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We investigate the dynamical properties of a class of spatially homogeneous and isotropic cosmological
models containing a barotropic perfect fluid and multiple scalar fields with independent exponential potentials.
We show that the assisted inflationary scaling solution is the global late-time attractor for the parameter values
for which the model is inflationary, even when curvature and barotropic matter are included. For all other
parameter values the multi-field curvature scaling solution is the global late-time atffiadioese asymptoti-
cally stable solutions the curvature is not dynamically negligil®mnsequently, we find that in general all of
the scalar fields in multi-field models with exponential potentials are non-negligible in late-time behavior,
contrary to what is commonly believed. The early-time and intermediate behavior of the models is also studied.
In particular,n-scalar field models are investigated and the structure of the saddle equilibrium points corre-
sponding to inflationaryn-field scaling solutions and non-inflationamyfield matter scaling solutions are also
studied(wherem<n), leading to interesting transient dynamical behavior perhaps associated with new physi-
cal scenarios of potential importance.

PACS numbe(s): 98.80.Hw, 04.20.Jb

[. INTRODUCTION a new type of solution, appropriately called a matter scaling

Inflation is generally considered to be a reasonable solusolution [9—11], in which the energy density of the scalar
tion to many of the fundamental problems within the stan-field scales with that of the matter; the effective equation of
dard cosmological model. In original proposgls, the early  state for the scalar field is the same as that of the perfect
universe experiences a period of accelerated expansion afidid. The stability of the matter scaling solution has been
essentially expands at an exponential rgte., R(t)<€,  studied in[9,10].
whereR(t) can be considered as the size of the universe and Exponential potentials arise in many theories of the fun-
A is some positive constantSince these early proposals, damental interactions including superstring and higher-
there have been a variety of inflationary models that includelimensional theorie$2,12]. Typically, “realistic’ super-
scalar fields that have been propog@di and scalar fields gravity theories predict steep exponential potentidlg]
have come to play an important role in determining the dy+j.e.,k’>>2), effectively eliminating the possibility of power-
namics of the early universe. In one important class of inflajaw inflation. However, dimensionally reduced higher-
tionary models the condition of exponential expansion is redimensional theories also predict numerous scalar fields, and
laxed, and the universe grows at a power-law rR{g)otP, so it is of interest to study models with multiple scalar fields.
wherep>1 [3]. In particular, power-law inflationary models In the recent work of Liddle, Mazumdar and Schuhtg]
arise in models with a scalar field having an exponential the effect of additional scalar fields with independent expo-
potential V() = V,e¢ [4]. Although power-law inflation is  nential potentials was considered. They assumestalar
successful in solving the horizon and flatness problems, infields in a spatially flat Friedmann-Robertson-WalkeRW)
flation in these models persists into the indefinite future andiniverse. They found that an arbitrary number of scalar fields
a phase transition is required to bring inflation to an endwith exponential potentials evolve towards a novel inflation-
(however, se¢5]). ary scaling solution, which they termedsisted inflationin

Spatially homogeneous models containing a scalar fleld which all of the scalar fields scale with one anottend are
with an exponential potential have been analyzed extensivelgence non-negligible asymptoticallwith the result that in-
[6,7]. It is known that all ever-expanding scalar field modelsflation occurs even if each of the individual potentials is too
experience power-law inflation when the paramét&<2;  steep to support inflation on its own. The existence of mul-
i.e., when the potential is sufficiently flat. The models havetiple uncoupled scalar fields, each having an exponential po-
also been studied whek?>2 [7]. Recently cosmological tential, could therefore, through a combined assisted ef-
models containing both a scalar field with an exponentiafort, be a source for power-law inflation. This is true even
potential and a perfect fluid with a linear barotropic equationthough each individual scalar field need not be a source for
of state have been studied. It is found that in the general clasaflation, and might therefore lead to compatibility with su-
of Bianchi type B models that the power-law inflationary pergravity theory.
solution is still the global attractor in the physically realistic  In a recent dynamical analydi&4] it was shown that this
regime (i.e., wheny>2/3) if k?<2 [8]. Interestingly, the assisted inflationary solution is a late-time attractor in the
addition of a barotropic perfect fluid creates the existence otlass of zero-curvature FRW models. This was done by
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choosing a redefinition of the fielda rotation in field spage  assisted inflation, this inhibiting affect can be compensated
which allows the effective potential for field variations or- for if there are enough exponential terms present in the po-
thogonal to this solution to be written down; in analogy with tential (i.e., if n is large enough[13,18].

