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Evidence is presented that adds to the debate surrounding the question: To what extent does neural control
of cardiac output exploit noise? The transduction capability of cardiac afferent neurons, situated in and adjacent
to the heart, is vital to feedback in control of cardiac function. An analysis ofin situ cardiac afferent activity
shows evidence of independent and exponentially distributed interspike intervals. An anatomical basis for such
memoryless interspike intervals ultimately derives from the fact that each afferent neuron is associated with a
field of sensory neurites, or bare nerve endings, that transduce local chemical and mechanical stimuli in a
many-to-one fashion. As such, cardiac afferent neurons and their sensory neurite inputs are respectively
modeled here by the Hodgkin–Huxley equations forced by “red” noise(decaying power spectrum) perturbing
an otherwise constant subthreshold input. A variable barrier competition model is derived from these equations
in order to address the question: How are noisy inputs being processed by sensory neurons to cause each spike?
It is found that ion channels are responsible for significant input “whitening”(increased spectral power at
higher frequency) through differentiation of the inputs. Such whitening is a means to distinguish low-frequency
control signals from otherwise red noise fluctuations. Furthermore, spiking occurs when backward moving
averages of the whitened inputs, over a window of the order of the sodium activation time scale, exceed an
approximately constant barrier.
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I. INTRODUCTION

Stochastic resonance(SR) is said to occur when a certain
level of noise enhances the response of a nonlinear system to
low amplitude,periodicsignals. An introduction to SR and a
summary of the earlier literature is available in Ref.[1] while
a later review may be found in Ref.[2]. Aperiodic stochastic
resonance(ASR) is a generalization of SR to the study of
noise enhancement of a nonlinear system’s response toape-
riodic inputs [3]. In previous studies, energy models have
been used to approximate the system dynamics and allow the
development of measures for information throughput. For
example, ASR in sensory neurons has been described using
the correlation between noisy subthreshold inputs and the
average activity level generated by such neurons[3–5]. With
respect to SR, measures of the response of sensory neurons
subjected to noisy periodic inputs have been represented in
terms of the relationship between the input power spectrum
and the same constructed for the average firing rate[6–8].
Measures of information throughput, as described above, do
not involve the modeling of a mechanism by which each
spike (action potential) is produced in response to noisy ex-
ternal inputs. As such, they give a “black-box” description of
the relationship between the noisy inputs and their effect on
the neural firing patterns. Therefore, in this paper, a causal
relationship is found that links the inputs with the outputs
(action potentials or “spikes”) to better understandhownoisy
inputs are processed in the Hodgkin–Huxley(HH) equations
to produce each spike. The application is cardiac control and
this is described first.

Feedback of heart status to the entire cardiac neuronal
hierarchy is derived from cardiac afferent neurons with sen-
sory neurite fields in various regions of the heart and major
intrathoracic vessels. These sensory neurite fields constantly

transduce the local mechanical and chemical state of diver-
gent regions of the heart. Many studies have been focussed
on the 10%[9] of cardiac afferent neurons that generate ac-
tivities relatively phase-locked to beat-to-beat cardiac me-
chanical events([10–13]). These rapidly transducing, or
“fast-responding”(within the time scale of a beat), afferent
neurons may be primarily involved in control of heart rate
and coordinating regional cardiac mechanics on a beat-to-
beat basis. However, the majority of cardiac afferent neurons
identified in the cardiac neuronal hierarchy generate activity
that bears little direct relationship to regional cardiac me-
chanical events. As such their activity is not reflective, for
example, of blood pressure generation. These neurons, re-
ferred to from hereon as “slow-responding”(over the time-
scale of many beats) neurons, show sporadic activity with
average firing rates that are typically in the 0.1–1 Hz range,
e.g. Ref.[14]. To date there have been few experimental or
theoretical studies concerning the transduction characteristics
of these slow-responding cardiac afferent neurons. In fact,
their role in cardiac control remains an open question.

