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We investigate the asymptotic properties of the Bianchi type IX cosmological model in the brane-world
scenario. The matter content is assumed to be a combination of a perfect fluid and a minimimally coupled
scalar field that is restricted to the brane. A detailed qualitative analysis of the Bianchi type IX brane-world
containing a scalar field having an exponential potential is undertaken. It is found that the brane-Robertson-
Walker solution is a local source for the expanding Bianchi type IX models, akfki? the ever-expanding
Bianchi IX models asymptote to the power-law inflationary solution. The only other local sink is the contract-
ing brane-Robertson Walker solution. An analysis of the Bianchi type IX models with a scalar field with a
general potential is discussed, and it is shown that in the case of expanding models, for physical scalar field
potentials close to the initial singularity, the scalar field is effectively massless, and the solution is approxi-
mated by the brane-Robertson Walker model.
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[. INTRODUCTION effects(that modify the Friedmann equation on the brane in
these modelsfrom the free gravitational field in the bulk,

It is believed that Einstein’s general relativity breakstransmitted via the projectioéi,, of the bulk Weyl tensor,
down at sufficiently high energies. Developments in stringthat contribute further corrections to the Einstein equations
theory suggest that gravity may truly be a higher dimensionabn the brane.
theory, becoming an effective 4-dimensional theory at lower Cosmological observations indicate that we live in a uni-
energies. Some researchers have suggested an alternatiegse which is remarkably uniform on very large scales.
scenario in which the matter fields are restricted to aHowever, the spatial homogeneity and isotropy of the uni-
3-dimensional brane-world embedded in+-3+d dimen-  verse is difficult to explain within the standard general rela-
sions(the bulk, while the gravitational field is free to propa- tivistic framework since, in the presence of matter, the class
gate in thed extra dimension$l]. In this paradigm it is not  of solutions to the Einstein equations which evolve towards a
necessary for thel extra dimensions to be small, or even Friedmann-Robertson-WalkéFRW) universe is essentially
compact, a radical departure from the standard Kaluza-Kleim set of measure ze[6]. In the inflationary scenario, we live
scenario. Randall and Sundrur@] have shown that fod in an isotropic region of a potentially highly irregular uni-
=1, gravity can be localized on a single 3-brane even whewerse as the result of an expansion phase in the early uni-
the fifth dimension is infinite. It has now become very im- verse thereby solving many of the problems of cosmology.
portant to test the astrophysical and cosmological implicaThus this scenario can successfully generate a homogeneous
tions of these higher dimensional theories derived fromand isotropic FRW-like universe from initial conditions
string theory. Can these cosmological models derived fronwhich, in the absence of inflation, would have resulted in a
string theory explain the high degree of homogeneity andiniverse far removed from the one we live in today. How-
isotropy we currently observe? ever, still only a restricted set of initial data will lead to

The dynamical equations on the 3-brdBe 5] differ from smooth enough conditions for the onset of inflatiae., the
the general relativity equations by terms that carry the effectso-called cosmic no-hair theorems only apply to nongeneric
of imbedding and of the free gravitational field in the five- models—se€[7,8]), so the issue of homogenization and
dimensional bulk. The localquadrati¢ energy-momentum isotropization is still not satisfactorily solved. Indeed, the
corrections are significant only at very high energies and thénitial conditions problem, that is to explain why the universe
dynamical equations reduce to the regular Einstein fields so isotropic and spatially homogeneous from generic ini-
equations of general relativity for late times. However, fortial conditions, is perhaps one of the central problems of
very high energiesi.e., early timeg these additional energy modern theoretical cosmology. These issues were recently
momentum correction terms will play a very critical role in revisited in the context of brane cosmolddys,14], and this
the evolutionary dynamics of these brane-world models. Iris one of the motivations for the present work.
addition to the matter field corrections, there are nonlocal Indeed, researchers have investigated both anisotropic and

isotropic brane-world models, trying to ascertain whether the
effects of the bulk gravitational field would allow one to

*Electronic address: rvandenh@stfx.ca solve the isotropy problem. A lot of effort has been directed
"Electronic address: aac@mscs.dal.ca at the so-called Friedmann brane-world mod@igl0]. Dy-
*Electronic address: yanjing@mscs.dal.ca namics of a brane-world universe filled with a perfect fluid
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have been intensively investigated during the last three years , 1
[11-14. It has been found there exist new regimes that are T,wsca'ar field_ ¢>;M¢;V—9W(§¢;a¢;a+V(¢)),
not inherent in the standard cosmology, such as stable oscil- 2.5
lation [12] and the collapse of a flat univer$&5]. Some
features of brane-world inflation have been studie[Bid6—
18] and the cosmological dynamics for exponential scalaiwhere u” is the fluid 4-velocity,p and p are the energy
field potentials have been described 19,20. density and isotropic pressuré, is the minimally coupled

Shiromizoet al. [5] have developed an elegant covariantscalar field having potentiaf(¢), and the projection tensor
approach to the bulk effects on the brane. The equationB,,=9,,+U,U, projects orthogonal ta*. If ¢., is time-
derived by Maarten§4] are an extension of earlier work by like, then a scalar field with potenti®l( ¢) is equivalent to a
Ellis and MacCallum that has been subsequently developegerfect fluid having an energy density and pressure
more recently in the book by Wainwright and Ellji&1].
Using the formalism developed by Maartens and Wainwright 1
and Ellis, we propose to investigate the dynamical behavior psealar field— _ > b, +V(P) (2.6)
in a wider class of anisotropic models than what has been 2"
previously analyzed. Spatially homogeneous models of Class
A (and in particular Bianchi type I)X containing both a per- 1
fect fluid and a scalar field will be investigated. The resulting pscalar field— _ — b, =V (). (2.7
field equations will yield a system of ordinary differential 2™
equations, suitable for a geometric analysis using dynamical
systems techniques. This analysis will determine whether the The pulk corrections to the Einstein equations on the
dynamics of the brane-world scenario mimics the dynamicsrane are of two forms: firstly, the matter fields contribute
of a general relativistic cosmology at late times. We are partocal quadratic energy-momentum corrections via the tensor
ticularly interested in both the early-tinfeature of the initial S,.,, and secondly, there are nonlocal effects from the free
singularity and late-time behavidii.e., whether these mod- gravitational field in the bulk, transmitted via the projection
els inflate and isotropize of the bulk Weyl tensorg,,,. The local matter corrections

