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ABSTRACT: In any ecological system, the factors that regulate the abundance of species vary with spa- 
tial scale; therefore, the sources of spatial variability should be described. We examined different 
sources of variability in the spatial distribution of phytoplankton assemblages and biotic (e.g. plank- 
tonic and benthic micrograzers, mussels) and abiotic (e.g. nutrients, temperature, salinity, pH) factors 
that may regulate these assemblages in 4 tidepools a t  each of 3 intertidal zones (mid, high and splash) 
on a rocky shore in Nova Scotia, Canada, over a period of 15 mo. Stratum (defined as the depth within 
a pool) was a significant source of variability, particularly for pennate diatoms which were  consistently 
more abundant near the bottom of pools. There was no indication of vertical zonation of the phyto- 
plankton assemblages along the intertidal gradient, and differences among zones rarely explained 
more than 30':: of the spatial vanabillty in phytoplankton abundance. Also, among-zone variation was 
not apparent for the biotic and abiotic factors. We suggest that among-zone variability in these factors 
does not adequately explain vertical variability in phytoplankton assemblages. All groups of phyto- 
plankton vaned significantly among pools within intertidal zones on most sampling dates, and differ- 
ences among pools explained up to 96% of the variability In phytoplankton abundance. Furthermore, 
there was significant variability among pools within zones for all biotic and abiotic characteristics of the 
pools on most sampling dates. We detected significant relationships between the density of benthic 
micrograzers and small mussels, and the concentration of nutrients in individual pools with the abun- 
dance of pennate diatoms, cryptomonads and chlorophytes Among the abiotic characteristics of the 
tidepools, there was a significant relationship between flushing rate and temperature of individual 
pools, with the abundance of cryptomonads and chlorophytes. We suggest that the factors that regulate 
phytoplankton assemblages in tidepools probably operate more a t  the scale of the individual pool 
rather than the intertidal zone. 
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INTRODUCTION 

The importance of spatial variability in ecological 
processes and community organization has been 
emphasized in recent studies (Addicott et  al. 1987, 
Wiegert 1988, Wiens 1989). In any ecological system, 
different patterns of species abundance and commu- 
nity organization emerge at  different spatial scales of 
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investigation and the relative importance of small- 
scale phenomema versus broader-scale processes indi- 
cates the 'openness' of the system (Wiens 1989). Levin 
(1992) recommended that patterns of variability in 
community organization within and across systems 
must be described if prediction of community dynam- 
ics is to be successful. Both the small-scale phenomena 
and the broad-scale processes that affect a n  ecological 
system have to be  defined before their relative impor- 
tance can be assessed. The importance of sampling 
procedures in examining variability at  different spatial 
scales has been emphasized (see Andrew & Mapstone 
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1987 for review) and statistical and numerical models 
have been developed that examine the different sour- 
ces of spatial variability (e.g.  Morris 1987, Perry 1988, 
Downes et al. 1993). 

Community structure and organization have been 
studied extensively on rocky intertidal shores (e.g 
Stephenson & Stephenson 1950, 1952, 1954a, b, Day- 
ton 1971, Connell 1972, Menge 1976, Underwood 
1981a). Research on this system has provided useful 
concepts, empirical evidence and models that are 
applicable to many other communi.ties (e .g .  Paine 
1966, Connell 1983, Sousa 1984a, b). Studies of com- 
munity structure of rocky intertidal shores have largely 
focussed on the ubiquitous vertical zonation of organ- 
isms along the intertidal gradient (e.g. Connell 1961, 
Dayton 1971, Paine 1974, Lubchenco & Menge 1978, 
Schonbeck & Norton 1978, Denley & Underwood 
1979). Recent studies, however, have attempted to 
identify and  describe potential sources of natural vari- 
ability at  different spatial scales (from meters to kilo- 
metres) (e .g .  Underwood & Denley 1984, Caffey 1985, 
Jernakoff & Fairweather 1985, McGuinness 198?a, b, 
Foster 1990, Lively et  al. 1993). These studies have 
shown that spatial variability on rocky intertidal shores 
does not change monotonically wlth scale, l.e, varlab~l- 
ity does not always increase or decrease at  larger spa- 
tial scales. The extent to which small-scale variability 
can affect the outcome of large-sca1.e processes has not 
been established yet. 

Tidepools are  a conspicuous component of the 
rocky intertidal habitat that are less frequently stud- 
ied than the em.ergent substrata. However, because of 
their well-defined boundaries and manageable size, 
tidepools provide a useful system for examining 
sources of variability at different spatial scales. The 
biological zonation w h ~ c h  characterizes the emergent 
substrata is not as apparent in tidepools (see Metaxas 
& Scheibl~ng 1993 for review, Metaxas & Scheibllng 
1994a, Metaxas et al. 1994). Spatial variability in com- 
munity structure is probably larger among pools than 
among locations on the emergent substrata at the 
same spatial scale since the physical characteristics of 
tidepools (e.g pool depth, volume, orientation and 
flushing rate) make individual pools unique (Metaxas 
& Scheibling 1993). Metaxas & Scheibling (1994a) and 
Metaxas et al. (1994) showed that small-scale variabll- 
ity among pools within intertidal zones may mask the 
broader-scale zonatjon observed on emergent sub- 
strata, at least for some functional groups of macro- 
a n d  hyperbenthos. 

Microalgae, particularly pennate diatoms, a re  
among the first colonizers of bare rocky intertidal 
shores (Sousa 1979, 5lacLulich 1986) and m.a.y exhlbit 
vertical zonation on emergent substrata. Edrlier 
studies have shown that some benthic diatoms, such as 

the pennate dlatom Acnanthes, are more abundant 
higher on the shore while others, such as the centric 
diatom Melosira, are more abundant lower on the 
shore (Aleem 1950, Castenholz 1963, Hopkins 1964). 
Recently, however, Hill & Hawkins (1991) found large 
horizontal spatial variability in the abundance of epi- 
lithic diatoms on a rocky shore on the Isle of Man, UI<. 