models of hybrid inflatior[15] it was then shown that this The dynamics of “generalized assisted inflation” was in-
potential has a global minimum along the attractor solutionvestigated in more detail if21]. By introducing field rota-
Also, analytic solutions describing homogeneous and inhotions, which results in the introduction of two orthogonal
mogeneous perturbations about the attractor solution withodtelds one of which is massless and the other possesses an
resorting to slow-roll approximations were presentefili, exponential potentidl14,21], the nature of the late-time at-
and curvature and isocurvature perturbation spectra producedactor solution in a particular class of models was deter-
from vacuum fluctuations during assisted inflation were dis-mined. A dimensionally reduced action resulting from within

cussed. the context of a generalized toroidal compactification of
In this paper we shall present a qualitative analysis ohigher-dimensional fields in Einstein gravity minimally
models with the action coupled to massless scalar fields was shown to give rise to a

model of the form under investigation, and it was shown how

1 A the addition of interactions between the fields impede infla-
S:f d*x\—g| R- > |=21 (Vd’iz)_vozl ei% |+ Sy, tion in this model.
(1.1) Similar behavior was also noted by Kanti and OI[\&2]

in multi-field assisted inflationary models with standard cha-

where S,, is the matter contribution. Almost all previous Otic polynomial (rather than exponentiapotentials, which
analyses of multiple scalar field inflationary models have ascan arise in modern Kaluza-Klein theorigmd are a natural
sumed zero-curvature FRW spacetimes with no matter; her@utcome of the compactification of higher dimensional theo-
we extend the analysis to include both curvature and mattefies down to four dimensionsindeed, Kanti and Oliv¢23]
In Sec. Il we shall present the governing equations rfor have recently proposed a possible realization of assisted in-
scalar fields with exponential potentials and matter. In Secflation based on the compactification of a five-dimensional
Il we shall study the two-scalar field model with no matter, Kaluza-Klein model, and have shown how the additional
and, in particular, discuss the stability of the two-field as-fields of the assisted sector actually impede inflatitiey
sisted inflationary model. In Sec. IV we shall study the two-2lso showed that the assisted sector, coming from a Kaluza-
scalar field model with barotropic matter. In Sec. V we shallKlein compactification, eliminates the need for a fine-tuned
discuss three- and multi-scalar field models. In Sec. VI weduartic coupling to drive chaotic inflatipnin Kaloper and
present our conclusions. Liddle [24] the dynamiCS of a Simple implementation of the
idea in Kanti and Olivg23] was analyzed in more detail.
Since assisted inflation no longer corresponds to an
asymptotic attractor, they found that as inflation proceeds the
Recently, models witimx m scalar fieldsp;; and contain-  number of fields participating in the assisted behavior de-
ing multiplicative exponential terms in the effective potential creases resulting in the interesting novel feature that the den-
of the form sity perturbations generated retain some information about
the initial conditions.

Generalized assisted inflation

n m n m
Vet .21 11:[1 Voei %1 21 Voeg W, II. THE MODEL
We shall assume that the spacetime is spatially homoge-

S Sjis< i X iti . . . .
where ki n and I<j<m andky arenxm real posmv_e neous and isotropic. The line element for such a spacetime
constants which are not zero, have also been studied. ﬁ

qualitative analysis of then=1 case has been given|ihg], as the form

where an analogy was made with the dynamics of soft infla- 2
tion [17]. ds’=—dt?+R2(t) 5 +r2(d6%+sir(6)d¢?)
In [18] a class of spatially flat FRW multi-scalar field 1—kr

models with multiplicative exponential potentials was stud- _ ]
ied. Potentials of this form are quite common in dimension-Wherek=+1,—1,0 determines whether the model is closed

ally reduced supergravity mode[49,20. Exact two-field (positive-curvaturg open(negative-curvatune or flat (zero-
and generah-field power-law scaling inflationary solutions curvature. . , _ .
were obtained, which were demonstrated to be late-time at- We shall considen scalar fieldsg;, where k=i<n, in
tractors, generalizing the assisted inflationary solutions prewhich the effective potential has the form

viously obtained 13]; this behavior was dubbed “general- n

ized assisted inflation.” It was shown that it is more difficult Vo= S Vpekidi

to obtain assisted inflation in these generalized models with eff &y YO2 o

cross couplings between the scalar fields in the potential; the

fields in any one exponential term tend to conspire to actwhere thek; are real non-zero positive constants. We also
against one another rather than assist each @hesult also  assume that there exists a non-interacting perfect fluid with
noticed in[20]). However, as with the original version of densityp and pressure
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p=(y—1p, (2.) 3R ! !
oy =—1+0+ > ¥2+ > b2,
] =1

and we shall assume thatsly<<2. The Einstein field equa- H? =1

tions, the conservation equations, together with the Klein- _ _ _
Gordon equations for the scalar fields, yield the following Assuming a non-negative energy densitg., (2=0) and

autonomous system of ordinary differential equations: if *R=<0, (i.e., in the negative and zero-curvature caske
phase space for the dynamical system in the expansion nor-
, 1 Lo, 1 1 °R malized variablesQ,®; ,¥;) is compact. If3R>0 (i.e., in
H" =% ;1 ¢ | = zVert—3P=" 5 the positive curvature casthen the transformation given by

Eq. (2.3) becomes singular wheid =0. Here we shall only
1 1 make some partial comments with regard to the asymptotic
+ = Ver— = (3y—2)p, behavior of the positive curvature models. All of the equilib-
3 6 rium points correspond to self-similar cosmological models
(2.2 and hence to power-law solutioh8].