are given hy
IIl. GOVERNING EQUATIONS

The field equations induced on the brane are derived via 1_, 1 P o8 w2
an elegant geometric approach by Shirometal.[4,5], us- SW=1—2TQTW— ZTuaTer ﬁgw[:ﬂ—aﬁT —(Ta97],
ing the Gauss-Codazzi equations, matching conditions and (2.9
Z, symmetry. The result is a modification of the standard

Einstein equations, with the new terms carrying bulk effects = ,
onto the brane: which is equivalent to

G,,=—Ag,,+ T, +x*S,,— & (2.2 1 1
2% 2% nv v v :
SMVPErfeCt f|UId:1_2p2uMuV+ 1_2P(P+ Zp)h,uvl (29)
where
8 K2 for a perfect fluid and
K2:_2, )\:6,v_,
Mp P
scalar field:E _1 RNV
Aqr| Aqr S,uV 6 2¢;a¢ + (d)) d’;ud);v
A== —=[\?]. (2.2
Mp 3Mp

1 1
+ 1—2( - §¢;a¢'“+V(¢>)
It is common to assume through fine tunife la Randall
Sundrum that the effective cosmological constant on the
brane is zero, i.eA =0. However, we shall assume that it is X
nonzero but positive.
The brane energy-momentum tensor for a perfect fluid
and a minimally coupled scalar field is given by for a minimally coupled scalar field. If we have both a per-
, _ fect fluid and a scalar field then we will assume that the
T, =T, perfectilud 1 scalarfield (23 gradient of the scalar fields™, is aligned with the fluid
4-velocity, u#, that is ¢/ — ¢.,¢'*=u*. (In generalp*
where need not be aligned with* thereby creating a rich variety of
perfect fluid cross terms.The local brane effects due to a combination of
T =pu,u,+ph,, (2.4 a perfect fluid and a scalar field are then

3
—5¢;a¢:“—V<¢>)gW, (210
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1

1 . 2 fully determined[2]. In generali/=U(t)#0 (and can be
SMV:l_2(p_§¢;a¢’a+V(¢)) u/.l,uV y [ ] g () (

negative in the Friedmann backgroun®,10]. For a spa-
tially homogeneous and isotropic model on the brane, Eq.
(2.13 follows, and similar conditions apply self-consistently
in other Bianchi model$4]. In the Appendix we prove that
the integrability conditions fo,,=0,Q9,,=0 imply spatial
homogeneity. PhysicallyP,, corresponds to gravitational
waves and is not expected to affect the dynamics close to the
singularity[26]. From the analysis of the evolution equation

The nonlocal effects from the free gravitational field in ¢o, Q,, close to the initial singularity, it can be shown that a
the bulk are characterized by the projection of the bulk Weylg 4| Q, does not affect the dynamical evolution &@f(to
tensor onto the brane. Given a timelike congruence on thg, ot grde} [4,13,27.

brane, the bulk correctiorf,,, can be decomposdd] via
~\ 4
P
ol

(See[4] for further details. In general, the conservation G, = KZTftVa', (2.19
equationgthe contracted Bianchi identities on the brade

not determine all of the independent componentg,gf on

the brane. In particular, there is no evolution equation forvhere

12

1
P 5 bad "V

X

3
pH2p— 5 b0~ V()

(2.11

h,,.

All of the bulk corrections mentioned above may be con-
solidated into an effective total energy density and pressure
as follows. The modified Einstein equations take the standard

1
u,u,+ zh ; ; . .
Einstein form with a redefined energy-momentum tensor:

U 3N

+ P}LV'F ZQ(MU,,)

P,, and hence, in general, the projection of the
5-dimensional field equations onto the brane does not lead to A ~4 1
a closed system. However, in the cosmological context stud- T;‘ZLE — =0t Tt S £ (2.19

ied here, we will assume KE TR 2
DU=9,=P,,=0, (213 _ _ _
is the redefined equivalent perfect fluid energy-momentum
where D, is the totally projected part of the brane covarianttensor with the total equivalent energy density due to both a
derivative. SinceP,,=0, in this case the evolution &f,, is  perfect fluid and a scalar field

~Ar 4 2

total__ A 1 e KK 1 T
p —E“‘P"' —§¢;a¢' +V(¢) +F - P—§¢;a¢‘ +V(g)| +U (2.1
total A 1 T 7<4 K4 1 e 3 a 1
e L 5% V(9) e 12 P50 V() || pF2P— 52t = V() |+ U
(2.17)

where we have assumed thajl/=Q,=P,,=0 in the cos-
mological case of interest here.

As a consequence of the form of the bulk energy-
momentum tensor and &, symmetry, it followg 5] that the
brane energy-momentum tensor separately satisfies the con-
servation equation@vhere we have tacitly assumed that the
scalar field and the matter are noninteracking.,

whence the Bianchi identities on the brane imply that the
projected Weyl tensor obeys the constraint

gl ,=«*Sl, which yields i{+4HU=0. (2.20

IIl. BIANCHI TYPE IX MODELS
A. Setting up the dynamical system

We shall use the formalism of Hewitt, Uggla, and Wain-
wright introduced in21] for positive curvature modelsee
pages 179-182 ifi21]). The source ternfrestricted to the
brang is a noninteracting mixture of ordinary matter having
energy densityp, and a minimally coupled scalar field,.