Very few studies have exam~ned  the distribution and 
abundance of microalgae in tidepools on rocky shores 
(see Metaxas & Scheibling 1993). Droop (1953) pro- 
vided a classification of pools on the basis of thelr 
phytoplankton assemblages which varied along the 
intertidal gradient. Metaxas & Lewis (1992) found that 
the abundance of centric diatoms decreased in pools 
higher on the shore while that of pennate diatoms 
tended to increase. Neither of these studies, however, 
used replicate pools within zones to determine 
whether the observed pattern would persist across 
space. Dethier (1984) used a large number of tidepools 
and found that diatoms were more abundant in lower 
pools of protected shores. However, she did not quan- 
tify horizontal spatial variability and only exam~ned  
the diatom community of the benthos, not the water 
column of the pools. 

It is well established that phytoplankton community 
structure in large aquatic systems such as lakes and 
the open ocean can be directly affected by nutrients 
and/or herbivory. Spring and fall phytoplankton 
blooms are triggered by increased nutrient concentra- 
tions in the euphotic zone after vertical mixing; blooms 
collapse because of nutrient depletion, cell sinking or 
increased grazing (e.g.  revi.ews in Reynolds et al. 1982, 
Harrison e t  al. 1983, Reid et al. 1990, Sommer 1991, 
Wassman 1991). The growth of different groups of 
phytoplankton is limited in different nutrient regimes 
and species can coexist when limited by different 
resources (Tilman 1977, but see Hobson 1988/1989). 
Conversely, nutrient uptake rates and efficiency vary 
among different groups of phytoplankton, and the 
nutrient levels in the environment can determine pat- 
terns of dominance and succession (Parsons et al. 1978, 
Vanni & Ternte 1990, Gervais 1991, Pomeroy 1991, 
Snmmcr 1991) Selective grazing also mily result in 
shifts in phytoplankton dominance (Vanni & Temte 
1990, Gervais 1991, Sommer 1991). 

In tidepool svstems, microalgae are introduced 
through input from the surrounding seawater, by the 
ascending tide and through spray. The microalgal 
assembl.ages subsequently become isolated from 
external input for extended periods of time, depending 
upon the period of isolation of the pool. During this 
period, the assemblage may change due to a number 
of factors (Metaxas & Scheibling 1994b) Phytoplank- 
ton may remain suspended because of buoyancy or 
motility (e.g. centric diatoms, flagellates, nanoflagel- 
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lates) or may sink to the bottom (e.g.  benthic centric 
and pennate diatoms). Phytoplankon may be con- 
sumed by macroben.thic filter-feeders such as mussels, 
or planktonic filter-feeders such as calanoid copepods 
and rotifers. Benthic micrograzers such as harpacticoid 
copepods may consume microalgae that have sunk to 
the bottom of the pool. The nutrient regime can change 
either through uptake by micro- and macroalgae or 
through excretion by the fauna. The physical condi- 
tions of the pools can change and may even reach 
lethal limits for certain groups of microalgae. The mag- 
nitude of changes affecting the phytoplankton assem- 
blage will depend on the length of the period of tidal 
isolation of the pool. Predictable zonation patterns may 
arise if the magnitudes of change are similar among 
pools with similar periods of isolation (within the same 
intertidal zone). However, horizontal spatial variability 
among pools within zones may mask the broad-scale 
phenomenon of zonation. 

We examined the sources of vertical and horizontal 
spatial variability of phytoplankton assemblages in 
tidepools located in 3 intertidal zones over a period of 
16 mo. Specifically, we wanted to determine whether 
the broad-scale phenomenon of intertidal zonation is 
ev~den t  in these assemblages, or whether the horizon- 
tal spatial variability in the abundance of phytoplank- 
ton among tidepools within intertidal zones overrides 
any pattern of zonation. We also measured the sources 
of spatial variability in the nutrient regime, the grazer 
field, and in a number of abiotic characteristics of the 
tidepools to determine whether variability in abiotic 
and biotic factors could explain the observed patterns 
of phytoplankton abundance at these spatial scales. 

MATERIALS AND METHODS 

Four tidepools at each of 3 intertidal zones (mid, high 
and splash) were sampled at Cranberry Cove, an ex- 
posed rocky shore near Halifax, Nova Scotia, Canada 
(44" 28' N, 63" 56' W) a t  approximately monthly 
intervals between March 1991 and June 1992. We did 
not sample between December 1991 and March 1992 
because the pools were frozen during this period. The 
shoreline consists of granitic platforms and large out- 
crops with a 10 to 30% grade.  It has a southern expo- 
sure to oceanic swells which may reach wave heights 
of up to 10 m during autumn storms. The pools were 
distributed along ca 250 m of shorel~ne.  The pools were 
irregularly shaped with the maximum dimension rang- 
ing from 2 to 14 m and maximum depth ranging from 
0.21 to 0.75 m.  To estimate pool area and volume, par- 
allel transect lines were set at 0.5 m intervals along the 
length of each pool to either side of a central line. 
Length was measured along each transect line and 

width was measured at 0.5 m intervals along the cen- 
tral line. This provided a map of the pool perimeter 
which was then digitized to estimate surface area. Pool 
depth was measured a t  0.3 m intervals along each of 
the widthwise transects, subdividing the pool into a 
grid of 0.5 X 0.3 m subunits (units around the perimeter 
were smaller). Average depth within each subunit was 
estimated by averaging the depths at each corner, and 
the volume of each tidepool estimated by summing the 
subunit volumes. The period of isolation of each pool 
was measured on 17 dates (June 1990, and at 2 to 6 wk 
intervals between March 1991 and July 1992) as the 
period between tidal recession and subsequent tidal 
input (including spray) and averaged for each pool. 
The height above chart datum of each pool was mea- 
sured using a transit level in July 1991 and 1992. 
Flushing rate of each pool was determined as the per- 
centage decrease in concentration of a fluorescent 
red dye (Rhodamine B, Sigmam, St. Louis, MO, USA), 
added to the pools in known concentration, over the 
period between low and high tides (i.e. per half a tidal 
cycle). Decreases in the concentration of the dye were 
mainly due  to tidal exchange, but also due to drainage 
of the pool, rain, adsorption onto the substratum and 
uptake by the biota. Changes in dye concentration 
were measured on a Perkin-Elmer Lambda 3B UV/VIS 
spectrophotometer. Flushing rate was measured on 
9 July 1992, when wave height was between 2 and 3 m 
and it was raining lightly, and on 30 August 1993 when 
wave height was -1 m and it was not raining. 

