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Measuring the geometric component of the transition probability in a two-level system
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We describe the measurement of a component of the nonadiabatic transition probability in a
two-level system that depends only on the path through parameter space followed by the Hamiltoni-
an, and not on how fast the path is traversed [M. V. Berry, Proc. R. Soc. London 430, 405 {1990)j.
We performed the measurement by sweeping a radio-frequency field through the Zeeman resonance
of carbon-13 in a static magnetic field and measuring the transition probability P at the end of each
sweep. We found that, for appropriately chosen radio-frequency sweep forms, a factor of P is in-

dependent of the duration of the sweep, in accordance with the theory of Berry.

I. INTRODUCTION

Recent work has shown that, even in few-level
quantum-mechanical systems, analysis by separation into
subsystems typically involves effective interactions be-
tween the subsystems that are naturally described in
terms of gauge fields. ' Such fields arise for subsystems
consisting of dynamical variables, as in the Born-
Oppenheimer approximation, and when one of the sub-
systems consists of external parameters. Examples giving
rise to Abelian and non-Abelian gauge fields have been
treated theoretically and experimentally. ' Abelian
gauge fields have been shown to alter the phases of the
wave functions they act on; in the adiabatic limit the
phases are shifted by Berry phases. Non-Abelian fields
alter both phases and populations. In a significant recent
development, Berry has shown how a Berry phase in a
driven two-level system fundamentally changes the tran-
sition probability in that system. The purpose of the
present paper is to report the experimental confirmation
of this prediction.

We are concerned in this paper with a unitarily evolv-
ing two-level system depending on external parameters
that are changing nonadiabatically. Effective Abelian
and non-Abelian gauge potentials applicable to nonadia-
batic behavior have been discussed from several points of
view, both for unitary and nonunitary' ' evolution;
while the non-Abelian theories permit both phase and
population changes, these treatments of Abelian fields de-
scribe population changes geometrically only in the case
of nonunitary evolution. Several authors have also con-
sidered geometric effects on the phase of the transition
amplitude in a unitarily evolving two-level system. '

The recent work of Berry derives a wholly new result: it
predicts a geometric component of the transition proba-
bility in a unitarily evolving two-level system. This
geometric component depends only on the curve followed
by the Hamiltonian in its space of parameters, and not on
how fast the curve is followed. The transition probability

is the product of the geometric factor and a dynamical
factor, which is exponentially small in the rate of change
of the parameters; thus although the geometric factor is
nonzero even in the adiabatic limit, the complete transi-
tion probability still goes to zero as the rate of change
goes to zero.

In the following section of this paper we briefly outline
the theory of Berry, showing its roots in the Landau-
Zener and Dykhne formulas for the transition probability
in two-level systems in order to fix notation and make our
presentation more self-contained. We then discuss how
the measurement is carried out, and the experimental
significance of the parameters in the theory. In the final
sections, results are presented, and we indicate possible
future directions and applications for this work.

II. THEORY

Landau-Zener theory provides an exact expression for
the nonadiabatic transition probability in a two-level sys-
tem described by the following Hamiltonian:

Eo +et E)2

E&2 Eo —at (1)

where Eo, E,2 and cz are real, constant parameters, and t
is the time. ' ' This Hamiltonian provides a simple mod-
el for a wide variety of phenomena, such as rapid passage
experiments in N MR and nonadiabatic processes in
atomic and molecular scattering. The instantaneous (adi-
abatic) eigenvalues of this system are

E =E+(at +E )'

and thus represent an avoided crossing as t varies from—~ to Oo . The complete time-dependent wave function
for this two-level system can be expressed in terms of the
adiabatic eigenvalues and wave functions as follows (in
units where 4=1):
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g(t)=c, (t)exp —i f dt'E, (t') P,(t)

+cz(t)exp —i f dt'Ez(t') Pz(t) . (3)

Z(r) X(r) —t Y(r)
H(r)= X(r)+iY(r) —Z(r)

or, in spherical polar coordinates (H, O, y),

Here jg, (t), gz(t)I are the instantaneous eigenfunctions
of the Hamiltonian of Eq. (1), and c, (t) and cz(t) are com-
plex expansion coe%cients. Landau-Zener theory pro-
vides an exact expression for the nonadiabatic transition
probability P, where

P=)(y(+ )lq(+ )) l', (4)

assuming the initial condition c, (
—~)=1, cz( —~)=0.

