cis-3,5-Cyclohexadiene-1,2-diol derivatives: facial selectivity in their Diels-Alder reactions with ethylenic, acetylenic and azo dienophiles

Sunny M. Ogbomo ${ }^{a}$ and D. Jean Burnell $* a, b$
Received 5th June 2006, Accepted 5th September 2006
First published as an Advance Article on the web 20th September 2006
DOI: 10.1039/b607938e

Abstract

The Diels-Alder reactions of maleimide with the acetonide derivative ($\mathbf{6 a}$) of cis-3,5-cyclohexadiene-1,2diol (1a) in various solvents showed facial selectivities ranging from $1: 1$ to $1: 9$. The same derivative $\mathbf{6 a}$ reacted in benzene with ethylenic dienophiles with generally modest facial selectivity, but acetylenic dienophiles added exclusively anti to the oxygen functions of $\mathbf{6 a}$. Dimerization of cyclic acetals $\mathbf{6 a}$ and $\mathbf{7}$ was mainly, but for $\mathbf{6 a}$ not exclusively, by anti addition with respect to both the diene and the dienophile partners. Reactions of azo dienophiles with derivatives of $\mathbf{1 a}$ were predominantly by anti addition, but the diol itself (1a) gave the syn adduct as the major product.

Introduction

cis-3,5-Cyclohexadiene-1,2-diol 1a and its optically active variants 1b (Fig. 1) are available directly from aromatic precursors by the action of mutant strains of Pseudomonas putida. ${ }^{1,2}$ These cis-diols are now well established as compact, multifunctional starting materials, ${ }^{3}$ and there are many recent examples of their use in synthesis. ${ }^{4-10}$

1a $X=H$ 1b $X=$ carbon or halogen

4a $\mathrm{X}=\mathrm{H}$ 4b $\mathrm{X}=\mathrm{CH}_{3}$

7

2

3

$6 \mathrm{a} X=\mathrm{H}$
6b $X=$ carbon or halogen

8

9

Fig. 1 The diene 1a with its 3-substituted analogue 1b and derivatives.
It is not surprising that the diols and their derivatives have served as Diels-Alder dienes in many instances. We assessed the facial selectivities of 1a and a number of diol-protected derivatives 2-8 in Diels-Alder reactions in chloroform with N-phenylmaleimide

[^0]as the dienophile. ${ }^{11}$ What was most remarkable was that additions were very largely syn to the oxygen functions with $\mathbf{1 a}$ and with the noncyclic derivatives $\mathbf{2 , 3}$ and $\mathbf{4 a}$ (from $88: 12$ with $\mathbf{4 a}$ up to exclusively syn with 2). This was corroborated recently by the reaction of $\mathbf{1 a}$ with a bromophenyl analog of N-phenylmaleimide, ${ }^{9}$ and, under high pressure, cyclic enones added to $\mathbf{1 b}\left(\mathrm{X}=\mathrm{CH}_{3}\right)$ to provide the syn-addition products with isolated yields of approximately $70 \%{ }^{4}{ }^{4,7,8}$ The reactions of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) with $\mathbf{1 b}$ ($\mathrm{X}=$ carbon and halogen) took place with at least 97% syn selectivity. ${ }^{12}$ Thus, the oxygen functions of $\mathbf{1 a} / \mathbf{b}$ appear to impart a significant bias toward syn addition, just as syn addition is the preferred mode of reaction of some 5-heteroatom-substituted 1,3-cyclopentadienes. ${ }^{13-15}$ However, the structure of the adduct of a bromophenyl analog of PTAD with 4b $\left(\mathrm{X}=\mathrm{CH}_{3}\right)$ was determined by X-ray crystallography, and this was the anti adduct. ${ }^{16}$

The facial selectivities in the additions of N-phenylmaleimide to the cyclic derivatives 6a, $\mathbf{7}$ and $\mathbf{8}$ ranged from $60: 40$, slightly favoring syn addition with $\mathbf{5}$ and $\mathbf{6 a}$, to 4 : 96 , strongly favoring anti addition with $8 .{ }^{11}$ It was postulated that these cyclic derivatives present steric interactions in the syn-transition state that cannot be avoided by conformational mobility of the protecting groups, so the cyclic protecting groups in $\mathbf{6 a}, \mathbf{7}$ and $\mathbf{8}$ overcome the inherent tendency for syn addition. The result is that the antiaddition product either equals the amount of the syn adduct, or predominates.

The acetonide $(\mathbf{6 a} / \mathbf{b})$ has been the derivative of $\mathbf{1 a} / \mathbf{b}$ that has been utilized far more than any other. Experiments with 6 and 6b (X $=$ alkyl, 7-norbornadienyl, CF_{3}, and halogens) and N -phenyl- and N-ethylmaleimide resulted in additions with low facial selectivities, ${ }^{11,17-20}$ with the ratios being somewhat dependent on the solvent. ${ }^{19,20}$ However, for the reactions of $\mathbf{6 b}(X=$ carbon $)$ with maleic anhydride, a dienophile that with 5-alkyl- and 5-halogen-substituted 1,3 -cyclopentadienes was closely related to the maleimides in terms of reactivity and facial selectivity, ${ }^{14,21}$ only anti-addition products were reported, ${ }^{22,23}$ and the additions of substituted maleic anhydride derivatives to $\mathbf{6 a}$ gave the antiaddition products in roughly 75% yield. ${ }^{5}$ Quinones are also closely related to maleimides in terms of their Diels-Alder behavior, ${ }^{14,21}$ so it is curious that the reactions of benzoquinone
and naphthoquinone with $\mathbf{6 b}(\mathrm{X}=\mathrm{Cl}, \mathrm{Br})$ gave only the anti adducts, although the yields were reported to be modest. ${ }^{23-25}$ All other reactions of $\mathbf{6 b}$ ($\mathrm{X}=$ carbon, halogens) with carbonbased dienophiles provided anti-addition products only. $6,{ }^{6,17-20,24,26}$ Reactions of $\mathbf{6 a}$ and $\mathbf{6 b}\left(\mathrm{X}=\mathrm{CF}_{3}, 7\right.$-norbornadieneyl, halogen) with PTAD and with nitroso compounds gave the anti adducts exclusively. ${ }^{17,18,20,24,26,27}$ Also, addition of singlet oxygen to $\mathbf{6 b}(\mathrm{X}=$ $\mathrm{Cl})$ was only via anti addition. ${ }^{28}$

The epoxide compound 9 has some similarity to $\mathbf{1 a}$, and its Diels-Alder reaction with N-phenylmaleimide took place exclusively anti to the oxygen. ${ }^{29}$ The same facial preference was reported for the addition of PTAD to $9 .{ }^{30}$ Calculations pointed to steric hindrance as the controlling factor. ${ }^{31}$

In spite of the number of examples of Diels-Alder reactions of $\mathbf{1 a}$ and $\mathbf{1 b}$ in the literature, explanations for the facial selectivities are still lacking. The major drawback of using the published data for the development of hypotheses is that in most instances it appears that only the major adduct was isolated and characterized. Yields of less than 70% are not uncommon-some are even less than 50%-and so it is not known if the reactions of $\mathbf{1 a} / \mathbf{b}$ are really highly facially selective with some important dienophiles. Therefore we undertook a reexamination of the facial selectivity in the Diels-Alder reactions of diol 1a and some of its derivatives. First, the acetonide 6a was reacted with a series of carbon-based dienophiles to determine if the maleimides are truly different from other dienophiles in that only they have been reported to have low facial selectivities. Second, 1a and a number of derivatives were reacted with azo-dienophiles in order to confirm whether large differences exist in facial selectivity between 1a and the derivatives. Our results are presented here.

Results and discussion

The acetonide 6a with carbon-based dienophiles

The acetonide 6a was prepared from $\mathbf{1 0}$ by acetonization and double-elimination with base. The diol $\mathbf{1 0}$ had been synthesized from 1,4-cyclohexadiene (Scheme 1) by a previously described method. ${ }^{11}$

Scheme 1 Preparation of acetonide 6a.
The reactant pair of diene 6a and maleimide provided an opportunity to assess the influence of the solvent on facial selectivity, because both addends might be expected to associate significantly with polar solvents. To the best of our knowledge, only three similar studies have been reported. ${ }^{11,19,32}$ The reactions of $\mathbf{6 a}$ with maleimide were carried out at room temperature in a variety of solvents (Table 1). In every instance two adducts (11 and 12, in Fig. 2) were obtained, in combined yields of over 80%. As in all of the work described here, the relative amounts of the adducts were determined by careful integration of the welldispersed signals for the olefinic hydrogens in the ${ }^{1} \mathrm{H}$ NMR spectra of the reaction mixtures. (In this, and most subsequent reactions, the adducts were separable by flash chromatography, and the

$11 \mathrm{R}=\mathrm{H}$
$13 \mathrm{R}=\mathrm{Me}$
$15 \mathrm{R}=\mathrm{Et}$
$17 \mathrm{R}=\mathrm{Ph}$

$19 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{CO}-\mathrm{O}-\mathrm{CO}-$
$21 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-$
$24 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$ $26 \mathrm{R}_{1}=-\mathrm{COCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$ $29 \mathrm{R}_{1}, \mathrm{R}_{2}=$-O-CO-O-

23

31

28

$32 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{Me}$
$33 \mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{Et}, \mathrm{R}_{2}=\mathrm{H}$

$12 \mathrm{R}=\mathrm{H}$
$14 R=M e$
$16 \mathrm{R}=\mathrm{Et}$
$18 \mathrm{R}=\mathrm{Ph}$

$20 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{CO}-\mathrm{O}-\mathrm{CO}-$
$22 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{CO}-\mathrm{CH}=\mathrm{CH}-\mathrm{CO}-$
$25 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
$27 \mathrm{R}_{1}=-\mathrm{COCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
$30 \mathrm{R}_{1}, \mathrm{R}_{2}=-\mathrm{O}-\mathrm{CO}-\mathrm{O}-$

Fig. 2 Adducts derived from diene $6 \mathbf{a}$ and various ethylenic and acetylenic dienophiles.
stereochemistry of each adduct was determined by measurement of NOE enhancements.)

The results in Table 1 show a much greater range of facial selectivities than the previous studies, from essentially no facial selectivity up to a $1: 9$ ratio. Whereas the three previous studies all used oxygen-substituted dienes (1a, ${ }^{11} \mathbf{6 a}{ }^{19}$ and 5-[(hydroxyimino)methyl]-1,2,3,4,5-pentamethylcyclopentadiene ${ }^{32}$), in this work the dienophile bore an acidic hydrogen (in contrast with N-ethyl- and N-phenylmaleimide ${ }^{11,19,32}$). The antiaddition product was generally more favored by a high solvent dielectric. (In Table 1, the solvents from benzene to water are given

Table 1 Ratios of the syn adduct (11) to the anti adduct (12) from the Diels-Alder reactions of maleimide with the acetonide diene $\mathbf{6 a}$ in different solvents

Solvent	Total yield (11 and 12)(\%)	Ratio of the syn adduct (11) to the anti adduct (12)
No solvent	99	$27: 73$
Benzene	83	$42: 58$
Chloroform	99	$46: 54$
Diethyl ether	90	$45: 55$
Dichloromethane	99	$39: 61$
Pyridine	97	$29: 71$
Methanol	94	$27: 73$
Acetonitrile	99	$21: 79$
Dimethyl sulfoxide	97	$14: 86$
Water	89	$10: 90$
1 M LiCl in water	81	$14: 86$
1 M LiClO	in water	85

in the order of increasing dielectric constant.) Addition of salts $\left(\mathrm{LiCl}\right.$ and $\left.\mathrm{LiClO}_{4}\right)$ to the water resulted in slightly reduced facial selectivities. The facial selectivity in a solution of LiClO_{4} in diethyl ether was better than in just diethyl ether. Thus, synthetically it would be advisable to use a solvent of high dielectric to maximize the yield of an anti adduct.

The facial selectivities of the reactions of N-methyl-, N-ethyl, and N-phenylmaleimide with 6a (leading to products 13-18) were similar to that of maleimide, i.e., low, when all the reactions were conducted in benzene (Table 2). The facial selectivity in the reaction of the unsymmetrical diol $\mathbf{1 b}\left(\mathrm{X}=\mathrm{CF}_{3}\right)$ with N ethylmaleimide was consistent with the reactions of $\mathbf{1 a}$: the ratio was $48: 53$ slightly favoring the anti adduct. ${ }^{18}$

Reactions of $\mathbf{6 a}$ with a number of additional carbon-based, ethylenic dienophiles were conducted in benzene (Table 2). Like maleimide, maleic anhydride, p-benzoquinone, and dimethyl maleate reacted with low facial selectivities, at best approximately 1 $: 2$, in favor of the anti adducts. The two adducts from the reaction of the quinone behaved very differently during purification on silica. The syn adduct 21 was isolated in a straightforward way, but the anti adduct 22, while evident by ${ }^{1} \mathrm{H}$ NMR in the crude product mixture, was obtained as the aromatized compound 23. The unsymmetrical dienophile 3-buten-2-one was modestly more
facially selective than maleimide, producing (endo) adducts in a ratio of $1: 4$ in favor of the anti adduct. In addition to the two endo adducts, the reaction with 3-buten-2-one yielded a small proportion of the anti-exo adduct 28. It was surprising that vinylene carbonate, which reacted sluggishly with $\mathbf{6 a}$, produced adducts in a ratio of $4: 1$ in favor of the syn adduct. The reason for this difference in facial preference is not obvious.

Overall, none of these ethylenic dienophiles gave only one adduct with $\mathbf{6 a}$. The many results for $\mathbf{6 b}$ suggest that it reacts with much higher facial selectivity than does $\mathbf{6 a}$. A possible explanation is that an interaction between the annular substituent and the closer oxygen of $\mathbf{6 b}$ makes the difference in transition state energies of the syn and anti transition states larger with $\mathbf{6 b}$ than with $\mathbf{6 a}$. The torsional angle from the annular substituent to the closer oxygen of $\mathbf{6 b}$ is very close to 60°. In the syn transition state, this angle would be compressed, whereas in the anti transition state this angle would become larger. While angular changes at the transition states would be similar with $\mathbf{6 a}$, the size of a hydrogen on $\mathbf{6 a}$, versus the substituent on $\mathbf{6 b}$, would make the consequence of the angular change less pronounced.

