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Abstract

An integer-valued polynomial is a polynomial with rational coefficients that takes an

integer value when evaluated at an integer. The polynomials {(x
n

)}∞n=0 form a regular

basis for the Z-module of all integer-valued polynomials. Using the idea of a p-ordering

and a p-sequence, Bhargava describes a similar characterization for polynomials that

are integer-valued on some subset of Z. This thesis focuses on characterizing the

polynomials that are integer-valued on the Fibonacci numbers.

For a certain class of primes p, we give a formula for the p-sequence of the Fibonacci

numbers and an algorithm for finding a p-ordering by using Coelho and Parry’s results

on the distribution of the Fibonacci numbers modulo powers of primes. Knowing the

p-sequence, we can then find a p-local regular basis for the polynomials that are

integer-valued on the Fibonacci numbers using Bhargava’s methods. A regular basis

can be constructed from p-local bases for all primes p.
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Chapter 1

Introduction

An integer-valued polynomial on S, for S ⊆ Q, is a polynomial with rational coeffi-

cients that takes an integer value when evaluated at an element of S. The set of all

such polynomials is denoted by

Int(S,Z) = {f(x) ∈ Q[x]|f(S) ⊆ Z}.

Integer-valued polynomials on Z have long been known and used in calculus. In

particular, it has been known that every integer-valued polynomial on Z can be

uniquely expressed as an integer linear combination of the binomial polynomials{(
x

n

)
=

x(x− 1) . . . (x− n+ 1)

n!

}∞

n=0

.

The polynomials
(
x
n

)
are said to form a regular basis, that is, a basis consisting of one

polynomial of each degree, for the ring Int(Z,Z).

In a similar way, for a fixed prime integer p and S ⊆ Q, we can consider

Int(S,Z(p)) = {f(x) ∈ Q[x]|f(S) ⊆ Z(p)},

where Z(p) = {a/b|a, b ∈ Z, p � b} is the set of p-local integers . It has been shown,

as in [5], that Int(S,Z(p)) = Int(S,Z)(p), the p-localization of Int(S,Z), so that by

describing Int(S,Z(p)) for all p, we can describe Int(S,Z). A regular basis for Int(S,Z)

can be constructed from ones for Int(S,Z(p)) for all primes p.

The question then arises whether such a basis can be found for Int(S,Z(p)) with

S �= Z. M. Bhargava, in [4], has shown that it is possible by constructing a “general-

ized binomial polynomial” using the idea of a p-ordering and a p-sequence. Associated

to any subalgebra of Q[x] is a sequence of fractional ideals, called characteristic ideals,

with the nth one consisting of 0 and the leading coefficients of elements of the subal-

gebra of degree less than or equal to n. The characteristic ideals we consider in this

thesis are all principal ideals and the p-adic valuations of the generators of these ideals

1



2

form the characteristic sequence of the subalgebra. Given a regular basis for such a

subalgebra, the leading coefficients of the basis elements generate the characteristic

ideals and this property characterizes regular bases. For a fixed prime integer p, if the

subalgebra is of the form Int(S,Z(p)), then it is a theorem that the p-sequence coming

from a p-ordering of S, defined by Bhargava, is the sequence of p-adic valuations of

these characteristic ideals, so you can reconstruct the characteristic sequence if all of

the p-sequences are known.

In this thesis, we show how to find the p-sequence of the set of Fibonacci numbers,

denoted F, for a certain class of primes. Then, from Bhargava’s results, we obtain

an algorithm for finding the characteristic sequence for Int(F,Z(p)) and constructing

a p-local basis. With these p-local bases for all primes p, we can then show that

1, x,
x2 − x

2
,
x3 − 3x2 + 2x

6
,
x4 − 6x3 + 11x2 − 6x

24
,

143x5 − 2965x4 + 14215x3 − 24035x2 + 12642x

240
,

269x6 − 9255x5 + 80285x4 − 274545x3 + 392126x2 − 188880x

720
,

245129x7 − 18791962x6 + 343262150x5

−2392639900x4 + 7391778401x3 − 10008680458x2 + 4684826640x
443520

,

245129x8 − 23406351x7 + 605061912x6 − 6640975530x5

+35440539981x4 − 94265906679x3 + 117015122578x2 − 52130681040x
443520

, and

54687901x9 − 31874521653x8 + 7668792570894x7

−568782337259682x6 + 9101305330342869x5 − 58282598264258277x4

171075685473526496x3 − 224615295883995588x2 + 103282048708907040x
103783680

,

are the first 10 elements of a regular basis for Int(F,Z) and, thus, give a method

of testing whether or not a given polynomial of degree 9 or less is in Int(F,Z). For

example, we can show that

f(x) =
x(x− 1)(x− 2)(x− 3)(x− 5)

24

is in Int(F,Z), despite the fact that f(x) /∈ Int(Z,Z) since f(4) = −3
2
.
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Consider the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2.

If we set F0 = 0 and F1 = 1 we obtain the Fibonacci sequence. Each Fn is a Fibonacci

number and, by Binet’s formula, we can write

Fn =
1√
5

(
βn −

(−1

β

)n)
,

where β = 1+
√
5

2
.

Although we would like to know the p-sequence of F, for all prime integers p, we

will restrict our attention to the primes for which β satisfies the following condition.

(The methods we use, however, can be extended to include all primes.)

Condition 1.0.1.

1. If 5 is a square mod p, then β is of order p − 1 in the group of units of Z/(p)

and βp−1 �≡ 1 in Z/(p2).

2. If 5 is not a square mod p, then β is of order 2(p + 1) in the group of units of

(Z+
√
5Z)/(p) and β2(p+1) �≡ 1 in (Z+

√
5Z)/(p2).

From here on, we will assume, unless otherwise stated, that all prime integers p

appearing are ones for which β satisfies Condition 1.0.1. We will also assume that

p �= 2 or 5, since these two cases are handled separately in Chapter 5.

For a fixed prime p of this type, we can determine which residue classes are

represented by the Fibonacci numbers modulo p, using some of the results from

[6]. This information helps us find a subset T of the integers with F ⊆ T and

F/(pk) = T/(pk), ∀k > 0. For such a subset, Int(F,Z(p)) = Int(T,Z(p)) and, thus, the

p-sequence of F is the same as the p-sequence of T . We can then work with T instead

of F when computing the p-sequence of the Fibonacci numbers.

The p-sequence of T can be found by decomposing T into simpler subsets, using

known results to calculate their p-sequences, and then combining these p-sequences.

Finding the p-sequence of T this way, we can give a formula for the p-sequence of F

and an algorithm for finding a p-ordering and so a p-local regular basis, which is our

main result.

To state the main result, we need the following notation:
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Notation 1.0.2. For a fixed prime integer p

1. The p-adic valuation of an element z of Z is the largest k for which pk divides

z and will be denoted vp(z).

2. For a ∈ Z, the linear sequence with a · n as its n-th term will be denoted (an).

3. For S ⊆ Z, the p-sequence of S will be denoted {αS,p(k)}∞k=0.

4. The p-sequence of Z is

αZ,p(k) = vp(k!) =
∞∑
i=0

� k
pi
�.

5. The sum of two sequences σ and δ will be denoted σ+ δ and has σ(n) + δ(n) as

its n-th term.

6. The shuffle of two nondecreasing sequences σ and δ is the disjoint union of

the elements of the two sequences sorted into nondecreasing order and will be

denoted by σ ∧ δ. The shuffle of k copies of a sequence σ with itself will be

denoted σ∧k.

With this notation, our main result is:

Theorem 1.0.3. For a fixed odd prime integer p for which β satisfies Condition 1.0.1,

αF,p = (αZ,p + (k))∧a ∧ (αγ,p)
∧b,

where γ is a set whose p-sequence, αγ,p, is determined completely by the equation

αγ,p = ((αZ,p + (k))∧
p−1
2 ∧ αγ,p) + (2k),

and a and b are integers, with 0 ≤ b ≤ 4, computed in a manner described in Sec-

tion 9.2.

Note that the equation for αγ,p does determine this sequence completely since

αγ,p(n) is expressed in terms of other known quantities and αγ,p(m) for m < n. In

fact, this theorem gives a quick algorithm for computing αF,p, since the only operations

on sequences involved are sum, merge, and sort.
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This thesis is organized as follows. In Chapter 2 we provide a basic overview

of integer-valued polynomials and show that in order to describe Int(F,Z) it is

enough to describe, for all primes p, Int(T,Z(p)) for some F ⊆ T ⊆ Z such that

F/(pk) = T/(pk), ∀k > 0. Chapter 3 defines p-orderings and p-sequences and reviews

results regarding their computation. With these definitions, we can then look, in

Chapter 4, at the “generalized binomial polynomials” introduced by Bhargava in [4].

In Chapter 5 we provide a complete description of the distribution of the Fibonacci

numbers mod 2k and mod 5k and show how this information can be used to calculate

the 2-sequence and 5-sequence of the Fibonacci numbers. Chapter 6 introduces sev-

eral interesting groups related to the p-adic integers which will be used in our analysis

of Coelho and Parry’s paper, and briefly discusses Hensel’s Lemma. In Chapter 7 we

show that, since β satisfies Condition 1.0.1, it generates certain groups that will be

of interest in Chapter 8. Coelho and Parry’s results are used in Chapter 8 to give a

detailed account of how to determine which residue classes of Z/(pk) are represented

by Fibonacci numbers for the class of primes p we have restricted ourselves to. Fi-

nally, in Chapter 9 we describe how to create a visual representation of the results

from Chapter 8 in the form of tree diagrams and prove our main result which gives

a formula for calculating the p-sequence of the Fibonacci numbers for those primes

p with β satisfying Condition 1.0.1. The conclusion suggests the value of the main

result and describes how it may be extended to those primes p where β does not

satisfy Condition 1.0.1 and to other second-order linear recurrence relations.



Chapter 2

Integer-Valued Polynomials

2.1 Integer-Valued Polynomials

Definition 2.1.1. An integer-valued polynomial is a polynomial with rational coeffi-

cients that takes an integer value when evaluated at an integer. The set of all such

polynomials is denoted by

Int(Z) = {f(x) ∈ Q[x]|f(Z) ⊆ Z}.

Obviously, every polynomial with integer coefficients is integer-valued; however,

it is also possible for an integer-valued polynomial to have rational non-integer co-

efficients. For example, the polynomial f(x) = x(x − 1)/2 maps the integers to the

integers, since one of x and x− 1 must be even.

From our knowledge of Pascal’s triangle we know that for all nonnegative integers

m and n, the binomial coefficient
(
m
n

)
is an integer. Hence, if we fix a nonnegative

integer n, the binomial polynomial(
x

n

)
=

x(x− 1) . . . (x− n+ 1)

n!

is integer-valued for all nonnegative integers x, although its coefficients are not in Z,

since it evaluates to a binomial coefficient. Furthermore, it can easily be seen that(
x
n

)
is an integer for all integer values of x, not just the nonnegative ones.

Proposition 2.1.2. Let k ∈ Z. A polynomial f with coefficients in Q such that

f(n) ∈ Z for n ≥ k is integer-valued.

Proof. Let f be a polynomial with coefficients in Q such that f(n) ∈ Z for n ≥ k.

The proof is by induction on the degree d of f . If d = 0, then f is a constant function

and the result holds trivially. Now, suppose that the result is true for d = s. Let f

be of degree s + 1 and let a ∈ Z. Then there is a nonnegative integer b such that

(a+b) ≥ k and, hence, f(a+b) ∈ Z. Consider the polynomial g(x) = f(x)−f(x+b).

6
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Since f is of degree s + 1, then g is of degree at most s, and it is easily seen that

g(n) ∈ Z for n ≥ k. Thus, g ∈ Int(Z). However, f(a) = g(a) + f(a + b), and, so,

f(a) ∈ Z. Therefore, f is integer-valued.

Thus, the polynomials
(
x
n

)
are integer-valued, since

(
m
n

) ∈ Z for m ≥ 0. Using

these polynomials, it is possible to characterize all integer-valued polynomials.

Theorem 2.1.3. A polynomial is integer-valued on Z if and only if it can be written

as a Z-linear combination of the polynomials{(
x

n

)
=

x(x− 1) . . . (x− n+ 1)

n!
: n = 0, 1, 2, . . .

}
.

In other words, this theorem states that the polynomials {(x
n

)}∞n=0 form a regular

basis, i.e., a basis consisting of one polynomial of each degree, of the Z-module Int(Z).

The proof closely follows the one by Cahen and Chabert in [5].

Proof. Since there is one binomial polynomial for each degree, it is clear that the

polynomials
(
x
n

)
form a Q-basis of the Q-vector space Q[x]. Furthermore, it was just

seen that the polynomials
(
x
n

)
are integer-valued. Thus, a Z-linear combination of

these polynomials is in Int(Z).

Conversely, let f ∈ Int(Z). Since the polynomials
(
x
n

)
form a basis of the Q-vector

space Q[x], we can write

f(x) = a0 + a1x+ a2

(
x

2

)
· · ·+ an

(
x

n

)
,

where a0, a1, . . . , an ∈ Q. The proof is by induction on the index j of the coefficients

aj of f . Note that a0 = f(0) ∈ Z. Let k < n and suppose that ai ∈ Z for i ≤ k. Then

gk(x) = f(x)−∑k
i=0 ai

(
x
i

)
is integer-valued. However,

gk(x) = ak+1

(
x

k + 1

)
+ · · ·+ an

(
x

n

)
.

Thus, ak+1 = gk(k + 1) ∈ Z. Therefore, f can be written as a Z-linear combination

of the polynomials
(
x
n

)
.

It is clear from this proof that it is sufficient for f to take integral values on

the nonnegative integers 0, 1, . . . , n, to be integer-valued on Z. By considering the
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polynomial h with h(x) = f(x + a) for some integer a, we also have the following

result.

Corollary 2.1.4. A polynomial f of degree n is integer-valued if and only if it takes

integral values on any n+ 1 consecutive integers.

In particular, for f to be in Int(Z) it is enough that f(N0) ⊆ Z.

Now that we have seen that all of the polynomials that are integer-valued on Z are

Z-linear combinations of the binomial polynomials, it is natural to wonder to what

generality this result can be extended. In particular, is it possible to come up with a

similar characterization for polynomials that are integer-valued on some subset of Z?

For example, is there a characterization for polynomials such as f(x) = x/2, which

are integer-valued on all even integers?

It turns out that it is possible. In order to create such a characterization, how-

ever, we must first define a generalized factorial function and a generalized “falling

factorial”. Once this has been done, a basis for polynomials that are integer-valued

on a subset of Z that looks very similar to the one we have just described can be

found.

Before continuing, we should define integer-valued polynomials on a subset of a

domain.

Definition 2.1.5. Let D be a domain with quotient field K and let S ⊆ K. An

integer-valued polynomial on S is a polynomial with coefficients in K that takes a

value in D when evaluated at an element of S. The set of all such polynomials is

denoted by

Int(S,D) = {f ∈ K[X]|f(S) ⊆ D.}

We are interested in integer-valued polynomials on S ⊆ Q. The set of all such

polynomials is denoted by

Int(S,Z) = {f(x) ∈ Q[x]|f(S) ⊆ Z}.

