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Qualitative properties of magnetic fields in scalar field cosmology

C. A. Clarkson,* A. A. Coley,† and S. D. Quinlan‡
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We study the qualitative properties of the class of spatially homogeneous Bianchi type-VIo cosmological
models containing a perfect fluid with a linear equation of state, a scalar field with an exponential potential and
a uniform cosmic magnetic field, using dynamical systems techniques. We find that all models evolve away
from an expanding massless scalar field model in which the matter and the magnetic field are negligible
dynamically. We also find that for a particular range of parameter values the models evolve towards the usual
power-law inflationary model~with no magnetic field! and, furthermore, we conclude that inflation is not
fundamentally affected by the presence of a uniform primordial magnetic field. We investigate the physical
properties of the Bianchi type-I magnetic field models in some detail.
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I. INTRODUCTION

There are many observations that imply the existence
magnetic fields in the Universe, and recent observations h
produced firmer estimates of the strength of magnetic fie
in interstellar and intergalactic space@1–3#. Current observa-
tions place an upper bound on the strength of a cosmic m
netic field, but do not conclusively determine whether suc
field exists @4,5#. Although cosmologists have investigate
the possible existence of a homogeneous intergalactic m
netic field of primordial origin both from a theoretical and a
observational point of view for many years, research on c
mological magnetic fields has been rather marginal des
their potential importance. The reasons could be the
ceived weakness of the field effects or the lack, as yet,
consistent theory explaining the origin of cosmic magnetis
However, this situation has changed considerably rece
~cf. Ref. @6#!.

Primordial magnetic fields introduce new ingredients in
the standard picture of the early Universe. Such a field wo
affect the temperature distribution of the microwave ba
ground radiation, primeval nucleosynthesis and galaxy
mation. But its most direct observational effect is the Fa
day rotation it would cause in linearly polarized radiati
from observed extragalatic radio sources. Fundamental p
erties of magnetic fields include their vectorial nature, wh
inevitably couples the field to the spacetime geometry,
the resulting tension~i.e., the negative pressure! exerted
along the field’s lines of force@7,8#. The implications of such
an interaction are both kinematical and dynamical; kinem
cally, the magnetocurvature effect tends to accelerate p
tively curved perturbed regions, while it decelerates regi
with negative local curvature and, dynamically, the most i
portant magnetocurvature effect is that it can reverse the
magnetic effect on density perturbations@9–12#.

In a recent analysis@8# the kinematics were considere
and, assuming a spacetime filled with a perfectly conduc
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barotropic fluid permeated by a weak primordial magne
field while treating the energy density and the anisotro
pressure of the field as first-order perturbations upon
Friedmann-Lemaıˆtre-Robertson-Walker ~FLRW! back-
ground, it was shown how a cosmological magnetic field c
modify the expansion rate of an almost-FLRW universe. T
effects of the interaction between magnetism and geom
in cosmology are subtle, and it was argued that the mag
tocurvature coupling could make the field into a key play
irrespective of the magnetic strength. Indeed, even w
magnetic fields can lead to appreciable effects, provided
there is a strong curvature contribution. This was illustra
by studying spatially open cosmological models contain
‘‘matter’’ with negative pressure, and it was found that t
phase of accelerated expansion, which otherwise would h
been inevitable, may not even happen. This leads to the q
tion of theefficiency of inflationary models in the presence
primordial magnetism. Recall that an initial curvature er
was never considered as a problem for inflation, given
smoothing power of the accelerated expansion. Howe
this may not be the case when a magnetic field is presen
matter how weak the latter is. A more recent work@13# has
further studied the vector nature of magnetic fields and
unique coupling between magnetism and spacetime cu
ture in general relativity which gives rise to a variety
effects with important implications was discussed.

Observations of the high degree of isotropy of the cosm
microwave background indicate that the Universe is ‘‘
most’’ isotropic and spatially homogeneous~at least since the
time of the last scattering!. Theoretical support for this belie
comes from the so-called Ehlers-Geren-Sachs@14# theorem.
Reference@15# has proven a generalization of this theore
and has consequently shown that any strong magnetic fi
in the Universe are ruled out. This theoretical result is mo
independent and includes the case of inhomogeneous m
netic fields. In further work@16# numerical constraints are
placed on all types of primordial and protogalactic magne
fields in the Universe from cosmic microwave backgrou
data.

