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Dynamics of multi-scalar-field cosmological models and assisted inflation
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We investigate the dynamical properties of a class of spatially homogeneous and isotropic cosmological
models containing a barotropic perfect fluid and multiple scalar fields with independent exponential potentials.
We show that the assisted inflationary scaling solution is the global late-time attractor for the parameter values
for which the model is inflationary, even when curvature and barotropic matter are included. For all other
parameter values the multi-field curvature scaling solution is the global late-time attractor~in these asymptoti-
cally stable solutions the curvature is not dynamically negligible!. Consequently, we find that in general all of
the scalar fields in multi-field models with exponential potentials are non-negligible in late-time behavior,
contrary to what is commonly believed. The early-time and intermediate behavior of the models is also studied.
In particular,n-scalar field models are investigated and the structure of the saddle equilibrium points corre-
sponding to inflationarym-field scaling solutions and non-inflationarym-field matter scaling solutions are also
studied~wherem,n), leading to interesting transient dynamical behavior perhaps associated with new physi-
cal scenarios of potential importance.

PACS number~s!: 98.80.Hw, 04.20.Jb
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I. INTRODUCTION

Inflation is generally considered to be a reasonable s
tion to many of the fundamental problems within the sta
dard cosmological model. In original proposals@1#, the early
universe experiences a period of accelerated expansion
essentially expands at an exponential rate@i.e., R(t)}eAt,
whereR(t) can be considered as the size of the universe
A is some positive constant#. Since these early proposal
there have been a variety of inflationary models that inclu
scalar fields that have been proposed@2#, and scalar fields
have come to play an important role in determining the
namics of the early universe. In one important class of in
tionary models the condition of exponential expansion is
laxed, and the universe grows at a power-law rate,R(t)}tp,
wherep.1 @3#. In particular, power-law inflationary model
arise in models with a scalar fieldf having an exponentia
potentialV(f)5V0ekf @4#. Although power-law inflation is
successful in solving the horizon and flatness problems,
flation in these models persists into the indefinite future a
a phase transition is required to bring inflation to an e
~however, see@5#!.

Spatially homogeneous models containing a scalar fielf
with an exponential potential have been analyzed extensi
@6,7#. It is known that all ever-expanding scalar field mode
experience power-law inflation when the parameterk2,2;
i.e., when the potential is sufficiently flat. The models ha
also been studied whenk2.2 @7#. Recently cosmologica
models containing both a scalar field with an exponen
potential and a perfect fluid with a linear barotropic equat
of state have been studied. It is found that in the general c
of Bianchi type B models that the power-law inflationa
solution is still the global attractor in the physically realis
regime ~i.e., wheng.2/3) if k2,2 @8#. Interestingly, the
addition of a barotropic perfect fluid creates the existence
0556-2821/2000/62~2!/023517~11!/$15.00 62 0235
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a new type of solution, appropriately called a matter scal
solution @9–11#, in which the energy density of the scala
field scales with that of the matter; the effective equation
state for the scalar field is the same as that of the per
fluid. The stability of the matter scaling solution has be
studied in@9,10#.

Exponential potentials arise in many theories of the fu
damental interactions including superstring and high
dimensional theories@2,12#. Typically, ‘‘realistic’’ super-
gravity theories predict steep exponential potentials@12#
~i.e.,k2.2), effectively eliminating the possibility of power
law inflation. However, dimensionally reduced highe
dimensional theories also predict numerous scalar fields,
so it is of interest to study models with multiple scalar field

In the recent work of Liddle, Mazumdar and Schunck@13#
the effect of additional scalar fields with independent exp
nential potentials was considered. They assumedn scalar
fields in a spatially flat Friedmann-Robertson-Walker~FRW!
universe. They found that an arbitrary number of scalar fie
with exponential potentials evolve towards a novel inflatio
ary scaling solution, which they termedassisted inflation, in
which all of the scalar fields scale with one another~and are
hence non-negligible asymptotically! with the result that in-
flation occurs even if each of the individual potentials is t
steep to support inflation on its own. The existence of m
tiple uncoupled scalar fields, each having an exponential
tential, could therefore, through a combined~or assisted! ef-
fort, be a source for power-law inflation. This is true ev
though each individual scalar field need not be a source
inflation, and might therefore lead to compatibility with s
pergravity theory.

In a recent dynamical analysis@14# it was shown that this
assisted inflationary solution is a late-time attractor in
class of zero-curvature FRW models. This was done
©2000 The American Physical Society17-1
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choosing a redefinition of the fields~a rotation in field space!
which allows the effective potential for field variations o
thogonal to this solution to be written down; in analogy w
models of hybrid inflation@15# it was then shown that this
potential has a global minimum along the attractor soluti
Also, analytic solutions describing homogeneous and in
mogeneous perturbations about the attractor solution with
resorting to slow-roll approximations were presented in@14#,
and curvature and isocurvature perturbation spectra prod
from vacuum fluctuations during assisted inflation were d
cussed.

In this paper we shall present a qualitative analysis
models with the action

S5E d4xA2gFR2
1

2 (
i 51

n

~¹f i
2!2V0(

i 51

n

ekif iG1Sm ,

~1.1!

where Sm is the matter contribution. Almost all previou
analyses of multiple scalar field inflationary models have
sumed zero-curvature FRW spacetimes with no matter; h
we extend the analysis to include both curvature and ma
In Sec. II we shall present the governing equations fon
scalar fields with exponential potentials and matter. In S
III we shall study the two-scalar field model with no matte
and, in particular, discuss the stability of the two-field a
sisted inflationary model. In Sec. IV we shall study the tw
scalar field model with barotropic matter. In Sec. V we sh
discuss three- and multi-scalar field models. In Sec. VI
present our conclusions.

