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Qualitative properties of magnetic fields in scalar field cosmology
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We study the qualitative properties of the class of spatially homogeneous Bianchi typedrhological
models containing a perfect fluid with a linear equation of state, a scalar field with an exponential potential and
a uniform cosmic magnetic field, using dynamical systems techniques. We find that all models evolve away
from an expanding massless scalar field model in which the matter and the magnetic field are negligible
dynamically. We also find that for a particular range of parameter values the models evolve towards the usual
power-law inflationary mode{with no magnetic field and, furthermore, we conclude that inflation is not
fundamentally affected by the presence of a uniform primordial magnetic field. We investigate the physical
properties of the Bianchi type-lI magnetic field models in some detail.
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[. INTRODUCTION barotropic fluid permeated by a weak primordial magnetic
field while treating the energy density and the anisotropic
There are many observations that imply the existence opressure of the field as first-order perturbations upon the
magnetic fields in the Universe, and recent observations havériedmann-Lemane-Robertson-Walker (FLRW)  back-
produced firmer estimates of the strength of magnetic fieldground, it was shown how a cosmological magnetic field can
in interstellar and intergalactic spajce-3]. Current observa- modify the expansion rate of an almost-FLRW universe. The
tions place an upper bound on the strength of a cosmic magffects of the interaction between magnetism and geometry
netic field, but do not conclusively determine whether such an cosmology are subtle, and it was argued that the magne-
field exists[4,5]. Although cosmologists have investigated tocurvature coupling could make the field into a key player
the possible existence of a homogeneous intergalactic magrrespective of the magnetic strength. Indeed, even weak
netic field of primordial origin both from a theoretical and an magnetic fields can lead to appreciable effects, provided that
observational point of view for many years, research on costhere is a strong curvature contribution. This was illustrated
mological magnetic fields has been rather marginal despitby studying spatially open cosmological models containing
their potential importance. The reasons could be the per‘matter” with negative pressure, and it was found that the
ceived weakness of the field effects or the lack, as yet, of @hase of accelerated expansion, which otherwise would have
consistent theory explaining the origin of cosmic magnetismbeen inevitable, may not even happen. This leads to the ques-
However, this situation has changed considerably recentlyion of theefficiency of inflationary models in the presence of
(cf. Ref.[6]). primordial magnetism Recall that an initial curvature era
Primordial magnetic fields introduce new ingredients intowas never considered as a problem for inflation, given the
the standard picture of the early Universe. Such a field woulédmoothing power of the accelerated expansion. However,
affect the temperature distribution of the microwave back-this may not be the case when a magnetic field is present, no
ground radiation, primeval nucleosynthesis and galaxy formatter how weak the latter is. A more recent wtid] has
mation. But its most direct observational effect is the Farafurther studied the vector nature of magnetic fields and the
day rotation it would cause in linearly polarized radiation unique coupling between magnetism and spacetime curva-
from observed extragalatic radio sources. Fundamental progdre in general relativity which gives rise to a variety of
erties of magnetic fields include their vectorial nature, whicheffects with important implications was discussed.
inevitably couples the field to the spacetime geometry, and Observations of the high degree of isotropy of the cosmic
the resulting tensior(i.e., the negative pressyrexerted microwave background indicate that the Universe is “al-
along the field’s lines of forcg7,8]. The implications of such maost” isotropic and spatially homogeneo(a least since the
an interaction are both kinematical and dynamical; kinematitime of the last scatteringTheoretical support for this belief
cally, the magnetocurvature effect tends to accelerate postomes from the so-called Ehlers-Geren-Sddi#§ theorem.
tively curved perturbed regions, while it decelerates regionfReferencq 15] has proven a generalization of this theorem
with negative local curvature and, dynamically, the most im-and has consequently shown that any strong magnetic fields
portant magnetocurvature effect is that it can reverse the puiie the Universe are ruled out. This theoretical result is model
magnetic effect on density perturbatiorés-12]. independent and includes the case of inhomogeneous mag-
In a recent analysi§8] the kinematics were considered netic fields. In further wor16] numerical constraints are
and, assuming a spacetime filled with a perfectly conductinglaced on all types of primordial and protogalactic magnetic
fields in the Universe from cosmic microwave background

data.
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"Email address: aac@mathstat.dal.ca models containing both a uniform magnetic field and a scalar
*Email address: quinlan@mathstat.dal.ca field here, partially in an attempt to address some of the
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guestions raised above. Scalar field cosmological models ampact. We note that since a magnetic field is not compat-
of great importance in the study of the early Universe. Mod-ible with Bianchi types VIII and IX(for example, the class

els with a variety of self-interaction potentials have beenof Bianchi type-V|, magnetic cosmologies is of the same
studied, and one potential that is commonly investigated angenerality as the Bianchi type-VIII/IX mode{svithout mag-
which arises in a number of physical situations has an expo?etic field [30].