L 2_}(” -
H=—H 3§1¢i

p=—3yHp,
Il. QUALITATIVE ANALYSIS OF TWO-SCALAR FIELD

bi+3Hp; +k;Voekidi=0, MODEL

We shall first discuss the dynamics of the model with only
where 3R=k/R? is the curvature of the spacelike hypersur- two minimally coupled scalar fields and with no matter. We

faces,H=R/R is the Hubble expansion, and an overdot rep-Ob.taln this model by setting=2 and{2=0 in Eq.(2.4). In
. o ) : . this case we obtain the four-dimensional dynamical system
resents differentiation with respect to coordinate tiignits

have been chosen so thair&=c=1. given by
To analyze the system given by H.2) we transform to qv \/E
expansion-normalized variables. Expansion-normalized vari- 1_ ) = 2
) . ¥1(9—-2) ki®,
ables have proven to be very useful in analysis of the dr 2
asymptotic behavior of many cosmological models. See
[7,25] for arguments in support of using dimensionless dw, V6 5
expansion-normalized variables. One primary reason is the dr =V2(q-2)— 7k2¢2
decoupling of one of the differential equations, which effec-
tively reduces the dimension of the system by one, and, in 3.
some cases, leads to the compactification of the phase space. d /6
We choose expansion-normalized variables of the form d_rl:(pl q+1+ 7qufl>
b Ve g dr 1
== b= , V= v dod, V6
(2.3 dr 2

The resulting dynamical system describing these perfect fluigvhere
multiple scalar field models becomes
q=2W2+2Ws— 02— P32

dQ
——=Q(29-3y+2),

dr
and

dw, 6
—4=%m—a—£%@% (2.4 R

d 2 : 2 210 H24 2

T ——=—1+Vi+V5+ DI+ D3,

6H?

do; G
F:‘Di a+ 1+7ki‘Pi ' It is possible to choose simplified variables aga6] via

a rotation in field space; although this would simplify the
for (1=i=n), where the deceleration parameter has the folanalysis of the assisted inflationary solution, it would per-
lowing form: haps be more difficult to describe all of the qualitative prop-

erties of the models and relate this analysis to previous work.

(3y-2)
=7

n n
Q+2D v2->D o2,
igl : ;1 ! A. Assisted inflation

The flat Assisted Inflatiormodel[13] corresponds to the
and equilibrium pointA of the system3.1) given by
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VB(K 2+ ko?) —ki%ko®  \B(Ky %+ ky?) —ky%ky?

which is equivalent to

K? K? JK?(6—K?) VK%(6—K?)
V6ky' Bk, Bk, T Bk,
where
1 1
K?2=—+—.
k2 k2

The deceleration parameter for this solution is given by

ki?ko?—2(ky*+kp?)  KZ—2

qa= 2(k2+ky2) > (3.3
and hence this solution, with
R(t)octP
and
kipr1=kaop2,
is inflationary @,<<O) if
21
pEZEl E=2K*2=1+qA>1; 2=K2, (3.9

- V6(ky2+ky?) - V6(ky2+k,2)

12 LR

V6(ky2+k,2) VB(ky2+k,2)

(3.2

When matter is included, there exists a monotonic function
so that in the full dynamical phase space there can be no
periodic or recurrent orbits and the global dynamics can be
determined. This implies that the qualitative features de-
scribed in this section can be more rigorously proven. All of
the equilibrium points and their corresponding eigenvalues
are listed in Table I. Using this table let us discuss the local
stability of these equilibrium points.

As noted above the equilibrium poi, given by Eg.
(3.2), corresponds to the assisted inflationary solution. It ex-
ists for all parameter values satisfying

1 1

— 3.6
Kk (3.6

1

6<
and is a sink(late-time attractor for all parameter values
satisfying Eq.(3.4) (else it is a sadd)e

There are two equilibrium points, denoted By and P,

whose coordinate values and associated eigenvalues are
given in Table |, which correspond to zero-curvature power-
law solutions in which one scalar fielgither ¢, or ¢,,
respectively is negligible; these solutions exist #< 1/ki2
and are inflationary if, in additiorz§<1/ki2 (for eachi=1,2,
respectively and correspond to the well-known single scalar
field power-law solutiong3,4]. From Table | we see that
eachP; has two negative eigenvalues and one positive eigen-
value for all relevant parameter values and an additional ei-
genvalue which is negative k’<2 (and positive for 2

Since a single scalar field can only give rise to an infla-< 2<6); hence these points are saddles and have a one- or

tionary power-law solution if &?>1 for i=1 or 2[4,8],

two-dimensional unstable manifold depending upon whether

this means that the two-scalar field model can be inflationary2_ o o k2> 2 respectively
I I 4 "

even when each of the individual potentials is too steep for

the corresponding single scalar field model to inflead

hence the terminologwssistedinflation). The eigenvalues
corresponding to the equilibrium poirt are given by(see

Appendix for details

2_
K—G, %((Kz—G)i V(K?—6)?+8K?(K*~6)).

2
(3.5

K2-2,

Hence this equilibrium point is stable when E§.4) is sat-

isfied, and so the corresponding assisted inflationary solution

is a late-time attractorl4].

B. Stability of equilibria

There also exist equilibrium points, denoted®$,, CS,
and CS, whose coordinate values and the associated eigen-
values are given in Table I. The solutions correspond to
power-law solutions in which the curvature scales with the
first scalar field, the second scalar field or both, respectively.
The single-field curvature scaling equilibrium poingsS;
and CS, are both saddles. The two-field curvature scaling
equilibrium pointCSis a sink Wheneve§>1/k§+ l/k% (oth-
erwise a saddle Whenever the two-field curvature scaling
solution is stable, it necessarily has negative curvature.
There is an equilibrium point, denoted b, correspond-
Ing to the Milne form of flat spacetime, which is always a
saddle.

