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ABSTRACT: The objectives of the research program reported upon here were (1) to measure ambient levels of UV radiation and 
determine whichvariables most strongly affected its attenuation in the waters of the estuary and Gulf of St. Lawrence, Canada; and 
(2) to investigate the potential direct impacts of W radiation on species of crustacean zooplankton and fish whose early life stages 
are planktonic. In this geographic region, productivity-determining biophysical interactions occur in the upper 0 to 30 m of the 
water column. Measurements of the diffuse attenuation coefficients for ultraviolet-B radiation (W-B,  280 to 320 nm) at various 
locations in this region indicated maximum 10% depths (the depth to which 10% of the surface energy penetrates at a given wave- 
length) of 3 to 4 m at a wavelength of 310 nm. Organisms residing in this layer-including the eggs and larvae of Calanus fin- 
marchicus and Atlantic cod Gadus morhua-are exposed to biologically damaging levels of W radiation. As a result of these phys- 
ical and biological characteristics, this system offered a relevant opportunity to assess the impacts of UV on subarctic marine 
ecosystems. Eggs of C. finmarchicus were incubated under the sun, with and without the W - B  and/or UV-A (320 to 400 nm) wave- 
bands. W-exposed eggs exhibited low percent hatchmg compared to those protected from W :  W radiation had a strong nega- 
tive impact on C. finmarchicus eggs. Further, percent hatching in W-B-exposed eggs was not significantly lower than that in eggs 
exposed to UV-A only: under natural sunlight, UV-A radiation appeared to be more detrimental to C. finmarchicus embryos than 
was UV-B. In analogous experiments with Atlantic cod eggs, exposure to UV-B produced a significant negative effect. However, 
UV-A had no negative effect on cod eggs. Additional experiments using a solar simulator (SS) revealed high wavelength-depen- 
dent mortality in both C. finmarchicus and cod embryos exposed to UV. The strongest effects occurred under exposures to wave- 
lengths below 312 nm. At the shorter wavelengths (<305 nm) UV-B-induced mortality was strongly dose-dependent, but (for both 
C. finmarchicus and cod) not significantly influenced by dose-rate. Thus, at least within the limits of the exposures under which the 
biological weighting functions (BWFs) were generated, reciprocity held. The BWFs derived for UV-B-induced mortality in C. fin- 
marchicus and cod eggs were similar in shape to the action spectrum for UV-B effects on naked DNA. Further, the wavelength- 
dependence of DNA damage was similar to that for the mortality effect. These observations suggest that W-induced mortality in 
C. finmarchicus and cod eggs is a direct result of DNA damage. There was no evidence of a detrimental effect of UV-A radiation in 
these SS-derived results. A mathematical model that includes the BWFs, vertical mixing of eggs, meteorological and hydrographic 
conditions, and ozone depletion, indicates that W-induced mortality in the C. finmarchicus egg population could be as high as 
32.5 %, while the impact on the cod egg population was no more than 1.2%. Variability in cloud cover, water transparency (and the 
variables that affect it), and vertical distribution and displacement of planktonic organisms within the mixed layer can all have a 
greater effect on the flux of UV-B radiation to which they are exposed than will ozone layer depletion at these latitudes. Our obser- 
vations indicate that C, finmarchicus and cod eggs present in the first meter of the water column (likely only a small percentage of 
the total egg populations) are susceptible to W radiation. However, although exposure to UV can negatively impact crustacean 
zooplankton and ichthyoplankton populations, these direct effects are likely minimal within the context of all the other environ- 
mental factors that produce the very high levels of mortality typically observed in their planktonic early life stages. The impact of 
indnect effects-which may well be of much greater import-has yet to be evaluated. 
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INTRODUCTION 

