates that the logistic

regression model improves the prediction precision over a random prediction. The

area under the ROC curve (AUC) is 0.70, indicating that the model is acceptable

based on the general rule for AUC introduced in Section 1.2 (Hosmer and Lemeshow,

2000).

The optimal threshold for predicted probability is calculated by minimizing the

distance between the left upper corner (the (0,1) point) and the point on the ROC
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Figure 2.1: ROC curve for SGA.



17

curve. The new threshold we obtained is 0.065. In other words, we assign an obser-

vation to class SGA if pi(sga = 1) > 0.065.

The characteristics of the diagnostic test that result from taking this approach are

shown in Table 2.6.

Disease+ Disease- Total

Test+ 248 1657 1905
Test- 133 2854 2987
Total 381 4511 4892

Point estimates and 95% CIs
Apparent prevalence 0.39 (0.38, 0.40)
True prevalence 0.08 (0.07, 0.09)
Sensitivity 0.65 (0.60, 0.70)
Specificity 0.63 (0.62, 0.65)
Positive predictive value 0.13 (0.12, 0.15)
Negative predictive value 0.96 (0.95, 0.96)
Positive likelihood ratio 1.77 (1.63, 1.93)
Negative likelihood ratio 0.55 (0.48, 0.63)

Table 2.6: The confusion matrix and diagnostic summaries for SGA with threshold
0.065.

With the optimal threshold, the logistic regression model predicts that 1905 in-

dividuals will deliver SGA babies. Of the 381 individuals who actually deliver SGA,

the logistic regression model correctly predicts 248, or sensitivity is 65%. However,

1657 individuals who are not in the SGA class are incorrectly classified. As a result,

the overall error rate is 0.3659.

If the threshold of predicted probability changes to 0.051, the sensitivity increases

from 0.65 to 0.80. However, this improvement comes at cost: the specificity decreases

from 0.63 to 0.45. This demonstrates the trade-off between sensitivity and specificity

of the diagnostic test with the threshold probability change.

The positive likelihood ratio (1.77) and the negative likelihood ratio (0.55) demon-

strate that a mother with an SGA infant is about 1.77 times as likely to have a positive

test than a mother without an SGA infant, and the probability of having a negative

test for a mother with an SGA infant is 0.55 or about one half of that of a mother

without an SGA infant.
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2.2.2 LGA

In this section, we analyze the LGA outcome using logistic regression models. We start

with the univariate analysis for every predictor listed in Table 1.2. The univariate

analysis is based on the simple logistic regression and the chi-square test using the

training data. The degrees of freedom, the odds ratio with 95% CI, the test statistic

and the P value are listed in Table 2.7 in order of ascending P values and decreasing

change in deviance.

Variable df Odds Ratio 95% CI Change in Deviance P value

prvbig 1 5.27 (4.886, 5.692) 1630.5 <2.2e-16
ppwtstat 3 853.31 <2.2e-16
pwtgain3 2 814.06 <2.2e-16
smk 3 471.56 <2.2e-16
parity 3 256.46 <2.2e-16
matage 1 1.03 (1.029, 1.039) 201.1 <2.2e-16
gdm 1 2.15 (1.934, 2.394) 177.04 <2.2e-16
prvcs 1 1.62 (1.508, 1.737) 167.75 <2.2e-16
dm 1 3.97 (3.236, 4.858) 153.87 <2.2e-16
prvlbw 1 0.51 (0.425, 0.615) 59.793 1.05e-14
prvgdm 1 2.10 (1.717, 2.531) 49.197 2.32e-12
rural 1 0.93 (0.874, 0.981) 6.929 0.008481
chabus 1 0.55 (0.298, 0.942) 4.8401 0.0278
psych 1 0.79 (0.614, 0.993) 4.0725 0.04359
hyp 1 1.33 (1.006, 1.726) 4.0133 0.04514
pihyp 1 1.07 (0.951, 1.193) 1.2233 0.2687
ses5 4 4.9813 0.2892

Table 2.7: Univariate regression analysis for LGA.

Previous births with high birth weight (prvbig), pre-pregnancy weight status

(ppwtstat), pregnancy weight gain (pwtgain3), smoking status on admission (smk),

number of deliveries (parity), maternal age (matage), gestational diabetes (gdm),

number of previous C-sections (prvcs) and pre-existing diabetes (dm) showed the

strongest association with having an LGA birth, with lowest P values and largest

change in deviance. Previous births with low birth weight (prvlbw), previous gesta-

tional diabetes (prvgdm), rural residence (rural), chemical abuse (chabus), psychi-

atric illness during pregnancy (psych), and pre-existing hypertension (hyp) are less

important than the previous variables with larger P values and smaller changes in
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deviance, but are still significant. Pregnancy induced hypertension (pihyp), area-level

SeS quintiles (ses5) are not significant at the 0.05 level.

The 95 % CIs of the odds ratio for pihyp includes 1, showing that it is not signif-

icant at the 0.05 level.

Multiple logistic regression was then used on all predictors listed in Table 1.2 to

determine how they jointly predict LGA. The variables are in ascending P values

from the univariate analysis. The analysis of deviance table for this model is shown

in Table 2.8.

df Change in Deviance P value

prvbig 1 1630.47 0.0000
ppwtstat 3 623.66 0.0000
pwtgain3 2 613.84 0.0000
smk 3 367.73 0.0000
parity 3 72.18 0.0000
matage 1 9.05 0.0026
gdm 1 75.95 0.0000
prvcs 1 0.12 0.7292
dm 1 96.60 0.0000
prvlbw 1 41.90 0.0000
prvgdm 1 0.49 0.4833
rural 1 11.61 0.0007
chabus 1 0.04 0.8401
psych 1 4.27 0.0388
hyp 1 1.74 0.1870
pihyp 1 10.49 0.0012
ses5 4 2.02 0.7319

Table 2.8: Analysis of deviance table of the full regression model without interactions
for LGA.

The first six covariates: prvbig, ppwtstat, pwtgain3, smk, parity, gdm, dm are still

the most important variables, because of their large change in deviance and low P

values. These changes in deviance are increamental, and represent the effect of a

predictor after the previous variables are included in the model. matage becomes less

important when combined with the previous variables. prvlbw, rural, psych and pihyp

are also significant when they are added in the model. However, the variables prvcs,

prvgdm, chabus, hyp and ses5 are not statistically significant at level of 0.05 when

they are included in the model. Before excluding the non-significant terms from future
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consideration, interaction terms were added in the model and backward elimination

was performed using AIC score. The final model is determined with the minimum

AIC value.

All possible two-way interactions were created from 5 biologically plausible and

significant variables: previous births with high birth weight (prvbig), pre-pregnancy

weight status (ppwtstat), pregnancy weight gain (pwtgain3), smoking status on ad-

mission (smk) and number of deliveries (parity). Each of these interaction terms

was added separately to the model to determine its significance. As a result, four

of the interaction terms were statistically significant and retained in the model: one

between prvbig and pwtgain3, one between prvbig and ppwtstat, one between ppwtstat

and pwtgain3, and one between smk and ppwtstat are obtained. These are then added

to the model, and the analysis of deviance table is displayed in Table 2.9.

Variable df Change in Deviance P value

parity 3 256.46 0.0000
matage 1 97.42 0.0000
gdm 1 141.86 0.0000
prvcs 1 54.04 0.0000
dm 1 126.73 0.0000
prvlbw 1 120.42 0.0000
prvgdm 1 1.05 0.3050
rural 1 4.61 0.0318
chabus 1 2.23 0.1354
psych 1 5.76 0.0164
hyp 1 0.06 0.8128
pihyp 1 0.72 0.3958
ses5 4 2.30 0.6801
prvbig 1 1242.37 0.0000
pwtgain3 2 796.59 0.0000
ppwtstat 3 369.26 0.0000
smk 3 340.27 0.0000
prvbig :pwtgain3 2 7.88 0.0195
prvbig :ppwtstat 3 16.19 0.0010
pwtgain3:ppwtstat 6 40.83 0.0000
ppwtstat :smk 9 11.18 0.2636

Table 2.9: Analysis of deviance table of the full regression model with interactions
for LGA.

Only one interaction term between ppwtstat and smk is not significant when it is
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included in the model. The other three interactions are highly significant when they

are added in the model sequentially.

Backward elimination for variable selection using AIC was then carried out. The

final model obtained is

log[
p(lga = 1)

1− p(lga = 1)
] =β̂0 + β̂1 parity + β̂2 matage+ β̂3 gdm+ β̂4 dm+ β̂5 prvlbw

+ β̂6 rural + β̂7 psych+ β̂8 hyp+ β̂9 pihyp+ β̂10 prvbig

+ β̂11 pwtgain3 + β̂12 ppwtstat+ β̂13 smk

+ β̂14 prvbig : ppwtstat+ β̂13 pwtgain3 : ppwtstat

(2.8)

where the parameters β̂i, i = 0, 1, . . . , 13 are given in the Table 2.10

The analysis of deviance for the final model is demonstrated in Table 2.11. All

but two of the terms are significant at the 0.05 level.

From Table 2.10, the most notable variables to influence LGA are ppwtstat, prvbig,

pwtgain3 and their interactions. dm is also strongly associated with LGA births. The

odds ratio for dmYes (OR 3.262, 95%CI: 2.618-4.055) indicates that when fixing other

variables in the model, the women who had pre-existing diabetes are estimated to

have a odds that is about 3.262 times that of women of who did not have pre-existing

diabetes.

The odds ratio for prvbigYes in conjunction with ppwtstatUnderweight is the prod-

uct of odds ratios for prvbigYes, ppwtstatUnderweight and prvbigYes:ppwtstatUnderweight,

which is 5.22 ∗ 0.50 ∗ 0.83 = 2.17. This indicates that underweight mothers with a

previous big baby have 2.17 times the odds of normal weight mothers with no pre-

vious big baby for having an LGA birth. Similarly, the odds ratio for prvbigYes in

conjunction with ppwtstatOverweight is 5.22∗1.38∗0.66 = 4.75, indicating that over-

weight mothers with a previous big baby have even a higher odds, 4.75 times the odds

of normal weight mothers with no previous big baby for having an LGA birth. The

odds ratio for prvbigYes in conjunction with ppwtstatObese is 5.22∗2.30∗0.72 = 8.64

shows that the obese mothers with a previous big baby have the highest odds, which

is 8.64 times the odds of normal weight mothers with no previous big baby for having
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Variable df Change in Deviance P value

parity 3 256.46 0.0000
matage 1 97.42 0.0000
gdm 1 141.86 0.0000
dm 1 129.72 0.0000
prvlbw 1 109.57 0.0000
rural 1 4.55 0.0329
psych 1 5.61 0.0178
hyp 1 0.07 0.7956
pihyp 1 0.49 0.4844
prvbig 1 1299.43 0.0000
pwtgain3 2 798.26 0.0000
ppwtstat 3 372.67 0.0000
smk 3 342.97 0.0000
prvbig :ppwtstat 3 17.65 0.0005
pwtgain3:ppwtstat 6 43.33 0.0000

Table 2.11: Analysis of deviance table of the final regression model for LGA.

an LGA birth.