Tetracyanoethylene presents sterically hindering carbon substituents in both the endo and exo regions of the Diels-Alder transition state. Thus, it would be reasonable to expect a significant barrier to syn addition with this dienophile, ${ }^{14,21}$ and, indeed, only its anti adduct 31 was observed. On the other hand, there is no steric reason to anticipate a significant barrier to syn addition with an acetylenic dienophile. With 5-alkyl-1,3-cyclopentadienes dimethyl acetylenedicarboxylate showed more syn adduct than did ethylenic dienophiles, ${ }^{21}$ and Paquette's dodecahedrane synthesis relied on an initial syn addition of acetylenedicarboxylate to $9,10-$ dihydrofulvalene. ${ }^{33}$ Nevertheless, both dimethyl acetylenedicarboxylate and ethyl propiolate reacted with 6a to provide only the anti adducts 32 and 33. Unsymmetrical dienes 1b $(\mathrm{X}=$ CF_{3}, 7-norbornadieneyl, F) had shown the same selectivity. ${ }^{17,18,20}$ It can be conjectured that the reluctance of the alkyne to add syn to the oxygen functions stems from a repulsive interaction in the syn transition state between the π-bond of the alkyne that is orthogonal to the plane of the developing σ-bonds and the lone pair(s) of the oxygen(s) on the diene. There is some computational evidence that a second factor can attenuate syn addition. A comparison of computed (HF/6-31G(d)) transition

Table 2 Proportions of syn adduct and anti adduct from the Diels-Alder reactions of carbon-based dienophiles with the acetonide diene $\mathbf{6 a}$ in benzene

Dienophile	syn Adduct	anti Adduct	Proportions (\%) of the syn and the anti adducts
Maleimide	11	12	42:58
N-Methylmaleimide	13	14	47 : 53
N-Ethylmaleimide ${ }^{\text {a }}$	15	16	39:61
N-Phenylmaleimide ${ }^{a}$	17	18	52:48 ${ }^{\text {b }}$
Maleic anhydride	19	20	40 : $60{ }^{\text {c }}$
p-Benzoquinone	21	22	32:68
Dimethyl maleate	24	25	$32: 68$
3-Buten-2-one ${ }^{\text {d }}$	26	27	21:79e
Vinylene carbonate	29	30	81:19
Tetracyanoethylene	-	31	0: 100
Dimethyl acetylenedicarboxylate	-	32	0: 100
Ethyl propiolate	-	33	$0: 100$

[^1]states for syn and anti additions of acetylene and of maleimide to 5-methyl-1,3-cyclopentadiene indicates that more syn addition should occur with acetylene (29% syn with acetylene versus 13% syn with maleimide). ${ }^{15}$ This is in accord with a simple steric rationalization. However, the corresponding comparisons with 5-chloro- and 5-bromo-1,3-cyclopentadiene reveal that much less syn addition should take place with acetylene compared to maleimide (for the chloro-diene, 14% syn with acetylene versus 88% syn with maleimide; and for the bromo-diene, 0.7% syn with acetylene versus 33% syn with maleimide). ${ }^{15}$ These results are not consistent with a simple steric argument, but do indicate another, very significant mechanism of inhibition of the syn addition. In the case of $\mathbf{6 a} / \mathbf{b}$, the geometry of this interaction is different from that in a 5 -substituted 1,3-cyclopentadiene, and $\mathbf{6 a} / \mathbf{b}$ has two, not just one, lone-pair-bearing plane-nonsymmetric atoms.

Dimerization

Dimerization of 1a or its derivatives would be a special case of the addition of a carbon-based dienophile, one in which the dienophile is also plane-nonsymmetric. Dienes $\mathbf{1 a}$ and $\mathbf{1 b}$ do not appear to dimerize spontaneously, but dimerization of $\mathbf{6 b}\left(\mathrm{X}=\mathrm{CF}_{3},{ }^{17} \mathrm{Br}^{34,35}\right.$ $\mathrm{Cl},{ }^{35}$ vinyl, ${ }^{36} \mathrm{CN},{ }^{37} \mathrm{SiHMe}_{2}{ }^{38}$) is well known, and trans-benzylidene 8 (and the $p-\mathrm{NO}_{2}$-phenyl variant) also dimerizes readily giving 34 (Fig. 3). ${ }^{11}$ In every instance, the only dimer isolated was the result of anti addition of both the diene and the dienophile partners. That only one dimer was produced from 8 was in accord with the high facial selectivity witnessed in the reaction of $\mathbf{8}$ with N phenylmaleimide. ${ }^{11}$ Prolonged storage of the cis-benzylidene 7, which was initially thought not to dimerize, ${ }^{11}$ also produced one dimer 35. This was once again the result of anti addition of both the diene and the dienophile partners.

$$
\begin{aligned}
& 34 R_{1}=\mathrm{Ph}, \mathrm{R}_{2}=\mathrm{H} \\
& 35 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ph} \\
& 37 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}
\end{aligned}
$$

Fig. 3 Dimeric products from acetonides.
In comparison with $\mathbf{7}$ and $\mathbf{8}, \mathbf{6 a}$ had shown less facial selectivity with N-phenylmaleimide. ${ }^{11}$ Diene $\mathbf{6 a}$ was less facially selective in dimerization, also. When 6 a was kept under nitrogen at room temperature for 28 days, the result was conversion to two dimers 36 and 37 , in a ratio of $1: 6$. Measurement of NOE enhancements revealed that the minor isomer was the result of syn addition of the diene and anti addition of the dienophile (36). The major isomer was the result of anti addition of both the diene and the dienophile partners (37). Compound 37 was the same as the product of debromination of the dimer of $\mathbf{6 b}(\mathrm{X}=\mathrm{Br}) .{ }^{35}$ It is not clear why 6a shows less facial selectivity in its dimerization than does $\mathbf{6 b}$, but that only two of the four possible endo-addition dimers were

Table 3 Proportions of syn adduct and anti adduct from the Diels-Alder reactions of 4-phenyl-1,2,4-triazoline-3,5-dione with 1a and derivatives in acetone

Diene	syn Adduct	anti Adduct	Proportions (\%) of syn and anti adducts
$\mathbf{1 a}$	$\mathbf{3 8}$	$\mathbf{3 9}$	$76: 24$
$\mathbf{2}$	-	$\mathbf{4 0}$	$0: 100$
$\mathbf{4 a}$	$\mathbf{4 1}$	$\mathbf{4 2}$	$12: 88$
$\mathbf{6 a}$	-	$\mathbf{4 3}$	$0: 100$
$\mathbf{7}$	-	$\mathbf{4 4}$	$0: 100$
$\mathbf{8}$	-	$\mathbf{4 5}$	$0: 100$

produced from 6a indicates that $\mathbf{6 a}$ is more facially selective as a dienophile than as a diene.

Azo dienophiles with 1a and derivatives

A survey of additions of $\mathbf{1 a}$ and derivatives $\mathbf{2}, \mathbf{4 a}, \mathbf{6 a}, 7$ and $\mathbf{8}$ with PTAD was carried out. The results are summarized in Table 3. The stereochemistry of the adducts could be determined by measurement of NOE enhancements, in most instances. This was not the case for 42 (Fig. 4), but acetylation of 39, the minor adduct from 1a, produced 42, the major adduct from $\mathbf{4 a}$.

$38 \mathrm{X}=\mathrm{H}$
$41 X=A c$

$43 X=Y=M e$
$44 X=H, Y=P h$
$45 \mathrm{X}=\mathrm{Ph}, \mathrm{Y}=\mathrm{H}$

$39 \mathrm{X}=\mathrm{H}$
$40 \mathrm{X}=\mathrm{TMS}$
$42 \mathrm{X}=\mathrm{Ac}$

$46 X=Y=M e$
$47 \mathrm{X}=\mathrm{H}, \mathrm{Y}=\mathrm{Ph}$
$48 \mathrm{X}=\mathrm{Ph}, \mathrm{Y}=\mathrm{H}$

Fig. 4 Adducts derived from PTAD and DEAD.

The computational study with 5 -substituted 1,3-cyclopentadienes ${ }^{15}$ had revealed inhibition of syn addition of 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) to a diene with a lone-pairbearing substituent. It was suggested that this interaction was a filled-orbital repulsion. The data in Table 3 suggest that such an interaction might exist with the derivatives of $\mathbf{1 a}$ as well. Whereas PTAD should be less sterically demanding than N phenylmaleimide, the proportions of anti adduct with PTAD were much higher. What was again observed was that the simpler dienes 1a and $\mathbf{4 a}$ seemed to react with less facial selectivity than the substituted dienes $\mathbf{1 b}$ ($\mathrm{X}=$ wide variety of substituents), which had reacted with PTAD to give over 97% of the syn adduct, ${ }^{12}$ and $\mathbf{4 b}\left(\mathrm{X}=\mathrm{CH}_{3}\right)$, for which only the anti adduct had been reported. ${ }^{16}$

It is tempting to ascribe the syn selectivity of $\mathbf{1 a} / \mathbf{b}$ to hydrogen bonding between the addends.
The only products detected from the Diels-Alder reactions of PTAD with dienes 6a, 7 and $\mathbf{8}$ were the anti adducts 43,44 and 45. The same facial selectivity was observed when diethyl azodicarboxylate (DEAD) was employed as an azo dienophile with $6 \mathrm{a}, 7$ and $\mathbf{8}$. There are many examples of additions of heterodienophiles to $\mathbf{6 b}$, and, in every instance, only the anti adducts were reported. ${ }^{17,18,20,24,26,27}$

Conclusions

The reactions of $\mathbf{6 a}$ with maleimide in various solvents showed a significant range of facial selectivities, from essentially $1: 1$ up to $1: 9$. Different ethylenic dienophiles added to $\mathbf{6 a}$ (in benzene) with modest facial selectivities, in contrast with reportedly high selectivities for the substituted dienes $\mathbf{6 b}$. Acetylenic dienophiles added to 6a exclusively anti. There was also a marked tendency for azo dienophiles (PTAD and DEAD) to add anti to the oxygen functions of the diene, although the reaction of PTAD and 1a gave mainly the syn adduct.

Experimental

General

Melting points are uncorrected. NMR spectra are at 300 MHz for ${ }^{1} \mathrm{H}$ and 74.5 MHz for ${ }^{13} \mathrm{C}$. Shifts are relative to internal tetramethylsilane. Nuclear Overhauser effect (NOE) measurements were made using difference spectra. Assignments are based on 2-D homoand heterocorrelation experiments, APT spectra (for ${ }^{13} \mathrm{C}$) and the NOE measurements. ${ }^{13} \mathrm{C}$ NMR shifts that are not assigned may be followed in parentheses by the number of attached hydrogens. Mass spectra were obtained by electron impact ionization at 70 eV . "Chromatography" refers to flash chromatography on silica gel; elution was with hexanes containing an increasing proportion of ethyl acetate.

Diene 1a was obtained from the Aldrich Chemical Co. Dienes $\mathbf{2},{ }^{11} \mathbf{4 a},{ }^{11} \mathbf{6 a},{ }^{11,39,40} 7,{ }^{11}$ and $\mathbf{8}^{11}$ were prepared by literature methods from 10. ${ }^{39,40}$ Diels-Alder reactions were conducted at RT except in those cases in which no product was evident by TLC after a few hours at RT. Solvents were evaporated, and the ratios of the adducts were obtained by careful integration of the ${ }^{1} \mathrm{H}$ NMR spectra. In most instances, the adducts could be separated by chromatography.

Diels-Alder reactions of acetonide 6a with carbon-based dienophiles

Solutions of $\mathbf{6 a}$ and the dienophile in benzene were maintained at RT for a few hours. If TLC revealed some reaction progress, the mixture was stirred at RT until reaction was complete (by TLC). If TLC showed no reaction progress, the solution was heated at reflux until reaction was complete (by TLC). (Under these conditions cis-stilbene and styrene failed to undergo any Diels-Alder addition to 6a.) After removal of the solvent the crude reaction mixture was analysed by ${ }^{1} \mathrm{H}$ NMR in order to obtain the proportions of the adducts by integration. Adducts were then purified by chromatography. Benzene solutions of some
pure adducts ($\mathbf{1 1} \mathbf{- 1 4}, \mathbf{2 4}, \mathbf{2 5}, \mathbf{2 9}, \mathbf{3 0}, \mathbf{3 1}$ and $\mathbf{3 3}$) were heated under reflux for 12 to 16 h . In no case was there evidence, by TLC or by ${ }^{1} \mathrm{H}$ NMR, of equilibration to a mixture of adducts.

Diels-Alder reaction of 6a with maleimide

A solution of $\mathbf{6 a}(124 \mathrm{mg}, 0.817 \mathrm{mmol})$ and maleimide (158 mg , 1.63 mmol) in benzene (4.0 ml) at RT for 16 h gave $\mathbf{1 1}(182 \mathrm{mg}$, 45% after recrystallization from benzene) and $\mathbf{1 2}(152 \mathrm{mg}, 38 \%$ after recrystallization from benzene) as colourless crystals.