We shall study open spatially homogeneous cosmolog
models containing both a uniform magnetic field and a sca
field here, partially in an attempt to address some of
©2001 The American Physical Society03-1
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questions raised above. Scalar field cosmological models
of great importance in the study of the early Universe. Mo
els with a variety of self-interaction potentials have be
studied, and one potential that is commonly investigated
which arises in a number of physical situations has an ex
nential dependence on the scalar field@17,18#. There have
been a number of studies of spatially homogeneous sc
field cosmological models with an exponential potenti
with particular emphasis on the possible existence of in
tion in such models~Refs.@19,32,20#, and references within!.

Dynamical systems methods for analyzing the qualitat
properties of cosmological models have proven very us
@21,22#. A qualitative analysis of cosmological models wi
matter and a uniform magnetic field has been presented
viously @23,24#. A universe with a primordial magnetic fiel
is necessarily anisotropic. Thus, in order to investigate
influence of the magnetic field on the dynamics of the u
verse the Einstein field equations must be analyzed in mo
more general than the FLRW models. The simple classe
the Bianchi I and Kantowski-Sachs models were discus
~cf. Ref. @25#!, and Ref.@23# applied techniques from th
theory of planar dynamical systems to prove qualitative
sults about the evolution of the class of axisymmetric Bia
chi I cosmologies with matter and a primordial magne
field.

In Ref. @24# the Einstein-Maxwell field equations for or
thogonal Bianchi type-VIo cosmologies with ag-law perfect
fluid and a pure, homogeneous sourcefree magnetic
were written as an autonomous differential equation in te
of expansion-normalized variables. It was shown that
physical region of state space is compact, and that the di
ential equation admits certain invariant sets and monot
functions which play an important role in the analysis.
complete analysis of the stability properties of the equil
rium points of the differential equation and a description
the bifurcations that occur as the equation of state param
g varies was given. The associated dynamical system
studied and the past, intermediate and future evolution
these models was determined. All asymptotic states of
models, and the likelihood that they will occur, were d
scribed. In particular, oscillatory behavior also occurs in c
mological models with a magnetic field~and in Einstein-
Yang-Mills theory in general!. Further work on spatially
homogeneous models with a magnetic field and a nonti
perfect fluid has been carried out recently@26,27#. In particu-
lar, Ref.@28# has generalized~to the nonpolarized solutions!
the work of Ref.@24#, and rigorously shown that the evolu
tion toward the singularity is oscillatory in Bianchi type-V0
vacuum models.

We shall concentrate on the Bianchi type-VIo models pri-
marily for mathematical simplicity. It is well known@29# that
a pure magnetic field is only possible in Bianchi cosmolog
of types I, II, VIo , VII o ~in class A! and type III~in class B!.
For types VIo and VIIo , the algebraic constraints that aris
from the Einstein field equations imply that the shear eig
frame is Fermi propagated, which in turn implies that t
remaining field equations reduce to an autonomous diffe
tial equation with a polynomial vector field. Finally, for typ
VIo but not for VIIo , the physical region of state space
12200
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compact. We note that since a magnetic field is not comp
ible with Bianchi types VIII and IX~for example!, the class
of Bianchi type-VIo magnetic cosmologies is of the sam
generality as the Bianchi type-VIII/IX models~without mag-
netic field! @30#.

In this paper we shall investigate the class of Bianchi Vo
models with barotropic matter, a scalar field with an exp
nential potential and a uniform magnetic field. We shall d
cuss some general properties of the complete class of m
els, and then investigate the special case of the Bian
type-I system in detail. We note that this is not the gene
class of Bianchi type-I cosmological models; we are on
considering those Bianchi type-I models that occur as s
cases of the Bianchi type-VIo models with one magnetic de
gree of freedom. It is also of interest to study the Bianc
type-II cosmologies, since although they are very spe
within the full Bianchi class, they play a central role sin
the Bianchi type-II state space is part of the boundary of
state space for all higher Bianchi types~i.e., all types except
for I and V!. The Bianchi type-II models will be investigate
in detail elsewhere@31#.

