OPTIMIZATION OF A PARABOLIC REFLECTOR FOR USE IN a TWO-STAGE SOLAR CONCENTRATOR

by

Garrett Dooley

Submitted in partial fulfillment of the requirements for the degree of Master of Applied Science
at

Dalhousie University
Halifax, Nova Scotia
May 2014

TABLE OF CONTENTS

LIST OF TABLES V
LIST OF FIGURES vii
ABSTRACT xii
ACKNOWLEDGMENTS xiii
Chapter 1: INTRODUCTION 1
1.1 OBJECTIVE 1
1.2 CONCENTRATED SOLAR POWER 1
1.2.1 Parabolic Trough Collector 2
1.2.2 Parabolic Dish Collector 3
1.2.3 Central Tower Receiver 4
1.2.4 Two-stage Concentrator 6
1.3 SOLAR FURNACE 8
1.4 FINITE ELEMENT MODELING, FEA 10
1.5 HISTORY OF PLATE THEORY 17
Chapter 2: THEORETICAL CONSIDERATIONS 19
2.1. REFLECTORS 19
2.1.1. Concentration Ratio 19
2.1.2. Parabolic Geometry 20
2.1.3. Principles of Reflection and Refraction 23
2.1.4. Parabolic Trough Concentrator 24
2.1.5. Solar Dish 25
2.1.6. Solar Tower. 25
2.1.7. Two-Stage Concentrator 27
2.2. OPTICAL EFFICIENCY 28
2.2.1. The Cosine Effect 29
2.2.2. Mirror Reflectivity 33
2.2.3. Blocking and Shadowing 36
2.2.4. Atmospheric Attenuation 40
2.2.5. Surface Irregularities. 41
2.3. PLATE BENDING FORMULATION 44
Chapter 3: METHODOLOGY 48
3.1. EXPERIMENTAL 48
3.1.1. Effect of Material and Thickness 50
3.1.2. Effect of Holding Method. 55
3.1.3. Effect of Aspect Ratio 65
3.2. FEM 67
3.2.1. Define Baseline Model. 67
3.2.3. Convergence Analysis 72
3.2.4. Effect of Material and Thickness 75
3.2.5. Effect of Holding Method. 77
3.2.6. Effect of Aspect Ratio 79
Chapter 4: RESULTS AND DISCUSSION 83
4.1. FEM 83
4.1.1. Effect of Material and Thickness 83
4.1.2. Effect of Holding Method. 89
4.1.3. Effect of Aspect Ratio 96
4.2. EXPERIMENTAL 103
4.2.1. Effect of Material and Thickness 103
4.2.2. Effect of Holding Method. 105
4.2.3. Effect of Aspect Ratio 106
Chapter 5: FUTURE WORK \& CONSIDERATIONS 107
Chapter 6: CONCLUSIONS 109
REFERENCES 111
Appendix A - Graphical Outputs of Computer Models 116
Appendix B - Sample FEA output report. 131
Appendix C - Sample .fem FEA Input File. 133

LIST OF TABLES

Table 1-1. Characteristics of main CSP electricity generation techniques. [2] 5
Table 2-1. Reflectivity of various materials [39] 34
Table 3-1. Baseline parabolic curve points in inches. 68
Table 3-2. Zeroed baseline parabolic curve points in inches. 68
Table 3-3. Zeroed baseline parabolic curve points in mm. 69
Table 3-4. Results of h-method convergence analysis. 72
Table 3-5. Model numbers of aluminum thickness models. 75
Table 3-6. Model numbers of aluminum thickness models. 76
Table 3-7. Material and force properties used for FEA modeling. 77
Table 3-8. Model numbers of different holding methods 78
Table 3-9. Model matrix for effect of aspect ratio study. 80
Table 4-1. Model results for effect of material and thickness study. 85
Table 4-2. Relative difference in maximum displacement between steel and aluminum plates of same mass. 87
Table 4-3. Relative difference in maximum displacement between steel and aluminum plates of same thickness 89
Table 4-4. Model results for effect of holding method study. 90
Table 4-5. Improvement Factor $\left(I F_{2-4}\right)$ of constraining third and fourth edges for various holding methods 91
Table 4-6. Maximum displacement per constrained node for various four edge holding methods 93
Table 4-7. Model matrix for effect of aspect ratio study. 96
Table 4-8. Maximum displacements (mm) for effect of aspect ratio study. 97
Table 4-9. Maximum displacements (mm) for 4' length models using bottom half of 8 ' curve. 101

Table 4-10. Maximum displacements (mm) for flat plate analysis
Table 4-11. Maximum displacements (mm) for effect of aspect ratio study, 2 constraints per sheet.

LIST OF FIGURES

Figure 1-1. Parabolic trough collector. [1] 2
Figure 1-2. Parabolic dish collector. [1] 4
Figure 1-3. Central tower receiver. [1] 5
Figure 1-4. Reflection path of two-stage concentrator. [3] 7
Figure 1-5. Odeillo Solar Furnace 9
Figure 1-6. Graphical representation of different FEA mesh types 16
Figure 2-1. Graphical definition of a parabola. [33] 21
Figure 2-2. Graphical representation of Snell's law. 23
Figure 2-3. Effective reflector area of flat plate heliostat. [33] 26
Figure 2-4. Parabolic trough angle of incidence. [33] 30
Figure 2-5. Single axis tracking in 3D coordinate system. [33] 31
Figure 2-6. Offset angle. [11] 32
Figure 2-7. Weathering effects on reflective surface [35] 35
Figure 2-8. Example output of packing factor model $\mathrm{fb}=0.95$. [38] 39
Figure 2-9. Example output of packing factor model $\mathrm{fb}=0.99$. [38] 39
Figure 2-10. Surface slope errors caused by surface imperfections. [35] 42
Figure 2-11. Equal aperture area parabolas of various rim angles. [35] 43
Figure 2-12. Representative plate geometry. [44] 46
Figure 3-1. Focus image resulting from single 4 ' $x 8^{\prime}$ reflector of 5 ' focal length constrained about its 8 ' edges, showing "hamburger buns" effect. 49
Figure 3-2. Focus image resulting from single 4'x8' reflector of 5' focal length constrained about its 8^{\prime} edges with outermost 12.5% of reflector covered,showing much improved line focus.49
Figure 3-3. Example of combined focus cross effect, resulting from end conditions on primary and secondary reflectors 50
Figure 3-4. Example of line focus generated from material thickness experiment. 52
Figure 3-5. Common glass mirror end stiffener 56
Figure 3-6. Gamma II prototype with final 1' of each secondary reflector covered in non-reflective Styrofoam. 58
Figure 3-7. Gamma II focus image with all secondary reflector ends covered. 59
Figure 3-8. Gamma II prototype with all secondary reflectors covered in non- reflective Styrofoam except for final 1' of secondary reflectors \#2, and \#4 revealed, allowing for isolated observation and comparison of different stiffeners. 60
Figure 3-9. Focus image with all secondary reflectors covered except for outside 1' of secondary reflectors \#2 and \#4, as seen in Figure 3-8. 61
Figure 3-10. Focus image with all secondary reflectors covered except for outside 1’ of secondary reflector \#4, which is stiffened by machined block stiffener. 61
Figure 3-11. Focus image with all secondary reflectors covered except for outside 1, of secondary reflector $\# 4$, which is stiffened by common glass stiffener. 62
Figure 3-12. Focus image with all secondary reflectors covered except for a region spanning from 6 " to 12 " from the outside edge of secondary reflector \#4 63
Figure 3-13. Focus image with all secondary reflectors covered except for outside 6 " of secondary reflector \#4. 64
Figure 3-14. Focus image resulting from 2'x8' aspect ratio 66
Figure 3-15. Focus image resulting from 4'x8' aspect ratio 66
Figure 3-16. Parabolic curve generation. 68
Figure 3-17. Maximum local displacement vs. \# of mesh elements. 73
Figure 3-18. Maximum local vonMises stress vs. \# of mesh elements. 74
Figure 4-1. Model 7: 1.76389 mm thick aluminum plate, fully constrained along two 8 ' lengths. 84
Figure 4-2. Maximum displacement of steel and aluminum plates of equal weight. 86

Figure 4-3. Maximum displacement of steel and aluminum plates of equal thickness.
Figure 4-4. Model 17: 1.62814 mm thick aluminum plate, fully constrained along two 8^{\prime} lengths and two 4 ' lengths. 92
Figure 4-5. Model 21: 1.62814 mm thick aluminum plate, point constraints spaced every 12 " along two 8^{\prime} lengths and two 4 ' lengths. 94
Figure 4-6. Model 19: 1.62814 mm thick aluminum plate, point constraints spaced every 6 " along two 8 ' lengths and two 4 ' lengths. 94
Figure 4-7. Model 22: $8^{\prime} \times 4^{\prime} 1.62814 \mathrm{~mm}$ thick aluminum plate, fully constrained about all edges. 98
Figure 4-8. Model 23: $8^{\prime} \times 22^{\prime} 1.62814 \mathrm{~mm}$ thick aluminum plate, fully constrained about all edges. 98
Figure 4-9. Model 24: 8 'x1' 1.62814 mm thick aluminum plate, fully constrained about all edges. 99
Figure 4-10. Model 25: 4’x4' 1.62814 mm thick aluminum plate, fully constrained about all edges. 100
Figure 4-11. Model 28: $2^{\prime} \times 4^{\prime} 1.62814 \mathrm{~mm}$ thick aluminum plate, fully constrained about all edges. 100
Figure A-1. Model 1: 0.79750 mm thick steel plate, fully constrained along two 8^{\prime} lengths 116
Figure A-2. Model 2: 0.59531 mm thick steel plate, fully constrained along two 8^{\prime} lengths 116
Figure A-3. Model 3: 0.39688 mm thick steel plate, fully constrained along two 8^{\prime} lengths 117
Figure A-4. Model 4: 0.29766 mm thick steel plate, fully constrained along two 8^{\prime} lengths 117
Figure A-5. Model 5: 0.19844 mm thick steel plate, fully constrained along two 8^{\prime} lengths. 118
Figure A-6. Model 6: 2.35185 mm thick aluminum plate, fully constrained along two 8' lengths. 118
Figure A-7. Model 7: 1.76389 mm thick aluminum plate, fully constrained along two 8 ' lengths 119

Figure A-8. Model 8: 1.17593 mm thick aluminum plate, fully constrained along
two 8' lengths. 119
Figure A-9. Model 9: 0.88194 mm thick aluminum plate, fully constrained along two 8' lengths. 120
Figure A-10. Model 10: 0.79750 mm thick aluminum plate, fully constrained along two 8 ' lengths. 120
Figure A-11. Model 11: 0.59531 mm thick aluminum plate, fully constrained along two 8' lengths. 121
Figure A-12. Model 12: 0.58796 mm thick aluminum plate, fully constrained along two 8 ' lengths. 121
Figure A-13. Model 13: 0.39688 mm thick aluminum plate, fully constrained along two 8 ' lengths. 122
Figure A-14. Model 14: 0.29766 mm thick aluminum plate, fully constrained along two 8 ' lengths 122
Figure A-15. Model 15: 0.19844 mm thick aluminum plate, fully constrained along two 8' lengths. 123
Figure A-16. Model 16: 1.62814 mm thick aluminum plate, fully constrained along two 8' lengths. 123
Figure A-17. Model 17: 1.62814 mm thick aluminum plate, fully constrained along two 8^{\prime} lengths and two 4 ' lengths. 124
Figure A-18. Model 18: 1.62814 mm thick aluminum plate, point constraints spaced every 6 " along two 8 ' lengths. 124
Figure A-19. Model 19: 1.62814 mm thick aluminum plate, point constraints spaced every $6 "$ along two 8 ' lengths and two 4 ' lengths. 125
Figure A-20. Model 20: 1.62814 mm thick aluminum plate, point constraints spaced every 12 " along two 8^{\prime} lengths. 125
Figure A-21. Model 21: 1.62814 mm thick aluminum plate, point constraints spaced every 12 " along two 8 ' lengths and two 4 ' lengths. 126
Figure A-22. Model 22: 8 ' $\times 4{ }^{\prime} 1.62814$ mm thick aluminum plate, fully constrained about all edges. 126

Figure A-23. Model 23: 8’x2' 1.62814 mm thick aluminum plate, fully constrained about all edges.

Figure A-24. Model 24: 8'x1' 1.62814 mm thick aluminum plate, fully constrained about all edges.127

Figure A-25. Model 25: 4’x4' 1.62814 mm thick aluminum plate, fully constrained about all edges.

Figure A-26. Model 26: 4'x2' 1.62814 mm thick aluminum plate, fully constrained about all edges. 128

Figure A-27. Model 27: 4’x1' 1.62814 mm thick aluminum plate, fully constrained about all edges.

Figure A-28. Model 28: 2’x4’ 1.62814 mm thick aluminum plate, fully constrained about all edges.129

Figure A-29. Model 29: 2’x2’ 1.62814 mm thick aluminum plate, fully constrained about all edges. 130

Figure A-30. Model 30: 2'x1' 1.62814 mm thick aluminum plate, fully constrained about all edges.

Abstract

A background of concentrated solar power, and finite element analysis are provided, along with further technical details on the physics of parabolic light concentration and classical plate theory. The concept of optical efficiency is outlined, including the 5 contributing factors: the cosine effect, mirror reflectivity, blocking and shadowing, atmospheric attenuation, and surface irregularities. Surface irregularities are identified as the least predictable factor of optical efficiency, making them the subject of the experimental section. Physical and computational experimentation is conducted to determine a desirable selection for material of reflector substrate, thickness of reflector substrate, holding method of reflector, and aspect ratio of reflector. Physical and computational results are compared with one another to add validity to both sets of results. Recommendations are made for each design criteria selection, however it is found that in many cases the selection of reflector properties falls to an economic decision.

ACKNOWLEDGMENTS

I would like to thank my academic supervisor Dr. George Jarjoura for his patience, giving me the opportunity to pursue my masters, and giving me the guidance I required to complete it.

Further, a thanks to Dr. Darrel Doman for his guidance and insight into finite element methods, and to Dr. Dominic Groulx for initially introducing me to the Prometheus Project and laying much of the groundwork upon which my research has been built.

I also wish to thank Peter Kinley for his flexibility in allowing me to complete this degree while working at Lunenburg Industrial Foundry \& Engineering, and everyone else at LIFE who has helped with the Prometheus Project, in particular Mark Charlton, Ricky Hodder, Michael MacNeil, and Lance Rowley.

Finally, a huge thanks to my family and friends for their support during the entirety of my studies.

Chapter 1: INTRODUCTION

1.1 OBJECTIVE

The objective of this work is to explore the results of different design selections pertaining to parabolic reflective substrate plates used in a two stage solar concentrator. Upon discovery of the effect of the different design selections, recommendations will be made to optimize the concentrative ability of the design of the reflective surfaces within a realm of reasonability, which includes the effect these selections will have on the overall viability of the resulting two-stage concentrator.

The design selection criteria that will be considered are:

- Material of plate.
- Thickness of plate.
- Holding method of plate.
- Aspect ratio of plate.

1.2 CONCENTRATED SOLAR POWER

Concentrated solar power (CSP) is a relatively simple technology that uses reflectors to concentrate solar light, producing extreme temperatures. This heat is then used for a variety of applications, most commonly electricity generation by either producing steam to run a steam turbine, or by powering a Stirling engine. The heat produced by CSP devices can also be used directly for materials or chemical processing or, on a much smaller scale, solar cooking. There are three main commercially established CSP technologies: parabolic troughs, towers, and parabolic dishes. These different CSP technologies are all fundamentally similar in that they use reflectors to concentrate solar
light. Where these three methods differ is the orientation of the reflectors. A summary of the following section is provided in Table 1-1.

1.2.1 Parabolic Trough Collector

The most commonly used CSP model is the parabolic trough collector, as seen in Figure 1-1. Trough systems consist of rows of semi-curved parabolic mirrors that focus the solar energy on an absorber tube through which a heat transfer fluid flows. The mirrors feature a single axis tracking system, which follows the sun's path throughout each day. By concentrating solar energy over a small area, the heat transfer fluid is raised to temperatures of roughly $400^{\circ} \mathrm{C}$. This fluid is then used to create steam, which powers a turbine and produces electricity. This system requires large fields of concentrators to generate enough energy to run a turbine at a high efficiency, and does not lend itself well to thermal applications, as the achieved temperatures are relatively low compared to other reflectors. It is however; the most popular form of CSP for electricity production as the capital costs for a trough collection system is lower than parabolic dish systems or central tower systems.

Figure 1-1. Parabolic trough collector. [1]

1.2.2 Parabolic Dish Collector

Parabolic dish collectors operate in a similar manner to trough collectors, but instead of focusing the sunlight along one axis, the parabolic dish focuses an area of sunlight into a single point, yielding temperatures in excess of $750^{\circ} \mathrm{C}$, as shown in Figure 1-2. Unlike the parabolic trough concentrator which tracks over a single axis, the parabolic dish collector tracks the sun's movement using a dual-axis tracking system, which increases its accuracy and overall efficiency. Another fundamental difference between these two solar concentrators is that with the parabolic dish, the energy is used directly at the focal point (predominantly in the form of a Stirling engine) instead of transferred to a central location to run a turbine. This type of system has the advantage of being scalable. It is not required to have a large farm of these receivers to operate at a high efficiency, making parabolic dish concentrators a more desirable choice for small scale electrical production, but less attractive than parabolic troughs for utility sized electricity production due to the increased costs associated with constructing two dimensional curved surfaces, and due to requiring separate engines at each dish. A drawback of the parabolic dish collector from a thermal application standpoint is that due to the parabolic dish's requirement of pointing directly at the sun, the focal point is usually high above ground level, well above working level. Any sort of infrastructure built to operate at the focal point would reduce the power of the concentrator by casting shadows over the reflective surface, and would also require a large degree of mechanical sophistication to deal with the changing focal location.

Reflector

Figure 1-2. Parabolic dish collector. [1]

1.2.3 Central Tower Receiver

The third common type of CSP is the central tower receiver (Figure 1-3), which can be described as a combination of the solar trough technology and parabolic dish technology. Solar towers consist of a large field of flat reflectors called heliostats, surrounding a centrally located tower. These heliostats track the sun and reflect the sunlight to a single point located high above ground, called the central receiver. A heat transfer medium is contained within this central tower and is heated by the concentrated light to temperatures in excess of $700^{\circ} \mathrm{C}$. Like the parabolic trough systems, this set-up is only effective when dealing with utility scale power production, and like the parabolic dish collectors, due to the focus being located well above ground, it isn't very feasible for use with any direct thermal processing.

Figure 1-3. Central tower receiver. [1]

Table 1-1. Characteristics of main CSP electricity generation techniques. [2]

Method	Output range	Advantages	Disadvantages
Parabolic dish	3-50 kW	- Modular units - Very high solar to electricity conversion efficiencies exceeding 30% - Simple operational procedure - No water cooling requirements	- Earlier stage of technology - Thermal storage possible only via battery - No hybridization to date - Precise tracking of sun required
Solar tower	30-160 MW, increasing to 200 MW by 2030	- High solar to electricity conversion efficiency around 23% - Operating temperatures potentially up to 1000 C , increasing electricity conversion efficiency - Hybridization with oil or gas - Modular Components - Simple operation procedure - Cogeneration of heat and electricity possible	- High stability required for heliostats - Water needed for cooling and cleaning - Investment and operational costs at commercial scale not yet proven

Method	Output range	Advantages	Disadvantages
Parabolic trough	$30-150$ MW, increasing to 320 MW by 2030	- Well-established technology - Hybridization with oil or gas - Modular components - Cogeneration of heat and electricity possible	- Relatively low (14$20 \%$) solar to electricity conversion efficiency - Maximum heat retention fluid operating temperature of 400 C - High stability required for heliostats - Water needed for cooling and cleaning

1.2.4 Two-stage Concentrator

Lunenburg Industrial Foundry \& Engineering (LIFE) has developed and patented a unique two-stage solar concentrator. Developed under the project name Prometheus Project, this technology uses two orthogonally arranged parabolic mirrors to produce a point focus. As shown in Figure 1-4, a primary reflector is shaped as an off axis parabola around the horizontal axis of symmetry. Rays of sunlight are reflected off of this mirror and onto a secondary reflector, which is shaped as a symmetrical parabola around the horizontal axis of symmetry. The rays are then reflected off of the secondary reflector and on to a receiver positioned so that both mirrors achieve their line focus at the same distance, resulting in a combined point focus. Spacing between these two mirrors is critical to achieve a maximum temperature, however the ability to spread the primary and secondary mirror provides some interesting options with regards to generating a focus of different shapes that could be desirable for different applications. The orientation of the
two reflectors remains fixed to one another and the focus, while the entire assembly rotates both horizontally and vertically to follow the path of the sun.

The two-stage concentrator combines the relatively simple single axis curvature of the parabolic trough concentrator with the tracking accuracy, focusing power, and scalability of the parabolic dish concentrator. Significant manufacturing costs should be gained through the ability to form a point focus while only manufacturing single axis curves, which are much simpler to manufacture than their two axis counterparts. Another inherent value to the two-stage concentrator system is that the focal point can be brought down to a reasonable working height, unlike the parabolic dish system, which reflects sunlight back towards the sun. A lower focus means that an infrastructure can be built more easily to make use of the incredibly hot focal point, and that any such infrastructure will not be located in between the sun and primary reflector, or the primary and secondary reflectors which would block incoming light rays, and reduce the efficiency of the solar concentrator.

Figure 1-4. Reflection path of two-stage concentrator. [3]

1.3 SOLAR FURNACE

A solar furnace is a structure that uses CSP to produce high temperatures, usually for an industrial application. To achieve adequately high temperatures for such applications, solar furnaces generally are required to produce a point focus. As such, solar furnaces can either use heliostats, parabolic mirrors, or a combination of both.

The world's largest solar furnace (Figure 1-5), located in Odeillo, France was opened in 1970. This arrangement consists of a field of heliostats that reflect light towards a parabolic dish, which concentrates light towards a single point, the size of a cooking pot and generates temperatures in excess of $3,500^{\circ} \mathrm{C}$. Because of the two-stage reflections, the focal point structure is located in a manageable location and does not block any incoming light. By employing different numbers of heliostats, the temperature generated using the Odeillo solar furnace can be altered to meet the needs of a given application, for example:

- $1,000{ }^{\circ} \mathrm{C}$ for metallic receivers producing hot air for the next generation solar towers as it will be tested at the Themis plant with the Pegase project [4].
- $1,400{ }^{\circ} \mathrm{C}$ to produce hydrogen by cracking methane molecules [5].
- up to $2,500^{\circ} \mathrm{C}$ to test materials for extreme environment such as nuclear reactors or space vehicle atmospheric reentry.
- up to $3,500^{\circ} \mathrm{C}$ to produce nanomaterials by solar induced sublimation and controlled cooling, such as carbon nanotubes [6] or zinc nanoparticles [7].

Figure 1-5. Odeillo Solar Furnace

The LIFE two-stage solar concentrator represents an opportunity to achieve many of the same benefits present with the Odeillo solar furnace, but with a completely scalable and portable design. Originally designed for use in their foundry, the LIFE two-stage solar concentrator prototypes have been used for both scientific experiments, and also in ordinary production of small castings. By boiling small Iron samples, the LIFE solar furnace has shown that it can achieve temperatures in excess of $2850^{\circ} \mathrm{C}$. This extremely high temperature, coupled with a relatively low construction cost when compared to a solar furnace as seen in Figure 1-5 indicate that the LIFE two-stage concentrator system may be the optimal platform for both scientific testing and industrial solar furnace use.

It is generally accepted that for use of a solar furnace, the focus must be relatively small, and the temperature will be relatively high when compared to using CSP for electricity generation. This difference in temperature requirement and focal size can be attributed to the fact that electricity generation doesn't require as high a temperature (in the range of $400^{\circ} \mathrm{C}$) as the aforementioned solar furnace applications. Therefore, the accuracy and
quality of both the tracking accuracy, and focal quality of a solar furnace must be greater than that of an industrial scale CSP electricity generation facility. To this end, it is very important to understand all of the mechanisms contributing to the focal quality of a solar furnace, to better design a system that will maximize the amount of sunlight energy that is transferred to the desired target.

1.4 FINITE ELEMENT MODELING, FEA

The finite element method (FEM) is a numerical technique for calculating approximate solutions to boundary value problems. FEM incorporates all of the methods for approximating a complex equation over a large domain by connecting many simple element equations over many small subdomains, named finite elements. That is to say, a complex shape will be replaced with a summation of many simple shapes that are combined to correctly model the original shape. By considering all of the relatively simple resulting equations, an accurate approximation of the very complex original domain is achieved. Due to its natural benefits over other techniques, the finite element method has become the most useful numerical analysis tool for engineers and applied mathematicians [8]. The main advantages of the finite element method over other numerical approaches are:

- FEM can be applied to any shape and any number of directions.
- The shape on to which the FEM is applied can be made out of any number of materials.
- The material properties of the shape being analyzed can be non-homogeneous and/or anisotropic.
- A finer mesh can be used at regions of interest to generate more accurate results locally.

When used for a practical application, FEM is often referred to as finite element analysis (FEA). FEA can be used for a specific field of analysis, such as stress analysis, thermal analysis, or vibration analysis, to provide a detailed understanding of a complex system. FEA includes the use of mesh generation techniques to divide a complex system into manageable simple elements, and the use of a FEM algorithm to solve the entire field of equations. In many cases, various fields of FEA study are related. An example of such an inter-field relation between FEA studies would be the distributions of non-uniform temperatures inducing loading conditions on structural members. In this scenario, the output of a thermal FEA analysis could yield temperature results that would become an input for a subsequent stress FEA analysis [8].

The origins of modern FEA can be credited to a 1950 publication by Turner et al [9]. In 1960, Clough [10] was the first to use the common term "finite element method" when describing the technique. This work in matrix methods for stress analysis was further advanced by Argyris [11]. During the following decade and a half, the work of Babuska and Ariz [12], Strang and Fix [13], and Oden and Reddy [14] greatly developed and promoted the mathematical theory of finite elements. The development of the finite element technique for practical applied applications has been led by Zienkiwicz and Taylor [15].

Since the initial development of the finite element method, the plate-bending problem has been of particular interest for this field of research, being one of the first areas where FEA was applied. The work of Holand [16], Ashwell and Gallagher [17], Parisch [18], Batoz et al [19], Hrabok and Hrudey [20] and Ortiz and Morris [21], represents a good sampling of the effort that has devoted to developing efficient and accurate bending elements.

FEA can be incorporated into 3D modeling software such as SolidWorks or AutoDesk Inventor to allow designers to quickly determine intermediate stresses and displacements of components they're designing when the components are subjected to different loadings. However for more accurate results of more complex systems, a dedicated FEA program such as the HyperWorks package should be used. A dedicated FEA program can allow for much more control over a model by offering additional options with regards to meshing, input forces, constraints and material properties. A dedicated FEA program also gives the operator full numerical results of the system, providing greater ability to analyze the results instead of relying on a simple graphical solution that would be provided from a built in CAD FEA system.

It is important to understand the limitations of FEA and not assume all outputs are correct without subjecting them to proper scrutiny. Error is inherent in FEA methods. This error, originates from arbitrary assumptions that are required to represent the stress distribution within elements [22]. The magnitude of error is determined by how well the FEA model approximates the real stress distribution.

The fundamental equation of FEA is:

$$
\begin{equation*}
[F]=[K] *[d] \tag{1.1}
\end{equation*}
$$

where [F] is the known matrix of nodal loads, $[\mathrm{K}]$ is the known stiffness matrix, and [d] is the unknown vector of nodal displacements. The known stiffness matrix depends on the geometry of the model, material properties and restraints applied on the model.

If it is assumed that the analyzed model retains whatever stiffness it possessed in its undeformed shape prior to loading, that is to say the [K] matrix is unchanged, then corresponding analysis is relatively simple and is called a linear analysis. Conversely, nonlinear analysis abandons the assumption of constant stiffness, and the nonlinear solver runs through an iterative solution operation throughout which the stiffness matrix must be updated to reflect a continuously changing stiffness [23]. An increased number of iterations increases the accuracy of the results, but also increases the computing power and computing time required to solve the system [23].

