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Bianchi type IX brane-world cosmologies
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We investigate the asymptotic properties of the Bianchi type IX cosmological model in the brane-world
scenario. The matter content is assumed to be a combination of a perfect fluid and a minimimally coupled
scalar field that is restricted to the brane. A detailed qualitative analysis of the Bianchi type IX brane-world
containing a scalar field having an exponential potential is undertaken. It is found that the brane-Robertson-
Walker solution is a local source for the expanding Bianchi type IX models, and ifk2,2 the ever-expanding
Bianchi IX models asymptote to the power-law inflationary solution. The only other local sink is the contract-
ing brane-Robertson Walker solution. An analysis of the Bianchi type IX models with a scalar field with a
general potential is discussed, and it is shown that in the case of expanding models, for physical scalar field
potentials close to the initial singularity, the scalar field is effectively massless, and the solution is approxi-
mated by the brane-Robertson Walker model.

DOI: 10.1103/PhysRevD.68.023502 PACS number~s!: 98.80.Jk, 11.25.2w
ks
in
n
e
a

-

n
le

he
-

ca
om
o
n

c
e-

th
el
fo
y
in
. I
ca

in
,

ns

ni-
es.
ni-
la-
ass
s a

i-
uni-
gy.
eous
s

a
w-
o

eric
d

he
se
ini-
of
ntly

and
the
o
ed

id
I. INTRODUCTION

It is believed that Einstein’s general relativity brea
down at sufficiently high energies. Developments in str
theory suggest that gravity may truly be a higher dimensio
theory, becoming an effective 4-dimensional theory at low
energies. Some researchers have suggested an altern
scenario in which the matter fields are restricted to
3-dimensional brane-world embedded in 1131d dimen-
sions~the bulk!, while the gravitational field is free to propa
gate in thed extra dimensions@1#. In this paradigm it is not
necessary for thed extra dimensions to be small, or eve
compact, a radical departure from the standard Kaluza-K
scenario. Randall and Sundrum@2# have shown that ford
51, gravity can be localized on a single 3-brane even w
the fifth dimension is infinite. It has now become very im
portant to test the astrophysical and cosmological impli
tions of these higher dimensional theories derived fr
string theory. Can these cosmological models derived fr
string theory explain the high degree of homogeneity a
isotropy we currently observe?

The dynamical equations on the 3-brane@3–5# differ from
the general relativity equations by terms that carry the effe
of imbedding and of the free gravitational field in the fiv
dimensional bulk. The local~quadratic! energy-momentum
corrections are significant only at very high energies and
dynamical equations reduce to the regular Einstein fi
equations of general relativity for late times. However,
very high energies~i.e., early times!, these additional energ
momentum correction terms will play a very critical role
the evolutionary dynamics of these brane-world models
addition to the matter field corrections, there are nonlo
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effects~that modify the Friedmann equation on the brane
these models! from the free gravitational field in the bulk
transmitted via the projectionEmn of the bulk Weyl tensor,
that contribute further corrections to the Einstein equatio
on the brane.

Cosmological observations indicate that we live in a u
verse which is remarkably uniform on very large scal
However, the spatial homogeneity and isotropy of the u
verse is difficult to explain within the standard general re
tivistic framework since, in the presence of matter, the cl
of solutions to the Einstein equations which evolve toward
Friedmann-Robertson-Walker~FRW! universe is essentially
a set of measure zero@6#. In the inflationary scenario, we live
in an isotropic region of a potentially highly irregular un
verse as the result of an expansion phase in the early
verse thereby solving many of the problems of cosmolo
Thus this scenario can successfully generate a homogen
and isotropic FRW-like universe from initial condition
which, in the absence of inflation, would have resulted in
universe far removed from the one we live in today. Ho
ever, still only a restricted set of initial data will lead t
smooth enough conditions for the onset of inflation~i.e., the
so-called cosmic no-hair theorems only apply to nongen
models—see@7,8#!, so the issue of homogenization an
isotropization is still not satisfactorily solved. Indeed, t
initial conditions problem, that is to explain why the univer
is so isotropic and spatially homogeneous from generic
tial conditions, is perhaps one of the central problems
modern theoretical cosmology. These issues were rece
revisited in the context of brane cosmology@13,14#, and this
is one of the motivations for the present work.

Indeed, researchers have investigated both anisotropic
isotropic brane-world models, trying to ascertain whether
effects of the bulk gravitational field would allow one t
solve the isotropy problem. A lot of effort has been direct
at the so-called Friedmann brane-world models@9,10#. Dy-
namics of a brane-world universe filled with a perfect flu
©2003 The American Physical Society02-1
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have been intensively investigated during the last three y
@11–14#. It has been found there exist new regimes that
not inherent in the standard cosmology, such as stable o
lation @12# and the collapse of a flat universe@15#. Some
features of brane-world inflation have been studied in@3,16–
18# and the cosmological dynamics for exponential sca
field potentials have been described in@19,20#.

Shiromizoet al. @5# have developed an elegant covaria
approach to the bulk effects on the brane. The equat
derived by Maartens@4# are an extension of earlier work b
Ellis and MacCallum that has been subsequently develo
more recently in the book by Wainwright and Ellis@21#.
Using the formalism developed by Maartens and Wainwri
and Ellis, we propose to investigate the dynamical beha
in a wider class of anisotropic models than what has b
previously analyzed. Spatially homogeneous models of C
A ~and in particular Bianchi type IX!, containing both a per-
fect fluid and a scalar field will be investigated. The resulti
field equations will yield a system of ordinary differenti
equations, suitable for a geometric analysis using dynam
systems techniques. This analysis will determine whether
dynamics of the brane-world scenario mimics the dynam
of a general relativistic cosmology at late times. We are p
ticularly interested in both the early-time~nature of the initial
singularity! and late-time behavior~i.e., whether these mod
els inflate and isotropize!.

II. GOVERNING EQUATIONS

The field equations induced on the brane are derived
an elegant geometric approach by Shiromizuet al. @4,5#, us-
ing the Gauss-Codazzi equations, matching conditions
Z2 symmetry. The result is a modification of the standa
Einstein equations, with the new terms carrying bulk effe
onto the brane:

Gmn52Lgmn1k2Tmn1k̃4Smn2Emn , ~2.1!

where

k25
8p

Mp
2

, l56
k2

k̃4
,

L5
4p

M̃p
3 F L̃1S 4p

3M̃p
3D l2G . ~2.2!

It is common to assume through fine tuning~a la Randall
Sundrum! that the effective cosmological constant on t
brane is zero, i.e.,L50. However, we shall assume that it
nonzero but positive.