It is clear that Int(S,Z) is a ring contained in Q[x].
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2.2 The Ring Int(S,Z(p))

Also of interest is the set

Int(S,Z(p)) = {f(x) ∈ Q[x]|f(S) ⊆ Z(p)},

where p is a fixed prime integer and S ⊆ Q. We are particularly interested in

its relationship to Int(S,Z)(p). To describe this relationship, we first need another

definition.

Definition 2.2.1. A subset S of Q is said to be a fractional subset of Z if there exists

a nonzero element d of Z such that dS ⊆ Z.

The following result is proved as Proposition I.2.7 in [5].

Proposition 2.2.2. Let p be a fixed prime integer and let S be a fractional subset of

Z. Then

Int(S,Z(p)) = Int(S,Z)(p).

Hence, as mentioned in the introduction, to describe Int(S,Z) it is enough to

describe Int(S,Z(p)) for all primes p. A regular basis for Int(S,Z) can be constructed

from ones for Int(S,Z(p)) for all p. For a given integer n, there are only a finite

number of primes p for which the nth element of a regular Z(p)-basis for Int(S,Z(p))

has a nonzero denominator. By the Chinese Remainder Theorem, there is an integer

linear combination of these basis elements which will be the nth element of a Z-

basis of Int(S,Z). Thus, to find a regular basis for Int(F,Z), we can now focus on

constructing regular bases for Int(F,Z(p)). The next lemma makes this construction

much simpler, by allowing us to work instead with Int(T,Z(p)) for certain F ⊆ T ⊆ Z.

Lemma 2.2.3. For a fixed prime integer p, if S ⊆ T ⊆ Z and S/(pk) = T/(pk), ∀k >

0, then Int(S,Z(p)) = Int(T,Z(p)).

Proof. Suppose S ⊆ T ⊆ Z and S/(pk) = T/(pk), ∀k > 0. Clearly,

Int(T,Z(p)) = {f(x) ∈ Q[x]|f(T ) ⊆ Z(p)}
⊆ {f(x) ∈ Q[x]|f(S) ⊆ Z(p)}
= Int(S,Z(p)),
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since S ⊆ T . Thus, it remains to show that Int(S,Z(p)) ⊆ Int(T,Z(p)). Let f(x) =∑n
i=0 aix

i ∈ Int(S,Z(p)) and let y ∈ T . If y ∈ S, then f(y) ∈ Z(p). So, suppose y /∈ S.

Now, ∀i ∈ {0, . . . , n}, we have ai =
ci
di
, for some ci, di ∈ Z with di �= 0, since ai ∈ Q.

Let ki = vp(di), ∀i ∈ {0, . . . , n} and let k = max {k0, . . . , kn}.
If k = 0, then ai ∈ Z(p), ∀i ∈ {0, . . . , n}, and f(y) ∈ Z(p) trivially. If k > 0,

then ∃z ∈ S such that y ≡ z mod pk, that is, such that y = z + m · pk for some

m ∈ Z, since S/(pk) = T/(pk). Note that f(x) =
∑n

i=0 aix
i ∈ Int(S,Z(p)) and z ∈ S,

so f(z) =
∑n

i=0 aiz
i ∈ Z(p). Moreover, ∀i ∈ {0, . . . , n}, we can write ai =

bi
pk
, where

bi = pkai ∈ Z(p). Hence, f(z) =
∑n

i=0
bi
pk
zi ∈ Z(p).

Now, consider

f(y) =
n∑

i=0

bi
pk

yi

=
n∑

i=0

bi
pk

(z +m · pk)i

=
n∑

i=0

biz
i + biAi

pk
,

where Ai is an integer divisible by pk, ∀i ∈ {0, . . . , n}. Letting Ai = pkA′
i with A′

i ∈ Z,

∀i ∈ {0, . . . , n}, we have

f(y) =
n∑

i=0

biz
i + bip

kA′
i

pk

=
n∑

i=0

biz
i

pk
+

n∑
i=0

biA
′
i

= f(z) +
n∑

i=0

biA
′
i.

From above, we know that f(z) ∈ Z(p), and it is clear that
∑n

i=0 biA
′
i ∈ Z(p), since bi ∈

Z(p) and A′
i ∈ Z. So, f(y) ∈ Z(p). Thus, f(x) ∈ Int(T,Z(p)). Therefore, Int(S,Z(p)) ⊆

Int(T,Z(p)) and the result holds.

So, to describe Int(F,Z(p)) it is enough to describe Int(T,Z(p)) for some F ⊆ T ⊆ Z

such that F/(pk) = T/(pk), ∀k > 0. Hence, we will look at F/(pk), for different k, to

determine an appropriate T .

If Int(S,Z(p)) = Int(T,Z(p)), then the p-sequence of S is the same as the p-sequence

of T , since the regular bases of Int(S,Z(p)) and Int(T,Z(p)) are the same. Hence, if we
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find a set T with F ⊆ T ⊆ Z such that F/(pk) = T/(pk), ∀k > 0, then the p-sequence

of T will the same as the p-sequence of F.



Chapter 3

p-Sequences

3.1 p-Orderings

As mentioned in the introduction, in order to find a regular basis for Int(F,Z) we will

construct a “generalized binomial polynomial” using the idea of a p-sequence. Before

we define a p-sequence, we must first define a p-ordering.

Definition 3.1.1. For an infinite subset S of Z, an ordering of S is a bijective map

ψ : N0 → S.

When we are only considering one ordering of a set, the familiar notation {ai}∞i=0

with ai = ψ(i) for an ordering will often be used instead.

Definition 3.1.2. For a fixed prime integer p and an arbitrary infinite subset S of

Z, a p-ordering of S, as introduced in [4], is a sequence {ai}∞i=0 of elements of S such

that a0 is chosen randomly and, for each n > 0, the element an is chosen to minimize

vp(
∏n−1

i=0 (s− ai)) over s ∈ S.

Obviously, a p-ordering of S is not unique. In fact, the element a0 is chosen

randomly, and often several elements in S give the same desired minimum when

searching for an when n > 0, in which case it is possible to choose any one of these

elements. Moreover, each time an ai is chosen, it affects the choices available in the

future.

Although an is chosen to minimize vp(
∏n−1

i=0 (s − ai)) over s ∈ S and S is an

infinite set, we may restrict our search to s ∈ S/(pk) for an appropriate k ∈ Z,

making computations much easier. To prove this result, we must first recall two

important properties of the p-adic valuation.

Lemma 3.1.3. Let c, d ∈ Z. Then

1. vp(c · d) = vp(c) + vp(d) and

12
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2. vp(c + d) ≥ min(vp(c), vp(d)). Moreover, if vp(c) �= vp(d), then vp(c + d) =

min(vp(c), vp(d)).

Proof. First, note that, since c, d ∈ Z, we can write c = npk and d = mpl for some

n,m, k, l ∈ Z with gcd(n, p) = gcd(m, p) = 1.

1. Then

vp(c · d) = vp(np
k ·mpl)

= vp(p
k+lnm)

= k + l

= vp(c) + vp(d).

2. Suppose, without loss of generality, that k ≤ l. That is, vp(c) ≤ vp(d). Then it

is clear that

vp(c+ d) = vp(p
k(n+mpl−k)) ≥ vp(c) = min(vp(c), vp(d)),

with equality when vp(c) < vp(d).

Remark 3.1.4. The p-adic valuation gives rise to the p-adic norm of Q defined, for

x ∈ Q, by

|x|p =
{

p−vp(x), if x �= 0

0, if x = 0.

Note that vp(
a
b
) = vp(a)− vp(b) for

a
b
∈ Q. A metric space can then be formed on Q

with metric defined by d(x, y) = |x− y|p, for x, y ∈ Q. In fact, this metric forms an

ultrametric structure on Q due to property 2 of Lemma 3.1.3.

We may now prove the following lemma:

Lemma 3.1.5. Let S be an arbitrary infinite subset of Z. If {a0, a1, . . . , an−1} is the

beginning of a p-ordering of S, then there is a k ∈ Z such that an can be computed by

searching S/(pk).
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Proof. Let {a0, a1, . . . , an−1} be the beginning of a p-ordering of S. Let a ∈ S and let

vp(
∏n−1

i=0 (a − ai)) = M for some M ∈ Z. Let b, b′ ∈ S with b ≡ b′ mod pM+1. That

is, b′ = b+ spM+1 for some s ∈ Z. Note that

vp

(
n−1∏
i=0

(b′ − ai)

)
= vp

(
n−1∏
i=0

((b+ spM+1)− ai)

)

= vp

(
n−1∏
i=0

(spM+1 + (b− ai))

)

=
n−1∑
i=0

vp(sp
M+1 + (b− ai)).

Now, there are three cases to consider: vp(
∏n−1

i=0 (b−ai)) = M , vp(
∏n−1

i=0 (b−ai)) >

M , and vp(
∏n−1

i=0 (b − ai)) < M . If vp(
∏n−1

i=0 (b − ai)) = M , then b is equivalent

to a in our consideration of which element to choose next in our p-ordering. If

vp(
∏n−1

i=0 (b−ai)) > M , however, then a is preferred to b in our consideration of which

element to choose next in our p-ordering.

Finally, if vp(
∏n−1

i=0 (b − ai)) =
∑n−1

i=0 vp(b − ai) < M , then vp(b − ai) < M , ∀i ∈
{0, 1, . . . , n− 1}. Hence,

vp(sp
M+1 + (b− ai)) = min(vp(sp

M+1), vp(b− ai)) = vp(b− ai)

since vp(b− ai) �= vp(sp
M+1), ∀i ∈ {0, 1, . . . , n− 1}, by Lemma 3.1.3. Thus,

vp

(
n−1∏
i=0

(b′ − ai)

)
=

n−1∑
i=0

vp(sp
M+1 + (b− ai))

=
n−1∑
i=0

vp(b− ai)

= vp

(
n−1∏
i=0

(b− ai)

)
.

So, if vp(
∏n−1

i=0 (b − ai)) < M , then b is equivalent to b′ in our consideration of

which element to choose next in our p-ordering and both b and b′ are preferred to a.

Therefore, when computing an, it is sufficient to consider an element b ∈ S from each

non-empty residue class modulo pM+1. Thus, there is a k ∈ Z such that an can be

computed by searching S/(pk).
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3.2 p-Sequences

Once a p-ordering has been constructed, we obtain a corresponding sequence of non-

negative integers called the p-sequence of S.

Definition 3.2.1. For a fixed prime integer p and an arbitrary infinite subset S of Z

with p-ordering {ai}∞i=0, the p-sequence of S is the sequence of integers {αS,p(k)}∞k=0

with αS,p(0) = 0 and αS,p(k) = vp(
∏k−1

i=0 (ak − ai)), for k > 0.

Now, it would seem, since there are many choices to be made when constructing

a p-ordering, that the resulting p-sequence could be pretty much anything. Thus, it

is surprising that the p-sequence of S is actually well-defined, in that it depends only

on S and may be spoken of without reference to any particular p-ordering. This fact

is Theorem 5 in [4].

Remark 3.2.2. In [4] the p-sequence of S is the sequence of integers {vk(S, p) =

pαS,p(k)}∞k=0. It is clear, however, that if the sequence {vk(S, p)}∞k=0 is independent of

the choice of p-ordering then so is the sequence {αS,p(k)}∞k=0.

The following lemma describes some of the properties of p-sequences that we will

find useful.

Lemma 3.2.3. Let S be an arbitrary infinite subset of Z.

1. The p-sequence of S characterizes p-orderings of S in the sense that, if {ai}∞i=0

is an ordering of S such that vp(
∏k−1

i=0 (ak − ai)) = αS,p(k) for all k ≥ 0, then

{ai}∞i=0 is a p-ordering of S.

2. p-sequences are always nondecreasing.

Proof. 1. The proof follows closely that of Lemma 3.3 (a) in [10]. Suppose {ai}∞i=0

is an ordering of S such that vp(
∏k−1

i=0 (ak − ai)) = αS,p(k) for all k ≥ 0. If

{ai}∞i=0 is not a p-ordering of S, then there must exist m > 0 and b ∈ S such

that vp(
∏k−1

i=0 (ak − ai)) is minimal for k < m and

vp

(
m−1∏
i=0

(b− ai)

)
< vp

(
m−1∏
i=0

(am − ai)

)
= αS,p(m).

This contradicts the fact that αS,p(m) is the same for all p-orderings. Thus,

{ai}∞i=0 is a p-ordering of S.
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2. The proof follows closely that of Lemma 3.3 (b) of [10]. Suppose {ai}∞i=0 is a p-

ordering of S with p-sequence {αS,p(k)}∞k=0. The minimality of vp(
∏k−1

i=0 (ak−ai))

implies

αS,p(k) = vp

(
k−1∏
i=0

(ak − ai)

)
≤ vp

(
k−1∏
i=0

(ak+1 − ai)

)
≤ vp

(
k∏

i=0

(ak+1 − ai)

)
= αS,p(k+1).

Thus, {αS,p(k)}∞k=0 is always nondecreasing.

3.3 Computing p-Sequences

The next lemma is helpful for computation and will be used frequently in the material

that follows.

Lemma 3.3.1. Let S be an arbitrary infinite subset of Z with p-sequence {αS,p(k)}∞k=0.

1. If r ∈ Z, then the p-sequence of r + S = {r + s : s ∈ S} is {αS,p(k)}∞k=0 also.

2. If r ∈ Z such that p does not divide r, then the p-sequence of r·S = {r·s : s ∈ S}
is {αS,p(k)}∞k=0 also.

3. If m ∈ Z+, then the p-sequence of pm ·S = {pm ·s : s ∈ S} is {αS,p(k)+m·k}∞k=0.

We denote this sequence αS,p + (mk).

Proof. The proofs follow closely that of Lemma 3.3 (c) in [10].

1. Let r ∈ Z. Suppose {ai}∞i=0 is a p-ordering of S. Then αS,p(0) = 0 and αS,p(k) =

vp(
∏k−1

i=0 (ak − ai)), for k > 0.

Consider the ordering {r+ai}∞i=0 of r+S. It is a p-ordering of r+S if and only

if, for each k > 0,

vp

(
k−1∏
i=0

((r + ak)− (r + ai))

)
= vp

(
k−1∏
i=0

(ak − ai)

)

is minimal. Thus, {r + ai}∞i=0 is a p-ordering of r + S, since {ai}∞i=0 is a p-

ordering of S. Moreover, the p-sequence is {αS,p(k)}∞k=0 since αr+S,p(0) = 0

and, for k > 0,

αr+S,p(k) = vp(
k−1∏
i=0

((r + ak)− (r + ai))) = vp(
k−1∏
i=0

(ak − ai)) = αS,p(k).
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2. Let r ∈ Z such that p does not divide r. Suppose {ai}∞i=0 is a p-ordering of S.

Then αS,p(0) = 0 and αS,p(k) = vp(
∏k−1

i=0 (ak − ai)), for k > 0.