Generalized assisted inflation

Recently, models withn3m scalar fieldsf i j and contain-
ing multiplicative exponential terms in the effective potent
of the form

Ve f f[(
i 51

n

)
j 51

m

V0eki j f i j 5(
i 51

n

V0
me(

j 51

m

ki j f i j ,

where 1< i<n and 1< j <m andki j aren3m real positive
constants which are not zero, have also been studied
qualitative analysis of them51 case has been given in@16#,
where an analogy was made with the dynamics of soft in
tion @17#.

In @18# a class of spatially flat FRW multi-scalar fiel
models with multiplicative exponential potentials was stu
ied. Potentials of this form are quite common in dimensio
ally reduced supergravity models@19,20#. Exact two-field
and generaln-field power-law scaling inflationary solution
were obtained, which were demonstrated to be late-time
tractors, generalizing the assisted inflationary solutions p
viously obtained@13#; this behavior was dubbed ‘‘genera
ized assisted inflation.’’ It was shown that it is more difficu
to obtain assisted inflation in these generalized models w
cross couplings between the scalar fields in the potential;
fields in any one exponential term tend to conspire to
against one another rather than assist each other~a result also
noticed in @20#!. However, as with the original version o
02351
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assisted inflation, this inhibiting affect can be compensa
for if there are enough exponential terms present in the
tential ~i.e., if n is large enough! @13,18#.

The dynamics of ‘‘generalized assisted inflation’’ was i
vestigated in more detail in@21#. By introducing field rota-
tions, which results in the introduction of two orthogon
fields one of which is massless and the other possesse
exponential potential@14,21#, the nature of the late-time at
tractor solution in a particular class of models was det
mined. A dimensionally reduced action resulting from with
the context of a generalized toroidal compactification
higher-dimensional fields in Einstein gravity minimal
coupled to massless scalar fields was shown to give rise
model of the form under investigation, and it was shown h
the addition of interactions between the fields impede in
tion in this model.

Similar behavior was also noted by Kanti and Olive@22#
in multi-field assisted inflationary models with standard ch
otic polynomial ~rather than exponential! potentials, which
can arise in modern Kaluza-Klein theories~and are a natura
outcome of the compactification of higher dimensional the
ries down to four dimensions!. Indeed, Kanti and Olive@23#
have recently proposed a possible realization of assisted
flation based on the compactification of a five-dimensio
Kaluza-Klein model, and have shown how the addition
fields of the assisted sector actually impede inflation~they
also showed that the assisted sector, coming from a Kalu
Klein compactification, eliminates the need for a fine-tun
quartic coupling to drive chaotic inflation!. In Kaloper and
Liddle @24# the dynamics of a simple implementation of th
idea in Kanti and Olive@23# was analyzed in more detai
Since assisted inflation no longer corresponds to
asymptotic attractor, they found that as inflation proceeds
number of fields participating in the assisted behavior
creases resulting in the interesting novel feature that the d
sity perturbations generated retain some information ab
the initial conditions.

II. THE MODEL

We shall assume that the spacetime is spatially homo
neous and isotropic. The line element for such a spacet
has the form

ds252dt21R2~ t !F dr2

12kr2
1r 2

„du21sin2~u!df2
…G

wherek511,21,0 determines whether the model is clos
~positive-curvature!, open~negative-curvature!, or flat ~zero-
curvature!.

We shall considern scalar fieldsf i , where 1< i<n, in
which the effective potential has the form

Ve f f[(
i 51

n

V0ekif i,

where theki are real non-zero positive constants. We a
assume that there exists a non-interacting perfect fluid w
densityr and pressure
7-2
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p5~g21!r, ~2.1!

and we shall assume that 1<g,2. The Einstein field equa
tions, the conservation equations, together with the Kle
Gordon equations for the scalar fields, yield the followi
autonomous system of ordinary differential equations:

H22
1

6 S (
i 51

n

ḟ i
2D 2

1

3
Ve f f2

1

3
r52

3R

6
,

Ḣ52H22
1

3 S (
i 51

n

ḟ i
2D 1

1

3
Ve f f2

1

6
~3g22!r,

~2.2!

ṙ523gHr,

f̈ i13Hḟ i1kiV0ekif i50,

where 3R5k/R2 is the curvature of the spacelike hypersu
faces,H5Ṙ/R is the Hubble expansion, and an overdot re
resents differentiation with respect to coordinate timet. Units
have been chosen so that 8pG5c51.

To analyze the system given by Eq.~2.2! we transform to
expansion-normalized variables. Expansion-normalized v
ables have proven to be very useful in analysis of
asymptotic behavior of many cosmological models. S
@7,25# for arguments in support of using dimensionle
expansion-normalized variables. One primary reason is
decoupling of one of the differential equations, which effe
tively reduces the dimension of the system by one, and
some cases, leads to the compactification of the phase s
We choose expansion-normalized variables of the form

V5
r

3H2
, F i5

AV0ekif i /2

A3H
, C i5

ḟ i

A6H
,

dt

dt
5

1

H
.

~2.3!

The resulting dynamical system describing these perfect fl
multiple scalar field models becomes

dV

dt
5V~2q23g12!,

dC i

dt
5C i~q22!2

A6

2
kiF i

2 , ~2.4!

dF i

dt
5F i S q111

A6

2
kiC i D ,

for (1< i<n), where the deceleration parameter has the
lowing form:

q5
~3g22!