The brane energy-momentum tensor for a perfect fl
and a minimally coupled scalar field is given by

Tmn5Tmn
per f ect f luid1Tmn

scalar f ield, ~2.3!

where

Tmn
per f ect f luid5rumun1phmn ~2.4!
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Tmn
scalar f ield5f ;mf ;n2gmnS 1

2
f ;af ;a1V~f! D ,

~2.5!

where um is the fluid 4-velocity,r and p are the energy
density and isotropic pressure,f is the minimally coupled
scalar field having potentialV(f), and the projection tenso
hmn[gmn1umun projects orthogonal toum. If f ;m is time-
like, then a scalar field with potentialV(f) is equivalent to a
perfect fluid having an energy density and pressure

rscalar f ield52
1

2
f ;mf ;m1V~f! ~2.6!

pscalar f ield52
1

2
f ;mf ;m2V~f!. ~2.7!

The bulk corrections to the Einstein equations on
brane are of two forms: firstly, the matter fields contribu
local quadratic energy-momentum corrections via the ten
Smn , and secondly, there are nonlocal effects from the f
gravitational field in the bulk, transmitted via the projectio
of the bulk Weyl tensor,Emn . The local matter corrections
are given by

Smn5
1

12
Ta

aTmn2
1

4
TmaTn

a1
1

24
gmn@3TabTab2~Ta

a!2#,

~2.8!

which is equivalent to

Smn
per f ect f luid5

1

12
r2umun1

1

12
r~r12p!hmn , ~2.9!

for a perfect fluid and

Smn
scalar f ield5

1

6 S 2
1

2
f ;af ;a1V~f! Df ;mf ;n

1
1

12S 2
1

2
f ;af ;a1V~f! D

3S 2
3

2
f ;af ;a2V~f! Dgmn , ~2.10!

for a minimally coupled scalar field. If we have both a pe
fect fluid and a scalar field then we will assume that t
gradient of the scalar fieldf ;m, is aligned with the fluid
4-velocity, um, that isf ;m/A2f ;af ;a5um. ~In generalf ;m

need not be aligned withum thereby creating a rich variety o
cross terms.! The local brane effects due to a combination
a perfect fluid and a scalar field are then
2-2
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Smn5
1

12S r2
1

2
f ;af ;a1V~f! D 2

umun

1
1

12S r2
1

2
f ;af ;a1VD

3S r12p2
3

2
f ;af ;a2V~f! Dhmn . ~2.11!

The nonlocal effects from the free gravitational field
the bulk are characterized by the projection of the bulk W
tensor onto the brane. Given a timelike congruence on
brane, the bulk correction,Emn can be decomposed@4# via

Emn52S k̃

k
D 4FUS umun1

1

3
hmnD1Pmn12Q(mun)G .

~2.12!

~See @4# for further details.! In general, the conservatio
equations~the contracted Bianchi identities on the brane! do
not determine all of the independent components ofEmn on
the brane. In particular, there is no evolution equation
Pmn and hence, in general, the projection of t
5-dimensional field equations onto the brane does not lea
a closed system. However, in the cosmological context s
ied here, we will assume

DmU5Qm5Pmn50, ~2.13!

where Dm is the totally projected part of the brane covaria
derivative. SincePmn50, in this case the evolution ofEmn is
y

c
he
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fully determined @2#. In generalU5U(t)Þ0 ~and can be
negative! in the Friedmann background@9,10#. For a spa-
tially homogeneous and isotropic model on the brane,
~2.13! follows, and similar conditions apply self-consistent
in other Bianchi models@4#. In the Appendix we prove tha
the integrability conditions forPmn50,Qm50 imply spatial
homogeneity. PhysicallyPmn corresponds to gravitationa
waves and is not expected to affect the dynamics close to
singularity@26#. From the analysis of the evolution equatio
for Qm close to the initial singularity, it can be shown that
small Qm does not affect the dynamical evolution ofU ~to
lowest order! @4,13,27#.

All of the bulk corrections mentioned above may be co
solidated into an effective total energy density and press
as follows. The modified Einstein equations take the stand
Einstein form with a redefined energy-momentum tensor

Gmn5k2Tmn
total, ~2.14!

where

Tmn
tot [2

L

k2
gmn1Tmn1

k̃4

k2
Smn2

1

k2
Emn ~2.15!

is the redefined equivalent perfect fluid energy-moment
tensor with the total equivalent energy density due to bot
perfect fluid and a scalar field
r total5
L

k2
1r1S 2

1

2
f ;af ;a1V~f! D1

k̃4

k6 Fk4

12S r2
1

2
f ;af ;a1V~f! D 2

1UG ~2.16!

ptotal52
L

k2
1p1S 2

1

2
f ;af ;a2V~f! D1

k̃4

k6 Fk4

12S r2
1

2
f ;af ;a1V~f! D S r12p2

3

2
f ;af ;a2V~f! D1

1

3
UG

~2.17!
the

n-

g

that
n

where we have assumed thatDmU5Qm5Pmn50 in the cos-
mological case of interest here.

As a consequence of the form of the bulk energ
momentum tensor and ofZ2 symmetry, it follows@5# that the
brane energy-momentum tensor separately satisfies the
servation equations~where we have tacitly assumed that t
scalar field and the matter are noninteracting!, i.e.,

Tn;m
m per f ect f luid50 which yields ṙ13H~r1p!50

~2.18!

Tn;m
m scalar f ield50 which yields f̈13Hḟ1

]V

]f
50,

~2.19!
-

on-

whence the Bianchi identities on the brane imply that
projected Weyl tensor obeys the constraint

E n;m
m 5k̃4Sn;m

m which yields U̇14HU50. ~2.20!

III. BIANCHI TYPE IX MODELS

A. Setting up the dynamical system

We shall use the formalism of Hewitt, Uggla, and Wai
wright introduced in@21# for positive curvature models~see
pages 179–182 in@21#!. The source term~restricted to the
brane! is a noninteracting mixture of ordinary matter havin
energy densityr, and a minimally coupled scalar field,f.
We shall assume that the matter content is equivalent to
of a nontilting perfect fluid with a linear barotropic equatio
2-3
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of state for the fluid, i.e.,p5(g21)r, where the energy
conditions impose the restrictionr>0, and the constantg
satisfiesgP@0,2# from causality requirements. We shall als
assume that the scalar field potential has an exponential
V(f)5V0ekkf5V0e(A8p/M p)kf @22–25#. The energy-
momentum tensor describing the source is given in Eq.~2.3!
where, for a homogeneous scalar field,f5f(t).

Our variables are the same as those introduced by He
Uggla and Wainwright~see page 180 in@21#!, with the addi-
tion of

Ṽ5
k2r

3D2
, ṼL5

L

3D2
, F̃5

k2V

3D2
,

C̃5A3

2

kḟ

3D
, ṼU5

U
3D2

~3.1!

where

D[AH21
1

4
~n1n2n3!2/3.

The total equivalent dimensionless energy density due to
sources and bulk corrections is

Ṽ total[
k2r total

3D2
5Ṽ1ṼL1F̃1C̃21a2ṼU

1
a2

4
D2~Ṽ1F̃1C̃2!2, ~3.2!

where

a2[
k̃4

k4
.