Anatomical evidence is accumulating that slow-
responding cardiac afferent neurons are key to providing
feedback to the entire cardiac neuronal hierarchy over many
cardiac cycles, reflective of chemosensory transduction over
longer times[15]. This contrasts with the idea that fast-
responding reflex control within medullary neurons may not
only be involved in control over relatively short(single beat)
time scales but also longer time scales via scaling properties
of their interspike intervals[16]. However, the anatomical
evidence allows another possibility; longer-term control is
physically distinct from shorter term control, in that the latter
mainly relates to cardiac mechanical events while the former
is primarily driven by inputs from slow-responding cardiac
afferent neurons. The following are some features of the
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slow-responding neurons:(i) Their interspike intervals(time
between action potentials) are aperiodic,(ii ) the average time
between action potentials is the order of 1 s or longer during
normal states([17,18]), (iii ) they are required for mainte-
nance of autonomic efferent(feedforward) neuronal outputs
that affect cardiac contractility over time scales encompass-
ing many cardiac cycles(“slow” or “long” time scales rang-
ing over 1–30 min) [9], (iv) their somata(cell bodies) are
part of a distributed network that feed back heart status to
spinal cord neurons[19], brain stem[20] within the central
nervous system, and intrathoracic ganglia[9] that ultimately
control cardiac efferent neuronal behavior, and(v) they each
receive inputs from vast fields of bare nerve endings(or
“sensory neurites”), that are usually located in relatively con-
fined epicardial, myocardial, and endocardial regions where
they transduce the local mechanical and chemical environ-
ments[21].

Evidence of exponentially distributed interspike intervals
is provided from a 20 min 10 kHz recording of canine intrin-
sic cardiac neurons associated with sensory neurites located
in the right atrium of the canine heart. These data were stud-
ied in another context in Ref.[14] and were taken during
control states from an anaesthetized canine preparation. The
20 min of data were “discriminated”(Fig. 1 caption) to iden-
tify spikes and the interspike interval histogram appears to
approximate an exponential distribution. A further compari-
son of the cumulative distribution function of the data with
the exponential distribution, as represented by the
Kolmogorov–Smirnov(“KS” ) test, is shown in Fig. 2 along
with 90% confidence intervals. The KS and its confidence
intervals indicate that the empirical and theoretical cumula-
tive functions are in close agreement. A useful feature of the
KS plot is that it also shows the effect of mechanical trans-
duction due to cardiac mechanics. Specifically, the empirical
and fitted distributions begin to deviate for interspike inter-

vals at or below about 0.5 s which is approximately the av-
erage time between heart beats in thisin situ experimental
protocol. In summary, the observation of exponentially dis-
tributed interspike intervals is unsurprising given that the
vast array of sensory neurites associated with an individual
cardiac afferent neuron represents a many-to-one transduc-
tion scheme[19,22].

Cardiac sensory neurites are capable of transducing the
local chemical and/or mechanical state in selective cardiac
regions([10–12,23]). Gradual changes in the chemical state
of the heart are reflected as a slowly varying aperiodic con-
trol signal where spike trains are not observed. On the other
hand, the mechanical state represents local distortion of
muscle fasicles in any given region of the heart that are
sensed as fast fluctuations by mechanosensory neurites([19],
[24]). The simplest model for sensory inputs to a slow-
responding cardiac afferent neuron from their arrays of sen-
sory neurites is a slowly varying aperiodic chemical control
signal perturbed by an additive mechanically derived noisy
signal [19]. The noisy signal is assumed here to have a de-
caying, or “red”, power spectrum. This assumption is physi-
cally reasonable in that it ensures that the noise possesses a
finite variance, in contrast to “white” noise having a flat
power spectrum, while details of the noise distribution must
await further experimentation.

The HH equations are used as a model of slow-
responding cardiac afferent neurons. The HH equations are
reasonable to the extent that cardiac afferent neurons do fire
repetitively in response to a constant, and sustained input
that exceeds a threshold. Further, the rate of spiking in-
creases as the sustained input level is increased[17]. How-
ever, the HH equations are unreasonable at very high inputs
since their activity becomes suppressed. Activity generated,

FIG. 1. Histogram comparing experimental(lighter line) and
exponential[fstd=l exps−ltd, shown as heavier line] probability
density distributions of interspike intervals. The neural data[14]
was discriminated for spikes where spikes were assumed to occur at
voltage peaks exceeding 0.2 mV that were also separated by at least
20 ms(maximal firing rate of 50 Hz) from a previous spike.

FIG. 2. Comparison of cumulative distributions of interspike
intervals from the exponential distribution, i.e.,Fstd=1−exps−ltd
shown as the heavier line, and the same computed from the data
using the KS statistic. The 90% confidence limits are also depicted.
The experimental and theoretical results are very close. However, as
expected, they are in disagreement at interspike intervals less than
the typical time between heart beats(the canine heart rate was
steady in this protocol[14] with 0.5 s between beats).
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in vivo, by a cardiac afferent neuron stays at maximal firing
rates when exposed to further increases in a chemical stimu-
lus [17]. Since such high sustained inputs are much greater
than those where constant firing commences, this contrasting
behavior is disregarded here.