For $\quad(3 \mathrm{a} \alpha, 4 \alpha, 4 \mathrm{a} \beta, 7 \mathrm{a} \beta, 8 \alpha, 8 \mathrm{a} \alpha)-4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}$-tetrahydro-2,2-di-methyl-4,8-etheno-4H-1,3-dioxolo[4,5-f]isoindole-5,7(3a $H, 6 H$)dione 11: mp 172-174 ${ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 1754 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.40$ (1 H , very br, N-H), $6.20(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $10-\mathrm{H}), 4.15(2 \mathrm{H}, \mathrm{dd}, J$ 1.6 and $2.2,3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 3.39(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 3.36$ (2 H , narrow $\mathrm{m}, 4 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$), $1.49\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right.$) and 1.35 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{a}$); saturation at $\delta 6.20$ led to NOEs at $\delta 4.15$ (1%) and $3.39(9 \%)$, saturation at $\delta 4.15$ led to NOEs at $\delta 6.20(1.5 \%)$, $3.39(14 \%)$ and $1.35(2 \%)$, saturation at $\delta 3.39$ led to NOEs at δ $6.20(8 \%)$ and $4.15(7 \%)$, saturation at $\delta 3.36$ led to NOE at δ $1.49(1 \%)$, saturation at $\delta 1.49$ led to NOE at $\delta 3.36(5 \%)$ and saturation at $\delta 1.35$ led to NOE at $\delta 4.15(8 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 179.7$ (C-5 and C-7), 131.6 (C-9 and C-10), 112.5 (C-2), 73.7 (C-3a and $\mathrm{C}-8 \mathrm{a}$), 39.0 (C-4a and C-7a), 36.5 (C-4 and C-8), $26.3\left(2-\mathrm{Me}_{\beta}\right)$ and $24.2\left(2-\mathrm{Me}_{a}\right) ; m / z 250\left(5 \%, \mathrm{M}^{+}+1\right), 234.0775\left(64, \mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3}, \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4}$ requires 234.0766), 192 (51), 191 (63), 163 (40), 162 (35), 146 (36), 135 (48), 120 (64), 119 (32), 118 (48), 117 (39), 100 (74), 92 (78), 91 (82), 85 (53), 78 (49), 65 (55) and 43 (100).
For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \alpha, 7 \mathrm{a} \alpha, 8 \beta, 8 \mathrm{a} \alpha)-4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}-$ tetrahydro-2,2-di-methyl-4,8-etheno-4H-1,3-dioxolo[4,5-f]isoindole-5,7(3a $H, 6 H$)dione 12: mp 233-234 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1701 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.27(1 \mathrm{H}$, very br, N-H), $6.13(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$ and $10-\mathrm{H}), 4.28(2 \mathrm{H}$, narrow $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 3.44(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 2.81(2 \mathrm{H}$, $\mathrm{t}, J 1.4,4 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}), 1.34\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right)$ and $1.29(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}_{\alpha}$); saturation at $\delta 6.13$ led to NOE at $\delta 3.44(7 \%)$, saturation at $\delta 4.28$ led to NOEs at $\delta 3.44(9 \%), 2.81(13 \%)$ and 1.29 (2%), saturation at $\delta 3.44$ led to NOEs at $\delta 6.13(8 \%), 4.28(4 \%)$ and $2.81(5 \%)$, saturation at $\delta 2.81$ led to NOEs at $\delta 4.28(11 \%)$ and $3.44(8 \%)$, saturation at $\delta 1.34$ led to NOE at $\delta 6.13(1.5 \%)$ and saturation at $\delta 1.29$ led to NOE at $\delta 4.28(7 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 177.3 (C-5 and C-7), 129.7 (C-9 and C-10), 109.8 (C-2), 77.2 (C-3a and C-8a), 41.7 (C-4a and C-7a), 36.3 (C-4 and C-8), 25.3 $\left(2-\mathrm{Me}_{\beta}\right)$ and $24.9\left(2-\mathrm{Me}_{\alpha}\right) ; m / z 250\left(0.7 \%, \mathrm{M}^{+}+1\right), 234.0773$ (30, $\mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NO}_{4}$ requires 234.0766), 192 (17), 191 (23), 163 (14), 162 (12), 146 (12), 135 (15), 120 (23), 100 (32), 92 (55), 91 (72) and 43 (100).

Diels-Alder reaction of 6a with N-methylmaleimide

A solution of $\mathbf{6 a}(108 \mathrm{mg}, 0.712 \mathrm{mmol})$ and N-methylmaleimide ($79 \mathrm{mg}, 0.71 \mathrm{mmol}$) in benzene $(1.0 \mathrm{ml})$, stirred at RT for 17 h , yielded $\mathbf{1 3}(74 \mathrm{mg}, 40 \%)$ and $\mathbf{1 4}(71 \mathrm{mg}, 38 \%)$ as colourless crystals.

For $\quad(3 \mathrm{a} \alpha, 4 \alpha, 4 \mathrm{a} \beta, 7 \mathrm{a} \beta, 8 \alpha, 8 \mathrm{a} \alpha)-4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}$-tetrahydro-2,2,6-tri-methyl-4,8-etheno-4H-1,3-dioxolo[4,5-f]isoindole-5,7(3a $H, 6 H$)dione 13: $\mathrm{mp} 218-220^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 1689 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.12(2 \mathrm{H}$, dd, $J 3.0$ and $4.5,9-\mathrm{H}$ and $10-\mathrm{H}), 4.15(2 \mathrm{H}$, dd, $J 1.7$ and 2.2 , $3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 3.41(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 3.32(2 \mathrm{H}$, narrow m, $4 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}), 2.91(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 1.48\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right)$ and 1.35 $\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{a}\right)$; saturation at $\delta 4.15$ led to NOEs at $\delta 6.12(2 \%)$,
$3.41(10 \%)$ and $1.35(2 \%)$ and saturation at $\delta 1.48$ led to NOE at δ $3.32(5 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 179.4(\mathrm{C}-5$ and C-7), 131.5 (C-9 and C-10), 112.4 (C-2), 73.9 (C-3a and C-8a), 37.7 (C-4a and C-7a), 36.6 (C-4 and C-8), $26.3\left(2-\mathrm{Me}_{\beta}\right), 24.7(\mathrm{~N}-\mathrm{Me})$ and $24.2\left(2-\mathrm{Me}_{\alpha}\right) ; m / z$ $264\left(2 \%, \mathrm{M}^{+}+1\right), 248.0913\left(35, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}\right.$ requires 248.0922), 206 (51), 205 (47), 204 (16), 177 (32), 176 (25), 160 (21), 146 (37), 120 (43), 119 (21), 118 (22), 100 (73), 92 (100), 91 (100), 85 (39), 78 (28), 77 (22), 65 (33) and 43 (100).

For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \alpha, 7 \mathrm{a} \alpha, 8 \beta, 8 \mathrm{a} \alpha)-4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}$-tetrahydro-2,2,6-tri-methyl-4,8-etheno-4H-1,3-dioxolo[4,5-f]isoindole-5,7(3a $H, 6 H$)dione 14: mp 190-192 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1691 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.05(2 \mathrm{H}$, $\mathrm{dd}, J 3.1$ and $4.4,9-\mathrm{H}$ and $10-\mathrm{H}), 4.30(2 \mathrm{H}$, narrow m, $3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 3.46(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 2.92(3 \mathrm{H}, \mathrm{s}, \mathrm{N}-\mathrm{Me}), 2.76(2 \mathrm{H}$, narrow m, 4a-H and $7 \mathrm{a}-\mathrm{H}$), $1.33\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right)$ and $1.29(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}_{\alpha}$); saturation at $\delta 4.30$ led to NOEs at $\delta 3.46(9 \%), 2.76$ (14%) and $1.29(2 \%)$ and saturation at $\delta 1.33$ led to NOE at δ $6.05(2 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 177.4$ (C-5 and C-7), 129.6 (C-9 and C-10), 109.7 (C-2), 77.3 (C-3a and C-8a), 40.4, 36.4, 25.3 and 24.9 (3C); $m / z 264\left(1 \%, \mathrm{M}^{+}+1\right), 248.0922\left(41, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{NO}_{4}\right.$ requires 248.0922), 206 (45), 205 (41), 204 (16), 177 (32), 176 (22), 160 (20), 146 (33), 120 (41), 118 (22), 100 (54), 92 (100), 91 (96), 85 (37), 78 (29), 65 (25) and 43 (93).

Diels-Alder reaction of 6a with maleic anhydride

A solution of $\mathbf{6 a}(124 \mathrm{mg}, 0.817 \mathrm{mmol})$ and maleic anhydride $(159 \mathrm{mg}, 162 \mathrm{mmol})$ in benzene $(4.0 \mathrm{ml})$ was stirred at RT for 16 h . After a ${ }^{1} \mathrm{H}$ NMR spectrum was taken, the product was passed through a very short silica gel column in order to remove less polar impurities. A mixture of adducts ($334 \mathrm{mg}, 83 \%$) was obtained. Attempts to separate the adducts by chromatography led to hydrolysis. Assignment of the structures was based on similarity of the NMR spectra to other adduct mixtures. In the ${ }^{1} \mathrm{H}$ NMR spectra, the olefinic signal was always slightly downfield in the syn adduct, the carbinolic signal was always slightly downfield in the anti adduct, and the signal for the hydrogens α to the carbonyls was always at least 0.5 ppm downfield for the syn adduct.

For $\quad(3 \mathrm{a} \alpha, 4 \alpha, 4 \mathrm{a} \beta, 7 \mathrm{a} \beta, 8 \alpha, 8 \mathrm{a} \alpha)-3 \mathrm{a}, 4,4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}-h e x a h y d r o-2,2-$ dimethyl-4,8-ethenofuro[3,4-f]-1,3-benzodioxole-5,7-dione 19: δ_{H} $\left(\mathrm{CDCl}_{3}\right)$ (data from the adduct mixture) $6.20(2 \mathrm{H}, \mathrm{dd}, J 2.9$ and 4.3), $4.15(2 \mathrm{H}$, narrow m$), 3.40(2 \mathrm{H}, \mathrm{m}), 3.38(2 \mathrm{H}$, narrow m$)$, $1.49(3 \mathrm{H}, \mathrm{s})$ and $1.35(3 \mathrm{H}, \mathrm{s})$.

For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \alpha, 7 \mathrm{a} \alpha, 8 \beta, 8 \mathrm{a} \alpha)-3 \mathrm{a}, 4,4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}-h e x a h y d r o-2,2-$ dimethyl-4,8-ethenofuro[3,4-f]-1,3-benzodioxole-5,7-dione 20: δ_{H} $\left(\mathrm{CDCl}_{3}\right)$ (data from the adduct mixture) $6.13(2 \mathrm{H}, \mathrm{dd}, J 3.0$ and 4.5), $4.28(2 \mathrm{H}$, narrow m), $3.44(2 \mathrm{H}, \mathrm{m}), 2.82(2 \mathrm{H}$, apparent t, J $1.4), 1.34(3 \mathrm{H}, \mathrm{s})$ and $1.29(3 \mathrm{H}, \mathrm{s})$.

Diels-Alder reaction of 6 a with \boldsymbol{p}-benzoquinone

A solution of $\mathbf{6 a}(358 \mathrm{mg}, 2.34 \mathrm{mmol})$ and p-benzoquinone ($385 \mathrm{mg}, 3.53 \mathrm{mmol}$) in benzene ($2.0 \mathrm{ml} \mathrm{)} \mathrm{was} \mathrm{stirred} \mathrm{at} \mathrm{RT} \mathrm{for}$ 72 h . Chromatography (20% EtOAc in hexanes) could not separate the adducts cleanly. Compound 21 ($84 \mathrm{mg}, 9 \%$) was obtained as colourless crystals following recrystallization four times from EtOAc-hexanes and hexanes. The other adduct was isolated as the aromatized compound $\mathbf{2 3}$ ($511 \mathrm{mg}, 56 \%$) after recrystallization three times from EtOAc-hexanes and hexanes.

For $\quad(3 \mathrm{a} \alpha, 4 \alpha, 4 \mathrm{a} \beta, 8 \mathrm{a} \beta, 9 \alpha, 9 \mathrm{a} \alpha)$-3a,4,9,9a-tetrahydro-2,2-di-methyl-4,9-etheno-1,3-dioxolo[4,5-b]naphthalene-5,8(4a $H, 8 \mathrm{a} H)$ dione 21: mp 122-123 ${ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1703 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.69(2 \mathrm{H}$, s, $6-\mathrm{H}$ and $7-\mathrm{H}), 6.17(2 \mathrm{H}, \mathrm{dd}, J 2.9$ and $4.4,10-\mathrm{H}$ and $11-\mathrm{H}), 4.10$ $(2 \mathrm{H}$, apparent $\mathrm{t}, J 1.9,3 \mathrm{a}-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H}), 3.51(4 \mathrm{H}$, apparent br s, $4-\mathrm{H}, 4 \mathrm{a}-\mathrm{H}, 8 \mathrm{a}-\mathrm{H}$ and $9-\mathrm{H}), 1.51\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right)$ and $1.36(3 \mathrm{H}$, $\left.\mathrm{s}, 2-\mathrm{Me}_{a}\right)$; saturation at $\delta 6.17$ led to NOEs at $\delta 4.10(1 \%)$ and 3.51 (2%), saturation at $\delta 4.10$ led to NOEs at $\delta 6.17$ (2%) and 3.51 (4\%), saturation at $\delta 1.51$ led to NOE at $\delta 3.51$ (3%) and saturation at $\delta 1.36$ led to NOE at $\delta 4.10(8 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 199.4$ (C-5 and C-8), 141.8 (C-6 and C-7), 132.8 (C-10 and C-11), 122.2 (C-2), 73.9 (C-3a and C-9a), 42.0, 39.2, $26.5\left(2-\mathrm{Me}_{\beta}\right)$ and 24.3 $\left(2-\mathrm{Me}_{\alpha}\right) ; m / z 260\left(7 \%, \mathrm{M}^{+}\right), 245.0815\left(50, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}\right.$ requires 245.0812), 231 (8), 203 (11), 202 (13), 185 (18), 173 (23), 157 (13), 145 (16), 129 (17), 120 (29), 100 (46), 91 (44), 82 (54), 54 (33) and 43 (100).

For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \alpha, 8 \mathrm{a} \alpha, 9 \beta, 9 \mathrm{a} \alpha)-3 \mathrm{a}, 4,9,9 \mathrm{a}$-tetrahydro-2,2-di-methyl-4,9-etheno-1,3-dioxolo[4,5-b]naphthalene-5,8(4a $H, 8 \mathrm{a} H)$ dione 22: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (data from the adduct mixture before chromatography) $6.70(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.10(2 \mathrm{H}, \mathrm{dd}, J 3.0$ and $4.5,10-\mathrm{H}$ and $11-\mathrm{H}), 4.33(2 \mathrm{H}$, narrow m, $3 \mathrm{a}-\mathrm{H}$ and 9 aH), $3.53(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $9-\mathrm{H}), 2.82(2 \mathrm{H}$, narrow $\mathrm{m}, 4 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 1.32$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$) and 1.29 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$).