The odds ratio for pwtgain3Inadequate in conjunction with ppwtstatUnderweight

is 0.56 ∗ 0.50 ∗ 1.81 = 0.51, which shows that underweight mothers who have in-

adequate pregnancy weight gain have 0.51 times the odds of delivering an LGA in-

fant than those normal weight mothers who have adequate pregnancy weight gain.

The odds ratio for pwtgain3Excessive in conjunction with ppwtstatUnderweight is

1.99 ∗ 0.50 ∗ 1.59 = 1.58, which shows that underweight mothers who have exces-

sive pregnancy weight gain have a 1.58 times the odds, of delivering an LGA in-

fant than those normal weight mothers who have adequate pregnancy weight gain.

The odds ratio for pwtgain3Inadequate in conjunction with ppwtstatOverweight is

0.56 ∗ 1.38 ∗ 1.02 = 0.79, which shows that overweight mothers who have inadequate

pregnancy weight gain have 0.79 times the odds of delivering an LGA infant than those

normal weight mothers who have adequate pregnancy weight gain. The odds ratio for

pwtgain3Excessive in conjunction with ppwtstatOverweight is 1.99∗1.38∗0.92 = 2.53,

which shows that overweight mothers who have excessive pregnancy weight gain have

2.53 times the odds of delivering an LGA infant than those normal weight mothers

who have adequate pregnancy weight gain. The odds ratio for pwtgain3Inadequate

in conjunction with ppwtstatObese is 0.56 ∗ 2.30 ∗ 1.35 = 1.74, indicating that obese
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mothers with inadequate pregnancy weight gain have the odds of delivering an LGA

infant 1.74 times that of those normal weight mothers with adequate pregnancy weight

gain. The odds ratio for pwtgain3Excessive in conjunction with ppwtstatOverweight

is 1.99∗2.30∗0.75 = 3.43, which reveals that obese mothers with excessive pregnancy

weight gain have the highest odds, 3.43 times the odds, of delivering an LGA infant

than those normal weight mothers with adequate pregnancy weight gain.

parity and gdm are also associated with LGA births. The odds ratio for parity

shows that multiparous women (i.e. with one or more previous pregnancies) have

higher odds to deliver an LGA infant than nulliparous women (i.e. women in their

first pregnancy). The odds ratio for gdmYes (OR 1.67, 95%CI: 1.488-1.881) indicates

that the odds ratio of delivering LGA babies for mothers who have gestational diabetes

is higher than that for mothers who do not have gestational diabetes.

matage was statistically significantly associated with LGA birth in the final model.

The odds ratio for matage (OR 1.01, 95%CI: 1.000-1.011) indicates that when mater-

nal age increases by 1 year, the odds of having LGA babies has a very small increase.

smk and prvlbw are strongly negatively associated with LGA births. The odds

ratio for smk < 0.5 pack/day (OR 0.47, 95%CI: 0.413-0.522), smk >= 0.5 pack/day

(OR 0.36, 95%CI: 0.301-0.424) and smkUnknown (OR 0.70, 95%CI: 0.597-0.813)

indicate that women who smoke less than 0.5 pack/day have lower odds of delivering

an LGA infant than those who do not smoke, and women who smoke 0.5 pack/day

or more have lower odds of delivering LGA babies than those who do not smoke. In

addition, women whose smoking status is unknown have lower odds of delivering an

LGA infant than those who do not smoke. The odds ratio for prvlbwYes (OR 0.56,

95%CI: 0.463-0.680) shows that mothers who previously had an infant with a birth

weight less than 2500g have lower odds of delivering an LGA infant than those who

did not have an infant with a birth weight less than 2500g.

Other variables such as rural, psych, hyp, and pihyp are associated with lower

odds for LGA births. The odds ratio for ruralYes (OR 0.90, 95%CI: 0.846-0.955)

indicates that women who live in a rural area have lower odds than those who live in

urban area. The odds ratio for psychYes (OR 0.78, 95%CI: 0.604-0.999) indicates that

women who have psychiatric illness during pregnancy have lower odds of delivering

LGA babies than women who do not have psychiatric illness during pregnancy. The
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Figure 2.2: ROC Curve for LGA with interaction.

odds ratios for hypYes (OR 0.81, 95%CI: 0.602-1.069) and pihypYes (OR 0.82, 95%CI:

0.730-0.928) show that the mothers who have pre-existing hypertension or pregnancy-

induced hypertension have lower odds to deliver an LGA infant than women with a

normal blood pressure .

The ROC curve of the final logistic regression model for LGA on the test data is

plotted in Figure 2.2.

Figure 2.2 illustrates the true positive rate (sensitivity) as a function of false

positive rate (1-specificity) when threshold changes. It demonstrates that the logistic

regression model improves the prediction precision over a random prediction model.

The area under the ROC curve is 0.7085, indicating that the model is acceptable.

The new threshold we obtained is 0.153. In other words, instead of assigning an

observation to the LGA class if pi(lga = 1) > 0.5 holds, we could instead assign an

observation to this class if pi(lga = 1) > 0.153.
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The results from taking this approach are shown in Table 2.12.

Disease+ Disease- Total

Test+ 453 1416 1869
Test- 265 2758 3023
Total 718 4174 4892

Point estimates and 95% CIs
Apparent prevalence 0.38 (0.37, 0.40)
True prevalence 0.15 (0.14, 0.16)
Sensitivity 0.63 (0.59, 0.67)
Specificity 0.66 (0.65, 0.68)
Positive predictive value 0.24 (0.22, 0.26)
Negative predictive value 0.91 (0.90, 0.92)
Positive likelihood ratio 1.86 (1.73, 1.99)
Negative likelihood ration 0.56 (0.51, 0.62)

Table 2.12: The confusion matrix and diagnostic summaries for LGA with threshold
0.153.

With the optimal threshold, the logistic regression model predicts that 1869 in-

dividuals will deliver LGA babies. Of the 718 individuals who deliver LGA babies,

logistic regression model correctly predicts 453, or 63%. 1416 individuals who are

not LGA are incorrectly classified. As a result, the overall error rate has increased to

0.3436.

The positive likelihood ratio (1.86) and the negative likelihood ratio decreases

(0.56) indicate that a woman with an LGA birth is about 1.86 times as likely to have

a positive test than a women without a LGA birth, and the probability of having a

negative test for women with a LGA birth is 0.56 or about one half of that of those

without a LGA birth.



Chapter 3

Classification and Regression Trees

The classification and regression tree model (CART) was introduced to statistics by

Breiman, Friedman, Olshen, and Stone (1984). It is very popular because of its easy

interpretability and intuitive graphical presentation. It can be used for solving both

regression and classification problems. In CART, the predictor space is partitioned by

recursive binary splitting according to some specific criteria into different cases, which

is graphically represented by a tree. The predicted value of the response variable

is calculated based on a simple model (often a constant) in the region where the

observation falls.

In this chapter, we will introduce the process for building regression and classifi-

cation trees and for achieving the optimal size tree by a pruning method. We define

sga and lga as response variables, with 1 corresponding to SGA or LGA and 0 cor-

responding to not SGA or not LGA. Then we will use classification trees to predict

SGA and LGA from the predictors.

3.1 Regression Trees

Following Breiman et al. (1984) and Hastie et al. (2009), we begin with building a

regression tree and then find the optimal size of the tree.

For data (yi,xi), i = 1, . . . , n with p predictors xi = (xi1, . . . , xip), suppose we

partition the predictor space into M regions R1, R2, . . . , RM . We have many ways

to partition the predictor space to get different shapes for each region. However, in

order to express all partitions by a tree with M terminal nodes, we partition the

predictor space into high-dimensional rectangles or boxes by using recursive binary

partitioning. At each step, we partition the region of the predictors into two regions

where the division is parallel to one of the axes. The sub-partition is operated within

existing partitions and is not allowed to cross them. The process of recursive binary

splitting is elaborated as follows.

27
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We first select the predictor xj and splitting value s from all predictors and points

along the region of each predictor and divide the predictor space into the pair of

regions R1(j, s) = {X|xj ≥ s} and R2(j, s) = {X|xj < s}.
If we use the residual sum of squares (RSS) as our fitting criterion for a contin-

uous response, the best estimator of the response variable yi is the average over all

observations in the same region as i.

Therefore, the values of j and s can be found by solving

min
(j,s)

⎡
⎣ ∑

xi∈R1(j,s)

(yi − ŷR1)
2 +

∑
xi∈R2(j,s)

(yi − ŷR2)
2

⎤
⎦ , (3.1)

where ŷR1 and ŷR2 are given by ŷR1 = mean(yi|xi ∈ R1(j, s)) and ŷR2 = mean(yi|xi ∈
R2(j, s)).

Next, we divide one of the two resulting regions by repeating the above splitting

process to minimize the RSS within the same region. The partition continues further

on all of the resulting regions until some stopping criterion is reached.

The tree size is a measure of the complexity of the tree model. Large trees may

overfit the data and result in large prediction error for the test data. Therefore,

the optimal size of tree needs to be determined in order to improve the prediction

performance of the model. One strategy is to stop splitting if the decrease in RSS

for this split is less than some fixed threshold. This strategy may stop splitting too

soon and omit some good splits on further steps. A better strategy is to grow a

large tree until a minimum node size is reached first, and then prune it back by using

cost-complex pruning.

We define the cost- complexity function as follows

Rα(T ) = R(T ) + α|T̃ |, (3.2)

where the regression cost

R(T ) =

|T̃ |∑
m=1

∑
i:xi∈Rm

(yi − ŷRm)
2
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is RSS; α is a non-negative complexity parameter and can be considered as the com-

plexity cost per terminal node; T is any sub-tree obtained by pruning the full tree

T0; T̃ is the set of terminal nodes of T and |T̃ | is the number of terminal nodes in T .

Therefore Rα(T ) is formed by adding a cost penalty for complexity to the RSS of the

sub-tree.

If α is small, the penalty for having a large number of terminal nodes is small

and the sub-tree which minimizes R(T ), Tα, will be large. For example, when α = 0,

Tα is the full tree T0. As α increases, the penalty for having fewer terminal nodes is

small and Tα will be small. If α is sufficiently large, the minimizing Tα will be the

root node only.

For every value of α, one can show that there exists a unique smallest sub-tree Tα

that minimizes Rα. Although α can run through a continuous range of values, the

number of sub-trees is finite. Because of the finiteness, an optimal sub-tree is optimal

for an interval range of α, and the number of such intervals has to be finite (Zhang

and Singer, 2010). The limits of these intervals or thresholds of α and the smallest

minimizing sub-tree can be found as follows.

Any internal node τ , has a number of offspring terminal nodes. The cost of the

internal node and the offspring nodes can be denoted by R(τ) and R(T̃τ ), respectively,

where T̃τ contains the terminal nodes of Tτ and Tτ is a branch rooted at node τ . Then

for each internal node τ , the value of α is given by

α =
R(τ)−R(T̃τ )

|T̃τ | − 1
. (3.3)

We start with the smallest α1 over the internal nodes. The corresponding node τ1

is the weakest link in T1, as α increases, it is the first node for which Rα1(τ1) becomes

equal to Rα1(T̃τ1). Then we prune Tτ1 , namely treat the node τ1 as a terminal node.

This is so-called the weakest link pruning.