It is important to clarify the noise-processing regime of
the HH equations considered here. The slowly varying ape-
riodic input, the chemical control signal, is assumed to lead
to a persistent and slowly varying subthreshold depolariza-
tion above the resting voltage. The term “subthreshold” im-
plies that no spiking occurs in response to the chemical con-
trol signal on its own. A piecewise constant approximation of
the control signal is made to simplify its analysis to the in-
dependent consideration of constant sustained inputs as seen
in Fig. 3 (Sec. III). Given that the control signal produces a
subthreshold variation away from the rest voltage, it is the
additive noise perturbing the piecewise constant control sig-
nal that becomes necessary to initiate spiking. The linear
combination of the sustained, but subthreshold, input and
additive noise is also assumed primarily to lead to the gen-
eration ofisolatedspikes(not spike trains) as seen in cardiac
preparations, e.g. Ref.[14].

Given the above discussion, the voltage response of the
HH equations(Sec. II) to red noise inputs, perturbing a con-
stant subthreshold input that would cause no response in the
absence of the noise, is considered. An example with ap-
proximately exponentially distributed interspike intervals
(Sec. III) is provided in Fig. 3. The question considered here
is: “How are noisy inputs being processed to cause each
spike?” This question is explored using a variable barrier

competition model(Sec. IV) derived from the HH equations
(Sec. II). The competition variable barrier model is approxi-
mated as a constant barrier energy model(Sec. V). A discus-
sion of control of cardiac output coming from the competi-
tion model is given in Sec. VI.

II. EFFECTIVE STEP INPUT

An “effective” input to the HH equations is first derived
from its linearized form and termed the “coupled” linearized
form since it involves the voltage variable and ion channel
variables. The coupled linearized form is modified to an “un-
coupled” linearized form where the ion channel variables
have been eliminated. This results in a linearized form where
the voltage is the sole dependent variable and the ion channel
variables have been exchanged for an external forcing equal
to a linear combination of the original external input and its
derivatives up to third order. This latter input is termed the
effective input. In other words, the removal of the ion chan-
nel variables links the dependence of the voltage response in
the coupled linearized form, and thus approximately the HH
equations, to external input fluctuations. This effective input
is then used to construct an “effective step” input to the HH
equations. The response to the effective step input is linked
to the Hopf bifurcation of the steady state in response to a
sustained input.

A. Coupled form of linearized Hodgkin–Huxley equations

The HH equations[25] are

Cv̇ = − gNam
3hsv − vNad − gKn4sv − vKd − gLsv − vLd + Rstd,

ṁ= am8 svds1 − md − bm8 svdm,

ḣ = ah8svds1 − hd − bh8svdh,

ṅ = an8svds1 − nd − bn8svdn, s1d

whereRstd is an external input and

am8 svd =
0.1sv + 40d

1 − expf− sv + 40d/10g
,

bm8 svd = 4 expf− sv + 65d/80g,

ah8svd = 0.07 expf− sv + 65d/20g,

bh8svd =
1

1 + expf− sv + 35d/10g
,

an8svd =
0.01sv + 55d

1 − expf− sv + 55d/10g
,

bn8svd = 4 expf− sv + 65d/80g.

The constant parameters are chosen as[25]: C=1 mF/cm2,
vL=−54.4 mV, gL=0.3 mS/cm2, vK =−77 mV, gK

FIG. 3. The numerical solution of the HH equation(2), shown
along with red noise inputsRstd=m0+sQstd, where m0=6 is the
expected value ofRstd and the red noise standard deviation iss
=0.57(Sec. III). The solution is initialized at the stable steady state
associated withm0=6. Since the sustained input level at which the
steady-state solution becomes unstable and undergoes a Hopf bifur-
cation ism0<9.8, the sustained input,m0=6, is a subthreshold input
that elicits no spiking. The red noise fluctuations,sQstd, perturbing
the subthreshold input level,m0=6, are responsible for observed
spiking. Note, in the absence of firing, the voltage variablevstd
fluctuates near, and around, the stable steady statev0<−63.5.
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=36 mS/cm2, vNa=50 mV, andgNa=120 mS/cm2.
The HH equation(2) may be formally restated as