The governing differential equations for the quantities

X[@D,H̃,S̃1 ,S̃2 ,Ñ1 ,Ñ2 ,Ñ3 ,Ṽ,ṼL ,C̃,F̃,ṼU#

are as follows:

D852~11q̃!H̃D ~3.3a!

H̃85q̃~H̃221! ~3.3b!

S̃18 5~ q̃22!H̃S̃12S̃1 ~3.3c!

S̃28 5~ q̃22!H̃S̃22S̃2 ~3.3d!

Ñ185Ñ1~H̃q̃24S̃1! ~3.3e!

Ñ285Ñ2~H̃q̃12S̃112A3S̃2! ~3.3f!

Ñ385Ñ3~H̃q̃12S̃122A3S̃2! ~3.3g!
02350
rm

itt,

ll

Ṽ85H̃Ṽ@2~ q̃11!23g# ~3.3h!

ṼL8 52H̃ṼL~ q̃11! ~3.3i!

C̃85~ q̃22!H̃C̃2
A6

2
kF̃ ~3.3j!

F̃852F̃S ~11q̃!H̃1
A6

2
kC̃ D ~3.3k!

ṼU852H̃ṼU~ q̃21!. ~3.3l!

The quantityq̃ is the deceleration parameter, andS̃1 and
S̃2 are curvature terms that are defined by the followi
expressions:

q̃[2S̃1
2 12S̃2

2 1
~3g22!

2
Ṽ2ṼL12C̃22F̃1a2ṼU

1
a2

4
D2$~Ṽ1C̃21F̃!@~3g21!Ṽ12C̃22F̃#%

~3.4!

S̃1[
1

6
~Ñ22Ñ3!22

1

6
Ñ1~2Ñ12Ñ22Ñ3! ~3.5!

S̃2[
1

6
A3~Ñ22Ñ3!~2Ñ11Ñ21Ñ3!. ~3.6!

The evolution equations for Eq.~3.3h! come from the
conservation equation~2.18!. The evolution equations fo
Eqs. ~3.3j! and ~3.3k! are derived from the Klein-Gordon
equation derived from the conservation equation~2.19!. The
evolution equation~3.3l! comes from the conservation equ
tion ~2.20!.

In addition there are two constraint equations that m
also be satisfied:

G1~X![H̃21
1

4
~Ñ1Ñ2Ñ3!2/32150 ~3.7a!

G2~X![12S̃1
2 2S̃2

2 2Ṽ total2Ṽ50 ~3.7b!

where

Ṽ5
1

12
@~Ñ1

21Ñ2
21Ñ3

2!22~Ñ1Ñ21Ñ1Ñ31Ñ2Ñ3!

13~Ñ1Ñ2Ñ3!2/3#.

Equation ~3.7a! follows from the definition ofD, and Eq.
~3.7b! is the generalized Friedmann equation. We now ha
determined the equations describing the evolution of the
anchi type IX brane-world models. The resulting equatio
are suitable for a qualitative analysis using techniques fr
dynamical systems theory. In general, the system of E
~3.3! can be interpreted asX85F(X) where F:XPR12

→R12. We must also make careful note of the two constra
equationsG1(X)50 andG2(X)50. These constraint equa
2-4
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tions essentially restrict the dynamics of the dynamical s
temX85F(X) to lower dimensional surfaces inR12. In prin-
cipal, these constraint equations may be used to elimin
two of the twelve variables provided the constraints are
singular.

B. Symmetry transformations

Since the dynamical system~3.3! is invariant under the

transformationF̃→2F̃ we can restrict our state space

D>0 @by definition ofD, see Eq.~3.1!# and F̃>0 without
loss of generality.

Note the dynamical system~3.3! is also invariant under
the transformation

~S̃1 ,S̃2 ,Ñ1 ,Ñ2 ,Ñ3!→S 2
1

2
S̃12

A3

2
S̃2 ,

A3

2
S̃1

2
1

2
S̃2 ,Ñ2 ,Ñ3 ,Ñ1D . ~3.8!

This symmetry implies that any equilibrium point with

nonzeroS̃6 term, will have two equivalent copies of tha
point located at positions that are rotated through an angl
2p/3 and centered along a different axis of theÑa .

C. Invariant sets

If we assume the weak energy condition for a perfect fl
~i.e.,r>0), then we must restrict the state space to the se

pointsṼ>0. Since we are investigating the behavior of t
Bianchi type IX brane-world models in particular, we ca
restrict the state space toÑa>0 without loss of generality.
Therefore the state space for the Bianchi type IX bra
world models is the set of pointsS5$XPR12uG1(X)

50,G2(X)50,Ṽ>0,Ña>0,D>0,F̃>0%.

The evolution equation forṼU , Eq. ~3.3l! implies that the

surfaceṼU50 divides the state space into three distinct

gions, U 15$XPSuṼU.0%, U 05$XPSuṼU50%, and U 2

5$XPSuṼU,0%.
There are various invariant sets associated with the ma

content. We define sixmatter invariant setsas

0V0,05$XPSuṼ50,F̃50,C̃50%,

0V0,65$XPSuṼ50,F̃50,C̃5” 0%,

0V1,65$XPSuṼ50,F̃5” 0,C̃5” 0%,

1V0,05$XPSuṼ5” 0,F̃50,C̃50%,

1V0,65$XPSuṼ5” 0,F̃50,C̃5” 0%,

1V1,65$XPSuṼ5” 0,F̃5” 0,C̃5” 0%,
02350
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te
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where the notation is interpreted as

(value of Ṽ)V (value of F̃,value of C̃).

In addition to the matter invariant sets, there are invari
sets associated with the geometry of the spacetime. The
namical system~3.3! implies that any combination of the
conditionsÑa.0 andÑb50 defines an invariant set. Sinc
these conditions yield the Bianchi type of the underlyi
geometry we call these invariant sets,Bianchi invariant sets.
The Bianchi type corresponding to the different combin
tions are

B~ I!5$XPSuÑ150,Ñ250,Ñ350%

B~ II !5$XPSuÑ15” 0,Ñ250,Ñ350%

B~VII 0!5$XPSuÑ150,Ñ25” 0,Ñ35” 0%

B~ IX !5$XPSuÑ15” 0,Ñ25” 0,Ñ35” 0%

where the setsB(II) and B(VII 0) have two additional and
equivalent disjoint copies of themselves that are determi
by the transformation~3.8!.

From Eq. ~3.7a! we have that21<H̃<1 and Ñ1Ñ2Ñ3
<8. Furthermore, in the invariant setsU 1 andU 0, using Eq.
~3.7b! it can be shown that

0<S̃1
2 ,S̃2

2 ,Ṽ,ṼL ,C̃2,F̃,Ṽ<1.

However, knowing that 0<Ṽ<1 and 0<Ñ1Ñ2Ñ3<8 is not
sufficient to place any bounds on theÑa’s or D. Further-
more, in the invariant setU 2, we cannot place upper bound
on any of the variables without some redefinition of the
mensionless variables~3.1!.

D. First integrals

It is possible to show that the function

W5~H̃221! [ 22a23gb]ṼL
[a1(3g22)b]Ṽ2bṼU

a ~3.9!

