Retrieval of phytoplankton biomass from simultaneous inversion of reflectance, the diffuse attenuation coefficient, and Sun-induced fluorescence in coastal waters

Yannick Huot,1 Catherine A. Brown,1 and John J. Cullen2

Received 3 July 2006; revised 1 November 2006; accepted 2 February 2007; published 20 June 2007.

[1] A model has been developed to retrieve phytoplankton absorption, a proxy for phytoplankton biomass, from observations of reflectance (R) and the diffuse attenuation coefficient (Kd) collected by moored radiometers in coastal waters, where high concentrations of chromophoric dissolved organic matter (CDOM) confound conventional ocean color algorithms. The inversion uses simultaneously two forward models: (1) a look-up table (LUT) that accounts for instrument geometry and the effect of the solar angle on both R and Kd; and (2) an analytical function describing the effects of Sun-induced fluorescence (SIF) of chlorophyll on R. Estimates of phytoplankton biomass (mostly from SIF), the absorption by colored matter, and the particulate backscattering coefficients (mostly from the LUT) are obtained by optimizing the amplitude and shape of the absorption and backscattering coefficients in the forward model to best match the observations. An equation describing the quantum yield of fluorescence (photons fluoresced/photons absorbed) as a function of incident irradiance constrains the model and allows estimates of phytoplankton absorption. Innovations include: the utilization of both R and Kd, providing good separation of the effects of backscattering from absorption; avoidance of reflectance bands between 400 and 600 nm, thereby avoiding interference from bottom reflection and CDOM fluorescence; utilization of the full emission band of SIF; and accounting for the irradiance-dependence of its quantum yield. The model effectively retrieved chlorophyll concentration from an independent data set — r = 0.76, n = 93, with a mean absolute percent error (MAPE) of 24%; this is better than a modern ocean color algorithm (OC4V4) on its validation data set, when restricted to the same range of chlorophyll (r = 0.67, n = 384, MAPE = 51%).

1. Introduction

[2] When it was recognized that variations in the concentrations of colored dissolved and particulate matter were causing the ocean’s hues [see Yentsch, 1960, and references therein], the challenge became to estimate these concentrations from measurements of ocean color and other properties of the light field. This is the so-called inverse problem of ocean optics [Gordon, 2002]: retrieving the inherent optical properties (IOPs, which are determined solely by the water constituents) from apparent optical properties (AOPs, which depend on both the IOPs and the light field [Preisendorfer, 1976]), and inferring from the IOPs the constituents of the water. The apparent optical properties that are measured and analyzed include the diffuse attenuation coefficient, which describes the rate of loss of irradiance with depth, and spectral reflectance, which is the ratio of upwelling radiance to downwelling irradiance. The IOPs retrieved with modern algorithms include the scattering or backscattering coefficients and absorption coefficients [Carter et al., 1999; Garver and Siegel, 1997; Loisel and Morel, 1998; Loisel and Stramski, 2000; Maritorena et al., 2002; Roesler and Perry, 1995; Roesler, 2003]. The concentrations of the constituents can be obtained because chromophoric dissolved and particulate matter influence the spectral radiance field through their concentrations and mass specific IOPs. In general, the impetus has been to estimate the concentration and nature of two classes of constituents that provide insight into biogeochemical oceanic processes: chromophoric dissolved organic matter (CDOM [Fichot and Miller, 2002; Johannessen et al., 2003; Siegel et al., 2002]), and the pigments of phytoplankton, particularly chlorophyll as an indicator of biomass [O’Reilly et al., 1998; Siegel et al., 2002].
Ocean color is determined by the absorption and scattering of sunlight in the surface layer. There are two types of scattering. Elastic scattering affects only the direction of a photon, whereas inelastic scattering produces photon at a different wavelength than the incident photon, which can also augment the upwelling light field [Bukata et al., 2004; Mobley, 1994; Pozdnyakov and Grassl, 2003]. Inelastic processes that have a significant effect in the ocean include Raman scattering by water [Marshall and Smith, 1990; Sathyendranath and Platt, 1998], and fluorescence by CDOM [e.g., Havens, 1992; Vodacek et al., 1997] and some algal pigments (mostly the chlorophylls and phycobiliproteins [Gordon, 1979; Hoge et al., 2003]) including their decomposition products [Fuchs et al., 2002; Yentsch and Menzel, 1963]. Inelastic processes can be included explicitly or implicitly in inverse models.

In this contribution, we develop an inverse model that accounts for the effects of elastic processes on reflectance and the diffuse attenuation coefficient as well as for the effect of Sun-induced chlorophyll fluorescence on reflectance. The inversion is based on optimizing the contributions from various IOPs [e.g., Garver and Siegel, 1997; Maritorena et al., 2002; Roesler and Perry, 1995] in a spectral forward model of AOPs to retrieve nonalgal colored matter absorption and particulate backscattering. We apply the model to data from optical moorings in Lunenburg Bay, a coastal embayment in Nova Scotia, Canada. In the blue wavebands, the waters of the bay are characterized by a dominant contribution to absorption from CDOM, thereby preventing the retrieval of phytoplankton biomass using absorption-based models. We therefore utilize the Sun-induced chlorophyll fluorescence signature to infer phytoplankton absorption. To achieve this, the model is built in a function

\[L_u(\lambda, z) = L_{ab}(\lambda, z) + L_{bf}(\lambda, z) + L_{cdom}(\lambda, z) + L_{bottom}(\lambda, z), \]

where the terms on the right represent upwelling radiance originating from elastic scattering, \(L_{ab}(\lambda, z) \), Raman scattering, \(L_{bf}(\lambda, z) \), chlorophyll \(a \) fluorescence, \(L_{cdom}(\lambda, z) \), and bottom reflection, \(L_{bottom}(\lambda, z) \). In this equation, a photon is associated with the last scattering or fluorescence event that occurs before it travels upwards through the plane at depth \(z \).

For measurements from floating radiometers, where the downwelling irradiance sensor is above the surface and the radiance sensor is positioned at depth \(z_{lu} \) (m), it is convenient to define sea surface reflectance \((R_s(\lambda), \text{sr}^{-1}) \) as the ratio of upwelling radiance at a depth \(z_{lu} \) below the surface to downwelling planar irradiance above the surface \(E_d(\lambda, 0') \) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \text{sr}^{-1} \)) leading to

\[R_s(\lambda) = \frac{L_{ab}(\lambda, z_{lu})}{E_d(\lambda, 0')} + \frac{L_{bf}(\lambda, z_{lu})}{E_d(\lambda, 0')} + \frac{L_{cdom}(\lambda, z_{lu})}{E_d(\lambda, 0')} + \frac{L_{bottom}(\lambda, z_{lu})}{E_d(\lambda, 0')} \]

The subscripts for \(R_s(\lambda) \) are the same as in equation (1). Note that this additive representation of an AOP is only valid for the single scattering approximation or if we consider only the last photon source; it is used here to guide the discussion and development of our model.

Inherent Optical Properties

We are using an inversion method that optimizes a forward model that describes the AOPs by varying the spectral shapes and amplitudes of the IOPs to match the measured spectral light field [Roesler and Perry, 1995]. This type of inversion requires the description of an AOP in terms of IOPs, which is usually in the form of an analytical function (the so-called explicit inversions [e.g., Gordon, 2002]).

Many models exist [e.g., Albert and Mobley, 2003; Gordon et al., 1988; Morel, 1988; Morel and Lloret, 1998; Morel et al., 2002] that express reflectance as a function of IOPs. They are usually of the form,

\[R_{lu}(\lambda, a(\lambda), b_0(\lambda), b_{bpart}(\lambda), b_{bdw}(\lambda), c_{cdom}(\lambda), a_{NAP}(\lambda), \text{algal particulate matter} \]

where \(f() \) represents some function of \(b_0(\lambda) \) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \text{nm}^{-1} \text{sr}^{-1} \)), the total backscattering coefficient, and \(a(\lambda) \) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \text{nm}^{-1} \text{sr}^{-1} \)), the total absorption coefficient. The total backscattering coefficient can be expressed as the sum of particulate backscattering \(b_{bpart}(\lambda) \) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \text{nm}^{-1} \text{sr}^{-1} \)) and water backscattering \(b_{bdw}(\lambda) \) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \text{nm}^{-1} \text{sr}^{-1} \)): \(b_b(\lambda) = b_{bpart}(\lambda) + b_{bdw}(\lambda) \) (\(\mu \text{mol m}^{-2} \text{s}^{-1} \text{nm}^{-1} \text{sr}^{-1} \)). The total absorption coefficient can be separated into contributions from CDOM \((a_{cdom}(\lambda), \text{m}^{-1}) \), nonalgal particulate matter \((a_{NAP}(\lambda), \text{m}^{-1}) \), phyto-
plankton \((a_\lambda, \text{m}^{-1})\), and water \((a_\lambda, \text{m}^{-1})\): \(a(\lambda) = a_{\text{CDOM}}(\lambda) + a_{\text{phytoplankton}}(\lambda) + a_\lambda(\lambda) + a_\lambda(\lambda).\) Once a function has been adopted, the spectral shape and amplitude of each absorption and scattering component can be parameterized as a simple function of the fitted parameters \((\text{vector } \theta)\) which can then be used in a nonlinear regression procedure to find the best vector of parameters, \(\hat{\theta}\), to represent a measured reflectance spectrum. For some constituents such as the spectral shape remains constant, while for others both the shape and amplitude are allowed to vary. More specifically, the method uses a nonlinear regression where the estimated parameters \((\theta)\) define the spectral shapes and amplitudes of the IOPs, and the independent variables are the AOP spectra. In this paper, we replace the use of an analytical function for the relationship between the IOPs and AOPs with a look-up table, while retaining the use of an optimization procedure.

[11] In the inversion models developed to date, the Raman scattering term and terms for chlorophyll fluorescence and CDOM fluorescence are usually treated independently, ignored or corrected for. The rationale for our treatment of these processes in the coastal waters of Lunenburg Bay is described below.

2.2.1. Raman Scattering

[12] Gordon [1999] showed that Raman scattered photons can amount to an important fraction (\(\sim 10\%\)) of the upwelling radiance in the blue-green wavebands in surface waters at low chlorophyll concentrations [see also Morel and Gentili, 2004]. However, radiative transfer simulations of Lunenburg Bay (using Hydrolight software, Sequoia Scientific, with the Bartlett et al. [1998] parameterization) showed that the fraction of upwelling radiance due to Raman scattering is at most 2 to 3\% for all wavelengths (generally increasing with longer wavelengths in the visible) and due to the high attenuation coefficient of water in the bay. This is consistent with the results of Morel and Gentili [2004] for Case 1 waters with high chlorophyll concentrations. Such small increases in the upwelling radiance are within the instrumental error of the radiometer and the uncertainty in our model for the natural light field. Therefore, for the remainder of this paper we ignore this source of radiance with little consequence on our results. However, to adapt the model developed herein to clear waters, an analytical model of Raman scattering should be implemented [e.g., Marshall and Smith, 1990; Pozdnyakov and Grassl, 2003; Sathyendranath and Platt, 1998].

