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Abstract

Carrageenans are a collective family of linear, sulphated galactans found in a number of commercially important species of
marine red alga. These polysaccharides are known to elicit defense responses in plant and animals and possess anti-viral
properties. We investigated the effect of foliar application of i-, k- and l-carrageenans (representing various levels of
sulphation) on Arabidopsis thaliana in resistance to the generalist insect Trichoplusia ni (cabbage looper) which is known to
cause serious economic losses in crop plants. Plants treated with i- and k-carrageenan showed reduced leaf damage,
whereas those treated with l- carrageenan were similar to that of the control. In a no-choice test, larval weight was reduced
by more than 20% in i- and k- carrageenan treatments, but unaffected by l-carrageenan. In multiple choice tests,
carrageenan treated plants attracted fewer T. ni larvae by the fourth day following infestation as compared to the control.
The application of carrageenans did not affect oviposition behaviour of T. ni. Growth of T. ni feeding on an artificial diet
amended with carrageenans was not different from that fed with untreated control diet. i-carrageenan induced the
expression of defense genes; PR1, PDF1.2, and TI1, but k- and l-carrageenans did not. Besides PR1, PDF1.2, and TI1, the
indole glucosinolate biosynthesis genes CYP79B2, CYP83B1 and glucosinolate hydrolysing QTL, ESM1 were up-regulated by
i-carrageenan treatment at 48 h post infestation. Gas chromatography-mass spectrometry analysis of carrageenan treated
leaves showed increased concentrations of both isothiocyanates and nitriles. Taken together, these results show that
carrageenans have differential effects on Arabidopsis resistance to T. ni and that the degree of sulphation of the
polysaccharide chain may well mediate this effect.
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Introduction

Plants have developed adaptive and dynamic responses to

herbivores through defense mechanisms that are either constitu-

tively expressed or induced following infestation. The induction of

plant defenses allows the plant to execute responses with a high

degree of specificity in a timely matter in order to maximize efficacy

[1]. Furthermore, production of plant secondary metabolites can

modulate insect performance by acting as toxins, repellents, or

deterrents for generalists, whereas some compounds may act as

guides for specialists, or mediate tri-trophic interactions [2,3].

Inducible responses in plants commence through the rapid

recognition of herbivores via the perception of elicitors that are

present in the saliva of insects. These signal molecules trigger

metabolic responses and induce the transcription of specific

defense genes [4–8]. Besides elicitors of insect origin, a number of

chemicals including oligo- and polysaccharides, peptides, proteins

and lipids are also reported to elicit chemical responses that

protect the plant from microbes and herbivorous insects [9,10].

One novel source of plant defense elicitors is marine macroalgae

[11]. Various algal polysaccharides, including laminarin (from

brown seaweeds) and carrageenans, have the potential to induce

disease resistance in plants and animals [12,13]. Carrageenans are

the major polysaccharide present in many red macroalgae

(seaweed). These gel-forming polysaccharides have a linear

backbone of D-galactose residues linked with alternating a-(1,3)

and ß-(1,4) linkages which are substituted by one (k-carrageenan),

two (i-carrageenan), or three (l-carrageenan) ester-sulphonic

groups per di-galactose repeating unit [14,15]. The degree of

sulphation of carrageenan molecules is believed to affect the

induction of plant defense genes by triggering different metabolic

pathways [12,13]. Recent investigations have shown carrageenans
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to induce defens against various plant pathogens and mammalian

viruses, however, the effect of carrageenans on plant resistance

against insects is not known.

Arabidopsis thaliana is a model for studying plant insect

interactions, host resistance mechanisms and induced plant

defenses [16,12]. Arabidopsis exhibit a high sensitivity to elicitors

from insect, pathogen, or other chemicals such as methyl

jasmonate (MJ), cis-jasmonate (CJ) and salicylic acid (SA) [5,17–

21]. Different elicitors may induce specific defense pathways and

in some cases, overlapping responses are also reported. Interest-

ingly, carrageenans have not been widely tested for plant defense

responses but have been reported to strongly suppress certain

mammalian viruses (including HPV and HIV) (http://www.

freepatentsonline.com/y2010/0015247.html). However, it is not

clear how structurally similar carrageenans elicit differential host

responses. Since seaweed polysaccharides carrageenans, have been

shown to induce plant defens responses against pathogens, it is

plausible that carrageenans might induce resistance in plants

against insect pests.

Trichoplusia ni (cabbage looper) (Lepidoptera: Noctuidae) is a

polyphagous herbivore that feeds on a number of plant species

including Arabidopsis [22]. T. ni has variable responses to different

Arabidopsis ecotypes and has shown particular sensitivity to plant

glucosinolates, defense signaling pathways and proteinase inhib-

itors [22,23]. In addition, T. ni has been reported to preferentially

feed on nitrile-producing Arabidopsis ecotypes, while isothiocya-

nate-producing ecotypes deter feeding [24,25]. As T.ni has been

shown to have a compatibility with Arabidopsis, as well as

sensitivities to certain plant defense compounds, it is an excellent

candidate for studies measuring the endogenous induction of plant

defense compounds with exogenously applied carrageenans.

The purpose of this study was to evaluate the effects of

differently sulphated carrageenans as elicitors of Arabidopsis

resistance to T. ni. The effects of carrageenans on T. ni was

evaluated through the measurement of leaf mass consumed by T.

ni larvae and larval development. The nature of the carrageenan-

induced resistance was evaluated by measuring expression of genes

known to affect Arabidopsis resistance against herbivorous insects.