Consider the ordering {r · ai}∞i=0 of r · S. It is a p-ordering of r · S if and only

if, for each k > 0,

vp

(
k−1∏
i=0

((r · ak)− (r · ai))
)

= vp

(
k−1∏
i=0

r(ak − ai)

)

= vp

(
rk

k−1∏
i=0

(ak − ai)

)

= vp
(
rk
)
+ vp

(
k−1∏
i=0

(ak − ai)

)

= vp

(
k−1∏
i=0

(ak − ai)

)
.

is minimal. Thus, {r · ai}∞i=0 is a p-ordering of r ·S, since {ai}∞i=0 is a p-ordering

of S. Moreover, the p-sequence is {αS,p(k)}∞k=0 since αr·S,p(0) = 0 and, for k > 0,

αr·S,p(k) = vp(
k−1∏
i=0

((r · ak)− (r · ai))) = vp(
k−1∏
i=0

(ak − ai)) = αS,p(k).

3. Let m ∈ Z+. Suppose {ai}∞i=0 is a p-ordering of S. Then αS,p(0) = 0 and

αS,p(k) = vp(
∏k−1

i=0 (ak − ai)), for k > 0.

Consider the ordering {pm · ai}∞i=0 of pm · S. It is a p-ordering of pm · S if and

only if, for each k > 0,

vp

(
k−1∏
i=0

((pm · ak)− (pm · ai))
)

= vp

(
k−1∏
i=0

pm(ak − ai)

)

= vp

(
pmk

k−1∏
i=0

(ak − ai)

)

= vp
(
pmk

)
+ vp

(
k−1∏
i=0

(ak − ai)

)

= m · k + vp

(
k−1∏
i=0

(ak − ai)

)
.

is minimal. Thus, {pm · ai}∞i=0 is a p- ordering of pm · S, since {ai}∞i=0 is a p-

ordering of S. Moreover, the p-sequence is {αS,p(k)+m·k}∞k=0 since αpm·S,p(0) =
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0 and, for k > 0,

αpm·S,p(k) = vp(
k−1∏
i=0

((pm·ak)−(pm·ai))) = m·k+vp

(
k−1∏
i=0

(ak − ai)

)
= αS,p(k)+m·k.

If a p-ordering of a set is known, it can be quite easy to determine p-orderings of

certain subsets.

Lemma 3.3.2. Let S be an arbitrary infinite subset of Z. If r ∈ Z and {ai}∞i=0 is a

p-ordering of S, then the subsequence of {ai}∞i=0 consisting of those ai ≡ r(mod p) is

a p-ordering of S ∩ (r + pZ) and the corresponding subsequence of the p-sequence of

S is the p-sequence of S ∩ (r + pZ).

Proof. The proof follows closely that of Lemma 3.5 (a) in [10]. Let r ∈ Z and let

{ai}∞i=0 be a p-ordering of S with p-sequence {αS,p(k)}∞k=0. Let Sr = S ∩ (r+ pZ) and

suppose ak ∈ Sr. If ai ∈ S ∩ (t+ pZ) for r �≡ t(mod p), then vp(ak − ai) = 0. Hence,

αS,p(k) = vp

(
k−1∏
i=0

(ak − ai)

)

= vp

⎛
⎜⎝ k−1∏

i=0
ai∈Sr

(ak − ai)

⎞
⎟⎠ .

Furthermore, if s ∈ Sr, then

vp

⎛
⎜⎝ k−1∏

i=0
ai∈Sr

(s− ai)

⎞
⎟⎠ = vp

(
k−1∏
i=0

(s− ai)

)

≥ vp

(
k−1∏
i=0

(ak − ai)

)

= vp

⎛
⎜⎝ k−1∏

i=0
ai∈Sr

(ak − ai)

⎞
⎟⎠ .

Thus, ak minimizes

vp

⎛
⎜⎝ k−1∏

i=0
ai∈Sr

(s− ai)

⎞
⎟⎠
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for s ∈ Sr. Hence, {ai}∞i=0 ∩ Sr is a p-ordering of Sr and {αS,p(k) : ak ∈ Sr, k =

0, 1, 2, . . . } is the p-sequence of Sr.

Given the p-sequences of two sets, it can also be straightforward to compute the

p-sequence of their union under certain conditions.

Lemma 3.3.3. Let A and B be arbitrary infinite subsets of Z and let {ai}∞i=0 and

{bi}∞i=0 be p-orderings of A and B, respectively, with associated p-sequences {αA,p(k) :

k = 0, 1, 2, . . . } and {αB,p(k) : k = 0, 1, 2, . . . }.
If vp(a− b) = 0, ∀a ∈ A, b ∈ B, then the p-sequence of A∪B is the disjoint union

of {αA,p(k) : k = 0, 1, 2, . . . } and {αB,p(k) : k = 0, 1, 2, . . . } sorted into nondecreasing

order. Moreover, the corresponding values of {ai}∞i=0 and {bi}∞i=0 sorted into the same

order give a p-ordering of A ∪B.

Proof. Suppose that {ai}l−1
i=0 and {bi}m−1

i=0 together form the first l + m terms of a

p-ordering of A ∪B. The next element of a p-ordering will be one which minimizes

vp ((s− a0) . . . (s− al−1)(s− b0) . . . (s− bm−1))

over s ∈ A ∪ B. By assumption, vp(a− b) = 0, ∀a ∈ A, b ∈ B. Hence, for s ∈ A, the

above valuation is vp ((s− a0) . . . (s− al−1)) which is minimized by al, while for s ∈ B,

this valuation is vp ((s− b0) . . . (s− bm−1)) which is minimized by bm. Thus, the next

term in a p-ordering of A ∪ B can be taken to be al if vp ((al − a0) . . . (al − al−1))

is smaller than vp ((bm − b0) . . . (bm − bm−1)), and bm if it is larger. Hence, the next

term in the p-sequence of A ∪ B is αA,p(l), if al is the next term in a p-ordering of

A ∪B and αB,p(m), if bm is. So, the p-sequence of A ∪B is the disjoint union of the

p-sequences of A and B sorted into nondecreasing order. It is clear from construction

that the corresponding values of {ai}∞i=0 and {bi}∞i=0 give a p-ordering of A ∪B.

The following definition will allow us to make the combination of sequences in

Lemma 3.3.3 above precise.

Definition 3.3.4. Let A and B be arbitrary infinite subsets of Z with p-sequences

{αA,p(k) : k = 0, 1, 2, . . . } and {αB,p(k) : k = 0, 1, 2, . . . }, respectively. The shuffle of

the p-sequences of A and B is the disjoint union of the values of the two sequences

sorted into nondecreasing order. We will denote this combination of sequences by

αA,p ∧ αB,p.
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With this notation, we have the following corollary to Lemma 3.3.3.

Corollary 3.3.5. Let S be an arbitrary infinite subset of Z. If r �≡ t(mod p), then

the p-sequence of (S ∩ (r + pZ)) ∪ (S ∩ (t + pZ)) is the shuffle of the p-sequences of

S ∩ (r + pZ) and S ∩ (t+ pZ).

We can also generalize Lemma 3.3.3 as follows:

Corollary 3.3.6. Let A and B be arbitrary infinite subsets of Z and let {ai}∞i=0 and

{bi}∞i=0 be p-orderings of A and B, respectively, with associated p-sequences {αA,p(k) :

k = 0, 1, 2, . . . } and {αB,p(k) : k = 0, 1, 2, . . . }.
If there is a non-negative integer m such that vp(a− b) = m, ∀a ∈ A, b ∈ B, then

the p-sequence of A ∪ B is the sum of the sequence {m · k}∞k=0 with the shuffle of

{αA,p(k)−m · k}∞k=0 and {αB,p(k)−m · k}∞k=0. That is,

αA∪B,p = ((αA,p − (mk)) ∧ (αB,p − (mk))) + (mk).

Moreover, this shuffle applied to {ai}∞i=0 and {bi}∞i=0 gives a p-ordering of A ∪ B.

Proof. Fix a0 ∈ A and consider the sets A− a0 and B − a0. Let a− a0 ∈ A− a0 and

b− a0 ∈ B − a0. Note that vp(a− a0) ≥ m since, ∀c ∈ B, we have

vp(a− a0) = vp(a− c+ c− a0))

≥ min(vp(a− c), vp(c− a0)), by Lemma 3.1.3 (2)

= m, by assumption,

and vp(b− a0) = m, by assumption. Thus, A− a0 = pm ·A′ and B− a0 = pm ·B′, for

some A′, B′ ⊆ Z. So, A = pmA′ + a0 and B = pmB′ + a0.

Let a′ ∈ A′ and b′ ∈ B′. Then pma′ + a0 ∈ A and pmb′ + a0 ∈ B. Hence,

m = vp((p
ma′ + a0)− (pmb′ + a0)), by assumption

= vp(p
m(a′ − b′))

= vp(p
m) + vp(a

′ − b′), by Lemma 3.1.3 (1)

= m+ vp(a
′ − b′),

and so, vp(a
′ − b′) = 0. Thus, by Lemma 3.3.3 we have

αA′∪B′,p = αA′,p ∧ αB′,p.
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Now, it is clear that A ∪ B = (pmA′ + a0) ∪ (pmB′ + a0) = pm(A′ ∪ B′) + a0.

Therefore, by Lemma 3.3.1,

αA∪B,p = αpm(A′∪B′)+a0,p

= αpm(A′∪B′),p

= αA′∪B′,p + (mk)

= (αA′,p ∧ αB′,p) + (mk).

Furthermore,

αA,p = αpmA′+a0,p

= αpmA′,p

= αA′,p + (mk),

and similarly,

αB,p = αB′,p + (mk).

Thus,

αA∪B,p = (αA′,p ∧ αB′,p) + (mk)

= ((αA,p − (mk)) ∧ (αB,p − (mk))) + (mk).

3.4 Examples for Computing p-Sequences

Let us look at some examples of how these lemmas can help us to compute the

p-sequence of a set S. We begin by considering the 2-sequence of S = Z.

Example: 2-Sequence of Z

Let S = Z. It is clear that we can write S = Z = 2Z ∪ (1 + 2Z). Now, by

Lemma 3.3.1 (1), we know that α1+2Z,2 = α2Z,2 and, by Lemma 3.3.1 (ii), we know

that α1+2Z,2 = α2Z,2 = αZ,2 + (k). Note that v2(a− b) = 0 ∀a ∈ 2Z, b ∈ (1 + 2Z). So,

by Lemma 3.3.3,

αZ,2 = (αZ,2 + (k))∧2.
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Since the p-sequence of Z is the shuffle of the same p-sequence with itself, the

consecutive values αZ,2(2k) and αZ,2(2k + 1) are equal. In fact, αZ,2(2k) = αZ,2(2k +

1) = αZ,2(k) + k, by the equation above. Thus, αZ,2(k) = αZ,2(�k/2�) + �k/2�.
Applying this equation repeatedly, a simple proof by inductions shows that

αZ,2(k) = αZ,2(�k/2�) + �k/2�
= (αZ,2(�k/4�) + �k/4�) + �k/2�
= . . .

=
∞∑
i=1

� k
2i
�.

Moreover, it is a well-known theorem of Legendre’s that v2(k!) =
∑∞

i=1� k
2i
�. Hence,

αZ,2(k) = v2(k!). Thus, the beginning of αZ,2 is:

αZ,2 = {0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, . . . }.

Next, we will consider the 2-sequence of S = Z \ 4Z.
Example: 2-Sequence of Z \ 4Z
Let S = Z \ 4Z. It is clear that we can write S = Z \ 4Z = (1 + 2Z) ∪ 2(1 + 2Z).

Now, using the fact that αZ,2(k) = v2(k!), as shown after Proposition 3.5.1, we can

calculate the beginning of αZ,2 to be:

αZ,2 = {0, 0, 1, 1, 3, 3, 4, 4, 7, 7, 8, 8, 10, 10, 11, 11, 15, 15, 16, 16, 18, 18, 19, 19, 22, 22, . . . }.

Next, by Lemma 3.3.1 (1), we know that α1+2Z,2 = α2Z,2 and, by Lemma 3.3.1

(ii), we know that α1+2Z,2 = α2Z,2 = αZ,2 + (k). Hence, the beginning of α1+2Z,2 is:

α1+2Z,2 = {0, 1, 3, 4, 7, 8, 10, 11, 15, 16, 18, 19, 22, 23, 25, 26, 31, 32, 34, 35, 38, 39, 41, . . . }.

Similarly, by Lemma 3.3.1 (ii), we know that α2(1+2Z),2 = α1+2Z,2 + (k). Hence,

the beginning of α2(1+2Z),2 is:

α2(1+2Z),2 = {0, 2, 5, 7, 11, 13, 16, 18, 23, 25, 28, 30, 34, 36, 39, 41, 47, 49, 52, 54, 58, 60, . . . }.

Note that v2(a− b) = 0, ∀a ∈ (1 + 2Z), b ∈ 2(1 + 2Z). So, by Lemma 3.3.3

αZ\4Z,2 = α1+2Z,2 ∧ α2(1+2Z),2.

Thus, the beginning of αZ\4Z,2 is :

αZ\4Z,2(k) = {0, 0, 1, 2, 3, 4, 5, 7, 7, 8, 10, 11, 11, 13, 15, 16, 16, 18, 18, 19, 22, 23, 23, 25, . . . }.
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3.5 A p-Ordering of Z

We just saw, in Section 3.4, that αZ,2(k) = v2(k!) =
∑∞

i=1� k
2i
�. We will now find the

p-sequence of Z for all of the other primes p, by first looking at a p-ordering of Z.

Proposition 3.5.1. The natural ordering 0, 1, 2, . . . of the nonnegative integers forms

a p-ordering of Z for all primes p simultaneously.

Proof. Let p be a prime. The proof closely follows the proof of Proposition 6 in [4] and

is by induction on the number of steps in the computation of a p-ordering. Clearly, 0 is

a p-ordering for the 0th step, since the first element in a p-ordering is chosen randomly.

Suppose 0, 1, 2, . . . , k−1 is a p-ordering for the first k−1 steps. Then at the kth step

we need to pick ak to minimize vp(
∏k−1

i=0 (s−ai)) over s ∈ S. Notice that vp(
∏k−1

i=0 (ak−
ai)) = vp[(ak−0)(ak−1) . . . (ak− (k−1))] and (ak−0)(ak−1) . . . (ak− (k−1)) is the

product of k consecutive integers. Thus, (ak − 0)(ak − 1) . . . (ak − (k− 1)) = c · k! for
some c ∈ Z. In particular, (ak− 0)(ak− 1) . . . (ak− (k− 1)) = k!, if we choose ak = k.

Furthermore, it is clear that this value of ak minimizes vp(
∏k−1

i=0 (ak − ai)) = vp(c · k!).
Hence, at the kth step we choose ak = k. Since p was arbitrarily chosen, the result

holds.

Let p be a prime. Since the p-sequence is independent of the choice of p-ordering,

we can calculate the p-sequence of Z. For k = 0, we have αZ,p(0) = 0, and, for

k ∈ {1, 2, 3, . . . }, we have

αZ,p(k) = vp

(
k−1∏
i=0

(ak − ai)

)

= vp((ak − a0) . . . (ak − ak−1))

= vp((k − 0) . . . (k − (k − 1)))

= vp(k!).

So, we get an expression with a factorial in it. In fact, if we multiply pvp(k!) over

all primes p, then we get exactly k!. That is,

k! =
∏
p

pvp(k!) =
∏
p

pαZ,p(k)
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Thus, the factorial function can be defined purely in terms of these invariants αZ,p(k).

