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Control of cardiac function and noise from a decaying power spectrum
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Evidence is presented that adds to the debate surrounding the question: To what extent does neural control
of cardiac output exploit noise? The transduction capability of cardiac afferent neurons, situated in and adjacent
to the heart, is vital to feedback in control of cardiac function. An analysia sftu cardiac afferent activity
shows evidence of independent and exponentially distributed interspike intervals. An anatomical basis for such
memoryless interspike intervals ultimately derives from the fact that each afferent neuron is associated with a
field of sensory neurites, or bare nerve endings, that transduce local chemical and mechanical stimuli in a
many-to-one fashion. As such, cardiac afferent neurons and their sensory neurite inputs are respectively
modeled here by the Hodgkin—Huxley equations forced by “red” n@seaying power spectrunperturbing
an otherwise constant subthreshold input. A variable barrier competition model is derived from these equations
in order to address the question: How are noisy inputs being processed by sensory neurons to cause each spike?
It is found that ion channels are responsible for significant input “whiteniimgtreased spectral power at
higher frequencythrough differentiation of the inputs. Such whitening is a means to distinguish low-frequency
control signals from otherwise red noise fluctuations. Furthermore, spiking occurs when backward moving
averages of the whitened inputs, over a window of the order of the sodium activation time scale, exceed an
approximately constant barrier.
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I. INTRODUCTION transduce the local mechanical and chemical state of diver-
Stochastic resonang8R) is said to occur when a certain gent regions of the heart. Many studies have been focussed

level of noise enhances the response of a nonlinear system g5 the 10%[9] of cardiac afferent neurons that generate ac-
low amplitude periodic signals. An introduction to SR and a tivities relatively phase-locked to beat-to-beat cardiac me-

summary of the earlier literature is available in Raf.while ~ chanical events([10-13). These rapidly transducing, or
a later review may be found in R¢]. Aperiodic stochastic . astresponding’(within the time scale of a beptafferent

resonanceASR) is a generalization of SR to the study of N€urons may be primarily involved in control of heart rate
noise enhancement of a nonlinear system’s responapde and coordinating regional cardiac mechanics on a beat-to-
riodic inputs [3]. In previous studies, energy models havebeat basis. However, the majority of cardiac afferent neurons

been used to approximate the system dynamics and allow t %entlfled in the cardiac neuronal hierarchy generate activity

develooment of measures for information throughout. Eof at bears little direct relationship to regional cardiac me-
P gnput. FOlhanical events. As such their activity is not reflective, for

) ) . ré9<ample, of blood pressure generation. These neurons, re-
the correlation between noisy subthreshold inputs and the, .eq to from hereon as sslow-respondingsver the time-

average activity level generated by such neur@s]. With  gca1e of many beatsneurons, show sporadic activity with
respect to SR, measures of the response of sensory Neurcfizerage firing rates that are typically in the 0.1—-1 Hz range,
subjected to noisy periodic inputs have been represented iflg. Ref.[14]. To date there have been few experimental or
terms of the relationship between the input power spectruntheoretical studies concerning the transduction characteristics
and the same constructed for the average firing [&te8].  of these slow-responding cardiac afferent neurons. In fact,
Measures of information throughput, as described above, dtheir role in cardiac control remains an open question.
not involve the modeling of a mechanism by which each Anatomical evidence is accumulating that slow-
spike (action potentiglis produced in response to noisy ex- responding cardiac afferent neurons are key to providing
ternal inputs. As such, they give a “black-box” description offeedback to the entire cardiac neuronal hierarchy over many
the relationship between the noisy inputs and their effect orcardiac cycles, reflective of chemosensory transduction over
the neural firing patterns. Therefore, in this paper, a causdbnger times[15]. This contrasts with the idea that fast-
relationship is found that links the inputs with the outputsresponding reflex control within medullary neurons may not
(action potentials or “spike$'to better understanidownoisy  only be involved in control over relatively shagingle beat
inputs are processed in the Hodgkin—Hux{éiH) equations time scales but also longer time scales via scaling properties
to produce each spike. The application is cardiac control andf their interspike interval§16]. However, the anatomical
this is described first. evidence allows another possibility; longer-term control is
Feedback of heart status to the entire cardiac neuronghysically distinct from shorter term control, in that the latter
hierarchy is derived from cardiac afferent neurons with senmainly relates to cardiac mechanical events while the former
sory neurite fields in various regions of the heart and majois primarily driven by inputs from slow-responding cardiac
intrathoracic vessels. These sensory neurite fields constanthfferent neurons. The following are some features of the
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FIG. 1. Histogram comparing experimentdighter line) and FIG. 2. Comparison of cumulative distributions of interspike

