
TOWARDS COEVOLUTIONARY GENETIC PROGRAMMING
WITH PARETO ARCHIVING UNDER STREAMING DATA

by

Aaron Atwater

Submitted in partial fulfillment of the
requirements for the degree of
Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2013

c© Copyright by Aaron Atwater, 2013

Dedicated to NIMSLab, past and present

ii

Table of Contents

List of Tables . v

List of Figures . vi

List of Algorithms . viii

Abstract . ix

Acknowledgements . x

Chapter 1 Introduction . 1

Chapter 2 Background . 4

2.1 Competitive Coevolution and Pareto Archiving 4

2.2 Genetic programming in dynamic environments 5

2.3 Symbiotic Bid-based GP . 8

Chapter 3 Streaming Data Interfaces 11

3.1 Symbiotic Coevolution . 11

3.2 Pareto Archiving . 14

3.3 Sliding Windows . 16

3.4 Tapped Delay Lines . 18

Chapter 4 Synthesizing Streaming Benchmark Tasks 21

4.1 Stationary Datasets . 21

4.2 Synthesizing Streaming Datasets . 22

4.3 Cyclical Datasets . 26

Chapter 5 Empirical Evaluation . 29

5.1 Stationary Data Evaluation . 29
5.1.1 Methodology . 29
5.1.2 Parameterization . 31
5.1.3 Results . 32

iii

5.1.4 Static Evaluation . 32
5.1.5 Dynamic Evaluation . 35

5.2 Non-Stationary Data Evaluation . 39
5.2.1 Methodology . 39
5.2.2 Parameterization . 41
5.2.3 Evaluation . 42

5.3 Tapped Delay Lines and Cyclical Data 47
5.3.1 Methodology . 47
5.3.2 Parameterization . 48
5.3.3 Results . 49
5.3.4 Evaluation of datgen without Tapped Delay Lines 50
5.3.5 Evaluation of datgen with Tapped Delay Lines 50
5.3.6 Evaluation of planar without Tapped Delay Lines 50
5.3.7 Evaluation of planar with Tapped Delay Lines 51

Chapter 6 Conclusions, Contributions, and Future Work 58

6.1 Conclusions . 58

6.2 Contributions and publications resulting from this work 59

6.3 Future work . 61

Bibliography . 63

Appendix A Parameterizations . 67

A.1 SBB Parameterizations . 67

A.2 TDL Parameterizations . 67

iv

List of Tables

4.1 Characterization of benchmarking datasets. Attribute counts
appear next to the respective dataset names; Values in paren-
thesis within the table denote test partition instance counts. . . 23

4.2 Characterization of benchmarking datasets. Attribute counts
appear next to the respective dataset names. 26

A.1 SBB parameterization. 68

v

List of Figures

3.1 Relationship between streaming data, τ , sliding window, St,
and point population, P. Only the content of the point popu-
lation is used for fitness evaluation. A total of Pgap records are
replaced from the point population at each generation. Pareto
archiving defines up to |P |−Pgap records retained between gen-
erations. 17

3.2 Visual representation of the tapped delay line mechanism of
accumulating data from the stream. Colours highlight the se-
quence of σn points (“taps”), each separated by σ other points,
that are accumulated to form a single ‘aggregate’ data point.
(In this example only, σ = σn = 4) 20

4.1 Example of output with default parameters of the Dataset
Generator tool. 25

4.2 Visual representation of the pattern in which data from different
rulesets is combined to create the datgen dataset. Here colours
represent concepts C1-C3, while each horizontal bar represents
a ‘chunk’ in the stream. 26

4.3 Visual representation of patterns used to represent cyclical con-
cept drift. Above shows the repeat case in which the stream
immediately switches to its initial start and replays the ‘drift’
pattern over upon reaching the halfway point. Below is the
mirror case in which the pattern is replayed in reverse order,
representing a gradual return from the end-state back to the
start-state. 27

5.1 Average Detection Rate metric under test data. See section
5.1.1 for column labels. A note on interpreting violin plots: each
plot contains an ordinary boxplot, with additional information
illustrating the probability distribution of the result set drawn at
either side. 33

5.2 Average Detection Rate of test partition during training on the
stream using Pareto archiving. Sliding window of 5% in all
cases (w05P). For clarity generation axis is ×100. 36

5.3 Size of Pareto archive during training on the stream using Pareto
archiving. Sliding window of 5% in all cases (w05P). For clarity
generation axis is ×100. 37

vi

5.4 Dynamic properties of Shuttle data set with 5% noise under
w05P sliding window. 39

5.5 Average Detection Rate of Shuttle data set on test partition. . 40

5.6 Average Detection Rate across previous chunks during training
on the stream, using the datgen data set. 44

5.7 Average Detection Rate across previous chunks during training
on the stream, using the planar data set. 45

5.8 Accuracy across previous chunks during training on the stream,
using the planar data set. 46

5.9 Average age of individuals in the point archive from single runs
of experiments in the planar environment. 47

5.10 Average detection rate across previous chunks using org con-
figuration without TDLs. Subcaption indicates data set. . . . 52

5.11 Average detection rate across previous chunks using org con-
figuration with TDLs. Subcaption indicates data set. 53

5.12 Average detection rate across previous chunks using age con-
figuration without TDLs. Subcaption indicates data set. . . . 54

5.13 Average detection rate across previous chunks using age con-
figuration with TDLs. Subcaption indicates data set. 55

5.14 Average detection rate across previous chunks using zero con-
figuration without TDLs. Subcaption indicates data set. . . . 56

5.15 Average detection rate across previous chunks using zero con-
figuration with TDLs. Subcaption indicates data set. 57

vii

List of Algorithms

1 Overview of the SBB training algorithm as applied to streaming data
τ . St denotes the set of training instances associated with the sliding
window at generation t ; τ denotes the streaming data; |P | and P t are
the size and content of the point population respectively; |L| and Lt

are the size and content of the host population respectively;. 13

viii

Abstract

Classification under streaming data constraints implies that training must be per-

formed continuously, can only access individual exemplars for a short time after they

arrive, must adapt to dynamic behaviour over time, and must be able to retrieve

a current classifier at any time. A coevolutionary genetic programming framework

is adapted to operate in non-stationary streaming data environments. Methods to

generate synthetic datasets for benchmarking streaming classification algorithms are

introduced, and the proposed framework is evaluated against them. The use of Pareto

archiving is evaluated as a mechanism for retaining access to a limited number of use-

ful exemplars throughout training, and several fitness sharing heuristics for archiving

are evaluated. Fitness sharing alone is found to be most effective under streams with

continuous (incremental) changes, while the addition of an aging heuristic is preferred

when the stream has stepwise changes. Tapped delay lines are explored as a method

for explicitly incorporating sequence context in cyclical data streams, and their use

in combination with the aging heuristic suggests a promising route forward.

ix

Acknowledgements

First and foremost I must thank my supervisor, Dr. Malcolm Heywood, for his

guidance and mentorship throughout the past two years. Without his support – and

seemingly infinite patience – this thesis would probably not exist. I would also like

to thank Dr. Nur Zincir-Heywood, my undergraduate honours supervisor, for her

support, and both the Drs. Heywood for providing the great working environment

that is the NIMS Lab.

Thanks are also due to my readers Dr. Stan Matwin and Dr. Andy McIntyre for

being members of my committee and for their thoughtful questions and insights on

my thesis.

Thank you to my parents for their help, support, and confidence throughout the

years, and also to my dear friend Amber for helping to keep me sane.

This work was supported in part by funding from the National Sciences and En-

gineering Research Council of Canada.

x

Chapter 1

Introduction

Streaming data applications represent a requirement for online as opposed to offline

evolution. Unlike the classification task as traditionally assumed, a streaming data

constraint implies that the learning algorithm cannot (directly) adopt a batch mode

of operation. Specifically, batch or offline frameworks for classification assume that

any exemplar from the training partition can be accessed at uniform cost. Two forms

of fitness evaluation fall under the batch model: either evaluate over all training

instances at each generation, or over a subset of training instances as sampled without

constraint from the entire training repository at each generation. Conversely, online

learning as applied to streaming data implies that only when training data explicitly

lies within a current ‘window’ or ‘block’ of sequential records can it be utilized for

training purposes. The content of the block is updated incrementally – as in a sliding

window [1] – or under the assumption of non-overlapping updates in which the entire

block content is updated [46]. In either case a finite number of records can only ever

be accessed, implying that as many records are replaced as gained at each ‘location’ of

the window / block. Learning algorithms applied under an online context are therefore

faced with an additional issue: which if any of the training instances should be carried

over between blocks of streaming data? Assuming that all training instances can be

archived once encountered is not feasible in general, i.e., there is usually a requirement

to in some way ‘keep up’ with the rate at which new data appears in the stream.

Finally, we note that aside from the windowing restriction, streaming data is generally

non-stationary (note that this is also referred to as concept drift, and the two terms

are used interchangeably throughout this work). This means that the underlying

(unknown) process responsible for ‘creating’ the data changes over time. This is not

generally the case in offline data sets as it would result in contradictions between

individual exemplars. Conversely, from a streaming data perspective the same set

of measurements might be associated with different outcomes depending on their

1

2

‘position’ (or timestamp) within the stream.

Streaming applications appear frequently in financial environments (e.g., [10]),

computer network applications (e.g., [41]) or ‘big data’ applications (e.g., [3]). The

interface between data stream and evolutionary algorithm typically takes the form

of a sliding window, an assumption that will be retained throughout this thesis. At

each training epoch (generation) only data within the window can be accessed and

used for fitness (performance) evaluation. In this work, evolution under a form of

competitive coevolution will be assumed. Adopting such an approach enables us to

address the task of identifying what to learn from at the same time as attempting

to construct suitable classification models cf. genetic programming (GP) individuals.

Pareto archiving (Section 3.2) will represent the specific formulation for competitive

coevolution adopted. The implication of this is that a formal framework exists for

identifying and retaining the (hopefully) few instances from the stream that are most

useful in promoting the identification of the best GP individuals.

Within the above streaming data context the interest of this study lies in measur-

ing the potential contribution made by competitive coevolutionary Pareto archiving.

Such a scheme provides the capability to identify training instances that should be

retained (archived) for longer than the current sample of instances provided by a

sliding window. Fitness evaluation is only ever conducted over a subset of training

instances as defined by the sliding window content and Pareto archive. This is some-

what different to previous research, as we do not explicitly assume that the current

content of a sliding window is sufficient to support the identification of appropriate

models (e.g., as in [11]) or that coevolving the size of the sliding window is sufficient

for retaining useful training instances (e.g., [44]).

A further interest of this research is to characterize the suitability of heuristics

used to maintain finite archiving constraints which are necessary to minimize com-

putational overheads associated with Pareto archiving. Such heuristics have a direct

impact on the capability of the system to operate within non-stationary environments.

In particular, we are interested in quantifying the importance attributed to heuristics

for diversity versus age. With this in mind, two artificial data generators will be em-

ployed to create multi-class classification benchmarks with stepped versus continuous

variation of the underlying data generating process (Section 4.2), and subsequently

3

two methods of extending these processes to represent periodic or recurring variation

(Section 4.3).

Chapter 2 will summarize related research in dynamic environments, as well as the

approach to Pareto archiving and team based task decomposition in GP. Chapter 3

will discuss the components of the GP framework used in this work that support the

adaption of evolutionary computation to streaming data environments, and define the

modifications made to permit the framework to interact with a non-stationary stream

of data. Chapter 4 outlines both the stationary and non-stationary datasets used or

generated for benchmarking our proposed algorithmic modifications. Experimental

methodology and results are presented in Chapter 5. The paper concludes with a

discussion and an identification of future research in Section 6.

Chapter 2

Background

This chapter reviews previous work that relates to the major building blocks of the

experiments conducted herein. Specifically, a short review is provided of the foun-

dational work leading up to the principles used in the underlying GP framework –

competitive coevolution, pareto archiving, symbiosis – as well as the basis for the

deployment of GP in dynamic environments. The reviews are not intended to be

exhaustive, but instead provide the necessary ‘heads up’ to the approach specifically

adopted in the research described by this thesis.

2.1 Competitive Coevolution and Pareto Archiving

Pareto archiving was conceived as a framework by which a coevolutionary ‘arms

race’ may be conducted between members of a ‘learner’ population and a population

of ‘tests’.1 Thus, nontrivial tasks consist of many more task configurations than can

possibly encountered for the purposes of composing the content of a training partition.

The insight of competitive coevolution is to instead focus the ‘test’ population on

finding the subset of training configurations that are most informative for developing

the progress of the learners. Initial attempts at doing achieving this tended to result

in rewarding the individuals of the test population for ‘beating’ the learners [19] cf.,

identifying the most difficult training scenarios given the current capability of the

learners. However, it was shown that adopting such a framework generally results in

disengagement [7]. There are at least two factors behind this: the learners are very

weak thus take much longer to identify plausible solutions, and; rewarding tests for

beating learners results in a loss of a meaningful learning ‘gradient’ from which to

direct credit assignment.