For each sampling period, two 60 m1 samples of 
phytoplankton were collected with a polypropylene 
syringe at  each of 2 strata w ~ t h l n  each pool (at the sur- 
face and < l  cm above the bottom) and from the sur- 
rounding seawater at  2 locations along the shore, 
immediately below the 2 farthest pools. The phyto- 
plankton samples were placed in a container and the 
syringe was rinsed into the same container using 20 m1 
of distilled water. The samples were preserved in 
Lugol's solution and stored in the dark for subsequent 
enumeration. Before counting, the phytoplankton sam- 
ples were inverted 50 times, and subsamples were 
allowed to settle overnight in 25 m1 settling chambers 
(Lund et al. 1958). Two samples of micrograzers were 
collected by hand-pumping 5 1 of seawater from 0.1 to 
0 2 m above the bottom of each tidepool, at approxi- 
mately the mid depth of the pools, through a 60 pm net. 
The net was rinsed into a container and the sample 
fixed with 4 O/O buffered forn~aldehyde. Two other sam- 
ples were collected similarly from the surrounding sea- 
water at  the same locations a s  the phytoplankton 
samples. Phytoplankton and micrograzers were enu- 
merated using a Leitz Labovert inverted microscope. 
Phytoplankton was  identified according to Cupp  
(1943), Hendey (1964), Sournia (1986), Ricard (1987) 
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and Chretiennot-Dinet (1990). Micrograzers were 
identified according to Smith (1964), Brinkhurst et al. 
(1976), Barnes (1980), and Gardner & Szabo (1982). 
Mussel density (Mytilus edulis and/or h/l. trossulus) 
was measured In five 0.2 X 0.2 m quadrats which were 
randomly located in each tidepool at each sampling 
date. Two 60 m1 water samples were collected from 
each pool and at the 2 sea-surface locations for nutrient 
analysis with an acid-washed (1 N HCI) polypropylene 
syringe. These samples were filtered through 0.80 pm 
Milliporea filters into acid-washed polypropylene con- 
tainers in the field, and frozen for subsequent analysis 
(our unpubl. data suggest that freezing over periods 
of 7 mo had no effect on the concentration of ammo- 
nium). Nitrate+nitrite, silicate and phosphate con- 
centrations were measured in these samples using a 
Technicon AA2 autoanalyzer, and ammonium con- 
centration was determined according to Parsons et al. 
(1984) on a Jenway 6100 spectrophotometer. The tem- 
perature of each pool and the surrounding seawater 
was measured using a hand-held thermometer; salin- 
ity was measured with an Endeco type 102 refractome- 
ter; and pH was measured with a Cole Palmer pH 
wand (Model 05830-00). 

For statistical analysis, phytoplankton were assigned 
to 4 taxonomic groups: centric diatoms, pennate dia- 
toms, cryptomonads, and chlorophytes (Table l ) .  This 
is a conventional grouping based on successional pat- 
terns (e.g. Vanni & Temte 1990, Venrick 1990, Haigh et 
al. 1992, Weeks et al. 1993). Micrograzers were 
grouped as benthic and planktonic according to their 
functional morphology and mode of feeding. Mussels 
were grouped into 3 size classes: small ( < l  cm), me- 
dium (1 to 2 cm) and large (>2  cm) because filtering 
rate, and therefore effect on phytoplankton abun- 
dance, varies largely with mussel size (e.g. Winter 
1973, Kemp et al. 1990). For each sampling date, dif- 
ferences in the abundance of phytoplankton for each 
taxonomic group, as well as  differences in the abun- 
dance of total phytoplankton, were compared among 
intert~dal zones (mid, high and splash), among pools 
nested within zones (4 per zone), and among strata 
(surface and bottom of the pools] using 3-factor nested 
ANOVA. The model used in the ANOVA was: 

X,,k, = p + Stratum, + Zonej + Stratum X Zone,, 
+ P ~ o l ( Z o n e ) ~ , , ,  + Stratum x P~ol (Zone) ,~ , , ,  + el,, ,~, 

The effect of the interaction term Stratum X Pool(Zone) 
was examined against the residual error, and the 
effects of the terms Stratum and Stratum X Zone were 
examined agalnst the interaction term Stratum X 

Pool(Zone). In cases where the interaction term Stra- 
tum X Pool(Zone) was significant, the effect of the fac- 
tor Stratum was exam~ned within each zone. The effect 
of the factor Zone was examined against the factor 

Pool(Zone); if Pool(Zone) was not significant at p > 
0.250, we pooled the term Pool(Zone) with the res~dual 
error and tested the effect of the factor Zone against 
the pooled error term. The magnitude of the experi- 
mental effect of each factor (m') was calculated for each 
sampling date, based on models in Howell (1987), 
using mean square estimates that were defined 
according to Underwood (1981b). 