For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \alpha, 8 \mathrm{a} \alpha, 9 \beta, 9 \mathrm{a} \alpha)-3 \mathrm{a}, 4,9,9 \mathrm{a}-$ tetrahydro-2,2-di-methyl-4,9-etheno-1,3-dioxolo[4,5-b]naphthalene-5,8-diol 23: mp $151-152{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.68(2 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$ and $7-\mathrm{H}), 6.41(2 \mathrm{H}, \mathrm{dd}$, $J 3.0$ and $4.3,10-\mathrm{H}$ and $11-\mathrm{H}), 4.57(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $9-\mathrm{H}), 4.27$ (2 $\mathrm{H}, \mathrm{t}, J 1.7,3 \mathrm{a}-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H}), 1.37\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right)$ and $1.25(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}_{u}$); saturation at $\delta 6.41$ led to NOE at $\delta 4.57(7 \%)$, saturation at $\delta 4.57$ led to NOEs at $\delta 6.41(7 \%)$ and $4.27(4 \%)$, saturation at $\delta 4.27$ led to NOEs at $\delta 4.57(10 \%)$ and $1.25(1.5 \%)$, saturation at $\delta 1.37$ led to NOE at $\delta 6.41(3 \%)$ and saturation at $\delta 1.25$ led to NOE at $\delta 4.27(9 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 146.9,135.9,131.5,113.7,78.4$, 39.4, 25.7 and 25.5 (two aromatic signals are likely overlapped); $m / z 260.1031\left(10 \%, \mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{4}\right.$ requires 260.1047), 245 (27), 231 (19), 203 (13), 202 (29), 185 (24), 173 (36), 145 (18), 129 (15), 120 (47), 100 (90), 91 (57), 85 (22), 82 (88), 77 (16), 65 (22), 54 (51) and 43 (100).

Diels-Alder reaction of 6 a with dimethyl maleate

A solution of $\mathbf{6 a}(120 \mathrm{mg}, 0.794 \mathrm{mmol})$ and dimethyl maleate $(229 \mathrm{mg}, 1.58 \mathrm{mmol})$ in benzene $(1.0 \mathrm{ml})$ was stirred at RT for 5 days. TLC still showed much unreacted 6a, but the mixture was concentrated, and flash chromatography provided $\mathbf{2 4}$ ($25 \mathrm{mg}, 11 \%$) and 25 ($83 \mathrm{mg}, 35 \%$) as colourless solids.

For dimethyl ($3 \mathrm{a} R, 4 S, 7 R, 7 \mathrm{a} S, 8 S, 9 R$)-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-ethano-1,3-benzodioxole-8,9-dicarboxylate 24: mp 134-135 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1738$ and 1732; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.29(2 \mathrm{H}$, $\mathrm{dd}, J 3.0$ and $4.8,5-\mathrm{H}$ and $6-\mathrm{H}), 4.05(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J \approx 2.1,3 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}), 3.61\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 3.54(2 \mathrm{H}, \mathrm{br}$ s, $8-\mathrm{H}$ and $9-\mathrm{H})$, $3.14(2 \mathrm{H}, \mathrm{br} \mathrm{m}, 4-\mathrm{H}$ and $7-\mathrm{H}), 1.53\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\text {endo }}\right)$ and 1.34 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{e x o}$); saturation at $\delta 6.29$ led to NOEs at $\delta 4.05$ (1\%) and $3.14(4 \%)$, saturation at $\delta 4.05$ led to NOEs at $\delta 6.29(1 \%)$, $3.14(5 \%)$ and $1.34(1.5 \%)$, saturation at $\delta 3.54$ led to NOEs at δ $3.14(3 \%)$ and $1.53(0.8 \%)$, saturation at $\delta 1.53$ led to NOE at δ $3.54(3 \%)$ and saturation at $\delta 1.34$ led to NOE at $\delta 4.05(5 \%) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 173.6,131.6,112.0,74.0,51.7,40.0,37.4,26.3$ and 24.3; $\mathrm{m} / \mathrm{z} 296.1258\left(4 \%, \mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}\right.$ requires 296.1258), 281 (16), 265
(23), 238 (51), 207 (16), 206 (22), 179 (28), 178 (20), 147 (100), 119 (37), 100 (58), 91 (56), 59 (37) and 43 (57).

For dimethyl (3a $R, 4 R, 7 S, 7 \mathrm{a} S, 8 R, 9 S)$-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-ethano-1,3-benzodioxole-8,9-dicarboxylate 25: mp $196-197^{\circ} \mathrm{C}: v_{\text {max }} / \mathrm{cm}^{-1} 1742$ and $1725 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.20(2 \mathrm{H}, \mathrm{dd}, J$ 3.3 and $4.5,5-\mathrm{H}$ and $6-\mathrm{H}), 4.22(2 \mathrm{H}$, narrow $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H})$, $3.63\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OCH}_{3}\right), 3.21(2 \mathrm{H}$, br m, 4-H and 7-H), $2.86(2 \mathrm{H}$, br s, $8-\mathrm{H}$ and $9-\mathrm{H}$), $1.34\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\text {endo }}\right)$ and $1.28\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\text {exo }}\right)$; saturation at $\delta 6.20$ led to NOE at $\delta 3.21(8 \%)$, saturation at $\delta 4.22$ led to NOEs at $\delta 3.21(10 \%), 2.86(15 \%)$ and $1.28(2 \%)$, saturation at $\delta 3.21$ led to NOEs at $\delta 6.20(10 \%), 4.22(5 \%)$ and $2.86(4 \%)$, saturation at $\delta 2.86$ led to NOEs at $\delta 4.22(15 \%)$ and $3.21(9 \%)$, saturation at $\delta 1.34$ led to NOE at $\delta 6.20(2 \%)$ and saturation at δ 1.28 led to NOE at $\delta 4.22(7 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 172.3\left(2 \times \mathrm{CO}_{2}\right), 129.4$ (C-5 and C-6), $109.2(\mathrm{C}-2), 77.5(\mathrm{C}-3 \mathrm{a}$ and $\mathrm{C}-7 \mathrm{a}), 52.0\left(2 \times \mathrm{OCH}_{3}\right)$, 42.9 (C-8 and C-9), 39.5 (C-4 and C-7), $25.3\left(2-\mathrm{Me}_{\text {endo }}\right)$ and 25.0 ($2-\mathrm{Me}_{\text {exo }}$); $m / z 296.1249\left(4 \%, \mathrm{M}^{+}, \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{6}\right.$ requires 296.1258), 281 (27), 265 (20), 238 (16), 207 (20), 206 (29), 179 (27), 178 (17), 147 (100), 119 (33), 100 (32), 91 (56), 85 (28), 59 (42) and 43 (62).

Diels-Alder reaction of 6a with 3-buten-2-one

A solution of $\mathbf{6 a}(126 \mathrm{mg}, 0.833 \mathrm{mmol})$, a large excess $(1.0 \mathrm{ml})$ of 3-buten-2-one, and hydroquinone (10 mg) in toluene (5.0 ml), heated at reflux for 72 h , provided $27(119 \mathrm{mg}, 64 \%)$ after recrystallization from hexane, and a fraction ($17 \mathrm{mg}, 9 \%$) containing a mixture of 26 and 28.

For ($3 \mathrm{a} R^{*}, 4 R^{*}, 7 R^{*}, 7 \mathrm{a} S^{*}, 8 R^{*}$)-8-acetyl-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-ethano-1,3-benzodioxole 26: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (data from a mixture with 28) $6.22(1 \mathrm{H}$, overlapped), $6.06(1 \mathrm{H}$, br $\mathrm{t}, J 7.2), 4.00-4.11(2 \mathrm{H}, \mathrm{m}), 3.8(2 \mathrm{H}, \mathrm{m}$, overlapped), $2.84(1 \mathrm{H}$, m), $2.13(3 \mathrm{H}, \mathrm{s}), 2.13(1 \mathrm{H}, \mathrm{m}$, overlapped), $1.54(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$, $1.53(1 \mathrm{H}, \mathrm{m}$, overlapped) and $1.35(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$.

For $\quad\left(3 \mathrm{a} R^{*}, 4 S^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}, 8 S^{*}\right)$-8-acetyl-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-ethano-1,3-benzodioxole 27: mp $61-62{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1710 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.17(1 \mathrm{H}, \mathrm{t}, J 7.5,5-\mathrm{H}), 5.97(1 \mathrm{H}, \mathrm{t}$, $J 7.5,6-\mathrm{H}), 4.28(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and $7.2,7 \mathrm{a}-\mathrm{H}), 4.22(1 \mathrm{H}, \mathrm{dd}, J$ 3.2 and $7.2,3 \mathrm{a}-\mathrm{H}), 3.23(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.92(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.48(1$ H, ddd, $J 2.0,5.1$ and $9.8,8-\mathrm{H}), 2.16$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}$), 1.81 (1 H , ddd, $J 3.3,5.1$ and $\left.13.4,9-\mathrm{H}_{\text {endo }}\right), 1.46(1 \mathrm{H}$, ddd, $J 2.3,9.8$ and $\left.13.4,9-\mathrm{H}_{e x o}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\text {endo }}\right)$ and $1.29\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\text {exo }}\right)$; saturation at $\delta 6.17$ led to NOEs at $\delta 5.97$ (3%) and $2.92(2 \%)$, saturation at $\delta 5.97$ led to NOEs at $\delta 6.17(4 \%)$ and $3.23(3 \%)$, saturation at $\delta 4.28$ led to NOEs at $\delta 3.23(4 \%), 2.48(8 \%)$ and $1.29(0.6 \%)$, saturation at $\delta 4.22$ led to NOEs at $\delta 2.92(3 \%), 1.46$ (4%) and 1.29 (approx. 0.5%), saturation at $\delta 3.23$ led to NOEs at $\delta 5.97(5 \%) ; 4.28(3 \%), 2.48(2 \%)$ and $2.16(1 \%)$, saturation at $\delta 2.92$ led to NOEs at $\delta 6.17(5 \%), 4.22(3 \%), 1.81(3 \%)$ and $1.46(1.5 \%)$, saturation at $\delta 2.48$ led to NOEs at $\delta 4.28(7 \%), 4.22$ $(1 \%), 3.23(3 \%)$ and $1.46(4 \%)$, saturation at $\delta 1.81$ led to NOEs at $\delta 2.92(5 \%)$ and $1.46(9 \%)$, saturation at $\delta 1.46$ led to NOEs at $\delta 4.22(5 \%), 2.92(2 \%), 2.48(5 \%)$ and $1.81(14 \%)$, saturation at δ 1.34 led to NOEs at $\delta 6.17(1 \%)$ and $5.97(1.5 \%)$ and saturation at $\delta 1.29$ led to NOEs at $\delta 4.28(7 \%)$ and $4.22(6 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 207.5$ (CO), 132.4 (C-5), 127.8 (C-6), 108.6 (C-2), 78.3 (C-3a and C-7a), 46.9 (C-8), 37.1 (C-7), 34.5 (C-4), 28.4 (COMe), 25.4 ($2-\mathrm{Me}_{\text {endo }}$), $24.9\left(2-\mathrm{Me}_{\text {exo }}\right)$ and 22.9 (C-9); $m / z 222.1247\left(1 \%, \mathrm{M}^{+}, \mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{3}\right.$ requires 222.1256), 207 (13), 164 (20), 147 (7), 121 (62), 104 (19), 103 (37), 100 (26), 91 (22), 85 (20), 77 (23) and 43 (100).

For $\quad\left(3 \mathrm{a} R^{*}, 4 S^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}, 8 R^{*}\right)-8$-acetyl-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-ethano-1,3-benzodioxole 28: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ (data from a mixture with 26) 6.13-6.26 ($2 \mathrm{H}, \mathrm{m}$), $4.17(1 \mathrm{H}, \mathrm{br}$ dd, $J 3.0$ and 7.2), 4.1 (1 H , overlapped), $3.8(1 \mathrm{H}$, overlapped, $7-\mathrm{H}$), $2.94(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 2.53(1 \mathrm{H}$, ddd, $J 2.7,5.5$ and $10.8,8-\mathrm{H}), 2.23$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{COCH}_{3}\right), 1.86(1 \mathrm{H}$, ddd, $J 2.1,5.5$ and $13.5,9-\mathrm{H}), 1.37(1$ H , overlapped, $9-\mathrm{H}), 1.32(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$ and $1.23(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$.

Diels-Alder reaction of 6a with vinylene carbonate

A solution of $\mathbf{6 a}(152 \mathrm{mg}, 1.00 \mathrm{mmol})$ and vinylene carbonate $(0.12 \mathrm{ml}, 2.0 \mathrm{mmol})$ in benzene $(8 \mathrm{ml})$, heated under reflux for 8 days, gave 29 ($182 \mathrm{mg}, 38 \%$) and $30(43 \mathrm{mg}, 9 \%)$ as colourless solids after recrystallization from hexane.

For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \beta, 7 \mathrm{a} \beta, 8 \beta, 8 \mathrm{a} \alpha)-3 \mathrm{a}, 4,4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}-$ hexahydro-6,6-dimethyl-4,8-ethenobenzo[1,2- $\left.d: 4,5-d^{\prime}\right]$ bis[1,3]dioxol-2-one 29: $\operatorname{mp} 167-169{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1796 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.23(2 \mathrm{H}, \mathrm{dd}, J 3.0$ and $4.5,9-\mathrm{H}$ and $10-\mathrm{H}), 5.17(2 \mathrm{H}, \mathrm{br}$ s, $3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 4.21(2 \mathrm{H}$, $\mathrm{t}, J 2.1,4 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}), 3.47(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 1.46(3 \mathrm{H}, \mathrm{s}$, $\left.6-\mathrm{Me}_{a}\right)$ and $1.30\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}_{\beta}\right)$; saturation at $\delta 6.23$ led to NOEs at $\delta 4.21(1 \%)$ and $3.47(5 \%)$, saturation at $\delta 5.17$ led to NOEs at $\delta 3.47(5 \%)$ and $1.46(0.7 \%)$, saturation at $\delta 4.21$ led to NOEs at δ $6.23(2 \%), 3.47(8 \%)$ and $1.30(1.5 \%)$, saturation at $\delta 3.47$ led to NOEs at $\delta 6.23(7 \%), 5.17(5 \%)$ and $4.21(5 \%)$, saturation at $\delta 1.46$ led to NOE at $\delta 5.17(6 \%)$ and saturation at $\delta 1.30$ led to NOE at $\delta 4.21(9 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.0(\mathrm{C}-2), 130.5(\mathrm{C}-9$ and $\mathrm{C}-10), 112.1$ (C-6), 74.3 (C-3a and C-8a), 73.7 (C-4a and C-7a), 38.4 (C-4 and C-8), $25.8\left(6-\mathrm{Me}_{\alpha}\right)$ and $23.2\left(6-\mathrm{Me}_{\beta}\right) ; m / z 239\left(1 \%, \mathrm{M}^{+}+1\right)$, $223.0604\left(45, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{5}\right.$ requires 223.0605), 180 (43), 119 (14), 107 (42), 95 (27), 94 (68), 91 (27), 79 (46), 77 (29), 66 (21) and 43 (100).

