
SCALABLE REAL-TIME OLAP SYSTEMS FOR THE CLOUD

by

Quan Kong

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2014

c© Copyright by Quan Kong, 2014

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . x

List of Abbreviations Used . xi

Acknowledgements . xii

Chapter 1 Introduction . 1

1.1 Contributions . 6

1.2 Structure of the thesis . 11

Chapter 2 Background: Data Management on the Cloud 12

2.1 Data Store Categorization . 12

2.1.1 OLAP Stores . 13

2.1.2 Key-value Stores . 16

2.1.3 Document Stores . 17

2.1.4 Extensible Record Stores . 18

2.2 OLAP . 19

2.2.1 Dimension Hierarchy . 21

2.3 Data Structures for OLAP . 22

2.3.1 RTree . 23

2.3.2 DC Tree . 25

2.3.3 PDC Tree . 28

Chapter 3 Background: Cloud Computing 31

3.1 Cloud Computing . 31

3.1.1 Characteristics . 33

3.1.2 Service models . 34

ii

3.2 Communication in the Cloud . 37

3.3 Serialization in the Cloud . 39

3.4 Coordination in the Cloud . 40

3.5 Amazon Web Services . 41

3.5.1 Amazon EC2 . 42

3.6 ZeroMQ . 43

3.7 Zookeeper . 46

Chapter 4 CR-OLAP . 50

4.1 Introduction . 50

4.2 PDCR Trees . 53

4.3 CR-OLAP: Cloud based Real-time OLAP 56

4.3.1 Concurrent insert and query operations 58

4.3.2 Load balancing . 65

4.4 Experimental Evaluation On Amazon EC2 66

4.4.1 Software . 66

4.4.2 Hardware/OS . 67

4.4.3 Comparison baseline: STREAM-OLAP 67

4.4.4 Test data . 68

4.4.5 Test results: impact of the number of workers (m) for fixed

database size (N) . 69

4.4.6 Test results: impact of growing system size (N & m combined) 72

4.4.7 Test results: impact of multiple query streams 74

4.4.8 Test results: impact of the number of dimensions 74

4.4.9 Test results: impact of query coverages 76

4.4.10 Test results: query time comparison for selected query patterns

at different hierarchy levels . 78

4.5 Conclusion . 79

iii

Chapter 5 vOLAP . 81

5.1 Introduction . 81

5.2 VelocityOLAP . 84

5.2.1 Architecture Overview . 84

5.2.2 System Image . 86

5.2.3 Data Representation . 88

5.3 Algorithms . 89

5.3.1 OLAP Insertion Algorithms 89

5.3.2 OLAP Query Algorithms . 92

5.4 Load Balancing . 95

5.4.1 Migration Protocol . 96

5.4.2 Splitting Protocol . 97

5.5 Optimizer . 98

5.5.1 Optimization Algorithm . 99

5.6 Experimental Evaluation . 100

5.6.1 High-Velocity Data Ingestion 102

5.6.2 Real-Time Load Balancing . 104

5.6.3 Query Performance for TPC-DS Data 105

5.6.4 System Scale-Up . 107

5.6.5 Large Scale Experiment . 109

Chapter 6 Conclusion . 110

Bibliography . 112

iv

List of Tables

Table 5.1 System Parameters . 85

v

List of Figures

Figure 2.1 Hierarch Schema and Concept Hierarchy for dimension Customer

[39] . 22

Figure 2.2 A 4-dimensional data warehouse with 3 hierarchy levels for each

dimension. The first box for each dimension denotes the name

of the dimension. 22

Figure 2.3 Containment and overlapping relationships among MBRs [48] 23

Figure 2.4 A 2-dimensional R-tree example 24

Figure 2.5 The dimensional hierarchies of a sample DC-tree 26

Figure 2.6 A simple DC-tree . 27

Figure 3.1 Three cloud computing service models [2] 35

Figure 3.2 Request Reply pattern [3] . 43

Figure 3.3 Pub-sub pattern [3] . 44

Figure 3.4 Pipeline pattern [3] . 45

Figure 3.5 Zookeeper’s hierarchical namespace [10] 46

Figure 3.6 Zookeeper’s architecture [10] 47

Figure 3.7 Zookeeper components [10] . 47

Figure 4.1 A 4-dimensional data warehouse with 3 hierarchy levels for each

dimension. The first box for each dimension denotes the name

of the dimension. 54

Figure 4.2 Illustration of the compact bit representation of IDs. 56

Figure 4.3 Example of relationships between different hierarchy levels of a

given dimension. 56

Figure 4.4 Example of a PDCR tree with 2 dimensions (Store and Date). 57

vi

Figure 4.5 Illustration of a distributed PDCR tree. 58

Figure 4.6 Insertions triggering creation of new workers and subtrees. Part

1. (a) Current hat configuration. (b) Insertions create overflow

at node A and horizontal split. 59

Figure 4.7 Insertions triggering creation of new workers and subtrees. Part

2. (a) Same as Figure 4.6b with critical subtrees highlighted. (b)

Insertions create overflow at node C and vertical split, triggering

the creation of two subtrees in two different workers. 64

Figure 4.8 The 8 dimensions of the TPC-DS benchmark for the fact table

“Store Sales”. Boxes below each dimension specify between 1 and

3 hierarchy levels for the respective dimension. Some dimensions

are “ordered” and the remaining are not ordered. 68

Figure 4.9 Time for 1000 insertions as a function of the number of workers.

(N = 40Mil, d = 8, 1 ≤ m ≤ 8) 69

Figure 4.10 Time for 1000 queries as a function of the number of workers.

(N = 40Mil, d = 8, 1 ≤ m ≤ 8) 70

Figure 4.11 Speedup for 1000 queries as a function of the number of workers.

(N = 40Mil, d = 8, 1 ≤ m ≤ 8) 70

Figure 4.12 Time for 1000 insertions as a function of system size: N & m

combined. (10Mil ≤ N ≤ 160Mil, d = 8, 1 ≤ m ≤ 16) 72

Figure 4.13 Time for 1000 queries as a function of system size: N & m

combined. (10Mil ≤ N ≤ 160Mil, d = 8, 1 ≤ m ≤ 16) 73

Figure 4.14 Time for 1000 OLAP queries as a function of of the number of

query streams. X-axis first parameter: number of query streams

(clients). X-axis second parameter: total number of queries

issued (1,000 queries per query stream). Y-axis: Average time

per 1,000 queries in seconds. (N = 160Mil, d = 8, m = 16) . . 74

Figure 4.15 Time for 1000 insertions as a function of the number of dimen-

sions. (N = 40Mil, 4 ≤ d ≤ 8, m = 8) 75

vii

Figure 4.16 Time for 1000 queries as a function of the number of dimensions.

The values for “1D-index 95% coverage” are 828.6, 1166.4, 1238.5,

1419.7 and 1457.8, respectively. (N = 40Mil, 4 ≤ d ≤ 8, m = 8) 76

Figure 4.17 Time for 1000 queries (PDCR tree) as a function of query cover-

ages: 10%− 90%. Impact of value “*” for different dimensions.

(N = 40Mil, m = 8, d = 8) . 77

Figure 4.18 Time for 1000 queries (PDCR tree) as a function of query cover-

ages: 91%− 99%. Impact of value “*” for different dimensions.

(N = 40Mil, m = 8, d = 8) . 77

Figure 4.19 Time comparison for 1000 queries (Ratio: 1D-index / PDCR

tree) for query coverages 10%− 90%. Impact of value “*” for

different dimensions. (N = 40Mil, m = 8, d = 8) 78

Figure 4.20 Time comparison for 1000 queries (Ratio: 1D-index / PDCR

tree) for query coverages 91%− 99%. Impact of value “*” for

different dimensions. (N = 40Mil, m = 8, d = 8) 79

Figure 4.21 Query time comparison for selected query patterns for dimen-

sion Date. Impact of value “*” for different hierarchy levels of

dimension Date. (N = 40Mil, m = 8, d = 8). 80

Figure 5.1 System Overview. 85

Figure 5.2 Multi-Threaded Message Handling. 86

Figure 5.3 Insertion on server, 3 possible cases. 90

Figure 5.4 Box expand on server. 91

Figure 5.5 Range query. 92

Figure 5.6 Migration process. 97

Figure 5.7 Split process. 98

Figure 5.8 Data ingestion performance as database size N increases. Zipf

data, p = 16. 103

viii

Figure 5.9 Average and maximum data size per worker as database size N

increases; with and without load balancing. Zipf data, m = 2,

p = 16. 104

Figure 5.10 Performance for various workload mixes and query coverages

(TPC-DS, PDC-MBR tree, N = 400 million, p = 16, m = 4). . 106

Figure 5.11 Performance for various workload mixes and query coverages

(TPC-DS, PDC-MDS tree, N = 400 million, p = 16, m = 4). . 106

Figure 5.12 Query-heavy workload performance with increasing number of

servers m. TPC-DS data, p = 16, workload mix = 5% inserts,

average of all query coverages (5% . . . 95%). 107

Figure 5.13 Performance for various workload mixes with increasing system

size. Database size N and number of workers p both increasing.

TPC-DS data, PDC-MBR tree, N
p
≈ 25 million, m = 4, average

of all query coverages (5% . . . 95%). 108

Figure 5.14 Performance for various workload mixes with increasing system

size. Database size N and number of workers p both increasing.

TPC-DS data, PDC-MDS tree, N
p
≈ 25 million, m = 4, average

of all query coverages (5% . . . 95%). 109

ix

Abstract

On-line Analytical processing (OLAP) has been an important approach to the analysis
of large structured data warehouse systems for many years. OLAP queries, in contrast
to On-line Transaction processing (OLTP) queries typically access only a small portion
of a data warehouse, may need to aggregate large portions of a data warehouse
which often leads to performance bottlenecks. This problem is often compounded in
real-time environments where new data may arrive frequently and at high velocity.
One approach to addressing these performance challenges is to exploit collections of
multi-core servers organized in cloud-based computing platforms.

In this thesis, we explore the design, implementation and evaluation of two new
real-time cloud-based OLAP systems. In the first, we introduce CR-OLAP, a scalable
Cloud based Real-time OLAP system based on a new distributed index structure for
OLAP, the distributed PDCR tree. CR-OLAP utilizes a scalable cloud infrastructure
consisting of multiple commodity servers (processors). That is, with increasing
database size, CR-OLAP dynamically increases the number of processors to maintain
performance. Our distributed PDCR tree data structure supports multiple dimension
hierarchies and efficient query processing on the elaborate dimension hierarchies which
are so central to OLAP systems. It is particularly efficient for complex OLAP queries
that need to aggregate large portions of the data warehouse, such as “report the total
sales in all stores located in California and New York during the months February-May
of all years”. We evaluated CR-OLAP on the Amazon EC2 cloud, using the TPC-DS
benchmark data set. The tests demonstrate that CR-OLAP scales well with increasing
number of processors, even for complex queries. They also highlighted that future
scalability was only likely to be achieved in an architecture that supports multiple
coordinating servers.

Based on our experience with CR-OLAP, we then present VelocityOLAP (vOLAP),
a fully scalable cloud-based system for real-time OLAP on high velocity data. This
system supports dimension hierarchies, is highly scalable, exploits both multi-core
and multiprocessor parallelism, and guarantees strong serialization for both user and
work group sessions. vOLAP is also built based on PDC-tree but supports multiple
coordinating server processors and real-time dynamic load balancing. An experimental
evaluation of our vOLAP prototype, using 18 worker instances for a database size
of 1.5 billion items, shows that it is able to ingest new data items at a rate of over
600,000 items per second, and can process streams of interspersed inserts and OLAP
queries in real-time at a rate of approximately 200,000 queries per second.

x

List of Abbreviations Used

Amazon EC2 Amazon Elastic Compute Cloud

AMI Amazon Machine Image

AWS Amazon Web Services

CR-OLAP Cloud-based Real-time OLAP

DSS Decision Support Systems

MBR Minimum Bounding Rectangle

MDS Minimum Describing Sets

OLAP On-line Analytical Processing

OLTP On-line Transaction Processing

PDC-tree Parallel DC-tree

PDCR-tree Parallel DC Range-tree

TPC-DS Transaction Processing Performance Council

vOLAP Velocity OLAP

xi

Acknowledgements

Foremost, I would like to express my sincere gratitude to my supervisor Dr. Andrew

Rau-Chaplin for the continuous support of my study and research, for his patience,

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the

time of research and writing of this thesis. I could not have imagined having a better

supervisor and mentor for my study.

Besides my supervisor, I would like to thank the rest of my thesis committee: Dr.

Peter Bodorik, Dr. Vlado Keselj, and Dr. Malcolm Heywood, for their encouragement,

insightful comments, and hard questions.

I would also like to express my gratitude to Dr. Frank Dehne for his productive

discussions and feedback during our project meetings. Thanks to Hamidreza Zaboli,

David Robillard, Rebecca Zou and John Caskey for the stimulating discussions, for

the sleepless nights we were working together before deadlines, and for all the fun we

have had in the last two years.

Last but not the least, I would like to thank my parents for giving birth to me

and supporting me throughout my life.

xii

Chapter 1

Introduction

Decision Support Systems (DSS) are designed to empower the user with the ability to

make effective decisions regarding both the current and future state of an organization.

DSS allow users to study relationships in a chronological context between things such

as customers, vendors, products, inventory, geography, and sales. One of the most

powerful and prominent technologies for knowledge discovery in DSS environments

is on-line analytical processing (OLAP). OLAP is the foundation for a wide range

of essential business applications, including sales and marketing analysis, planning,

budgeting, and performance measurement [50, 61].

By exploiting multi-dimensional views of the underlying data warehouse, the OLAP

server allows users to “drill down” or “roll up” on dimension hierarchies, “slice and

dice” particular attributes, or perform various statistical operations such as ranking

and forecasting. To support this functionality, OLAP relies heavily upon a classical

data model known as the data cube [46] which allows users to view organizational

data from different perspectives and at a variety of summarization levels. It consists

of the base cuboid, the finest granularity view containing the full complement of d

dimensions (or attributes), surrounded by a collection of 2d − 1 sub-cubes/cuboids

that represent the aggregation of the base cuboid along one or more dimensions.

Queries in on-line transaction processing (OLTP) systems which typically access

only a small portion of the database (e.g. update a customer record). In contrast,

OLAP queries may need to aggregate large portions of the database (e.g. calculate

the total sales of a certain type of items during a certain time period) which can pose

1

significant performance issues.

Most of the traditional OLAP research, and most of the commercial systems, follow

the static data cube approach proposed by Gray et al. [46] and materialize all or a

subset of the cuboids of the data cube in order to ensure adequate query performance.

Building the data cube can be a massive computational task, and significant research

has been published on sequential and parallel data cube construction methods (e.g.

[27, 36, 46, 47, 60, 83]). However, the traditional static data cube approach has several

disadvantages. The OLAP system can only be updated periodically and in batches,

e.g. once every day or week. Hence, latest information can not be included in the

decision support process. The static data cube also requires massive amounts of

memory space and leads to a duplicate data repository that is separate from the

on-line transaction processing (OLTP) system of the organization. Practitioners

have therefore called for some time for an integrated OLAP/OLTP approach with a

real-time OLAP system that gets updated instantaneously as new data arrives and

always provides an up-to-date data warehouse for the decision support process (e.g.

[20]). Some recent publications have begun to address this problem by providing

“quasi real-time” incremental maintenance schemes and loading procedures for static

data cubes (e.g. [20, 54, 68, 67]). However, these approaches are not fully real-time.

Furthermore, a major obstacle are the significant performance issues that arise in the

context of very large scale data warehouses.

In the recent past, we have witnessed dramatic increases in the volume of data

literally in every area–business, science and even daily life. According to a report

from International Data Corporation in 2011, the overall created and copied data

volume in the world was 1.8ZB (1ZB = 1021bytes), which increased by nearly nine

times within five years. This figure will double at least every other two years in the

near future [43]. Google processes data of hundreds of Petabyte (1PB = 1015bytes),

Facebook generates over 10PB of log data per month, and Taobao, a subsidiary of

2

Alibaba, generate data of tens of Terabyte (1TB = 1012bytes) for online trading per

day [26]. The sharply increasing of data size comes with huge challenges on data

storage, management and analysis. Traditional OLAP systems struggle to handle the

huge volume of big data. One way to address this data challenge is by utilizing cloud

based computing platforms.

With the rapid development of processing and storage technologies and the success

of the Internet, computing resources have become cheaper and more powerful than

before. These technological trends have resulted in the emergence of a new computing

model called cloud computing, in which a shared pool of configurable computing

resources (e.g., servers, storages and applications) can be provisioned and released

easily through network access based on user demands [85, 13]. Cloud computing

provides several compelling features that help reduce the infrastructure barrier between

an innovative application and its requirements for scalability and performance issues:

* On-demand self-service: Cloud computing uses a pay-as-you-go pricing model.

Users can start gaining benefit from cloud computing without investing in the

construction of infrastructure. They can just simply rent resources from the

cloud according to their requirements and pay for the usage.

* Rapid elasticity: Users can dynamically provision or release computing resources

(e.g., servers or storages) depending on the load of their system.

* Easy access: Services hosted in the cloud are generally web-based. Thus, they

can be accessed easily through devices (e.g., desktop and laptop computers,

cellphones and PDAs) with Internet connections.

However, although cloud based applications have shown considerable potential

in solving big data issues, designing and developing cloud-based applications always

come with many challenges in terms of algorithms and system design [59]:

3

* Heterogeneity: A cloud based platform often consists of various of entities. One

entity in the system should be able to inter-operate with others despite the

differences in hardwares, operating systems, programming languages and data

formats.

* Scalability: The cloud-based system should scale up efficiently and automatically

by utilizing additional computing resources allocated from the Cloud.

* Concurrency: Cloud-based applications should allow concurrent access to shared

resources in the system in order to achieve high performance.

* Migration and load balancing: Allow the movement of tasks and data sets within

a system without stopping the system service, and distribute tasks and data sets

among available computing resources to avoid system bottlenecks and improve

performance.

In this thesis, we explore the design, implementation and evaluation of two new

real-time cloud-based OLAP systems.

The basic building block of a cloud-based architecture is the modern multi-core

processor. For a real-time OLAP system to be efficient in practice, it must at its heart

have an efficient data structure that can answer OLAP queried with hierarchies, while

efficiently exploiting the parallelism of multi-core processor architecture.

In 2000, Kriegel et al. [39] published an efficient data structure for processing OLAP

for queries with hierarchies on data cubes, the DC-tree. A DC-tree is a sequential

tree based index structure specially designed for data warehouses with dimension

hierarchies. Even though it does provide an algorithmic solution for real-time OLAP

systems and was proved to be efficient for small dataset, the DC-tree has not been

used in commercial OLAP systems. A major problem is still performance. For large

data warehouses, pre-computed cuboids still outperform real-time data structures

even if has the major disadvantage of not allowing real-time updates.

4

In [38], a parallel DC-tree (PDC-tree) was proposed to support real-time OLAP

system on multi-core processors. However, the PDC-tree method could only be used

when database can be stored in a single machine. It becomes a problem when the

database size is too big that can not be fit in one machine.

Starting with PDC-tree as a basic building block, this thesis explores OLAP

architecture at the next scale up, in which many multi-core processors aggregate

together in a cloud based architecture are efficiently harnessed.

In the first, we introduce CR-OLAP, a scalable Cloud based Real-timeOLAP system

based on a new distributed index structure for OLAP, the distributed PDCR tree. CR-

OLAP utilizes a scalable cloud infrastructure consisting of multiple commodity servers

(processors). That is, with increasing database size, CR-OLAP dynamically increases

the number of processors to maintain performance. Our distributed PDCR tree data

structure supports multiple dimension hierarchies and efficient query processing on

the elaborate dimension hierarchies which are so central to OLAP systems. It is

particularly efficient for complex OLAP queries that need to aggregate large portions

of the data warehouse, such as “report the total sales in all stores located in California

and New York during the months February-May of all years”. We evaluated CR-

OLAP on the Amazon EC2 cloud, using the TPC-DS benchmark data set. The tests

demonstrate that CR-OLAP scales well with increasing number of processors, even

for complex queries.

This work has been previously published in the 2013 IEEE International Conference

on Big Data (IEEE BigData 2013) [37] and the Journal of Parallel and Distributed

Computing (JPDC 2014) [35]. CR-OLAP demonstrated the feasibility of designing

a real-time OLAP platform that scales well with increasing number of processors.

However, CR-OLAP suffered from the following design weakness: CR-OLAP only

supports one single stream of insert and query operations sent to one single master

processor holding a master index. CR-OLAP’s master processor easily becomes a

5

performance bottleneck and a single point of failure.

Our second real-time cloud-based OLAP system, vOLAP is a fully scalable, cloud-

based real-time OLAP system for high velocity data. In the design of vOLAP we

sought to address the bottleneck posed by the use of a single master in CR-OLAP.

