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ABSTRACT: In any ecological system, the factors that regulate the abundance of species vary with spa-
tial scale; therefore, the sources of spatial variability should be described. We examined different
sources of variability in the spatial distribution of phytoplankton assemblages and biotic (e.g. plank-
tonic and benthic micrograzers, mussels} and abiotic {e.g. nutrients, temperature, salinity, pH) factors
that may regulate these assemblages in 4 tidepools at each of 3 intertidal zones {mid, high and splash)
on a rocky shore in Nova Scotia, Canada, over a period of 15 mo. Stratum (defined as the depth within
a pool) was a significant source of variability, particularly for pennate diatoms which were consistently
more abundant near the bottom of pools. There was no indication of vertical zonation of the phyto-
plankton assemblages along the intertidal gradient, and differences among zones rarely explained
more than 309 of the spatial vanability in phytoplankton abundance. Also, among-zone variation was
not apparent for the biotic and abiotic factors. We suggest that among-zone variability in these factors
does not adequately explain vertical variability in phytoplankton assemblages. All groups of phyto-
plankton varied significantly among pools within intertidal zones on most sampling dates, and differ-
ences among pools explained up to 96 % of the variability in phytoplankton abundance. Furthermore,
there was significant variability among pools within zones for all biotic and abiotic characteristics of the
pools on most sampling dates. We detected significant relationships between the density of benthic
micrograzers and small mussels, and the concentration of nutrients in individual pools with the abun-
dance of pennate diatoms, cryptomonads and chlorophytes. Among the abiotic characteristics of the
tidepools, there was a significant relationship between flushing rate and temperature of individual
pools, with the abundance of cryptomonads and chlorophytes. We suggest that the factors that regulate
phytoplankton assemblages in tidepools probably operate more at the scale of the individual pool
rather than the intertidal zone.
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INTRODUCTION
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The importance of spatial variability in ecological
processes and community organization has been
emphasized in recent studies (Addicott et al. 1987,
Wiegert 1988, Wiens 1989). In any ecological system,
different patterns of species abundance and commu-
nity organization emerge at different spatial scales of
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investigation and the relative importance of small-
scale phenomema versus broader-scale processes indi-
cates the ‘openness’ of the system (Wiens 1989). Levin
(1992} recommended that patterns of variability in
community organization within and across systems
must be described if prediction of community dynam-
ics is to be successful. Both the small-scale phenomena
and the broad-scale processes that affect an ecological
system have to be defined before their relative impor-
tance can be assessed. The importance of sampling
procedures in examining variability at different spatial
scales has been emphasized (see Andrew & Mapstone
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1987 for review) and statistical and numerical models
have been developed that examine the different sour-
ces of spatial varlability (e.g. Morris 1987, Perry 1988,
Downes et al. 1993).

Community structure and organization have been
studied extensively on rocky intertidal shores (e.g
Stephenson & Stephenson 1950, 1952, 1954a, b, Day-
ton 1971, Connell 1972, Menge 1976, Underwood
1981a}. Research on this system has provided useful
concepts, empirical evidence and models that are
applicable to many other communities (e.g. Paine
1966, Connell 1983, Sousa 1984a, b). Studies of com-
munity structure of rocky intertidal shores have largely
focussed on the ubiquitous vertical zonation of organ-
isms along the intertidal gradient (e.g. Connell 1961,
Dayton 1971, Paine 1974, Lubchenco & Menge 1978,
Schonbeck & Norton 1978, Denley & Underwood
1979). Recent studies, however, have attempted to
identify and describe potential sources of natural vari-
ability at different spatial scales (from meters to kilo-
metres) (e.g. Underwood & Denley 1984, Caffey 1985,
Jernakoff & Fairweather 1985, McGuinness 1987a, b,
Foster 1990, Lively et al. 1993). These studies have
shown that spatial variability on rocky intertidal shores
does not change monotonically with scale, i.e. variabil-
ity does not always increase or decrease at larger spa-
tial scales. The extent to which small-scale variability
can affect the outcome of large-scale processes has not
been established yet.

Tidepools are a conspicuous component of the
rocky intertidal habitat that are less frequently stud-
ied than the emergent substrata. However, because of
their well-defined boundaries and manageable size,
tidepools provide a useful system for examining
sources of variability at different spatial scales. The
biological zonation which characterizes the emergent
substrata is not as apparent in tidepools (see Metaxas
& Scheibling 1993 for review, Metaxas & Scheibling
1994a, Metaxas et al. 1994). Spatial variability in com-
munity structure is probably larger among pools than
among locations on the emergent substrata at the
same spatial scale since the physical characteristics of
tidepools (e.g pool depth, volume. orientation and
flushing rate) make individual pools unique (Metaxas
& Scheibling 1993). Metaxas & Scheibling (1994a) and
Metaxas et al. (1994) showed that small-scale variabil-
ity among pools within intertidal zones may mask the
broader-scale zonation observed on emergent sub-
strata, at least for some functional groups of macro-
and hyperbenthos.

Microalgae, particularly pennate diatoms, are
among the first colonizers of bare rocky intertidal
shores {Sousa 1979, MacLulich 1986) and may exhibit
vertical zonation on emergent substrata. Earlier
studies have shown that some benthic diatoms, such as

the pennate diatom Acnanthes, are more abundant
higher on the shore while others, such as the centric
diatom Melosira, are more abundant lower on the
shore (Aleem 1950, Castenholz 1963, Hopkins 1964).
Recently, however, Hill & Hawkins (1991) found large
horizontal spatial variability in the abundance of epi-
lithic diatoms on a rocky shore on the Isle of Man, UK.

Very few studies have examined the distribution and
abundance of microalgae in tidepools on rocky shores
(see Metaxas & Scheibling 1993). Droop (1953} pro-
vided a classification of pools on the basis of their
phytoplankton assemblages which varied along the
intertidal gradient. Metaxas & Lewis {1992) found that
the abundance of centric diatoms decreased in pools
higher on the shore while that of pennate diatoms
tended to increase. Neither of these studies, however,
used replicate pools within zones to determine
whether the observed pattern would persist across
space. Dethier (1984) used a large number of tidepools
and found that diatoms were more abundant in lower
pools of protected shores. However, she did not quan-
tify horizontal spatial variability and only examined
the diatom community of the benthos, not the water
column of the pools.

It is well established that phytoplankton community
structure in large aquatic systems such as lakes and
the open ocean can be directly affected by nutrients
and/or herbivory. Spring and fall phytoplankton
blooms are triggered by increased nutrient concentra-
tions in the euphotic zone after vertical mixing; blooms
collapse because of nutrient depletion, cell sinking or
increased grazing (e.g. reviews in Reynolds et al. 1982,
Harrison et al. 1983, Reid et al. 1990, Sommer 1991,
Wassman 1991). The growth of different groups of
phytoplankton is limited in different nutrient regimes
and species can coexist when limited by different
resources (Tilman 1977, but see Hobson 1988/1989).
Conversely, nutrient uptake rates and efficiency vary
among different groups of phytoplankton, and the
nutrient levels in the environment can determine pat-
terns of dominance and succession (Parsons et al. 1978,
Vanni & Temte 1990, Gervais 1991, Pomeroy 1991,
Sommer 1991) Selective grazing also may result in
shifts in phytoplankton dominance (Vanni & Temte
1990, Gervais 1991, Sommer 1991).