Physically, P is the probability of finding the system in
state 2, given that it began in state 1 and was transported
at a constant rate through the avoided crossing. In terms
of the matrix elements of the Hamiltonian of Eq. (1),
P=exp( vrE, zl—a). Note that P is exponentially small
in a; as the rate of change of the Hamiltonian goes to
zero, P goes to zero, in accordance with the adiabatic
theorem.

For two-state Hamiltonians with more complicated
time-dependence, Landau-Zener theory does not apply.
Dykhne showed, however, that in the case of a real two-
state Hamiltonian with an avoided crossing a Landau-
Zener-like expression for P is valid asymptotically, as the
adiabatic limit is approached. ' ' In Dykhne's solution,
time is analytically continued into the complex plane, and
although the energy levels of the system do not cross for
any real value of time, there can be some complex value
of time, which we denote t„where they do cross. At this
value of time, the energies are complex as well. Near t„
barring accidental cancellations of the individual matrix
elements of the Hamiltonian, the analytic structure of the
energy-level splitting is determined by (t —t, )'~ .zzzThe

double-valued nature of the complex square root gives
rise to the transitions in this picture —the eigenvectors
are associated with the Riemann sheets of the square
root, and can therefore interchange labels as they pass by
the crossing point. The complex crossing point nearest
the real axis dominates the transition probability as the
adiabatic limit is approached; Dykhne shows that P is
given asymptotically by

T

~c
P =exp ——Im Ez(~) Ei(r)dr—

In this formula, scaled time, defined by ~=5t, is used,
where 5 measures the adiabaticity, or slowness, of pas-
sage. ~, is the crossing point nearest the real-time axis,
and E, and Ez are the (complex) instantaneous energies.
This expression for P requires that the matrix elements of
the Hamiltonian be analytic in a strip that includes both
the real-time axis and v.„so that the phase integral may
be analytically continued off the real-time axis to the
crossing point. Like the Landau-Zener expression,
Dykhne's formula for P is exponentially small in the rate
of change of A.

Berry's contribution removes the restriction to real
Hamiltonians. He considers the general Hermitian two-
state Hamiltonian

Here, y; is the geometric phase of state i, and can be ex-
pressed in terms of a line integral over the path C fol-
lowed by the parameters X, Y,Z, as y,. =Ic A dR, with

A=(P, ~VRP, ) and R the vector of parameters. A is a
vector potential (gauge potential), and in the two-state
problem under consideration here it is Abelian: it takes
the form of a magnetic monopole vector potential located
at the origin of parameter space.

As in the case considered by Dykhne, if the matrix ele-
ments of the Hamiltonian of Eq. (6) are sufficiently ana-
lytic, an asymptotic expression for P can be developed,
now by analytic continuation of both the energy
difference and the geometric phase difference. We quote
the result from Berry, in spherical coordinates

4 T

P=exp ——Im drH(r)
5 o

Xexp —2Im d~ cosO ~dy(~)
0

=exp( —1&)exp(+Is) . (10)

The first factor, exp( —I z), due to continuation of the en-

ergy difference, is the same as Dykhne's formula, and is
exponentially small in the adiabaticity parameter. This
factor is thus dynamical. The second factor, exp(+I ),
is due to continuation of the geometric phase, that is, to
the Abelian gauge potential A defined above, and is in-
dependent of the adiabaticity parameter. I g is geometric
in that it depends on the shape of the path followed by
the Hamiltonian, but is independent of how fast the path
is traversed. The geometric term is therefore constant,
even under adiabatic evolution; it is multiplied, however,
by a term which goes to zero in this limit so the adiabatic
theorem is satisfied. Note that the derivation of I g
makes no reference to closed paths in parameter space, a
feature of earlier work on geometric phases that was im-
portant for the unambiguous definition of phase shifts. '