Finally, there is a one-dimensional set of equilibrium
points parametrized by, denoted byM SF, corresponding

We note that several of the equilibrium points occur in theto zero-curvature massless scalar field modelsvhich both
three-dimensional invariant set corresponding to the zeropotentials are zejo There is one zero eigenvalue corre-

curvature models defined by

2 2 2 2
1=V2+ W2+ P2+ P2,

sponding to the fact that there is a one-dimensional set of
equilibrium points. There are values fdf, for which the
remaining three eigenvalues are positive and hence a subset
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TABLE I. Equilibrium points in the two-scalar field model with no matter. In the taBl@nd CS correspond to théwo-field assisted

inflationary solution and théwo-field curvature scaling solution, respectively.

Solution/Label Coordinates Deceleration Curvature Eigenvalues
(W, ¥,,®,,d,} Parameterg SR/H?
Assisted InflationA (W, ¥,,0,,0," ga [see Eq(3.3)] 0 [see Eq(3.5)]

[see Eq.(3.2)]

2 2
Power Law,P; —ﬁ,o,w/l—ki,o ki*-2 0
G 6 2
2 2
Power-Law,P, 0,— 2107 1— ko k*—2 0
V6 6 2
6 6 2 2
Curvature ScalingCS —£,— £ —_ = 2 (ke +kp?) —ky’ko?
3ky" 3ky \/§kl \/§k2 K2k, 2
1 "2
6 2
Curvature ScalingC$s, —£,0,—,0 0 2—k,?
Skl \/§k1 k12
6 2
Curvature ScalingCs, 0~ i‘o,_ 0 2—ky?
3k, \/§k2 k,?
Milne, M {0,0,0,G 0 -1
Massless Scalar {\Ifo,e\/l—\lfoz,o,o} 2 0

Field, MSF where 0<W <1

k%2 ki?—6 ki2—6
21 1 1

22 2

2 k_22 k2—6 k,2—6

2 12 1 2 ’ 2
—1+3i,

—1+V1+4[2(k; ?+k, D) —1]

—2,1~1+ 1+ 4k; 2(2— kD)

—2,1~ 1+ 1+ 4k, 2(2—k,?)

-2,-211
6 6
0,4,3+ gkl\Po 3+ \/7_ek2 NER
wheree==*1

of MSF are sourcesthe remainder are saddjeShese cor- are both inflationary, or one is inflationary while the other is
respond to well-known early-time attracting massless scalanot, or both are non-inflationary. This might give rise to
field models[8]. some new interesting physical scenarios. For example, a
model could asymptote towards an inflationary single field
solutionP;, stay close td®; for an arbitrarily long period of
ime (sinceP; is an equilibrium pointinflating all the time,

nd then eventually leavé; and evolve towards the stable
attracting inflationary solutioA. [Note that if either ofP; or

C. Discussion

From the analysis above we conclude that the two-fiel
assisted inflationary solutioA is the global attractor when

2 =251 i i i . . . o .
-1k “>3 and the two-field curvature scaling solutirS  p " 5re inflationary, them is necessarily inflationary—see

; 2 -2
is the global attractor wheBi_ 1k; <3.The massless sca- gq, (3.4)]. This is akin to a double-inflationary mode7] in
lar field solutionsM SF are always the early-time attractors. which the density fluctuations on large and small scales de-

late-time behavior. This is contrary to the commonly heldihereby allowing the possibility of more power on large

the scalar field with the shallowest potentiak., smallest
value ofk) would _domin_ate at late timeg. Indeed, we have |, QUALITATIVE ANALYSIS OF TWO-SCALAR FIELD
shown that the single field power-law inflationary models MODEL WITH MATTER
always correspond to saddles, so that we have the rather
surprising result that generically a single scalar field model To understand the underlying dynamics of the model with
neverdominates at late times. matter(i.e., with Q) #0) we shall shall study the model with
We note that both the assisted inflationary solution andwo minimally coupled scalar fields together with matter
the massless scalar field early-time attractors correspond twaving energy density with the barotropic equation of state
zero-curvature models. However, the curvature is not alwaygiven by Eq.(2.1). This model is obtained by settimg=2 in
dynamically negligible asymptotically because the two-fieldEq. (2.4), whence we obtain the five-dimensional dynamical
curvature scaling solution has non-zero curvature. system given by
There is a range of parameter values for which the as-
sisted inflationary solution is the global late-time attractor @=Q(Zq—3 +2)
(when the solution is non-inflationary it corresponds to a dr Y
saddle. For all of these parameter values the single field
power-law solutiond?; and P, are saddles. However, there %_\P oy
are allowable parameter values for which eitfgrand P, =V1(a-2)

V6

> ki ®,?

dr
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TABLE Il. Equilibrium points with Q=0 in the two-scalar field model with matter. Each equilibrium
point has()=0 and the coordinates given in Table I. The additional fifth eigenvalue is displayed.