T, * Perfect M o which yields p+3H(p+p)=0
(2.189

. ; Y
T, * Seaar eli= 0 which yields ¢+ 3H ¢+ — =0,

v &(ﬁ
(2.19

We shall assume that the matter content is equivalent to that
of a nontilting perfect fluid with a linear barotropic equation
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of state for the fluid, i.e.p=(y—1)p, where the energy
conditions impose the restriction=0, and the constany
satisfiesy €[ 0,2] from causality requirements. We shall also
assume that the scalar field potential has an exponential form

PHYSICAL REVIEW [B8,

023502 (2003

V() =Voekc?=V el BTMpké  [22_25  The energy-
momentum tensor describing the source is given in(E®)
where, for a homogeneous scalar fiegs ¢(t).

Our variables are the same as those introduced by Hewitt,

Uggla and Wainwrightsee page 180 if21]), with the addi-
tion of

G K’p  ~ A e K2V

3p2’ ~ * 3p?’ 3p2’
ﬁf—fﬂb 0,4 3.1
=V33p° U=352 (3.1

where

1
DE \/H2+ Z(nln2n3)2/3.

The total equivalent dimensionless energy density due to all

sources and bulk corrections is

sztotal -

Qotal= =Y =0+0,+0+V2+a20,

2

acs  ~ o~ o~
+ZD%Q+¢+W%% (3.2

where

kX
-b. S

2=

a
K

The governing differential equations for the quantities

XE[D!H551!EZ|N11N2 1N31QI§A ,‘1’,&),6“]

are as follows:

D'=—(1+q)HD (3.33
H'=q(H?*-1) (3.3b
S =(g-2)A3, -3, (3.39
S =(g-2)RS_-3_ (3.30
N =R (Ag-43 ) (3.30
Ny =N,(Ag+23 . +2y33 ) (3.3f)
Ny=Na(Ag+23 . —2y33_) (3.39

Q'=A0[2(q+1)—37] (3.30
Q,=2f0,G+1) (3.30)
\~If’=(a—2)ﬁﬁf—\/7—k&> (3.3)
P'=20 (1+a)F|+\/7€kﬁf (3.3K
Q;=2R0,q-1). (3.3))

The quantityq is the deceleration parameter, a8d and

S_ are curvature terms that are defined by the following

expressions:

e e (By-D)e ~ o~
q5221+222,+%Q—QA+2T2—<D+aZQu

a2 ~ o~ ~ ~ ~ ~
+ZDZ{(Q+\P2+<I>)[(33/—1)Q+2\If2—CD]}

(3.4
T o
Sy =5 (Ny—Ng)?— SNy (2N, —N,—Ny) (3.5
- 1 - o~ _— o~ o~
s,zgﬁmz—Ng)(—NﬁNﬁNg). (3.6)

The evolution equations for Eq3.3h come from the
conservation equatio2.18. The evolution equations for
Egs. (3.3)) and (3.3k) are derived from the Klein-Gordon
equation derived from the conservation equati@ri9. The
evolution equatior{3.3l) comes from the conservation equa-
tion (2.20.

In addition there are two constraint equations that must
also be satisfied:

o1
Gl(X)EH2+Z(N1N2N3)2’3—1=0 (3.7a

Gy(X)=1-32 —32 —Qtotal_{—q 3.7h

where

~ 1 -, o NN NN+ N
Ve ol (R RE )~ 2(,R+ RN+ i

+3(N3N,N3) 23]

Equation (3.7 follows from the definition ofD, and Eqg.
(3.7b is the generalized Friedmann equation. We now have
determined the equations describing the evolution of the Bi-
anchi type IX brane-world models. The resulting equations
are suitable for a qualitative analysis using techniques from
dynamical systems theory. In general, the system of Egs.
(3.3 can be interpreted a¥X’'=F(X) where F:X e R'?

— R We must also make careful note of the two constraint
equationsG(X) =0 andG,(X)=0. These constraint equa-
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tions essentially restrict the dynamics of the dynamical syswhere the notation is interpreted as
temX’ =F(X) to lower dimensional surfaces ‘% In prin-

cipal, these constraint equations may be used to eliminate
two of the twelve variables provided the constraints are not
singular.

(value of (Nl)Q(vaIue of &),value of \Ef)

In addition to the matter invariant sets, there are invariant
sets associated with the geometry of the spacetime. The dy-
namical system3.3) implies that any combination of the
conditionsN,,>0 andN =0 defines an invariant set. Since
Since the dynamical systei3.3) is invariant under the these conditions yield the Bianchi type of the underlying
T T geometry we call these invariant seBsanchi invariant sets

transformationd® — —® we can restrict our state space to . ) . . .
o ~ _ The Bianchi type corresponding to the different combina-
D=0 [by definition of D, see Eq(3.1)] and®=0 without  tions are

loss of generality.

B. Symmetry transformations

Note the dynamical systert8.3) is also invariant under B(1)={X e S|N;=0N,=0N;=0}
the transformation 5 5 _

B(Il)={X e SN, #0,N,=0N;=0

~ 5 o 1~ \/§~ \/§~ { | 1 2 3 }

(202 NL N2 N = = 5% = 52 52 B(VIg)={X e S|N;=0N,#0N;+0}

== N, Nj Nl). (3.9 B(IX)={X e S|N;#0N,#0N;#0}

2 where the set8(ll) and B(VIlo) have two additional and

This symmetry implies that any equilibrium point with a equivalent disjoint copies of themselves that are determined
s il h ival oc of theg Y tNE transformatior3.8)

nonzero . term, will have two equivalent copies of that = - Eq.(3.79 we have that-1<H<1 andN,;N,N;

point located at positions that are rotated through an angle OLS Furthermore, in the invariant sé&s” andi/®, using Eq
2m/3 and centered along a different axis of fKg. (3.7-b) it can be shown that ’ '

C. Invariant sets 0<32 32 ﬁﬁA W2 V=1.

If we assume the weak energy condition for a perfect ﬂu'dHowever, knowing that &V<1 and 0<N,N,N,<8 is not

(i.e.,p=0), then we must restrict the state space to the setof ~ ~
~ sufficient to place any bounds on tie,’s or D. Further-

pgintstO. Since we are investigatin_g the t_)ehavior of themore, in the invariant sé~, we cannot place upper bounds
Bianchi type IX brane-world models in particular, we can on any of the variables without some redefinition of the di-
restrict the state space d,=0 without loss of generality. mensionless variable8.1).