We close this section by noting that Berry discusses
conditions that H must satisfy to yield a nonzero I ~; we

cosO(r) sinO(r)exp[ —ig(r)]Hr=Hr
sinO(r)exp[i@(1 ) j cosO( r)

(7)
The expression for the full wave function, Eq. (3) must be
modified in this case by the geometric phase (Berry's
phase), since here, unlike in the real case, it is not neces-
sarily possible to globally choose the phase of the basis
wave functions to be real. The appropriate wave func-
tion is then

g(t) =c, (t)e xp i f—dt'E, (t') exp(iy, )Pi(t)

+cz(t)exp i — dt'Ez(t') exp(iyz)Pz(t) .
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H =2 A (r ,' )I—, —ro(I—„cosB(r—
—,
'

)

ro,I—~sinB (r —
—,
'

) (14)

The procedure used to generate this Hamiltonian is illus-
trated in Fig. 2(a).

The complex crossing point is found to be

the closed interval t H [0, r], since our experiments have a
definite beginning and end. Then it is natural to use
5=1/T as the scale of adiabaticity, and take scaled time
in the interval x&[0,1]. Finally, we symmetrize the
Hamiltonian about the origin of parameter space, giving
the final form

O
0)~ CO,
U 0
Q)

LL

~det .-
Sg

2A(r -ih)

2B(&—&/2 g

90

CO)

7c + l
2 2A

(15) f2

In order to avoid edge effects due to starting and ending
the experiment at finite times it is necessary to choose
co& &(A, so the time integrals can be extended to +~.
Then the dynamic and geometric contributions to the
transition probability are evaluated as

4i )I4hhhhhn
II'I)II~""""" "

g4

7TCO]

45)A/
'

7TCO )B
4/A/A

(16)

It will be argued that moving the detector frequency
can have no physical effect in a NMR experiment, a point
which is certainly true. The detector frequency serves
only to define a convenient reference frame. In the
present case, by choosing a different detector frame, we
can even make our complex Hamiltonian look real. Does
this remove the geometric component from the transition
probability? Not at all. By synchronizing the detector
with the rf, rather than using the frame described above,
the Hamiltonian of Eq. (14) is transformed into

FIG. 2. (a) The transmitter and detector frequencies neces-
sary to generate the Hamiltonian shown in Eq. (14) [Fig. 1(b)].
The detector frequency is swept linearly through resonance, to
give the proper offset behavior [coo—cod„=2A (r —')]; also, the-
rf and detector frequencies are o6'set by 2B (~—

2 )5, so that the

phase of co,z in the xy plane is 8(~——') . (b) The experimental

sequence used to measure P, the nonadiabatic transition proba-
bility. First, the rf frequency sweep is applied over the time in-
terval [0,Tj. P is related to the resulting component of magneti-
zation along z; this is probed with the 90 pulse, which tips it
into the xy plane in the rotating frame, where it is detected in
the time domain during the interval t~. Fourier transformation
to the frequency domain yields a peak whose intensity is propor-
tional to 2P —1. Four such experiments, with phase-shifted
probe pulses and detector frames (to cancel residual coherences
and artifacts in the electronics), are coadded and integrated to
yield a single data point.