2
V12(

i 51

n

C i
22(

i 51

n

F i
2 ,

and
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3R

6H2
5211V1(

i 51

n

C i
21(

i 51

n

F i
2 .

Assuming a non-negative energy density~i.e., V>0) and
if 3R<0, ~i.e., in the negative and zero-curvature cases! the
phase space for the dynamical system in the expansion
malized variables (V,F i ,C i) is compact. If 3R.0 ~i.e., in
the positive curvature case! then the transformation given b
Eq. ~2.3! becomes singular whenH50. Here we shall only
make some partial comments with regard to the asympt
behavior of the positive curvature models. All of the equili
rium points correspond to self-similar cosmological mod
and hence to power-law solutions@8#.

III. QUALITATIVE ANALYSIS OF TWO-SCALAR FIELD
MODEL

We shall first discuss the dynamics of the model with on
two minimally coupled scalar fields and with no matter. W
obtain this model by settingn52 andV50 in Eq. ~2.4!. In
this case we obtain the four-dimensional dynamical sys
given by

dC1

dt
5C1~q22!2

A6

2
k1F1

2

dC2

dt
5C2~q22!2

A6

2
k2F2

2

~3.1!

dF1

dt
5F1S q111

A6

2
k1C1D

dF2

dt
5F2S q111

A6

2
k2C2D

where

q52C1
212C2

22F1
22F2

2

and

3R

6H2
5211C1

21C2
21F1

21F2
2 .

It is possible to choose simplified variables as in@26# via
a rotation in field space; although this would simplify th
analysis of the assisted inflationary solution, it would p
haps be more difficult to describe all of the qualitative pro
erties of the models and relate this analysis to previous w

A. Assisted inflation

The flatAssisted Inflationmodel @13# corresponds to the
equilibrium pointA of the system~3.1! given by
7-3
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$C1 ,C2 ,F1 ,F2%
A[H 2

k1k2
2

A6~k1
21k2

2!
,2

k1
2k2

A6~k1
21k2

2!
,k2

A6~k1
21k2

2!2k1
2k2

2

A6~k1
21k2

2!
,k1

A6~k1
21k2

2!2k1
2k2

2

A6~k1
21k2

2!
J ,

~3.2!
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which is equivalent to

H 2
K2

A6k1

,2
K2

A6k2

,
AK2~62K2!

A6k1

,
AK2~62K2!

A6k2
J

where

K22[
1

k1
2

1
1

k2
2

.

The deceleration parameter for this solution is given by

qA[
k1

2k2
222~k1

21k2
2!

2~k1
21k2

2!
5

K222

2
~3.3!

and hence this solution, with

R~ t !}tp

and

k1f15k2f2 ,

is inflationary (qA,0) if

p[2(
i 51

2
1

ki
2

52K225
1

11qA
.1; 2>K2. ~3.4!

Since a single scalar field can only give rise to an infl
tionary power-law solution if 1/ki

2. 1
2 for i 51 or 2 @4,8#,

this means that the two-scalar field model can be inflation
even when each of the individual potentials is too steep
the corresponding single scalar field model to inflate~and
hence the terminologyassistedinflation!. The eigenvalues
corresponding to the equilibrium pointA are given by~see
Appendix for details!

K222,
K226

2
,

1

4
„~K226!6A~K226!218K2~K226!….

~3.5!

Hence this equilibrium point is stable when Eq.~3.4! is sat-
isfied, and so the corresponding assisted inflationary solu
is a late-time attractor@14#.

B. Stability of equilibria

We note that several of the equilibrium points occur in t
three-dimensional invariant set corresponding to the ze
curvature models defined by

15C1
21C2

21F1
21F2

2 .
02351
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When matter is included, there exists a monotonic funct
so that in the full dynamical phase space there can be
periodic or recurrent orbits and the global dynamics can
determined. This implies that the qualitative features
scribed in this section can be more rigorously proven. All
the equilibrium points and their corresponding eigenvalu
are listed in Table I. Using this table let us discuss the lo
stability of these equilibrium points.

As noted above the equilibrium pointA, given by Eq.
~3.2!, corresponds to the assisted inflationary solution. It
ists for all parameter values satisfying

1

6
,

1

k1
2

1
1

k2
2

, ~3.6!

and is a sink~late-time attractor! for all parameter values
satisfying Eq.~3.4! ~else it is a saddle!.

There are two equilibrium points, denoted byP1 andP2,
whose coordinate values and associated eigenvalues
given in Table I, which correspond to zero-curvature pow
law solutions in which one scalar field~either f1 or f2,
respectively! is negligible; these solutions exist if16 ,1/ki

2

and are inflationary if, in addition,12 ,1/ki
2 ~for eachi 51,2,

respectively! and correspond to the well-known single sca
field power-law solutions@3,4#. From Table I we see tha
eachPi has two negative eigenvalues and one positive eig
value for all relevant parameter values and an additional
genvalue which is negative ifki

2,2 ~and positive for 2
,ki

2,6); hence these points are saddles and have a on
two-dimensional unstable manifold depending upon whet
ki

2,2 or ki
2.2, respectively.