Several rules of thumb are used to indicate when a nonlinear analysis might be necessary to acquire accurate results:

- Large deformation. If the deformations are larger than 5% of the part's largest dimension, nonlinear analysis should be conducted [23].
- Membrane effects. Small amounts of deformation can also call for nonlinear analysis. When a membrane is curved, it gains additional stiffness when compared to an equivalent flat membrane. If the deformation due to the applied
loading causes the membranes to curve, the deformed membrane exhibits stiffness additional to the original bending stiffness [23].
- Nonlinear material. If the loads are high enough to cause permanent deformations, or if the strains are over 50%, nonlinear analysis should be conducted [23].
- Contact stresses and nonlinear supports. If support conditions change during the application of operating loads, nonlinear analysis is needed [23].
- Buckling. Linear analysis can be used to calculate the load under which a model will buckle, however nonlinear analysis should be conducted to explain postbuckling behavior [23].

Mesh size also contributes to the accuracy of a FEA model. A model with a very fine mesh size, that is to say many small elements, will likely yield a more accurate result than a model with a more coarse mesh size. However, an increase in computing time acts as a trade off to the increase in accuracy. It is also possible to experience the occurrence of numerical anomalies if a very fine mesh size is selected. It is therefore responsible for the FEA operator to conduct a convergence analysis to determine the appropriate element size, and estimate the error in the results. A traditional convergence analysis, or so-called h-convergence, consists of changing the element size without changing the element order [9]. By comparing and plotting the results of using different mesh sizes, the operator can make an educated selection regarding how large the mesh elements should be without sacrificing accuracy in the model's results. Automated convergence analysis, also known as adaptive finite element method, represents an alternative to refining mesh convergence
analysis. In an automated convergence analysis, element sizes remain the same but element orders change while an algorithm compares results from the last two iterations and upgrades element order where required to meet user specified accuracy [22]. Iterations continue without user intervention until the convergence error becomes lower than a user-defined value or until calculations hit the highest possible element order [22].

The type of mesh element used will have an impact on the computational results of an FEA model. For a 2D analysis, mesh elements can be chosen to be quadrilateral or triangular shaped. For a 3D analysis, mesh elements can be chosen as hexahedral, tetrahedral or prism shaped. A first order mesh element contains nodes at each of its corners, while a second order mesh element contains nodes at the corners, but also intermediate nodes at the midway point of each edge. Second order elements should be used with caution because in addition to increasing accuracy, the memory and computational requirements are also increased [24].

When modeling plate and membrane bending behavior of thin, three-dimensional structures shell elements are useful. A given FEA solution algorithm will have its own shell card, into which the user will input his own parameters. It is important to understand the difference between the modeling of thin and thick shells. The main difference between thin and thick shell formulation is the inclusion of transverse shear deformation. Thick plate formulation follows the Mindlin-Reissner theory of plates, which accounts for transverse shear deformations. Thin plate
formulation follows a Kirchhoff application which neglects shear deformation through the thickness of the plate.

Whenever possible, it is desirable to compare model results with a real world experiment for validation of the FEA model. This validation is of particular importance when a user would like to confirm the validity of certain assumptions he has made when converting a real world model to a computerized representation.

Figure 1-6. Graphical representation of different FEA mesh types.

1.5 HISTORY OF PLATE THEORY

The earliest statement of plate theory was developed by Euler [25], when he performed a free vibrations analysis of drums in 1776. Euler's work was then expanded on in 1789 by Bernoulli [26], presenting a plate system that would be known as the Euler-Bernoulli beam theory. Bernoulli's system represented a plate as a system of mutually perpendicular strips at right angles to one another, each acting as a beam. Work by Germain [27] and Lagrange [28] improved upon the Euler-Bernoulli theory, developing a governing differential equation, the Germain-Langrange plate equation, which was the first properly formulated general plate equation. An 1829 publication by Poisson [26] expanded on the Germain-Lagrange plate equation to the solution of a static loaded plate with a constant term plate flexural rigidity. Through his work in elasticity, Navier [30] developed a theory of plate bending which considers the thickness of the plate as a function of its rigidity.

The Kirchhoff-Love thin plate theory, also known as the classical plate theory, was developed by Love [31] using assumptions proposed by Kirchhoff [32], which are now referred to as "Kirchhoff's hypotheses". The Kirchhoff-Love theory assumes that straight lines normal to the mid-surface of the plate remain straight and normal to the mid-surface after deformation, and that the thickness of the plate does not change during deformation.

Timoshenko [33] provided further development to the theory of plate bending analysis by developing a collection of solutions to many different plate-bending problems, most
notably problems considering large deflections in circular plates, and the development of elastic stability problems.

Mindlin [34] developed an extension of the Kirchhoff-Love plate theory that takes into account shear deformations through the thickness of a plate. Mindlin's theory, also known as the first-order shear plate theory, assumes a linear variation of displacement through the thickness of the plate, and that the thickness of the plate does not change during deformation. Additionally, the Mindlin plate theory assumes the plane stress condition, that the normal stress through the thickness is ignored.

Membranes, which are similar to thin plates but having thinner thicknesses with respect to their other dimensions, can be considered a simplified plate, and therefore the theory of membrane mechanics was developed alongside that of thin plate theory. Foppl [35] derived equilibrium equations for a membrane plate, which were essentially classical plate bending equations with a bending rigidity set to zero. Hencky [36] also used the assumption of no flexural stiffness in the thin plate equations to investigate the problem of a membrane with circular boundary conditions inflated by a uniform pressure.

Chapter 2: THEORETICAL CONSIDERATIONS

Technical background information, which is important in understanding the research presented in this work, is provided in this section. A brief background on the concepts of solar concentration is provided, followed by an explanation of optical efficiency and finally an explanation of plate bending equations.

2.1. REFLECTORS

While the types of CSP systems outlined in section 1.1 have very different geometries, one commonality between all of these systems is that they use reflectors to control the path of solar light. This section gives a technical background regarding reflection, concentration, and how reflectors are used to direct the path of light rays.

2.1.1. Concentration Ratio

Concentration ratio is a means of defining the amount of light energy concentration achieved by a solar concentrator. There are two different definitions of concentration ratio in general use.

Optical Concentration Ratio $\left(C R_{O}\right)$ is the averaged irradiance $\left(I_{r}\right)$ integrated over the receiver area $\left(A_{r}\right)$, divided by the insolation incident on the collector aperture [37].

$$
\begin{equation*}
C R_{O}=\frac{\frac{1}{A_{r}} \int I_{r} d A_{r}}{I_{a}} \tag{2.1}
\end{equation*}
$$

Geometric Concentration Ratio $\left(\mathrm{CR}_{\mathrm{g}}\right)$ is the area of the collector aperture A_{a} divided by the surface area of the receiver A_{r} [37].

$$
\begin{equation*}
C R_{g}=\frac{A_{a}}{A_{r}} \tag{2.2}
\end{equation*}
$$

While the geometric concentration ratio is only a function of the size and shape of the reflector and receiver, the optical concentration ratio is directly dependent on the quality of the reflector. It should also be noted that in many systems, the concentrated solar image is smaller than the receiver, and therefore both concentration ratio definitions offer information on the concentration ratio of the entire system, not of the concentrator in particular.

2.1.2. Parabolic Geometry

A parabola is the locus of a point that moves so that its distance from a fixed line and a fixed point are equal [37]. This is shown on Figure 2-1, where the fixed line is called the directrix and the fixed point F, the focus. The length $F R$ equals the length $R D$, and would for any R locations chosen along the parabolic curve. The axis of the parabola is the line perpendicular to the directrix and passing through the focus F [37]. The parabola intersects its axis at a point V called the vertex, which is exactly midway between the focus and the directrix [37]. The distance between the vertex and the focus is known as the focal length f.

Figure 2-1. Graphical definition of a parabola. [37]

Due to the property that, for any line parallel to the axis of the parabola, the angle between it and the surface normal is equal to the angle between the normal and a line to the focal point, the parabolic shape is widely used as the reflecting surface for concentrating solar collectors [37]. Since solar radiation arrives at the earth in
essentially parallel rays, all radiation parallel to the axis of the parabola will be reflected to a single point, which is the focus [37].

If the origin is taken at the vertex and the y-axis is defined along the axis of the parabola, a parabola, on a two dimensional plane can be defined with relation to its focal length as:

$$
\begin{equation*}
y=\frac{x^{2}}{4 f} \tag{2.3}
\end{equation*}
$$

It is valuable to be able to relate the slope of a parabola to its focal length, as this is the value that indicates where the absorber must be located with respect to the surface location of a parabolic reflector.

The arc length of a parabola s following the above equation $f(\mathrm{x})$ can be calculated by formula 2.4:

$$
\begin{equation*}
s=\int_{a}^{b} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x \tag{2.4}
\end{equation*}
$$

This is of particular value when calculating the amount of material required for a solar reflector of a given parabolic curve, or conversely, to determine the maximum and/or minimum coordinates of a parabolic curve of a known focal length given specific material dimensions. When using a parabolic material to build a solar concentrator, the arc length of the parabolic curve is used to define the surface area of reflector A_{s}. How the arc length relates to material requirements is explained on a case-by-case basis for each type of parabolic concentrator.

2.1.3. Principles of Reflection and Refraction

The fundamental process that takes place when light waves encounter the surface of a material is shown in Figure 2-2. A portion of an incident (incoming) light ray may be reflected from the surface, and a portion of the incoming light ray may pass through the surface and enter the material. In doing so, the direction of the light is refracted in accordance with Snell's law, equation 2.5 [37]:

$$
\begin{equation*}
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} \tag{2.5}
\end{equation*}
$$

where angles are determined normal to the surface, and n is a property of a medium called the index of refraction, which relates to the speed of light v in the material by equation 2.6 [37]:

$$
\begin{equation*}
n=\frac{c}{v} \tag{2.6}
\end{equation*}
$$

Figure 2-2. Graphical representation of Snell's law.

The percentage of incident light that is reflected off of a given material is known as the reflectivity of the material, and is of great significance in the design of a concentrated solar power system.

The reflected light ray is of particular interest because it is responsible for the concentration of CSP systems, and is governed by the law of reflection, which states that the direction of the incident ray and the direction of the reflected ray make the same angle with respect to the normal surface, as seen in Figure 2-2. Therefore, if the direction of the incoming solar radiation is known, as would be if the location of the sun at a given moment is known, a smooth reflective surface can be placed in the path of the incoming light at a known angle to reflect the incoming light rays to a predetermined location [37].

2.1.4. Parabolic Trough Concentrator

The surface of a parabolic trough concentrator consists of a portion of a parabolic cylinder. Moving a parabola along the axis normal to its plane forms a parabolic cylinder. For a parabolic cylinder having a length l and having the cross-sectional dimensions of Figure 2-1, the collector aperture area is given by equation 2.7 [37]:

$$
\begin{equation*}
A_{a}=l d \tag{2.7}
\end{equation*}
$$

while the reflective surface area is found by using equation 2.4 to give:

$$
\begin{equation*}
A_{s}=l s \tag{2.8}
\end{equation*}
$$

2.1.5. Solar Dish

The surface of a parabolic dish concentrator is formed by rotating a parabolic curve about its axis, creating a shape called a paraboloid of revolution [37]. The equation for a paraboloid of revolution with the z -axis as the axis of symmetry is given by equation 2.9 [37]:

$$
\begin{equation*}
x^{2}+y^{2}=4 f z \tag{2.9}
\end{equation*}
$$

For a paraboloid of revolution of aperture diameter d, the collector aperture area is simply the circular area defined by the aperture diameter, and is given by equation 2.10 [37]:

$$
\begin{equation*}
A_{a}=\frac{\pi d^{2}}{4} \tag{2.10}
\end{equation*}
$$

The surface area of a paraboloid of revolution, useful for determining the amount of reflective material required for the construction of a parabolic dish solar concentrator, as defined by its focal length and aperture diameter is given by equation 2.11 [37]:

$$
\begin{equation*}
A_{s}=\frac{8 \pi f^{2}}{3}\left\{\left[\left(\frac{d}{4 f}\right)^{2}+1\right]^{3 / 2}-1\right\} \tag{2.11}
\end{equation*}
$$

2.1.6. Solar Tower

The optics of a solar tower concentrator is much simpler than that of a parabolic trough, or solar dish concentrator in that it is simply composed of many flat plate mirrors. While the reflective surface area is simply defined as the sum of the square area of each heliostat, the collector aperture area is much more complicated, as it changes continuously due to the rotation of the earth relative to the sun.

To operate effectively, each heliostat must be pointing midway between the sun at its present location, and the central tower. The collector aperture area is therefore reduced on each heliostat by the cosine effect, which is explained in detail in section 2.2.1. Figure 2-3 displays how two heliostats in the same central tower system can experience different effective heliostat areas at the same instant. θ_{i} is defined as the angle between the incident ray, and the surface normal to a given heliostat, or half the angle between the incident ray and reflected ray, so that the reflection will hit the receiver tower. It can be seen that the smaller for smaller values of θ_{i}, a greater effective reflective area is achieved.

Figure 2-3. Effective reflector area of flat plate heliostat. [37]

2.1.7. Two-Stage Concentrator

The two stage concentrator is composed of two reflector sets, both having parabolic properties as described in section 2.1.4. In the case of the two stage concentrator, the two parabolas will have different focal lengths, and be spaced in such a manner that both parabolas converge at the same location (or slightly different locations if a full temperature focus is not desired). The primary reflector is typically designed to have square dimensions, that is to say the width of the primary reflector is equal to the arc length of the parabolic curve by which it is shaped. The secondary reflector is typically designed to have the same width as the primary reflector, and half the height of the primary reflector. The matching width is a requirement as the primary reflector provides no concentration about its own vertical axis. The height of the secondary reflector however, could be modified based on the spacing between the two reflectors. The further away the secondary reflector is from the primary reflector, the smaller the secondary reflector's height dimension can be, as at this point the primary reflector has accomplished more concentration of light rays about its horizontal axis.

Given that the primary reflector is the only reflector capturing initial incident sunlight rays, the collector aperture area is defined as:

$$
\begin{equation*}
A_{a}=l d \tag{2.12}
\end{equation*}
$$

where l is the width of the primary reflector, and d is the linear distance from bottom to top of the parabolic curve.

The reflective surface area encompasses both the primary and secondary reflectors. For the common case where the secondary reflector has a height of half the primary reflector's width, the reflective surface area would be defined as:

$$
\begin{equation*}
A_{r}=A_{r 1}+A_{r 2} \tag{2.13}
\end{equation*}
$$

where $A_{r 1}$ and $A_{r 2}$ are the primary and secondary reflector areas respectively, and are defined as:

$$
\begin{align*}
& A_{r 1}=s_{1} l \tag{2.14}\\
& A_{r 2}=\frac{s_{1} s_{2}}{2} \tag{2.15}
\end{align*}
$$

where s_{1} and s_{2} are determined using the equations from section 2.1.2, and s_{2} is selected so that it equals l.

Therefore, for this case, the reflective surface area of the entire two stage solar concentrator is defined by equation 2.16 as:

$$
\begin{equation*}
A_{r}=\frac{3 s_{1} l}{2} \tag{2.16}
\end{equation*}
$$

2.2. OPTICAL EFFICIENCY

Optical efficiency is measured as the ratio of captured sunlight to the available incident sunlight [32]. There are many factors that contribute to the degradation of overall optical efficiency of a CSP system, the main ones being:

- The cosine effect
- Mirror reflectivity
- Blocking and shadowing
- Atmospheric attenuation
- Surface irregularities

Each of these factors, which will be explored in further depth in the following sections, represent a different obstacle that must be minimized to fully maximize the overall efficiency of a CSP system. The experimental and theoretical research that follows in chapters 3 and 4 will focus on understanding the cause of naturally occurring surface irregularities for a reflector in a two stage solar concentrator, and exploring different methods to minimize these irregularities.

2.2.1. The Cosine Effect

The cosine effect is a manner to represent the difference between the amount of energy falling on a surface pointing parallel at the sun, and a surface parallel to the earth [37]. The angle between these two vectors is known as the angle of incidence, and is of the utmost importance to a solar designer, as the maximum amount of solar radiation energy available to the collector is reduced by the cosine of the angle of incidence [37]. The effect of the cosine effect on a CSP system's optical efficiency is inherent to the configuration and tracking system used. The parabolic trough collector, which uses single-axis tracking, and therefore has a larger cosine effect, suffers from large variations in optical efficiency between summer and winter, especially at high latitudes [38]. Once the cosine effect and angle of incidence have been defined, attention turns to the method for determining the angle of incidence for different CSP systems. A CSP system using dual axis tracking, such as a dish system or a system using heliostats will experience minimal optical efficiency degradation due to the cosine effect. However, for
a single axis tracking system, such as a parabolic trough system, losses due to the cosine effect must be considered [37].

Figure 2-4 shows how rotation of a collector about a tracking axis r brings the central ray unit vector S into the plane formed by the normal vector (N) and the axis of tracking [37]. The tracking angle (p) measures rotation about the tracking axis (r), with $\mathrm{p}=0$ when N is vertical. The angle of incidence $\left(\theta_{l}\right)$ is shown as the angle between the S and N vectors [37].

Figure 2-4. Parabolic trough angle of incidence. [37]

This system is further developed by placing it on a three dimensional coordinate system whereby r is the tracking axis, b is an axis that always remains parallel to the earth's surface, and u is the third orthogonal axis [37]. The coordinates remain fixed as the concentrator normal vector N rotates in the u - b plane [37].

Figure 2-5. Single axis tracking in 3D coordinate system. [37]

From Figure 2-5 it can be deduced that both p and θ_{l} can be defined in terms of the direction cosines of the central ray unit vector S along the u, b and r axes, denoted as $S u$, $S b$ and $S r$ respectively. In this case, the tracking angle is then:

$$
\begin{equation*}
\tan p=\frac{s_{b}}{s_{u}} \tag{2.17}
\end{equation*}
$$

And since S is a unit vector, the cosine of the angle of incidence is:

$$
\begin{equation*}
\cos \theta_{1}=\sqrt{S_{b}^{2}+S_{a}^{2}} \tag{2.18}
\end{equation*}
$$

One final consideration must be made when dealing with the cosine effect. Even if a CSP concentrator is designed to track the sun over both axis at all times, depending on the type of concentrator, there is still often an offset angle. This offset angle allows for the reflected light to be transmitted in a direction other than directly back towards the
sunlight. While this is of no value for solar dishes or troughs, which are content to point towards the sun at all times, it is a consideration for heliostat CSP systems, as they desire to point direct the sun at a central location.

Figure 2-6 demonstrates the offset angle (μ) of a heliostat directing sunlight at a normal angle N lower than the sun vector. In the event of an offset angle, the angle of incidence is simply the offset angle, as it would have been calculated above, plus or minus the offset angle depending on the orientation of the system [37].

Figure 2-6. Offset angle. [37]

In summary:

- The maximum amount of solar irradiation available to a CSP system is equal to the local solar irradiance multiplied by the cosine of the angle of incidence.
- For a parabolic trough collector the angle of incidence is determined using equation 2.18 .
- For a heliostat collector, the angle of incidence is equal to the offset angle.
- For a parabolic dish collector, the angle of incidence is 0 .

2.2.2. Mirror Reflectivity

The reflectivity of the material chosen for concentrating purposes has a very large impact on the overall optical efficiency of a CSP system.

Real surfaces are not perfect specular reflectors. Reflectivity is measured as the fraction of incident radiation reflected by a surface [39]. The important feature for concentrators is the distribution of outgoing rays near an outgoing central ray, which lies in the plane of incidence with respect to the "average" surface [39]. Thus a specular reflectance can be defined as the fraction of incoming energy with a particular incidence angle that leaves centered about a leaving ray relative to the "average" surface.

Common types of reflectors used for concentrated solar power systems are glass, polished metals, or metallic films. Table 2-1 summarizes the specular reflectance for different common reflector materials. It is seen that reflectivity ratings range from 84% to 98% depending on the material chosen, however for economic purposes, it does not always make sense to choose the most reflective. Mirror reflectivity can be optimized considering the economical trade-off between increased reflectivity and greater mirror cost [38]. Glass is a very economical choice given its high reflectivity rating and
relatively low cost, however extra design considerations are required due to the brittle nature of glass, and the dangers associated with potential fracturing [40].

Table 2-1. Reflectivity of various materials [39]

Material	Specular Reflectance
Laminated glass - Carolina Mirror Co.	0.93
Laminated glass - Gardner Mirror Co.	0.90
Corning microsheet (Vacuum Chuck)	0.95
3M Scotchcal 5400	0.85
3M FEK-163	0.85
Sheldahl Aluminized Teflon	0.87
Polished aluminum Alcoa Alzak	0.85
Polished aluminum Kingston Ind. Kinglux	0.85
Metalic Fabrications Bright Aluminum	0.84
ReflecTech Mirror Film	0.94
Anolux MIRO-SILVER	0.98

Further reflectivity concern must be given to the long-term reflectivity of a selected reflective surface. Weathering can have dramatically negative effects on the specular reflectance of any surface. Exposure to the elements and cleaning operations can cause changes to any particular surface [39]. Light accumulations of dust and dirt decrease the performance of concentrating collectors more than they would for flat place collectors, since such accumulations often seem to cause scattering more than absorption of incident radiation. Washing can restore this latter property if the surface is hard enough to withstand the abrasion associated with washing [39].

Long time exposure to the elements can cause corrosion or discoloration, in turn reducing the reflectivity of the surface [39]. Figure 2-7 shows the effects of weathering on a sheet of polished aluminum after being exposed to 28 months of Arizona's environment. A loss of about 4% from the original solar weighted value of 0.82 is shown for this material in this environment.

Figure 2-7. Weathering effects on reflective surface [39]

A similar experiment conducted on aluminized fiberglass with a protective coating showed 22% degradation over a 69 week period [39]. The same experiment showed 0% degradation to an aluminized glass reflector over a 63-week period in Arizona [39]. Similarly, ReflecTechSolar promise no reflectivity degradation on their products over a 25-year period. What can be concluded from these experiments is that different materials experience different reflectivity degradation due to weathering effects, much like different materials exhibit different reflectivity values to start with.

In summary:

- Reflectors of different materials demonstrate different initial reflectivity ratings, and also different abilities to withstand the effects of long-term weathering.
- The maximum available energy available at the focus of a concentrating solar device is equal to the input energy multiplied by the reflectivity value of the system's reflectors.

2.2.3. Blocking and Shadowing

The terms blocking and shadowing refer to when part of a CSP system casts a shadow over another portion of the system, lowering the amount of energy concentrated per unit area of reflecting surface [41].

When dealing with a single heliostat, trough or dish, blocking and shadowing are not much of an issue. However when dealing with multiple collectors tied together in a larger system, shadowing is unavoidable. Studies have concluded that solar plant and power plant scale-up provides the largest cost reduction opportunities, meaning that dealing with blocking and shadowing in the best manner possible is of great concern for solar engineers [41].

The angle of the sun with respect to the horizon of the earth changes from 0 degrees at sunrise, to a maximum of 90 degrees throughout the day. If concentrators are placed tightly with one another, then large amounts of blocking will be experienced during the sunrise and sunset portions of the day. If the concentrators are spaced out a large distance from one another, then less blocking and shadowing is experienced during the
early and late portions of the day, but less solar energy is being collected per unit area land during the middle portion of the day [35]. This analysis is not trivial, and has led to the development of complex computer models to determine the optimal distance to space solar concentrators. For simplicity, this thesis will focus on the case of heliostats used for a central tower solar system, however the principles could be applied to a solar farm using trough or dish collectors [42].

A computer model developed by Francisco J Collado can be described as a combination of two analytical tools, namely an analytical flux density function of the energy reflected by a heliostat, and a continuous function of the mirror density per unit square meter of plain ground [42]. It has been found that the model is able to acceptably reproduce the results of discrete evaluations, which were based on actual distributions of thousands of heliostats. Therefore the model can be used to appropriately determine preliminary estimations and primary optimizations, which should be refined later for a specific CSP system [42].

This model defines blocking factor f_{b} i.e. the fraction of the heliostat area free of blocking as:

$$
\begin{equation*}
f_{b}=1-\left[\frac{\Delta R}{L H}\left(\frac{\cos \varepsilon_{\tau}+\tan \beta \sin \varepsilon_{\tau}}{\cos S}\right)\right] *\left[\frac{2 w r-\left(\sqrt{1+w r^{2}}+d s\right)}{w r}\right] \tag{2.19}
\end{equation*}
$$

where ΔR is the radial increment between consecutive and staggered rows, $L H$ is the height of the heliostat, ε_{T} is the elevation angle (origin the zenith) of the tower unit vector pointing from the center of the heliostat surface to the receiver, S is the incidence angle of
the sunrays onto the heliostat surface, $w r$ is the width-height ratio of the heliostats, β is the ground slope, and $d s \times L H$ is any additional security distance between adjacent heliostats in the same row [42].

The effect of blocking and shadowing on optical efficiency at any discrete point in time is average of the blocking factor of each individual heliostat. This number would then be multiplied by the available input energy to give an accurate field energy value. To determine the annual effect of blocking and shadowing, an entire year should be modeled giving a final annual blocking factor that can be factored into larger calculations.

Figure 2-8 shows an example of an output provided by this model, using the case of spring equinox. 884 heliostats are placed in a circle of diameter $=750 \mathrm{~m}$, and at a blocking factor of 0.95 , a value that corresponds with the optimum values found by University of Houston for shading and blocking factor [41]. The colors of each heliostat are associated with the efficiency of that specific heliostat, and the overall efficiency of the system, which accounts for other losses explained elsewhere in this thesis, is stated in the top left corner, 75.77%

The model output of Figure 2-8 is then contrasted with a similar model, seen in Figure 29, but for a blocking factor of 0.99 . In this case 900 heliostats of the same size are placed in a slightly larger circle, and yield an overall field efficiency of 78.37\%. It is shown as one would expect, that with a larger blocking factor, and all other factors being held constant, a higher overall field efficiency is found. This however must be measured
against the cost to build a CSP system using a larger landmass, and spacing collectors at a larger distance.

Figure 2-8. Example output of packing factor model $\mathbf{f b}=\mathbf{0 . 9 5}$. [42]

Figure 2-9. Example output of packing factor model fb=0.99. [42]

In summary:

- Blocking factor is a useful value to help determine the optimal distance collectors should be placed from one another in a large-scale CSP system.
- An economic assessment must be done on a case by case basis to determine if a greater blocking factor is indeed worth the larger capital cost associated with such a plant.

2.2.4. Atmospheric Attenuation

The effect of atmospheric attenuation is of less importance than the three factors previously discussed, but still worthy of consideration. Atmospheric attenuation can be defined as 'a process in which the flux density of a parallel beam of energy decreases with increasing distance from the source as a result of absorption or scattering by the atmosphere' [39]. Because this factor is directly related to the distance over which a beam travels, the only way to possibly reduce the amount of atmospheric attenuation, aside from changing atmospheric conditions, is to reduce the distance between the solar concentrator and target point [39].

The exact effects of atmospheric attenuation differ depending on a given atmospheric condition, which not only changes by location but also on a daily basis [39]. To accurately estimate the effect of atmospheric attenuation, an experiment would be required that would measure the output energy of similar concentrators operating at different focal lengths. It is unlikely that this experiment would be conducted for low focal length concentrators such as troughs or dishes, but it is a very useful procedure for central tower heliostat systems as the throughput of remote heliostats suffers from
atmospheric scattering and absorption, which increase exponentially with distance [38]. A value for f_{at}, which depends on distance traveled after reflection, can then be determined for a given situation and used as a factor in a final field optical efficiency calculation.

2.2.5. Surface Irregularities

Of the five factors of optical efficiency discussed in this thesis, surface irregularities are the most difficult to quantify. Surface irregularities can be broken down into two categories, small-scale irregularities, and large-scale irregularities. Small-scale irregularities are caused at a microscopic level, and are accounted for when calculating a material's reflectance [39]. Large-scale surface imperfections can be extremely critical for collectors' efficiency. These are deviations of the average surface from its intended shape, usually parabolic [39]. For the most part, these imperfections are readily apparent to the unaided eye in the form of the distortions they cause in reflected imagery [39]. The spillage factor f_{s} of a system can be determined experimentally by measuring the portion of light reaching the desired target compared to the amount of light reflecting off of the mirrored surface. Figure 2-10 demonstrates the problem caused by true surface tangents being different from ideal. Instead of the central ray from the sun being directed to the center of the absorber, it is misdirected along another plane. It should be noted that the angle error δ in the mirror slope causes an error of 2δ in the departing ray [39].