Therefore the state space for the Bianchi type IX brane-

world models is the set of pointsS={XeRJG;(X) D. First integrals

=0,Gz(X)=0,(~)>0Na>0,D>0,&>>O}. It is possible to show that the function
The evolution equation faf,,, Eq. (3.3l) implies that the
surfaceQ,=0 divides the state space into three distinct re-

gions, U ={X e 5|§u> 0}, U°={Xe 5|§u: 0}, and /™ (wherea, B are parameters that can take any valgen first
B ~ integral of the dynamical systeii8.3), that isW'=0. For

There are various invariant sets associated with the matté)rartlcUIar values o and 5 we obtain the following invari-

content. We define simatter invariant setas ants(for any valuek):

W= (F2- 1)l 203l let Gr-2810 280« (3.9)

(@=0,8=1), K(FA?-1)37=0,67-20?

00%9={X e 5|1=00=0,¥ =0}, (3.10
000+ ={X e 5|Q=0D=0,¥#0}, (a=14=0), K(H?-1)2=0,0,
(3.11
0+, * — O—_nd i~ ~ ~ ~
(VN _{XeS|Q—O,(I):#O,\I’=#O}, (a=—3y,=2), KQL{37:QA(37*4)\Q4
o (3.12
FQ20={XeS|Q+0D=0¥=0}, ~ - ~
(@=—(8y=2),p=1), K/ I=(H?-1) 02
Q0T ={XeS8Q+0Dd=0V¥+0}, (313
In the invariant set/ " UX/°, it is possible to show thai
QT F={XeSQ+0D+0,¥+0}, =—1, which implies that) , —0 asr—c« for those models
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that expand for all timei.e., H>0 for all 7), henceforth - 1 - - - -
V3(Np—RNig) (= Ny +Np+Na). 4.4

called ever-expanding.Using the first and second invariants, S- 6

we easily obtain the result th&t>—1 asr—c. From here . )
we also obtain the result for ever-expanding models that iff he two constraint equations are

v>4/3 then?)u—> 0.

- 1 _
1=H%+ 7 (N;NoN3) (4.59
IV. QUALITATIVE ANALYSIS OF THE CASE ﬁ=flA=O
- - o~ ~ ~ 1 - -, -
In the invariant set/ " UU/°, we can show thag=—1. H2=37 +32 +Qtotaly 1—2[(N§+ NZ+N3
This implies that the invariant sé€t, =0 is the invariant set o
containing all of the past asymptotic behaviore, early —2(N7N5+NsN3+N;N3) ] (4.5b

times for all ever-expanding models i " U/°. It can be
argued that a scalar field becomes essentially massless adVifere
evolves backwards in time, hence it will dominate the dy-

namics at early timegee Sec. Y. In our effort to understand

2 total
NtotaIE Kp

the dynamical behavior at early times we shall assume in the 3D?2
analysis that follows that there is no perfect fluiQ € 0)

and the four-dimensional cosmological constant is zero

(Q4=0)._
If Q=0,=0 then Egs(3.3) reduce to

D'=—(1+q)HD
H'=q(R*-1)
§l=(5—2)95+—~3+

S =(q-2)Rs -3

N =R (Ag-43 )

Ny =Ry (Hg+25, +2433 )
Ny =Ry(Ag+25, -235 )
- - _~ 6 =
\If’z(q—Z)H\If—gkd)

- - 8 -
P'=20 (1+q)H+\/7—k\If

Q;=2R0,(9-1).

The quantityq is the deceleration parameter, aid and

(4.19

(4.1b
(4.19
(4.10
(4.10
(4.1f)
(4.19

(4.1h

(4.1)

(4.1)

- o~ 1 - o~ -
=0+¥?+a® ;D@ +WA) Oyl (4.6

A. Equilibrium points at finite D
Here we define

X=[D,A,3, > N;,N,,Ns, ¥, d,0,]

and we restrict the state space accordingly tode{X

eS| Q=0,0,=0}. The equilibrium pointsX,, can be clas-
sified into one of the three matter invariant sets that do not
have a perfect fluid component. Notejs a discrete param-
eter wheree=1 corresponds to expanding models, while
=—1 corresponds to contracting models. The notation

[ Xm] signifies that the preceding eigenvalue has multiplic-
ity m.

1. Vacuum, °Q %0

R.; Robertson-Walker (radiation. Xo
=[0,6,0,0,0,0,0,0,0,5%]. The eigenvalues in the nine di-

mensional phase spa@éu eliminated via Eq(4.5b] are
e(—-2-1-1-111124.

This point is obviously a saddle with a five dimensional un-
stable manifold é=1), and hence when the dynamics are
restricted to the remaining constraint surfdéay. (4.53],

this point will remain a saddléit can be shown that the
stable manifold on the remaining constraint surface has di-

S_ are curvature terms that are now defined by the followingmension fouy.

expressions:
q=232+252 4292

1 ~ ~ ~ ~ ~
+a? ZDZ(\I’2+ D)(2W2—Dd)+Qy

- o 1.
(R =Ry~ 2Ry (2N, - R, -Ry)

| =

S, =

4.2

4.3

R'_; Bianchi type Il (radiation. Xy=[0,e,€,0,
J3/2,0,0,0,0,7/8?] and two other equivalent points obtained
through transformatior(3.8). The eigenvalues in the nine

dimensional phase spaf€,, eliminated via Eq(4.5b] are
e(-2,-1,-1,—1(1+6i),2,2,2,9.