There also exist equilibrium points, denoted byCS1 , CS2
and CS, whose coordinate values and the associated eig
values are given in Table I. The solutions correspond
power-law solutions in which the curvature scales with t
first scalar field, the second scalar field or both, respectiv
The single-field curvature scaling equilibrium pointsCS1
and CS2 are both saddles. The two-field curvature scali
equilibrium pointCS is a sink whenever12 .1/k1

211/k2
2 ~oth-

erwise a saddle!. Whenever the two-field curvature scalin
solution is stable, it necessarily has negative curvature.

There is an equilibrium point, denoted byM, correspond-
ing to the Milne form of flat spacetime, which is always
saddle.

Finally, there is a one-dimensional set of equilibriu
points parametrized byC0, denoted byMSF, corresponding
to zero-curvature massless scalar field models~in which both
potentials are zero!. There is one zero eigenvalue corr
sponding to the fact that there is a one-dimensional se
equilibrium points. There are values forC0 for which the
remaining three eigenvalues are positive and hence a su
7-4
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TABLE I. Equilibrium points in the two-scalar field model with no matter. In the table,A andCS correspond to thetwo-fieldassisted
inflationary solution and thetwo-fieldcurvature scaling solution, respectively.

Solution/Label Coordinates Deceleration Curvature Eigenvalues
$C1 ,C2 ,F1 ,F2% Parameter,q 3R/H2

Assisted Inflation,A $C1 ,C2 ,F1 ,F2%
A

@see Eq.~3.2!#
qA @see Eq.~3.3!# 0 @see Eq.~3.5!#

Power Law,P1 H2
k1

A6
,0,A12

k1
2

6
,0J k1

222
2

0 k1
222,

k1
2

2
,
k1

226
2

,
k1

226
2

Power-Law,P2 H0,2
k2

A6
,0,A12

k2
2

6 J k2
222
2

0 k2
222,

k2
2

2
,
k2

226
2

,
k2

226
2

Curvature Scaling,CS H2
A6

3k1
,2

A6

3k2
,

2

A3k1

,
2

A3k2
J 0 2(k1

21k2
2)2k1

2k2
2

k1
2k2

2
216A3i ,

216A114@2(k1
221k2

22)21#

Curvature Scaling,CS1 H2
A6

3k1
,0,

2

A3k1

,0J 0 22k1
2

k1
2

22,1,216A114k1
22(22k1

2)

Curvature Scaling,CS2 H0,2
A6

3k2
,0,

2

A3k2
J 0 22k2

2

k2
2

22,1,216A114k2
22(22k2

2)

Milne, M $0,0,0,0% 0 21 22,22,1,1

Massless Scalar $C0 ,eA12C0
2,0,0% 2 0 0,4,31

A6

2
k1C0 ,31

A6

2
ek2A12C0

2

Field, MSF where 0<C0
2<1 wheree561
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of MSF are sources~the remainder are saddles!. These cor-
respond to well-known early-time attracting massless sc
field models@8#.

C. Discussion

From the analysis above we conclude that the two-fi
assisted inflationary solutionA is the global attractor when
( i 51

2 ki
22. 1

2 and the two-field curvature scaling solutionCS
is the global attractor when( i 51

2 ki
22, 1

2 . The massless sca
lar field solutionsMSF are always the early-time attractor

In all cases both scalar fields are non-negligible in gen
late-time behavior. This is contrary to the commonly he
belief that in multi-field models with exponential potentia
the scalar field with the shallowest potential~i.e., smallest
value of k) would dominate at late times. Indeed, we ha
shown that the single field power-law inflationary mode
always correspond to saddles, so that we have the ra
surprising result that generically a single scalar field mo
neverdominates at late times.

We note that both the assisted inflationary solution a
the massless scalar field early-time attractors correspon
zero-curvature models. However, the curvature is not alw
dynamically negligible asymptotically because the two-fie
curvature scaling solution has non-zero curvature.

There is a range of parameter values for which the
sisted inflationary solution is the global late-time attrac
~when the solution is non-inflationary it corresponds to
saddle!. For all of these parameter values the single fi
power-law solutionsP1 andP2 are saddles. However, ther
are allowable parameter values for which eitherP1 and P2
02351
ar
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d
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r

d

are both inflationary, or one is inflationary while the other
not, or both are non-inflationary. This might give rise
some new interesting physical scenarios. For example
model could asymptote towards an inflationary single fi
solutionPi , stay close toPi for an arbitrarily long period of
time ~sincePi is an equilibrium point! inflating all the time,
and then eventually leavePi and evolve towards the stabl
attracting inflationary solutionA. @Note that if either ofP1 or
P2 are inflationary, thenA is necessarily inflationary—se
Eq. ~3.4!#. This is akin to a double-inflationary model@27# in
which the density fluctuations on large and small scales
couple~i.e., the scale invariance of the spectrum is broke!
thereby allowing the possibility of more power on larg
scales which is in better accord with observations.

IV. QUALITATIVE ANALYSIS OF TWO-SCALAR FIELD
MODEL WITH MATTER

To understand the underlying dynamics of the model w
matter~i.e., with VÞ0) we shall shall study the model wit
two minimally coupled scalar fields together with matt
having energy densityr with the barotropic equation of stat
given by Eq.~2.1!. This model is obtained by settingn52 in
Eq. ~2.4!, whence we obtain the five-dimensional dynamic
system given by

dV

dt
5V~2q23g12!

dC1

dt
5C1~q22!2

A6

2
k1F1

2

7-5
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TABLE II. Equilibrium points with V50 in the two-scalar field model with matter. Each equilibriu
point hasV50 and the coordinates given in Table I. The additional fifth eigenvalue is displayed.