Figure 2-10. Surface slope errors caused by surface imperfections. [39]

Studies to assess manufacturing techniques and projected costs of concentrators have concluded that surface accuracies of 0.1° are readily achievable [39]. Image spread at the optical focus can be minimized by reducing the distance between the concentrator and absorber [39]. This is demonstrated in Figure 2-11, which shows various rim-angle trough concentrators, all having a common focal point. The axis on the left indicates the relative length of the curve, while the axis on the right indicates the angle of the parabola at its edge [39]. While the 90° rim angle parabola has the smallest maximum distance from concentrator to focus, it can be shown that a rim angle of 120° has the shortest average distance between concentrator surface and focal point [39]. However, this does not necessarily mean that 120° is the ideal rim angle, as there are other considerations, primarily cost. The material added at large rim angles is inefficiently used, and might be better added as an extension of the length of a trough or as an additional collector [39].

Figure 2-11. Equal aperture area parabolas of various rim angles. [41]

Much like the other optical efficiency aspects considered in this thesis, the minimization of large-scale imperfections becomes an economic study. By ensuring that a reflector is forced to an appropriate curve, and by adequately supporting it over its entire area, slope error can be minimized. Furthermore, by minimizing the distance between reflector and target, the effect of the slope error is further minimized.

2.3.PLATE BENDING FORMULATION

Plates are typically split into three broad classifications according to the thickness ratio a / h, where a is a typical dimension of a plate in a plane and h is the thickness of the plate [43]:

1. Thick Plates - Plates having ratios $a / h \leq 8$. These plates are treated as solid bodies and can be solved using the general equations of three-dimensional elasticity for components of stresses, strains and displacements. Mindlin plate equations can be used to solve thick plates [43].
2. Membranes - Plates having ratios $a / h \geq 80$. Membranes are very thin plates that are devoid of flexural rigidity. Membranes carry loads by axial tensile forces, known as membrane forces, acting in the middle surface of the plate. Membrane forces balance a lateral load applied to the membrane by producing projection on a vertical axis [43]. To be considered a true membrane, a structure must satisfy the following conditions [43]:

- The boundaries are free from transverse shear forces and moments. Loads applied to the boundaries must lie in planes tangent to the middle surface.
- The normal displacements and rotations at the edges are unconstrained.
- A membrane must have a smoothly varying, continuous surface.

3. Thin Plates - Plates having ratios $8 \leq a / h \leq 80$. Depending on the ratio of the maximum deflection, w, of the plate to its thickness, h, the effect of flexural and
membrane forces may be different. Thin plates are therefore subdivided into Stiff Thin Plates and Flexible Thin Plates [43].
a. Stiff Thin Plates - Thin plates where $w / h \leq 0.2$ are considered flexural rigid. These plates carry loads two dimensionally, mostly by internal bending and twisting and by transverse shear forces. Deformation of the middle plane and membrane forces are likely to be negligible when dealing with stiff thin plates. Unless specified otherwise, thin plates are assumed to be stiff thin plates [43].
b. Flexible Thin Plates - Thin plates where $w / h \geq 0.3$ require additional consideration for the stretching of the middle surface. These plates can be considered as a combination of stiff thin plates and membranes, and carry external loads via a combination of internal moments, shear forces and membrane forces. When the magnitude of the maximum deflection is considerably greater than the plate thickness, on the order of $w / h>5$, flexural stresses can likely be neglected compared with membrane stresses [43].

To analytically solve for the deformation of thin plates using classic plate theory, it is convenient to make the following assumptions, which are known as the Kirchhoff hypotheses [43]:

1. "The plate material is elastic and follows Hooke's law."
2. "The plate material is homogeneous and isotropic. Its elastic deformation is characterized by Young's modulus and Poisson's ratio."
3. "The thickness of the plate is small compared to its lateral dimensions. The normal stress in the transverse direction can be neglected compared to the normal stresses in the plane of the plate."
4. "Points that lie on a line perpendicular to the center plane of the plate remain on a straight line perpendicular to the center plane after deformation."
5. "The deflection of the plate is small compared to the plate thickness. The curvature of the plate after deformation can then be approximated by the second derivative of the deflection."
6. "The center plane of the plate is stress free."
7. "Loads are applied in a direction perpendicular to the center plane of the plate. "

Consider the representative plate geometry shown in Figure 2-12. This geometry shows the midplane, or middle surface of the plate, and typical Cartesian coordinate axes, upon which we can relate the governing equation of thin plate bending.

Figure 2-12 - Representative plate geometry. [44]

Under Kirchhoff's hypotheses, the governing equation of motion can be derived for small deflections in thin plates as:

$$
\begin{equation*}
D\left[\frac{\partial^{4} w(x, y, t)}{\partial x^{4}}+2 \frac{\partial^{4} w(x, y, t)}{\partial x^{2} \partial x^{2}}+\frac{\partial^{4} w(x, y, t)}{\partial y^{4}}\right]=\rho h \frac{\partial^{2} w(x, y, t)}{\partial t^{2}} \tag{2.20}
\end{equation*}
$$

where $\mathrm{w}(\mathrm{x}, \mathrm{y}, \mathrm{t})$ is the deflection of the plate, ρ is the density, h is the thickness of the plate, and D is the flexural rigidity of the plate.

Furthermore the stress-strain relations can be expressed as:

$$
\left[\begin{array}{l}
\sigma_{11} \tag{2.21}\\
\sigma_{22} \\
\sigma_{12}
\end{array}\right]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 1-v
\end{array}\right]\left[\begin{array}{l}
\varepsilon_{11} \\
\varepsilon_{22} \\
\varepsilon_{12}
\end{array}\right]
$$

While the moments corresponding to these stresses can be expressed as:

$$
\left[\begin{array}{l}
M_{11} \tag{2.22}\\
M_{22} \\
M_{12}
\end{array}\right]=\frac{2 h^{3} E}{3\left(1-v^{2}\right)}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & 1-v
\end{array}\right]\left[\begin{array}{c}
\omega_{11}^{0} \\
\omega_{22}^{0} \\
\omega_{12}^{0}
\end{array}\right]
$$

Unfortunately, while these systems of equations represent an accurate solution for the deflections of thin plates under certain conditions, the curvature inherent in parabolic reflectors means that classic plate solutions don't apply, as both Kirchhoff hypothesis \#7 and membrane requirements can't apply to a curved surface under gravitational loading. Furthermore, the governing equations of classic plate theory are intended to be used on plates that are initially flat, and are then subjected to different loadings.

To this end, in order to study the deflections and deformations of a solar reflector under gravitational loading, computational methods are preferable over analytical solutions.

Chapter 3: METHODOLOGY

The experiments in the present work are broken into two categories: Experimental, which deals with experiments and experienced gained while working hands on with the Prometheus two-stage solar concentrator prototypes, and FEM, which consists of using finite element software to simulate reflector plates under different conditions, onto which a highly reflective film would be laminated.

3.1. EXPERIMENTAL

While operating Prometheus style two-stage solar concentrators aberrations in the resulting focus have been observed. It has been observed that a single reflector, which is expected to produce a line focus, produces a focus that contains a high intensity central line and also rounded areas of focal spilling referred to as "hamburger buns". At the point in time of these observations, the reflectors were made of 4'x8' polished stainless steel sheets constrained only along their 8 ' lengths. Initial hypothesis was that these aberrations are caused by end conditions existing at the uncontrolled 4' ends of the reflective surface. An experiment was conducted to isolate the effects of the end conditions, and the cause of the "hamburger bun" phenomenon. The reflection caused by a single 4'x8' parabolic mirror, with a 5' focal length is seen in Figure 3-1. There exists a high intensity strip down the center of the focal area, which is bracketed by lower intensity areas to the right and left of the central strip.

Figure 3-1. Focus image resulting from single 4 ' $\mathbf{x 8} \mathbf{8}^{\prime}$ reflector of 5 ' focal length constrained about its 8 ' edges, showing "hamburger buns" effect.

To check the hypothesis that the bracketing light areas were caused by the free end conditions, the outermost 12.5% of the reflector was covered with a non-reflective material. The resulting focus of this identical reflector having no input from the uncontrolled ends is show in Figure 3-2. It should be noted that only the central strip region is present when eliminating the edges and that there are no signs of the "hamburger bun" bracketing area.

Figure 3-2. Focus image resulting from single 4 ' $x 8$ ' reflector of 5 ' focal length constrained about its $\mathbf{8}^{\prime}$ edges with outermost $\mathbf{1 2 . 5 \%}$ of reflector covered, showing much improved line focus.

When the end conditions of both the primary, and secondary reflector are compounded, the resulting focus has a 'cross' effect, where there is an area of light spillage along the horizontal axis that is cause by the end conditions of the secondary reflector, and an area of light spillage along the vertical axis that is caused by the end conditions of the primary reflector. An example of the combined focus cross effect is seen in Figure 3-3, which has been photographed through a lens to allow for visual distinction between the very high intensity focus area, and the lower intensity areas which surround it. The highest light intensity is still observed at the central location where it is desired, but its intensity would be greater if all exterior light were focused properly.

Figure 3-3. Example of combined focus cross effect, resulting from end conditions on primary and secondary reflectors.

3.1.1. Effect of Material and Thickness

Throughout a testing period from spring 2009 to fall 2012, many different materials were used as reflectors by LIFE on two-stage concentrator prototypes. These materials include:

- 430 mirror finish stainless steel with PVC coating
- Glass mirrors
- Plexiglass mirrors - clear mirror acrylic
- Anomet reflective aluminum sheets, Anolux MIRO-SILVER
- Reflectec aluminum reflective film

430 mirror polished stainless steel was the first material used due to being readily available and durable. The stainless steel provided acceptable initial reflectance, but very quickly the polished surface began to tarnish, even while being stored indoors protected from wind and rain, and the brightness and temperature of the resulting focused image decreased.

Regular household glass mirrors were then installed into modified reflector frames, as it was thought that they would provide better long-term reflectance. Mirror thicknesses of $3 \mathrm{~mm}, 5 \mathrm{~mm}$ and 7 mm were installed into the primary reflector frames of the Prometheus Beta-Gamma prototype, which had a focal length of 15^{\prime}. It was found that the 7 mm glass mirror could not bend sufficiently to take the required curve shape, and it shattered while being installed. Likewise, none of the glass mirrors were capable of flexing to take the shape of the 5' focal length secondary reflector curve of the Prometheus Beta-Gamma Prototype.

The 3 mm and 5 mm glass mirrors were installed in separate primary reflector frames and tested directly against one another. For both mirror thicknesses, the reflectors were used
to generate a line focus on a white board held at an appropriate distance (15') from the reflector. An example of the line focus generated can be seen in Figure 3-4. Using a type K thermocouple, a temperature reading was then taken in the concentrated line, and the upper and lower spillage regions. There was a measurable difference in temperature between the 3 mm and 5 mm glass mirrors with the 3 mm achieving a peak focus temperature of $157.2{ }^{\circ} \mathrm{C}$ while the 5 mm glass achieved a peak focus temperature of 122.5 ${ }^{\circ} \mathrm{C}$. While these results suggest that the 3 mm mirror holds a better surface profile than the 5 mm mirror and therefore more accurately reflects light rays, it is important to note that the reflective surface of these mirrors is located behind the glass, unlike a reflective foil laminated to the front face of a substrate plate, and therefore will refract light rays through a glass area before reflecting it back. It should be noted that the two tests were not conducted simultaneously, and therefore the difference in temperatures achieved could be a result of different atmospheric conditions rather than a difference in performance between the two mirror thicknesses.

Figure 3-4. Example of line focus generated from material thickness experiment.

With the 3 mm performing slightly better, and being a lighter mirror, it was chosen to be installed into the primary mirror frames of the Prometheus Beta-Gamma prototype, and both the primary and secondary reflector frames of the Prometheus Gamma II prototypes,
which have 30^{\prime} and 10^{\prime} focal lengths respectively. As glass could not be installed into the secondary mirror frames of the Beta Gamma prototype, a more malleable acrylic Plexiglas reflector was installed in its place.

While the performance of the glass mirrors was quite good during fluid heating based thermal efficiency experiments, and material melting experiments, it was not seen as a permanent solution due to the lack of durability with glass products. A material as brittle as glass was deemed both a safety and performance hazard when being left in operation largely unmonitored and exposed to the elements for a continuous and prolonged length of time. The acrylic secondary reflector satisfied the durability requirements under which the glass reflectors fell short, but did not achieve a high enough level of concentration performance.

A purpose designed product was therefore sourced that would achieve and maintain a very high reflectivity value, while being durable enough for continuous access to most weather conditions. Anolux MIRO-SILVER, a solid reflective material with 98% total light reflectivity seemed like an optimal choice due to its high reflectance and ability to withstand corrosion and high temperatures. However, due to the very thin dimensions of the MIRO-SILVER sheets, the sheets did not properly conform to the desired curve profile, and very large end conditions were produced, much worse than those documented during initial observations of the "hamburger bun" effect. An effort was made to increase the rigidity of the MIRO-SILVER product by attaching it to a substrate sheet of $1 / 8^{\prime \prime}$ thick 6061 aluminum to produce a stiffer reflector, however issues arose with any
glues used to attach the MIRO-SILVER to the substrate sheet. Using a vacuum bag technique to provide consistent and equal pressure between the reflective product and substrate plate, lighter spray on adhesives were found to provide a smooth, flat surface reflective surface free of many surface irregularities, however it was discovered that these adhesives did not provide sufficient bonding strength, especially when the reflector was subjected to a parabolic curvature. Thicker adhesives, 3M 2216 B/A and 3M 4323, were then used in the same vacuum bag system to hold the MIRO-SILVER product to the substrate sheet and succeeded in bonding the two sheets together, however this caused pronounced surface irregularities between the two surfaces, negating the benefits of the very high reflectivity promised by Anolux. A process was also developed to bond the MIRO-SILVER product to the substrate plate in a pre-curved manner so as to not stress the adhesive after hardening, however this made no change to the amount of ripples and surface irregularities on the resulting reflective face.

Knowing that a lamination process was likely to be required if a purpose built reflective material was to be used, a different product was tested that was specifically designed to be laminated to a substrate sheet. Reflectec aluminum reflective film was selected due to the fact that it contains a self-adhesive coating on its reverse side. After several failed attempts of performing the lamination manually in house, LIFE outsource the lamination of the Reflectec aluminum foil to a manufacturer that specializes in lamination, and the resulting product far exceeded anything that had been previously tested in both terms of performance and projected durability. To this end, it was concluded that the Reflectec foil, laminated to some sort of substrate plate would be the preferred composition of the
two-stage concentrator reflectors moving forward, however the specifics of the plate on which to laminate the reflective foil would need to be determined, and represent a large portion of the work to be done in the FEM sections of this report.

3.1.2. Effect of Holding Method

Several methods for holding mirrors have been put into experimental practice on the Prometheus style two-stage concentrators. They include:

- Mating male and female curve strips: These 8^{\prime} arc length aluminum strips are cut to the correct parabolic curve using CNC milling methods. The bottom (female) strips are mounted rigidly to a solid mirror box. The reflector plate is placed over these strips so that it takes the same shape as the curve strips. The upper (male) curve strip contains slotted holes that allow for it to be pressed down on to the reflective surface and be tightened to the same mirror box as the female strips. This results in the full constraint of the two 8^{\prime} ends of the mirror but has free ends along the 4^{\prime} ends of the reflector. An additional drawback to this method is that it calls for a $1 / 4$ " region of each 8^{\prime} length to be covered by the curve strip, effectively reducing the power of each reflector by 1.04%.
- Mating male and female curve strips with end stiffeners: The same mating curve strip installation is employed to control the curvature of the 8^{\prime} length of the reflector, however additional stiffeners are added to the 4^{\prime} ends of the reflector to reduce the effect of the free end condition focal aberration. Two types of stiffeners are typically employed. One type of stiffener, which sees most usage with glass mirrors and is shown in detail in Figure 3-5, consists of a piece of aluminum angle epoxied to a piece of mirror hardware that is specifically designed to hold glass mirrors while
using a rubber gasket. The other form of edge stiffener used is a 2 "x2" block of aluminum along which a $1 / 2$ " deep slot is machined of a thickness to match the reflector with which it will be used, and that is inserted over the 4 ' end of the reflector. In both cases, additional reflective area is covered.

Figure 3-5. Common glass mirror end stiffener.

- Drilled and tapped female curve strips: To allow for the addition of a central curve strip, and thus reduce the distance between areas of control from 4^{\prime} to 2^{\prime}, a method for screwing the mirrors directly into the female curve strip was developed. Small holes were drilled and tapped at approximately $12 "$ intervals into CNC cut aluminum female curve strips in a manner that matched small holes drilled in an aluminum reflector. The mirror is then placed on the reflector strips (which are spaced appropriately by using threaded rods and nuts) and machine screws are used to hold the mirror in place. The ends of the curve strips are cut away to allow for a 4^{\prime} length of 1 "x 1 " $x 1 / 8$ " aluminum angle to be placed along the 4 foot end of the reflector, allowing for the reflector to be fixed at 12 " intervals along each of its 4 ends. While the screw's heads do cover some reflective area of the reflector, this is significantly less than having entire $1 / 4$ " edges of the reflector being covered by a male curve strip.

This method is quite labour intensive to prepare and install compared to the mating curve strip method, as it must be ensured that all of the holes in the mirror and strip/angle frame line up closely.

- Full support structure: Small scale experimentation has been conducted on using a full support system behind reflectors. A scale model of a Prometheus style two-stage solar concentrator has been developed for the purpose of testing different methods of solar tracking. For this model, high density Styrofoam was prepared to contain concave parabolic curves of appropriate focal lengths using a hot wire cutting system. As expected, this model did not experience any end conditions, as there are no real 'ends' in the sense that there are on the full-scale reflectors. The entire area is completely supported and therefore no sagging can take place so long as the Styrofoam remains structurally sound. Scaling up a full support structure to an $8^{\prime} \times 88^{\prime}$, 16'x16' or larger as planned by LIFE seems impractical due to the quantity and cost associated with procuring so much high density Styrofoam, cutting it to the proper profile, and installing it in place within a working device.

An experiment has been conducted using the Prometheus Gamma II prototype to qualitatively measure the difference of a resulting focus when different stiffeners were added to glass reflectors being held in place by the mating curve strip method. An initial testing took place on the apparatus before an improved slotted stiffener was added to the end of one of the glass secondary mirrors. Styrofoam was used to strategically cover the ends of the mirrors, and observations were made to relate what portion of the reflectors
was responsible for different components of the resulting focus. The test apparatus with the final 1' of each reflector covered by non-reflective Styrofoam is seen in Figure 3-6.

Figure 3-6. Gamma II prototype with final 1' of each secondary reflector covered in non-reflective Styrofoam.

With all 8 reflector ends covered, as seen in Figure 3-6, the focus (Figure 3-7) contained very little horizontal spillage, although it still contained vertical spillage due to the end conditions of the primary reflectors. It is important to understand that for the purpose of this experiment; only horizontal spillage should be considered. By systematically removing different amounts of the non-reflective material, more and more of the horizontal spillage became apparent in the focus, eventually producing the focus seen in Figure 3-3.

From this experiment, the following was concluded:

- The end conditions of the mirrors are responsible for the 'cross' effect on the light focus.
- The focus is relatively tight when the ends of the mirrors are not considered.
- The outside end conditions have more of an effect on the focus dispersion than the interior end conditions.
- The end conditions on one side of the mirror cause a cross on both sides of the focus. Left side is not just responsible for the left side of the cross, for example.
- The end conditions of the two sides "stack" on the focus. Not necessarily making the cross longer, but making the light in the cross more intense.

Figure 3-7. Gamma II focus image with all secondary reflector ends covered.

The next phase of this experiment was to add a slotted stiffener to one of the reflector ends, and compare how this mirror focuses in comparison with an epoxied on stiffener. A slotted stiffener, which makes a very tight connection to the glass mirror and provides a more rigid connection than the original stiffeners, that contain a rubber gasket around the mirror and therefore allow for some flex, was added to the outside edge of the bottom right secondary reflector. Unlike the previous phase of this experiment, where the end conditions were covered and the focus of the central portion of the reflectors was explored, in this phase of the experiment every region except for the ends to be studied were covered, as seen in Figure 3-8, allowing for isolated observation of the areas in question.

Figure 3-8. Gamma II prototype with all secondary reflectors covered in nonreflective Styrofoam except for final 1' of secondary reflectors \#2, and \#4 revealed, allowing for isolated observation and comparison of different stiffeners.

Figure 3-9. Focus image with all secondary reflectors covered except for outside 1, of secondary reflectors \#2 and \#4, as seen in Figure 3-8.

By comparing Figure 3-10 with Figure 3-11, the difference of focus with the notched stiffener is seen. It is quite clear from these images that the new stiffener produces a more controlled focus than its predecessor.

Figure 3-10. Focus image with all secondary reflectors covered except for outside 1' of secondary reflector \#4, which is stiffened by machined block stiffener.

The conclusions from comparing different vertical positions of each mirror's end condition (not shown here) were less convincing. The resulting observations suggest that using the older stiffener the top and bottom portions of the end condition scramble the focus more than the center two feet of the mirror. However, the bottom mirror, with the stiffer straightened doesn't agree with the upper observation and showed that the uppermost quadrant produces the most focus deterioration, while the other three quadrants are relatively similar.

Figure 3-11. Focus image with all secondary reflectors covered except for outside 1 , of secondary reflector \#4, which is stiffened by common glass stiffener.

This experiment was then modified so a 6 " region of mirror was left exposed instead of a 1 ' region. It was found that when leaving a 6 " region at the edge exposed; a much less
desirable focus was achieved compared to leaving the 6 " inside of that region exposed, as shown in Figure 3-12 and Figure 3-13.

This procedure was then taken a step further, and the foam cover was slid across to identify at which point the tail portion of the focus started to appear. It was found that with the new stiffener, the final 2 " of mirror are responsible for the end condition deterioration. With the older stiffener, the final 4" of mirror are responsible for end condition focus scatter.

Figure 3-12. Focus image with all secondary reflectors covered except for a region spanning from 6 " to 12 " from the outside edge of secondary reflector \#4.

Figure 3-13. Focus image with all secondary reflectors covered except for outside 6" of secondary reflector \#4.

Work was also conducted to test the theory of 'full support' of a reflector, at a small scale. 19.5 "x13" and 13 "x13" pieces of high density Styrofoam were cut to contain parabolic concave faces of 36 " and 12 " focal lengths respectively. These cuts were performed using a hot wire tool guided by to scale guides placed along the edge of the Styrofoam blocks. Pieces of Anomet reflectors were then epoxied to the Styrofoam pieces using a spray on adhesive. The immediate results were very impressive; due to the complete support of the reflectors, minimal surface irregularities and end conditions were observed, producing as close to perfect parabolic reflective surfaces as LIFE have ever produced. However, it was found in the coming weeks that the reflective surface didn't maintain its bond with the Styrofoam and the reflective surfaces fell off of their support backing. It was also concluded that while this could be an acceptable method for bench size reflectors, the logistics of fully supporting a large scale reflector (both size, and cost)
result in this not being a solution that should be presently pursued as the reflector holding method of choice.

3.1.3. Effect of Aspect Ratio

As discussed, several aspect ratios were used when developing these prototypes. It is desirable to maintain a $4^{\prime} \times 8^{\prime}$ reflector, but by providing a central support strip the effective aspect ratio can be changed to $2^{\prime} \times 8$ '. The Solar+ 4600 uses such $2^{\prime} \times 8$ ' aspect ratio, and by comparing the resulting focal image from 2 ' $x 8^{\prime}$ reflectors (Figure 3-14) with that of 4'x8' reflectors (Figure 3-15) the resulting focal quality can be seen to be greatly improved when using $2^{\prime} \times 88^{\prime}$ reflectors. For scaling reference, the plate in Figure 3-14 is 12 " wide, while the plate in Figure $3-15$ is 18 " wide, and is scribed with a 1 "x1" grid. The 2'x8' aspect ratio reflectors produce a focus that is completely contained within a 5" horizontal region. Meanwhile, the 4 ' $x 8$ ' aspect ratio reflector has a focus that is horizontally contained within a 14 " region.

It should be noted that this is not a quality single variable comparison between these two systems, as these two focal images are also the result of differences in material, focal length and holding methods. However it does offer partial indication that a narrower aspect ratio, consisting of a decreased span between the two curve defining edges, will yield a better reflector profile, and therefore tighter focal point.

It would be desirable to build various mirrors to different specifications, and accurately measure the deflection of the mirror at different locations, however limitations in available building tolerances and precision to not allow for this methodology of research.

Figure 3-14. Focus image resulting from $2^{\prime}{ }^{\prime} \times 8$ ' aspect ratio.

Figure 3-15. Focus image resulting from $\mathbf{4}^{\prime} \times 8$ ' aspect ratio.

3.2.FEM

The process used to generate computer simulations of plates under different conditions is described in the following sections. The proposed plate simulations would then be laminated with a very thin reflective film.

3.2.1. Define Baseline Model

To accurately study the surface irregularities related to different design characteristics, a baseline model was formulated, upon which individual variables would be changed.

The curve that was selected for this baseline model is the same that is used for the primary reflector on LIFE's Solar+ 4600. The primary mirror of the Solar+ 4600 is an 8'x8' area, composed of two 4'x8' sheets. The sheets are curved to a parabolic shape with a 15^{\prime} focal length. The section of the curve that is used is then offset from the zero region of the curve for geometric purposes and can be defined by formula 3.1:

$$
\begin{equation*}
y=\frac{x^{2}}{720} \text { for } 75 \leq x \leq 165.85 \tag{3.1}
\end{equation*}
$$

where; x and y are defined in inches.

As the reflectors to be modeled in this study will be mostly 8^{\prime} in length, the arc length for the parabolic curve shall be set to 8^{\prime}. Using the arc length equation 2.4 , the parabolic formula and a lower limit of 75 , the x value of the upper limit of the curve definition was determined in an iterative manner to give a curve arc length of 8^{\prime} :

$$
\begin{equation*}
\int_{75}^{U} \sqrt{1+\frac{x^{2}}{129600}} d x=96 \tag{3.2}
\end{equation*}
$$

It was found that for a value of $\mathrm{U}=165.85$, the solution to the integration is 96.0037, which is close enough to proceed. The determined value of U allows for twodimensional graphing of the desired parabolic curve, while maintaining an arc length that matches that of an 8^{\prime} reflector. A graph of this curve, with a focal length of 15^{\prime}, an arc length of 96.0037 ", a lower limit of $x=75 "$ and an iteratively solved upper limit of $x=165.95$ is shown in Figure 3-16.

Figure 3-16 - Parabolic curve generation.

Data points were selected every 12 " giving the following set of points:
Table 3-1. Baseline parabolic curve points in inches.

x	75.00	87.00	99.00	111.00	123.00	135.00	147.00	159.00	165.85
y	7.813	10.513	13.613	17.113	21.013	25.313	30.013	35.113	38.204

These values were then zeroed, by subtracting 75 from each x value and 7.813 from each y value:

Table 3-2. Zeroed baseline parabolic curve points in inches.

\mathbf{x}	0.000	12.000	24.000	36.000	48.000	60.000	72.000	84.000	90.850
\mathbf{y}	0.000	2.700	5.800	9.300	13.200	17.500	22.200	27.300	30.391

Finally, the values in inches were converted to mm by multiplying each value by 25.4 , giving the curve points that would be used for the baseline model.

Table 3-3. Zeroed baseline parabolic curve points in mm.

\mathbf{x}	0.00	304.80	609.60	914.40	1219.20	1524.00	1828.80	2133.60	2307.59
\mathbf{y}	0.00	68.58	147.32	236.22	335.28	444.5	563.88	693.42	771.921

To simulate a 4'x8' sheet using Hypermesh v11.0, a curved line as defined above was plotted at $\mathrm{z}=0$, and another line was plotted at $\mathrm{z}=1219.20$. These two lines were then used to define a ruled surface.