Results

Plant Responses to T. ni with Carrageenan Treatment
Arabidopsis plants treated with i-, k- and l- carrageenan showed

differences in susceptibility to T. ni infestation compared to the

untreated control plants. We quantified the total leaf damage at 7

days post infestation. Although differences were not statistically

significant, observations of infested plants under no-choice

conditions showed that the plants treated with i- and k-

carrageenan incurred reduced feeding damage by T. ni larvae

(Fig. 1). In contrast, plants treated with water (control) or l-

carrageenan showed similar levels of leaf damage.

Carrageenans Modulated T. ni Larval Growth
The effect of carrageenan-treated Arabidopsis plants on T. ni

larval growth was observed by measuring the larval fresh weight

gain under confined feeding (no-choice) conditions. A reduction in

larval weight was most obvious on the i-carrageenan-treated plants

and was significantly less (p,0.05) than the untreated control at 4,

8 and 10 d following infestation (Fig. 2). In k-carrageenan-treated

plants, the effect was not as pronounced as in the i- carrageenan

treated plants on days 4 and 8. However, by the tenth day

following infestation, inhibition of larval growth was greater in the

k- than the i- carrageenan-treated plants. In contrast, larval weight

in the l-carrageenan treatment was similar to that on the water

control at all time points. Visual estimates of the size of the larvae

feeding on i-carrageenan-treated Arabidopsis was that they were

smaller (Fig. S1), as well as an observed reduction in larval

development as evidenced by delayed pupation compared to the

control plants (data not shown).

Larval development was unaffected on carrageenan
amended artificial diet

The direct effect of carrageenans on T.ni was observed by

allowing T. ni larvae to feed on an artificial diet amended with

carrageenans (1 g/L) and compared with normal (control) diet.

The larval weight did not differ between the treatments at 5, 8 and

10 days post infestation (Fig. 3). The average larval period was

14.2 days for i-carrageenan, 13.9 days for l-carrageenan, 14.5 for

k-carrageenan and 14.3 days on the normal diet at 25uC.

Carrageenan Treatment Affected T. ni Host Preference
Multiple choice experiments showed an overall reduction in T.

ni larval preference of carrageenan- treated plants (Fig. 4). The

larvae consistently showed non-preference for i-carrageenan-

treated plants. It was observed that the larval number did not

change between plants up to 48 h after infestation. This trend

however changed after 72 h and the T. ni larvae started moving

away from the carrageenan-treated plants. The reduction in

preference was greatest in the i-carrageenan-treated plants on day

three and it was followed by k-carrageenan on day 4 and 5; the

larval counts on l-carrageenan treated plants showed similar trend

on days 3 and 4. All carrageenan treatments showed significantly

reduced T. ni preference by day five. By day 5 more than 50% of

the larvae settled on the untreated control plants when given a

Figure 1. Leaf damage (%) on Arabidopsis treated with
differentially sulphated i- (iota), k- (kappa) and l- (lambda)
carrageenans seven days following infestation. Plants with fully
expanded leaves were sprayed until dripping with 2 ml of each test
solution (1 g L21) in ultra pure water (MilliQ) containing Tween-20
(0.02% v/v) followed by a second spray treatment on day five. The
control plants were sprayed with sterile distilled water containing 0.02%
Tween-20. Single newly hatched larvae were placed on the lower
surface of an Arabidopsis leaf of treated plants that were kept
individually in a plastic mesh cage under greenhouse conditions. Leaf
damage was quantified 7 days after inoculation based on the total
amount of leaf area consumed minus the initial area of the healthy leaf.
Reduced mean leaf damage was observed in both the i- and k-
carrageenan treatments. Error bars represent standard error.
doi:10.1371/journal.pone.0026834.g001

Carrageenans Affect Arabidopsis Resistance to T.ni
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choice (Fig. 4). Under dual choice conditions, although there was a

reduction in larval settling preferences on i- and k-carrageenan-

treated plants, the differences were not significant (data not

shown). Conversely, there was increased settling preference in the

dual choice experiment on plants treated with l-carrageenan.

Female oviposition behaviour revealed that the oviposition

behavior was not affected by carrageenan treatments. However,

there were slight reduction in the number of eggs on the

carrageenan-treated Arabidopsis, as compared to the control, but

there were no significant differences (Fig. S2).

Carrageenans Differentially Induce Arabidopsis Defense
Genes

To determine the molecular mechanisms of carrageenan-

induced Arabidopsis defense to T. ni, marker genes commonly

involved in Arabidopsis response to insect infestation were

investigated. The relative expression of the genes PDF1.2, PR1,

TI1, CYP79B2, CYP71B15, CYP83B1, CYP81D11, OBP2 and

ESM1 were measured in carrageenan-treated plants up to 48 h

post infestation (Fig. 5). Carrageenan treatments differentially

induced the expression of these defense genes which concurred

with phenotypic observations in the choice experiments. Jasmonic

acid (PDF1.2) and salicylic acid-responsive (PR1) genes were

induced by i-carrageenan, but remained suppressed or unaltered

during larval feeding on the k- and l-carrageenan-treated plants.

A considerable increase of PDF1.2 and PR1 expression were

observed in i-carrageenan-treated plants at 24 h and 48 h after

infestation (Fig. 5). The expression of PDF1.2 increased slightly in

k-carrageenan treatments at 48 h after infestation. Both PDF1.2

and PR1 remained suppressed with T. ni infestation in l-

carrageenan-treated plants.