In tidepool systems, microalgae are introduced
through input from the surrounding seawater, by the
ascending tide and through spray. The microalgal
assemblages subsequently become isolated from
external input for extended periods of time, depending
upon the period of isolation of the pool. During this
period, the assemblage may change due to a number
of factors (Metaxas & Scheibling 1994b). Phytoplank-
ton may remain suspended because of buoyancy or
motility (e.g. centric diatoms, flagellates, nanoflagel-
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lates) or may sink to the bottom (e.g. benthic centric
and pennate diatoms). Phytoplankon may be con-
sumed by macrobenthic filter-feeders such as mussels,
or planktonic filter-feeders such as calanoid copepods
and rotifers. Benthic micrograzers such as harpacticoid
copepods may consume microalgae that have sunk to
the bottom of the pool. The nutrient regime can change
either through uptake by micro- and macroalgae or
through excretion by the fauna. The physical condi-
tions of the pools can change and may even reach
lethal limits for certain groups of microalgae. The mag-
nitude of changes affecting the phytoplankton assem-
blage will depend on the length of the period of tidal
isolation of the pool. Predictable zonation patterns may
arise if the magnitudes of change are similar among
pools with similar periods of isolation (within the same
intertidal zone). However, horizontal spatial variability
among pools within zones may mask the broad-scale
phenomenon of zonation.

We examined the sources of vertical and horizontal
spatial variability of phytoplankton assemblages in
tidepools located in 3 intertidal zones over a period of
16 mo. Specifically, we wanted to determine whether
the broad-scale phenomenon of intertidal zonation is
evident in these assemblages, or whether the horizon-
tal spatial variability in the abundance of phytoplank-
ton among tidepools within intertidal zones overrides
any pattern of zonation. We also measured the sources
of spatial variability in the nutrient regime, the grazer
field, and in a number of abiotic characteristics of the
tidepools to determine whether variability in abiotic
and biotic factors could explain the observed patterns
of phytoplankton abundance at these spatial scales.

MATERIALS AND METHODS

Four tidepools at each of 3 intertidal zones (mid, high
and splash) were sampled at Cranberry Cove, an ex-
posed rocky shore near Halifax, Nova Scotia, Canada
(44° 28" N, 63°56' W) at approximately monthly
intervals between March 1991 and June 1992. We did
not sample between December 1991 and March 1992
because the pools were frozen during this period. The
shoreline consists of granitic platforms and large out-
crops with a 10 to 30% grade. It has a southern expo-
sure to oceanic swells which may reach wave heights
of up to 10 m during autumn storms. The pools were
distributed along ca 250 m of shoreline. The pools were
irregularly shaped with the maximum dimension rang-
ing from 2 to 14 m and maximum depth ranging from
0.21 to 0.75 m. To estimate pool area and volume, par-
allel transect lines were set at 0.5 m intervals along the
length of each pool to either side of a central line.
Length was measured along each transect line and

width was measured at 0.5 m intervals along the cen-
tral line. This provided a map of the pool perimeter
which was then digitized to estimate surface area. Pool
depth was measured at 0.3 m intervals along each of
the widthwise transects, subdividing the pool into a
grid of 0.5 x 0.3 m subunits (units around the perimeter
were smaller). Average depth within each subunit was
estimated by averaging the depths at each corner, and
the volume of each tidepool estimated by summing the
subunit volumes. The period of isolation of each pool
was measured on 17 dates (June 1990, and at 2 to 6 wk
intervals between March 1991 and July 1992) as the
period between tidal recession and subsequent tidal
input (including spray) and averaged for each pool.
The height above chart datum of each pool was mea-
sured using a transit level in July 1991 and 1992.
Flushing rate of each pool was determined as the per-
centage decrease in concentration of a fluorescent
red dye (Rhodamine B, Sigma®, St. Louis, MO, USA),
added to the pools in known concentration, over the
period between low and high tides (i.e. per half a tidal
cycle). Decreases in the concentration of the dye were
mainly due to tidal exchange, but also due to drainage
of the pool, rain, adsorption onto the substratum and
uptake by the biota. Changes in dye concentration
were measured on a Perkin-Elmer Lambda 3B UV/VIS
spectrophotometer. Flushing rate was measured on
9 July 1992, when wave height was between 2 and 3 m
and it was raining lightly, and on 30 August 1993 when
wave height was ~1 m and it was not raining.

For each sampling period, two 60 ml samples of
phytoplankton were collected with a polypropylene
syringe at each of 2 strata within each pool (at the sur-
face and <1 c¢m above the bottom) and from the sur-
rounding seawater at 2 locations along the shore,
immediately below the 2 farthest pools. The phyto-
plankton samples were placed in a container and the
syringe was rinsed into the same container using 20 ml
of distilled water. The samples were preserved in
Lugol's solution and stored in the dark for subsequent
enumeration. Before counting, the phytoplankton sam-
ples were inverted 50 times, and subsamples were
allowed to settle overnight in 25 ml settling chambers
{(Lund et al. 1958). Two samples of micrograzers were
collected by hand-pumping 51 of seawater from 0.1 to
0.2 m above the bottom of each tidepool, at approxi-
mately the mid depth of the pools, through a 60 um net.
The net was rinsed into a container and the sample
fixed with 4 % buffered formaldehyde. Two other sam-
ples were collected similarly from the surrounding sea-
water at the same locations as the phytoplankton
samples. Phytoplankton and micrograzers were enu-
merated using a Leitz Labovert inverted microscope.
Phytoplankton was identified according to Cupp
(1943), Hendey (1964), Sournia (1986), Ricard (1987)
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and Chrétiennot-Dinet (1990). Micrograzers were
identified according to Smith (1964), Brinkhurst et al.
(1976), Barnes (1980), and Gardner & Szabo (1982).
Mussel density (Mytilus edulis and/or M. frossulus)
was measured in five 0.2 x 0.2 m quadrats which were
randomly located in each tidepool at each sampling
date. Two 60 ml water samples were collected from
each pool and at the 2 sea-surface locations for nutrient
analysis with an acid-washed (1 N HCI) polypropylene
syringe. These samples were filtered through 0.80 pm
Millipore® filters into acid-washed polypropylene con-
tainers in the field, and frozen for subsequent analysis
(our unpubl. data suggest that freezing over periods
of 7 mo had no effect on the concentration of ammo-
nium). Nitrate+nitrite, silicate and phosphate con-
centrations were measured in these samples using a
Technicon AA2 autoanalyzer, and ammonium con-
centration was determined according to Parsons et al.
{1984) on a Jenway 6100 spectrophotometer. The tem-
perature of each pool and the surrounding seawater
was measured using a hand-held thermometer; salin-
ity was measured with an Endeco type 102 refractome-
ter; and pH was measured with a Cole Palmer pH
wand {Model 05830-00).