This pruning process results in the optimal sub-tree Tα1 corresponding to α1. The

interval for which the sub-tree Tα1 is optimal begins from α1 and ends at the sec-

ond threshold complexity parameter α2. We choose the second threshold complexity

parameter α2 in the same way based on the pruned sub-tree Tα1 , and get the corre-

sponding optimal sub-tree Tα2 .

Consequently, we create a decreasing sequence of sub-trees from a full tree to a
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root node,

Tα0 > Tα1 > Tα2 > · · · > {root node}

with a sequence of thresholds of complexity parameters α

0 = α0 < α1 < α2 . . .

and the final optimal sub-tree can be selected from among them as follows.

For the final selection of sub-tree Tα with complexity parameter α, we need to

have a good estimate for the regression costs of a sequence of sub-trees, which are

R(Tα0), R(Tα1), R(Tα2) . . . , R({root node})

with corresponding complexity parameters 0 = α0, α1, α2 . . . . They are estimated by

using a k-fold cross validation (CV) process, in which the data set is randomly divided

into k subsets. In this process, every subset is chosen as test data and the rest of

the data is treated as training data. Thus, k pairs of training and test data sets are

given. For each pair of data sets, by taking each complexity parameter αi, i = 1, 2 . . .

that we have already derived above, we use the training data set to build a sequence

of optimal sub-trees in the previous way and use the test data set to calculate the

prediction error for each sub-tree. Then, we get k estimates of R(Tαi
), i = 1, 2 . . . .

By averaging the k estimates of R(Tαi
), the estimate of each R(Tαi

), i = 1, 2 . . . is

obtained. The standard error of R(Tαi
) can also be calculated from the k replicates.

The change of R(Tαi
) with αi can be demonstrated by a plot of the CV predic-

tion error versus cp instead of α, where cp = α/R({root node}), the dimensionless

complexity parameter. The final optimal sub-tree is the smallest sub-tree with cross

validation error no larger than the minimum plus one standard error (1-SE). The 1-SE

rule tends to yield a more robust and parsimonious model, as described by Breiman

et al (1984).
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3.2 Classification Trees

A classification tree is a model used to predict a qualitative response rather than

a quantitative response. The process of building and pruning classification trees is

very similar to that for regression trees. That is, we build classification trees by

recursive binary partitioning and prune trees based on cost-complexity pruning. The

only differences between these two processes are the splitting and pruning criteria.

For a classification tree, the residual sum of squares is no longer the splitting criterion,

instead we use misclassification error rate as the splitting criterion.

Suppose the response variable has K classes, so yi = k, where k = 1, 2, . . . , K.

The proportion of class k observations in node m, is given by

p̂mk =
1

Nm

∑
i:xi∈Rm

I(yi = k), (3.4)

where Nm is the number of observations in node m.

In this case, the estimated value of a response variable yi in node m is the class

with the largest proportion in node m.

The misclassification error rate in node m is the proportion of the observations

that do not belong to the class with the largest proportion in node m. It can be

expressed by

Em = 1−max(p̂mk). (3.5)

The best classification tree is the one with the lowest misclassification error rate

or impurity of its nodes. Hence, we are not only interested in the class prediction

but also in the class proportion of a node. However, the misclassification error rate

is sometimes not sensitive to impurity of its nodes. There are two other quantities

to describe the impurity of a node. One is the Gini index and the other is the cross-

entropy or deviance.

The Gini index is defined by

G =
K∑
k=1

p̂mk(1− p̂mk), (3.6)

which measures the total variance of the response over the node m.
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The cross-entropy or deviance is given by

D =
K∑
k=1

p̂mklog(p̂mk), (3.7)

and is an alternative to the Gini index.

Since the Gini index and deviance are more sensitive than the misclassification

error rate to the impurity of a node (Hastie et al, 2009), we use the Gini index to

grow a classification tree and use the misclassification error rate for pruning the tree

in order to achieve an optimal size of a classification tree.

3.3 Results

3.3.1 SGA

We start by growing a large tree, then prune it back using the dimensionless com-

plexity parameter (cp) pruning technique to achieve an optimal size tree. The rpart

function in R is used on the training data set. The Gini index is used in tree splitting.

Since the observed prevalence of SGA is very low (0.08) and trees will not accurately

predict the minority class when applied to class-imbalanced data, weights of 10 are

applied to the second class of sga (sga = 1). The value of cp is chosen at 0.002, mean-

ing that the classification tree will be grown until cp = 0.002 is achieved. This initial

tree for SGA is shown in Figure 3.1. The class membership and sample composition

are displayed. Inside each node is the fitted class of sga. Under each node are the

number of the first class of sga (left) and the number of second class of sga multiplied

by 10 (right). The root node is classified as sga = 0 because there are more non SGA

babies (41776) than SGA babies (3204) multiplied by 10 (32040). The first split is

on smk, with nonsmokers classified as sga = 0 and the remaining categories (< 0.5

pack/day, >= 0.5 pack/day and Unknown) classified as sga = 1.

In the tree pruning process, the misclassification costs of a sequence of sub-trees

with corresponding cp are estimated using 10-fold cross validation. The Table 3.1 lists

the cp, the number of splits (nsplit), the relative error (rel error), the relative cross

validation error (xerror), and the standard error of the relative cross validation error

(xstd) for the initial SGA tree. The relative error is defined as the misclassification
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Figure 3.1: The initial tree for SGA. Inside each node is the fitted class of sga. Under
each node are the number of sga = 0 (left) and (sga = 1)× 10 (right).
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error divided by that of the root node. The graphical presentation of relative cross

validation error versus complexity parameter and tree size (always 1 + number of

split) is given in Figure 3.2.

cp nsplit rel error xerror xstd

0.1313 0 1 1 0.0042
0.0176 1 0.8687 0.8687 0.0041
0.0057 3 0.8335 0.8297 0.0041
0.0043 5 0.8221 0.8254 0.0041
0.0036 7 0.8135 0.8194 0.0041
0.0034 9 0.8063 0.8122 0.0041
0.0023 10 0.8029 0.8069 0.0040
0.0021 11 0.8006 0.8052 0.0040
0.0020 15 0.7923 0.8052 0.0040

Table 3.1: Complexity parameter table for the initial SGA tree. The complexity
parameter (cp), the number of splits (nsplit), the relative error (rel error), the relative
cross validation error (xerror), and the standard error of the relative cross validation
error (xstd) for the initial SGA tree are given.

Both the numerical output and the plot indicate that the minimal cross validation

error, 0.8052, was reached with a cross validation error standard error of 0.0040 when

the tree has 12 terminal nodes or 11 splits. Using the 1-SE rule, the smallest subtree

is found with the error below 0.8052 +0.0040 = 0.8092. This leads to the pruned tree

with 11 terminal nodes or 10 splits as displayed in Figure 3.3 and Figure 3.4.

Both Figure 3.3 and Figure 3.4 show the pruned tree with splitting rules and the

fitted class of sga. The former presents the number of sga=0 (left) and the number

10 × (sga = 1) for each node, and the latter presents the probability of sga = 1

given that node. The pruned tree model is constructed by the following predictors:

smk, pwtgain3, parity, pribig, ppwtstat, prelbw and ses5 from the root (top) to leaves

(bottom), suggesting that they are very important variables for predicting SGA births.

Normally the higher the variable occurs in the tree, the higher the predictive power

and importance of the variable.

The first split is on smk, which is the most important predictor. Non-smokers are

assigned to the left branch with sga = 0, while categories smk < 0.5 pack/day, smk

>= 0.5 pack/day and smkUnknown are assigned to the right branch with sga = 1.

This indicates that women who smoke or whose smoking status is unknown have a
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Figure 3.3: The pruned tree for SGA. Inside each node is the fitted class of sga. Under
each node are the number of sga = 0 (left) and (sga = 1)× 10 (right), respectively.
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Figure 3.4: The pruned tree for SGA. Inside each node is the fitted class of sga. Under
each node is the probability of sga = 1 with the number of (sga = 1) × 10 given the
node.
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higher odds to deliver SGA babies than those who do not smoke.

Following the right branch of the first split, this group is further subdivided by

pwtgain3, which is the second most important factor for predicting SGA births. Moth-

ers who have excessive pregnancy weight gain have a lower probability of delivering

SGA babies than those who have adequate or inadequate weight gain. prvbig is a

negative predictor of SGA births. Mothers who have previous birth weights larger

than 4080 g have a lower odds of delivering SGA babies than those who have not had

a previous baby larger than 4080 g birth weight.

Following the left branch of the first split on smk, this group is also further subdi-

vided by pwtgain3, suggesting that mothers with both adequate or inadequate weight

gain have a higher risk of delivering SGA babies than those with excessive pregnancy

weight gain. The former group of women is further split by parity : Multiparous

women have a lower risk of delivering SGA babies than nulliparous women.

Along the right branch of splitting node on parity, this group continues to be

separated into cases with inadequate and adequate pregnancy weight gain. Those

who have inadequate pregnancy weight gain have a higher probability of delivering

SGA babies than those who have adequate weight gain. The cases with adequate

weight gain is split by ses5 (income quintile based on the woman’s residence census

dissemination area), showing that women from Q1, Q4, and Q5s tend to have higher

probability of delivering SGA babies than those from Q2 and Q3. The group of

women from Q2 and Q3 are further split byppwtstat, indicating that mothers with

underweight pre-pregnancy weight status have higher risk of having SGA babies than

those of normal weight, overweight and obese pregnancy weight status.

Along the left branch of the splitting node on parity, the group of multiparous

women is further split by prvbig : mothers who have previous babies larger than 4080

g have much lower risk of giving SGA births than those who have not had previous

babies larger than 4080 g birth weight. This node is further split on prvlbw : women

who had a previous baby with a birth weight less than 2500g birth have a higher risk

of delivering an SGA infant than those who did not have a baby with birth weight

less than 2500g .

Figure 3.5 illustrates the probability of each observation in each node relative to

all the observations. Inside each node is the class of sga. Under each node, the left
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Figure 3.5: The pruned tree for SGA. Inside each node is the class of sga. Under each
node are the probability relative to all observations for the first class of sga = 0 (left)
and for the second class of sga = 1 with a weight of 10 (right).
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Figure 3.6: The ROC curve for the pruned tree for SGA.

number is the probability of sga = 0, while the right number is the probability of

sga =1. We should notice that the actual probability for the second class of sga in

each node is the right number divided by the weight of 10. This figure provides more

accurate results about the probability of sga class in each node for future observations.

The ROC curve of the classification tree model for SGA on the test data is plot-

ted in Figure 3.6. Because the curve is above the line of equality, this ROC curve

demonstrates that the classification tree model improves the prediction precision over

a random prediction model. The area under the ROC curve is 0.6603, which is smaller

than that obtained using logistic regression.
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The ROC curve is not as smooth as that for logistic regression. For a tree model

with only a few terminal nodes, the threshold only changes when the probability in a

terminal node is reached. For the logistic model, a fitted or predicted probability is

obtained for each case, so the probability threshold can be changed in small steps to

trace out a smooth ROC curve.

The optimal threshold derived from the ROC curve is 0.538, even larger than 0.5.

With the optimal threshold, the sensitivity is expected to be even lower than that for

probability threshold of 0.5. Therefore, the threshold probability of 0.5 is selected in

the diagnostic test for the SGA classification tree model using test data.