The transcript abundance of the trypsin inhibitor protein 1

(TI1), increased in healthy (control) plants 24 h after i-carrageen-

Figure 3. T. ni larval weight was unaffected on artificial diet
laced with sulphated carrageenans [i- (iota), k- (kappa) and l-
(lambda)]. The artificial diet was prepared using dry diet ingredients of
McMorran diet and carrageenans [i- (iota), k- (kappa) and l- (lambda)]
were added (1 g L21) just before pouring into 5 ml plastic rearing cups.
A single first instar larva was released on diet and incubated at 25uC.
Larval weight was measured , 5, 8 and 10 days post infestation on the
diet. The experiment was conducted under a randomized complete
block design using three blocks consisting of fifteen replicates each.
Error bars represent standard errors.
doi:10.1371/journal.pone.0026834.g003

Figure 4. Sulphated carrageenans [i- (iota), k- (kappa) and l-
(lambda)] alter host preference of T. ni. Arabidopsis plants were
sprayed with either carrageenans (1 g L21) in ultra pure water (MilliQ)
containing Tween-20 (0.02% v/v) or water and randomly arranged in a
25 cm circular tray at equal distance and placed in a mesh cage. Second
instar T. ni larvae (5/plant) starved for one hour were placed in the
center of the whorl and allowed to move freely to the host of their
choice. Settling preference was determined by the numbers of larvae
present on the treated plants at 3, 4 and 5 days following infestation.
The experiment was repeated twice and consisted of five replicates per
treatment. T. ni showed altered preference on carrageenans treated
plants and least on i -carrageenan sprayed plants. Error bars represent
standard errors, and an asterisk (*) indicate significant differences
(p,0.05) between mean values of the treatment (carrageenan) and the
control (water).
doi:10.1371/journal.pone.0026834.g004

Figure 2. Sulphated carrageenans [i- (iota), k- (kappa) and l-
(lambda)] affect T. ni larval weight. Plants with fully expanded
leaves were sprayed until dripping with 2 ml of each test solution
(1 g L21) in ultra pure water (MilliQ) containing Tween-20 (0.02% v/v)
followed by a second spray treatment on day five. The control plants
were sprayed with sterile distilled water containing 0.02% Tween-20.
Single newly hatched larvae were placed on the lower surface of an
Arabidopsis leaf of treated plants that were kept individually in a plastic
mesh cage under greenhouse conditions. Larval fresh weight was
measured 4, 8 and 10 days following infestation. The experiment was
conducted under a randomized complete block design using five
blocks consisting of five replicates each. Foliar application of
carrageenans [i- (iota), k- (kappa)] reduced T. ni larval weight whereas
l- (lambda) did not. Error bars represent standard errors, and an asterisk
(*) indicate significant differences (p,0.05) between mean values of the
treatment (carrageenan) and the control (water).
doi:10.1371/journal.pone.0026834.g002

Carrageenans Affect Arabidopsis Resistance to T.ni
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an-treatment. However TI1 was not altered in k- and l-

treatments relative to the expression with i-carrageenan (Fig. 5).

Interestingly, the expression of TI1 increased at 24 h after T. ni

infestation in all the treatments except k-carrageenan. This trend

however changed at 48 h, as the transcript level of TI1 increased

several folds in i-carrageenan-treated plants. The expression of

TI1 remained unchanged with the other carrageenan treatments

similar to the response of control plants infested with T. ni.

We also determined whether sulphated carrageenans could alter

glucosinolate biosynthesis products which might regulate defense

of Arabidopsis to insects (Fig. 5). Indole glucosinolate biosynthesis

genes CYP79B2, CYP83B1 were differentially induced in carra-

geenan treatments during T. ni infestation. The induction of

CYP79B2 gene was observed at 24 h post carrageenan treatments

without T. ni infestation and it was several folds higher with l-

carrageenan treatment. The induction of CYP79B2, increased

further with i-carrageenan but remained suppressed with other

carrageenans at 48 h post treatment in absence of T. ni infestation.

In contrast, CYP79B2 remained suppressed at 24 h after

infestation but dramatically increased in i-carrageenan treatment

48 h after infestation. A four fold increase in CYP79B2 transcript

was also observed in k-carrageenan treated plants.

The expression of CYP83B1 showed .2 fold increase at 24 h

after i -carrageenan treatment but it was not induced in other

treatments. Further, the expression of this gene which remained

suppressed at 24 h after T. ni infestation was however increased

.20 folds in i-carrageenan and .4 folds in k-carrageenan treated

Arabidopsis at 48 h post infestation (Fig. 5). Similarly, the

expression of Epithiospecifer Modifier 1 (ESM1), a gene involved

in glucosinolate hydrolysis increased in healthy Arabidopsis plants

after i-carrageenan treatment. Similar to TI1 response, ESM1 was

also suppressed initially with T. ni infestation at 24 h (Fig. 5).

However, the ESM1 was up-regulated again in i-carrageenan

treatment which was also evident as a slight increase was observed

with k-carrageenan treatment at 48 h after infestation. In contrast,

the expression of ESM1 did not increase with l-carrageenan

application during T.ni infestation, and the observed response was

similar to the control plants.

We noted that the transcript of CYP71B15 encoding a

cytochrome P450 monooxygenase contributing towards camelexin

biosynthesis was also altered after treatment with carrageenans

than in untreated control plants. In T.ni infested plants at 24 h,

CYP71B15 expression was reduced in k-carrageenan treatments,

whereas the expression level remained higher in i- and l-

carrageenan treated plants. However, CYP71B15 expression was

lower at 48 h as compared to 24 h. Additionally, we also

determined the response of CYP81D11 and OBP2 genes in T. ni

infested plants treated with carrageenans (Fig. S3). The induction

of OBP2, which regulates glucosinolate biosynthesis in Arabidopsis,

was much more evident with l-carrageenan treatment under T. ni

Figure 5. (A–D): Differential expression of defense genes against T. ni with sulfated carrageenans. Three week old plants were sprayed
until dripping with 2 ml of each test solution (1 g L21) in ultra pure water (MilliQ) containing Tween-20 (0.02% v/v) followed by a second spray
treatment on day five. Pre-treated plants were infested with a single larva. At both 24 and 48 h following infestation, single leaves from five plants
were harvested and pooled for RNA extraction. Relative gene expression of CYP71B15, CYP79B2, CYP83B1, and ESM1 PR1, PDF1.2, and TI1 was
determined with Real-time PCR performed on StepOneTM Real-Time PCR System using SYBR green dye with Rox (Roche). Data were analyzed from
two independent Real-Time PCR runs. Transcript abundance of each selected gene is expressed relative to the expression in control healthy plants
using the 22DDCt method. Mean relative gene expression at (A) 24 h after application without T. ni infestation; (B) 48 hours after application without
T. ni infestation (C) 24 hours after application with T. ni infestation; (D) 48 hours after application with T. ni infestation. Error bars represent SE of the
mean of three independent runs.
doi:10.1371/journal.pone.0026834.g005