For statistical analysis, phytoplankton were assigned
to 4 taxonomic groups: centric diatoms, pennate dia-
toms, cryptomonads, and chlorophytes (Table 1). This
is a conventional grouping based on successional pat-
terns (e.g. Vanni & Temte 1990, Venrick 1990, Haigh et
al. 1992, Weeks et al. 1993). Micrograzers were
grouped as benthic and planktonic according to their
functional morphology and mode of feeding. Mussels
were grouped into 3 size classes: small (<1 cm), me-
dium (1 to 2 cm) and large (>2 cm) because filtering
rate, and therefore effect on phytoplankton abun-
dance, varies largely with mussel size (e.g. Winter
1973, Kemp et al. 1990). For each sampling date, dif-
ferences in the abundance of phytoplankton for each
taxonomic group, as well as differences in the abun-
dance of total phytoplankton, were compared among
intertidal zones (mid, high and splash), among pools
nested within zones (4 per zone), and among strata
(surface and bottom of the pools) using 3-factor nested
ANOVA. The model used in the ANOVA was:

Xk = W+ Stratum, + Zone; + Stratum x Zone,,

Kl

+ Pool(Zone); , + Stratum x Pool(Zone),.,, + €y x,

The effect of the interaction term Stratum x Pool(Zone})
was examined against the residual error, and the
effects of the terms Stratum and Stratum x Zone were
examined against the interaction term Stratum x
Pool(Zone). In cases where the interaction term Stra-
tum x Pool(Zone) was significant, the effect of the fac-
tor Stratum was examined within each zone. The effect
of the factor Zone was examined against the factor

Pool(Zone); if Pool(Zone) was not significant at p >
0.250, we pooled the term Pool(Zone) with the residual
error and tested the effect of the factor Zone against
the pooled error term. The magnitude of the experi-
mental effect of each factor (w°) was calculated for each
sampling date, based on models in Howell (1987,
using mean square estimates that were defined
according to Underwood (1981b).

Differences in densities of micrograzers and mussels,
and nutrient concentrations were examined among
intertidal zones and among pools nested within zones
using 2-factor nested ANOVA, since stratum was not
applicable. Differences in temperature, salinity and
pH were examined among zones using single-factor
ANOVA. The analyses of variance were based on
models given in Winer (1971) and Underwood (1981b).
A posteriori multiple comparisons of treatment means
were done using Student-Newman-Keuls (SNK) tests.
To avoid an increased probability of conducting a type
I error due to the large number of analyses of variance,
we used the sequential Bonferroni technique to obtain
table-wide levels of significance (Rice 1989). In the
ANOVA and SNK tests, the null hypothesis was
rejected at p < 0.05.

Forward stepwise multiple regressions (Sokal &
Rohlf 1981, Kleinbaum et al. 1988) were done to exam-
ine relationships between the abundance of each
phytoplankton group at the surface and at the bottom
of the pools with the abundance of planktonic and ben-
thic micrograzers and mussels, the concentration of
nutrients (nitrate+nitrite, ammonium, phosphate and
silicate), the physical and chemical characteristics of
the pools (temperature, salinity, pH, height above
chart datum, volume and flushing rate) and the ma-
croalgal cover in the pools as given in Metaxas et al.
(1994). Regressions were carried out for the entire
sampling period. The ¢-to-add value was 0.150.

For all statistical analyses, variables were In(x+1)-
transformed to successfully remove heterogeneity of
variance when detected using Cochran'’s test, or non-
normality when detected in residual plots. All analyses
were carried out using SYSTAT versions 5.1 and 5.2
(Wilkinson 1989) on a Macintosh SE 30 computer.

RESULTS

Spatial patterns of physical and chemical
characteristics

The physical characteristics of the tidepools are
given in Table 2. Since phytoplankton can be intro-
duced into the pools through any amount of input
of the surrounding seawater (including spray), we
assigned replicate pools to intertidal zones according
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Table 1 Frequency of occurrence (number of dates) of the species of phytoplankton that were identified in this study at the sea
surface and in 4 tidepools (Pools 1 to 4) sampled in each of 3 zones (mid, high splash) on 14 sampling dates between March 1991
and June 1992

Taxonomic group Sea Mid pools High pools Splash pools
surface 4 2 3 4 1 2 3 4 1 2 3 4
Centric diatoms
Chaetoceros spp. 6 6 5 4 5 4 4 3 4 5 3 4 5
Coscinodiscus spp. 2 2 3 1 2 1 1 1 1 2 0 1 2
Detonula confervacea 1 0 0 0 0 0 0 0 0 0 0 0 0
Leptocylindrus danicus 2 2 2 2 1 3 3 1 0 2 0 0 2
Melosira nummuloides 3 1 1 1 0 1 0 0 0 0 1 0 0
Odontella aurita 2 0 0 0 0 0 0 0 0 0 0 0 0
Rhizosolenia alata 1 2 2 1 0 0 0 0 0 0 0 1 0
R. delicatula 4 0 1 0 1 0 1 0 2 1 0 0 1
R. fragilissima 2 2 2 3 1 1 1 1 1 1 0 1 1
R. setigera 3 1 2 1 1 0 1 0 1 1 0 0 0
R. styliformis 1 1 1 0 0 0 0 0 0 0 0 0 0
Skeletonema costatum 10 6 7 7 7 6 6 8 5 7 8 6 5
Thalassiosira gravida 1 0 0 0 0 0 0 0 0 0 1 0 0
T hyalina 2 2 1 2 1 0 0 0 0 0 0 0 0
T. nordenskioldii 3 3 3 3 1 0 1 2 2 3 2 4 3
Pennate diatoms
Amphiprora spp. 3 5 6 8 7 6 8 6 6 4 8 5 6
Amphora spp. 2 1 2 2 2 1 2 4 3 2 5 3 2
Campylosira cymbelliformis 0 0 1 0 0 0 0 0 0 0 0 0 0
Cylindrotheca closterium 9 11 11 13 11 10 12 8 8 3 8 7 4
Fragilaria crotonensis 5 6 3 4 2 1 4 3 4 3 2 1 2
Grammatophora angulosa 5 5 2 2 2 2 0 3 2 0 0 0 1
Gyrosigma sp. 0 1 0 0 1 0 0 0 0 0 0 0 0
Licmophora gracilis 4 5 5 6 5 6 4 2 5 2 3 5 3
L. juergensii 10 13 11 12 11 10 10 10 9 7 9 13 7
Navicula spp. 11 13 12 11 10 6 7 9 7 5 8 5 5
Nitzschia delicatissina 5 1 4 3 2 3 5 1 2 1 5 3 2
N. longissima 7 2 3 4 4 2 i 6 3 3 4 4 1
N. seriata 7 4 5 3 4 1 4 3 3 5 2 3 3
Nitzschia spp. 11 14 13 14 13 12 13 11 11 9 11 10 10
Plagiogramma stauroforum 2 5 3 4 3 3 4 5 4 2 2 2 3
Striatella unipunctata 1 2 2 2 2 1 1 0 0 0 0 0 0
Surirella spp. 0 2 4 4 5 3 3 1 4 3 3 4 4
Thalassionema nitzschioides 0 1 2 0 1 2 1 3 0 1 1 1 1
Thalassiothrix frauenfeldi 4 5 1 3 3 4 1 2 1 1 2 2 3
Unidentified pennates 13 13 13 11 13 11 10 9 10 6 12 11 8
Cryptomonads
Cryptomonas spp. 11 12 12 14 14 14 14 14 14 14 14 14 14
Chlorophytes
Dunaliella tertiolecta 3 5 5 5 5 5 5 5 5 6 5 5 6
Euglenoids
Euglena spp. 0 1 1 0 0 0 0 3 0 0 0 0 0