This point is obviously a saddle with a four dimensional
unstable manifold€=1), and hence when the dynamics are
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restricted to the remaining constraint surfdésy. (4.53], V2 V2

this point will remain a saddle. €l — 7k,0,— T[ki VKZ+8(k2=2)][ % 2],
K.; Kasner (vacuum. Xy=[0,e,c0s@),sin(®),0,

0,0,0,0,Q where —w< <. This is a special case of the \/f

Kasner surface defined in the next section. — 5 kEvkTH4(2=k)] ).

BY_: Bianchi type VIp (vacuum. Xo=[0e, o o o _
—€,0,0s,s,0,0,0 and two other equivalent lines of equilibria This point when it exists€=1) has a six dimensional stable
obtained through transformatiof8.8) where 0<s<«. As  manifold, a one dimensional unstable manifold, and a one
s—0, these lines of equilibria approach a pointkp. The  dimensional center manifold.

: . . . . S P.; Robertson-Walkefzero curvature, power law infla-
eigenvalues in the nine dimensional phase sp&Leelimi- _ — ) )
nated via Eq(4.5b] are tion). Xo=[0,€,0,0,0,0,0- ke \/6/6,1-k?/6,0]. The eigen-
values in the nine dimensional phase sppQg, eliminated
via Eq. (4.5b] are

2

o : € —k—,kz—zi(kz—

ne of the zero eigenvalues corresponds to the fact that this 2 2
is a one-dimensional set of equilibrium points. The span of
eigenvectors associated with the eigenvalues2,4,6, If k<2 (e=1), then this point is a local sink in the eight
+2si,— 2si] does not include theD” direction. The eigen-  dimensional phase spac® If k?<2 (e=—1), then this
vector associated with the eigenvalue3 is the only eigen- point is a local source in the eight dimensional phase space
vector with a ‘D" component. Therefore this point is a 5 \when 2<k?<4 and when 4 k2<6 this point is a saddle
saddle €=1) with a one dimensional stable manifold in the i, the nine dimensional phase spaee=(1), and hence when
eight dimensional phase spaSeNhen the dynamics are re- the dynamics are restricted to the remaining constraint sur-

€(—3,0,0,2,4,6,6+ 2si).

1
2)[><3],§(k2—6)[><3],k2—

stricted to the remaining constraint surface E453. face Eq.(4.5a, this point will remain a saddle. Whek?
=4 this point experiences a bifurcation with the point
2. Massless scalar field?Q %= RSP, the Robertson-Walker radiation-scalar field scaling

. — models. Wherk?=6 this point becomes part of the Kasner
Ke; Kasner (massless scalar field  Xq massless scalar field moglefg. P

:[O'E’S'n(‘P)COS(H)’S'n(‘P)S'n(H)'O’O’O’COSL¢2)’0’9]2 ~v;/here RSF; Robertson-Walker (zero curvature—radiation-
—m<¢sm and —m2<e=m/2. Or Zi+XZ4+W°=1.  geaar  field scaling model Xo=[0,,0,0,0,0,0,
The eigenvalues in the nine dimensional phase spgg  —2e/6/3k,4/3k?, (k?—4)/k?a?]. Whenk?>4 this point is

eliminated via Eq(4.5b] are an element of/* and wherk?<4 this point is an element of
U~ . The eigenvalues in the nine dimensional phase space
€(—3,0,0,4,4, [Q,, eliminated via Eq(4.5b] are

1
el —2-1-1,1,1,1,2+ ﬂ[ki\/k2+16(4—k2)] .

This point (e=1) is easily seen to be a saddle with a four
The two zero eigenvalues correspond to the fact that this is @imensional unstable manifold whé#>4, and a five di-
two-dimensional set of equilibrium points. It can be shownmensional unstable manifold whé®i<4, and hence when
(as in theB""_ casg that the eigenvalue-3 corresponds to  the dynamics are restricted to the remaining constraint sur-
the D dlrectlon therefore, this set of equilibria will always face Eq.(4.5a, this point will remain a saddle in all cases.
be a set of saddle points with an unstable manifold having\ote, the cosmological model represented by this equilib-

2e—45, 2e+25 , +2\35_ 6e+ 6KV,

dimension no more than seven. rium point has the property that the energy density attributed
to the scalar field is proportional to the energy density of the
3. Massive scalar field°Q ™~ dark radiation coming from the bulk

FT . Robertson-Walker (positive curvature, scalar

€ 1.
field.  Xo=[Okey2/2,0,044— 2KZ, J4— 2KZ, J4— 2K2, psi=5 ()2 +V()=U=py.
—€y/3/32,0]. The point only exists fok’<2 and ask? _

—2 this point approacheB,. This is the only equilibrium RSH'_; Bianchi type I (Qzﬁé 0), radiation-scalar
point for finite values oD for which we can directly calcu- fje|d scaling model. Xo=[0,¢,€/4,0 £/3/2,0,0,
late the eigenvalues of the dynamical system restricted to the o ¢, /6/3k,4/3k2, (7k2— 32)/&2a?] and two other equiva-
eight dimensional phase spaéé The eigenvalues in the lent points obtained through transformau@hS) The eigen-
eight dimensional phase spaf#, Qu eliminated via Egs. values in the nine dimensional phase spﬁaﬁ@{ eliminated
(4.59 and(4.5b] are via Eq. (4.5b] are
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33 1
e( _2'_1'5’5'2’@ — 2Kk2+ \(2K2)2— 2K (23%— B4) + \[( 237 — 64)2— 6KL(TK2— 32) ] D