To date, two generic approaches for addressing this have been proposed: Pareto

1In this work learner will be synonymous with a GP individual and test will be synonymous with
an exemplar (from the stream).

4

5

archiving e.g., [14, 31, 9] and host parasite models incorporating parasite virulence

e.g., [7, 6]. In this work we focus on the former Pareto archiving framework, in part

due to the considerable experience gained in utilizing the scheme with various forms

of GP, albeit as previously deployed as a mechanism for decoupling fitness evaluation

from the cardinality of the original dataset under an offline batch interface to the data

set [23, 24, 25, 28, 29, 12]. The objective of this thesis is to broaden the knowledge

of the properties of Pareto archiving as applied to the specific characteristics of the

streaming data task. There are therefore two specific issues of interest:

• Does Pareto archiving provide a useful memory mechanism for retaining spe-

cific GP individuals beyond the temporal horizon subscribed by the exemplars

associated with the current sliding window interface to the stream;

• Assuming that it is also important to maintain the throughput of a classifier ap-

plied to streaming data, what biases might be most appropriate for maintaining

a finite archive size under different forms of non-stationary process?

Providing some insight in to these questions represents the underlying goal of this

thesis.

2.2 Genetic programming in dynamic environments

There have been several arguments made advocating for the ability of evolution-

ary methods to operate in dynamic environments. The case for maintaining a set

(population) of many diverse models for detecting behavioural change within dy-

namic environments has been made explicit in [30]. Similarly, maintaining a diverse

set of solutions at all times throughout the duration of an incoming stream of data

makes it more likely that a ‘good enough’ solution may exist within this set at any

given moment to allow for the continued feasibility and engagement of the population

as a whole [30]. A recent survey article on open issues in genetic programming re-

emphasized the general appropriateness and relevance of GP to dynamic environments

(Section 2.3 in [33]). However, the study also observed that although there has been

some success in applying GP solutions to specific application domains which share

some of the properties of dynamic environments (e.g., [11]), there has been minimal

analysis of the behaviour of how GP operates in such environments in general.

6

The task considered in this work represents a base case in a wide range of potential

issues associated with machine learning as applied to the analysis of data streams.

There are a number of traditional machine learning outcomes that are desirable in

the context of streaming data: change detection, online data description, frequent

pattern set identification, clustering, classification [1]; of these, this work is focused

on the case of classification.

Within the specific context of creating streaming classifiers, many potential dis-

advantages remain in the algorithms proposed to date [1]. For example, previous

algorithms are often limited to binary tasks or require on the order of millions of

training instances in order to build a single classifier (whereas we may be interested

in obtaining a classifier before significant portions of the stream have elapsed, before

any behavioural change has begun to occur). Moreover, the accuracy of the online

stream classifier is often lower than that of the offline batch equivalent. It is also

desirable for a stream classifier to address the issue of concept drift, reflecting the fact

that the underlying process responsible for the creation of incoming data is generally

non-stationary. There are currently two algorithm-independent approaches to dealing

with this phenomenon:2 they either deploy a change detection metric to the original

stream data (e.g., [1]), or – particularly in the case of ensemble style classifiers –

detect when some change appears in the generated classifier’s behaviour (e.g., [46]).

More generally, we note that unlike static or stationary tasks, dynamic or non-

stationary tasks require convergence (of the GP learner population) to be pursued for

only a finite amount of time. In the case of an underlying task being dynamic, con-

vergence to a single solution potentially compromises the ability to react to change.

It has been proposed by [10] that previous approaches investigated for applying evo-

lutionary computation to dynamic environments fall into one of five forms: memory,

diversity, multi-populations, problem decomposition and evolvability. The remain-

der of this chapter provides a short review of the contributions made and, where

necessary, highlights their relation to this work.

Memory is defined as the capability to return to a previously evolved solution.

This implicitly assumes that the task is in some way periodic in order for the memory

2Approaches specific to a particular machine learning representation have been proposed. For
example, Bayesian or support vector approaches for addressing concept drift are frequently discussed
[35, 42].

7

mechanism to be useful. Moreover, there must be a tradeoff between the amount of

resources available for the memory mechanism and the amount (of resources) made

available for supporting other properties, such as diversity. In this work we are

interested in the utility of Pareto archiving as a candidate memory mechanism, with

resource tradeoffs being explicitly controlled by the user via enforcement of finite

archive sizes. Pareto archiving provides a much more formal basis for retaining both

learners (GP individuals) and points (data ‘distinguishing’ between non-dominated

learners). We also investigate the use of tapped delay lines, defined in Section 3.4,

as a method of allowing individual learners to explicitly acknowledge previous states

and return to them of its own volition. Indeed, such tapped delay lines provide a

mechanism for constructing temporal features and are therefore potentially useful

for facilitating change detection. Many instances of evolutionary algorithms applied to

temporal sequence learning tasks therefore either explicitly incorporate pre-configured

tapped delay lines (e.g., [41]) or explicitly support the evolution of properties of

temporal features such as moving averages (e.g., [44, 27]).

Diversity as in mechanisms for supporting multiple species within a population.

The most typically assumed mechanism is to vary the rate of mutation or introduce a

fixed number of entirely new individuals at each generation [17]. Niching (speciation)

has been considered to resist favouring the same individuals [8]. Likewise, solution

age has been proposed to bias the retention of the ‘middle aged’ as opposed to the

old or new [16]. [30] introduced ‘sentinel’ individuals as those which are uniformly

distributed through the representation space. Such individuals act as a diverse source

of genotypic information for seeding the population on a continuous basis. This ap-

proach however, is unique to the case of representations taking the form of a ‘point’ in

an ordered space, as in a genetic algorithm, whereas the representation assumed in this

work, GP as a whole, does not naturally support such an ordering. The benchmarking

study conducted in Sections 5.2 and 5.3 will revisit and compare the advantages and

disadvantages of assuming speciation and age heuristics in conjunction with Pareto

archiving.

Multi-populations associate different populations with different aspects of the

search space. The basic assumption in this case is that genetic drift associated with

the smaller subpopulations will encourage the investigation of new areas of the search

8

space. Finding a suitable heuristic for controlling the exploration–exploitation trade-

off controlling the interaction between the multiple populations remains an ongoing

research issue. The research discussed in this these will therefore assume that niching

(which is to say, diversity through fitness sharing) within a single population will

be sufficient to maintain learners associated with the “different aspects of the search

space”.

Problem decomposition is taken to have been articulated first by Simon’s

watchmaker parable [40] in which the capacity to configure quickly is attributed to

having appropriate ‘modules’ available. From the perspective of GP, task decomposi-

tion might be most synonymous with support for modularity, run–time libraries and

teaming. Studies have shown the utility of each relative to static task domains, and

the teaming metaphor used by the underlying GP framework in this work has been

previously evaluated within static environments in [26].

Evolvability implies that a representation is assumed which is capable of sup-

porting the identification of fitter parents in changing environments. Geno- to pheno-

typic mappings have been proposed in this respect e.g., [37]. In this work we equate

evolvability with the degree to which modularity is supported, and a symbiotic co-

evolutionary framework for teaming in GP specifically, as summarized below.

2.3 Symbiotic Bid-based GP

The specific form of GP assumed in this thesis takes the form of the symbiotic bid-

based GP framework (SBB) [25, 12]. Such a framework provides several significant

advantages over the monolithic approaches to GP popularized by Koza’s tree struc-

tured GP, as follows:

• Teaming: Rather than assume that a single program is optimal for comprising

a solution, a candidate solution is actually a ‘team’ of cooperating programs.

The number of programs cooperating is not pre-specified and evolves over the

course of the evolutionary cycle (training). To achieve this a symbiotic two

population framework is assumed. A program population consists of the pro-

grams. Each program is executed (w.r.t. the current exemplar) and the output

considered to represent a bid. Each program also has a single scalar outcome

9

– say, as assigned from the set of available class labels. Conversely, the team

population consists of individuals that merely index some subset of the cur-

rent content of the program population. Individuals from the team population

assume a variable length representation, thus no assumptions are made regard-

ing what constitutes optimal team membership. Fitness (performance) is only

ever evaluated for the team population, by executing all the programs associ-

ated with a particular team. Only the program with the largest bid ‘wins’ the

right to suggest its corresponding scalar outcome (class label) for each exem-

plar, thus a form of cooperative task decomposition. Given that there is no

explicit measure of fitness at the program population, programs only ‘die’ when

they receive no indexes from the team population, resulting in a variable size

program population. Moreover, the relationship between the two populations

is denoted symbiotic coevolution, as opposed to merely cooperative coevolution

(in which case fitness of each cooperating population is known). In this work

the combination of program and team population is considered to represent the

‘learner’ or ‘GP individual’. Thus, unlike monolithic GP representations, it is

now trivial to address the multi-class classification problem.

• Fitness sharing: Left uninhibited, the fittest member of any population will get

to reproduce indefinitely, effectively filling the population with different versions

of itself. This can result in the cherry picker effect, where a task is described

by exemplars that are ‘easy’ to label cases (the cherries) and difficult to label

cases results in a GP population ‘converging’ on a solution to the cherries before

the population can evolve to address the difficult to label exemplars. Fitness

sharing is a simple discounting scheme adopted in which the value that a correct

classification is worth is discounted by the number of other GP individuals in

the population that also correctly label that exemplar [38]. This property will

be particularly important for the streaming data scenario.

• Representation: Multiple GP representations have been proposed since the orig-

inal tree structured representation of Koza [22]. Specific examples including

grammars [32], linear [4], and graphs [43]. Although any representation could

10

be assumed for individuals in the program population, the linear representa-

tion will be assumed here. Such a representation provides various advantages

over the original tree structure representation, not least that it is much easier

to identify redundant code during fitness evaluation, thus reducing the cost of

fitness evaluation itself [4].

Extensive benchmarking studies have demonstrated that adopting the above proper-

ties in combination provides an extremely flexible framework for task decomposition

and therefore learning from the solutions post training e.g., [26].

Chapter 3

Streaming Data Interfaces

This chapter introduces several concepts important to the experimental constructions

used in Chapter 5. Section 3.1 explains the symbiotic coevolution principle employed

by SBB, and Section 3.2 elaborates further on the Pareto archiving implementation

and fitness sharing heuristics it uses. Section 3.3 then explains the sliding window

concept by which the Pareto archive is permitted to interface with a data stream, and

Section 3.4 provides the definition of the tapped delay lines used to provide explicit

memory for the experimental configurations in Section 5.3.

3.1 Symbiotic Coevolution

Pareto archiving is employed as the ‘memory mechanism’ by which the uniqueness

of GP individuals (learners) is formally established. Potentially, Pareto archiving

provides a scheme for identifying a subset of learners as being non-dominated relative

to the rest of the population. To do so, training exemplars represent ‘objectives’ and

are rewarded for distinguishing between the capability of different learners. Such a

model is of interest in a streaming context, as a basis is then provided for identifying

a small number of data instances for retention beyond the immediate content of the

sliding window i.e., interface to the stream (Section 3.3). Hereafter, the specific form

assumed for GP will be the Symbiotic bid-based (SBB) framework for cooperatively

evolving GP teams [25, 12]. Such a framework supports task decomposition and multi-

class classification from a single evolutionary cycle and is therefore potentially capable

of supporting multiple factors significant to dynamic environments (as reviewed in

Chapter 2).

Symbiotic bid-based GP as applied to classification utilizes two explicit popu-

lations: program and team (or symbiont and host), which are coevolved through

symbiosis [25, 12]. The program, or symbiont, population makes use of a bid-based

GP representation [24] which defines each GP individual in terms of a tuple 〈c, b〉,

11

12

where c declares a scalar class label selected from the set of labels associated with

the task domain (c ∈ C), and b is the program that evolves a context for deploying

its class label. The team (host) population identifies combinations of symbionts that

attempt to coexist in a coevolutionary relationship. Members of the team population

assume a variable length representation, wherein the number of symbionts per team

are adapted as part of the evolutionary cycle. Indeed, [3] noted that hosts were first

composed from symbionts representing the most frequent classes and only later were

symbionts added representing the less frequent classes. Fitness evaluation is only ever

performed at the ‘level’ of the hosts; thus, hosts represent the ‘learner’ in the above

discussion of Pareto dominance (Section 3.2).

Evaluation of a host, li ∈ Lt, is repeated for each training instance as identified by

the point population at generation t, pk ∈ P t. For all symbionts a member of the host,

sj ∈ li, execute their programs w.r.t. point pk. The host identifies the symbiont with

maximum output (the winning bid) or s∗ = argsj∈limax[sj.b]. The winning symbiont

gains the right to suggest the class label for the current point, or

G(li, pk) =

⎧⎨
⎩

1 if IF s∗.c = pk.t

0 otherwise
(3.1)

where pk.t is the target label for point pk. Naturally, G(li, pk) is the reward function

referred to in Section 3.2.