to the period of isolation from tidal input. Pools with
average periods of isolation ranging from 3 to 8 h were
assigned to the mid zone, those with periods ranging
from 10 to 12 h were assigned to the high zone, and
pools that usually did not receive any input over a
cycle, except during storms, were assigned to the
splash zone.

Mean temperature at the sea surface and in the tide-
pools increased from a low around March to a peak in

July 1991 (Fig. 1). It remained high throughout summer
and early autumn but decreased by November 1891.
The increase between March and June 1992 was simi-
lar to that of the previous year. Mid pools were signifi-
cantly (SNK test) colder than high and splash pools in
June 1992 (F, g = 11.65, p < 0.001). Splash pools were
significantly colder than mid and high pools in October
1991 (F, 9 = 28.77, p < 0.001). Mean salinity remained
relatively constant at the sea surface and in the mid
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Table 2. Physical characteristics of 4 tidepools (Pools 1 to 4) located in each of 3 intertidal zones (mid, high and splash), at Cran-
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berry Cove, Nova Scotia, Canada. CD: chart datum; —: no recorded input during 12 h tidal cycle; SD: standard deviation

Intertidal zone Surface Maximum Volume Isolation Height above Flushing rate
area (m?) depth (m) (m?) period (h}) CD (m) per 1/2 tidal cycle (%)
July 1992 August 1993
Mid zone
Pool 1 3.20 0.15 0.19 3 1.2 100 100
Pool 2 10.91 0.45 2.03 5 1.4 100 100
Pool 3 14.36 0.36 1.81 7 2.3 75 94
Pool 4 8.94 0.46 2.27 8 1.2 37 48
Mean + SD 9.35 + 4.67 0.36 = 0.14 1.58 + 0.94 612 1.5+0.5 78 + 30 86 £ 25
High zone
Pool 1 10.04 0.19 0.92 12 3.0 15 21
Pool 2 15.75 0.27 1.49 11 2.5 66 99
Pool 3 24.23 0.64 7.28 12 2.6 23 0
Pool 4 11.84 0.13 0.68 10 29 40 8
Mean = SD 15.47 + 631 0.31 £0.23 2.59+3.14 11 +1 2.8+0.2 36 + 23 32+46
Splash zone
Pool 1 0.68 0.13 0.05 - 2.8 0 11
Pool 2 8.85 0.31 1.15 - 3.4 37 4
Pool 3 7.47 0.32 0.71 - 3.9 36 7
Pool 4 3.94 0.43 0.94 - 4.5 52 0
Mean £ SD 5.24 + 3.67 0.30+0.12 0.71 £0.48 - 3707 31+22 6+5
—
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Fig. 1. Mean temperature, salinity and pH (+SD) at the sea surface (n = 2) and in tidepools (n = 4) in 3 intertidal zones (mid, high,
splash) at Cranberry Cove, Nova Scotia, Canada, sampled at approximately monthly intervals between March and November

MONTH

1991 and March and June 1992 (twice during the bloom in March 1991). ND: no data
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pools over the 16 mo study, but was reduced signifi-
cantly due to rain in splash pools in November 1991
(F2,6=22.19, p < 0.001) (Fig. 1). Mean pH at the sea sur-
face did not fluctuate over the 16 mo, but was greater
and more variable in the pools (Fig. 1); pH did not vary
significantly among zones on any sampling date.

Spatial patterns of phytoplankton abundance

The abundance of total phytoplankton was greatest
in the surrounding seawater in March 1991 and May
1992 due to spring blooms, and in October 1991 due to
an autumn bloom (Fig. 2). Similar patterns of abun-
dance were observed for centric diatoms, the dominant
phytoplankton group during the blooms (Fig. 3). The
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Fig. 2. Mean abundance of total phytoplankton (xSD) at the
sea surface (n = 2) and at the surface and bottom of tidepools
(n = 4) in 3 intertidal zones (mid, high, splash) at Cranberry
Cove, Nova Scotia, sampled at approximately monthly inter-
vals between March and November 1991 and March and June
1992 (twice during the bloom in March 1991}. ND: no data

abundance of pennate diatoms was greatest after the
spring bloom in 1991 and around the bloom in 1992
{Fig. 4). Cryptomonads and chlorophytes were less
abundant than diatoms: their mean abundance never
exceeded 10 cells 1I"! at the sea surface (Figs. 5 & 6).
In tidepools, the abundance of total phytoplankton
and of individual taxonomic groups varied signifi-
cantly between strata on a number of sampling dates.
Total phytoplankton was more abundant at the bottom
than at the surface of pools in spring (all pools:
17 March and April 1991, April 1992; splash pools:
May 1992), and in autumn (all pools: October 1991}
(Fig 2, Table 3). Centric diatoms were more abundant
at the bottom than at the surface of all pools in October
1991 (Fig. 3, Table 4). Pennate diatoms were more
abundant at the bottom than at the surface of pools in
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Fig. 3. Mean abundance of centnic diatoms (+SD) at the sea
surface (n = 2) and at the surface and bottom of tidepools (n =
4) in 3 intertidal zones (mid, high, splash) at Cranberry Cove,
Nova Scotia, sampled at approximately monthly intervals
between March and November 1991 and March and June
1992 (twice during the bloom in March 1991). ND: no data
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spring (all pools: 17 March and April 1991, April and
May 1992), although they were more abundant at the
surface than at the bottom of all pools on 1 date
(27 March 1991) (Fig. 4, Table 5). Cryptomonads were
more abundant at the surface than at the bottom of all
pools on 27 March 1991 (Fig. 5, Table 6}. Chlorophytes
were more abundant at the bottom than at the surface
of all pools on 2 out of the 7 sampling dates (April and
June 1992) (Fig. 6, Table 7).