Cv̇ = fsv,m,h,nd + Rstd,

ṁ= gmsm,vd,

ḣ = ghsh,vd,

ṅ = gnsn,vd. s2d

The stable steady state, in response to a constant external
input Rstd=m0, is denoted bysv ,m,h,nd=sv0,m0,h0,n0d.
The solution of the HH equations, forced by time dependent
Rstd=m0+eZstd, is written as vstd=v0+eVstd, mstd=m0

+eMstd, hstd=h0+eHstd, nstd=n0+eNstd ande is a constant
scaling. If the solutionsvstd ,mstd ,hstd ,nstdd remains close to
sv0,m0,h0,n0d in response to Rstd=m0+eZstd, then
sVstd ,Mstd ,Hstd ,Nstdd approximately satisfies the linearized
form of the HH equations, i.e.,

V̇ = cvV + cnN + cmM + chH + Zstd,

Ṁ = − amM + bmV,

Ḣ = − ahH + bhV,

Ṅ = − anN + bnV, s3d

with three sets of constants:(i) The rate constantsax equal to
the minus partial derivatives ofgx with respect tox (x is one
of m, n, or h), (ii ) the constantsbx which are the partial
derivatives ofgx with respect to the voltagev (x is one ofm,
n, or h), and(iii ) the constantscx, x is one ofv ,m,h, or n are
equal to the partial derivatives offsv ,m,h,nd with respect to
the variablesv, m, h, andn respectively, and all of the above
derivatives are evaluated at the stable fixed point solution
sv0,m0,h0,n0d.

B. Effective input

The ion channel variable perturbationsMstd, Hstd, and
Nstd in Eq. (3) are eliminated to expose the dependence of
the perturbation voltageVstd upon fluctuations in the external
input Zstd fed back by the ion channels. This elimination is
simplified by using the Laplace transform of Eq.(3) subject
to zero-initial conditions(for algebraic convenience and
without loss of generality). If s is the Laplace transform vari-

able, andṼssd, M̃ssd, H̃ssd, Ñssd, andZ̃ssd are the respective
Laplace transformations ofVstd, Mstd, Hstd, Nstd, and Zstd
then

3
s+ av − bv − cv − dv

− bm 0 s+ am 0

− bh 0 0 s+ ah

− bn s+ an 0 0
43

Ṽssd

M̃ssd

H̃ssd

Ñssd
4 =3Z̃ssd

0

0

0
4 .

s4d

Solving for Ṽssd gives the decoupled form

fss+ avdss+ amdss+ andss+ ahd + bvss+ amdss+ and − cvbmss

+ ahd + dvbhss+ amdgṼssd = ss+ andss+ amdss+ ahdZ̃ssd.

s5d

Since the inverse transform ofsnFssd, n=0,1, . . . equals
dnfstd /dtn and it was assumed above that the lower-order
derivatives andfstd evaluated att=0 vanish, Eq.(6) inverts
to

GfVstdg = LfZstdg, s6d

where

GfVstdg = V̇̇̇̇std + A3V̂std + A2V̈std + A1V̇std + A0Vstd, s7d

and the coefficientsAn, n=0,1,2,3are, respectively, equal
to the coefficients ofsn, n=0,1,2,3,while

LfZstdg = Ẑstd + sam + ah + andZ̈std + saman + aham + anahdŻstd

+ amanahZstd. s8d

It is clear that an inputLfZstdg to the uncoupled linearized
form of the HH equations(6) corresponds to the coupled
form (3) being forced byZstd. For example, the solution of
GfVg=LfZg subject to zero-initial conditions onVstd and
Zstd, is identical to the solution of the coupled linearized
form in Eq. (3) forced by Zstd, where Zstd and
sVstd ,Mstd ,Hstd ,Nstdd also satisfy zero initial conditions.
With respect to the voltage variable, the inputZstd to the
coupled form(3) corresponds to an effective inputLfZstdg to
the uncoupled form(6).1

The uncoupled formGfVg=LfZg, based on Eqs.(7) and
(8), provides an explicit dependence of the voltage variable
on external input fluctuations that is otherwise implicit in the
coupled formulation(3) involving the ion channel variables.
This explicit dependence is necessary in the formulation of
the competition model(Sec. IV).