Algorithm 1 summarizes the breeder model of evolution defining the stepwise

application of SBB to a data stream [3]. Initialization provides initial sliding window

content, St from the data stream, τ , and then samples from St until P − Pgap points

have been selected (Section 3.3). Initialization of the host and symbiont population

follows the original SBB algorithm [25, 12]. On entering the main loop the remaining

Pgap and Lgap points and teams are initialized. The point population assumes the

same stochastic sampled process as used during the initialization step. Additional

Lgap hosts are added through application of the SBB variation operators. Variation

operators include crossover between hosts and symbiont mutation. The latter implies

symbionts are first cloned, with the content varied through appropriate GP mutation

operators [25, 12].

The ‘Evaluate’ function (line 11) resolves values for G(li, pk). Once all hosts have

13

Algorithm 1 Overview of the SBB training algorithm as applied to streaming data

τ . St denotes the set of training instances associated with the sliding window at

generation t ; τ denotes the streaming data; |P | and P t are the size and content of

the point population respectively; |L| and Lt are the size and content of the host

population respectively;.

1: procedure Train

2: t = 0 � Initialization.

3: St = InitStream(τ(t))

4: P t = InitPoints(P, St)

5: (Lt, Lt) = InitTeams(M)

6: while t ≤ tmax do

7: P t = GenPoints(P t, St) � Add ‘gap’ size points

8: (Lt) = GenTeams(Lt) � ... and hosts

9: for all li ∈ Lt do

10: for all pk ∈ P t do

11: Evaluate(li, pk) � Evaluate fitness

12: end for

13: end for

14: St+1 = ShiftStream(τ(t+ 1)) � Resample

15: P t+1 = SelPoints(P t)

16: (M t+1) = SelTeams(Lt)

17: t = t+ 1

18: end while

19: return Best(Lt, P t)

20: end procedure

14

been evaluated on all points then the location of the sliding window is incremented

relative to the data stream St (line 14). Point replacement is performed under the

Pareto archiving–fitness sharing heuristic of Section 3.2 (line 15). Likewise, a fixed

number of hosts, Lgap, are removed at each generation (line 16) resulting in members

of the host population being either non-dominated (Pareto archive), F(Lt), or domi-

nated, D(Lt). Thus, hosts are identified for replacement. Should symbionts no longer

receive any host indexes then this is taken to imply that they were only associated

with the worst Lgap hosts and they therefore ‘die’. The symbiont population size is

therefore free to float.

Finally, the role of function ‘Best’ (line 19) is to return the champion host for

evaluation against the test partition. Given the streaming context – or continuous

evolution against the stream – all hosts currently in the Pareto archive are evaluated

against the current content of the point population. The assumption being that if

the Pareto archiving strategy is effective, then the points remaining in the point

population should be the most appropriate for prioritizing the champion host. The

metric assumed for champion identification is the average class-wise detection rate

or:

avg.DR =
1

|C|
∑
c∈C

DRc(li) (3.2)

where C is the set of class labels associated with this task and DRc(li) is the detection

rate (that is, # of true positives for class C ÷ # of representatives of class C) of host

li relative to class c. Readers are referred to [25, 12] for additional SBB details e.g.,

instruction set and variation operators.

3.2 Pareto Archiving

A two stage process is assumed consisting of Pareto dominance ranking and fitness

sharing,1 the latter representing a heuristic for promoting diversity when enforcing

finite archiving constraints [38].

Pareto dominance ranking: The members of the point population, pk are

taken to represent ‘objectives’. Fitness is only ever evaluated against the content of

1For a tutorial on Pareto archiving as applied to GP see [23].

15

the point population. This decouples fitness evaluation from the cardinality of a data

set. From a streaming data perspective Pgap points are replaced at each generation

with a sample of new points taken from the current sliding window location [3]. Such

objectives / points are used to distinguish between the capability of different GP

learners under a pairwise test for Pareto dominance, or

∀pk ∈ P : G(li, pk) ≥ G(lj, pk)

AND ∃pk ∈ P : G(li, pk) > G(lj, pk)
(3.3)

where P is the point population; li and lj are two individuals (cf., learners) from

the GP population currently under evaluation, and; G(·, ·) is the task specific reward

function returning 0 on an incorrect classification and 1 on a correct classification

(see Eqn (3.1) above).

Eqn (3.3) implies that learner li dominates learner lj iff it performs as well on

every point and better on at least one point. For a total of |L| learners there are

a total of |L|2 − |L| learner comparisons [9].2 Moreover, for point pk a comparison

between learner li and lj has the form of a distinction vector:

dk[L · i+ j] =

⎧⎨
⎩

1 ifG(li, pk) > G(lj, pk)

0 otherwise
(3.4)

Thus, when Eqn (3.4) returns a value of 1 then a distinction is said to have been

made [14]. Points are penalized for defeating all learners or when it is defeated by all

learners i.e., no distinctions result. Such points would therefore tend to be prioritized

for removing from the point population. The fittest learners / GP individuals are

naturally those promoted by the Pareto dominance expression – Eqn (3.3). One

drawback of the Pareto approach is that as the number of objectives (points) increases,

then comparatively weak overlapping behaviours may satisfy the Pareto archiving

criteria [14, 31, 28]. SBB therefore adopts the following fitness sharing heuristic with

the motivation of maintaining diversity in the points learners solve. This point will

be revisited in Section 5.2 when we consider alternative heuristics that might be more

appropriate to a data streaming context.

2This is distinct from the number of fitness evaluations per generation, with fitness evaluation
being a more costly process than establishing the comparison vector.

16

Fitness sharing: The reward functionG(li, pk) establishes a vector of distinctions

(Eqn. (3.4)) for each point. The point population can now be divided into two sets:

those in the non-dominated front (the archive), F(P t), versus those that are not,

D(P t). Naturally, the decision to limit the number of archives to two is motivated by

a desire to balance the computational cost of archive construction against maintaining

monotonic progress to an ‘ideal’ training trajectory [9].

Up to Pgap points are replaced at each generation from the current stream window

using the process of Section 3.3 [3]. Points are targeted for replacement under two

basic conditions [25, 12]:

• If |F(P t)| ≤ |P |−Pgap THEN: stochastically select points for replacement from

D(P t) alone.

• If |F(P t)| > |P | − Pgap THEN: all the dominated points are replaced, plus

some subset Pgap − |D(P t)| of the Pareto archive. A fitness sharing heuristic is

assumed for weighting members of the Pareto archive such that the more unique

the distinction the greater the weight. Thus, relative to distinction vector dk of

point pk, fitness sharing is defined as:

∑
i

dk[i]

1 +Ni

(3.5)

where i indexes all distinction vector entries (Eqn (3.4)), and Ni counts the

number of points in F(P t) that make the same distinction.

3.3 Sliding Windows

The streaming data assumption places constraints on how training data can be ac-

cessed. Specifically, we assume a sliding window representation (Chapter 2). From

the perspective of a population of GP classifiers under evolution this means that new

training instances become available incrementally at each generation. A point popu-

lation, P , is used to define the specific sample of training instances over which fitness

evaluation is performed at generation, t. Likewise, at each generation some subset

of the point population is replaced by training instances currently available from the

17

Figure 3.1: Relationship between streaming data, τ , sliding window, St, and point
population, P. Only the content of the point population is used for fitness evaluation.
A total of Pgap records are replaced from the point population at each generation.
Pareto archiving defines up to |P | − Pgap records retained between generations.

stream’s sliding window, St. A breeder style replacement policy will be assumed,

wherein Pgap is the number of points replaced. Such an architecture is summarized

by Figure 3.1.

The sampling of training instances from the content of the current sliding window

will assume the following process:

1. Define the class label to be sampled with uniform probability (thus we assume

that we know how many classes exist);

2. Sample uniformly from the training instances that match that class (again as

limited to the content of the sliding window, St).

Such a scheme reflects the fact that fitness evaluation at any training epoch is

performed relative to the content of the point population, P , not the sliding window,

St. The above two step process is repeated Pgap times at each generation, t, thus

sampling the content of the sliding window. In addition, we assume that the initial

interval over which the point population samples corresponds to 10% of the data from

the stream. This corresponds to waiting for a fixed period of time to obtain content in

18

the window i.e., streams with a higher bandwidth would have a larger initial sample.

The above two step process is used to seed the initial point population. After tmax

10

generations the St content is manipulated by a window protocol where several are

discussed in Section 5.1. This follows recent streaming benchmarking practice e.g.,

[1].

Concept drift is introduced in the data sets used herein, in the incarnation of

multiple distinct rulesets which partition the attribute space into separate classes

being employed at different time points throughout the stream. Two distinct rulesets

may or may not be conceptually related, and data representing both these cases is

presented in Section 4.2. The challenge posed to an online learning system in such an

environment is to not only correctly determine the correct class label for exemplars

in the current environment, but also to quickly adapt to changes in the underlying

concepts – something that cannot be explicitly trained upon in the sense of traditional

supervised learning tasks.

3.4 Tapped Delay Lines

Tapped delay lines (TDLs), as implemented in this work, are analogous to devices

used in audio signal processing [20] – e.g., finite impulse response (FIR) filters – and

have been employed for embedding temporal relations between exemplars for GP in

the past [41]. In streaming data contexts wherein the underlying behaviour that de-

fines the stream is not only changing over time, but changing in a discernible pattern

that repeats itself in some fashion, it seems intuitively desirable for a GP population

to have some ‘memory’ of previous behaviour available to it. Such a construct might

allow for, upon the re-emergence of a given behaviour, the training algorithm being

able to fall back to previous models without needing to restart training entirely on

an already known behaviour. Another case might be for the models (GP individuals

in this case) to themselves recognize emerging patterns in the data and account for

them explicitly. TDLs are intended to be a step toward the latter. Moreover, we

note that the form of memory attributed to a TDL is distinct from / complemen-

tary to that associated with Pareto archiving. Specifically, Pareto archiving selects

exemplars for retention beyond the current content of the sliding window interface

of the stream cf., exemplars forming distinctions. Those exemplars retained under

19

this scheme however, have no particular temporal relationship with each other, and

classification is still performed on an exemplar-by-exemplar basis. The TDL retains

the relationship between a sequence of consecutive exemplars relative to a particular

point, t, in the stream. Assuming a TDL implies that relative to some prior definition

for TDL parameters (i.e., tap interval and quantity), the sequential information im-

plicit in the TDL will provide a better basis for making a decision regarding the label

associated with the latest exemplar, x(t). Combining Pareto archiving with a TDL

representation would imply that each entry of the Pareto archive represents TDL

content relative to specific instances of t. Indeed, we will later benchmark Pareto

archiving with and without the TDL ‘representation’.

In this work, a tapped delay line is implemented as follows:

1. At the beginning of the data stream, until some parameter σ ≤ w data points

are received, the sliding window (defined in Section 3.3) advances as normal.

2. For the next σ · σn data points, the data point is prepended to the data point

that arrived σ data points earlier, which will be contained in the sliding window

due to the parameterization constraints.

3. Once an aggregate data point in the sliding window is composed of σn + 1

individual data points, each new data point being prepended causes the oldest

data point to be deleted. Thus an aggregate data point will never be composed

of more than σn + 1 individual data points. In short, a TDL defines a first-in,

first-out data structure that samples the previous σn + 1 data points (or a tap

interval of unity).

A visual representation of this process is presented in Figure 3.2.

lg(σn) bits are added to the instruction set of [25] and, upon program evaluation,

interpreted as an index into the aggregate data point that gets passed to a GP in-

dividual. Thusly, at evaluation time, separate instructions coded by the individual

to reference components of data under evaluation are interpreted by first using the

‘tap index’ to index into the aggregate data point, then using the ‘attribute index’

to index into the individual data point contained in that tap location. The mutation

and crossover operators are applied to these bits by SBB as they are to the rest of

20

Figure 3.2: Visual representation of the tapped delay line mechanism of accumulating
data from the stream. Colours highlight the sequence of σn points (“taps”), each
separated by σ other points, that are accumulated to form a single ‘aggregate’ data
point. (In this example only, σ = σn = 4)

the genotypic structure. That is to say, GP is an embedded paradigm in which at-

tribute selection is a natural function of credit assignment [12].3 Hence, at the end of

evolution, GP individuals typically only index a subset of the attributes. In this case

this would imply that only specific ‘taps’ from the TDL as well as specific attributes

are indexed.