The abundance of total phytoplankton and the indi-
vidual taxonomic groups did not vary significantly
among intertidal zones on any sampling date (Figs. 2
to 6, Table 3 to 7). However, the abundance of total
phytoplankton and all taxonomic groups was highly
variable among pools within zones throughout the
study. The abundance of total phytoplankton varied
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Fi1g. 4. Mean abundance of pennate diatoms (+SD) at the sea
surface (n = 2) and at the surface and bottom of tidepools {(n =
4) 1n 3 intertidal zones (mud, high, splash) at Cranberry Cove,
Nova Scotia, sampled at approximately monthly intervals
between March and November 1991 and March and June
1992 (twice during the bloom in March 1991). ND: no data

significantly among pools within zones on all sampling
dates (mid pools: all dates except May and July to Sep-
tember 1991, May 1992; high pools: all dates except
August and November 1991; splash pools: all dates ex-
cept May 1992) (Fig. 2, Table 3) The abundance
of centric diatoms varied significantly among pools
within zones on 6 out of 11 dates (mid pools: 17 and 27
March 1991, April 1992; high pools: 17 and 27 March
and October 1991, May and June 1992; splash pools:
17 and 27 March, May and October 1991, March 1992)
(Fig. 3, Table 4). The abundance of pennate diatoms
varied significantly among pools on 7 out of 14 dates
(mid pools: 17 and 27 March 1991, March to May 1992;
high pools: 17 March, May and July 1991, April and
May 1992; splash pools: 17 March to May 1991, March
to May 1992) (Fig. 4, Table 5). The abundance of cryp-
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Fig. 5. Mean abundance of cryptomonads {+SD) at the sea
surface (n = 2) and at the surface and bottom of tidepools (n =
4) 1n 3 intertidal zones (mid, high, splash| at Cranberry Cove,
Nova Scotia, sampled at approximately monthly intervals
between March and November 1991 and March and June
1992 (twice during the bloom 1in March 1991} ND: no data
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October and November 1991, May and June 1992;

high pools:
chlorophytes varied significantly among pools within

tomonads varied significantly among pools on 13 out
1991, April to June 1992; splash pools: on all dates ex-
cept March 1992) (Fig 5, Table 6). The abundance of
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though not statistically analyzed, we observed pulses
respectively) but only in 1 high pool (Table 1).

March, April and June 1992) (Fig. 6, Table 7). Al-
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Fig. 6. Mean abundance of chlorophytes {+SD) at the sea

4) in 3 intertidal zones (mid, high, splash) at Cranberry Cove
Nova Scotia, sampled at approximately monthly intervals
between March and November 1991 and March and June
1992 (twice during the bloom in March 1991). ND: no data
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The magnitude of the effect that each source of
spatial variability had on phytoplankton abundance
varied among groups but was relatively consistent
among dates for most groups (Fig. 7). Variability
in abundance of total phytoplankton, cryptomonads
and chlorophytes was explained largely by variability
among pools within zones, whereas variability in
abundance of centric and pennate diatoms was ex-
plained to similar extents by variability among zones
and between strata, as well as among pools within
zones. Variability among pools within intertidal zones
was 13-96% (on all dates) of total variability for total
phytoplankton; for cryptomonads it was 6-96% (on
all dates); for chlorophytes it was 33-86% (on all
dates); for centric diatoms it was 11-69% (on 9 out of
11 dates); and for pennate diatoms it was 10-42%
(on 12 of 14 dates) of total variability. Variability
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Fig. 7. Magnitude of effects of each factor [Zone, Stratum,

Pool{Zone)], as well as of the interaction terms [Zone x Stra-

tum, Pool{Zone) x Stratum|, in the analyses of variance of the

abundance of total phytoplankton and of each phytoplankton
group for each sampling date. ND: no data

among zones was 1-49% (on 7 of 14 dates) of total
variability for total phytoplankton; for cryptomonads
it was 1-59% (on 7 of 14 dates); for chlorophytes it
was 3-42% (on 6 of 7 dates); for centric diatoms it
was 8-35% (on 4 of 11 dates); and for pennate
diatoms it was 7-23% (on 9 of 14 dates) of total vari-
ability. Variability between strata was 1-20% (on 11
of 14 dates) of total variability for total phytoplank-
ton; for cryptomonads it was 1-10% (on 10 of 14
dates); for chlorophytes it was 1-7% (on 5 of 7
dates); for centric diatoms it was 1-23% (on 9 of 11
dates); and for pennate diatoms it was 1-42% (on 10
of 14 dates) of total variability. The Interaction term
Zone x Stratum accounted for <23 % and the interac-
tion term Pool (Zone) x Stratum accounted for <28 %
of the variability in the abundance of all phytoplank-
ton groups on all sampling dates. The amount of
residual variability in abundance varied among
phytoplankton groups and among sampling dates: for
total phytoplankton, residual variability was 4-37 %
of total variability; for centric diatoms it was 8-40%,
except in April and November 1991 when it was
100% and 89%, respectively; for pennate diatoms it
was 9-67 %, except in August 1991, when it was
85%; for cryptomonads it was 3-29%, except in
March 1992, when it was 72 %, and for chlorophytes
it was 8-43% of total variability.

Spatial patterns of grazer abundance

The major groups of planktonic micrograzers were
calanoid copepodites and nauplii (the genera Acartia,
Calanus, Paracalanus, Pseudocalanus and Temora at
the sea surface and in mid pools, and Eurytemora affi-
nis in splash pools), marine cladocerans (Podon poly-
phemoides and Evadne nordmanii) and marine rotifers
(the genera Brachionus and Synchaeta) (for a more
detailed description see Metaxas & Scheibling 1994a).
The abundance of planktonic micrograzers did not
vary significantly among zones on any sampling date
but varied significantly among pools within zones on
4 of 14 sampling dates (June to August 1991, June
1992) (Fig. 8. Table 8).

The major groups of benthic micrograzers included
harpacticoid copepodites and nauplit (families Har-
pacticidae, Tisbidae, Thalestridae and Diosaccidae),
foraminiferans and nematodes (see Metaxas & Scheib-
ling 1994a). The abundance of benthic micrograzers
did not vary significantly among zones on any sam-
pling date but varied significantly among pools within
zones in June 1991 (Fig. 8, Table 8).

