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We show that the recently obtained class of spacetimes for which all of the scalar curvature invariants
vanish (which can be regarded as generalizations of pp-wave spacetimes) are exact solutions in string
theory to all perturbative orders in the string tension scale. As a result the spectrum of the theory can be
explicitly obtained, and these spacetimes are expected to provide some hints for the study of super-
strings on more general backgrounds. Since these Lorentzian spacetimes suffer no quantum corrections
to all loop orders they may also offer insights into quantum gravity.
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It is known that all of the scalar curvature invariants
vanish in pp-wave spacetimes [1] (see also [2,3]). It has
subsequently been argued that pp-wave spacetimes are
exact solutions in string theory (to all perturbative orders
in the string tension) [4,5]. In this Letter we shall show
that this is true for a wide class of spacetimes (in addition
to the pp-wave spacetimes), a result that has broad and
important implications.

In a recent paper it was proven that in pseudo-
Riemannian or Lorentzian spacetimes all of the scalar
invariants constructed from the Riemann tensor and its
covariant derivatives are zero if and only if the spacetime
is of Petrov-type III, N or O, all eigenvalues of the Ricci
tensor are zero, and the common multiple null eigenvec-
tor of the Weyl and Ricci tensors is shearfree, irrotational,
geodesic, and expansion-free (SIGE) [6]; we shall refer to
these spacetimes as vanishing scalar invariant (VSI)
spacetimes in what follows for brevity. Utilizing a com-
plex null tetrad in the Newman-Penrose (NP) formalism
it was shown that for Petrov types III and N the repeated
null vector of the Weyl tensor [* is SIGE (i.e., the NP
coefficients «, o, and p are zero), and the Ricci tensor has
the form

Raﬁ = _2(1)221111,3 + 4q)21[(amﬁ) + 4(1)121(5“’71'8)’ &)

in terms of the nonzero Ricci components &;;. For Petrov-
type 0, the Weyl tensor vanishes and so it suffices that the
Ricci tensor has the form (1), where the corresponding
vector field [* is again SIGE.

All of these spacetimes belong to Kundt’s class, and
hence the metric of these spacetimes can be expressed
[7.8]

ds® = 2du[Hdu + dv + Wd{ + Wdl] —2didl, (2)

where H=H(u, v, ,{) and W = W(u, v, {, {) (P = 1),
and the null tetrad is

=9,
n=29,—(H+WW)a,+(Wa, + Waz), 3)
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Note that in local coordinates the repeated null Weyl
eigenvector is given by [ = d,,.. If 7 = 0, the null congru-
ence [ is recurrent [6].

The metrics for all VSI spacetimes are displayed in [6].
For example, the metric of Plebanski-Petrov(PP)-type O,
Petrov-type 111, and NP coefficient 7 = 0 is given by

- 1 - _
W= WO(“; g)’ H= EU(WO’Z +WO){) + h()(u) {, g);

4
where

Dy, = [ho, ¢z —RWoWo,z7 +Wo,ug +Wo,§« ) )

and [ is recurrent. The generalized pp-wave solutions are
of Petrov-type N, PP-type O (so that the Ricci tensor has
the form of null radiation) with 7 =0, and admit a
covariantly constant null vector field [1]. The vacuum
spacetimes, which are obtained by setting ®,, = 0, are
the well-known pp-wave spacetimes (or plane-fronted
gravitational waves with parallel rays).

The Ricci tensor (1) has four vanishing eigenvalues,
and the PP type is N for ®;, # 0 or O for &, = 0. It
is known that the energy conditions are violated in the
PP-type N models [7] and hence attention is usually
concentrated on the more physically interesting PP-type
O case, which in the nonvacuum case corresponds to a
pure radiation [7,9] (although we should point out that
spacetimes that violate the energy conditions are also of
interest in current applications [10]).

The pp-wave spacetimes have a number of important
physical applications. In particular, pp-wave spacetimes
are exact solutions in string theory (to all perturbative
orders in the string tension) [4,5]. We shall show that a
wide range of VSI spacetimes (in addition to the pp-wave
spacetimes) also have this property. Indeed, pp waves
provide exact solutions of string theory [4,5], and type-
IIB superstrings in this background were shown to be
exactly solvable even in of the presence of the RR five-
form field strength [11,12]. As a result the spectrum of the
theory can be explicitly obtained, and the number of

© 2002 The American Physical Society 281601-1



VOLUME 89, NUMBER 28

PHYSICAL REVIEW LETTERS

31 DECEMBER 2002

potential exact vacua for string theory is increased. This
work is expected to provide some hints for the study of
superstrings on more general backgrounds.