This point is always a saddle point in the nine dimensional
phase space, and hence when the dynamics are restricted to
the remaining constraint surface E@.53, this point will 5 -
remain a saddle in all cases. Note, the cosmological model O'=2(q+1)HD +2ed V¥ (5.2
represented by this equilibrium point has the property that

the energy density attributed to the scalar field is propor;
tional to the energy density of the dark radiation coming

V' =(q—2)H¥ —ed (5.1)

wheree (related to the usual inflationary slow roll parameter

from the bulk €) is defined
L. — 3y,
psi=7($)+ V() xU=py. =5
SF'.; Bianchi type Il (2,,=0), scalar field modelX, From the Friedmann equation we have that
=[0,e, —26(2—K)/(K°+16), _ 0, G(2—k*)(K’=8)/ 2
(K2+16)21Y2, 0, 0, —ek3\6/k?+16, 36 (8-k?)/(k? @, o
+16)?,0] and two other equivalent points obtained through 7 DT Q+ e+ ¥H7=0)<1 (5.3

transformation(3.8). This point only exists when 2k?
<8. As k?—2 this point approaches the poiRt. and as

k?—8 this point approaches a point in the $&t. The ei- and hence each terd(), D®, DW¥? is boundedsince the

left-hand side is the sum positive definite tejntdence, as
D—w, Q, V2, &—0.

It is easy to show thaf), , Q;,—~0 asD—o. Hence Eq.
(3.4) becomes

genvalues in the nine dimensional phase sp{eﬁg elimi-
nated via Eq(4.5b] are

6(k?—8)[ x2],16(k*—2),12(k?*—2)[ X 2],
k?>+16 L
0=2(32+32)+AD?, (5.4)
2(7k?>—32),—9k?,3[(k?—8)
where

+\(k*—8)?+12(k*—2)(k*~8)] |. a? ~ o~ -~ e~
EZ{[Q+\If2+d)][(3y—1)Q+2\If2—<I>]}. (5.5

This point is always a saddle point in the nine dimensional

phase space, and hence when the dynamics are restricted P ;

the remaining constraint surface E@.53, this point will Agsum|ngH>0, .Eqs.£3.3a arld .(3'3b) .|r.npl)./ that E?STH

remain a saddle in all cases. The cosmological model repre- 0 for D—, eitherq—0 or g is positive in a neighbor-

sented by this equilibrium point is that of a Bianchi type Il hood of the singularityq can oscillate around zero; indeed,

model with an exponential potential scalar field. it is the possible oscillatory nature of the variables—ice.,
Note there are other equilibrium points to the dynamicalneed not be of single sign—that causes potential problems

system(4.1), but they correspond to points that are neitherqowever, ifq—0, Eq.(3.3h implies

inside the ses nor on its boundary, and do not represent any
limiting behavior of the Bianchi type IX brane-world scalar- ﬁ’zﬁ§(2—3 ) (5.6
field models. Y '

V. GENERAL DYNAMICS which implies a contradiction foy>3 (i.e. Q-0 asrt—

, — ). Hence, ag— —, >0, whereD— and
We now return to the general cagee., Eqs.(3.3—(3.6)]

and include a general potential for the scalar field, and study

T N 02
what happens ab—o0 at the initial singularity(assuming H'=-q(1-H% (5.7
this occurs. We shall also assume normal matter with 1 5
s y<2. and henceH—1 (assuming positive expansipmonotoni-

We recall that there are no sources for finite value®of cally. [Note: this implies the existence of a monotonic func-
Also, for a general scalar field, Eg8.3j) and(3.3k) become tion, and hence there are no periodic orbitsclose to the sin-
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gularity near the seH =1—all orbits approactH=1.] In
addition, Eq.(3.7a gives (N;N,N3)—0.
From Egs.(3.3h, (3.3i), (3.3)) and (3.3K we have asr

s —00

)
——0,

2 (5.9

that is, the scalar field becomes effectively massless, and

Q :
=——0 if y<2.

52 (5.9

This follows directly from the evolution equation in the case
of an exponential scalar field potential= \/3/2k, and fol-

lows for any physical potential for whick is bounded as
— —o. Hence we obtain

9=2(32+32)+(3r—1)C2 (5.10

where T'=2, C2=(a%4)D>V* if y<2; I'=2, C2
=(a%/4)D?*(Q+V¥?)? if and C?
= (a%/4)D?Q)? if there is no scalar field, wher®, —C? as
7— —o, and the Friedmann equation becomes

y=2, I'=y

1-(32+52) - c2= J[(RE+ 3+ RE)
2(N;N,+N;N3+N,Ng)
=0. (5.11)
From Egs.(3.3h),(3.3)) we obtain
(C?)'=2C%H[q— (3T —1)]. (5.12

We still have the possibility oii or N; oscillating as the
singularity is approache¢hs in the Mixmaster modelsA

PHYSICAL REVIEW D68, 023502 (2003

We next show thatfor no perfect fluid and a scalar field
with an exponential potentiaithe brane-Robertson-Walker
solution is always an equilibrium point of the system and a
local stability analysis establishes that it is a local source.

A. Initial singularity

In the analysis of local equilibrium points at finiie we
found in Sec. IV A that there were no local sources corre-
sponding to expanding models. In order to complete the
analysis, and determine the dynamical behavior close to the
initial singularity, we need to examine what happensbas
— o0, In this subsection we present a heuristic analysis of the

situation, and include ordinary matter, that(ls# 0.
We define a new bounded variable

(5.19

and examine what happensds> 1 (assumingd>0). From

the previous subsection we have that 1 andH—1 mono-
tonically, and hence we need to consider the equilibrium
points in the setd=1.