Label A P, P, CS Ccs CcS, M MSF
5t Eigenvalue k2+k2—3'y ki?>—3y kp,?—3y 2-3y 2-3y 2-3y 2-3y 3(2—v)
1 2
dv, J6 The future asymptotic state lies within the invariant set
ar =W,(q—2)— 7k2<1322 0 =0. Matter becomes dynamically unimportant to the
future.
dq’lzq) q+1+\/—6k N The past asymptotic state lies within the set of zero-
dr 1 2 11 curvature models.
d<I>2:q)2 i1t ﬁkz%) @ B. Stability of equilibria
dr 2 The equilibrium points can be classisfied into two sets;
where those with Q=0 and those withQQ#0. All equilibrium
points listed in Table | exist in this case with=0, and
3y—2 Table 1l lists the equilibrium points witk) =0 together with
q= Y Q+2qf§+ zqu_(pi_cpg the additional eigenvalue due to the addition of matter. Using
2 the functionW above, we can further conclude that those
equilibrium points in the sef)#0 necessarily must have
and zero curvature. Table Il lists the eigenvalues found in the
3R invariant setQ) #0.
14+ O+ W2+ P24 P2+ P2 Let us focus on the stability of the attractors in the full
6H2 1O+ W+t @it @ physical phase space. All late-time attractsisks occur in

A. Invariant sets and monotonic functions

the invariant sef2=0. In the previous section we found that
A and CS are the only sinks in the invariant s€=0
(clearly, all of the saddles remain saddles in the full five-

The zero-curvature models constitute a four-dimensionatlimensional phase spacé he additional eigenvalue for the
invariant set. The models with no matter also constitute aquilibrium pointA in the full physical phase space is given

four-dimensional invariant set.
The function

QZ
W= (4.2
(Q+ W2+ Wi+ P2+ P2—1)2

has derivative

dw
— =2(2-3y)W.

5= 4.3

We observe that this function is monotonic wher=0 (i.e.,
non-zero mattérand (Q+ W2+ W3+ d2+d5-1)+0 (i.e.,

non-zero curvatupe We also observe that the sign ofy3

in Table Il and is negative i&2  k; ?>1/3y. But this is
always satisfied wheB?_,k; *>% andy>2, and hencé\ is

a sink and assisted inflation is a global attractor. Similarly,
from Table Il the equilibrium poinCSis always a sink for
>2 ki ?<3% and hence the two-field curvature scaling solu-
tion remains the global attractor in this case.

The early-time attractors lie in the zero-curvature invari-
ant set and consist of massless scalar field models. From
Table Il we see that the massless scalar field models corre-
sponding to the repelling equilibrium poiMt4SF are always
sourcedfor y<2).

C. Matter scaling solutions

In the case of a single scalar field there exist zero-

— 2 signifigantly changes the dynamics of these models. Focurvature FRW “matter scaling” solutions when the expo-

example, in the case of interest herg-32>0, whence\ is

a decreasing function of time. This immediately implies

that

nential potential is too steep to drive inflation, in which the
scalar field energy density tracks that of the perfect f(swl
that at late times neither field is negligiblgt]. In [9] it was

There exist no periodic or recurrent orbits in the full five- shown that whenever these matter scaling solutions exist
dimensional phase spafhis does not preclude the exis- they are the unique late-time attractors within the class of flat

tence of closed orbits in the invariant s€ls=0 and 3R

FRW models. The cosmological consequences of these scal-

=0; however, we shall be primarily concerned with the ing models have been further studied 28]. For example, in
dynamics of the models in the complete phase space witthese models the scalar field energy density tracks that of the

matter and non-zero curvatjre

perfect fluid and a significant fraction of the current energy
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TABLE . Equilibrium points with Q=0 in the two-scalar field model with matter. Note that in each c2Re0 and q=(3y
—2)/2.

Solution/Label Coordinates Eigenvalues
{Q, 0, W,,0,,05)

FRW, F 11,0000 3y=23(y-2).3(y-2).37.3v
Matter ScalingM S, 1_3_7 _@ V6v(2—y) 0 3(y—2).2y,3y-2,
klzl 2kl ’ ' 2kl '
1(y=2)=V(y=27+8y(y=2)[1-37k; 7]
Matter ScalingM S, 1_2107_@'07—V67/(2_7) 3(y-2),3y,3y-2,
k2 2k, 2k,
F(y=2)=(y=2)%+8y(y—2)[1-37k; 7))
Matter ScalingM S [137(k12+k22), %’ - ? 3~y—2,%((7—2)i V(y—2)?+8y(y—2))
1 2
JGYZ(E‘ v ,JGYZ(E‘ 14 ] 2(y=2)= V(7= 27+ By(y— 21— 3k, *+K; D))
1 1

density of the Universe may be contained in the homogeV. QUALITATIVE ANALYSIS OF THREE-SCALAR FIELD
neous scalar field whose dynamical effects mimic cold dark MODEL
matter; the tightest constraint on these cosmological models Let us now consider models with more than two scalar

comes from primordial nucleosynthesis bounds on any sucfg|4g For simplicity, we shall exclude a matter term here.

relic density[4,9,28. The stability of these flat, isotropic y5ever, from the previous section we can easily determine
matter scaling solutions was studied within the class of spage essential properties resulting from the inclusion of a mat-
tially homogeneous cosmological models with a barotropiger field. In particular, in this case a monotonic function ex-

perfect fluid and a scalar field with an exponential potentialists and this enables us to prove the qualitative results out-
in [10]. It was found that while the matter scaling solutions|ined below. Let us begin with the three-scalar-field model,
are stable to shear perturbations, for realistic matter with obtained by setting=3 andQ) =0 in Eq.(2.4). In this case