exponential[f(t)=\ exp(-At), shown as heavier lijeprobability  intervals from the exponential distribution, i.é5(t)=1-exg-At)
density distributions of interspike intervals. The neural ddt4]  shown as the heavier line, and the same computed from the data
was discriminated for spikes where spikes were assumed to occur géing the KS statistic. The 90% confidence limits are also depicted.
voltage peaks exceeding 0.2 mV that were also separated by at leage experimental and theoretical results are very close. However, as
20 ms(maximal firing rate of 50 Hefrom a previous spike. expected, they are in disagreement at interspike intervals less than
the typical time between heart bedthe canine heart rate was
slow-responding neurong) Their interspike intervalgtime ~ steady in this protocdi14] with 0.5 s between beats
between action potentiglare aperiodic(ii) the average time
between action potentials is the order of 1 s or longer duringals at or below about 0.5 s which is approximately the av-
normal stateg[17,18), (iii) they are required for mainte- erage time between heart beats in timissitu experimental
nance of autonomic effereiiteedforward neuronal outputs protocol. In summary, the observation of exponentially dis-
that affect cardiac contractility over time scales encompasstibuted interspike intervals is unsurprising given that the
ing many cardiac cyclegslow” or “long” time scales rang- vast array of sensory neurites associated with an individual
ing over 1-30 min [9], (iv) their somata(cell bodie$ are  cardiac afferent neuron represents a many-to-one transduc-
part of a distributed network that feed back heart status teion scheme19,22.
spinal cord neurongl9], brain stem[20] within the central Cardiac sensory neurites are capable of transducing the
nervous system, and intrathoracic gangfathat ultimately  local chemical and/or mechanical state in selective cardiac
control cardiac efferent neuronal behavior, angthey each regions([10-12,23). Gradual changes in the chemical state
receive inputs from vast fields of bare nerve enditigs of the heart are reflected as a slowly varying aperiodic con-
“sensory neuriteg; that are usually located in relatively con- trol signal where spike trains are not observed. On the other
fined epicardial, myocardial, and endocardial regions wheréand, the mechanical state represents local distortion of
they transduce the local mechanical and chemical envirormuscle fasicles in any given region of the heart that are
ments[21]. sensed as fast fluctuations by mechanosensory ne(Jii@s
Evidence of exponentially distributed interspike intervals[24]). The simplest model for sensory inputs to a slow-
is provided from a 20 min 10 kHz recording of canine intrin- responding cardiac afferent neuron from their arrays of sen-
sic cardiac neurons associated with sensory neurites locatadry neurites is a slowly varying aperiodic chemical control
in the right atrium of the canine heart. These data were studsignal perturbed by an additive mechanically derived noisy
ied in another context in Refl14] and were taken during signal[19]. The noisy signal is assumed here to have a de-
control states from an anaesthetized canine preparation. Thaying, or “red”, power spectrum. This assumption is physi-
20 min of data were “discriminatedFig. 1 captionto iden-  cally reasonable in that it ensures that the noise possesses a
tify spikes and the interspike interval histogram appears tdinite variance, in contrast to “white” noise having a flat
approximate an exponential distribution. A further compari-power spectrum, while details of the noise distribution must
son of the cumulative distribution function of the data with await further experimentation.
the exponential distribution, as represented by the The HH equations are used as a model of slow-
Kolmogorov—Smirno“KS") test, is shown in Fig. 2 along responding cardiac afferent neurons. The HH equations are
with 90% confidence intervals. The KS and its confidencereasonable to the extent that cardiac afferent neurons do fire
intervals indicate that the empirical and theoretical cumularepetitively in response to a constant, and sustained input
tive functions are in close agreement. A useful feature of thehat exceeds a threshold. Further, the rate of spiking in-
KS plot is that it also shows the effect of mechanical transcreases as the sustained input level is increg$&d How-
duction due to cardiac mechanics. Specifically, the empirica¢ver, the HH equations are unreasonable at very high inputs
and fitted distributions begin to deviate for interspike inter-since their activity becomes suppressed. Activity generated,
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“ ' ' ' ' ' ' ' ' ' competition mode(Sec. 1V) derived from the HH equations
(Sec. l). The competition variable barrier model is approxi-