nential dependence on the scalar fifld,18. There have In this paper we shall investigate the class of Bianchj VI
been a number of studies of Spa’ua”y homogeneous Sca|&ﬁ0d6|5 with barotropic matter, a scalar field with an EXPO-
field cosmological models with an exponential potential,nential potential and a uniform magnetic field. We shall dis-
with particular emphasis on the possible existence of inflacuss some general properties of the complete class of mod-
tion in such modeléRefs.[19,32,2Q, and references within ~ €ls, and then investigate the special case of the Bianchi

Dynamical systems methods for analyzing the qualitativelyPe-I system in detail. We note that this is not the general
properties of cosmological models have proven very usefu¢lass of Bianchi type-I cosmological models; we are only
[21,27. A qualitative analysis of cosmological models with considering those Bianchi type-I models that occur as sub-
matter and a uniform magnetic field has been presented préases of the Bianchi type-ymodels with one magnetic de-
viously [23,24]. A universe with a primordial magnetic field gree of freedom. It is also of interest to study the Bianchi
is necessarily anisotropic. Thus, in order to investigate théype-Il cosmologies, since although they are very special
influence of the magnetic field on the dynamics of the uni-within the full Bianchi class, they play a central role since
verse the Einstein field equations must be analyzed in model§e Bianchi type-Il state space is part of the boundary of the
more general than the FLRW models. The simple classes ¢itate space for all higher Bianchi type=., all types except
the Bianchi | and Kantowski-Sachs models were discussef0r | and V). The Bianchi type-Il models will be investigated
(cf. Ref. [25]), and Ref.[23] applied techniques from the in detail elsewherg31].
theory of planar dynamical systems to prove qualitative re- The Bianchi type-I system in the absence of a scalar field
sults about the evolution of the class of axisymmetric Bian-was first qualitatively analyzed in Ref23]. A qualitative
chi | cosmologies with matter and a primordial magneticanalysis of the Bianchi type-1 models in the absence of a
field. magnetic field was given in Reff20]; in this work the well-

In Ref. [24] the Einstein-Maxwell field equations for or- known power-law inflationary solutiofi 7,32 was shown to
thogonal Bianchi type-\}l cosmologies with a-law perfect ~be a stable attractor for an appropriate parameter range in the
fluid and a pure, homogeneous sourcefree magnetic fielaresence of a barotropic fluid in all Bianchi class B m0(_jels
were written as an autonomous differential equation in terméprevious analysis had shown that this power-law inflation-
of expansion-normalized variables. It was shown that thedry solution is a global attractor in spatially homogeneous
physical region of state space is compact, and that the diffefnodels in the absence of a perfect fluid, except for a subclass
ential equation admits certain invariant sets and monotongf Bianchi type-IX models which recollapseOne of the
functions which play an important role in the analysis. Aaims of the present analysis is to study the stability of this
complete analysis of the stability properties of the equilib-model with respect to magnetic field perturbations.
rium points of the differential equation and a description of
the bifurcations that occur as the equation of state parameter
vy varies was given. The associated dynamical system was
studied and the past, intermediate and future evolution of We shall follow the approach of Ref24] in which the
these models was determined. All asymptotic states of theéheory of dynamical systems was used to give a detailed
models, and the likelihood that they will occur, were de-analysis of the evolution of orthogonal Bianchi cosmologies
scribed. In particular, oscillatory behavior also occurs in cosof type VI, with a perfect fluid and a magnetic field as
mological models with a magnetic fielghnd in Einstein- source. This work extended that of RES3] which had stud-
Yang-Mills theory in general Further work on spatially ied perfect fluid Bianchi cosmologies of class A using state
homogeneous models with a magnetic field and a nontiltegariables that are dimensionless and have a direct physical or
perfect fluid has been carried out receri@$,27]. In particu-  geometric interpretation in terms of the shear of the cosmo-
lar, Ref.[28] has generalizetto the nonpolarized solutions logical fluid, the spatial curvature and the magnetic field,
the work of Ref.[24], and rigorously shown that the evolu- leading to a state space that is a compact subsit,ofrhich
tion toward the singularity is oscillatory in Bianchi typepVl implies that a unified treatment of the asymptotic behavior of
vacuum models. the models at early and late times can be given. We note that