Mussels Mytilus edulis and/or M. trossulus were
abundant in mid and high pools throughout the sam-
pling season, but small mussels were never found in
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some high and splash pools (Fig. 9, see also Metaxas
et al. 1994). The abundance of small mussels was
greater in mid than high and splash pools on 1 sam-
pling date (September 1991), but varied significantly
(SNK test) among pools within zones on 5 of 14 dates
(June to August 1991, May and June 1992) (Table 9).
The abundance of medium-sized mussels was greater
in mid than in high and/or splash pools on 1 sampling
date (May 1992), and varied significantly among pools
within zones on all sampling dates, except August
1991 (Table 9). The abundance of large mussels did
not vary significantly among intertidal zones on any
sampling date, but varied significantly among pools
within zones on all sampling dates except May 1992
(Table 9).
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Fig. 8. Mean density of planktonic and benthic micrograzers

(xSD) at the sea surface (n = 2) and at the surface and bot-

tom of tidepools (n = 4) in 3 intertidal zones (mid, high,

splash) at Cranberry Cove, Nova Scotia, sampled at approx-

imately monthly intervals between March and November
1991 and April and June 1992. ND: no data

Table 8. Analyses of variance of the abundance of planktonic and benthic micrograzers (ind. m™) for 12 sampling periods between March 1991 and June 1992. Factors are

Intertidal Zone (Z) and Pool (nested within Zone) (P(Z

9,12; F7 =2,91f ppz, < 0.250 and Fz = 2, 21 if ppz, > 0.250. *Bonferroni-adjusted prob-

)); degrees of freedom: Fy 7

ability was significant; ™“Bonferroni-adjusted probability was not significant; MS: denominator mean square used in F-ratios

Benthic grazers

Planktonic grazers

Date

P(Z)

P(Z)

MS

MS

MS

MS

>0.10™

1.46
0.32
0.94

59x%x10”

0.480™
0.164™
0.176™
<0.001°

01
1.83
1.77
7.04
3.93
2.39

5.9 %107

0.754™
0.239™
0.667™

0.29
1.69
0.42
1.94
0.53
4.01

11.02
10.33

18.14

0.173™
0.208"
0.011™

1.78
1.65

6.18
4.29
5.
18.75

17 Mar 1991

0.737™
0.425™
0.050™
0.249™
0.915™
>0.10™

7.95

4.8x%x107

4.35
2.7 %107

6.28

13 Apr 1991

4.23
4.74
1.

13 May 1991
7 Jun 1991

4.26
1.63
0.09

2.88
1.1x108

0.41
2.7 x 107

0.200™
0.606™

24.05
33.78

0.006"
<0.001"
<0.001°

07

0.015™
0.080™
0.411™

80

12 Jul 1991

2.23
6.60
1.1x107

0.93

0.057™

0.04"™

4.92
11.52
9.80

22 Aug 1991 0.63 7.85

21 Sep 1991
9 Oct 1991

0.357™
>0.05™
>0.05"

1.71
1.16
1.44
<0.05™

5.0x10°

0.136™
0.285™
0.467™
0.926™
0.440™

1.13
1.97
1.41

6.25
55x 10"
4.3x10°

0.913™

>0.05™

4.63
0.09
0.53

10.19

0.008"*
0.181™
0.386™
0.079™
0.394™
<0.001"*

4.72
1.75
1.18

2.44
5.61
9.47

17 Nov 1991
8 Apr 1992

2.84
5.67
0.12

7.10
6.7 x 10°

1.04
0.38

0.546™ 7.00
9.0 x 10°

>0.06™

0.65
2.60
1.63

18.40

2.41

7.

9.90
22.43

1.16
9.

9.27
2.

6 May 1992

>0.10™

4.36

08

1.

4.22

0.250"

18

26 Jun 1992

191
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Spatial patterns of nutrient concentration

The concentrations of macronutrients varied little
among zones but was variable throughout the sam-
pling season among pools within zones (Figs. 10 & 11).
The concentration of nitrate+nitrite, ammonium and
silicate did not vary significantly among zones on any
sampling date but varied significantly among pools
within zones on 6 of 14, 4 of 9 and 3 of 14 dates, re-
spectively (nitrate+nitrite: 17 and 27 March, April and
August 1991, May and June 1992; ammonium: May,
July and September 1991, April 1992; phosphate: 27
March, April and September 1991) (Table 10). The
concentration of silicate was significantly larger in
mid than in high and/or splash pools in November
1991, and varied significantly among pools on 10 of 14
dates (March to May, July to September 1991, March
to June 1992).

Relationships of phytoplankton abundance with
biotic and abiotic factors

The abundance of phytoplankton varied signifi-
cantly with most of the biotic and some of the abiotic
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Fig. 9. Mean density of small, medium and large mussels in

tidepools 1n 3 intertidal zones (mid, high, splash) at Cranberry

Cove, Nova Scotia, sampled at approximately monthly inter-

vals between June and October 1991 and in May and June
1992. ND: no data

Table 9. Analyses of variance of the abundance of 3 size classes of mussels {(ind. m?) for 7 sampling periods between June 1991 and June 1992. Factors are Intertidal Zone

2, 57 if ppizy > 0.250. *Bonferroni-adjusted probability was sig-

nificant; “Bonferroni-adjusted probability was not significant; MS: denominator mean square used in F-ratios

2, 9 if ppiz; < 0.250 and F;

(Z) and Pool (nested within Zone) (P(Z)); degrees of freedom: Fp;) = 9, 48; F;

Medium-sized mussels Large mussels

Small mussels

Date

P(Z)

MS

MS

0.172™
0.084"
0.038™
0.196"™
0.458™

4.81 215
3.66 3.30
3.46 4.81
0.43 6.16 <0.05™

<0.001°
<0.001"
<0.001°
<0.001°

6.94
5.56
11.16

0.65

0.162%
0.176"™
0.029™
0.024"
0.479™

2.24
2.12
5.34
5.82

0.80
14.90 <0.001°

19.18

243 7.90 <0.001°

15.84 3.20 0.089™

534 297 0.007°

1.

7 Jun 1991
12 Jul 1991

0.66
0.3

4.95
1580
5.93
9.85
4.67
12.33

0.99 5.03 <0.001°

10.52 6.48 0.018™

9.17 <0.001°
476 <0.001°

1.94
1.44

15

0.087™
492 <0.001°
1.43 6.87 <0.001°

1.83

865

11.96 3.62 0.070™

2.51
2.68

2.

22 Aug 1991
21 Sep 1991
27 Oct 1991

1.96
7.90 0.86

6.12

8.10

76
0.22 35125

0.
0.43

21

1.

520 959 0.006°
3.58 3.87 0.061™

0.069™
0.198™
4.97 <0.001°
5.89 <0.001"

<0.001°*

48

0.559"
0.002°

0.87
3.48

0.013*

1.28 9.65 <0.001°

1.73  2.70

2.28 0.159™

18.86 2.36 0.150™

18.17

3.66
3.20

6 May 1992

0.037™

3.80 4.87

10

1.