sl i mated as a constant barrier energy ma&elc. \). A discus-
sion of control of cardiac output coming from the competi-
WWW*WW tion model is given in Sec. VI.
ok )
Ribonsoaly ~N Il. EFFECTIVE STEP INPUT
ook 1,=6 VoI!age ] . — ) o )
o057 Spikes An. effectl\{e input to the HH equations is flrst'derl\./ed
from its linearized form and termed the “coupled” linearized
0} Voltage . form since it involves the voltage variable and ion channel
‘/"(t)\_ variables. The coupled linearized form is modified to an “un-
l coupled” linearized form where the ion channel variables

- have been eliminated. This results in a linearized form where
the voltage is the sole dependent variable and the ion channel
variables have been exchanged for an external forcing equal
to a linear combination of the original external input and its
derivatives up to third order. This latter input is termed the
FIG. 3. The numerical solution of the HH equatie®), shown effective input. In other words, the removal of the ion chan-

along with red noise iNputR(t)=uo+oQ(t), where uo=6 is the nel variables links the dependence of the voltage response in

expected value oR(t) and the red noise standard deviationsis ~the coupled linearized form, and thus approximately the HH
=0.57(Sec. Il). The solution is initialized at the stable steady state€duations, to external input fluctuations. This effective input
associated withuo=6. Since the sustained input level at which the iS then used to construct an “effective step” input to the HH
steady-state solution becomes unstable and undergoes a Hopf bif@quations. The response to the effective step input is linked
cation isuo= 9.8, the sustained input=6, is a subthreshold input t0 the Hopf bifurcation of the steady state in response to a
that elicits no spiking. The red noise fluctuation€(t), perturbing ~ sustained input.

the subthreshold input levely=6, are responsible for observed
spiking. Note, in the absence of firing, the voltage variailg
fluctuates near, and around, the stable steady sgate-63.5.

t (secs)

A. Coupled form of linearized Hodgkin—Huxley equations

o . ) . The HH equation$25] are
in vivo, by a cardiac afferent neuron stays at maximal firing

rates when exposed to further increases in a chemical stimuCo = — gu"°h(v — vng) — gN* (v —vk) — gL(v —vL) + R(1),
lus [17]. Since such high sustained inputs are much greater
than those where constant firing commences, this contrasting m=a’(v)(1-m)-b’(v)m
behavior is disregarded here. m e
It is important to clarify the noise-processing regime of .

the HH equations considered here. The slowly varying ape- h=ag(v)(1 -h) —by(v)h,
riodic input, the chemical control signal, is assumed to lead
to a persistent and slowly varying subthreshold depolariza- n=a'(v)(1-n)-b/(v)n, (1)

tion above the resting voltage. The term “subthreshold” im- ) )
plies that no spiking occurs in response to the chemical con/hereR(t) is an external input and
trol signal on its own. A piecewise constant approximation of

the control signal is made to simplify its analysis to the in- al(v)= 0.1(v +40) ,

dependent consideration of constant sustained inputs as seen 1-exg- (v+40/10]

in Fig. 3 (Sec. Ill). Given that the control signal produces a

subthreshold variation away from the rest voltage, it is the br(v) =4 exg- (v + 65)/80],

additive noise perturbing the piecewise constant control sig-

nal that becomes necessary to initiate spiking. The linear a/(v) = 0.07 exfp- (v + 65)/20],

combination of the sustained, but subthreshold, input and

additive noise is also assumed primarily to lead to the gen- 1

eration ofisolatedspikes(not spike traingas seen in cardiac br(v) = ,

preparations, e.g. Ref14]. 1+exd- (v +395/10]
Given the above discussion, the voltage response of the

HH equationgSec. I to red noise inputs, perturbing a con- N 0.01(v + 55

stant subthreshold input that would cause no response in the a(v) = 1-exg- (v +55/10]’

absence of the noise, is considered. An example with ap-

proximately exponentially distributed interspike intervals bl (v) = 4 exfi— (v + 65)/80].