Carrageenans Affect Arabidopsis Resistance to T.ni
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infestation. The induction of OBP2 in i- and k-carrageenan-

treated plants was also observed but it merely differed from the

control plants. In contrast, CYP81D11 was found to be up-

regulated in the T. ni infested plants with all of the carrageenan

treatments similar to its induction in the control plants.

In addition, the transcript abundace of CYP79B2, ESM1 and

CYP71B15 were detected in T. ni infested plants with RT-PCR at

1, 2, 3, and 5 days post infestation in control and i-carrageenan

treated plants (data not shown). The expression of CYP79B2

increased with infestation until day 2 with i-carrageenan but

decreased at days 3 and 5. Similarly ESM1 increased with i-
carrageenan at 48 h post infestation but reduced on other days;the

level of expression was higher than the control. In contrast, the

expression of CYP71B15 was more in i-carrageenan treated plants

on days 1, 2 and 3 post infestation whereas its expression was

lower on day 5 as compared to control plants.

Carrageenans increase glucosinolate hydrolysis products
The glucosinolate profiles of carrageenan treated Arabidopsis

plants were analyzed to determine if gene expression correlated

with production of the toxic glucosinolate hydrolysis products,

isothiocyanates and nitriles. Based on GC-FID analysis, the

hydrolysis products showed distinct peaks with retention times of

5.3 and 7.6 min (Fig. S4 and S5). The peak of 5.3 min was

identified as 3-pentenenitrile (NIT) based on NIST database of EI-

MS. Whereas the peak at 7.6 min was L-sulforaphane [(-)-1-

Isothiocyanato-(4R)-(methylsulfinyl)butane] (ITC) based on the

analysis with standard (Sigma) and NIST database of EI-MS. We

used relative ratio of area under absorbance peaks of a water

treated control to differentiate the induction of hydrolysis products

(Fig. 6, Figs. S4 and S5). The level of ITC was higher at 24 and

48 h post carrageenan treatments. Both ITC and NIT increased at

24 h post T.ni infestation and the concentration was higher with i-
carrageenan. However, we observed an increased NIT production

at 48 h post infestation among all the carrageenans, whereas the

levels of ITC were not different from the control (Fig. 6).

i-Carrageenan induced resistance requires JA and SA
response

We chose i-carrageenan treatment to determine the response of

the two Arabidopsis mutants jar1 and ics1. i-carrageenan did not

affect the resistance of jar1, a mutant compromised in the JA

dependent defense response, against T. ni. The larval weight on

the i-carrageenan-treated jar1 plant was not significantly different

(p.0.05) from that of the untreated control at 5, 8 and 10 days

following infestation (Fig. 7). Similarly, larval weight on ics1, a

mutant with a defect in SA biosynthesis, was not different from i-
carrageenan treated and untreated control plants at 5 and 8 days

after infestation, although T. ni larvae showed a higher weight gain

on i-carrageenan treated plants on the 10th day.

Figure 6. (A–D): Carrageenans modulate glucosinnolate hydrolysis products. Three week old plants were sprayed until dripping with 2 ml
of each test solution (1 g L21) in ultra pure water (MilliQ) containing Tween-20 (0.02% v/v) followed by a second spray treatment on day five. Pre-
treated plants were infested with a single larva. At both 24 h and 48 h following infestation, six leaves were collected per three plants and used as
replicate with and without T. ni for analysis of glucosinolate hydrolysis products analysis with GC-FID/EI MS according to Lambrix et al. [24]. The peak
of 5.3 min is 3-pentenenitrile (NIT) and the peak at 7.6 min is L-sulforaphane [(-)-1-Isothiocyanato-(4R)-(methylsulfinyl)butane] (ITC). Data are
expressed as the relative ratio of area under the absorbance peaks of a treatment to a water control. The experiment consisted of three biological
replicates per treatment. Error bars represent SE of the mean of the replicates.
doi:10.1371/journal.pone.0026834.g006
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Discussion

Seaweed extracts are increasingly used in agriculture to induce

plant resistance to abiotic and biotic stresses. [26,27]. Carrageen-

ans specifically, have been reported to be potential inhibitors of

fungal, bacterial and viral pathogens in plants and animals [11–

13,28]. This study demonstrated that spray treatment of

carrageenans differentially modulated the resistance of Arabidopsis

to T. ni, which is a generalist herbivore of several economically

important food crops. Our results are in agreement with earlier

published reports on the effect of elicitors such as jasmonic acid

(JA), salicylic acid (SA), and 2,6-dichloroisonicotinic acid (INA) on

inducing insect resistance in plants [17,20].

The principal activity of i-, k- and l-carrageenan is believed to

be due to the number and position of the ester sulphate groups on

the repeating galactose units which in turn may influence

induction of defense in plants. l-carrageenan has been shown to

be the most active compound to elicit plant responses against plant

pathogens [12,13,29,30,31,32]. However in our study, insect

response to carrageenan-treated plants and gene expression

analyses indicated that the exogenous application of i-carrageenan

enhanced Arabidopsis resistance through antifeedant and antixe-

nosis activities on T. ni larva. This observation is not surprising

since the mechanisms of plant resistance to chewing insects are

known to be different from that of pathogens. This finding was

further supported by the experiments with direct feeding of

carrageenans amended artificial diet bioassay which did not show

any suppressive effects of carrageenans on T. ni growth and

development. This effect could be in part due to the sulphation of

i-carrageenan, which is at an intermediate level to that of the k-

and l- forms.