However, these invariants αS,p(k) were defined not just for Z but for any subset S

of Z. This realization motivates the following definition:

Definition 3.5.2. Let S be an arbitrary subset of Z. Then the factorial function of

S, denoted k!S, is defined by

k!S =
∏
p

pαS,p(k).

In particular, we have k!Z = k!.

Since we have unique factorization in Z, we know that only finitely many of the

factors in the product are not equal to 1. Thus, k!S is well-defined for all S and k.

This definition turns out to be an “appropriate” number-theoretic generalization

of the factorial, in that many of the important number-theoretic properties of the

usual factorial still hold for k!S, even when S �= Z, as shown in [4].



Chapter 4

Generalized Characterization

4.1 Generalized “Falling Factorials”

Now, let us consider generalized “falling factorials.” Typically, polynomials in Q[x]

are written using the familiar basis {xn : n ≥ 0}. For many purposes, however, it is

more convenient to use the “falling factorial” basis

{x(n) = x(x− 1) . . . (x− n+ 1) : n = 0, 1, 2, . . . }
Furthermore, note that for n ∈ {0, 1, 2, . . . },(

x

n

)
=

x(x− 1) . . . (x− n+ 1)

n!
=

x(n)

n!
.

Thus, in order to characterize those polynomials that are integer-valued on a subset

S of Z using generalized binomial polynomials, we must first generalize this notion

of a “falling factorial”.

Definition 4.1.1. Let S be an arbitrary infinite subset of Z with p-ordering {ai}∞i=0.

The generalized falling factorial of S, denoted x(n)S,p, is defined by

x(n)S,p = (x− a0)(x− a1) . . . (x− an−1).

Note that when S = Z with p-ordering {0, 1, 2, . . . }, we have x(n)Z,p = x(n).

Taking this generalization one step further, we can construct a “global falling

factorial.”

Definition 4.1.2. Let S be an arbitrary infinite subset of Z. The global falling fac-

torial of S, denoted Bk,S(x), is defined by

Bk,S(x) = (x− a0,k)(x− a1,k) . . . (x− ak−1,k),

where {ai,k}∞i=0 is a sequence in Z that, for each prime p dividing k!S, is termwise

congruent modulo pαS,p(k) to some p-ordering of S.

Note that such a sequence {ai,k}∞i=0 exists for any k as a result of the Chinese

Remainder Theorem.
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4.2 Generalized Basis

Recalling the basis for the integer-valued polynomials on Z,{(
x

n

)
=

x(x− 1) . . . (x− n+ 1)

n!
=

x(n)

n!
: n = 0, 1, 2, . . .

}
,

the generalized basis for polynomials that are integer-valued on a subset S of Z is

easily guessed. Namely, we expect, for each n ∈ {0, 1, 2, . . . }, the factorial in the

denominator of
(
x
n

)
to be replaced by the generalized factorial function of S, and the

numerator to be replaced by the global falling factorial of S. Hence, we are led to the

following result which was proved as Theorem 14 of [3].

Theorem 4.2.1. A polynomial is integer-valued on a subset S of Z if and only if it

can be written as a Z-linear combination of the polynomials{
Bk,S(x)

k!S
=

(x− a0,k)(x− a1,k) . . . (x− ak−1,k)

k!S
: k = 0, 1, 2, ..

}
,

where Bk,S is as defined in Definition 4.1.2.

More information about these generalized binomial polynomials, along with ex-

amples, can be found in [3] and [4]. Thus, we have our desired generalization to

subsets of Z of the characterization of integer-valued polynomials on Z.

4.3 Generalized Basis Example

Let us look at these generalized basis polynomials for a subset of Z. For our example,

we will need one more result that will help us find the generalized factorial function.

In our previous example of the entire set Z, we found that the natural ordering

0, 1, 2, . . . of the nonnegative integers is a sequence that is a p-ordering for all primes

p simultaneously. It is very rare for there to exist such a sequence for a general subset

S of Z. There are, however, a few important subsets of Z for which this is the case,

such as

{qn : n ≥ 0} for q ∈ N0, {n2 : n ≥ 0}, and

{
n(n+ 1)

2
: n ≥ 0

}
.

Further results on simultaneous p-orderings can be found in [1], [2], and [12]. In

the special cases when a simultaneous p-ordering does exist, the generalized factorial

functions become quite simple to compute.
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Lemma 4.3.1. Let S be an arbitrary subset of Z with {ai}∞i=0 a p-ordering of S for

all primes p simultaneously. Then

k!S = |(ak − a0)(ak − a1) . . . (ak − ak−1)|.

Proof. The proof follows trivially from the definitions, since we have

k!S =
∏
p

pαS,p(k) =
∏
p

pvp(
∏k−1

i=0 (ak−ai)) = |(ak − a0)(ak − a1) . . . (ak − ak−1)|.

Example Let S be the set of even integers 2Z in Z. Then, using the same method

as when finding the p-ordering of Z, we see that the natural ordering 0, 2, 4, 6, . . . of

the nonnegative even integers forms a p-ordering of 2Z for all primes p simultaneously.

Thus, by Lemma 4.3.1, the generalized factorial function of S is

k!2Z = |(2k − 0)(2k − 2) . . . (2k − (2k − 2))| = 2kk!.

Now, since the natural ordering 0, 2, 4, 6, . . . of the nonnegative even integers forms

a p-ordering of 2Z for all primes p simultaneously, we can use {ai,k = 2i}∞i=0, as the

sequence described in Definition 4.1.2. So, the global falling factorial of S is

Bk,S(x) = (x− 0)(x− 2) . . . (x− 2(k − 1)).

Therefore, our generalized basis polynomials are{
Bk,S(x)

k!S
=

(x− 0)(x− 2) . . . (x− 2(k − 1))

2kk!
: k = 0, 1, 2, . . .

}
.

The similarity of these polynomials to the binomial polynomials is clear, since

Bk,S(x)

k!S
=

(x− 0)(x− 2) . . . (x− 2(k − 1))

2kk!

=
(x
2
− 0)(x

2
− 1) . . . (x

2
− (k − 1))

k!

=

(
x/2

k

)
.



Chapter 5

Distribution of F mod 5k and mod 2k

Bhargava’s results in the previous chapter show that we can construct “generalized

binomial polynomials”, which form a regular basis for Int(F,Z), if we know the p-

sequence of F for all primes p. We now need to consider how we can determine these

p-sequences. We start by calculating the 5-sequence and the 2-sequence of F, since

these p-sequences can be calculated without considering Coelho and Parry’s results

in [6].

Recall that the Fibonacci sequence F = {Fn} is defined by the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2,

with F0 = 0 and F1 = 1. Thus, any two consecutive terms in the sequence completely

determine the entire sequence. Consider F modulo m ∈ Z+. There are only m2

possible pairs of residues. Hence, some pair of consecutive terms of F mod m must

eventually repeat. So, F mod m is periodic.

Definition 5.0.2. The period of F modulo m ∈ Z+ is the smallest n ∈ Z+ such that

Fn ≡ 0 mod m and Fn+1 ≡ 1 mod m.

Let m ≥ 2 and let b be a residue modulo m. We will write D(m, b) for the number

of times b occurs as a residue in one period of F mod m.

It is well-known, as shown in [11], that the Fibonacci numbers are uniformly

distributed modulo 5k, for k ∈ Z+. In fact, the period of F mod 5k is 4 · 5k, and
D(5k, b) = 4 for all residues b mod 5k. Thus, F/(5k) = Z/(5k), ∀k ∈ Z+, since the

integers are also uniformly distributed modulo 5k. So, by Lemma 2.2.3, Int(F,Z(5)) =

Int(Z,Z(5)), which means that the 5-sequence of F and the 5-sequence of Z are the

same. Therefore, the 5-sequence of F can easily be computed using the formula

following Proposition 3.5.1 for αZ,p, that is, αZ,p(k) = vp(k!), ∀k ∈ Z+. The beginning

of αF,5 is:

αF,5 = αZ,5 = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 6, 6, 6, 6, 6, . . . }.
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Obviously, the fact that the Fibonacci numbers are uniformly distributed modulo

5k made the calculation of αF,5 very simple. Unfortunately, the Fibonacci numbers

are uniformly distributed only modulo pk for p = 5. We are, however, also able to

completely describe the function D(2k, b), for k ∈ Z+, due to a type of stability that

occurs when k ≥ 5. The following result was shown by Jacobson in [9]. Note that

the values of D(2k, b) for k = 1, 2, 3, 4 can easily be checked by hand, but have been

included for completeness.

Theorem 5.0.3. For F mod 2k, with k ∈ Z+, the following data appertain:

For 1 ≤ k ≤ 4:

D(2, 0) = 1,

D(2, 1) = 2,

D(4, 0) = D(4, 2) = 1,

D(8, 0) = D(8, 2) = D(16, 0) = D(16, 8) = 2,

D(16, 2) = 4,

D(2k, b) = 1 if b ≡ 3 mod 4 and 2 ≤ k ≤ 4,

D(2k, b) = 3 if b ≡ 1 mod 4 and 2 ≤ k ≤ 4, and

D(2k, b) = 0 in all other cases, 1 ≤ k ≤ 4.

For k ≥ 5:

D(2k, b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if b ≡ 3 mod 4

2, if b ≡ 0 mod 8

3, if b ≡ 1 mod 4

8, if b ≡ 2 mod 32

0, for all other residues.

The residue classes modulo 2 represented by the Fibonacci numbers can be visu-

alized with the tree diagram in Figure 5.1.

A node in the tree diagram represents the residue class modulo the power of 2

aligned with the node on the left of the tree. A node is drawn if there is a Fibonacci

number in that residue class and omitted if not. For instance there is a Fibonacci

number in the residue class 2 modulo 23, but there is no Fibonacci number in the

residue class 4 modulo 23. A triangle is used to depict the fact that there is a

Fibonacci number in all of the residue classes below the node to which it is attached.
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Figure 5.1: Tree diagram for p = 2.
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For example, there is a Fibonacci number in each of the residue classes modulo 2k,

for k ∈ {4, 5, . . . }, that are equivalent to 0 mod 23.

Thus, ∀k > 0,
F

(2k)
=

(1 + 2Z) ∪ (0 + 8Z) ∪ (2 + 32Z)

(2k)
.

So, by Lemma 2.2.3,

Int(F,Z(2)) = Int((1 + 2Z) ∪ (0 + 8Z) ∪ (2 + 32Z),Z(2)),

which means that the 2-sequence of F and the 2-sequence of (1 + 2Z) ∪ (0 + 8Z) ∪
(2 + 32Z) are the same. Using Lemma 3.3.1 and Lemma 3.3.6, the 2-sequence of

(1+2Z)∪ (0+8Z)∪ (2+32Z) can be calculated and it is the same as the 2-sequence

of F.

Proposition 5.0.4. The 2-sequence of F is

αF,2 = (αZ,2 + (k)) ∧ (((αZ,2 + (2k)) ∧ (αZ,2 + (4k))) + (k)).

Proof. Wemust first calculate the 2-sequence of (0+8Z)∪(2+32Z), using Lemma 3.3.1

and Lemma 3.3.6, as follows:

α(0+8Z)∪(2+32Z),2 = (((αZ,2 + (3k))− (k)) ∧ ((αZ,2 + (5k))− (k))) + (k).

Then, using Lemma 3.3.1 and Lemma 3.3.6 again, we can compute the 2-sequence of

(1 + 2Z) ∪ (0 + 8Z) ∪ (2 + 32Z) to be:

α(1+2Z)∪(0+8Z)∪(2+32Z),2 = α(1+2Z),2 ∧ α(0+8Z)∪(2+32Z),2

= (αZ,2 + (k)) ∧ (((αZ,2 + (2k)) ∧ (αZ,2 + (4k))) + (k)).

Since, αF,2 = α(1+2Z)∪(0+8Z)∪(2+32Z),2, the result holds.

The beginning of αF,2 is:

αF,2 = {0, 0, 1, 1, 3, 4, 4, 7, 7, 8, 9, 10, 11, 12, 15, 15, 16, 18, 18, 19, 21, 22, 22, . . . }.

The computations involved can be seen in this table:
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(k) 0 1 2 3 4 5 6 7 8 9 10 11 12 13

αZ,2 0 0 1 1 3 3 4 4 7 7 8 8 10 10

αZ,2 + (k) 0 1 3 4 7 8 10 11 15 16 18 19 22 23

(4) αZ,2 + (2k) 0 2 5 7 11 13 16 18 23 25 28 30 34 36

(5) αZ,2 + (4k) 0 4 9 13 19 23 28 32 39 43 48 52 58 62

(6) (4) ∧ (5) 0 0 2 4 5 7 9 11 13 13 16 18 19 23

(6) + (k) 0 1 4 7 9 12 15 18 21 22 26 29 31 36

αF,2 0 0 1 1 3 4 4 7 7 8 9 10 11 12

In order to use Coelho and Parry’s results from [6] to help us calculate the p-

sequence of the Fibonacci numbers for the primes p different from 5 and 2, we will

need some additional background material, which will be covered in the next two

chapters.



Chapter 6

The p-adic Integers

For an odd prime p, we take Zp to be the p-adic integers, whose elements are the

sums x =
∑∞

n=0 xnp
n that converge with respect to the p-adic metric, where xn ∈

{0, . . . , p− 1}. Since many of our calculations are done modulo p, we note that x0 is

the reduction of x mod p. The units, i.e., invertible elements, of Zp, which we denote

by U, consist of those x ∈ Zp with x0 �= 0, i.e., U = {x : p � x}. That is, U is the

multiplicative group Z∗
p.

If 5 ∈ U is not a square, Zp(
√
5) = Zp +

√
5Zp is a ring with the obvious addition

and multiplication. The units of Zp(
√
5), which we denote by U(

√
5), consist of all

x+
√
5y, with x, y ∈ Zp and at least one of x, y in U. Since the expression x+

√
5y

is unique, we can define the norm N : U(
√
5) → U by N(x+

√
5y) = x2 − 5y2. This

is a multiplicative homomorphism and helps us to define the subgroup

U0(
√
5) = {x+

√
5y ∈ U(

√
5) : x2 − 5y2 = ±1},

which will be of interest later.

For later results, we will define, for each n ∈ Z+, the subgroups Un = 1+ pnZp of

U and Un(
√
5) = 1 + pn(Zp(

√
5)) of U(

√
5), so that

U ⊇ U1 ⊇ U2 ⊇ . . . and ∩∞
n=1 Un = {1}

and

U(
√
5) ⊇ U1(

√
5) ⊇ U2(

√
5) ⊇ . . . and ∩∞

n=1 Un(
√
5) = {1}

It is easy to see that U/U1 is isomorphic to the multiplicative group of Z/pZ and

U(
√
5)/U1(

√
5) is isomorphic to the multiplicative group of Fp2 .