H =2( A B5)(r ,' —)I, ruiI—, .—— (18)

Note the appearance of 5 in the resonance offset term. In
this frame, I =0 by symmetry. When Landau-Zener
theory is applied to this transformed Hamiltonian [now a
valid procedure because it has the form of the Hamiltoni-
an of Eq. (1)], the transition probability for all values of 5
is obtained,

P =exp
45

~
A (1—B5/A )

~

Expansion around 5=0, the adiabatic limit, yields
n+1

oo '7TCO )P= g exp
44A/

5" (20)

which shows that, even though I ~
=0 in this frame, the

geometric component of P, exp[ neo, B (4/4AA4)], does-
not vanish. This expansion also gives a useful bound on
where the asymptotic theory of Berry should be valid,
namely, A /(B5) ))l.

The above analysis demonstrates that I and I d are
gauge-dependent quantities, that is, that their values de-

pend on the basis (reference frame) in use. The original
reference frame of Eq. (14) is conceptually convenient,
because in it, the geometric and dynamic transition prob-
abilities separate cleanly into K' and I d. The current
reference frame, Eq. (18), lacks this clean separation, but
is experimentally convenient. The practical signature of
the lack of a clean separation in a given frame is the ap-
pearance of 5 in the Hamiltonian expressed in that frame.
If 5 appears explicitly, then in that frame the geometry of
the curve and its time parametrization are entangled, and
one cannot draw conclusions about the appearance of a
geometric transition probability from the shape of such a
curve alone.

The existence of a real form of the Hamiltonian [Eq.
(18)] is not due to any special features of the complex
curve [Eq. (14)]. Any complex Hamiltonian curve can be
locally transformed to a real version, to which Dykhne's
theory can be applied. The resulting transition probabili-
ty will be qualitatively different, however, from the usual
Dykhne and Landau-Zener results, if the Hamiltonian
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curve in a 5-independent frame is both complex and
sufficiently asymmetric. The new feature in P is, of
course, the 5-independent component (expi g

in a 5-
independent basis). The fact that I s vanishes in some
frames but P retains its 6-independent factor is the analog
of the removability of Berry's phase, that is, the fact that
Berry's phase can always be locally transformed away but
nevertheless observables still show the underlying
geometry of the system. This freedom of choice of basis
is a manifestation of the gauge invariance of P. We take
advantage of this freedom by measuring P in the frame of
Eq. (18), and analyzing the data in the frame of Eq. (14),
for easier comparison with Berry's results.

B. Measurement of P

The Zeeman resonance in carbon-13-enriched carbon
disulfide provided the two-level system for our experi-
ments. We used an 11.7-T magnet, corresponding to a
' C resonance frequency of 125.6 MHz; the static mag-
netic field was shimmed to give a line of full width at half
maximum of 15 Hz. The NMR spectrum of this sample
consists of a single sharp line since most (99%) of the
spin- —,

' ' C is bonded to spin-0 sulfur. The longitudinal
relaxation time (T&) for our sample was 22 seconds,
which defines the time scale for rapid passage experi-
ments: they must be short compared to T&. All results
presented below were acquired with sweep times ~0.6
sec. The data were collected on a Chemagnetics CMX-
500 NMR spectrometer, using a Sciteq direct digital syn-
thesizer for control of the detector and rf frequencies.

Measuring P amounts to measuring the diagonal ele-
ments of the density matrix. The initial density matrix in
our experiment is essentially I, (Refs. 24 and 25); after
subjecting this to a rf sweep, the component remaining
along the z axis is proportional to 2P —1. A 90 pulse fol-
lowing the sweep brings this component to the xy plane
in the rotating frame, where it can be detected in the time
domain. The entire measuring procedure is shown
schematically in Fig. 2(b). A standard cyclically ordered
phase sequence (CYCLOPS) phase cycle is applied to the
90' pulse and detector, to remove residual coherences and
hardware imperfections. The (signed) area of the peak
in the frequency domain S is proportional to 2P —1, and
is normalized to the signal from a very slow (adiabatic)
sweep, S,„, for which P=O. Thus P is extracted from
the measured peak areas as P =

—,'(1 —S/S, „).