When attacked by insects, plants induce biochemical responses

and alter the expression of defense related genes which can lead to

the production of secondary metabolites and proteins including

toxins, antifeedants, or anti-nutrients [33,8]. We observed a higher

expression of genes involved in the production of plant defense

proteins, particularly in the i-carrageenan-treated plants. Plant

responses to chewing insects are largely JA dependent and this

plays a major role in the activation of genes involved in induced

defenses [17,18,34,35]. It is interesting to note that both the JA

and SA responsive genes PDF1.2 and PR1 were induced by i-
carrageenan application, with the induction of PR1 being

comparatively higher than PDF1.2. The response of two mutants

ics1 and jar1 also suggested that both SA and JA dependent

responses may be required in carrageenan induced Arabidopsis

resistance against T. ni. ‘‘Cross-talk’’ between JA, SA and ET

dependent defense pathways has been reported in plant defense

mechanisms that interact with each other, and influence other

pathways [8,36,37]. It seems likely that i-carrageenan induced

resistance involves multiple biochemical pathways in the develop-

ment of plant resistance.

One of the most commonly induced herbivore defenses in plants

is the rapid synthesis of anti-feedant proteinase inhibitors (PIs)

[33,38]. These small proteins inhibit insect digestive proteases and

lead to reduced insect growth rates or their increased mortality

due to a reduction of nutrient intake [39]. The several fold

induction of TI1 following i-carrageenan treatment suggested that

TI1 probably played a major role in affecting the larval growth

and development. This concept was supported by the observation

of healthy larvae and more feeding damage on l-carrageenan-

treated plants which did not show an induction of the TI1.

However, larval growth of T.ni was also suppressed with k-

carrageenan- treatment, although it did not correspond with

strong TI1 induction, thereby suggesting that implicit defense

mechanisms were involved. The effect of k-carrageenan on T.ni

growth in both the choice and no-choice tests was intermediate to

i- and l- carrageenan treatments of Arabidopsis.

In this study, carrageenan treatment of Arabidopsis induced

several genes involved in indole glucosinolate biosynthesis

including CYP79B2 and CYP83B1 that correlated with a

pronounced phenotypic effect on T. ni larva. Interestingly,

oviposition performance of gravid T. ni females was not affected

with carrageenan treatment on Arabidopsis in choice experiment.

This was surprising as Arabidopsis glucosinolates are defensive

compounds which are involved in the production of volatiles, that

have been shown to affect the performance of generalist herbivores

such as T. ni through toxic isothiocyanates [22,24,40]. Conversely,

specialist herbivores such as the cabbage butterfly redirects

glucosinolate breakdown products toward less toxic nitriles with

nitrile specific gut enzymes and use these compounds to locate host

plants for feeding and oviposition [34,41]. Since the glucosinolate

biosynthesis gene activity was differentially induced in the

treatments, it is possible that the glucosinolates or their by-

products modulate carrageenan-induced resistance to T.ni larva

but not the adults. However, l-carrageenan-treated plants

expressing higher OBP2 and CYP79B2 during the early stage of

infestation appeared to incur more damage from larval feeding. It

appeared that differential end products of glucosinolate biosyn-

thesis may have mediated that response.

It is known that in the glucosinolate biosynthesis pathway,

ESM1 plays a pivotal role in the production of toxic glucosinolate

by-products. ESM1 is a semi-dominant quantitative trait locus

(QTL) having an epistatic effect on the Epithiospecifier (ESP) gene

[23]. It has already been determined that T. ni prefers to feed on

nitrile-producing Arabidopsis ecotypes, whereas isothiocyanate-

producing Arabidopsis mutants deter herbivores [24]. Up-regulation

of ESM1 represses nitrile formation and favours isothiocyanates

which further deter T. ni herbivory [23]. Treatment of plants with

i-carrageenan, in this study, clearly led to increased ESM1 which

Figure 7. Arabidopsis mutants were not affected by i-
Carrageenan. Seedings of mutant plants (ics1 and jar1) with fully
expanded leaves were sprayed until dripping with 2 ml of i-
carrageenan solution (1 g L21) in ultra pure water (MilliQ) containing
Tween-20 (0.02% v/v) followed by a second spray treatment on day five.
The control plants were sprayed with sterile distilled water containing
0.02% Tween-20. Single newly hatched larvae were placed on the lower
surface of the plant leaf and kept individually in a plastic mesh cage
under greenhouse conditions. Larval fresh weight was measured at 5, 8
and 10 days following infestation. The experiment was conducted
under a randomized complete block design using three blocks
consisting of five replicates each. Error bars represent standard errors
of the mean.
doi:10.1371/journal.pone.0026834.g007
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was associated with the production of isothiocyanates. This was

also confirmed with GC-FID analysis for glucosinolate hydrolysis

products. But ESM1 expression did not correlate with a strong

production of ITC at 48 h post-infestation. It is difficult to

interpret this relationship due to the complex nature of the

hydrolysis products linked with induced defense in Arabidopsis. In

addition, CYP71B15 involved in the final step of biosynthesis of

antimicrobial camelexin could also contribute to carrageenan-

induced Arabidopsis resistance to T. ni. This was evident from up-

regulation of the CYP71B15 gene transcript as observed at

different times post-infestation.