This results in only a 1
σn

chance that a randomly generated (newly created) GP in-

struction will reference the current data point and not one of the σn−1 other, previous

data points when an aggregate data point is passed to a GP individual for evalua-

tion. Although it is expected that the evolutionary cycle will eventually overcome

this shortcoming, approaches such as weighting this indexing model could be used

to reduce the number of generations required for this convergence to occur. Indeed,

rather than employ a TDL, more general methods such as evolving the parameters

of ‘temporal features’ such as moving averages have been shown to be particularly

effective under various sequence learning tasks [44, 27]. These approaches are not

considered in this work.

3Decision tree induction care of the C4.5 algorithm or MaxEntropy classifiers also provide this
property.

Chapter 4

Synthesizing Streaming Benchmark Tasks

In this chapter we introduce a number of different task domains under which the

proposed framework for classifying streaming data is to be evaluated. Section 4.1

will cover batch datasets used to benchmark the impact of introducing sliding win-

dow constraints to the GP algorithm. Section 4.2 will explain the methods used to

synthesize data with underlying temporal behaviour change. Finally, Section 4.3 will

discuss the methods used to emulate periodic behaviour reoccurence as might occur

in real-world cyclical concept drift classification tasks.

4.1 Stationary Datasets

The first task domain utilizes datasets intended for classic non-streaming machine

learning algorithms; thus, an offline ‘batch’ interface to the dataset is assumed. This

implies that each exemplar is assumed to be entirely self contained. From the perspec-

tive of supervised learning, the goal of the machine learning algorithm is to map from

the attribute space to a discrete label space (classification) or real-valued function

space (regression). Hereafter, without loss of generality we will assume the classifi-

cation task alone. Within such a task context it is assumed the data records can be

stochastically reordered and the dataset can therefore be stratified and partitioned

into independent training, validation and test partitions. As established in Section

1, the motivation for this is the assumption that the process creating the data is

the same, or stationary. From a purely performance perspective, it is therefore only

relative to the test partition that it is important to evaluate the operation of a can-

didate classifier i.e., the capacity to learn the underlying properties of the stationary

process as characterized from the training / validation partitions, to the test par-

tition or generalization. With this in mind, we will introduce an online version of

the stationary classification task. In short, the proposed approach will train on the

training partition of stationary classification tasks while enforcing a streaming style

21

22

dataset interface. Thus, arbitrary revisiting of previously encountered data will not

be possible, and the sliding window interface implies that the training partition is

visited only once. The motivation for this task is to establish a baseline performance

for the GP algorithm when it switches operational modes from batch to streaming,

and to evaluate the usefulness of Pareto archiving as a mechanism for retaining useful

data records without the confounding effect of temporal behaviour change affecting

the results.

To this end, three imbalanced datasets from the UCI Machine Learning Repos-

itory1 are employed; namely Census, Shuttle, and Thyroid. These datasets are

summarized in Table 4.1. From the perspective of offline ‘batch’ frameworks for clas-

sification, the underlying performance of the test partition of these datasets is well

known, having been the subject of multiple benchmarking studies [25, 29, 45]. Indeed,

the three data sets represent particularly interesting cases due to the imbalanced na-

ture of the class distribution. Naturally, the streaming context also implies that the

distribution of individual class representatives within the stream can have a significant

impact on classifier performance. The pathological case of class imbalance, coupled

with all instances of each class appearing in the same location temporally, would re-

sult in very biased models if extracted at interim moments in the training process.

Thus, in keeping with recent machine learning practices for performing streaming

data benchmarking (e.g., [1]), we stochastically reorder the training stream such that

classes are distributed throughout the stream in keeping with their underlying fre-

quency of occurrence (Table 4.1). Depending on the capacity of the sliding window,

w, this implies that each class may or may not be represented within the contents of

the window at each time step.

4.2 Synthesizing Streaming Datasets

The second task domain presents datasets which contain temporal behaviour change

– the underlying process ‘creating’ the data is non-stationary (Section 1). This im-

mediately implies that the dataset is ‘ordered’. One immediate implication of this

is that it is not possible to divide the data set into independent partitions as in the

case of data created by a stationary process (Section 4.1). Instead, we will assume a

1http://archive.ics.uci.edu/ml/

23

Table 4.1: Characterization of benchmarking datasets. Attribute counts appear next
to the respective dataset names; Values in parenthesis within the table denote test
partition instance counts.

Class Census (41) Thyroid (21) Shuttle (9)

1 187,141 (93,576) 93 (73) 34,108 (11,478)
2 12,382 (6,186) 191 (177) 37 (13)
3 – 3,488 (3,178) 132 (39)
4 – – 6,748 (2,155)
5 – – 2,458 (809)
6 – – 6 (4)
7 – – 11 (2)

non-stationary process that introduces either: ‘sudden’ transitions between multiple

processes of data creation, or a ‘slow’ continuously changing concept shift. With

these basic goals in mind, methods of generating synthetic data are used to solve

several challenges in streaming classification tasks:

• as data streams are potentially infinite in length, a way of obtaining arbitrary

amounts of data is required [13]

• existing datasets which are known (or suspected) to contain temporal concept

drift tend not to be able to explicitly articulate what form the behavioural

change takes or precisely when it occurs (e.g., [46])

• and; large volume datasets are desirable for testing the performance of streaming

learning algorithms, but it is generally untenable to label such large datasets for

use by any supervised learning algorithms without presupposing the existence

of an efficient classifier.

In this work, two methods of generating synthetic data for benchmarking stream-

ing classification algorithms are employed:

1. Non-stationary data modelled as sudden transitions between station-

ary concepts: Dataset Generator2, a tool for generating benchmark data for

data mining applications, is used to generate exemplars representing three sepa-

rate concepts, C1, C2, and C3. Each of these concepts is represented by a ruleset

2Gabor Melli. The datgen Dataset Generator. http://www.datasetgenerator.com/

24

such as that shown in Figure 4.1. By themselves, these concepts each represent

a single stationary learning task similar to those presented in Section 4.1. To

combine the stationary datasets into a single dataset representing a stream-

ing learning task, they are then mixed together using the method prescribed

in [46]: a stream of 7,000,000 total exemplars is divided into “chunks” containing

500,000 exemplars each, and containing representation from each of the three

concepts in a tuple written in the form 〈%C1, %C2, %C3〉. The entire stream

can then be written as fourteen chunks expressed, in order, as follows: 〈100, 0, 0〉
〈100, 0, 0〉 〈100, 0, 0〉 〈90, 10, 0〉 〈80, 10, 0〉 ... 〈10, 90, 0〉 〈0, 100, 0〉 〈0, 0, 100〉. A

visual representation of this pattern is shown in Figure 4.2. The resulting data

set will be denoted datgen.

The data is generated using the parameterization set forth in [46]. Five real-

valued attributes are specified that are relevant to the class attribute, and a

sixth attribute that is irrelevant. Datgen then creates a decision tree-style list

of rules that partitions the attribute space into 5 classes based on randomly gen-

erated threshold values, and assigns a class label to each of the tree branches.

Exemplars are then created by randomly determining attribute values and eval-

uating them against the generated decision tree in order to assign a class label

to the instance.

2. Non-stationary data modelled as continuously varying process: Two

hyperplanes of the form Σd
i=1aixi = a0 are generated, as in [13], where the values

of ai represents the current state of the stream (initialized randomly), the values

of xi represent the attribute values of a given exemplar, and d = 10 represents

the chosen dimensionality for the task domain. A stream of 150,000 exemplars

is created, and concept drift is parameterized and simulated as follows: Every

N = 1, 000 exemplars, each entry in a vector s = {−1,+1}d (also initialized

randomly) is given a 20% chance of inverting its value. The first 5 of 10 non-

class attributes in a are then moved at a rate of t = 10% over the course of the

next N exemplars, compounded every generation. This function is summarized

in Equation 4.1:

25

Synthetic Data Set Underlying Synthetic Rule Base

A B C Class (activation%) class <- class description

1: 87 58 45 c3 (70.0%) c1 <- A=[1,9] & B=[68,76] & C=[8,16]

2: 5 68 13 c1 (10.0%) c2 <- A=[72,80] & B=[82,90] & C=[32,40]

3: 9 72 13 c1 (20.0%) c3 <- C=[45,53]

4: 5 72 16 c1

5: 11 68 53 c3

6: 4 73 9 c1

7: 5 71 12 c1

8: 4 70 9 c1

9: 5 71 16 c1

10: 76 84 34 c2

Figure 4.1: Example of output with default parameters of the Dataset Generator
tool.

ai = ai + si · ai·t
N

(4.1)

Exemplars are created by generating uniform random values for all non-class

attributes. To determine the class label, the values a0 for each hyperplane are

first normalized by summing the rest of the entries in the vector and multiplying

by a factor of 1/3 and 2/3 respectively, in order to keep the class distribution

from becoming entirely one-sided. The class label is then equal to the number

of hyperplanes for which Σd
i=1aixi < a0. The resulting dataset will be denoted

planar.

This provides two basic scenarios for comparing the performance of the Pareto

archiving heuristics presented in Section 5.2 under different styles of concept drift.

The first (datgen) is a discrete case in which two different concepts cannot be interpo-

lated between, and instead only the frequency of their appearance in the surrounding

stream contents changes over time. The second (planar) is a continuous case in which

two different concepts are related to each other by some randomly drifting function,

and a given exemplar may exist on some fuzzy boundary between the two as the

stream’s make-up slowly drifts from being composed of one concept to another.

In keeping with established practice in generating synthetic data sets for classifi-

cation, new exemplars are created by randomly choosing values for each attribute and

26

Figure 4.2: Visual representation of the pattern in which data from different rulesets
is combined to create the datgen dataset. Here colours represent concepts C1-C3,
while each horizontal bar represents a ‘chunk’ in the stream.

Table 4.2: Characterization of benchmarking datasets. Attribute counts appear next
to the respective dataset names.

Class datgen (7) planar (11)

1 2,615,747 14,055
2 1,801,055 120,167
3 1,643,327 15,778
4 635,629 –
5 304,242 –

then applying the generated ruleset to determine the exemplar’s class attribute. This

tends to lead to a natural class imbalance dependent on how much of the attribute

space falls under the jurisdiction of each generated rule. The datasets are summarized

in Table 4.2.

4.3 Cyclical Datasets

Finally, the datasets presented in the previous section are expanded to represent

cyclical concept drift task domains, in which quantifiable behavioural change that

occurs within the data stream occurs more than once. Two cases for these cycles are

27

Figure 4.3: Visual representation of patterns used to represent cyclical concept drift.
Above shows the repeat case in which the stream immediately switches to its initial
start and replays the ‘drift’ pattern over upon reaching the halfway point. Below
is the mirror case in which the pattern is replayed in reverse order, representing a
gradual return from the end-state back to the start-state.

considered (illustrated in Figure 4.3):

• the repeat case in which a stream goes from being defined by its initial be-

haviour to some other behaviour, and then immediately resets to its initial

behaviour and plays out the same behavioural change again, and

• the mirror case, in which the behavioural change is applied in reverse order

after occuring the first time; this means that at the end of one full period, the

stream has returned to its initial behavioural state.

In the case of the datgen dataset defined in Section 4.2, the final chunk (denoted

〈0, 0, 100〉) is moved to the end of the stream and the other chunks have the repeat

andmirror operations applied to them. The resulting two datasets are thusly defined:

• datgen-repeat: 〈100, 0, 0〉 〈100, 0, 0〉 〈100, 0, 0〉 〈90, 10, 0〉 ... 〈0, 100, 0〉 〈100, 0, 0〉
〈100, 0, 0〉 〈100, 0, 0〉 〈90, 10, 0〉 ... 〈0, 100, 0〉 〈0, 0, 100〉

• datgen-mirror: 〈100, 0, 0〉 〈100, 0, 0〉 〈100, 0, 0〉 〈90, 10, 0〉 ... 〈0, 100, 0〉 〈10, 90, 0〉
... 〈100, 0, 0〉 〈100, 0, 0〉 〈100, 0, 0〉 〈0, 0, 100〉

28

In the case of the planar dataset defined in Section 4.2, the random changes

applied to the vectors a and s are recorded as they occur. To create the planar-

repeat dataset, the two vectors are reset to their initial states at the end of the first

half of data generation, and the recorded changes are played out again for the second

half of data generation. To create the planar-mirror dataset, the recorded changes

are simply applied in reverse during the second half of data generation. This implies

that the non-stationary process creating the data is mirrored (although the data itself

is not explicitly duplicated).