The analysis depends on whether the quanfitdefined
by Eq.(5.5) that occurs in the expression fgiin Eq. (5.4) is
zero or not in an open neighborhood of the singularity. If
A#0, and assumingd>0, we define a new time variable
by

(1-d)?

f '
AH

and the remaining evolution equatiof@ d=1) become

6:26, ﬁAZZEZA,

rigorous proof that oscillatory behavior does not occur can
be presented using the techniques of Rendall and Ringstrom
[28] and[29] (using analytic approximations to the brane- Therefore, the only equilibrium point is

Einstein equations fo&., N,; i.e., estimates for these
guantities that hold uniformly in an open neighborhood of

the initial singularity. We can then prove th&.—0 asr

V=", =20, 0,=20,. (5.15
§+:§_:N1:N2:N3:§

=0,=V=d=0,=0
——oo, (), —1, and we obtain the brane Robertson-Walker

source.

Alternatively, from Eq.(5.12 we have that eithelC?
—0 orq—3r—1. If C=0 thenq=2(32+32) and we
can show that we obtain contradictiorC€0 implies
D=0!). HenceC?#0, andq— (3I'—1), so that

32432-0 (5.13

and it is a simple matter to show thiit,—0 and again we
obtain the brane-Robertson-Walker source.

and this is a local source. This equilibrium point corresponds
to the brane-Robertson-Walker solutifi8] with

2

a ~
—D2p2=1,

i D20=0 (D2Q=0).

It remains to consider the casé=0. However in this
case

3y-2~ ~ .~
72 0-0,+a20,

(5.1

q=2(32+32)+2W2- D+
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TABLE I. Local sinks and sources.Note that each of these local sinks has a corresponding local source,

P_andm,.
Sink Conditions ork Description

P, (Zero curvature, power law inflation k<2 D=0, H=1, expanding models

m_ (Zero curvature, isotropic brane-woyld all k Do, H=—1, contracting models
and the resulting dynamical syste@.1b—(4.1j) has the ~ N2 L oS24 2

2 ) ) . = + + —

same local equilibrium points as in Sec. IV A but with Q=234 +232+r%(3 cogo-1)
=1 (instead ofd=0). In particular, there are no local +S~)x(6 co§0—1)+azﬁu. (5.18

sources, and the Kasner equilibrium points are saddigs
Hence all orbits asymptote in the past to the BRW sourc

e . .
This will be discussed in more detail in the next section, '€ WO constraint equations become

B. Local stability of the brane-Robertson-Walker solution 1=H2+ %(Nlﬂzﬂa)% (5.193

In order to analyze the dynamical systéml) for large
values ofD, we can define the following new variables: 1
~ - A2=32 +32 + 0, +a20,+r?+ [ (N2+R3+R3)
®=r?sirfg, and ¥=r cosé, B » “ 1200 2
—2(N;N,+N,Ng+N;N3) . (5.19h

~ 1 ~ o~ 1

Q)\:ZazDz(q)+\P2)2:Za2D2r4.
From the constraint equations, we have O

Using these new cylindrical coordinates, the infinite variable<H23% .32 ,0,,,Q, r<1, 0<é@<m, and N;N,N;<8

D is essentially replaced by the bounded variefﬁl@in the  (assuming,=0). _ _
setyUU®, hence in this set the only variables that remain The brane-Robertson-Walker solutiph0] is represented

unbounded are thdl’s. by an equilibrium point in the s@izﬁﬁo (D—x). If we let
The dynamical systertd.1) becomes X=[A,3..3 N;N,N50,,0,,r,6] then this new
B3Rt 517 equilibrium point is as follows.
=aq(H"=1) (5173 m,; brane-Robertson-WalkeK,=[¢,0,0,0,0,0,0,1,0:/2
-~ e~ o + /2] andX,=[¢,0,0,0,0,0,0,1,6;/2]. Using the constraint
S=@G-2Rs. -3, (5.17 JandXo=1 0.0, (Orf2]. Using the constra
equation to eliminat&),,, the eigenvalues of the lineariza-
~ ~ o tion at the pointd=0,7 are
3 =(q—2)HX_—-S_ (5.170
5 €(10,10,2,2,2,3,3,3)3
N;=Ni(Hq—4%,) (5.179
and whené= 7/2 the eigenvalues of the linearization are
Ny =N,(Ag+23 . +2433 5.17
s=Na(Fig 23, +235 ) (6.179 e«(—3-3-3-2-2-1-1,-1,0.
N3=N3(Hq+22+—2\/§§_) (5.179 A value of 0 that satisfie®)’ =0 in a neighborhood of an
_ . equilibrium point corresponds to a tangent plane to an invari-
Q,=2HO,(q—1) (5.179 ant surface passing through that equilibrium point. In the
analysis above, the directior®’s=0 and §= m correspond to
ﬁiIZHﬁk(aﬁ-l—G co2) (5.17n  the ®=0 invariant surface(i.e., the massless scalar field
models. The valued= =/2, corresponding toF =0, is not
r'=rH(q—2+3sirfo) (5.17)  an invariant direction(note that if §= /2 then ¢’>0 in
every neighborhood of the equilibrium point nedir=0).
. ~ V6 We easily observe that this equilibrium point is a source that
0'=sin@| 3HcosO+—kr (5.17) ~ ] }
2 strongly repels away from’=0. That is, when traversed in

5 _ a time reverse direction, typical orbits would asymptotically
whereS, andS_ are curvature terms defined previously andapproach a massless scalar field brane-Robertson-Walker so-
where lution.
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VI. CONCLUDING REMARKS in Maartens(see equations 26-29 and A1-Al10 fd]). If
P,,=0,9,=0, then in the case of a perfect fluid with an