The Bianchi type-I system in the absence of a scalar fi
was first qualitatively analyzed in Ref.@23#. A qualitative
analysis of the Bianchi type-I models in the absence o
magnetic field was given in Ref.@20#; in this work the well-
known power-law inflationary solution@17,32# was shown to
be a stable attractor for an appropriate parameter range in
presence of a barotropic fluid in all Bianchi class B mod
~previous analysis had shown that this power-law inflatio
ary solution is a global attractor in spatially homogeneo
models in the absence of a perfect fluid, except for a subc
of Bianchi type-IX models which recollapse!. One of the
aims of the present analysis is to study the stability of t
model with respect to magnetic field perturbations.

II. THE BIANCHI TYPE-VI o MODELS

We shall follow the approach of Ref.@24# in which the
theory of dynamical systems was used to give a deta
analysis of the evolution of orthogonal Bianchi cosmolog
of type VIo with a perfect fluid and a magnetic field a
source. This work extended that of Ref.@33# which had stud-
ied perfect fluid Bianchi cosmologies of class A using st
variables that are dimensionless and have a direct physic
geometric interpretation in terms of the shear of the cosm
logical fluid, the spatial curvature and the magnetic fie
leading to a state space that is a compact subset ofR5, which
implies that a unified treatment of the asymptotic behavior
the models at early and late times can be given. We note
all of the equilibrium points of the differential equation co
respond to self-similar exact solutions of the Einstein fie
equations.

An invariant orthonormal frame of vector fields on th
spacetime are introduced in which one vector is align
along the fluid flow vector so that the remaining three spa
vectors~triad! span the tangent space orthogonal to the fl
flow at each point of the group orbits. The commutati
functions of this frame are then taken as the basic variab
The Einstein-Maxwell field equations for a pure magne
3-2
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QUALITATIVE PROPERTIES OF MAGNETIC FIELDS . . . PHYSICAL REVIEW D 64 122003
field are then derived in the orthonormal frame formalis
giving rise to a set of evolution equations for the shear v
ables (sab), the curvature variables (nab), the energy den-
sity ~conservation equation!, the magnetic field~Maxwell
equation! and a first integral~the Friedmann constraint!,
where the remaining freedom in the choice of spatial tet
was used to simultaneously diagonalizesab andnab .

Expansion-normalized variables are then introduced, le
ing to a reduced set of evolution equations~the dynamical
system! for the dimensionless shear variablesS6 , the spatial
curvature variablesNa , the dimensionless magnetic fie
variables and the density parameter~defined as usual!. De-
fining a dimensionless time variable, the reduced evolut
equations in the special case of a Bianchi type-VIo were then
established~in this case there is a single dimensionless m
netic field variable,M ).

A. The equations

We assume a scalar field with an exponential potentiaV
5V0ekf, whereV0 andk are positive constants, and a sep
rately conserved perfect which satisfies the barotropic eq
tion of statep5(g21)r, where the constantg satisfies 0
<g<2 ~although we shall only be interested in the ran
0,g,2 here!. The energy conservation and Klein-Gordo
equations become

ṙ523gHr, ~2.1!

f̈523Hḟ2kV, ~2.2!

whereH is the Hubble parameter, an overdot denotes o
nary differentiation with respect to timet, and units have
been chosen so that 8pG51.

We also assume a uniform magnetic field~in the ‘‘x’’
direction! which satisfies the Maxwell equations. The for
of this magnetic field, which we shall denote here asM2, is
given in Refs.@23# or @24#, but its precise form is unimpor
tant since we use the generalized Friedmann constrain
eliminateM2 from the evolution equations.

We define

V[
r

3H2
, F[

ḟ

A6H
, C[

V

3H2
, ~2.3!

two normalized~dimensionless! shear variablesS1 andS2

~appropriately combinations of the derivatives of the me
functions divided by the Hubble parameter@21#!, and the
new logarithmic time variablet by

dt

dt
[H. ~2.4!

The evolution equations for the quantities

X5~S1 ,S2 ,F,C,V,N1 ,N2!PR7 ~2.5!

are then as follows:
12200
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S18 5~q22!S112~12N1
22F22C2S1

2 2S2
2 2V!

22N2
2 , ~2.6!

S28 5~q22!S222N1N2 , ~2.7!

F85~q22!F2
A6k

2
C, ~2.8!

C85~2q121A6kF!C, ~2.9!

V85~2q23g12!V, ~2.10!

N18 5~q12S1!N116S2N2 , ~2.11!