Chapter 5

Empirical Evaluation

This section is divided into three parts, corresponding to the task domains intro-

duced in Chapter 4. First, the use of Pareto archiving is evaluated as a mechanism

of providing a limited ‘memory’ of stream contents that retains useful exemplars over

time w.r.t. non-stationary streams, as introduced in Section 3.2. This represents a

base-case in which the interest is in assessing what is ‘lost’ when the constraints asso-

ciated with the sliding window approach from Section 3.3 are adopted. Specifically,

other researchers have already established the expected performance outcomes for

this task under the offline batch approach to classification e.g., [25]. Any variation

must therefore be attributed to adopting the streaming constraints. With this in

mind, Section 5.1 reports on the ‘base-case’ evaluation under non-stationary condi-

tions. The two non-stationary artificially created datasets as defined in Section 4.3

are then benchmarked in Section 5.2, both with and without the cyclic properties

discussed in Section 4.3. Finally, Section 5.3 incorporates the use of tapped delay

lines (Section 3.4) for providing the GP individuals with a form of memory that gives

direct access to several previous exemplars taken from the stream.

5.1 Stationary Data Evaluation

5.1.1 Methodology

Four protocols are considered for defining the relationship between training data (τ),

sliding window (St), and point population (P):

1. Pareto archiving without limits on how the training data (τ) is accessed – this

establishes the performance baseline for Pareto archiving under a batch offline

access policy (St = τ) and finite Point population (P). The capacity of the

Point population remains constant over all experiments. Training instances

can be revisited any number of times during evolution, subject to a common

29

30

limit on the maximum number of generations performed during training (tmax).

Hereafter this case is denoted bat.

2. Pareto archiving under a sequential access limit to training exemplars, but

with revisiting to any previously encountered training instance possible – This

scenario is equivalent to a sliding window, St, in which the lower bound remains

unchanged (references the first training instance of τ) but the upper bound

increases with training epoch, or |τ | × t
tmax

, where |τ | is the size of the entire

training partition, t is the current generation, and tmax is the last generation,

common to all experiments. Thus at the last generation any exemplar from the

entire training partition is eligible for appearing in the Point population (P).

Hereafter this case is referred to as agP.

3. Pareto archiving under sequential access to training exemplars, and no capacity

for revisiting previously encountered exemplars unless they were retained in

point population – as per Figure 3.1, the sliding window, St, increments its

location in proportion to the training epoch, t. Thus, under the stochastic

sampling process of Section 3.3 the location of the sliding window is bound by

the interval [|τ |(1−w), ...|τ |] t
tmax

; where w is the percent capacity of the sliding

window (Appendix A). As established in Section 3.3 a total of Pgap training

instances are sampled from the sliding window at each generation. Hereafter

this case is denoted wxxP where ‘xx ’ takes the value for w.

4. No Pareto archiving under sequential access to training exemplars – this estab-

lishes the contribution of Pareto archiving. Instead, Pgap points are selected for

replacement under the stochastic sampling process of Section 3.3. The param-

eterization of the sliding window follows points 2 and 3. Hereafter these cases

are denoted agN and wxxN respectively.

It is important to note that τ would be unknown in practice, which means the value of

tmax cannot be determined, i.e. training is performed on a continuous basis. Moreover,

in cases 3 and 4, the initial construction outlined in Section 3.3 provides St with

random access to the first 10% of the stream for the first tmax

10
generations. However,

this work will assume a finite data set size whose size is known at initialization,

31

which simulates cutting the training process off at an arbitrary point in time; the

above constraints are designed only to enforce a single pass through the data set

for a common fixed number of generations and common Point population size i.e.,

the computational cost as measured in terms of the number of evaluations for each

interfacing scenario is exactly the same. Thus, under such a common evaluation

limit, we can investigate the impact of different class distributions, sliding window

sizes and stream bandwidths. Post training evaluation metrics will take the form of

avg. Detection rate (Eqn (3.2)) as calculated across the unseen test partition.

5.1.2 Parameterization

Relative to the three sliding window scenarios identified in Section 5.1.1, the following

parameterizations are assumed:

Maximum number of generations, tmax: This defines the number of generations

conducted while making a single pass through the data set (Section 5.1.1), and

is held constant across all datasets. The impact of this is that new training

instances become eligible at the rate of ≈ 6.65 per generation under Census;

≈ 1.45 per generation under Shuttle; and ≈ 0.13 per generation under Thyroid

(i.e., Total training instance count ÷ tmax).

Window size, w, for the sliding window: Three separate parameterizations are

considered: 10, 5 and 1 percent of the training partition. Naturally, the smaller

the window the less opportunity the point population has to sample them before

they are shuffled out the sliding window.

SBB parameters: are in some cases increased relative to the original study [25]. In

particular, the elitist nature of replacement (w.r.t. point population content)

supports higher rates of mutation for adding (pa) and deleting (pd) symbionts

during reproduction of the host (team) individuals (Table A.1). Likewise, the

point and host population sizes have also increased, this time on account of

the more significant role they play in maintaining a record of training instances

and candidate solutions. That said, all SBB parameters assume common val-

ues and do not vary as a function of the data interface. Other studies have

32

benchmarked different forms of GP on the same datasets, both with (batch of-

fline) Pareto archiving [29] or with fitness evaluation conducted over the entire

training partition at each generation [45].

In each case a total of 50 runs are performed per experiment.

5.1.3 Results

Results have previously been reported on the three datasets under a common defi-

nition for the test partition in which the entire training partition was employed for

fitness evaluation [45]. This is taken to establish an ‘empirical upper bound’ on what

might be expected by way of the avg. DR for each dataset’s independent test parti-

tion: 80.5%, 95.4% and 98.3% for Census, Thyroid and Shuttle respectively. In the

following we perform:

• a static analysis of the resulting performance post training relative to the ‘un-

seen’ test partition (Section 5.1.4), and then;

• investigate the dynamic properties resulting from the streaming context (Section

5.1.5).

The static analysis naturally characterizes to what extent assuming different forms

of (sliding window) interface impacts on the ultimate performance of the GP classifier

post training. The dynamic analysis enables us to look at the impact on the Point

population Pareto archive. This will be decisive in providing an explanation for some

of the outcomes from the static analysis.

5.1.4 Static Evaluation

As outlined in Section 5.1.1 the static analysis considers a total of 5 data interfacing

scenarios:

1. Pareto archiving, but no streaming constraint or the bat configuration;

2. Pareto archiving, with streaming constraint, but the opportunity for arbitrary

revisiting once encountered, or the agP configuration;

33

0.
2

0.
4

0.
6

0.
8

1.
0

bat agP agN w01P w05P w10P w01N w05N w10N

●

●

●

●

● ●

●

● ●

(a) Census

0.
6

0.
7

0.
8

0.
9

1.
0

bat agP agN w01P w05P w10P w01N w05N w10N

●

●

●

●

●

●

●

●

●

(b) Thyroid

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

bat agP agN w01P w05P w10P w01N w05N w10N

●

●

●

●

●

●

● ●
●

(c) Shuttle

Figure 5.1: Average Detection Rate metric under test data. See section 5.1.1 for
column labels. A note on interpreting violin plots: each plot contains an ordinary
boxplot, with additional information illustrating the probability distribution of the re-
sult set drawn at either side.

34

3. As per point 2, but with Pareto archiving replaced by uniform selection, or the

agN configuration.

4. Pareto archiving, with streaming constraint and finite sliding window, or the

wxxP configuration with xx denoting window sizes of: 1%, 5%, 10%, hence

three distributions.

5. As per point 2, but with Pareto archiving replaced by uniform selection, or

the wxxN configuration from section 5.1.1 with xx denoting window sizes of:

1%, 5%, 10%, hence three distributions;

The binary Census data set appears to represent the most difficult scenario

(Figure 5.1(a)), a factor that is also reflected in the case of fitness evaluation performed

across the entire training partition [45]; or an avg. DR of 80%. The non-Pareto

archiving cases (columns 3, 7–9) return better results than the corresponding Pareto

archived cases (columns 2, 4–6). Thus, taken pairwise the case of the aggregated

stream window (agN) drops by approx. 10% whereas the finite window cases (wxxN)

drop by approx. 5%. Pareto archiving under batch access to the training partition

(column 1) appears to be largely unaffected. Hence, the relatively poor showing of

Pareto archiving under Census is most definitely an artifact of the streaming context.

We will return to the source for this performance reduction in the review of the

dynamic properties of assuming a streaming context in Section 5.1.5.

The three class Thyroid data set is the smallest data set considered here (Figure

5.1(b)). This implies that given the fixed generation limit (common to all data sets)

then evolution has more time to sample the content from any particular streaming

window location, St i.e., St content is replaced at a slower rate. Pareto archiving

(columns 2, 4–6) resulted in significant improvements w.r.t. the corresponding non-

Pareto cases (columns 3, 7–9) in all but one parameterization. Moreover, the per-

formance of Pareto archiving with streaming constraints enforced typically performs

better than with batch access rights (column 1) on this data set i.e., even under a

1% window size (column 4) the quartile performance is at least as good as the batch

case.

Performance on the seven class Shuttle data set is summarized by Figure 5.1(c).

A very clear separation again appears between non-Pareto archived (columns 3, 7–9)

35

and Pareto archived (columns 2, 4–6) performance. Thus, significant differences ap-

pear between aggregate stream access (column 2 versus 3) and each sliding window

variant (columns 4, 5, 6 versus 7, 8, 9). Moreover, the best stream access case corre-

sponds to that of the most restrictive case, or a sliding window of 1%. However, no

streaming access scenario is able to reliably approach the batch Pareto case. More-

over, the median performance of all the non-Pareto results indicate that the equivalent

of 3 to classes are not being labelled at all. Conversely, median performance of the

Pareto enabled models return Detection rates between 70 to 80%, suggesting that a

minimum of 5 to 6 classes are detected (1 or 2 classes are missed).

Finally, we note that independent of the data set, there is a strong correlation

between performance under the arbitrary revisiting stream constraint (agx)versus

strict sliding window constraint for St. Thus comparing agP to wxxP or agN to wxxN

under a Wilcoxon non-parametric hypothesis test to each pair of stream configurations

(agP versus agN; wxxP versus wxxN) implies that the non-Pareto case only proves

a statistically significant improvement over Pareto archiving for the specific case of

agP–agN and w10P–w10N under Census; in all other cases Pareto archiving results

in significantly better avg. DR (p-values < 0.005).

5.1.5 Dynamic Evaluation

The preceding section concentrated on evaluating performance relative to the inde-

pendent test partition post training, i.e. once the entire stream had passed. In doing

so it was possible to assess the impact of increasing constraints placed on the form of

sampling performed on the training partition both with and without Pareto archiving.

From a streaming perspective a clear preference is evident for Pareto archiving under

the Thyroid and Shuttle data sets, whereas Pareto archiving appears to negatively

impact performance under Census. In this section we investigate how performance on

the independent test partition varies during training. This is particularly significant

under the sliding window context. Hence, for clarity, in the following we concentrate

on the specific case of w05P, where the trends reported are common across wxxP.

Figure 5.2 details how performance varies (w.r.t. a specific training run) on the

test partition as SBB encounters the training data under the sliding window scenario

of w05P. Test data is never used for any aspect of evolution, only as an independent

36

0 50 100 150 200 250 300

0.
4

0.
5

0.
6

0.
7

Generation

(a) Census

0 50 100 150 200 250 300

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Generation

(b) Thyroid

0 50 100 150 200 250 300

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Generation

(c) Shuttle

Figure 5.2: Average Detection Rate of test partition during training on the stream us-
ing Pareto archiving. Sliding window of 5% in all cases (w05P). For clarity generation
axis is ×100.

37

0 50 100 150 200 250 300

10
0

10
5

11
0

11
5

12
0

Generation

(a) Census

0 50 100 150 200 250 300

20
40

60
80

10
0

Generation

(b) Thyroid

0 50 100 150 200 250 300

60
70

80
90

10
0

11
0

12
0

Generation

(c) Shuttle

Figure 5.3: Size of Pareto archive during training on the stream using Pareto archiv-
ing. Sliding window of 5% in all cases (w05P). For clarity generation axis is ×100.

38

assessment of the degree of regression or improvement at that particular training

epoch. Given the computational overhead, a test evaluation is performed once every

100 generations. The contrast between training under Census versus Thyroid and

Shuttle is again readily apparent. Specifically, Thyroid and Shuttle continue to im-

prove after the initial period of training against 10% of the data (corresponding to

the 0 to 3000 interval on the horizontal axis). Thus, both Thyroid and Shuttle have

a distinct step-wise profile in which performance is essentially improving.

Figure 5.3 summarizes the corresponding utilization of the Pareto archive in the

point population, P . Recall that Pgap points are replaced at each generation. Thus

as long as the size of the Pareto archive remains smaller than |P | − Pgap the likeli-

hood of losing potentially good classifiers will be minimized. In the parameterization

summarized by Table A.1 the Pareto archive should not exceed 100 individuals for

this condition to hold. It is apparent that for both Thyroid and Shuttle this con-

dition holds, but in the case of Census the Pareto archive actually matches the size

of the Point population before the process of replacing a fixed number of points per

generation (Pgap) forces the Pareto archive membership to ‘sit’ at about 105 training

exemplars. Doubling the size of the point population had no measurable effect.