Assuming that(2,=0, the future asymptotic behavior equatlon of statp=(y—1)p, we obtain the following equa-
(see Table)lof the Bianchi type IX brane-world containing a tjons when the vorticity is zero«=0):

scalar field having an exponentlal potential is not signifi-

cantly different than what is found in general relativig8o]. (y—1) 1

We observe that for @k< 2, the future asymptotic state of A,=-— —D,p, (Ala)
ever-expanding models is characterized by the power-law in- Y. pr

flationary solution, and ik> /2 there no longer exists any )

equilibrium point representing an expanding model that is p+y0p=0, (Alb)

stable to the future. We therefore conclude th&tif\/2 then

the Bianchi type IX models must recollapse.[B0] it was .

shown that ifk>+/2 then a collapsing massless scalar solu- U+ §®U: 0, (Alo)
tion was a stable equilibrium point. Here, in the brane-world

scenario, we have that this final end-point is the brane- 1 4 1

Robertson-Walker solution. However, we also observe that a DU+ JUA,=— < K47PDMP’ (Ald)
typical model on its way to this final end point will asymp- 3 3 6

tote towards a collapsing massless scalar field solution. How-

ever, if),,<0, then a variety of new behaviors are possible O+ = @2+U Lo —DFA, + A AR+ = ! K2(3y—2)p—A
including possible oscillating cosmologigk2]. 2

The past asymptotic behavior of the Bianchi type IX )
brane-world containing a scalar figldnd ordinary matteris — "_(37_ 1)p2— iu (Ale)
significantly different than what is found in general relativity. KN
It is known that the Bianchi type IX perfect fluid models
approach a Mixmaster attract@kasner saddles joined by
Taub separatricedowards the past and are known to have o<lw>+ 200, TEL =Dy Ayt a0 —ALA)=0,
chaotic behavior. Here we observe that the brane-Robertson- (ALf)
Walker solution is a global source, and that there is no such
chaotic behavior near the initial singularity.

Due to the quadratic nature of the brane corrections to the D'o — ED ©=0, (Alg)
energy momentum tensor, a rich variety of intermediate be- Tur gom
havior is possible in these two fluid models. We note the
existence of the dark radiation density together with a 1 K%p
scalar field is similar to the previous analysis dong3i] on DE,,— §K2DMp—[0',H]M N
scaling models. Here the equivalent equation of state,is
=(3—1)U. It is known that the bifurcation value for these
scaling models i&2= 3y, which for y=4/3 corresponds to a and the Gauss-Codazzi equations on the brane
valuek?=4, a bifurcation value found in the analysis above.

The mtermedlate behavior of these multifluid models con-

2
Dlup-f— D W,
(Alh)

sidered here is extremely complex, and is not discussed in R<W .a —EL,=04(,05,=0, (Ali)
detail here. However, a more complete analy@swhich
some of the intermediate behavior is outlinedflthe Bianchi )
type Il models is currently under investigatigd2,33). K 12
yp y gatipe2,33 R+ = @2—0'M,,0"‘“’ 2k%p— 2A— 2+—L{
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[ay-v U Kty
y p 2°
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APPENDIX: INTEGRABILITY CONDITIONS
FOR P,,=0,Q,=0

.11
The complete set of four dimensional brane equations for h,IDIT =h, TV, + A JT = §®h” o }D”f’
a general imperfect fluid energy momentum tensor is given (A3)
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we obtain the integrability condition

4

2

2

p?|pD,O

4
[§<3y—4>U—

4 Kty ,
—37(37—4)(7— LU+ -5 Br- 1)p?|®D,,p.
(A4)

Taking the directional time derivative gAlg), interchang-
ing space and time derivatives, and using Eéel), (Alg),
(A1h) [and Eqgs(A1b), (Alc), and(Ale)], we obtain

(y—1)

1
[124+ K4p2]l—)DMp= 0. (A5)

Hence fory+#1 and[ 124+ x*p?]#0, we must have
D,p=0,

so that

— — —nv — 2__
A,=D,u=D,0=D"¢,,=D,0°=0

and hence in general the brane is spatially homogeneous.
The special case

y=3 12Ut k*p?=0, (A6)

in which the integrability conditions yield no constraints,
corresponds to the case in which there are no corrections
the general relativistic equations.

Alternatively, Eqs.(Alb) and (Alc) imply that
h=0

U=hp*®¥;  h= (A7)

and so Eq(A2) becomes

Kty 1
(37—4)h—7927(4/3w ;D,LP- (A8)

D=5,

Defining

1
Y= — l2By=2)113y
hP

PHYSICAL REVIEW B8, 023502 (2003

and a=[2(3y—4)]/(3y—2) and b=3«*y?/[4(3y—2)],
we then obtainfor y+ %)

2 b
D=1~ ~T-aia-a-bw] O+
(A9)
which integrates to
h=f¥ 2[1+ WP ]@37/(4=37) (A10)

where D,f=0 anda=b/(1—a)=3«*y*/[4(4—3y)]. This
Eq. (A10) essentially yields the functional dependencedor
In the exceptional case=4/3, p is separable in local coor-
dinates[From Eq.(A8) it can be seen that the cage-2/3 is
also exceptional.

Equation(A4) then becomes

4 K4’}/2 1
_ _ T 2=(4By) |
[3(3)/ 4)h 5 P ®DM®

From Eqgs.(A10) and (Alc), and using local coordinates so
thath=h(x"), f=1f(t), we obtain the functional forms fqr
and ®, whence on substitution into E¢A11) (for y# 4/3)
we obtain a contradiction if Pp+#0.

Finally, in the special casg=1, in whichp=0 andA,,
=0, we obtain analogues of Eq#2) and (A4) (which do
ot follow for A,=0):

1
p2— (4/4y) ED;Lp )

(A11)

4By-H(ry-1)  «*(y-13
3y 2

1
D, U=~ §K4pDMp (A12)
3 4 2 1 1 4

U+ g pt|= 6[)"@: gk pD,p. (A13)

In local coordinates we then findor D,,p#0)

2 3 3

— _h= — 4 213, ~ .8 4/3

3h (1+8Kp +32Kp (A14)

which implies thatp=0 (and hence® =0).
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