In summary, the treatment of plants with various carrageenans

modulated the resistance of Arabidopsis to T. ni herbivory. In

particular, i-carrageenan elicited resistance to T. ni in Arabidopsis

most likely by inducing various defense mechanisms including JA

and SA-dependent pathways, proteinase inhibitors and an

alteration of the products of glucosinolate hydrolysis as shown in

Fig. 8. Carrageenan- induced resistance was expressed, through

increased antibiosis and a non-preference type of plant resistance

mechanism. In general, induced resistance offers the prospect of

pest management through the exploitation of plant/pest resistance

mechanisms by potential manipulation of both the intensity and

timing of induced responses. Chemical elicitors, such as JA, SA,

and benzo(1,2,3)thiadiazole-7-carbothioic acid (benzothiazole,

BTH) are novel approaches to pest management that holds great

potential for the possibility of being explored in common and

widespread agricultural practices [42]. However, the cost of

currently available and commonly recommended elicitors is high,

and in some cases environmental toxicity has also been reported

[43]. Seaweed-derived carrageenans hold promise as low-cost

alternatives to chemically synthesized plant defense eliciting

compounds. The red seaweeds Chondrus crispus, and various strains

of Eucheuma denticulatum and Kappaphycus alvarezii contain a high

percentage of defined types of carrageenan [44]. These naturally

sourced carrageenans may be produced with relatively low cost,

using simple methods and few negative environmental impacts

have been reported for these polysaccharides. The information

provided in the current study makes a case for future larger-scale

experiments to measure the field efficacy of various types of

carrageenans applied to plants against agricultural pests. Future

studies on the role of carrageenan polysaccharides in modulating

insect-plant interactions will be useful for pest control strategies

and management which rely on induced plant resistance to

herbivory.

Materials and Methods

Insect and Plant Material
Trichoplusia ni eggs were obtained from Agriculture and Agri-

food Canada, Saskatoon, Saskatchewan, Canada. Before the

initiation of the experiments, eggs were surface sterilized with

sodium thiosulphate and incubated at 25uC for three days. The

larvae which hatched were used to develop an in-house culture of

T. ni which was maintained on an artificial diet (BioServ,

Frenchtown, NJ) at 2362uC, 65% relative humidity, and 16 h

day and 8 h night cycles. Newly hatched larvae or gravid females

were used for all greenhouse experiments.

Wild-type Arabidopsis thaliana (Heyhn.) ecotype Columbia (Col-0)

seeds were purchased from Lehle Seed Company (Roundrock,

TX, USA). Arabidopsis mutants (ics1 and jar1) were obtained from

Figure 8. Schematic diagram of proposed carrageenan induced resistance in Arabidopsis thaliana. Genes regulating indole glucosinolates
pathway are strongly upregulated with carrageenan treatments. The expression of genes, CYP79B2 and CYP83B1 increased with i-carrageenan
treatment. Finally, ESM1, representing an enzyme involved in glucosinolate hydrolysis into toxic isothyocyanates was up regulated with i-
carrageenan. Together with toxic plant proteins of PR1, PDF1.2 and TI1 and indole glucosinolate byproducts, i-carrageenan induced Arabidopsis
resistance to T.ni larval infestation.
doi:10.1371/journal.pone.0026834.g008
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the Arabidopsis Biological Resource Center (ABRC, Ohio State

University Columbus, OH, USA). Seeds were planted in sterile

peat pellets (Jiffy Co., Shippegan, New Brunswick, Canada) and

kept in trays at 2262uC with a photoperiod of 16 h day and 8 h

night cycle. Three-week-old plants were used in the experiments.

Preparation of Carrageenan Treatments
The three types of pure carrageenans (i -, k - and l -) used in

this study were provided as a gift by Cargill Texturant Solutions

(Baupte, France). The level of sulphation of each of the

carrageenans, viz. in descending order is l-; i-; k-. Carrageenans

were dissolved in ultra-pure water (MilliQ) (0.1% w/v) containing

0.02% (v/v) of Tween-20 at a 1 g L21 concentration.

Plant Treatment and Infestation
Treatments were applied to the Arabidopsis plants twice before

infestation. Plants with fully expanded leaves were sprayed until

dripping with 2 ml of each test solution followed by a second spray

treatment on day five. The control plants were sprayed with sterile

distilled water containing 0.02% Tween-20 (v/v). For Arabidopsis

mutant analysis, only i-carrageenan treatment was compared with

water sprayed (control) plants. All experiments were conducted

under greenhouse conditions (2262uC, 16 h day and 8 h dark

cycles). Infestation was performed 48 h following the second spray.

No-Choice Test
To determine the direct antibiosis effects of carrageenan-treated

plants on T.ni, a no-choice experiment was conducted by confining

a single larva on an individual treated plant. Newly hatched larvae

were carefully placed on the lower surface of an Arabidopsis leaf

subjected to either control or carrageenan treatment. The infested

plants were kept individually in a plastic mesh cage and

maintained under greenhouse conditions, as described above.

Leaf damage was quantified 7 days post infestation. The damaged

leaves from treated plants were digitally scanned and analyzed

with Winfolia (Regent Instruments Inc. Canada). The average leaf

area was measured using healthy plants of similar age,. Leaf

damage was quantified based on the total amount of leaf area

consumed minus the initial area of the healthy leaf.

Larval fresh weight was measured 4, 8 and 10 days following

infestation. Plants that were completely devoured were replaced

with fresh Arabidopsis plants with the same treatment until the

larvae pupated. The total larval period, i.e. the time to adult

emergence and percentage of insect mortality were recorded. Plant

resistance was determined based on the relative reduced larval

weight and the relative amount of leaf area consumed by the

larvae. The experiment was conducted under a randomized

complete block design using five blocks consisting of five replicates

each.