N28 5~q12S1!N212S2N1 , ~2.12!

where a prime denotes differentiation with respect to
time t and the deceleration parameterq is defined byq
[2(11H8/H), where

q512N2
2 1S1

2 1S2
2 1

1

2
~3g24!V1F222C.

~2.13!

The physical state space is restricted toV>0 and N1
2

<3N2
2 ~where we include equality to include models of B

anchi types I and II@24#!. SinceN250 impliesN28 50, the
subsetsN2.0 andN2,0 are invariant. Due to a discret
symmetry in the evolution equations we can, without loss
generality, restrict attention to the subsetN2<0.

The magnetic field, defined through the first integral,
given by

3

2
M2512N2

2 2F22C2S1
2 2S2

2 2V, ~2.14!

and sinceM2>0, all of the variables are bounded:

0<$S1
2 ,S2

2 ,F2,C,V,N1
2 /3,2N2%<1. ~2.15!

Without loss of generality, we can restrict attention to t
subsetM>0. There is also an auxiliary equation for th
magnetic field:

M 85~q2122S1!M . ~2.16!

B. Discussion

A number of invariant sets of the physical state space
be identified~cf., Refs.@24# and @20#!. In addition, there are
a number of monotonic functions that exist in various inva
ant sets~particularly on the boundary; cf. p. 521 of Re
@24#!. However, we shall not present them here. Indeed, th
are many~over 50! equilibrium points, the vast majority o
which are saddles, and hence in this section we shall sim
comment on some of the more physically interesting lo
properties of the models. In the next section we shall inv
tigate the Bianchi I models more rigorously, and a monoto
3-3
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function in this invariant set will be given explicitly, in orde
to discuss some aspects of the intermediate or transien
havior of the models.

The equilibrium point P: (S1 ,S2 ,F,C,V,N1 ,N2)
5(0,0,2k/A6,12k2/6,0,0,0), M50 corresponds to the
power-law inflationary zero-curvature~flat! FLRW model.

The eigenvalues of P are $k224,k223g, 1
2 (k2

22)(32),1
2 (k226)(33)%. P exists fork2<6 and is a sink

for k2,4 andk2,3g, and is inflationary (q,0) for k2,2.
In fact it is the global attractor for this range of parame
values; this result generalizes previous work by includin
cosmic magnetic field~cf. Ref. @20#!.

We are particularly interested in whether there are a
sinks ~or sources! with MÞ0 in the Bianchi type-VIo state
space. We know from Ref.@24# that there are no attractors i
the absence of a scalar field, so hence we must haveM
Þ0, F2Þ0 ~andCÞ0, since this leads toM50). From Eq.
~2.10! we see thatV approaches zero at late times, so w
also takeV50 ~andq,2). From Eqs.~2.8!, ~2.9! and~2.16!
we have that~for MÞ0)

F5
24

A6k
~11S1!, C5

4

3k2
~11S1!~122S1!;

q5112S1 . ~2.17!

We are particularly interested in the inflationary case
which q,0; i.e., 21,S1,2 1

2 . If N2 ,N1(S2) are not
zero, Eqs. ~2.11! and ~2.12! yield N156A3N2 , S2

57(1/2A3)(114S1), whence Eq.~2.7! then yieldsN2
2

5 1
12 (122S1)(114S1), which is negative for the range o

S1 under consideration!@There do exist equilibrium points
with N2Þ0, N1Þ0 and S2Þ0, but these all haveq>0
~i.e., are noninflationary! and aresaddles.# Hence we con-
sider N25N15S250. Equations~2.6! and ~2.13! then
yield ~sinceS1Þ 1

2 ), S152113k2/(81k2). This equilib-
rium point, denotedV in Sec. V, is physical and in the sta
space when 4,k2,8 and is always a saddle (N1

2 is increas-
ing as orbits evolve away fromV to the future!. However,
since q,0 only for k2, 8

5 (S1,2 1
2 ), this point is never

inflationary.
We conclude that inflation is not fundamentally affect

by the presence of primordial magnetism in the models un
study here.

In Ref. @24# it was shown that in the absence of a sca
field that forV.0, 1,g,2 the global sink is the equilib
rium point PM(VIo) so that at late times all such magne
Bianchi type-VIo cosmologies are approximated by the d
namics of a self-similar Dunn-Tupper@34# magnetovacuum
Bianchi type-VIo model. This equilibrium point has an ana
logue here withF5C50, but is now a saddle. Indeed,
can be easily shown that none of the equilibrium points w
vanishing scalar field can be sinks. In particular, the sink
the caseg51 in Ref. @24# @subset ofLM (VIo)# becomes a
saddle.