Label A P1 P2 CS CS1 CS2 M MSF

5th Eigenvalue
k1

2k2
2

k1
21k2

2
23g k1

223g k2
223g 223g 223g 223g 223g 3(22g)
n
e

F

e-
-

he
wi

et
he

ro-

ts;

ing
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e
he
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e-
e
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rly,
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ro-
o-
e

xist
flat
cal-

f the
gy
dC2

dt
5C2~q22!2

A6

2
k2F2

2

dF1

dt
5F1S q111

A6

2
k1C1D

dF2

dt
5F2S q111

A6

2
k2C2D ~4.1!

where

q5
3g22

2
V12C1

212C2
22F1

22F2
2

and

3R

6H2
5211V1C1

21C2
21F1

21F2
2 .

A. Invariant sets and monotonic functions

The zero-curvature models constitute a four-dimensio
invariant set. The models with no matter also constitut
four-dimensional invariant set.

The function

W5
V2

~V1C1
21C2

21F1
21F2

221!2
~4.2!

has derivative

dW

dt
52~223g!W. ~4.3!

We observe that this function is monotonic whenVÞ0 ~i.e.,
non-zero matter! and (V1C1

21C2
21F1

21F2
221)Þ0 ~i.e.,

non-zero curvature!. We also observe that the sign of 3g
22 signifigantly changes the dynamics of these models.
example, in the case of interest here 3g22.0, whenceW is
a decreasing function of timet. This immediately implies
that

There exist no periodic or recurrent orbits in the full fiv
dimensional phase space~this does not preclude the exis
tence of closed orbits in the invariant setsV50 and 3R
50; however, we shall be primarily concerned with t
dynamics of the models in the complete phase space
matter and non-zero curvature!.
02351
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The future asymptotic state lies within the invariant s
V50. Matter becomes dynamically unimportant to t
future.

The past asymptotic state lies within the set of ze
curvature models.

B. Stability of equilibria

The equilibrium points can be classisfied into two se
those with V50 and those withVÞ0. All equilibrium
points listed in Table I exist in this case withV50, and
Table II lists the equilibrium points withV50 together with
the additional eigenvalue due to the addition of matter. Us
the functionW above, we can further conclude that tho
equilibrium points in the setVÞ0 necessarily must hav
zero curvature. Table III lists the eigenvalues found in t
invariant setVÞ0.

Let us focus on the stability of the attractors in the fu
physical phase space. All late-time attractors~sinks! occur in
the invariant setV50. In the previous section we found tha
A and CS are the only sinks in the invariant setV50
~clearly, all of the saddles remain saddles in the full fiv
dimensional phase space!. The additional eigenvalue for th
equilibrium pointA in the full physical phase space is give
in Table II and is negative if( i 51

2 ki
22.1/3g. But this is

always satisfied when( i 51
2 ki

22. 1
2 andg. 2

3 , and henceA is
a sink and assisted inflation is a global attractor. Simila
from Table II the equilibrium pointCS is always a sink for
( i 51

2 ki
22, 1

2 and hence the two-field curvature scaling so
tion remains the global attractor in this case.

The early-time attractors lie in the zero-curvature inva
ant set and consist of massless scalar field models. F
Table II we see that the massless scalar field models co
sponding to the repelling equilibrium pointsMSF are always
sources~for g,2).

C. Matter scaling solutions

In the case of a single scalar field there exist ze
curvature FRW ‘‘matter scaling’’ solutions when the exp
nential potential is too steep to drive inflation, in which th
scalar field energy density tracks that of the perfect fluid~so
that at late times neither field is negligible! @4#. In @9# it was
shown that whenever these matter scaling solutions e
they are the unique late-time attractors within the class of
FRW models. The cosmological consequences of these s
ing models have been further studied in@28#. For example, in
these models the scalar field energy density tracks that o
perfect fluid and a significant fraction of the current ener
7-6
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TABLE III. Equilibrium points with VÞ0 in the two-scalar field model with matter. Note that in each case3R50 and q5(3g
22)/2.

Solution/Label Coordinates Eigenvalues
$V,C1 ,C2 ,F1 ,F2%

FRW, F $1,0,0,0,0% 3g22,3
2 (g22),3

2 (g22),3
2 g, 3

2 g

Matter Scaling,MS1 H12
3g

k1
2
,2

A6g

2k1
,0,

A6g~22g!

2k1
,0J 3

2 (g22),3
2 g,3g22,

3
4 „(g22)6A(g22)218g(g22)@123gk1

22#…

Matter Scaling,MS2 H12
3g

k2
2
,0,2

A6g

2k2
,0,

A6g~22g!

2k2
J 3

2 (g22),3
2 g,3g22,

3
4 „(g22)6A(g22)218g(g22)@123gk2

22#…

Matter Scaling,MS H123g~k1
221k2

22!,2
A6g

2k1
,2

A6g

2k2
, 3g22,3

4 „(g22)6A(g22)218g(g22)…

A6g~22g!

2k1
,
A6g~22g!

2k1
J 3

4 „(g22)6A(g22)218g(g22)@123g(k1
221k2

22)#…
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density of the Universe may be contained in the homo
neous scalar field whose dynamical effects mimic cold d
matter; the tightest constraint on these cosmological mo
comes from primordial nucleosynthesis bounds on any s
relic density @4,9,28#. The stability of these flat, isotropi
matter scaling solutions was studied within the class of s
tially homogeneous cosmological models with a barotro
perfect fluid and a scalar field with an exponential poten
in @10#. It was found that while the matter scaling solutio
are stable to shear perturbations, for realistic matter witg
>1 they are unstable to curvature perturbations.