(Sec. Il is provided in Fig. 3. The question considered here
is: “How are noisy inputs being processed to cause eacfihe constant parameters are choseri2&g C=1 uF/cn?,
spike?” This question is explored using a variable barriew, =-54.4 mV, g =0.3mS/cm, vx=-77mV, gk
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=36 mS/cm, vn,=50 mV, andgy,=120 mS/cm. (o] T
The HH equation2) may be formally restated as s+a, -b, -c¢,  -—d, Y(S) Z(s)
-b, 0 s+a, O M(s) | | o
Co=f(v,mh,n) +R(), -y 0 0 s*an |l | | O
-b, s+a, O 0 N(s) 0
m=gn(Mm,v), (4)
. Solving forV(s) gives the decoupled form
h=gy(h,v),
" [(5+8,)(S+ @) (5+ay)(S+ay) +b,(5+am)(s+ay,) - ¢,by(s
h=gy(nv). 2) * ) + dybr(s+a) IV(S) = (s+an) (s + an) (s + a) Z(s).
(5)
The stable steady state, in response to a constant exterrglnce the inverse transform afF(s), n=0,1,... equals

'1[}? ut R;(tg.:'u O’f Iti dﬁ:'med lz.y(u,n},h,n) d:t()vot’.rrb’réo’n(’)' q d"f(t)/dt" and it was assumed above that the lower-order
R(S:SZOTSQ(S, ise writtee%uae:sor:;s&) gzii evé),lmri(t)e:prfg €Nlerivatives and(t) evaluated at=0 vanish, Eq(6) inverts
+eM(t), h(t)=hg+eH(t), n(t)=ny+eN(t) and € is a constant
scaling. If the solutior{v(t),m(t),h(t),n(t)) remains close to GIV(t)]=L[Z(1)], (6)
(vg,My,hp,Ng) In response to R(t)=ugt+eZ(t), then
(V(t),M(t),H(t),N(t)) approximately satisfies the linearized

form of the HH equations, i.e., GIV(1)] :V(t) +A3\7(t) +A2\"/(t) +A1V(t) +AN(D), (7)

and the coefficient#\,, n=0,1,2,3are, respectively, equal
to the coefficients o§", n=0,1,2,3,while

where

V=c,V+c,N+cM+cH+Z(1),

: LIZ()]= Z(t) + (am+ @ + 8 Z(t) + (ar@n + Bnam + 3,3 Z(1)
M=-a,M+hb,V,

+apasanZ(t). (8
. It is clear that an input[Z(t)] to the uncoupled linearized
H=-a,H+b,V, form of the HH equationg6) corresponds to the coupled

form (3) being forced byZ(t). For example, the solution of
) G[V]=L[Z] subject to zero-initial conditions oW(t) and
N=-a;,N+b,V, 3 Z(t), is identical to the solution of the coupled linearized
form in Eq. (3) forced by Z(t), where Z(t) and
with three sets of constant§) The rate constan®, equal to  (v(t),M(t),H(t),N(t)) also satisfy zero initial conditions.
the minus partial derivatives @f with respect toc (x is one  wjith respect to the voltage variable, the in(t) to the
of m, n, or h), (i) the constantd, which are the partial cqypled form(3) corresponds to an effective inpuZ(t)] to
derivatives ofg, with respect to the voltage (x is one ofm, the uncoupled fom@_l
n, or h), and(iii ) the constants,, x is one ofv,m,h, orn are The uncoupled fornG[V]=L[Z], based on Eqg7) and

equal t9 the partial derivatives O@,m,h,n) with respect to (8), provides an explicit dependence of the voltage variable
the variables, m, h, andn respectively, and all of the above ) external input fluctuations that is otherwise implicit in the

derivatives are evaluated at the stable fixed point solutior&oumed formulation(3) involving the ion channel variables.
(0o, Mo, N, No). This explicit dependence is necessary in the formulation of
the competition modeiSec. V).

B. Effective input

The ion channel variable perturbatioh(t), H(t), and C. Effective step input

N(t) in Eqg. (3) are eliminated to expose the dependence of An approximation to an effective step input is defined
the perturbation voltag¥(t) upon fluctuations in the external here via the uncoupled, linearized for@V]=L[Z]. The
input Z(t) fed back by the ion channels. This elimination is voltagev(t) is initialized at the stable fixed point solution
simplified by using the Laplace transform of E§) subject
to zero-initial conditions(for algebraic convenience and “iconsider th led fort=v-+t andv=—x subiect t —
without loss of generality If sis the Laplace transform vari- . ~onslacr (e coupled forx=y+t andy==x subject to zero ini

= = ~ - — ] tial conditions. This is equivalent to the uncoupled fokmax=1
able, andv(s), M(s), H(s), N(s), andZ(s) are the respective again subject to zero initial conditions. Thus the time dependent
Laplace transformations of(t), M(t), H(t), N(t), andZ(t)  input, t, applied to the coupled form is an ‘effective’ step input
then applied att=0 to the uncoupled form.