Similar to CR-OLAP, vOLAP also uses the PDC-tree as a building block but in a

different way. In CR-OLAP, one single master processor is capable of receiving and

processing one single stream of insert and query operations. The tree data structure

in vOLAP has also been significantly improved for better handling of query coverage.

As outlined in Section 5.1 and discussed in detail in the following section, vOLAP

allows for an arbitrary number of input streams with interleaved insert and query

operations, and these input streams are managed by multiple server processors whose

number can be scaled to match the performance requirements. This work has been

submitted to the 2014 IEEE International Conference on Big Data for review. vOLAP

demonstrated the feasibility of designing a fully scalable and load balanced real-time

OLAP system without any single node performance bottleneck.

1.1 Contributions

This thesis explored the design, implementation and evaluation of two new real-time

cloud-based OLAP systems: CR-OLAP and vOLAP. We first introduce CR-OLAP, a

scalable Cloud based Real-timeOLAP system. Then we present VelocityOLAP(vOLAP):

a fully scalable cloud-based system for real-time OLAP on high velocity data.

Consider a d-dimensional data warehouse with d dimension hierarchies. CR-OLAP

supports an input stream consisting of insert and query operations. Each OLAP query

can be represented as an aggregate range query that specifies for each dimension either

a single value or range of values at any level of the respective dimension hierarchy,

or a symbol “*” indicating the entire range for that dimension. CR-OLAP utilizes a

cloud infrastructure consisting of m+ 1 multi-core processors where each processor

6

executes up to k parallel threads. As typical for current high performance databases,

all data is kept in the processors’ main memories [64]. With increasing database size,

CR-OLAP will increase m by dynamically allocating additional processors within the

cloud environment and re-arranging the distributed PDCR tree. This will ensure that

both, the available memory and processing capability will scale with the database

size. One of the m + 1 multi-core processors is referred to as the master, and the

remaining m processors are called workers. The master receives from the users the

input stream of OLAP insert and query operations, and reports the results back to

the users (in the form of references to memory locations where the workers have

deposited the query results). In order to ensure high throughput and low latency even

for compute intensive OLAP queries that may need to aggregate large portions of the

entire database, CR-OLAP utilizes several levels of parallelism: distributed processing

of multiple query and insert operations among multiple workers, and parallel processing

of multiple concurrent query and insert operations within each worker. For correct

query operation, CR-OLAP ensures that the result for each OLAP query includes all

data inserted prior but no data inserted after the query was issued within the input

stream.

CR-OLAP is supported by a new distributed index structure for OLAP termed

distributed PDCR tree which supports distributed OLAP query processing, including

fast real-time data aggregation, real-time querying of multiple dimension hierarchies,

and real-time data insertion. Note that, since OLAP is about the analysis of historical

data collections, OLAP systems do usually not support data deletion. Our system

does however support bulk insert operations of large groups of data items.

The distributed index structure consists of a collection of PDCR trees whereby

the master stores one PDCR tree (called hat) and each worker stores multiple PDCR

trees (called subtrees). Each individual PDCR tree supports multi-core parallelism

and executes multiple concurrent insert and query operations at any point in time.

7

PDCR trees are a non-trivial modification of the authors’ previously presented PDC

trees [38], adapted to the cloud environment and designed to scale. For example,

PDCR trees are array based so that they can easily be compressed and transferred

between processors via message passing. When the database grows and new workers

are added, sub-trees are split off and sent to the new worker.

We evaluated CR-OLAP on the Amazon EC2 cloud for a multitude of scenarios

(different ratios of insert and query transactions, query transactions with different

sizes of results, different system loads, etc.), using the TPC-DS “Decision Support”

benchmark data set. The tests demonstrate that CR-OLAP scales well with increasing

number of workers. For example, for fixed data warehouse size (10,000,000 data items),

when increasing the number of workers from 1 to 8, the average query throughput

and latency improves by a factor 7.5. When increasing the data warehouse size from

10,000,000 data items to 160,000,000 data items while, at the same time, letting CR-

OLAP increase the number of workers used from 1 to 16, respectively, we observed that

query performance remained essentially unchanged. That is, the system performed an

16-fold increase in size, including an 16-fold increase in the average amount of data

aggregated by each OLAP query, without noticeable performance impact for the user.

A particular strength of CR-OLAP is to efficiently answer queries with large

query coverage, i.e. the portion of the database that needs to be aggregated for an

OLAP query. For example, for an Amazon EC2 cloud instance with 16 processors, a

data warehouse with 160 million tuples, and a TPC-DS OLAP query stream where

each query aggregates between 60% and 95% of the database, CR-OLAP achieved

a query latency of below 0.3 seconds which can be considered a real time response.

CR-OLAP also handles well increasing dimensionality of the data warehouse. For

tree data structures this is a critical issue as it is known e.g. for R-trees that, with

increasing number of dimensions, even simple range search (no dimension hierarchies,

no aggregation) can degenerate to linear search (e.g. [39]). In our experiments, we

8

observed that increasing number of dimensions does not significantly impact the

performance of CR-OLAP. Another possible disadvantage of tree data structures is

that they are potentially less cache efficient than in-memory linear search which can

make optimum use of streaming data between memory and processor caches. To

establish a comparison baseline for CR-OLAP, we implemented STREAM-OLAP

which partitions the database between multiple cloud processors based on one chosen

dimension and uses parallel memory to cache streaming on the cloud processors to

answer OLAP queries. We observed that the performance of CR-OLAP is similar

to STREAM-OLAP for simple OLAP queries with small query coverage but that

CR-OLAP vastly outperforms STREAM-OLAP for more complex queries that utilize

different dimension hierarchies and have a larger query coverage (e.g. “report the total

sales in all stores located in California and New York during the months February-May

of all years”).

The second major contribution of this thesis is vOLAP which building on the ideas

first developed in CR-OLAP.

vOLAP is a fully distributed, cloud-based system with a distributed tree data

structure that uses a multi-threaded PDC-tree (designed for multi-core processors)

as a building block. Data is partitioned into subsets stored in PDC-trees on worker

nodes of the cloud environment. As is typical for current high performance OLAP

systems, vOLAP is an in-memory system and supports ingestion of new data but no

deletion. Multiple server nodes handle the incoming streams of new data inserts and

OLAP queries, and route them to the appropriate workers. A Zookeeper cluster [52]

is used for managing global information. A manager (background) process monitors

the load status of the system and provides instructions to worker nodes for global

real-time load balancing. An important property of vOLAP is that the load balancing

is fully automatic and adjusts dynamically to the data distribution. Note that, due to

the high velocity of incoming new data, the data distribution may change significantly

9

over time. Unlike other distributed OLAP systems, vOLAP does not use a static data

partitioning dimension or a partitioning dimension that needs to be manually set by

the systems administrator.

Each user session is attached to one of the server nodes. vOLAP guarantees strong

serialization of the insert and OLAP query operations within each session. For multiple

user sessions that are attached to the same server (e.g. as a work group), vOLAP

also guarantees strong serialization between those sessions. Note that, since OLAP

queries may need to aggregate large portions of the database and thereby overlap with

many insert operations currently in progress, serialization is particularly challenging.

Between multiple user sessions that are attached to different servers, vOLAP provides

“best effort” serialization with a configurable bound on “freshness” (3 seconds, in our

experiments).

Another important property of vOLAP is that it is fully scalable and supports an

elastic cloud computing environment. Both server and worker nodes can be added

or removed as necessary to adapt to the current workload. All system components

are scalable and, unlike other systems, vOLAP avoids any single node performance

bottleneck.

Experimental evaluation of our prototype system, using 18 workers for a database

size of 1.5 billion items, shows that vOLAP is able to ingest new data items at a rate

of over 600,000 items per second, and vOLAP can process streams of interspersed

inserts and OLAP queries in real-time at approximately 200,000 queries per second. A

distinguishing feature of vOLAP is that it exploits dimension hierarchies to improve

performance. We have tested vOLAP on synthetic hierarchical data as well as TPC-

DS test data which includes dimension hierarchies as shown in Fig. 4.8. The above

mentioned performance evaluation of vOLAP is for data on such dimension hierarchies

and includes a wide range of queries ranging from small queries, to queries that need

to aggregate several hundred million data items, up to queries that need to aggregate

10

nearly the entire database.

CR-OLAP and vOLAP were designed and implemented in a collaborative setting.

This thesis describes primarily the system issues that were the focus of my work. The

multi-threaded PDCR trees used here were primarily developed by Hamidreza Zaboli

and are described in his PhD thesis. The PDC-MBR and PDC-MDS data structures

were primarily by developed David Robillard. My focus was the system design,

software framework, migration and splitting protocols, and experimental analysis of

performance on the cloud.

1.2 Structure of the thesis

The remainder of this thesis is organized as follows. In Chapter 2 we introduce the

data management on the Cloud and some OLAP related concept and show some

data structures that would be used in building a real-time OLAP system. In Chapter

3 we review cloud computing related techniques, and in Chapter 4 we present our

CR-OLAP system for real-time OLAP on cloud architectures and the results of an

experimental evaluation of CR-OLAP on the Amazon EC2 cloud. In Chapter 5, we

show our fully scalable cloud-based system for real-time OLAP on high velocity data,

vOLAP. Chapter 6 concludes the thesis.

11

Chapter 2

Background: Data Management on the Cloud

In this chapter, we introduce the concepts and technologies used in data management

on the cloud and OLAP systems. We start with an introduction to NoSQL data stores

on the Cloud. Then we move to a broad overview of OLAP systems in section 2.2.

We also present the definitions of OLAP dimensions and hierarchies that will be used

in the remainder of this thesis. In Section 2.3 we introduce several data structures

that will be used later in our real-time OLAP systems. We first introduce the R-Tree

in Section 2.3.1, then we present the definition and algorithms for DC-Tree in Section

2.3.2. We also describe how to create a parallel DC-Tree for multi-core processors

in Section 2.3.3. Finally, we introduce the PDCR-Tree which will be used in our

real-time OLAP systems.

2.1 Data Store Categorization

With the growing popularity of the Internet, many applications and services started

being delivered to their users over the Internet. And the scale of these applications

has been increased rapidly in recent years. As a result, many Internet companies,

such as Google, Amazon and Facebook, faced the challenge of processing millions

of concurrent user requests. Traditional relational databases could not provide the

scalability, availability and performance they required. Hence, many companies and

organizations decided to create their own non-relational solutions to satisfy their

technical requirements. These non-relational data stores are often called NoSQL data

stores [13].

12

According to a survey conducted by Cattell [23] in 2010, most NoSQL data stores

can be classified into the following four groups based on their data model: OLAP

stores, key-value stores, document stores and extensible record stores.

2.1.1 OLAP Stores

Decision Support Systems (DSS) are designed to empower the user with the ability to

make effective decisions regarding both the current and future state of an organization.

DSS allow users to study relationships in a chronological context between things such

as customers, vendors, products, inventory, geography, and sales. One of the most

powerful and prominent technologies for knowledge discovery in DSS environments

is on-line analytical processing (OLAP). OLAP is the foundation for a wide range

of essential business applications, including sales and marketing analysis, planning,

budgeting, and performance measurement [50, 61]. By exploiting multi-dimensional

views of the underlying data warehouse, the OLAP server allows users to “drill down”

or “roll up” on dimension hierarchies, “slice and dice” particular attributes, or perform

various statistical operations such as ranking and forecasting.

In contrast to queries for on-line transaction processing (OLTP) [75] systems which

typically access only a small portion of the database (e.g. update a customer record),

OLAP queries may need to aggregate large portions of the historical append-only big

dataset to support complex analysis (e.g. calculate the total sales of a certain type of

items during a certain time period) which are computationally expensive. Therefore,

most of the traditional OLAP research, and most of the commercial systems, follow

the static data cube approach proposed by Gray et al. [46] and materialize all or a

subset of the cuboids of the data cube in order to ensure adequate query performance.

Building the data cube can be a massive computational task, and significant research

has been published on sequential and parallel data cube construction methods (e.g.

[27, 36, 46, 47, 60, 83]). However, the traditional static data cube approach has several

13

disadvantages. The OLAP system can only be updated periodically and in batches, e.g.

once every week. Hence, latest information can not be included in the decision support

process. The static data cube also requires massive amounts of memory space and leads

to a duplicate data repository that is separate from the on-line transaction processing

(OLTP) system of the organization. Practitioners have therefore called for some time

for an integrated OLAP/OLTP approach with a real-time OLAP system that gets

updated instantaneously as new data arrives and always provides an up-to-date data

warehouse for the decision support process (e.g. [20]).

Most of the traditional OLAP solutions, such as SAP Business Objects [40] and

Oracle OLAP database [70], follow the data cube approach. These traditional OLAP

systems are not real-time OLAP systems and are often criticized for their limited

scalability with increasing the database size. Microsoft OLAP system [63] is also

implemented based on the data cube approach. And it also supports real-time

analytical queries. To use real-time OLAP in Microsoft OLAP system, users are

required to first create either a real-time dimension or a real-time cube. But real-time

dimensions or real-time cubes in Microsoft OLAP system can not support remote

partitions. Thus, Microsoft’s real-time OLAP system fails to scale dynamically with

needs.

In order to satisfy the requirements for querying on large dataset with high

throughput and low latency, many cloud-based OLAP systems, such as [22, 25, 49],

have been proposed based on the MapReduce [33] framework proposed by Google.

By exploiting the parallelism of the MapReduce framework, the scalability of these

system has been significantly improved. However, these MapReduce based OLAP

systems are still not real-time OLAP systems.

SAP HANA [40] is a real time in-memory database system that also supports OLAP

queries. In a cloud computing environment, a basic HANA instance is for a multi-core

processor single compute node. A scale out version of HANA can be executed on

14

multiple compute nodes, using a distributed file system (GPFS) that provides a single

shared data view to all compute nodes. Large tables can be partitioned using various

partitioning criteria and complete tables or parts thereof can then be assigned to

different nodes. The execution engine schedules queries over the different compute

nodes and attempts to execute them on the node that holds the data [40]. But the

distributed SAP HANA system only has one active master node while the system is

working. Thus scalability of the system is limited.

Druid is an open-source, distributed, scalable, in-memory OLAP store designed for

real-time exploratory queries on large-scale data sets. By combining a column-oriented

storage layout, a distributed, shared-nothing architecture and an advanced indexing

structure, Druid is able to compute drill-downs and aggregates over large quantities

of multi-dimensional data records with low latency. Druid was originally designed to

store and query large quantities of transactional events which are quite similar to the

append-only historical data that is stored in OLAP systems. Data records in Druid are

all timestamped events with multiple dimensions. Data records are partitioned into a

set of segments based on timestamps. By replicating segments and distributing them

to computing nodes, Druid is reported to be able to achieve high query throughput

and low latency. Even if Druid shares many similarities with other OLAP systems,

there still exists several obvious differences. First, all data records in Druid should

come with a timestamp while this is not required in other traditional OLAP systems.

Second, dimensional hierarchies, which is a key feature supported by most traditional

OLAP systems, is not implemented in Druid.

All of the mentioned OLAP systems support typical OLAP queries. SAP HANA is

a real-time OLAP system that could be scaled up to a cloud computing environment.

However, the distributed SAP HANA system is a centralized system with only one

master node. Thus, the master node might become the bottleneck of the whole

15

system when the frequency of user requests is increased. Druid is a scalable and fault-

tolerant real-time OLAP system that is able to answer user queries with low latency.

However, Druid can not work as a typical real-time OLAP because of it can only

store timestamped transactional log data and does not support dimension hierarchies,

which are implemented as a core feature in most traditional OLAP systems.

2.1.2 Key-value Stores

Key-value stores are similar to hashmaps and dictionaries that use a unique key to

address data. Values in key-value stores are completely opaque to the system, hence,

the only way to retrieve and update stored data is using keys. Also, no secondary keys

or indices are used in these systems. Key value stores are useful for simple operations,

which are based on key attributes only. Generally, key-value stores support only insert,

delete and lookup operations.

Typically, scalability and high availability are the foremost requirements for key-

value stores. According to the CAP [18] theorem, a distributed system can only

choose two of consistency, availability and partition tolerance. In a cloud-based

environment that network partition are inevitable, key-value store systems usually

choose availability over consistency.

Amazon’s Dynamo [34] is a key-value store used in many large-scale e-commerce

applications. It is implemented based on a simple data model where each data

record is addressed by a unique key and the value is a binary object. Dynamo

provides a put and a get operation. Operations on multiple data records are not

supported. It applies consistent hash to distributed data among computing nodes.

Unlike traditional relational database systems that provide strong consistency, Dynamo

only provides eventual consistency to achieve high performance and availability. Project

Voldemort [41] is an open-source implementation of Amazon’s Dynamo with substantial

contributions from LinkedIn. Voldemort supports simple operations like get, put,

16

getAll and delete. There is no built-in support for range queries in Voldemort. Similar

to Dynamo, Voldemort can be scaled to a large cluster using consistent hash and

provides high query throughput. It also provides eventual consistency rather than

strong consistency. Other similar key-value data stores include Riak [7], Redis [66],

Scalaris [71], Tokyo Cabinet [51], Memcached [42] and Couchbase [19].

All of these key-value stores provide high scalability through key distribution over

computing nodes and support simple operations like insert, delete and lookup. To

achieve better load balancing, none of these key-value stores have built-in support

for the range queries and hierarchical aggregation queries which are a fundamental

requirement in OLAP systems.

2.1.3 Document Stores

Comparing to key-value stores that are designed for simple key-value pairs, document

stores are designed for storing, retrieving and managing document-oriented information.

Document-oriented information is known as semi-structured data. Within a document

store, each document has a unique key that represents the document. A document key

could be a string, a URI or a path. This unique key can be used to retrieve document

from the database. Unlike the key-value stores that only use primary keys to address

data records, document stores generally support secondary indexes and multiple types

of documents per database. Similar to key-value stores, a unique key of a document

can be used to retrieve a document from the database. Besides that, document stores

also offer APIs to retrieve documents based on their content. For example, you can

execute a query to retrieve all documents that contain a set of words (e.g. “NoSQL”,

“data” and “store”).

Amazon’s SimpleDB [72] is a highly available and flexible document store provided

by Amazon as part of its web services. It provides simple operations for users to store

and query documents via web service requests, thus offloads the work of database

17

administration. And it could be integrated easily with other AWS services such

as Amazon S3 and EC2. Documents in SimpleDB are put into domains. Different

domains may be stored on different Amazon nodes. And users can execute queries

on one domain with many attributes constraints. SimpleDB supports Select, Delete,

GetAttributes and PutAttributes operations on documents. Like most of the NoSQL

systems, SimpleDB only supports eventual consistency, not transactional consistency,

and it does asynchronous replication. CouchDB [14] is an open source document

store implemented in Erlang. It uses JSON to store data and JavaScript as its query

language. Documents in CouchDB are grouped into collections which are similar

to domains in SimpleDB. CouchDB creates B-tree index for each collection, so the

query results in CouchDB can be ordered. MongoDB [28] is another open-source

document-oriented data store written in C++. Similar to CouchDB, it provides

indexes on collections and document based queries.

Similar to the key-value stores, the document stores provide weaker consistency than

traditional databases. But document stores provide richer operations on documents.

Users can query a collection of documents based on multiple attribute value constraints.

But hierarchical relations cannot be defined among attributes, thus document stores

cannot be used to support OLAP queries.

2.1.4 Extensible Record Stores

Extensible record stores are also known as column-oriented stores, column family

stores and wide columnar stores. Many existing extensible record stores seems to

have been inspired by Google’s BigTable [24], which is a distributed storage system

for managing structured data that is designed to scale to very large sizes. The basic

model used in extensible record stores is rows and columns. By splitting both the

rows and columns, a table is split into a set of tablets which are distributed to many

servers to achieve high scalability and load balancing. There is no replication of user

18

data inside BigTable. All user data are stored in the Google File System (GFS) [45]

that provides scalable, consistent and fault-tolerant data storage. A master and a

Chubby [21] cluster is designed to provide coordination and synchronization between

tablet servers.

HBase [44] is an open source implementation of BigTable and it is written in Java.

It uses Hadoop distributed file system [74] instead of Google File System to provide

scalable, consistent and fault-tolerant data storage. Unlike BigTable, HBase uses

Zookeeper [52] to provide coordination and metadata management services. Also,

HBase added multiple master support to avoid single node failure.

HyperTable [55] is another open source column-oriented data store similar to

BigTable and HBase and it’s written in C++. Hypertable supports a number of

programming language client interfaces, such as C++, Java, Python, Perl, Ruby and

so on. Other similar systems include Facebook’s Cassandra [56] and Yahoo’s PNUTs

[32].

Most of the existing extensible record stores are motivated by BigTable and provide

similar functionalities. Generally, they support operations like write or delete values

in a table, or look up values from individual rows. But they cannot be easily used as

OLAP systems which store multi-dimensional data set with dimension hierarchies.