We will also need the following definitions:

Definition 6.0.5. Let p be an odd integer prime and let S be a subset of a set T in

Zp. If ∀ε > 0 and ∀t ∈ T ∃s ∈ S such that vp(s − t) > ε, then S is p-adically dense

in T .
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Definition 6.0.6. Let p be an odd integer prime and let g : Zp → Zp. The map g is

p-adically continuous at the point z0 ∈ Zp, if ∀ε > 0 ∃δ > 0 such that ∀z ∈ Zp with

vp(z − z0) > δ we have vp(g(z)− g(z0)) > ε. The map g is p-adically continuous if it

is p-adically continuous at all points in Zp.

Additionally, we can define similar concepts in Zp(
√
5), by replacing Zp with

Zp(
√
5).

The next theorem will be used extensively in the material that follows. A proof

of this result can be found as Theorem 3.4.1 in [7].

Theorem 6.0.7. (Hensel’s Lemma) Let p be an odd integer prime and let f(x) =

a0+ a1x+ a2x
2+ · · ·+ anx

n be a polynomial whose coefficients are in Zp. Let f
′(x) =

a1 + 2a2x+ · · ·+ nanx
n−1 be its derivative. Suppose that there exists a p-adic integer

α0 ∈ Zp such that

f(α0) ≡ 0 mod p

and

f ′(α0) �≡ 0 mod p.

Then there exists a unique p-adic integer α ∈ Zp such that α ≡ α0 mod p and

f(α) = 0.

We should note that the corresponding theorem with Zp replaced by Zp(
√
5) also

holds.

In many of the applications of Hensel’s Lemma in this thesis, we will be using it

in the form of an important corollary. To state this corollary, we need to define the

Legendre symbol.

Definition 6.0.8. Let p be an odd integer prime. The Legendre symbol of z =∑∞
n=0 znp

n ∈ Zp is defined as follows:

(
z

p

)
=

⎧⎪⎪⎨
⎪⎪⎩

1, if z0 is congruent to a square modulo p and z0 �≡ 0 mod p

−1, if z0 is not congruent to a square modulo p

0, if z0 ≡ 0 mod p.

Now, the corollary to Hensel’s Lemma that we apply several times in this thesis

is:
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Corollary 6.0.9. Let p be an odd integer prime and let z ∈ Zp with z �≡ 0 mod p.

The square root of z is in Zp if and only if
(

z
p

)
= 1.

Proof. If the square root of z is in Zp and z �≡ 0 mod p, then
(

z
p

)
= 1.

Conversely, suppose
(

z
p

)
= 1 and let f(x) = x2 − z. So, f ′(x) = 2x. If α0 ∈ Zp

such that α0 =
√
z mod p, then

f(α0) = α2
0 − z ≡ 0 mod p

and

f ′(α0) = 2α0 �≡ 0 mod p,

where the second condition holds since p is odd. By Hensel’s Lemma, there exists

a unique p-adic integer α ∈ Zp such that α ≡ α0 mod p and f(α) = 0. Thus, the

square root of z is in Zp.

The existence of α can be seen by recursively constructing a sequence of integers

{rk}, starting from r1 = α0, such that rk+1 ≡ rk mod pk and r2k ≡ z mod pk . This

sequence converges to α and we have α2 = z.

Using the law of quadratic reciprocity, we can easily test whether
(

z
p

)
= 1. Thus,

we have a practical way to determine which p-adic numbers have a square root in Zp.



Chapter 7

Generators for (Z/(pk))∗

We must now show that if p is an odd prime integer and k ∈ Z+, then (Z/(pk))∗ is

cyclic. In order to do so, we will need some definitions and the following sequence of

elementary results, which are presented here as in Chapter 4 of [8].

Definition 7.0.10. The order of an element g of a group G is the smallest positive

integer k such that gk = e, where e denotes the identity element of G and gk denotes

the product of k copies of g. If no such k exists, g is said to have infinite order.

Definition 7.0.11. Let n ∈ Z. An element g of a group G is a primitive root modulo

n if it generates the group of units of G modulo n.

With these definitions, we can now look at the results which will help us prove

that (Z/(pk))∗ is cyclic.

Lemma 7.0.12. If p is a prime integer and k ∈ Z+ with k < p, then the binomial

coefficient
(
p
k

)
is divisible by p

Proof. By definition,
(
p
k

)
= p!

k!(p−k)!
. Thus, p! = k!(p − k)!

(
p
k

)
. Now, p divides p!, but

p does not divide k!(p − k)!, since this expression is a product of integers less than,

and thus relatively prime to, p. Hence, p must divide
(
p
k

)
.

Lemma 7.0.13. If a, b ∈ Z and k ∈ Z+ and a ≡ b mod pk, then ap ≡ bp mod pk+1.

Proof. Since a ≡ b mod pk, we may write a = b + cpk, c ∈ Z. By the binomial

theorem, ap = bp +
(
p
1

)
bp−1cpk + A, where A is an integer divisible by pk+2. The

second term is clearly divisible by pk+1. Thus, ap ≡ bp mod pk+1.

Corollary 7.0.14. If p is an odd prime integer and k ∈ Z+, k ≥ 2, then (1+ap)p
k−2 ≡

1 + apk−1 mod pk, ∀a ∈ Z.
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Proof. The proof is by induction on k. For k = 2, the assertion is trivial. Suppose

the result holds for some k ≥ 2. We will show that it then also holds for k + 1.

By the inductive hypothesis and Lemma 7.0.13, we have (1 + ap)p
k−1 ≡ (1 + apk−1)p

mod pk+1. Applying the binomial theorem, (1+apk−1)p = 1+
(
p
1

)
apk−1+B, where B

is the sum of p− 1 terms. Using Lemma 7.0.12, it is clear that all of these terms are

divisible by p1+2(k−1), except perhaps for the last term, appp(k−1). Now, since k ≥ 2,

1 + 2(k − 1) ≥ k + 1, and since also p ≥ 3, p(k − 1) ≥ k + 1. Thus, pk+1|B and

(1 + ap)p
k−1 ≡ 1 + apk mod pk+1, which is as required.

Corollary 7.0.15. If p is an odd prime integer, a ∈ Z such that p � a, and k ∈
Z+, k ≥ 2, then pk−1 is the order of 1 + ap mod pk.

Proof. By Corollary 7.0.14, we know (1 + ap)p
k−1 ≡ 1 + apk mod pk+1. Thus, (1 +

ap)p
k−1 ≡ 1 mod pk. So, 1 + ap has order dividing pk−1. Now, by assumption, p � a

and, from Corollary 7.0.14, we have (1 + ap)p
k−2 ≡ 1 + apk−1 mod pk, which shows

that pk−2 is not a multiple of the order of 1+ap. Therefore, pk−1 is the order of 1+ap

mod pk.

With these results, we may now prove the desired result.

Theorem 7.0.16. If p is an odd prime integer and k ∈ Z+, then (Z/(pk))∗ is cyclic.

In fact, if

1. g ∈ Z is a primitive root mod p (i.e., p − 1 is the least positive integer k for

which gk ≡ 1 mod p) and

2. gp−1 �≡ 1 mod p2,

then g generates (Z/(pk))∗, ∀k ∈ Z+. Moreover, such a g always exists.

Proof. Suppose p is an odd prime integer and k ∈ Z+. It is sufficient to prove the

second and third statements. It is well-known that there exist primitive roots mod

p. If g ∈ Z is a primitive root mod p, then g + p is also. If gp−1 ≡ 1 mod p2, then

(g + p)p−1 ≡ gp−1 + (p− 1)gp−2p ≡ 1 + (p− 1)gp−2p �≡ 1 mod p2. Thus, ∃g ∈ Z such

that g is a primitive root mod p and gp−1 �≡ 1 mod p2.

We will now show that such a g is a primitive root mod pk. It is enough to prove

that if gn ≡ 1 mod pk, then φ(pk) = pk−1(p− 1)|n, i.e., that the order of g is φ(pk).
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Suppose gn ≡ 1 mod pk. We chose g such that gp−1 = 1 + ap, for some a ∈ Z

such that p � a. By Corollary 7.0.15, the order of 1 + ap mod pk is pk−1. Since

(1 + ap)n = (gp−1)n ≡ 1p−1 ≡ 1 mod pk, we have pk−1|n.
Let n = pk−1n′. Then gn = (gp

k−1
)n
′ ≡ gn

′
mod p and, since gn ≡ 1 mod pk, we

have gn
′ ≡ 1 mod p. Therefore, p − 1|n′, since g is a primitive root mod p. Hence,

pk−1(p− 1)|n and g generates (Z/(pk))∗.

Theorem 7.0.16 shows that if g ∈ Z is a primitive root mod p and gp−1 �≡ 1

mod p2, then g generates (Z/(pk))∗, ∀k ∈ Z+. We need to know, however, what

happens if a p-adic integer, g, satisfies those same conditions. For this case, we have

the following corollary:

Corollary 7.0.17. For p an odd prime integer, if

1. g ∈ Zp is a primitive root mod p (i.e., p − 1 is the least positive integer k for

which gk ≡ 1 mod p) and

2. gp−1 �≡ 1 mod p2,

then g generates (Z/(pk))∗, ∀k ∈ Z+.

Proof. Let p be an odd prime integer and k ∈ Z+. Suppose g ∈ Zp is a primitive root

mod p and gp−1 �≡ 1 mod p2. We can choose h ∈ Z such that h ≡ g mod pk. Then h

is a primitive root mod p and hp−1 �≡ 1 mod p2, since g is. Hence, by Theorem 7.0.16,

h generates (Z/(pn))∗, ∀n ≤ k, and so, g does also. Since k was chosen arbitrarily, g

generates (Z/(pk))∗, ∀k ∈ Z+.

We will need a similar result for g ∈ U0(
√
5). Thus, we will need results similar

to Lemma 7.0.13 and its corollaries, for when a, b ∈ Zp(
√
5). These results are stated

below, but the proofs are not shown as they are almost identical to the ones with

a, b ∈ Z.

Lemma 7.0.18. If a, b ∈ Zp(
√
5) and k ∈ Z+ and a ≡ b mod pk, then ap ≡ bp

mod pk+1.

Corollary 7.0.19. If p is an odd prime integer and k ∈ Z+, k ≥ 2, then (1+ap)p
k−2 ≡

1 + apk−1 mod pk, ∀a ∈ Zp(
√
5).
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Corollary 7.0.20. If p is an odd prime integer, a ∈ Zp(
√
5) such that p � a, and

k ∈ Z+, k ≥ 2, then pk−1 is the order of 1 + ap mod pk.

Before we prove the result similar to Corollary 7.0.17 for g ∈ U0(
√
5), note that

the cardinality of U(
√
5) mod p is p2−1, since U(

√
5) mod p consists of all x+

√
5y,

with x, y ∈ {0, 1, . . . , p−1} and at least one of x and y not equal to 0. Next, note that

the cardinality of U0(
√
5) mod p is 2(p + 1). To see this fact, we observe that each

element of F×
p is the mod p norm of some element of U(

√
5) mod p, which is shown

as Lemma 11 of [6]. It is, then, not hard to see that for any k ∈ F×
p there is a one-

to-one correspondence between {x ∈ U(
√
5) mod p : N(x) = k} and {x ∈ U(

√
5)

mod p : N(x) = 1}, due to the multiplicative property of the norm. Thus, each of

these sets has cardinality (p2− 1)/(p− 1) = p+1. Since U0(
√
5) mod p is the union

of two such sets, namely, those with k = ±1, U0(
√
5) mod p has order 2(p + 1).

Moreover, as a subgroup of the multiplicative group U(
√
5) mod p of a finite field

Zp(
√
5) mod p, we see that U0(

√
5) mod p is cyclic.

We can now prove the result for g ∈ U0(
√
5).

Theorem 7.0.21. For p an odd prime integer, if

1. g ∈ U0(
√
5) is a primitive root mod p (i.e., 2(p+ 1) is the least positive integer

k for which gk ≡ 1 mod p) and

2. g2(p+1) �≡ 1 mod p2,

then g generates U0(
√
5)/Uk(

√
5), ∀k ∈ Z.

Proof. Suppose p is an odd prime integer and k ∈ Z+. Note that the cardinality of

U(
√
5) mod pk is (pk)2 − (pk−1)2 = p2k − p2k−2 = p2k−2(p2 − 1) and recall that the

cardinality of U/Uk = (Z/(pk))∗ = φ(pk) = pk−1(p− 1). Also, in a similar manner as

above, note that each element of U/Uk is the mod pk norm of some element of U(
√
5)

mod pk and it is not difficult to see that there is a one-to-one correspondence between

{x ∈ U(
√
5) mod pk : N(x) = m} and {x ∈ U(

√
5) mod pk : N(x) = 1}. For this

reason each of these sets has cardinality (p2k−2(p2 − 1))/(pk−1(p− 1)) = pk−1(p+ 1),

and, therefore, U0(
√
5) mod pk has order 2(p+ 1)pk−1.

We will now show that if g ∈ U0(
√
5) is a primitive root mod p and g2(p+1) �≡ 1

mod p2, then g generates U0(
√
5)/Uk(

√
5). It is enough to prove that if gn ≡ 1

mod pk, then 2(p+ 1)pk−1|n.
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Suppose gn ≡ 1 mod pk. Then gn ≡ 1 mod p and 2(p+1)|n, since g is a primitive

root mod p. Now, we chose g such that g2(p+1) = 1 + ap, for some a ∈ Zp(
√
5) such

that p � a. By Corollary 7.0.20, the order of 1 + ap mod pk is pk−1. So, since

(1 + ap)n = (g2(p+1))n ≡ 12(p+1) ≡ 1 mod pk, we have pk−1|n. Hence, 2(p+ 1)pk−1|n,
since gcd(2(p+ 1), pk−1) = 1. Therefore, g generates U0(

√
5)/Uk(

√
5).



Chapter 8

The Fibonacci Sequence

8.1 Coelho and Parry

For the primes p for which β satisfies Condition 1.0.1, β also satisfies either Corol-

lary 7.0.17, if β ∈ Zp, or Theorem 7.0.21, if β ∈ U0(
√
5). In [6], Coelho and Parry

use this fact to determine, for these primes, which residue classes of Z/(pk) are rep-

resented by Fibonacci numbers. In fact, by requiring p to satisfy a slightly stronger

condition, they are able to give a complete description of the distribution of the Fi-

bonacci numbers modulo prime powers. We can use this information on which residue

classes of Z/(pk) are represented by Fibonacci numbers to find T ⊆ Z with F ⊆ T

and F/(pk) = T/(pk), ∀k ≥ 0, so that we may apply Lemma 2.2.3. Then, as shown

in Section 2.2, the p-sequence of T will be the same as the p-sequence of F. More-

over, the set T we find will be of a form that makes it easier to apply the results on

computing p-sequences from Section 3.3.

Recall that the Fibonacci sequence F = {Fn} is defined by the recurrence relation

Fn = Fn−1 + Fn−2, n ≥ 2,

with F0 = 0 and F1 = 1, and that, by Binet’s formula, we can write

Fn =
1√
5

(
βn −

(−1

β

)n)
,

where β = 1+
√
5

2
. We see that ∀n = 0, 1, 2, . . . , we have Fn = f(βn), where f : U → Zp

or f : U0(
√
5) → Zp is given by

f(z) =
1√
5

(
z − N(z)

z

)

and N(z) = 1 or −1 according to whether z is a square or not (in U or U0(
√
5)).