021909-4



CONTROL OF CARDIAC FUNCTION AND NOISE FROM.

40 T
20| J
I \ / -
Effective Step Input R(t)
20}
—40 4
Voltage v(t)
—80F / /
80 .
0 0.1 02

t (secs)

PHYSICAL REVIEW E 70, 021909(2004

55

Computed from HH equations
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FIG. 5. The time to first spike curves are shown fag
=(2,4,6 whereu' exceeds 9.8Sec. I). The time to a first spike is

FIG. 4. Spiking eventually occurs in response to the effectivereduced ag.” is increased. The minimum value pf where spik-

step inputR(t) = ug+Z(t). The effective step componena(t), taken
from the solution ofL[Z]=apanan(n’ — o), amanan=0.1, ug=6,

© =9.8, and zero initial conditions, is applied to the HH equation

(2). Spiking is observed whep" is increased beyond 9.8. The
effective step inputR(t), must be maintained long enough for a
spike to be observed; spiking is not observeg ifis reset back to
1o before the occurence of a first spike.

associated with the constant external inpu$ so that
(v(0),m(0),h(0),n(0)) =(vg, My, hy,Ng). The scalinge is set
to unity giving R(t)=ug+Z(t), where it is also assumed that
R(0)= o or Z(0)=0. A step-inputL[Z(t)]=ananan(u — o)
is then applied to Eq6) att=0. The inputR(t) = uy+Z(t), is

ing begins, approaches the Hopf bifurcation leuék9.8 asug is
increased.

increases beyong” =~ 9.8. The time to first spike in the HH
equations, in response t&(t)=u+Z(t) where L[Z(t)]

=aasa,(u —ue) Wwith zero conditions on Z(t), and

(v,m,h,n)=(vg,My,hy,ng) is depicted in Fig. 5 forug

=(2,4,6 over a range ofx".

IIl. NOISY INPUTS

The external inputR(t), to the HH equation(2) is now

thus termed an effective step input since the correspondingllowed to be the sum of a slowly varying aperiodic control
input to the coupled linearized form or the HH equations, isSignalu(t) and noisy fluctuationZ(t)=cQ(t) (e is redefined

the time-varying input R(t).! Note that R(t) eventually
reacheR(=)=pu", sinceZ()=u" - uo. The response of the

aso) with zero mean and standard deviationlt is assumed
that the control inpuju(t) does not elicit spiking in the ab-

HH equations to an effective step input is shown in Fig. 4sence of(t). A piecewise constant approximation is made to

with uo=6 andu'=9.8. The voltage variable qualitatively

exhibits a Hopf bifurcation in that an unstable oscillation
appears immediately after application of the effective step
input R(t) att=0. This response can be understood from the

linearized form of the HH equations in the following way. A

the slower control componeni(t), i.e.,

p(®) =2 wlUt-t) = Ut - ti,g)], (9)
i=0

Hopf bifurcation of the HH equations occurs for a constantvhere U(t)=0, t<0, U()=1, t=0, is the Heaviside step

external inputR(t)=9.8. A Hopf bifurcation of the un-
coupled linear operatd® alsooccurs neaw’ =9.8 because
the coefficients ofG, i.e., A, i=1,2,3,4,depend upon the

function. The timegt;,;—t;) are assumed to be long enough
that the mean spiking rate in responseut;,;—t;) can be
observed with sufficient accuracy. The change in levels be-

steady-state voltage which is equal to the initial condition,tween; and wi., is also small enough that spike trains are
vo, augmentedy the steady-state response to the step inputjot provoked and the response to the sustained inpylts

i.e., the steady state isy+ananan(u —uo)/Ag. Since this

=0,1,2,... may bdandependently considered. Thesub-

constant steady-state response linearly approximates t/ript notation is reduced =0 for convenience an&(t)
steady state of the HH equations in response to a constafitot o Q(t), whereu, allows a natural reference to the dis-
input ", spiking is eventually observed in response to ancussion in the previous section.