Stratospheric ozone and the impact of ultraviolet 
radiation 

Long-term data series on solar ultraviolet-B radiation 
(UV-B, 280 to 320 nm) incident at the Earth's surface 
are rare. Nonetheless, those data available indicate 
that, over the past 10 to 15 yr, UV-B levels have 
increased significantly at mid-latitude areas of the 
Northern and Southern Hemispheres (Crutzen 1992, 
Kerr & McElroy 1993, Madronich et al. 1995, Wardle et 
al. 1997). These increases in UV-B are linked to reduc-. 
tions of stratospheric ozone (Kerr & McElroy 1993, 
Madronich 1994, Madronich et al. 1995). Severe sea- 
sonal reductions in ozone layer thickness are not 
restricted to the Antarctic: dramatic depletions have 
also been recorded over the Arctic (Fergusson & War- 
dle 1998, Goutail et al. 1999). As a result of air mass 
mixing, deep ozone depletion at these high latitudes 
tends to draw ozone north and southward, resulting in 
ozone thinning at middle latitudes (Bjorn et al. 1998, 
Fergusson & Wardle 1998, Goutail et al. 1999). Thus, 
ozone layer depletion, and concomitant increases in 
UV-B, are a world-wide phenomenon. 

High spectral resolution measurements of UV-B are 
available for only a very small number of water col- 
umns (reviewed in Booth & Morrow 1997, Franklin & 
Forster 1997). However, it is clear that UV-B penetrates 
to greater depths than has previously been widely ac- 
cepted (Booth & Morrow 1997). Although the variables 
that affect UV-B attenuation are still under active in- 
vestigation, particularly in marine environments (e.g. 
Kuhn et al. 1999), dissolved organic carbon (DOC) and 
chlorophyll a (chl a) appear to be important (Scully & 
Lean 1994, Morris et al. 1995, Laurion et al. 1997). 

A rapidly growing number of studies indicate that 
UV-B radiation, at current levels, is harmful to aquatic 
organisms and may reduce the productivity of marine 
ecosystems (e.g. Holm-Hansen et al. 1993, Siebeck et 
al. 1994, Hader et al. 1995). Such UV-B-induced reduc- 
tions in productivity have been reported for phyto- 
plankton, heterotrophs and zooplankton, the key inter- 
mediary levels of marine food chains (Damkaer 1982, 
Thomson 1986, Cullen & Neale 1994, Chalker-Scott 
1995, Smith & Cullen 1995, Booth et al. 1997, Hader 
1997). Analogous studies on planktonic fish eggs and 
larvae, although rare, indicate that exposure to levels of 
UV-B currently incident at the Earth's surface results in 
higher mortality that may lead to poorer recruitment to 
adult populations (Pomrneranz 1974, Hunter et al. 1981, 
1982, Williamson et al. 1997, Walters &Ward 1998). 

Within this general context, we undertook a research 
program to assess whether current levels and ozone- 
depletion-related increases in solar UV radiation have 

any direct effect on crustacean' zooplankton and 
ichthyoplankton in the upper estuary and Gulf of St. 
Lawrence, Canada (Fig. 1A). As described in the fol- 
lowing section, this system offers a relevant opportu- 
nity to assess the impacts of UV-B on subarctic marine 
ecosystems. 

Regional context: the Gulf of St. Lawrence, Canada 

Hydrographics. In some regions of the Gulf of St. 
Lawrence (Fig. lA), the late spring and summer water 
column shows a pronounced thermocline between 10 
and 30 m (Petrie et al. 1988, Koutitonsky & Bugden 
1991, Runge & de Lafontaine 1996) (Fig. 1B). A cold 
intermediate layer (CIL, -1 to + l  "C), situated at depths 
of 30 to 100 m, separates the warm mixed layer near 
the surface (14 to 16°C in summer) from the waters at 
depth (6°C) (Koutitonsky & Bugden 1991, Runge & de 
Lafontaine 1996, Gilbert & Pettigrew 1997) (Fig. 1B). 
As a result of the spring-through-fall presence of this 
intermediate cold layer, the most important productiv- 
ity-determining biophysical interactions occur in the 
upper 0 to 30 m of the water column (Therriault 1991, 
Ohman & Runge 1994, Runge & de Lafontaine 1996). 
During summer, the mixed layer in these waters is typ- 
ically 10 to 15 m deep. The eggs and larvae of several 
commercially important marine invertebrates and 
fishes are found in this layer (Fortier et al. 1992, Runge 
& de Lafontaine 1996) (Fig. 1C). 