We shall concentrate on the Bianchi typesWtodels pri-  all of the equilibrium points of the differential equation cor-
marily for mathematical simplicity. It is well knowf29] that  respond to self-similar exact solutions of the Einstein field
a pure magnetic field is only possible in Bianchi cosmologiessquations.
of types I, Il, Vl,, VIl (in class A and type llI(in class B. An invariant orthonormal frame of vector fields on the
For types V} and Vll,, the algebraic constraints that arise spacetime are introduced in which one vector is aligned
from the Einstein field equations imply that the shear eigenalong the fluid flow vector so that the remaining three spatial
frame is Fermi propagated, which in turn implies that thevectors(triad) span the tangent space orthogonal to the fluid
remaining field equations reduce to an autonomous differerflow at each point of the group orbits. The commutation
tial equation with a polynomial vector field. Finally, for type functions of this frame are then taken as the basic variables.
VI, but not for VIl,, the physical region of state space is The Einstein-Maxwell field equations for a pure magnetic

II. THE BIANCHI TYPE-VI , MODELS
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field are then derived in the orthonormal frame formalism, E’+=(q—2)2++2(1—Nf—d)z—‘P—Ei—EZ_—Q)
giving rise to a set of evolution equations for the shear vari-

ables @), the curvature variablesi(,), the energy den- —2NZ, (2.9
sity (conservation equationthe magnetic field(Maxwell
equation and a first integral(the Friedmann constraint 3 =(g—2)2_—2N,N_, 2.7
where the remaining freedom in the choice of spatial tetrad
was used to simultaneously diagonalizg; andn,,z. 6k

Expansion-normalized variables are then introduced, lead- ®'=(q=2)®——-V, (2.8
ing to a reduced set of evolution equatiofise dynamical
system for the dimensionless shear variabks, the spatial .
curvature variabledN,, the dimensionless magnetic field v _(2q+2+\/§kq>)xp, 2.9
variables and the density parametdefined as usual De- Q'=(29—-3y+2)0 (2.10

fining a dimensionless time variable, the reduced evolution
equations in the special case of a Bianchi typgeére then

establishedin this case there is a single dimensionless mag- Ni=(q+2% )N, +62_N_, (217
netic field variableM). N’ =(q+25 IN_+25 N, . (212
A. The equations where a prime denotes differentiation with respect to the
We assume a scalar field with an exponential potential time 7 ancli the deceleration parametgris defined byq
=V,e*¢, whereV, andk are positive constants, and a sepa-=— (1+H'/H), where
rately conserved perfect which satisfies the barotropic equa- 1
tion of statep=(y—1)p, where the constany satisfies 0 q=1-N2+32 432+ Z(3y—4)Q+D2-2V.
< y=<2 (although we shall only be interested in the range Tt T2
0<y<2 herd. The energy conservation and Klein-Gordon (2.13

equations become . . .
d The physical state space is restricted =0 and N2

p=—3yHp, (2.1) <3N2 (where we include equality to include models of Bi-
anchi types | and 1[24]). SinceN_=0 impliesN" =0, the
b=—3Hp—KV 2.2 subsetdN_>0 andN_<O0 are invariant. Due to a discrete

symmetry in the evolution equations we can, without loss of

. -generality, restrict attention to the sub$et<0.
whereH is the Hubble parameter, an overdot denotes ord The magnetic field, defined through the first integral, is

nary differentiation with respect to timg and units have .
been chosen so thati®&=1. given by

We also assume a uniform magnetic fidid the “x” 3
direction which satisfies the Maxwell equations. The form “M?=1-N2-®?-¥-32-32-0, (214
of this magnetic field, which we shall denote hereM is 2
given in Refs[23] or [24], but its precise form is unimpor-
tant since we use the generalized Friedmann constraint

eliminateM? from the evolution equations. 2 §2 52 2 g
We define 0=<{3%,22,0°,¥,Q,N4/3,—N_}=<1. (2.1H

t%nd sinceM?=0, all of the variables are bounded:

Without loss of generality, we can restrict attention to the
subsetM=0. There is also an auxiliary equation for the

p Y%
=" magnetic field:

QE ] ) 1
3H?2 J6H 3H?