0.048™

4.35

26 Jun 1992
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characteristics of individual tidepools. Although the
significant independent factors differed among phyto-
plankton groups, we obtained similar relationships be-
tween the abundances at the surface and at the bottom
of the pools for each group, but not for total phyto-
plankton (Table 11). Among the biotic factors, the
abundance of total phytoplankton at the bottom, and of
pennate diatoms, cryptomonads and chlorophytes at
both strata varied significantly with the density of small
mussels. Only the abundance of chlorophytes at both
strata varied significantly with the density of benthic
micrograzers. No phytoplankton group showed a sig-
nificant relationship with the density of planktonic
grazers, medium-sized or large mussels.

In terms of nutrients, the abundance of total phyto-
plankton at the surface of the pools varied significantly
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Fig. 10. Mean concentration of nitrate+nitrite and ammonium

(£SD) at the sea surface (n = 2) and at the surface and bottom

of tidepools (n = 4) in 3 intertidal zones (mid, high, splash} at

Cranberry Cove, Nova Scotia, sampled at approximately

monthly intervals between March and November 1991 and

March and June 1992 {twice during the bloom in March
1991). ND: no data

with the concentration of nitrate+nitrite, and the abun-
dance of centric diatoms at the surface and chloro-
phytes at both strata varied significantly with the con-
centration of ammonium. Only the abundance of
chlorophytes at the bottom of the pools varied signifi-
cantly with the concentration of phosphate. The abun-
dance of total phytoplankton, cryptomonads and
chlorophytes at both strata, and of pennate diatoms at
the bottom of the pools varied significantly with the
concentration of silicate.

Fewer significant relationships were detected be-
tween abiotic factors and the abundance of phyto-
plankton over the entire sampling period. The abun-
dance of total phytoplankton and chlorophytes at the
bottom of the pools and of cryptomonads at both strata
varied significantly with temperature. The abundance
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Fig. 11 Mean concentration of silicate and phosphate (+SD)

at the sea surface (n = 2) and at the surface and bottom of tide-

pools (n = 4} in 3 intertidal zones {mid, high, splash) at Cran-

berry Cove, Nova Scotia, sampled at approximately monthly

intervals between March and November 1991 and March and

June 1892 (twice during the bloom in March 1991). ND: no
data
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Table 11. Significant forward stepwise multiple regressions for abundance of 5 phytoplankton groups at the surface and near the

bottom of tidepools against the biotic and abiotic characteristics of the pools for the entire sampling period between March 1991

and June 1992. Independent variables are: (PL) density of planktonic grazers; (BE) density of benthic grazers; (M<1) density of

small mussels; (M1-2) density of medium mussels; (M>2) density of large mussels; (NO) nitrate+nitrite concentration; (NH)

ammonium concentration; (PO) phosphate concentration; (Si) silicate concentration; (T) temperature; (S) salinity; (pH) pH; (AL)

macroalgal cover; (H) height above chart datum; (V) volume; (F) flushing rate. Within each multiple regression, constants and
independent variables with significant partial F-values are shown in bold

Dependent variable N Model R? F p
Total phytoplankton (surface) 168 11.52 + 0.6 1(NO) - 1.00(Si) + 0.01(T) + 0.03(S) 0.054 338 <0.05
Total phytoplankton {bottom) 106 6.60 + 0.31(M<1) + 0.54(NO) - 1.43(S8i) + 0.07(T) 0.247 592 <0.001

- 0.08(S) + 0.82(pH) - 0.01(F)

Centric diatoms (surface) 144 3.60 — 3.84(NH) 0.028 5.06 <0.05

Pennate diatoms (surface) 132 6.05-0.12(PL) + 0.26(M<1) + 0.82(NO) - 0.68(Si) + 0.03(AL) 0.171 6.39 <0.001

Pennate diatoms (bottom) 132 4.67 - 0.03(PL) + 0.46(M<1) - 1.24(Si) + 0.06(S) + 0.04(AL) 0.217 827 <0.001

Cryptomonads (surface) 168 9.79 + 0.32(M<1) + 0.30(NO) - 0.87(Si) + 0.13(T) — 0.04(F) 0.259 12,69 <0.001

Cryptomonads (bottom) 168  10.81 + 0.26(M<1) + 0.82(NO) - 1.81(PO) 0.220 8.83 <0.001
- 0.92(Si) + 0.10(T) - 0.04(F)

Chlorophytes (surface) 132 16.00 - 1.06(BE) - 0.56(M<1) + 5.36(NH) + 3.89(PO) 0.393 4.29 <0.001
—2.10(Si) - 0.06(S) + 0.04(AL)

Chlorophytes (bottom) 132 16.39 + 0.08(PL) - 0.61(BE) - 0.60(M<1) + 4.58(NH) 0.450 12.93 <0.001

+4.80(PO) - 2.53(Si) - 0.07(S) - 0.23(T) + 0.04(AL)

of total phytoplankton at the bottom of the pools varied
significantly with salinity. The abundance of pennate
diatoms and chlorophytes at both strata varied signifi-
cantly with percentage cover of macroalgae, and the
abundance of cryptomonads at both strata varied sig-
nificantly with flushing rate.

DISCUSSION

Phytoplankton succession at the sea surface followed
a pattern previously described for Nova Scotia (Coté &
Platt 1983, Perry et al. 1989) and north temperate waters
elsewhere (Harrison et al. 1983, Reid et al. 1990, Haigh et
al. 1992, Weeks et al. 1993). The spring blooms in 1991
and 1992 were dominated by the centric diatoms
Chaetoceros spp. and Skeletonema costatumn, and the
autumn bloom in 1991 was dominated by the centric di-
atom Rhizosolenia. After the spring blooms, the abun-
dance of pennate diatoms, flagellates and nanoflagel-
lates increased in May/June in both years.

In tidepools, cryptomonads and chlorophytes were
the numerically dominant groups of phytoplankton
throughout the sampling period. Centric diatoms were
introduced into pools during the blooms and their
abundance subsequently decreased. Since tidepools
and splash pools are less turbulent environments than
the surrounding seawater, the difference in dominance
patterns between the sea surface and the tidepools is
consistent with Margalef's proposal (1978) that under
conditions of high turbulence centric and pennate
diatoms should dominate, whereas under low turbu-

lence flagellates should dominate (see also Kierboe
1993 for review). Cryptomonads are characterized as
opportunistic with wide temperature and salinity toler-
ances (Klaveness 1988), which also may explain their
numerical dominance in tidepools.