=1 they are unstable to curvature perturbations. the resulting six-dimensional dynamical system is given by
Returning to the models under investigation here, none of

the equilibrium points witi) #0 can be late-time attractors 4w /6

for y>%. Indeed, from Table Il all such equilibrium points _1:q,1(q_2)_ —k,P,2

are seen to be saddles. In particular, the two-field matter dr 2

scaling solution corresponding to the equilibrium pdihs,

which exists for22_ k. 2<1/3y, is a saddle. From Table Il dw J/6

we see that the first eigenvalue associated WMt8 is posi- d—T2=‘If2(q—2)— 7k2<1322

tive, while the real parts of the remaining four eigenvlaues
are all negative. This is consistent with the stability analysis
of matter scaling solutions in models with a single scalar dw, J6

field which found that the models were unstable to curvature o Ys(d-2)— 7k2¢32
perturbations wheny>3% [10]. However, these two-field
matter scaling solutions may still be of physical import. We
note that when the curvature is zero, the two-field matter
scaling solution is an attractgall four eigenvalues oM S in

the four-dimensional zero-curvature invariant set have nega-
tive real parts—so tha?1 S is a sink in this invariant sgtas

in the case for the matter scaling solution in a single field
model. Note also from Table IIl that both of the single-field
matter scaling solutions, corresponding to the equilibrium
pointsMS; andM S,, have two positive eigenvalues, so that
again the solution with multiple scalar fields is the “stron-
ger’” attractor.

(5.2)

dd, V6
F:(I)l q+ 1+ ?qu,l>

G

dd,
F:q)z q+1+ 2 kzqu

ddg V6
F:(I)g q+ 1+ 7'(3\1’3)
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where and the detailed analysis would be long and painful. Rather,
let us describe the main effects of including a third scalar
q=2W2+2W5+2Wi— 02— P3— P2 field on the inflationary solutions.
There exists a zero-curvature assisted inflationary solution
and which now corresponds to the equilibrium point given by
3 K? VK?(6—K?)
LN R IR IR A ¥i=- Pi=
6HZ 1T T ¥ TR T DT L3, 6k NG?
Again it would possible to choose simplified variables asW ere
in [26] via a rotation in field space as was done in recent K*25k1’2+k2’2+k§2.

work [14,21]. However, we shall not do this here. Indeed, we
shall not present a complete qualitative analysis similar tdn this solution all of the three scalar fields scale together at
that done in Sec. lll, since the essential features are simildate times. The corresponding eigenvalues are

2

2

K2—2,K ,%((Kz—G)i V(K?—6)?+8K?(K?—6)),

%((K2—6)i V(K?=6)2+8K?(K?-6)).

It is known[13] to be a stable late-time attractor for all parameter values for which the solution is inflatigeanK?<2;
recall the point does not exist K2>6).

There are three solutions in which two scalar fields scale together asymptotically and the third is negligible. Assuming that
the third scalar field is zerdl{;=d5;=0), the coordinates of the corresponding equilibrium point, denotdel ky, are given

by

kiko? k1%ka V6(K12+ k%) —ki%ko?  \B(Ky2+ky?) — ki %k,2
- y y VND IR K
VB(ky2+ko?) " VB(ki2+k,?) V6(ki2+ky?) VB(ky2+kz?)

,0¢. (5.2

Four of the eigenvalues are given by HB.5), which all  whereq is the deceleration parameter evaluated at the equi-
have negative real parts. librium point. Hence, the poinP,,, is a saddle with one
There are three solutions in which one scalar field scalgigenvalue with positive real part. The equilibrium points
dominates asymptotically and the remaining two are neglidenoted byP;q; and P,3 are also saddles with one eigen-
gible. Assuming that the first scalar field is non-zeM;(  value with positive real part. In addition, the poit is a
#Qa&d)l), the coordinates of the corresponding equilibriumgaqgie with two eigenvalues with positive real pa(nifskiz
point, denoted byP;oo, are given by <2, and three eigenvalues with positive real partsif
>2). The same is true for the equilibrium points denoted by
> Po20 and Pog3.
{_ﬁ 0.0 1—ki00] Consequently there is a “nested” set of equilibrium
N 6" points. At the top is the stable three-scalar field assisted in-
flationary solution. In the next layer there are three two-
. . . . calar field models which are saddles with one eigenvalue
Two of the eigenvalues are negative, one is p_05|2t.|ve, anQiith positive real part. In the final layer there are three one-
there is an additional eigenvalue which is negativeii<2  gcajar field models which are saddles with two eigenvalues

and positive if 2<kj<6. » - with positive real partgor three eigenvalues with positive
~In both of these cases the addition@maining two  real party. Associated with this dynamical nesting are cos-
eigenvlaues can be calculated and are given by mological models with very interesting physical properties.