None of the above mentioned distributed data stores satisfy the requirements for

a scalable real-time OLAP system with dimensional hierarchies. In this thesis, we

are going to focus on designing a scalable, fault-tolerant and cloud-based real-time

OLAP system. Thus, we only introduce OLAP related concepts and technologies in

the following section.

2.2 OLAP

Decision Support Systems (DSS) are designed to empower the user with the ability to

make effective decisions regarding both the current and future state of an organization.

19

DSS allow users to study relationships in a chronological context between things such

as customers, vendors, products, inventory, geography, and sales. One of the most

powerful and prominent technologies for knowledge discovery in DSS environments

is on-line analytical processing (OLAP). OLAP is the foundation for a wide range

of essential business applications, including sales and marketing analysis, planning,

budgeting, and performance measurement [50, 61]. By exploiting multi-dimensional

views of the underlying data warehouse, the OLAP server allows users to “drill down”

or “roll up” on dimension hierarchies, “slice and dice” particular attributes, or perform

various statistical operations such as ranking and forecasting.

In contrast to queries for on-line transaction processing (OLTP) [75] systems which

typically access only a small portion of the database (e.g. update a customer record),

OLAP queries may need to aggregate large portions of the database (e.g. calculate

the total sales of a certain type of items during a certain time period) which may lead

to performance issues. Therefore, most of the traditional OLAP research, and most of

the commercial systems, follow the static data cube approach proposed by Gray et al.

[46] and materialize all or a subset of the cuboids of the data cube in order to ensure

adequate query performance. Building the data cube can be a massive computational

task, and significant research has been published on sequential and parallel data

cube construction methods (e.g. [27, 36, 46, 47, 60, 83]). However, the traditional

static data cube approach has several disadvantages. The OLAP system can only be

updated periodically and in batches, e.g. once every week. Hence, latest information

can not be included in the decision support process. The static data cube also requires

massive amounts of memory space and leads to a duplicate data repository that is

separate from the on-line transaction processing (OLTP) system of the organization.

Practitioners have therefore called for some time for an integrated OLAP/OLTP

approach with a real-time OLAP system that gets updated instantaneously as new

data arrives and always provides an up-to-date data warehouse for the decision support

20

process (e.g. [20]). Some recent publications have begun to address this problem by

providing “quasi real-time” incremental maintenance schemes and loading procedures

for static data cubes (e.g. [20, 54, 68, 67]). However, these approaches are not fully

real-time. A major obstacle are significant performance issues with large scale data

warehouses.

In the remaining part of this chapter, we are going to explore sequential and

parallel data structures that might be used to implement in-memory real-time OLAP

systems that gets updated instantaneously as new data arrives and always provide

up-to-date query result to support the decision making process.

2.2.1 Dimension Hierarchy

“A data cube consists of several functional attributes, grouped into dimensions, and

some dependent attributes, called measures. For dimensions with more than one

functional attribute, these attributes are organized into hierarchy schemas.” [39] For

example, the dimension Date can have functional attributes year, month, and date.

Figure 2.1 shows an exmaple for a dimension Date and its functional attributes: Year,

Month and Date. All is the root of every concept hierarchy and denotes the union of

all values in the concept hierarchy.

Consider a data warehouse with a fact table F and a set of d dimensions {D1, D2, ..., Dd}
where each dimension Di, 1 ≤ i ≤ d has a hierarchy Hi including hierarchical attributes

corresponding to the levels of the hierarchy. The hierarchical attributes in the hierarchy

of dimension i are organized as an ordered set Hi of parent-child relationships in

the hierarchy levels Hi = {H1
i , H

2
i , ..., H

l
i} where a parent logically summarizes and

includes its children. It is common for data warehouses used in practice to have a large

set of dimensions each with its own hierarchy. As can be seen in the example drew

from the TPC-DS benchmark data set shown in Figure 2.2, some of these dimensions

may be very standard (e.g. Date: Year-Month-Day) while others are very application

21

Hierarchy schema for
dimension Date:

Year

Month

Date

Conceptual Hierarchy for
Dimension Date:

All

2002

December

…. 2014

…. ….

01 02 ….

Figure 2.1: Hierarch Schema and Concept Hierarchy for dimension Customer [39]

specific (e.g. Store: Country-State-City).

All Dims

ItemCustomerStore Date

Country

State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Figure 2.2: A 4-dimensional data warehouse with 3 hierarchy levels for each dimension.
The first box for each dimension denotes the name of the dimension.

2.3 Data Structures for OLAP

Typical OLAP systems support data point insert and bulk insert operations, point

query, range query and aggregation queries. Generally, OLAP systems don’t support

delete operations. Data sets stored in OLAP systems are multidimensional data

points with dimensional hierarchies. In order to do fast insert and query operations

22

on multi-dimensional big dataset with dimensional hierarchies, we need to use a

data structure that support efficient insertion and queries. In the following section,

we explore several multi-dimensional data structures that will be used later in our

real-time OLAP systems.

2.3.1 RTree

R-tree [48] is one of the most well-known multidimensional index structures that are

widely used in both theoretical and applied contexts. It was proposed by Antonin

Guttman in 1984 and was designed for spatial access methods, i.e., for indexing

multidimensional information such as geographical coordinates, rectangles or polygons.

R-tree has many variants including the R+-tree [73], R*-tree [16], VAMSplit R-tree

[82].

Figure 2.3: Containment and overlapping relationships among MBRs [48]

R-tree is a B-tree [15] like tree data structure and is height balanced. It uses

minimum bounding rectangles (MBR) [48] to group the nearby multidimensional data,

forming a hierarchical tree structure. Figure 2.3 shows a data distribution example

and figure 2.4 shows the corresponding R-tree example.

23

R1 R2

R3 R4 R5 R6

R3 R4 R3 R4 R3 R4 R3 R4

Figure 2.4: A 2-dimensional R-tree example

Data in R-tree is organized in pages and can be stored either in memory or on

disk. The maximum and minimum number of data objects contained in each page

should be set before creating a new R-tree. Like B-tree, R-tree consists of leaf nodes

and directory nodes. Each directory node stores a minimum bounding box covering

its children and the links to its children. Leaf nodes store the multidimensional data

objects, which are normally represented as data points or polygon data.

The range search in R-tree is quite similar to the searching in B+ tree. It’s a

top-down procedure and started from the root node and stopped at the leaf node.

Since each directory node contains a set of sub-directory nodes, the range search

algorithm tests every entry of the directory node to decide if the bounding box of the

entry overlaps with the query box. If it overlaps, the corresponding child node will be

searched, otherwise, the corresponding sub-tree won’t be traversed. The range search

algorithm works in a recursive manner and won’t stop until a leaf node is reached.

Once a leaf node is reached, all data objects contained in the leaf node will be tested.

If a data objected in a leaf node is contained in the query box, then this data object

will be put into the result set.

24

2.3.2 DC Tree

The DC-tree [39] introduced by Kriegel et al. in 2000, is a tree based index data

structure specifically designed for data warehouses with dimension hierarchies. It’s a

fully dynamic data structure that could be used to support OLAP queries on data

cubes.

A DC-tree defines a concept hierarchy for each dimension, where the concept

hierarchy is an additional tree structure for storing all values occurred in a given

dimension. Using this concept hierarchy for each dimension, the DC-tree extends the

usual R-tree based tree representation for multi-dimensional data by replacing the

standard minimum bounding rectangles (MBR) with minimum describing rectangles

(MDS).

An MDS is designed to describe a set of hyper-rectangles that contain the data

stored in the corresponding subtree. In an MDS with multiple dimensions, each

dimension contains a set of values at different levels of the dimension hierarchy. The

DC-tree assigns an ID to every attribute value of a data record that is inserted. Thus,

an MDS is actually consists of sets of IDs. Like MBRs, MDSs are designed to enable

more efficient queries for high dimensional data with dimensional hierarchies.

Consider the following two data records in a data cube with two dimensions Store

and Data and one measure:

* ([Canada, ON, Toronto],[2008, 01, 31], [$100])

* ([Canada, ON, Ottawa],[2008, 01, 31], [$200])

Figure 2.5 shows the hierarchies of the two dimension in the data cube. To

distinguish data records from each other, an MDS of a single data record has to use

the attribute values of the lowest level in the concept hierarchy of each dimension.

As the attribute id at the lowest level of a hierarchy are usually represented as a

surrogate key in each dimension, data records can distinguish each other based on the

25

attribute id in the lowest level. For the sample data record, the MDS is ([Toronto,

Ottawa], [31]). An MDS that approximates a whole data node or a directory node

may use values of higher levels in the concept hierarchies, e.g., ([ON], [2008]). The

last element of the above sample data record is the measure value according to the

measure attribute of the data cube. The measure value is not part of the MDS, but is

related to it and will be stored together with the MDS in each node of the DC-tree.

The measure value for an MDS of a datanode or a directory node is the aggregation

(e.g. the sum or the average) of measure values of all data records covered by this

MDS.

All Dimensions

Store

Country

State

City

Date

Year

Month

Day

Figure 2.5: The dimensional hierarchies of a sample DC-tree

The DC-tree consists of three different types of nodes: data nodes, normal directory

nodes and supernodes. The data nodes of the DC-tree contain minimum describing

sets (MDSs) together with pointers to the actual data objects, and the directory nodes

contain MDSs together with pointers to sub-MDSs. Supernodes are large directory

nodes of variable size. The basic goal of supernodes is to avoid splits in the directory

that would result in an inefficient directory structure. Figure 2.6 shows an example of

the overall structure of the DC-tree, and Figure 2.5 presents the hierarchies of two

26

[Canada, USA], [2008, 2013, 2014], [$1200]

[Toronto], [2008, 2014], [$600]

[Canada, ON, Toronto], [2008, 01, 31], [$100] [Canada, ON, Ottawa], [2013, 06, 28], [$150]

[Canada, ON, Toronto], [2014, 05, 05], [$200]

[Seattle], [27], [$400]

[Canada, NS, Halifax], [2013, 06, 29], [$50]

[ON, NS], [06], [$200]

[USA, WA, Seattle], [2013, 06, 27], [$150]

[Canada, ON, Toronto], [2014, 07, 05], [$300]

[ON, NS], [2008, 2013, 2014], [$800]

[USA, WA, Seattle], [2013, 06, 27], [$250]

Figure 2.6: A simple DC-tree

dimensions. The DC-tree comes with two operations: Insert and Range Query.

The insertion algorithm takes a new data point P as the input and starts tracing

down the tree using the MDS information as guidance. At each directory node, three

cases may occur. If P is contained in the MDS of exactly one child, then the algorithm

proceeds to that child. If P is contained in the MDS of more than one child, then

the algorithm proceeds to the child with the smallest subtree. If P is not contained

in the MDS of any child, then P needs to be added to the child whose MDS update

leads to minimum overlap between children, in order to maintain efficiency of search

queries. Once a leaf node is reached, then P is inserted to the leaf node. When an

insert causes a node to exceed its capacity, a split operation will be invoked. The split

operation runs through all dimensions to find an appropriate split and then split the

exceeded node into two nodes, or ends with creating a supernode if no appropriate

split was found.

The Range Query algorithm takes a query Q as the input and reports all data

items contained in Q and their aggregate measure value. The Range Query algorithm

is a top-down procedure started from the root node using the MDS information as a

27

guidance and won’t stop until reached the leaf nodes. At each directory node, the

algorithm runs throung every entry of the directory node. If the overlap between the

MDS of the entry and the query MDS is empty, the entry is not relevant for the query

and the result remains as it is. Otherwise, we have to further analyze the overlap. If

the MDS of the entry is fully contained in the range, then the measure value stored in

the son node referenced by the current directory entry, is added to the result. This

is the advantage of the algorithm, because the entry and all nodes below this entry

do not have to be considered and the algorithm can simply use the measure value

computed during the insertions. If the MDS of the entry and the range overlap each

other, we cannot use the measure value directly and have to recursively call the range

query for the son node.

2.3.3 PDC Tree

Parallel DC-tree (PDC-tree) [38] is a data structure designed for parallel OLAP

systems on shared memory multi-core processors. It was designed based on the

sequential DC-tree and multi-threaded binary search tree techniques. The PDC-tree

handles the case where all of the dimension hierarchies are categorical.

Given a client stream consists of insert and query operations, the main challenge

for the parallel DC-tree is the possible interference between parallel insert and query

operations. The PDC-tree need to guarantee the query correctness while improving

the performance. It’s easy for single core processors, but its challenging for shared

memory multi-core processors. A straightforward solution could lock the subtree when

an insert operation is performed on. However, this method lead to no speedup when

increasing the number of processor cores.

With the idea of concept hierarchy structure of data cube and the directory node

structure introduced in DC-tree, parallel DC-tree index consists of two more parts

for its data structure which are 1) time stamp. 2) link to sibling. The time stamp

28

stores the most recent time when the node has been modified or created due to node

splitting or insertion. The link to sibling is used to maintain a linear chain between

the children of each directory node. These two fields are important for the system to

perform parallel execution. Also the design acquires the lock to only lock the node

which is currently updating.

The algorithms PARALLEL-OLAP-INSERT tracks down the tree by checking the

MDS of each directory node to find the right leaf directory node where the new data

item should be inserted. Three cases will be considered. When the new item MDS is

contained in only one directory node MDS, the algorithm traces down its child. When

the new item MDS is included in more than one directory node MDS, the algorithm

will choose the smallest subtree to go down. When the new item MDS has overlap

with the directory node MDS, choose the node whose MDS has minimal overlap with

its neighbors caused by the MDS enlargement if possible insertion happens.

The step will be repeated until the leaf directory node is reached. Then the node

will be locked in order to perform insertion. If the node capacity has been exceeded

with the insertion, it will call split algorithm to do node splitting. During the process,

the MDS and measure will get updated from the bottom nodes until no further update

or root node is reached.

The algorithm PARALLEL-OLAP-QUERY takes MDS of the given query range

as an input. A stack is used to traverse the tree and detect the modified and new

nodes raised by parallel insertion, so that all the new data inserted in parallel with

query search can be evaluated as well. Starting from the root, the process pushes one

directory node to the stack, and then evaluates its children nodes. The MDS of child

node and the MDS of the given query range whoever has lower level hierarchy will be

converted the higher hierarchy level so that the two MDS are the same level. Two

cases can happen in this step. If the child’s MDS is contained in range query MDS,

then add the child’s measure to the results. If the child’s MDS has overlap with query

29

MDS, then the child will be pushed to the stack.

When searching in a subtree, the direct node of this subtree could be modified

with new time stamp caused by parallel insertion. So when the corresponding original

node with earlier time stamp is popped up from the stack, we know there are new

siblings that need to be evaluated and the subtrees of the updated node should be

re-visited. Therefore, the sibling directory nodes are pushed into stack and so is the

update directory node. Repeat the steps until the stack is empty.

30

Chapter 3

Background: Cloud Computing

In this chapter, we introduce the cloud computing related concepts and technologies

that are used in this thesis. We start with a broad overview of cloud computing

concepts and definitions. We cover the history, characteristics and three primary

service models for cloud computing. In Section 3.5, we describe the Amazon Web

Services (AWS) [30] platform and its services. In Section 3.2, we introduce software

mechanisms of communication in cloud environments and discuss how to do remote

node communication in a environment that satisfies the requirements for scalability

and load balancing. Finally, we describe the challenges of node coordination in cloud

computing environments and illustrate how Zookeeper [52] can be used to coordinate

global state the system.

3.1 Cloud Computing

Cloud computing means many different things to different people. In this thesis, we

use the following standard definition:

“Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and

released with minimal management effort or service provider interaction.” [58]

The cloud computing concept can be dated back to the 1950s, when large-scale

mainframe computers [4] became available in research organizations and corporations.

A mainframe was normally stored in a server room, and multiple clients/users were

31

able to access the mainframe via terminal computers, which had no internal processing

capacities and can only be used for communications. Due to the big cost of buying

and maintaining mainframes, organizations couldn’t afford to buy a mainframe for

each user. Thus, to make mainframes to be used efficiently, organizations decided

to allow multiple users to share access to both storage resources and CPU time of

a mainframe. By sharing the time of a mainframe, an organization was able to get

better return on its investment of mainframes. The practice of time-sharing formed

the initial concept of cloud computing.

In 1966, Douglas Parkhill published a book, The Challenge of Computer Utility

[62] which illustrated the idea of organizing computation as a public utility. Almost

all of the modern characteristics of cloud computing were thoroughly explored from

this book. As the cost of computer hardwares became lower, more and more users

were able to afford their own computer. Also, with the popularity of network in the

1990s, users started running into a different type of problem: one single computer

is not enough to provide the computing resource as required. The industry started

thinking about shifting from “splitting up the computing resource” to “combing the

computing resources of different computers via network”. This shifting formed the

basic concept of modern cloud computing.

By installing and configuring softwares across multiple physical nodes, a system

would work like a single physical node. Such a system utilized the computing resources

of all physical nodes and provided users with computing resources as they needed, we

call it a cloud computing system. In cloud computing systems, it was easy to add new

computing resources to the “cloud”: just need to add a new computer to the physical

system and configure so that it become part of the bigger system.

Since 2000, Amazon played a key role in the development of cloud computing

technology. Amazon developed their first internal cloud system by modernizing their

existing data centers. Having found that the cloud system improved the working

32

efficiency significantly, Amazon developed a new cloud computing system to pro-

vide computing resources, known as Amazon Web Services (AWS) [30], to external

customers. Today AWS is one of the most well-known cloud computing platform.

Hundreds of thousands of worldwide users are using AWS’s computing resources.

Some other similar cloud computing platforms include Google App Engine [29] and

Microsoft Azure [78].

3.1.1 Characteristics

The National Institute of Standards and Technology has defined the following five

essential characteristics for cloud computing [58]:

* On-demand self-service. A consumer can unilaterally provision computing

capabilities, such as server time and network storage, as needed automatically

without requiring human interaction with each service provider.

* Broad network access. Capabilities are available over the network and

accessed through standard mechanisms that promote use by heterogeneous thin

or thick client platforms (e.g., mobile phones, tablets, laptops, and workstations).

* Resource pooling. The provider’s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand.

* Rapid elasticity. Capabilities can be elastically provisioned and released, in

some cases automatically, to scale rapidly outward and inward commensurate

with demand. To the consumer, the capabilities available for provisioning often

appear unlimited and can be appropriated in any quantity at any time.

33

* Measured service. Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate

to the type of service (e.g., storage, processing, bandwidth, and active user

accounts). Resource usage can be monitored, controlled, and reported, providing

transparency for both the provider and consumer of the utilized service.

A cloud computing service has several distinct features that are different from

traditional distributed computing services or grid computing services. Firstly, it’s sold

on demand. Users of the service could select the way they want to charge, typically

it’s charged by the minute or the hour. Secondly, it’s elastic, which means a user can

request as much or as little resource from the cloud as they want at any given time. It’s

fully dynamic and really on-demand. Finally, the cloud is managed and maintained

by the service provider. To use the cloud service, users only need a computer and the

access to connect to the cloud service.

3.1.2 Service models

The National Institute of Standards and Technology also has defined the following

three service models for cloud computing [58]:

* Software as a Service (SaaS). The capability provided to the consumer

is to use the providers applications running on a cloud infrastructure. The

applications are accessible from various client devices through either a thin

client interface, such as a web browser (e.g., web-based email), or a program

interface. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even

individual application capabilities, with the possible exception of limited user-

specific application configuration settings.

* Platform as a Service (PaaS). The capability provided to the consumer is to

34

Figure 3.1: Three cloud computing service models [2]

deploy onto the cloud infrastructure consumer-created or acquired applications

created using programming languages, libraries, services and tools supported by

the provider. The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, or storage, but has

control over the deployed applications and possibly configuration settings for

the application-hosting environment.

* Infrastructure as a Service (IaaS). The capability provided to the consumer

is to provision processing, storage, networks and other fundamental computing

resources where the consumer is able to deploy and run arbitrary software, which

can include operating systems and applications. The consumer does not manage

or control the underlying cloud infrastructure but has control over operating

35

systems, storage, and deployed applications; and possibly limited control of

select networking components (e.g., host firewalls).

Infrastructure as a service (IaaS) is the most basic cloud-service model. Amazon

EC2 is a typical example of such a service provider. IaaS providers offer physical or

virtual machines for users to use. Users may also get services like file-based storage,

firewalls, load balancers, IP addresses and virtual local area networks (VLANs) from

IaaS provider. These resources typically are installed in data centers and provided

to users based on user demand. To deploy and run applications, cloud users need to

install operating-system images and their own software packages on the requested

cloud infrastructure. In this IaaS model, cloud users is responsible for maintaining the

operating systems and software packages. Cloud providers only charge on the amount

of resources user consumed.