We examined 3 sources of spatial variability of the
phvtoplankton assemblages of tidepools: (1) between
strata (the surface and bottom of pools), (2) among
intertidal zones, and (3) among pools within zones. The
magnitude of variability between strata differed
among phytoplankton groups and reflected the char-
acteristics of individual life forms. The largest number
of significant differences between strata were detected
for pennate diatoms, a group which is mostly benthic.
On most dates, the factor stratum accounted for 30 to
40% of the variance in the abundance of pennate
diatoms. In all cases except for on 27 March 1991, the
abundance of pennate diatoms was greater at the bot-
tom than at the surface of the pools. We detected fewer
differences in abundance between strata for centric
diatoms, cryptomonads and chlorophytes than for pen-
nate diatoms, probably because centric diatoms are
more buoyant and cryptomonads and chlorophytes are
more motile than pennate diatoms. In most cases, these
3 taxonomic groups were more abundant at the bottom
of the pools, probably due to sinking.

We found no indication of intertidal zonation of phy-
toplankton assemblages in tidepools. Dethier (1982)
recorded zonation of diatoms (mainly pennates) along
the intertidal gradient, which appeared to reverse dus-
ing the year. She observed diatom blooms in lower
pools in summer and in higher pools in winter, which
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she attributed to reduced grazer densities in those
zones during those periods (Dethier 1982, 1984).
Metaxas & Lewils (1992) observed a decline in the
abundance of centric diatoms and an increase in the
abundance of pennates in pools of increasing intertidal
height. The difference between these studies and ours
could be the result of wave exposure: the site de-
scribed in Metaxas & Lewis (1992) was very protected,
whereas our site was very exposed. Dethier (1984) also
observed less zonation of microalgae in the more
exposed sites of her study.

Significant differences among zones in abiotic and
biotic factors that may affect phytoplankton abun-
dance were observed on some sampling dates. The
lack of differences among intertidal zones in the abun-
dance of phytoplankton suggest that these assem-
blages do not show vertical zonation. Since there were
few differences among zones in the abilotic and biotic
factors that potentially regulate these assemblages, we
suggest that variability in these factors does not ade-
quately explain variability in abundance of phyto-
plankton on the vertical scale.

Spatial variability in the abundance of phytoplank-
ton among pools within intertidal zones was detected
consistently for all phytoplankton groups on most sam-
pling dates. For total phytoplankton, and for cryp-
tomonads and chlorophytes, up to 96 % of the variance
in abundance was explained by variability along the
horizontal scale. For centric and pennate diatoms, vari-
ability within zones was at least as large as variability
among intertidal zones, and on some dates it was
larger. The biotic factors that could affect phytoplank-
ton abundance also varied significantly within zones
on most sampling dates. We have documented previ-
ously that the hyperbenthic and macrobenthic assem-
blages of these pools exhibit large variability within
zones, suggesting that individual pools are unique in
the combination of their biotic and abiotic characteris-
tics (Metaxas & Scheibling 1994a, Metaxas et al. 1994).
Therefore, the factors regulating phytoplankton as-
semblages in tidepools probably operate more at the
scale of the individual pool rather than the intertidal
zone

Multiple regressions showed significant relation-
ships in all but 1 group of phytoplankton (centric
diatoms), both at the surface and the bottom of the
pools, with some biotic and abiotic characteristics of
the pools. The lack of relationships with the abun-
dance of centric diatoms is probably because diatoms
are more transient residents of the pools (they are
mainly introduced during blooms in the surrounding
seawater) than are the other groups. Nutrients showed
significant relationships with the abundance of most
phytoplankton groups. The relationship between the
abundance of phytoplankton and the concentration of

silicate was negative for all phytoplankton groups. For
pennate diatoms, the relationship may be attributed to
nutrient uptake. Since cryptomonads and chlorophytes
do not require silicate for growth, no direct mechanism
for the relationship can be suggested. The relation-
ships between the abundance of chlorophytes and
the concentration of phosphate and ammonium were
positive.

Certain grazers also showed significant relationships
with the abundance of phytoplankton. The abundance
of all phytoplankton groups (except centric diatoms)
varied significantly with the density of small mussels,
but only chlorophytes showed a significant relation-
ship with benthic micrograzers, and there were no
relationships with medium-sized, large mussels or
planktonic micrograzers. The relationships between
the abundance of pennate diatoms and cryptomonads
and the density of small mussels were positive, sug-
gesting that mussels in that size class are more abun-
dant in pools where a potential food source is more
abundant or that both phytoplankton and small mus-
sels are responding positively to some other factor.
However, the relationships between the abundance of
chlorophytes and the density of small mussels and ben-
thic micrograzers were negative, suggesting that these
grazers may be significantly removing this group of
phytoplankton by feeding. The lack of significant rela-
tionships between the abundance of phytoplankton
and the density of planktonic grazers, medium-sized
and large mussels suggest that these factors are not
important and/or that their importance may vary dur-
ing the year The role of planktonic grazers, such as
calanoid copepods, cladocerans and rotifers, in deter-
mining the phytoplankton community structure of
oceanic systems has not been demonstrated consis-
tently (e.g Deason 1980, Estep et al. 1990, Hansen &
van Boekel 1991, Morales et al. 1991, but see also
Conover & Mayzaud 1984). In contrast, the abundance
of phytoplankton in restricted water masses can be
reduced substantially by mussel beds during 1 tidal
cycle (e.g. Wright et al. 1982, Fréchette et al. 1989,
Asmus & Asmus 1991).

Fewer significant relationships were detected
between the abiotic characteristics of the pools and the
abundance of phytoplankton. Temperature and flush-
ing rate were important factors for cryptomonads and
chlorophytes, and percentage cover of macroalgae for
pennate diatoms and chlorophytes. A positive relation-
ship between temperature and the abundance of cryp-
tomonads reflects the increase in abundance of this
group in summer, whereas a negative relationship
between temperature and the abundance of chloro-
phytes reflects the increase of this group in fall. A neg-
ative relationship between flushing rate and the abun-
dance of cryptomonads reinforces the suggestion that
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they are the dominant phytoplankton group in tide-
pools because pools are low-turbulence environments.
A positive relationship between pennate diatoms and
macroalgae suggests that macroalgae enhance settle-
ment of this group by increasing the surface area upon
which pennate diatoms (especially epiphytic species)
can settle (see Round 1971 for review).

In summary, we examined the sources of vertical and
horizontal spatial variability of phytoplankton assem-
blages in tidepools. We did not detect strong patterns
of zonation in tidepools across the intertidal gradient,
and the potential abiotic and biotic factors regulating
these assemblages did not adequately describe vari-
ability at this spatial scale. Conversely, a large amount
of the variance in phytoplankton abundance was
attributed to variability on the horizontal spatial scale,
within zones. At this scale, the biotic characteristics of
individual pools explained some of the variability in
phytoplankton abundance, although abiotic factors did
not appear as important. Certain components of the
grazer communities of each pool explained some of the
variance in phytoplankton abundance for all phyto-
plankton groups except centric diatoms. The nutrient
regime also was an important factor for all groups
although the relative importance of different nutrients
varied among phytoplankton groups. Our study under-
scores the importance of assessing the different
sources of spatial variability in the successful explana-
tion of patterns of community organization.
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