(2.3

two normalized(dimensionlessshear variable& , and _ M’=(a—-1-2%)M. (2.19

(appropriately combinations of the derivatives of the metric
functions divided by the Hubble paramet&1]), and the B. Discussion

new logarithmic time variable- by A number of invariant sets of the physical state space can

be identified(cf., Refs.[24] and[20]). In addition, there are
=H. 2.4 @ number of monotonic functions that exist in various invari-
t ant sets(particularly on the boundary; cf. p. 521 of Ref.
[24]). However, we shall not present them here. Indeed, there
The evolution equations for the quantities are many(over 50 equilibrium points, the vast majority of
which are saddles, and hence in this section we shall simply
X=2,.,5_,®,¥ QN N )eR’ (2.5 comment on some of the more physically interesting local
properties of the models. In the next section we shall inves-
are then as follows: tigate the Bianchi | models more rigorously, and a monotonic

o

T

o
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function in this invariant set will be given explicitly, in order flat FLRW perfect fluid solutior{Einstein—de Sittgrand the
to discuss some aspects of the intermediate or transient b#at FLRW scaling solution, are saddles.
havior of the models. In the above we have made some passing comments con-
The equilibrium point?: (£,,%_,®,¥,Q,N, ,N_) cerning the intermediate behavior of the models, but we have
=(0,0,—k/\/6,1-k?/6,0,0,0), M=0 corresponds to the not discussed this in detail. In the next section we will dis-
power-law inflationary zero-curvaturélaty FLRW model.  cuss the intermediate behavior of tkgubsex of Bianchi
The eigenvalues of P are (KKt -3y O ance of the motels. For example.
. . . i ysi ignifi . X ,
—2)g><2),%(k22—6)(><3)}. P exists fork?<6 and 'S?S'nk Ref. [24] also considered whether any of the Bianchi type-
for k"<4 andk®<3y, and is inflationary <0) fork®<2. v/ ‘magnetic cosmologies are compatible with observations
In fact it is the global attractor for this range of parameterys 4 highly isotropic universe. For a subset of the Bianchi
values; this result generalizes previous work by including &ype.v|. cosmologies, the orbits will initially be attracted to
cosmic magnetic fieldcf. Ref.[20]). the equilibrium pointF corresponding to the flat FLRW
~ We are particularly interested in whether there are any,aqe| but will eventually be repelled by it. For such a
sinks (or sourceswith M0 in the Bianchi type-Vj state  5de| there will be an epoch during which the model is close
space. We know from Ref24] that there are no attractors in ¢ jsotropy and hence will be compatible with observations.
the abzsence of a scalar field, so hence we must Mve This is the phenomenon dhtermediate isotropizatianit
#0, ©#0 (and¥ #0, since this leads th =0). From EQ. il not occur for a randomly selected magnetic Bianchi
(2.10 we see thaf) approaches zero at late times, SO Wene.v/|. model, but there will be a finite probability that an
also take} =0 (andq<2). From Eqs(2.9), (2.9 and(2.16  appitrarily selected model will undergo intermediate isotro-
we have thatfor M #0) pization(the probability will depend on the desired closeness
4 4 to isotropy and the length of the epoch of isotropization
- - _ . [24].
® \/Ek(l+2+)’ v 3k2(1+2+)(1 2245 There is an equilibrium se€: (2,3 _ ,®,0,0,0,0) where
1-32-32-d2=0 (andM =0, q=2). (These points re-
(2.17) duce to the equilibrium sé€€,, in the absence of a magnetic
field consisting of Jacobs type-I solutions with no matter and
We are particularly interested in the inflationary case inc massless scalar fie[@0). Jbe eigenvalues\/a_ra),O,Z(l
: , —25.,),3(2-9),2(1+ 3, =33 _),6(1+kd/\6)}.
which q<0; i.e., —1<X,<—3. If N_,N(3_) are not  rpereare two zero eigenvaluésorresponding to} the fact