The confusion matrix and diagnostic summaries are shown in Table 3.2.

Disease+ Disease- Total

Test+ 200 1187 1387
Test- 181 3324 3505
Total 381 4511 4892

Point estimates and 95% CIs
Apparent prevalence 0.28 (0.27,0.30)
True prevalence 0.08 (0.07,0.09)
Sensitivity 0.52 (0.47,0.58)
Specificity 0.74 (0.72,0.75)
Positive predictive value 0.14 (0.13,0.16)
Negative predictive value 0.95 (0.94,0.96)
Positive likelihood ratio 1.99 (1.79,2.22)
Negative likelihood ratio 0.64 (0.58,0.72)

Table 3.2: The confusion matrix and diagnostic summaries for the SGA tree with
threshold 0.5.

The confusion matrix reveals that the classification tree model predicted that 1387

people would deliver SGA babies. Of the 381 individuals who actually deliver SGA

babies, the tree model correctly predicts 200, or 52% (sensitivity). 1187 out of 4511

of the individuals who did not deliver SGA babies were incorrectly labeled, so the

specificity is 74%. The overall prediction error is 27.96%.

The positive likelihood ratio (1.99) and the negative likelihood ratio (0.64) indicate

that a woman with an SGA birth is about 1.99 times as likely to have a positive test

than a women without a SGA birth, and the probability of having a negative test for

women with a SGA birth is 0.64 of that of those without a SGA birth .
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3.3.2 LGA

We use the same approach to fit a classification tree for LGA as for SGA. We start

by growing a large tree, and then prune it back using the dimensionless complexity

parameter (cp) pruning technique to achieve an optimal size of tree. The classification

tree for LGA is built using the rpart function on the training data. The Gini index

is used in tree splitting. Since the observed prevalence of LGA is very low (0.15), the

weights of 5 are applied to the cases with lga = 1. The value of cp is chosen as 0.002,

so that the classification tree is grown until cp = 0.002 is reached. This initial tree

is shown in Figure 3.7. The class membership and sample composition are displayed.

Inside each node is the lga fitted class. Under each node are the number of lga = 0

cases (left) and the number of second class of lga = 1 cases multiplied by 5 (right ).

In the tree pruning process, the misclassification costs of a sequence of sub-trees

with corresponding values of cp are estimated based on 10-fold cross validation. Table

3.3 lists the cp, the number of splits (nsplit), the relative error (relerror), the relative

cross validation error (xerror) and the standard error of the relative cross validation

error(xstd) for the initial LGA tree. The graphical presentation of relative cross

validation error versus complexity parameter and tree size (always 1 + number of

splits) is given in Figure 3.8.

cp nsplit rel error xerror xstd

0.1503 0 1.000 1.000 0.0040
0.019 1 0.8497 0.8497 0.0039
0.0077 4 0.7926 0.7901 0.0038
0.0072 6 0.7772 0.7887 0.0038
0.002 7 0.7680 0.7781 0.0038

Table 3.3: Complexity parameter table for the initial LGA tree. The complexity
parameter cp , the number of splits (nsplit), the relative error (rel error), the relative
cross validation error (xerror) and the standard error of the relative cross validation
error(xstd) for the initial LGA tree.

Both the numerical output and the plot indicate that the minimal error, 0.7781,

was reached with a standard error 0.0038 when the tree has 8 terminal nodes or 7

splits. By using the 1-SE rule, the smallest subtree is found with the error below

0.7781 + 0.0038 = 0.7819. This indicates that the initial LGA tree is the optimal tree
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Figure 3.7: The initial tree for LGA. Inside each node is the class of lga. Under each
node are the number of lga = 0 (left) and (lga = 1)× 5 (right).
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without need of pruning. The probability of lga =1 in each node is shown in Figure

3.9.

Figure 3.9 suggests that prvbig, pwtgain3, smk, ppwtstat, dm and parity, from the

root (top) to leaves (bottom) are important predictors of LGA birth in descending

importance.

The first split is on prvbig, which is the most important predictor. Women who

had a previous birth with a birth weight larger than 4080 g are more likely to deliver

an LGA infant than those who did not previously have a baby larger than 4080 g

birth weight.

The women who had previous births with birth weights less than 4080 g is further

subdivided by pwtgain3, indicating that pwtagain3 is the second most important

factor to predict LGA birth. Mothers who have excess pregnancy weight gain have a

higher probability of having LGA babies than those who have adequate or inadequate

weight gain. The former group is further split by smk : the nonsmoker group tends

to have a higher risk of LGA birth than the smokers or those with unknown smoking

status. This group is then separated by ppwstat : mothers with an obese pre-pregnancy

weight status have a higher risk of having LGA babies than those who are underweight,

normal weight or overweight. The latter group is divided by dm: women with pre-

existing diabetes have higher probability of delivering LGA babies than those without

pre-existing diabetes. The group of women without pre-existing diabetes are split by

parity. This demonstrates that multiparous women have a slightly higher risk of

delivering LGA babies than nulliparous women. These cases are further divided by

ppwstat, suggesting that mothers with overweight pre-pregnancy weight status have

higher risk of LGA births than those who have underweight or normal weight pre-

pregnancy weight status.

Figure 3.10 illustrates the probability of each observation in each node relative

to all the observations. Inside each node is the lga class. Under each node, the

left number is the probability of lga=0, while the right number is the probability of

lga=1. We should notice that the real probability for lga=1 in each node is the right

number divided by the weight 5. This figure provides more accurate results about

the probability of lga class in each node for future observations.

The ROC curve of the classification tree model for LGA on the test data is plotted
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Figure 3.9: The optimal tree for LGA. Inside each node is the class of lga. Under
each node are the probability of lga = 1 with the number of lga = 1 × 5 given the
node.
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Figure 3.10: The optimal tree for LGA. Inside each node is the class of lga. Under
each node is the probability relative to all observations for lga = 0 (left) and for lga
= 1 the weight of 5 (right) in the node.
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Figure 3.11: The ROC curve of optimal LGA tree.

in Figure 3.11. Because the curve is above the line of equality, this ROC curve

demonstrates that the classification tree model improves the prediction precision over

a random prediction model. The area under the ROC curve is 0.6817, which is a little

lower than that obtained using logistic regression.

The optimal threshold derived from the ROC curve is 0.484. The diagnostic

properties of the classification rule using this threshold are shown in Table 3.4.

With the optimal threshold, the classification model predicts that 1780 mothers

will deliver LGA babies. Of the 718 individuals who deliver LGA babies, the classi-

fication model correctly predicts 421, or 59% (sensitivity). 1359 individuals who are
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Disease+ Disease- Total

Test+ 421 1359 1780
Test- 297 2815 3112
Total 718 4174 4892

Point estimates and 95% CIs
Apparent prevalence 0.36 (0.35,0.38)
Ture prevalence 0.15 (0.14,0.16)
Sensitivity 0.59 (0.55,0.62)
Specificity 0.67 (0.66,0.69)
Positive predictive value 0.24 (0.22,0.26)
Negative predictive value 0.90 (0.89,0.91)
Positive likelihood ratio 1.80 (1.67,1.94)
Negative likelihood ratio 0.61 (0.56,0.67)

Table 3.4: The confusion matrix and diagnostic summaries for LGA tree with thresh-
old 0.484.

not lga = 1 class are incorrectly classified. As a result, the overall error rate is 0.3385.

The positive likelihood ratio (1.80) and the negative likelihood ratio (0.61) reveal

that a woman with a LGA baby is about 1.80 times more likely to have a positive

test than a mother without a LGA baby, and the probability of having a negative

test for women with LGA babies is 0.61 of that of those without LGA babies.

Compared with the logistic regression model, the tree model has several advan-

tages. It has a more intuitive graphical presentation and can be easily explained.

It is easier to handle interactions without the need for creating interaction terms.

However, the tree model has overall lower predictive accuracy with lower sensitivity

and smaller area under ROC curve. In the next chapters, other tree-based techniques

will be introduced and applied in order to improve the predictive performance of the

trees.



Chapter 4

Random Forests

The predictive accuracy of a tree model can be significantly improved by an ensem-

ble of tree models, in which each tree is grown from a set of bootstrapped training

data. Prediction is made by averaging the prediction from each tree for a continuous

response or by the most popular class for a categorical response. This method, called

bootstrap aggregating or bagging, can reduce the high variance of a tree model. It was

first introduced by Breiman (1996) and became the precursor of the random forest

model (Breiman, 2001).

Dietterich (1998) proposed random split selection where at each node the split is

selected at random from several of the best splits and found that this approach does

better than bagging. In bagging, the trees are highly correlated because they are

grown by choosing almost the same important predictors at the top node. Thus bag-

ging may not substantially reduce the variance over a single tree (James et al, 2013).

The random forest approach de-correlates the trees in the collection by randomly

selecting a small fraction of p predictors at each split, and provides an improvement

over bagging in decreasing the variance of the model.

In this chapter, the random forest methodology and some important features are

introduced. Then random forests are applied to the NSAPD data set to predict SGA

and LGA.

4.1 Theory

Following Hastie et al (2009), in bagging, B bootstrapped training sets are drawn with

replacement from the original training data set and trees are grown on each sample

without pruning. This ensemble of trees can be denoted by f̂ ∗1(x), f̂ ∗2(x), . . . , f̂ ∗B(x).

For regression trees, the fitted model can be expressed as
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f̂bag(x) =
1

B

B∑
b=1

f̂ ∗b(x). (4.1)

For classification tree, the class predicted by each of the B trees is recorded and

a majority vote is taken.

If the set of trees are identically distributed with variance σ2 and positive pairwise

correlation ρ, the variance of the bagging prediction f̂bag(x) is

V ar(f̂bag(x)) = ρσ2 +
1− ρ

B
σ2, (4.2)

where the second item approaches zero if B is large enough. However, ρ is usually

large for bagging because of the similarity of the top structure of each tree, so the first

part of variance for bagging cannot be reduced by increasing the number of trees.

The random forest approach aims to reduce the first part of the variance for

bagging by de-correlating trees in the ensemble. After B bootstrapped training data

sets are drawn, each random-forest tree Tb, b = 1, . . . , B is grown to each of the

data sets. At each node, instead of using the full set of p predictors as splitting

variable candidates, m variables are randomly chosen from the p variables, and the

best variable and split-point are chosen from the m variables. The random forest

prediction at a new point x can then be expressed by

f̂B
rf (x) =

1

B

∑B

b=1
Tb(x) (4.3)

for regression, and

ĈB
rf = majority vote{Ĉb(x)}B1 (4.4)

for classifications, where Ĉb(x) is the class prediction of the bth random-forest tree.

The trees in a random forest grown in this way are much less correlated, so that

the variance of a random forest is much smaller than for a single tree. In general,

the variance of a random forest prediction decreases as m, the number of variables

considered at each split, decreases. The typical value of m is selected as m =
√
p for

a classification random forest and m = p/3 for a regression random forest.

The use of out-of-bag (OOB) samples is an important feature of random forest
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methodology. For any observation (yi,xi) in the original training data set, approxi-

mately two-thirds of bootstrapped samples include (yi,xi). The remaining one-third

samples not including (yi,xi are referred to as OOB samples for observation (yi,xi).