effective step inpuR(t) when x°=~9.8. The effective step

The fluctuationsQ(t) form the red noise component of

input must be maintained “long enough” for spiking to be external forcing. The red noises are derived from the solution

eventually observed in the HH equati@®) forced byR(t) as
in Fig. 4. Long enough means, for example, that'ifis back
to ug<9.8 some time after=0 and before a first spike oc-

of L[Q(t)]=S(t) where S(t) is “almost” white noise taken

from a stationary Gaussian random process with zero mean,

unit variance, and exponentially decaying correlation func-

curs, then spiking is not observed. It also follows that thetion p(7)=exp-2|7|/6}. The correlation scale of fluctuation

time to a first spike,{ug,x"), generally decreases ag

[26] 6=0.5 ms is small and on the order of the spike rise
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time so thatS(t) is approximately a band-limited white noise
with finite variance. With respect to the linearized fo(6),
the almost white noise fluctuatioi®t) driving G[ V] (6), are
equivalent to the red noise fluctuation®(t), forcing the
coupled, linearized forng3). With reference to the previous

PHYSICAL REVIEW E 70, 021909(2004
=arapa,(u — ), When u"~9.8. This point can be more
simply stated by eliminating(t) in favor of R(t) to find

LIR(t)/amanan] = 1 17)
subject to zero-initial conditions on the derivatives Ryt)

section, theS(t) are effective almost white noise inputs. The while R(0) = uo. Now, spiking is observed in responseR(t)

spectral density functions of(t) and S(t), respectively,

S(w) and Sy(w), are related through
S{() = [Hg(0)[*Sy(w), (10)

where

IHe(@)| = V(a2 + 0?))(a2 + w?) (a2 + ). (12)

Hence, red noise input fluctuatior®(t), are “whitened” by
the differential operatok since increased circular frequency
o corresponds to increas@ids(w)|. The physiological impli-
cation is that red noise fluctuatio¥t) are being whitened
by the recovery variabledl, H, andN as approximated by
the operations in the differential operator

IV. COMPETITION MODEL

whereL[R(t)/aa.a,]=u", whenu'~9.8. An extension of
this point to the response to noisy forcifp) is that spiking

is observed when any backward local average of the noisy
input, i.e., the right-hand side of E(L6), exceeds approxi-
mately 9.8. This basic idea underlies the following discus-
sion which leads to a “competition between averages” for the
average time to fire in response to noisy inp&E)=pq
+aQ(t).

The time to a first spiker(ug, ") [Sec. Il C and Fig. 5
captiori, in response to an effective step infR(t) that sat-
isfies L[R(t)/aana,]=p" and zero-initial conditions save
R(0)=puo, is reduced asu” is increased beyongs ~9.8.
Stated another way, the inverse #fugy, ) for fixed uo,

' (o, 7, is a variable barrier in that spiking is only ob-
served when a given level” is exceeded for at least a time
7. This concept of a variable barrier is extended to the cal-

The hypothesis made here is that the averaged response@flation of the expected time to fir&[T], associated with

the HH equations to the noisy input)=u+oQ(t) (Sec.

noisy inputs(16) to the HH equations, i.e., spiking is ob-

IIl) can be linked to their response to noiseless effective stepfTved in response to noisy input(t), when any of the

inputs R(t) = o+ Z(t) (Sec. l). First, the backward local av-
erage ofv(t) is defined as

t

== | oo,

12
W, (12

Second, ifv(t) is near the stable fixed point and not spiking,
(Fig. 3) and fy(v,n,m,h) = f(vw, nw, My, hy) [similarly for
g,(X,v), xis m, h, or n] (2) then a first-order approximation
to the backward averaged HH equations is

i)W = f(UW’ rn\Nv th nW) + RW(t) ]
My = Imn(Mw, o),

hW= In(hw,ow), (13
My = Gn(Nw,Uw) s (14

which recovers the original HH equati@®). The noisy in-
puts areR(t) = uy+cQ(t), whereL[Q]=S(t) and the fluctua-
tions S(t) are nearly white noiseSec. lll). Elimination of
Q(t) gives

(o

L[R®)/ 1= po+ S(t), (15)
8m@n@nl = Mo aaa
for which the backward averaged form is
ag
L[Rw(t)/ =pupt t). 16
[Rw(t)/amanan] = 1o amanahSN() (16)

Recall that spiking was eventually observed in response to
noiseless effective step inpuR(t)=uy+Z(t) and L[Z]

width W backward local averages of the effective input,
equal to the right-hand side of E¢L6), exceeds the barrier
(1o, W). Hence, each instant in time, has a group of
averages running over windows of widthkQOV<t. When a
member of these averages exceeds the bapriéuy, W), a
spike occurs. Larger averaging windowgd/, are weaker
competitors but have lower barriers to exceed while shorter
averaging windows have higher barriers. This tradeoff results
in a competition between averages of the windows for con-
tribution to a spike, where the “winners” tend to be interme-
diate windows.