zero, Egs.(2.1) and (212 yield N.= i\/§N_, 22— that K is a 2-parameter family of equilibrium pointsAn
- (1/2y3)(1+43.,), whence Eq.(2.7) then yieldsNZ  anajysis shows that there is always a subsé€ dfiat acts as
=13(1-2%,)(1+4% ), which is negative for the range of sources(these are, in fact, global sourgesll others are
> . under considerationlThere do exist equilibrium points gaddles.
with N_#0, N, #0 andX_#0, but these all have=0 This contrasts with the situation in the absence of a scalar
(i.e., are noninflationajyand aresaddles| Hence we con- field in which Ref.[24] showed that there are no equilibrium
sider N_=N,=3_=0. Equations(2.6) and (2.13 then  points that are sources and argue that generically an orbit
yield (since , #3), 3, = —1+3k?/(8+k?). This equilib-  with 0>0 will pass through a transient stage and then ap-
rium point, denoted’ in Sec. V, is physical and in the state proach the Kasner circle into the pasbnsisting of Kasner,
space when 4k’<8 and is always a saddI&{ is increas-  Bianchi type-I vacuum models Since these equilibrium
ing as orbits evolve away frorw to the futurg. However, points are saddles, the orbit subsequently leaves along a
sinceq<0 only for k?<¥ (X ,<—3), this point is never uniquely determined heteroclinic orbit and then approaches
inflationary. the Kasner circle again. This process then continues indefi-
We conclude that inflation is not fundamentally affectednitely, and the orbit follows an infinite heteroclinic sequence
by the presence of primordial magnetism in the models undesf Rosen orbits and Taub orbits joining Kasner equilibrium
study here. points undergoing Mixmaster-like chaotic oscillatiofthe
In Ref. [24] it was shown that in the absence of a scalarpast attractor here consists of the union of the Kasner circle
field that for(0>0, 1<y<2 the global sink is the equilib- and a family of Rosen magnetovacuum type-l orbits and
rium point PM(VI,) so that at late times all such magnetic Taub vacuum type-Il orbits—see also REZ8]).
Bianchi type-V|, cosmologies are approximated by the dy-
namics of a self-similar Dunn-Tuppé84] magnetovacuum IIl. BIANCHI TYPE-I MODELS
Bianchi type-V}, model. This equilibrium point has an ana-
logue here withd =¥ =0, but is now a saddle. Indeed, it  The evolution equations for the Bianchi type-l models are
can be easily shown that none of the equilibrium points withobtained by restricting the above equations to the zero-
vanishing scalar field can be sinks. In particular, the sink incurvature caséi.e., N. =0), whence we obtain
the casey=1 in Ref.[24] [subset ofLM (VI )] becomes a
saddle. X=(2,,>_,®,¥,0)eR®, (3.0
All equilibrium points corresponding to models with a
nonzero matter fluid, including those corresponding to theand the evolution equations are as follows:

g=1+23 .
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3L =(q-2)3,+2(1-P2-¥-35-32-Q),

2 =(q-2)2_,
6k

q)'z(q—Z)(b—T\I’,

V' =(2q+2+ 6kd) WP,

Q'=(29-3y+2)Q,

where a prime denotes differentiation with respect to the

PHYSICAL REVIEW D 64 122003

B. Stability of equilibria

3.2 Let us present all of the equilibrium points and their as-
sociated eigenvalues. We shall assume here thay<12.

(3.3 The case of the bifurcation valug=2 will be discussed in
Ref. [31]. All equilibrium points correspond to self-similar
cosmological models.

(3.9 Equilibrium points:{X, ,>_ ,®,¥,Q}.

1. Zero magnetic field

@9 P—Power-law inflation(flat FLRW):

0101__1_ _10 y MZO, q: kz_l.

J6~ 6 2

time 7 and the deceleration parametgis now given by

2 2 1 2
q=1+3%+3+ §(3y—4)Q+cI> -2V,
The magnetic field satisfies

3
§M2=1—c1>2—\1f—22+—2'é—9,

and since M?=0, all of the variables are boun
<{3?2 3% &2V 0}<1.