This will follow through in the case oh scalar fields.
There will be a unique stablescalar field assisted inflation-
{q—2<0,9+1>0}, ary solution. There will then ba of the (n—1)-scalar field
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models which are saddles with one eigenvalue with positivéer. We have used dynamical systems techniques, and by
real part. There will bg n(n—1) of the ("—2)-scalar field  establishing a monotonic function in the complete dynamical
models which are saddles with two eigenvalues with positivgphase spacéwvhich includes both matter and curvatyree

real parts. And so on. Finally, there will Imeof the (1)-scalar  have been able to deduce global results.

field models which are saddles with-1 (or n—2) eigen- In Sec. lll a comprehensive qualitative analysis was pre-
values with positive real parts. As one “goes up” the nestedsented in the case of two scalar fields with no matter. We
structure the equilibrium points respectively become “stron-concluded that the two-field assisted inflationary solutfon
ger attractors”(i.e., the stable manifold of the equilibrium is the global attractor whe&?_ k. ?>% and the two-field

points increases in dimension curvature scaling solutiol€S is the global attractor when
There is also a three-field curvature scaling solution cors2 k- 2<1. A subset of the massless scalar field solutions
responding to the equilibrium point given by MSF are always the early-time attractors. Consequently, we

found that in all cases both scalar fields are non-negligible in
generic late-time behavior; this is an interesting and unex-

v, =— i i:i pected result and is contrary to the commonly held belief that
\/Eki \/§ki in multi-field models with exponential potentials the scalar
) ] ) field with the shallowest potential would dominate at late
whose associated eigenvalues are given by times(indeed, we have shown that the single field power-law
inflationary models always correspond to saddl®¥ge note
—1+1+4K 2(2—K?),— 1+ \/§i,—1i \/§i. that both the assisted inflationary solution and the massless

scalar field early-time attractors correspond to zero-curvature
This equilibrium point is a sink whenevés?>2, in which modgl;. However, the curvature is not always dynamically
case it represents an FRW model with negative curvatur8€9ligible asymptotically because the two-field curvature
(2—K?)/K2? (else it is a saddle and represents a positive>c@ling solution has non-zero curvature. ,
curvature model The zero-curvature assisted inflationary FRW scaling so-

Finally, there are saddle equilibrium points correspondingdtions [13] are of particular importance since, through the
to the Milne model and the one- and two-field curvaturecombined effect of multiple uncoupled scalar fields each

scaling solutions, and a set of equilibrium points with h@ving an exponential potential, power-law inflation is pos-
(33, W,2=1d,=0} corresponding to massless scalar fielgsible even when each individual scalar field need not be a
1= 1 1

models. a subset of which are sources source for inflation. We have discussed the stability of the
A co’mplete qualitative analysis can .be done fescalar two-field assisted inflationary model, and generalized previ-

field models. All of these results can be proven by inductior®US "€sults by including non-zero curvature to show that for
(see, for exampld,14]). Then-scalar field assisted inflation- an appropnqte range of parameter.values the assisted infla-
ary solution is given by13] tionary solution is the global late-time attractor. For these

parameter values the single field power-law solutiBpsnd
P, were shown to be saddles, and we showed that there are
R(t)tP allowable parameter values for which eitifey and P, are
both inflationary, or one is inflationary while the other is not,
and or both are non-inflationary, perhaps leading to new interest-
ing physical scenarios.
kipi=kj¢j;V1<i#j=n, In Sec. IV we studied the two-scalar field model with
barotropic matter. A monotonic function was established in
and the resulting phase space. This proved that the matter must
be negligible at late times and we found thfatind CS are
N the only global sinks and that consequently assisted inflation
. E and the two-field curvature scaling solution are the global
p=2i= 4 p> L late-time attractors in their appropriate respective parameter
' ranges. This confirmed the result that both scalar fields must

We note that in the two-scalar field model, although inflationbe dynamically non-negligible in generic late-time behavior,
can occur for potentials that are steeper than in the singleand establishes the stability of the two-field assisted infla-

field case, it cannot occur for arbitrarily steep potentials. Fotionary model when matter is included. The monotonic func-
example, ifk;=k,=k, then inflation occurs ik?<4. How-  tion also shows that the early-time attractors lie in the zero-

ever, forn-fields, if k;=k for all i, then inflation occurs if ~curvature invariant set, and we showed that they consist of a
k2<2n; e.g.,k?<8 for four scalar field models. subset of the massless scalar field models.

For y>%, all of the equilibrium points with2#0 were
shown to be saddletsee Table Il). The two-field matter
scaling solution corresponding to the equilibrium pdihgs

We have studied multi-scalar-field FRW cosmologicalwas shown to have a single positive eigenvalue. Both of the
models with exponential potentials, extending previoussingle-field matter scaling solutions, corresponding to the
analysis by including non-zero curvature and barotropic matequilibrium pointsMS; andMS,, were shown to have two