All equilibrium points corresponding to models with
nonzero matter fluid, including those corresponding to
12200
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flat FLRW perfect fluid solution~Einstein–de Sitter! and the
flat FLRW scaling solution, are saddles.

In the above we have made some passing comments
cerning the intermediate behavior of the models, but we h
not discussed this in detail. In the next section we will d
cuss the intermediate behavior of the~subset! of Bianchi
type-I models. The transient behavior is important for asse
ing the physical significance of the models. For examp
Ref. @24# also considered whether any of the Bianchi typ
VIo magnetic cosmologies are compatible with observati
of a highly isotropic universe. For a subset of the Bianc
type-VIo cosmologies, the orbits will initially be attracted t
the equilibrium pointF corresponding to the flat FLRW
model, but will eventually be repelled by it. For such
model there will be an epoch during which the model is clo
to isotropy and hence will be compatible with observatio
This is the phenomenon ofintermediate isotropization. It
will not occur for a randomly selected magnetic Bianc
type-VIo model, but there will be a finite probability that a
arbitrarily selected model will undergo intermediate isotr
pization~the probability will depend on the desired closene
to isotropy and the length of the epoch of isotropizatio!
@24#.

There is an equilibrium setK:(S1 ,S2 ,F,0,0,0,0) where
12S1

2 2S2
2 2F250 ~and M50, q52). ~These points re-

duce to the equilibrium setKM in the absence of a magnet
field consisting of Jacobs type-I solutions with no matter a
a massless scalar field@20#!. The eigenvalues are$0,0,2(1
22S1),3(22g),2(11S16A3S2),6(11kF/A6)%.
There are two zero eigenvalues~corresponding to the fac
that K is a 2-parameter family of equilibrium points!. An
analysis shows that there is always a subset ofK that acts as
sources~these are, in fact, global sources!; all others are
saddles.

This contrasts with the situation in the absence of a sc
field in which Ref.@24# showed that there are no equilibrium
points that are sources and argue that generically an o
with V.0 will pass through a transient stage and then
proach the Kasner circle into the past~consisting of Kasner,
Bianchi type-I vacuum models!. Since these equilibrium
points are saddles, the orbit subsequently leaves alon
uniquely determined heteroclinic orbit and then approac
the Kasner circle again. This process then continues ind
nitely, and the orbit follows an infinite heteroclinic sequen
of Rosen orbits and Taub orbits joining Kasner equilibriu
points undergoing Mixmaster-like chaotic oscillations~the
past attractor here consists of the union of the Kasner ci
and a family of Rosen magnetovacuum type-I orbits a
Taub vacuum type-II orbits—see also Ref.@28#!.

III. BIANCHI TYPE-I MODELS

The evolution equations for the Bianchi type-I models a
obtained by restricting the above equations to the ze
curvature case~i.e., N650), whence we obtain

X5~S1 ,S2 ,F,C,V!PR5, ~3.1!

and the evolution equations are as follows:
3-4
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S18 5~q22!S112~12F22C2S1
2 2S2

2 2V!,
~3.2!

S28 5~q22!S2 , ~3.3!

F85~q22!F2
A6k

2
C, ~3.4!

C85~2q121A6kF!C, ~3.5!

V85~2q23g12!V, ~3.6!

where a prime denotes differentiation with respect to
time t and the deceleration parameterq is now given by

q511S1
2 1S2

2 1
1

2
~3g24!V1F222C. ~3.7!

The magnetic field satisfies

3

2
M2512F22C2S1

2 2S2
2 2V, ~3.8!

and since M2>0, all of the variables are bounded:
<$S1

2 ,S2
2 ,F2,C,V%<1.

Equations~3.1!–~3.6! can also be easily derived from th
metric directly in coordinate form—see the Appendix.