This can be argued as follows:

Each observation has probability 1/n of being selected for the bootstrap sample

at each of n independent selections. The probability of the observation being selected

is therefore binomial with index n and probability 1/n. The probability of the obser-

vation not being selected is (1− 1

n
)n. For large n this is approximately 1/e = 0.37.

For each observation in the training data, its random forest prediction is made

using only those trees constructed without this observation. Thereby, the OOB mean

squared error or classification error can be determined and combined over all obser-

vations. Breiman (2001) pointed out that the OOB error estimate is as accurate as

using a test set of the same size as the training set. In practice, the OOB error can be

monitored as trees are added to the random forest. The training can be terminated

once the OOB error has settled down and in this way the number of random forest

trees B is determined.

OOB samples can also be used in two ways to measure the importance of variables.

As Breiman (2001) introduced, for the bth classification tree in a random forest, the

OOB cases are put down the tree, and the number of votes for the correct class is

counted. Then, the values of variable xk among the OOB samples are randomly

permuted and the OOB cases with the permuted values of variable xk are put down

the tree and the number of votes for the correct class are recounted. The same process

is repeated for other trees in the forest. The difference between the number of votes

for the correct class in the original OOB data and in the variable-xk-permuted OOB

data averaged over all B trees in the forest is used to measure the importance of

variable xk. This is called variable permutation (or randomization) importance.

Another variable importance measure for classification trees in a random forest is

Gini importance. The Gini criterion in construction of a classification tree is used as

the splitting criterion for each single classification tree in the random forest. The Gini

importance of variable xk is measured by adding up the decrease in the Gini index

by splits over variable xk, averaged over all B trees.

The variable importance measures for classification trees in random forest can
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be extended to regression trees in random forests. The permutation importance of

a variable xk is the average increase in mean squared error (MSE) resulting from

the random permutation of values of xk in OOB samples over all B trees in the

forest. Another variable importance measure for regression trees in a random forest

is obtained by accumulating the decrease in MSE by splits over variable xk and

averaged over all B trees.

A random forest model provides improvement of the prediction accuracy over a

tree model at the expense of interpretability and intuitive graphical presentation. The

random forest structure cannot be presented graphically like the tree model. However,

the variable importance measure gives the summarized and quantitative information

of the random forest. It can be used for variable selection and the important predictors

can further be used by other models.

4.2 Results

4.2.1 SGA

A classification random forest was grown on the training data for SGA using the

randomForest package in R. As was done with the classification tree model, weights

of 10 are applied to the second class of sga (sga=1). The size of the set of randomly

selected predictor variables used for determining each binary split is m =
√
p, where

p denotes the total number of predictor variables. In our study, p = 17 and so m = 4.

500 classification trees were grown for the random forest.

Figure 4.1 shows the OOB misclassification error progression on 500 trees. The

black line demonstrates the OOB error over all classes as a function of the number of

trees in the model. The OOB misclassification error for the first class of sga (sga=0)

(red dashed line) is lower than that of the second class of sga (sga=1) (green dotted

line). The OOB error is stabilized at 500 trees. The overall OOB misclassification

error for the SGA random forest with 500 trees is 0.2378, which is much smaller than

the cross validation error of the single classification tree from Chapter 3 (0.8052).

The OOB misclassification errors for sga = 0 and sga = 1 are 0.1735 and 0.3216

respectively.

Figure 4.2 displays the rankings of variable importance for the SGA random forest.
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Figure 4.1: Random forest results for SGA. The OOB misclassification error (black
line) is shown as a function of the number of trees. The number of predictors used
for splitting at each node is m = 4. The green dotted line and green dashed lines
represent the OOB error for sga = 1 and sga = 0 respectively.
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Figure 4.2: A variable importance plot for a SGA random forest. Variable importance
is computed using the mean decrease in accuracy over all classes for OOB permutation.

Variable importance was calculated using the permutation approach. The top two

influential predictors are smk and pwtgain3, followed by parity, ses5 and ppwtstat.

The ROC curve of the random forest model for SGA on the test data is plotted

in Figure 4.3. Because the curve is above the line of equality, this ROC curve demon-

strates that the random forest model improves the prediction precision over a random

prediction model. The area under the ROC curve is 0.6752, which is slightly larger

than that obtained using a tree model (0.6603).

The optimal threshold calculated from the ROC curve is 0.276. The diagnostic

properties of the classification rule using this threshold are shown in Table 4.1.

With the optimal threshold, the classification model predicts that 1672 individ-

uals will deliver SGA babies. Of the 381 individuals who deliver SGA babies, the

classification model correctly predicts 228, or 60% (sensitivity). 1444 individuals who

are not sga = 1 class are incorrectly classified. As a result, the overall error rate is

32.65%.

The positive likelihood ratio (1.87) and the negative likelihood ratio (0.59) indicate
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Figure 4.3: The ROC curve of the SGA random forest.

Disease+ Disease- Total

Test+ 228 1444 1672
Test- 153 3067 3220
Total 381 4511 4892

Point estimates and 95% CIs
Apparent prevalence 0.34 (0.33, 0.36)
True prevalence 0.08 (0.07, 0.09)
Sensitivity 0.60 (0.55, 0.65)
Specificity 0.68 (0.67, 0.69)
Positive predictive value 0.14 (0.12, 0.15)
Negative predictive value 0.95 (0.94, 0.96)
Positive likelihood ratio 1.87 (1.70, 2.05)
Negative likelihood ratio 0.59 (0.52, 0.67)

Table 4.1: The confusion matrix and diagnostic summaries for the SGA random forest
with threshold 0.276.
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that a mother with a SGA baby is about 1.87 times more likely to have a positive test

than a mother without a SGA baby, and the probability of having a negative test for

mothers with SGA babies is 0.59 of that of those without SGA babies.

4.2.2 LGA

A classification random forest was grown on the training data set using the random-

Forest package in R. As was done with the classification tree model for LGA, weights

of 5 are applied to the second class of lga (lga=1). The size of the set of randomly

selected predictor variables used for determining each binary split is m =
√
p, where

p denotes the total number of predictor variables. In our study, p = 17 and so m = 4.

500 classification trees were grown for the random forest.

Figure 4.4 shows the OOB misclassification error progression on 500 trees. The

black line demonstrates the OOB error over all classes as a function of the number

of trees in model. The OOB misclassification error for the first class of lga (lga=0)

(red dashed line) is lower than that of the second class of lga (lga=1) (green dotted

line). It appears that the OOB error estimate is stabilized at 500 trees. The overall

OOB misclassification error for the LGA random forest with 500 trees is 0.2981, which

is much smaller than the cross validation error of the single classification tree from

Chapter 3 (0.7781). The OOB misclassification errors for lga = 0 and lga = 1 are

0.2458 and 0.3575 respectively.

Figure 4.5 displays the rankings of variable importance for LGA random forest.

Variable importance is calculated using the permutation approach. The top two

influential predictors are smk and prvbig, followed by pwtgain3, and ppwtstat. ses5 is

also in the higher rank.

The ROC curve of the random forest model for LGA on the testing data is plot-

ted in Figure 4.6. Because the curve is above the line of equality, this ROC curve

demonstrates that the random forest model improves the prediction precision over a

random prediction model. The area under the ROC curve is 0.6826, which is larger

than that obtained using a tree model (0.6817).

The optimal threshold calculated from the ROC curve is 0.367. The diagnostic

properties of the classification rule using this threshold are shown in Table 4.2.

With the optimal threshold, the classification model predicts that 1785 individuals
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Figure 4.4: Random forest results for LGA. The OOB misclassification error (black
line) is shown as a function of the number of classification trees. The number of
predictors used for splitting at each node is m = 4. The green and red dashed lines
represent the OOB error for lga = 1 and lga = 0 respectively.



59

Figure 4.5: A variable importance plot for the LGA random forest. Variable impor-
tance is computed using the permutation approach.
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Figure 4.6: The ROC curve of LGA random forest.
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Disease+ Disease- Total

Test+ 429 1356 1785
Test- 289 2818 3107
Total 718 4174 4892

Point estimates and 95% CIs
Apparent prevalence 0.36 (0.35, 0.38)
True prevalence 0.15 (0.14, 0.16)
Sensitivity 0.60 (0.56, 0.63)
Specificity 0.68 (0.66, 0.69)
Positive predictive value 0.24 (0.22, 0.26)
Negative predictive value 0.91 (0.90, 0.92)
Positive likelihood ratio 1.84 (1.71, 1.98)
Negative likelihood ratio 0.60 (0.54, 0.65)

Table 4.2: The confusion matrix and diagnostic summaries for LGA random forest
with threshold 0.367.

will deliver LGA babies. Of the 718 mothers who deliver LGA babies, the classification

model correctly predicts 429, or 60% (sensitivity). 1356 mothers who are not lga = 1

class are incorrectly classified. As a result, the overall error rate is 33.63%.

The positive likelihood ratio (1.84) and the negative likelihood ratio (0.60) indicate

that a mother with a LGA baby is about 1.84 times more likely to have a positive

test than a mother without a LGA baby, and the probability of having a negative

test for mothers with LGA babies is 0.60 of that of those without LGA babies.

The random forest has overall better prediction performance than a tree model.

The OOB misclassification error of a random forest is much lower than the cross

validation error of a tree model. The area under the ROC curve of a random forest

is larger than that of a tree model with higher sensitivity. However, the prediction

performance of a random forest is somewhat limited. It may be improved in another

tree ensemble method-boosting.



Chapter 5

Boosting Trees

Boosting is a general method for substantially improving the performance of a weak

classifier or a weak regression model. It works by repeatedly applying a given weak

learning algorithm to various distributions of the training data and then combing the

classifiers or regression functions produced by the weak learners into a single classifier

or regression model.

The first simple boosting algorithm was proposed by Schapire (1990), who proved

that the performance of a weak classifier could be improved by training two other

classifiers on a modified version of the training data and making the majority vote

among these three classifiers. This was demonstrated by his“Strength of Weak Learn-

ability” theorem. Based on the ideas presented by Schapire, Freund (1995) improved

the performance of the simple boosting algorithm of Schapire by combining a large

number of weak learners simultaneously. Freund and Shapire (1996) developed a new

boosting algorithm, called AdaBoost. This commonly used method is more practical

and easier to implement than the previous boosting algorithms.

The AdaBoost method was analyzed from a statistical view by Freidman et al.

(2000). They used the exponential criterion and proved that the AdaBoost is ac-

tually an additive logistic model. Freidman (2001) developed gradient boosting and

shrinkage for classification and regression.

In this chapter, the AdaBoost algorithm and its relationship with forward stage-

wise additive modeling are described. Boosting as applied to trees is discussed, and

gradient boosting is presented. Some tuning parameters and the importance of vari-

ables are described. Gradient boosting with the AdaBoost loss criterion is applied

to the NSAPD data set to predict SGA and LGA. The diagnostic properties of the

fitted model are discussed.
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5.1 Theory

5.1.1 AdaBoost and Forward Stagewise Additive Modeling

For a two- class problem, given data (yi,xi), i = 1, . . . , n, xi = (xi1, . . . , xip), the re-

sponse variable yi for each of observations is coded as yi ∈ {−1, 1}. A classifier G(x)

for predictor variable x gives a prediction taking one of the two values {−1, 1}. For

AdaBoost.M1 (also called Discrete AdaBoost), a weak classifier is sequentially applied

on repeatedly weighted training data, thereby producing a sequence of weak classi-

fiers. The final prediction is the weighted majority vote of the classifiers. Following

Freidman et al. (2000), the details of this algorithm are shown as follows:

1. Start with weights as

ωi = 1/n, i = 1, 2, . . . , n.