2.2.2. CDOM Fluorescence

[13] The relative influence of CDOM in Lunenburg Bay is understood by noting that at 490 nm absorption by CDOM is typically about 5 times greater than that of phytoplankton \((a_{\text{CDOM}}/(\lambda) = 4.52 \pm 2.02 \text{ s.d.; } n = 13, \text{ data for MB1 mooring site in 2003}),\) with the chlorophyll concentration generally around 0.7 mg m\(^{-3}\) ±
0.74 ± 0.26; n = 15) (J. Cullen et al., unpublished manuscript). This makes it impossible to retrieve phytoplankton biomass using absorption-based algorithms of ocean color utilizing the blue and green wavebands. The problem is further exacerbated by CDOM fluorescence. A simple simulation using HydroLight with the default CDOM quantum yield and redistribution function [see Mobley, 1994] for an average CDOM absorption spectrum in Lunenburg Bay showed that CDOM fluorescence covers a broad emission band centered around 490 nm where, at its maximum, it accounts for 10 to 20% of the upwelling radiance (see Results). Due to its emission spectrum, CDOM fluorescence partially “fills-up” the dip in reflectance caused by phytoplankton absorption. Accounting for this effect is very difficult due to high variability in the shape of the redistribution function [Coble, 1996; Hawes, 1992; Mobley, 1994; Seritti et al., 1998; Vodacek et al., 1994] and, to a lesser extent, variability in the quantum yield of CDOM fluorescence [Blough and Del Vecchio, 2002] measured in the environment. An attempt is made by Pozdnyakov and Grassl [2003] to generalize the effects of CDOM fluorescence on reflectance, but at the expense of ignoring changes in the spectral redistribution function with excitation wavelength. In our inversion procedure, we adopt a different approach by avoiding the blue-green spectral region where CDOM fluorescence makes an important contribution to the upwelling radiance.

2.2.3. Chlorophyll Fluorescence

[14] The fluorescence emission centered near 683 nm must be distinguished from the background of elastically (and Raman) scattered photons. This is usually done by defining as a baseline a straight line between two wavebands outside the fluorescence emission band; this baseline value is then subtracted from the signal [see Letelier and Abbott, 1996, and references therein]. This provides a good method for comparing fluorescence emission from waters with similar optical properties. However, the baseline is not always a good or consistent representation of the background upwelling radiance or reflectance and can lead to biases when comparing areas with very different optical properties [Gower et al., 1999; Huot et al., 2005]. Another method to separate the fluorescence signal from the background using inversion models has been proposed [Culver and Perry, 1997; Roesler and Perry, 1995]. In this approach, the background radiance is not assumed spectrally flat but is modeled using the IOPs obtained from the inversion. Firstly, the inversion is carried out for wavebands shorter than those influenced by chlorophyll fluorescence (up to about 650 nm) to obtain the IOPs. Then the reflectance/radiance due only to elastic scattering in the fluorescence band is modeled based on a forward reflectance model and the retrieved IOPs for this band. The differences between the measured reflectance at wavelengths greater than 650 nm and the reflectance spectrum modeled using the IOPs retrieved by the inverse model is attributed to chlorophyll fluorescence.

[15] Our approach is an incremental improvement on the methods described above. Instead of estimating fluorescence emission at one waveband or after the inversion [Morrison, 2003; Roesler and Perry, 1995], we analyze the entire reflectance spectrum simultaneously, using an analytical function to represent $R_{L4}(\lambda, z)$. Consequently, we relate the measured signal directly to the fluorescence of phytoplankton while simultaneously and optimally accounting for the optical properties of the surface layer.

3. Materials and Methods

3.1. Data Collection

3.1.1. AOPs

[16] Two sets of AOP data collected from optical buoys are used in this work. The first was collected in the summer of 2003 from one buoy (MB1), and is used for model development and preliminary validation; the second was collected in 2004 from three moorings (MB1, SB2, and SB3) and is used exclusively for validation. All moorings were deployed in Lunenburg Bay, Nova Scotia, Canada (more information can be found at [http://www.cmemp.ca/bay]).

[17] In 2003, data were collected from 4 June to 28 September for 15 minutes every 30 minutes during daylight. The optical buoy consisted of (1) a hyperspectral TSRB (spectral resolution ~3 nm, range used from 380 to 700 nm, Satlantic Inc., Nova Scotia, Canada) which measures downwelling irradiance above the surface and upwelling radiance below the surface at 0.65 m, and (2) a chain of irradiance sensors at depth measuring at 380, 443, 490 and 555 nm with 10 nm bandwidth (TACCS using OCR-504 head, Satlantic Inc., Nova Scotia, Canada) which is used to obtain the attenuation coefficients. In this paper we use only the upper sensor in this chain, which was located at 2.58 m. The median of the 15-minute acquisition period was taken and used for the inversion. Simple quality control was applied to the data to remove outliers and correct for dark values of the TSRB. As such, median values were discarded if any of the following were encountered: the 15 minute acquisition period was “highly variable” (the ratio of the standard deviation to the mean was greater than 0.005 at 600 nm); the reflectance at 555 or 700 nm was greater than 0.008 and 0.006 sr$^{-1}$, respectively; the downwelling irradiance at 510 nm was lower than 2 μW cm$^{-2}$ nm$^{-1}$; or the zenith angle was greater than 70° (see Zheng et al. [2002] for a more detailed discussion of similar quality control criteria). No further processing was applied to the optical data. This data set contains 1806 reflectance and K_d spectra of which 14 have matching IOP measurements (see section 3.1.2).

[18] The 2004 data set is obtained from three similar moorings (identical except for the depth of the in-water irradiance sensors) deployed for different lengths of time between 22 April and 18 December 2004. This provided a total of 6953 reflectance spectra of which 93 have matching IOP measurements (see section 3.1.2).

For both data sets, we calculated a proxy of the diffuse attenuation coefficient directly from the mooring data using the above-surface sensor $E_d(380, 0^\circ)$ and the in-water sensor at depth z_{Ed}, providing $E_d(z_{Ed})$: $K_d(380) = -\ln \left[E_d(380, z_{Ed})/E_d(380, 0^\circ) \right]/z_{Ed}$. For simplicity, we will refer to this measurement as the diffuse attenuation coefficient, despite the fact that surface effects are not corrected for; the latter are accounted for in the forward model (see section 3.5). The depth z_{Ed} differed (2.5 ± 1 m) for the three moorings. Because the attenuation coefficients during some periods in 2003 showed obvious spectral inconsistencies above 380 nm
(e.g., K_d(555) much higher than K_d(443)), we did not use the wavebands at 443, 490 or 555 nm.

3.1.2. IOPs and Chlorophyll

[20] The IOPS measured at our study site, Lunenburg Bay, were used in four ways: (1) to define the range of values (plus some margin) to be included in a look-up table used in the model; (2) to determine the mean backscattering ratio (b_b/b) to be used for all Hydrolight simulations; (3) to obtain the mean shapes for absorption by phytoplankton and nonalgal particles plus CDOM for use during the inversion; and (4) to validate the output of the inversion model.

[21] The IOP sampling occurred approximately weekly onboard the R/V UStar. During sampling, two instrument packages were deployed: an “optical” package, which included an ac-9 (WET Labs Inc., Oregon, United States) and a Hydroscat-6 (HOBI Labs Inc., Arizona, United States), and a “physical” package which had a CTD. Just before or after these deployments, water samples were collected using a Niskin bottle at 1 m. The AOP spectra from the mooring were matched with the time of sampling of the discrete samples by taking the first median spectrum that passed the quality control criteria following the sampling time (i.e., after the optical sensors were cleaned, thus avoiding biofouling effects).

[22] The CDOM and particulate (detritus and phytoplankton; quantitative filter technique) absorption coefficients were obtained according to the NASA satellite validation protocols [Pegau et al., 2003] using a dual beam spectrophotometer.

[23] The scattering coefficient was measured using the ac-9 and processed according to the manufacturer’s protocol (using a spectrally resolved scattering correction, their method #3). Temperature and salinity corrections were made using data from a near-simultaneous CTD cast.

[24] The backscattering coefficients were obtained using the Hydroscat-6 deployed on the same package as the ac-9 and were processed according to Boss and Pegau [2001]. The spectrally interpolated results from the ac-9 were used to obtain the path attenuation correction (i.e., sigma correction [see Maffione and Dana, 1997]).

[25] The chlorophyll and phaeopigment concentrations were obtained by fluorescence using the acid ratio method and extraction in 90% acetone [Mueller et al., 2003]. We report the mean of triplicate samples.

3.1.3. Laboratory Measurement of Fluorescence Emission

[26] For reasons given later, we used a fluorescence emission shape measured in the laboratory. The fluorescence spectral shape used during the inversion (F_F0 in equation (12), below) was determined by illuminating an optically thin, nutrient replete, high light grown culture (\sim1000 μmol m$^{-2}$ s$^{-1}$) of *Thalassiosira pseudonana* (Figure 6) with a broadband blue light and using a spectroradiometer (USB2000, Ocean Optics Inc., United States; spectrally calibrated using a NIST-traceable light source; LS-1-CAL, Ocean Optics Inc., United States) to measure the emission spectrum. The culture was grown in semicontinuous turbidostat mode [e.g., MacIntyre and Cullen, 2005], illuminated with blue fluorescent tubes (65 W Ultra-Actinic, custom sealife Inc.) and diluted once per day. To avoid carbon limitation, the biomass was kept below 80 mg chl m$^{-3}$.

The measurement was carried out following a dilution and was made at 90° from the growth irradiance.

3.2. Overview of the Inverse Model

[27] Our primary objective is to retrieve phytoplankton absorption or chlorophyll concentration, both proxies for phytoplankton biomass, from autonomous observations of reflectance and the diffuse attenuation coefficient in surface waters. Phytoplankton biomass is estimated from Sun-induced fluorescence detected in the red wavelengths of the reflectance spectrum by: (1) using an inverse model of reflectance and the attenuation coefficient to retrieve the optical properties of the water that must be known to correct the fluorescence signal for backscattered radiance and the transmission of sunlight and fluoresced photons in the upper water column [e.g., Babin et al., 1996b]; and (2) assigning a relationship between the quantum yield of fluorescence and irradiance to calculate phytoplankton absorption from fluorescence. Thus, in addition to retrieving estimates of phytoplankton absorption (which can be related to chlorophyll), the model also provides an estimate of the sum of CDOM and detritus absorption and the backscattering coefficients, as well as spectral estimates of reflectance and attenuation that can be compared to measurements for model validation.

[28] We constructed a forward model to reproduce apparent optical properties measured in situ as a function of solar radiation and a range of IOPs: instead of correcting the measurements to obtain “standard” optical measurements (such as remote sensing reflectance), we construct the model to reproduce the light field observed for the geometry of the measuring instrument.

[29] The forward model is built in two parts:

1. The first part describes the elastic component of the light field and is based on look-up tables (LUTs) derived from radiative transfer simulations. The inputs used to create these tables are the IOPs and the solar zenith angle while the outputs are AOPs. Three LUTs are used for the elastic component, two to describe K_d and one for $R_{b,b}$. The look-up tables are general and do not include any assumptions about the shape of the absorption or scattering constituents, they do, however, use a constant backscattering ratio for particles, 0.0144, which is the mean of the measurements from the study area. We chose to use LUTs rather than an analytical model to provide us with an accurate description of the light field for different solar zenith angles (important in a system that measures throughout the day) and for a wide range of wavelengths (380 to 700 nm). In this sense, the approach is similar to that used by Morel et al. [2002] to correct remote sensing reflectance for the bidirectional effects of the observation geometry.