For $\quad(3 \mathrm{a} \alpha, 4 \beta, 4 \mathrm{a} \alpha, 7 \mathrm{a} \alpha, 8 \beta, 8 \mathrm{a} \alpha)-3 \mathrm{a}, 4,4 \mathrm{a}, 7 \mathrm{a}, 8,8 \mathrm{a}-h e x a h y d r o-6,6-$ dimethyl-4,8-ethenobenzo[1,2- $\left.d: 4,5-d^{\prime}\right]$ bis $[1,3]$ dioxol-2-one $\mathbf{3 0}$: $\mathrm{mp} 205-207{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 1772 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.16(2 \mathrm{H}, \mathrm{dd}, J 3.3$ and $4.2,9-\mathrm{H}$ and $10-\mathrm{H}), 4.67(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 3 \mathrm{a}-\mathrm{H}$ and $8 \mathrm{a}-\mathrm{H}), 4.20(2$ H , br s, $4 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$), $3.47(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $8-\mathrm{H}), 1.35(3 \mathrm{H}$, s, $6-\mathrm{Me}_{\beta}$) and $1.27\left(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}_{\alpha}\right)$; saturation at $\delta 6.16$ led to NOE at $\delta 3.47(5 \%)$, saturation at $\delta 4.67$ led to NOEs at $\delta 4.20(10 \%)$ and $3.47(7 \%)$, saturation at $\delta 4.20$ led to NOEs at $\delta 4.67(13 \%)$, $3.47(7 \%)$ and $1.27(2 \%)$, saturation at $\delta 3.47$ led to NOEs at δ $6.16(6 \%), 4.67(3 \%)$ and $4.20(3 \%)$, saturation at $\delta 1.35$ led to NOE at $\delta 6.16(2 \%)$ and saturation at $\delta 1.27$ led to NOE at $\delta 4.20$ $(7 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 154.5,128.4,110.1,74.5,74.0,38.8,25.0$ and 24.6; m/z $239\left(0.5, \mathrm{M}^{+}+1\right), 223.0606\left(53, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{5}\right.$ requires 223.0605), 180 (9), 119 (14), 118 (29), 107 (48), 95 (25), 94 (43), 91 (26), 79 (35), 77 (23), 59 (40) and 43 (100).

Diels-Alder reaction of 6a with tetracyanoethylene

A solution of $\mathbf{6 a}(122 \mathrm{mg}, 0.802 \mathrm{mmol})$ and tetracyanoethylene $(102 \mathrm{mg}, 0.802 \mathrm{mmol})$ in benzene $(2.0 \mathrm{ml})$, heated under reflux for 24 h , yielded 31 ($141 \mathrm{mg}, 63 \%$) as a pale brown solid.
For $\quad(3 a \alpha, 4 \alpha, 7 \alpha, 7 \mathrm{a} \alpha)-8,8,9,9$-tetracyano-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-ethano-1,3-benzodioxole 31: mp 218-220 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 2233$ (weak); $\delta_{\mathrm{H}} \quad\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CD}_{3} \mathrm{COCD}_{3}\right)$ $6.52 / 6.53 / 6.63(2 \mathrm{H}, \mathrm{dd}, J 3.0$ and $4.7,5-\mathrm{H}$ and $6-\mathrm{H})$, 4.76/4.79/4.87 ($2 \mathrm{H}, \mathrm{br} \mathrm{s}, 4-\mathrm{H}$ and 7-H), 3.85/3.92/4.34 ($2 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H}$ and $7-\mathrm{H}), 1.34 / 1.32 / 1.40(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$ and $1.34 / 1.32 / 1.33$ (3 $\mathrm{H}, \mathrm{s}, 2-\mathrm{Me})$; in CDCl_{3} solution, saturation at $\delta 6.52$ led to NOE at δ
3.85 (7\%), saturation at $\delta 4.76$ led to NOEs at $\delta 3.85$ (11%) and $1.34(0.7 \%)$; saturation at $\delta 3.85$ led to NOEs at $\delta 6.52(7 \%)$ and $4.76(4 \%)$ and saturation at $\delta 1.34$ led to NOEs at $\delta 6.52(1.5 \%)$ and $4.76(9 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{2} \mathrm{Cl}_{2} / \mathrm{CD}_{3} \mathrm{COCD}_{3}\right) 130.7 / 131.1 /$ 132.0, 111.6/111.8/112.8, 110.7/111.4/111.7, 109.9/110.6/111.6, $72.3 / 72.8 / 73.5, \quad 42.8 / 43.1 / 43.4, \quad 25.0 / 25.1 / 25.4$ and $25.0 /$ $25.1 / 25.2 ; \mathrm{m} / \mathrm{z} 280\left(0.7 \%, \mathrm{M}^{+}\right), 265.0730\left(30, \mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires 265.0725), 100 (17), 95 (57), 85 (12), 59 (48), 58 (17) and 43 (100); analysis: found C, $64.08 ; \mathrm{H}, 4.29$; N, 20.04\%; $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, $64.26 ; \mathrm{H}, 4.32 ; \mathrm{N}, 20.00 \%$.

Diels-Alder reaction of 6a with dimethyl acetylenedicarboxylate

A solution of $\mathbf{6 a}(118 \mathrm{mmol}, 0.782 \mathrm{mmol})$ and dimethyl acetylenedicarboxylate ($111 \mathrm{mg}, 0.782 \mathrm{mmol}$) in benzene $(2.0 \mathrm{ml})$ was stirred at RT for 17 h . This provided $32(198 \mathrm{mg}, 86 \%)$ as colourless crystals after recrystallization from hexane.

For dimethyl (3a $\alpha, 4 \beta, 7 \beta, 7 \mathrm{a} \alpha)$-4,7-dihydro-2,2-dimethyl-4,7-etheno-1,3-benzodioxole-5,6-dicarboxylate 32: mp 93-94 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1732$ and $1714 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.39(2 \mathrm{H}, \mathrm{dd}, J 3.1$ and 4.4, 8-H and $9-\mathrm{H})$, $4.39(2 \mathrm{H}$, narrow $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}), 4.23$ (2 $\mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $7-\mathrm{H}), 3.79\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CO}_{2} \mathrm{Me}\right), 1.34(3 \mathrm{H}, \mathrm{s}, 2-$ $\left.\mathrm{Me}_{\beta}\right)$ and $1.26\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\alpha}\right)$; saturation at $\delta 6.39$ led to NOEs at $\delta 4.23(11 \%)$ and $1.34(0.2 \%)$, saturation at $\delta 4.39$ led to NOEs at $\delta 4.23(7 \%)$ and $1.26(1.5 \%)$, saturation at $\delta 4.23$ led to NOEs at $\delta 6.39(9 \%)$ and $4.39(5 \%)$, saturation at $\delta 1.34$ led to NOE at δ $6.39(2 \%)$ and saturation at $\delta 1.26$ led to NOE at $\delta 4.39(9 \%) ; \delta_{\mathrm{C}}$ $\left(\mathrm{CDCl}_{3}\right) 165.8(2 \times \mathrm{C}=\mathrm{O}), 141.3(\mathrm{C}-5$ and C-6), $131.2(\mathrm{C}-8$ and $\mathrm{C}-9), 113.6(\mathrm{C}-2), 78.1(\mathrm{C}-3 \mathrm{a}$ and $\mathrm{C}-7 \mathrm{a}), 52.4(2 \times \mathrm{OMe}), 44.2(\mathrm{C}-4$ and $\mathrm{C}-7), 25.7\left(2-\mathrm{Me}_{\beta}\right)$ and $25.5\left(2-\mathrm{Me}_{\alpha}\right) ; m / z$ no $\mathrm{M}^{+}, 279(4 \%)$, 207 (4), 205 (3), 163 (20), 100 (85), 85 (100) and 43 (22); analysis: found C, $61.33 ; \mathrm{H}, 6.20 \% ; \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\mathrm{C}, 61.22 ; \mathrm{H}, 6.16 \%$.

Diels-Alder reaction of 6a with ethyl propiolate

A solution of $\mathbf{6 a}(62 \mathrm{mg}, 0.46 \mathrm{mmol})$ and ethyl propiolate $(43 \mathrm{mg}$, $0.40 \mathrm{mmol})$ in benzene $(0.5 \mathrm{ml})$ was stirred at RT for 3 days. Adduct 33 ($63 \mathrm{mg}, 61 \%$) was obtained as a sweet-smelling oil.

For ethyl ($3 \mathrm{a} R^{*}, 4 R^{*}, 7 S^{*}, 7 \mathrm{a} S^{*}$)-4,7-dihydro-2,2-dimethyl-4,7-etheno-1,3-benzodioxole-5-carboxylate 33: $v_{\max } / \mathrm{cm}^{-1}$ 1713, 1634 and $1598 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.21(1 \mathrm{H}$, dd, $J 1.7$ and $6.4,6-\mathrm{H}), 6.40$ $(1 \mathrm{H}$, br ddd, $J 1.6,6.0$ and $6.8,9-\mathrm{H}), 6.30(1 \mathrm{H}$, ddd, $J 1.7,6.0$ and 6.7, 8-H), $4.39(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 4.26(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H})$, $4.19\left(2 \mathrm{H}, \mathrm{dq}, J 0.6\right.$ and $\left.7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.00(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 1.35$ ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\text {endo }}$), $1.29\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right.$) and $1.26(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}_{e x o}$); saturation at $\delta 7.21$ led to NOEs at $\delta 4.26(0.6 \%)$ and 4.00 (5%), saturation at $\delta 6.40$ led to NOE at $\delta 4.39(4 \%)$, saturation at $\delta 6.30$ led to NOE at $\delta 4.00(3 \%)$, saturation at $\delta 4.39$ led to NOE at $\delta 6.40(4 \%)$, saturation at $\delta 4.26$ led to NOEs at $\delta 7.21$ $(3 \%), 4.39(5 \%), 4.00(1.5 \%)$ and $1.26(2 \%)$, saturation at $\delta 4.00$ led to NOEs at $\delta 7.21(8 \%)$ and $6.30(5 \%)$, saturation at $\delta 1.35$ led to NOEs at $\delta 6.40(1.5 \%)$ and $6.30(1.5 \%)$ and saturation at $\delta 1.26$ led to NOE at $\delta 4.26(8 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 164.4(0), 144.1(1), 138.7$ (0), 132.4 (1), 130.7 (1), 113.2 (0), 78.3 (1), 78.1 (1), 60.7 (2), 43.1 (1), 41.6 (1), 25.8 (3), 25.5 (3) and 14.2 (3); m / z no M ${ }^{+}, 235.0957$ ($3 \%, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{4}$ requires 235.0969), 163 (10), 147 (5), 135 (7), 105 (25), 100 (96), 91 (10), 85 (100), 77 (16), 60 (14) and 43 (30).

Dimerization of 7

Diene 7 dimerized to $\mathbf{3 5}$ spontaneously during storage, forming colourless crystals.

For $(2 \alpha, 3 \mathrm{a} \beta, 5 \mathrm{a} \alpha, 6 \beta, 6 \mathrm{a} \alpha, 8 \beta, 9 \mathrm{a} \alpha, 10 \beta, 10 \mathrm{a} \alpha, 10 \mathrm{~b} \beta)-3 \mathrm{a}, 5 \mathrm{a}, 6,6 \mathrm{a}, 9 \mathrm{a}$, 10,10a,10b-octahydro-2,8-diphenyl-6,10-ethenonaphtho[1,2-d:6, 7- $\left.d^{\prime}\right]$ bis $[1,3]$ dioxole 35: mp 152- $154{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3057$, 1522, 1445 and 1055; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.48-7.24(10 \mathrm{H}, \mathrm{m}), 6.17(2 \mathrm{H}, \mathrm{m}$, $11-\mathrm{H}$ and $12-\mathrm{H}), 5.84(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.68(2 \mathrm{H}$, broadened $\mathrm{AB}, 4-\mathrm{H}$ and $5-\mathrm{H}), 5.61(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H}), 4.39-4.31(3 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}, 6 \mathrm{a}-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H}), 4.30(1 \mathrm{H}$, br d, $J 5.7,10 \mathrm{~b}-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}), 3.07$ $(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and $2.44(2 \mathrm{H}$, broadened $\mathrm{AB}, 5 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H})$; saturation at $\delta 6.17$ led to NOEs at $\delta 3.14(4 \%)$ and $3.07(4 \%)$, saturation at $\delta 5.84$ led to NOEs at $\delta 7.48-7.42(2 \%)$ and 4.30 (7\%), saturation at $\delta 5.61$ led to NOEs at $\delta 7.48-7.42(3 \%)$ and a multiplet at $4.38(3 \%)$, saturation at $\delta 4.30$ led to NOEs at $\delta 5.84$ (12%) and $3.14(13 \%)$, saturation at $\delta 3.14$ led to NOEs at $\delta 6.17$ $(4 \%), 4.30(12 \%)$ and $2.44(2 \%)$, saturation at $\delta 3.07$ led to NOEs at $\delta 6.17(4 \%), 5.68(5 \%)$ and $2.44(2 \%)$ and saturation at $\delta 2.44$ led to NOEs at $\delta 5.68(3 \%)$, double-doublets at 4.38 and 4.33 (9\%), $3.14(4 \%)$ and $3.07(5 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 137.9,136.1,132.9$ (C-11 or $\mathrm{C}-12$), 129.7, 129.2 (C-11 or $\mathrm{C}-12$), 129.1 (C-4 or $\mathrm{C}-5$), 128.3 (4C), 127.4, 127.1, 126.4 (C-4 or C-5), 103.5 (C-2), 103.1 (C-8), 79.7 (C-10b), 79.0 (2C), 70.6, 40.8 (C-6 and C-10), 34.5 and 33.5; m/z 400 ($1.6 \%, \mathrm{M}^{+}$), 399 (4), 171 (14), 170 (28), 159 (37), 145 (27), 144 (25), 141 (20), 129 (22), 120 (31), 105 (100), 94 (40), 91 (72), 78 (31), 77 (55) and 66 (30); analysis: found C, 78.11 ; H, $5.99 \% ; \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, $77.98 ; \mathrm{H}, 6.04 \%$.