2. Repeat for m = 1, 2, . . . ,M .

(a) Fit the classifier Gm(x) using weights ωi, i = 1, 2, . . . , n on training data;

(b) Compute the weighted classification error rates

errm =

∑n
i=1 ωiI(yi �= Gm(xi))∑n

i=1 ωi

.

(c) Compute the weight

αm = log((1− errm)/errm).

(d) Set weights

ω′
i ← ωi · exp[αm · I(yi �= Gm(xi))], i = 1, 2, . . . , n.

3. Output the classifier

G(x) = sign[
∑M

m=1
αmGm(x)].

For the AdaBoost.M1 algorithm, two sets of intervening weights are used. One set

ωi, i = 1, 2, . . . , n weights the observations. Another set αm, m = 1, 2, . . . ,M weights
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the contribution of each classifier. Their effects are discussed in the following.

1. For weights ωi, i = 1, 2, . . . , n, if the observations are correctly classified, then

we have I(yi �= Gm(xi)) = 0, and ω′
i → ωi; if the observations are misclassified, then

we have I(yi �= Gm(xi)) = 1, and ω′
i → ωiexp(αm). Since the weak classifiers are

slightly better than random guessing, then we have errm < 0.5 and αm = log((1 −
errm)/errm) > 0. This indicates that more weight is applied to the misclassified

observations and each successive classifier focuses more on those training observations

which are misclassfied by the previous classifiers.

2. For weights αm, m = 1, . . . ,M , according to αm = log((1 − errm)/errm),

smaller errm leads to larger αm. This implies that more weight is given to more

accurate classifiers.

It has been shown that the AdaBoost method can dramatically improve the per-

formance of weak classifiers. The mystery of this phenomenon was explained by

Freidman et al. (2000). They showed that AdaBoost fits an additive model based

on an exponential loss function, and the additive expansion produced by AdaBoost

estimates the log-odds of the class probability.

Following Hastie et al. (2009), the additive models can be expressed by a set of

basis function expansions

f(x) =
M∑

m=1

βmb(x; γm),

where βm, m = 1, 2, . . .M are the expansion coefficients, and b(x; γm) are basis func-

tion characterized by a set of parameters γm,m = 1, 2, . . . ,M . The basis functions

here are chosen as the individual classifiers Gm(x) ∈ {−1, 1}.
The additive models typically are fitted by minimizing a loss function averaged

over the training data

min
{βm,γm}M1

N∑
i=1

L(yi,
∑M

m=1
βmb(xi; γm)). (5.1)

In many cases, the solution to (5.1) requires computationally intensive numerical

optimization techniques. However, the computation can be substantially simplified

by forward stagewise additive modeling, in which only one basis function and a corre-

sponding coefficient are fitted at each iteration. Forward stagewise additive modeling
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starts from f0(x) = 0. For step m, m = 1, . . . M , the optimal basis function and the

corresponding coefficient are solved based on

(βm, γm) = argmin
β,γ

n∑
i=1

L(yi, fm−1(xi) + βb(xi; γ)),

and then the current expansion fm−1 is updated by

fm(x) = fm−1(x) + βmb(x; γm).

This process is repeated without modifying the previously added terms.

For AdaBoost.M1, the basis function are the individual classifiersGm(x) ∈ {−1, 1}.
The exponential loss function is given by

L(y, f(x)) = exp(−yf(x)) (5.2)

where f(x) is a real number. In this case, it is a weighted sum of classifiers. When

y = 1, L = exp(−f), so if f(x) is large and positive, then L is small, and the classifier

given by sign(f) would be 1. But if f(x) is large and negative, L is large, and the

classifier would give -1 which would be an error.

The optimal classifier Gm and the coefficient βm are solved by

(βm, Gm) = argmin
β,G

n∑
i=1

exp[−yi(fm−1(xi) + βG(xi))].

This can be expressed as

(βm, Gm) = argmin
β,G

n∑
i=1

ω
(m)
i exp[−βyiG(xi)], (5.3)

where ω
(m)
i = exp[−yifm−1(xi)]. Each ω

(m)
i depends on neither β nor G(x), and

therefore, it can be considered as weights applied to each observation. The observation

weights change with each iteration m as they are determined by fm−1(xi).

Equation (5.3) can also be expressed as
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(βm, Gm) =argmin
β,G

[e−β ·
∑

yi=G(xi)

ω
(m)
i + eβ ·

∑
yi �=G(xi)

ω
(m)
i ]

=argmin
β,G

[(eβ − e−β) ·
n∑

i=1

ω
(m)
i I(yi �= G(xi)) + e−β ·

n∑
i=1

ω
(m)
i ].

(5.4)

For β > 0, the solution to (5.4) for Gm(x) is given by

Gm = argmin
G

n∑
i=1

ω
(m)
i I(yi �= G(xi)), (5.5)

which is the classifier minimizing the weighted error rate in predicting y.

The minimized weighted error rate, denoted by errm is

errm =

N∑
i=1

ω
(m)
i I(yi �= Gm(xi))

n∑
i=1

ω
(m)
i

.

Substituting Gm into (5.3) and solving for β, we obtain

βm =
1

2
log

[
1− errm
errm

]
,

which is the same as the expression of errm in the AdaBoost.M1 algorithm.

The expansion at iteration m is then updated by

fm(x) = fm−1(x) + βmGm(x)

and the weights for the next iteration m+ 1 updated correspondingly

ω
(m+1)
i = ω

(m)
i · e−βmyiGm(xi). (5.6)

Using the fact −yiGm(xi) = 2 · I(yi �= Gm(xi)) − 1, and ignoring the common

factor e−βm for all weights, the equation (5.6) becomes

ω
(m+1)
i = ω

(m)
i · e−αmI(yi �=Gm(xi)),
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where αm = 2βm. This is exactly the same as the expression for ωi in the Ad-

aBoost.M1 algorithm. Thus, we can conclude that AdaBoost.M1 is equivalent to the

forward stagewise additive model which minimizes the exponential loss criterion.

The exponential loss criterion (5.2) proposed by Schapire and Singer (1998) has

special statistical properties (Friedman et al. 2000).

Consider minimizing the criterion E(e−yf(x)) for estimation of f(x),

f ∗(x) = argmin
f(x)

Ey|x(eyf(x)) =
1

2
log

P (y = 1|x)
P (y = −1|x) ,

where E(e−yf(x)) represents the expectation of e−yf(x) and it is sufficient to be mini-

mized conditional on x.

The expectation is

E[e−yf(x)|x] = P (y = 1|x)e−f(x) + P (y = −1|x)ef(x)

and its derivative is

dE[e−yf(x)|x]
df(x)

= −P (y = 1|x)e−f(x) + P (y = −1|x)ef(x).

Setting this derivative to zero gives the result

f ∗(x) =
1

2
log

P (y = 1|x)
P (y = −1|x) ,

which is one-half the log-odds of P (y = 1|x). Hence, we have

P (y = 1|x) = ef(x)

e−f(x) + ef(x)

and

P (y = −1|x) = e−f(x)

e−f(x) + ef(x)
.

We can further conclude that the AdaBoost.M1 is actually an additive logistic regres-

sion model.

Another useful loss criterion is the binomial negative log-likelihood or deviance.

It can be shown that this has the same population minimizer as the exponential loss
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criterion (Frieman et al., 2000).

Let y′ = (y + 1)/2, taking values 0,1, and parameterize the binomial probabilities

by

p(x) = P (y = 1|x) = ef(x)

e−f(x) + ef(x)
. (5.7)

The binomial log-likelihood is

l(y, f(x)) = y′logp((x)) + (1− y′)log(1− p(x)),

or equivalently the deviance is

−l(y, f(x)) = log(1 + e−2yf(x)).

Since the population minimizers of the binomial negative log-likelihood or deviance

is at the true probabilities p(x) given by (5.7), the population minimizers of the

deviance Ey|x(−l(y, f(x)) and Ey|x(e−yf(x)) are the same. However, for a finite data

set, they are not the same. The deviance is far more robust than exponential loss

in situations where misspecification of the class label appears in the training data

(Hastie et al., 2009).

For regression problems, the typical loss function in an additive model is the

squared-error loss function. It is of the form

L(yi, fm−1(xi) + βb(xi; γ)) =(yi − fm−1(xi)− βb(xi; γ))
2

=(rim − βb(xi; γ))
2,

(5.8)

where rim = yi−fm−1(xi) is the residual of the current model on the i th observation.

Thus the term βmb(x; γ) added to the expansion at iteration m is actually the best

fit to the current residuals.

The squared-error loss for the finite sample, however, is far less robust for long-

tailed error distributions and especially for outliers as it penalizes heavily observations

with large absolute residuals |yi − f(xi)| during the fitting process. Other losses

such as absolute loss are more robust in these situations. The Huber loss criterion
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(Huber,1964) is better than both loss for error distribution. It combines the good

properties of squared-error loss near zero and absolute error loss when |y− f | is large
(Hastie et al., 2009).

On the other hand, using a more robust loss function for a classification or regres-

sion additive model does not create as simple a modular algorithm as exponential or

squared-error loss. This problem has been solved using a gradient boosting algorithm

that is based on any differentiable loss criterion.

5.1.2 Boosted Tree Model

The boosted tree model can be treated as a special case for the additive model when

the basis functions are chosen as a single classification or regression tree. Following

Hastie et al. (2009), a single tree model can be presented by disjoint regions Rj,

j = 1, 2, . . . , J , with a constant prediction γj assigned to each terminal node. Thus a

tree can be formally expressed as

T (x; Θ) =
J∑

j=1

γjI(x ∈ Rj),

with parameters Θ = {Rj, γj}J1 characterizing a tree in terms of split variables, cut-

points at each node, and terminal-node values.

The boosted tree model can therefore be presented by

fM(x) =
M∑

m=1

T (x; Θm), (5.9)

which is the sum of single trees created in a forward stagewise manner. At each

iteration m, m = 1, 2, . . . ,M , the parameters Θm = {Rj, γj}J1 are estimated by

minimizing a loss function based on the current expansion fm−1(x)

Θ̂m = argmin
Θm

n∑
i=1

L(yi, fm−1(xi) + T (xi; Θ)). (5.10)

Given Rjm, γjm can be solved from

γ̂jm = argmin
γjm

∑
xi∈Rjm

L(yi, fm−1(xi) + γ), (5.11)
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and then the expansion is updated by fm(x) = fm−1(x) + T (xi; Θm).

For a two-class boosted classification tree, using exponential loss, we obtain a

similar result using T (xi; θm) instead of G(xi) in (5.3),

Θ̂m = argmin
Θm

n∑
i=1

ω
(m)
i exp[−yiT (xi; Θm)],

with weights ω
(m)
i = e−yifm−1(xi). This indicates that a new tree is produced based on a

greedy recursive-partitioning algorithm using this weighted exponential loss function

as a splitting criterion.