Using the PSHELL Hyperworks card, a thickness of this surface is defined in mm. Using the MAT1 Hyperworks card, the material properties of a given material are entered in MPa and $\mathrm{g} / \mathrm{mm}^{3}$. In the PSHELL card, MID3 was intentionally left blank as to neglect transverse shear effects, and model the plates as a Kirchhoff plate. Using the GRAV Hyperworks card, a gravitational force was entered in $\mathrm{mm} / \mathrm{ms}^{2}$ and directed in the negative y direction.

A first order quadrilateral automatic mesh was then established over the curved surface, and the model was solved using the linear static OptiStruct solver.

The nodes along the 8^{\prime} lengths of the surface were then constrained about all six degrees of freedom.

The solution file was then opened using Hyperview, and analyzed for displacement over its entire face. A displacement away from the initial (desired) location of reflector plate
represents a source of surface irregularity, the severity of which can be measured by the magnitude of the displacement. When looking at the results of these FEA models, an ideal case would show no displacement across the entire region of study.

3.2.2. Model Validation

To validate that the model output yielded results that could be trusted, a model validation was performed, comparing the results of a simple Hypermesh model with hand calculated displacement values for a similar plate.

By treating a flat 4 ' $\times 8$ ' $\times 1.628 \mathrm{~mm}$ aluminum plate as a beam fully constrained along its 4' length, a maximum deflection along the center of the beam was calculated using the formula:

$$
\begin{equation*}
\text { maximum deflection }=\frac{W L^{3}}{384 E I} \tag{3.3}
\end{equation*}
$$

where the deflection is given in M, W is the load applied on the plate (in this case simply the gravitational weight of the plate) in N, L is the length of the plate in meters, E is the Young's modulus of aluminum in Pa , and I is the moment of inertia in $\mathrm{m}^{\wedge} 4$ which is given by the equation:

$$
\begin{equation*}
I=\frac{b h^{3}}{12} \tag{3.4}
\end{equation*}
$$

where b and h are the base and height of the cross section of the plate respectively, given in meters.

Therefore it follows that the maximum deflection of such a beam under load of its own weight should be:

$$
\max \text { deflection }=\frac{128.19 * 2.4384^{3}}{384 * 6.9 * 10^{10} * 4.38 * 10^{-10}}=0.160 \mathrm{~m}
$$

A very simple Hyperworks computer model was then devised to simulate the same scenario and determine if the basics of the computer model are valid. The model used the same dimensions as noted above, 2428x1219x1.628 mm aluminum plate experiencing a vertical gravitational load using the Hyperworks GRAV card and which is equivalent to the 128.19 N load used in the hand calculation. By splitting the plate into only 3 cells, and executing the solver as described in section 3.2.1, a maximum deflection of 0.090 m was achieved. Such a coarse mesh size was chosen to make the model as simple as possible, however this very coarse mesh size can result in less accurate results, therefore the same model was run again using a 300 mm square mesh size (approximately 32 cells) and a 50 mm square mesh size (approximately 1170 cells). The results of these two models showed maximum deflections of 0.181 m and 0.158 m respectively. To see these maximum displacements converging towards the expected result of 0.160 m is very encouraging; particularly with the 50 mm square mesh size yielding a maximum deflection within 2% of the expected value.

A second validation model was analyzed comparing a 4'x 8 ' $x 1.628 \mathrm{~mm}$ aluminum shell fully constrained on all 4 sides experiencing a gravitational force exerted normal to its large face. A Hypermesh model, set up as above, with a quadrilateral mesh size of 15 mm displayed a maximum deflection of 8.85 mm , located at its central most point.

The same plate scenario was then calculated by hand, using the classical plate theory equation:

$$
\begin{equation*}
\text { max deflection }=c_{1} \frac{p \operatorname{Min}\left(L_{x}, L_{y}\right)^{4}}{E h^{3}} \tag{3.5}
\end{equation*}
$$

where $c_{1}=0.0277$ for an aspect ratio of $4{ }^{\prime} \times 88^{\prime}$.
The calculated maximum deflection for this case was then found to be 8.89 mm , which represents a difference between modeled and calculated results of less than 0.8%. It is therefore concluded that the basics of this Hypermesh model have been validated.

3.2.3. Convergence Analysis

To begin any meaningful modeling, a proper mesh size must be selected. As previously discussed, a finer mesh size will likely produce more accurate results, but at the expense of increasing computational demand.

An h-method convergence analysis was conducted on a 0.79375 mm thick sheet of carbon steel set up as per the previous section. Several models were set up with progressively finer mesh sizes. In each case, the maximum displacement and the maximum vonMises stress were recorded. The results of this analysis are found in Table 3-4.

Table 3-4. Results of h-method convergence analysis.

Mesh Size $(\mathbf{m m})$	\# of Elements	Max Displacement $(\mathbf{m m})$	Max Stress (MPa)	\% Change in Max Stress
200	72	7.63	9.99	N/A
100	288	6.27	14.94	49.55
50	1176	6.13	23.91	60.04
25	4802	6.11	31.01	29.69

Mesh Size $(\mathbf{m m})$	\# of Elements	Max Displacement $(\mathbf{m m})$	Max Stress (MPa)	\% Change in Max Stress
15	13203	6.105	34.74	12.03
10	29768	6.105	37.04	6.62
8	46640	6.104	38.11	2.89
7	61176	6.104	38.69	1.52
6	83741	6.104	39.32	1.63
5	121190	6.103	40.02	1.78

The maximum displacement plotted against the number of mesh elements can be seen below in Figure 3-17.

Figure 3-17. Maximum local displacement vs. \# of mesh elements.

Likewise, the maximum vonMises stress is plotted against the number of mesh elements in Figure 3-18.

Figure 3-18. Maximum local vonMises stress vs. \# of mesh elements.

Due to the analysis of these models being primarily based on the deflection results, it could be stated that a mesh size of 50 mm (1176 elements) is sufficient to generate accurate results of the model. It is reasonable to select a mesh size that has converged by displacement rather than stress given the following:

1) Displacement is the primary value of interest.
2) Stresses values of approximately 40 MPa are well below a yield stress of 250 MPa for the material tested. A verification of max modeled stress compared to yield stress of the material being modeled should be performed after each model.

However, to give more confidence in the resulting model outputs, and to allow for better interpretation of this data should it be required, a mesh size of 8 mm (46640 elements) was selected.

3.2.4. Effect of Material and Thickness

The effect of selected material and thickness of plate were studied simultaneously by comparing plain carbon steel and 6061 aluminum plates over a range of thicknesses. The reflectivity of each of these materials is irrelevant, as the final reflectivity will come from a reflective laminate film, and not the metal substrate plates. Each of the plates modeled in this section were 4 ' x 8 ' and curved along the same points as defined in section 3.2.1. All variables, with the exception of material properties and thickness, were held constant between each model used in this section.

Steel plate thicknesses were selected using round imperial unit fractions and were based on having reasonable masses. While a very thick plate could well provide a resulting surface profile with less overall displacement, the requirements of building dual axis rotating structures with prohibitively heavy reflectors puts these plates out of the realm of possibility. The selected steel plate thicknesses are shown below in Table 3-5.

Table 3-5. Model numbers of aluminum thickness models.

Model \#	Thickness $\left({ }^{\prime \prime}\right)$	Approximate Gauge	Thickness $(\mathbf{m m})$	Weight (kg)
1	$1 / 32$	21.5	0.79375	18.87790
2	$3 / 128$	24	0.59531	14.15842
3	$1 / 64$	28	0.39688	9.43895
4	$3 / 256$	30	0.29766	7.07921
5	$1 / 128$	35	0.19844	4.71947

Aluminum plate thicknesses were then selected based on two criteria:

1) To match the weights of the steel plates, which provides an equal comparison from a mechanical design standpoint with respect to the rest of the concentrator's structure.
2) To match the thicknesses of the steel plates, which provides an equal comparison per unit volume of material.

The details of the aluminum plates modeled are shown in Table 3-6.
Table 3-6. Model numbers of aluminum thickness models.

Model \#	Thickness (")	Approximate Gauge	Thickness $(\mathbf{m m})$	Weight (kg)
6		11	2.35185	18.87790
7		13.5	1.76389	14.15842
8	17	1.17593	9.43895	
9		19.5	0.88194	7.07921
10	$1 / 32$	20	0.79750	6.40139
11	$3 / 128$	23	0.59531	4.77845
12		23	0.58796	4.71947
13	$1 / 64$	26	0.39688	3.18569
14	$3 / 256$	29	0.29766	2.38926
15	$1 / 128$	32	0.19844	1.59284

To remain in agreement with the rest of the inputs for this Hyperworks model, the thickness of plate was entered using mm .

For all of these models a gravitational force of $9.81 \mathrm{~m} / \mathrm{s}^{2}$ was applied in the negative y direction, and the two 8 ' lengths of the models were constrained in all degrees of freedom. Furthermore, the exact same mesh, as selected via the convergence analysis,
was used for each model. The material and force properties entered into Hyperworks for this analysis are found in Table 3-7.

Table 3-7. Material and force properties used for FEA modeling.

	ASTM A366 Steel	Aluminum 6061	Units
Gravity:	$9.81 \mathrm{E}-03$	$9.81 \mathrm{E}-03$	$\mathrm{~mm} / \mathrm{ms}^{2}$
Young's modulus	$2.10 \mathrm{E}+05$	$6.90 \mathrm{E}+04$	MPa
Density	$7.80 \mathrm{E}-03$	$2.70 \mathrm{E}-03$	$\mathrm{~g} / \mathrm{mm}^{3}$
Poison's ratio	$3.00 \mathrm{E}-01$	$3.30 \mathrm{E}-01$	

3.2.5. Effect of Holding Method

The effect of holding method on the resulting reflective field was studied independently of other variables. For all of the following models the plate was chosen to match the reflectors currently used as the primary mirror of the Solar+ 4600, a 14-gauge aluminum sheet that measures 1.628 mm in thickness. Sheet dimensions and curvature were selected to match the baseline model described in section 3.2.1. Standard aluminum mechanical properties were used as described in section 3.2.3.

Two main types of changes to the plate holding method were studied:

1) Holding the reflector along only its long edges compared with holding that same reflector along all four edges.
2) The method under which the reflector would be held along its edges.

To simulate two edges versus four edges, the constraints of the model were changed accordingly to provide limited degrees of freedom along only its long edges, or along all four edges.

Two methods by which each edge would be constrained were selected:

1) Full edge constraints. 6 degree of freedom limitation of every node along a given edge, simulating a full epoxy bond between the curves and the reflector. From a practical standpoint, this holding method reaches limitations when needing to replace a reflector, and increases the installation complexity of a large-scale device.
2) Select nodal constraints. Individual nodes along a given edge are limited about 6 degrees of freedom, simulating individual screws constraining the sheet at individual locations. The model being used was found to have a scale of $6 "=19$ nodes. Therefore, nodes were chosen in two scenarios:
a. Every 19 nodes, simulating a screw located every 6" along the edge of the reflector.
b. Every 38 nodes, simulating a screw located every 12 " along the edge of the reflector, the method currently used on the Solar+ 4600.

Table 3-8 outlines the holding method used for each of models 16 through 21.
Table 3-8. Model numbers of different holding methods

Model \#	Holding Method
$\mathbf{1 6}$	14 gauge aluminum, long edges fully constrained
$\mathbf{1 7}$	14 gauge aluminum, all 4 edges fully constrained
$\mathbf{1 8}$	14 gauge aluminum, screws every 6 inches along long sides

Model \#	Holding Method
$\mathbf{1 9}$	14 gauge aluminum, screws every 6 inches along all sides
$\mathbf{2 0}$	14 gauge aluminum, screws every 12 inches along long sides
$\mathbf{2 1}$	14 gauge aluminum, screws every 12 inches along all sides

3.2.6. Effect of Aspect Ratio

To study the effect of aspect ratio on the gravity induced displacement of a curved plate; plates of a constant material and thickness having various height and width dimensions were modeled.

Again, 14-gauge aluminum was selected as a baseline to stay consistent with the existing mirror used on the Solar+ 4600. In all models for this section, all four edges of the modeled plate were completely constrained about 6 degrees of freedom. Standard aluminum mechanical properties were used as described in previous sections.

A quadrilateral mesh size of 15 mm was selected to aid in computing time, given that the h-type convergence study had indicated that at a mesh size of 15 mm , maximum displacement of a similar curved plate had converged well within an acceptable tolerance.

For practical purposes, it was decided that the largest acceptable plate size should be 4'x8'. This selection was made to allow for all studied plates to be

- transported easily by a standard pickup truck,
- a minimal increase in overall unit packaged shipping dimensions,
- procured easily at a basic metals depot,
- easily manipulated during installation.

Three heights, and three widths were then selected by cutting the dimensions of the largest plate by a factor of two and a factor of four, yielding heights of $8^{\prime}, 4^{\prime}, 2^{\prime}$ and widths of $4^{\prime}, 2^{\prime}, 1^{\prime}$. A model matrix, Table 3-9, was constructed outlying the 9 combinations of these dimensions to be modeled, and corresponding model numbers for each combination.

Table 3-9. Model matrix for effect of aspect ratio study.

		Length		
		$\mathbf{2 '}^{\prime}$	$\mathbf{4}^{\prime}$	$\mathbf{8}^{\prime}$
Width	$\mathbf{1}^{\prime}$	Model 30	Model 27	Model 24
	$\mathbf{2 '}^{\prime}$	Model 29	Model 26	Model 23
	$\mathbf{4}^{\prime}$	Model 28	Model 25	Model 22

It should be noted that, aside from mesh size, Model 22 has the exact same characteristics as Model 17 from the effect of holding method analysis, and should therefore yield a very similar result.

The 8 ' region of curve to be modeled was selected to match the curves used in the previous studies;

$$
\begin{equation*}
y=\frac{x^{2}}{720} \text { for } 75 \leq x \leq 165.85 \tag{3.6}
\end{equation*}
$$

where the arc length would give 96 " height and the width would be defined by an identical line located at a given depth in the z direction. The outputs of this equation were then zeroed and converted to millimeters to match the unit scheme selected for use with Hyperworks.

The results of the previous studies, effect of material and thickness, and effect of holding method indicated that the area of maximum displacement was always found in the outermost region of the 8^{\prime} curve, that is to say the area of the parabola that contained the most slope. To this end, both the 4 ' and 2 ' length dimensions were selected to consist of the steepest 4^{\prime} and 2^{\prime} sections of the 8^{\prime} curve.

Therefore, for the 4' length:

$$
\begin{equation*}
\int_{U}^{165.85} \sqrt{1+\frac{x^{2}}{129600}} d x=48 \tag{3.7}
\end{equation*}
$$

It was found that for a value of $\mathrm{U}=121.28$, the solution to the integration is 48.0062 , which is close enough to use, giving equation 3.8

$$
\begin{equation*}
y=\frac{x^{2}}{720} \text { for } 121.28 \leq \mathrm{x} \leq 165.85 \tag{3.8}
\end{equation*}
$$

which is then solved, zeroed and converted to mm giving the x and y components to be modeled while the width would be defined by an identical line located at a given depth in the z direction.

And for the 2 ' length:

$$
\begin{equation*}
\int_{U}^{165.85} \sqrt{1+\frac{x^{2}}{129600}} d x=24 \tag{3.9}
\end{equation*}
$$

It was found that for a value of $\mathrm{U}=143.80$, the solution to the integration is 24.0054, which is close enough to use, giving equation 3.10:

$$
\begin{equation*}
y=\frac{x^{2}}{720} \text { for } 24.0054 \leq \mathrm{x} \leq 165.85 \tag{3.10}
\end{equation*}
$$

which is then solved, zeroed and converted to mm giving the x and y components to be modeled while the width would be defined by an identical line located at a given depth in the z direction.

Chapter 4: RESULTS AND DISCUSSION

In the present research the displacement of curved plates under a gravitational load was studied, in order to identify the effect of material selection, plate thickness, holding method, and aspect ratio, on the resulting plate. The theoretical research was studied using FEA, and then compared with the results of practical experiments conducted on similarly curved reflective surfaces. The results will be presented and discussed in the following sections.

4.1. FEM

The results of computer simulations of plates under different conditions are described and discussed in the following sections.

4.1.1. Effect of Material and Thickness

The two materials chosen for testing, plain carbon steel and 6061 aluminum, were compared with one another on two sets of metrics; based on using the same volume of material, and based on using the same weight of material. These particular types of steel and aluminum were selected based on their availability and low cost. As these materials are only responsible for the shape of the reflector, and not the reflective face, the reflectivity and ability to withstand weathering were not of immediate concern.

Tabulated results for this testing are found in Table 4-1. Graphical representations of each model output are found in Appendix A, however closer attention will be paid to a single model output as it is representative of all models discussed in this section.

Figure 4.1 displays the FEM results for model 7, the 1.76389 mm thick aluminum plate, fully constrained along its two 8^{\prime} lengths, showing the displacement profile of the reflector after gravitational loading. As indicated by the label in the bottom left of the image, this image displays a top down view of the reflector with the more curved region of the reflector appearing on the left hand side of the image. The 'hamburger bun' effect that had been observed during physical experimentation is observed, occurring at the two unconstrained 4 ' lengths. Two localized maximum deflections are found at the middle points of the unconstrained sides, surrounded by smooth semicircular transition regions between the maximum points and 0 deflection locations which compromise most of the plate.

Figure 4-1. Model 7: $\mathbf{1 . 7 6 3 8 9} \mathbf{~ m m}$ thick aluminum plate, fully constrained along two 8' lengths.

It is observed that for each model discussed in this section the FEM outputs look quite similar with the only differences being the value of the maximum deflection points, and the sizes of the transition regions. Furthermore, it is observed that a thicker plate tends to
have both a larger maximum deflection and larger transition area, however the larger transition area is caused by the fact that in each case the color scale runs from blue $=0$ to red $=$ maximum, meaning that for a model with a larger maximum deflection, regions of small are more apt to appear as blue.

Table 4-1. Model results for effect of material and thickness study.

Model \#	Material	Thickness (mm)	Max Displacement Mag (mm)	Max vonMises Stress (MPa)
$\mathbf{1}$	ASTM A366 Steel	0.79750	6.13	23.91
$\mathbf{2}$	ASTM A366 Steel	0.59531	8.56	44.5
$\mathbf{3}$	ASTM A366 Steel	0.39688	13.58	54.65
$\mathbf{4}$	ASTM A366 Steel	0.29766	18.67	62.69
$\mathbf{5}$	ASTM A366 Steel	0.19844	28.97	75.29
$\mathbf{6}$	Aluminum 6061	2.35185	1.62	6.65
$\mathbf{7}$	Aluminum 6061	1.76389	2.39	8.04
$\mathbf{8}$	Aluminum 6061	1.17593	4.00	10.37
$\mathbf{9}$	Aluminum 6061	0.88194	5.68	12.26
$\mathbf{1 0}$	Aluminum 6061	0.79750	6.41	12.98
$\mathbf{1 1}$	Aluminum 6061	0.59531	9.16	15.3
$\mathbf{1 2}$	Aluminum 6061	0.58796	9.16	15.3
$\mathbf{1 3}$	Aluminum 6061	0.39688	14.31	18.69
$\mathbf{1 4}$	Aluminum 6061	0.29766	19.65	21.45
$\mathbf{1 5}$	Aluminum 6061	0.19844	30.46	25.77

On a per weight basis, the steel models $1,2,3,4$, and 5 correspond to aluminum models $6,7,8,9$, and 12 . The maximum displacement of these models is shown plotted against plate weight in Figure 4-2.

Figure 4-2. Maximum displacement of steel and aluminum plates of equal weight.

It is plainly seen that as the thickness and/or weight of a plate increases, the amount of maximum displacement in the plate is reduced, resulting in a face profile closer to that of the designed parabola, yielding a tighter solar focus.

For each given plate weight, the only difference between the two models were the material properties (Young's modulus, density and Poisson's ratio), and the thickness of the plate. To attain the same plate weight, the aluminum plate must be thicker due to the lower material density. The ratio by which the aluminum plate must be thicker is proportional to the ratio of densities of the two materials; in this case the aluminum must
be 2.89 times thicker. The section modulus of a rectangular cross section with a neutral axis running horizontally through its vertical midpoint is given as:

$$
\begin{equation*}
S=\frac{w h^{2}}{6} \tag{4.1}
\end{equation*}
$$

where w is the width of the rectangle (unchanged for these models) and h is the height of the rectangle, or thickness in these cases. Since the h value is squared, an increase in thickness of 2.89 times would produce an increased section modulus of 8.35 . When then also accounting for steel being 3.04 stiffer than aluminum, it would be expected for an aluminum plate to perform approximately 2.74 times better than a steel plate of the same weight based on the following equation:

$$
\begin{equation*}
\frac{S_{\text {aluminum }} / S_{\text {steel }}}{E_{\text {steel }} / E_{\text {aluminum }}}=\frac{8.35 / 1}{210000 / 69000}=\frac{8.35}{3.04}=2.74 \tag{4.2}
\end{equation*}
$$

When comparing individual data couples of these models it is seen that aluminum does perform better than steel on a per weight basis, at roughly the same rate as predicted. It should be noted that the 2.74 estimate is likely much less accurate than the FEA model results as it does not take into account the Poisson's ratio of the two materials, the, exact location of material bending in each plate or any membrane stresses in the plate.

Table 4-2. Relative difference in maximum displacement between steel and aluminum plates of same mass.

Weight (kg)	Steel Displacement $(\mathbf{m m})$	Aluminum Displacement $(\mathbf{m m})$	\% Increase
18.87790	6.13	1.62	378
14.15842	8.56	2.39	358
9.43895	13.58	4.00	340
7.07921	18.67	5.68	329
4.71947	28.97	9.16	316

On a per thickness basis, the Steel models 1, 2, 3, 4, and 5 correspond to Aluminum models $10,11,13,14$, and 15 . The Maximum displacement of these models is shown plotted against the plate thickness in Figure 4-3.

Figure 4-3. Maximum displacement of steel and aluminum plates of equal thickness.

In this case, with a constant plate thickness across each set, we have a defined difference for each set of both material properties and weight. The density value used for steel in these models was 2.89 times greater than that used for aluminum. Therefore steel plates of an equivalent thickness would weight 2.89 times more, and would have 2.89 times more gravitational force. Meanwhile, the value of Young's Modulus used for steel in these models was 3.04 times greater than that of aluminum, meaning that the steel plates should be 3.04 times stiffer than aluminum plates when nothing else is considered. When
combining these two values, one would expect a steel plate to deflect 5% less than an aluminum plate of equivalent thickness based on the following equation:

$$
\begin{equation*}
\frac{E_{\text {Steel }} / E_{\text {aluminum }}}{\rho_{\text {steel }} / \rho_{\text {aluminum }}}=\frac{210000 / 69000}{.0078 / .0027}=\frac{3.04}{2.89}=1.054 \tag{4.3}
\end{equation*}
$$

When comparing individual data couples from these models, which are shown in Table 4-3, it is seen that the model results agree very closely with these expectations:

Table 4-3. Relative difference in maximum displacement between steel and aluminum plates of same thickness.

Thickness $(\mathbf{m m})$	Steel Displacement $(\mathbf{m m})$	Aluminum Displacement (mm)	\% Increase
0.79750	6.13	6.41	4.57
0.59531	8.56	9.16	7.01
0.39688	13.58	14.31	5.38
0.29766	18.67	19.65	5.25
0.19844	28.97	30.46	5.14

Given that a steel plate weighs and costs much more than an aluminum plate of equivalent thickness, an increase in displacement of approximately 5% is not enough to justify the usage of steel plating for reflectors of this sort. For this reason, from this point onward, only aluminum plates shall be considered in the optimization of a two stage concentrators reflectors.

4.1.2. Effect of Holding Method

With aluminum determined to be a better material selection than Steel on both an economic and per unit weight basis, an aluminum plate of 1.628 mm thickness was
selected as a baseline for studying the effects of different holding methods on a curved reflective plate. The results of this modeling are found in Table 4-4. Graphical representations of each model output are found in Appendix A.

Table 4-4. Model results for effect of holding method study.

Model $\#$	Number of Edges Constrained	Constraint Method	Max Displacement $(\mathbf{m m})$	Max vonMises Stress (MPa)
16	2	Full edge	2.648	8.47
17	4	Full edge	0.063	0.54
18	2	Nodes spaced by 6"	3.552	41.05
19	4	Nodes spaced by 6"	0.092	4.34
20	2	Nodes spaced by 12"	3.776	47.24
21	4	Nodes spaced by 12"	0.128	8.10

As can be seen, there are 3 sets of constraint methods, each modeled while constrained along two, and four edges. By dividing the maximum displacement of a two edge version of a constraint method $\left(d_{\max 2}\right)$ by the maximum displacement of a four edge version of a constraint method $\left(d_{\text {max }}\right)$, an improvement factor $\left(I F_{2-4}\right)$ is determined to quantify the improvement in maximum displacement by adding constraints along the third and fourth edges of the curved plate.

$$
\begin{equation*}
I F_{2-4}=\frac{d_{\max 2}}{d_{\max 4}} \tag{4.4}
\end{equation*}
$$

Tabulated results of $I F_{2-4}$ are found in Table 4-5.

Table 4-5. Improvement Factor ($I F_{2-4}$) of constraining third and fourth edges for
various holding methods

Constraint Method	Improvement Factor ($\boldsymbol{I F}_{2-4}$)
Full edges	41.71
Nodes spaced by 6"	38.63
Nodes spaced by 12"	29.52

It is expected that the improvement factor should be very large for all three of these cases. The maximum displacement for a two edge constrained curved plate as modeled is consistently found at the center of the unconstrained edge. Therefore, by adding full constraints to the third and fourth edges of the plate, what was once the area of maximum displacement has become a zero displacement location producing a much-improved overall profile.

Figure 4-4 shows the FEM output for model 17 an aluminum plate very similar to that shown in Figure 4-1, with the exception of a very small difference in material thickness, and all four sides of the reflector being constrained instead of only the two 8^{\prime} lengths. It is observed that instead of the familiar 'hamburger bun' effect, the localized maximum points are now forced inward, and are again surrounded by transition regions to smaller displacement values. It should also be noted that while there is much blue area in this image, the entire color range of Figure 4-4's scale would be classified as blue in Figure 41.

Figure 4-4. Model 17: 1.62814 mm thick aluminum plate, fully constrained along two 8^{\prime} lengths and two 4^{\prime} lengths.

When comparing different methods of constraining the plate to a given edge, as expected, it was shown that a plate with more constrained nodes resulted in a smaller maximum displacement.

With a mesh size of 8 mm selected, a 4'x8' plate consists of approximately 152 nodes along the 4 ' direction, and 305 nodes along the 8 ' direction. Therefore, when fully constraining all sides of a reflector plate, 910 nodes are constrained. When using screws spaced every $6 ", 44$ nodes are constrained. When using screws spaced every $12 ", 20$ nodes are constrained. It is seen in Table 4-6 that while systematically constraining more nodes will always yield a better maximum displacement, there are diminishing returns on each node constrained.

Table 4-6. Maximum displacement per constrained node for various four edge holding methods

Constraint Method	Nodes Constrained	Max Displacement $(\mathbf{m m})$	Max Displacement / Constrained Node $(\mathbf{m m})$
Full edges	910	0.0635	$6.98 \mathrm{E}-05$
Nodes spaced by 6"	44	0.0920	$2.09 \mathrm{E}-03$
Nodes spaced by 12"	20	0.1279	$6.40 \mathrm{E}-03$

Figure 4-5 shows model 21, an aluminum plate of same thickness as Figure 4-4, constrained along all four sides by nodal constraints spaced by 12 ". A wavelike pattern of 0 displacement transitioning to a small displacement is seen around each of the constrained nodes, and the overall effect results in localized maximum deflections of approximately twice those seen in the fully constrained variant. In Figure 4-6 model 19, the plate with four edges constrained by nodes spaced by 6 " is shown, and it is observed that by doubling the number of constrained nodes on the outside edges, the resulting FEM output looks very similar to that of model 17 , however with a larger maximum deflection, and smaller regions of 0 deflection around its outside border. Given that as you add more and more constrained nodes to the outside edge of a reflector it approaches the fully constrained edges, it is expected that as the constrained edge nodal spacing is decreased, the FEM outputs should look more and more like that of Figure 4-4.