~wherea,b are parameters that can take any value! is a first
integral of the dynamical system~3.3!, that is W850. For
particular values ofa andb we obtain the following invari-
ants~for any valueK):

~a50,b51!, K~H̃221!3g5ṼL
(3g22)Ṽ2

~3.10!

~a51,b50!, K~H̃221!25ṼLṼU
~3.11!

~a523g,b52!, KṼU3g5ṼL
(3g24)Ṽ4

~3.12!

„a52~3g22!,b51…, KṼU(3g22)5~H̃221!(3g24)Ṽ2.
~3.13!

In the invariant setU 1øU 0, it is possible to show thatq̃

>21, which implies thatṼL→0 ast→` for those models
2-5
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that expand for all time~i.e., H̃.0 for all t), henceforth
called ever-expanding.Using the first and second invaria
we easily obtain the result thatH̃2→1 ast→`. From here
we also obtain the result for ever-expanding models tha

g.4/3 thenṼU→0.

IV. QUALITATIVE ANALYSIS OF THE CASE ṼÄṼLÄ0

In the invariant setU 1øU 0, we can show thatq̃>21.

This implies that the invariant setṼL50 is the invariant set
containing all of the past asymptotic behavior~i.e, early
times! for all ever-expanding models inU 1øU 0. It can be
argued that a scalar field becomes essentially massless
evolves backwards in time, hence it will dominate the d
namics at early times~see Sec. V!. In our effort to understand
the dynamical behavior at early times we shall assume in

analysis that follows that there is no perfect fluid (Ṽ50)
and the four-dimensional cosmological constant is z

(ṼL50).

If Ṽ5ṼL50 then Eqs.~3.3! reduce to

D852~11q̃!H̃D ~4.1a!

H̃85q̃~H̃221! ~4.1b!

S̃18 5~ q̃22!H̃S̃12S̃1 ~4.1c!

S̃28 5~ q̃22!H̃S̃22S̃2 ~4.1d!

Ñ185Ñ1~H̃q̃24S̃1! ~4.1e!

Ñ285Ñ2~H̃q̃12S̃112A3S̃2! ~4.1f!

Ñ385Ñ3~H̃q̃12S̃122A3S̃2! ~4.1g!

C̃85~ q̃22!H̃C̃2
A6

2
kF̃ ~4.1h!

F̃852F̃S ~11q̃!H̃1
A6

2
kC̃ D ~4.1i!

ṼU852H̃ṼU~ q̃21!. ~4.1j!

The quantityq̃ is the deceleration parameter, andS̃1 and
S̃2 are curvature terms that are now defined by the follow
expressions:

q̃[2S̃1
2 12S̃2

2 12C̃22F̃

1a2F1

4
D2~C̃21F̃!~2C̃22F̃!1ṼUG ~4.2!

S̃1[
1

6
~Ñ22Ñ3!22

1

6
Ñ1~2Ñ12Ñ22Ñ3! ~4.3!
02350
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S̃2[
1

6
A3~Ñ22Ñ3!~2Ñ11Ñ21Ñ3!. ~4.4!

The two constraint equations are

15H̃21
1

4
~Ñ1Ñ2Ñ3!2/3 ~4.5a!

H̃25S̃1
2 1S̃2

2 1Ṽ total1
1

12
@~Ñ1

21Ñ2
21Ñ3

2!

22~Ñ1Ñ21Ñ2Ñ31Ñ1Ñ3!# ~4.5b!

where

Ṽ total[
k2r total

3D2

5F̃1C̃21a2F1

4
D2~F̃1C̃2!21ṼUG . ~4.6!

A. Equilibrium points at finite D

Here we define

X̄5@D,H̃,S̃1 ,S̃2 ,Ñ1 ,Ñ2 ,Ñ3 ,C̃,F̃,ṼU#

and we restrict the state space accordingly to beS̄5$X

PSuṼ50,ṼL50%. The equilibrium pointsX̄0, can be clas-
sified into one of the three matter invariant sets that do
have a perfect fluid component. Note,e is a discrete param
eter wheree51 corresponds to expanding models, whilee
521 corresponds to contracting models. The notatio
@3m# signifies that the preceding eigenvalue has multip
ity m.

1. Vacuum, 0V0,0

Re ; Robertson-Walker ~radiation!. X̄0
5@0,e,0,0,0,0,0,0,0,1/a2#. The eigenvalues in the nine d

mensional phase space@ṼU eliminated via Eq.~4.5b!# are

e~22,21,21,21,1,1,1,2,4!.

This point is obviously a saddle with a five dimensional u
stable manifold (e51), and hence when the dynamics a
restricted to the remaining constraint surface@Eq. ~4.5a!#,
this point will remain a saddle~it can be shown that the
stable manifold on the remaining constraint surface has
mension four!.

RII
e ; Bianchi type II ~radiation!. X̄05@0,e,e 1

4 ,0,
A3/2,0,0,0,0,7/8a2] and two other equivalent points obtaine
through transformation~3.8!. The eigenvalues in the nin

dimensional phase space@ṼU eliminated via Eq.~4.5b!# are

e„22,21,21,2 1
2 ~16A6i !, 3

2 , 3
2 ,2,4….

This point is obviously a saddle with a four dimension
unstable manifold (e51), and hence when the dynamics a
2-6
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restricted to the remaining constraint surface@Eq. ~4.5a!#,
this point will remain a saddle.

Ke ; Kasner ~vacuum!. X̄05@0,e,cos(u),sin(u),0,
0,0,0,0,0# where 2p,u<p. This is a special case of th
Kasner surface defined in the next section.

BVII
e ; Bianchi type VII0 ~vacuum!. X̄05@0,e,

2e,0,0,s,s,0,0,0# and two other equivalent lines of equilibri
obtained through transformation~3.8! where 0,s,`. As
s→0, these lines of equilibria approach a point onKe . The

eigenvalues in the nine dimensional phase space@ṼU elimi-
nated via Eq.~4.5b!# are

e~23,0,0,2,4,6,6,62si!.

One of the zero eigenvalues corresponds to the fact that
is a one-dimensional set of equilibrium points. The span
eigenvectors associated with the eigenvalues@0,2,4,6,
12si,22si# does not include the ‘‘D ’’ direction. The eigen-
vector associated with the eigenvalue23 is the only eigen-
vector with a ‘‘D ’’ component. Therefore this point is
saddle (e51) with a one dimensional stable manifold in th
eight dimensional phase spaceS̄ when the dynamics are re
stricted to the remaining constraint surface Eq.~4.5a!.

2. Massless scalar field,0V0,6

Ke ; Kasner ~massless scalar field!. X̄0
5@0,e,sin(w)cos(u),sin(w)sin(u),0,0,0,cos(f),0,0# where

2p,u<p and 2p/2<w<p/2. Or S̃1
2 1S̃2

2 1C̃251.