2. The second part, describing fluorescence emission, is built around an analytical function similar to those used by Morrison [2003] and Maritorena et al. [2000], but it also uses some output from the LUTs to calculate the attenuation coefficient and the scalar irradiance at 0.65 m.

[32] To model the AOPs detected by the instruments more accurately, we apply a correction to the forward model to account for the shading produced by the instrument (i.e., the effect of shading is added to the theoretical model and not...
removed from the measurements; see Appendix B). The inversion finds the combination of optical properties that, when applied in the forward model, best reproduces measured AOPs, including fluorescence emission as detected in red reflectance; it is carried out by changing a total of four parameters in the forward model to minimize the differences between the measured vs. modeled reflectance and attenuation coefficient: two parameters describing the amplitudes of IOP spectral shapes (phytoplankton absorption, \(a_f\) and absorption by the sum of CDOM and nonalgal particulates, \(a_{CM}\)); and two parameters describing the amplitude and spectral shape of backscattering by particles, \(b_{part}\). A function is obtained and used to describe the decrease in the quantum yield of fluorescence at high irradiance due to nonphotochemical quenching. In the inversion, this quantum yield, applied to retrieved fluorescence, is described by an analytical function. The outputs of the inversion are three IOPs: \(a_f\), \(a_{CM}\), and \(b_{part}\). Additionally, the outputs from the look-up tables (AOPs) using the retrieved IOPs as inputs are also available. The validation of the model is done by comparing the outputs with a validation data set of measured IOPs.

Figure 1. Schematic representation of the inverse model. The diagram is divided into four sections: the inputs (left), the creation of the forward model (bottom center), the inversion (top center), and the outputs (right). Dependence on wavelength is omitted to simplify the notation. Input: Three types of inputs are used in the model: (a) models — the incident irradiance under clear sky conditions \(E_d^{clear}\) and the solar zenith angle \(\theta_{sun}\) are calculated for the location and time of the AOP measurements; (b) AOPs measured by the floating radiometer buoy and K-chain — spectra of incident irradiance \(E_d^{obs}\), reflectance (upwelling radiance at 0.65 m divided by downwelling irradiance above the surface, \(R_{Lb}^{obs}\)), and the attenuation coefficient \(K_d^{obs}\) calculated from measurements of downwelling irradiance above the surface and at depth \(z_{Ed}\) about 2.75 m; (c) IOPs; measured during field trips to the moorings sites. They are used: (i) for defining the IOPs ranges for the creation of the forward model; (ii) for defining average spectral shapes for absorption used during the inversion; and (iii) for the validation of the model outputs (not represented here). Creation of forward model: Four look-up tables (LUTs) based on the range of IOPs measured in the waters of Lunenburg Bay are created and used in the forward model to describe three AOPs \((R_{Lb}^{mod}, K_d^{mod})\) in terms of IOPs and the solar zenith angle. The first two \((R_{Lb}^{mod}, K_d^{mod})\) are defined solely based on the LUTs constructed using a series of radiative transfer simulations (Hydrolight). The effect of instrument self-shading (see Appendix B) is applied to the LUT reflectance model \(R_{Lb}^{HL}\) to obtain \(R_{Lb}^{mod}\) and to reproduce more closely the measurements before the inversion. The third AOP, reflectance due to fluorescence \(R_{Lb}^{mod}\), is based on an analytical function but uses outputs from the LUT table. Inversion: The inversion involves minimizing the differences between the measured and modeled AOPs by modifying the IOPs’ magnitude (and shape in the case of \(b_{part}\)). Outputs: The outputs of the inversion are three IOPs: \(a_f\), \(a_{CM}\), and \(b_{part}\). Additionally, the outputs from the look-up tables (AOPs) using the retrieved IOPs as inputs are also available. The validation of the model is done by comparing the outputs with a validation data set of measured IOPs.
ence emission, constrains the estimate of phytoplankton absorption.

3.3. General Formulation

[33] The reflectance model is the sum of two contributions, one from backscattered radiance and one from chlorophyll fluorescence: \(R_L(\lambda, z) = R_{L,t}(\lambda, z) + R_{L,f}(\lambda, z) \). Therefore, our model does not include Raman scattering, CDOM fluorescence, or bottom reflection processes (see equation (2)).

[34] Most inverse models work by minimizing the sum of the squared differences (or another cost function) between the observed radiance reflectance vector \(\mathbf{R}_L^{obs}(\lambda, \text{sr}^{-1}) \) and the forward reflectance model \(\mathbf{R}_L^{mod}(\lambda|\theta), \text{sr}^{-1} \), a vector-valued function. This is accomplished by varying the \(V \) parameters in the vector of parameters \(\theta = [\theta_1, \dotsc, \theta_V] \), which define the amplitudes and spectral shapes of \(J \) spectral components \(\phi_j(\lambda|\theta) \). The dependency notation should be read “of lambda given the vector of parameters theta”. These \(J \) spectral components are separated into two types, those that correspond to backscattering \(\phi_{b}(\lambda|\theta) \) and those that correspond to absorption \(\phi_{a}(\lambda|\theta) \) of the \(j \)th component. With this notation \(\phi_{a,j}(\lambda|\theta) \) could be used, for example, to represent the spectral absorption of phytoplankton, which would be the product of a phytoplankton absorption vector normalized to 490 nm \(\mathbf{a}_{w}^{490}(\lambda) \) and an amplitude \(\theta_j(\text{m}^{-1}) \) corresponding to the absorption at 490 nm, such that \(\phi_{a,j}(\lambda|\theta) = \mathbf{a}_{w}^{490}(\lambda) = \theta_j \mathbf{a}_{w}^{490}(\lambda) \).

[35] The reconstructed total absorption and backscattering coefficients then become:

\[
\mathbf{a}(\lambda|\theta) = \sum_{j=1}^{J} \phi_{a,j}(\lambda|\theta) \\
\mathbf{b}(\lambda|\theta) = \sum_{j=1}^{J} \phi_{b,j}(\lambda|\theta)
\]

[36] The general formulation with fluorescence is obtained simply by adding the modeled fluorescence vector valued function \(\mathbf{R}_L^{mod}(\lambda|\theta), \text{sr}^{-1} \), developed below (see equation (9)), which leads to the general model for the regression of the \(i \)th measured reflectance spectrum \(\mathbf{R}_L^{obs}(\lambda) \),

\[
\mathbf{R}_L^{obs}(\lambda) = \mathbf{R}_L^{mod}(\lambda|\theta) + \mathbf{e}(\lambda)
\]

where \(\mathbf{e}(\lambda) \) is a vector of errors. The least squares cost function becomes

\[
\sum_{i=1}^{S} \left(\mathbf{R}_L^{obs}(\lambda_i) - \mathbf{R}_L^{mod}(\lambda_i|\theta) \right)^2, \tag{6}
\]

where \(\lambda_i \) is the \(i \)th wavelength and reflectance is measured with a total of \(S \) wavelengths. An optimization procedure is used to minimize the square of the differences between the measured and modeled reflectance spectra to obtain the estimated parameters \(\hat{\theta}_L \). In our case, the inversion is performed for both the attenuation coefficient and reflectance such that we create a new vector \(\mathbf{R}_{L,e}(\lambda, \mathbf{K}_d(\lambda)) \) on which the inversion procedure is carried out with the same minimization of squares:

\[
\sum_{i=1}^{S} w_i(\lambda_i) \left(\left[\mathbf{R}_{L,e}^{obs}(\lambda_i), \mathbf{K}_d(\lambda_i) \right] - \left[\mathbf{R}_{L,e}^{mod}(\lambda_i|\theta) \right] \right)^2, \tag{7}
\]

where \(w_i \) is a vector of weights. The relative error between the model and measurements is expected to be similar for the attenuation and reflectance. However, the variance is different because values of \(K_d \) are ~10–100 times larger than \(R_L \). Therefore, a weighted least squares approach is necessary. To account for the difference in variance, we first weight by the inverse square of the value of the measurement (1/y^2 weightings). Two other factors were taken into account when adjusting the weights: (1) the number of points (wavelength, \(\lambda_i \) for each measurement \(N_R \) and \(N_K \)), and (2) the information content of the measurement (not all wavebands are independent). We assume that \(K_d \) which is
analyzed only at 380 nm (Table 2), contains information only about \(a_{w,CM} \) (where \(a_{CM} = a_{CDOM} + a_{XAP} \)), while \(R_L \) contains information on \(b_{par} (\theta) \). This leads to the weight for reflectance as \([4(N_K/N_R)]^2 (1/R_{L,0})^2 \). For the \(K_d \) measurements \((1/K_{d,0})^2 \) is used for the weight. Therefore, we used

\[
w = \left[4(N_K/N_R) (1/R_{L,0})^2 \right]^2 \cdot (1/K_{d,0})^2.\]

[37] Hence, in both cases, the variance is normalized to the value of the measurement. In summary, the weight of reflectance is reduced in proportion to the number of wavebands used relative to those used for \(K_d \) while it is multiplied by 4 because it contains about four times as much information. This weighting is intended to provide equal weighting to the attenuation and reflectance, while accounting for the nonindependence of the wavebands in the reflectance spectra by reducing their weights \((N_K/N_R)\). In this section, for the formal statistical setup of the problem we use have used a vectorial notation, which allows a more formal description of the problem. However, for the remainder of the paper we will use this notation more loosely. All optimization procedures were carried out in MATLAB® (The Mathworks Inc., United States), using a bounded nonlinear least squares approach [Coleman et al., 2000; Coleman and Li, 1994]. The upper bounds were set high enough to never influence the fit while the lower bounds were set to 0 for all parameters except for \(\theta_d \), the exponent of the power function describing the spectral dependence of backscattering, which was bounded at \(-1\). This allows for the possibility of absorbing particles or monodispersed particles influencing the shape of the backscattering curve (see below).

3.4. Description of the Look-Up Tables

[38] As mentioned before, look-up tables are used to describe the elastic scattering component of the model and some aspects of the fluorescence model. These tables were created by running a series of Hydrolight simulations encompassing the range of absorption, scattering and solar zenith angles expected in Lunenburg Bay, i.e., the measured range plus some margin. Details of the Hydrolight runs are given in Appendix A (see also Table 3). Briefly, Hydrolight was run with the IOPs for water plus variable amounts of absorption and scattering by “nonwater” material. The “nonwater” material had spectrally flat scattering and absorption coefficients. This allows the creation of look-up tables which are general and monotonic for all independent variables. Outputs were saved every 5 nm from 377.5 to 702.5 nm at 0, 0.65 and 2.75 m below the surface. A look-up table was then created with four independent (input) variables, \(a_{nw} (\lambda) = a(\lambda) + a_w (\lambda) \), \(b_{nw} (\lambda) = b_R (\lambda) - b_{nw} (\lambda) \), and \(\lambda \) where the subscript “nw” stands for “nonwater”. The dependent variables are: (1) a TSRB-like reflectance, which consists of the ratio of the upwelling radiance at 0.65 m to downwelling irradiance above the surface, \(R_{L,mod}^{0.65} (\lambda, \theta) \); (2) the ratio of planar irradiance below the surface to that above the surface, \(T_{mod} (\lambda, \theta) \); (3) the attenuation coefficient for planar irradiance from just below the surface to 2.75 m, \(K_{d,mod} (\lambda, \theta) \); (4) the ratio of the scalar irradiance at 0.65 m to the planar irradiance above the surface, \(T_{mod} (\lambda, \theta) \); Further details for each of these LUTs follow below.