Choice Test
To determine the indirect effects of carrageenan treated plants

on T. ni, a choice test was conducted measuring larval settlement

and female egg laying preferences on treated or control plants.

Arabidopsis plants were sprayed with either carrageenans or water

and were randomly arranged in a 25 cm circular tray at equal

distances and placed under a protective mesh cage. Second instar

T. ni larvae were removed from the rearing diet before the

experiment and starved for one hour. Each plant was infested with

five larvae placed in the center of the whorl of Arabidopsis leaves

and allowed to move freely to the host of their choice. Settling

preference was determined by the numbers of larvae present on

the treated plants at 3, 4 and 5 days following infestation. The

experiment was repeated twice and consisted of five replicates per

treatment.

The binary preference response of newly moulted first instar

larvae was also measured on detached Arabidopsis leaves treated

with carrageenans. Five larvae were released between a control

and treated detached leaves on opposite sides of a Petri dish. The

number of larvae settling on leaves was recorded after 24 h.

Preference for oviposition by adult female T. ni on the treated or

control plants was also measured. Four-week-old, treated plants,

two from each carrageenan treatment or the untreated control,

were placed randomly in a 30 cm wide circular tray and placed in

a mesh cage under greenhouse conditions, as described above.

Two gravid females were released onto the enclosed plants and

confined for two days. Female adults were offered 10% honey

solution for feeding. After two days, the females were removed and

the number of eggs on each plant recorded. The experiment was

conducted twice with three replicates in a completely randomized

design.

Larval feeding on carrageenan laced diet
To determine the direct effects of carrageenans on T. ni, larval

growth was observed on artificial diet (McMorran diet) [45]

amended with carrageenan (1 g/L) and compared with normal

(control) diet. Dry diet ingredients for T. ni were purchased from

Insect Production and Quarantine Laboratories, Natural Resourc-

es, Canada (WWW.insect.glfc.cfs.nrcan.gc.ca). The carrageenan

was added to the artificial diet before being poured into 5 mL

plastic rearing cups which had meshed caps. A single first instar

larva was released on diet and incubated at 25uC. Larval weight

was recorded at 5, 8 and 10 days after releasing them on the diet.

Finally, the pupae were weighed for each treatment. The

experiment was repeated twice with 25 replications in each trial.

RNA Extraction and Gene Expression Analysis
To determine if Arabidopsis defense genes (Table 1) were

expressed with various carrageenan treatments following T. ni

infestation, pre-treated plants were infested with a single larva. At

both 24 h and 48 h following infestation, leaves from five plants

were harvested and pooled for RNA extraction. Total RNA was

extracted using a phenol-free method [46]. Total RNA was reverse

transcribed into cDNA using a superscript cDNA kit (Roche,

Mississauga, ON, Canada).

Real-time PCR was performed on a StepOneTM Real-Time

PCR System (Applied Biosystems, CA) using SYBR green dye

with Rox (Roche) according to the manufacturer’s instructions.

Reaction mixtures contained 50 ng of cDNA template from each

sample, 20 ng of each gene specific primer and 7.5 mL of SYBR

green reagent in a final volume of 20 mL. Data were analyzed from

two independent Real-Time PCR runs. Transcript abundance of

each selected gene was normalized to the expression of 18S

ribosomal RNA. The data were analyzed using the 2-DDCt method.

GC-FID Analysis for detecting Glucosinolate Hydrolysis
Products

Leaves were collected 24 and 48 hours after treatment with the

carrageenans with and without T. ni for glucosinolate hydrolysis

product analysis according to the method of Lambrix et al. [24].

For all samples, 150 mg leaf tissues were ground using glass rod in

1.2 mL of sterile water in glass vials. The vials were kept for 5 min

at room temperature to allow the hydrolysis of the glucosinolates.

This was followed by addition of 4 mL dichloromethane to stop

the reaction. Following vortexing for 3 s, the samples were

centrifuged at 11006 g for 15 min and the organic phase was

Carrageenans Affect Arabidopsis Resistance to T.ni

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e26834



collected in a glass tube using a glass Pasteur pipette. The samples

were extracted one more time and the organic phase was dried by

passing over a column containing 1 g of anhydrous sodium sulfate

(Sigma). The dried organic phase was dissolved in 150 mL of

acetonitrile for gas chromatography with flame ionization detector

and electron impact mass spectrometry (GC-FID/EI MS) analysis.

To analyze the extracted glucosinolate hydrolysis products,

Agilent 6890N Network GC system was used using a modified

method of Lambrix et al. [24] with detector temperature of 250uC
and inlet temperature of 250uC. The oven temperature was first

set at 40uC, and changed after 2 min to 250uC gradually (15uC/

min). The oven was set to a final temperature of 250uC for 14 min.

One microliter of sample extract was injected with splitless inlet

mode for the detection of the hydrolyzed products. An Agilent

high-resolution HP-5MS gas chromatography column (length,

30 m; i.d., 0.25 mm; film, 0.25 mm) was utilized. The peaks were

analyzed using ChemStation software.

Data Analysis
Data for the no-choice and choice experiments were analyzed

using the mixed procedure (PROC MIXED) of Statistical Analysis

Software (SAS) (Version 9.2, SAS Institute Inc., Cary, NC, USA)

with the restricted maximum likelihood option and repeated

measures with a compound symmetry correlation structure [47].

The univariate procedure of SAS was used to test for normality of

residuals and outliers. Residuals were plotted against predicted

values to evaluate homogeneity of variance and independence of

predicted and residual values. T-tests were used to analyze binary

choice tests using PROC TTEST in SAS.