The eigenvalues in the nine dimensional phase space@ṼU
eliminated via Eq.~4.5b!# are

e~23,0,0,4,4!,

2e24S̃1 ,2e12S̃162A3S̃2 ,6e1A6kC̃.

The two zero eigenvalues correspond to the fact that this
two-dimensional set of equilibrium points. It can be show
~as in theBVII

e case! that the eigenvalue23 corresponds to
the D direction, therefore, this set of equilibria will alway
be a set of saddle points with an unstable manifold hav
dimension no more than seven.

3. Massive scalar field,0V1,6

Fe
1 ; Robertson-Walker ~positive curvature, scala

field!. X̄05@0,keA2/2,0,0,A422k2,A422k2,A422k2,

2eA3/3,23 ,0#. The point only exists fork2,2 and ask2

→2 this point approachesPe . This is the only equilibrium
point for finite values ofD for which we can directly calcu-
late the eigenvalues of the dynamical system restricted to
eight dimensional phase spaceS̄. The eigenvalues in the

eight dimensional phase space@H̃,ṼU eliminated via Eqs.
~4.5a! and ~4.5b!# are
02350
is
f

a

g

he

eS 2
A2

2
k,0,2

A2

2
@k6Ak218~k222!#@32#,

2
A2

2
@k6Ak214~22k2!# D .

This point when it exists (e51) has a six dimensional stabl
manifold, a one dimensional unstable manifold, and a o
dimensional center manifold.

Pe ; Robertson-Walker~zero curvature, power law infla
tion!. X̄05@0,e,0,0,0,0,0,2keA6/6,12k2/6,0#. The eigen-

values in the nine dimensional phase space@ṼU eliminated
via Eq. ~4.5b!# are

eS 2
k2

2
,k222,

1

2
~k222!@33#,

1

2
~k226!@33#,k224D .

If k2,2 (e51), then this point is a local sink in the eigh
dimensional phase spaceS̄. If k2,2 (e521), then this
point is a local source in the eight dimensional phase sp
S̄. When 2,k2,4 and when 4,k2,6 this point is a saddle
in the nine dimensional phase space (e51), and hence when
the dynamics are restricted to the remaining constraint
face Eq.~4.5a!, this point will remain a saddle. Whenk2

54 this point experiences a bifurcation with the poi
RSFe

0 , the Robertson-Walker radiation-scalar field scali
models. Whenk256 this point becomes part of the Kasn
massless scalar field modelsKe .

RSFe
0 ; Robertson-Walker ~zero curvature–radiation

scalar field scaling model!. X̄05@0,e,0,0,0,0,0,
22eA6/3k,4/3k2,(k224)/k2a2#. Whenk2.4 this point is
an element ofU 1 and whenk2,4 this point is an element o
U 2. The eigenvalues in the nine dimensional phase sp

@ṼU eliminated via Eq.~4.5b!# are

eS 22,21,21,1,1,1,2,2
1

2k
@k6Ak2116~42k2!# D .

This point (e51) is easily seen to be a saddle with a fo
dimensional unstable manifold whenk2.4, and a five di-
mensional unstable manifold whenk2,4, and hence when
the dynamics are restricted to the remaining constraint
face Eq.~4.5a!, this point will remain a saddle in all case
Note, the cosmological model represented by this equi
rium point has the property that the energy density attribu
to the scalar field is proportional to the energy density of
dark radiation coming from the bulk

rs f5
1

2
~ḟ !21V~f!}U5rU .

RSFII
e ; Bianchi type II (ṼU5” 0), radiation-scalar

field scaling model. X̄05@0,e,e/4,0,A3/2,0,0,
22eA6/3k,4/3k2,(7k2232)/8k2a2# and two other equiva-
lent points obtained through transformation~3.8!. The eigen-

values in the nine dimensional phase space@ṼU eliminated
via Eq. ~4.5b!# are
2-7
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eS 22,21,
3

2
,
3

2
,2,

1

4k2
F22k26A~2k2!222k2@~23k2264!6A~23k2264!2264k2~7k2232!# G D .
na
ed

d
ha
o
ng

gh
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ed

pr
II

ca
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1

er

d,
,

s

c-
sin-
This point is always a saddle point in the nine dimensio
phase space, and hence when the dynamics are restrict
the remaining constraint surface Eq.~4.5a!, this point will
remain a saddle in all cases. Note, the cosmological mo
represented by this equilibrium point has the property t
the energy density attributed to the scalar field is prop
tional to the energy density of the dark radiation comi
from the bulk

rs f5
1

2
~ḟ !21V~f!}U5rU .

SFII
e ; Bianchi type II (ṼU50), scalar field model.X̄0

5@0,e, 22e(22k2)/(k2116), 0, 6@(22k2)(k228)/
(k2116)2#1/2, 0, 0, 2ek3A6/k2116, 36 (82k2)/(k2

116)2 ,0] and two other equivalent points obtained throu
transformation~3.8!. This point only exists when 2,k2

,8. As k2→2 this point approaches the pointPe and as
k2→8 this point approaches a point in the setKe . The ei-

genvalues in the nine dimensional phase space@ṼU elimi-
nated via Eq.~4.5b!# are

e

k2116
S 6~k228!@32#,16~k222!,12~k222!@32#,

2~7k2232!,29k2,3[~k228!

6A~k228!2112~k222!~k228!] D .

This point is always a saddle point in the nine dimensio
phase space, and hence when the dynamics are restrict
the remaining constraint surface Eq.~4.5a!, this point will
remain a saddle in all cases. The cosmological model re
sented by this equilibrium point is that of a Bianchi type
model with an exponential potential scalar field.

Note there are other equilibrium points to the dynami
system~4.1!, but they correspond to points that are neith
inside the setS̄ nor on its boundary, and do not represent a
limiting behavior of the Bianchi type IX brane-world scala
field models.

V. GENERAL DYNAMICS

We now return to the general case@i.e., Eqs.~3.3!–~3.6!#
and include a general potential for the scalar field, and st
what happens asD→` at the initial singularity~assuming
this occurs!. We shall also assume normal matter with
<g,2.

We recall that there are no sources for finite values ofD.
Also, for a general scalar field, Eqs.~3.3j! and~3.3k! become
02350
l
to

el
t

r-

l
to

e-

l
r
y

y

C̃85~ q̃22!H̃C̃2 ēF̃ ~5.1!

F̃852~ q̃11!H̃F̃12ēF̃C̃ ~5.2!

whereē ~related to the usual inflationary slow roll paramet
e) is defined

ē[A3

2

Vf

kV
.

From the Friedmann equation we have that

a2

4
D2~Ṽ1F̃1C̃2!25Ṽl<1 ~5.3!

and hence each termDṼ, DF̃, DC̃2 is bounded~since the
left-hand side is the sum positive definite terms!. Hence, as

D→`, Ṽ, C̃2, F̃→0.

It is easy to show thatṼL , ṼU→0 asD→`. Hence Eq.
~3.4! becomes

q̃52~S̃1
2 1S̃2

2 !1AD2, ~5.4!

where

A[
a2

4
$@Ṽ1C̃21F̃#@~3g21!Ṽ12C̃22F̃#%. ~5.5!