Returning to the models under investigation here, none
the equilibrium points withVÞ0 can be late-time attractor
for g. 2

3 . Indeed, from Table III all such equilibrium point
are seen to be saddles. In particular, the two-field ma
scaling solution corresponding to the equilibrium pointMS,
which exists for( i 51

2 ki
22,1/3g, is a saddle. From Table II

we see that the first eigenvalue associated withMS is posi-
tive, while the real parts of the remaining four eigenvlau
are all negative. This is consistent with the stability analy
of matter scaling solutions in models with a single sca
field which found that the models were unstable to curvat
perturbations wheng. 2

3 @10#. However, these two-field
matter scaling solutions may still be of physical import. W
note that when the curvature is zero, the two-field ma
scaling solution is an attractor~all four eigenvalues ofMS in
the four-dimensional zero-curvature invariant set have ne
tive real parts—so thatMS is a sink in this invariant set!, as
in the case for the matter scaling solution in a single fi
model. Note also from Table III that both of the single-fie
matter scaling solutions, corresponding to the equilibri
pointsMS1 andMS2, have two positive eigenvalues, so th
again the solution with multiple scalar fields is the ‘‘stro
ger’’ attractor.
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V. QUALITATIVE ANALYSIS OF THREE-SCALAR FIELD
MODEL

Let us now consider models with more than two sca
fields. For simplicity, we shall exclude a matter term he
However, from the previous section we can easily determ
the essential properties resulting from the inclusion of a m
ter field. In particular, in this case a monotonic function e
ists and this enables us to prove the qualitative results
lined below. Let us begin with the three-scalar-field mod
obtained by settingn53 andV50 in Eq. ~2.4!. In this case
the resulting six-dimensional dynamical system is given

dC1

dt
5C1~q22!2

A6

2
k1F1

2

dC2

dt
5C2~q22!2

A6

2
k2F2

2

dC3

dt
5C3~q22!2

A6

2
k2F3

2

~5.1!

dF1

dt
5F1S q111

A6

2
k1C1D

dF2

dt
5F2S q111

A6

2
k2C2D

dF3

dt
5F3S q111

A6

2
k3C3D
7-7
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where

q52C1
212C2

212C3
22F1

22F2
22F3

2

and

3R

6H2
5211C1

21C2
21C3

21F1
21F2

21F3
2 .

Again it would possible to choose simplified variables
in @26# via a rotation in field space as was done in rec
work @14,21#. However, we shall not do this here. Indeed, w
shall not present a complete qualitative analysis similar
that done in Sec. III, since the essential features are sim
a
gl

m

an

02351
s
t

o
ar

and the detailed analysis would be long and painful. Rath
let us describe the main effects of including a third sca
field on the inflationary solutions.

There exists a zero-curvature assisted inflationary solu
which now corresponds to the equilibrium point given by

H C i52
K2

A6ki

,F i5
AK2~62K2!

A6ki
J

where

K22[k1
221k2

221k3
22 .

In this solution all of the three scalar fields scale togethe
late times. The corresponding eigenvalues are
ing that
K222,
K226

2
,
1

4
„~K226!6A~K226!218K2~K226!…,

1

4
„~K226!6A~K226!218K2~K226!….

It is known @13# to be a stable late-time attractor for all parameter values for which the solution is inflationary~i.e., K2,2;
recall the point does not exist ifK2.6).

There are three solutions in which two scalar fields scale together asymptotically and the third is negligible. Assum
the third scalar field is zero (C35F350), the coordinates of the corresponding equilibrium point, denoted byP120, are given
by

H 2
k1k2

2

A6~k1
21k2

2!
,2

k1
2k2

A6~k1
21k2

2!
,0,k2

A6~k1
21k2

2!2k1
2k2

2

A6~k1
21k2

2!
,k1

A6~k1
21k2

2!2k1
2k2

2

A6~k1
21k2

2!
,0J . ~5.2!
qui-

ts
n-

by

m
in-
o-
lue
e-

ues
e
s-
s.

-

Four of the eigenvalues are given by Eq.~3.5!, which all
have negative real parts.

There are three solutions in which one scalar field sc
dominates asymptotically and the remaining two are ne
gible. Assuming that the first scalar field is non-zero (C1
Þ0ÞF1), the coordinates of the corresponding equilibriu
point, denoted byP100, are given by

H 2
k1

A6
,0,0,A12

k1
2

6
,0,0J .

Two of the eigenvalues are negative, one is positive,
there is an additional eigenvalue which is negative ifk1

2,2
and positive if 2,k1

2,6.
In both of these cases the additional~remaining! two

eigenvlaues can be calculated and are given by

$q22,0,q11.0%,
le
i-

d

whereq is the deceleration parameter evaluated at the e
librium point. Hence, the pointP120 is a saddle with one
eigenvalue with positive real part. The equilibrium poin
denoted byP103 and P023 are also saddles with one eige
value with positive real part. In addition, the pointP100 is a
saddle with two eigenvalues with positive real parts~if ki

2

,2, and three eigenvalues with positive real parts ifki
2

.2). The same is true for the equilibrium points denoted
P020 andP003.