Given a 20% error rate, even when employing all the exemplars at each generation

for fitness evaluation [45], and a training partition of nearly 200,000 exemplars then a

worst case archive in the order of thousands of points might be anticipated. Moreover,

we also question what such a rate of error implies. Specifically, this appears to imply

that typically 20% of the data is mislabeled or, put another way, the attributes for

20% of the data are not sufficient for distinguishing between the two classes (class

noise).

In order to investigate this hypothesis we introduce a process of re-labelling the

Shuttle training data sets with 5, 10 and 20% probability. Thus, a data instance

selected with uniform probability is relabelled to that of one of the other classes (also

chosen with uniform probability). Figure 5.4 illustrates how the avg. DR of the test

partition and Point archive varies through training for a 5% class-noise rate under

the Shuttle data set. It is clear that at best the equivalent of just under 2 classes are

learnt during the initial 10% training period (generation < 3000; avg. DR ≈ 2
7
), and

at best the equivalent of one more class appears thereafter (generation > 5000; avg.

39

0 5000 10000 15000 20000 25000 30000

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

Generation

(a) Test during stream

0 5000 10000 15000 20000 25000 30000

60
80

10
0

12
0

Generation

(b) Point archive during stream

Figure 5.4: Dynamic properties of Shuttle data set with 5% noise under w05P sliding
window.

DR ≈ 3
7
). For completeness, Figure 5.5 provides a comparison of the post training

performance on the test partition (over 20 runs) for cases of 5, 10 and 20% class noise.

In short, the noise free median performance (column 5, Figure 5.1(c)) has dropped

from an avg. DR of 70% to just above 30% (5% class noise rate) and thereafter

decaying as the amplitude of class noise increases.

5.2 Non-Stationary Data Evaluation

5.2.1 Methodology

Section 5.1 noted that Pareto archiving is sensitive to contradictory labels – that is

to say, the Point archive would rapidly accumulate exemplars from the stream that

were forming ‘distinctions’. This is to be expected, as such contradictions would likely

support at least two GP classifiers as being non-dominated. Attempting to address

this by just letting archive sizes grow with the number of distinctions is not desirable

under streaming contexts as this has obvious implications for real-time operation.

Indeed, Pareto archiving has a P 2
size − Psize computational cost, where Psize is the

Point archive size [9].

Relative to the Pareto archiving framework of Section 3.2, we note that at present a

40

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

w05P−sht05 w05P−sht10 w05P−sht20

Figure 5.5: Average Detection Rate of Shuttle data set on test partition.

fitness sharing heuristic is used to promote the maintenance of diversity once the num-

ber of non-dominated points encounters the constraint imposed by a finite archive.

This may or may not represent an appropriate heuristic for prioritizing point replace-

ment under a streaming context. That is to say, once a point provides a distinction

it could potentially lie in the point population indefinitely, such as in the case of an

outlier or mislabelled data. However, under streaming applications the underlying

processes determining stream content are frequently non-stationary. With this in

mind, the fitness sharing heuristic of Equation 3.5 will be reconsidered with the goal

of evaluating its role in allowing the GP populations to interact more effectively with

the current contents of the stream. To that end, the following three configurations

will be explored:

1. Fitness sharing in its original, unmodified format. This case will serve as the

base case for attempted optimizations to the fitness sharing heuristic. Hereafter

this case is denoted org.

2. Fitness sharing scores multiplied by the normalized inverse of point archive ages;

that is, score = score × (1 − age/agemax). Naturally, this heuristic introduces

an age bias, with the motivation being to make older points more likely to be

replaced. Hereafter this case is denoted age.

3. Points with a fitness sharing score of 0 are considered to be ranked highest; after

this, points are taken in the order of highest score first. This case is intended to

41

address the issue of new points which no GP individuals are able to correctly

classify being unable to enter the point archive. This prevents material that is

currently entirely unclassifiable from being presented to the team population as

a desirable problem to be solved. Hereafter this case is denoted zero.

In addition, online learning applications require an answer in the “here and now”

of a data stream. Specifically, this implies that it is not possible to define a partition

of the data into independent training / validation / test partitions. The classifiers are

undergoing a continuous process of development as they ‘react’ to the non-stationary

properties of the data stream. With this in mind, the following methodology will

be adopted to characterize the performance of a champion GP individual from the

population at any point, t, through the stream:

1. Training is limited to a fixed number of generations tmax over the duration of

the stream.

2. Testing is performed at periodic intervals during training by extracting the cur-

rent champion GP individual and evaluating it separately across the previous

interval, and the next (as-yet-unseen) interval.1 Such a comparison potentially

establishes the generalization capability of the champion relative to the im-

mediate past and future classification requirements. Expecting ‘good’ gener-

alization beyond these limits is considered increasingly questionable, given the

non-stationary property of the stream. The evaluation metrics used will be the

accuracy (total number correct versus the total number of exemplars in the in-

terval) and average detection rate (Eqn (3.2)) as calculated across the interval.

The relative variation between accuracy and average detection rate provide a

characterization for how sensitive the resulting classifier is to class imbalance.

5.2.2 Parameterization

Relative to the three fitness sharing heuristics identified in Section 5.2.1, the following

parameterizations are assumed:

1The concept on an ‘interval’ specific to the process generating the data (Section 4.2). Under
the datgen or non-stationary process with sudden changes, an interval corresponds to a ‘chunk’
of 500,000 exemplars associated with the same data generation process. Under the continuously
varying non-stationary data generation model (planar), an interval is 1,000 consecutive exemplars,
associated with the ‘direction’ of vector s.

42

Maximum number of generations, tmax: As in previous experiments. The im-

pact of this is that new training instances become eligible at a rate of ≈ 233.33

per generation under datgen and ≈ 5 per generation under planar (Total

training instance count ÷ tmax).

Window size, w, for the sliding window: The size of the sliding window is fixed

at 5% for all further experiments. This is chosen as a representative case that

compromises between low memory overhead and greater access to training data.

SBB parameters: are unchanged from Section 5.1.2, and are summarized in Ap-

pendix A.

In each case a total of 50 runs are performed per experiment.

5.2.3 Evaluation

As outlined in Section 5.2.1, a total of three scenarios are considered across the

datgen and planar data sets:

1. Unmodified fitness sharing scores or the org configuration;

2. Fitness sharing scores multiplied by inverse normalized exemplar age, or the

age configuration;

3. Fitness sharing scores left unmodified, except scores of 0 are changed to ∞, or

the zero configuration.

The average detection rate metrics, as calculated across periodic intervals in the

stream, are shown in Figure 5.6 for the datgen data set, and in Figure 5.7 for the

planar dataset.

In the base case org for the datgen stream, performance hovers near unity for the

first two intervals while the underlying concept C1 does not change, then begins to

steadily decline as data points from the second concept C2 are gradually introduced.

The decline in performance continues until the tenth chunk, at which point more

than two-thirds of the stream is composed of representatives of C2, and only then

does the algorithm begin adapting to the change in the underlying environment.

43

Interestingly, the next-to-last chunk of data composed entirely of C2 exemplars caused

the performance of the algorithm to drop the lowest, but the team population is able

to easily adjust to a brand new concept C3 when it abruptly takes over the stream

(last chunk of the sequence). Such behaviour would seem to imply a weakness in the

current GP model for adapting to change spread out over a significant period of time,

at least in the case of discrete concept representation. Conversely, sudden change

appears to result in a more effective retraining and replacement of GP classifiers.

The other experiments age and zero in the datgen environment exhibit similar

behaviour but appear to be able to start compensating for the gradual change in

concept earlier in the stream. Thus, the quartile statistic is better at remaining

above an average detection rate of 70% than under org. Of the three, the age case

appears to adapt the quickest. This configuration, as described in Section 5.2.1, was

intended to punish points that have spent more time in the archive – to the extent

that the oldest point is deterministically removed at each generation.

In all cases for the planar stream, performance in terms of average detection

rate appears to suffer initially from a pathological case of class imbalance. This is

corroborated by the high accuracy metrics reported for that portion of the stream

(Figure 5.8), and can be verified by looking at the class distribution of the point

archive from an example run (not shown). In this case, the original diversity based

heuristic appears to resist the incremental variation in the stream content better than

either the explicitly age or ‘disengaged point’ biases (age and zero respectively). This

is particularly true under the balanced detection rate metric of Figure 5.7. Note the

different scales under the accuracy metric in Figure 5.8. In this case there is much

more variation in the spread of the original heuristic (e.g., 1st quartile extends down

to 50%) whereas the age and zero heuristics demonstrate less variance. However,

in either metric, median performance never descends below 70% under org whereas

both the alternative heuristics fail to do so.

The magnitude of the effect of the different fitness sharing heuristics on the archive

policy’s age bias can be clearly seen in Figure 5.9. The org heuristic constantly churns

the contents of the point archive, whereas both age and zero provide an additional

level of granularity to the score values that allow the archive to distinguish between

points enough to single some out for more long-term archiving.

44

●
●

● ●

●

●

2142 6426 10710 14994 19278 23562 27846

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Generation

Av
er

ag
eD

R

(a) org

●

●

●●

●

●

●

●

●●

●

●

●
●
●

●

●

●

2142 6426 10710 14994 19278 23562 27846

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Generation

Av
er

ag
eD

R

(b) age

●

●

●●
●

●

●

●

●
●

●

●
●●

●

●

●

●

●

2142 6426 10710 14994 19278 23562 27846

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Generation

Av
er

ag
eD

R

(c) zero

Figure 5.6: Average Detection Rate across previous chunks during training on the
stream, using the datgen data set.

45

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

750 3750 6750 9750 13500 17250 21000 24750 28500

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Generation

Av
er

ag
eD

R

(a) org

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●●

750 3750 6750 9750 13500 17250 21000 24750 28500

0.
4

0.
5

0.
6

0.
7

0.
8

Generation

Av
er

ag
eD

R

(b) age

●

●

●

●
●
●

●

●
●

●● ●●

●

●

● ●
●

●

●

●

●

●

●

750 3750 6750 9750 13500 17250 21000 24750 28500

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Generation

Av
er

ag
eD

R

(c) zero

Figure 5.7: Average Detection Rate across previous chunks during training on the
stream, using the planar data set.

46

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●

750 3750 6750 9750 13500 17250 21000 24750 28500

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Generation

A
cc

ur
ac

y

(a) org

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

750 3750 6750 9750 13500 17250 21000 24750 28500

0.
5

0.
6

0.
7

0.
8

0.
9

Generation

A
cc

ur
ac

y

(b) age

●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

750 3750 6750 9750 13500 17250 21000 24750 28500

0.
5

0.
6

0.
7

0.
8

0.
9

Generation

A
cc

ur
ac

y

(c) zero

Figure 5.8: Accuracy across previous chunks during training on the stream, using the
planar data set.

47

0 5000 10000 15000 20000 25000 30000

0
20

00
40

00
60

00
80

00
10

00
0

Generation

Av
er

ag
e

ag
e,

 in
 g

en
er

at
io

ns

age
zero
org

Figure 5.9: Average age of individuals in the point archive from single runs of exper-
iments in the planar environment.

5.3 Tapped Delay Lines and Cyclical Data

5.3.1 Methodology

As noted in Chapter 2, behavioural change is not always an isolated or one-way oc-

currence and can frequently occur in a cyclical fashion. Moreover, if a classifier can

base its labelling decision for exemplar t on a sequence of the most recent history

of exemplars, then change detection might be more directly facilitated. In such a

circumstance, the deployment of a Point archive as a mechanism for providing ‘mem-

ory’ of the stream becomes an even more literal metaphor – it would be desirable

for a population of GP individuals to have access to some record representing the

change in stream behaviour over time, in order to potentially ‘recognize’ previously

seen patterns as they re-emerge in the stream and thus adapt to them in a more

efficient (ideally instantaneous) manner. To that end, the experimental configura-

tions of the previous Section 5.2.1 (that is, org, age, and zero) are evaluated across

the cyclical datasets defined in Section 4.3. In addition, an exploration of providing

the GP individuals with an explicit record of the stream (as opposed to the implicit

record of the stream represented by the Pareto archive) is performed by running all

48

the aforementioned configurations with the addition of the tap delay line mechanism

outlined in Section 3.4.