FIG. 3. (a) Response of the sample magnetization to the
Hamiltonian of Eq. (14) [Fig. 1(b)], in the adiabatic regime.
This experiment was performed with an interrupted version of
the sequence described in Fig. 2(a), in which both the phase and
amplitude of the magnetization were measured at points during
a single sweep, rather than just at the end of a sweep. For adia-
batic evolution the magnetization tracks the Hamiltonian curve
shown in Fig. 1(b), as is seen here, though the length of the mag-
netization vector is conserved and so lies on the surface of a
sphere, rather than a cylinder. (b) For clarity, an expanded (and
truncated) theoretical curve of the magnetization is shown.

tage of the fact that we have an expression for P valid for
all 6, by fitting the theory to our measurements of P over
a range of sweep times. The results are shown in Fig. 4.
The experimental parameters are A =50 kHz,
8 =+5,000 rad, and co&

=393 Hz. Determination of
these parameters is discussed below. Changing the sign
of B is equivalent to the transformation H(r)~H( —r),
that is, time reversal. Close agreement between the ex-
act theory, Eq. (19), and experiment is obtained over the
full range of 5. We have performed the same experiment
with different values of ~B~ and cot, and the graphs of P
(not shown) scale according to Eq. (19).

IV. RESULTS

We demonstrate generation of the Hamiltonian of Eq.
(14) by showing, in Fig. 3, the response of the sample
magnetization to it, for 5=1.66 sec ' (A/B5=18.9),
that is, nearly adiabatic evolution. For such a case, the
magnetization vector tracks the direction of the Hamil-
tonian vector shown in Fig. 1(b) and gives a direct picture
of the geometry of the Hamiltonian curve.

Measurement of I requires nonadiabatic traversal of
the Hamiltonian curve, for which the magnetization no
longer keeps up with the Hamiltonian. We take advan-

V. DISCUSSION

A. Determination of I ~

Using the data shown in Fig. 4 we can extract the
geometric contribution to P in two ways. First we plot
ln(1/P) versus 1/5, that is, versus sweep time —in the
nearly adiabatic regime, such a plot should be linear, with
slope 5I d and intercept —I g. The nonzero intercept
reflects the fact that the geometric component persists
into the adiabatic limit, although P~O in this limit so it
cannot be measured there. The data are plotted this way
in Fig. 5(a), and three regimes can be identified. At short
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0.3
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0.4

0-
I

0.0
I. . . . I

0.2 0.3

1/6 (sec)

I

0.4

FIG. 4. The nonadiabatic transition probability, measured as
a function of adiabaticity parameter for the Hamiltonian of Eq.
(14). Parameters are 2=50 kHz, B =+5000 rad, and coI =393
Hz. Changing the sign of B amounts to traversing the curve in
time-reversed fashion. The filled squares are for B=+5000 rad,
and the open squares for B = —5000 rad. The solid curves
show the theory for this case, Eq. (19), which is exact, describ-
ing both the adiabatic and nonadiabatic limits. 3 /(B5), shown
on the top axis, is a dimensionless adiabaticity parameter (see
text), which scales out the specific values of the constants used
in the experiment.

(o)
4 I

g
1-

A/(8 6)

sweep times the data are nonlinear, as expected —the
asymptotic theory should not apply here. Also, at the
shortest times, P~ 1, and 1n(1/P)~0 as shown in Fig.
5(b). At very long times, P =0, and we cannot measure it
accurately due to our signal-to-noise constraints. The in-
termediate regime, however, shows the expected linear
behavior, with offset. Equation (20) shows that Berry's
theory should hold, for the present Hamiltonian, when
A /B5 ))1. The data show linearity for A /B5 ~ 4;
theoretical requirements for adiabatic evolution are fre-
quently harsher than those encountered experimentally.
Finally, note that the intercepts in Fig. 4 are positive and
negative, as B is changed in sign; this is due to the fact
that I g changes sign under time reversal, but I d does
not. 4

Berry's theory predicts, for the values of A, B, and co1

listed above, that
~
I

~

=0.243 and 5I d
= 15.3 sec

These lines are plotted in Fig. 5. Least-squares fits to our
data give I =0.26 and 6I d=16 sec ' for B=—5000
rad, and I g

= —0.23, 5I d =15 sec ' for B=+5000 rad.
Quantitative agreement, while not perfect, is reasonable,
given the amplification of errors at small P introduced by
the logarithmic plot and the difficulty of measuring co&,

the amplitude of the rf field, precisely in our apparatus;
we comment on this difficulty below.