C. Effective step input

An approximation to an effective step input is defined
here via the uncoupled, linearized formGfVg=LfZg. The
voltage vstd is initialized at the stable fixed point solution

1Consider the coupled formẋ=y+ t and ẏ=−x subject to zero ini-
tial conditions. This is equivalent to the uncoupled formẍ+x=1
again subject to zero initial conditions. Thus the time dependent
input, t, applied to the coupled form is an ‘effective’ step input
applied att=0 to the uncoupled form.
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associated with the constant external inputm0 so that
svs0d ,ms0d ,hs0d ,ns0dd=sv0,m0,h0,n0d. The scalinge is set
to unity giving Rstd=m0+Zstd, where it is also assumed that
Rs0d=m0 or Zs0d=0. A step-inputLfZstdg=amanahsm* −m0d
is then applied to Eq.(6) at t=0. The inputRstd=m0+Zstd, is
thus termed an effective step input since the corresponding
input to the coupled linearized form or the HH equations, is
the time-varying input Rstd.1 Note that Rstd eventually
reachesRs`d=m* , sinceZs`d=m* −m0. The response of the
HH equations to an effective step input is shown in Fig. 4
with m0=6 and m* =9.8. The voltage variable qualitatively
exhibits a Hopf bifurcation in that an unstable oscillation
appears immediately after application of the effective step
input Rstd at t=0. This response can be understood from the
linearized form of the HH equations in the following way. A
Hopf bifurcation of the HH equations occurs for a constant
external input Rstd<9.8. A Hopf bifurcation of the un-
coupled linear operatorG alsooccurs nearm* =9.8 because
the coefficients ofG, i.e., Ai, i =1,2,3,4,depend upon the
steady-state voltage which is equal to the initial condition,
v0, augmentedby the steady-state response to the step input,
i.e., the steady state isv0+amahansm* −m0d /A0. Since this
constant steady-state response linearly approximates the
steady state of the HH equations in response to a constant
input m* , spiking is eventually observed in response to an
effective step inputRstd when m* <9.8. The effective step
input must be maintained “long enough” for spiking to be
eventually observed in the HH equation(2) forced byRstd as
in Fig. 4. Long enough means, for example, that ifm* is back
to m0,9.8 some time aftert=0 and before a first spike oc-
curs, then spiking is not observed. It also follows that the
time to a first spike,tsm0,m*d, generally decreases asm*

increases beyondm* <9.8. The time to first spike in the HH
equations, in response toRstd=m0+Zstd where LfZstdg
=amanahsm* −m0d with zero conditions on Zstd, and
sv ,m,h,nd=sv0,m0,h0,n0d is depicted in Fig. 5 form0

=s2,4,6d over a range ofm* .

III. NOISY INPUTS

The external input,Rstd, to the HH equation(2) is now
allowed to be the sum of a slowly varying aperiodic control
signalmstd and noisy fluctuationsZstd=sQstd (e is redefined
ass) with zero mean and standard deviations. It is assumed
that the control inputmstd does not elicit spiking in the ab-
sence ofZstd. A piecewise constant approximation is made to
the slower control componentmstd, i.e.,

mstd = o
i=0

`

mifUst − tid − Ust − ti+1dg, s9d

where Ustd=0, t,0, Ustd=1, tù0, is the Heaviside step
function. The timessti+1− tid are assumed to be long enough
that the mean spiking rate in response tomisti+1− tid can be
observed with sufficient accuracy. The change in levels be-
tweenmi andmi+1 is also small enough that spike trains are
not provoked and the response to the sustained inputsmi, i
=0,1,2, . . . may beindependently considered. Thei sub-
script notation is reduced toi =0 for convenience andRstd
=m0+sQstd, wherem0 allows a natural reference to the dis-
cussion in the previous section.

The fluctuationsQstd form the red noise component of
external forcing. The red noises are derived from the solution
of LfQstdg=Sstd where Sstd is “almost” white noise taken
from a stationary Gaussian random process with zero mean,
unit variance, and exponentially decaying correlation func-
tion rstd=exph−2utu /uj. The correlation scale of fluctuation
[26] u=0.5 ms is small and on the order of the spike rise

FIG. 4. Spiking eventually occurs in response to the effective
step inputRstd=m0+Zstd. The effective step component,Zstd, taken
from the solution ofLfZg=amahansm* −m0d, amahan<0.1, m0=6,
m* =9.8, and zero initial conditions, is applied to the HH equation
(2). Spiking is observed whenm* is increased beyond 9.8. The
effective step input,Rstd, must be maintained long enough for a
spike to be observed; spiking is not observed ifm* is reset back to
m0 before the occurence of a first spike.