Eigenvalues[k?— 4 k?>—3y,3k?*—3,5k*—3,3k?>—3].
Exists providedk?<6. Sink if k?<4 andk?<3vy; saddle
(3.7 otherwise. Inflationary ifk?<2 (note that this is theonly
equilibrium point that can be inflationary
Fs—Matter-scaling(flat FLRW [35]):

Equations(3.1)—(3.6) can also be easily derived from the

metric directly in coordinate form—see the Append

A. Invariant sets and monotonic functions

The existence of monotonic functions rules out

V6y 3y k*—3y
(3.9 [0,0,—7?5@(2—7)- Z | M=0,
ded: 0 3
q—57—1>0.
x Eigenvalues: [3(y—2).3(y—2),3y—43(y—2)=(3/

4K)V(2—7) (24y° + K [2—-97])].
Exists providedk?>37y. Sink if y<#%: saddle otherwise.
periodic F—Einstein—de Sittefflat FLRW):

and recurrent orbits in the phase space and enables global

results to be obtained. Whef#0, we can definez
=03"2 whence from the evolution equations above we

find that

3
{00003 M=0, g=5y-1>0.

Eigenvalue§:3(y—2).5(y—2).5(y—2),3y,.3y—4].

K—Kasner vacuum/massless scalar field:

so thatZ is a monotonically increasing function foy<2
[24]. From the monotonicity principl¢21] we can deduce [52432492=1, ¥=0=0}, M=0, gq=2.

that 2 —0 at early times and? —0 at late times.
When (=0, we note that

Eigenvalues[0,0,3(2— y),2— 43, , ,6+ \6kd].
This is a 2-parameter family of equilibrium points.

q—-2=3(M?+323+32+0%-1)<0, (310  Sources wheiX , <?: saddles otherwise.

and so from Eq(3.3) the variableX, _ is itself a monotonic 2. Nonzero magnetic field

function.

There are a number of invariant seété=0 is an invariant
set corresponding to the absence of a magnetic field. The

These all correspond to anisotropic mode&i&ﬁz_
#0).
J—Matter and no scalar fieldJacobs magnetic field

dynamics in this invariant set was studied in Rgf0]. ® model[25]):

=¥ =0 is an invariant set corresponding to the abs

ence of a

scalar field. The dynamics in this invariant set was studied in

Ref.[23]. Q=0 is an invariant set corresponding to

sence of barotropic matter. This invariant set is important for

studying the the early time asymptotic behavior.

3 _=0 is an invariant set which is important in the study of M2

late time asymptotic behavior.

the ab 13 400031 L
€ ab- Z('y_)r!ri _Z‘y ’

Finally, 1 3
=g(2=MBy=4), q=5y-1>0.
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TABLE I. Summary of all of the equilibrium pointéas defined in the texand their nature for differer{ty,k?}-parameter values in the
Bianchi type-I models witHa) 1< ysg and (b) y>%. Note that for§<y<2, 4<3y<8y(4—v) <8, and in(b) we have identified
8y(4—y) " 1>6 (i.e., y> 172) to be specific. For all values of, a subset ofC are sourcesthe remainder are saddjes

(a) 1<y<3
k2 3y 4 6 8
P SINK SADDLE DOES NOT EXIST
Fs! DOES NOT EXIST SINK
F SADDLE
)% DOES NOT EXIST SADDLE DOES NOT EXIST
(b) $<v<2
k2 4 3y 6 8y/(4—1) 8
P SINK SADDLE DOES NOT EXIST
Fs| pogs Not EXIST SADDLE
F SADDLE
J SADDLE
S DOES NOT EXIST SINK
1% DOES NOT EXIST SINK SADDLE DOES NOT EXIST
Eigenvalues:
[2(v=2),5(y=2),37,2{(y—2) 8
V(2= 7)(3Y° - 17y+18)}]. S
Exists providedy>3% (same asF for y=3). Saddle. 6 ]:S
S—Matter and scalar field: Y
2
i<3y—4>.0,—fﬁ;;(z—w,:kz(zlkz—kzy—sw C
M2=g(2-3)(3y—4), q=y-1>0. z P
Eigenvalues:
[2(y=2),H{2(y=2)+ (1K)V2(2= )@= b)}] R
where FIG. 1. Summary of all of the sinks for the Bianchi type-l mag-