The above-stated time-reversal behavior affords a
second way to extract I s. Plotting 21n(Pg~p/Pg&p)
versus sweep time should give a line of zero slope with in-
tercept I ~; the data plotted this way are shown in Fig. 6.
This determination yields I g

= —0.26+0.01, to be com-
pared with the theoretical value of I = —0.243. The

0-
I

0.00
1

0.02
I I I

0.04 0.06 0.08

1/6 (sec)

I

0.10

FIG. 5. (a) The same data as shown in Fig. 4, now plotted as
ln(1/P) vs 1/5 in order to extract the geometric transition prob-
ability. Three regimes, as discussed in the text, can be
identified. At small values of 1/5 the dynamics are strongly
nonadiabatic, and the asymptotic theory of Berry is not valid
here. For large 1/6, the adiabatic limit, P is too small to mea-
sure accurately in our experiment, as is evidenced by the in-
creased scatter in the data at long sweep times. The intermedi-
ate regime, however, is accessible to experiment and is described
by Berry's theory. This regime requires A/B5&)1 [see Eq.
(20)]; we see that experimentally A /B5 ~ 4 appears to be
sufticient. The figure also shows the theory of Berry, which ap-
pears as straight lines of slope 61 d =15.3 sec ' and intercept
I"~ =+0.243. The sign change in I g is due to its behavior under
time reversal. The intercepts are shown more clearly in (b),
which also shows the behavior for small 1/5; both experimental
curves go to zero here, since P ~1 in this limit.

same three regimes observed in Fig. 5 can be identified, as
1/5 changes from small to large values.

B. Behavior with respect to time reversal

In Sec. VA we used the behavior of P'under time-
reversal to extract I . Near the adiabatic limit, where
the asymptotic theory is valid, this behavior is expressed
simply by the sign change in I . Figure 4 shows that,
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FIG. 6. The data of Fig. 4, plotted as —2ln(P~„/P~, o) vs

1/5. Due to the behavior under time reversal, I ~ adds while I d

cancels; the asymptotic theory thus predicts a line of slope zero
and intercept I g for this plot. The theory is confirmed, and the
same three regions of Fig. 5 can be identified.

farther from this limit, the behavior of P for B )0 differs
qualitatively from that for B &0: for B )0 an inversion
notch is observed, where P ~0, even though B5/A is not
small, while no such notch is observed for B &0. Though
this feature occurs outside the regime of validity of
Berry s asymptotic theory, its sensitivity to time reversal
and the fact that no such behavior occurs in the conven-
tional Landau-Zener Hamiltonian [Eq. (1)] merit atten-
tion.

We first consider how the rf frequency depends on the
sweep time I/5. As discussed above, the shape of the
Hamiltonian curve of Fig. 1(b) will be independent of the
sweep rate for fixed parameters 3 and B. However, the
situation is quite different in the frame defined by the rf
[Eq. (18)]: Fig. 2(a) indicates that the rf field sweeps
through a total range of 2( A B5) as i—t crosses the Lar-
mor frequency. For B )0, the range is swept from nega-
tive to positive offsets for small 5, and positive to negative
for large li; when 5= 2 /8, the range is not swept at all.
For B & 0, all sweeps are negative to positive. Physically,
6= 3 /B "sweeps" correspond to continuous resonant ir-
radiation. This condition represents a pathological solu-
tion to the Landau-Zener problem, in that P becomes an
oscillatory function of time at this point. Experimentally,
this pathology is easy to avoid, because it is very narrow:
the transition occurs while the resonance ofFset is in a
range around zero of order co&. Thus the data of Fig. 4
near the notch satisfy the condition that the initial and
final resonance offsets are large on the scale of the transi-
tion itself, so for these points one may still think in terms
of an inversion of the magnetization. The reason that the
inversion becomes nearly perfect here, even though
3 /B5 = 1, is that the rate of change of the sweeping field,
compared to the effective field strength, is very small.
Thus while co,z is in the transition region it changes slow-