AssumingH̃.0, Eqs.~3.3a! and ~3.3b! imply that ast→
2` for D→`, either q̃→0 or q̃ is positive in a neighbor-
hood of the singularity (q̃ can oscillate around zero; indee
it is the possible oscillatory nature of the variables—i.e.q̃
need not be of single sign—that causes potential problem!.
However, if q̃→0, Eq. ~3.3h! implies

Ṽ85H̃Ṽ~223g! ~5.6!

which implies a contradiction forg. 2
3 ~i.e. Ṽ→” 0 ast→

2`). Hence, ast→2`, q̃.0, whereD→` and

H̃852q̃~12H̃2! ~5.7!

and henceH̃→1 ~assuming positive expansion! monotoni-
cally. @Note: this implies the existence of a monotonic fun
tion, and hence there are no periodic orbitsclose to the
2-8
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gularity near the setH̃51—all orbits approachH̃51.# In
addition, Eq.~3.7a! gives (Ñ1Ñ2Ñ3)→0.

From Eqs.~3.3h!, ~3.3i!, ~3.3j! and ~3.3k! we have ast
→2`

F̃

C̃2
→0, ~5.8!

that is, the scalar field becomes effectively massless, an

Ṽ

C̃2
→0 if g,2. ~5.9!

This follows directly from the evolution equation in the ca
of an exponential scalar field potential,ē5A3/2k, and fol-
lows for any physical potential for whichē is bounded ast
→2`. Hence we obtain

q̃52~S̃1
2 1S̃2

2 !1~3G21!C2 ~5.10!

where G52, C25(a2/4)D2C̃4 if g,2; G52, C2

5(a2/4)D2(Ṽ1C̃2)2 if g52; G5g and C2

5(a2/4)D2Ṽ2 if there is no scalar field, whereṼl→C2 as
t→2`, and the Friedmann equation becomes

12~S̃1
2 1S̃2

2 !2C25
1

12
@~Ñ1

21Ñ2
21Ñ3

2!

22~Ñ1Ñ21Ñ1Ñ31Ñ2Ñ3!#

>0. ~5.11!

From Eqs.~3.3h!,~3.3j! we obtain

~C2!852C2H̃@ q̃2~3G21!#. ~5.12!

We still have the possibility ofS̃6 or Ñi oscillating as the
singularity is approached~as in the Mixmaster models!. A
rigorous proof that oscillatory behavior does not occur c
be presented using the techniques of Rendall and Rings
@28# and @29# ~using analytic approximations to the bran

Einstein equations forS̃6 , Ña ; i.e., estimates for thes
quantities that hold uniformly in an open neighborhood

the initial singularity!. We can then prove thatS̃6→0 ast

→2`, Ṽl→1, and we obtain the brane Robertson-Walk
source.

Alternatively, from Eq. ~5.12! we have that eitherC2

→0 or q̃→3G21. If C50 then q̃52(S̃1
2 1S̃2

2 ) and we
can show that we obtain contradiction (C50 implies
D50!!. HenceC2Þ0, andq̃→(3G21), so that

S̃1
2 1S̃2

2 50 ~5.13!

and it is a simple matter to show thatÑa→0 and again we
obtain the brane-Robertson-Walker source.
02350
n
m

f

r

We next show that~for no perfect fluid and a scalar fiel
with an exponential potential! the brane-Robertson-Walke
solution is always an equilibrium point of the system and
local stability analysis establishes that it is a local source

A. Initial singularity

In the analysis of local equilibrium points at finiteD we
found in Sec. IV A that there were no local sources cor
sponding to expanding models. In order to complete
analysis, and determine the dynamical behavior close to
initial singularity, we need to examine what happens asD
→`. In this subsection we present a heuristic analysis of

situation, and include ordinary matter, that isṼÞ0.
We define a new bounded variable

d5
D

D11
, 0<d<1 ~5.14!

and examine what happens asd→1 ~assumingH̃.0). From
the previous subsection we have thatd→1 andH̃→1 mono-
tonically, and hence we need to consider the equilibri
points in the setd51.

The analysis depends on whether the quantityA defined
by Eq.~5.5! that occurs in the expression forq̃ in Eq. ~5.4! is
zero or not in an open neighborhood of the singularity.
AÞ0, and assumingA.0, we define a new time variabl
by

ḟ 5
~12d!2

AH̃
f 8

and the remaining evolution equations~on d51) become

S̃
˙

15S̃1 , S̃
˙

25S̃2 ,

Ṅ̃15Ñ1 , Ṅ̃25Ñ2 , Ṅ̃35Ñ3 ,

Ṽ
˙

52Ṽ, Ṽ
˙

L52ṼL ,

C̃
˙

5C̃, F̃
˙

52F̃, Ṽ
˙

U52ṼU . ~5.15!

Therefore, the only equilibrium point is

S̃15S̃25Ñ15Ñ25Ñ35Ṽ

5ṼL5C̃5F̃5ṼU50

and this is a local source. This equilibrium point correspon
to the brane-Robertson-Walker solution@13# with

a2

4
D2C̃251, D2F̃50 ~D2Ṽ50!.

It remains to consider the caseA50. However in this
case

q̃52~S̃1
2 1S̃2

2 !12C̃22F̃1
3g22

2
Ṽ2ṼL1a2ṼU

~5.16!
2-9
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TABLE I. Local sinks and sources.Note that each of these local sinks has a corresponding local
P2 andm1 .

Sink Conditions onk Description

P1 ~Zero curvature, power law inflation! k,A2 D50, H̃51, expanding models
m2 ~Zero curvature, isotropic brane-world! all k D→`, H̃521, contracting models
l

c

bl

in

nd

0

-

ari-
he

ld

hat

lly
r so-
and the resulting dynamical system~4.1b!–~4.1j! has the
same local equilibrium points as in Sec. IV A but withd
51 ~instead of d50). In particular, there are no loca
sources, and the Kasner equilibrium points are saddles@13#.
Hence all orbits asymptote in the past to the BRW sour
This will be discussed in more detail in the next section.

B. Local stability of the brane-Robertson-Walker solution

In order to analyze the dynamical system~4.1! for large
values ofD, we can define the following new variables:

F̃5r 2sin2u, and C̃5r cosu,

Ṽl5
1

4
a2D2~F̃1C̃2!25

1

4
a2D2r 4.

Using these new cylindrical coordinates, the infinite varia

D is essentially replaced by the bounded variableṼl in the
set UøU 0, hence in this set the only variables that rema
unbounded are theÑa’s.

The dynamical system~4.1! becomes

H̃85q̃~H̃221! ~5.17a!

S̃18 5~ q̃22!H̃S̃12S̃1 ~5.17b!

S̃28 5~ q̃22!H̃S̃22S̃2 ~5.17c!

Ñ185Ñ1~H̃q̃24S̃1! ~5.17d!