For a scaled classification tree, which is a classification tree T (x; Θm) with the

restriction γjm ∈ {−1, 1}, we obtain

Θ̂m = argmin
Θm

n∑
i=1

ω
(m)
i I(yi �= T (xi; Θm))

with weights ω
(m)
i = e−yifm−1(xi).

Given the Rjm, the solution to (5.11) can be derived as

γ̂jm =
1

2
log

( ∑
xi∈Rjm

ω
(m)
i I(yi = 1)∑

xi∈Rjm
ω
(m)
i I(yi = −1)

)
,

which is a weighted log-odds in Rjm, j = 1, 2, . . . , J .

For a boosted regression tree using squared-error loss, the solution to (5.10) is

Θ̂m =argmin
Θm

n∑
i=1

(yi − fm−1(xi)− T (xi; Θm))
2

=argmin
Θm

n∑
i=1

(rim − T (xi; Θm))
2.

(5.12)

Given Rjm, γjm can be estimated using (5.11),

γ̂jm = mean[yi − fm−1(xi)|xi ∈ Rjm]. (5.13)

As mentioned in the previous section, for more general robust loss functions, an

algorithm for boosting trees is not as simple and fast as an exponential loss function
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for classification and a squared-error loss function for regression. However, gradient

boosting can fix this problem.

5.1.3 Gradient Boosting Trees

A gradient boosting method was first introduced by Friedman (2001). It made the

connection between the stagewise additive expansion and steepest-descent minimiza-

tion. It is a general gradient descent “boosting” method developed for the additive

expansion based on any differentiable loss criterion.

Following Hastie et al (2009), the general loss function in using f(x) to predict y

on the training data can be written by

L(f) =
n∑

i=1

L(yi, f(xi)).

For numerical optimization in function space, the constraint for f(x) to be a sum

of trees (5.9) is ignored. Consider f evaluated at each point x to be a “parameter”

and search to minimize

f̂ = argmin
f

L(f),

where the f ∈ R
n are the values of the approximating function f(xi) at each of the n

data points xi:

f = {f(x1), f(x2), . . . , f(xn)}T .

Following the numerical optimization procedures, we take the solution to be

fM =
M∑
i=0

hm,

where f0 = h0 is an initial guess, and hm are the incremental vectors (“step” or

“boots”) defined by various optimization methods.

One of the simplest of the commonly used numerical optimization methods is

steepest descent or gradient descent in which the steps are taken proportional to

the negative of the gradient of the function at the current point to achieve a local
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minimum of a function. Thus, for steepest descent,

hm = −ρmgm

where ρm is step length and gm is the gradient of L(f) evaluated at f = fm−1. The

components of the gradient gm are

gim = [
∂L(yi, f(xi))

∂f(xi)
]f=fm−1 , (5.14)

and ρm is given by line search

ρm = argmin
ρ

L(fm−1 − ρgm).

The current incremental function is updated

fm = fm−1 − ρmgm.

The gradient descent is a very greedy strategy because −gm is the local direction

in R
n in which the loss function L(f) has the most decrease at fm−1. However, the

gradient given by (5.14) is only defined at the training data point xi, while the fM

must be generated for new data points for prediction.

In order to solve this problem, the gradient descent minimization is combined with

the forward stagewise boosting tree model. At each iteration m, m = 1, 2, . . . , n, a

tree T (x; Θm) is produced by fitting the negative gradient values. Using least squared

error as the fitting criterion, we obtain

Θ̃m = argmin
θ

n∑
i=1

(−gim − T (xi; Θ))2. (5.15)

After generating the tree (5.15), the constants in each node are estimated by

(5.11). Using the gradient boosting method, boosting trees can be created with

any differentiable loss function. As Friedman (2001) presented, gradient boosting of

regression trees produces a competitive, highly robust and interpretable procedure for

both classification and regression.
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5.1.4 Tuning Parameters and Relative Importance of Predictor

Variables

Boosting has three tuning parameters: the size of each of the tree Jm,m = 1, 2, . . . ,M ,

the number of boosting iterations or trees M , and the shrinkage parameter λ.

The size of each tree controls the complexity of the boosted ensemble. In practice,

all the trees in the ensemble are restricted to be the same size J in order to prevent

too large trees being produced in the tree boosting procedure, which can result in

poor performance and intensive computation. The size of tree J is a meta-parameter

that can be tuned to minimize the prediction error.

The size of tree J or the number of splits d = J − 1 also controls the interaction

order of the boosted model. The number of splits d is defined as the interaction depth

since d splits involves at most d variables. In many cases, the low-order interactions

are dominant, therefore d tends to be low. d = 1 usually performs well, in which

case each tree in the ensemble is a stump. This corresponds to an additive model

containing only one variable in each term.

The number of boosting iterations or trees M is another meta-parameter of gradi-

ent boosting. The prediction risk is reduced at each iteration and can be arbitrarily

small when M is large enough. However, large M can cause overfitting and leads

to high prediction risk for test data. Therefore, the optimal value of M needs to be

adjusted. In practice, the prediction risk as a function of M can be monitored by

cross validation in the entire gradient boosting process. The estimated optimal value

of M is determined when the minimum risk is achieved.

A shrinkage technique can substantially improve the performance in a boosting

model (Friedman, 2001). It is implemented in the boosting procedure by scaling the

contribution of each tree by a factor λ (0 < λ < 1) when it is added to the current

approximation,

fm(x) = fm−1(x) + λ
∑Jm

j=1
γjmI(x ∈ Rjm).

The shrinkage λ controls the rate at which the boosting learns, and allows more

and different trees to get involved in the boosting process. Friedman (2001) revealed

that small values of λ can lead to small test error and large values of M are required.

Therefore, both λ and M control prediction risk on the training data and there is a
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trade-off between them. Usually shrinkage is set to be very small and the optimal

value of M is then chosen. The typical values of λ are 0.01 and 0.001.

Relative importance of predictor variables, also called relative influence is the most

useful description of the boosting tree model. An extension of this feature for boosted

estimates was developed by Friedman (2001). For a single tree, Breiman et al. (1984)

proposed a measure of relevance for each predictor variable as

I2l (T ) =
J−1∑
t=1

î2t I(v(t) = l) (5.16)

where the summation is over the internal nodes t of the J-terminal node tree T , v(t)

is the splitting variable associated with node t, and î2t is the corresponding empirical

improvement in squared error for regression, or in impurity index for classification,

as a result of the split.

For an additive tree expansion, (5.16) can be generalized by its average over all

trees

I2l =
1

M

M∑
m=1

I2l (Tm).

The importance measure is more stable than for a single tree due to the averaging.

It also provides the summarized and quantitative information of the boosting tree and

discloses the relevance of a predictor to the response variable.

5.2 Results

5.2.1 SGA

We construct gradient boosting classification trees on the training data for SGA using

the gbm function in the gbm package in R. The criterion for boosting trees in each

iteration is based on the AdaBoost exponential loss function (AdaBoost exponential

bound).

The three tuning parameters are chosen as follows: the size of each classification

tree is Jm = 2, m = 1, 2, . . . ,M , or the interaction depth is d = 1 indicating each

tree in the iterations is a stump, with only one variable included in each tree; the

shrinkage is the lower typical value λ = 0.001, and the number of boosting iterations

or trees is M = 20, 000. These parameters maximized the AUC for the training data.
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Figure 5.1: AdaBoost exponential loss function as a function of number of iterations
for SGA. The black line plots the estimate of the loss function for each boosting
iteration evaluated on the training data as a function of number of iterations for
SGA. The green line plots the 5-folds cross validation estimate of the loss function
for each boosting iteration as a function of number of iterations for SGA.

Figure 5.1 shows the AdaBoost exponential loss function progression on 20000

boosted trees using 5-fold cross validation. The black line demonstrates the estimate

of the loss function for each boosting iteration evaluated on the training data as a

function of number of iterations. The green line demonstrates the cross validation

estimate of the loss function for each boosting iteration as a function of number of

iterations. It appears that the cross validation estimate of the loss function decreases

monotonically with increasingM and stabilizes at 19969 trees. Therefore, the optimal

number of boosting iterations for predicting SGA in this parameter setting is 19969.

Table 5.1 presents the rankings of the relative variable importance for each of

predictor variables, and also displays in Figure 5.2.

smk and pwtgain3 are the most relevant predictors. parity, ppwtstat, prvbig , prvlbw,

prvlbm, and pihyp have roughly one fourth of the relevance of smk, whereas others

are less influential.
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Variable Relative Influence

smk 32.4317
pwtgain3 24.4285
parity 8.9585
ppwtstat 8.2781
prvbig 7.007
prvlbw 6.0822
pihyp 5.2781
hyp 2.4738
ses5 1.7909
matage 1.7340
prvcs 0.5314
chabus 0.4149
gdm 0.2993
dm 0.1345
psych 0.0733
rural 0.0431
prvgdm 0.0408

Table 5.1: Relative influence of the predictors for SGA.

prvgdm
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matage
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prvbig

ppwtstat
parity

pwtgain3
smk

Relative influence
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Figure 5.2: Variable relative influence plot for SGA boosted trees.
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Figure 5.3: The ROC curve of SGA boosted trees.

The ROC curve of the boosted tree model for SGA on the test data is plotted in

Figure 5.3. Because the curve is above the line of equality, this ROC curve demon-

strates that the random forest model improves the prediction precision over a random

prediction model. The area under the ROC curve is 0.7025, which is larger than that

obtained using a random forest model (0.6752).

The optimal threshold calculated from the ROC curve is 0.065. The diagnostic

properties of the classification rule using this threshold are shown in Table 5.2.

With the optimal threshold, the classification model predicts that 1923 individuals

will deliver SGA babies. Of the 381 individuals who actually deliver SGA babies, the

classification model correctly predicts 251, or 66% (sensitivity). 1672 individuals who

are not sga = 1 class are incorrectly classified. As a result, the overall error rate has

increased to 36.84%.

The positive likelihood ratio (1.78) and the negative likelihood ratio (0.54) indicate

that a mother with a SGA baby is about 1.78 times more likely to have a positive test

than a mother without a SGA baby, and the probability of having a negative test for

mothers with SGA babies is 0.54 of that of those without SGA babies.
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Disease+ Disease- Total

Test+ 251 1672 1923
Test- 130 2839 2969
Total 381 4511 4892

Point estimates and 95% CIs
Apparent prevalence 0.39 (0.38, 0.41)
True prevalence 0.08 (0.07, 0.09)
Sensitivity 0.66 (0.61, 0.71)
Specificity 0.63 (0.62, 0.64)
Positive predictive value 0.13 (0.12, 0.15)
Negative predictive value 0.96 (0.95, 0.96)
Positive likelihood ratio 1.78 (1.64, 1.93)
Negative likelihood ratio 0.54 (0.47, 0.62)

Table 5.2: The confusion matrix and diagnostic summaries for SGA boosted trees
with threshold 0.065.

5.2.2 LGA

We construct gradient boosting classification trees for LGA using the gbm function

in the gbm package in R on training data. The criterion for boosting trees in each

iteration is based on the AdaBoost exponential loss function (AdaBoost exponential

bound).