VI. CONCLUSIONS
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positive eigenvalues, so that again the solution with multiplenogeneous multi-field cosmological models with exponen-
scalar fields is the “stronger” attractor. We note that whential potentials provide®!_ k. ?>1/2. We can also conclude
the curvature is zero, the two-field matter scaling solution ighat the multi-field curvature scaling solution is a global at-
the late-time attractor, consistent with the stability analysis irtractor for models of Bianchi type¥ and VI, provided
[10]. These matter scaling solutions, and particularly theE{‘zlkf2< 1/2 [29] and a multi-field generalization of the
two-field matter scaling solutions, give rise to new transient~einstein-lbanez anisotropic single-field soluti@®] is the
dynamical behavior and may be of physical import. For ex-global attractor for models of Bianchi typéd and VI, if
ample, there are solutions which spend a period of time wittE!_, k. ?<1/2. Indeed, there will be-field generalizations
the scalar field mimicking the barotropic fluid in which there corresponding to all equilibrium points of the single-field
is a non-negligible scalar fiel(dark mattey energy density Bianchi type B modelscf. [8]).
(corresponding to a matter scaling saddle equilibrium point  In closing, we note that spatially flat FRW matter scaling
and subsequently evolve towards a scalar-field dominategolutions also exist in the context of generalized assisted
power-law inflationary epocfcorresponding to a single-field inflation. In[21] it was shown that in the higher-dimensional
saddle equilibrium point or a two-field assisted inflationarycontext, in the six-dimensional model the assisted dynamics
attractoy with an accelerated expansion, perhaps explainingetween the scalar fields mimics the behavior of a relativistic
current high redshift data. fluid (y=4/3), while for higher dimensions the scalar fields
In Sec. V we discussed three- and multi-scalar field moddominate the radiation component, perhaps leading to a
els (where, for simplicity, a matter term was exclugleth “moduli” problem for the early universe.
the three-scalar field model we again established the assisted
inflationary solution and three-field curvature scaling solu- ACKNOWLEDGMENTS
tion as the stable late-time attractors. We then considered

n-scalar field models, and established a nested structure f?favid Wands for interesting discussions, and Laura Filion

the mHield scaling (assisted inflationajy solutions. The ; . )
n-scalar field assisted inflationary solution is again the Iatelcor help in checking the calculations. A.A.C. and R.J.vdH.

time attractor. All of them-field (with m<n) scaling solu- are supported by grants from the Natural Sciences and Engi-

tions are saddles and in general the equilibrium points cor e€nng Research Council of Canada. R.J.vdH. is also sup-

responding to thenfield scaling solutions will have—m ported by a grant from the Saint Francis Xavier University

eigenvalues with positive real parts so that the equilibriumCounCII on Research.

points corresponding to the greater number of non-negligible \ppENDIX: DETERMINATION OF THE EIGENVALUES
scalar fields are, respectively, the “stronger attractors.” FOR THE EQUILIBRIUM POINT A
Again we should emphasize that Malik and War|d4]
showed that the multi-scalar field assisted inflationary solu- If we let X=(¥1,¥,,®,,P,), then we are able to write
tion is a late time attractor by utilizing a rotation in field the dynamical syster8.1) asdX/dr=F(X) whereF is an
space; indeed, the stable modes in a general stability analysimalytic function fromR*—R*. Standard results from dy-
of this solution are presumably related to the isocurvature@amical systems theory state that the local behavior near an
perturbations orthogonal to the attractor trajectory in fieldequilibrium point,X,, of a system of non-linear autonomous
space obtained in their analysis. differential equations of the forndX/dr=F(X) is deter-
Finally, from previous investigations3] of spatially ho- mined by that of the corresponding linearized system
mogeneous scalar field cosmological models with an expod X/d7=DF(Xq)(X—Xg) in a neighborhood of the equilib-
nential potential and barotropic matter and from the aboveium point, provided the eigenvalues of the derivative matrix
analysis, we can conclude that the assisted inflationary solBF(X,) have non-zero real parf81]. For the system given
tion is a global attractor for all ever-expanding spatially ho-by Eg.(3.1) the derivative matrix has the form

We would like to thank Nemanja Kaloper, Jim Lidsey and

q—2+4W2 R —2¥ &, — 6k, D, -2V,
4V, q—2+4¥2 —2W¥,0, —2V,®,— 6k, D,
6 6
DF(X)= q>1(4qfl+ gkl) 4V, P, q—2P2+1+ gqufl —20,P,
6 6
4q’1¢)2 @2(4‘1’2+ \/T_kz) _Z(qu)Z q—2¢>%+ 1+ gkzwz

As an example, let us evaluae=(X) at the assisted inflationary equilibrium poitgiven by Eq.(3.2):
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1, 2K 2 K% 1 K(K?-3K) 1 K%K
2 3 K2 3 kiks 3 K2 3 kqk,
2 K* 1 2 K4 2K 1 K(K2—3k2
2 Iae 2K 4 1 KK 1 K( i 2)
3 kqks, 2 3 K2 3 ik, 3 K2
DF(A)=|
1 K(—4K?+3Kk?) 2 K2K 1 K?(6—K?) 1 K3(6—K?)
6 k2 3 kiky 3 k2 3 Kiky
2 K2K 1 K(—4K?+3k2) 1 K%6-K?) 1 K3(6—K?2)
L 3kike 6 k2 3 kiko 3 Kk

whereK = JKZ(6—K?).

The characteristic polynomial of the matfiXF(A) can be simplified to the form

1 7
A— - KB+ 18K2—15K*+ =KS".

1 7
TKb_ k4
K K"+18 2 >

2
)\+2 >

3
ZK4+ 21— 8K?

Ca(N) =N+ (8—2K?)N\3+

The roots ofc,(\) yield the eigenvalues displayed in E&.5). The eigenvalues associated with all of the other equilibrium
points can be computed in a similar fashion.
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