Differences in densities of micrograzers and mussels, 
and nutrient concentrations were examined among 
intertidal zones and among pools nested within zones 
using 2-factor nested ANOVA, since stratum was not 
applicable. Differences in temperature, salinity and 
pH were examined among zones using single-factor 
ANOVA. The analyses of variance were based on 
models given in Winer (1971) and Underwood (1981b). 
A posterion multiple comparisons of treatment means 
were done using Student-Newman-Keuls (SNK) tests. 
To avoid an increased probability of conducting a type 
I error due to the large number of analyses of variance, 
we used the sequential Bonferroni technique to obtain 
table-wide levels of significance (Rice 1989). In the 
ANOVA and SNK tests, the null hypothesis was 
rejected at p < 0.05. 

Forward stepwise multiple regressions (Sokal & 
Rohlf 1981, Kleinbaum et al. 1988) were done to exam- 
ine relationships between the abundance of each 
phytoplankton group at the surface and at the bottom 
of the pools with the abundance of planktonic and ben- 
thic micrograzers and mussels, the concentration of 
nutrients (nitrate+nitrite, ammonium, phosphate and 
silicate), the physical and chemical characteristics of 
the pools (temperature, salinity, pH, height above 
chart datum, volume and flushing rate) and the m.a- 
croalgal cover in the pools as given in Metaxas et al. 
(1994). Regressions were carried out for the entire 
sampling period. The a-to-add value was 0.150. 

For all statistical analyses, variables were ln(x+l)-  
transformed to successfully remove heterogeneity of 
variance when detected using Cochran's test, or non- 
normality when detected in residual plots. All analyses 
were carried out using SYSTAT versions 5.1 and 5.2 
(Wilkinson 1989) on a Macintosh SE 30 computer. 

RESULTS 

Spatial patterns of physical and chemical 
characteristics 

The physical characteristics of the tidepools are 
given in Table 2. Since phytoplankton can be intro- 
duced into the pools through any amount of input 
of the surrounding seawater (including spray), we 
assigned replicate pools to intertidal zones according 
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Table 1 Frequency o f  occurrence (number o f  dates) o f  the specles of phytoplankton that were identified i n  this study at the sea 
surface and in 4  tidepools [Pools 1 to 4 )  sampled in each of 3  zones (mid, high splash) on 14 sampling dates between March 1991 

andJune 1992 

Mid pools 

1 2 3 4  
- 

Hlgh pools 

1 2 3 4  
----pp 

Splash pools 

1 2 3 4  

Taxonomic group Sea 
surface 

Centric diatoms 
Chaetoceros spp. 
Coscinodiscus spp. 
Detonula confervacea 
Leptocylindrus danicus 
Melosira n ummuloides 
Odontella a urita 
Rhizosolenia ala la 
R dellcatula 
R fraglllsslma 
R setlgera 
R styllfol-m~s 
Skeletonema costatum 
Thalassiosira gra vida 
T hyahna 
T nordenskioldli 

Pennate diatoms 
Amphlprora spp. 
/?mphora spp. 
Can~pylosira cymbelliforrn~s 
Cylindrotheca clostenum 
Fragilaria crotonensls 
Grammatophora angulosa 
Gyrosigma sp- 
Licmophora gracilis 
L. juergensii 
Navicula spp. 
Nitzschia delicatisslrna 
N. longissima 
N. seriata 
Nitzschia spp. 
Plag~ogramma stauroforum 
Str~atella unlpunctata 
Surlrella spp. 
Thalassionema nitzschioldes 
Thdlass~othnx fi-a ~~en fe ld i l  
Unidentlfled pennates 

Cryptornonads 
Cryptomonas spp 

Chlorophytes 
Dunaliella tertlolecta 

Euglenoids 
Euglena spp 

to the period of isolation from tidal input. Pools with 
average periods of isolation ranging from 3 to 8 h were 
assigned to the mid zone, those with periods ranging 
from 10 to 12 h were assigned to the high zone, and 
pools that usually did not receive any input over a 
cycle, except during storms, were assigned to the 
splash zone. 

Mean temperature at the sea surface and in the tide- 
pools increased from a low around March to a peak in 

July 1991 (Fig. 1). It remained high throughout summer 
and early autumn but decreased by November 1991. 
The increase between March and June 1992 was simi- 
lar to that of the previous year. Mid pools were signifi- 
cantly (SNK test) colder than high and splash pools in 
June 1992 = 11.65, p < 0.001). Splash pools were 
significantly colder than mid and high pools in October 
1991 (F,,, = 28.77, p < 0.001). Mean salinity remained 
relatively constant at the sea surface and in the mid 
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pools over the 16 mo study, but was reduced signifi- abundance of pennate diatoms bras greatest after the 
cantly due to rain in splash pools in November 1991 spnng bloom in 1991 and around the bloom in 1992 
(F,,, = 22.19, p i 0.001) (Fig. 1). Mean pH at  the sea sur- (Fig. 4 ) .  Cryptomonads and chlorophytes were less 
face did not fluctuate over the 16 mo, but was greater abundant than diatoms: their mean abundance never 
and more variable in the pools (Fig. 1); pH did not vary exceeded 104 cells 1-' at the sea surface (Figs. 5 & 6). 
significantly among zones on any sampling date. In tidepools, the abundance of total phytoplankton 

and of individ.ua1 taxonomic groups varied signifi- 
cantly between strata on a number of sampling dates. 