Dimerization of 6a

A sample of $\mathbf{6 a}(214 \mathrm{mg}, 1.41 \mathrm{mmol})$ was kept at RT for 28 d . Flash chromatography (10% EtOAc in hexanes) gave 36 ($41 \mathrm{mg}, 19 \%$) and 37 ($129 \mathrm{mg}, 60 \%$) as colourless solids.

For $(3 a \alpha, 5 a \beta, 6 \alpha, 6 a \alpha, 9 a \alpha, 10 \alpha, 10 a \beta, 10 b \alpha)-3 a, 5 a, 6,6 a, 9 a, 10,10 a$, 10b-octahydro-2,2,8,8-tetramethyl-6,10-ethenonaphtho[1,2-d:6, 7- d^{\prime}]bis[1,3]dioxole 36: $\mathrm{mp} 92-93{ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 2985$, 2935, 1375, 1238, 1207 and $1061 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.07(2 \mathrm{H}$, narrow m, 11-H and $12-\mathrm{H}), 5.56(1 \mathrm{H}$, ddd, $J 1.3,3.4$ and $10.3,5-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J$ $10.3,4-\mathrm{H}), 4.19(1 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}), 4.06(3 \mathrm{H}, \mathrm{m}, 6 \mathrm{a}-\mathrm{H}, 9 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{~b}-$ H), $3.01(1 \mathrm{H}$, br d, $J 9.0,5 \mathrm{a}-\mathrm{H}), 2.96(1 \mathrm{H}$, br d, $J 9.0,10 \mathrm{a}-\mathrm{H}), 2.80$ ($2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}$ and $10-\mathrm{H}$), $1.55\left(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}_{\beta}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right)$, $1.35\left(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}_{a}\right)$ and $1.33\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{a}\right)$; saturation at $\delta 6.07$ led to NOEs at $\delta 4.19(3 \%), 4.06(0.6 \%)$ and $2.80(5 \%)$, saturation at $\delta 5.56$ led to NOEs at $\delta 2.96(3 \%)$ and $2.80(1 \%)$, saturation at $\delta 5.49$ led to NOEs at $\delta 4.19(2 \%)$ and $3.01(4 \%)$, saturation at $\delta 4.19$ led to NOEs at $\delta 6.07(2 \%)$ and $5.49(4 \%)$, saturation at δ 4.06 led to NOEs at $\delta 6.07(2 \%), 2.96(4 \%), 2.80(11 \%)$ and 1.35 (1.5\%), saturation at $\delta 2.80$ led to NOEs at $\delta 6.07(7 \%), 5.56(4 \%)$, $4.06(8 \%), 3.01(4 \%)$ and $2.96(3 \%)$ and saturation at $\delta 1.55$ led to NOEs at $\delta 3.01(5 \%), 2.96(5 \%)$ and $1.35(1 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 134.6$ (C-12), 131.1 (C-11), 130.3 (C-5), 126.8 (C-4), 111.9 (C-8), 107.4 (C-2), 77.9 (C-10b), 75.2 (C-6a or C-9a), 74.7 (C-6a or C-9a), 71.2 (C-3a), 40.8 (C-6 or C10), 40.3 (C-6 or C10), 30.5 (C-5a and C10a), $28.4\left(2-\mathrm{Me}_{\beta}\right), 26.8\left(2-\mathrm{Me}_{\alpha}\right), 26.3\left(8-\mathrm{Me}_{\beta}\right)$ and $24.4\left(8-\mathrm{Me}_{\alpha}\right)$; m / z no M ${ }^{+}, 289$ (15\%), 275 (2), 231 (3), 188 (40), 171 (85), 159 (30), 153 (19), 145 (20), 143 (26), 129 (26), 100 (50), 91 (34) and 43 (100); analysis: found C, $70.98 ; \mathrm{H}, 7.91 \% ; \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ requires C, 71.03; H, 7.95\%.

For (3a $\alpha, 5 \mathrm{a} \beta, 6 \alpha, 6 \mathrm{a} \beta, 9 \mathrm{a} \beta, 10 \alpha, 10 \mathrm{a} \beta, 10 \mathrm{~b} \alpha)-3 \mathrm{a}, 5 \mathrm{a}, 6,6 \mathrm{a}, 9 \mathrm{a}, 10,10 \mathrm{a}$, 10b-octahydro-2,2,8,8-tetramethyl-6,10-ethenonaphtho[1,2-d:6,7d^{\prime}]bis [1,3]dioxole 37: mp 149-151 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $\left.{ }^{35} 150-151^{\circ} \mathrm{C}\right)$; $v_{\max } / \mathrm{cm}^{-1}$ 2987, 2930, 2911, 2884, 1456, 1365, 1236, 1046 and 886; δ_{H} $\left(\mathrm{CDCl}_{3}\right) 5.99(2 \mathrm{H}$, narrow m, 11-H and $12-\mathrm{H}), 5.60(1 \mathrm{H}, \mathrm{dd}$, $J 3.8$ and $10.3,5-\mathrm{H})$, $5.51(1 \mathrm{H}, \mathrm{d}, J 10.3,4-\mathrm{H}), 4.30(2 \mathrm{H}, \mathrm{m}$, $6 \mathrm{a}-\mathrm{H}$ and $9 \mathrm{a}-\mathrm{H}), 4.20-4.14(2 \mathrm{H}, \mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{~b}-\mathrm{H}), 2.87$ (2 H, m, 6-H and $10-\mathrm{H}), 2.36(1 \mathrm{H}, \mathrm{br}$ d, $J 9.1,5 \mathrm{a}-\mathrm{H}), 2.23(1 \mathrm{H}, \mathrm{d}$, J 9.1, 10a-H), $1.36\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\beta}\right), 1.34\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}_{\alpha}\right), 1.32(3$ $\left.\mathrm{H}, \mathrm{s}, 8-\mathrm{Me}_{\alpha}\right)$ and $1.29\left(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{Me}_{\beta}\right)$; saturation at $\delta 5.99$ led to NOEs at $\delta 4.17(4 \%), 2.87(5 \%)$ and $1.32(0.3 \%)$, saturation at δ 5.60 led to NOEs at $\delta 2.87(2 \%)$ and $2.36(2 \%)$, saturation at δ 5.51 led to NOE at $\delta 4.17(2 \%)$, saturation at $\delta 4.30$ led to NOEs at $\delta 2.87(3 \%), 2.36(5 \%) 2.23(10 \%)$ and $1.29(1 \%)$, saturation at $\delta 4.17$ led to NOEs at $\delta 5.99(2 \%), 5.51(4 \%), 2.87(6 \%), 2.23$ (3%) and $1.34(0.7 \%)$, saturation at $\delta 2.87$ led to NOEs at $\delta 5.99$ $(7 \%), 5.60(6 \%), 4.30(4 \%), 4.17(10 \%), 2.36(3 \%)$ and $2.23(3 \%)$, saturation at $\delta 2.36$ led to NOEs at $\delta 5.60(4 \%), 4.30(4 \%)$ and $2.87(2 \%)$, saturation at $\delta 2.23$ led to NOEs at $\delta 4.30(4 \%), 4.17$ (1.5%) and $2.87(0.7 \%)$, saturation at $\delta 1.36$ led to NOE at $\delta 5.51$ (4%), saturation at $\delta 1.34$ led to NOE at $\delta 4.17$ (9%), saturation at $\delta 1.32$ led to NOE at $\delta 5.99(2 \%)$ and saturation at $\delta 1.29$ led to NOE at $\delta 4.30(6 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 132.4(\mathrm{C}-12), 129.3(\mathrm{C}-5), 128.8$ (C-11), 126.6 (C-4), 108.6 (C-8), 107.6 (C-2), 78.6 (C-6a or C-9a), 78.3 (C-6a or C-9a), 77.6 (C-10b), 70.9 (C-3a), 41.0 (C-6 or C-10), 40.7 (C-6 or C-10), 34.3 (C-10a), 33.1 (C-5a), 28.3 ($2-\mathrm{Me}_{\beta}$), 26.8 $\left(2-\mathrm{Me}_{\alpha}\right), 25.4\left(8-\mathrm{Me}_{\alpha}\right)$ and $25.0\left(8-\mathrm{Me}_{\beta}\right) ; m / z$ no $\mathrm{M}^{+}, 289$ (12%), 246 (8), 230 (7), 188 (49), 171 (20), 158 (26), 145 (19), 143 (18), 131 (20), 129 (22), 119 (22), 100 (30), 95 (72), 91 (36) and 43 (100); analysis: found $\mathrm{C}, 71.00 ; \mathrm{H}, 7.84 \% ; \mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{4}$ requires $\mathrm{C}, 71.03$; H, 7.95\%.

Diels-Alder reactions with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD)

A solution of PTAD in acetone was added dropwise to an equimolar amount of the diene in acetone. The initial carmine colour of the PTAD faded as the solution was stirred at RT for $16-18 \mathrm{~h}$. The solution was concentrated under vacuum, and the residue was analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy in order to obtain the proportions of the adducts in Table 3. The adducts were isolated by chromatography ($20-30 \%$ EtOAc in hexanes). Yields are for the isolated adducts.

Diels-Alder reaction of 1a with PTAD

PTAD ($171 \mathrm{mg}, 0.98 \mathrm{mmol}$) and $\mathbf{1 a}(109 \mathrm{mg}, 0.89 \mathrm{mmol})$ provided 38 ($193 \mathrm{mg}, 68 \%$), as colourless crystals, and some impure 39 ($19 \mathrm{mg}, 7 \%$ if pure).

For $\quad(5 R, 8 S, 10 S, 11 R)$-5,8-dihydro-10,11-dihydroxy-2-phenyl-5,8-ethano-1H-[1,2,4]triazolo[1,2-a]-pyridazine-1,3(2H)-dione 38: mp 226-228 ${ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1779(\mathrm{~m})$ and $1738 ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}\right) 7.50-7.38 / 7.50-7.40(5 \mathrm{H}, \mathrm{m}), 6.51 / 6.57$ ($2 \mathrm{H}, \mathrm{dd}, J 3.2$ and $4.1,6-\mathrm{H}$ and $7-\mathrm{H}$), $5.00 / 4.89(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}), 3.95 / 3.94(2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 3.21 / 3.30(2 \mathrm{H}$, OH); in $\mathrm{CD}_{3} \mathrm{OD}$ solution, saturation at $\delta 6.57$ led to NOEs at $\delta 4.89(4 \%)$ and $3.94(1.5 \%)$, saturation at $\delta 4.89$ led to NOEs at $\delta 6.57(5 \%)$ and $3.94(5 \%)$ and saturation at $\delta 3.94$ led to NOEs at $\delta 6.57(3 \%)$ and $4.89(9 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CD}_{3} \mathrm{OD}\right) 156.1,131.6$
(likely overlapping the quaternary aromatic signal), 130.1, 129.5, 127.4, 63.6 and 57.4; $m / z 287.0893\left(3 \%, \mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 287.0905), 258 (8), 228 (16), 227 (83), 119 (42), 91 (12) and 80 (100).
For (5R,8S,10R,11S)-5,8-dihydro-10,11-dihydroxy-2-phenyl-5,8-ethano-1 H-[1,2,4]triazolo[1,2-a]-pyridazine-1,3(2H)-dione 39: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.50-7.35(5 \mathrm{H}, \mathrm{m}), 6.56(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J 3.6), 5.04$ $(2 \mathrm{H}, \mathrm{m}), 4.44(2 \mathrm{H}, \mathrm{m})$ and $2.76(2 \mathrm{H}, \mathrm{OH})$.

Diels-Alder of 2 with PTAD

PTAD ($60 \mathrm{mg}, 0.33 \mathrm{mmol}$) and $2(85 \mathrm{mg}, 0.33 \mathrm{mmol})$ provided 40 ($103 \mathrm{mg}, 72 \%$) as colourless crystals.
For ($5 R, 8 S, 10 R, 11 S$)-5,8-dihydro-2-phenyl-10,11-bis(trimethyl-silyloxy)-5,8-ethano-1 H-[1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)dione 40: mp 62-63 ${ }^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1718 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.48-7.36(5 \mathrm{H}$, $\mathrm{m}), 6.55(2 \mathrm{H}, \mathrm{dd}, J 3.2$ and $4.0,6-\mathrm{H}$ and $7-\mathrm{H}), 4.81(2 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}$ and $8-\mathrm{H}), 4.34(2 \mathrm{H}$, narrow $\mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H})$ and 0.21 $(18 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OTMS})$; saturation at $\delta 6.55$ led to NOE at $\delta 4.81$ (10%), saturation at $\delta 4.81$ led to NOEs at $\delta 6.55(10 \%)$ and 4.34 (8%), saturation at $\delta 4.34$ led to NOEs at $\delta 4.81(16 \%)$ and 0.21 (0.7%) and saturation at $\delta 0.21$ led to NOEs at $\delta 6.55$ (1.5%), 4.81 (5%) and $4.34(5 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.6,130.1,129.6(\mathrm{C}-6$ and C-7), 129.2, 128.4, 125.5, 68.4 (C-10 and C-11), 54.5 (C-5 and C-8) and 0.23 ($2 \times$ OTMS); m / z no M ${ }^{+}, 416$ (3\%), 300 (1), 297 (1), 227 (100), 204 (25), 147 (16), 119 (17), 80 (43) and 73 (61); analysis: found $\mathrm{C}, 55.70 ; \mathrm{H}, 6.66 ; \mathrm{N}, 9.74 \% ; \mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Si}_{2}$ requires C , 55.66; H, 6.71; N, 9.74\%.