Ñ285Ñ2~H̃q̃12S̃112A3S̃2! ~5.17e!

Ñ385Ñ3~H̃q̃12S̃122A3S̃2! ~5.17f!

ṼU852H̃ṼU~ q̃21! ~5.17g!

Ṽl852H̃Ṽl~ q̃1126 cos2u! ~5.17h!

r 85rH̃ ~ q̃2213 sin2u! ~5.17i!

u85sinuS 3H̃cosu1
A6

2
kr D ~5.17j!

whereS̃1 andS̃2 are curvature terms defined previously a
where
02350
e.

e

q̃[2S̃1
2 12S̃2

2 1r 2~3 cos2u21!

1Ṽl~6 cos2u21!1a2ṼU . ~5.18!

The two constraint equations become

15H̃21
1

4
~Ñ1Ñ2Ñ3!2/3 ~5.19a!

H̃25S̃1
2 1S̃2

2 1Ṽl1a2ṼU1r 21
1

12
@~Ñ1

21Ñ2
21Ñ3

2!

22~Ñ1Ñ21Ñ2Ñ31Ñ1Ñ3!#. ~5.19b!

From the constraint equations, we have

<H̃2,S̃1
2 ,S̃2

2 ,ṼU ,Ṽl ,r<1, 0<u<p, and Ñ1Ñ2Ñ3<8

~assumingṼU>0).
The brane-Robertson-Walker solution@10# is represented

by an equilibrium point in the setṼlÞ0 (D→`). If we let

X̃5@H̃,S̃1 ,S̃2 ,Ñ1 ,Ñ2 ,Ñ3 ,ṼU ,Ṽl ,r ,u# then this new
equilibrium point is as follows.

me ; brane-Robertson-Walker.X̃05@e,0,0,0,0,0,0,1,0,p/2
6p/2# andX̃05@e,0,0,0,0,0,0,1,0,p/2#. Using the constraint

equation to eliminateṼU , the eigenvalues of the lineariza
tion at the pointu50,p are

e~10,10,2,2,2,3,3,3,3!

and whenu5p/2 the eigenvalues of the linearization are

e~23,23,23,22,22,21,21,21,0!.

A value of u that satisfiesu850 in a neighborhood of an
equilibrium point corresponds to a tangent plane to an inv
ant surface passing through that equilibrium point. In t
analysis above, the directionsu50 andu5p correspond to

the F̃50 invariant surface~i.e., the massless scalar fie

models!. The valueu5p/2, corresponding toC̃50, is not
an invariant direction~note that if u5p/2 then u8.0 in

every neighborhood of the equilibrium point nearC̃50).
We easily observe that this equilibrium point is a source t

strongly repels away fromC̃50. That is, when traversed in
a time reverse direction, typical orbits would asymptotica
approach a massless scalar field brane-Robertson-Walke
lution.
2-10



r
a
ifi

f
i

y
t i

lu
rld
ne
at
-

ow

le

IX

ty.
ls
y
ve
so
uc

th
be
th

e

e
n

d

rc
ar
th
c

ty
s
ile

fo
ve

n

g.,

BIANCHI TYPE IX BRANE-WORLD COSMOLOGIES PHYSICAL REVIEW D68, 023502 ~2003!
VI. CONCLUDING REMARKS

Assuming thatṼU>0, the future asymptotic behavio
~see Table I! of the Bianchi type IX brane-world containing
scalar field having an exponential potential is not sign
cantly different than what is found in general relativity@30#.
We observe that for 0,k,A2, the future asymptotic state o
ever-expanding models is characterized by the power-law
flationary solution, and ifk.A2 there no longer exists an
equilibrium point representing an expanding model tha
stable to the future. We therefore conclude that ifk.A2 then
the Bianchi type IX models must recollapse. In@30# it was
shown that ifk.A2 then a collapsing massless scalar so
tion was a stable equilibrium point. Here, in the brane-wo
scenario, we have that this final end-point is the bra
Robertson-Walker solution. However, we also observe th
typical model on its way to this final end point will asymp
tote towards a collapsing massless scalar field solution. H

ever, if ṼU,0, then a variety of new behaviors are possib
including possible oscillating cosmologies@12#.

The past asymptotic behavior of the Bianchi type
brane-world containing a scalar field~and ordinary matter! is
significantly different than what is found in general relativi
It is known that the Bianchi type IX perfect fluid mode
approach a Mixmaster attractor~Kasner saddles joined b
Taub separatrices! towards the past and are known to ha
chaotic behavior. Here we observe that the brane-Robert
Walker solution is a global source, and that there is no s
chaotic behavior near the initial singularity.

Due to the quadratic nature of the brane corrections to
energy momentum tensor, a rich variety of intermediate
havior is possible in these two fluid models. We note
existence of the dark radiation densityU together with a
scalar field is similar to the previous analysis done in@31# on
scaling models. Here the equivalent equation of state ispU
5( 4

3 21)U. It is known that the bifurcation value for thes
scaling models isk253g, which forg54/3 corresponds to a
valuek254, a bifurcation value found in the analysis abov

The intermediate behavior of these multifluid models co
sidered here is extremely complex, and is not discusse
detail here. However, a more complete analysis~in which
some of the intermediate behavior is outlined! of the Bianchi
type II models is currently under investigation@32,33#.
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APPENDIX: INTEGRABILITY CONDITIONS
FOR PmnÄ0,QµÄ0

The complete set of four dimensional brane equations
a general imperfect fluid energy momentum tensor is gi
02350
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in Maartens~see equations 26-29 and A1-A10 in@4#!. If
Pmn50,Qm50, then in the case of a perfect fluid with a
equation of statep5(g21)r, we obtain the following equa-
tions when the vorticity is zero (v50):

Am52
~g21!

g

1

r
Dmr, ~A1a!

ṙ1gQr50, ~A1b!

U̇1
4

3
QU50, ~A1c!

1

3
DmU1

4

3
UAm52

1

6
k4grDmr, ~A1d!

Q̇1
1

3
Q21smnsmn2DmAm1AmAm1

1

2
k2~3g22!r2L

52
k2

2l
~3g21!r22

6

k2l
U, ~A1e!

ṡ^mn&1
2

3
Qsmn1Emn2D^mAn&1sa^msn&

a 2A^mAn&50,

~A1f!

Dnsmn2
2

3
DmQ50, ~A1g!

DnEmn2
1

3
k2Dmr2@s,H#m5

k2r

3l
Dmr1

2

k2l
DmU,

~A1h!

and the Gauss-Codazzi equations on the brane

R^mn&
' 1

1

3
Qsmn2Emn2sa^msn&

a 50, ~A1i!

R'1
2

3
Q22smnsmn22k2r22L5

k2

l
r21

12

k2l
U.

~A1j!

Using Eq.~A1a!, Eq. ~A1d! becomes forgÞ1

DmU5F4~g21!

g

U
r

2
k4g

2
rGDmr. ~A2!