FIG. 5. The time to first spike curves are shown form0

=s2,4,6d wherem* exceeds 9.8(Sec. II). The time to a first spike is
reduced asm* is increased. The minimum value ofm* where spik-
ing begins, approaches the Hopf bifurcation levelm* <9.8 asm0 is
increased.
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time so thatSstd is approximately a band-limited white noise
with finite variance. With respect to the linearized form(6),
the almost white noise fluctuationsSstd driving GfVg (6), are
equivalent to the red noise fluctuations,Qstd, forcing the
coupled, linearized form(3). With reference to the previous
section, theSstd are effective almost white noise inputs. The
spectral density functions ofQstd and Sstd, respectively,
SQsvd andSSsvd, are related through

SSsvd = uHSsvdu2SQsvd, s10d

where

uHSsvdu = Îsam
2 + v2dsan

2 + v2dsah
2 + v2d. s11d

Hence, red noise input fluctuations,Qstd, are “whitened” by
the differential operatorL since increased circular frequency
v corresponds to increaseduHSsvdu. The physiological impli-
cation is that red noise fluctuationsQstd are being whitened
by the recovery variablesM, H, andN as approximated by
the operations in the differential operatorL.

IV. COMPETITION MODEL

The hypothesis made here is that the averaged response of
the HH equations to the noisy inputsRstd=m0+sQstd (Sec.
III ) can be linked to their response to noiseless effective step
inputsRstd=m0+Zstd (Sec. II). First, the backward local av-
erage ofvstd is defined as

vWstd =
1

W
E

t−W

t

vsjddj. s12d

Second, ifvstd is near the stable fixed point and not spiking,
(Fig. 3) and fWsv ,n,m,hd< fsvW,nW,mW,hWd [similarly for
gxsx,vd, x is m, h, or n] (2) then a first-order approximation
to the backward averaged HH equations is

v̇W = fsvW,mW,hW,nWd + RWstd,

ṁW = gmsmW,vWd,

ḣW = ghshW,vWd, s13d

ṅW = gnsnW,vWd, s14d

which recovers the original HH equation(2). The noisy in-
puts areRstd=m0+sQstd, whereLfQg=Sstd and the fluctua-
tions Sstd are nearly white noises(Sec. III). Elimination of
Qstd gives

LfRstd/amanahg = m0 +
s

amanah
Sstd, s15d

for which the backward averaged form is

LfRWstd/amanahg = m0 +
s

amanah
SWstd. s16d

Recall that spiking was eventually observed in response to a
noiseless effective step input,Rstd=m0+Zstd and LfZg

=amahansm* −m0d, when m* <9.8. This point can be more
simply stated by eliminatingZstd in favor of Rstd to find

LfRstd/amahang = m* s17d

subject to zero-initial conditions on the derivatives ofRstd
while Rs0d=m0. Now, spiking is observed in response toRstd
whereLfRstd /amahang=m* , when m* <9.8. An extension of
this point to the response to noisy forcing(16) is that spiking
is observed when any backward local average of the noisy
input, i.e., the right-hand side of Eq.(16), exceeds approxi-
mately 9.8. This basic idea underlies the following discus-
sion which leads to a “competition between averages” for the
average time to fire in response to noisy inputsRstd=m0

+sQstd.
The time to a first spike,tsm0,m*d [Sec. II C and Fig. 5

caption], in response to an effective step inputRstd that sat-
isfies LfRstd /amahang=m* and zero-initial conditions save
Rs0d=m0, is reduced asm* is increased beyondm* <9.8.
Stated another way, the inverse oftsm0,m*d for fixed m0,
m*sm0,td, is a variable barrier in that spiking is only ob-
served when a given levelm* is exceeded for at least a time
t. This concept of a variable barrier is extended to the cal-
culation of the expected time to fire,EfTg, associated with
noisy inputs(16) to the HH equations, i.e., spiking is ob-
served in response to noisy inputs,Rstd, when any of the
width W backward local averages of the effective input,
equal to the right-hand side of Eq.(16), exceeds the barrier
m*sm0,Wd. Hence, each instant in time,t, has a group of
averages running over windows of width 0,W, t. When a
member of these averages exceeds the barrier,m*sm0,Wd, a
spike occurs. Larger averaging windows,W, are weaker
competitors but have lower barriers to exceed while shorter
averaging windows have higher barriers. This tradeoff results
in a competition between averages of the windows for con-
tribution to a spike, where the “winners” tend to be interme-
diate windows.