The three tuning parameters are chosen as follows: the size of each classification

tree is Jm = 3, m = 1, 2, . . . ,M , or the interaction depth is d = 2 indicating that

each tree in the iterations contains two splitting variables with interaction between

them; the shrinkage is the upper typical value λ = 0.01, and the number of boosting

iterations or trees M = 3000. These parameters maximized the AUC for the training

data.

Figure 5.4 shows the AdaBoost exponential loss function progression on 3000

boosted trees using 5-fold cross validation. The black line demonstrates the estimate

of the loss function for each boosting iteration evaluated on the training data as

a function of number of iterations for LGA. The green line demonstrates the cross

validation estimate of the loss function for each boosting iteration as a function of

number of iterations for LGA. The cross validation estimate of the loss function

decreases monotonically with increasing M and stabilizes at 1461 trees. Therefore,
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Figure 5.4: AdaBoost exponential loss function as a function of number of iterations
for LGA. The black line plots the estimate of the loss function for each boosting
iteration evaluated on the training data as a function of number of iterations for
LGA. The green line plots the 5-folds cross validation estimate of the loss function
for each boosting iteration as a function of number of iterations for LGA.

the optimal number of boosting iterations for predicting LGA in this parameter setting

is 1461.

Table 5.3 presents the relative variable importance for each of predictor variables,

which is also also displayed in Figure 5.5.

prvbig is the most relevant predictor. pwtgain3,ppwtstat, and smk have roughly

one third of the relevance of smk, whereas others are less influential.

The ROC curve of the boosted tree model for LGA on the testing data is plotted

in Figure 5.6. Because the curve is above the line of equality, this ROC curve demon-

strates that the gradient boosted tree model improves the prediction precision over a

random prediction model. The area under the ROC curve is 0.7107, which is larger

than that obtained using a random forest model (0.6826).

The optimal threshold calculated from the ROC curve is 0.155. The diagnostic

properties of the classification rule using this threshold is shown in Table 5.4.
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Variable Relative Influence

prvbig 42.3925
pwtgain3 13.9736
ppwtstat 13.3144
smk 8.5578
matage 4.8941
dm 4.3784
parity 3.1725
gdm 2.7451
ses5 2.2117
prvlbw 1.1689
rural 0.6864
pihyp 0.6760
prvgdm 0.5207
prvcs 0.4884
hyp 0.4373
psych 0.4373
chabus 0.1175

Table 5.3: Relative importance of the predictors for LGA.
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Figure 5.5: Variable relative influence plot for LGA boosted trees.
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Figure 5.6: The ROC curve of LGA boosted trees.

Disease+ Disease- Total

Test+ 455 1383 1838
Test- 263 2791 3054
Total 718 4174 4892

Point estimates and 95% CIs
Apparent prevalence 0.38 (0.36, 0.39)
Ture prevalence 0.15 (0.14, 0.16)
Sensitivity 0.63 (0.60, 0.67)
Specificity 0.67 (0.65, 0.68)
Positive predictive value 0.25 (0.23, 0.27)
Negative predictive value 0.91 (0.90, 0.92)
Positive likelihood ratio 1.91 (1.78, 2.05)
Negative likelihood ratio 0.55 (0.50, 0.60)

Table 5.4: The confusion matrix and diagnostic summaries for LGA boosted trees
with threshold 0.155.
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With the optimal threshold, the classification model predicts that 1838 individuals

will deliver SGA babies. Of the 718 individuals who deliver LGA babies, the classi-

fication model correctly predicts 455, or 63% (sensitivity). 1383 individuals who are

not lga = 1 are incorrectly classified. As a result, the overall error rate has increased

to 33.65%.

The positive likelihood ratio (1.91) and the negative likelihood ratio (0.55) indicate

that a mother with a LGA baby is about 1.91 times more likely to have a positive

test than a mother without a LGA baby, and the probability of having a negative

test for mothers with LGA babies is 0.55 of that of those without LGA babies.



Chapter 6

Summary and Discussion

Several statistical prediction methods have been reviewed in this study including

logistic regression, classification and regression trees, random forest and boosted tree

models. Their application to predicting fetal growth abnormalities such as SGA and

LGA using the NSAPD dataset are presented.

Logistic regression is the most commonly used method for predicting a binary

variable in health science research. The model itself can be systemically constructed

and easily interpreted based on the concept of odds ratio. However, for large amounts

of data, both in terms of a large number of observations and a large number of

predictor variables, especially in messy cases, with a mixture of different types of

predictors, with long tailed and highly skewed distributions of numerical predictors,

and with a number of irrelevant prediction variables, the data preprocessing and

model fitting is complex and time consuming.

The decision tree method can deal with those problems and construct a predictive

model and make predictions very quickly. From the tree fitted procedure, the mixtures

of different types of predictors, missing data are accommodated by the algorithm. The

internal splitting variable selection as a part of this procedure prevents inclusion of

many irrelevant predictors. Furthermore the decision tree model can be graphically

presented and easily explained. These attractive properties have made it become the

most popular predictive model.

However the downside of the decision tree model is its high variance and lower

predictive accuracy. Usually a small change in the data can cause very different

splits in the tree construction. These problems are dramatically alleviated by the tree

ensemble-based methods, random forest and boosting tree models.

Both random forest and boosted tree model generate a diverse ensemble of trees

by repeatedly manipulating the training data, and combine these computed trees into

a single predictive model. However, they are fundamentally different. Randomization

83
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is an essential feature for the random forest model. Each tree in the ensemble is

constructed using a bootstrapped sample from the training data, which is randomly

selected with replacement form original training data. In addition, at each node, a

fraction of predictors are randomly chosen from all predictors in order to decorrelated

each tree, which reduces the variance. The final model is formed by giving equal

weight to each random forest tree. On the other hand, Adaboost is a deterministic

algorithm. Each observation is iteratively assigned a weight based on how it was

classified by the previous classifier. More weight is applied to the observations miss-

classified by the previous tree, and this information is learned by the next tree. The

final model is a weighted majority vote of the sequence of classifiers with more weight

assigned to more accurate trees. In this way, the boosted tree model can substantially

improve the predictive accuracy of individual trees and also outperform random forest

in predictive accuracy.

Moreover, both random forest and boosted tree model can substantially reduce

the variance of a single tree model. However, boosting trees can also reduce the bias

for each individual tree (Freund, 1996), while the bias of random forest is the same

as the bias of any individual tree.

All these methods are applied to the NSAPD data for predicting SGA and LGA.

The models were fitted to the training data set, which was randomly selected at the

beginning of the study. Their prediction performance is assessed using the test data,

which is the remainder of the full data set. Some diagnostic properties for predicting

SGA by the four classifiers are shown in Table 6.1.

Prediction model Threshold MCE Sensitivity Specificity AUC

Logistic regression 0.065 0.3659 0.65 0.63 0.6990
Classification tree 0.5 0.2796 0.52 0.74 0.6603
Random forest 0.276 0.3265 0.60 0.68 0.6752
Boosting tree 0.065 0.3684 0.66 0.63 0.7025

Table 6.1: Diagnostic properties of four classifiers for predicting SGA. The threshold,
the misclassification error rate (MCE), sensitivity, specificity and area under the ROC
curve (AUC) are presented.

Comparing with logistic regression for predicting SGA, the boosted tree model has

greater accuracy (0.7024) when assessing performance using AUC. Random forest and
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tree models have less accuracy than logistic regression (0.6990). The tree model has

the least accuracy (0.6603). In addition, the boosted tree model has greater sensitivity

(0.66) than that (0.65) of logistic regression. Random forest and tree models have less

sensitivity than that of logistic regression. The tree model has the least sensitivity

(0.52).

Ranking Logistic regression Classification tree Random forest Boosting tree

1 smk smk smk smk
2 pwtgain3 pwtgain3 pwtgain3 pwtgain3
3 pihyp parity parity parity
4 parity prvbig ses5 ppwtstat
5 prvlbw ppwtstat ppwtstat prvbig
6 prvbig prvlbw rural prvlbw
7 ppwtstat matage prvlbw pihyp
8 hyp ses5 matage hyp
9 ses5 prvbig ses5
10 prvcs gdm matage
11 gdm pihyp prvcs
12 matage hyp chabus
13 dm psych gdm
14 prvcs dm
15 prvgdm psych
16 dm rural
17 chabus prvgdm

Table 6.2: Variable rankings in four methods for predicting SGA. Variables are ranked
from high relevance to low relevance based on absolute z-value in logistic regression,
and variable importance in other three methods.

Variable rankings in four methods for predicting SGA are shown in Table 6.2.

All the four classifiers suggest that smk, pwtgain3 and parity are the most relevant

predictors. ppwtstat, prvbig and prvlbw are also highly relevant predictors. pihyp

is in higher rank in logistic regression and the boosted model, but in lower rank in

random forest and does not appear in tree model This is due to the randomization of

tree and random forest models. Others are less influential.

Some diagnostic properties for predicting LGA by the four classifiers are shown

in Table 6.3.

Comparing with logistic regression for predicting LGA, the boosted tree model

has greater accuracy (0.7107) when assessing performance using AUC. Random forest
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Prediction model Threshold MCE Sensitivity Specificity AUC

Logistic regression 0.153 0.3436 0.63 0.66 0.7085
Classification tree 0.484 0.3385 0.59 0.67 0.6817
Random forest 0.367 0.3363 0.60 0.68 0.6826
Boosting tree 0.155 0.3365 0.63 0.67 0.7107

Table 6.3: Diagnostic properties of four classifiers for predicting LGA. The threshold,
the misclassification error rate (MCE), sensitivity, specificity and area under the ROC
curve (AUC) are presented.

and tree models have less accuracy than that of logistic regression (0.7085). The tree

model has the least accuracy (0.6817). In addition, the boosted tree model has the

same sensitivity as that of logistic regression. Random forest and tree models have

less sensitivity than logistic regression. The tree model has the least sensitivity (0.59).

Ranking Logistic regression Classification tree Random forest Boosting tree

1 prvbig prvbig smk prvbig
2 ppwtstat pwtgain3 prvbig pwtgain3
3 pwtgain3 smk pwtgain3 ppwtstat
4 smk ppwtstat ppwtstat smk
5 dm dm ses5 matage
6 gdm parity matage dm
7 parity rural parity
8 prvlbw gdm gdm
9 rural dm ses5
10 pihyp pihyp prvlbw
11 matage parity rural
12 psych prvlbw pihyp
13 hyp prvcs prvgdm
14 psych prvcs
15 prvgdm hyp
16 hyp psych
17 chabus chabus

Table 6.4: Variable rankings in four methods for predicting LGA. Variables are ranked
from high relevance to low relevance based on absolute z-value in logistic regression,
and variable importance in other three methods.

Variable rankings in four methods for predicting LGA are shown in Table 6.4. All

the four classifiers suggest that prvbig, pwtgain3, ppwtstat, and smk are the most

relevant predictors. dm is also a highly relevant predictor. Others are less influential.
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In fact, none of the more modern techniques : boosting tree, random forest and

decision tree did much better than the more traditional logistic regression for this

data set.

As to future work, we can combine boosting with the logistic regression model.

Or we can use other machine learning methods such as Neural Network and Support

Vector Machines, which may lead to higher prediction accuracy.
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