Platform as a service (PaaS) is another widely used cloud-service model. In the

PaaS service model, the service is provided as a “computing platform”, which could

be regarded as operating system, database or web server. Application developers

can focusing on developing and running their software solutions without buying and

managing the hardware and softwares. GoogleApps are examples PaaS.

In the software as a service (SaaS) model, service providers supplies the hardware

infrastructure, the software solutions to users. Service users just need a terminal to

connect to the service provider when they need to use this service. In this service

model, users can get rid of the cost to buy a expensive software, avoid the complicated

steps to install a software and maintain the installed software. Service users just use

the software when they need it with low cost.

36

3.2 Communication in the Cloud

When working with large-scale distributed systems, there is always a need for com-

munication between connected components. In a typical distributed database system

with master nodes and slave nodes, master node might receive requests from clients

and then forward requests to slave nodes. Slave nodes may need to send calculation

results back the master node. Both forwarding requests and exchanging calculation

results need data exchange among machines. Also, in a load balanced distributed

system, data might be migrated from one machine to another machine to balance the

workload of the system. Data migration is another example for exchanging data in

distributed applications.

Berkeley Sockets (BSD) are the underlying API for all network communication.

BSD sockets is the original implementation of the TCP/IP suite and one of the

most widely supported components of any operating system today. In BSD sockets,

peer-to-peer connections often requires explicit setup, destroy, choice of transport

(TCP, UDP), error handling and so on. It’s really hard to implement reliable and

efficient network services using low-level BSD sockets without deep understanding

of I/O multiplexing and buffer management, not to say the scalable data and work

distribution patterns required by modern large-scale distributed systems.

Message queues are often used for data exchange in large-scale distributed appli-

cations. In computer science, a message queue is defined as a software-engineering

component that could be used for interprocess communication or for inter-thread

communication within the same process. Basically, a message queue is a service that

receives data from the sending process and delivers it to a process that receives the

data. Message queues often provide an asynchronous communication protocol which

allows the sender and receiver to work independently without interacting with the

message queue at the same time. Messages are stored in the message queue once they

37

are inserted by the sender and won’t be removed until the receiver retrieves them.

Message queue services often implement advanced features, such as different commu-

nication patterns, delivery acknowledgement, security control, high performance and

other functions. Using message queues can help us get rid of headache to maintain

raw sockets. Moreover, message queues can help significantly improve the scalability

of distributed systems [5].

For example, in a distributed system, you may have one server that receives requests

from clients to perform some time-consuming calculations. That server forwards the

the received request to a second server which performs the actual calculation while the

first server waits for a response. Since the first server waits for the computation results

before moving to the next request, the whole system is limited by the computation on

the second server. If we can increasing the number of servers that perform computation

and distributed the computation task to multiple computation servers, the throughput

of the system is improved. But the first server still need to wait for each computation

server to complete before moving to the next request. A better solution is to send

requests to computation servers without waiting for a response. This is where message

queues come in. The first server can send requests to the message queue which

maintains the list of requests. Computation servers remove messages from the queue,

calculate the results and send the results back to the first server. The first server

receives calculated results from another queue. If the load of the system is increased, we

just need to increase the number of computation servers. The new added computation

servers read and remove messages from the same queue.

Many message queues are designed and implemented for a specific operating system

or an application, such as [80, 30, 77]. While many other message queues are designed

to allow message communication among different operating systems and different

applications. These message queue services often come with more high-level features.

Examples of these commercial implementation of message queue services include

38

IBM’s WebSphere MQ [31] and Oracle Advanced Queuing [65]. Open source choices

of message queue services include ZeroMQ [9], RabbitMQ [79], Apache ActiveMQ [76]

and JBoss Messaging [53].

3.3 Serialization in the Cloud

Distributed systems may receive a large number of transactions at the same time. In

order to achieve high performance (high throughput and low latency), transactions

in distributed systems are generally executed concurrently (they overloap in time).

Serializability is the major correctness criterion for concurrent execution of transactions.

In the concurrency control of distributed systems, a transaction stream (consisting

of insert and query operations) is serializable if its outcome is equal to the outcome

if its transactions executed serially, i.e, executed sequentially without time overloap

[17, 81].

For example, a distributed system received a transaction stream consisting of

insert and query operations: I1, I2, Q1, I3, Q2, I4, I5, Q3. In order to achieve high

performance, insert and query transactions may execute in the distributed system

at the same time. In this example, Q3 is guaranteed to have all the inserted data

prior to Q3 included in the query result if transactions are executed sequentially, thus,

the query result of Q3 should include I1, I2, I3, I4, and I5. Hence, the outcome of

Q3 should always contain the all data inserted prior to Q3 if the transaction stream

is serializaable. Otherwise, if the outcome of Q3 doesn’t contain all data inserted

prior to Q3, e.g., Q3 only contains I1, I2 and I3, then the transaction stream is not

serializable.

Transaction streams that are not serializable are likely to generate erroneous

outcomes. A well known example is the distributed banking system. A credit account

in the banking system allows multiple users to operate this account at the same time.

If the related transaction stream is not serializable, then the total sum of money may

39

not be preserved. Money paid by this credit account may exceed the maximum credit.

Money could disappear, or be generated from nowhere. These erroneous outcomes

could be caused by one transaction overwrite the data that has been written by another

transaction before it’s permanently applied in the database. However, these erroneous

outcome do not happen if transaction stream serializability is maintained.

Unlike financial applications, many applications don’t require restrict serialiability.

For example, data warehouse systems normally store years of historical data. When

retrieving the sales history of a specific product, it doesn’t matter much if a product

was updated a short time ago (e.g., 15 seconds or 2 minutes). This information

will eventually be updated in the data warehouse system and included in the query

result a short time later. Under such scenarios, relaxing serialization to achieve high

performance is a better choice comparing to requiring restrict serialization.

In vOLAP which will be introduced in Chapter 5, our system guarantees session

serialization instead of serialization. That is, each user session is attached to one of

the server nodes. The insert and query transactions within each session is guaranteed

to be serializable. But between multiple user sessions, vOLAP doesn’t guarantee

strong serialization. By relaxing the serialization, we achieved higher performance in

vOLAP.

3.4 Coordination in the Cloud

In distributed systems, consensus is a fundamental problem that involves several

processes agreeing on a value in the presence of failure. The problem is often posed

in a typical distributed environment where network communication is reliable but

processors may fail. In general, the problem can be defined to involve a single

coordinator, which sends a binary value to n -1 participants and lets all participants

agree on the same value. Several protocols have been proposed to solve the consensus

problem in distributed systems. The Paxos [57] protocol is one of the most well-known

40

consensus protocols. Systems that can be used to solve consensus problems are called

coordination systems [12].

Coordination is an essential service in cloud computing. Large-scale distribution

applications require different types of coordination services. System configuration

sharing is a simple example of coordination. In a distributed system with master

nodes and slave nodes, there often exists a list of operational parameters that should

be shared among master nodes and slave node. Group membership and leader election

are also common coordination services in large-scale distributed systems. Using the

distributed system mentioned above as an example, master node always needs to know

the number of alive slave nodes in the system and the available resource of each alive

node. Master node may use this information to balance the workload of the system

while processing client requests. Also, in a distributed system with multiple masters,

a leader master may need to be elected to be in charge of the system. In some specific

scenarios, the execution order for slave nodes should be guaranteed in a distributed

system. In this case, a distributed lock may be required to be implemented as another

example of coordination.

There exist many services designed for different coordination needs. For example,

in [69], a leader election service is designed especially for dynamic distributed sys-

tems. In [11], the authors proposed a configuration system for sharing configuration

among machines in a distributed system. More examples of powerful services that

implement primitives which could be used to implement simple coordination services

are Zookeeper [52] and Chubby [21].

3.5 Amazon Web Services

Amazon Web Services (AWS) is cloud computing platform that is composed of a

collection of remote computing services, including compute power, storage, databases,

41

messaging and other services. Amazon EC2 and Amazon S3 are the two most well-

known services. Most of our experiments were done on Amazon EC2.

Amazon has a long history and rich experience of building and using decentralized,

large-scale, reliable, efficient IT infrastructures. These infrastructures enabled their

development teams to access compute and storage resources on demand, thus helped

increase their productivity and agility. In 2006, Amazon decided to launch Amazon

Web Services (AWS) so that other organizations and companies could use these web

services and benefit from Amazon’s rich experience in running and maintaining large-

scale distributed IT infrastructure. Today AWS has been deployed in 8 geographical

regions all over the world and hundreds of thousands of worldwide customers are using

this global cloud computing platform.

Using AWS, you can requisition compute power, storage, and other services in

minutes and have the flexibility to choose the development platform or programming

model that makes the most sense for the problems you are trying to solve. You pay

only for what you use, with no up-front expenses or long-term commitments, making

AWS a cost-effective way to deliver applications.

3.5.1 Amazon EC2

Amazon Elastic Compute Cloud (EC2) [1] is a one of the most well-known services of

Amazon.com’s cloud computing platform, Amazon Web Services (AWS). Amazon EC2

is a typical example of PaaS model and allows cloud service users to rent computers

which could be physical or virtual machine in cloud and run applications on these

rented computers. A virtual computer rent from Amazon EC2 is called an instance.

Amazon allows cloud users to boot an Amazon Machine Image (AMI) to create

instances. Users have options to use the images provided in cloud service or create

their own image. Users have the control to create desired number of instances using

an AMI, and can launch and terminate instances as needed. There are three types of

42

instances offered by Amazon:

* On-demand: pay by hour without commitment

* Reserved: rent instances with one-time payment receiving discounts on the

hourly charge

* Spot: bid-based services (runs the jobs only if the spot price is below the bid

specified by bidder)

3.6 ZeroMQ

Figure 3.2: Request Reply pattern [3]

As we mentioned in above sections, using and maintaining raw sockets (like BSD

sockets) are difficult and cumbersome. There also exists some high level libraries (e.g.

Boost asio) that provide standard socket API while hiding the details of maintaining

raw sockets. But most existing high-level socket libraries are implemented with the

cost of performance and limited two simple communication patterns: bi-directional

or multicast. These libraries can not provide scalable data and work distribution

43

Figure 3.3: Pub-sub pattern [3]

patterns required by modern large-scale distributed systems. This is where ZeroMQ

networking library comes in.

ZeroMQ (also seen as MQ, 0MQ, zmq) is a network library that can be used in

diverse environments, such as financial services, game development, embedded systems,

academic research and aerospace. It was originally conceived as a fast messaging

system for stock trading, thus, it was started with the target of high throughput and

low latency. ZeroMQ provides simple user interfaces that make sending messages and

receiving messages really easy compared to raw socket implementation. For sending a

message to a remote machine using ZeroMQ, you can just invoke an asynchronous send

call with specified destination, it will queue the message in a separate thread and do

the remaining work for you. Your application does not have to wait until the message

has been flushed. Messages are guaranteed to arrive the specified destination quickly

and safely. ZeroMQ sockets provide a lot of features that make it to be a scalable

library. A single ZeroMQ socket can connect to multiple end points and automatically

load balance messages over them. A single socket can also collect messages from

multiple sources. Some existing messaging systems are implemented with a central

44

Figure 3.4: Pipeline pattern [3]

broker that is used as the global load balancer. Central broker design always comes

with performance bottleneck on the central broker and single point failure problem.

While ZeroMQ followed a brokerless messaging model so that there is no single point

of failure. Also, this brokerless model makes ZeroMQ become a perfect choice for

distributed applications because of its good scalability feature.

ZeroMQ supports 4 different transports: INPROC, IPC, MULTICAST and TCP.

TCP transport in ZeroMQ is implemented based on the standard protocol that is

familiar to most people, which MULTICAST is encapsulated in UDP. If communication

among different machines is required, TCP transport is the best choice. If there is no

need to communicate cross the machine boarder, IPC (Inter-Process communication

model) or INPROC (In-Process communication model) may be used to lower the

latency.

To help distributed data and work among nodes efficiently and easily, ZeroMQ

provides 4 different message patterns. There patterns are implemented by pairs of

socket with matching types. The following shows the 4 built-in core ZeroMQ patterns:

* Request-reply, which connects a set of clients to a set of services. This is

45

a remote procedure call and task distribution pattern. See figure 3.2 as an

example.

* Pub-sub, which connects a set of publishers to a set of subscribers. This is a

data distribution pattern. See figure 3.3 as an example.

* Pipeline, which connects nodes in a fan-out/fan-in pattern that can have

multiple steps and loops. This is a parallel task distribution and collection

pattern. See figure 3.4 as an example.

3.7 Zookeeper

Figure 3.5: Zookeeper’s hierarchical namespace [10]

Zookeeper is a distributed, open-source and high-performance coordination service

designed for distributed systems. It implemented a simple set of primitives which could

be used to build high-level coordination services, such as synchronization, configuration,

group membership, leader election and locks. It’s easy to program with its simple

directory tree like data model and it provides simple APIs for both Java and C.

Zookeeper has implemented a shared hierarchal namespace which is quite similar to

a standard file system. Distributed processes can use this shared hierarchal namespace

46

Figure 3.6: Zookeeper’s architecture [10]

Figure 3.7: Zookeeper components [10]

to coordinate with each other. The namespace is consist of znodes which are similar

to files and directories in standard file system. Figure 3.5 shows an example of

Zookeeper’s hierarchical namespace. Unlike typical file systems which are stored on

hard disk, Zookeeper data is kept in memory, which allows Zookeeper to achieve really

high performance for its read and write operations.

To guarantee that data maintained in Zookeeper is highly reliable, Zookeeper itself

is replicated over a set of servers. The servers that providing Zookeeper service know

about each other. Each server maintains an in-memory image of the data maintained

in Zookeeper, along with the transaction logs and snapshots of the image which could

47

be in failure recovery. As long as a majority of the servers are available, the Zookeeper

service will be available. Figure 3.6 shows the architecture of Zookeeper. Zookeeper

service consists of Zookeeper servers and Zookeeper clients. Zookeeper servers are

designed to maintain the data that should be shared among distributed processes while

Zookeeper clients are often embedded in distributed processes which use Zookeeper

clients to communicate with Zookeeper servers. One of the servers will be elected

as the leader server while the rest become followers automatically. Every Zookeeper

server service clients. Zookeeper clients connect to one server every time to submit

requests. Read requests can be answered by using the local replica of the image. But

the requests to change the data in Zookeeper, which are called write requests, are

forwarded to the leader server. Leader server is responsible for processing all write

requests from clients. Figure 3.7 shows more details of how Zookeeper answer clients’

read and write requests. All write requests are logged to disk for failure recovery

and also serialized to disk before they are applied to the in-memory data. Zookeeper

uses a custom atomic messaging protocol to gurantee that all replicas are also in

synchronization.

Zookeeper is designed to be simple, fast and reliable. It provides the following

features which are critical for a distributed coordination service:

* Sequential Consistency — Updates from a client will be applied in the order

that they were sent

* Atomicity — Updates either succeed or fail. No partial results.

* Reliability — Once an update has been applied, it will persist from that time

forward until a client overwrites the update

* Single System Image — A client will see the same view of the service regardless

of the server that it connects to.

48

* Timeliness — The clients view of the system is guaranteed to be up-to-date

within a certain time bound.

49

Chapter 4

CR-OLAP

In this chapter, we introduce CR-OLAP, a scalable Cloud based real-time OLAP

system. We start with a broad overview of our CR-OLAP system. In Section 4.2 we

introduce the PDCR tree data structure and in Section 4.3 we present our CR-OLAP

system for real-time OLAP on cloud architectures. Section 4.4 shows the results of

an experimental evaluation of CR-OLAP on the Amazon EC2 cloud, and Section 4.5

concludes the paper.

4.1 Introduction

We introduce CR-OLAP, a scalable Cloud based Real-time OLAP system that utilizes a

new distributed index structure for OLAP, refered to as a distributed PDCR tree. This

data structure is not just another distributed R-tree, but rather a multi-dimensional

data structure designed specifically to support efficient OLAP query processing on the

elaborate dimension hierarchies that are central to OLAP systems. The distributed

PDCR tree, based on the sequential DC tree introduced by Kriegel et al. [39] and

our previous PDC tree [38], exploits knowledge about the structure of individual

dimension hierarchies both for compact data representation and accelerated query

processing. The following is a brief overview of the properties of our system.

Consider a d-dimensional data warehouse with d dimension hierarchies. CR-OLAP

supports an input stream consisting of insert and query operations. Each OLAP query

can be represented as an aggregate range query that specifies for each dimension either

a single value or range of values at any level of the respective dimension hierarchy,

50

or a symbol “*” indicating the entire range for that dimension. CR-OLAP utilizes a

cloud infrastructure consisting of m+ 1 multi-core processors where each processor

executes up to k parallel threads. As typical for current high performance databases,

all data is kept in the processors’ main memories [64]. With increasing database size,

CR-OLAP will increase m by dynamically allocating additional processors within the

cloud environment and re-arranging the distributed PDCR tree. This will ensure that

both, the available memory and processing capability will scale with the database

size. One of the m + 1 multi-core processors is referred to as the master, and the

remaining m processors are called workers. The master receives from the users the

input stream of OLAP insert and query operations, and reports the results back to

the users (in the form of references to memory locations where the workers have

deposited the query results). In order to ensure high throughput and low latency even

for compute intensive OLAP queries that may need to aggregate large portions of the

entire database, CR-OLAP utilizes several levels of parallelism: distributed processing

of multiple query and insert operations among multiple workers, and parallel processing

of multiple concurrent query and insert operations within each worker. For correct

query operation, CR-OLAP ensures that the result for each OLAP query includes all

data inserted prior but no data inserted after the query was issued within the input

stream.

CR-OLAP is supported by a new distributed index structure for OLAP termed

distributed PDCR tree which supports distributed OLAP query processing, including

fast real-time data aggregation, real-time querying of multiple dimension hierarchies,

and real-time data insertion. Note that, since OLAP is about the analysis of historical

data collections, OLAP systems do usually not support data deletion. Our system

does however support bulk insert operations of large groups of data items.

The distributed index structure consists of a collection of PDCR trees whereby

the master stores one PDCR tree (called hat) and each worker stores multiple PDCR

51

trees (called subtrees). Each individual PDCR tree supports multi-core parallelism

and executes multiple concurrent insert and query operations at any point in time.

PDCR trees are a non-trivial modification of the authors’ previously presented PDC

trees [38], adapted to the cloud environment and designed to scale. For example,

PDCR trees are array based so that they can easily be compressed and transferred

between processors via message passing. When the database grows and new workers

are added, sub-trees are split off and sent to the new worker.

We evaluated CR-OLAP on the Amazon EC2 cloud for a multitude of scenarios

(different ratios of insert and query transactions, query transactions with different

sizes of results, different system loads, etc.), using the TPC-DS “Decision Support”

benchmark data set. The tests demonstrate that CR-OLAP scales well with increasing

number of workers. For example, for fixed data warehouse size (10,000,000 data items),

when increasing the number of workers from 1 to 8, the average query throughput

and latency improves by a factor 7.5. When increasing the data warehouse size from

10,000,000 data items to 160,000,000 data items while, at the same time, letting CR-

OLAP increase the number of workers used from 1 to 16, respectively, we observed that

query performance remained essentially unchanged. That is, the system performed an

16-fold increase in size, including an 16-fold increase in the average amount of data

aggregated by each OLAP query, without noticeable performance impact for the user.

A particular strength of CR-OLAP is to efficiently answer queries with large

query coverage, i.e. the portion of the database that needs to be aggregated for an

OLAP query. For example, for an Amazon EC2 cloud instance with 16 processors, a

data warehouse with 160 million tuples, and a TPC-DS OLAP query stream where

each query aggregates between 60% and 95% of the database, CR-OLAP achieved

a query latency of below 0.3 seconds which can be considered a real time response.

CR-OLAP also handles well increasing dimensionality of the data warehouse. For

tree data structures this is a critical issue as it is known e.g. for R-trees that, with

52

increasing number of dimensions, even simple range search (no dimension hierarchies,

no aggregation) can degenerate to linear search (e.g. [39]). In our experiments, we

observed that increasing number of dimensions does not significantly impact the

performance of CR-OLAP. Another possible disadvantage of tree data structures is

that they are potentially less cache efficient than in-memory linear search which can

make optimum use of streaming data between memory and processor caches. To

establish a comparison baseline for CR-OLAP, we implemented STREAM-OLAP

which partitions the database between multiple cloud processors based on one chosen

dimension and uses parallel memory to cache streaming on the cloud processors to

answer OLAP queries. We observed that the performance of CR-OLAP is similar

to STREAM-OLAP for simple OLAP queries with small query coverage but that

CR-OLAP vastly outperforms STREAM-OLAP for more complex queries that utilize

different dimension hierarchies and have a larger query coverage (e.g. “report the total

sales in all stores located in California and New York during the months February-May

of all years”).