A. Invariant sets and monotonic functions

The existence of monotonic functions rules out perio
and recurrent orbits in the phase space and enables g
results to be obtained. WhenVÞ0, we can defineZ
[VS2

22, whence from the evolution equations above
find that

Z853~22g!Z, ~3.9!

so thatZ is a monotonically increasing function forg,2
@24#. From the monotonicity principle@21# we can deduce
that V→0 at early times andS2

2 →0 at late times.
WhenV50, we note that

q2253~M21S1
2 1S2

2 1F221!<0, ~3.10!

and so from Eq.~3.3! the variableS2 is itself a monotonic
function.

There are a number of invariant sets.M50 is an invariant
set corresponding to the absence of a magnetic field.
dynamics in this invariant set was studied in Ref.@20#. F
5C50 is an invariant set corresponding to the absence
scalar field. The dynamics in this invariant set was studied
Ref. @23#. V50 is an invariant set corresponding to the a
sence of barotropic matter. This invariant set is important
studying the the early time asymptotic behavior. Fina
S250 is an invariant set which is important in the study
late time asymptotic behavior.
12200
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B. Stability of equilibria

Let us present all of the equilibrium points and their a
sociated eigenvalues. We shall assume here that 1<g,2.
The case of the bifurcation valueg52 will be discussed in
Ref. @31#. All equilibrium points correspond to self-simila
cosmological models.

Equilibrium points:$S1 ,S2 ,F,C,V%.

1. Zero magnetic field

P—Power-law inflation~flat FLRW!:

H 0,0,2
k

A6
,12

k2

6
,0J , M50, q5

1

2
k221.

Eigenvalues:@k224,k223g, 1
2 k223,1

2 k223,1
2 k223#.

Exists providedk2<6. Sink if k2,4 andk2,3g; saddle
otherwise. Inflationary ifk2,2 ~note that this is theonly
equilibrium point that can be inflationary!.

FS—Matter-scaling~flat FLRW @35#!:

H 0,0,2
A6

2

g

k
,
3

2

g

k2
~22g!,

k223g

k2 J , M50,

q5
3

2
g21.0.

Eigenvalues: @ 3
2 (g22),3

2 (g22),3g24,3
4 (g22)6(3/

4k)A(22g)(24g21k2@229g#)#.
Exists providedk2.3g. Sink if g, 4

3 ; saddle otherwise.
F—Einstein–de Sitter~flat FLRW!:

$0,0,0,0,1% M50, q5
3

2
g21.0.

Eigenvalues:@ 3
2 (g22),3

2 (g22),3
2 (g22),3g,3g24#.

Saddle.
K—Kasner vacuum/massless scalar field:

$S1
2 1S2

2 1F251, C5V50%, M50, q52.

Eigenvalues:@0,0,3(22g),224S1,61A6kF#.
This is a 2-parameter family of equilibrium points

Sources whenS1, 1
2 ; saddles otherwise.

2. Nonzero magnetic field

These all correspond to anisotropic models (S1
2 1S2

2

Þ0).
J—Matter and no scalar field~Jacobs magnetic field

model @25#!:

H 1

4
~3g24!,0,0,0,

3

2 S 12
1

4
g D J ,

M25
1

8
~22g!~3g24!, q5

3

2
g21.0.
3-5
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TABLE I. Summary of all of the equilibrium points~as defined in the text! and their nature for different$g,k2%-parameter values in the
Bianchi type-I models with~a! 1<g< 4

3 and ~b! g.
4
3 . Note that for 4

3 ,g,2, 4,3g,8g(42g)21,8, and in~b! we have identified
8g(42g)21.6 ~i.e., g.

12
7 ) to be specific. For all values ofg, a subset ofK are sources~the remainder are saddles!.
g-
ch
Eigenvalues:

@ 3
2 ~g22!, 3

2 ~g22!,3g, 3
4 $~g22!

6A~22g!~3g2217g118!%#.

Exists providedg. 4
3 ~same asF for g5 4

3 ). Saddle.
S—Matter and scalar field:

H 1

4
~3g24!,0,2

A6

2

g

k
,
3

2

g

k2
~22g!,

3

8k2
~4k22k2g28g!J ,

M25
1

8
~22g!~3g24!, q5

3

2
g21.0.

Eigenvalues:

@ 3
2 ~g22!, 3

8 $2~g22!6~1/k!A2~22g!~a6b!%#

where

a524g213g2k2226k2g120k2,
12200
FIG. 1. Summary of all of the sinks for the Bianchi type-I ma
netic field models in$g,k2%-parameter space. Note that for ea
specific pair$g,k2%, there is a unique sink.
3-6
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and

b5A~18k2g24k21a232kg!~18k2g24k21a132kg!.