ly, and adiabatic behavior is observed.
It is also instructive to consider the origin of the notch

in the frame of Eq. (14), that is, the frame of Fig. 1(b). In
this frame the curves corresponding to the two signs of B
can be derived from each other by inversion through the
origin, the main effect of which is to reverse their helici-
ties. Thus for B )0, the helicity is decreasingly positive
as the crossing is approached, and increasingly negative
afterwards, whi1e the opposite ho1ds for B & 0. As is well
known from conventional NMR theory, only one sense of
circularly polarized irradiation can effect a transition,
that sense being defined relative to the sign of the applied
static field. ' Therefore, we expect transitions when
the sense and rate of helicity are properly correlated with
swept resonance offsets as defined by the detector frame.
This immediately explains why the notch appears only
for B )0. Furthermore, the spin inversion to which the
notch corresponds appears here as a rather intricate spin
trajectory, quite unlike the smooth adiabatic inversion of
the conventional Landau-Zener picture [Eq. (18)].

In the context of the helical Hamiltonian, the crossing
point when 3/86=1 is decidedly nonadiabatic. This is
acceptable: the description of a transition as adiabatic is
frame dependent. We see that by viewing the Hamiltoni-
an of Eq. (14) as a simple Landau-Zener problem, by us-
ing the frame of Eq. (18), we arrive at a simple picture of
the inversion process, for which, however, the geometri-
cal component of the transition probability comes out
only after a complete analysis. In the original frame, the
geometry is evident, but a description of the transition it-
self becomes more difFicult. Each frame has advantages,
and of course the same result is obtained for P in either
case.

C. Determination of ap,

The results shown above provide a simple determina-
tion of the geometric component of the transition proba-
bility. We encountered one difFiculty in making the mea-
surements, which we now discuss in some detail. The
various expressions for P, whether exact or asymptotic,
are quite sensitive to co&, the rf field amplitude, as they de-
pend exponentially on co&. The other parameters in these
expressions, 3 and B, are offsets that are programmed
into the digital synthesizer and hence are known. co,
must be measured independently, however. Such a mea-
surement is typically accomplished by determining the
length of time needed for a 360 pulse on resonance, t36o,
because ~, t36O 2~. We found that our data could be fit
precisely by the theory only when the value of co, used in
the formulas for P was adjusted to a lower value from the
value given by 2m /t36o, typically about 10% lower. This
discrepancy does not seriously undermine our confidence
in our test of the theory, however, primarily because of
Fig. 4. In this figure P is plotted for a wide range of 5,
and should be fit by Eq. (19). By using a nonlinear least-
squares fitting procedure with this formula, and co& as the
only adjustable parameter, very good agreement with the
data is obtained. The goodness of fit suggests that co& as
obtained from t36o is slightly high, but that other features
of the experiment work as expected, because the func-
tional form for P agrees closely with the theory. We de-
scribe below several possible mechanisms that might ac-
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count for this discrepancy in the value of co&.

One likely source of error is homogeneity in the mag-
netic fields. There are two possibilities: inhomogeneity
in the static field and in the rf field. We rule out the
former as a source of error, because experiments carried
out with a range of shim settings, corresponding to reso-
nance linewidths ranging from 2 to 30 Hz, gave no
change in the discrepancy in co& values. This is not
surprising, since in our experiments the initial and final
resonance offsets are much greater than this small spread
in mo. Thus all spins in the system will be affected equally
by the sweep, though possibly at slightly different times
during the sweep.