The expected time to fir&[T], Fig. 6, is computed from
the HH equations and the competition model. The expected
time to fire E[T] in the HH equations, is found by Monte
Carlo simulation where Eq(2) is forced by R(t)=puq
+0Q(t) with Q(t) taken fromL[Q]=S(t). The numerical so-
lution of the HH equations is computed using a fourth-order
Runge—Kutta solver while the expected time to spkel],
is taken as the average of the times between 1001 spikes
(each spike is localized to a voltage peak following a zero
crossing. E[T] is also found from the competition model
using the average of the times between 1001 spikes. Here, a
spike is assumed to occur after the exceedence of backward
local averages of the effective input, i.e., the right-hand side
of Eq. (16) equal touy+a/(anasan)Su(t), over the barrier
' (o, W). Specifically, backward local averages are com-
puted starting from 82W<t until a first exceedence of the
barrier is found att=t". The backward averages are then
reinitialized at the windowV=0, and timet=0 is reset to the
first sample beyond=t". The backward local averages are
then calculated from the “newt=0 from O<W<t until, as
before, a first exceedence of the variable barrier is found.
This yields a sequence of realizations of the minimum back-
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I/
L i
028 7 Window Probability Density Function:
J('r;u0=2,o=0.90) (solid line)
J(vipy=4=,0=0.70) (dashed line)

ozr | J(ig=6,0=0.63 (dash—dot line)

E[T]
(sec)

015

[(R]

005 ;

FIG. 6. The expected time to filg T] is, respectively, depicted
for ug=2, up=4, anduy=6 over 0< < 0.5 from: The competition
model(solid line with dot markers, Sec.)Vthe HH equationg‘+”
symbols, Sec. )| and the energy modégtolid line 18. These re-
sults show that the competition and its simplification closely de-
scribe the expected time to fire in the HH equations in response t
red noise fluctuations defined in Ref. 15.

FIG. 7. The probability density functioh(W; uq, o) of the win-
dows, W, responsible for spiking is shown for a range.gf Inter-
mediate windows on the order of 10 ms tend to “win” over com-
Betitors at shorter windows with higher barri¢8ec. 1V) and those
with longer windows but lower barriers.

scale. In summary, spiking is a mainly a response to spectral
The barrier used in the competition is the inverse ofPoWer of whitened inputs at frequenues correspondmg to
periods at or longer than the sodium channel activation time

g, 1), that is the wide lines shown in Fig. 5. Finally, the ; ;
response predicted by the linearized HH equations in re§cale. With respect to control, based upon signals of the form

sponse to the step input is equal, as expected, to the order 8% R(D (Sep. .M’ 'the slowly varying co'ntrol signak(t) is
that observed for the HH equations. However, to obtain th _aturally distinguished from the superimposed fast fluctua-

level of agreement between the competition model and th ons by the whitening process since it is less affected by the

HH equations seen in Fig. 6, higher-order effects of nonlin-rapid increase oHy(w) for increasingw.

ward local average widthy, required to achieve a spike.

earities present in the HH equations are modeled through a V. SIMPLIFIED ENERGY MODEL
lumped parametef. Specifically, a constant scalingjis ap- - _ _
plied to the standard deviatiom and, for example, ajo The spiking process may also be approximated by a point

=2 the results in Fig. 6 are achieved for the chaksel.35.  Poisson process since interspike intervals are approximately
This means that the amplification of the noise lewepre-  €xponentially distributed and independent. Specifically, if the
dicted by the linearized form, equal w/aa.a,~120 in  firing times, T, follow a Poisson point process then the back-
our example, is increased to reflect the effects of nonlineariward moving average of the right-hand side of Etp) over
ties in the HH equations. a fixed windowU is a random function with an average time
A representation of cause and effect between the noispetween upcrossings over a constant threshotgs, given
inputs R(t) = uo+ oQ(t) and spiking is contained in the prob- by
ability density function,J(W; uq,0), of the backward aver- - p{ (- 1 )ZU}
aging windows,W, responsible for spikingd(W; uq,0) is Ao, 0) = V26U exp) ———0— ¢, (18
shown in Fig. 7 foruy=(2,4,6. The probability density 20%0
function shows little variation as a function pf, with most  when the windowJ greatly exceeds the correlation scale of
of the window range confined to within +2 ms 610 mil-  fluctuation #=0.5 ms[26]. The closed-form approximation
liseconds. These results lead to a connection between thes), based on the constant threshgld-u, and constant
spectral content of the red noise inpuR{t), and the ion  window U, is compared to the competition results in Fig. 6.
channel time constants. First, the external inpRts are  The constant windowd,), used inq(ug,o) are set equal to