4.2 PDCR Trees

The sequential DC tree introduced in Chapter 2 exploits knowledge about the struc-

ture of individual dimension hierarchies both for compact data representation and

accelerated OLAP query processing. We also introduced the parallel DC tree for

multi-core processors in Chapter 2. In this section, we outline a modified PDC tree,

termed PDCR tree, which will become the building block for our CR-OLAP system.

The PDCR tree extends the PDC tree in the following ways: 1) It supports both

categorical and continuous dimension hierarchies. 2) Its memory layout is designed

carefully to support the efficient communication of subtrees in a distributed memory

system.

Here, we only outline the differences between the PDCR tree and its predecessors,

53

and we refer to [38, 39] for more details. We note that, our PDCR tree data structure

is not just another distributed R-tree, but rather a multi-dimensional data structure

designed specifically to support efficient OLAP query processing on the elaborate

dimension hierarchies that are central to OLAP systems. Also note that, DC tree [39]

is particularly well suited to handle OLAP queries for both, ordered and unordered

dimensions.

Consider a data warehouse with fact table F and a set of d dimensions {D1, D2, ..., Dd}
where each dimension Di, 1 ≤ i ≤ d has a hierarchy Hi including hierarchical attributes

corresponding to the levels of the hierarchy. The hierarchical attributes in the hierarchy

of dimension i are organized as an ordered set Hi of parent-child relationships in

the hierarchy levels Hi = {Hi1, Hi2, ..., Hil} where a parent logically summarizes and

includes its children. Figure 4.1 shows the dimensions and hierarchy levels of each

dimension for a 4-dimensional data warehouse.

All Dims

ItemCustomerStore Date

Country

State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Figure 4.1: A 4-dimensional data warehouse with 3 hierarchy levels for each dimension.
The first box for each dimension denotes the name of the dimension.

For a cloud architecture with multiple processors, each processor will store one

or more PDCR trees. Our CR-OLAP system outlined in the following Section 4.3

requires that a sub-tree of a PDCR tree can be split off and transferred to another

processor. This required us to (a) devise an array based tree implementation that can

be packed into a message to be sent between processors and (b) a careful encoding

of data values, using compact IDs related to the different dimension hierarchy levels.

54

For our array based PDCR tree implementation, a PDC tree is represented in a single

array where all tree links are represented by integer references to array locations.

Allocation of new tree nodes was re-implemented as an append operation at the end

of the array, and all tree operations were re-implemented to use integer references

instead of memory pointers. In the following we outline some details of the encoding

of data values used for our PDCR tree.

IDs for each dimension represent available entities in the dimension. Each dimension

has a hierarchy of entities with l levels. In the example of Figure 4.1, an ID may

represent an entity at the Country level for the Store dimension, e.g. US or Canada.

Similarly, another ID may represent an entity at the City level, e.g. Chicago or Toronto.

It is important to note that an ID may summarize many IDs at lower hierarchy levels.

To build an ID for a dimension with l levels, we assign bj bits to the hierarchy level j,

0 ≤ j ≤ l − 1. Different entities at each hierarchy level are assigned numerical values

starting with “1”. By concatenating the numerical values of the levels, a numerical

value is created. We reserve the value zero to represent “All” or “*”. The example in

Figure 4.2 shows an example of an entity at the lowest hierarchy level of dimension

Store. An ID for the state California will have a value of zero for its descendant levels

City and Store S key. As a result, containment of IDs between different hierarchy levels

can be tested via fast bit operations. Figure 4.3 illustrates IDs and their coverages

in the Store dimension with respect to different hierarchy levels. As illustrated, each

entity in level j (Country) is a country specified by a numerical value and covers cities

that are represented using numerical values in level j + 1. Note that IDs used for

cities will have specific values at the city level, while the ID of a country will have a

value of zero at the city level and a specific value only at the country level.

The sequential DC tree introduced by Kriegel et al. [39] and our previous PDC

tree [38] store so called “minimum describing set” (MDS) entries at each internal

tree node to guide the query process; see [39] for details. The MDS concept was

55

developed in [39] to better represent unordered dimensions with dimension hierarchies.

Experiments with our CR-OLAP system showed that in a larger cloud computing

environment with multiple tree data structures, the number of MDS entries becomes

very large and unevenly distributed between the different trees, leading to performance

bottlenecks. On the other hand, the bit representation of IDs outlined above gives us

the opportunity to convert unordered dimensions into ordered dimensions, and then

use traditional ranges instead of the MDS entries. An example is shown in Figure

4.4. The ranges lead to a much more compact tree storage and alleviated the above

mentioned bottleneck. It is important to note that, this internal ordering imposed on

dimensions is invisible to the user. OLAP queries can still include unordered aggregate

values on any dimension such as “Total sales in the US and Canada” or “Total sales

in California and New York”.

Level 0 Level 1 Level 2 . . . Level l

Store US California Los Angels Store S_key

01 01 1001 101 1011011

 b0 bits b1 bits b2 bits bl bits

Figure 4.2: Illustration of the compact bit representation of IDs.

1 2 3Country

City

Store
S_key

1 2 3 1 2

123 4 5 6 7 8 9 10 11-13 14

Hierarchy
Levels

All

Figure 4.3: Example of relationships between different hierarchy levels of a given
dimension.

4.3 CR-OLAP: Cloud based Real-time OLAP

CR-OLAP utilizes a cloud infrastructure consisting of m + 1 multi-core processors

56

Root
1990-2000
US - Canada 2000-2013

US

2000-2013
UK - Germany

. . .

C1

1995-2000
California
- Virginia

1993-2000
Canada

C2

2000-2010
New York -
Texas

2000-2013
California

Cn

2000-2005
UK

2004-2013
Germany

.

Figure 4.4: Example of a PDCR tree with 2 dimensions (Store and Date).

where each processor executes up to k parallel threads. One of the m+ 1 multi-core

processors is referred to as the master, and the remaining m processors are called

workers. The master receives from the users the input stream of OLAP insert and

query operations, and reports the results back to the users (in the form of references

to memory locations where the workers have deposited the query results). In order to

ensure high throughput and low latency even for compute intensive OLAP queries that

may need to aggregate large portions of the entire database, CR-OLAP utilizes several

levels of parallelism: distributed processing of multiple query and insert operations

among multiple workers, and parallel processing of multiple concurrent query and insert

operations within each worker. With increasing database size, CR-OLAP will increase

m by dynamically allocating additional processors within the cloud environment and

re-arranging the distributed PDCR tree. This will ensure that both, the available

memory and processing capability will scale with the database size.

We start by outlining the structure of a distributed PDC tree and PDCR tree on

m+ 1 multi-core processors in a cloud environment. Consider a single PDCR tree T

storing the entire database. For a tunable depth parameter h, we refer to the top h

levels of T as the hat and we refer to the remaining trees rooted at the leaves of the

hat as the subtrees s1, . . . , sn. Level h is referred to as the cut level. The hat will be

stored at the master and the subtrees s1, . . . , sn will be stored at the m workers. We

assume n ≥ m and that each worker stores one or more subtrees.

CR-OLAP starts with an empty database and one master processor (i.e. m = 0)

57

storing an empty hat (PDCR tree). Note that, DC trees [39], PDC trees [38] and

PDCR trees are leaf oriented. All data is stored in leafs called data nodes. Internal

nodes are called directory nodes and contain arrays with routing information and

aggregate values. Directory nodes have a high capacity and fan-out of typically 10 -

20. As insert operations are sent to CR-OLAP, the size and height of the hat (PDCR

tree) grows. When directory nodes of the hat reach height h, their children become

roots at subtrees stored at new worker nodes that are allocated through the cloud

environment. An illustration of such a distributed PDCR tree is shown in Figure 4.5.

Insertion

S1 S2 S3 S4

Query

Hat

Leaf Node

Figure 4.5: Illustration of a distributed PDCR tree.

For a typical database size, the hat will usually contain only directory nodes and

all data will be stored in the subtrees s1, . . . , sn. After the initial set of data insertions,

all leaf nodes in the hat will usually be directory nodes of height h, and the roots

of subtrees in workers will typically be directory nodes as well. As illustrated in

Figure 4.5, both insert and query operations are executed concurrently.

4.3.1 Concurrent insert and query operations

Each query operation in the input stream is handed to the master which traverses the

hat. Note that, at each directory node the query can generate multiple parallel threads,

depending on how many child nodes have a non empty intersection with the query.

Eventually, each query will access a subset of the hat’s leaves, and then the query

58

will be transferred to the workers storing the subtrees rooted at those leaves. Each

of those workers will then in parallel execute the query on the respective subtrees,

possibly generating more parallel threads within each subtree. For more details see

Algorithm 3 and Algorithm 4.

For each insert operation in the input stream, the master will search the hat, arriving

at one of the leaf nodes, and then forward the insert operation to the worker storing

the subtree rooted at that leaf. For more details see Algorithm 1 and Algorithm 2.

Figures 4.6 and 4.7 illustrate how new workers and new subtrees are added as

more data items get inserted. Figures 4.6 illustrates insertions creating an overflow

at node A, resulting in a horizontal split at A into A1 and A2 plus a new parent

node C. Capacity overflow at C then triggers a vertical split illustrated in 4.7. This

creates two subtrees in two different workers. As outlined in more details in the CR-

OLAP “migration strategies” outlined below, new workers are requested from the cloud

environment when either new subtrees are created or when subtree sizes exceed the

memory of their host workers. Workers usually store multiple subtrees. However, CR-

OLAP randomly shuffles subtrees among workers. This ensures that query operations

accessing a contiguous range of leaf nodes in the hat create a distributed workload

among workers.

R

A B
Cut
level

c = 2

R

C B

A1 A2

(a) (b)

Data Node

Directory Node

Figure 4.6: Insertions triggering creation of new workers and subtrees. Part 1. (a)
Current hat configuration. (b) Insertions create overflow at node A and horizontal
split.

For correct real time processing of an input stream of mixed insert and query

59

Algorithm 1: Hat Insertion

Input: D (new data item).
Output: void
Initialization:
Set ptr = root

Repeat:
Determine the child node C of ptr that causes minimal MBR/MDS enlargement
for the distributed PDCR/PDC tree if D is inserted under C. Resolve ties by
minimal overlap, then by minimal number of data nodes.
Set ptr = C.
Acquire a LOCK for C.
Update MBR/MDS and TS of C.
Release the LOCK for C.
Until: ptr is a leaf node.
if ptr is the parent of Data Nodes then

Acquire a LOCK for ptr.
Insert D under ptr.
Release the LOCK for C.
if capacity of ptr is exceeded then

Call Horizontal Split for ptr.
if capacity of the parent of ptr is exceeded then

Call Vertical Split for the parent of ptr.
if depth of ptr is greater than h then

Create a new subtree with the parent of ptr as its root, ptr and
its sibling node as the children of the root.
Choose the next available worker and update the list of subtrees
in the master.
Send the new subtree and its data nodes to the chosen worker.

end

end

end

end
if ptr is the parent of a subtree then

Find the worker that contains the subtree from the list of subtrees.
Send the insertion transaction to the worker.

end
End of Algorithm.

60

Algorithm 2: Subtree Insertion

Input: D (new data item).
Output: void
Initialization:
Set ptr = root

Repeat:
Determine the child node C of ptr that causes minimal MBR/MDS enlargement
for the distributed PDCR/PDC tree if D is inserted under C. Resolve ties by
minimal overlap, then by minimal number of data nodes.
Set ptr = C.
Acquire a LOCK for C.
Update MBR/MDS and TS of C.
Release the LOCK for C.
Until: ptr is a leaf node.
Acquire a LOCK for ptr.
Insert D under ptr.
Release the LOCK for C.
if capacity of ptr is exceeded then

Call Horizontal Split for ptr.
if capacity of the parent of ptr is exceeded then

Call Vertical Split for the parent of ptr.
end

end
End of Algorithm.

61

Algorithm 3: Hat Query

Input: Q (OLAP query).
Output: A result set or an aggregate value
Initialization:
Set ptr = root
Push ptr into a local stack S for query Q.

Repeat:
Pop the top item ptr′ from stack S.
if TS(time stamp) of ptr′ is smaller (earlier) than the TS of ptr then

Using the sibling links, traverse the sibling nodes of ptr until a node with TS
equal to the TS of ptr is met. Push the visited nodes including ptr into the
stack (starting from the rightmost node) for reprocessing.

end
for each child C of ptr do

if MBR/MDS of C is fully contained in MBR/MDS of Q then
Add C and its measure value to the result set.

end
else

if MBR/MDS of C overlaps MBR/MDS of Q then
if C is the root of a sub-tree then

Send the query Q to the worker that contains the subtree.
end
else

Push C into the stack S.
end

end

end

end
Until: stack S is empty.
if the query Q is dispatched to a subtree then

Wait for the partial results of the dispatched queries from workers.
Create the final result of the collected partial results.
Send the final result back to the client.

end
End of Algorithm.

62

Algorithm 4: Subtree Query

Input: Q (OLAP query).
Output: A result set or an aggregate value
Initialization:
Set ptr = root
Push ptr into a local stack S for query Q.

Repeat:
Pop the top item ptr′ from stack S.
if TS(time stamp) of ptr′ is smaller (earlier) than the TS of ptr then

Using the sibling links, traverse the sibling nodes of ptr until a node with TS
equal to the TS of ptr is met. Push the visited nodes including ptr into the
stack starting from the rightmost node for reprocessing.

end
for each child C of ptr do

if MBR/MDS of C is fully contained in MBR/MDS of Q then
Add C and its measure value to the result set.

end
else

if MBR/MDS of C overlaps MBR/MDS of Q then
Push C into the stack S.

end

end

end
Until: stack S is empty.
Send the result back to the master or client depending on whether Q is an
aggregation query or a data report query.
End of Algorithm.

63

R

C B

A1 A2

Subtree 1

Subtree 2

R

C B

D A2

Worker 1

A1 A3

Worker 2

(a) (b)

Figure 4.7: Insertions triggering creation of new workers and subtrees. Part 2. (a)
Same as Figure 4.6b with critical subtrees highlighted. (b) Insertions create overflow
at node C and vertical split, triggering the creation of two subtrees in two different
workers.

operations, CR-OLAP needs to ensure that the result for each OLAP query includes

all data inserted prior but no data inserted after the query was issued within the input

stream. We will now discuss how this is achieved in a distributed cloud based system

where we have a collection of subtrees in different workers, each of which is processing

multiple concurrent insert and query threads. In our previous work [38] we presented

a method to ensure correct query processing for a single PDC tree on a mutli-core

processor, where multiple insert and query operations are processed concurrently. The

PDC tree maintains for each data or directory item a time stamp indicating its most

recent update, plus it maintains for all nodes of the same height a left-to-right linked

list of all siblings. Furthermore, each query thread maintains a stack of ancestors of

the current node under consideration, together with the time stamps of those items.

We refer to [38] for more details. The PDCR tree presented in this paper inherits

this mechanism for each of its subtrees. In fact, the above mentioned sibling links

are shown as horizontal links in Figures 4.6 and 4.7. With the PDCR tree being a

collection of subtrees, if we were to maintain sibling links between subtrees to build

linked list of siblings across all subtrees then we would ensure correct query operation

64

in the same way as for the PDC tree [38]. However, since different subtrees of a

PDCR tree typically reside on different workers, a PDCR tree only maintains sibling

links inside subtrees but it does not maintain sibling links between different subtrees.

According to the correctness proofs for splitting subtrees in Zaboli’s Ph.D thesis [84],

correct real time processing of mixed insert and query operations is still maintained.

4.3.2 Load balancing

CR-OLAP is executed on a cloud platform with (m+1) processors (m workers and one

master). As discussed earlier, CR-OLAP uses the cloud’s elasticity to increase m as the

number of data items increases. We now discuss in more detail CR-OLAP’s mechanisms

for worker allocation and load balancing in the cloud. The insert operations discussed

above create independent subtrees for each height h leaf of the hat. Since internal

(directory) nodes have a high degree (typically 10 - 20), a relatively small height

of the hat typically leads to thousands of height h leaves and associated subtrees

s1, . . . , sn. The master processor keeps track of the subtree locations and allocation of

new workers, and it makes sure that a relatively high n/m ratio is maintained.

As indicated above, CR-OLAP shuffles these n >> m subtrees among the m

workers. This ensures that threads of query operations are evenly distributed over

the workers. Furthermore, CR-OLAP performs load balancing among the workers

to ensure both, balanced workload and memory utilization. The master processor

keeps track of the current sizes and number of active threads for all subtrees. For each

worker, its memory utilization and workload are the total number of threads of its

subtrees and the total size if its subtrees, respectively.

If a worker w has a memory utilization above a certain threshold (e.g. 75% of its

total memory), then the master processor determines the worker w′ with the lowest

memory utilization and checks whether it is possible to store an additional subtree

from w while staying well below it’s memory threshold (e.g. 50% of its total memory).

65

If that is not possible, a new worker w′ is allocated within the cloud environment.

Then, a subtree from w is compressed and sent from w to w′ via message passing. As

discussed earlier, PDCR trees are implemented in array format and using only array

indices as pointers. This enables fast compression and decompression of subtrees and

greatly facilitates subtree migration between workers. Similarly, if a worker w has a

workload utilization that is a certain percentage above the average workload of the m

workers and is close to the maximum workload threshold for a single worker, then the

master processor determines a worker w′ with the lowest workload and well below its

maximum workload threshold. If that is not possible, a new worker w′ is allocated

within the cloud environment. Then, the master processor initiates the migration of

one or more subtrees from w (and possibly other workers) to w′.

Note that, in case workers are under-utilized due to shrinking workload, the above

process can easily be reversed to decrease the number of workers. However, since the

emphasis of our study is on growing system size for large scale OLAP, this was not

implemented in our prototype system.

4.4 Experimental Evaluation On Amazon EC2

4.4.1 Software

CR-OLAP was implemented in C++, using the g++ compiler, OpenMP for multi-

threading, and ZeroMQ [9] for message passing between processors. Instead of the

usual MPI message passing library we chose ZeroMQ because it better supports cloud

elasticity and the addition of new processors during runtime. CR-OLAP has various

tunable parameters. For our experiments we set the depth h of the hat to h = 3, the

directory node capacity c to c = 10 for the hat and c = 15 for the subtrees, and the

number k of threads per worker to k = 16.

66

4.4.2 Hardware/OS

CR-OLAP was executed on the Amazon EC2 cloud. For the master processor we used

an Amazon EC2 m2.4xlarge instance: “High-Memory Quadruple Extra Large” with 8

virtual cores (64-bit architecture, 3.25 ECUs per core) rated at 26 compute units and

with 68.4 GiB memory. For the worker processors we used Amazon EC2 m3.2xlarge

instances: “M3 Double Extra Large” with 8 virtual cores (64-bit architecture, 3.25

ECUs per core) rated at 26 compute units and with 30 GiB memory. The OS image

used was the standard Amazon CentOS (Linux) AMI.

4.4.3 Comparison baseline: STREAM-OLAP

There is no comparison system for CR-OLAP that provides scalable cloud based

OLAP with full real time capability and support for dimension hierarchies. To

establish a comparison baseline for CR-OLAP, we therefore designed and implemented

a STREAM-OLAP method which partitions the database between multiple cloud

processors based on one chosen dimension and uses parallel memory to cache streaming

on the cloud processors to answer OLAP queries. More precisely, STREAM-OLAP

builds a 1-dimensional index on one ordered dimension dstream and partitions the

data into approx. 100 × m arrays. The arrays are randomly shuffled between the

m workers. The master processor maintains the 1-dimensional index. Each array

represents a segment of the dstream dimension and is accessed via the 1-dimensional

index. The arrays themselves are unsorted, and insert operations simply append the

new item to the respective array. For query operations, the master determines via the

1-dimensional index which arrays are relevant. The workers then search those arrays

via linear search, using memory to cache streaming.

The comparison between CR-OLAP (using PDCR trees) and STREAM-OLAP

(using a 1-dimensional index and memory to cache streaming) is designed to examine

67

the tradeoff between a sophisticated data structure which needs fewer data accesses

but is less cache efficient and a brute force method which accesses much more data

but optimizes cache performance.

4.4.4 Test data

For our experimental evaluation of CR-OLAP and STREAM-OLAP we used the

standard TPC-DS “Decision Support” benchmark for OLAP systems [8]. We selected

“Store Sales”, the largest fact table available in TPC-DS. For the remainder, the

database size N refers to the number of data items from “Store Sales” that were

inserted into the database. Figure 4.8 shows the fact table’s 8 dimensions, and the

respective 8 dimension hierarchies below each dimension. The first box for each

dimension denotes the dimension name while the boxes below denote hierarchy levels

from highest to lowest. Dimensions Store, Item, Address, and Promotion are unordered

dimensions, while dimensions Customer, Date, Household and Time are ordered. TPC-

DS provides a stream of insert and query operations on “Store Sales” which was

used as input for CR-OLAP and STREAM-OLAP. For experiments where we were

interested in the impact of query coverage (the portion of the database that needs

to be aggregated for an OLAP query), we selected sub-sequences of TPC-DS queries

with the chosen coverages.