We now turn to rf inhomogeneity. The data shown in
this paper were obtained with a solenoidal coil for rf exci-
tation and detection, which was about the same size as
our sample. The coil was inclined at an angle, and since
the sample did not completely fill its container, a non-
symmetric distribution of sample with respect to the coil
resulted. We can expect such a nonuniform distribution
to exacerbate the effects of the inhomogeneity inherent in
the coil. The observable consequence of rf inhomogenei-
ty is to give a distribution of co, , rather than a single
value. We were able to measure this distribution approxi-
mately, and average the theory with respect to it; this
procedure does not significantly change the functional
form predicted for P, and could account for 10—30% of
the discrepancy in m& values.

Radiation damping, that is, secondary effects due to
the reradiation of the rf field generated in the coil by the
relaxing magnetization, is another possible source of er-
ror. This mechanism has already been considered in the
context of ARP experiments. ' Numerical integration
of the Bloch equations in the presence of a small (3 Hz)
amount of radiation damping shows that the form of the
graph of P is essentially unchanged, but is shifted to an
effective value of co, about 3% smaller than the nominal
value. Thus the correction is in the same direction as our
observed discrepancy, but it is likely that the amount of
radiation damping present in our system is substantially
less than 3 Hz.

Other possible sources of error are the digital genera-
tion of the frequency sweeps, and the changing probe
response as a function of resonance offset. We were able
to show experimentally and by simulation that the num-
ber of digitization steps we used (1792) was sufficiently
large to leave the results unaffected, and that the relative-
ly low probe Q of 230 yielded a flat response within 2%
over the frequency range used.

While we could not quantitatively account for the en-
tire difference between the independent measurement of
co, and the fit to measured values of P, rf inhomogeneity
seems the most likely mechanism to cause the observed
discrepancy. This conjecture could be checked by per-
forming a more quantitative independent measurement of
the coil characteristics than we were able to, or possibly
by using a very small, symmetrically constructed sample

container. As an aside, we remark that this experiment,
with its sensitivity to co&, might provide a very precise
way to calibrate small rf field strengths in other NMR
measurements.

VI. CONCLUSIONS

We have provided the first experimental study of the
geometric transition probability recently described by
Berry. Various features of the theory were tested, in-
cluding the independence of the geometric factor to the
raM of change of the Hamiltonian; the theory is
confirmed in all respects.

We anticipate that the geometric transition probability
will prove to be an important consideration in a wide
variety of experiments. Observing the probability is quite
straightforward —no complicated interference experi-
ments are necessary, nor are closed loops in parameter
space needed, as they are in the case of Berry's phase, for
unambiguous determination. In chemical physics,
Landau-Zener treatments are frequently used in the study
of scattering and dissociation processes; when fields or
other mechanisms which break time-reversal symmetry
are present, we expect that the geometric term will play a
role.

A simple extension of this work is a modification of the
experiment used to generate the data shown in Fig. 3, to
measure the population change as a function of w during
the sweep —a simple formula for this is derived in anoth-
er recent paper by Berry. ' Work along these lines is
currently underway in our laboratories.

At this point an important theoretical problem is to ex-
tend the treatment of Berry to the case of multiple avoid-
ed crossings. This has been considered for real Hamil-
tonians by Pechukas and co-workers, ' ' and the
difficulties increase much faster than the number of
avoided crossings (degeneracies in the complex time
plane). The effect of multiple degeneracies is not simply
additive. Such problems wi11 also apply to the geometric
case, but must be addressed in order to apply the theory
to many realistic molecular systems. A general geometric
framework for I, analogous to the type developed by
Simon for Berry's phase, could be helpful here, but it is
not clear to us how to develop one for open paths
parametrized by complex time.
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