Supporting Information

Figure S1 Sulphated carrageenans differentially inhibit
T. ni larval development under confined feeding Plants

after dual sprays of each test solution (1 g L21) in ultra pure water

(MilliQ) containing Tween-20 (0.02% v/v) or control (sterile

distilled water containing 0.02% Tween-20) were infested with

single newly hatched larvae. Larvae representing the treatment

effect were photographed at 10 days following infestation. The i-
(iota), and k- (kappa) carrageenan more strongly retarded the T. ni

larval growth than the l- (lambda) carrageenan. The representa-

tive size of T. ni larvae feeding on i-carrageenan-treated plants

were smaller, as compared to other treatments.

(TIF)

Figure S2 Oviposition behavior of T. ni females on
Arabidopsis treated with sulfated carrageenans. Three-

week-old plants were given dual sprays of each test solution

[1 g L21 of (iota), k- (kappa) and l- (lambda) carrageenan] in ultra

pure water (MilliQ) containing Tween-20 (0.02% v/v) or control

(sterile distilled water containing 0.02% Tween-20). Two Plants

from each carrageenan treatment, or the untreated control, were

placed randomly in a 30 cm wide circular tray and placed in a

mesh cage under greenhouse conditions. Two gravid females were

released onto the enclosed plants and confined for two days.

Female adults were offered 10% honey solution for feeding. After

two days females were removed and the number of eggs on each

plant was recorded. The experiment was conducted twice with

three replicates under a completely randomized design. No

significant differences were observed between the carrageenan

treatments or the control. Error bars represent the standard error

of the mean.

(TIF)

Figure S3 Expression of CYP81D11 and OBP2 with i-
(iota), k- (kappa) and l- (lambda) carrageenan treat-
ments Three week old plants were sprayed until dripping with

2 ml of each test solution (1 g L21) in ultra pure water (MilliQ)

containing Tween-20 (0.02% v/v) followed by a second spray

treatment on day five. Pretreated plants were infested with a single

larva. At 24 h following infestation, infested leaves from five plants

Table 1. Primers used in the present study.

Gene Description Gene Locus Primer (F = forward; R = reverse)

OBP2 OBF BINDING PROTEIN 2 AT1G07640 F-GGTCAACGCTCAAAGTCCTA

R-AGCTTGGTTGTTGCCATTAG

TI1 TRYPSIN INHIBITOR PROTEIN 1 AT2G43510 F-GAATACGGAGGTGATGTTGG

R-AAGCATTTGACGTTACTGCC

CYP71B15 CYTOCHROME P450 MONOOXYGENASE AT3G26830 F-TTCCTCTGTTTCCTCGTCCT

R-GCCAGCGACTCCACCAATCCC

CYP79B2 CYTOCHROME P450 MONOOXYGENASE AT4G39950 F-ATGATGGGAAGCTTCTTTGG

R-TCGCCGGATATCACATCC

CYP83B1 CYTOCHROME P450 MONOOXYGENASE AT4G31500 F-TCACGGCCATATCTACCAGC

R-TGGACGTCATGACTGGAC

CYP81D11 CYTOCHROME P450 MONOOXYGENASE AT3G28740 F-CGAGAAACGTGTGGAGAAAG

R-GACATCGCCCATTCTAACG

PR1 PATHOGENESIS-RELATED PROTEIN 1 AT2G14610.1 F-ACATGTGGGTTAGCGAGAAG

R-ACTTTGGCACATCCGAGTCT

PDF1.2 PLANT DEFENSIN 1.2 AT5G44420.1 F-TGCTGGGAAGACATAGTTGC

R-TGGTGGAAGCACAGAAGTTG

ESM1 EPITHIOSPECIFER MODIFIER PROTEIN 1 AT3G14210 F-TCGTAGGATTGCGACAGG

R-CCTGAGCCTTCTCTGTGTTG

doi:10.1371/journal.pone.0026834.t001
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were harvested and pooled for RNA extraction. Relative gene

expression CYP81D11 and OBP2 was determined with Real-time

PCR performed on StepOneTM Real-Time PCR System using

SYBR green dye with Rox (Roche). Data were analyzed from two

independent Real-Time PCR runs. Transcript abundance of each

selected gene was normalized to the expression of 18S ribosomal

RNA. Mean relative gene expression of CYP81D11 and OBP2 at

(A) 24 hours after application without T. ni infestation; (B)

24 hours after application with T. ni infestation. Error bars

represent SE of the mean of two independent runs.

(TIF)

Figure S4 GC-FID/EI MS peaks of glucosinolate hydro-
lysis products in carrageenan-treated plants. Three week

old plants were sprayed until dripping with 2 ml of each test

solution (1 g L21) in ultra pure water (MilliQ) containing Tween-

20 (0.02% v/v) followed by a second spray treatment on day five.

Pre-treated plants were infested with a single larva. At both 24 h

following infestation, leaf samples were processed for extraction of

glucosinolate hydrolysis products and subjected to GC-FID/EI

MS analysis. The peak of 5.3 min was identified as 3-penteneni-

trile (NIT) and the peak at 7.6 min as L-sulforaphane [(-)-1-

Isothiocyanato-(4R)-(methylsulfinyl)butane] (ITC).

(TIF)

Figure S5 GC-FID/EI MS peaks of glucosinolate hydro-
lysis products in carrageenan treated plants. Three week

old plants were sprayed until dripping with 2 ml of each test

solution (1 g L21) in ultra pure water (MilliQ) containing Tween-

20 (0.02% v/v) followed by a second spray treatment on day five.

Pre-treated plants were infested with a single larva. At 48 h

following infestation, leaf samples were processed for extraction of

glucosinolate hydrolysis products and subjected to GC-FID/EI

MS analysis. The peak of 5.3 min was identified as 3-penteneni-

trile (NIT) and the peak at 7.6 min as L-sulforaphane [(-)-1-

Isothiocyanato-(4R)-(methylsulfinyl)butane] (ITC).

(TIF)
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