Consequently there is a ‘‘nested’’ set of equilibriu
points. At the top is the stable three-scalar field assisted
flationary solution. In the next layer there are three tw
scalar field models which are saddles with one eigenva
with positive real part. In the final layer there are three on
scalar field models which are saddles with two eigenval
with positive real parts~or three eigenvalues with positiv
real parts!. Associated with this dynamical nesting are co
mological models with very interesting physical propertie

This will follow through in the case ofn scalar fields.
There will be a unique stablen-scalar field assisted inflation
ary solution. There will then ben of the (n21)-scalar field
7-8
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DYNAMICS OF MULTI-SCALAR-FIELD COSMOLOGICAL . . . PHYSICAL REVIEW D62 023517
models which are saddles with one eigenvalue with posi
real part. There will be1

2 n(n21) of the (n22)-scalar field
models which are saddles with two eigenvalues with posi
real parts. And so on. Finally, there will ben of the~1!-scalar
field models which are saddles withn21 ~or n22) eigen-
values with positive real parts. As one ‘‘goes up’’ the nes
structure the equilibrium points respectively become ‘‘stro
ger attractors’’~i.e., the stable manifold of the equilibrium
points increases in dimension!.

There is also a three-field curvature scaling solution c
responding to the equilibrium point given by

H C i52
2

A6ki

,F i5
2

A3ki
J

whose associated eigenvalues are given by

216A114K22~22K2!,216A3i ,216A3i .

This equilibrium point is a sink wheneverK2.2, in which
case it represents an FRW model with negative curva
(22K2)/K2 ~else it is a saddle and represents a posit
curvature model!.

Finally, there are saddle equilibrium points correspond
to the Milne model and the one- and two-field curvatu
scaling solutions, and a set of equilibrium points w
$( i 51

3 C i
251,F i50% corresponding to massless scalar fie

models, a subset of which are sources.
A complete qualitative analysis can be done forn-scalar

field models. All of these results can be proven by induct
~see, for example,@14#!. Then-scalar field assisted inflation
ary solution is given by@13#

R~ t !}tp

and

kif i5kjf j ;;1< iÞ j <n,

and

p[2(
i 51

n
1

ki
2
.1.

We note that in the two-scalar field model, although inflati
can occur for potentials that are steeper than in the sin
field case, it cannot occur for arbitrarily steep potentials.
example, ifk15k2[k, then inflation occurs ifk2,4. How-
ever, for n-fields, if ki5k for all i, then inflation occurs if
k2,2n; e.g.,k2,8 for four scalar field models.

VI. CONCLUSIONS

We have studied multi-scalar-field FRW cosmologic
models with exponential potentials, extending previo
analysis by including non-zero curvature and barotropic m
02351
e

e

d
-
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re
e

g

n

e-
r

l
s
t-

ter. We have used dynamical systems techniques, and
establishing a monotonic function in the complete dynami
phase space~which includes both matter and curvature!, we
have been able to deduce global results.

In Sec. III a comprehensive qualitative analysis was p
sented in the case of two scalar fields with no matter.
concluded that the two-field assisted inflationary solutionA
is the global attractor when( i 51

2 ki
22. 1

2 and the two-field
curvature scaling solutionCS is the global attractor when
( i 51

2 ki
22, 1

2 . A subset of the massless scalar field solutio
MSF are always the early-time attractors. Consequently,
found that in all cases both scalar fields are non-negligible
generic late-time behavior; this is an interesting and un
pected result and is contrary to the commonly held belief t
in multi-field models with exponential potentials the sca
field with the shallowest potential would dominate at la
times~indeed, we have shown that the single field power-l
inflationary models always correspond to saddles!. We note
that both the assisted inflationary solution and the mass
scalar field early-time attractors correspond to zero-curva
models. However, the curvature is not always dynamica
negligible asymptotically because the two-field curvatu
scaling solution has non-zero curvature.

The zero-curvature assisted inflationary FRW scaling
lutions @13# are of particular importance since, through t
combined effect of multiple uncoupled scalar fields ea
having an exponential potential, power-law inflation is po
sible even when each individual scalar field need not b
source for inflation. We have discussed the stability of
two-field assisted inflationary model, and generalized pre
ous results by including non-zero curvature to show that
an appropriate range of parameter values the assisted i
tionary solution is the global late-time attractor. For the
parameter values the single field power-law solutionsP1 and
P2 were shown to be saddles, and we showed that there
allowable parameter values for which eitherP1 and P2 are
both inflationary, or one is inflationary while the other is no
or both are non-inflationary, perhaps leading to new intere
ing physical scenarios.

In Sec. IV we studied the two-scalar field model wi
barotropic matter. A monotonic function was established
the resulting phase space. This proved that the matter m
be negligible at late times and we found thatA andCS are
the only global sinks and that consequently assisted infla
and the two-field curvature scaling solution are the glo
late-time attractors in their appropriate respective param
ranges. This confirmed the result that both scalar fields m
be dynamically non-negligible in generic late-time behavi
and establishes the stability of the two-field assisted in
tionary model when matter is included. The monotonic fun
tion also shows that the early-time attractors lie in the ze
curvature invariant set, and we showed that they consist
subset of the massless scalar field models.