Figure 4-5. Model 21: 1.62814 mm thick aluminum plate, point constraints spaced every $12^{\prime \prime}$ along two 8^{\prime} lengths and two 4^{\prime} lengths.

Figure 4-6. Model 19: 1.62814 mm thick aluminum plate, point constraints spaced every $6^{\prime \prime}$ along two 8^{\prime} lengths and two 4^{\prime} lengths.

Much like the other design criteria being considered, method for holding the mirrors becomes as much an economical design decision as it is a scientific design decision. It has been shown that a vast profile improvement is achieved by restraining all four edges of a reflecting plate, and in almost all cases this should be performed due to the minimal
cost of building a square plate frame compared to a strip mirror frame. This cost is close to inconsequential as the material constraining the $3^{\text {rd }}$ and $4^{\text {th }}$ edges mustn't be curved, like the longer edges, and therefore can be off the shelf metal stock, as opposed to CNC cut strips used for the $1^{\text {st }}$ and $2^{\text {nd }}$ edges.

Constraint method however, is a much more difficult decision. Full constraint along all four edges, most likely achieved by some sort of epoxy, offers the best focal profile of the methods selected, and requires relatively few labour hours, however in the event of a reflector being damaged and needing to be replaced, a repair process becomes much more complicated. The saving in labour hours due to simply applying an epoxy instead of accurately drilling and installing screws, is in part mitigated by the fact that if the installation of the reflector sheet to the curve strips is to be performed in the field, there is a significant reduction in quality control as opposed to an in shop procedure, and if the installation of the reflector sheet to the curve strips is performed in shop, there is a significant increase in shipping size and therefore shipping costs. If the decision is made to use screw based installation for reasons of ease of mirror replacement, maximizing in shop work load and minimizing shipping dimensions, a decision must be made on the spacing between the mounting screws. Assuming that the manufacturing will be conducted in a sophisticated environment that can automate the location of matching threaded holes on both the strips and plates, then it would seem that the improved surface profile would outweigh additional machining time and installation time per mirror. However, if the manufacturing is performed in a less sophisticated manufacturing environment where holes must be located and/or drilled by more manual means, then the
slightly improved surface profile is likely not worth the increase in manufacturing difficulty. Finally, the nature of the final application should be considered when considering the spacing requirement between mounting screws. An application that requires as high a temperature as possible (such as metal melting or chemical processing), will therefore require as tight a focus as possible, and it follows that it is more likely valid to choose an installation configuration with more mounting screws. Conversely, an application that requires a lower temperature over a wider area (such as steam production), could more likely justify sacrificing some quality in surface profile quality to minimize initial building costs.

4.1.3. Effect of Aspect Ratio

Three different widths and three different lengths of 1.62814 mm thick aluminum plates, being fully constrained about all four of their edges, were tested, yielding 9 different combinations as shown in Table 4-7.

Table 4-7. Model matrix for effect of aspect ratio study.

		Length		
Width		$\mathbf{2}^{\prime}$	$\mathbf{4}^{\prime}$	$\mathbf{8}^{\prime}$
	$\mathbf{2}^{\prime}$	Model 30	Model 27	Model 24
	$\mathbf{4}^{\prime}$	Model 29	Model 26	Model 23

The maximum displacement of each of these models is shown in Table 4-8, while graphical outputs of each model are found in Appendix A.

Table 4-8. Maximum displacements (mm) for effect of aspect ratio study.

		Length		
		$\mathbf{2 '}^{\prime}$	$\mathbf{4}^{\prime}$	$\mathbf{8}^{\prime}$
Width	$\mathbf{1 '}^{\prime}$	0.02412	0.02399	0.02268
	$\mathbf{2 '}^{\prime}$	0.08439	0.08072	0.06993
	$\mathbf{4}^{\prime}$	0.09339	0.09950	0.06350

Initially, it was expected that as a single dimension grew, the resulting maximum displacement would increase, as a longer span between supported edges would indicate a larger bending moment from the gravitational force. While this is true for a length of 2', 4^{\prime} and a width of 2^{\prime}, it is observed that there is very little difference in maximum displacement for all three plates with a width of 1^{\prime}, and there is very little difference between the 4 'x' 4 , and 4 'x2' plates, and the $8^{\prime} \times 4{ }^{\prime}$ and $8^{\prime} \times 22^{\prime}$ plates.

By comparing Figures 4-7, 4-8 and 4-9, the transition between our benchmark 8 ' x 4 ' plate to narrower $8^{\prime} \times 2{ }^{\prime}$ and $8^{\prime} \times 11^{\prime}$ is observed. As shown, there is little change in the maximum displacement or general color profiles between the $8^{\prime} \times 4^{\prime}$ and $8^{\prime} \times 2^{\prime}$ FEM results, with both having localized maximum areas surrounded by transitional areas towards the constrained edges. In both cases the distance between the red/orange region to the 8^{\prime} length, along the z -axis is measured to be approximately 8 ". However, due to the smaller z -axis dimension of the $8^{\prime} \mathrm{x} 2^{\prime}$ model, this results in a smaller, more circular, region of relatively large deflection. When looking at the 8 'x1' model, Figure $4-9$, it is observed that the maximum deflections are much smaller than in Figure 4-7 and 4-9, and also that the two localized areas of high deflection begin to approach one another, almost forming a continuous region of relatively large deflection.

Figure 4-7. Model 22: $\mathbf{8}^{\prime} \mathbf{x} \mathbf{4}^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained about all edges.

Figure 4-8. Model 23: $\mathbf{8}^{\prime} \times{ }^{\prime}{ }^{\prime} 1.62814 \mathrm{~mm}$ thick aluminum plate, fully constrained about all edges.

Figure 4-9. Model 24: $\mathbf{8}^{\prime} \times 1$ ' 1.62814 mm thick aluminum plate, fully constrained about all edges.

By comparing Figures 4-7, 4-10 and 4-11, the FEM displacement outputs for $8^{\prime} \times 4^{\prime}$, $4^{\prime} \times 4$ ', and 2 ' $\times 4$ ' aluminum plates the effect of reducing the length of the plate is observed. It is found that by reducing the length of the reflector; the overall stiffness of the curved plate is decreased, resulting in a larger maximum deflection. This is observed as the maximum deflections of the two shorter plates are quite higher than that of the benchmark plate. While the 4 'x4' plate output shown in Figure 4-10 looks very similar to the right half of the $8^{\prime} \times 4$ ' plate output in Figure $4-7$, the 2 ' $x 4^{\prime}$ plate output shown in Figure 4-11 appears to have a much more condensed region of high deflection, as the high deflection area is forced to be more concentrated to maintain a distance from the fully constrained edges. It is also observed by comparing Figure 4-8 with Figure 4-10 and Figure 4-9 with Figure 4-11, two pairs of mirrors that have the same total face area via different dimensions, that decreasing the width of the reflector plate is a preferable
method of decreasing area of reflector piece, as Figures 4-8 and 4-9 show smaller maximum deflections.

Figure 4-10. Model 25: $\mathbf{4}^{\prime} \times \mathbf{x}^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained about all edges.

Figure 4-11. Model 28: $\mathbf{2}^{\prime} \times{ }^{\prime}{ }^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained about all edges.

To confirm that this model was working correctly, some additional trouble shooting models were studied. For the 4 ' length models, the top half of the 8 ' curve had been selected as it was expected to have a greater maximum displacement than the lower half of the 8^{\prime} curve. Three 4 ' models were prepared and analyzed using the lower portion of the curve instead of the upper portion of the curve. The results of these models, which are shown in Table 4-9, demonstrate lower displacement values as had been anticipated, but still show the same trend that had been observed for the 4^{\prime} length plates using the upper portion of the 8^{\prime} plate.

Table 4-9. Maximum displacements (mm) for $\mathbf{4}^{\prime}$ length models using bottom half of 8' curve.

Width (')	Maximum Displacement (mm)
1	0.0272
2	0.06338
4	0.07573

Next, the entire range of models 22-30 was studied again, but using flat plates of the same dimensions. The results of this experiment are shown in Table 4-10. It is observed here that there is an increase in all dimensions compared to the parabolic plates, because of the inherent stiffness associated with the pre-curvature of a surface. In the case of the flat plate with a normal gravitational force, there will be no membrane forces through the plate, and only predictable bending should be experienced. While these values do follow the trending direction that would be expected, their lack of consistency between the values of different rows and columns, implies that the results of such a study are very complex, and it is well possible that the results displayed in Table 4-8 are accurate.

Table 4-10. Maximum displacements (mm) for flat plate analysis

		Length			
		$\mathbf{2 '}^{\prime}$	$\mathbf{4}^{\prime}$	$\mathbf{8}^{\prime}$	
Width	$\mathbf{1 '}^{\prime}$	0.03379	0.03477	0.03477	
	$\mathbf{2 '}^{\mathbf{\prime}}$	0.2704	0.5408	0.5572	
	$\mathbf{4}^{\prime}$	0.5408	4.328	8.663	

Finally, to verify that the constraints chosen were not responsible for the unexpected results of Table 4-8, the exact same models were studied but with constraints only applied to the 8^{\prime} length edges of the plates, leaving the 4 ' length edges free. These results are shown in Table 4-11. While the values in Table 4-11 are much greater than those in Table 4-8, which is to be expected given the difference in holding method, some of the same trends are observed. Again, there is minimal difference in the 1 ' width plates, the 2^{\prime} width plates, and the 4^{\prime} width plates. However, an upward trend is experienced whenever a length is held constant, as would be expected. Given that we are now only applying constraints along the length and not the width, it is intuitive that the effect of width would be much more pronounced.

Table 4-11. Maximum displacements (mm) for effect of aspect ratio study, 2 constraints per sheet.

		Length			
		$\mathbf{2 '}^{\prime}$	$\mathbf{4}^{\prime}$	$\mathbf{8}^{\prime}$	
Width	$\mathbf{1 '}^{\prime}$	0.03433	0.03516	0.03575	
	$\mathbf{2 '}^{\prime}$	0.39727	0.4048	0.3926	
	$\mathbf{4}^{\prime}$	3.104	3.039	2.648	

It is therefore concluded that the results of Table 4-8 are correct, and are the product of a very complex balance between bending and membrane forces. It is observed that the state of stresses dictates a stiffening effect as the length of the plate increases.

The selection of aspect ratios is quite straightforward. The 8 ' length has been shown to have the smallest maximum deflect in all cases, and therefore should be used. It is likely that segments of more than 8^{\prime} could be beneficial due to the increase in stiffness of longer plates, however for practical purposes 8^{\prime} has been selected as the maximum length to be analyzed. When looking at the width, there is minimal difference between the 2^{\prime} dimension and the 4^{\prime} dimension, and therefore the selection comes down to an $8^{\prime} \times 4{ }^{\prime}$ sheet, or an 8 'x1' sheet. As stated in discussing the plate thickness and holding method, this selection becomes an application based economic analysis. A 1' wide mirror array will require 4 times as many connections as a 4' wide mirror array, and therefore will result in much higher manufacturing and installation costs. Therefore, unless the specified application requires the highest possible amount of precision and temperature, it is recommended that an $8^{\prime} \times 4^{\prime}$ aspect ratio reflector be selected.

4.2. EXPERIMENTAL

In this section, the results of the practical experiments will be summarized, and then will be compared with the results of the computer models outlined in section 4.1.

4.2.1. Effect of Material and Thickness

By testing different material reflectors (polished steel, glass mirrors, plexiglass mirrors, Anolux reflective aluminum sheets, Reflectec aluminum reflective film), it was found
that the greatest combination of durability and quality of focal image was achieved when laminating a reflective foil to a metal substrate plate. Polished steel and plexiglass mirrors were found to not offer sufficient reflectivity, glass mirrors were found to be too fragile and lacked the required flexibility for smaller focal lengths, and the Anolux reflective sheets were found to be too thin to hold a desired shape without the addition of a substrate plate and adhesives or epoxies which resulted in many surface irregularities. The reflective film, which is designed to be laminated to a backing plate, offered the reflectivity and smooth surface required for tight concentration with a good balance of durability, flexibility and rigidity to be properly suited for solar concentrator. The FEM research conducted on effect of material and thickness was not conducted in parallel with this practical experimentation, but rather was conducted using the conclusions of the experimental research to optimize the specific characteristics of the substrate plate that should be chosen. The initial experimental hypothesis that a 1.62814 mm thick aluminum sheet should be used as the reflector substrate was found to be reasonable. Theoretical experimentation confirms that aluminum is a better material for these plates than steel, and 1.62814 mm provides enough thickness to control the plate surface profile better than the vast majority of the reasonable thicknesses studied.

The only experimentation performed on the effect of thickness of a same material is not appropriate for comparison with the theoretical models as the reflectors studied have their reflective layer located at the back a clear substrate, instead of at the front of a substrate as modeled. To accurately compare the models of different thicknesses, reflective foils
should have been laminated to aluminum plates of different thicknesses, and the resulting images and/or surface profiles should have been compared.

4.2.2. Effect of Holding Method

Experimentally, it was found that by stiffening the ends of a glass reflector, a better focus image was achieved. Using a more rigid stiffener on glass mirrors installed on the same solar concentrator prototype as glass mirrors with less rigid stiffeners further strengthened this hypothesis. By switching from fragile glass mirrors to more durable metal-based reflector, the abilities to attach the reflectors to curved surfaces by means of screws instead of friction, and to constrain all four ends of the reflectors were gained. Experimentally, it was found that by constraining all four ends, instead of constraining two ends and stiffening the other ends yielded a much better solar focus. These findings were verified by means of computer models, the results of which are shown in section 4.1.2. Both experimental observations and theoretical modeling showed that constraining four ends is far superior to constraining two ends. Both experimental and theoretical testing was also conducted on the effect of using point constraints to hold the reflector to the appropriate curve. An experimental hypothesis had been drawn that the benefit of placing screws every 6 " would not outweigh the additional labour costs over placing screws every 12 ", while this was not tested experimentally due to cost constraints, model results showed that the 12 " spacing yielded a maximum displacement of 0.1279 mm while the 6 " spacing yielded a maximum displacement of 0.0920 mm . Given that the locating and drilling of these holes is the most time intensive portion of the construction of such a mirror set, it is reasonable to say that unless a maximum temperature application is being designed, the $12 "$ mirror spacing is adequate.

4.2.3. Effect of Aspect Ratio

Experimentally it was found that of all tested reflector aspect ratios, the best focal characteristics were achieved from using an $8^{\prime} \times 2^{\prime}$ reflector. It is noted that this analysis was not a controlled single variable experiment, however it is still observed that this experimental result is in partial agreement with the theoretical computer models. Computer results indicated the smallest plate deflections for 1 ' wide plates, however no 1' plates were physically tested as from a commercial standpoint they fall outside the realm of reasonable. Of the remaining set of plates, the $8^{\prime} \times 22^{\prime}$ reflector performed $2^{\text {nd }}$ best, having a maximum deflection approximately 10.13% larger than the $8^{\prime} \times 44^{\prime}$ reflector but a maximum deflection 13.38% smaller than the next best reflector of this set.

The small disagreement between experimental and computational results is attributed to the fact that this particular physical experiment was conducted without isolating the single variable to be analyzed, and was performed in a qualitative manner. It would be desirable to conduct this physical experiment in a controlled and qualitative manner to give an accurate comparison between the physical and computational results, however this is outside the currently available technical and manufacturing ability. It is concluded that the computational results are more accurate than the physical results in this case.

Chapter 5: FUTURE WORK \& CONSIDERATIONS

There are a number of possible directions future work on this topic could take to progress the research outlined in this report and to further optimize the design selection of plates to be used for substrates on a two stage-stage solar reflector.

To provide a consistent basis for comparison between different materials, thicknesses, holding methods, and aspect ratios, the curve orientation of the plates studied, and loading forces applied to the plates were held constant throughout all theoretical tests. It would be useful for future work to consider both the secondary reflector, which is curved about a vertical axis rather than a horizontal axis, and is formed using a shorter focal length, in addition to the primary reflector. It would also be useful to study the mirrors at a range of angles to a datum set of coordinates, to represent the rotation of the two-stage concentrator throughout its daily motion. Furthermore, while the work in this report only used a gravitational loading, it would be of value for future work to consider wind loading on the reflector plates at a range of wind speeds, as prescribed by the manufacturer of the two-stage concentrator.

While the theoretical experimental section accurately describes the effect of gravitational loading on a parabolic curved plate, a study based on the displacement of the plate profile simply indicates the overall quality of the plate under different design conditions, and fails to show how the displacement of plate at different points will affect the resulting focus image. To this end, it is advised that later work uses the model outputs achieved in this work, in conjunction with similarly created horizontal mirror models, and
implements ray tracing methods to determine the exact path of a field of incident and reflected sun rays, which would result in a focal area at a prescribed target location. By defining a certain acceptable target area, it could then be determined what percentage of incident light rays end up within the acceptable area, providing an overall focus score for the given mirror design selections, and allowing for an estimate of the achievable temperatures and power ratings of given the projected solar focus dimensions.

At times, this report determines that different design selections could be legitimate, given different economic conditions. It is advised that future work perform a full economic analysis of a two-stage concentrator design using various mirror design selections. The economic analysis, which would need to be performed in conjunction with the two-stage concentrator patent holder LIFE, should consider the overall construction, commissioning and maintenance cost of the two-stage concentrator over its entire lifetime, given the requirements to safety apply each of the selected design constraints. Furthermore, the analysis should also indicate what applications would be possible, given the estimated temperature and power ratings, and factor in estimated profits generated by the two-stage solar concentrator over its lifespan.

Chapter 6: CONCLUSIONS

Backgrounds of concentrated solar power and finite element analysis have been provided, along with further technical details on the physics of parabolic light concentration and classical plate theory. The concept of optical efficiency has been outlined, including the 5 contributing factors: the cosine effect, mirror reflectivity, blocking and shadowing, atmospheric attenuation and surface irregularities. Surface irregularities have been identified as the least predictable factor of optical efficiency, making them the subject of the experimental section.

Steel and aluminum were considered as material selections for the reflector plates. These two materials have been compared on a thickness basis and a weight basis. It has been shown that on an equal weight basis, aluminum is preferable material selection yielding a maximum deflection of less than one third that of an equivalently weighted steel plate. On a per thickness basis, steel has been shown to deflect approximately 5% less than an equally thick aluminum plate, however due to the additional weight and cost of a same thickness steel plate, aluminum is recommended as the preferable material for solar reflectors.

Thickness of plate has been shown to be an economic decision more than a scientific decision. It is observed that a thicker plate will deflect less, however additional design strength of the whole CSP device would need to be implemented to carry the additional weight of the thicker reflector. It is recommended to use the thickest plates that can be reasonably supported and afforded.

Three sets of constraint methods, each modeled while constrained along two, and four edges were considered. It was shown that in all cases constraining four edges yielded much smaller plate displacements, resulting in improvement factors ranging from 29.52 to 41.71. Choosing between full edge constraints or a series of point constraints is determined to be an economic decision, which should consider the focal quality requirement of a given application. It was found that point constraints spaced every 12" resulted in a maximum displacement roughly twice as large of the maximum displacement when all edges were fully constrained, with point constraints spaced every 6 " falling very close to the middle of this range

Nine different mirror sizes were considered, having widths of $1^{\prime}, 2^{\prime}$, and 4 ' and lengths of $2^{\prime}, 4^{\prime}$, and 8^{\prime}. It was shown that reducing the width from 4^{\prime} to 2^{\prime} has a much smaller impact than reducing the width from 2^{\prime} to 1^{\prime}. It was also shown that reducing the length of the mirror increases the maximum deflection in the mirror as the overall stiffness of the curved plate is reduced. The selection of reflector sizes is therefore narrowed down to $8^{\prime} \times 44^{\prime}$ or 8 'x1' based on analysis of required focal quality, and cost to build.

REFERENCES

1. Ummadisingu, A., Soni, M., (2001). Concentrating solar power - Technology, potential and policy in India. Renewable and Sustainable Energy Reviews, 15, 5169-5175.
2. Clifton, J., Boruff, B., (2010). Assessing the potential for concentrated solar power development in rural Australia. Energy Policy, 38, 5272-5280.
3. Groulx, D., Sponagle, B., (2009). Ray-Tracing Analysis of a Two-Stage Solar Concentrator. http://www.tcsme.org/Papers/Vol34/Vol34No2Paper6.pdf. Accessed August 8, 2013.
4. PEGASE Group, (2013). Production of Electricity from Gas and Solar Energy. http://www.promes.cnrs.fr/pegase/index.php. Accessed August 8, 2013.
5. Maag, G., Zanganeh, G., Steinfeld, A., (2009). Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon. International Journal of Hydrogen Energy 34, 7676-7685.
6. Flamant, G., Luxembourg, D., Robert, J.F., Laplaze, D., (2004). Optimizing fullerene synthesis in a 50 kW solar reactor. Solar Energy, 77, 73-80.
7. Ahcene, T., Monty, C., Kouam, J., Thorel, A., Petot-Ervas, G., Djemel, A., (2007). Preparation by solar physical vapor deposition (SPVD) and nanostructural study of pure and Bi doped ZnO nanopowders. Journal of the European Ceramic Society, 27, 3413-342.
8. Akin, E., (2009). Finite Element Analysis Methods.
<http://www.clear.rice.edu/mech403/HelpFiles/FEM_intro.pdf $>$. Accessed August 8, 2013.
9. Turner, M.J., Clough, H.C., Martin, H.C., Topp L.P., (1956). Stiffness and deflection analysis of complex structures. Journal of Aerosoi Science, 23, 805-823.
10. Clough, H.C., (1960). The finite element method in plane stress analysis, Proc. ASCE 2nd Conference on Electronic Computation, 345-379.
11. Argyris, J.H., (1963). Recent advances in matrix methods of structural analysis by finite element. Elmsford, New York: Pergamon Press.
12. Babuska, I., Aziz, A.K., (1972). Survey lectures on the mathematical foundation of the finite element method. In The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (pp. 5-359). New York: Academic Press.
13. Strang, G., Fix, G.J., (1973). An analysis of the finite element methods. Englewood Cliffs, N.J: Prentice-Hall Inc.
14. Oden, J.T., Reddy, J.N., (1976). Introduction to Mathematical Theory of Finite Elements. New York: John Wiley and Sons.
15. Zenkiwicz, O.C., Taylor, R.L., (1989). The Finite Element Method, Volume 1, Basic Formulation and Linear Problems. New York: McGraw-Hill
16. Holand, I., (1969). Stiffness matrices for plate bending elements. In I. Holand and K Bell (Eds.), Finite Element Methods in Stress Analysis (pp 159-178). Trondeim, Norway: Tapir Press 159-178.
17. Ashwell, G. H., Gallagher, R. H., (1976). Finite Elements for Thin Shells and Curved Members. New York: Wiley..
18. Parisch, H., (1979). A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration. Computational Methods in Applied Mechanics And Engineering, 20, 323-350.
19. Batoz, J.L., Bathe, K.J., Ho, L.W., (1980). A study of three-node triangular plate bending elements. International Journal for Numerical Methods in Engineering, 15, 1771-1812.
20. Hrabok, M.M., Hrudey, T.M., (1984). A review and catalogue of plate bending finite elements. Computer Structures, 19, 479-498.
21. Ortiz, M., Morris, G.R., (1988). C ${ }^{0}$ finite element discretization of Kirchhoff's equations of thin plate bending. International Journal for Numerical Methods in Engineering, 26, 1551-1566.
22. Kurowski, P., (1994). Avoiding Pitfalls in FEA. Machine Design, Nov. 7, 1994.
23. Dassault Systemes SolidWorks Corp. (2010). Understanding Nonlinear Analysis. <files.solidworks.com/whitepapers/2010/Nonlinear_Analysis_2010_ENG_FINAL. pdf $>$. Accessed November 19, 2013.
24. ESI Group, (2013). Element Types for CFD-ACE+ Stress Module. http://www.esi-cfd.com/content/view/67/192/. Accessed August 8, 2013.
25. Euler, L., (1766). De motu vibratorio tympanorum. Novi Commentari Acad Petropolit, 10, 243-260
26. Bernoulli, J., Jr., (1789). Essai théorique sure les vibrations de plaques élastiques rectangulaires et libres. Nova Acta Acad Petropolit, 5, 197-219.
27. Germain, S., (1826). Remarques sur la nature, les bornes e l'étendue de la question des surfaces élastiques et équation général de ces surfaces, Paris.
28. Lagrange, J.L., (1828). Ann Chim, Vol. 39, 149-207.
29. Poisson, S.D., (1829). Memoire sur l'équilibre et le mouvement des corps élastiques, Mem Acad Sci, 8, 357.
30. Navier, C.L.M.H., (1823). Bulletin des Sciences de la Societe Philomanthique de Paris.
31. Love, A.E.H., (1888). On the small free vibrations and deformations of elastic shells. Philosophical Transactions of the Royal Society of London, 179, 491-546.
32. Kirchhoff, G.R., (1850). Über das gleichgewicht und die bewegung einer elastischem scheibe. J. Feuer die Reine und Angewandte Mathematik, 40, 51-88.
33. Timoshenko, S., Woinowsky-Krieger, S., (1959). Theory of Plates and Shells. New York: McGraw-Hill
34. Mindlin, R.D., (1951). Influence of rotatory inertia and shear on flexural motions of isotropic elastic plates. ASME Journal of Applied Mechanics, 18, 31-38.
35. Föpple, A., (1907). Vorlesungen uber technische Mechanik. Leipzig, Germany: B.G. Tuebner.
36. Hencky, H., (1915). On the stress state in circular plates with vanishing bending stiffness. Zeitschrift fur Mathematik und Physik, 63, 311-317.
37. Stine, W., Geyer, M., (2001). Power from the Sun.
http://www.powerfromthesun.net/book.html. Accessed August 8, 2013.
38. Danielli, A., Yatir, Y., Mor, O., (2011). Improving the optical efficiency of a concentrated solar power field using a concatenated micro-tower configuration. Solar Energy 85, 931-937.
39. Kreider, J., Kreith, F., (1981). Solar Energy Handbook. New York: McGraw-Hill
40. Barlev, D., Vidu, R., Stroeve, P., (2011). Innovation in concentrated solar power. Solar Energy Materials \& Solar Cells 95, 2703-2725.
41. Collado, F., (2008). Quick evaluation of the annual heliostat field efficiency. Solar Energy 82, 379-284.
42. Collado, F., (2009). Preliminary design of surrounding heliostat fields. Renewable Energy 34, 1359-1363
43. Ventsel, E., Krauthammer, T., (2001). Thin Plates and Shells: Theory, Analysis and Applications. New York: Marcel Dekker, Inc.

Appendix A - Graphical Outputs of Computer Models

our Plot Displacement(Mag) Analysis system - $6.104 \mathrm{E}+00$ $-5.426 E+00$ $-4.748 \mathrm{E}+00$ $-4.069 \mathrm{E}+00$ $-3.391 E+00$ $-2.713 E+00$ $-2.035 \mathrm{E}+00$ $-1.356 E+00$ $-6.782 \mathrm{E}-01$ $-0.000 \mathrm{E}+00$ Max $=6.104 \mathrm{E}+00$	

Figure A-1. Model 1: 0.79750 mm thick steel plate, fully constrained along two 8' lengths.

Contour Plot
Displacement
Displacement(Mag)
Analysis system
Anals $8.560 \mathrm{E}+00$
$-7.609 \mathrm{E}+00$
$-6.658 \mathrm{E}+00$

$-6.658 \mathrm{E}+00$
$-5.707 \mathrm{E}+00$

$-4.756 \mathrm{E}+00$
$-3.750 \mathrm{E}+00$
$-3.804 \mathrm{E}+00$
$-2.853 \mathrm{E}+00$
$-2.853 \mathrm{E}+00$
$-1.002 \mathrm{E}+00$
$-1.902 \mathrm{E}+00$
$-9.511 \mathrm{E} \cdot 01$

- $_{-9.511 \mathrm{E} \cdot 01}^{0.000 \mathrm{E}+00}$
$\operatorname{Max}=8.560 \mathrm{E}+00$
Grids 1650
$\mathrm{Min}=0.000 \mathrm{E}+00$
Grids 1269

Figure A-2. Model 2: 0.59531 mm thick steel plate, fully constrained along two 8' lengths.