All Dims

ItemCustomerStore TimePromotionHouseholdDate Address

Country

Ordered Ordered

Ordered

Ordered
State

City

BYear

BMonth

BDay

Category

Class

Brand

Year

Month

Day

Country

State

City

Income
Band

Name Hour

Minute

Figure 4.8: The 8 dimensions of the TPC-DS benchmark for the fact table “Store
Sales”. Boxes below each dimension specify between 1 and 3 hierarchy levels for the
respective dimension. Some dimensions are “ordered” and the remaining are not
ordered.

68

4.4.5 Test results: impact of the number of workers (m) for fixed

database size (N)

We tested how the time of insert and query operations for CR-OLAP and STREAM-

OLAP changes for fixed database size (N) as we increase the number of workers (m).

Using a variable number of workers 1 ≤ m ≤ 8, we first inserted 40 million items (with

d=8 dimensions) from the TPC-DS benchmark into CR-OLAP and STREAM-OLAP,

and then we executed 1,000 (insert or query) operations on CR-OLAP and STREAM-

OLAP. Since workers are virtual processors in the Amazon EC2 cloud, there is always

some performance fluctuation because of the virtualization. We found that the total

(or average) of 1,000 insert or query operations is a sufficiently stable measure. The

results of our experiments are shown in Figures 4.9, 4.10, and 4.11.

Figure 4.9: Time for 1000 insertions as a function of the number of workers. (N =
40Mil, d = 8, 1 ≤ m ≤ 8)

Figure 4.9 shows the time for 1,000 insertions in CR-OLAP (PDCR-tree) and

STREAM-OLAP (1D-index) as a function of the number of workers (m). As expected,

69

Figure 4.10: Time for 1000 queries as a function of the number of workers. (N = 40Mil,
d = 8, 1 ≤ m ≤ 8)

Figure 4.11: Speedup for 1000 queries as a function of the number of workers. (N =
40Mil, d = 8, 1 ≤ m ≤ 8)

70

insertion times in STREAM-OLAP are lower than in CR-OLAP because STREAM-

OLAP simply appends the new item in the respective array while CR-OLAP has

to perform tree insertions with possible directory node splits and other overheads.

However, STREAM-OLAP shows no speedup with increasing number of workers

(because only one worker performs the array append operation) whereas CR-OLAP

shows a significant speedup (because the distributed PDCR tree makes use of the

multiple workers). It is important to note that insertion times are not visible to the

users because they do not create any user response. What is important to the user

are the response times for OLAP queries. Figure 4.10 shows the time for 1,000 OLAP

queries in CR-OLAP and STREAM-OLAP as a function of the number of workers

(m). Figure 4.11 shows the speedup measured for the same data. We selected OLAP

queries with 10%, 60% and 95% query coverage, which refers to the percentage of

the entire range of values for each dimension that is covered by a given OLAP query.

The selected OLAP queries therefore aggregate a small, medium and large portion of

the database, resulting in very different workloads. We observe in Figure 4.10 that

CR-OLAP significantly outperforms STREAM-OLAP with respect to query time (in

some cases 2,000%). The difference in performance is particularly pronounced for

queries with small or large coverages. For the former, the tree data structure shows

close to logarithmic performance and for the latter, the tree can compose the result

by adding the aggregate values stored at a few roots of large subtrees. The worst

case scenario for CR-OLAP are queries with medium coverage around 60% where the

tree performance is proportional to N1− 1
d . However, even in this worst case scenario,

CR-OLAP outperforms STREAM-OLAP by between 300% and 500%. Figure 4.11

indicates that both systems show a close to linear speedup with increasing number of

workers, however for CR-OLAP that speedup occurs for much smaller absolute query

times.

In a pay-as-you-go cloud environment, relating query response time to cloud

71

computing cost may also be of interest. In that context, the close to linear speedup

observed in Figure 4.11 implies a fixed cost/performance ratio. For example, cutting

query response time in half would come at the price of doubling the system cost.

4.4.6 Test results: impact of growing system size (N & m combined)

In an elastic cloud environment, CR-OLAP and STREAM-OLAP increase the number

of workers (m) as the database size (N) increases. In our scale up experiments, as

we increase the number N of data items from 10 Mil to 160 Mil, CR-OLAP and

STREAM-OLAP increase the number m of workers from 1 to 16. That is, for each 10

Mil inserted items, CR-OLAP and STREAM-OLAP add one additional worker to the

system. The impact on the performance of insert and query operations is shown in

Figures 4.12 and 4.13, respectively.

Figure 4.12: Time for 1000 insertions as a function of system size: N & m combined.
(10Mil ≤ N ≤ 160Mil, d = 8, 1 ≤ m ≤ 16)

With growing system size, the time for insert operations in CR-OLAP (PDCR-tree)

72

Figure 4.13: Time for 1000 queries as a function of system size: N & m combined.
(10Mil ≤ N ≤ 160Mil, d = 8, 1 ≤ m ≤ 16)

approaches the time for STREAM-OLAP (1D-index). More importantly however, the

time for query operations in CR-OLAP again outperforms the time for STREAM-OLAP

by a significant margin (in some cases more than 1,000%), as shown in Figure 4.13.

Also, it is very interesting that for both systems, the query performance remains

essentially unchanged with increasing database size and number of workers. This is

obvious for STREAM-OLAP where the size of arrays to be searched simply remains

constant but it is an important observation for CR-OLAP. Figure 4.13 indicates that

the overhead incurred by CR-OLAP’s load balancing mechanism (which grows with

increasing m) is balanced out by the performance gained through more parallelism.

CR-OLAP appears to scale up without affecting the performance of individual queries.

It performed an 16-fold increase in database size and number of processors, including

an 16-fold increase in the average amount of data aggregated by each OLAP query,

without noticeable performance impact for the user.

73

4.4.7 Test results: impact of multiple query streams

We evaluated the impact of the number of query streams on the performance of

CR-OLAP. In all other experiments, we use one single stream of OLAP queries

to measure performance. Here, we use multiple client processes, issuing multiple

concurrent streams of OLAP queries that are fed into our CR-OLAP system. As

shown in Firgure 4.14, the number of concurrent query streams (clients) has no impact

on query performance.

Figure 4.14: Time for 1000 OLAP queries as a function of of the number of query
streams. X-axis first parameter: number of query streams (clients). X-axis second
parameter: total number of queries issued (1,000 queries per query stream). Y-axis:
Average time per 1,000 queries in seconds. (N = 160Mil, d = 8, m = 16)

4.4.8 Test results: impact of the number of dimensions

It is well known that tree based search methods can become problematic when the

number of dimensions in the database increases. In Figures 4.15 and 4.16 we show the

impact of increasing d on the performance of insert and query operations in CR-OLAP

74

(PDCR-tree) and STREAM-OLAP (1D-index) for fixed database size N = 40 million

and m = 8 workers.

Figure 4.15: Time for 1000 insertions as a function of the number of dimensions.
(N = 40Mil, 4 ≤ d ≤ 8, m = 8)

Figure 4.15 shows some increase in insert time for CR-OLAP because the PDCR

tree insertion inherits from the PDC tree a directory node split operation with an

optimization phase that is highly sensitive to the number of dimensions. However, the

result of the tree optimization is improved query performance in higher dimensions.

As shown in Figure 4.16, the more important time for OLAP query operations grows

only slowly as the number of dimensions increases. This is obvious for the array

search in STREAM-OLAP but for the tree search in CR-OLAP this is an important

observation.

75

Figure 4.16: Time for 1000 queries as a function of the number of dimensions. The
values for “1D-index 95% coverage” are 828.6, 1166.4, 1238.5, 1419.7 and 1457.8,
respectively. (N = 40Mil, 4 ≤ d ≤ 8, m = 8)

4.4.9 Test results: impact of query coverages

Figures 4.17, 4.18, 4.19, and 4.20 show the impact of query coverage on query

performance in CR-OLAP (PDCR-tree) and STREAM-OLAP (1D-index).

For fixed database size N = 40Mil, number of workers m = 8, and number of

dimensions d = 8, we vary the query coverage and observe the query times. In addition

we observe the impact of a “*” in one of the query dimensions. Figures 4.17 and

4.18 show that the “*” values do not have a significant impact for CR-OLAP. As

discussed earlier, CR-OLAP is most efficient for small and very large query coverage,

with maximum query time somewhere in the mid range. (In this case, the maximum

point is shifted away from the typical 60% because of the “*” values.) Figures 4.19,

and 4.20 show the performance of STREAM-OLAP as compared to CR-OLAP (ratio

of query times). It shows that CR-OLAP consistently outperforms STREAM-OLAP

76

Figure 4.17: Time for 1000 queries (PDCR tree) as a function of query coverages:
10%− 90%. Impact of value “*” for different dimensions. (N = 40Mil, m = 8, d = 8)

Figure 4.18: Time for 1000 queries (PDCR tree) as a function of query coverages:
91%− 99%. Impact of value “*” for different dimensions. (N = 40Mil, m = 8, d = 8)

77

Figure 4.19: Time comparison for 1000 queries (Ratio: 1D-index / PDCR tree) for
query coverages 10%−90%. Impact of value “*” for different dimensions. (N = 40Mil,
m = 8, d = 8)

by a factor between 5 and 20.

4.4.10 Test results: query time comparison for selected query patterns

at different hierarchy levels

Figure 4.21 shows a query time comparison between CR-OLAP (PDCR-tree) and

STREAM-OLAP (1D-index) for selected query patterns. For fixed database size

N = 40Mil, number of workers m = 8 and d = 8 dimensions, we test for dimension

Date the impact of value “*” for different hierarchy levels. CR-OLAP is designed for

OLAP queries such as “total sales in the stores located in California and New York

during February-May of all years’ which act at different levels of multiple dimension

hierarchies. For this test, we created 7 combinations of “*” and set values for hierarchy

levels Year, Month, and Day: *-*-*, year-*-*, year-month-*, year-month-day, *-month-

*, *-month-day, and *-*-day. We then selected for each combination queries with

78

Figure 4.20: Time comparison for 1000 queries (Ratio: 1D-index / PDCR tree) for
query coverages 91%−99%. Impact of value “*” for different dimensions. (N = 40Mil,
m = 8, d = 8)

coverages 10%, 60%, and 95%. The test results are summarized in Figure 4.21. The

main observation is that CR-OLAP consistently outperforms STREAM-OLAP even

for complex and very broad queries that one would expect could be easier solved

through data streaming than through tree search.

4.5 Conclusion

We introduced CR-OLAP, a Cloud based Real-time OLAP system based on a dis-

tributed PDCR tree, a new parallel and distributed index structure for OLAP, and

evaluated CR-OLAP on the Amazon EC2 cloud for a multitude of scenarios. The tests

demonstrate that CR-OLAP scales well with increasing database size and increasing

number of cloud processors. In our experiments, CR-OLAP performed an 16-fold

increase in database size and number of processors, including an 16-fold increase in

the average amount of data aggregated by each OLAP query, without noticeable

79

Figure 4.21: Query time comparison for selected query patterns for dimension Date.
Impact of value “*” for different hierarchy levels of dimension Date. (N = 40Mil,
m = 8, d = 8).

performance impact for the user.

80

Chapter 5

vOLAP

In this chapter, we introduce vOLAP, a scalable real-time OLAP system for high

velocity data in cloud environments. We give a broad overview of our vOLAP system in

Section 5.1. Section 5.2 describes the design of vOLAP, including network architecture,

synchronization and data representation. In Section 5.3, we demonstrate the OLAP

insert and query algorithms. Section 5.4 shows the load balancing strategies used in

vOLAP. Section 5.6 presents experimental results that demonstrate the performance

of our prototype implementation and concludes with a large scale experiment.

5.1 Introduction

Previously, we introduced CR-OLAP, a scalable cloud based real-time OLAP system

based on the distributed PDCR tree. CR-OLAP utilizes scalable cloud infrastructure

consisting of multiple commodity processors. Tests conducted on Amazon EC2

demonstrated that CR-OLAP scales well with increasing number of processors, even

for complex queries. However, CR-OALP suffered from a design weakness: CR-OLAP

is a centralized system with a single master processor. CR-OLAP only supports

one single stream of insert and query operations sent to one single master processor

holding a master index. CR-OLAP’s master processor easily becomes a performance

bottleneck and single point of failure.

In the design of vOLAP we sought to address the bottleneck posed by the use

of a single master in CR-OALP. Similar to CR-OLAP, vOLAP also uses the PDC-

tree as a building block. In vOLAP, the tree data structure has been completely

81

distributed and the master index has been replaced by multiple distributed indices.

This leads to better scaling and significantly better query performance as well as

much faster concurrent ingestion of new data (Section 5.6.1, Fig. 5.8 and Section 5.6.3,

Fig. 5.12). vOLAP allows for an arbitrary number of input streams with interleaved

insert and query operations, and these input streams are managed by multiple server

processors whose number can be scaled to match the performance requirements.

Another major improvement in vOLAP over CR-OLAP is a new socket and message

queue architecture which allows for much higher message throughput and better load

balancing between threads. Packed message support for data ingestion has also been

added which dramatically increases throughput when inserting large amounts of data.

Rather than storing global information on a single master, vOLAP uses a Zookeeper

cluster, thereby alleviating another potential bottleneck. In addition, vOLAP adds a

manager process which initiates dynamic, real-time load balancing via movement of

data between workers. As a result, the differences in performance between CR-OLAP

and vOLAP are substantial. Whereas CR-OLAP scaled up to at most 160 million data

items and was limited by the capacity of the master node, vOLAP scales to billions of

data items. The query performance of vOLAP is several orders of magnitude better

than CR-OLAP, and is more resilient to queries with high coverage.

VelocityOLAP (vOLAP), a scalable real-time OLAP system for high velocity data

in cloud environments. vOLAP is a fully distributed, cloud based, system that uses a

multi-threaded PDC-tree as a building block. Data is partitioned into subsets stored

in PDC-trees on worker nodes of the cloud environment. As is typical for current high

performance OLAP systems, vOLAP is an in-memory system and supports ingestion

of new data but no deletion. Multiple server nodes handle the incoming streams

of new data inserts and OLAP queries, and route them to the appropriate workers.

Zookeeper [52] is used for managing global information. A manager background

process monitors the load status of the system and provides instructions to worker

82

nodes for global real-time load balancing. This load balancing is fully automatic

and adjusts dynamically to the data distribution, which can change significantly over

time due to the high velocity of incoming new data. Unlike other distributed OLAP

systems, vOLAP does not use a special partitioning dimension that needs to be

manually configured.

Each user session is attached to one of the server nodes. vOLAP guarantees strong

serialization [17] of the insert and OLAP query operations within each session. For

multiple user sessions that are attached to the same server (e.g. as a work group),

vOLAP also guarantees strong serialization between those sessions. Note that, since

OLAP queries can aggregate large portions of the database and thereby overlap

many insert operations currently in progress, serialization is particularly challenging.

Between multiple user sessions that are attached to different servers, vOLAP provides

“best effort” serialization. In our experiments, the typical freshness bounds observed

between servers were under 8 seconds and the worst-case freshness bound was just 15

seconds.

vOLAP is fully scalable and designed for an elastic cloud computing environment.

Both, server and worker nodes can be added or removed as necessary to adapt to

the current workload. Unlike other systems, no single node acts as a performance

bottleneck or failure point for the entire system.

Experimental evaluation of our prototype system, using 18 workers for a database

size of 1.5 billion items, shows that vOLAP is able to ingest new data items at a rate

of over 600,000 items per second, and vOLAP can process streams of interspersed

inserts and OLAP queries in real-time at approximately 200,000 queries per second. A

distinguishing feature of vOLAP is that it exploits dimension hierarchies to improve

performance. We have tested vOLAP on synthetic hierarchical data as well as TPC-

DS test data which includes dimension hierarchies as shown in Fig. 4.8. The above

mentioned performance evaluation of vOLAP is for data on such dimension hierarchies

83

and includes a wide range of queries ranging from small queries, to queries that need

to aggregate several hundred million data items, up to queries that need to aggregate

nearly the entire database.

5.2 VelocityOLAP

Consider a d-dimensional data warehouse D with N data items and d dimension

hierarchies such as the one shown in Fig. 4.8. vOLAP processes multiple input

streams of interspersed insert and OLAP query operations on D. Each OLAP query

specifies, for each dimension, either a single value, range of values at any level of

the respective dimension hierarchy, or a symbol “*” which matches the entire range

for that dimension. The OLAP query result/output is the aggregate of the specified

items in D. The coverage of an OLAP query is the percentage of D that needs to be

aggregated.

5.2.1 Architecture Overview

vOLAP is a cloud-based architecture consisting of m servers S1, . . . , Sm for handling

client requests (inserts and queries); p workers W1, . . . ,Wp for storing data and

performing operations requested by servers; a Zookeeper cluster for maintaining global

system state [52]; and a manager background process for analysing global state and

initiating load balancing operations. Workers and servers are multi-core machines

which execute up to k parallel threads. As is typical for current high performance

databases, all data is kept in main memory. With increasing database size and/or

changing network topology, vOLAP reorganises the data to make the best use of

currently available resources. Fig. 5.1 illustrates the distributed architecture, and a

summary of the system parameters is given in Table 5.1.

Workers are used for storing data and processing OLAP operations. The global

data set D is partitioned into data subsets D1, . . . , Dn. Each subset Di has a bounding

84

W1

S1

Manager

Zookeeper

C1

C2

C3

C4

Cc

Sm

W2

Wp

Figure 5.1: System Overview.

Parameter Description
N Total number of data items
n Number of data subsets Di

p Number of workers Wj

m Number of servers Sk

c Number of clients Cl

Table 5.1: System Parameters

box Bi which is a spatial region containing Di, represented by either a MBR (one box)

or MDS (multiple boxes) [39]. Bounding boxes may overlap, and a single worker can

store many subsets.

Servers receive OLAP operations from clients, determine the subsets relevant to

each operation, and forward the operations to the worker(s) responsible for those

subsets. Once the workers respond, the server reports the relevant results to the

originating client.

Servers, workers, and the manager background process communicate using Ze-

roMQ [9], a high-performance asynchronous messaging library designed for scalable

distributed applications. It provides socket-based APIs for inter-process and inter-

thread communication. We found that a careful implementation of multi-threaded

message handling was critical to achieving high performance. In our implementation,

85

every working thread has its own local socket to receive messages and a network

socket to send messages without locking. A separate network socket receives incoming

requests, which are dynamically load-balanced between the local thread sockets to

ensure a high degree of parallelism. Fig. 5.2 illustrates the multi-threaded message

handling framework.

S1 T1

T2

T3

T4

C1

W1 T1

T2

T3

T4

D1

D2

Dn

Figure 5.2: Multi-Threaded Message Handling.

5.2.2 System Image

The global system state is stored in Zookeeper [52], a fault tolerant distributed coordi-

nation service, and includes:

• A list of the current workers.

• A list of the current servers.

• The global system image: for each subset Di: the size |Di|, its bounding box Bi

(MBR or MDS), and the address of the worker where it is located.

• Other measures such as the query workload for each subset Di.

Each server Sk maintains a local system image Ik which is used to perform insertions

and answer user queries. Given a query, server Sk computes from Ik the address of the

target worker(s) that contain data covered by the query. Given an insertion, server

Sk uses Ik to determine the subset Di that the data should be inserted into and the

corresponding worker address.

86

If the local system image is changed by an insert operation, the server updates

the global system image in Zookeeper. However, the servers do not perform local

system image synchronization mutually. Hence, the local system image maintained by

each server may be outdated. In our experiments, servers were configured to update

Zookeeper (if necessary) every 3 seconds. Servers monitor changes via Zookeeper’s

watch facility, where Zookeeper informs the servers of a change when it occurs, avoiding

wasteful polling. Workers update subset statistics in Zookeeper periodically as well.

This information is used by the manager background process to plan load balancing

operations between workers in real-time.

The use of local system images is central to guaranteeing strong serialization of

inserts and OLAP query operations within user sessions and between multiple user

sessions that are attached to the same server. The global system image and local

system image update process provides “best effort” serialization between multiple

user sessions that are attached to different servers. In our experiments, the typical

freshness bounds observed between multiple user sessions on different servers were

under 8 seconds and the worst-case freshness bound was 15 seconds.

For each OLAP query operation, a server processor computes from its local system

image Ik the addresses of the target workers that store data items relevant for the given

query. Given an insertion, the local image Ik determines the address of the subset Si

that the data should be inserted into. When an insert into Si leads to a change of its

bounding box Bi, then Bi in Ik is updated accordingly. Also, for each insert into Si,

the corresponding |Si| in Ik is incremented and local changes are communicated to

Zookeeper. The detailed geometric algorithms for performing OLAP query operations

using system images, as well as the distributed protocol for handling insertion and

query operations, are given in Section 5.3.