Diels-Alder reaction of 4a with PTAD

PTAD ($145 \mathrm{mg}, 0.830 \mathrm{mmol}$) and $\mathbf{4 a}(163 \mathrm{mg}, 0.830 \mathrm{mmol})$ provided 41 ($39 \mathrm{mg}, 13 \%$) and 42 ($238 \mathrm{mg}, 77 \%$) as colourless crystals.
For $\quad(5 R, 8 S, 10 S, 11 R)$-10,11-bis(acetyloxy)-5,8-dihydro-2-phenyl-5,8-ethano-1 H-[1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)dione 41: $\mathrm{mp} 224-225{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 1744(\mathrm{~m})$ and $1707 ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 7.51-7.36(5 \mathrm{H}, \mathrm{m}), 6.60(2 \mathrm{H}$, apparent dd, $J 3.1$ and $4.2,6-\mathrm{H}$ and $7-\mathrm{H}), 5.10(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}), 5.04(2 \mathrm{H}$, narrow $\mathrm{m}, \mathrm{C}-10$ and $\mathrm{C}-11), 2.15(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc})$; saturation at $\delta 6.60$ led to NOEs at $\delta 5.10(10 \%)$ and $5.04(1.5 \%)$, saturation at $\delta 5.10$ led to NOEs at $\delta 6.60(9 \%)$ and $5.04(7 \%)$ and saturation at $\delta 5.04$ led to NOEs at $\delta 6.60(2 \%)$ and $5.10(12 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.8$, 155.4, 131.1, 130.1, 129.2, 128.5, 125.6, 63.4, 53.1 and $20.6 ; \mathrm{m} / \mathrm{z}$ $371\left(3 \%, \mathrm{M}^{+}\right), 329$ (3), 269 (9), 228 (22), 227 (100), 119 (25), 80 (56) and 43 (71); analysis: found C, $58.27 ; \mathrm{H}, 4.61 ; \mathrm{N}, 11.34 \%$; $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, $58.20 ; \mathrm{H}, 4.62 ; \mathrm{N}, 11.32 \%$.
For $\quad(5 R, 8 S, 10 R, 11 S)$-10,11-bis(acetyloxy)-5,8-dihydro-2-phenyl-5,8-ethano-1 H -[1,2,4]triazolo[1,2-a]pyridazine-1,3(2H)dione 42: mp 219-220 ${ }^{\circ} \mathrm{C}: v_{\max } / \mathrm{cm}^{-1} 1749$ and 1717; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $7.48-7.36(5 \mathrm{H}, \mathrm{m}), 6.58(2 \mathrm{H}, \mathrm{dd}, J 3.1$ and $4.0,6-\mathrm{H}$ and $7-\mathrm{H})$, $5.46(2 \mathrm{H}$, narrow $\mathrm{m}, 10-\mathrm{H}$ and $11-\mathrm{H}), 5.10(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$ and $8-\mathrm{H}), 2.05(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OAc})$; saturation at $\delta 6.58$ led to NOE at δ $5.10(11 \%)$, saturation at $\delta 5.46$ led to NOEs at $\delta 5.10(16 \%)$ and $2.05(0.5 \%)$, saturation at $\delta 5.10$ led to NOEs at $\delta 6.58(8 \%)$ and $5.46(8 \%)$ and saturation at $\delta 2.05$ led to NOEs at $\delta 6.58(1.5 \%)$, $5.46(1.5 \%)$ and $5.10(1 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 169.2,155.4,130.9,129.5$ (C-6 and C-7), 129.1, 128.4, 125.3, 67.0 (C-10 and C-11), 51.4 (C-5 and C-8) and $20.2(2 \times \mathrm{OAc}) ; m / z 371\left(1 \%, \mathrm{M}^{+}\right), 329(1)$, 311 (1), 269 (12), 228 (15), 227 (76), 119 (28), 80 (62) and 43 (100);
analysis: found C, $58.35 ; \mathrm{H}, 4.63 ; \mathrm{N}, 11.38 \% ; \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{6}$ requires C, 58.20 ; H, 4.62; N, 11.32%.

Conversion of $\mathbf{3 9}$ to $\mathbf{4 2}$

A solution of $39(12 \mathrm{mg}, 0.042 \mathrm{mmol})$ in pyridine $(1.0 \mathrm{ml})$ and acetic anhydride (0.5 ml) was stirred at RT overnight. Aqueous work-up afforded 42 ($14 \mathrm{mg}, 90 \%$).

Diels-Alder reaction of 6 a with PTAD

PTAD ($121 \mathrm{mg}, 0.689 \mathrm{mmol}$) and 6a ($105 \mathrm{mg}, 0.689 \mathrm{mmol}$) provided 43 ($256 \mathrm{mg}, 97 \%$) as colourless crystals.
For $\quad(3 \mathrm{a} \alpha, 4 \beta, 10 \beta, 10 \mathrm{a} \alpha)-3 \mathrm{a}, 4,10,10 \mathrm{a}$-tetrahydro-2,2-dimethyl-7-phenyl-4,10-etheno-6H-1,3-dioxolo[4,5- d] [1,2,4]triazolo[1,2-a]-pyridazine-6, $8(7 \mathrm{H})$-dione 43: $\mathrm{mp} 248-250{ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 1713 ; \delta_{\mathrm{H}}$ $\left(\mathrm{CDCl}_{3}\right) 7.46-7.36(5 \mathrm{H}, \mathrm{m}), 6.42(2 \mathrm{H}$, dd, $J 3.4$ and $3.8,11-\mathrm{H}$ and $12-\mathrm{H}), 5.15(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $10-\mathrm{H}), 4.66(2 \mathrm{H}$, narrow m , $3 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}), 1.35\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right)$; saturation at $\delta 6.42$ led to NOE at $\delta 5.15(10 \%)$, saturation at $\delta 5.15$ led to NOEs at $\delta 6.42(9 \%)$ and $4.66(6 \%)$, saturation at $\delta 4.66$ led to NOEs at δ $5.15(14 \%)$ and $1.35(1 \%)$ and saturation at $\delta 1.35$ led to NOEs at $\delta 6.42(3 \%)$ and $4.66(11 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ 155.6, 130.7, 129.1, 128.8 (C-11 and $\mathrm{C}-12$), 128.4, 125.5, 112.1, 73.8 (C-3a and C-10a), $52.3(\mathrm{C}-4$ and $\mathrm{C}-10), 25.4\left(\mathrm{CH}_{3}\right)$ and $25.3\left(\mathrm{CH}_{3}\right) ; m / z 327.1210$ ($2 \%, \mathrm{M}^{+}, \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires 327.1217), 312 (11), 269 (23), 240 (41), 227 (100), 121 (29), 119 (59), 95 (73), 91 (18), 80 (67), 78 (42) and 43 (83).

Diels-Alder reaction of 7 with PTAD

PTAD ($110 \mathrm{mg}, 0.63 \mathrm{mmol}$) and $7(126 \mathrm{mg}, 0.63 \mathrm{mmol})$ provided 44 ($130 \mathrm{mg}, 55 \%$) as colourless crystals.

For ($2 \alpha, 3 \mathrm{a} \beta, 4 \alpha, 10 \alpha, 10 \mathrm{a} \beta$)-3a,4,10,10a-tetrahydro-2,7-diphenyl-4,10-etheno- 6 H -1,3-dioxolo[4,5- $d]$-[1,2,4]triazolo[1,2- a]pyrida-zine-6,8(7H)-dione 44: mp 193-195 ${ }^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1719 ;{ }^{1} \mathrm{H}$ NMR $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.47-7.35(10 \mathrm{H}, \mathrm{m}), 6.53(2 \mathrm{H}, \mathrm{dd}, J 3.2$ and 4.0 , $11-\mathrm{H}$ and $12-\mathrm{H}), 5.80(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.29(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $10-\mathrm{H})$ and $4.73(2 \mathrm{H}$, narrow $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H})$; saturation at $\delta 6.53$ led to NOEs at $\delta 7.40(1 \%)$ and $5.29(11 \%)$, saturation at $\delta 5.80$ led to NOEs at $\delta 7.40(3 \%)$ and $4.73(7 \%)$, saturation at $\delta 5.29$ led to NOEs at $\delta 6.53(7 \%)$ and $4.73(7 \%)$ and saturation at $\delta 4.73$ led to NOEs at $\delta 5.80(17 \%)$ and $5.29(15 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.5,134.6$, $131.0,130.1,129.1$ (C-11, C-12 and aromatic signal), 128.4, 127.2, 125.4, 105.6 (C-2), 74.1 ($\mathrm{C}-3 \mathrm{a}$ and $\mathrm{C}-10 \mathrm{a}$) and 52.1 ($\mathrm{C}-5$ and $\mathrm{C}-10) ; m / z 375.1225\left(8 \%, \mathrm{M}^{+}, \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 375.1217), 269 (58), 240 (58), 227 (65), 153 (18), 121 (37), 119 (61), 105 (33), 91 (32), 81 (100), 80 (78), 78 (57) and 77 (36).

Diels-Alder reaction of 8 with PTAD

PTAD ($146 \mathrm{mg}, 0.83 \mathrm{mmol}$) and $\mathbf{8}(167 \mathrm{mg}, 0.63 \mathrm{mmol})$ provided $45(196 \mathrm{mg}, 62 \%)$ as colourless crystals.

For $(2 \alpha, 3 \mathrm{a} \alpha, 4 \beta, 10 \beta, 10 \mathrm{a} \alpha)$-3a,4,10,10a-tetrahydro-2,7-diphenyl-4,10-etheno-6H-1,3-dioxolo[4,5- $d]$]-[1,2,4]triazolo[1,2- a]pyridazine-6,8(7H)-dione 45: mp 238-239 ${ }^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 1718 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.48-7.36 ($10 \mathrm{H}, \mathrm{m}$), $6.61(2 \mathrm{H}, \mathrm{dd}, J 3.4$ and $3.8,11-\mathrm{H}, 12-\mathrm{H})$, $6.10(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.27(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}$ and $10-\mathrm{H})$ and $4.82(2 \mathrm{H}$, narrow $\mathrm{m}, 3 \mathrm{a}-\mathrm{H}$ and $10 \mathrm{a}-\mathrm{H}$); saturation at $\delta 6.61$ led to NOEs at $\delta 6.10(7 \%)$ and $5.27(8 \%)$, saturation at $\delta 6.10$ led to NOEs at
$\delta 7.38(1 \%)$ and $6.61(3 \%)$, saturation at $\delta 5.27$ led to NOEs at $\delta 6.61(5 \%)$ and $4.82(6 \%)$ and saturation at $\delta 4.82$ led to NOEs at $\delta 7.38(1 \%)$ and $5.27(11 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right) 155.5(\mathrm{C}=\mathrm{O}), 137.8$, 131.0, 129.9 (C-11 and C-12), 129.3, 129.1, 128.5, 125.8, 125.4, 106.8 (C-2), 74.7 (C-3a and C-10a) and 52.3 (C-4 and C-10); m / z $375.1218\left(12 \%, \mathrm{M}^{+}, \mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}\right.$ requires 375.1218), 269 (88), 240 (83), 227 (94), 121 (51), 119 (89), 105 (24), 91 (34), 80 (100), 78 (81) and 77 (37).

Diels-Alder reactions with diethyl azodicarboxylate (DEAD)

A solution of DEAD and the diene in benzene was stirred at RT for 24 h . The solution was concentrated under vacuum, and the residue was analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. In all three instances, signals for only one adduct with DEAD were evident, although a minor amount (12%) of dimer was noted in the reaction of 8. Adducts were purified by chromatography ($30 \% \mathrm{EtOAc}$ in hexanes). Yields are for the isolated adducts.

Diels-Alder reaction of 6a with DEAD

DEAD ($123 \mathrm{mg}, 0.71 \mathrm{mmol}$) and $\mathbf{6 a}(108 \mathrm{mg}, 0.71 \mathrm{mmol})$ provided $46(223 \mathrm{mg}, 96 \%)$ as a colourless oil.

For diethyl ($3 \mathrm{a} \alpha, 4 \beta, 7 \beta, 7 \mathrm{a} \alpha$)-3a,4,7,7a-tetrahydro-2,2-dimethyl-4,7-etheno-1,3-dioxolo[4,5- d]pyridazine-5,6-dicarboxylate 46: $v_{\text {max }} / \mathrm{cm}^{-1} 1737$ and $1725 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 6.51(1 \mathrm{H}$, br $\mathrm{t}, J \approx 6.3)$, $6.36(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J \approx 7.0), 5.15(1 \mathrm{H}$, br m$), 5.04(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.47$ (2 H , br m), 4.40-4.10 ($4 \mathrm{H}, \mathrm{br}$ m), 1.36-1.23 ($6 \mathrm{H}, \mathrm{m}$), 1.32 (3 $\mathrm{H}, \mathrm{s})$ and $1.29(3 \mathrm{H}, \mathrm{s})$; saturation at $\delta 6.40$ led to NOEs at $\delta 5.15$ (10%) and $5.04(11 \%)$, saturation at $\delta 5.10$ led to NOEs at $\delta 6.51$ $(11 \%), 6.36(11 \%)$ and $4.47(8 \%)$, saturation at $\delta 4.47$ led to NOEs at $\delta 5.15(14 \%), 5.04(14 \%)$ and $1.29(0.5 \%)$, saturation at $\delta 1.32$ led to NOEs at $\delta 6.51(4 \%)$ and $6.36(3 \%)$ and saturation at δ 1.29 led to NOE at $\delta 4.47(9 \%) ; \delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (Many signals were broadened, which did not allow detection of the carbonyls.) 133.5, $128.7,111.0,73.7,73.1,62.9,62.6,53.5,51.3,25.5,25.4,14.4$ and 14.3; m/z $326\left(1.5 \%, \mathrm{M}^{+}\right)$, $311.1253\left(7, \mathrm{M}^{+}-\mathrm{CH}_{3}, \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 311.1243), 268 (2), 226 (6), 196 (6), 195 (5), 167 (14), 153 (20), 123 (16), 95 (29), 81 (100), 80 (13) and 43 (22).