For g. 2
3 , all of the equilibrium points withVÞ0 were

shown to be saddles~see Table III!. The two-field matter
scaling solution corresponding to the equilibrium pointMS
was shown to have a single positive eigenvalue. Both of
single-field matter scaling solutions, corresponding to
equilibrium pointsMS1 and MS2, were shown to have two
7-9
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A. A. COLEY AND R. J. van den HOOGEN PHYSICAL REVIEW D62 023517
positive eigenvalues, so that again the solution with multi
scalar fields is the ‘‘stronger’’ attractor. We note that wh
the curvature is zero, the two-field matter scaling solution
the late-time attractor, consistent with the stability analysis
@10#. These matter scaling solutions, and particularly
two-field matter scaling solutions, give rise to new transi
dynamical behavior and may be of physical import. For e
ample, there are solutions which spend a period of time w
the scalar field mimicking the barotropic fluid in which the
is a non-negligible scalar field~dark matter! energy density
~corresponding to a matter scaling saddle equilibrium po!
and subsequently evolve towards a scalar-field domina
power-law inflationary epoch~corresponding to a single-fiel
saddle equilibrium point or a two-field assisted inflationa
attractor! with an accelerated expansion, perhaps explain
current high redshift data.

In Sec. V we discussed three- and multi-scalar field m
els ~where, for simplicity, a matter term was excluded!. In
the three-scalar field model we again established the ass
inflationary solution and three-field curvature scaling so
tion as the stable late-time attractors. We then conside
n-scalar field models, and established a nested structure
the m-field scaling ~assisted inflationary! solutions. The
n-scalar field assisted inflationary solution is again the la
time attractor. All of them-field ~with m,n) scaling solu-
tions are saddles and in general the equilibrium points c
responding to them-field scaling solutions will haven2m
eigenvalues with positive real parts so that the equilibri
points corresponding to the greater number of non-neglig
scalar fields are, respectively, the ‘‘stronger attractor
Again we should emphasize that Malik and Wands@14#
showed that the multi-scalar field assisted inflationary so
tion is a late time attractor by utilizing a rotation in fie
space; indeed, the stable modes in a general stability ana
of this solution are presumably related to the isocurvat
perturbations orthogonal to the attractor trajectory in fi
space obtained in their analysis.

Finally, from previous investigations@8# of spatially ho-
mogeneous scalar field cosmological models with an ex
nential potential and barotropic matter and from the ab
analysis, we can conclude that the assisted inflationary s
tion is a global attractor for all ever-expanding spatially h
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mogeneous multi-field cosmological models with expone
tial potentials provided( i 51

n ki
22.1/2. We can also conclude

that the multi-field curvature scaling solution is a global
tractor for models of Bianchi typesV and VII h provided
( i 51

n ki
22,1/2 @29# and a multi-field generalization of th

Feinstein-Ibanez anisotropic single-field solution@30# is the
global attractor for models of Bianchi typesIII and VIh if
( i 51

n ki
22,1/2. Indeed, there will ben-field generalizations

corresponding to all equilibrium points of the single-fie
Bianchi type B models~cf. @8#!.

In closing, we note that spatially flat FRW matter scali
solutions also exist in the context of generalized assis
inflation. In @21# it was shown that in the higher-dimension
context, in the six-dimensional model the assisted dynam
between the scalar fields mimics the behavior of a relativi
fluid (g54/3), while for higher dimensions the scalar field
dominate the radiation component, perhaps leading t
‘‘moduli’’ problem for the early universe.
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APPENDIX: DETERMINATION OF THE EIGENVALUES
FOR THE EQUILIBRIUM POINT A

If we let X5(C1 ,C2 ,F1 ,F2), then we are able to write
the dynamical system~3.1! asdX/dt5F(X) whereF is an
analytic function fromR4→R4. Standard results from dy
namical systems theory state that the local behavior nea
equilibrium point,X0, of a system of non-linear autonomou
differential equations of the formdX/dt5F(X) is deter-
mined by that of the corresponding linearized syst
dX/dt5DF(X0)(X2X0) in a neighborhood of the equilib
rium point, provided the eigenvalues of the derivative mat
DF(X0) have non-zero real parts@31#. For the system given
by Eq. ~3.1! the derivative matrix has the form
DF~X!53
q2214C1

2 4C1C2 22C1F12A6k1F1 22C1F2

4C1C2 q2214C2
2 22C2F1 22C2F22A6k2F2

F1S 4C11
A6

2
k1D 4C2F1 q22F1

2111
A6

2
k1C1 22F1F2

4C1F2 F2S 4C21
A6

2
k2D 22F1F2 q22F2

2111
A6

2
k2C2

4 .

As an example, let us evaluateDF(X) at the assisted inflationary equilibrium pointA given by Eq.~3.2!:
7-10
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DF~A!53
1

2
K21

2

3

K4

k1
2

23
2

3

K4

k1k2

1

3

K̄~K223k1
2!

k1
2

1

3

K2K̄

k1k2

2

3

K4

k1k2

1

2
K21

2

3

K4

k2
2

23
1

3

K2K̄

k1k2

1

3

K̄~K223k2
2!

k2
2

1

6

K̄~24K213k1
2!

k1
2 2

2

3

K2K̄

k1k2
2

1

3

K2~62K2!

k1
2 2

1

3

K2~62K2!

k1k2

2
2

3

K2K̄

k1k2

1

6

K̄~24K213k2
2!

k2
2

2
1

3

K2~62K2!

k1k2
2

1

3

K2~62K2!

k2
2

4
whereK̄[AK2(62K2).

The characteristic polynomial of the matrixDF(A) can be simplified to the form

cA~l!5l41~822K2!l31S 3

4
K412128K2Dl21S 1

2
K62

7

2
K4118Dl2

1

4
K8118K2215K41

7

2
K6.

The roots ofcA(l) yield the eigenvalues displayed in Eq.~3.5!. The eigenvalues associated with all of the other equilibri
points can be computed in a similar fashion.
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