87

5.2.3 Data Representation

Each subset Di is stored in an in-memory data structure designed for one multi-core

machine. The data structure provides the following functionality:

• Processing of a stream of OLAP operations on Di.

• Guaranteed strong serialization of OLAP operations on Di: the result of each

query contains exactly all inserts issued prior in the input stream, and none of

those issued later.

• An operation SplitQuery(Di, Bi) returning a hyperplane h that partitions Di

into D1
i and D2

i with bounding boxes B1
i and B2

i , respectively, such that D1
i and

D2
i are of approximately equal size. Note that this operation does not perform

an actual split.

• An operation Split(Di, Bi, h) returning (D1
i , B

1
i , D

2
i , B

2
i) where Di is partitioned

into D1
i and D2

i with bounding boxes B1
i and B2

i , respectively, such that D1
i and

D2
i are spatially separated by hyperplane h. Note that the split operation does

not interrupt the query stream and maintains strong serialization of operations

on Di.

• An operation SerializeSubset() which returns a flat binary blob b containing the

data in Di (suitable for network transmission), and a corresponding operation

DeserializeSubset(b) which builds the data structure from such a blob.

The SplitQuery, Split, SerializeSubset, and DeserializeSubset operations support

load-balancing and data migration. A subset Di stored on Ws (the source worker)

can be migrated to another worker Wd (the destination worker) if, for example, Ws is

running out of memory or Wd is a new worker allocated for spreading the load.

88

Di can also be split in two if Di is too big or the load balancer requires smaller

chunks of data. Each worker Wk stores a mapping table Tj to handle operations while

a split is in progress. If a Di is split into D1
i and D2

i , then Tj stores an entry with

key Di and value pointing to the two data structures for D1
i and D2

i . The split and

migration protocols are discussed in Section 5.4.

vOLAP currently includes three data structures for processing OLAP queries on

subsets: a simple array for benchmarking purposes and two variants of the PDC

tree [38]. These variants share the same multi-threaded PDC tree implementation

but use Minimum Describing Subsets (MDS) and Minimum Bounding Rectangles

(MBR) as keys, respectively. The PDC-MDS tree uses a new cache-efficient MDS

implementation and improved split heuristics designed to perform better (compared to

[38]) as trees get very large, while the PDC-MBR tree uses a simpler MBR bounding

box representation for keys that is particularly fast for insert operations. Which

PDC tree variant yields the best performance depends on the user’s application and

workload; we investigate these trade-offs experimentally in Section 5.6.

5.3 Algorithms

This section illustrate the detailed geometric algorithms for performing OLAP insert

and query operations using system images as well as the distributed protocols for

handling insertions and query operations.

5.3.1 OLAP Insertion Algorithms

When the server receives an insertion, there are three possible cases as shown in

Figure 5.3. The server decides which box to insert the new element in, and sends the

appropriate messages as described in Algorithm 1. If the insert changes a bounding

box Bi, an update message is sent to Zookeeper.

89

A

B

C

D

E

F

2

1

3

Figure 5.3: Insertion on server, 3 possible cases.

Data: I : insert(P) operation for a point P

Let B = the set of all boxes in the local image that contain P

/* Find the target box t for this insert */

Let t = ∅
if |B| = 0 then no boxes contain P [case 3]

t = the smallest box in the local image

end

else if |B| = 1 then exactly one box contains P [case 1]

t = B[0]

end

else multiple boxes contain P [case 2]

t = the box that causes minimal enlargement when adding P

Enlarge the size of t in the local image

Send an asynchronous update of the box size to Zookeeper

end

/* Send message to destination worker */

if t is migrating then

Send I to the source worker and destination worker of t

end

Algorithm 1: Server-Insert

90

Data: I : insert(P) operation for a point P

Data: Bi : Box where I should be inserted

Let DSi be the data structure associated with Bi

if DSi has been split then

Use the routing table to find the correct box B′
i

Insert I in DS ′
i

if B′
i is expanded because of the insertion of P then

Expand the adjacent sub-box of B′
i

end

end

else

Insert I in DSi

end

Algorithm 2: Worker-Insert

S1

S2

S

S1

S2

S

P

Figure 5.4: Box expand on server.

The messages forwarded by the server during an insert are handled by workers

using Algorithm 2. If DSi can not be found because it was split, the routing table is

used to find the correct box B′
i for insertion. Otherwise, insert P in DSi directly. For

91

more details see Algorithm 2.

Note the case where the inserted point q leads to a growth of box Bi (to B′′
i) on

server SPk. In that case, B′′
i has to be sent to the worker together with q. If DSi has

been split, then not only the sub box containing q but also the adjacent sub-box have

to be expanded to reflect B′′
i . In Figure 5.4, box S has been split into S1 and S2. The

inserted point P leads to a growth of box S1 on worker. In this case, the adjacent

sub-box S2 has to be expanded to reflect S1.

5.3.2 OLAP Query Algorithms

A

B

C

D

E

F

Q1

Q3 F
Q2

Q1

Figure 5.5: Range query.

92

Data: Query rectangle Q

S searches its local image:

if find one box intersecting with Q then

Send query request to the corresponding worker of the intersected box

end

else

if find many boxes intersecting with Q then

Send query request to the corresponding worker of each box

end

else

Return empty result

end

end

Algorithm 3: Server-Search

93

Data: Query rectangle Q, Box Bi

if data box DSi has been split then

Use the routing table to find the descendants of DSi, DS, that intersected

with Q

for each ds in DS do

Run query on ds

Save query result

end

Send the query result back to server

end

else

Run query on DSi

Send query result back to server

end

Algorithm 4: Worker-Search

As described in Algorithm 3, server SPk receives a range query(Query Rectangle

Q) operation. Server SPk searches its local image to check if any box intersecting

with Q. Three cases may occur. If Q is intersected with exactly one box, the range

query will be forwarded to the corresponding worker containing the intersected box.

If Q is intersected with many boxes, then the range query request will be sent the

corresponding worker of each intersected box. If no box intersected with Q, then

server SPk will return empty result to client. Figure 5.5 shows an example of the

three possible cases.

Worker WPk receives a range query(Query Rectangle Q) operation on box Bi. If

data box DBi can not been found because of splitting, use the routing table to find all

descendants of DSi. For every descendant of DSi intersected with Q, the algorithm

run query on the intersected descendant. Otherwise, run query on box Bi directly.

94

See Algorithm 4 for more details.

5.4 Load Balancing

Effective load balancing is crucial for the scalability of distributed systems. When the

workload of the system is unevenly partitioned amongst its resources, some portion

goes underutilized while the remainder struggles to pick up the slack. This has a

negative impact on throughput, response time, and stability which tends to further

compound itself as the system scales up in size. However, the load balancing operations

themselves can also incur significant costs due to the overhead of moving potentially

large subsets over the network. High performance requires a load balancing scheme

which offers a good trade-off between load balancing overhead and effectiveness.

A separate background process called the manager initiates load balancing op-

erations in vOLAP. The manager periodically analyses the system state stored in

Zookeeper and determines appropriate performance-enhancing load balancing opera-

tions. The optimization algorithms used in the manager are described in Section 5.5.

The manager then initiates these operations, coordinating the necessary actions be-

tween workers and servers, and waits for the operation to complete before re-analyzing

the system state. For example, the manager identifies subsets that have grown too

large and require splitting, or workers that are overloaded or running out of memory.

Based on this analysis, it sends messages to workers instructing them to perform splits

and/or migrations via the data structure operations discussed above. Note that the

manager is a background process that only initiates operations which are executed by

the workers and servers, and is therefore not a bottleneck for query performance. The

manager process can reside anywhere in the system (and even migrate if necessary).

95

5.4.1 Migration Protocol

A key to achieving high performance in vOLAP was the design of migration protocols

that allow the system to move subsets transparently from one worker to another, while

the system continues to service both inserts and OLAP query requests. In addition to

being integral to achieving high performance, dynamic load balancing also permits

vOLAP to add, remove, or replace, workers dynamically in order to maintain system

performance in the face of changing OLAP loads and data sizes.

The vOLAP migration protocol is designed to allow the system to continue to

service requests normally while subsets are migrating. The main idea is to keep the

subset stored on the source worker serving requests while the subset is migrating. Once

the destination worker receives the subset from the source worker, the destination

takes over handling operations for that subset and the old subset is removed from the

source worker. During the migration process, operations are sent to both the source

and destination workers in order to maintain the guaranteed strong serialization of

OLAP operations. The migration process consists of 8 stages (see Figure 5.6 for an

illustraion):

1. MigratePrepDest(Di, Ws): To begin a migration, the manager notifies the

destination worker that it will be receiving a new subset Di. The destination worker

begins queuing up any insertions for Di that may arrive during the migration.

2. MigratePrepSrv(Di, Ws, Wd): Once the destination worker is ready, the manager

notifies all servers that subset Di is about to migrate from Ws to Wd. The servers

begin sending any insertions for Di to both Ws and Wd.

3. MigrateBegin(Di, Wd): Once all servers are aware of the pending migration, the

manager instructs the source worker to send subset Di to Wd.

4. MigrateData(Di, Wd, data): The source worker serializes subset Di into a binary

blob data and sends it to Wd.

96

5. MigrateCompletion(Di): When the destination worker receives subset Di, it adds

it to its collection of data structures, applies all pending queued inserts, and notifies

the manager that it has received the data.

6. MigrateDone(Di): When the migration is complete, the manager notifies all servers,

which cease sending messages for Di to the source worker.

7. DeleteTree(Di): Now that Di is no longer considered to reside at the source

worker by servers, the manager instructs the source worker to delete it.

8. Finally, the manager updates Zookeeper to reflect the new location of Di, and the

migration is complete.

Source Worker

Destination Worker

Server Manager

Zookeeper

1

2

3

4

5

6

7

8

Figure 5.6: Migration process.

5.4.2 Splitting Protocol

In order to minimise the variance in subset size and maintain subsets that are not

too large to be effectively migrated it is necessary to be able to split subsets. When a

subset becomes too large, vOLAP splits the subset into two subsets of approximately

equal size.

The splitting process consist of 4 stages each associated with a message delivery

as illustrated in Fig. 5.7 and described below:

1. SplitRequest(Di): To initiate a subset split, the manager sends a split request to

the worker that hosts the subset. The worker begins the split process and records the

97

1

2

3 Manager

Zookeeper

4

Server Worker

Figure 5.7: Split process.

split in its mapping table.

2. SplitComplete(Di, D′
i, D′′

i): Once the subset split is done, the worker notifies

the manager that Di is split into D′
i and D′′

i .

3. SplitUpdate(Di): Once the manager receives the SplitComplete acknowledge-

ment, the manager notifies all servers that Di is split into D′
i and D′′

i . The servers

begin sending insertions and OLAP queries directly to D′
i and D′′

i .

4. UpdateImage(Di, D′
i, D′′

i): Finally, the manager updates Zookeeper to remove

the old set Di from Zookeeper and add the two new generated sets D′
i and D′′

i into

Zookeeper.

5.5 Optimizer

The vOLAP optimizer is a subcomponent of the manager process. The manager

periodically requests a load balancing operation from the optimizer. The optimizer

analyses the system state stored in Zookeeper and returns an appropriate load balancing

operation. The manager then carries out this operation, coordinating any necessary

actions between workers, then waits for its local system image to be updated before

requesting another operation. The manager and optimizer may be executed on

any machine, though reserving a separate physical machine allows computationally

expensive load balancing decisions to be made without affecting system performance.

With this configuration, system performance is only affected when load balancing

98

operations are actually being performed.

Once the optimization infrastructure is in place, there are many system parameters

related to system performance that we may want to optimize. For example, a system

may optimize: 1. Balance of data size per processor; 2. Balance of query load per

processor; 3. Placement of replicated data; 4. Distribution quality of data; Note that

there are potentially complex relevance between these different optimization goals.

In vOLAP we currently only perform the simplest, but most important of these

optimizations. We perform a simple minimization to the variance of data size stored

on each worker. Note that this is a critical optimization in a in-memory distributed

system because a worker with limited memory size could run out of memory easily if

data is distributed unbalanced.

5.5.1 Optimization Algorithm

The primary goal of the optimization algorithm is to minimize the average difference

in size between workers without performing unnecessarily expensive operations. The

algorithm proceeds in two phases (Migration and splitting optimization) which will

result in either a migration, a split, or no operation in the event that all optimization

are too costly. As migration is the most direct method for load balancing, the first phase

(Migration optimization) of the algorithm is to find a suitable migration operation

consisting of a source worker, a destination worker, and a subset belonging to the source

to be migrated to the destination. For each possible source, destination, and subset

belonging to the source, the algorithm computes a difference, called the improvement,

in size between the source and destination before and after the hypothetical migration

to determine the most beneficial migration. Once this migration is selected, it is then

tested to see whether or not the operation is too expensive for the improvement it

provides. For the operation to be worth the expense, the improvement must be at

least greater than the migration threshold Tm.

99

If the improvement exceeded the migration threshold, the migration is performed

and the algorithm terminates. Detailed description of migration optimization is

described in Algorithm 5. We give the following notations which will be used in

Algorithm 5:

1. D = D1, D2, ..., Dn: D contains all subsets D1, D2, ..., Dn in vOLAP.

2. W = W1, W2, ..., Wp: W contains all workers W1, W2, ..., Wp in vOLAP.

3. |Di|, 1 ≤ i ≤ n: the number of data items in Di.

4. |Wj|, 1 ≤ j ≤ p: the number of subsets in Wj.

5. LOAD(Wj), 1 ≤ j ≤ p, the number of data items stored in Wj.

6. AVG: the average load of each worker in the system.

7. VAR(Wj): the load variance of Wj, 1 ≤ j ≤ p.

If it is not within the migration threshold the algorthm enters its second phase

and attempts to find a suitable split. By performing a split, the algorithm attempts

to create a good migration for the next time the algorithm is called. As such, the

process for finding a split is nearly identical to that of finding a migration. To find

the best split, we calculate the best migration as previous but assume that all subsets

are half their actual size size, that is, their size after the split is performed. By doing

so, we find the best migration we can produce by performing a split. We also weigh

the improvement against the expense in much the same way, only a heavier split

threshold is required to account for the additional cost of the split. As before, if the

improvement is within this threshold, we perform a split on the subset specified in

out best migration, otherwise we are unable to find a reasonable operation and the

algorithm terminates.

5.6 Experimental Evaluation

We evaluated the performance of vOLAP with respect to the following parameters:

size of the database (N), number of workers (p), number of servers (m), workload

100

Input : ∅
Output : Source worker Ws, target subset d, destination worker Wd

Let source worker Ws = ∅;
Let destination worker Wd = ∅;
Let target subset d = ∅;
Let maximum improvement MaxImprovement = 0;
/* Find the source worker Ws, target subset d and destination

worker Wd for migration */

Calculate the average load for each worker in the system:

AV G =

∑n
i=1 |Di|
p

Calculate the load variance of workers:

V AR =

p∑

j=1

(LOAD(Wj)− AV G)2

for each worker Wi(1 ≤ i ≤ p) ∈ (W1,W2, ...Wp) do
for each subset Dk(1 ≤ k ≤ |Ws|) ∈ Wi do

for each worker Wj(1 ≤ j ≤ p, j �= i) ∈ (W1,W2, ...Wp) do
LOAD(Wj) = LOAD(Wj) + |Dk|;
LOAD(Wi) = LOAD(Wi) - |Dk|;
Calculate NEWV AR, the new load variance of workers

NEWV AR =

p∑

j=1

(LOAD(Wj)− AV G)2

if (V AR - NEWV AR) ≥ Tm and (V AR - NEWV AR) ≥
MaxImprovement then

Ws = Wi;
d = Dk;
Wd = Wj;
MaxImprovement = V AR - NEWV AR

end

end

end

end

Algorithm 5: Migration Optimization

101

mix (percentage of inserts in the operation stream; e.g. workload mix 25% is 25%

inserts and 75% OLAP queries), and query coverage (percentage of the database

that needs to be aggregated for an OLAP query). We used two different data sets.

“TPC-DS” is a decision support data set from the Transaction Processing Council [8],

with N = 400 million data items in d = 8 dimensions with dimension hierarchies as

shown in Fig. 4.8. In order to test even larger data sets with N ≥ 1 billion data items,

we created a synthetic data set “Zipf” with Zipfian distribution, skew = 0.50, and

d = 8. This dataset has hierarchical, randomly generated IDs, where each dimension

hierarchy has 4 levels, each with a Zipfian distribution. The compute nodes used in

the experimental evaluation were Intel Core i7-3770 CPUs with 4 cores (8 parallel

threads) and 32 GiB of RAM, with Ubuntu 12.04.4 / Linux 3.2.0. We used ZeroMQ

4.0.1 and Zookeeper 3.4.6.

5.6.1 High-Velocity Data Ingestion

Bulk loading is a way to load data into the system in large chunks, and it could

be used for loading data items into the system before any query operations started.

When loading a great deal of data into the system at once, inserting one data item at

a time may be inefficient. Instead, we choose to group insert requests in blocks and

send them to workers. Comparing to send many small insertion messages to the same

worker, grouping them in a block and sending to the worker use just one message,

can significantly reduce the message passing overhead and improve the throughput of

the system. And this bulk insert operation has no impact on the serialization of the

system and just introduces a very small potential increase in freshness bound.

Fig. 5.8 shows the performance of vOLAP for high velocity data ingestion (insert

only data stream) up to a database size (N) of 1 billion data items, using Zipf data.

We use p = 16 workers and either 1 or 2 servers, and show performance with or without

real-time load balancing. With 2 servers and real-time load balancing, vOLAP is able

102

to ingest 600,000 data items per second.

0 200 400 600 800 1000
Inserts (Millions)

100

200

300

400

500

600

700

In
se

rt
s

/S
ec

on
d

(T
ho

us
an

ds
)

2 servers + load balancing
2 servers + no load balancing
1 server + no load balancing
1 server + load balancing

Figure 5.8: Data ingestion performance as database size N increases. Zipf data,
p = 16.

Fig. 5.8 shows the impact of multiple servers. The second server essentially doubles

the data ingestion rate. This shows the importance of being able to scale not only

the number of workers but also the number of servers. As discussed in Section 2.1.1,

systems such as SAP HANA [40] supports only one central server, thereby creating a

performance bottleneck.

The importance of real-time load balancing for an in-memory distributed system

is also apparent in Fig. 5.8. Note that the curves for the ingestion rates without load

balancing stop at just over 600 million inserts. This is because without load balancing,

one of the workers became overloaded. With real-time load balancing, however, the

system is capable of managing the entire billion element data set.

Bulk loading is efficient for insert only data streams. This batching technique

could also be used for insert and query mixed streams with minor changes. For insert

only data streams, a group of messages is sent to the target worker once the group

has received enough message or the time threshold is exceeded. When comes to

mixed data streams, the grouped insert requests will be blow out as a block once it

receives a query message. This is designed to guarantee strong session serialization

103

while minimize the query latency. If it is a mixed input stream with high insertion

percentage, the throughput of the system could be improved a lot. If it is a mixed

input stream with high query percentage, the process will be working like normal

queries without blocking and grouping messages. Thus, the batching technique should

provide some performance enhancement depending on the nature of the data. and it

should provide some performance enhancement depending on the nature of the data.

5.6.2 Real-Time Load Balancing

Fig. 5.9 shows more details about the impact of real-time load balancing for the same

experiments as in Fig. 5.8. For increasing database size (x-axis) we show the difference

(shaded areas) between average and maximum data size on a worker (left y-axis of

Fig. 5.9) with or without load balancing. We also show the number of splits and

migrations performed for load balancing (right y-axis of Fig. 5.9).

0 200 400 600 800 1000
Inserts (Millions)

20

40

60

80

100

120

140

E
le

m
en

ts
/W

or
ke

r(
M

ill
io

ns
)

No load balancing
Load balancing

10

20

30

40

50

60

70
L

oa
d

B
al

an
ci

ng
O

pe
ra

tio
ns

Splits
Migrations

Figure 5.9: Average and maximum data size per worker as database size N increases;
with and without load balancing. Zipf data, m = 2, p = 16.

The impact of load balancing on the maximum worker size is significant, reducing

the maximum size by approximately 50% at around N = 600 million.

Load balancing can also have an impact on insertion throughput because there

is a cost to performing many splits and migrations, even if they result in a more

balanced data structure. As can be seen in Fig. 5.8, with one server load balancing

104

reduces insertion throughput by around 10% due to the cost of performing splits and

migrations. However, with two servers, the benefits of load balancing outweighed the

cost, and data ingestion performance actually increased with load balancing enabled

by 9% on average.