Exists provided g. 4
3 ~same asFS for g5 4

3 ) and g
<4k2/(k218). Sink.

V—Scalar field and no matter:

H 2
k224

k218
,0,2

2A6k

k218
,12

82k2

~k218!2
,0J ,

M252
~k224!~82k2!

~k218!
, q5

5k228

k218
.0.

Eigenvalues:

@3~k228!/~k218!,3~k228!/~k21 8! ,3~4k2 2 k2g

2 8g!/~k2 1 8! , 3
2 $ ~k2 2 8!/~k2 1 8!

6A~17k2272!/~k228!%#.

Exists provided 4<k2<8. Sink wheng.4k2/(k218);
saddle otherwise.

C. Discussion

In Table I we summarize the equilibrium points and th
stability for different values of the parameters (g,k2). In Fig.
1 we show the sinks in (g,k2)-parameter space. The equilib
rium point P represents the power-law FLRW solution wi
no matter and no magnetic field, and is inflationary fork2

,2. It is a global attractor fork2,3g in the Bianchi type-I
invariant set. Note thatP is a sink in the full class of Bianch
type-VIo models, unlike all other sinks in Fig. 1 which a
only attractors in the Bianchi type-I invariant set. Also no
that the monotonic functionZ in the Bianchi type-I invariant
set indicates thatV→0 at early times~at the sources! and
S2→0 at late times~at the sinks!, consistent with the result
in Table I.

The equilibrium pointsS andV, in which all of the matter
fields are nonvanishing and in which matter field~only! van-
ishes, respectively, correspond to new exact self-sim
magnetic field cosmological models. The new solutions

FIG. 2. Heteroclinic sequences for the Bianchi type-I mod
wheng5

5
3 , 5,k2,

40
7 .
12200
r

r
e

given explicitly in the Appendix.
Heteroclinic sequences~and hence the transient behavi

of the Bianchi type-I models! can easily be deduced from th
table. As a particular example, forg55/3 and 5,k2,40/7,
a subset ofK constitute sources~the remainder are saddles!,
V is a sink,J is a saddle~that lies in theF50, C50 (M
50) submanifold! andF, P andFS are saddles~that lie in
the isotropicS150, S250 (M50) submanifold—in this
submanifoldK is a source,F andP are saddles, andFS is a
sink!. The heteroclinic sequence in this case is presente
Fig. 2.

From the table and figures we can deduce both
asymptotic and the intermediate behavior of the Bian
type-I models. Note that asg increases, the magnetic fiel
becomes increasingly important at late times, consistent w
the observation of Wainwright@30# ~in the absence of a sca
lar field!.

IV. CONCLUSIONS

We have investigated the class of open Bianchi type-o
universe models with barotropic matter, a scalar field with
exponential potential and a uniform magnetic field. We d
cussed some of the general properties of the models by
lyzing dynamical systems techniques. The equilibrium po
P ~with M50), corresponding to the power-law inflationa
flat FLRW model, is a global sink fork2,2. Hence all mod-
els are future aymptotic to this inflationary attractor for the
parameter values. There is an equilibrium setK with 1
2S1

2 2S2
2 2F250 ~and M50, q52), a subset of which

are global sources. Hence all models are past asymptot
massless scalar field models with no matter and no magn
field.

A ~partial! analysis of the saddles was undertaken in or
to determine some of the transient features of the models
particular, we found that there are no equilibrium points w
MÞ0 in the Bianchi type-VIo state space which are infla
tionary, and hence concluded that inflation is not fundam
tally affected by the presence of a uniform primordial ma
netic field in these models.

This latter result is not necessarily inconsistent with t
conclusions of Matravers and Tsagas@8#, since only a uni-
form magnetic field was considered here. Indeed, it is
nonuniform magnetic field gradients that give rise to t
magnetocurvature effects in their work which modify th
cosmological expansion rate of an almost-FLRW unive
and that can have undesirable implications for inflation
models~and may even prevent inflation taking place in t
presence of primordial magnetism!. It might be thought that
on large scales that the magnetic field will be approximat
homogeneous, but Matravers and Tsagas@8# have argued tha
even weak magetic effects may have significant cosmolo
cal consequences. The drawback of their work is that on
local perturbation analysis was performed and question
genericity and long term behavior cannot be easily
dressed. Clearly, an investigation of the qualitative proper
of a class of scalar field cosmological models with an inh
mogeneous magnetic field would extend and generalize b
the work of Matravers and Tsagas@8# and the~restricted!
analysis of a uniform magnetic field here.