Figure A-3. Model 3: 0.39688 mm thick steel plate, fully constrained along two 8' lengths.

Figure A-4. Model 4: 0.29766 mm thick steel plate, fully constrained along two 8' lengths.

Figure A-5. Model 5: 0.19844 mm thick steel plate, fully constrained along two 8' lengths.

Figure A-6. Model 6: $\mathbf{2 . 3 5 1 8 5} \mathbf{~ m m}$ thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-7. Model 7: 1.76389 mm thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-8. Model 8: 1.17593 mm thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-9. Model 9: 0.88194 mm thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-10. Model 10: $\mathbf{0 . 7 9 7 5 0} \mathbf{m m}$ thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-11. Model 11: 0.59531 mm thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-12. Model 12: 0.58796 mm thick aluminum plate, fully constrained along two 8' lengths.

Contour Plot
Displacement(Mas
Analysis system - $1.431 \mathrm{E}+01$
$-1.272 \mathrm{E}+01$
-1.113E+01
$-9.538 \mathrm{E}+00$
-7.948E+00
$-6.358 \mathrm{E}+00$
$-4.769 \mathrm{E}+00$
$-3.179 \mathrm{E}+00$
$-1.590 \mathrm{E}+00$
$-0.000 \mathrm{E}+00$
Grids 1650
$\mathrm{n}=0.000$

Figure A-13. Model 13: 0.39688 mm thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-14. Model 14: $\mathbf{0 . 2 9 7 6 6} \mathbf{m m}$ thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-15. Model 15: $0.19844 \mathbf{m m}$ thick aluminum plate, fully constrained along two 8 ' lengths.

Figure A-16. Model 16: $\mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained along two 8' lengths.

Figure A-17. Model 17: 1.62814 mm thick aluminum plate, fully constrained along two 8' lengths and two 4' lengths.

Figure A-18. Model 18: $\mathbf{1 . 6 2 8 1 4} \mathbf{~ m m}$ thick aluminum plate, point constraints spaced every $6^{\prime \prime}$ along two 8^{\prime} lengths.

Result: E:/Thesis/Models/Aluminum162814/Holding Methods/4EDGESCREWSAluminum162814/4EDGESCREWSAluminum162814.h3 Mod infor

Figure A-19. Model 19: 1.62814 mm thick aluminum plate, point constraints spaced every $6^{\prime \prime}$ along two 8^{\prime} lengths and two 4^{\prime} lengths.

Figure A-20. Model 20: 1.62814 mm thick aluminum plate, point constraints spaced every $12^{\prime \prime}$ along two 8^{\prime} lengths.

Figure A-21. Model 21: $\mathbf{1 . 6 2 8 1 4} \mathbf{~ m m}$ thick aluminum plate, point constraints spaced every $12^{\prime \prime}$ along two 8^{\prime} lengths and two 4^{\prime} lengths.

Figure A-22. Model 22: 8’x4’ $\mathbf{1 . 6 2 8 1 4 ~ m m ~ t h i c k ~ a l u m i n u m ~ p l a t e , ~ f u l l y ~ c o n s t r a i n e d ~}$ about all edges.

Figure A-23. Model 23: $\mathbf{8}^{\prime} \times \mathbf{2}^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained about all edges.

Figure A-24. Model 24: 8’x1’ 1.62814 mm thick aluminum plate, fully constrained about all edges.

Figure A-25. Model 25: $\mathbf{4}^{\prime} \times \mathbf{x}^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained about all edges.

Figure A-26. Model 26: $\mathbf{4}^{\prime} \times \mathbf{x}^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{m m}$ thick aluminum plate, fully constrained about all edges.

Figure A-27. Model 27: $\mathbf{4}^{\prime} \times 1{ }^{\prime} 1.62814 \mathrm{~mm}$ thick aluminum plate, fully constrained about all edges.

Figure A-28. Model 28: $\mathbf{2}^{\prime} \times{ }^{\prime}{ }^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{~ m m}$ thick aluminum plate, fully constrained about all edges.

Figure A-29. Model 29: $\mathbf{2}^{\prime} \times \mathbf{x}^{\prime} \mathbf{1 . 6 2 8 1 4} \mathbf{~ m m}$ thick aluminum plate, fully constrained about all edges.

Figure A-30. Model 30: 2'x1' 1.62814 mm thick aluminum plate, fully constrained about all edges.

RADIOSS 11.0 Report

Problem submitted Wed Jul 03 15:47:00 2013
Input file E:/Thesis/Models/Aspect Ratio/8x4/8x4.fem

Problem summary

- Problem parameters: E:/Thesis/Models/Aspect Ratio/8x4/8x4.fem
- Finite element model: E:/Thesis/Models/Aspect Ratio/8x4/8x4.fem
- Output files prefix: $8 x 4$
- Finite element model information

Number of nodes:
Number of elements:
13466
13203
Number of degrees of freedom: 77760
Number of non-zero stiffness terms: 2112336

- Elements

Number of QUAD4 elements: 13203

- Loads and boundaries

Number of FORCE sets: 1
Number of SPC sets: 1

- Materials and properties

Number of PSHELL cards: 1
Number of MAT1 cards: 1

- Subcases \& loadcases information

- Static subcases

Subcase ID	SPC ID	Force ID	Weight
1	4	3	1.00

Results summary

- Subcase 1 - Loadstep1

- Maximum displacement is $0.635 \mathrm{E}-01$ at grid 27001 .
- Maximum 2-D element stress is 0.488 in element 28301.

Appendix C - Sample .fem FEA Input File

\$\$						
\$\$ Optistruct Input Deck Generated by HyperMesh Version : 11.0.0.47						
\$\$ Generated using HyperMesh-Optistruct Template Version : 11.0.0.47						
\$\$						
\$\$ Template: optistruct						
\$\$						
\$\$						
\$\$ optistruct						
\$						
\$\$		Case C	ntrol Cards			\$
\$\$-						\$
\$						
\$HMNAME LOADSTEP			1"LoadStep1"	1		
SUBCASE 1						
SPC = 2						
LOAD $=1$						
\$\$---						
\$\$ HYPERMESH TAGS						
\$\$--						
\$\$BEGIN TAGS						
\$\$END TAGS						
\$						
BEGIN BULK						
\$\$						
\$\$ Stacking Information for Ply-Based Composite Definition						
\$\$						
\$\$						
\$\$ DESVARG Data						
\$\$						
\$\$						
\$\$ GRID Data						
\$\$						
GRID	- 1	0.0	$0.0 \quad 0.0$			
GRID	2	81.28	32.828090 .0			
GRID	3	386.08	162.36810 .0			
GRID	- 4	560.07	240.8690 .0			
GRID	- 5	560.07	240.869304 .8			
GRID	- 6	386.08	162.3681304 .8			
GRID	7	81.28	32.82809304 .8			
GRID	- 8	0.0	$0.0 \quad 304.8$			
GRID) 85	0.0	$0.0 \quad 0.0$			
GRID	- 86	13.792	75.5598670 .0			
GRID	- 87	27.578	111.13740 .0			
GRID	- 88	41.356	416.732440 .0			
GRID	- 89	55.128	122.344850 .0			
GRID	- 90	68.892	527.974480 .0			
GRID	- 91	82.650	33.621180 .0			
GRID	- 92	96.400	939.28480 .0			
GRID	- 93	110.14	444.96520 .0			
GRID	94	123.88	50.662220 .0			
GRID	- 95	137.61	956.375710.0			
GRID	- 96	151.33	962.105540.0			
GRID	- 97	165.05	267.851550 .0			
GRID	- 98	178.75	773.613590 .0			
GRID	- 99	192.46	679.391520 .0			
GRID	100	206.15	885.185190.0			
GRID	101	219.84	490.994450 .0			
GRID	102	233.53	496.819170 .0			
GRID	103	247.20	9102.65920.0			
GRID	104	260.87	9108.51440.0			
GRID	105	274.54	5114.38450 .0			
GRID	106	288.198	7120.26960 .0			
GRID	107	301.84	5126.16930 .0			

GRID	108	315.4941132 .08370 .0
GRID	109	329.1323138 .01240 .0
GRID	110	342.7644143 .95550 .0
GRID	111	356.3903149 .91260 .0
GRID	112	370.01155 .88380 .0
GRID	113	383.6237161 .86880 .0
GRID	114	397.2313167 .86760 .0
GRID	115	410.833173 .87990 .0
GRID	116	424.4287179 .90560 .0
GRID	117	438.0185185 .94450 .0
GRID	118	451.6025191 .99660 .0
GRID	119	465.1807198 .06170 .0
GRID	120	478.7531204 .13970 .0
GRID	121	492.3199210 .23030 .0
GRID	122	505.881216 .33350 .0
GRID	123	519.4365222 .44910 .0
GRID	124	532.9865228 .5770 .0
GRID	125	546.531234 .7170 .0
GRID	126	560.07240 .8690 .0
GRID	127	$560.07 \quad 240.86915 .24$
GRID	128	560.07240 .86930 .48
GRID	129	$560.07 \quad 240.86945 .72$
GRID	130	560.07240 .86960 .96
GRID	131	560.07240 .86976 .2
GRID	132	560.07240 .86991 .44
GRID	133	560.07240 .869106 .68
GRID	134	$560.07 \quad 240.869121 .92$
GRID	135	560.07240 .869137 .16
GRID	136	$560.07 \quad 240.869152 .4$
GRID	137	$560.07 \quad 240.869167 .64$
GRID	138	$560.07 \quad 240.869182 .88$
GRID	139	560.07240 .869198 .12
GRID	140	560.07240 .869213 .36
GRID	141	560.07240 .869228 .6
GRID	142	560.07240 .869243 .84
GRID	143	$560.07 \quad 240.869259 .08$
GRID	144	560.07240 .869274 .32
GRID	145	560.07240 .869289 .56
GRID	146	560.07240 .869304 .8
GRID	147	546.531234 .717304 .8
GRID	148	532.9865228 .577304 .8
GRID	149	519.4365222 .4491304 .8
GRID	150	505.881216 .3335304 .8
GRID	151	492.3199210 .2303304 .8
GRID	152	478.7532204 .1397304 .8
GRID	153	465.1807198 .0617304 .8
GRID	154	451.6025191 .9966304 .8
GRID	155	438.0185185 .9445304 .8
GRID	156	424.4287179 .9056304 .8
GRID	157	410.833173 .8799304 .8
GRID	158	397.2313167 .8676304 .8
GRID	159	383.6237161 .8688304 .8
GRID	160	370.01 155.8838304.8
GRID	161	356.3903149 .9126304 .8
GRID	162	342.7644143 .9555304 .8
GRID	163	329.1323138 .0124304 .8
GRID	164	315.4941132 .0837304 .8
GRID	165	301.8495126 .1693304 .8
GRID	166	288.1987120 .2696304 .8
GRID	167	274.5415114 .3845304 .8
GRID	168	260.8779108 .5143304 .8
GRID	169	247.2079102 .6592304 .8
GRID	170	233.531496 .81917304 .8
GRID	171	219.848490 .99445304 .8
GRID	172	206.158885 .18519304 .8
GRID	173	192.462679 .39152304 .8
GRID	174	178.759773 .61359304 .8
GRID	175	165.050267 .85154304 .8
GRID	176	151.333962.10554304.8

GRID	246	424.4541179 .9168182 .88
GRID	247	424.4541179 .9168198 .12
GRID	248	424.4541179 .9168213 .36
GRID	249	424.4541179 .9168228 .6
GRID	250	424.4541179 .9168243 .84
GRID	251	424.4541179 .9168259 .08
GRID	252	424.453179 .9164274 .3457
GRID	253	424.4488179 .9145289 .5654
GRID	254	410.8578173 .8908228 .6
GRID	255	397.2551167 .8781228 .6
GRID	256	383.646161 .8787228 .6
GRID	257	370.0306155 .8928228 .6
GRID	258	356.4087149 .9207228 .6
GRID	259	342.7803143 .9624228 .6
GRID	260	329.1455138 .0182228 .6
GRID	261	315.4914132 .0825228 .6
GRID	262	301.8458126 .1677228 .6
GRID	263	356.4087149 .9207213 .36
GRID	264	356.4087149 .9207198 .12
GRID	265	356.4087149 .9207182 .88
GRID	266	356.4087149 .9207167 .64
GRID	267	370.0306155 .8928198 .12
GRID	268	383.646161 .8787198 .12
GRID	269	397.2551167 .8781198 .12
GRID	270	410.8578173 .8908198 .12
GRID	271	383.646161 .8787213 .36
GRID	272	370.0306155 .8928213 .36
GRID	273	397.2551167 .8781213 .36
GRID	274	410.8578173 .8908213 .36
GRID	275	383.646161 .8787167 .64
GRID	276	383.646161 .8787182 .88
GRID	277	370.0306155 .8928167 .64
GRID	278	370.0306155 .8928182 .88
GRID	279	410.8578173 .8908167 .64
GRID	280	397.2551167 .8781167 .64
GRID	281	410.8578173 .8908182 .88
GRID	282	397.2551167 .8781182 .88
GRID	283	301.8458126 .1677198 .12
GRID	284	315.4914132 .0825198 .12
GRID	285	329.1455138 .0182198 .12
GRID	286	342.7803143 .9624198 .12
GRID	287	315.4914132 .0825213 .36
GRID	288	301.8458126 .1677213 .36
GRID	289	329.1455138 .0182213 .36
GRID	290	342.7803143 .9624213 .36
GRID	291	315.4914132 .0825167 .64
GRID	292	315.4914132 .0825182 .88
GRID	293	301.8458126 .1677167 .64
GRID	294	301.8458126 .1677182 .88
GRID	295	342.7803143 .9624167 .64
GRID	296	329.1455138 .0182167 .64
GRID	297	342.7803143 .9624182 .88
GRID	298	329.1455138 .0182182 .88
GRID	299	356.4049149.9191289.5687
GRID	300	356.4079149.9204274.3616
GRID	301	356.4086149 .9207259 .08
GRID	302	356.4087149 .9207243 .84
GRID	303	370.0298155 .8925274 .3589
GRID	304	383.6452161 .8783274 .3559
GRID	305	397.2542167 .8777274 .3526
GRID	306	410.8568173 .8904274 .3492
GRID	307	383.6415161 .8767289 .5675
GRID	308	370.0264155 .891289 .5681
GRID	309	397.2502167 .8759289 .5669
GRID	310	410.8527173 .8886289 .5662
GRID	311	383.646161 .8787243 .84
GRID	312	383.646161 .8787259 .08
GRID	313	370.0306155 .8928243 .84
GRID	314	370.0306155 .8928259 .08

GRID	315	410.8578173 .8908243 .84
GRID	316	397.2551167 .8781243 .84
GRID	317	410.8578173 .8908259 .08
GRID	318	397.2551167 .8781259 .08
GRID	319	301.8456126 .1676274 .3688
GRID	320	315.4978132 .0853274 .3676
GRID	321	329.1392138 .0154274 .366
GRID	322	342.7797143 .9622274 .364
GRID	323	315.4969132 .0849289 .5694
GRID	324	301.846126 .1678289 .5703
GRID	325	329.138138 .0149289 .569
GRID	326	342.7771143 .961289 .5692
GRID	327	315.4914132 .0825243 .84
GRID	328	315.4914132 .0825259 .08
GRID	329	301.8458126 .1677243 .84
GRID	330	301.8458126 .1677259 .08
GRID	331	342.7803143 .9624243 .84
GRID	332	329.1455138 .0182243 .84
GRID	333	342.7803143 .9624259 .08
GRID	334	329.1455138 .0182259 .08
GRID	335	546.5323234 .7176228 .6
GRID	336	532.989228 .5781228 .6
GRID	337	519.44222 .4507228 .6
GRID	338	505.8851216 .3354228 .6
GRID	339	492.3403210 .2395228 .6
GRID	340	478.7757204.1498228.6
GRID	341	465.2048198 .0725228 .6
GRID	342	451.6275192 .0078228 .6
GRID	343	438.044185 .9559228 .6
GRID	344	492.3403210 .2395213 .36
GRID	345	492.3403210 .2395198 .12
GRID	346	492.3403210 .2395182 .88
GRID	347	492.3403210 .2395167 .64
GRID	348	505.8851216 .3354198 .12
GRID	349	519.44222 .4507198 .12
GRID	350	532.989228 .5781198 .12
GRID	351	546.5323234 .7176198 .12
GRID	352	519.44222 .4507213 .36
GRID	353	505.8851216 .3354213 .36
GRID	354	532.989228 .5781213 .36
GRID	355	546.5323234 .7176213 .36
GRID	356	519.44222 .4507167 .64
GRID	357	519.44222 .4507182 .88
GRID	358	505.8851216 .3354167 .64
GRID	359	505.8851216 .3354182 .88
GRID	360	546.5323234 .7176167 .64
GRID	361	532.989228 .5781167 .64
GRID	362	546.5323234 .7176182 .88
GRID	363	532.989228 .5781182 .88
GRID	364	438.044185 .9559198 .12
GRID	365	451.6275192 .0078198 .12
GRID	366	465.2048198 .0725198 .12
GRID	367	478.7757204 .1498198 .12
GRID	368	451.6275192 .0078213 .36
GRID	369	438.044185 .9559213 .36
GRID	370	465.2048198 .0725213 .36
GRID	371	478.7757204 .1498213 .36
GRID	372	451.6275192 .0078167 .64
GRID	373	451.6275192 .0078182 .88
GRID	374	438.044185 .9559167 .64
GRID	375	438.044185 .9559182 .88
GRID	376	478.7757204 .1498167 .64
GRID	377	465.2048198 .0725167 .64
GRID	378	478.7757204 .1498182 .88
GRID	379	465.2048198 .0725182 .88
GRID	380	492.3309210 .2352289 .5626
GRID	381	492.3403210 .2395274 .32
GRID	382	492.3403210 .2395259 .08
GRID	383	492.3403210 .2395243 .84

GRID	384	505.8851216 .3354274 .32
GRID	385	519.44222 .4507274 .32
GRID	386	532.989228 .5781274 .32
GRID	387	546.5323234 .7176274 .32
GRID	388	519.4389222 .4502289 .5674
GRID	389	505.8839216 .3348289 .5725
GRID	390	532.9883228 .5778289 .5634
GRID	391	546.5319234 .7174289 .5609
GRID	392	519.44222 .4507243 .84
GRID	393	519.44222 .4507259 .08
GRID	394	505.8851216 .3354243 .84
GRID	395	505.8851216 .3354259 .08
GRID	396	546.5323234 .7176243 .84
GRID	397	532.989228 .5781243 .84
GRID	398	546.5323234 .7176259 .08
GRID	399	532.989228 .5781259 .08
GRID	400	438.0429185 .9554274 .3421
GRID	401	451.6265192 .0073274 .3385
GRID	402	465.2048198 .0725274 .32
GRID	403	478.7757204 .1498274 .32
GRID	404	451.6223192 .0055289 .564
GRID	405	438.0387185 .9535289 .5647
GRID	406	465.1997198 .0703289 .5633
GRID	407	478.771204 .1476289 .5626
GRID	408	451.6275192 .0078243 .84
GRID	409	451.6275192 .0078259 .08
GRID	410	438.044185 .9559243 .84
GRID	411	438.044185 .9559259 .08
GRID	412	478.7757204 .1498243 .84
GRID	413	465.2048198 .0725243 .84
GRID	414	478.7757204 .1498259 .08
GRID	415	465.2048198 .0725259 .08
GRID	416	424.4488179 .914515 .23456
GRID	417	424.4531179 .916430 .45434
GRID	418	424.4541179 .916845 .72
GRID	419	424.4541179 .916860 .96
GRID	420	424.4541179 .916876 .2
GRID	421	424.4541179 .916891 .44
GRID	422	424.4541179 .9168106 .68
GRID	423	424.4541179 .9168121 .92
GRID	424	424.4541179 .9168137 .16
GRID	425	410.8578173 .890876 .2
GRID	426	397.2551167 .878176 .2
GRID	427	383.646161 .878776 .2
GRID	428	370.0306155 .892876 .2
GRID	429	356.4087149 .920776 .2
GRID	430	342.7803143 .962476 .2
GRID	431	329.1455138 .018276 .2
GRID	432	315.4914132 .082576 .2
GRID	433	301.8458126 .167776 .2
GRID	434	356.4087149 .920760 .96
GRID	435	356.4087149 .920745 .72
GRID	436	356.4079149 .920430 .43843
GRID	437	356.4049149 .919115 .23132
GRID	438	370.0306155 .892845 .72
GRID	439	383.646161 .878745 .72
GRID	440	397.2551167 .878145 .72
GRID	441	410.8578173 .890845 .72
GRID	442	383.646161 .878760 .96
GRID	443	370.0306155 .892860 .96
GRID	444	397.2551167 .878160 .96
GRID	445	410.8578173 .890860 .96
GRID	446	383.6415161 .876715 .23249
GRID	447	383.6452161 .878330 .44414
GRID	448	370.0264155 .89115 .23188
GRID	449	370.0298155 .892530 .44114
GRID	450	410.8527173 .888615 .23384
GRID	451	397.2502167 .875915 .23315
GRID	452	410.8568173 .890430 .45079

GRID	453	397.2542167 .877730 .44737
GRID	454	301.8458126 .167745 .72
GRID	455	315.4914132 .082545 .72
GRID	456	329.1455138 .018245 .72
GRID	457	342.7803143 .962445 .72
GRID	458	315.4914132 .082560 .96
GRID	459	301.8458126 .167760 .96
GRID	460	329.1455138 .018260 .96
GRID	461	342.7803143 .962460 .96
GRID	462	315.4969132 .084915 .23055
GRID	463	315.4978132 .085330 .4324
GRID	464	301.846126 .167815 .22967
GRID	465	301.8456126 .167630 .4312
GRID	466	342.7771143 .96115 .23084
GRID	467	329.138138 .014915 .23097
GRID	468	342.7797143 .962230 .43604
GRID	469	329.1392138 .015430 .43402
GRID	470	356.4087149 .9207137 .16
GRID	471	356.4087149 .9207121 .92
GRID	472	356.4087149 .9207106 .68
GRID	473	356.4087149 .920791 .44
GRID	474	370.0306155 .8928121 .92
GRID	475	383.646161 .8787121 .92
GRID	476	397.2551167 .8781121 .92
GRID	477	410.8578173 .8908121 .92
GRID	478	383.646161 .8787137 .16
GRID	479	370.0306155 .8928137 .16
GRID	480	397.2551167 .8781137 .16
GRID	481	410.8578173 .8908137 .16
GRID	482	383.646161 .878791 .44
GRID	483	383.646161 .8787106 .68
GRID	484	370.0306155 .892891 .44
GRID	485	370.0306155 .8928106 .68
GRID	486	410.8578173 .890891 .44
GRID	487	397.2551167 .878191 .44
GRID	488	410.8578173 .8908106 .68
GRID	489	397.2551167 .8781106 .68
GRID	490	301.8458126 .1677121 .92
GRID	491	315.4914132 .0825121 .92
GRID	492	329.1455138 .0182121 .92
GRID	493	342.7803143 .9624121 .92
GRID	494	315.4914132 .0825137 .16
GRID	495	301.8458126 .1677137 .16
GRID	496	329.1455138 .0182137 .16
GRID	497	342.7803143 .9624137 .16
GRID	498	315.4914132 .082591 .44
GRID	499	315.4914132 .0825106 .68
GRID	500	301.8458126 .167791 .44
GRID	501	301.8458126 .1677106 .68
GRID	502	342.7803143 .962491 .44
GRID	503	329.1455138 .018291 .44
GRID	504	342.7803143 .9624106 .68
GRID	505	329.1455138 .0182106 .68
GRID	506	546.5323234 .717676 .2
GRID	507	532.989228 .578176 .2
GRID	508	519.44222 .450776 .2
GRID	509	505.8851216 .335476 .2
GRID	510	492.3403210 .239576 .2
GRID	511	478.7757204 .149876 .2
GRID	512	465.2048198 .072576 .2
GRID	513	451.6275192 .007876 .2
GRID	514	438.044185 .955976 .2
GRID	515	492.3403210 .239560 .96
GRID	516	492.3403210 .239545 .72
GRID	517	492.3403210 .239530 .48
GRID	518	492.3309210 .235215 .23743
GRID	519	505.8851216 .335445 .72
GRID	520	519.44222 .450745 .72
GRID	521	532.989228 .578145 .72

GRID	522	546.5323234 .717645 .72
GRID	523	519.44222 .450760 .96
GRID	524	505.8851216 .335460 .96
GRID	525	532.989228 .578160 .96
GRID	526	546.5323234 .717660 .96
GRID	527	519.4389222 .450215 .2326
GRID	528	519.44222 .450730 .48
GRID	529	505.8839216 .334815 .22744
GRID	530	505.8851216 .335430 .48
GRID	531	546.5319234 .717415 .23911
GRID	532	532.9883228 .577815 .23656
GRID	533	546.5323234 .717630 .48
GRID	534	532.989228 .578130 .48
GRID	535	438.044185 .955945 .72
GRID	536	451.6275192 .007845 .72
GRID	537	465.2048198 .072545 .72
GRID	538	478.7757204 .149845 .72
GRID	539	451.6275192 .007860 .96
GRID	540	438.044185 .955960 .96
GRID	541	465.2048198 .072560 .96
GRID	542	478.7757204 .149860 .96
GRID	543	451.6223192 .005515 .23602
GRID	544	451.6265192 .007330 .46154
GRID	545	438.0387185 .953515 .23529
GRID	546	438.0429185 .955430 .45794
GRID	547	478.7709204 .147615 .23739
GRID	548	465.1997198 .070215 .23672
GRID	549	478.7757204 .149830 .48
GRID	550	465.2048198 .072530 .48
GRID	551	492.3403210 .2395137 .16
GRID	552	492.3403210 .2395121 .92
GRID	553	492.3403210 .2395106 .68
GRID	554	492.3403210 .239591 .44
GRID	555	505.8851216 .3354121 .92
GRID	556	519.44222 .4507121 .92
GRID	557	532.989228 .5781121 .92
GRID	558	546.5323234 .7176121 .92
GRID	559	519.44222 .4507137 .16
GRID	560	505.8851216 .3354137 .16
GRID	561	532.989228 .5781137 .16
GRID	562	546.5323234 .7176137 .16
GRID	563	519.44222 .450791 .44
GRID	564	519.44222 .4507106 .68
GRID	565	505.8851216 .335491 .44
GRID	566	505.8851216 .3354106 .68
GRID	567	546.5323234 .717691 .44
GRID	568	532.989228 .578191 .44
GRID	569	546.5323234 .7176106 .68
GRID	570	532.989228 .5781106 .68
GRID	571	438.044185 .9559121 .92
GRID	572	451.6275192 .0078121 .92
GRID	573	465.2048198 .0725121 .92
GRID	574	478.7757204 .1498121 .92
GRID	575	451.6275192 .0078137 .16
GRID	576	438.044185 .9559137 .16
GRID	577	465.2048198 .0725137 .16
GRID	578	478.7757204 .1498137 .16
GRID	579	451.6275192 .007891 .44
GRID	580	451.6275192 .0078106 .68
GRID	581	438.044185 .955991 .44
GRID	582	438.044185 .9559106 .68
GRID	583	478.7757204 .149891 .44
GRID	584	465.2048198 .072591 .44
GRID	585	478.7757204 .1498106 .68
GRID	586	465.2048198 .0725106 .68
GRID	587	151.319562 .0995289 .5664
GRID	588	151.316262 .09812274 .3528
GRID	589	151.321862 .10049259 .08
GRID	590	151.321862.10049243.84