To summarize, this section will explore the following experimental configurations:

• org, age, and zero are evaluated against the datgen-repeat dataset with

tapped delay lines

• org, age, and zero are evaluated against the datgen-repeat dataset without

tapped delay lines

• org, age, and zero are evaluated against the datgen-mirror dataset with

tapped delay lines

• org, age, and zero are evaluated against the datgen-mirror dataset without

tapped delay lines

• org, age, and zero are evaluated against the planar-repeat dataset with

tapped delay lines

• org, age, and zero are evaluated against the planar-repeat dataset without

tapped delay lines

• org, age, and zero are evaluated against the planar-mirror dataset with

tapped delay lines

• org, age, and zero are evaluated against the planar-mirror dataset without

tapped delay lines

5.3.2 Parameterization

Relative to the scenarios identified in Section 5.3.1, the following parameterizations

are assumed:

Maximum number of generations, tmax: This is set so that the number of train-

ing instances that become available at each generation is exactly the same as in

Section 5.2.2. This is a simple doubling in the case of the planar dataset, but

for the datgen dataset the value of tmax is multiplied by 27
14

to account for the

fourteenth chunk (of fourteen) not being replicated.

49

Window size, w, for the sliding window: The size of the sliding window remains

fixed at 5%, as explained in Section 5.2.2.

Tap delay length, σ: The number of data points that are allowed to elapse before

new data points begin to be appended to previous ones, as discussed in Section

3.4. This is set to be equivalent to the width of one sliding window, i.e., σ = w.

Tap delay count, σn: The number of taps that can be prepended to a point before

new taps begin to overwrite the oldest ones, as discussed in Section 3.4. This

is set to σn = 7, as the current number of operators and registers defined in

this SBB implementation resulted in 3 bits being left for use before the opcodes

spilled over the boundary of a 16 bit word.

Put another way, GP now views the input at any classification decision as a

matrix of addressable read only memory as opposed to a vector of addressable

read only memory. The cells actually addressed from the address space is an

evolved parameter specific to the GP individual, cf. embedded as opposed to

filter or wrapper classifier deployment [18].

SBB parameters: remain unchanged from Section 5.1.2, and are summarized in

Appendix A.

In each case a total of 50 runs are performed per experiment.

5.3.3 Results

As outlined in Section 5.3.1, a total of six scenarios are considered across the {datgen,planar}-
{repeat,mirror} datasets, and the average detection rate is presented for all cases:

the org heuristic 1) without (Figure 5.10) and 2) with (Figure 5.11) tapped delay

lines, the age heuristic 3) without (Figure 5.12) and 4) with (Figure 5.13) tapped

delay lines, and the zero heuristic 5) without (Figure 5.14) and 6) with (Figure 5.15)

tapped delay lines.

It should be noted that the first half of all configurations in which tapped delay

lines are not employed are equivalent to the experiments performed in Section 5.2.3,

and so performance in these cases will only be discussed for the second half of the

training time relative to the first half.

50

5.3.4 Evaluation of datgen without Tapped Delay Lines

In the org case of unmodified fitness sharing, the datgen-repeat performance shows

the ability to easily jump back to its near-unity performance as soon as the stream

resets to its initial configuration. Both the age and zero heuristics have shown

already that they have are able to adapt to the changes in the stream better than

the org heuristic, but this appears to result in them subsequently being unable to

re-adapt to previous stream behaviours as quickly. In the case of datgen-mirror, all

three heuristics exhibit similar gradual performance degradation and similar recovery

curves as the underlying stream makeup reconverges on a single concept.

5.3.5 Evaluation of datgen with Tapped Delay Lines

In all configurations on all datgen datasets, performance with the addition of tapped

delay lines hovers near the minimum (equivalent to the stochastic or single-class

classifier). Particularly interesting, however, is the behaviour of the age heuristic on

both extension patterns of the dataset. Both age and zero exhibit a sudden increase

in detection rate as soon as the -repeat event occurs, but the performance of the

age heuristic appears able to continue improving throughout the latter half of the

stream in both the -repeat and -mirror cases. In addition, age is the only heuristic

that remains capable of occasionally obtaining the perfect performance on the final

C3 chunk of the stream that the population without access to tapped delay lines was

able to achieve so frequently.

5.3.6 Evaluation of planar without Tapped Delay Lines

In the org case on the planar-repeat dataset, the return to initial stream behaviour

causes the host population to experience a sharp decline in performance that is not

shared by either the age or zero cases. Similar to the first time the behaviours were

encountered, the org heuristic’s performance varies widely and takes the majority of

the length of the behaviour switch before it begins to reliably improve. Both the age

and zero cases are again similar, with performance barely reaching the 70% avg. DR

mid-switch and eventually petering out at the 50% rate (note that this is not due

to pathological class imbalance as planar does not have a binary class distribution

51

– see Table 4.2). In the case of planar-mirror, all three fitness sharing heuristics

appear to be able to maintain (but not improve on) the approximate detection rate

they were able to attain before concepts began to reoccur.

5.3.7 Evaluation of planar with Tapped Delay Lines

When tapped delay lines are provided to the teams under the planar dataset ex-

tensions, the performance again hovers near minimum for the org and zero cases.

The age heuristic, however, is once again able to achieve significant performance im-

provement over the other two configurations, and indeed appears regularly able to

classify two of the three classes instead of the single class detection that the other

two maintain. Of particular interest here is that the age heuristic is occasionally able

to reach unity in more than a quarter of all cases even in the first half of the stream,

before the tapped delay line information has the chance to convey previously seen

stream behaviour. Although the median performance in this case barely reaches the

levels of the other configurations, the maximum performance is unparalleled by the

other heuristics both with and without taps, making the combination of tapped delay

lines with the age heuristic a promising candidate in scenarios where multiple runs

can be performed on a data stream simultaneously.

52

●

●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(a) datgen-repeat

●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(b) datgen-mirror

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(c) planar-repeat

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(d) planar-mirror

Figure 5.10: Average detection rate across previous chunks using org configuration
without TDLs. Subcaption indicates data set.

53

●

●
●

●

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(a) datgen-repeat

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

1 3 5 7 9 11 13 15 17 19 21 23 25
0.

2
0.

4
0.

6
0.

8

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(b) datgen-mirror

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
3

0.
4

0.
5

0.
6

0.
7

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(c) planar-repeat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
3

0.
4

0.
5

0.
6

0.
7

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(d) planar-mirror

Figure 5.11: Average detection rate across previous chunks using org configuration
with TDLs. Subcaption indicates data set.

54

●

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(a) datgen-repeat

●

●

●

●
●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(b) datgen-mirror

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(c) planar-repeat

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(d) planar-mirror

Figure 5.12: Average detection rate across previous chunks using age configuration
without TDLs. Subcaption indicates data set.

55

●

●

●
●

●

●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
2

0.
4

0.
6

0.
8

1.
0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(a) datgen-repeat

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(b) datgen-mirror

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
2

0.
4

0.
6

0.
8

1.
0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(c) planar-repeat

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(d) planar-mirror

Figure 5.13: Average detection rate across previous chunks using age configuration
with TDLs. Subcaption indicates data set.

56

●

●●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(a) datgen-repeat

●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(b) datgen-mirror

●

●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(c) planar-repeat

●

●

●

●

●

●

●

●

●

●

●

●●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(d) planar-mirror

Figure 5.14: Average detection rate across previous chunks using zero configuration
without TDLs. Subcaption indicates data set.

57

●

●

●

●

● ●

1 3 5 7 9 11 13 15 17 19 21 23 25

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(a) datgen-repeat

●

● ●

●

1 3 5 7 9 11 13 15 17 19 21 23 25
0.

1
0.

2
0.

3
0.

4
0.

5

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(b) datgen-mirror

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
3

0.
4

0.
5

0.
6

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(c) planar-repeat

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

1 21 41 61 81 106 131 156 181 206 231 256 281

0.
3

0.
4

0.
5

0.
6

0.
7

Chunk

Av
er

ag
e

D
et

ec
tio

n
R

at
e

(d) planar-mirror

Figure 5.15: Average detection rate across previous chunks using zero configuration
with TDLs. Subcaption indicates data set.

Chapter 6

Conclusions, Contributions, and Future Work

6.1 Conclusions

An initial study is conducted to assess the potential contribution of Pareto archiving

under GP for a base case in which a regular classification task is limited to a single

pass through the training partition under constraints consistent with streaming data

i.e., the case of a stationary task (Section 5.1). From an application context the

non-stationary scenario is of interest as it potentially represents a ‘big data’ scenario

in which it is too expensive to perform multiple passes through the training data.

A framework is considered in which a finite archive is enforced, under both Pareto

and stochastic policies for archive maintenance. Such an archive is able to retain

content independent from that of the sliding window, subject to a fixed size constraint.

Three data sets are benchmarked under a common parameterization. Furthermore,

a study is made of the impact of class noise, a property that all real world data

sets will possess to some degree. Significant sensitivity appears to exist, with label

error immediately resulting in a larger Pareto archive requirement, or at least when

average detection rate represents the performance measure and the class distributions

are imbalanced.1 This in itself might provide the basis for dynamically sizing the

Point population to avoid introducing replacement errors and therefore introducing

coevolutionary pathologies into the GP population [14, 31, 9, 6]. Moreover, we note

that at least two sources of noise can appear: labelling error (as investigated in Section

5.1), and attribute or sensor error.

With respect to the non-stationary data stream we note that the SBB algorithm

provides various properties that are potentially advantageous under such a dynamic

1For example, in the case of the Shuttle data set, the experiment with 5% class noise rate resulted
in a 30% avg. DR which achieves an accuracy of 75% in this case.

58

59

setting. For example, task decomposition is supported through speciation and bid-

ding, whereas evolvability is addressed through the use of independent representa-

tions and variation operators for teams and programs. Pareto archiving provides a

formal framework for retaining specific learners (GP teams) and the corresponding

data points, or a memory mechanism. In order to test the capability of SBB under

specific forms of non-stationary streaming data, two multi-class benchmarks are in-

troduced. Specifically, the ‘datgen’ task assumes stepped changes to the underlying

process whereas ‘planar’ adopts a continuously varying process. The resulting bench-

marks indicate that diversity is more effective under the continuously varying process

(Section 5.2). Conversely, introducing an additional age bias that deterministically

retires the oldest non-dominated points is more effective in the non-stationary task

with stepped changes.

As noted in Chapter 1, concept drift within data streams is not always a forward-

marching process and can sometimes embed patterns of repetition or periodicity. The

exact nature repetition can take many forms, and this work introduces two explicitly

quantifiable patterns for extending non-cyclical datasets: ‘repeat’ and ‘mirror’. A

method of allowing classifiers to discern these temporal patterns is presented in the

form of tapped delay lines, and the results seem to indicate that in combination with

age-based heuristics it may be possible to achieve significant performance gains over

the more basic, traditional sliding window formulation (Section 5.3).

6.2 Contributions and publications resulting from this work

1. A precisely defined methodology for generating arbitrary volume synthetic data

sets suitable for use in benchmarking streaming classification algorithms is

given, and a collection of data sets based on the methodology are created and

made available for use. The data sets created can contain concept drift in a

manner that is precisely quantified and explicitly tuneable. The datgen data

set presents an environment in which discrete behaviours occur interchangeably

at varying frequencies throughout the data stream, whereas the planar data

set contains an environment in which data points ‘smoothly’ drift from being

defined by one particular behaviour to being defined by another. In addition,

two methods (-repeat and -mirror) are defined for introducing cyclical concept

60

drift to pre-existing non-cyclical data sets.

2. The adaptation of the GP framework used in this thesis to interface with tempo-

rally dependent data streams is generalizable to any traditional GP framework

which is able to adopt the coevolutionary paradigm. The archiving and re-

placement policies (see Figure 3.1) used to control the Pareto archive can be

implemented separately from the chosen GP framework, as the archive itself

presents as a normal fixed-size training set (albeit with mutable content from

generation to generation).

3. As performance evaluation is performed across the contents of an archive with

fixed parameterized maximum size, the computational complexity of the train-

ing process is independent of the actual length / volume of the data stream.

4. Modifications to traditional fitness sharing heuristics to account for the temporal

dependencies observed in streaming data environments are presented and their

behaviour under discrete vs. continuous concept drift is quantified (see Section

6.1.

5. A mechanism for providing explicit memory of previous stream behaviour to

individual classifiers at evaluation-time is given in the form of tapped delay lines,

and their impact on classifier performance in various streaming environments

with several archiving heuristics is explored.

Publications

At the time of this writing, portions of the work presented in this thesis have resulted

in two distinct papers published in peer-reviewed conferences. The first of these [3]

focuses on the work presented in Sections 4.1 and 5.1 in which the impact of Pareto

archiving and the sliding window restriction on GP classifiers are explored, and can be

found in the Proceedings of the ACM Genetic and Evolutionary Computation (ACM

GECCO) 2012. The second paper [2] presents the streaming benchmark datasets

defined in Section 4.2, and the fitness sharing heuristics and performance results

of combinations thereof discussed in Section 5.2. This paper was published in the

Proceedings of ACM GECCO 2013.