Spatial patterns of phytoplankton abundance Total phytoplankton was more ab.undant at the bottom 
than at the surface of pools in spring (all pools: 

The abundance of total phytoplankton was greatest 17 March and April 1991, April 1992; splash pools: 
in the surrounding seawater in March 1991 and May May 1992), and in autumn (all pools: October 1991) 
1992 due to spring blooms, and in October 1991 due to (Fig 2, Table 3). Centric diatoms were more abundant 
an autumn bloom (Fig. 2). Similar patterns of abun- at the bottom than at the surface of all pools in October 
dance were observed for centric diatoms, the dominant 1991 (Fig. 3, Table 4 ) .  Pennate diatoms were more 
phytoplankton group during the blooms (Fig. 3).  The abundant at the bottom than at the surface of pools in 
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Fig. 2. Mean abundance of total phytoplankton (+SD) at  the 
sea surface [n = 2) and at the surface and bottom of tidepools 
(n = 4 )  in 3 intertidal zones [mid, high, splash) at Cranberry 
Cove, Nova Scotia, sampled at approximately monthly inter- 
vals between March and November 1991 and March and June 

1992 (twice during the bloom in March 1991). ND: no data 

Fig. 3. Mean abundance of cen t r~c  diatoms (+SD) at the sea  
surface (n  = 2) and at  the surface and bottom of tidepools (n = 
4) in 3 intertidal zones (mid, high, splash) a t  Cranberry Cove, 
Nova Scotia, sampled at approximately monthly intervals 
between March and November 1991 and March and June 
1992 (twice during the bloom in March 1991). ND: no data 
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spring (all pools: 17 March and April 1991, April and 
May 1992), although they were more abundant at the 
surface than at the bottom of all pools on 1 date 
(27 March 1991) (Fig. 4 ,  Table 5). Cryptomonads were 
more abundant at the surface than at the bottom of all 
pools on 27 March 1991 (Fig. 5, Table 6 ) .  Chlorophytes 
were more abundant at the bottom than at the surface 
of all pools on 2 out of the 7 sampling dates (April and 
June 1992) (Fig. 6, Table 7). 

The abundance of total phytoplankton and the indi- 
vidual taxonomic groups did not vary significantly 
among intertidal zones on any sampling date (Figs. 2 
to 6, Table 3 to 7). However, the abundance of total 
phytoplankton and all taxonomic groups was highly 
variable among pools within zones throughout the 
study. The abundance of total phytoplankton varied 
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significantly among pools within zones on all sampling 
dates (mid pools: all dates except May and July to Sep- 
tember 1991, May 1992; high pools: all dates except 
August and November 1991; splash pools: all dates ex- 
cept May 1992) (Fig. 2, Table 3) The abundance 
of centric diatoms varied significantly among pools 
within zones on 6 out of 1 l dates (mid pools: 17 and 27 
March 1991, April 1992; high pools: 17 and 27 March 
and October 1991, May and June 1992; splash pools: 
17 and 27 hldrch, May and October 1991, March 1992) 
(Fig. 3, Table 4 ) .  The abundance of pennate diatoms 
varied significantly among pools on 7 out of 14 dates 
(mid pools: 17 and 27 March 1991, March to May 1992; 
high pools: 17 March, May and July 1991, April and 
May 1992; splash pools: 17 March to May 1991, March 
to May 1992) (Fig. 4, Table 5). The abundance of cryp- 
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tomonads varied significantly among pools on 13 out 
of 14 dates (mid pools: 17 March to June, August, 
October and November 1991, May and June 1992; 
high pools: 17 March to September and November 
1991, April to June 1992; splash pools: on all dates ex- 
cept March 1992) (Fig 5,  Table 6 ) ,  The abundance of 
chlorophytes varied significantly among pools within 
zones on all dates (mid pools: August, October and 
November 1991, March to May 1992; high pools: Au- 
gust and October 1991, March to June 1992; splash 
pools: August, September and November 1991, 
March, April and June 1992) (Fig. 6, Table 7). Al- 
though not statistically analyzed, we observed pulses 
in the abundance of a euglenoid on 2 dates (June 
1991 and June 1992; ca 1 x 106 and 3.5 x los cells I", 
respectively) but only in 1 high pool (Table 1). 
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The magnitude of the effect that each source of 
spatial variability had on phytoplankton abundance 
varied among groups but was relatively consistent 
among dates for most groups (Fig. 7). Variability 
in abundance of total phytoplankton, cryptomonads 
and chlorophytes was explained largely by variability 
among pools within zones, whereas variability in 
abundance of centric and pennate diatoms was ex- 
plained to similar extents by variability among zones 
and between strata, as well as among pools within 
zones. Variability among pools within intertidal zones 
was 13-96% (on all dates) of total variability for total 
phytoplankton; for cryptomonads it was 6-96% (on 
all dates); for chlorophytes it was 33-86% (on all 
dates); for centric diatoms it was 11-69% (on 9 out of 
11 dates); and for pennate diatoms it was 10-42% 
(on 12 of 14 dates) of total variability. Variability 

CENTRIC DIATOMS IOOr PENNATE DIATOMS 
I ' 

80 80 

60 60 

40 40 

20 20 

0 
O MAMJJ ASONDJ FMAMJ 

CRYPTOMONADS CHLOROPHYTES 

f2 l 0 0  100 I I 
06 

80 80 

b? 60 60 
LL1: 
:S * 40 
PZ 

2: 20 20 
rS 

O 0 
MAMJ J ASON W FMAMJ 

TOTAL PHYTOPLANKTON 

lOOr .-- 

80 

60 

40 

20 

O MAYJJ ASONDJ FMAMJ 
1991 1992 

m =ZONE 

0 = STRATUM 

= POOL (ZONE) 