The research program. Following from the complete 
absence of information on levels of ultraviolet radiation 
(UV, 280 to 400 nm) in the water columns of this region, 
and on the potential biological impacts of UV on the 
organisms present in the shallow mixed layer, the 
objectives of our research program were: (1) to mea- 
sure ambient levels of UV radiation and determine 
which variables most strongly affected its attenuation; 
and (2) to investigate the potential impacts of UV radi- 
ation on species of crustacean zooplankton and fish 
whose early life stages are planktonic. A synthetic 
summary of these investigations is presented in the 
text that follows. 

UNDERWATER OPTICS 

Accurate measurement of spectral irradiance is fun- 
damental to any study on the biological effects of UV 
radiation. High-resolution UV measurements are 
essential for the application of biological weighting 
functions (BWFs), especially for the shortest and most 
damaging wavelengths: 280 to 312 nm (Madronich 
1993). Thus, in order to make an assessment of the bio- 
logical impacts of UV radiation on crustacean zoo- 
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Fig. 1. (A) Map of the estuary 5 490. 
and Gulf of St. Lawrence, 8 
Canada, showing the location L 
of stations at which high-resolu- $ 
tion ultraviolet radiation (290 to .z 48D ' 
400 nm) measurements were 3 
made in the surface waters of 
the region. Numbers in paren- 47O . 
theses next to each station posi- 
tion are the l 0  % depth penetra- 
tions (the depth to which 10% 46" 
of irradiance just below the 
surface penetrates) at a wave- 
length of 310 nm. Water sam- 
ples were obtained from these 
same stations and analyzed for 
chlorophyll a and dissolved 
organic carbon content. (B) Ver- 
tical profiles for temperature 
and salinity-taken at Stn S27 
on the map-illustrating the 
shallow spring-summer mixed 
layer. (C) Vertical distribution 
of Calanus finmarchicus eggs 
and nauplii, and gadid (in- 
cluding cod) eggs. The wave- 
length-specific 10% depth pen- 
etrations at Stn S27 (that with 
the clearest water) are superim- 
posed over the egg vertical dis- 
tributions in order to illustrate 
what percentage of the egg 
population is likely exposed to 

UV-B radiation 
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plankton and ichthyoplankton in the St. Lawrence, we 
had to first measure UV irradiance spectra at several 
geographic locations. To obtain a more general optical 
characterization of these waters, we also calculated 
diffuse attenuation coefficients (Kdl) and 10% depth 
penetrations (the depth to which 10 % of the below sur- 
face irradiance penetrates at any given wavelength) 
for these sites. Finally, we evaluated how DOC and 
chl a were related to Kdl in these water columns. 

The methods employed in collecting the data 
reported in this, and in other sections of the text, will 
be presented in abbreviated form. We have attempted 
to provide enough information for readers to follow 
what was done, and how, without being all-inclusive. 
However, in each case, readers are directed to a source 
publication in which full details of the methods appear. 

Spectral downwelling irradiance (290 to 400 nm at a 
resolution of 1 nm) was collected through the aperture 
of a submersible integrating sphere attached via a 
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Wavelength (nm) 

16 m UV-grade quartz fibre-optic cable to an Optronic 
Laboratories Inc. (Orlando, FL, USA) OL-754-0-PMT 
scanning spectrophotometer. Measurements were 
made at 12 locations in the surface waters of the estu- 
ary and Gulf of the St. Lawrence (Fig. 1) in September 
1996 and in June and September 1997. Vertical pro- 
files consisted of spectral scans made at 4 depths, 
beginning just below the surface and at 1 m intervals 
down to 3 m. Measurements were made as close to 
solar noon as possible to reduce the changes in solar 
irradiance associated with changing solar elevation. 
Immersion correction factors (ICFs) applied to the data, 
determined empirically following the methods out- 
lined by Mueller & Austin (1995), ranged between 1.6 
and 1.8. Diffuse attenuation coefficients (Kdi) were cal- 
culated from 
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where E-oA and EzA are irradiances measured just 
below the surface and at depth z (m). 

The 10% depth penetrations were determined from 
smoothed KdA values (Kuhn et al. 1999). 

Water samples for DOC and chl a analysis were 
taken from a depth of 5 m. Analyses for these compo- 
nents were made using standard protocols: the fluoro- 
metric method for chl a and high-temperature catalytic 
oxidation for DOC. Complete details of the methods 
used to obtain the optics and water chemistry data are 
reported in Kuhn et al. (1999). 