61

6.3 Future work

Future work could begin with a refined approach to the deployment of tapped delay

lines. As noted in Section 3.4, the current incarnation of TDLs places no emphasis

on using the actual attributes of a data point currently under examination over the

historical data presented alongside it. This has a significant detrimental effect on the

ability of the base case of the algorithm to classify non-cyclical data. Investigating

an explicit bias or separation of past and present data in the GP representation

should hopefully prove beneficial in counteracting this effect. Previous work has also

suggested merit in evolving the parameters of the TDLs alongside the population to

allow it to adapt to different environmental characteristics [41, 44, 27].

We are also interested in applying the GP framework developed in this work to

active learning environments, in which data points can be accessed independent of

their corresponding labels, and a cost is associated with requesting labels with the

learning algorithm subjected to some limited labeling budget. It might be noted that

with the parameterizations used (as enumerated in Appendix A) against the large size

of the datgen dataset, the GP algorithm only ever accesses 10% of the data chosen

stochastically. This is equivalent to employing a stochastic label request strategy with

a fixed labeling budget of 10% and ignoring unlabeled data; the results obtained in

Chapter 5 suggests our approach may be promising in this regard.

Other avenues of interest include decoupling the rate of the evolutionary cycle from

the rate of data arrival from the stream. This work considered only data arriving in a

linear fashion, whereas there are numerous contexts in which data arrives in a random

or “bursty” manner. In these cases, more generations of training could be permitted

during ‘quiet’ times of the stream, while the impact of proportionally high data arrival

rates would need to be studied to evaluate the magnitude of the impact caused by

fewer training generations. In such a context, change detection (see Chapter 1) would

become even more important in order to bypass training generations when they are

unnecessary. It may even be possible to introduce an articulated form of concept

recognition to the algorithm, whereas the current framework uses a single archive

and requires the archiving policy to serendipitously form its own representation of

multiple concepts over time.

62

Finally, a significant next step to this work will be the application of the frame-

work to real-world datasets. The scenarios the algorithms and mechanisms have been

developed for are increasingly common in real world applications, and the interface

of the Pareto archive to a sliding window means that the classification system can be

deployed in real-time to arbitrary volume data streams with a fixed computational

cost per time unit. Potential application domains include such varied areas as com-

puter network data, utility and electrical grid usage, sensor network monitoring, and

customer analytics.

Bibliography

[1] H. Abdulsalam, D. B. Skillicorn, and P. Martin. Classification using stream-
ing random forests. IEEE Transactions on Knowledge and Data Engineering,
23(1):22–36, 2011.

[2] A. Atwater and M. I. Heywood. Benchmarking pareto archiving heuristics in the
presence of concept drift: Diversity versus age. In ACM Genetic and Evolutionary
Computation Conference, pages 885–892, 2013.

[3] A. Atwater, M. I. Heywood, and A. N. Zincir-Heywood. GP under streaming data
constraints: A case for Pareto archiving? In ACM Genetic and Evolutionary
Computation Conference, pages 703–710, 2012.

[4] M. Brameier and W. Banzhaf. Linear Genetic Programming. Springer, 2007.

[5] P. Bruneau, F. Picarougne, and M. Gelgon. Incremental semi-supervised cluster-
ing in a data stream with a flock of agents. In IEEE Congress on Evolutionary
Computation, pages 3067–3074, 2009.

[6] J. Cartlidge and D. Ait-Boudaoud. Autonomous virulence adaptation improves
coevolutionary optimization. IEEE Transactions on Evolutionary Computation,
15(2):215–229, 2011.

[7] J. Cartlidge and S. Bullock. Combating coevolutionary disengagement by reduc-
ing parasite virulence. Evolutionary Computation, 12(2):193–222, 2004.

[8] W. Cedeno and V. R. Vemuri. On the use of niching for dynamic landscapes. In
IEEE Congress on Evolutionary Computation, pages 361–366, 1997.

[9] E. D. de Jong. A monolithic archive for pareto-coevolution. Evolutionary Com-
putation, 15(1):61–93, 2007.

[10] I. Dempsey, M. O’Neill, and B. A. Foundations in Grammatical Evolution for
Dynamic Environments, volume 194 of Studies in Computational Intelligence.
Springer, 2009.

[11] I. Dempsey, M. O’Neill, and A. Brabazon. Adaptive trading with grammatical
evolution. In IEEE CEC, pages 2587–2592, 2006.

[12] J. A. Doucette, A. R. McIntyre, P. Lichodzijewski, and M. I. Heywood. Symbolic
coevolutionary genetic programming: A benchmarking study under large at-
tribute spaces. Genetic Programming and Evolvable Machines, 13:71–101, 2012.

63

64

[13] W. Fan, Y. Huang, H. Wang, and P. S. Yu. Active mining of data streams.
In Proceedings of the Fourth SIAM International Conference on Data Mining,
pages 457–461, 2004.

[14] S. G. Ficici and J. Pollack. Pareto optimality in coevolutionary learning. In
European Conference on Advances in Artificial Life, pages 316–325, 2001.

[15] C. Gathercole and P. Ross. Dynamic training subset selection for supervised
learning in genetic programming. In Parallel Problem Solving from Nature, pages
312–321, 1994.

[16] A. Ghosh, S. Tstutsui, and H. Tanaka. Function optimization in non-stationary
environment using steady state genetic algorithms with aging of individuals. In
IEEE Congress on Evolutionary Computation, pages 666–671, 1998.

[17] J. J. Greffenstette. Genetic algorithms for changing environments. In Proceedings
of Parallel Problem Solving from Nature, pages 137–144, 1992.

[18] I. Guyon and A. Elisseeff. An introduction to feature extraction. In I. Guyon,
S. Gunn, M. Nikravesh, and L. Zadeh, editors, Feature extraction, Foundations
and applications, volume 207 of StudFuzz, chapter 1. Springer, 2006.

[19] W. D. Hillis. Co-evolving parasites improve simulated evolution as an optimiza-
tion procedure. Physica D, 42:228–234, 1990.

[20] J. O. S. III. Physical Audio Signal Processing. W3K Publishing, 2010.

[21] M. Kotanchek, G. Smits, and E. Vladislavleva. Exploiting trustable models via
pareto GP for targeted data collection. In Genetic Programming Theory and
Practice VI, pages 145–162. Springer, 2009.

[22] J. R. Koza. Genetic Programming: On the programming of computers by means
of natural selection. MIT, 1990.

[23] M. Lemczyk. Pareto-cevolutionary genetic programming classifier. Mas-
ter’s thesis, Faculty of Computer Science, Dalhousie University, 2006.
http://web.cs.dal.ca/˜mheywood/Thesis/MCS.html.

[24] P. Lichodzijewski and M. I. Heywood. Pareto-coevolutionary genetic program-
ming for problem decomposition in multi-class classification. In ACM Genetic
and Evolutionary Computation Conference, pages 464–471, 2007.

[25] P. Lichodzijewski and M. I. Heywood. Managing team-based problem solving
with symbiotic bid-based genetic programming. In ACM Genetic and Evolution-
ary Computation Conference, pages 363–370, 2008.

[26] P. Lichodzijewski and M. I. Heywood. Symbiosis, complexification and simplicity
under gp. In ACM Genetic and Evolutionary Computation Conference, pages
853–860, 2010.

65

[27] A. Loginov and M. I. Heywood. On the impact of streaming interface heuris-
tics on GP trading agents: An FX benchmarking study. In ACM Genetic and
Evolutionary Computation Conference, pages 1341–1348, 2013.

[28] A. R. McIntyre and M. I. Heywood. Cooperative problem decomposition in
pareto competitive classifier models of coevolution. In European Conference on
Genetic Programming, pages 289–300, 2008.

[29] A. R. McIntyre and M. I. Heywood. Classification as clustering: A Pareto
cooperative-competitive GP approach. Evolutionary Computation, 19(1):137–
166, 2011.

[30] R. W. Morrison. Designing evolutionary algorithms for dynamic environments.
Springer, 2004.

[31] J. Noble and R. A. Watson. Pareto coevolution: Using performance against
coevolved opponents in a game as dimensions for pareto selection. In ACM
Genetic and Evolutionary Computation Conference, pages 493–500, 2001.

[32] M. O’Neill and C. Ryan. Grammatical Evolution: Evolutionary automatic pro-
gramming in an arbitrary language. Springer, 2003.

[33] M. O’Neill, L. Vanneschi, S. Gustafson, and W. Banzhaf. Open issues in genetic
programming. Genetic Programming and Evolvable Machines, 11(3):339–363,
2010.

[34] A. Orriols-Puig, J. Casillas, and E. Bernado-Mansilla. First approach toward
on-line evolution of association rules with learning classifier systems. In ACM
Genetic and Evolutionary Computation Conference, pages 2031–2038, 2008.

[35] J. Quiñonero-Candela and M. Sugiyama and A. Schwaighofer and N. D.
Lawrence. Dataset shift in machine learning. MIT, 2009.

[36] V. Ramos and A. Abraham. Swarms on continuous data. In IEEE Congress on
Evolutionary Computation, pages 1370–1375, 2003.

[37] J. Reisinger, K. O. Stanley, and R. Miikkulainen. Towards and empirical measure
of evolvability. In ACM Genetic and Evolutionary Computation Conference,
pages 257–264, 2005.

[38] C. D. Rosin and R. K. Belew. New methods for competitive coevolution. Evol.
Comput., 5(1):1–29, 1997.

[39] D. Saad, editor. On-line learning in neural networks. Cambridge University
Press, 1998.

[40] H. A. Simon. The sciences of the artificial. MIT Press, 2nd edition, 1996.

66

[41] S. Song, M. I. Heywood, and A. N. Zincir-Heywood. Training genetic program-
ming on half a million patters: An example from anomaly detection. IEEE
Transactions on Evolutionary Computation, 9(3):225–239, 2005.

[42] M. Sugiyama and M. Kawanabe. Machine learning in non-stationary environ-
ments. MIT, 2012.

[43] A. Teller and M. Veloso. Pado: A new learning architecture for object recog-
nition. In K. Ikeuchi and M. Veloso, editors, Symbolic visual learning. Oxford
University Press, 1995.

[44] N. Wagner, Z. Michalewicz, M. Khouja, and R. R. McGregor. Time series fore-
casting for dynamic environments: The DyFor genetic program model. IEEE
Transactions on Evolutionary Computation, 11(4):433–452, 2007.

[45] S. X. Wu and W. Banzhaf. Rethinking multilevel selection in genetic program-
ming. In ACM Genetic and Evolutionary Computation Conference, pages 1403–
1410, 2011.

[46] X. Zhu, P. Zhang, X. Lin, and Y. Shi. Active learning from stream data using
optimal weight classifier ensemble. IEEE Transactions on Systems, Man, and
Cybernetics–Part B, 40(6):1607–1621, 2010.

Appendix A

Parameterizations

This section presents parameterizations that are not directly relevant to the con-

struction of the experimental methodologies discussed in Chapter 5, and – where

appropriate – discusses the motivation for their values. Section A.1 contains the pa-

rameters used for the GP framework this thesis builds off of, and Section A.2 discusses

the motivation behind the configuration of the tapped delay lines explored in Section

5.3.

A.1 SBB Parameterizations

There are several parameters supported by the underlying SBB framework used for

the tasks in this work. Except when otherwise specified for particular experimental

configurations in Chapter 5, the parameterizations used for SBB are shown in Table

A.1. These settings are taken directly from previous work on SBB, and no parameter

tuning was performed to adjust the algorithm to particular datasets contained herein.

A.2 TDL Parameterizations

There are two primary parameters used to characterize the tapped delay lines as

they occur in this work (defined in Section 3.4). A visual representation of these

parameters can be found in Figure 3.2.

Tap delay length, σ: The number of data points that are allowed to elapse before

new data points begin to be appended to previous ones. In all experimental

configurations involving TDLs this is set to be equivalent to the width of one

sliding window, i.e., σ = w. This is done so that the case of aggregate data

points duplicating data seen elsewhere does not have a confounding effect on

analysis of the results (when σ < w), while also not being so large that the total

amount of saved data σ · σn exceeds the length of the data stream.

67

68

Table A.1: SBB parameterization.

Description Value

Psize Point population size. 120
Msize Team population size. 120
tmax Default number of generations. 30 000

. . . on planar-{repeat,mirror} 60 000

. . . on datgen-{repeat,mirror} 57 857
pd Probability of learner deletion. 0.7
pa Probability of learner addition. 0.7
μa Probability of action mutation. 0.1
ω Maximum team size. 20

Pgap Point generation gap. 20
Mgap Team generation gap. 60

Tap delay count, σn: The number of taps that can be prepended to a point before

new taps begin to overwrite the oldest ones. This is set to σn = 7 in all exper-

imental configurations, due to the serendipitous fact that the current number

of operators and registers defined in the underlying GP representation resulted

in 3 bits being left for use before the opcodes spilled over the boundary of a 16

bit word.