3.5. Description of \(R_{L,mod} (\lambda, \theta) \)

[39] The look-up table for \(R_{L,mod}^{0.65} (\lambda, \theta) \) corrected for shading (see Appendix B), is the model used for the inversion of reflectance resulting from elastic scattering (equation (7)): \(R_{L,mod}^{0.65} (\lambda, \theta) = [1 - \varepsilon_{shade} (\lambda, \theta)] R_{L,mod}^{0.65} (\lambda, \theta) \). It is a vector of shading errors.

3.6. Description of \(K_{d,mod} (\lambda, \theta) \)

[40] The look-up tables for \(T_{mod} (\lambda, \theta) \) and \(K_{d,mod} (\lambda, \theta) \) are used during the inversion of the TSRB/TACCS attenuation coefficient, which uses the above surface irradiance and the downwelling irradiance at \(z_{ed} \) to derive an attenuation coefficient which incorporates the air-sea interface effects (section 3.1.1): \(K_{d,mod} (\lambda, \theta) \). To allow for more versatility in terms of the depth of the in-water sensor, we separate the model into an interface transmission term and a water attenuation term:

\[
K_{d,mod} (\lambda, \theta) = K_{d,w} (\lambda, \theta) + K_{d,i} (\lambda, \theta).
\]

Table 3. Parameterization and Construction of the Look-Up Tables for \(R_{L,mod} (\lambda, \theta) \)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Values of Input for HydroLight Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{w,CM}) m(^{-1})</td>
<td>0, 0.005, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.625, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25 (independent of wavelength)</td>
</tr>
<tr>
<td>(b_{par}) m(^{-1})</td>
<td>0.0001, 0.0007, 0.0014, 0.0029, 0.005, 0.0072, 0.0144, 0.0216, 0.0288, 0.036, 0.0432, 0.0504 (independent of wavelength)</td>
</tr>
<tr>
<td>(\theta_d) degrees</td>
<td>11.2, 20.6, 30.4, 40.3, 50.2, 60.1, 70.1, 80.0</td>
</tr>
<tr>
<td>(\lambda) nm</td>
<td>Every 5 nm from 377.5 to 702.5 nm</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>Gregg and Carder [1990] irradiance model with: Pressure = 101.3 Mpa, Air mass type = 1.0, Relative Humidity = 80.0 %, Precipitable water = 2.5 cm, 24-hr wind speed = 3.0 m/s, Current wind speed = 3.0 m/s, Visibility = 15.0 km, Total ozone = 392.0 Dobson units Clouds: no clouds; radiance distribution: Harrison and Coomes [Harrison and Coomes, 1984]; Water depth: infinite; Raman scattering: off; chlorophyll fluorescence: off; CDOM fluorescence: off; particle scattering phase function backscattering ratio: 0.0144</td>
</tr>
<tr>
<td>Ocean</td>
<td>IOPs depth distribution: constant; IOPs spectral shape: constant (except water);</td>
</tr>
</tbody>
</table>
[41] We now give the rationale for replacing 1/2.75 by z_{Ed} on the third line of equation (8). Changing the depth of the in-water downwelling irradiance sensor will not lead to large changes for a hypothetical attenuation coefficient calculated from just below the surface to that depth (first term last line of equation (8)) we therefore use a LUT made for one depth (2.75 m). The term including the transmission across the interface (though small) is inversely proportional to the depth of the sensor (second term last line of equation (8)), we therefore use z_{Ed} as well as a constant LUT when modeling the effect of transmission on the mooring measurements of K_d. In other words, since z_{Ed} depends on the configuration of the mooring, and because K_d is not expected to change much with small changes in z_{Ed}, separating the LUT into two terms (instead of only one term for $K_d^{mod}(\lambda)_{[0, 2.75]}$) allows us to keep the same LUT for $K_d^{mod}(\lambda)_{[0, 2.75]}$ and $T^{mod}(\lambda)_{[0, 2.75]}$ and change only z_{Ed} in front of the second term to obtain a more accurate description.

3.7. Equation for the Upwelling Fluorescence Radiance Used in the Inverse Model

[42] Assuming a homogeneous water column with respect to the IOPs, the upwelling radiance at wavelength λ and depth z_{Lu} due to fluorescence emission in the ocean can be modeled as follows [e.g., Babin et al., 1996a; Maritorena et al., 2000; Mobley, 1994],

$$L_{uf}(\lambda, z_{Lu}) = \frac{1}{4\pi} Q^f(\lambda) \int_{z_{Lu}}^{\infty} a_0(\lambda) n_f^f(z, \lambda_{ex} \rightarrow \lambda) E(\lambda_{ex}, z_{Lu}) e^{-\left[K(\lambda_{ex}) + a_f(\lambda)\right](z-z_{Lu})} dz d\lambda_{ex}, \quad (9)$$

where Q^f is the fraction of light emitted inside the cell and not reabsorbed, n_f^f (nm$^{-1}$) is the spectral fluorescence quantum efficiency (SFQE) function for irradiance absorbed at waveband λ_{ex} by all cellular pigments and reemitted at the emission wavelength λ (nm$^{-1}$), E is the scalar irradiance, K is the diffuse attenuation coefficient for scalar irradiance, and a_f is the attenuation coefficient for fluoresced upwelling radiance.

[43] To simplify the problem, the SFQE function is often assumed independent of depth: $n_f^f(z, \lambda_{ex} \rightarrow \lambda) = n_f^f(\lambda_{ex} \rightarrow \lambda)$ thus allowing us to take n_f^f outside the depth integral, and to carry out the depth integration:

$$L_{uf}(\lambda, z_{Lu}) = \frac{1}{4\pi} Q^f(\lambda) \int_{400}^{700} a_0(\lambda) n_f^f(\lambda_{ex} \rightarrow \lambda) \frac{a_f(\lambda_{ex}) E(\lambda_{ex}, z_{Lu})}{K(\lambda_{ex}) + a_f(\lambda)} d\lambda_{ex}. \quad (10)$$

[44] The problem can be simplified by noting that in reality the spectral shape of emission (but not the magnitude) is independent of the excitation wavelength, such that we can conveniently express the SFQE function as $n_f^f(\lambda_{ex} \rightarrow \lambda) = \varphi_f(\lambda_{ex}) F_f(\lambda)$, where $F_f(\lambda)$ is a constant emission spectral shape (nm$^{-1}$) and $\varphi_f(\lambda_{ex})$ is the quantum yield of fluorescence, operationally defined as the number of photons emitted at all wavelengths divided by the absorbed irradiance at wavelength λ_{ex} by all cellular pigments.

[45] It is well documented that, at least in some species, the quantum yield of fluorescence for algal cells, as operationally defined here, varies, sometimes strongly, with the excitation wavelength. This is due to the relative pigment composition of the strongly fluorescing photosystem II and weakly fluorescing photosystem I, and the spectrally varying ratio of photosynthetically to photoprotective pigments [Johnsen et al., 1997; Loftus and Seliger, 1975; Lutz et al., 1998; Raateoja et al., 2004; SooHoo et al., 1982]. For convenience, we will follow the assumption generally made in ocean optics research that the quantum yield is independent of excitation wavelength: $\varphi_f(\lambda_{ex} \rightarrow \lambda) = \varphi_f(\lambda_{ex}) F_f(\lambda) = \varphi_f F_f(\lambda)$. This assumption allows the simplification of equation (10) leading to our depth-integrated radiances equation:

$$L_{uf}(\lambda, z_{Lu}) = \frac{1}{4\pi} Q^f(\lambda) F_f(\lambda) \int_{400}^{700} \frac{a_f(\lambda_{ex}) E(\lambda_{ex}, z_{Lu})}{K(\lambda_{ex}) + a_f(\lambda)} d\lambda_{ex}. \quad (11)$$

3.7.1. Approach for Constraining the Depth-Integrated Fluorescence Equation During the Inversion

[46] Starting from equation (11), we need to express $Q^f(\lambda)$, $F_f(\lambda)$, $E(\lambda, z_{Lu})$, $K(\lambda)$, and $a_f(\lambda)$ in terms of $a_{CM}(\lambda) = a_{CM}(\lambda) + a_{CM}(\lambda) + a_{CM}(\lambda)$. This can be achieved by using the chlorophyll fluorescence emission spectrum obtained from a representative algal culture (see Results) for $F_f(\lambda)$. The parameter $E(\lambda, 0.65)$ is modeled by multiplying the measured incident irradiance, $E(\lambda, 0.65)$, by the look-up table value for $T^{mod}(0.65, 0.65)$. It is assumed that the scalar irradiance attenuation coefficient, K, is the same as the planar attenuation coefficient and is modeled using the look-up table for $K_d^{mod}(\lambda)_{[0, 2.75]}$. Unless the measurement is made in a highly scattering environment, the attenuation coefficient for the attenuation of upwelling fluorescence radiance $a_f(\lambda)$ can be approximated by $a_f(\lambda) = a(\lambda) = a_{CM}(\lambda) + a_{CM}(\lambda) + a_{CM}(\lambda)$. For the inversion, $a_{CM}(\lambda)$ is replaced by the estimated spectral shape $\varphi_{CM}(\lambda)$ and $a_{CM}(\lambda)$ is replaced by $\varphi_f(\lambda)(\lambda)$ (see equation (4) and section 3.8.1).
where \(F_R(\lambda) \) is normalized such that \(\int F_R(\lambda)d\lambda = 1 \), hence, the quantum yield obtained by the inversion is defined in terms of the fluorescence emitted from the cell over all emission wavelengths. Both sides of equation (12) are implicitly dependent on \(\theta \). We now describe the spectral shapes used and the wavelengths inverted.

3.8. Location-Specific Considerations

3.8.1. Spectral Shapes in Lunenburg Bay

[40] The model has 4 fitted parameters and 3 spectral shapes (see Table 2). The spectral shapes for absorption by phytoplankton and colored matter are kept constant at the mean values measured in Lunenburg Bay during the weekly sampling conducted from June 2003 through September 2003, which showed limited spectral variability:

\[
a_o(\lambda) = \theta_1 a_{o1}^{490}(\lambda),
\]

and

\[
a_{CM}(\lambda) = \theta_2 a_{CM1}^{400}(\lambda),
\]

where \(a_{o1}^{490}(\lambda) \) and \(a_{CM1}^{400}(\lambda) \), are the average spectra for phytoplankton and nonalgal colored matter normalized to 490 and 400 nm, respectively. The backscattering spectrum is given by

\[
b_{part}(\lambda) = \theta_3 \lambda^{\theta_4},
\]

where \(\theta_3 \) is the backscattering coefficient by particles at 650 nm \((b_{part}(650)) \) and \(\theta_4 \) is the spectral decrease of the power function used to describe backscattering (closer to 1–2 for small particles and closer to 0 for large particles [e.g., Morel and Maritorena, 2001]). The absorption by water was taken from Pope and Fry [1997].