Station-averaged spectral flux at 300 nm was 1.1 X 

I O - ~  W m-' nm-' just below the surface. Detectable 
fluxes (greater than the instrument's noise level of 1 X 

10-5 W m-' nm-l) just below the surface were mea- 
sured at wavelengths as low as 294 nm (Stn T4; 
Fig.  1A). There was little variation in this lower wave- 
length limit among stations: 296 * 2 nm. At 300 nm, Kd 
values ranged from approximately 1 to 5 m-', with cor- 
responding 10% depth penetrations of 2.3 and 0.4 m 
(Fig. 2). At 400 nm Kdvaried between 0.2 and 1.4 m-' 
and the 10% depth penetrations were 21 and 1.4 m 
(Fig. 2). The 10 % depths were generally smallest in the 
estuary (Stns M2, R5, S21, S24 and S44; Fig. 1A) and 
became greater in the clearer waters toward, and in, 
the Gulf (Stns T4, S51, S73, S103, S27, S4 and S94; 
Fig. 1A). All values fall within the range of 10% depth 
penetrations presented in the review article by Booth & 

Wavelength (nm) 

Fig. 2. 10 % depth penetrations at selected stations in the estu- 
ary and Gulf of St. Lawrence. Station locations are plotted in 
Fig. 1A. All values fall within the range reported by Scully 
& Lean (1994) for the highly UV-opaque Lake Cromwell, 
Quebec, and by Smith & Baker (1979) for extremely clear 

marine waters 

Morrow (1997): at 310 nm a depth of 0.1 m was 
recorded by Scully & Lean (1994) in Lake Cromwell, 
Quebec, and values as high as 20 m were reported for 
clear ocean waters by Smith & Baker (1979) (Fig. 2). 

The lowest DOC and chl a values-0.448 g m-3 and 
0.05 pg I-', respectively-were measured at Stn S27 
(sampled on 15 June 1997). The highest DOC value- 
3.59 g m-3-was recorded at Stn S21 (sampled on 1 
September 1997), and the highest chl a value-2.02 pg 
l-'-was recorded at Stn S44 (sampled on 30 August 
1997) (Kuhn et al. 1999). 

Spearman's correlations were used to evaluate the 
relationship between attenuation coefficients (290 to 
400 nm, at 10 nm intervals) and concentrations of chl a 
and DOC. For all wavelengths, DOC was more highly 
correlated with Kd than was chl a. The average corre- 
lation coefficient between DOC and Kd was 0.81; 
between chl a and Kd, 0.73; and between chl a and 
DOC, 0.73. In other marine environments, chl a is 
highly correlated with UV attenuation (Stambler et al. 
1997). In freshwater, DOC is the dominant factor in UV 
attenuation and chl a is most often unimportant (Scully 
& Lean 1994, Morris et al. 1995, Laurion et al. 1997). 
However, for most marine water types there is a signif- 
icant autocorrelation between DOC and chl a, making 
it difficult to determine their respective contributions 
to the diffuse attenuation coefficients. However, the 
slopes of these relationships imply that yellow sub- 
stance, and therefore DOC, is important (Kuhn et al. 
1999). Because of the mixed influence chl a and DOC 
have on UV attenuation in marine waters, seasonal 
changes in the relative concentrations of these para- 
meters will significantly affect UV penetration. 

These measurements indicate that potentially harm- 
ful levels of UV radiation penetrate into the summer 
mixed-layer water column in the upper estuary and 
Gulf of St. Lawrence. Ultraviolet-A radiation (UV-A, 
320 to 400 nm) reaches even greater depths (Fig. 2). 
Thus, the early life history stages of the crustacean and 
fish species that are present in this shallow mixed layer 
may be impacted by UV radiation. 