5.6.3 Query Performance for TPC-DS Data

The experiments shown in Fig. 5.10 and Fig. 5.11 use more realistic (but smaller)

OLAP data generated by the TPC-DS benchmark. Here, a vOLAP instance with

p = 16 workers and m = 4 servers was first bulk-loaded to N = 400 million data

items. Then, four input streams of interspersed insert and OLAP query operations

were sent to the four servers. We measured the performance of vOLAP for various

workload mixes (percentage of insert operations) and query coverages (percentage

of the database aggregated by an OLAP query). Fig. 5.10 and Fig. 5.11 show the

performance of vOLAP using the PDC-MBR tree and PDC-MDS tree data structures,

respectively.

Workload mix has a significant impact on throughput because each insert operation

on a mutli-threaded PDC tree may trigger re-balancing operations on a data structure

that is concurrently being used to answer queries. Coverage has a significant impact

on performance largely because it impacts the number of different PDC trees and

workers that must be searched in answering an OLAP query. Fig. 5.10 and Fig. 5.11

show both the impact of workload mix and complexity of OLAP queries (i.e. query

coverage).

Note that the choice of the ideal data structure depends on the application and its

expected range of workload mix and query coverage. The PDC-MDS tree requires

more work for inserts but is better for complex, high coverage OLAP queries because

it makes better use of the dimension hierarchies. The PDC-MBR tree performs inserts

faster but is slower on high coverage OLAP queries. For workloads with a higher

105

percentage of inserts and OLAP queries with a smaller coverage, the PDC-MBR

tree performs better. For workloads with a lower percentage of inserts and OLAP

queries with a larger coverage, the PDC-MDS tree performs better. Overall, with the

right choice of data structure, vOLAP maintains an average of between 150,000 and

200,000 operations per second for the range of workloads (percentage of inserts; query

coverages) shown in Fig. 5.10 and Fig. 5.11.

5% 25% 50% 75% 95%
Workload Mix (Insert Percentage)

50

100

150

200

250

300

350

400

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

01% coverage
25% coverage
50% coverage
75% coverage
99% coverage

Figure 5.10: Performance for various workload mixes and query coverages (TPC-DS,
PDC-MBR tree, N = 400 million, p = 16, m = 4).

5% 25% 50% 75% 95%
Workload Mix (Insert Percentage)

50

100

150

200

250

300

350

400

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

01% coverage
25% coverage
50% coverage
75% coverage
99% coverage

Figure 5.11: Performance for various workload mixes and query coverages (TPC-DS,
PDC-MDS tree, N = 400 million, p = 16, m = 4).

The impact of the number of servers on system performance is shown in Fig. 5.12.

106

1 2 3 4
Number of Servers

50

100

150

200

250

300

350

400

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

PDC-MDS tree
PDC-MBR tree

Figure 5.12: Query-heavy workload performance with increasing number of servers m.
TPC-DS data, p = 16, workload mix = 5% inserts, average of all query coverages (5%
. . . 95%).

Similar results for Zipf data were observed in Fig. 5.8. For TPC-DS data and a fixed

number of p = 16 workers, Fig. 5.12 shows the performance of vOLAP using the

PDC-MBR tree and PDC-MDS tree data structures, respectively, when the number

of servers (m) increases from 1 to 4. In both cases, performance increases essentially

linear with m, subject to some noise. As discussed earlier, it shows that being able

to scale all systems components, including m, is of critical importance. In Fig. 5.12,

the increase for the PDC-MBR tree is less than the increase for the PDC-MDS tree

because for TPC-DS data with multi-level dimension hierarchies, the PDC-MBR tree

is less efficient and puts more load on the worker nodes, making them the limiting

factor for performance.

5.6.4 System Scale-Up

Fig. 5.13 and Fig. 5.14 show the performance for various workloads as the system size

increases, using TPC-DS data. Here, we increase the number p of workers as the the

database size N increases, at a fixed ratio N
p
≈ 25 million. This is to demonstrate

the elastic capabilities of vOLAP in a cloud environment. For each system size with

107

p workers and N ≈ p× 25 million data items (up to a maximum of 16 workers and

400 million data items), we tested vOLAP with insert/query streams with different

combinations of workload mix (5%, 25%, 50%, 75%, 95%) and query coverage (5%,

25%, 50%, 75%, 95%). Each data point in Fig. 5.13 and Fig. 5.14 is the average

performance for the five different query coverages. The experiments were repeated

for the two different data structures, PDC-MBR tree (Fig. 5.13) and PDC-MDS tree

(Fig. 5.14).

The main observation from Fig. 5.13 and Fig. 5.14 is that vOLAP scales well in

an elastic cloud environment. As the database increases, and processing resources

(workers) are added at a fixed ratio, vOLAP maintains its performance over the entire

range of database sizes. The curves in Fig. 5.13 and Fig. 5.14 are essentially flat,

subject to some noise. Compared to Fig. 5.14, there is more noise in Fig. 5.13 with

respect to the order of curves for different workload mix. This is again a reflection

of the PDC-MDS tree data structure being better adapted to dimension hierarchies

which leads to a more predictable behaviour for the TPC-DS data used here.

2 4 6 8 10 12 14 16
Number of Workers

50

100

150

200

250

300

350

400

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

05% inserts
25% inserts
50% inserts
75% inserts
95% inserts

Figure 5.13: Performance for various workload mixes with increasing system size.
Database size N and number of workers p both increasing. TPC-DS data, PDC-MBR
tree, N

p
≈ 25 million, m = 4, average of all query coverages (5% . . . 95%).

108

2 4 6 8 10 12 14 16
Number of Workers

50

100

150

200

250

300

350

400

O
pe

ra
tio

ns
/S

ec
on

d
(T

ho
us

an
ds

)

05% inserts
25% inserts
50% inserts
75% inserts
95% inserts

Figure 5.14: Performance for various workload mixes with increasing system size.
Database size N and number of workers p both increasing. TPC-DS data, PDC-MDS
tree, N

p
≈ 25 million, m = 4, average of all query coverages (5% . . . 95%).

5.6.5 Large Scale Experiment

As a final experiment, we tested vOLAP on a large database with N = 1.5 billion

data items from the Zipf data set, using p = 18 worker instances and m = 2 server

instances. At around N = 1.5 billion, vOLAP still showed an ingest performance

of ∼600,000 items per second (essentially the same performance as in Fig. 5.8). We

then tested vOLAP with insert/query streams with 50% workload mix (equal mix of

insert and OLAP query operations) and 50% query coverage (each query aggregates

approximately half the database). The measured average performance of vOLAP was

approximately 200,000 queries per second.

109

Chapter 6

Conclusion

In this thesis, we introduced two new real-time cloud-based OLAP systems CR-

OLAP and vOLAP. CR-OLAP is a Cloud based Real-time OLAP system based on

a distributed PDCR tree, a new parallel and distributed index structure for OLAP,

and evaluated CR-OLAP on the Amazon EC2 cloud for a multitude of scenarios.

The tests demonstrate that CR-OLAP scales well with increasing database size and

increasing number of cloud processors. In our experiments, CR-OLAP performed

an 16-fold increase in database size and number of processors, including an 16-fold

increase in the average amount of data aggregated by each OLAP query, without

noticeable performance impact for the user.

vOLAP is a fully scalable, cloud-based real-time OLAP system for high velocity

data. vOLAP is also built based on the PDC-tree but supports multiple coordinating

servers, query serialization and load balancing. An experimental evaluation of our

vOLAP prototype, using 18 worker instances for a database size of 1.5 billion items,

shows that it is able to ingest new data items at a rate of over 600,000 items per

second, and can process streams of interspersed inserts and OLAP queries in real-time

at a rate of approximately 200,000 queries per second.

Future work: The next phase of our research includes the study of the following

issues:

1. Design and implement a better hat data structure that runs faster and is able

to handle aggregation summaries in the hat. The hat used in vOLAP currently is

a simple array-based implementation. Future research will try more efficient data

110

structures like PDC-tree and R-tree.

2. Data replication and fault-tolerance. The design of vOLAP also anticipates the

introduction of data replication, copying part of the global data structures that are

in high demand in order to achieve high performance and avoid system bottlenecks.

Zookeeper, the migration protocols and the manager provide a basis on what to

implement data replication in vOLAP, however, due to time limitations, this function

was not implemented in the current vOLAP prototype. Data replication always comes

with better fault-tolerance. In vOLAP, Zookeeper plays a key role for fault-tolerance.

Zookeeper monitors the status of each processor. Single node failure can be tracked

by Zookeeper. The global system image is stored in Zookeeper. Even if all servers

died, the system is recoverable. Zookeeper also maintains the location information of

each subset. If subsets are fully replicated and distributed, then Zookeeper knows the

location of each subset’s replicas. Thus, even if a worker dies, a new worker can be

allocated to replace the old one by copying all subsets from other workers.

3. Expand optimization algorithms. As mentioned in Section 5.5, we only imple-

mented the balance of data size per processor. Future research will cover the balance

of query load per processor, placement of replicated data and distribution quality of

data;

4. Batching of query operations. The current system prototype supports bulk

insertions. Batching query operations may further improve the system performance.

5. Integrate with full OLAP query optimization engines, such as OLAP4j [6].

111

Bibliography

[1] Amazon EC2. http://en.wikipedia.org/wiki/Amazon_Elastic_Compute_

Cloud.

[2] Cloud computing. http://en.wikipedia.org/wiki/Cloud_computing.

[3] Introduction to ZeroMQ. http://nichol.as/zeromq-an-introduction.

[4] Mainframe Computers. http://en.wikipedia.org/wiki/Mainframe_

computer.

[5] Message Queues. http://en.wikipedia.org/wiki/Message_Queue.

[6] OLAP4J: An open Java API for OLAP. http://www.olap4j.org/.

[7] Riak NoSQL Database. http://docs.basho.com/.

[8] Transaction processing performance council, TPC-DS (decision support) bench-
mark. http://www.tpc.org.

[9] ZeroMQ socket library as a concurrency framework. http://www.zeromq.org/.

[10] ZooKeeper: A Distributed Coordination Service for Distributed Applications.
http://zookeeper.apache.org/doc/trunk/zookeeperOver.html.

[11] A. Berkheimer A. Sherman, P. A. Lisiecki and J. Wein. ACMS: The Akamai
configuration management system. In NSDI, 2005.

[12] Daniel J Abadi. Data management in the cloud: Limitations and opportunities.
IEEE Data Eng. Bull., 32(1):3–12, 2009.

[13] Divyakant Agrawal, Sudipto Das, and Amr El Abbadi. Data management in the
cloud: challenges and opportunities. Synthesis Lectures on Data Management,
4(6):1–138, 2012.

[14] J Chris Anderson, Jan Lehnardt, and Noah Slater. CouchDB: the definitive guide.
O’Reilly Media, Inc., 2010.

[15] R BAYER and E MCCREIGHT. Organization and Maintenance of Large Ordered
Indexes. Acta Informatica, 1:173–189, 1972.

[16] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-tree: an efficient and robust access method for points and rectangles,
volume 19. ACM, 1990.

112

[17] Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1987.

[18] Eric A Brewer. Towards robust distributed systems. In PODC, page 7, 2000.

[19] Martin C Brown. Getting Started with Couchbase Server. O’Reilly Media, Inc.,
2012.

[20] R. Bruckner, Beate List, and Josef Schiefer. Striving towards near real-time data
integration for data warehouses. DaWaK, LNCS 2454:173–182, 2002.

[21] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In
Proceedings of the 7th symposium on Operating systems design and implementation,
OSDI ’06, pages 335–350, 2006.

[22] Yu Cao, Chun Chen, Fei Guo, Dawei Jiang, Yuting Lin, Beng Chin Ooi,
Hoang Tam Vo, Sai Wu, and Quanqing Xu. Es 2: A cloud data storage system
for supporting both OLTP and OLAP. In Data Engineering (ICDE), 2011 IEEE
27th International Conference on, pages 291–302. IEEE, 2011.

[23] Rick Cattell. Scalable SQL and NoSQL data stores. ACM SIGMOD Record,
39(4):12–27, 2011.

[24] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable:
A distributed storage system for structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[25] Chun Chen, Gang Chen, Dawei Jiang, Beng Chin Ooi, Hoang Tam Vo, Sai Wu,
and Quanqing Xu. Providing scalable database services on the cloud. In Web
Information Systems Engineering–WISE 2010, pages 1–19. Springer, 2010.

[26] Min Chen, Shiwen Mao, and Yunhao Liu. Big data: A survey. Mobile Networks
and Applications, pages 1–39, 2014.

[27] Ying Chen, Frank Dehne, Todd Eavis, and Andrew Rau-Chaplin. PnP: sequential,
external memory, and parallel iceberg cube computation. Distributed and Parallel
Databases, 23(2):99–126, January 2008.

[28] Kristina Chodorow. MongoDB: the definitive guide. O’Reilly Media, Inc., 2013.

[29] Eugene Ciurana. Google app engine. Developing with Google App Engine, pages
1–10, 2009.

[30] Amazon Elastic Compute Cloud. Amazon web services. Retrieved November,
9:2011, 2011.

113

[31] Mark Colan. Service-oriented architecture expands the vision of web services,
part 1. IBM DeveloperWorks, April, 2004.

[32] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. Pnuts: Yahoo!’s hosted data serving platform. Proceedings of the VLDB
Endowment, 1(2):1277–1288, 2008.

[33] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[34] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. In ACM
SIGOPS Operating Systems Review, volume 41, pages 205–220. ACM, 2007.

[35] F. Dehne, Q. Kong, A. Rau-Chaplin, H. Zaboli, and R. Zhou. Scalable Real-Time
OLAP On Cloud Architectures.

[36] Frank Dehne, T Eavis, and S Hambrusch. Parallelizing the data cube. Distributed
and Parallel Databases, 11:181–201, 2002.

[37] Frank Dehne, Quan Kong, Andrew Rau-Chaplin, Hamidreza Zaboli, and Rebecca
Zhou. A distributed tree data structure for real-time OLAP on cloud architectures.
In Big Data, 2013 IEEE International Conference on, pages 499–505. IEEE, 2013.

[38] Frank Dehne and Hamdireza Zaboli. Parallel Real-Time OLAP on Multi-core
Processors. In Proceedings of the 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012), pages 588–594, 2012.

[39] M. Ester, J. Kohlhammer, and H.-P. Kriegel. The DC-tree: a fully dynamic
index structure for data warehouses. 16th International Conference on Data
Engineering (ICDE), pages 379–388, 2000.

[40] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd, Stefan Sigg,
and Wolfgang Lehner. Sap hana database: data management for modern business
applications. ACM Sigmod Record, 40(4):45–51, 2012.

[41] A Feinberg. Project voldemort: Reliable distributed storage. In Proceedings of
the 10th IEEE International Conference on Data Engineering, 2011.

[42] Brad Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[43] John Gantz and David Reinsel. Extracting value from chaos. IDC iView, pages
1–12, 2011.

[44] Lars George. HBase: the definitive guide. O’Reilly Media, Inc., 2011.

114

[45] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system.
In ACM SIGOPS Operating Systems Review, volume 37, pages 29–43. ACM,
2003.

[46] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao,
F. Pellow, and H. Pirahesh. Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min. Know. Disc.,
1:29–53, 1997.

[47] Z. Guo-Liang, C. Hong, LI Cui-Ping, W. Shan, and Z. Tao. Parallel Data
Cube Computation on Graphic Processing Units. Chinese Journal of Computers,
33(10):1788–1798, 2010.

[48] Antonin Guttman. R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 14(2):47–57, June 1984.

[49] Hyuck Han, Young Choon Lee, Seungmi Choi, Heon Y Yeom, and Albert Y
Zomaya. Cloud-aware processing of mapreduce-based OLAP applications. In
Proceedings of the Eleventh Australasian Symposium on Parallel and Distributed
Computing-Volume 140, pages 31–38. Australian Computer Society, Inc., 2013.

[50] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers, 2000.

[51] Mikio Hirabayashi. Tokyo cabinet: a modern implementation of DBM, 2010.

[52] Patrick Hunt, Mahadev Konar, Flavio P Junqueira, and Benjamin Reed.
ZooKeeper: wait-free coordination for internet-scale systems. In Proceedings
of the 2010 USENIX conference on USENIX annual technical conference, vol-
ume 8, pages 11–11, 2010.

[53] Javid Jamae and Peter Johnson. JBoss in action: configuring the JBoss applica-
tion server. Manning Publications Co., 2009.

[54] Dong Jin, Tatsuo Tsuji, and Ken Higuchi. An Incremental Maintenance Scheme
of Data Cubes and Its Evaluation. DASFAA, LNCS 4947:36–48, 2008.

[55] Ankur Khetrapal and Vinay Ganesh. Hbase and hypertable for large scale
distributed storage systems. Dept. of Computer Science, Purdue University, 2006.

[56] Avinash Lakshman and Prashant Malik. Cassandra: a decentralized structured
storage system. ACM SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[57] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[58] Peter Mell and Tim Grance. The NIST definition of cloud computing. National
Institute of Standards and Technology, 53(6):50, 2009.

115

[59] Krishna Nadiminti, Marcos Dias De Assunção, and Rajkumar Buyya. Distributed
systems and recent innovations: Challenges and benefits. InfoNet Magazine,
16(3):1–5, 2006.

[60] Raymond T. Ng, Alan Wagner, and Yu Yin. Iceberg-cube computation with PC
clusters. ACM SIGMOD, 30(2):25–36, June 2001.

[61] The OLAP Report. http://www.olapreport.com.

[62] Douglas F Parkhill. Challenge of the computer utility. 1966.

[63] Timothy Peterson and Jim Pinkelman. Microsoft OLAP unleashed. Sams, 1999.

[64] Hasso Plattner and Alexander Zeier. In-Memeory Data Management. Springer
Verlag, 2011.

[65] Denis Raphaely, Maitreyee Chaliha, Neerja Bhatt, Charles Hall, and James
Wilson. Oracle streams advanced queuing user’s guide, 11g release 2 (11.2)
e11013-04.

[66] Salvatore Sanfilippo and Pieter Noordhuis. Redis, 2010.

[67] Ricardo Jorge Santos and Jorge Bernardino. Optimizing data warehouse loading
procedures for enabling useful-time data warehousing. IDEAS, pages 292–299,
2009.

[68] RJ Santos and Jorge Bernardino. Real-time data warehouse loading methodology.
IDEAS, pages 49–58, 2008.

[69] N. Schiper and S. Toueg. A robust and lightweight stable leader election service
for dynamic systems. In DSN, 2008.

[70] Michael Schrader, Dan Vlamis, Mike Nader, Chris Claterbos, Dave Collins, Mitch
Campbell, and Floyd Conrad. Oracle Essbase & Oracle OLAP. McGraw-Hill,
Inc., 2009.

[71] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. Scalaris: reliable
transactional p2p key/value store. In Proceedings of the 7th ACM SIGPLAN
workshop on ERLANG, pages 41–48. ACM, 2008.

[72] Edward Sciore. SimpleDB: a simple java-based multiuser syst for teaching
database internals. In ACM SIGCSE Bulletin, volume 39, pages 561–565. ACM,
2007.

[73] Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R+ Tree: A
dynamic index for multi-dimensional objects. 1987.

[74] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The
Hadoop distributed file system. In Mass Storage Systems and Technologies
(MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

116

[75] Timothy Sixtus. Method and system for secure online transaction processing,
May 11 1999. US Patent 5,903,721.

[76] Bruce Snyder, Dejan Bosnanac, and Rob Davies. ActiveMQ in action. Manning,
2011.

[77] Celery Team. Celery-the distributed task queue, 2011.

[78] Christian Vecchiola, Xingchen Chu, and Rajkumar Buyya. Aneka: a software
platform for .NET-based cloud computing. High Speed and Large Scale Scientific
Computing, pages 267–295, 2009.

[79] Alvaro Videla and Jason JW Williams. RabbitMQ in action. Manning, 2012.

[80] Steve Vinoski. Advanced message queuing protocol. IEEE Internet Computing,
10(6):87–89, 2006.

[81] Gerhard Weikum and Gottfried Vossen. Transactional information systems:
theory, algorithms, and the practice of concurrency control and recovery. Elsevier,
2001.

[82] David A White and Ramesh Jain. Similarity indexing: Algorithms and perfor-
mance. In storage and retrieval for image and video databases (SPIE), pages
62–73, 1996.

[83] Jinguo You, Jianqing Xi, Pingjian Zhang, and Hu Chen. A Parallel Algorithm for
Closed Cube Computation. IEEE/ACIS International Conference on Computer
and Information Science, pages 95–99, May 2008.

[84] Hamidreza Zaboli. PARALLEL OLAP ON MULTI/MANY-CORE AND CLOUD
PLATFORMS. PhD thesis, CARLETON UNIVERSITY, 2013.

[85] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of internet services and applications, 1(1):7–18,
2010.

117