3.8.2. Wavebands Used in the Inversion

[50] In Lunenburg Bay, as in many coastal environments, absorption and fluorescence by CDOM as well as bottom reflectance can interfere with the detection of phytoplankton when using information in the blue-green region of the spectrum. In contrast, at the red end of the spectrum, where phytoplankton fluorescence occurs, absorption by water is very strong, so bottom reflectance and both fluorescence and absorption by CDOM are negligible. This allows the chlorophyll fluorescence spectrum and amplitude to be estimated with minimal interference from other optical constituents [Roesler and Perry, 1995]. Therefore, the fluorescence band is useful for the retrieval of phytoplankton biomass in terms of absorption for these waters (see equation (11)) if the quantum yield is near constant or its variability can be predicted. In addition in the bands above \(\sim 600 \) nm but below \(\sim 660 \) nm where fluorescence emission begins, variability in the water reflectance originates mostly from variability in the backscattering coefficient. In the shorter wavebands, below \(\sim 400 \) nm, the attenuation of irradiance is mostly due to CDOM absorption, and CDOM fluorescence and bottom reflectance are negligible due to the high attenuation coefficients (and reduced incident excitation irradiance for CDOM fluorescence). Estimates of CDOM absorption made using the near UV allow the retrieval of a dominant source of absorption, hence attenuation, in the blue-green wavebands. Having recognized the benefits of analyzing the red region of the spectrum and avoiding the blue-green wavelengths, we designed our model to fit only the wavebands from 380 to 400 nm and 605 to 700 nm for \(R_L \), and the 380 nm waveband for \(K_d \).

4. Results

[51] The high-frequency AOP measurements from the MB1 optical mooring during the summer of 2003 as well as the weekly discrete absorption data are shown in Figure 2. The incident PAR irradiance above the surface measured with the hyperspectral TSRB (Figure 2a) illustrates that most days were sunny with a midday irradiance of around 2000 \(\mu \)mol m\(^{-2}\) s\(^{-1}\), while a cloudy period — which also coincided with strong rain events — is observed at the beginning of August. Later, we will examine this time period for diel variability. The 555 to 443 nm reflectance ratio is relatively stable for the whole deployment except for the heavy rain events in early August (Figure 2b). The absorption by phytoplankton and reflectance ratio does not covary during the summer (Figure 2b). The reflectance at 640 nm, whose main source of variability is the backscattering coefficient, shows a peak in mid-June and a sustained minimum after 15 September (Figure 2c). The attenuation coefficient at 380 nm covaries well with the measured absorption by CDOM at 400 nm from the discrete samples (Figure 2d). The reason for the absence of covariation between the reflectance ratio and phytoplankton absorption becomes apparent when comparing the reflectance ratio (Figure 2b) with \(K_d(380) \) (Figure 2d), which shows a strong covariance for the two measurements suggesting that the main factor influencing both measurements is the same, i.e., CDOM absorption. This strong effect of CDOM on the reflectance ratio has prevented us from developing a robust algorithm for phytoplankton biomass using the blue-green bands in these waters. In fact, even a standard inversion model [Roesler and Perry, 1995], which should in principle account for the influence of CDOM absorption on reflectance, has not allowed us to remove sufficiently its effect on the retrieval of phytoplankton biomass; small errors in the retrieval of CDOM cause large relative errors in phytoplankton absorption (results not shown). These errors are compounded by CDOM fluorescence.

[52] We first examine in more detail the IOPs measured and their variability in Lunenburg Bay. Secondly, we obtain a function describing the dependence of the quantum yield of fluorescence on irradiance. Thirdly, we test the new inverse model and closely examine the model results. Finally, we validate the model on an independent data set.

4.1. IOPs in Lunenburg Bay

4.1.1. Samples From Discrete Depths

[53] During the summer of 2003 in Lunenburg Bay, phytoplankton absorption at 490 nm varied between 0.02 and 0.06 m\(^{-1}\) with two spectra at approximately 0.08 m\(^{-1}\) (Figure 3a). This represents a very limited range of variability; in the NOMAD data set (version 1.3_2005262 [see Werdel and Bailey, 2005]) used for the development of satellite algorithms, phytoplankton absorption (calculated as total particulate absorption minus detritus absorption)
ranges from 0.00065 to 1.02 m$^{-1}$. In our study, except for a few spectra that showed higher absorption at wavebands shorter than 450 nm, there was little variability in the shape of the phytoplankton absorption spectra (Figure 3b). The nonalgal particulate absorption varied between 0.025 and 0.25 m$^{-1}$ at 400 nm (Figure 3c); however, the shape showed little variability (Figure 3d). The CDOM absorption was the largest fraction of the total absorption varying between 0.2 and 0.9 m$^{-1}$ at 400 nm (Figure 3e), but once again the shape remained relatively stable over the whole summer (Figure 3f). The stability of the spectral shapes allowed us to use the mean spectra measured as constant shapes to represent the two absorbing components in the model: (i) phytoplankton absorption and (ii) the sum of CDOM and nonalgal particulate absorption.

The scattering coefficient (b, m$^{-1}$) measured with the ac-9 showed relatively flat spectra (Figure 4a), some of which featured a small spectral signature likely associated with phytoplankton absorption [see Babin et al., 2003]. The backscattering coefficient showed a small decrease with wavelength for most spectra and varied for the most part between 0.004 and 0.01 m$^{-1}$ with four spectra above 0.01 m$^{-1}$ (Figure 4b). The backscattering ratio (b_b/b) also exhibited a slight decrease with wavelength (Figure 4c). The average value at 620 nm was 0.0144 with values mostly between 0.012 and 0.02; the mean value was used for all
Hydrolight simulations and was assumed independent of wavelength.

4.1.2. Profiles and Observation Strategy

Lunenburg Bay is usually stratified in summer and the optical properties vary with depth (Figure 5), the surface layer being more absorbing and scattering than the lower layers. At the near UV and red wavebands used for the inversion (see Table 2) absorption tends to be above 0.3 m$^{-1}$. Since 90% of the reflectance originates in the upper optical depth below the sensor \cite{Gordon and McCluney, 1975}, at the wavelengths used, assuming $K_d \sim a$, the upwelling radiance measured at 0.65 m originates above $\lesssim 3.65$ m. The downwelling irradiance sensor was at a depth of ~ 2.5 m: this means that the reflectance and attenuation measurements were observing similar water layers. This would not be true for less attenuating wavebands where reflectance would effectively sample much deeper.

4.2. Fluorescence Spectral Components

We compared the fluorescence emission spectrum of a neritic diatom, measured in this study, with spectra used by others (Figure 6). Note the large difference between the spectrum used by Gordon \cite{1979}, which is commonly used...
today [e.g., Morrison, 2003] and also used in the standard Hydrolight software, to simulate fluorescence emission in the ocean, and the measured spectra — a factor of about 2 at the longer wavelengths. The spectrum used by Ostrowska et al. [2000b], based on the Stokes shift of the red chlorophyll a absorption band, is much more similar to the measured spectra but lacks the “secondary emission” bands at the longer wavelengths (differences increase above ~695 nm) originating from different chlorophyll-protein complexes [e.g., Trissl, 2003]. In our preliminary tests with the inverse model, the fits achieved with the *T. pseudonana* spectrum showed smaller and more randomly distributed residuals spectrally than those using the other spectra so we decided to use it for further model development.

4.3. Irradiance Dependence of the Quantum Yield of Fluorescence

[57] Before fluorescence can be used to accurately retrieve phytoplankton biomass under varying irradiance conditions, the change in the quantum yield with irradiance has to be accounted for. The reflectance measurements for the four-month deployment of mooring MB1 during the summer of 2003 were first inverted by keeping the quantum yield constant and independent of irradiance. When the quantum yield is held constant — here we chose a realistic value of 0.01 — variability in the retrieved absorption by phytoplankton is the result of: the real variability in absorption; variation in the quantum yield (due to changes in light intensity, physiology, species composition, or diurnal changes uncorrelated with irradiance); and random errors between the model and fit. Because absorption is not expected to vary directly with irradiance, we assume that the fraction of the variability explained by irradiance must originate from changes in the quantum yield of fluorescence. The apparent irradiance-dependence of phytoplankton absorption was fit to a linear model (Figure 7) using the modeled scalar irradiance weighted by the normalized phytoplankton absorption.
spectrum (photosynthetically utilizable radiation, PUR) at 0.65 m \((E_{\text{PUR}}^490 (0.65)) \) as the independent variable,

\[
E_{\text{PUR}}^490 (0.65) = \int \frac{\tilde{a}_{\varphi} (\lambda)}{490} \tilde{E} (\lambda, 0.65) d\lambda, \tag{16}
\]

where \(\tilde{a}_{\varphi} (\lambda) \) is the phytoplankton absorption coefficient normalized to its value at 490 nm and \(\tilde{E} (\lambda, 0.65) \) is obtained using \(E_o (\lambda, 0.65) T^{\text{mod} (0.65)} \). Our definition of PUR uses absorption normalized to 490 nm, rather than to the maximum [Morel, 1978] or the mean absorption [e.g., Markager and Vincent, 2001], since the phytoplankton spectral shape was normalized to 490 nm for modeling; the formulation has no significant influence on the results. The PUR was used for this analysis as it was the best proxy that could be obtained for the exciting radiation for phytoplankton fluorescence (the ideal weighting would be the fluorescence excitation spectrum). The fitted relationship for the retrieved phytoplankton absorption versus irradiance as a function of \(E_{\text{PUR}}^490 \) for all four months (Figure 7), denoted \(a_{\varphi}^{\text{yield}} (E_{\text{PUR}}) \) (m\(^{-1}\)), can be used to describe the irradiance dependence of the quantum yield of fluorescence (see equation in Figure 7). However, this relationship provides only the relative irradiance dependence, and the absolute value of the quantum yield, which would scale this relationship, can only be obtained through validation with in situ phytoplankton absorption data (see section 4.4.1).

4.4. Verification With the 2003 Data

The first test of the model consists of analyzing the reflectance spectra and attenuation coefficients measured by the optical mooring at the time of collection of the discrete samples for 2003. The reflectance spectra show limited variability (Figure 8), but two spectra are clearly different; one from 13 August, which shows lower reflectance in the UV-blue region consistent with larger than usual CDOM absorption (also see Figure 2d), and one from 17 September showing lower reflectance in the 600–650 nm region, consistent with a lower than average backscattering coefficient (also see Figure 2c).

4.4.1. Phytoplankton Absorption and Scaling the Quantum Yield Versus Irradiance Relationship

After inversion of the selected spectra presented in Figure 8, we obtained the IOPs associated with each spectrum, which can be compared with the in situ samples (Figure 9). This comparison shows that phytoplankton absorption is well retrieved, despite the limited variability observed (Figure 9a).

To obtain this graph, and all inversions thereafter, the quantum yield of fluorescence used during the inversion was specified as a function of incident irradiance consistent with the irradiance-dependence of the quantum yield \(a_{\varphi}^{\text{yield}} \) (\(E_{\text{PUR}}^490 \) in Figure 7), scaled by a factor of 0.4 m such that the
retrieved a_p followed the 1:1 line in Figure 9a as closely as possible. The final relationship for the quantum yield used in equation (12) during the inversion is thus (shown in Figure 7): $\phi_f(E_{\text{PUR}}^{490}) = -8.684 \times 10^{-6} E_{\text{PUR}}^{490} + 0.0169$. That is, at each iteration of the optimization routine, the value of $\phi_f(E_{\text{PUR}}^{490})$ was used in equation (12) in place of ϕ_f. The most important effect of the scaling (within a reasonable range) is to translate all points vertically (Figure 9a), with little effect on the correlation coefficient. In this panel, errors in the estimation of phytoplankton absorption are typically within 25%, however, one point clearly stands out. This point corresponds to the sampling day of 17 September 2003. In addition to having a distinct reflectance spectrum, the HPLC pigments obtained for that day from discrete samples show a large peak, probably corresponding to a phaeophytin (not fluorescing), which was not seen in any other samples that year (C. Normandeau, personal communication). Clearly, the optical and environmental conditions for that day were different from the rest of the season.