=ZONE STRATUM 

- POOL (ZONE) 0 :STRATUM 

Fig. 7. Magnitude of effects of each factor [Zone, Stratum. 
Pool(Zone)], as well as of the interaction terms [Zone X Stra- 
tum, Pool(Zone) X Stratum], in the analyses of variance of the 
abundance of total phytoplankton and of each phytoplankton 

group for each sampling date. ND: no data 

among zones was 1-49% (on 7 of 14 dates) of total 
variability for total phytoplankton; for cryptomonads 
it was 1-59% (on 7 of 14 dates); for chlorophytes it 
was 3-42% (on 6 of 7 dates); for centric diatoms it 
was 8-35% (on 4 of 11 dates); and for pennate 
diatoms it was 7-23% (on 9 of 14 dates) of total vari- 
ability. Variability between strata was 1-20% (on 11 
of 14 dates) of total variability for total phytoplank- 
ton; for cryptomonads it was 1-10% (on 10 of 14 
dates); for chlorophytes it was 1-7%) (on 5 of 7 
dates); for centric diatoms it was 1-23% (on 9 of 11 
dates); and for pennate diatoms it was 1-42% (on 10 
of 14 dates) of total variability. The interaction term 
Zone X Stratum accounted for ~ 2 3 %  and the interac- 
tion term Pool (Zone) X Stratum accounted for <28% 
of the variability in the abundance of all phytoplank- 
ton groups on all sampling dates. The amount of 
residual variability in abundance varied among 
phytoplankton groups and among sampling dates: for 
total phytoplankton, residual variability was 4-37 % 
of total variability; for centric diatoms it was 8-40%, 
except in April and November 1991 when it was 
100% and 89%, respectively; for pennate diatoms it 
was 9-67%, except in August 1991, when it was 
85%); for cryptomonads it was 3-29% except in 
March 1992, when it was 72O/0; and for chlorophytes 
it was 8-43% of total variability. 

Spatial patterns of grazer abundance 

The major groups of planktonic micrograzers were 
calanoid copepodites and nauplii (the genera Acartia, 
Calanus, Paracalanus, Pseudocalanus and Temora at 
the sea surface and in mid pools, and Eurytemora af f i -  
nis in splash pools), marine cladocerans (Podon poly- 
phemoides and Evadne nordmanii] and marine rotifers 
(the genera Brachionus and Synchaeta) (for a more 
detailed description see Metaxas & Scheibling 1994a). 
The abundance of planktonic micrograzers did not 
vary significantly among zones on any sampling date 
but varied significantly among pools within zones on 
4 of 14 sampling dates (June to August  1991, June 
1992) (Fig. 8 ,  Table 8) .  

The major groups of benthic m.icrograzers included 
harpacticoid copepodites and nauplli (families Har- 
pacticidae, Tisbidae, Thalestridae and Diosaccidae), 
foraminiferans and nematodes (see Metaxas & Scheib- 
ling 1994a). The abundance of benthic micrograzers 
did not vary significantly among zones on any sam- 
pling date but varied significantly among pools within 
zones in June 1991 (Fig. 8, Table 8). 

m mussels Mytilus edulis and/or M. trossulus were 
abundant in mid and high pools throughout the sam- 
pling season, but small mussels were never found in 
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Spatial patterns of nutrient concentration 

The concentrations of macronutnents varied little 
among zones but was variable throughout the sam- 
pling season among pools within zones (Figs. 10 & 11). 
The concentration of nitrate+nitrite, ammonium and 
silicate did not vary significantly among zones on any 
sampling date but varied significantly among pools 
within zones on 6 of 14, 4 of 9 and 3 of 14 dates, re- 
spectively (nitrate+nitrite: 17 and 27 March, April and 
August 1991, h4ay and June 1992; ammonium: May, 
July and September 1991, April 1992; phosphate: 27 
March, April and September 1991) (Table 10). The 
concentration of silicate was significantly larger in 
mid than in high and/or splash pools in November 
1991, and varied significantly among pools on 10 of 14 
dates (March to May, July to September 1991, March 
to June 1992). 

Relationships of phytoplankton abundance with 
biotic and abiotic factors 

The abundance of phytoplankton varied signifi- 
cantly with most of the biotic and some of the abiotic 
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Fig. 9.  Mean density of small, medium and large mussels In 
tidepools in 3 intertidal zones (mid, htgh, splash) at Cranberry 
Cove, Nova Scotia, sampled at  approximately monthly inter- 
vals between June and October 1991 and in May and June 

1992. ND: no data 
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characteristics of individual tidepools. Although the 
significant independent factors differed among phyto- 
plankton groups, we obtained similar relationships be- 
tween the abundances at the surface and at the bottom 
of the pools for each group, but not for total phyto- 
plankton (Table 11). Among the biotic factors, the 
abundance of total phytoplankton at the bottom, and of 
pennate diatoms, ci-yptomonads and chlorophytes at 
both strata varied significantly with the density of small 
mussels. Only the abundance of chlorophytes at both 
strata varied sign~ficantly with the density of benthic 
micrograzers. No phytoplankton group showed a sig- 
nificant relationship \n th  the density of planktonic 
grazers, medium-sized or large mussels. 

In terms of nutrients, the abundance of total phyto- 
plankton at the surface of the pools varied significantly 

NITRATE + NITRITE AMMONIUM 
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centratlon of ammoniuin. Only the abundance of 
chlorophytes at the bottom of the pools varied signifi- 
cantly wlth the concentration of phosphate. The abun- 
dance of total phytoplankton, cryptomonads and 
chlorophytes at both strata, and of pennate diatoms at 
the bottom of the pools varied significantly with the 
concentration of silicate. 

Fewer significant relationships were detected be- 
tween ablotic factors and the abundance of phyto- 
plankton over the entire sampling period. The abun- 
dance of total phytoplankton and chlorophytes at the 
bottom of the pools and of cryptomonads a t  both strata 
varied significantly with temperature. The abundance 
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Metaxas & Scheibling: Phytoplankton assemblages in tidepools 

Table 11. Significant forward stepwise multiple regressions for abundance of 5 phytoplankton groups at the surface and near the 
bottom of tidepools against the biotic and abiotic characteristics of the pools for the entire sampling period between March 1991 
and June 1992. Independent variables are: (PL) density of planktonic grazers; (BE) density of benthic grazers; (M<1) density of 
small mussels; (Ml-2) density of medium mussels; (M>2) density of large mussels; (NO) nitrate+nitrite concentration; (NH) 
anlmoniunl concentration; (PO) phosphate concentration; (Si) silicate concentration; (T) temperature; (S] salinity; (pH) pH; (AL) 
macroalgal cover; (H) height above chart datum; (V) volume; (F) flushing rate Within each multiple regression, constants and 

independent variables with significant par t~al  F-values are shown In bold 

Dependent variable N Model R 2  F P 

Total phytoplankton (surface) 168 11.52 + 0.61(NO) - 1.00(Si) + 0.01(T) + 0.03(S) 0.054 3.38 <0.05 
Total phytoplankton (bottom) 106 6.60 + 0.31(M<1) + 0.54(NO) - 1.43(Si) + 0.07(T) 0.247 5.92 <0.001 