Note that for z ∈ U0(
√
5), N(z) is simply the norm defined in Chapter 6 and the

map N distinguishes between the even and the odd powers of β.
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Since Binet’s formula gives F = {f(βn) : n = 0, 1, 2, . . . } = f(〈β〉), the residue

classes of Z/(pk) represented by the Fibonacci numbers are exactly those in the image

of the function f . Thus, F/(pk) = f(〈β〉)/(pk), ∀k > 0. Hence, to determine which

residue classes are represented by the Fibonacci numbers modulo various primes p,

we just need to consider for which y ∈ Zp the equation

f(z) =
1√
5

(
z − N(z)

z

)
= y,

is solvable for z in terms of y.

The domain of f depends on which group contains β, which is determined by the

prime p.

Lemma 8.1.1. Let p be an odd integer prime different from 5. The square root of 5

is in Zp if and only if p ≡ ±1 mod 5.

Proof. The square root of 5 is in Zp if and only if
(

5
p

)
= 1, by Corollary 6.0.9. By

the law of quadratic reciprocity,(
5

p

)(p
5

)
= (−1)(5−1)(p−1)/4 = (−1)p−1 = 1.

Hence, by the multiplicative property of the Legendre symbol,
(

5
p

)
= 1 if and only if(

p
5

)
= 1. Now,

(
p
5

)
= 1 if and only if p ≡ ±1 mod 5. Thus, the result holds.

By Lemma 8.1.1, if p ≡ ±1 mod 5, then the square root of 5 is in Zp. Thus,

β ∈ U and the domain of f is U. On the other hand, if p ≡ ±2 mod 5, then the

square root of 5 is not in Zp. Hence, β ∈ U0(
√
5) and the domain of f is U0(

√
5).

We consider these two cases separately. Before we look at the first case with p ≡ ±1

mod 5, we must introduce some additional notation.

We write i(y) for the total number of solutions of f(z) = y, with i(y) = i+(y) +

i−(y), where i+(y) is the number of squares that are solutions of f(z) = y and i−(y)

is the number of non-squares that are solutions of f(z) = y.

Proposition 8.1.2. If i+(y) and i−(y) are defined as above, then

1. i+(y) is the number of squares of the form (
√
5y ±√

5y2 + 4)/2 and

2. i−(y) is the number of non-squares of the form (
√
5y ±√

5y2 − 4)/2.
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Proof. When f(z) = y, we have

1√
5

(
z − N(z)

z

)
− y = 0

z2 −N(z)√
5z

− y = 0

z2 −
√
5yz −N(z) = 0.

Thus, by the quadratic formula,

z =

√
5y ±√

5y2 + 4N(z)

2
.

Since N(z) = 1 or −1 according to whether z is a square or not (in U or U0(
√
5)),

i+(y) is the number of squares of the form (
√
5y ± √

5y2 + 4)/2 and i−(y) is the

number of non-squares of the form (
√
5y ±√

5y2 − 4)/2.

The actual value of i(y) is important for Coelho and Parry’s results on the dis-

tribution of the Fibonacci numbers modulo prime powers. We only need to know,

however, whether or not i(y) is zero in order to determine which residue classes of

Z/(pk) are represented by the Fibonacci numbers.

We are now ready to look at the first case with p ≡ ±1 mod 5.

8.2 Case I: p ≡ ±1 mod 5

When p ≡ ±1 mod 5, we have two subcases to consider. Before looking at these

subcases, recall that y ∈ Zp is a sum y =
∑∞

n=0 ynp
n, with yn ∈ {0, . . . , p− 1}, whose

convergence is assured with respect to the p-adic metric, and that y0 is the reduction

of y mod p.

8.2.1 Case I (a): 5y20 ± 4 �≡ 0 mod p

Proposition 8.2.1. When 5y20 + 4 �≡ 0 mod p, i+(y) = i+(y0) depends only on y0,

and when 5y20 − 4 �≡ 0 mod p, i−(y) = i−(y0) depends only on y0.

Proof. Suppose 5y20 + 4 �≡ 0 mod p. Recall that i+(y) is the number of squares of

the form (
√
5y ±√

5y2 + 4)/2. Note that 5y2 + 4 ∈ Zp with 5y2 + 4 ≡ 5y20 + 4 �≡ 0

mod p. Thus, by Corollary 6.0.9, the square root of 5y2 + 4 is in Zp if and only if
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5y2 + 4 is a square mod p if and only if 5y20 + 4 is a square mod p. So, if 5y20 + 4 is a

not square mod p, then the square root of 5y2+4 is not in Zp and i+(y) = 0. Assume

5y20 + 4 is a square mod p. then the square root of 5y2 + 4 is in Zp and we have

(
√
5y ± √

5y2 + 4)/2 ∈ Zp with (
√
5y ± √

5y2 + 4)/2 ≡ (
√
5y0 ±

√
5y20 + 4)/2 �= 0

mod p. Thus, by Corollary 6.0.9, the square root of (
√
5y ±√

5y2 + 4)/2 is in Zp if

and only if (
√
5y ± √

5y2 + 4)/2 is a square mod p, which is the case if and only if

(
√
5y0 ±

√
5y20 + 4)/2 is a square mod p. Thus, i+(y) depends only on y0. The case

when 5y20 − 4 �≡ 0 mod p follows similarly.

Furthermore, we have the following result.

Proposition 8.2.2.

1. If 5y20 + 4 �≡ 0 mod p is not a square then i+(y) = 0. If 5y20 + 4 �≡ 0 mod p is

a square and −1 is a square, then

i+(y) =

{
2, if (

√
5y +

√
5y2 + 4)/2 is a square

0, if (
√
5y +

√
5y2 + 4)/2 is not a square.

If 5y20 + 4 �≡ 0 mod p is a square and −1 is not a square, then i+(y) = 1.

2. If 5y20 − 4 �= 0 mod p is not a square then i−(y) = 0. If 5y20 − 4 �≡ 0 mod p is

a square, then

i−(y) =

{
0, if (

√
5y +

√
5y2 − 4)/2 is a square

2, if (
√
5y +

√
5y2 − 4)/2 is not a square.

Proof.

1. It is clear that if 5y20 + 4 �≡ 0 mod p is not a square then i+(y) = 0, since√
5y2 + 4 /∈ Zp. If 5y

2
0 + 4 �≡ 0 mod p is a square then

√
5y2 + 4 ∈ Zp and we

must consider the product(√
5y +

√
5y2 + 4

2

)(√
5y −√

5y2 + 4

2

)
= −1.

Let

α+ =

(√
5y +

√
5y2 + 4

2

)
and α− =

(√
5y −√

5y2 + 4

2

)
.
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When −1 is a square, we have (−1

p

)
= 1.

Thus, by the multiplicativity of the Legendre symbol,(
α+

p

)
=

(
α−
p

)
.

Hence, either both α+ and α− are squares or neither is. That is,

i+(y) =

{
2, if (

√
5y +

√
5y2 + 4)/2 is a square

0, if (
√
5y +

√
5y2 + 4)/2 is not a square.

By a similar argument, when −1 is not a square, we have(−1

p

)
= −1

and (
α+

p

)
�=

(
α−
p

)
.

Hence, i+(y) = 1.

2. The proof follows closely that of part 1. It is clear that if 5y20 − 4 �≡ 0 mod p

is not a square then i+(y) = 0, since
√

5y2 − 4 /∈ Zp. If 5y20 − 4 �≡ 0 mod p is

a square then
√

5y2 − 4 ∈ Zp and we must consider the product(√
5y +

√
5y2 − 4

2

)(√
5y −√

5y2 − 4

2

)
= 1.

Let

β+ =

(√
5y +

√
5y2 − 4

2

)
and β− =

(√
5y −√

5y2 − 4

2

)
.

Since 1 is always a square, we have(
1

p

)
= 1.

Thus, by the multiplicativity of the Legendre symbol,(
β+

p

)
=

(
β−
p

)
.

Hence, either both β+ and β− are squares or neither is. That is,

i−(y) =

{
0, if (

√
5y +

√
5y2 − 4)/2 is a square

2, if (
√
5y +

√
5y2 − 4)/2 is not a square.
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With the above proposition we may compute i(y) when 5y20 ± 4 �≡ 0 mod p. The

situation is more complicated when 5y20 ± 4 ≡ 0 mod p.

8.2.2 Case I (b): 5y20 ± 4 ≡ 0 mod p

Proposition 8.2.3. When 5y20+4 ≡ 0 mod p, we can write 5y20+4 = λpk, for some

k ≥ 1, λ ∈ U. Thus, 5y20 + 4 is not a square, and i+(y) = 0, if k is odd. If k is even,

5y2 + 4 is a square if and only if λ0 is a square mod p.

Supposing k is even, since the squaring function is two-to-one mod p on U except

at 0, there are (p − 1)/2 values of λ0 for which it is a square mod p and (p − 1)/2

values for which it is not. When λ0 is not a square, we have i+(y) = 0, and when λ0

is a square, we have

i+(y) =

{
2, if (

√
5y +

√
5y2 + 4)/2 is a square

0, if (
√
5y +

√
5y2 + 4)/2 is not a square,

for the same reasons as in Proposition 8.2.2. Unlike in Proposition 8.2.2, however,

−1 is always a square, since 5y20 + 4 ≡ 0 mod p, that is, since y20 ≡ −4
5

mod p has

a solution only if −1 is a square because 4 and 5 are both squares.

Similarly, we have the following:

Proposition 8.2.4. When 5y20−4 ≡ 0 mod p, we can write 5y20−4 = λpk, for some

k ≥ 1, λ ∈ U. Thus, 5y20 − 4 is not a square, and i−(y) = 0, if k is odd. If k is even,

5y2 − 4 is a square if and only if λ0 is a square mod p.

Thus, supposing k is even, when λ0 is not a square, we have i−(y) = 0, and when

λ0 is a square, we have

i−(y) =

{
0, if (

√
5y +

√
5y2 − 4)/2 is a square

2, if (
√
5y +

√
5y2 − 4)/2 is not a square,

for the same reasons as in Proposition 8.2.2.

Additionally, we have the following result, which simplifies computation.

Theorem 8.2.5.
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1. Let 5y20 + 4 ≡ 0 mod p. If 5y2 + 4 is a square and −1 is a fourth power, then

i+(y) = 2. Otherwise, i+(y) = 0.

2. Let 5y20 − 4 ≡ 0 mod p. If 5y2 − 4 is a square and
√
5y0/2(= ±1) is not a

square mod p, then i−(y) = 2. Otherwise, i−(y) = 0.

Proof. 1. If i+(y) �= 0, then 5y2 + 4 must be a square, so that
√

5y2 + 4 ∈ Zp.

Thus, we can write 5y2 + 4 = λ2p2k, for some k ≥ 1, λ ∈ U. Rearranging, we

get

5y2 = λ2p2k − 4

5y2

4
=

λ2p2k

4
− 1

√
5y

2
= ±

(
λ2p2k

4
− 1

)1/2

√
5y

2
= ±(−1)1/2

(
1− λ2p2k

4

)1/2

.

Since k ≥ 1, we know that 1 − λ2p2k

4
≡ 1 mod p and so, (1 − λ2p2k

4
)1/2 ≡ ±1

mod p. Thus,

√
5y +

√
5y2 + 4

2
= ±(−1)1/2

(
1− λ2p2k

4

)1/2

+
λpk

2

≡ ±(−1)1/2 mod p.

Since (−1)1/2 �≡ 0 mod p, it has a square root in Zp if and only if it has one mod

p, by Corollary 6.0.9. For the same reason, (
√
5y +

√
5y2 + 4)/2 has a square

root in Zp if and only if it has one mod p. Hence, for (
√
5y+

√
5y2 + 4)/2 to be

a square it is necessary and sufficient that (−1)1/2 exist and be a square mod

p, that is, that −1 be a fourth power mod p. Moreover, it is obvious that if

(
√
5y +

√
5y2 + 4)/2 is a square, then so is (

√
5y − √

5y2 + 4)/2. Therefore,

i+(y) = 2 if and only if 5y2 + 4 is a square and −1 is a fourth power.

2. Similarly, if i−(y) �= 0, then 5y2 − 4 must be a square, so that
√

5y2 − 4 ∈ Zp.

Thus, we can write 5y2 − 4 = λ2p2k, for some k ≥ 1, λ ∈ U. Rearranging, we
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get

5y2 = λ2p2k + 4

5y2

4
=

λ2p2k

4
+ 1

√
5y

2
= ±

(
1 +

λ2p2k

4

)1/2

.

Since k ≥ 1, we know that 1 + λ2p2k

4
≡ 1 mod p and so, (1 + λ2p2k

4
)1/2 ≡ ±1

mod p. Thus,

√
5y +

√
5y2 − 4

2
= ±

(
1 +

λ2p2k

4

)1/2

+
λpk

2

≡ ±1 mod p.

Hence, for (
√
5y+

√
5y2 − 4)/2 to be a square it is necessary and sufficient that√

5y0/2(= ±1) be a square mod p. Moreover, it is obvious that if (
√
5y +√

5y2 − 4)/2 is a square, then so is (
√
5y −√

5y2 − 4)/2. Therefore, i−(y) = 2

if and only if 5y2 − 4 is a square and
√
5y0/2(= ±1) is not a square mod p.

Example Let p = 11. Then p ≡ ±1 mod 5, so
√
5 ∈ Z11. As seen in the table

below,
√
5 ≡ 4 or 7 mod 11. When

√
5 ≡ 4 mod 11, we have β = 5

2
≡ 8 mod 11

and β is a primitive root mod p with βp−1 �≡ 1 mod p2. Hence, we are in the situation

described above.

Consider the following table where numbers are written mod 11 and boxed num-

bers are non-zero squares. Note that −1 ≡ 10 mod 11 is not a square in Z11.

y0 0 1 2 3 4 5 6 7 8 9 10

y20 0 1 4 9 5 3 3 5 9 4 1

5y20 0 5 9 1 3 4 4 3 1 9 5

5y20 + 4 4 9 2 5 7 8 8 7 5 2 9

5y20 − 4 7 1 5 8 10 0 0 10 8 5 1

(a) If y0 = 2, 4, 5, 6, 7, 9, then i+(y) = 0, since 5y20+4 �≡ 0 mod 11 is not a square.

When y0 = 0, 1, 3, 8, 10, we have i+(y) = 1, since 5y20 +4 �≡ 0 mod 11 is a square and

−1 is not a square.



49

(b) If y0 = 0, 3, 4, 7, 8, then i−(y) = 0, since 5y20 − 4 �≡ 0 mod 11 is not a square.

When 5y20 − 4 �≡ 0 mod 11 is a square, we have i−(y) = 2 for y0 = 1, 2, since (
√
5y+√

5y2 − 4)/2 is not a square, and i−(y) = 0 fo y0 = 9, 10, since (
√
5y +

√
5y2 − 4)/2

is a square.

To evaluate i−(y) for y0 = 5 or 6 we must consider all the cases when 5y2 − 4 =

λ2p2k, where λ ∈ U and k ≥ 1, since if y does not satisfy this equation, then i−(y) = 0.

When y0 = 5 and y satisfy such an equation, i−(y) = 2, since
√
5 · 5/2 ≡ 10 mod 11

is not a square mod 11. On the other hand, when y0 = 6, then i−(y) = 0, since√
5·6/2 ≡ 12 mod 11 ≡ 1 mod 11 is a square mod 11.