4.4.2. Absorption by Colored Matter and Backscattering

Because $K_d(380)$ is fitted very well (see section 4.5 and Figure 10), and is mostly influenced by CDOM absorption in these waters, a strong relationship between the measured and retrieved absorption by nonalgal colored matter at 400 nm is expected. Indeed, retrieval of a_{CM}
follows the 1:1 line closely, and despite the limited variability observed for the measured samples, the model retrieved a significant fraction of this variability (Figure 9b, $r = 0.78, n = 12, p = 0.003$). Reasons for the unexplained variability include spatial heterogeneity (samples were usually collected within 50 to 100 m of the mooring), the delay between the water sampling and AOP measurements (usually less than an hour), and the difference between the integrated values obtained from the K_d measurement and the discrete samples obtained from the bottle.

The trend in the backscattering coefficient at 620 nm (Figure 9c) is well retrieved given, again, the limited variability observed. There is, however, a consistent overestimate of backscattering by the model. The difference, however, is acceptable, given the fact that both the Hydroscat-6 and the model provide indirect estimates of the backscattering coefficient.

4.5. Inversion Results for Eight Consecutive Days

To allow us to inspect the ability of the model to capture diel variability, we analyze the model output for eight days in August 2003 (Figure 10). A comparison of the retrieved attenuation coefficient at 380 nm (i.e., the value of the LUT for $K_d^{\text{mod}}(\lambda)_{l_0}^{2.75}$ when the IOPs retrieved from the inversion are used) with the attenuation coefficient measured by the irradiance sensor at the surface and at z_{Ed} is shown in Figure 10a. Since attenuation at 380 nm is one of the inputs to the optimization (see Table 2 and Figure 1) comparing the retrieved attenuation with the measurement at this wavelength is mostly a measure of the goodness of fit. The figure shows that the measured and retrieved attenuation coefficients are essentially identical; the modeled points are all superimposed on the measurements, implying that the fit at this waveband is very good. The K_d at 490 nm is not used during the optimization and, since K_d is mostly influenced in these waters by absorption, a comparison of the retrieved values for $K_d^{\text{mod}}(490)_{l_0}^{2.75}$ with the measurements can be used as a measure of the quality of the retrieval of absorption at that wavelength. However, because $K_d(490)$ is mostly influenced by CDOM and non-algal colored matter (the influence of phytoplankton absorption on K_d is illustrated in Figure 12b), and considering that $K_d(380)$ is almost perfectly fit, it is mostly a test showing that the shape of absorption by colored matter used in the model is appropriate and the spectral model for K_d is accurate.

On the same panel (Figure 10a), the retrieved and measured absorption by colored matter, $a_{\text{CM}}(400)$ are shown. This section of the time series coincides with a heavy rain event in the region, which led to increased runoff from land and a steep increase in CDOM absorption. This absorption subsided within three days to return to values similar to those observed before the event. The rain event also led to a modest increase in the phytoplankton concentration (Figure 10b), as retrieved by the model. For this period, the inversion retrieves phytoplankton absorption within the error bars of the measurements.

The retrieved backscattering coefficient by particles at 620 nm ($b_b(620)$, Figure 10c) did not show any change with the increase in CDOM absorption but did show some diel variations. This variability could be natural or an artifact of the parameterization of the LUT (e.g., an incor-

Figure 9. Comparison of the measured and retrieved absorption coefficients at the MB1 buoy during the summer of 2003. (a) Absorption by phytoplankton at 490 nm. Measured points are the mean of two samples collected at 1 m. Error bars represent the range. (b) Absorption by non-algal colored matter. Points represent a single measurement at 1 m of CDOM plus detritus (absorption from the extracted samples of the phytoplankton filter). (c) Backscattering coefficient of particulate matter at 620 nm. Error bars correspond to the standard deviation of the Hydroscat-6 measurements of the over the first 5 m (~40 points). On all panels, the dashed black line is the 1:1 line.
rect angular shape of the volume scattering function); however, we do not have diel time series from the Hydroscat-6 to verify the presence or absence of this variability in situ. For this time period, the retrieved backscattering coefficient of particles compares well with the measurements made using the Hydroscat-6 instrument despite slightly higher retrieved values.

4.5.1. Measures of Fluorescence Excitation Irradiance

[66] Different excitation irradiances can be used when modeling the effect of irradiance on the quantum yield of fluorescence. The ideal measure would be the irradiance absorbed by photosynthetic pigments associated with photosystem II [e.g., Huot et al., 2005, Appendix II; Sosik and Mitchell, 1995]. Since we did not have this information, we chose to use the irradiance weighted by total phytoplankton absorption. A comparison of $E_{dPAR}(0')$, a metric used in previous studies, and $E_{PUR}(0.65)$ shows that their ratio is variable (Figure 10d, see also Figure 11). To allow a comparison of the differences between the two measurements, the value of the $E_{PUR}(0.65)$ time series is scaled such that the value of the first point is the same as the first point of the $E_{dPAR}(0')$ time series (see equation (12)). If $E_{dPAR}(0')$ was used instead of $E_{PUR}(0.65)$, the variability observed in the ratio would lead to 25 to 30% errors in the retrieval of phytoplankton absorption using fluorescence (Figure 10d). The two main sources of variability in the ratio $E_{dPAR}(0')/E_{PUR}(0.65)$ are the attenuation coefficient and the solar zenith angle, the former being more important over the

Figure 10. Time series comparison of the in situ optical measurements and their retrieval with the inverse model. (a) Measured and retrieved absorption by nonalgal colored matter (at 400 nm) and the diffuse attenuation coefficient at 380 and 490 nm. Squares are absorption by colored matter measured with a spectrophotometer. Points for the modeled $K_d(490)$ are always beneath the measured points. (b) Measured and retrieved absorption coefficient for phytoplankton. Phytoplankton absorption was measured using the filter pad method (see Figure 9 for error bar definition). (c) Particulate backscattering coefficient retrieved from the inversion and measured using a Hydroscat-6, both at 620 nm. (d) Measured incident planar irradiance in the PAR domain and modeled scalar PUR at 0.65 m. The PUR irradiance has been normalized to the first point (13/08) of the PAR irradiance to allow assessment of the effect of variable colored matter absorption on the ratio of PAR above the surface to PUR at 0.65 m.
whole season in Lunenburg Bay (Figure 11). Thus, while $E_{PAR}(0) + E_{P}AR(0)$ is a good approximation of the excitation irradiance in some cases, we found that in highly attenuating and optically variable waters, and when the upwelling radiance sensor is not just below or above the surface, a PUR-weighted irradiance is necessary for accurate results.

4.5.2. Effect of the Solar Zenith Angle on the Retrieval of the Absorption Coefficients

A closer inspection of Figure 10a reveals the benefit of accounting for the effect of the solar zenith angle in the look-up table on a sunny day and the erroneous influence it can have on a retrieval for a cloudy day. On 15 August (also see 14 and 19 August), the $K_d(380)$ and $K_d(490)$ measurements show a decrease around midday consistent with a smaller solar zenith angle [e.g., Zheng et al., 2002] and a reduced average path length for photons in the water (and decreased surface reflection). The retrieved absorption coefficient by colored matter at 400 nm (a_{CM}, Figure 10a), as expected, shows no or little effect related to the solar angle. On 18 August, which was obviously overcast (see Figure 10d), the measurement of $K_d(380)$ remained constant through the day, which is not surprising given the unchanging angular distribution of a diffuse light field (and unchanging water mass), but the retrieved absorption by colored matter at 380 nm showed a maximum at noon since the look-up table is over-correcting for the effect of the solar angle.

4.6. Examining the Fit on One Spectrum

We now focus on one representative spectrum for which matching in situ data is available in order to examine more closely our choice of wavebands for the inversion.

4.6.1. The 400 to 600 nm Wavebands

The comparison between the retrieved and measured spectra for 16 July 2003 shows a striking lack of fit for the reflectance spectra between 400 and 600 nm with obvious nonrandom residuals in this region (Figure 12a). The attenuation coefficient is, however, well retrieved over the whole spectrum from 380 to 555 nm (Figure 12b, with some error at 555 nm), suggesting that the retrieval of the total absorption (also decomposed into its different constituents in the figure) is good at least up to 500 nm. Comparison of the backscattering spectrum (Figure 12c) obtained during the inversion with the measured spectrum shows consistent spectral values and amplitudes, at least as much as can be expected from these two indirect measures. The good fit in the wavebands used for the optimization along with the
good retrieval of absorption and backscattering for this spectrum lead us to believe that the differences observed between the measured and retrieved reflectance spectra (Figure 12a) are real and result from processes that are not taken into account in the model but are present in the environment. Below we examine two possible processes.

4.6.2. Effects of CDOM Fluorescence and Bottom Reflectance in Lunenburg Bay

[70] Ignoring Raman scattering, which would not produce the spectral shape observed above for the residuals, there are two terms in equation (2) that are not included during the inversion: CDOM fluorescence and bottom reflectance. To test the potential impact of these two terms on the upwelling radiance at the MB1 site, we inserted the IOPs retrieved from the inverse model into Hydrolight using the same parameters that were used during the LUT parameterization along with the solar angle appropriate for the time of measurement. We computed the reflectance spectra expected for an infinitely deep water column without bottom reflectance for two scenarios: one without CDOM fluorescence and a second with CDOM fluorescence included (with the standard Hydrolight fluorescence redistribution function, Figure 13a). We also did the computation using a spectrally neutral bottom reflectance of 0.05, 0.1, 0.3, 0.7, and 1.0, a bottom depth of 13 m, without CDOM fluorescence (Figure 13b). These comparisons are limited in the sense that we do not have any information for Lunenburg Bay concerning the variable spectral redistribution function for CDOM fluorescence or the spectral bidirectional reflectance of the bottom. But the comparisons do provide a first order test of their possible impacts and suggest that both CDOM fluorescence and bottom reflectance could contribute to the differences observed in Figure 12a. Clearly, bottom reflectance could explain most of the differences observed between ~440 and 600 nm, but the orange “edge” around 600 nm imposes a strict limit on the amplitude of the bottom reflectance, suggesting that it is not much greater than 0.05 in this region. Even if the spectral shape of bottom reflectance increased strongly at the short wavelengths (it cannot be greater than 1.0), this

Figure 13. Comparison of the measured and fitted spectra with Hydrolight simulations. (a) Effect of CDOM fluorescence. The Hydrolight spectrum without fluorescence (mostly underneath the modeled spectrum) was obtained by inserting the IOPs retrieved by the inversion into Hydrolight (otherwise keeping the same parameterization as for the LUT). (b) Effect of bottom reflectance. The Hydrolight simulations were carried out without CDOM fluorescence but using different bottom reflectances (ρ_{bottom}), keeping the water depth constant at 13 m. For both panels, the measured spectra have been corrected for shading to compare with the Hydrolight simulations (Appendix B). The measured and fitted spectra are the same as those shown on Figure 12 and the profiles of Figure 5 for 16 July.
leaves a band between 400 and ~530 nm, which requires CDOM fluorescence to account for the difference. Thus we suspect that Lunenburg Bay CDOM is characterized by a slightly broader CDOM redistribution function than the one used for the Hydrolight simulation, which would contribute by filling in the remaining gap in reflectance (mostly between ~410 and 450 nm). To go beyond this simple hypothesis requires in situ information about the substrate’s bidirectional reflectance function and the CDOM fluorescence spectral redistribution function.