EFFECTS OF UV-B ON CRUSTACEAN 
ZOOPLANKTON AND ICHTHYOPLANKTON 

Copepod study species: 
Calanus finmarchicus Gunnerus 

The planktonic copepod Calanus finmarchicus is 
prominent in the mesozooplankton community of the 
Gulf of St. Lawrence and Labrador Shelf (Grainger 
1963, de Lafontaine et al. 1991.). C. finmarchicus 
females release their eggs near the surface, probably 
during the night and early morning, and from early 
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spring through fall (Runge & Plourde 1996). Of these 
eggs, 30 to 50% are present in surface waters, 0 to 5 m 
(Runge & de Lafontaine 1996) (Fig. 1C). Larvae of red- 
fish Sebastes spp., a commercially important stock in 
the north-central Gulf of St. Lawrence, ingest large 
numbers of the egg and naupliar stages of C. fin- 
marchicus in early summer (Runge & de Lafontaine 
1996). Later in the summer, these same larvae feed on 
C. finmarchicus nauplii and copepodites (J. A. Runge 
& Y. de Lafontaine unpubl. obs.). Although never rig- 
orously studied, the contribution of C. finmarchicus to 
the diet of larval cod spawned in the Gulf of St. 
Lawrence and on the Labrador Shelf is assumed to be 
similar in importance to the role of C. finmarchicus in 
the diet of arctonorwegian cod larvae in Norwegian 
coastal waters. This C. finmarchicus-redfish (and pre- 
sumably cod) interaction in the northern Gulf of St. 
Lawrence occurs in the shallow surface mixed layer. 

Ichthyoplankton study species: Atlantic cod 

The reproductive season for Atlantic cod in the Gulf 
of St. Lawrence begins early in the spring (April) and 
conhues  through mid-summer (July) (Ouellet et al. 
1997). Spawning occurs in deep water (>200 m), and 
cod eggs, which are typically positively buoyant, 
ascend to the surface mixed layer over a period of 2 to 
10 d (Solemdal & Sundby 1981, Anderson & de Young 
1995, Ouellet 1997). Cod eggs are present in the 0 to 
25 m depth stratum off the Newfoundland Shelf 
(Anderson & de Young 1995), off Greenland and 
Labrador (Brander 1994), on southern Georges Bank 
(Lough et al. 1996) and in the northern Gulf of St. 
Lawrence (Ouellet 1997) (Fig. 1C). The specific pro- 
portion of the egg population present in this surface 
layer cannot be definitively quantified since the verti- 
cal distribution of cod eggs is dependent upon a num- 
ber of variable and interacting factors (egg buoyancy, 
meteorologic and hydrographic conditions, etc.). 
Nonetheless, when wind speed is low, the highest egg 
concentrations are observed in the upper 0 to 10 m of 
the water column (Solemdal & Sundby 1981). The early 
larval stages are also typically present, and often even 
closer to the surface (Anderson & de Young 1995). 

Outdoor exposure experiments 

As a first step toward evaluating the potential effects 
of UV on Calanus finmarchicus and cod, we conducted 
a series of experiments in which eggs of both species 
were incubated under the sun, with and without the 
UV-B and/or UV-A wavebands. We wished to deter- 
mine whether current levels of UV radiation at the 

ocean surface would have a detrimental effect on the 
early life stages of these species. 

Eggs were placed into quartz tubes (approximately 
50 tube-' for Calanus finmarchicus and 100 tube-' for 
cod) and immersed in a reservoir containing filtered 
sea water and located on the grounds of the Maurice- 
Lamontagne Institute in Mont-Joli, Quebec, Canada 
(MLI, 48" 38' 25.9" N, 68" 09' 21.0' W). W penetration 
into the experimental reservoir was similar to that 
observed in estuarine waters of this region, but lower 
than that in the clearer waters of the Gulf of St. 
Lawrence (Fig. 2). Tubes were suspended underwater, 
at depths of 2 and 60 cm for C. finmarchicus and 3 and 
50 cm for cod, under 3 light regimes. The first was 
UV-B + W - A  + PAR (photosynthetically active radia- 
tion, 400 to 700 nm); eggs in this treatment (Quartz)- 
incubated in quartz tubes-were exposed to the com- 
plete solar spectrum. The second was UV-A+ PAR; in 
this treatment (Mylar), W - B  was excluded by wrap- 
ping the quartz tubes with Dupont's 0.05 mm thick 
Mylar DTM. The third was a PAR-only treatment (OP-2); 
UV-A and UV-B were eliminated by placing the quartz 
tubes under a 3 mm thick piece of the acrylic sheet 
material OP-2TM (Cyro Industries). The spectral irradi- 
ance measured under these materials verified their 
effectiveness in producing the desired exposure treat- 
ment (Beland et al. 1999, Alonso Rodriguez et al. 2000). 
There were a total of 42 quartz tubes in each experi- 
ment: 7 for each light regime at each of the 2 depths. 
Incubations, conducted during the summers of 1996 
and 1997, were 2 to 3 d long for C. finmarchicus and 
10 d long for cod. At these temperatures, the embry- 
onic period of C. finmarchicus is approximately 2 d, 
while that for cod is 14 d. 