We have in total:

y0 0 1 2 3 4 5 6 7 8 9 10

i+(y) 1 1 0 1 0 0 0 0 1 0 1

i−(y) 0 2 2 0 0 2 0 0 0 0 0

i(y) 1 3 2 1 0 2 0 0 1 0 1

8.3 Case II: p ≡ ±2 mod 5

When p ≡ ±2 mod 5, we have
√
5 /∈ Zp. In this case, it is possible to give a formula

for i(y), which makes calculations somewhat simpler.

Note that 〈β〉 = U0(
√
5)/U1, since β is a primitive root mod p. So, z ∈ U0(

√
5)

can be written z ≡ βk mod p, for some k ∈ Z. Now, for z, w ∈ U0(
√
5), if z ≡ w

mod p, then N(z) ≡ N(w) mod p. Furthermore, N(β) = 1
4
−5 · 1

4
= −1. Thus, since

the norm is multiplicative, we have

N(z) = N(βk) =

{
1, if k is even

−1, if k is odd.

That is,

N(z) =

{
1, if z is a square in U0(

√
5)/U1

−1, otherwise.

Hence, if N(z) = 1, then x2 = z is solvable mod p in U0(
√
5). Since the solution

is in U0(
√
5)/U1, it is a unit. So, the derivative of x2 at this point is not 0 mod p.
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Then, by Hensel’s Lemma, x2 = z is solvable in U0(
√
5). That is,

N(z) =

{
1, if z is a square in U0(

√
5)

−1, otherwise.

When 5y2 + 4 is a square, N((
√
5y ± √

5y2 + 4)/2) = 5y2+4
4

− 5 · y2

4
= 1. Thus,

(
√
5y ± √

5y2 + 4)/2 are squares in U0(
√
5). Similarly, when 5y2 − 4 is a square,

N((
√
5y ±√

5y2 − 4)/2) = 5y2−4
4

− 5 · y2

4
= −1. Thus, (

√
5y ±√

5y2 − 4)/2 are not

squares in U0(
√
5).

Hence, we have i+(y) = N(5y2 + 4) + 1 (i.e., 2 when 5y2 + 4 is a square and 0

otherwise) and i−(y) = N(5y2 − 4) + 1, by the same reasoning.

Theorem 8.3.1. When 5y20 + 4 �≡ 0 mod p, i+(y) = i+(y0) depends only on y0 and

when 5y20 − 4 �≡ 0 mod p, i−(y) = i−(y0) depends only on y0. If 5y
2 + 4 ≡ 0 mod p,

then

i+(y) =

{
2, if 5y2 + 4 = λ2p2k for some k ≥ 1, λ ∈ U

0, otherwise.

For all cases,

i(y) = N(5y2 + 4) +N(5y2 − 4) + 2.

Proof. It was shown above that i+(y) = N(5y2 + 4) + 1 and i−(y) = N(5y2 − 4) + 1.

Thus, i(y) = i+(y) + i−(y) = N(5y2 + 4) +N(5y2 − 4) + 2.

By Hensel’s Lemma, it is easy to see that i+(y) and i−(y) depend only on y0 when,

respectively, 5y20 +4 �≡ 0 mod p, 5y20 −4 �≡ 0 mod p. Furthermore, when 5y20 +4 ≡ 0

mod p, 5y2+4 is a square if and only if 5y2+4 = λ2p2k for some k ≥ 1, λ ∈ U. Thus,

since i+(y) = N(5y2+4)+1, i+(y) is 2 when 5y2+4 is a square and 0 otherwise, i.e.,

i+(y) is 2 when 5y2 + 4 = λ2p2k for some k ≥ 1, λ ∈ U and 0 otherwise.

If 5y2 + 4 ≡ 0 mod p, then y2 ≡ −4
5

mod p. Since 4 is a square mod p and 5 is

not, this equation has a solution if and only if −1 is also not a square mod p, by the

multiplicative property of the Legendre symbol. Thus, this equation has a solution if

and only if p ≡ 3 mod 4, by the law of quadratic reciprocity. By the same argument,

the equation 5y2 − 4 ≡ 0 mod p never has a solution.

Thus, if p ≡ 1 mod 4, then 5y2 ± 4 ≡ 0 mod p has no solutions and i(y) is

determined by y0 ≡ y mod p. If p ≡ 3 mod 4, then 5y2 + 4 ≡ 0 mod p has 2
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solutions and 5y2 − 4 ≡ 0 mod p has no solutions. So, i−(y) is determined by y0 ≡ y

mod p, but for i+(y) there are 2 residue classes for which 5y2 + 4 ≡ 0 mod p and so

5y2+4 = λpk, for some k ≥ 1, λ ∈ U. Thus, i+(y) is determined by λ0 and the parity

of k.

Example Let p = 13. Then p ≡ ±2 mod 5, so
√
5 /∈ Z13. We have β = 1+

√
5

2
≡

7 + 7
√
5 mod 13 and β is a primitive root mod p with β2(p+1) �≡ 1 mod p2. Also,

5y20 ± 4 is never 0 mod 13. Hence, it is straightforward to apply Theorem 8.3.1.

Consider the following table where numbers are written mod 13 and boxed num-

bers are non-zero squares.

y0 0 1 2 3 4 5 6 7 8 9 10 11 12

y20 0 1 4 9 3 12 10 10 12 3 9 4 1

5y20 0 5 7 6 2 8 11 11 8 2 6 7 5

5y20 + 4 4 9 11 10 6 12 2 2 12 6 10 11 9

5y20 − 4 9 1 3 2 11 4 7 7 4 11 2 3 1

It is now very easy to find the values of i(y) using the formula from Theorem 8.3.1.

We have in total:

y0 0 1 2 3 4 5 6 7 8 9 10 11 12

i(y) 4 4 2 2 0 4 0 0 4 0 2 2 4

Example Let p = 7. Then p ≡ ±2 mod 5, so
√
5 /∈ Z13. We have β = 1+

√
5

2
≡

4 + 4
√
5 mod 7 and β is a primitive root mod p with β2(p+1) �≡ 1 mod p2. Hence,

we are in the situation described above. Note that 5y20 +4 ≡ 0 mod 7 for y0 = 3 and

4. Thus, in these cases, we must consider all the cases when 5y2 + 4 = λ2p2k, where

λ ∈ U and k ≥ 1.

Consider the following table where numbers are written mod 7 and boxed numbers

are non-zero squares.

y0 0 1 2 3 4 5 6

y20 0 1 4 2 2 4 1

5y20 0 5 6 3 3 6 5

5y20 + 4 4 2 3 0 0 3 2

5y20 − 4 3 1 2 6 6 2 1
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It is now very easy to find the values of i(y) using the formula from Theorem 8.3.1.

We have in total:

y0 0 1 2 3 4 5 6

i(y) 2 4 2 2 2 2 4



Chapter 9

Tree Diagrams and Main Result

9.1 Tree Diagrams

Once we have calculated i(y), for all y ∈ Zp, we can represent the data in a tree

diagram similar to the one we used for the residue classes modulo 2 represented by

the Fibonacci numbers. It will have the same shape as the one in Figure 9.1.

In this tree, a node aligned with pk on the left of the tree corresponds to the

coefficient yk−1 of pk−1 in the p-adic expansion,
∑∞

i=0 yi · pi, of a Fibonacci number.

Note that we have written cji for (yi)a+1,j and dji for (yi)a+b,j, where the j’s are

indices and not exponents, in an effort to conserve space. Observe that, although

cji �= cli for any j �= l with j, l ∈ {1, .., p−1
2

+ 1}, and dmi �= dni for any m �= n with

m,n ∈ {1, .., p−1
2

+ 1}, we may still have csi = dti for some s, t ∈ {1, .., p−1
2

+ 1}.
A node is drawn if there is a Fibonacci number with that p-adic expansion and

omitted if not. For instance there is a Fibonacci number whose p-adic expansion

starts (y0)a+1 + c11 · p + c
p−1
2

+1

2 · p2 + c13 · p3 + c
p−1
2

+1

4 · p4 + c15 · p5 + . . . , but there

is no Fibonacci number whose p-adic expansion starts (y0)a+1 + c21 · p + . . . , where

c21 ∈ {0, . . . , p − 1} and c21 �= c11. A triangle is used to depict the fact that there is a

Fibonacci number with p-adic expansion corresponding to each of the branches below

the node to which it is attached. For example, there is a Fibonacci number with

p-adic expansion (y0)1 +
∑∞

i=1 yi · pi with yi ∈ {0, . . . , p− 1}, ∀i ≥ 1.

To draw such a tree using the calculations from Chapter 8, first add a branch

for each of the y0’s with i(y) �= 0. If i(y) �= 0 and both 5y20 + 4 �≡ 0 mod p and

5y20 − 4 �≡ 0 mod p, draw a triangle after the y0, since i(y) depends only on y0. If

i(y) �= 0 and either 5y20+4 ≡ 0 mod p or 5y20+4 ≡ 0 mod p, we must consider when

5y2+4 = λ2p2k or 5y2−4 = λ2p2k, respectively, where λ ∈ U and k ≥ 1. Thus, every

two levels, i.e., for every even power of p, we have p−1
2

branches stabilize in triangles,

since there are p−1
2

values of λ0 for which it is a square mod p. As we will only be

concerned with the shape of the branches, it is enough to draw this repeating pattern,

53
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F

(y0)1

p2

p1

p3

p4

p5

p6

...

(y0)a (y0)a+1

c11

c12 c
p−1
2

2 c
p−1
2

+1

2

c13

c14 c
p−1
2

4 c
p−1
2

+1

4

c15

...

(y0)a+b

d11

d12 d
p−1
2

2 d
p−1
2

+1

2

d13

d14 d
p−1
2

4 d
p−1
2

+1

4

d15

...

· · · · · ·

· · · · · ·

· · · · · ·

a

(p− 1)/2 (p− 1)/2

(p− 1)/2 (p− 1)/2

b

Figure 9.1: Generalized tree diagram.

although the node values can easily be calculated using Hensel’s Lemma.

Example For p = 11, recall that

y0 0 1 2 3 4 5 6 7 8 9 10

i+(y) 1 1 0 1 0 0 0 0 1 0 1

i−(y) 0 2 2 0 0 2 0 0 0 0 0

i(y) 1 3 2 1 0 2 0 0 1 0 1

The associated tree diagram is shown in Figure 9.2.

Example For p = 13, recall that

y0 0 1 2 3 4 5 6 7 8 9 10 11 12

i(y) 4 4 2 2 0 4 0 0 4 0 2 2 4

The associated tree diagram is shown in Figure 9.3.

Example For p = 7, recall that

y0 0 1 2 3 4 5 6

i(y) 2 4 2 2 2 2 4

The associated tree diagram is shown in Figure 9.4.
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F

0

112

111

113

114

115

116

...

1 2 3 8 10 5

0

0 4 5 6 8 9

6

3 4 5 7108

0

...

Figure 9.2: Tree diagram for p = 11.

F

0

132

131

...

1 2 3 5 8 10 11 12

Figure 9.3: Tree diagram for p = 13.
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F

0

72

71

73

74

75

76

...

1 2 5 6 3

0

0 4 5 3

4

0 4 5 3

6

...

4

6

1 2 6 3

2

1 2 6 3

0

...

Figure 9.4: Tree diagram for p = 7.

9.2 Main Result

Using the results in Chapter 8, it is possible to determine which residue classes are

represented by the Fibonacci numbers modulo various prime powers when the prime

is such that β satisfies Condition 1.0.1. In such cases, we can calculate the p-sequence

of the Fibonacci numbers.

Before stating the main result, we will need a bit more notation.

Notation 9.2.1.

1. Let Sq be the set of squares in U/U1.

2. Let F1 = {y ∈ F|5y2 + 4 �≡ 0 mod p and 5y2 − 4 �≡ 0 mod p} and F2 = {y ∈
F|5y2 + 4 ≡ 0 mod p or 5y2 − 4 ≡ 0 mod p}.

We will also need the following proposition.

Proposition 9.2.2. We have the following equality:

{λ2p2k|λ ∈ U, k ≥ 1} =
⋃
k≥1

(⋃
s∈Sq

(sp2k + p2k+1Zp)

)
.
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Proof. It is clear that

{λ2p2k|λ ∈ U, k ≥ 1} ⊆
⋃
k≥1

(⋃
s∈Sq

(sp2k + p2k+1Zp)

)
.

The converse is a consequence of Hensel’s Lemma. Let

x ∈
⋃
k≥1

(⋃
s∈Sq

(sp2k + p2k+1Zp)

)
.

So, x = sp2k + p2k+1z for some k ≥ 1, s ∈ Sq, and z ∈ Zp. Note that s+ pz ∈ Zp with

s + pz �≡ 0 mod p and ( s
p
) = 1, since s ∈ Sq. Thus, by Corollary 6.0.9, the square

root of s + pz, say λ, is in Zp. In fact, λ ∈ U, since p � λ because s ∈ Sq. Hence,

λ2 = s+ pz and λ2p2k = sp2k + p2k+1z = x for λ ∈ U, k ≥ 1. Therefore,

⋃
k≥1

(⋃
s∈Sq

(sp2k + p2k+1Zp)

)
⊆ {λ2p2k|λ ∈ U, k ≥ 1}.

With this information, we can now prove our main result.

Theorem 9.2.3. Let f : U → Zp or f : U0(
√
5) → Zp be given by

f(z) =
1√
5

(
z − N(z)

z

)
,

where N(z) = 1 or −1 according to whether z is a square or not (in U or U0(
√
5)).

For a fixed odd prime integer p for which β satisfies Condition 1.0.1, we have

αF,p = (αZ,p + (k))∧a ∧ (αγ,p)
∧b,

where γ is a set whose p-sequence, αγ,p, is determined completely by the equation

αγ,p = ((αZ,p + (k))∧
p−1
2 ∧ αγ,p) + (2k),

a = number of images of 〈β0〉 in Z/(p) under f with f ′ not equal to 0,

and

b = number of images of 〈β0〉 in Z/(p) under f with f ′ equal to 0,

Furthermore, b is determined by the number of solutions of 1∓ 1
z2

≡ 0 mod p. Thus,

0 ≤ b ≤ 4.
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Proof. Let p be a fixed odd prime integer for which β satisfies Condition 1.0.1. Using

Proposition 8.2.2, Theorem 8.2.5, and Theorem 8.3.1, we are able to calculate the

number of solutions of f(z) = y, that is, i(y), ∀y ∈ Zp. With this information, we can

create a tree diagram, as in the previous section.

Since a node is drawn if there is a Fibonacci number with that p-adic expansion

and omitted if not, there is a branch for each of the y0’s with i(y) �= 0. Thus, the total

number of branches is equal to the total number of images of 〈β0〉 in Z/(p) under f ,

i.e., a+ b.

It is clear that

f ′(z) =
1√
5

(
1∓ 1

z2

)
.

Thus,

f ′(z) = 0 ⇐⇒ 1∓ 1

z2
= 0

⇐⇒ 1 = ± 1

z2

⇐⇒ z2 = ±1

⇐⇒ z = ±1,±√−1.