4.7. Validation of the Retrieved Phytoplankton Biomass Using the 2004 Data

For this validation, we use the sum of chlorophyll plus phaeopigment data collected at three mooring sites in the summer of 2004 (Figure 14). The model retrieves the absorption coefficient for phytoplankton at 490 nm using fluorescence. This product is compared with the chlorophyll plus phaeopigments measured in situ (Figure 14a) and the correlation coefficient is $r = 0.76$ ($n = 93$, $p = <0.001$) with a mean absolute percentage error (mean of $|\text{Estimated} - \text{Measured}|/\text{Measured}$, MAPE) of 24%. The modeled absorption value can be transformed directly into a chlorophyll concentration using a simple linear relationship (Figure 14b).

Our model was developed for optically complex Case 2 waters in which CDOM dominates absorption. It is interesting to compare our model results to those obtained from a global data set of chlorophyll concentration for optically simpler Case 1 waters and standard ocean color algorithms used in those waters. This comparison is shown in Figure 14c using the NOMAD data set [Werdell and Bailey, 2005], which is the data set used for algorithm development for the NASA ocean color sensors. For this comparison, we used only the chlorophyll data obtained by HPLC and, significantly, we restricted the range of chlorophyll concentration to that measured in Lunenburg Bay. The OC4V4 [O’Reilly et al., 1998] algorithm retrieves chlorophyll for this data set with a correlation coefficient of $r = 0.67$ ($n = 384$, MAPE = 52%). Thus, our local algorithm ($r = 0.76$, MAPE = 24%), using Sun-induced fluorescence in Case 2 waters, where conventional algorithms do not work retrieves chlorophyll as well as, or more accurately, than a state-of-the-art ocean color algorithm applied for Case 1 waters on a global data set, when restricted to the same range of chlorophyll concentrations.

5. Discussion

The inverse model of ocean color developed here allows for the estimation of phytoplankton biomass in

![Figure 14. Comparison of retrieved and measured phytoplankton biomass. (a) The retrieved absorption coefficient at 490 nm obtained directly from the inversion is compared with the measured chlorophyll plus phaeopigments concentration for all three moorings during the summer of 2004. The line corresponds to the best fit line. (b) Chlorophyll estimated from the best fit line from Figure 14a compared with the measured chlorophyll. The dashed lines represent the 50% error boundary from the 1:1 line. (c) For comparison, the retrieval of chlorophyll concentration from the NOMAD data set using the OC4V4 chlorophyll algorithm used with the SeaWiFs sensor. The NOMAD data set is composed in large part of the data set used for the construction of the OC4V4 algorithm.](image)
coastal waters where the absorption signature of phytoplankton is masked by CDOM absorption. Three key aspects of the model are: the simultaneous inversion of the diffuse attenuation coefficient and reflectance using look-up tables; the use of Sun-induced fluorescence; and the omission of wavebands from 400 to 605 nm. We first discuss these three aspects before comparing our algorithms with those of others, who also use Sun-induced fluorescence to retrieve phytoplankton biomass.

5.1. Simultaneous Inversion of Two AOPs

[74] The simultaneous inversion of reflectance and the diffuse attenuation coefficient, albeit with different approaches, has been previously attempted [Gordon, 1974; Loisel and Stramski, 2000; Loisel et al., 2001]. Gordon [1974] used the product of the two to retrieve a proxy of the backscattering coefficient. Using this method, Gordon first discovered the spectral signature of fluorescence in a spectrum from the San Vicente Reservoir. He misidentified it at the time as being the result of anomalous dispersion from chlorophyll a absorption, but later correctly identified and modeled the peak in a seminal paper on Sun-induced fluorescence [Gordon, 1979]. Using semiempirical relationships derived from radiative transfer simulations, Loisel and Stramski [2000] and Loisel et al. [2001] inverted reflectance and \(K_d \) to retrieve the absorption, scattering, and backscattering coefficients. They did not, however, attempt to retrieve phytoplankton absorption.

[75] Our goal is different from these two studies in that we intend to retrieve phytoplankton biomass in coastal waters using Sun-induced fluorescence and eventually to include these estimates in an ecosystem model of the bay. The main objective of the inversion of the elastic component is thus to provide the appropriate parameters and representation of the AOPs for the simultaneous use of a Sun-induced fluorescence model (equation (12)); retrieving the IOPs is a useful, but, in this case, secondary outcome. Our approach is also slightly different from the other inversion models in that we did not attempt to formulate semiempirical relationships, but instead used LUTs to represent the AOPs. The use of LUTs simply allowed for more versatility in the relationships needed for our group of sensors. This came at a cost, however, as in its present implementation this method is significantly slower than using a simple semianalytical method (a previous version of the model based on such relationships was used by Huot [2004]), as several multivariate interpolations have to be carried out on four look-up tables at each iteration of the optimization routine. Wang et al. [2005], using a hyperspectral TSRB without the \(K_d \) component, described the forward model used in their inversion by an analytical function. As such, they accounted analytically for the geometry of the instrument. This allowed them to use a very fast optimization scheme and to provide error estimates on the retrieved values. In their study, however, the parameters used in the functions describing the relationships between IOPs and AOPs are not spectrally dependent and the fluorescence band is not taken into account.

5.2. Sun-Induced Fluorescence Model

[76] The model used in this study to describe the upwelling fluorescence radiance is very similar to robust models developed by others [e.g., Maritorena et al., 2000; Morrison, 2003; Ostrowska et al., 1997], though its inclusion directly within an inverse model to retrieve estimates of phytoplankton absorption and chlorophyll concentration is new. Accurate retrieval of phytoplankton absorption should not depend on the form of the fluorescence model used, but instead on a good retrieval of spectral \(K_d \) and limited variability in the quantum yield of fluorescence in surface waters. While the accurate retrieval of \(K_d \) was verified with in situ measurements of \(K_d \), the limited variability in the quantum yield was verified ultimately by comparing the retrieved and measured biomass.

[77] To reduce unexplained variability in the quantum yield of fluorescence, we describe it as a function of the incident irradiance. Although this approach has been advocated by Cullen and Lewis [1995] for active fluorescence (but rarely applied), and Sun-induced fluorescence yield has been described as a function of irradiance [e.g., Morrison, 2003], to the best of our knowledge, this is the first time such a dependence has been applied to the retrieval of phytoplankton biomass from natural fluorescence measurements. Without using this dependence, the model would predict an artifactual decrease in phytoplankton absorption in bright light. A similar bias is also observed in near-surface fluorescence profiles. The mean curve computed for the summer of 2003 (Figure 7) shows that the quantum yield of fluorescence varied by a factor of \(\sim 3 \) due to changes in irradiance; this is a considerable source of variability, as the whole range of irradiance can occur within one day. Thus, if it is not accounted for, within one day, the retrieved phytoplankton absorption could decrease by a factor of \(3 \) as irradiance increases, independent of changes in biomass. In our data set, the biases due to changes in irradiance could be as large as the changes in biomass that were observed over the whole season during the weekly sampling (see Figure 9). It should be kept in mind, however, that the irradiance dependence described here may not be applicable to all environments.

[78] Similarly, because the incident PAR irradiance at the surface is not necessarily a good predictor of the PUR irradiance at 0.65 m (Figure 10d and Figure 11), an accurate description of the latter is essential otherwise errors on the order of \(30\% \) for phytoplankton absorption are unavoidable in highly attenuating waters (Figure 11). The same applies to regions where phytoplankton absorption is strong, since phytoplankton absorption, by definition, has a strong influence on changes in PUR with depth [Markager and Vincent, 2001].

[79] The attribution of all the irradiance dependence of \(a_{\text{phyt}}^{\text{yield}} \) (Figure 7) to changes in the quantum yield is not necessarily correct; part of the variability could originate from diel changes in the absorption of phytoplankton [e.g., Ohi et al., 2002; Stramski and Reynolds, 1993]. As such, attributing all the variability to the quantum yield could bias the retrieval of \(a_{\text{phyt}} \). For example, imagine a hypothetical situation where the quantum yield in situ remained constant and all the decrease observed in the fluorescence radiance with increased irradiance would be due to a decrease of phytoplankton absorption. Our erroneous attribution of the decrease in \(L_{\text{at}} \) at midday to changes in the quantum yield would lead the model to erroneously predict constant phytoplankton absorption. However, the decrease of the
quantum yield of fluorescence at high irradiances is well documented as originating from photoprotective mechanisms that cause nonphotochemical quenching of fluorescence under high light [Demers et al., 1991; Falkowski and Kolber, 1995; Kiefer, 1973; Krause and Weis, 1991; Müller et al., 2001; Ruban et al., 2004], while diel changes in absorption do not lead to the lowest values at the time of highest irradiance [e.g., Ohi et al., 2002; Stramski and Reynolds, 1993].

5.3. Omission of Wavebands

[80] During development of this model, we spent considerable time trying to incorporate the wavebands from 400 to 605 nm, but the model showed significantly worse fits when using these wavebands. Our simulations for Lunenburg Bay (Figure 13) show that CDOM fluorescence could have a significant impact on the retrieval of phytoplankton absorption using the inverse model because CDOM fluorescence emission significantly increases reflectance in a spectral band that overlaps with the phytoplankton absorption band in the blue. The problem of CDOM fluorescence has been studied previously, and shown to be important in certain locations [e.g., Pozdnyakov and Grassl, 2003]. The unknown spectral redistribution function for Lunenburg Bay prevents us from modeling these effects in the inverse model.

[81] Bottom reflection could also be incorporated into the inverse model; forward models that account for bottom reflectance exist [e.g., Albert and Mobley, 2003] and new look-up tables could be described. However, for accuracy, this requires a good knowledge of the water depth (and in shallow waters an accurate representation of the tides where they are significant) and of the bottom bidirectional reflection function. The latter is unknown for Lunenburg Bay.

[82] Given the important effects that these two processes have on reflectance (see Figure 13), and thereby on the retrieval of phytoplankton using an absorption-based model, we decided to omit from the inversion the bands where these effects are significant. With increased knowledge of the bay’s bottom reflectance and CDOM fluorescence properties, it is likely that we would be able to use these bands. However, it is not clear whether the additional information would lead to estimates of new and important geochemical parameters or to an improved accuracy for those already retrieved. Thus, further efforts are not planned in this direction.