whitened via the differential operatdr, viz. the transfer iho expected value &, W, previously found from the com-
function Hg(w) (11) whose form is determined by the three yeition (Sec. IV). The constant barrier heighk, is empiri-

ion channel time constants. Second, these inputs are backy|ly chosen to produce the close comparison of the compe-
ward averaged over a typical backward averaging wintléw tition results with the constant barrier approximation seen in
equal to the order of the HH sodium channel activation timeFig. 6. The values oft used in Fig. 6 are within 10% of the
constanta,~4 ms. Thus, the input power spectrum is first variable barrier level evaluated at

whitened and then low-pass filtered to reduce higher- The closed-form energy formulatiofl8) is a constant
frequency components beyond the sodium activation timdarrier and constant averaging window approximation of the
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competition. From this point of view, for inputR(t)=u fied mathematical model for this sensory arrangement, that
+0Q(1), a spike occurs on average when the linear combinaalso approximates the observed distribution of interspike in-
tion of derivatives of the backward moving averageRgf)  tervals, is the HH equations externally forced by subthresh-
taken over a constant windoW, i.e., L[R,] (15), exceeds old inputs perturbed by red noise. When interspike intervals

the constant barrieW—w. whereW is the order of the so- &€ independent and approximately exponentially distributed,
dium time constant Ko the response of the HH equations to external inputs may be

characterized in terms ofi) Their whitening of the input
power spectrungincrease of input spectral power for increas-
VI DISCUSSION ing frequency, and (ii) their response to essentially those

Neurocardiology is the study of how the autonomic ner-components with periods of fluctuation at or longer than the
vous system controls cardiac function to maintain sufficiensodium activation timescale. Hence, inputs perturbed by red
blood flow throughout the body. Intriguing evidence of the nNoises are whitened and from the point of view of control,
promise for neurally based cardiac therapy comes from neuthe whitening is a means to distinguish the red noises from a
rocardiological studies where electrical stimulation of theslowly varying control signal.
dorsal columns of the thoracic spinal cord has been shown to In the competition energy model, only a fraction of the
relieve symptoms associated with myocardial ischeh@. interspike interval is “responsible” for spiking since the in-
Such research requires better knowledge of the anatomic ardits are deemed toausespiking only when they exceed a
functional organization of neurons controlling ischemic heartoarrier for a duration equal to the order of the sodium acti-
function. vation time scale. It is interesting to note that a similar con-

To date, research into neural control of cardiac functioncept (the competition energy model originally appeared in
broadly indicates two featuregi) A distributed neural net- Ref.[29]) has also been explored, from a completely differ-
work originating at the level of the heart that includes gan-ent point of view, for escape over a fluctuating barrier Ref.
glia in the intrathoracic, spinal cord, and medullary regions 30 (a nice review appears in R€f0]).
and is mainly involved in long-ternimany beats cardiac Combining the method used here to analyze the HH equa-
control [27,28. This network may represent an important tions with the development of ion channel models for cardiac
contribution to the development of the clinical condition of afferent neurons may prove useful to better understand neu-
essential hypertension, a prevalent disorder in which patient&l processing of sensory neurite information. Another prac-
express chronically elevated blood pressure without a cledfcal point relating to neurocardiological experiment, is that
pathophysiological explanatiotii) Chemosensory feedback 0w pointwise correlation between cardiac afferent activity
of heart status derived from fields of bare nerve endings tha@nd observables, such as heart rate and blood pressure,
inervate the heaftL9] is inherently noisy yet may be impor- should not be taken as an indication of the lack of relevance

tant to longer-term control. of neural activity.
The observation that spatially distributed networks of bare
nerve endinggor sensory neuritgculminate in a many-to- ACKNOWLEDGMENTS

one relationship at a cardiac affergifiéedback neuron is
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function. Specifically, the observation was made here that thend Engineering Research Council for operating grant funds
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