- 0.08(S) + 0.82(pH) - O.Ol(F) 
Centric diatoms (surface) 144 3.60 - 3.84(NH) 0.028 5.06 <0.05 
Pennate diatoms (surface) 132 6.05 - 0.12(PL) + 0.26(M<1) + 0.82(NO) - 0.68(Si) + 0.03(AL) 0.171 6.39 <0.001 
Pennate diatoms (bottom) 132 4.67 - 0.03(PL) + 0.46(M<l) - 1.24(Si) + 0.06(S) + 0.04(AL) 0.217 8.27 <0.001 
Cryptomonads (surface) 168 9.79 + 0.32(M<1) + 0.30(NO) - 0.87(Si) + 0.13(T) - 0.04(F) 0.259 12.69 <0.001 

Cryptornonads (bottom) 168 10.81 + 0.26(M<1) + 0.82(NO) - 1.81(PO) 0.220 8 83 <0.001 
- 0 92(Si) + O.lO(T) - 0.04(F) 

Chlorophytes (surface) 132 16.00 - 1.06(BE) - 0.56(M<1) + 5 36(NH) + 3.89(PO) 0.393 4.29 <0.001 
- 2.10(Si) - 0.06(S) + 0.04(AL) 

Chlorophytes (bottom) 72 16.39 + 0.08(PL) - 0 . 6 1 ( ~ ~ )  - 0 . 6 0 ( ~ < 1 )  + 4 . 5 8 ( ~ ~ )  0.450 12.93 <O.OOl 
+ 4.80(PO) - 2.53(Si) - 0.07(S) - 0.23(T) + 0.04(AL) 

of total phytoplankton at the bottom of the pools varied 
significantly with salinity. The abundance of pennate 
diatoms and chlorophytes at both strata varied signifi- 
cantly with percentage cover of maci-oalgae, and the 
abundance of cryptomonads at both strata varied sig- 
nificantly with flushing rate. 

DISCUSSION 

Phytoplankton succession at the sea surface followed 
a pattern previously described for Nova Scotia (C6te & 
Platt 1983, Perry et al. 1989) and north temperate waters 
elsewhere (Harrison et al. 1983, Reid et al. 1990, Haigh et 
al. 1992, Weeks et al. 1993). The spring blooms in 1991 
and 1992 were dominated by the centric diatoms 
Chaetocer-os spp. and Skeletonema costatum, and the 
autumn bloom in 1991 was dominated by the centric di- 
atom Rhizosolenia. After the spring blooms, the abun- 
dance of pennate diatoms, flagellates and nanoflagel- 
lates increased in May/June in both years. 

In tidepools, cryptomonads and chlorophytes were 
the numerically dominant groups of phytoplankton 
throughout the sampling period. Centric diatoms were 
introduced into pools during the blooms and their 
abundance subsequently decreased.' Since tidepools 
and splash pools are less turbulent environments than 
the surrounding seawater, the difference In dominance 
patterns between the sea surface and the tidepools is 
consistent with Margalef's proposal (1978) that under 
conditions of high turbulence centric and pennate 
diatoms should dominate, whereas under low turbu- 

lence flagellates should dominate (see also Ki~rboe  
1993 for review). Cryptomonads are characterized as 
opportunistic with wide temperature and salinity toler- 
ances (Klaveness 1988), which also may explain their 
numerical dominance in tidepools. 

We examined 3 sources of spatial variability of the 
phytoplankton assemblages of t~depools: (1) between 
strata (the surface and bottom of pools), (2) among 
intertidal zones, and (3) among pools within zones. The 
magnitude of variability between strata differed 
among phytoplankton groups and reflected the char- 
acteristics of individual life forms. The largest number 
of significant differences between strata were detected 
for pennate diatoms, a group which is mostly benthic. 
On most dates, the factor stratum accounted for 30 to 
40% of the variance in the abundance of pennate 
diatoms. In all cases except for on 27 March 1991, the 
abundance of pennate diatoms was greater at the bot- 
tom than at the surface of the pools. We detected fewer 
differences in abundance between strata for centric 
diatoms, cryptomonads and chlorophytes than for pen- 
nate diatoms, probably because centric diatoms are 
more buoyant and cryptomonads and chlorophytes are 
more motile than pennate diatoms. In most cases, these 
3 taxonomic groups were more abundant at the bottom 
of the pools, probably due to sinking. 

We found no indication of intertidal zonation of phy- 
toplankton assemblages in tidepools. Dethier (1982) 
recorded zonation of diatoms (mainly pennates) along 
the intertidal gradient, which appeared to reverse dur- 
ing the year. She observed diatom blooms in lower 
pools in summer and in higher pools in winter, which 
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she attributed to reduced grazer densities in those 
zones durlng those perlods (Dethier 1982, 1984). 
Metaxas & Lewis (1992) observed a decline in the 
abundance of centric diatoms and a n  increase in the 
abundance of pennates in pools of increasing intertidal 
height. The difference between these studies and ours 
could be  the result of wave exposure: the site de- 
scribed In Metaxas & Lewis (1992) was very protected, 
whereas our site was very exposed. Dethier (1984) also 
observed less zonation of microalgae in the more 
exposed sites of her study. 