Diels-Alder reaction of 7 with DEAD

DEAD ($266 \mathrm{mg}, 1.52 \mathrm{mmol}$) and $7(153 \mathrm{mg}, 0.76 \mathrm{mmol})$ provided $47(142 \mathrm{mg}, 50 \%)$ as a pale yellow oil.

For diethyl ($2 \alpha, 3 \mathrm{a} \beta, 4 \alpha, 7 \alpha, 7 \mathrm{a} \beta$)-3a,4,7,7a-tetrahydro-2-phenyl-4,7-etheno-1,3-dioxolo[4,5- d]pyridazine-5,6-dicarboxylate 47: $v_{\max } / \mathrm{cm}^{-1} 1737$ and 1703; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.37(5 \mathrm{H}, \mathrm{br} m), 6.62(1 \mathrm{H}$, br t, $J \approx 6.1$), $6.48(1 \mathrm{H}$, br t, $J \approx 7.2), 5.69(1 \mathrm{H}, \mathrm{s}), 5.30(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 5.20(1 \mathrm{H}, \mathrm{br}$ m$), 4.56(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.52(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.34-4.10$ $(4 \mathrm{H}, \mathrm{m})$ and $1.35-1.23(6 \mathrm{H}, \mathrm{m})$; saturation at $\delta 6.62$ and 6.48 led to NOEs at $\delta 7.37(0.6 \%), 5.30(4 \%)$ and $5.20(4 \%)$, saturation at δ 5.69 led to NOEs at $\delta 7.37$ (2%) and 4.56 and $4.52(3 \%)$, saturation at $\delta 5.30$ and 5.20 led to NOEs at $\delta 6.62(6 \%), 6.48(6 \%)$ and 4.56 and $4.52(5 \%)$, saturation at $\delta 4.54$ led to NOEs at $\delta 5.69(6 \%)$, $5.30(4 \%)$ and $5.20(5 \%)$ and saturation at $\delta 4.22$ led to NOE at δ 1.35-1.23 (1\%); $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (Many signals were broadened, which did not allow detection of the carbonyls.) 135.1, 133.8, 129.8, $129.0,128.3,127.2,104.7,73.9,73.4$ (br), 63.0, 62.7, 53.3 (br), 51.0 (br), 14.4 and 14.3; $m / z 374.1472\left(0.5 \%, \mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 374.1478), 302 (3), 268 (3), 239 (5), 196 (10), 195 (8), 167
(19), 153 (22), 123 (18), 105 (12), 95 (11), 91 (8), 81 (100), 80 (12), 78 (10) and 77 (12).

Diels-Alder reaction of 8 with DEAD

DEAD ($483 \mathrm{mg}, 2.77 \mathrm{mmol}$) and $\mathbf{8}(222 \mathrm{mg}, 1.10 \mathrm{mmol})$ provided $48(224 \mathrm{mg}, 54 \%)$ as a pale pink oil.

For diethyl ($2 \alpha, 3 \mathrm{a} \alpha, 4 \beta, 7 \beta, 7 \mathrm{a} \alpha$)-3a,4,7,7a-tetrahydro-2-phenyl-4,7-etheno-1,3-dioxolo[4,5- d]pyridazine-5,6-dicarboxylate $\mathbf{4 8}$: $v_{\text {max }} / \mathrm{cm}^{-1} 1720 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.35(5 \mathrm{H}$, narrow m$), 6.69(1 \mathrm{H}, \mathrm{brt}$, $J \approx 6.1), 6.56(1 \mathrm{H}, \mathrm{brt}, J \approx 6.6), 6.02(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}), 5.27(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 5.17(1 \mathrm{H}, \mathrm{br}$ m$), 4.69(1 \mathrm{H}$, br m$), 4.56(1 \mathrm{H}, \mathrm{br}$ m$), 4.31-4.10$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$ and $1.27\left(6 \mathrm{H}\right.$, br t, $\left.J 7.0, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$; saturation at $\delta 6.69$ and 6.56 led to NOEs at $\delta 6.02$ (8%), 5.27 (10%) and $5.17(10 \%)$, saturation at $\delta 6.02$ led to NOEs at $\delta 7.35$ $(1 \%), 6.69(1 \%)$ and $6.56(1 \%)$, saturation at $\delta 5.27$ and 5.17 led to NOEs at $\delta 6.69(11 \%), 6.56(11 \%), 4.69(9 \%)$ and $4.56(9 \%)$ and saturation at $\delta 4.69$ and 4.56 led to NOEs at $\delta 5.27(12 \%)$ and $5.17(12 \%)$; $\delta_{\mathrm{C}}\left(\mathrm{CDCl}_{3}\right)$ (Many signals were broadened, which did not allow detection of the carbonyls.) 138.1, 134.3, 130.1, 129.1, $128.3,125.8,106.0,74.7,73.7$ (br), $62.9,62.6,53.3,51.3$ (br), 14.3 and 14.2; $m / z 374.1466\left(0.7, \mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{6}\right.$ requires 374.1476), 302 (3), 268 (2), 239 (4), 196 (9), 195 (7), 167 (16), 153 (21), 123 (16), 105 (18), 95 (11), 91 (9), 81 (100), 80 (11), 78 (11) and 77 (15).

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged. We thank Ms. N. Brunet for the NMR spectra and Ms. M. Baggs and Dr. B. Gregory for the MS data.

References

1 D. T. Gibson, M. Hensley, H. Yoshioka and T. J. Mabry, Biochemistry, 1970, 9, 1626.
2 D. T. Gibson and V. Subramanian, in Microbial Degradation of Organic Compounds, ed. D. T. Gibson, Marcel Dekker, New York, 1984, ch. 7 and references therein; T. Hudlicky and C. H. Boros, Synthesis, 1992, 174.

3 Reviews: H. A. J. Carless, Tetrahedron: Asymmetry, 1992, 3, 795; T. Hudlicky and A. J. Thorpe, Chem. Commun., 1996, 1993.
4 M. G. Banwell, A. J. Edwards, G. J. Harfoot and K. A. Jolliffe, J. Chem. Soc., Perkin Trans. 1, 2002, 2439; M. G. Banwell, A. J. Edwards, M. D. McLeod and S. G. Stewart, Aust. J. Chem., 2004, 57, 641.
5 D. A. Spiegel, J. T. Njardarson and J. L. Wood, Tetrahedron, 2002, 58, 6545.

6 H. Uno, T. Ishikawa, T. Hoshi and N. Ono, Tetrahedron Lett., 2003, 44, 5163.
7 M. G. Banwell and G. J. Harfoot, Aust. J. Chem., 2004, 57, 895.
8 M. G. Banwell, A. J. Edwards, G. J. Harfoot and K. A. Jolliffe, Tetrahedron, 2004, 60, 535.
9 M. E. Salvati, A. Balog, W. Shan, D. D. Wei, D. Pickering, R. M. Attar, J. Geng, C. A. Rizzo, M. M. Gottardis, R. Weinmann, S. R. Krystek, J. Sack, Y. An and K. Kish, Bioorg. Med. Chem. Lett., 2005, 15, 271.

10 Recent syntheses in which the use of $\mathbf{1 a} / \mathbf{b}$ was not as a Diels-Alder diene: J. M. Ready, S. E. Reisman, M. Hirata, M. M. Weiss, K. Tamaki, T. V. Ovaska and J. L. Wood, Angew. Chem., Int. Ed., 2004, 43, 1270; G. Özer, N. Saracoglu, A. Menzek and M. Balci, Tetrahedron, 2005, 61, 1545.

11 J. R. Gillard and D. J. Burnell, Can. J. Chem., 1992, 70, 1296. (Earlier communication:; J. R. Gillard and D. J. Burnell, J. Chem. Soc., Chem. Comтип., 1989, 1439).
12 D. R. Boyd, M. R. J. Dorrity, M. V. Hand, J. F. Malone, N. D. Sharma, H. Dalton, D. J. Gray and G. N. Sheldrake, J. Am. Chem. Soc., 1991, 113, 666; S. M. Resnick, D. S. Torok and D. T. Gibson, J. Org. Chem., 1995, 60, 3546; D. R. Boyd, N. D. Sharma, B. Byrne, M. V. Hand, J. F. Malone, G. N. Sheldrake, J. Blacker and H. Dalton, J. Chem. Soc., Perkin Trans. 1, 1998, 1935.
13 D. W. Jones, J. Chem. Soc., Chem. Commun., 1980, 739; J. B. Macaulay and A. G. Fallis, J. Am. Chem. Soc., 1990, 112, 1136; M. A. McClinton and V. Sik, J. Chem. Soc., Perkin Trans. 1, 1992, 1891; D. F. Harvey and E. M. Grezner, J. Org. Chem., 1996, 61, 159.

14 M. A. Wellman, L. C. Burry, J. E. Letourneau, J. N. Bridson, D. O. Miller and D. J. Burnell, J. Org. Chem., 1997, 62, 939, and references therein.
15 J. D. Xidos, R. A. Poirier, C. C. Pye and D. J. Burnell, J. Org. Chem., 1998, 63, 105.
16 V. M. Kobal, D. T. Gibson, R. E. Davis and A. Garza, J. Am. Chem. Soc., 1973, 95, 4420.
17 C. A. Pittol, R. J. Pryce, S. M. Roberts, G. Ryback, V. Sik and J. O. Williams, J. Chem. Soc., Perkin Trans. 1, 1989, 1160.
18 P. J. Geary, R. J. Pryce, S. M. Roberts, G. Ryback and J. A. Winders, J. Chem. Soc., Chem. Commun., 1990, 204.

19 W. Downing, R. Latouche, C. A. Pittol, R. J. Pryce, S. M. Roberts, G. Ryback and J. O. Williams, J. Chem. Soc., Perkin Trans. 1, 1990, 2613.
20 M. F. Mahon, K. Molloy, C. A. Pittol, R. J. Pryce, S. M. Roberts, G. Ryback, V. Sik, J. O. Williams and J. A. Winders, J. Chem. Soc., Perkin Trans. 1, 1991, 1255.
21 J. E. Letourneau, M. A. Wellman and D. J. Burnell, J. Org. Chem., 1997, 62, 7272.
22 M. G. Banwell and J. R. Dupuche, Chem. Commun., 1996, 869.
23 J. Zezula, T. Hudlicky and I. Ghiviriga, I., Collect. Czech. Chem. Соттип., 2001, 66, 1269.
24 T. Hudlicky, H. F. Olivo and B. McKibben, J. Am. Chem. Soc., 1994, 116, 5108.
25 M. G. Banwell, D. C. R. Hockless, J. W. Holman, R. W. Longmore, K. J. McRae and H. T. T. Pham, Synlett, 1999, 1491.

26 I. C. Cotterill, S. M. Roberts and J. O. Williams, J. Chem. Soc., Chem. Соттип., 1988, 1628.
27 K. Schürrle, B. Beier and W. Piepersberg, J. Chem. Soc., Perkin Trans. 1, 1991, 2407; T. Hudlicky and H. F. Olivo, J. Am. Chem. Soc., 1992, 114, 9694; S. Elango, Y.-C. Wang, C.-L. Cheng and T.-H. Yan, Tetrahedron Lett., 2002, 43, 3757.
28 A. C. Spivey, C. G. Mañas and I. Mann, Chem. Commun., 2005, 4426.
29 J. R. Gillard, M. J. Newlands, J. N. Bridson and D. J. Burnell, Can. J. Chem., 1991, 69, 1337.
30 A. P. Henderson, E. Mutlu, A. Leclercq, C. Bleasdale, W. Clegg, R. A. Henderson and B. T. Golding, Chem. Commun., 2002, 1956.
31 C. C. Pye, J. D. Xidos, R. A. Poirier and D. J. Burnell, J. Phys. Chem. A, 1997, 101, 3371.
32 M. Ishida, H. Kobayashi, S. Tomohiro and S. Inagaki, J. Chem. Soc., Perkin Trans. 2, 2000, 1625.
33 L. A. Paquette, J. C. Weber, T. Kobayashi and Y. Miyahara, J. Am. Chem. Soc., 1988, 110, 8591.
34 S. V. Ley, A. J. Redgrave, S. C. Taylor, S. Abmed and D. W. Ribbons, Synlett, 1991, 741.
35 T. Hudlicky, E. E. Boros, H. F. Olivo and J. S. Merola, J. Org. Chem., 1992, 57, 1026.
36 T. Hudlicky and C. H. Boros, Tetrahedron Lett., 1993, 34, 2557; M. R. Stabile, T. Hudlicky and M. L. Meisels, Tetrahedron: Asymmetry, 1995, 6, 537.
37 C. H. Tran, D. H. G. Crout, W. Errington and G. M. Whited, Tetrahedron: Asymmetry, 1996, 7, 691.
38 J. C. Mcauliffe, G. M. Whited and W. C. Smith, PCT Int. Appl., 2002, 156.

39 N. C. Yang, M.-J. Chen and P. Chen, J. Am. Chem. Soc., 1984, 106, 7310.

40 A. Baran, H. Seçen and M. Balci, Synthesis, 2003, 1500.

[^0]: ${ }^{a}$ Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada A1B $3 X 7$
 ${ }^{b}$ Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4J3. E-mail: Jean.Burnell@dal.ca; Fax: +1 902494 1310; Tel: +19024941664

[^1]: ${ }^{a}$ Data from ref. 19. ${ }^{b}$ Ratio $60: 40$ for the reaction in chloroform, ref. $11 .{ }^{c}$ The adducts were not isolated. ${ }^{d}$ Reaction in toluene. ${ }^{e}$ Only the endo adducts are given in the Table. The ratio of $\mathbf{2 5 : 2 6 : 2 7}$ was $21: 79: 14$.