Taking the directional time derivative~i.e., a dot! of Eq.
~A2!, and using Eqs.~A1c! and ~A1d!, and using known
relations for interchanging space and time derivatives, e.

hm
n@Dn f #•5hm

n@¹n1An# ḟ 2F1

3
Qhm

n1sm
nGDn f ,

~A3!
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we obtain the integrability condition

F4

3
~3g24!U2

k4g2

2
r2GrDmQ

5F 4

3g
~3g24!~g21!U1

k4g

6
~3g21!r2GQDmr.

~A4!

Taking the directional time derivative of~A1g!, interchang-
ing space and time derivatives, and using Eqs.~A4!, ~A1g!,
~A1h! @and Eqs.~A1b!, ~A1c!, and~A1e!#, we obtain

~g21!

g
@12U1k4r2#

1

r
Dmr50. ~A5!

Hence forgÞ1 and@12U1k4r2#Þ0, we must have

Dmr50,

so that

Am5DmU5DmQ5Dnsmn5Dms250

and hence in general the brane is spatially homogeneou
The special case

g5
2

3
, 12U1k4r250, ~A6!

in which the integrability conditions yield no constraint
corresponds to the case in which there are no correction
the general relativistic equations.

Alternatively, Eqs.~A1b! and ~A1c! imply that

U5hr4/3g; ḣ50 ~A7!

and so Eq.~A2! becomes

Dmh5S 4

3g
~3g24!h2

k4g

2
r22(4/3g)D1

r
Dmr. ~A8!

Defining

C5
1

h
r [2(3g22)]/3g
B

02350
to

and a5@2(3g24)#/(3g22) and b53k4g2/@4(3g22)#,
we then obtain~for gÞ 4

3 )

Dm~ ln h!5H 2
2

C
2

b

~12a!@~12a!2bC#J DmC,

~A9!

which integrates to

h5 f C22@11aC# (223g)/(423g), ~A10!

where Dm f 50 anda[b/(12a)53k4g2/@4(423g)#. This
Eq. ~A10! essentially yields the functional dependence forr.
In the exceptional caseg54/3, r is separable in local coor
dinates.@From Eq.~A8! it can be seen that the caseg52/3 is
also exceptional.#

Equation~A4! then becomes

F4

3
~3g24!h2

k4g2

2
r22(4/3g)G 1

Q
DmQ

5F4~3g24!~g21!

3g
h2

k4g~g21/3!

2
r22(4/4g)G 1

r
Dmr.

~A11!

From Eqs.~A10! and ~A1c!, and using local coordinates s
thath5h(xg), f 5 f (t), we obtain the functional forms forr
andQ, whence on substitution into Eq.~A11! ~for gÞ4/3)
we obtain a contradiction if DmrÞ0.

Finally, in the special caseg51, in which p50 andAm
50, we obtain analogues of Eqs.~A2! and ~A4! ~which do
not follow for Am50):

DmU52
1

2
k4rDmr ~A12!

FU1
3

8
k4r2G5

1

Q
DmQ5

1

8
k4rDmr. ~A13!

In local coordinates we then find~for DmrÞ0)

2
2

3
h5S 11

3

8
k4r2/31

3

32
k8r4/3D ~A14!

which implies thatṙ50 ~and henceQ50).
,
@1# V. Rubakov and M.E. Shaposhnikov, Phys. Lett.159B, 22
~1985!; J. Polchinski, Phys. Rev. Lett.75, 4724 ~1995!; P.
Horava and E. Witten, Nucl. Phys.B460, 206 ~1996!; N.
Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett.
429, 263 ~1998!; I. Antoniadis, N. Arkani-Hamed, S. Di-
mopoulos, and G. Dvali,ibid. 436, 257~1998!; A. Lukas, B.A.
Ovrut, and D. Waldram, Phys. Rev. D60, 086001~1999!.

@2# L. Randall and R. Sundrum, Phys. Rev. Lett.83, 3370~1999!;
83, 4690~1999!; N. Arkani-Hamed, S. Dimopoulos, G. Dvali
and N. Kaloper,ibid. 84, 586 ~2000!; A. Chamblin and G.W.
Gibbons,ibid. 84, 1090~2000!.

@3# R. Maartens, V. Sahni, and T.D. Saini, Phys. Rev. D63,
063509~2001!.

@4# R. Maartens, Phys. Rev. D62, 084023~2000!.
@5# T. Shiromizu, K.I. Maeda, and M. Sasaki, Phys. Rev. D62,

024012~2000!; M. Sasaki, T. Shiromizu, and K.I. Maeda,ibid.
2-12



A

J.

.

rb
.

hys.

l-
7

ys.

s.
,

BIANCHI TYPE IX BRANE-WORLD COSMOLOGIES PHYSICAL REVIEW D68, 023502 ~2003!
62, 024008~2000!.
@6# C.B. Collins and S.W. Hawking, Astrophys. J.180, 317

~1973!.
@7# L.G. Jensen and J.A. Stein-Schabes, Phys. Rev. D34, 931

~1986!.
@8# T. Rothman and G.F.R. Ellis, Phys. Lett. B180, 19 ~1986!.
@9# J.M. Cline, C. Grojean, and G. Servant, Phys. Rev. Lett.83,

4245 ~1999!; R.N. Mohapatra, A. Perez-Lorenzana, and C.
de S. Pires, Phys. Rev. D62, 105030~2000!; Int. J. Mod. Phys.
A 16, 1431 ~2001!; C. Csaki, M. Graesser, C. Kolda, and
Terning, Phys. Lett. B462, 34 ~1999!; D. Ida, J. High Energy
Phys. 09, 014 ~2000!; L.E. Mendes and A.R. Liddle, Phys
Rev. D 62, 103511 ~2000!; N. Kaloper, ibid. 60, 123506
~1999!; T. Nihei, Phys. Lett. B465, 81 ~1999!; H.B. Kim and
H.D. Kim, Phys. Rev. D61, 064003 ~2000!; P. Kanti, I.I.
Kogan, K.A. Olive, and M. Pospelov, Phys. Lett. B468, 31
~1999!; P. Kraus, J. High Energy Phys.12, 011 ~1999!; S.
Mukohyama, Phys. Lett. B473, 241 ~2000!; C. Csaki, M.
Graesser, L. Randall, and J. Terning, Phys. Rev. D62, 045015
~2000!; C. Barcelo and M. Visser, Phys. Lett. B482, 183
~2000!; J. Lesgourgues, S. Pastor, M. Peloso, and L. So
ibid. 489, 411 ~2000!; H. Stoica, S.-H. Henry Tye, and I
Wasserman, Phys. Lett. B482, 205 ~2000!; S. Mukohyama, T.
Shiromizu, and K. Maeda, Phys. Rev. D62, 024028~2000!.

@10# P. Binétruy, C. Deffayet, and D. Langlois, Nucl. Phys.B565,
269 ~2000!; see also P. Bine´truy, C. Deffayet, U. Ellwanger,
and D. Langlois, Phys. Lett. B477, 285~2000!; É.É. Flanagan,
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