Signifrant  differences among zones in abiotic and 
biotic factors that may affect phytoplankton abun- 
dance were observed on some sampling dates. The 
lack of differences among intertidal zones in the abun- 
dance of phytoplankton suggest that these assem- 
blages do not show vertical zonation. Since there were 
few differences among zones in the abiotic and blotic 
factors that potentially regulate these assemblages, we 
suggest that variability in these factors does not ade- 
quately explain variability in abundance of phyto- 
plankton on the vertical scale. 

Spatial variabil.ity in the abundance of phytoplank- 
ton among pools within intertidal zones was detected 
consistently for all phytoplankton groups on most sam- 
pling dates. For total phytoplankton, and  for cryp- 
tomonads and chlorophytes, up to 96 % of the variance 
in abundance was explained by vanability along the 
horizontal scale. For centric and pennate diatoms, vari- 
ability within zones was at  least as large as variability 
among intertidal zones, and on some dates it was 
larger. The biotic factors that could affect phytoplank- 
ton abundance also varied significantly within zones 
on most sampling dates. We have documented prevl- 
ously that the hyperbenthic and macrobenthic assem- 
blages of these pools exhibit large variability within 
zones, suggesting that individual pools are  unique in 
the combination of thelr biotic and abiotic charactens- 
tics (Metaxas & Schelbling 1994a, Metaxas et al. 1994). 
Therefore, the factors regulating phytoplankton as- 
semblages in tidepools probably operate more at the 
scale of the individual pool rather than the intertidal 
7.017E' 

Multlple regressions showed significant relation- 
ships in all but 1 group of phytoplankton (centric 
diatoms), both at  the surface and the bottom of the 
pools, with some biotic and abiotic characteristics of 
the pools. The lack of relationships with the abun- 
dance of centric diatoms is probably became diatoms 
are  more transient residents of the pools (they are  
mainly introduced during blooms in the surrounding 
seawater) than are  the other groups. Nutrients showed 
significant relationships with the abundance of most 
phytoplankton groups. The relat~onship between the 
abundance of phytoplankton and the concentration of 

silicate was negative for all phytoplankton groups. For 
pennate diatoms, the relationship may be attributed to 
nutrient uptake. Since cryptomonads and chlorophytes 
do not require silicate for growth, no direct mechanism 
for the relationship can be suggested. The relation- 
ships between the abundance of chlorophytes and 
the concentration of phosphate and ammonium were 
positive. 

Certain grazers also showed significant relationships 
with the abundance of phytoplankton. The abundance 
of all phytoplankton groups (except centric diatoms) 
varied significantly with the density of small musseIs, 
but only chlorophytes showed a significant relation- 
ship with benthic micrograzers, and there were no 
relationships with medium-sized, large mussels or 
planktonic micrograzers. The relationships between 
the abundance of pennate diatoms and cryptomonads 
and the density of small mussels were positive, sug- 
gesting that mussels In that size class are more abun- 
dant in pools where a potential food source is more 
abundant or that both phytoplankton and small mus- 
sels are responding positively to some other factor. 
However, the relationships between the abundance of 
chlorophytes and the density of small mussels and ben- 
thic micrograzers were negative, suggesting that these 
grazers may be  significantly removing this group of 
phytoplankton by feeding. The lack of significant rela- 
tionships between the abundance of phytoplankton 
and the density of planktonic grazers, medium-sized 
and large mussels suggest that these factors are  not 
important and/or that their importance may vary dur- 
ing the year The role of planktonic grazers, such as 
calanoid copepods, cladocerans and rotifers, in deter- 
mining the phytoplankton community structure of 
oceanic systems has not been demonstrated consis- 
tently (e.g Deason 1980, Estep et  al. 1990, Hansen & 
van Boekel 1991, Morales et al. 1991, but see also 
Conover & Mayzaud 1984). In contrast, the abundance 
of phytoplankton in restricted water masses can be 
reduced substantially by mussel beds during 1 tidal 
cycle (e.g. Wright et al. 1982, Frechette et al. 1989, 
Asmus & Asmus 1991). 

Fewer significant relationships were detected 
between the abiotic characterist~cs of the pools and the 
abundance of phytoplankton. Temperature and flush- 
ing rate were important factors for cryptomonads and 
chlorophytes, and percentage cover of macroalgae for 
pennate diatoms and chlorophytes. A positive relation- 
ship between temperatu.re and the abundance of cryp- 
tomonads reflects the increase in abundance of this 
group in summer, whereas a negative relationship 
between temperature and the abundance of chloro- 
phytes reflects the lncrease of this group in fall. A neg- 
ative relationship between, fl.ushing rate and the abun- 
dance of cryptomonads rei.nforces the suggestion that 
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they are the dominant phytoplankton group in tide- 
pools because pools are low-turbulence environments. 
A positive relationship between pennate diatoms and 
macroalgae suggests that macroalgae enhance settle- 
ment of this group by increasing the surface area upon 
which pennate diatoms (especially epiphytic species) 
can settle (see Round 1971 for review). 

In summary, we examined the sources of vertical and 
horizontal spatial variability of phytoplankton assem- 
blages in tidepools. We did not detect strong patterns 
of zonation in tidepools across the intertidal gradient, 
and the potential abiotic and biotic factors regulating 
these assemblages did not adequately describe vari- 
ability at this spatial scale. Conversely, a large amount 
of the variance in phytoplankton abundance was 
attributed to variability on the horizontal spatial scale, 
within zones. At this scale, the biotic characteristics of 
individual pools explained some of the variability in 
phytoplankton abundance, although abiotic factors did 
not appear as important. Certain components of the 
grazer communities of each pool explained some of the 
variance in phytoplankton abundance for all phyto- 
plankton groups except centric diatoms. The nutrient 
regime also was a n  important factor for all groups 
although the relative importance of different nutrients 
varied among phytoplankton groups. Our study under- 
scores the importance of assessing the different 
sources of spatial variability in the successful explana- 
tion of patterns of community organization. 
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