The expected time to fireEfTg, Fig. 6, is computed from
the HH equations and the competition model. The expected
time to fire EfTg in the HH equations, is found by Monte
Carlo simulation where Eq.(2) is forced by Rstd=m0

+sQstd with Qstd taken fromLfQg=Sstd. The numerical so-
lution of the HH equations is computed using a fourth-order
Runge–Kutta solver while the expected time to spike,EfTg,
is taken as the average of the times between 1001 spikes
(each spike is localized to a voltage peak following a zero
crossing). EfTg is also found from the competition model
using the average of the times between 1001 spikes. Here, a
spike is assumed to occur after the exceedence of backward
local averages of the effective input, i.e., the right-hand side
of Eq. (16) equal tom0+s / samanahdSWstd, over the barrier
m*sm0,Wd. Specifically, backward local averages are com-
puted starting from 0,W, t until a first exceedence of the
barrier is found att= t* . The backward averages are then
reinitialized at the windowW=0, and timet=0 is reset to the
first sample beyondt= t* . The backward local averages are
then calculated from the “new”t=0 from 0,W, t until, as
before, a first exceedence of the variable barrier is found.
This yields a sequence of realizations of the minimum back-
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ward local average width,W, required to achieve a spike.
The barrier used in the competition is the inverse of
tsm0,m*d, that is the wide lines shown in Fig. 5. Finally, the
response predicted by the linearized HH equations in re-
sponse to the step input is equal, as expected, to the order of
that observed for the HH equations. However, to obtain the
level of agreement between the competition model and the
HH equations seen in Fig. 6, higher-order effects of nonlin-
earities present in the HH equations are modeled through a
lumped parameterd. Specifically, a constant scalingd is ap-
plied to the standard deviations and, for example, atm0
=2 the results in Fig. 6 are achieved for the choiced=1.35.
This means that the amplification of the noise levels pre-
dicted by the linearized form, equal tos /amahan<12s in
our example, is increased to reflect the effects of nonlineari-
ties in the HH equations.

A representation of cause and effect between the noisy
inputsRstd=m0+sQstd and spiking is contained in the prob-
ability density function,JsW;m0,sd, of the backward aver-
aging windows,W, responsible for spiking.JsW;m0,sd is
shown in Fig. 7 form0=s2,4,6d. The probability density
function shows little variation as a function ofm0 with most
of the window range confined to within ±2 ms oft=10 mil-
liseconds. These results lead to a connection between the
spectral content of the red noise inputs,Rstd, and the ion
channel time constants. First, the external inputsRstd are
whitened via the differential operatorL, viz. the transfer
function HSsvd (11) whose form is determined by the three
ion channel time constants. Second, these inputs are back-

ward averaged over a typical backward averaging windowW̄
equal to the order of the HH sodium channel activation time
constantsam<4 msd. Thus, the input power spectrum is first
whitened and then low-pass filtered to reduce higher-
frequency components beyond the sodium activation time

scale. In summary, spiking is a mainly a response to spectral
power of whitened inputs at frequencies corresponding to
periods at or longer than the sodium channel activation time
scale. With respect to control, based upon signals of the form
of Rstd (Sec. IV), the slowly varying control signalmstd is
naturally distinguished from the superimposed fast fluctua-
tions by the whitening process since it is less affected by the
rapid increase ofHSsvd for increasingv.

V. SIMPLIFIED ENERGY MODEL

The spiking process may also be approximated by a point
Poisson process since interspike intervals are approximately
exponentially distributed and independent. Specifically, if the
firing times,T, follow a Poisson point process then the back-
ward moving average of the right-hand side of Eq.(15) over
a fixed windowU is a random function with an average time
between upcrossings over a constant thresholdm̄−m0 given
by

qsm0,sd = pÎ2uU expH sm̄ − m0d2U

2s2u
J , s18d

when the windowU greatly exceeds the correlation scale of
fluctuation u=0.5 ms [26]. The closed-form approximation
(18), based on the constant thresholdm̄−m0 and constant
window U, is compared to the competition results in Fig. 6.
The constant windows,U, used inqsm0,sd are set equal to

the expected value ofW, W̄, previously found from the com-
petition (Sec. IV). The constant barrier height,m̄, is empiri-
cally chosen to produce the close comparison of the compe-
tition results with the constant barrier approximation seen in
Fig. 6. The values ofm̄ used in Fig. 6 are within 10% of the
variable barrier level evaluated atm̄.