In order to investigate the intermediate behavior of t
models, and hence their physical properties, we discussed

s

~subset! of Bianchi type-I models in more detail. We found

3-7
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the equilibrium pointsS and V, in which all of the matter
fields are nonvanishing and in which the matter field~only!
vanishes, respectively~corresponding to new exact sel
similar magnetic field cosmological models!, act as sinks in
the Bianchi type-I subset. Heteroclinic sequences~and hence
the transient behavior of the Bianchi type-I models! were
discussed. We found that asg increases, the magnetic fiel
becomes increasingly important at late times.
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APPENDIX

In the main text we followed the dynamical system
theory approach of LeBlancet al. @24# to analyze the evolu-
tion of orthogonal Bianchi cosmologies of type VIo with a
uniform magnetic field. This approach uses an invariant
thonormal frame in which the commutation functions are
basic variables. Expansion-normalized variables are then
troduced, and a reduced set of evolution equations~the dy-
namical system! for the dimensionless shear variables a
spatial curvature variables as well as the dimensionless m
netic field variables and the density parameter are then
tained. All of the equations in the text follow from the anal
sis of Ref.@24#, wherein all quantities are properly define
However, a coordinate approach is also possible, and it
be of use for the reader to get a better sense of how
equations are derived, at least in the case of the Bian
type-I models.

The metric for the class of anisotropic Bianchi type
models, which are the simplest spatially homogeneous g
eralizations of the flat FLRW models which have nonze
shear but zero three-curvature, is given by

ds252dt21X2dx21Y2dy21Z2dz2, ~A1!

whereX,Y,Z are functions oft only. The expansion rate i
given by

u[3H5
Ẋ

X
1

Ẏ

Y
1

Ż

Z
, ~A2!

and whenY5Z @the locally rotationally symmetric subcas#
there is only one independent rate of shear, which is given

s5
1

3
S Ẏ

Y
2

Ẋ

X
D . ~A3!

Normalized~dimensionless! variables and a logarithmic tim
variable t are defined by Eqs.~2.3! and ~2.4!, which then
lead to the evolution Eqs.~3.1!–~3.6! in coordinate form
@23#.
12200
l
e

r-
e
n-

g-
b-

ay
e

hi

n-

y

Exact solutions

We can write down the exact solutions corresponding
the equilibrium pointsS andV in the text.

S: Since q5 3
2 g21, we can immediately integrate th

Raychaudhuri equationH8/H52(11q) to obtain H
5(2/3g)t21. SinceS250 and S15 1

4 (3g24), it follows
that Y5Z, so thats5S13H5 1

2 (124/3g)t21. The metric
is consequently of power-law form, viz.

ds252dt21t2p1dx21t2p2~dy21dz2!, ~A4!

wherep1 and p2 are constants. From the expressions forH
and s we then find thatp112p252/g and p22p15 3

2

2 2/g and hence

p15
2

g
21, p25

1

2
. ~A5!

The geometry is that of the Jacobs magnetic field model@25#,
and the only difference here is that the matter fields con
tuting the source are given by

r[3VH25S 4k22k2g28g

2k2g2 D t22,

H1[3A2MH5
A~22g!~3g24!

g
t21,

~A6!

and the scalar field is given by

f5f02
2

k
ln~ t !, ~A7!

wheref05(1/k)ln@2(22g)/gk2V0#. This solution exists pro-
vided g. 4

3 .
V: In this solution q5(5k228)/(k218), so that H

5@(k218)/6k2#t21. S250 and S152(k224)/(k218),
and so the metric is of the form of Eq.~A4!, where now

p15
82k2

2k2
, p25

1

2
. ~A8!

There is no perfect fluid in this solution (r50), and the
magnetic field is given by

H15
A~k224!~82k2!~k218!

k
t21. ~A9!

The scalar field is given by equation~A7! with f0
51/k ln@(82k2)/(k4V0)#. This new solution exists provided
4<k2<8.
3-8
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