GRID	591	151.321862.10049228.6
GRID	592	151.321862.10049213.36
GRID	593	151.321862.10049198.12
GRID	594	151.321862 .10049182 .88
GRID	595	151.321862 .10049167 .64
GRID	596	151.321862.10049152.4
GRID	597	151.321862 .10049137 .16
GRID	598	151.321862.10049121.92
GRID	599	151.321862 .10049106 .68
GRID	600	151.321862.1004991.44
GRID	601	151.321862.1004976.2
GRID	602	151.321862.1004960.96
GRID	603	151.321862.1004945.72
GRID	604	151.316262 .0981130 .44719
GRID	605	151.319562 .099515 .23362
GRID	606	165.038367 .84657152 .4
GRID	607	178.748273 .60875152 .4
GRID	608	192.451679.38688152.4
GRID	609	206.148485.18081152.4
GRID	610	219.838890 .99037152 .4
GRID	611	233.522696 .81543152 .4
GRID	612	247.2102 .6558152 .4
GRID	613	260.871108 .5114152 .4
GRID	614	274.5356114 .382152 .4
GRID	615	165.038367 .84657228 .6
GRID	616	178.748273 .60875228 .6
GRID	617	192.451679.38688228.6
GRID	618	206.148485 .18081228 .6
GRID	619	219.838890 .99037228 .6
GRID	620	233.522696 .81543228 .6
GRID	621	247.2102 .6558228 .6
GRID	622	260.871108 .5114228 .6
GRID	623	274.5356114 .382228 .6
GRID	624	219.838890 .99037243 .84
GRID	625	219.838890 .99037259 .08
GRID	626	219.839290.99056274.3664
GRID	627	219.840890.99126289.5698
GRID	628	206.148485 .1808259 .08
GRID	629	192.451679.38688259.08
GRID	630	178.748273 .60875259 .08
GRID	631	165.038367 .84657259 .08
GRID	632	192.451679 .38688243 .84
GRID	633	206.148485.18081243.84
GRID	634	178.748273 .60875243 .84
GRID	635	165.038367 .84657243 .84
GRID	636	192.454279 .38798289 .5689
GRID	637	192.452279.38715274.3621
GRID	638	206.150885 .1818289 .5694
GRID	639	206.14985 .18104274 .3644
GRID	640	165.041367 .84782289 .5677
GRID	641	178.75173 .60993289 .5683
GRID	642	165.039167 .84691274 .3562
GRID	643	178.74973 .60906274 .3593
GRID	644	274.5356114 .382259 .08
GRID	645	260.871108 .5114259 .08
GRID	646	247.2102 .6558259 .08
GRID	647	233.522696 .81543259 .08
GRID	648	260.871108 .5114243 .84
GRID	649	274.5356114 .382243 .84
GRID	650	247.2102 .6558243 .84
GRID	651	233.522696 .81543243 .84
GRID	652	260.8722108 .5119289 .5705
GRID	653	260.8711108.5114274.3697
GRID	654	274.5365114 .3824289 .5706
GRID	655	274.5356114 .382274 .3698
GRID	656	233.524496 .81619289 .5702
GRID	657	247.2015102 .6565289 .5704
GRID	658	233.523 96.81557274.368
GRID	659	247.2003102.6559274.3691

GRID	660	219.838890 .99037167 .64
GRID	661	219.838890 .99037182 .88
GRID	662	219.838890 .99037198 .12
GRID	663	219.838890 .99037213 .36
GRID	664	206.148485.18081182.88
GRID	665	192.451679 .38688182 .88
GRID	666	178.748273 .60875182 .88
GRID	667	165.038367 .84657182 .88
GRID	668	192.451679 .38688167 .64
GRID	669	206.148485.18081167.64
GRID	670	178.748273 .60875167 .64
GRID	671	165.038367 .84657167 .64
GRID	672	192.451679 .38688213 .36
GRID	673	192.451679.38688198.12
GRID	674	206.148485.18081213.36
GRID	675	206.148485 .18081198 .12
GRID	676	165.038367 .84657213 .36
GRID	677	178.748273 .60875213 .36
GRID	678	165.038367 .84657198 .12
GRID	679	178.748273 .60875198 .12
GRID	680	274.5356114 .382182 .88
GRID	681	260.871108 .5114182 .88
GRID	682	247.2102 .6558182 .88
GRID	683	233.522696 .81543182 .88
GRID	684	260.871108 .5114167 .64
GRID	685	274.5356114 .382167 .64
GRID	686	247.2102 .6558167 .64
GRID	687	233.522696 .81543167 .64
GRID	688	260.871108 .5114213 .36
GRID	689	260.871108 .5114198 .12
GRID	690	274.5356114 .382213 .36
GRID	691	274.5356114 .382198 .12
GRID	692	233.522696 .81543213 .36
GRID	693	247.2102 .6558213 .36
GRID	694	233.522696.81543198.12
GRID	695	247.2102 .6558198 .12
GRID	696	165.038367 .8465776 .2
GRID	697	178.748273.6087576.2
GRID	698	192.451679.3868876.2
GRID	699	206.148485.1808 76.2
GRID	700	219.838890 .9903776 .2
GRID	701	233.522696 .8154376 .2
GRID	702	247.2102 .655876 .2
GRID	703	260.871108 .511476 .2
GRID	704	274.5356114 .38276 .2
GRID	705	219.838890 .9903791 .44
GRID	706	219.838890 .99037106 .68
GRID	707	219.838890 .99037121 .92
GRID	708	219.838890 .99037137 .16
GRID	709	206.148485.18081106.68
GRID	710	192.451679 .38688106 .68
GRID	711	178.748273 .60875106 .68
GRID	712	165.038367 .84657106 .68
GRID	713	192.451679 .3868891 .44
GRID	714	206.148485 .1808191 .44
GRID	715	178.748273 .6087591 .44
GRID	716	165.038367 .8465791 .44
GRID	717	192.451679.38688137.16
GRID	718	192.451679 .38688121 .92
GRID	719	206.148485.18081137.16
GRID	720	206.148485 .18081121 .92
GRID	721	165.038367 .84657137 .16
GRID	722	178.748273 .60875137 .16
GRID	723	165.038367 .84657121 .92
GRID	724	178.748273 .60875121 .92
GRID	725	274.5356114 .382106 .68
GRID	726	260.871108 .5114106 .68
GRID	727	247.2102 .6558106 .68
GRID	728	233.522696 .81543106 .68

GRID	729	260.871108 .511491 .44
GRID	730	274.5356114 .38291 .44
GRID	731	247.2102 .655891 .44
GRID	732	233.522696 .8154391 .44
GRID	733	260.871108 .5114137 .16
GRID	734	260.871108 .5114121 .92
GRID	735	274.5356114 .382137 .16
GRID	736	274.5356114 .382121 .92
GRID	737	233.522696 .81543137 .16
GRID	738	247.2102 .6558137 .16
GRID	739	233.522696 .81543121 .92
GRID	740	247.2102 .6558121 .92
GRID	741	219.840890 .9912615 .23015
GRID	742	219.839290.9905630.43357
GRID	743	219.838890 .9903745 .72
GRID	744	219.838890 .9903760 .96
GRID	745	206.14985 .1810330 .43555
GRID	746	192.452279 .3871530 .43793
GRID	747	178.74973 .6090630 .4407
GRID	748	165.039167 .8469130 .4438
GRID	749	192.454279 .3879815 .23107
GRID	750	206.150885 .181815 .23057
GRID	751	178.75173 .6099315 .23165
GRID	752	165.041367 .8478215 .2323
GRID	753	192.451679 .3868860 .96
GRID	754	192.451679.3868845.72
GRID	755	206.148485 .180860 .96
GRID	756	206.148485 .180845 .72
GRID	757	165.038367 .8465760 .96
GRID	758	178.748273 .6087560 .96
GRID	759	165.038367 .8465745 .72
GRID	760	178.748273 .6087545 .72
GRID	761	274.5356114 .38230 .43014
GRID	762	260.8712108 .511430 .43031
GRID	763	247.2003102 .655930 .43094
GRID	764	233.523 96.8155730.43203
GRID	765	260.8722108 .511915 .22947
GRID	766	274.5365114 .382415 .22944
GRID	767	247.2015102 .656515 .2296
GRID	768	233.524496 .816215 .22983
GRID	769	260.871108 .511460 .96
GRID	770	260.871108 .511445 .72
GRID	771	274.5356114 .38260 .96
GRID	772	274.5356114 .38245 .72
GRID	773	233.522696 .8154360 .96
GRID	774	247.2102 .655860 .96
GRID	775	233.522696 .8154345 .72
GRID	776	247.2102 .655845 .72
GRID	777	13.790455 .558929152 .4
GRID	778	27.573911 .13557152 .4
GRID	779	41.3505616 .72985152 .4
GRID	780	55.1204522 .3416152 .4
GRID	781	68.8686627 .96457152 .4
GRID	782	82.6241733 .61044152 .4
GRID	783	96.3735139 .27355152 .4
GRID	784	110.116744 .95373152 .4
GRID	785	123.853650 .65081152 .4
GRID	786	137.584356 .36462152 .4
GRID	787	68.8686627 .96457167 .64
GRID	788	68.8686627 .96457182 .88
GRID	789	68.8686627 .96457198 .12
GRID	790	68.8686627 .96457213 .36
GRID	791	68.8686627 .96457228 .6
GRID	792	68.8686627 .96457243 .84
GRID	793	68.8686627 .96457259 .08
GRID	794	68.8686627 .96457274 .32
GRID	795	68.8788727 .96876289 .5629
GRID	796	55.1204522 .3416228 .6
GRID	797	41.3505616 .72985228 .6

GRID	798	27.573911 .13557228 .6
GRID	799	13.790455 .558929228 .6
GRID	800	55.1204522 .3416182 .88
GRID	801	41.3505616 .72985182 .88
GRID	802	27.573911 .13557182 .88
GRID	803	13.790455 .558929182 .88
GRID	804	41.3505616 .72985167 .64
GRID	805	55.1204522 .3416167 .64
GRID	806	27.573911 .13557167 .64
GRID	807	13.790455 .558929167 .64
GRID	808	41.3505616 .72985213 .36
GRID	809	41.3505616 .72985198 .12
GRID	810	55.1204522 .3416213 .36
GRID	811	55.1204522 .3416198 .12
GRID	812	13.790455 .558929213 .36
GRID	813	27.573911 .13557213 .36
GRID	814	13.790455 .558929198 .12
GRID	815	27.573911 .13557198 .12
GRID	816	55.1204522 .3416259 .08
GRID	817	41.3505616 .72985259 .08
GRID	818	27.573911 .13557259 .08
GRID	819	13.790455 .558929259 .08
GRID	820	41.3505616 .72985243 .84
GRID	821	55.1204522 .3416243 .84
GRID	822	27.573911 .13557243 .84
GRID	823	13.790455 .558929243 .84
GRID	824	41.3518316 .73036289 .5692
GRID	825	41.3505616 .72985274 .32
GRID	826	55.1219922 .34223289 .5754
GRID	827	55.1204522 .3416274 .32
GRID	828	13.790955 .559132289 .5611
GRID	829	27.5748211 .13595289 .5643
GRID	830	13.790455 .558928274 .32
GRID	831	27.573911 .13557274 .32
GRID	832	137.584356 .36462228 .6
GRID	833	123.853650 .65081228 .6
GRID	834	110.116744.95373228.6
GRID	835	96.3735139 .27355228 .6
GRID	836	82.6241733 .61044228 .6
GRID	837	110.116744 .95373213 .36
GRID	838	110.116744 .95373198 .12
GRID	839	110.116744.95373182.88
GRID	840	110.116744 .95373167 .64
GRID	841	123.853650 .65081198 .12
GRID	842	137.584356 .36462198 .12
GRID	843	123.853650 .65081213 .36
GRID	844	137.584356 .36462213 .36
GRID	845	123.853650 .65081182 .88
GRID	846	137.584356 .36462182 .88
GRID	847	123.853650 .65081167 .64
GRID	848	137.584356 .36462167 .64
GRID	849	82.6241733 .61044198 .12
GRID	850	96.3735139 .27355198 .12
GRID	851	82.6241733 .61044213 .36
GRID	852	96.3735139 .27355213 .36
GRID	853	82.6241733 .61044182 .88
GRID	854	96.3735139 .27355182 .88
GRID	855	82.6241733 .61044167 .64
GRID	856	96.3735139 .27355167 .64
GRID	857	110.122444.95612289.5646
GRID	858	110.117844.95422274.3415
GRID	859	110.116744.95373259.08
GRID	860	110.116744.95373243.84
GRID	861	123.854750 .65129274 .3454
GRID	862	137.591356 .36755274 .3492
GRID	863	123.859350 .65317289 .5654
GRID	864	137.594756 .36898289 .5656
GRID	865	123.853650 .65081259 .08
GRID	866	137.584356.36462259.08

GRID	867	123.853650 .65081243 .84
GRID	868	137.584356 .36462243 .84
GRID	869	82.6241733 .61044274 .32
GRID	870	96.3747139 .27404274 .3376
GRID	871	82.6296833 .61271289 .5631
GRID	872	96.3792239.27591289.5638
GRID	873	82.6241733 .61044259 .08
GRID	874	96.3735139 .27355259 .08
GRID	875	82.6241733 .61044243 .84
GRID	876	96.3735139 .27355243 .84
GRID	877	68.8788727 .9687615 .23706
GRID	878	68.8686627 .9645730 .48
GRID	879	68.8686627 .9645745 .72
GRID	880	68.8686627 .9645760 .96
GRID	881	68.8686627 .9645776 .2
GRID	882	68.8686627 .9645791 .44
GRID	883	68.8686627 .96457106 .68
GRID	884	68.8686627 .96457121 .92
GRID	885	68.8686627 .96457137 .16
GRID	886	55.1204522 .341676 .2
GRID	887	41.3505616 .7298576 .2
GRID	888	27.573911 .1355776 .2
GRID	889	13.790455 .55892976 .2
GRID	890	55.1204522 .341630 .48
GRID	891	41.3505616 .7298530 .48
GRID	892	27.573911 .1355730 .48
GRID	893	13.790455 .55892930 .48
GRID	894	41.3518316 .7303615 .2308
GRID	895	55.1219922 .3422315 .22459
GRID	896	27.5748311 .1359515 .23567
GRID	897	13.790965 .55913415 .23886
GRID	898	41.3505616 .7298560 .96
GRID	899	41.3505616 .7298545 .72
GRID	900	55.1204522 .341660 .96
GRID	901	55.1204522 .341645 .72
GRID	902	13.790455 .55892960 .96
GRID	903	27.573911 .1355760 .96
GRID	904	13.790455 .55892945 .72
GRID	905	27.573911 .1355745 .72
GRID	906	55.1204522 .3416106 .68
GRID	907	41.3505616 .72985106 .68
GRID	908	27.573911 .13557106 .68
GRID	909	13.790455 .558929106 .68
GRID	910	41.3505616 .7298591 .44
GRID	911	55.1204522 .341691 .44
GRID	912	27.573911 .1355791 .44
GRID	913	13.790455 .55892991 .44
GRID	914	41.3505616 .72985137 .16
GRID	915	41.3505616 .72985121 .92
GRID	916	55.1204522 .3416137 .16
GRID	917	55.1204522 .3416121 .92
GRID	918	13.790455 .558929137 .16
GRID	919	27.573911 .13557137 .16
GRID	920	13.790455 .558929121 .92
GRID	921	27.573911 .13557121 .92
GRID	922	137.584356 .3646276 .2
GRID	923	123.853650 .6508176 .2
GRID	924	110.116744.9537376.2
GRID	925	96.3735139.2735576.2
GRID	926	82.6241633 .6104476 .2
GRID	927	110.116744.9537360.96
GRID	928	110.116744.9537345.72
GRID	929	110.117844 .9542230 .45848
GRID	930	110.122444.9561215.23541
GRID	931	123.853650 .6508145 .72
GRID	932	137.584356 .3646245 .72
GRID	933	123.853650 .6508160 .96
GRID	934	137.584356 .3646260 .96
GRID	935	123.854750 .6512830 .4546

GRID	936	137.591356.3675530.45081			
GRID	937	123.859350 .6531715 .23463			
GRID	938	137.594756 .3689815 .23442			
GRID	939	82.6241633 .6104445 .72			
GRID	940	96.3735139 .2735545 .72			
GRID	941	82.6241633 .6104460 .96			
GRID	942	96.3735139 .2735560 .96			
GRID	943	82.6241633 .6104430 .48			
GRID	944	96.3747139.2740430.46235			
GRID	945	82.6296833 .6127115 .23693			
GRID	946	96.3792239 .275915 .23618			
GRID	947	110.116744 .95373137 .16			
GRID	948	110.116744 .95373121 .92			
GRID	949	110.116744.95373106.68			
GRID	950	110.116744 .9537391 .44			
GRID	951	123.853650 .65081121 .92			
GRID	952	137.584356 .36462121 .92			
GRID	953	123.853650 .65081137 .16			
GRID	954	137.584356 .36462137 .16			
GRID	955	123.853650 .65081106 .68			
GRID	956	137.584356 .36462106 .68			
GRID	957	123.853650 .6508191 .44			
GRID	958	137.584356 .3646291 .44			
GRID	959	82.6241633 .61044121 .92			
GRID	960	96.3735139 .27355121 .92			
GRID	961	82.6241633 .61044137 .16			
GRID	962	96.3735139 .27355137 .16			
GRID	963	82.6241633 .61044106 .68			
GRID	964	96.3735139.27355106.68			
GRID	965	82.6241633 .6104491 .44			
GRID	966	96.3735139 .2735591 .44			
\$\$					
\$\$ SPOINT Data					
\$					
\$ CQUAD4 Elements					
\$					
CQUAD4	61	1271	272	267	268
CQUAD4	62	1272	263	264	267
CQUAD4	63	1256	257	272	271
CQUAD4	64	1257	258	263	272
CQUAD4	65	1268	269	273	271
CQUAD4	66	1271	273	255	256
CQUAD4	67	1248	274	270	247
CQUAD4	68	1274	273	269	270
CQUAD4	69	1249	254	274	248
CQUAD4	70	1254	255	273	274
CQUAD4	71	1275	277	231	232
CQUAD4	72	1277	266	230	231
CQUAD4	73	1276	278	277	275
CQUAD4	74	1278	265	266	277
CQUAD4	75	1268	267	278	276
CQUAD4	76	1267	264	265	278
CQUAD4	77	1245	279	234	235
CQUAD4	78	1279	280	233	234
CQUAD4	79	1280	275	232	233
CQUAD4	80	1247	270	281	246
CQUAD4	81	1246	281	279	245
CQUAD4	82	1276	282	269	268
CQUAD4	83	1282	281	270	269
CQUAD4	84	1275	280	282	276
CQUAD4	85	1280	279	281	282
CQUAD4	86	1287	288	283	284
CQUAD4	87	1288	212	213	283
CQUAD4	88	1261	262	288	287
CQUAD4	89	1262	211	212	288
CQUAD4	90	1284	285	289	287
CQUAD4	91	1287	289	260	261
CQUAD4	92	1263	290	286	264

CQUAD4	93	1	290	289	285	286
CQUAD4	94	1	258	259	290	263
CQUAD4	95	1	259	260	289	290
CQUAD4	96	1	291	293	226	227
CQUAD4	97	1	293	215	216	226
CQUAD4	98	1	292	294	293	291
CQUAD4	99	1	294	214	215	293
CQUAD4	100	1	284	283	294	292
CQUAD4	101	1	283	213	214	294
CQUAD4	102	1	266	295	229	230
CQUAD4	103	1	295	296	228	229
CQUAD4	104	1	296	291	227	228
CQUAD4	105	1	264	286	297	265
CQUAD4	106	1	265	297	295	266
CQUAD4	107	1	292	298	285	284
CQUAD4	108	1	298	297	286	285
CQUAD4	109	1	291	296	298	292
CQUAD4	110	1	296	295	297	298
CQUAD4	111	1	307	308	303	304
CQUAD4	112	1	308	299	300	303
CQUAD4	113	1	159	160	308	307
CQUAD4	114	1	160	161	299	308
CQUAD4	115	1	304	305	309	307
CQUAD4	116	1	307	309	158	159
CQUAD4	117	1	253	310	306	252
CQUAD4	118	1	310	309	305	306
CQUAD4	119	1	156	157	310	253
CQUAD4	120	1	157	158	309	310
CQUAD4	121	1	311	313	257	256
CQUAD4	122	1	313	302	258	257
CQUAD4	123	1	312	314	313	311
CQUAD4	124	1	314	301	302	313
CQUAD4	125	1	304	303	314	312
CQUAD4	126	1	303	300	301	314
CQUAD4	127	1	250	315	254	249
CQUAD4	128	1	315	316	255	254
CQUAD4	129	1	316	311	256	255
CQUAD4	130	1	252	306	317	251
CQUAD4	131	1	251	317	315	250
CQUAD4	132	1	312	318	305	304
CQUAD4	133	1	318	317	306	305
CQUAD4	134	1	311	316	318	312
CQUAD4	135	1	316	315	317	318
CQUAD4	136	1	323	324	319	320
CQUAD4	137	1	324	207	208	319
CQUAD4	138	1	164	165	324	323
CQUAD4	139	1	165	166	207	324
CQUAD4	140	1	320	321	325	323
CQUAD4	141	1	323	325	163	164
CQUAD4	142	1	299	326	322	300
CQUAD4	143	1	326	325	321	322
CQUAD4	144	1	161	162	326	299
CQUAD4	145	1	162	163	325	326
CQUAD4	146	1	327	329	262	261
CQUAD4	147	1	329	210	211	262
CQUAD4	148	1	328	330	329	327
CQUAD4	149	1	330	209	210	329
CQUAD4	150	1	320	319	330	328
CQUAD4	151	1	319	208	209	330
CQUAD4	152	1	302	331	259	258
CQUAD4	153	1	331	332	260	259
CQUAD4	154	1	332	327	261	260
CQUAD4	155	1	300	322	333	301
CQUAD4	156	1	301	333	331	302
CQUAD4	157	1	328	334	321	320
CQUAD4	158	1	334	333	322	321
CQUAD4	159	1	327	332	334	328
CQUAD4	160	1	332	331	333	334
CQUAD4	161	1	352	353	348	349

CQUAD4	162	1	353	344	345	348
CQUAD4	163	1	337	338	353	352
CQUAD4	164	1	338	339	344	353
CQUAD4	165	1	349	350	354	352
CQUAD4	166	1	352	354	336	337
CQUAD4	167	1	140	355	351	139
CQUAD4	168	1	355	354	350	351
CQUAD4	169	1	141	335	355	140
CQUAD4	170	1	335	336	354	355
CQUAD4	171	1	356	358	241	242
CQUAD4	172	1	358	347	240	241
CQUAD4	173	1	357	359	358	356
CQUAD4	174	1	359	346	347	358
CQUAD4	175	1	349	348	359	357
CQUAD4	176	1	348	345	346	359
CQUAD4	177	1	137	360	244	136
CQUAD4	178	1	360	361	243	244
CQUAD4	179	1	361	356	242	243
CQUAD4	180	1	139	351	362	138
CQUAD4	181	1	138	362	360	137
CQUAD4	182	1	357	363	350	349
CQUAD4	183	1	363	362	351	350
CQUAD4	184	1	356	361	363	357
CQUAD4	185	1	361	360	362	363
CQUAD4	186	1	368	369	364	365
CQUAD4	187	1	369	248	247	364
CQUAD4	188	1	342	343	369	368
CQUAD4	189	1	343	249	248	369
CQUAD4	190	1	365	366	370	368
CQUAD4	191	1	368	370	341	342
CQUAD4	192	1	344	371	367	345
CQUAD4	193	1	371	370	366	367
CQUAD4	194	1	339	340	371	344
CQUAD4	195	1	340	341	370	371
CQUAD4	196	1	372	374	236	237
CQUAD4	197	1	374	245	235	236
CQUAD4	198	1	373	375	374	372
CQUAD4	199	1	375	246	245	374
CQUAD4	200	1	365	364	375	373
CQUAD4	201	1	364	247	246	375
CQUAD4	202	1	347	376	239	240
CQUAD4	203	1	376	377	238	239
CQUAD4	204	1	377	372	237	238
CQUAD4	205	1	345	367	378	346
CQUAD4	206	1	346	378	376	347
CQUAD4	207	1	373	379	366	365
CQUAD4	208	1	379	378	367	366
CQUAD4	209	1	372	377	379	373
CQUAD4	210	1	377	376	378	379
CQUAD4	211	1	388	389	384	385
CQUAD4	212	1	389	380	381	384
CQUAD4	213	1	149	150	389	388
CQUAD4	214	1	150	151	380	389
CQUAD4	215	1	385	386	390	388
CQUAD4	216	1	388	390	148	149
CQUAD4	217	1	145	391	387	144
CQUAD4	218	1	391	390	386	387
CQUAD4	219	1	146	147	391	145
CQUAD4	220	1	147	148	390	391
CQUAD4	221	1	392	394	338	337
CQUAD4	222	1	394	383	339	338
CQUAD4	223	1	393	395	394	392
CQUAD4	224	1	395	382	383	394
CQUAD4	225	1	385	384	395	393
CQUAD4	226	1	384	381	382	395
CQUAD4	227	1	142	396	335	141
CQUAD4	228	1	396	397	336	335
CQUAD4	229	1	397	392	337	336
CQUAD4	230	1	144	387	398	143

CQUAD4	231	1	143	398	396	142
CQUAD4	232	1	393	399	386	385
CQUAD4	233	1	399	398	387	386
CQUAD4	234	1	392	397	399	393
CQUAD4	235	1	397	396	398	399
CQUAD4	236	1	404	405	400	401
CQUAD4	237	1	405	253	252	400
CQUAD4	238	1	154	155	405	404
CQUAD4	239	1	155	156	253	405
CQUAD4	240	1	401	402	406	404
CQUAD4	241	1	404	406	153	154
CQUAD4	242	1	380	407	403	381
CQUAD4	243	1	407	406	402	403
CQUAD4	244	1	151	152	407	380
CQUAD4	245	1	152	153	406	407
CQUAD4	246	1	408	410	343	342
CQUAD4	247	1	410	250	249	343
CQUAD4	248	1	409	411	410	408
CQUAD4	249	1	411	251	250	410
CQUAD4	250	1	401	400	411	409
CQUAD4	251	1	400	252	251	411
CQUAD4	252	1	383	412	340	339
CQUAD4	253	1	412	413	341	340
CQUAD4	254	1	413	408	342	341
CQUAD4	255	1	381	403	414	382
CQUAD4	256	1	382	414	412	383
CQUAD4	257	1	409	415	402	401
CQUAD4	258	1	415	414	403	402
CQUAD4	259	1	408	413	415	409
CQUAD4	260	1	413	412	414	415
CQUAD4	261	1	442	443	438	439
CQUAD4	262	1	443	434	435	438
CQUAD4	263	1	427	428	443	442
CQUAD4	264	1	428	429	434	443
CQUAD4	265	1	439	440	444	442
CQUAD4	266	1	442	444	426	427
CQUAD4	267	1	419	445	441	418
CQUAD4	268	1	445	444	440	441
CQUAD4	269	1	420	425	445	419
CQUAD4	270	1	425	426	444	445
CQUAD4	271	1	446	448	112	113
CQUAD4	272	1	448	437	111	112
CQUAD4	273	1	447	449	448	446
CQUAD4	274	1	449	436	437	448
CQUAD4	275	1	439	438	449	447
CQUAD4	276	1	438	435	436	449
CQUAD4	277	1	416	450	115	116
CQUAD4	278	1	450	451	114	115
CQUAD4	279	1	451	446	113	114
CQUAD4	280	1	418	441	452	417
CQUAD4	281	1	417	452	450	416
CQUAD4	282	1	447	453	440	439
CQUAD4	283	1	453	452	441	440
CQUAD4	284	1	446	451	453	447
CQUAD4	285	1	451	450	452	453
CQUAD4	286	1	458	459	454	455
CQUAD4	287	1	459	222	223	454
CQUAD4	288	1	432	433	459	458
CQUAD4	289	1	433	221	222	459
CQUAD4	290	1	455	456	460	458
CQUAD4	291	1	458	460	431	432
CQUAD4	292	1	434	461	457	435
CQUAD4	293	1	461	460	456	457
CQUAD4	294	1	429	430	461	434
CQUAD4	295	1	430	431	460	461
CQUAD4	296	1	462	464	107	108
CQUAD4	297	1	464	225	106	107
CQUAD4	298	1	463	465	464	462
CQUAD4	299	1	465	224	225	464