The classical equations of motion for a metric in string
theory can be expressed in terms of o-model perturbation
theory [13], through the Ricci tensor R, and higher-
order corrections in powers of the string tension scale o’
and terms constructed from derivatives and higher
powers of the Riemann curvature tensor [e.g.,
1a'R, ,;2R, P7*]. It has long been known that vacuum
pp-wave spacetimes are exact solutions to string theory to
all orders in @', and this was explicitly generalized to
nonvacuum (null radition) pp-wave solutions in [5]. The
proof that all of the VSI spacetimes [6] are classical
solutions of the string equations to all orders in
o-model perturbation theory [4] consists of showing
that all higher-order correction terms vanish [4], and
this follows immediately from the results of [6]. This
can be demonstrated explicitly by direct calculation for
the type III example (4) (see also [14]). It is perhaps
surprising that such a wide class of VSI spacetimes,
which contain a number of arbitrary functions, have
this property.

A more geometrical derivation of this result follows
from the fact that the only nonzero symmetric second-
rank tensor covariantly constructed from scalar invari-
ants and polynomials in the curvature and their covariant
derivatives in VSI spacetimes is the Ricci tensor (which is
proportional to /[, for PP-type O spacetimes), and hence
all higher-order terms in the string equations of motion
automatically vanish [5]. More importantly, it is possible
to generalize this approach to include other bosonic mass-
less fields of the string. For example, we can include a
dilaton @ and an antisymmetric (massless field) H,,,,.
Let us assume that for VSI spacetimes

D=0 Q) (6)

H,U-VP = Al](lu” g’ Z)e[,uvyxivp]xj- (7)

The field equations [13]

AVD) — V2 — 1—12H2 _o, )
V/\H;\LV - 2(VA(I))H;),V =0, )

are then satisfied automatically to leading order in
o-model perturbation theory (i.e., to order a'). This is
clearly evident for VSI spacetimes with 7 = 0 and with
® = ®(u) and A;; = A;;(u) and follows from the fact that
€ is recurrent; this can be shown explicitly by direct
calculation for the type III example (4) and is known to
be true for the pp waves. In these spacetimes H> =
V2® = (V®)? = 0, and the only nontrivial field equation
is then [13]
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R#V - ZH

H,»" —2V,V,® =0,

upo

For PP-type 0 spacetimes (R, = €,,¢,) this equation has
only one nontrivial component which then constitutes a
single differential equation for the functions ®, H uop and
the metric functions (e.g., for pp-wave spacetimes 9°H +
%A AV + 20" = 0 [5]). Solutions with more general
forms for ®, H,,, [than Eqgs. (6) and (7)] are possible
for 7 = 0 (and 7 # 0 spacetimes) and the field equations
reduce to an underdetermined set of differential equations
with many arbitrary functions.

We can consider higher-order corrections in o-model
perturbation theory, which are of the form of second-rank
tensors and scalars constructed from VMCI), H,,,, the
metric and their derivatives. Since at most two derivatives
of ® can appear in any second-rank tensor and given the
form of the Riemann tensor, all terms constructed from
more that two H,,,’s and their derivatives and at least one
Riemann tensor and one or more V,®’s or H,,,’s must
vanish. Also, for appropriately chosen ® and H,,,, all
terms of the form (V...VH)?> must vanish. This can
again be shown by direct calculation for the type III
example (4) and was proven for the pp waves in [5].
Therefore, there are solutions to string theory to all orders
in o-model perturbation theory. In addition, there are
clearly a large number of arbitrary functions (and many
more than in the pp-wave case) in this class of solutions
still to be determined.

It has been noted that massive fields can also be in-
cluded since their loop contributions can always be ex-
panded in powers of derivatives (the result will again be
polynomials in curvature which will vanish). In addition,
it has been shown [5] that exact pp waves are exact
solutions to string theory, even nonperturbatively. It is
therefore plausible that a wide class of VSI solutions,
which depends on a number of arbitrary functions, are
exact solutions to string theory nonperturbatively and
worthy of further investigation. In particular, the singu-
larity structure of the VSI string theory spacetimes can be
studied as in [5].

Solutions of classical field equations for which the
counter terms required to regularize quantum fluctua-
tions vanish are also of importance because they offer
insights into the behavior of the full quantum theory. The
coefficients of quantum corrections to Ricci flat solutions
of Einstein’s theory of gravity in four dimensions have
been calculated up to two loops. In particular, a class of
Ricci flat (vacuum) Lorentzian 4-metrics, which includes
the pp-wave spacetimes and some special Petrov-type III
or N spacetimes, have vanishing counter terms up to and
including two loops [14]. Thus these Lorentzian metrics
suffer no quantum corrections to all loop orders [15]. In
view of the vanishing of all quantum corrections in these
spacetimes, it is possible that the VSI metrics are of
importance and merit further investigation.
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