The closed-form energy formulation(18) is a constant
barrier and constant averaging window approximation of the

FIG. 6. The expected time to fireEfTg is, respectively, depicted
for m0=2, m0=4, andm0=6 over 0,s,0.5 from: The competition
model(solid line with dot markers, Sec. V), the HH equations(“+”
symbols, Sec. II), and the energy model(solid line 18). These re-
sults show that the competition and its simplification closely de-
scribe the expected time to fire in the HH equations in response to
red noise fluctuations defined in Ref. 15.

FIG. 7. The probability density functionJsW;m0,sd of the win-
dows,W, responsible for spiking is shown for a range ofm0. Inter-
mediate windows on the order of 10 ms tend to “win” over com-
petitors at shorter windows with higher barriers(Sec. IV) and those
with longer windows but lower barriers.
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competition. From this point of view, for inputsRstd=m
+sQstd, a spike occurs on average when the linear combina-
tion of derivatives of the backward moving average ofRstd
taken over a constant windowU, i.e., LfRWg (15), exceeds

the constant barrierW̄−m0, whereW̄ is the order of the so-
dium time constant.

VI. DISCUSSION

Neurocardiology is the study of how the autonomic ner-
vous system controls cardiac function to maintain sufficient
blood flow throughout the body. Intriguing evidence of the
promise for neurally based cardiac therapy comes from neu-
rocardiological studies where electrical stimulation of the
dorsal columns of the thoracic spinal cord has been shown to
relieve symptoms associated with myocardial ischemia[19].
Such research requires better knowledge of the anatomic and
functional organization of neurons controlling ischemic heart
function.

To date, research into neural control of cardiac function
broadly indicates two features:(i) A distributed neural net-
work originating at the level of the heart that includes gan-
glia in the intrathoracic, spinal cord, and medullary regions,
and is mainly involved in long-term(many beats) cardiac
control [27,28]. This network may represent an important
contribution to the development of the clinical condition of
essential hypertension, a prevalent disorder in which patients
express chronically elevated blood pressure without a clear
pathophysiological explanation.(ii ) Chemosensory feedback
of heart status derived from fields of bare nerve endings that
inervate the heart[19] is inherently noisy yet may be impor-
tant to longer-term control.

The observation that spatially distributed networks of bare
nerve endings(or sensory neurites) culminate in a many-to-
one relationship at a cardiac afferent(feedback) neuron is
important to the organization of neural control of cardiac
function. Specifically, the observation was made here that the
interspike intervals for such afferent neurons can be indepen-
dent and approximately exponentially distributed. A simpli-

fied mathematical model for this sensory arrangement, that
also approximates the observed distribution of interspike in-
tervals, is the HH equations externally forced by subthresh-
old inputs perturbed by red noise. When interspike intervals
are independent and approximately exponentially distributed,
the response of the HH equations to external inputs may be
characterized in terms of:(i) Their whitening of the input
power spectrum(increase of input spectral power for increas-
ing frequency), and (ii ) their response to essentially those
components with periods of fluctuation at or longer than the
sodium activation timescale. Hence, inputs perturbed by red
noises are whitened and from the point of view of control,
the whitening is a means to distinguish the red noises from a
slowly varying control signal.

In the competition energy model, only a fraction of the
interspike interval is “responsible” for spiking since the in-
puts are deemed tocausespiking only when they exceed a
barrier for a duration equal to the order of the sodium acti-
vation time scale. It is interesting to note that a similar con-
cept (the competition energy model originally appeared in
Ref. [29]) has also been explored, from a completely differ-
ent point of view, for escape over a fluctuating barrier Ref.
30 (a nice review appears in Ref.[30]).

Combining the method used here to analyze the HH equa-
tions with the development of ion channel models for cardiac
afferent neurons may prove useful to better understand neu-
ral processing of sensory neurite information. Another prac-
tical point relating to neurocardiological experiment, is that
low pointwise correlation between cardiac afferent activity
and observables, such as heart rate and blood pressure,
should not be taken as an indication of the lack of relevance
of neural activity.
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