a=24y*+ 3y%k%— 26k2y+ 20k?,

netic field models in{vy,k?}-parameter space. Note that for each
specific pair{y,k?}, there is a unique sink.
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F > given explicitly in the Appendix.
| Heteroclinic sequencgsand hence the transient behavior
S _7:'8 of the Bianchi type-1 mode)scan easily be deduced from the
o | N table. As a particular example, for=5/3 and 5<k®<40/7,
P a subset ofC constitute sourceg&he remainder are saddjes
Vis a sink, 7 is a saddlegthat lies in thed=0, ¥=0 (M
K > )% =0) submanifoldl and F, P and Fg are saddlesthat lie in
the isotropicX , =0, 3 _=0 (M=0) submanifold—in this
submanifoldiC is a sourceF and P are saddles, an#s is a
sink). The heteroclinic sequence in this case is presented in
Fig. 2.
> J > From the table and figures we can deduce both the
asymptotic and the intermediate behavior of the Bianchi
FIG. 2. Heteroclinic sequences for the Bianchi type-I modelstype-I models. Note that ag increases, the magnetic field

wheny=3, 5<k?<%, becomes increasingly important at late times, consistent with
the observation of WainwrigHB0] (in the absence of a sca-
and lar field).
b= (18%y—4k’>+a—32ky)(18*y—4k>+a+32ky). IV. CONCLUSIONS

We have investigated the class of open Bianchi typg-VI
universe models with barotropic matter, a scalar field with an
exponential potential and a uniform magnetic field. We dis-
cussed some of the general properties of the models by uti-
lyzing dynamical systems techniques. The equilibrium point

k-4 B 26k " 8-k’ 0 P (with M =0), corresponding to the power-law inflationary

K2+8  K2+8  (k¥+8)% |’ flat FLRW model, is a global sink fdt?<2. Hence all mod-

els are future aymptotic to this inflationary attractor for these
2 2 P parameter values. There is an equilibrium #etwith 1
zz(k 48—k ), _ 5k 8>o. -32-32-®%=0 (andM=0, q=2), a subset of which
(k*>+8) k’+8 are global sources. Hence all models are past asymptotic to
massless scalar field models with no matter and no magnetic
Eigenvalues: field.
A (partial) analysis of the saddles was undertaken in order
[3(k*—8)/(K*+8),3(k*—8)/(k*+ 8),3(4k? — k?y to determine some of the transient features of the models. In
5 . ) particular, we found that there are no equilibrium points with
— 8y)/(k” + 8),3{(k“ — 8)/(k" + 8) M#0 in the Bianchi type-V) state space which are infla-
> > tionary, and hence concluded that inflation is not fundamen-
(12— 72)/(k*-8)}]. tally affected by the presence of a uniform primordial mag-
netic field in these models.

This latter result is not necessarily inconsistent with the
conclusions of Matravers and Tsad&], since only a uni-
form magnetic field was considered here. Indeed, it is the
C. Discussion nonuniform magnetic field gradients that give rise to the
magnetocurvature effects in their work which modify the
" . 2 . cosmological expansion rate of an almost-FLRW universe
stability for dlffer_ent v_aIuesZ of the parameterg k7). In FIg.  and that can have undesirable implications for inflationary
1_we Sh.OW the sinks in,k*)-parameter space. The_equmlb- models(and may even prevent inflation taking place in the
rium point 7 represents the power-law FLRW solution with -esence of primordial magnetisnit might be thought that
no matter and no magnetic field, and is inflationary Kr  on large scales that the magnetic field will be approximately
<2. Itis a global attractor fok*<3y in the Bianchi type-l  homogeneous, but Matravers and Tsd@dave argued that
invariant set. Note thaP is a sink in the full class of Bianchi even weak magetic effects may have significant cosmologi-
type-Vl, models, unlike all other sinks in Fig. 1 which are cal consequences. The drawback of their work is that only a
only attractors in the Bianchi type-I invariant set. Also notelocal perturbation analysis was performed and questions of
that the monotonic functiod in the Bianchi type-| invariant genericity and long term behavior cannot be easily ad-
set indicates tha€fl—0 at early timegat the sourcesand dressed. Clearly, an investigation of the qualitative properties
3, _—0 at late timegat the sink§ consistent with the results of a class of scalar field cosmological models with an inho-
in Table I. mogeneous magnetic field would extend and generalize both