5.4. Comparison With Published Work

[83] A principal aim of our study was to verify that we could retrieve a significant portion of the variability of phytoplankton biomass in Lunenburg Bay using Sun-induced fluorescence as a proxy. The retrieval of phytoplankton biomass (always in terms of chlorophyll) from measurements of Sun-induced fluorescence has been attempted by several researchers [e.g., Cullen et al., 1997; Gower and Borstad, 1990; Gower et al., 1999; Kishino et al., 1984; Neville and Gower, 1977; Sathyendranath et al., 2004; Yoshikawa and Furuya, 2004]. The results usually show relatively good retrievals, but most studies have used data sets with ranges of values much larger than in Lunenburg Bay, which in summer has a relatively stable biomass, a factor of 3 to 4 variability. Furthermore, most studies have limited their attempts to a comparison between the fluorescence line height \(L_{\text{FLH}} (683) \) and chlorophyll concentration. These studies share the limitations inherent to the use of the fluorescence baseline method to extract the fluorescence signal. This method can show biases in Case 1 [Huot et al., 2005] and Case 2 waters with high sediment loads [Gower et al., 1999]. Finally, previous attempts to retrieve chlorophyll concentration from upwelling radiance at the surface do not account for the spectral attenuation of downwelling irradiance and upwelling radiance, nor do they account for effects of irradiance on the quantum yield of fluorescence (e.g., as described by Morrison [2003]). Our model, which includes all of these effects, should in theory perform better than these previous attempts. The work by Chamberlin et al. [1990] comes closest to our model by taking into account the attenuation of downwelling PAR in their estimation of chlorophyll concentration from FLH; they show retrievals of the chlorophyll with a standard deviation of the error of 47% over a wide range of chlorophyll concentrations. They did not, however, attempt to allow their quantum yield of fluorescence to vary for the accurate retrieval of chlorophyll concentration, nor did they account for spectral effects.

[84] In our approach, we focus on the retrieval of phytoplankton absorption, which is better correlated to fluorescence measurements than to chlorophyll [Matorin et al., 2004]. This should not be a limitation as, for many applications, phytoplankton absorption is preferable to a measure of chlorophyll concentration [Perry, 1994] and provides a more direct link between primary productivity and ocean color [Lee et al., 1996]. This direct relationship forms the basis of the Sun-induced fluorescence method proposed to estimate primary production [Kiefer et al., 1989]. Nevertheless, application of our model to the 2004 data set showed that, for the waters studied, the chlorophyll concentration is also well retrieved using a simple linear relationship between the estimated phytoplankton absorption and measured chlorophyll concentration (Figures 14a and 14b). Accuracy in the retrieval of chlorophyll is easier to compare with other approaches, as our favorable comparison with the OC4V4 algorithm (Figure 14c) shows.

5.5. Application to Other Environments

[85] The model was designed for use in Lunenburg Bay using one measurement configuration, but with appropriate modifications, it should be applicable to other locations [see Huot, 2004]. If used with the same instrument, two main aspects need consideration: (1) the spectral shape of the absorption components, and (2) the possible need for new look-up tables for waters with a backscattering ratio significantly different from 0.0144. While the first aspect is straightforward and requires only basic knowledge of the waters studied, the creation of new LUTs is much more involved. However, from experience, it is likely to be unnecessary unless one is interested in the accurate retrieval of backscattering using the model, as errors in the absolute value of backscattering do not have large effects on the retrieval of absorption.

6. Conclusions

[86] The inverse model of ocean color developed here uses Sun-induced fluorescence in the estimation of phyto-
plankton biomass in coastal waters where the absorption signature of phytoplankton is masked by CDOM absorption. The model also permits the determination of the quantum yield of fluorescence, if the phytoplankton absorption is known or can be estimated (this application is examined by Huot [2004], with a previous version of the model). Our goal during its development was to obtain an optical model that is as complete as possible while avoiding spectral regions that cannot be modeled accurately, thus allowing us to reduce the errors associated with the parameterization. This model is coupled to a simple but robust fluorescence model that accounts for first order changes in the quantum yield of fluorescence. This led us to make several improvements with respect to standard ocean color models all of which allowed us to make accurate biomass estimates for our waters (optically shallow with high CDOM concentration). The main improvements are: (1) The utilization of information from both the reflectance and diffuse attenuation coefficient, which allowed a good separation of the effects of backscattering from absorption. (2) Avoiding the utilization of reflectance bands between 400 and 600 nm, thereby avoiding interference from bottom reflection and CDOM fluorescence. (3) The utilization of Sun-induced fluorescence, which provided a clear signal of phytoplankton biomass; the analysis goes well beyond earlier approaches analyzing fluorescence line height. (4) Accounting for the irradiance dependence of the quantum yield of fluorescence, which is necessary to properly convert the observed fluorescence signal to absorption. (5) The utilization of a look-up table dependent on the solar angle, which allowed for estimates of phytoplankton biomass throughout the day and an accurate description of the geometry of our instrument.

Together, these improvements allowed us to obtain estimates of phytoplankton biomass in waters where standard inversion models, empirical relationships based on wavelength ratios, or simple fluorescence models fail. Because the waters studied here are not unlike many coastal waters around the world, this improved formulation could find more widespread application in similarly optically complex waters. Furthermore, our results bode well for the application of remote sensing of Sun-induced fluorescence to coastal waters influenced by CDOM. The model is currently used to retrieve phytoplankton biomass as part of the CMSP (Centre for Marine Environmental Prediction) observation program (http://www.cmep.ca/bay), and can be adapted for other coastal ocean observatories.

Appendix A: Hydrolight Simulations

The Hydrolight simulations were run using absorption and scattering coefficients that are representative of Lunenburg Bay, Nova Scotia. In Lunenburg Bay, absorption is mostly dominated by CDOM, but the results are valid for any location where the backscattering to absorption ratio is in the same range as computed here and where the backscattering ratio is similar.

The Hydrolight simulations are summarized in Table 3. They consist of 2208 model runs (23 spectrally flat nonwater absorption coefficient, 12 spectrally flat nonwater backscattering coefficient, and 8 solar zenith angles) at 66 individual wavelengths. The Fournier-Forand scattering phase function with a backscattering ratio equal to 0.0144 was used for particulate matter. This backscattering ratio is the mean measured in the surface waters of Lunenburg Bay during the summer of 2002 (Hydroscat backscattering/ac-9 scattering at 640 nm). Absorption by water was from Pope and Fry [1997] and scattering was from Morel [1973]. The simulated water column was infinitely deep. All runs were done with a clear sky model [Gregg and Carder, 1990]. The wind speed, which affects the sea-surface slope distribution function, was set to 3 m s\(^{-1}\). Raman scattering, CDOM fluorescence, and chlorophyll fluorescence were omitted from the runs.

Appendix B: Self-Shading Correction for the Sensor

A method for correcting the measurements from the TSRB instrument for self-shading has been published by Leathers et al. [2001]. We will not give details of the method here, but will only describe how we adapted it for our purposes. The Leathers et al. [2001] method is based on two look-up tables for the “shading error”, one for direct (Sun) and one for diffuse (sky) irradiance. We combine the outputs from these two tables to form the shading error (\(e_{\text{shade}}\) see section 3.5). To use the method, four inputs are necessary under sunny conditions: (i) the zenith angle, (ii) the ratio of direct (Sun) to diffuse (sky) irradiance at each waveband, (iii) the absorption coefficient, and (iv) the scattering coefficient. Under cloudy conditions, only inputs iii and iv are necessary.

In our approach, instead of correcting the measurement of upwelling radiance to reproduce a model without shading, which requires the absorption and scattering coefficients (unknown a priori), we alter the model estimates of reflectance to include the effect of self-shading to reproduce the measurements as affected by absorption and scattering. To do this, the effect of self-shading was accounted for at each step of the iterative optimization procedure as follows.

Inputs i and ii — Firstly, we compute the solar zenith angle, which is then entered into the Gregg and Carder [1990] (with standard atmospheric parameters) irradiance model to obtain the ratio of diffuse to direct irradiance (spectrally) and the PAR irradiance above the surface \((I_{\text{d clear}})\). Secondly, we determine if the conditions are cloudy: if the PAR value measured is less than 80% of the modeled irradiance, the conditions are considered overcast and only the sky radiance look-up table (LUT) is used, otherwise the conditions are considered sunny (clear sky) and both parts of the shading-error LUT are used. If the conditions are sunny, the solar zenith angle and the ratio of diffuse to direct irradiance are entered into the inverse model and used in the shading error LUT.

Inputs iii and iv — At each iteration, the inverse model provides an estimate of the total absorption (input iii) and backscattering coefficients at all wavelengths. The scattering coefficient (input iv) is obtained as \(b(\lambda) = b_{\text{part}}(\lambda)/0.0144 + 2b_{\text{sw}}\), where 0.0144 is the mean backscattering ratio obtained in Lunenburg Bay (see Figure 4) and used for the Hydrolight simulations.

With all inputs, the shading LUTs then return the shading correction coefficient, \(e_{\text{shade}}\). This correction coefficient is applied to the modeled reflectance without
We would like to thank everybody involved in the former case they become more important as one departs from 1 m−1, which occurs occasionally in Lunenburg Bay at short wavebands, and (2) when the b/a is smaller than 1 and the Sun zenith angle is smaller than 30°, which is usually the standard case at the red end of the spectrum in Lunenburg Bay. In the latter case, errors due to the extrapolation are negligible (see look-up tables in Leathers et al. [2001]). In the former case they become more important as one departs from 1 m−1, but they are difficult to quantify. The effect of this correction is shown in Figure B1 for one spectrum.

Acknowledgments. We would like to thank everybody involved in the collection and processing of data for this study: Stephane Kirchhoff, Richard Davis, Cathy Ryan, Claire Normandeau, and many others who contributed during the field trips as summer students or interns. We thank Susanne Craig for valuable suggestions on the work and comments on the manuscript. The comments of Keith Thompson on an early version of this manuscript have been extremely valuable. Discussions with Marcel Babin and André Morel led to an improved manuscript. We thank all the contributors to the NOMAD data set (SeaBASS database) and the NASA Ocean Biology Processing Group for collecting and organizing the data sets. This work was supported by CFCAS, NRC/NSERC Research Partnership, ONR and NOPP.

References

Fichot, C. G., and W. L. Miller (2002), Towards the remote sensing of CDOM optical properties, paper presented at Ocean Optics XVI, Off. of Nav. Res., Santa Fe, N. M.

Figure B1. Effect of the shading correction on a reflectance spectrum (same spectrum as used in Figure 12, see Appendix B). The figure shows the measured spectrum (dashed line) and the same spectrum corrected for shading (left axis) as well as the shading error, εshade (right axis).

self-shading $\left(\frac{R_{\text{mod}}}{R_{\text{mod,bb}}}(\lambda, \theta) = (1 - \varepsilon_{\text{shade}})\frac{R_{\text{mod,bb}}}{L_{\text{bb}}}(\lambda, \theta)\right)$.

95] Location specific consideration — For our model, we extended the shading look-up table of Leathers et al. [2001] by using a linear extrapolation. Two cases had to be extrapolated, (1) where the absorption was greater than 1 m−1, which occurs occasionally in Lunenburg Bay at short wavebands, and (2) when the b/a is smaller than 1 and the Sun zenith angle is smaller than 30°, which is usually the standard case at the red end of the spectrum in Lunenburg Bay. In the latter case, errors due to the extrapolation are negligible (see look-up tables in Leathers et al. [2001]). In the former case they become more important as one departs from 1 m−1, but they are difficult to quantify. The effect of this correction is shown in Figure B1 for one spectrum.