CQUAD4	300	1	455	454	465	463
CQUAD4	301	1	454	223	224	465
CQUAD4	302	1	437	466	110	111
CQUAD4	303	1	466	467	109	110
CQUAD4	304	1	467	462	108	109
CQUAD4	305	1	435	457	468	436
CQUAD4	306	1	436	468	466	437
CQUAD4	307	1	463	469	456	455
CQUAD4	308	1	469	468	457	456
CQUAD4	309	1	462	467	469	463
CQUAD4	310	1	467	466	468	469
CQUAD4	311	1	478	479	474	475
CQUAD4	312	1	479	470	471	474
CQUAD4	313	1	232	231	479	478
CQUAD4	314	1	231	230	470	479
CQUAD4	315	1	475	476	480	478
CQUAD4	316	1	478	480	233	232
CQUAD4	317	1	424	481	477	423
CQUAD4	318	1	481	480	476	477
CQUAD4	319	1	235	234	481	424
CQUAD4	320	1	234	233	480	481
CQUAD4	321	1	482	484	428	427
CQUAD4	322	1	484	473	429	428
CQUAD4	323	1	483	485	484	482
CQUAD4	324	1	485	472	473	484
CQUAD4	325	1	475	474	485	483
CQUAD4	326	1	474	471	472	485
CQUAD4	327	1	421	486	425	420
CQUAD4	328	1	486	487	426	425
CQUAD4	329	1	487	482	427	426
CQUAD4	330	1	423	477	488	422
CQUAD4	331	1	422	488	486	421
CQUAD4	332	1	483	489	476	475
CQUAD4	333	1	489	488	477	476
CQUAD4	334	1	482	487	489	483
CQUAD4	335	1	487	486	488	489
CQUAD4	336	1	494	495	490	491
CQUAD4	337	1	495	217	218	490
CQUAD4	338	1	227	226	495	494
CQUAD4	339	1	226	216	217	495
CQUAD4	340	1	491	492	496	494
CQUAD4	341	1	494	496	228	227
CQUAD4	342	1	470	497	493	471
CQUAD4	343	1	497	496	492	493
CQUAD4	344	1	230	229	497	470
CQUAD4	345	1	229	228	496	497
CQUAD4	346	1	498	500	433	432
CQUAD4	347	1	500	220	221	433
CQUAD4	348	1	499	501	500	498
CQUAD4	349	1	501	219	220	500
CQUAD4	350	1	491	490	501	499
CQUAD4	351	1	490	218	219	501
CQUAD4	352	1	473	502	430	429
CQUAD4	353	1	502	503	431	430
CQUAD4	354	1	503	498	432	431
CQUAD4	355	1	471	493	504	472
CQUAD4	356	1	472	504	502	473
CQUAD4	357	1	499	505	492	491
CQUAD4	358	1	505	504	493	492
CQUAD4	359	1	498	503	505	499
CQUAD4	360	1	503	502	504	505
CQUAD4	361	1	523	524	519	520
CQUAD4	362	1	524	515	516	519
CQUAD4	363	1	508	509	524	523
CQUAD4	364	1	509	510	515	524
CQUAD4	365	1	520	521	525	523
CQUAD4	366	1	523	525	507	508
CQUAD4	367	1	130	526	522	129
CQUAD4	368	1	526	525	521	522

CQUAD4	369	1	131	506	526	130
CQUAD4	370	1	506	507	525	526
CQUAD4	371	1	527	529	122	123
CQUAD4	372	1	529	518	121	122
CQUAD4	373	1	528	530	529	527
CQUAD4	374	1	530	517	518	529
CQUAD4	375	1	520	519	530	528
CQUAD4	376	1	519	516	517	530
CQUAD4	377	1	127	531	125	126
CQUAD4	378	1	531	532	124	125
CQUAD4	379	1	532	527	123	124
CQUAD4	380	1	129	522	533	128
CQUAD4	381	1	128	533	531	127
CQUAD4	382	1	528	534	521	520
CQUAD4	383	1	534	533	522	521
CQUAD4	384	1	527	532	534	528
CQUAD4	385	1	532	531	533	534
CQUAD4	386	1	539	540	535	536
CQUAD4	387	1	540	419	418	535
CQUAD4	388	1	513	514	540	539
CQUAD4	389	1	514	420	419	540
CQUAD4	390	1	536	537	541	539
CQUAD4	391	1	539	541	512	513
CQUAD4	392	1	515	542	538	516
CQUAD4	393	1	542	541	537	538
CQUAD4	394	1	510	511	542	515
CQUAD4	395	1	511	512	541	542
CQUAD4	396	1	543	545	117	118
CQUAD4	397	1	545	416	116	117
CQUAD4	398	1	544	546	545	543
CQUAD4	399	1	546	417	416	545
CQUAD4	400	1	536	535	546	544
CQUAD4	401	1	535	418	417	546
CQUAD4	402	1	518	547	120	121
CQUAD4	403	1	547	548	119	120
CQUAD4	404	1	548	543	118	119
CQUAD4	405	1	516	538	549	517
CQUAD4	406	1	517	549	547	518
CQUAD4	407	1	544	550	537	536
CQUAD4	408	1	550	549	538	537
CQUAD4	409	1	543	548	550	544
CQUAD4	410	1	548	547	549	550
CQUAD4	411	1	559	560	555	556
CQUAD4	412	1	560	551	552	555
CQUAD4	413	1	242	241	560	559
CQUAD4	414	1	241	240	551	560
CQUAD4	415	1	556	557	561	559
CQUAD4	416	1	559	561	243	242
CQUAD4	417	1	135	562	558	134
CQUAD4	418	1	562	561	557	558
CQUAD4	419	1	136	244	562	135
CQUAD4	420	1	244	243	561	562
CQUAD4	421	1	563	565	509	508
CQUAD4	422	1	565	554	510	509
CQUAD4	423	1	564	566	565	563
CQUAD4	424	1	566	553	554	565
CQUAD4	425	1	556	555	566	564
CQUAD4	426	1	555	552	553	566
CQUAD4	427	1	132	567	506	131
CQUAD4	428	1	567	568	507	506
CQUAD4	429	1	568	563	508	507
CQUAD4	430	1	134	558	569	133
CQUAD4	431	1	133	569	567	132
CQUAD4	432	1	564	570	557	556
CQUAD4	433	1	570	569	558	557
CQUAD4	434	1	563	568	570	564
CQUAD4	435	1	568	567	569	570
CQUAD4	436	1	575	576	571	572
CQUAD4	437	1	576	424	423	571

CQUAD4	438	1	237	236	576	575
CQUAD4	439	1	236	235	424	576
CQUAD4	440	1	572	573	577	575
CQUAD4	441	1	575	577	238	237
CQUAD4	442	1	551	578	574	552
CQUAD4	443	1	578	577	573	574
CQUAD4	444	1	240	239	578	551
CQUAD4	445	1	239	238	577	578
CQUAD4	446	1	579	581	514	513
CQUAD4	447	1	581	421	420	514
CQUAD4	448	1	580	582	581	579
CQUAD4	449	1	582	422	421	581
CQUAD4	450	1	572	571	582	580
CQUAD4	451	1	571	423	422	582
CQUAD4	452	1	554	583	511	510
CQUAD4	453	1	583	584	512	511
CQUAD4	454	1	584	579	513	512
CQUAD4	455	1	552	574	585	553
CQUAD4	456	1	553	585	583	554
CQUAD4	457	1	580	586	573	572
CQUAD4	458	1	586	585	574	573
CQUAD4	459	1	579	584	586	580
CQUAD4	460	1	584	583	585	586
CQUAD4	461	1	632	633	628	629
CQUAD4	462	1	633	624	625	628
CQUAD4	463	1	617	618	633	632
CQUAD4	464	1	618	619	624	633
CQUAD4	465	1	629	630	634	632
CQUAD4	466	1	632	634	616	617
CQUAD4	467	1	590	635	631	589
CQUAD4	468	1	635	634	630	631
CQUAD4	469	1	591	615	635	590
CQUAD4	470	1	615	616	634	635
CQUAD4	471	1	636	638	172	173
CQUAD4	472	1	638	627	171	172
CQUAD4	473	1	637	639	638	636
CQUAD4	474	1	639	626	627	638
CQUAD4	475	1	629	628	639	637
CQUAD4	476	1	628	625	626	639
CQUAD4	477	1	587	640	175	176
CQUAD4	478	1	640	641	174	175
CQUAD4	479	1	641	636	173	174
CQUAD4	480	1	589	631	642	588
CQUAD4	481	1	588	642	640	587
CQUAD4	482	1	637	643	630	629
CQUAD4	483	1	643	642	631	630
CQUAD4	484	1	636	641	643	637
CQUAD4	485	1	641	640	642	643
CQUAD4	486	1	648	649	644	645
CQUAD4	487	1	649	210	209	644
CQUAD4	488	1	622	623	649	648
CQUAD4	489	1	623	211	210	649
CQUAD4	490	1	645	646	650	648
CQUAD4	491	1	648	650	621	622
CQUAD4	492	1	624	651	647	625
CQUAD4	493	1	651	650	646	647
CQUAD4	494	1	619	620	651	624
CQUAD4	495	1	620	621	650	651
CQUAD4	496	1	652	654	167	168
CQUAD4	497	1	654	207	166	167
CQUAD4	498	1	653	655	654	652
CQUAD4	499	1	655	208	207	654
CQUAD4	500	1	645	644	655	653
CQUAD4	501	1	644	209	208	655
CQUAD4	502	1	627	656	170	171
CQUAD4	503	1	656	657	169	170
CQUAD4	504	1	657	652	168	169
CQUAD4	505	1	625	647	658	626
CQUAD4	506	1	626	658	656	627

CQUAD4	507	1	653	659	646	645
CQUAD4	508	1	659	658	647	646
CQUAD4	509	1	652	657	659	653
CQUAD4	510	1	657	656	658	659
CQUAD4	511	1	668	669	664	665
CQUAD4	512	1	669	660	661	664
CQUAD4	513	1	608	609	669	668
CQUAD4	514	1	609	610	660	669
CQUAD4	515	1	665	666	670	668
CQUAD4	516	1	668	670	607	608
CQUAD4	517	1	595	671	667	594
CQUAD4	518	1	671	670	666	667
CQUAD4	519	1	596	606	671	595
CQUAD4	520	1	606	607	670	671
CQUAD4	521	1	672	674	618	617
CQUAD4	522	1	674	663	619	618
CQUAD4	523	1	673	675	674	672
CQUAD4	524	1	675	662	663	674
CQUAD4	525	1	665	664	675	673
CQUAD4	526	1	664	661	662	675
CQUAD4	527	1	592	676	615	591
CQUAD4	528	1	676	677	616	615
CQUAD4	529	1	677	672	617	616
CQUAD4	530	1	594	667	678	593
CQUAD4	531	1	593	678	676	592
CQUAD4	532	1	673	679	666	665
CQUAD4	533	1	679	678	667	666
CQUAD4	534	1	672	677	679	673
CQUAD4	535	1	677	676	678	679
CQUAD4	536	1	684	685	680	681
CQUAD4	537	1	685	215	214	680
CQUAD4	538	1	613	614	685	684
CQUAD4	539	1	614	216	215	685
CQUAD4	540	1	681	682	686	684
CQUAD4	541	1	684	686	612	613
CQUAD4	542	1	660	687	683	661
CQUAD4	543	1	687	686	682	683
CQUAD4	544	1	610	611	687	660
CQUAD4	545	1	611	612	686	687
CQUAD4	546	1	688	690	623	622
CQUAD4	547	1	690	212	211	623
CQUAD4	548	1	689	691	690	688
CQUAD4	549	1	691	213	212	690
CQUAD4	550	1	681	680	691	689
CQUAD4	551	1	680	214	213	691
CQUAD4	552	1	663	692	620	619
CQUAD4	553	1	692	693	621	620
CQUAD4	554	1	693	688	622	621
CQUAD4	555	1	661	683	694	662
CQUAD4	556	1	662	694	692	663
CQUAD4	557	1	689	695	682	681
CQUAD4	558	1	695	694	683	682
CQUAD4	559	1	688	693	695	689
CQUAD4	560	1	693	692	694	695
CQUAD4	561	1	713	714	709	710
CQUAD4	562	1	714	705	706	709
CQUAD4	563	1	698	699	714	713
CQUAD4	564	1	699	700	705	714
CQUAD4	565	1	710	711	715	713
CQUAD4	566	1	713	715	697	698
CQUAD4	567	1	600	716	712	599
CQUAD4	568	1	716	715	711	712
CQUAD4	569	1	601	696	716	600
CQUAD4	570	1	696	697	715	716
CQUAD4	571	1	717	719	609	608
CQUAD4	572	1	719	708	610	609
CQUAD4	573	1	718	720	719	717
CQUAD4	574	1	720	707	708	719
CQUAD4	575	1	710	709	720	718

CQUAD4	576	1	709	706	707	720
CQUAD4	577	1	597	721	606	596
CQUAD4	578	1	721	722	607	606
CQUAD4	579	1	722	717	608	607
CQUAD4	580	1	599	712	723	598
CQUAD4	581	1	598	723	721	597
CQUAD4	582	1	718	724	711	710
CQUAD4	583	1	724	723	712	711
CQUAD4	584	1	717	722	724	718
CQUAD4	585	1	722	721	723	724
CQUAD4	586	1	729	730	725	726
CQUAD4	587	1	730	220	219	725
CQUAD4	588	1	703	704	730	729
CQUAD4	589	1	704	221	220	730
CQUAD4	590	1	726	727	731	729
CQUAD4	591	1	729	731	702	703
CQUAD4	592	1	705	732	728	706
CQUAD4	593	1	732	731	727	728
CQUAD4	594	1	700	701	732	705
CQUAD4	595	1	701	702	731	732
CQUAD4	596	1	733	735	614	613
CQUAD4	597	1	735	217	216	614
CQUAD4	598	1	734	736	735	733
CQUAD4	599	1	736	218	217	735
CQUAD4	600	1	726	725	736	734
CQUAD4	601	1	725	219	218	736
CQUAD4	602	1	708	737	611	610
CQUAD4	603	1	737	738	612	611
CQUAD4	604	1	738	733	613	612
CQUAD4	605	1	706	728	739	707
CQUAD4	606	1	707	739	737	708
CQUAD4	607	1	734	740	727	726
CQUAD4	608	1	740	739	728	727
CQUAD4	609	1	733	738	740	734
CQUAD4	610	1	738	737	739	740
CQUAD4	611	1	749	750	745	746
CQUAD4	612	1	750	741	742	745
CQUAD4	613	1	99	100	750	749
CQUAD4	614	1	100	101	741	750
CQUAD4	615	1	746	747	751	749
CQUAD4	616	1	749	751	98	99
CQUAD4	617	1	605	752	748	604
CQUAD4	618	1	752	751	747	748
CQUAD4	619	1	96	97	752	605
CQUAD4	620	1	97	98	751	752
CQUAD4	621	1	753	755	699	698
CQUAD4	622	1	755	744	700	699
CQUAD4	623	1	754	756	755	753
CQUAD4	624	1	756	743	744	755
CQUAD4	625	1	746	745	756	754
CQUAD4	626	1	745	742	743	756
CQUAD4	627	1	602	757	696	601
CQUAD4	628	1	757	758	697	696
CQUAD4	629	1	758	753	698	697
CQUAD4	630	1	604	748	759	603
CQUAD4	631	1	603	759	757	602
CQUAD4	632	1	754	760	747	746
CQUAD4	633	1	760	759	748	747
CQUAD4	634	1	753	758	760	754
CQUAD4	635	1	758	757	759	760
CQUAD4	636	1	765	766	761	762
CQUAD4	637	1	766	225	224	761
CQUAD4	638	1	104	105	766	765
CQUAD4	639	1	105	106	225	766
CQUAD4	640	1	762	763	767	765
CQUAD4	641	1	765	767	103	104
CQUAD4	642	1	741	768	764	742
CQUAD4	643	1	768	767	763	764
CQUAD4	644	1	101	102	768	741

CQUAD4	645	1	102	103	767	768
CQUAD4	646	1	769	771	704	703
CQUAD4	647	1	771	222	221	704
CQUAD4	648	1	770	772	771	769
CQUAD4	649	1	772	223	222	771
CQUAD4	650	1	762	761	772	770
CQUAD4	651	1	761	224	223	772
CQUAD4	652	1	744	773	701	700
CQUAD4	653	1	773	774	702	701
CQUAD4	654	1	774	769	703	702
CQUAD4	655	1	742	764	775	743
CQUAD4	656	1	743	775	773	744
CQUAD4	657	1	770	776	763	762
CQUAD4	658	1	776	775	764	763
CQUAD4	659	1	769	774	776	770
CQUAD4	660	1	774	773	775	776
CQUAD4	661	1	804	805	800	801
CQUAD4	662	1	805	787	788	800
CQUAD4	663	1	779	780	805	804
CQUAD4	664	1	780	781	787	805
CQUAD4	665	1	801	802	806	804
CQUAD4	666	1	804	806	778	779
CQUAD4	667	1	196	807	803	195
CQUAD4	668	1	807	806	802	803
CQUAD4	669	1	197	777	807	196
CQUAD4	670	1	777	778	806	807
CQUAD4	671	1	808	810	796	797
CQUAD4	672	1	810	790	791	796
CQUAD4	673	1	809	811	810	808
CQUAD4	674	1	811	789	790	810
CQUAD4	675	1	801	800	811	809
CQUAD4	676	1	800	788	789	811
CQUAD4	677	1	193	812	799	192
CQUAD4	678	1	812	813	798	799
CQUAD4	679	1	813	808	797	798
CQUAD4	680	1	195	803	814	194
CQUAD4	681	1	194	814	812	193
CQUAD4	682	1	809	815	802	801
CQUAD4	683	1	815	814	803	802
CQUAD4	684	1	808	813	815	809
CQUAD4	685	1	813	812	814	815
CQUAD4	686	1	820	821	816	817
CQUAD4	687	1	821	792	793	816
CQUAD4	688	1	797	796	821	820
CQUAD4	689	1	796	791	792	821
CQUAD4	690	1	817	818	822	820
CQUAD4	691	1	820	822	798	797
CQUAD4	692	1	191	823	819	190
CQUAD4	693	1	823	822	818	819
CQUAD4	694	1	192	799	823	191
CQUAD4	695	1	799	798	822	823
CQUAD4	696	1	824	826	183	184
CQUAD4	697	1	826	795	182	183
CQUAD4	698	1	825	827	826	824
CQUAD4	699	1	827	794	795	826
CQUAD4	700	1	817	816	827	825
CQUAD4	701	1	816	793	794	827
CQUAD4	702	1	188	828	186	187
CQUAD4	703	1	828	829	185	186
CQUAD4	704	1	829	824	184	185
CQUAD4	705	1	190	819	830	189
CQUAD4	706	1	189	830	828	188
CQUAD4	707	1	825	831	818	817
CQUAD4	708	1	831	830	819	818
CQUAD4	709	1	824	829	831	825
CQUAD4	710	1	829	828	830	831
CQUAD4	711	1	838	841	843	837
CQUAD4	712	1	837	843	833	834
CQUAD4	713	1	592	844	842	593

CQUAD4	714	1	844	843	841	842
CQUAD4	715	1	591	832	844	592
CQUAD4	716	1	832	833	843	844
CQUAD4	717	1	839	845	841	838
CQUAD4	718	1	845	846	842	841
CQUAD4	719	1	846	594	593	842
CQUAD4	720	1	784	785	847	840
CQUAD4	721	1	840	847	845	839
CQUAD4	722	1	595	848	786	596
CQUAD4	723	1	848	847	785	786
CQUAD4	724	1	594	846	848	595
CQUAD4	725	1	846	845	847	848
CQUAD4	726	1	789	849	851	790
CQUAD4	727	1	790	851	836	791
CQUAD4	728	1	837	852	850	838
CQUAD4	729	1	852	851	849	850
CQUAD4	730	1	834	835	852	837
CQUAD4	731	1	835	836	851	852
CQUAD4	732	1	788	853	849	789
CQUAD4	733	1	853	854	850	849
CQUAD4	734	1	854	839	838	850
CQUAD4	735	1	781	782	855	787
CQUAD4	736	1	787	855	853	788
CQUAD4	737	1	840	856	783	784
CQUAD4	738	1	856	855	782	783
CQUAD4	739	1	839	854	856	840
CQUAD4	740	1	854	853	855	856
CQUAD4	741	1	858	861	863	857
CQUAD4	742	1	857	863	178	179
CQUAD4	743	1	587	864	862	588
CQUAD4	744	1	864	863	861	862
CQUAD4	745	1	176	177	864	587
CQUAD4	746	1	177	178	863	864
CQUAD4	747	1	859	865	861	858
CQUAD4	748	1	865	866	862	861
CQUAD4	749	1	866	589	588	862
CQUAD4	750	1	834	833	867	860
CQUAD4	751	1	860	867	865	859
CQUAD4	752	1	590	868	832	591
CQUAD4	753	1	868	867	833	832
CQUAD4	754	1	589	866	868	590
CQUAD4	755	1	866	865	867	868
CQUAD4	756	1	794	869	871	795
CQUAD4	757	1	795	871	181	182
CQUAD4	758	1	857	872	870	858
CQUAD4	759	1	872	871	869	870
CQUAD4	760	1	179	180	872	857
CQUAD4	761	1	180	181	871	872
CQUAD4	762	1	793	873	869	794
CQUAD4	763	1	873	874	870	869
CQUAD4	764	1	874	859	858	870
CQUAD4	765	1	791	836	875	792
CQUAD4	766	1	792	875	873	793
CQUAD4	767	1	860	876	835	834
CQUAD4	768	1	876	875	836	835
CQUAD4	769	1	859	874	876	860
CQUAD4	770	1	874	873	875	876
CQUAD4	771	1	894	895	890	891
CQUAD4	772	1	895	877	878	890
CQUAD4	773	1	88	89	895	894
CQUAD4	774	1	89	90	877	895
CQUAD4	775	1	891	892	896	894
CQUAD4	776	1	894	896	87	88
CQUAD4	777	1	206	897	893	205
CQUAD4	778	1	897	896	892	893
CQUAD4	779	1	85	86	897	206
CQUAD4	780	1	86	87	896	897
CQUAD4	781	1	898	900	886	887
CQUAD4	782	1	900	880	881	886

CQUAD4	783	1	899	901	900	898
CQUAD4	784	1	901	879	880	900
CQUAD4	785	1	891	890	901	899
CQUAD4	786	1	890	878	879	901
CQUAD4	787	1	203	902	889	202
CQUAD4	788	1	902	903	888	889
CQUAD4	789	1	903	898	887	888
CQUAD4	790	1	205	893	904	204
CQUAD4	791	1	204	904	902	203
CQUAD4	792	1	899	905	892	891
CQUAD4	793	1	905	904	893	892
CQUAD4	794	1	898	903	905	899
CQUAD4	795	1	903	902	904	905
CQUAD4	796	1	910	911	906	907
CQUAD4	797	1	911	882	883	906
CQUAD4	798	1	887	886	911	910
CQUAD4	799	1	886	881	882	911
CQUAD4	800	1	907	908	912	910
CQUAD4	801	1	910	912	888	887
CQUAD4	802	1	201	913	909	200
CQUAD4	803	1	913	912	908	909
CQUAD4	804	1	202	889	913	201
CQUAD4	805	1	889	888	912	913
CQUAD4	806	1	914	916	780	779
CQUAD4	807	1	916	885	781	780
CQUAD4	808	1	915	917	916	914
CQUAD4	809	1	917	884	885	916
CQUAD4	810	1	907	906	917	915
CQUAD4	811	1	906	883	884	917
CQUAD4	812	1	198	918	777	197
CQUAD4	813	1	918	919	778	777
CQUAD4	814	1	919	914	779	778
CQUAD4	815	1	200	909	920	199
CQUAD4	816	1	199	920	918	198
CQUAD4	817	1	915	921	908	907
CQUAD4	818	1	921	920	909	908
CQUAD4	819	1	914	919	921	915
CQUAD4	820	1	919	918	920	921
CQUAD4	821	1	928	931	933	927
CQUAD4	822	1	927	933	923	924
CQUAD4	823	1	602	934	932	603
CQUAD4	824	1	934	933	931	932
CQUAD4	825	1	601	922	934	602
CQUAD4	826	1	922	923	933	934
CQUAD4	827	1	929	935	931	928
CQUAD4	828	1	935	936	932	931
CQUAD4	829	1	936	604	603	932
CQUAD4	830	1	93	94	937	930
CQUAD4	831	1	930	937	935	929
CQUAD4	832	1	605	938	95	96
CQUAD4	833	1	938	937	94	95
CQUAD4	834	1	604	936	938	605
CQUAD4	835	1	936	935	937	938
CQUAD4	836	1	879	939	941	880
CQUAD4	837	1	880	941	926	881
CQUAD4	838	1	927	942	940	928
CQUAD4	839	1	942	941	939	940
CQUAD4	840	1	924	925	942	927
CQUAD4	841	1	925	926	941	942
CQUAD4	842	1	878	943	939	879
CQUAD4	843	1	943	944	940	939
CQUAD4	844	1	944	929	928	940
CQUAD4	845	1	90	91	945	877
CQUAD4	846	1	877	945	943	878
CQUAD4	847	1	930	946	92	93
CQUAD4	848	1	946	945	91	92
CQUAD4	849	1	929	944	946	930
CQUAD4	850	1	944	943	945	946
CQUAD4	851	1	948	951	953	947

SPC	2	87	1234560.0
SPC	2	88	1234560.0
SPC	2	89	1234560.0
SPC	2	90	1234560.0
SPC	2	91	1234560.0
SPC	2	92	1234560.0
SPC	2	93	1234560.0
SPC	2	94	1234560.0
SPC	2	95	1234560.0
SPC	2	96	1234560.0
SPC	2	97	1234560.0
SPC	2	98	1234560.0
SPC	2	99	1234560.0
SPC	2	100	1234560.0
SPC	2	101	1234560.0
SPC	2	102	1234560.0
SPC	2	103	1234560.0
SPC	2	104	1234560.0
SPC	2	105	1234560.0
SPC	2	106	1234560.0
SPC	2	107	1234560.0
SPC	2	108	1234560.0
SPC	2	109	1234560.0
SPC	2	110	1234560.0
SPC	2	111	1234560.0
SPC	2	112	1234560.0
SPC	2	113	1234560.0
SPC	2	114	1234560.0
SPC	2	115	1234560.0
SPC	2	116	1234560.0
SPC	2	117	1234560.0
SPC	2	118	1234560.0
SPC	2	119	1234560.0
SPC	2	120	1234560.0
SPC	2	121	1234560.0
SPC	2	122	1234560.0
SPC	2	123	1234560.0
SPC	2	124	1234560.0
SPC	2	125	1234560.0
SPC	2	126	1234560.0
SPC	2	127	1234560.0
SPC	2	128	1234560.0
SPC	2	129	1234560.0
SPC	2	130	1234560.0
SPC	2	131	1234560.0
SPC	2	132	1234560.0
SPC	2	133	1234560.0
SPC	2	134	1234560.0
SPC	2	135	1234560.0
SPC	2	136	1234560.0
SPC	2	137	1234560.0
SPC	2	138	1234560.0
SPC	2	139	1234560.0
SPC	2	140	1234560.0
SPC	2	141	1234560.0
SPC	2	142	1234560.0
SPC	2	143	1234560.0
SPC	2	144	1234560.0
SPC	2	145	1234560.0
SPC	2	146	1234560.0
SPC	2	147	1234560.0
SPC	2	148	1234560.0
SPC	2	149	1234560.0
SPC	2	150	1234560.0
SPC	2	151	1234560.0
SPC	2	152	1234560.0
SPC	2	153	1234560.0
SPC	2	154	1234560.0
SPC	2	155	1234560.0

\$ Domain Element Definitions		\$
\$-		
\$\$		
\$\$-		--\$\$
\$\$	Nodeset Definitions	\$\$
\$\$-		-\$\$
\$\$ Design domain node sets		
\$\$		
\$\$	Control Perturbation	\$\$
\$\$-		--\$\$
\$\$		
\$\$		
\$\$	CONTROL PERTURBATION Data	
\$\$		