The equilibrium pointsS andV, in which all of the matter  the work of Matravers and Tsag48] and the(restricted
fields are nonvanishing and in which matter fiédahly) van- ~ @nalysis of a uniform magnetic field here. _
ishes, respectively, correspond to new exact self-similar In order to investigate the intermediate behavior of the

magnetic field cosmological models. The new solutions ar&"Cd€ls, and hence their physical properties, we discussed the
(subset of Bianchi type-I models in more detail. We found

122003-7

Exists provided y>3 (same asFg for y=3%) and y
<4k?/(k?+8). Sink.
V—Scalar field and no matter:

2

Exists provided 4k?<8. Sink whenvy>4k?/(k®+8):
saddle otherwise.

In Table | we summarize the equilibrium points and their
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the equilibrium pointsS and V, in which all of the matter Exact solutions

fields are nonvanishing and in which the matter ficddly) We can write down the exact solutions corresponding to
vanishes, respectivelycorresponding to new exact self- the equilibrium pointsS andV in the text.

similar magnetic field CosmOIOQical mOdEIﬂCt as sinks in S: Since q:%y_l, we can |mmed|ate|y integrate the

the Bianchi type-I subset. Heteroclinic sequen@ sl hence  Raychaudhuri equationH’/H=—(1+q) to obtain H
the transient behavior of the Bianchi type-I modelgere  —(2/3,)t~1. SinceS_=0 and3, =21(3y—4), it follows

discussed. We found that gsincreases, the magnetic field thatY=2, so thate=3 , X H=1(1—4/3y)t 1. The metric
becomes increasingly important at late times. is consequently of power-law form, viz.
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APPENDIX

2 1
=—-—1, ==, A5
In the main text we followed the dynamical systems P1 Y P23 (A5)

theory approach of LeBlanet al. [24] to analyze the evolu-
tion of orthogonal Bianchi cosmologies of type Mhith a ~ The geometry is that of the Jacobs magnetic field mpisj|
uniform magnetic field. This approach uses an invariant orand the only difference here is that the matter fields consti-
thonormal frame in which the commutation functions are thefuting the source are given by
basic variables. Expansion-normalized variables are then in-
troduced, and a reduced set of evolution equatitins dy-
namical systemfor the dimensionless shear variables and p=3Q0H?=
spatial curvature variables as well as the dimensionless mag-
netic field variables and the density parameter are then ob-
tained. All of the equations in the text follow from the analy- H,=3 2MH = V(2—y)(3y—4) -1
sis of Ref.[24], wherein all quantities are properly defined. = %
However, a coordinate approach is also possible, and it may (AB)
be of use for the reader to get a better sense of how the
equations are derived, at least in the case of the Bianchind the scalar field is given by
type-lI models.

The metric for the class of anisotropic Bianchi type-I

4k2—k2y—8'y) _2
2k2’)/2 !

models, which are the simplest spatially homogeneous gen- b= o= In(V), (A7)
eralizations of the flat FLRW models which have nonzero
shear but zero three-curvature, is given by where ¢o= (1/k)In[2(2— v)//4?V,]. This solution exists pro-
i 4
d?= — dt2+ X2dx2+ Y2dy?+ Z2d 2, (A1) vided y>3.

V: In this solution q=(5k?’—8)/(k?*+8), so thatH
whereX,Y,Z are functions ot only. The expansion rate is =[(k*+8)/6k*]t™*. =_=0 and 3, =2(k*~4)/(k*+8),

given by and so the metric is of the form of EGA4), where now
6—3H—X+Y+z A2 8-k !
=3H=5+3+7, (A2) Pi="7 P73 (A8)

and whenY = Z [the locally rotationally symmetric subcdse

there is only one independent rate of shear, which is given bThere is no perfect fluid in this solutiorp0), and the

Xwagnetic field is given by

= 1(Y X) (A3) V(k?—4)(8—k*)(k+8)
773\y X/ Hy= % =L, (A9)
Normalized(dimensionlessvariables and a logarithmic time

variable 7 are defined by Eqs(2.3) and (2.4), which then The scalar field is given by equatiofA7) with ¢,
lead to the evolution Eqs(3.1)—(3.6) in coordinate form = 1/kIn[(8—k?)/(kK"Vp)]. This new solution exists provided
[23]. 4<k’<38.
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