Since b is the number of images of 〈β0〉 in Z/(p) under f with f ′ equal to 0, b is

determined by the number of solutions of 1∓ 1
z2

≡ 0 mod p. Thus, 0 ≤ b ≤ 4.

Clearly, F = F1∪F2 and vp(u1−u2) = 0, ∀u1 ∈ F1, u2 ∈ F2. Thus, by Lemma 3.3.3,

the p-sequence of F is

αF,p = αF1,p ∧ αF2,p.

To determine αF,p, we will use the information from the tree diagram to find S ⊆ Z

with F1 ⊆ S and F1/(p
k) = S/(pk), ∀k ≥ 0, and to find T ⊆ Z with F2 ⊆ T and

F2/(p
k) = T/(pk), ∀k ≥ 0, so that we can apply Lemma 2.2.3.

Consider F1/(p). Any y0 ∈ F1/(p) will have 5y20 + 4 �≡ 0 mod p and 5y20 − 4 �≡ 0

mod p. In this case, i(y) = i(y0) depends only on y0. Thus, the y0’s in F1/(p) with

i(y) �= 0 start the branches that stabilize. Since 5y20 + 4 �≡ 0 mod p and 5y20 − 4 �≡ 0

mod p if and only if f ′ is not equal to 0, the number of such y0’s is a. The branches that

stabilize represent sets of the form y0+pZ, since they include all p-adic numbers with

initial coefficient y0. Thus, their p-sequences are easily calculated, using Lemma 3.3.1,

to be αZ,p + (k). There are a such branches and, for any two of them, say C and D,
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vp(c− d) = 0, ∀c ∈ C, d ∈ D. Thus, Lemma 3.3.3 applies to all of them and we get

αF1,p = (αZ,p + (k))∧a.

Now, consider F2/(p). Any y0 ∈ F2/(p) will have 5y
2
0+4 ≡ 0 mod p or 5y20−4 ≡ 0

mod p. In this case, as described in Theorem 8.2.5 and Theorem 8.3.1, to determine

i(y) we must consider all of the instances when 5y2 ± 4 = λ2p2k, where λ ∈ U and

k ≥ 1. Thus, the y0’s in F2/(p) with i(y) �= 0 start the branches that repeat. Since

5y20 + 4 ≡ 0 mod p or 5y20 − 4 ≡ 0 mod p if and only if f ′ is equal to 0, the number

of such y0’s is b. Note that there are at most four different y0’s in F2/(p), since F2/(p)

contains at most four residue classes depending on p, namely, ± 2√
5
,±2

√−1√
5

mod p,

which again shows us that 0 ≤ b ≤ 4.

To see the form of the sets represented by the branches that repeat, consider the

class of 2√
5

mod p, that is, the positive solutions of 5y2 − 4 ≡ 0 mod p. The other

three classes are similar. Suppose F2/(p) contains the residue class 2√
5

mod p. As

mentioned above, when 5y20 − 4 ≡ 0 mod p, we must consider all of the cases when

5y2 − 4 = λ2p2k, where λ ∈ U and k ≥ 1. If 5y2 = 4 + λ2p2k for λ ∈ U and k ≥ 1,

then we have 5y2 ∈ Zp with 5y2 �≡ 0 mod p and (5y
2

p
) = 1, so the square root of 5y2

is in Zp, by Corollary 6.0.9. Moreover, it must be of the form 2 + μ2p2k for μ ∈ U

with μ ≡ ±λ
2

mod p, since 5y2 = 4 + λ2p2k. So, 5y2 = (2 + μ2p2k)2 and, thus,

y = ± 1√
5
(2 + μ2p2k). Since we are considering only the class of 2√

5
mod p, we have

y = 1√
5
(2 + μ2p2k). All elements of this form are in the image of f and we denote

the set of all such y, for μ ∈ U and k ≥ 1, by γ. By Condition 1.0.1, the group

generated by β is p-adically dense in U or U0(
√
5), and f is p-adically continuous;

hence, the image of the subgroup generated by β is p-adically dense in γ. The set γ

can be expressed as a union in the following way.

γ =
1√
5
(2 + {μ2p2k|μ ∈ U, k ≥ 1})

=
2√
5
+

1√
5

(⋃
k≥1

(⋃
s∈Sq

sp2k + p2k+1Zp

))
, by Proposition 9.2.2.
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Rearranging we get

√
5γ − 2 =

⋃
k≥1

(⋃
s∈Sq

sp2k + p2k+1Zp

)
,

p2(
√
5γ − 2) =

⋃
k≥2

(⋃
s∈Sq

sp2k + p2k+1Zp

)
.

Hence,

γ =
2√
5
+

1√
5

((⋃
s∈Sq

sp2 + p3Zp

)⋃(⋃
k≥2

(⋃
s∈Sq

sp2k + p2k+1Zp

)))

=
2√
5
+

1√
5

((⋃
s∈Sq

sp2 + p3Zp

)⋃
p2(

√
5γ − 2)

)

=
2√
5
+

1√
5

(
γ1

⋃
γ2

)
,

where γ1 =
⋃

s∈Sq sp
2 + p3Zp and γ2 = p2(

√
5γ − 2).

Since Lemma 3.3.1 holds for r ∈ Zp(
√
5) as well as r ∈ Z, to compute αγ,p, we see

that we may ignore the translation by 2√
5
and the scaling by 1√

5
because they do not

change the p-sequence. We are left with the union of two sets to which Corollary 3.3.6

applies, since vp(x− y) = 2, ∀x ∈ γ1, y ∈ γ2. Therefore,

αγ,p = αγ1∪γ2,p

= ((αγ1,p − (2k)) ∧ (αγ2,p − (2k))) + (2k).

Since γ1 =
⋃

s∈Sq sp
2 + p3Zp and |Sq| = p−1

2
, γ1 is a union of p−1

2
sets of the form

sp2+p3Zp, for s ∈ Sq. A set of this form has p-sequence αZ,p+(3k), by Lemma 3.3.1,

since Zp/(p) = Z/(p). Thus,

αγ1,p = (αZ,p + (3k))∧
p−1
2 .

Now, consider γ2 = p2(
√
5γ − 2).

αγ2,p = αp2(
√
5γ−2),p

= α√
5γ−2,p + (2k), by Lemma 3.3.1

= αγ,p + (2k), by Lemma 3.3.1.
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Using these results, we then get

αγ,p = ((αγ1,p − (2k)) ∧ (αγ2,p − (2k))) + (2k)

= (((αZ,p + (3k))∧
p−1
2 − (2k)) ∧ ((αγ,p + (2k))− (2k))) + (2k)

= ((αZ,p + (k))∧
p−1
2 ∧ αγ,p) + (2k).

Note that, as mentioned in the introduction, the equation for αγ,p does determine this

sequence completely since αγ,p(n) is expressed in terms of other known quantities and

αγ,p(m) for m < n.

Although we used γ to denote the repeating branch with 2√
5
as its first node, we

can use the same name for all repeating branches since we are only interested in their

p-sequences, which are all the same. Their p-sequences are the same by Lemma 3.3.1,

because the only differences between the branches are in scaling or translation by a

unit. Since there are b repeating branches, as shown above,

αF2,p = (αγ,p)
∧b = (((αZ,p + (k))∧

p−1
2 ∧ αγ,p) + (2k))∧b.

Finally,

αF,p = αF1,p ∧ αF2,p

= (αZ,p + (k))∧a ∧ (((αZ,p + (k))∧
p−1
2 ∧ αγ,p) + (2k))∧b.

We now have a simple and fast algorithm for computing αF,p for the primes for

which β satisfies Condition 1.0.1, since the only operations required to apply Theo-

rem 9.2.3 are sum, merge, and sort.

9.3 Examples

Let us now look at how we can apply Theorem 9.2.3 to calculate the p-sequence of

the Fibonacci numbers for the primes p = 11, 13, and 17.

Example For p = 11, recall that the associated tree diagram is as shown in

Figure 9.2.

Let

C = 11Z ∪ (1 + 11Z) ∪ (2 + 11Z) ∪ (3 + 11Z)) ∪ (8 + 11Z)) ∪ (10 + 11Z)) ∪ γ,
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where γ is the set represented by the repeating branch. From this diagram, we see

that, ∀k > 0,
F

(11k)
=

C

(11k)
.

Hence, by Lemma 2.2.3,

Int(F,Z(11)) = Int(C,Z(11)),

which means that the 11-sequence of F and the 11-sequence of C are the same.

Note that there are six branches that stabilize and one that repeats. Thus, we

can apply Theorem 9.2.3 with a = 6 and b = 1. We then see that

αF,11 = (αZ,11 + (k))∧6 ∧ αγ,11,

where

αγ,11 = ((αZ,11 + (k))∧5 ∧ αγ,11) + (2k).

The beginning of αF,11 is:

αF,11

{0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5,
5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10,

10, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15,

15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, . . . }

Example For p = 13, recall that the associated tree diagram is as shown in

Figure 9.3.

Let

C =13Z ∪ (1 + 13Z) ∪ (2 + 13Z) ∪ (3 + 13Z) ∪ (5 + 13Z)

∪ (8 + 13Z) ∪ (10 + 13Z) ∪ (11 + 13Z) ∪ (12 + 13Z).

From this diagram, we see that, ∀k > 0,

F

(13k)
=

C

(13k)
.

Hence, by Lemma 2.2.3,

Int(F,Z(13)) = Int(C,Z(13)),
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which means that the 13-sequence of F and the 13-sequence of C are the same.

Note that there are nine branches that stabilize and none that repeat. Thus, we

can apply Theorem 9.2.3 with a = 9 and b = 0. We then see that

αF,13 = (αZ,13 + (k))∧9.

The beginning of αF,13 is:

αF,13 =

{0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4,
4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8,

8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11,

11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, . . . }

Example For p = 7, recall that the associated tree diagram is as shown in Fig-

ure 9.4.

Let

C = 7Z ∪ (1 + 7Z) ∪ (2 + 7Z) ∪ (5 + 7Z) ∪ (6 + 7Z) ∪ γ ∪ δ,

where γ is the set represented by the repeating branch with 3 as its first node and

δ is the set represented by the repeating branch with 4 as its first node. From this

diagram, we see that, ∀k > 0,
F

(7k)
=

C

(7k)
.

Hence, by Lemma 2.2.3,

Int(F,Z(7)) = Int(C,Z(7)),

which means that the 7-sequence of F and the 7-sequence of C are the same.

Note that there are five branches that stabilize and two that repeat. As mentioned

in the proof of Theorem 9.2.3, we can use the same name for all repeating branches

since we are only interested in their p-sequences, which are all the same. Thus, γ = δ.

We can now apply Theorem 9.2.3 with a = 5 and b = 2. We then see that

αF,7 = (αZ,7 + (k))∧5 ∧ (αγ,7)
∧2,

where

αγ,7 = ((αZ,7 + (k))∧3 ∧ αγ,7) + (2k).
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The beginning of αF,7 is:

αF,7 =

{0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6,
6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11,

12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 16, 16, 16, 16, 16, 16, 16,

17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 20, 20, . . . }

With the p-sequences calculated in this thesis, together with the p-sequences for

p = 3 and p = 13, we can calculate the first 10 elements in a regular basis for Int(F,Z).

They are:

1, x,
x2 − x

2
,
x3 − 3x2 + 2x

6
,
x4 − 6x3 + 11x2 − 6x

24
,

143x5 − 2965x4 + 14215x3 − 24035x2 + 12642x

240
,

269x6 − 9255x5 + 80285x4 − 274545x3 + 392126x2 − 188880x

720
,

245129x7 − 18791962x6 + 343262150x5

−2392639900x4 + 7391778401x3 − 10008680458x2 + 4684826640x
443520

,

245129x8 − 23406351x7 + 605061912x6 − 6640975530x5

+35440539981x4 − 94265906679x3 + 117015122578x2 − 52130681040x
443520

, and

54687901x9 − 31874521653x8 + 7668792570894x7

−568782337259682x6 + 9101305330342869x5 − 58282598264258277x4

171075685473526496x3 − 224615295883995588x2 + 103282048708907040x
103783680

,

as stated in Chapter 1.



Chapter 10

Conclusion

By using Coelho and Parry’s results on the distribution of the Fibonacci numbers

modulo powers of primes, we now have, for the primes p for which β satisfies Condition

1.0.1, a formula for the p-sequence of the Fibonacci numbers and an algorithm for

finding a p-ordering. Once we know the p-sequence, we can then find a p-local regular

basis for the polynomials that are integer-valued on the Fibonacci numbers using

Bhargava’s methods. A regular basis can be constructed for Int(F,Z) from p-local

regular bases for all primes p.

For the primes p for which β does not satisfy Condition 1.0.1 the distribution of the

Fibonacci numbers modulo powers of these primes can be described using methods

analogous to those above, with some of the differences clarified in Section 9 of [6].

This case is complicated by the fact that the domain of f cannot always be divided

modulo p into squares and non-squares. Once we have determined which residue

classes of Z/(pk) are represented by the Fibonacci numbers for these primes, we can

apply methods similar to those in this thesis to find a formula for the p-sequence of

the Fibonacci numbers that has only slight modifications to the one given in our main

result. We will then be able to find p-local regular bases for all primes p. Thus, as

mentioned in the previous paragraph, we will be able to construct a regular basis for

Int(F,Z). Hence, our results provide a new and interesting example of a set S ⊆ Z

for which we can describe Int(S,Z). Furthermore, our results are a step on the way

to a general description of Int(S,Z) for sets S ⊆ Z determined by linear recurrence

relations.

One such set, which is described in Section 10 of Coelho and Parry’s paper, is

quite similar to the Fibonacci numbers. For a prime integer p, consider the recurrence

relation

un = Aun−1 + un−2, n ≥ 2,

where A is an integer such that p does not divide A(A2 + 4). If we set u0 = 0 and
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u1 = 1, we obtain a sequence to which we can directly extend Coelho and Parry’s

results for the Fibonacci numbers. This extension is possible because this sequence

also satisfies Binet’s formula, that is, we can write

un =
1√
D

(
βn −

(−1

β

)n)
,

where D = A2 +4 is the discriminant of P (x) = x2 −Ax− 1 and β = (A+
√
D)/2 is

the dominant root of P . The condition that p does not divide A(A2+4) ensures that

β is a unit in Zp if D is a square and that β is a unit in Zp(
√
D) if D is not a square.

Thus, basically all of the results of the earlier chapters hold in this case by replacing

5 with D and replacing the β used for the Fibonacci numbers by this more general

one in our presentation. Hence, we will also be able to construct a regular basis for

Int(S,Z), where S is the set determined by the linear recursion described above.

It is now natural to wonder to what further generality these results can be ex-

tended. For instance, it would be interesting to consider whether or not the initial

conditions required in the previous paragraph are necessary to apply Coelho and

Parry’s methods. Even more generally, we would like to be able to describe Int(S,Z)

for sets S determined by a second-order linear recurrence relation of the form

un = A · un−1 +B · un−2, n ≥ 2

where A,B, u0, and u1 are integers. An alternative approach will be necessary for

this result. From there, we would want to find a general description of Int(S,Z) for

any set S ⊆ Z determined by a linear recurrence relation.
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