For the experiments with Calanus finmarchicus, the 
percentage of eggs that had hatched at the end of each 
experiment was calculated for each incubation tube. 
Cod eggs become opaque shortly after dying, making 
it possible to census mortality by visual inspection. 
Thus, the number of dead eggs in each of the incuba- 
tion tubes was counted daily throughout each experi- 
ment. In order to minimize handling stress, dead eggs 
were not removed from the tubes during the experi- 
ment. Cumulative mortality of cod eggs was derived 
from the daily counts of dead eggs in each tube. Com- 
plete details of the methods employed in these experi- 
ments are reported in Alonso Rodriguez et al. (2000) 
for C. finmarchicus and in Beland et al. (1999) for cod. 

Calanus finmarchicus. C. finmarchicus eggs were 
negatively affected by ambient levels of solar UV radi- 
ation (Quartz and Mylar vs OP-2 and Dark treatments) 
(Fig. 3). Further, percent hatching in eggs exposed to 
both UV-B and UV-A (Quartz) was not significantly 
lower than that in eggs exposed to W - A  only (OP-2): 
under natural sunlight, UV-A radiation appeared to be 
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0 
Quartz Mylar OP-2 Dark 

Fig. 3. Calanus finmarchicus. .Hatching success (mean i SE) 
of eggs incubated outside the Maurice-Lamontagne Insti- 
tute (MLI), Mont-JoIi, Quebec, Canada (48"38'25.9"N, 
68" 09' 21.O"W). Incubations were carried out at 2 depths: just 
below the surface and at 60 cm. Eggs were exposed to 3 light 
regimes: (1) Quartz, UV-B +UV-A + PAR, eggs in this treat- 
ment-incubated in quartz tubes-were exposed to the com- 
plete solar spectrum; (2) Mylar, UV-A+ PAR, in this treatment 
UV-B was excluded by wrapping the quartz tubes with 
Dupont's 0.05 mm thick type D MylarTM; (3) OP-2, PAR-only, 
in this treatment UV-A and UV-B were eliminated by placing 
the quartz tubes under a 3 mm thick piece of the acrylic sheet 
material OP-2TM (Cyro Industries). Control groups (Dark) 
were incubated in quartz tubes wrapped with alurninum foil 

J 

more detrimental to C. finmarchicus embryos than was 
UV-B (Fig. 3). There was no consistent statistically dis- 
cernible effect of incubation depth in these experi- 
ments (but see Alonso Rodriguez et al. 2000 for specific 
exceptions). These results were consistent across 3 
independent experiments (only 1 of which is presented 
here), and were statistically discernible (Alonso Rodri- 
guez et al. 2000). 

It is possible that the low percent hatching in these 2 
treatments, the high variability among replicates, and 
the low statistical power resulting from several missing 
replicates masked any difference in their response to 
UV-B exposure. Further, the Mylar material used in 
these experiments transmits some energy at the UV-B/ 
UV-A transition (13 % transmission at 315 m; 49% at 
320 m), so the eggs in the Mylar treatments were, 
exposed to some W - B  radiation. Given the high 
impact weightings for exposures at these wavelengths 
(see below), this amount of energy may have been 
enough to kill the eggs. It is possible, therefore, that 
wavelengths at the UV-B/UV-A transition are at least 
partly responsible for the low percent hatching in the 
Quartz and Mylar treatments of our experiments. The 
boundaries of the UV-B and UV-A wavebands have 
been established based upon ozone absorption profiles 

Surface 
0 60 cm depth 

I 

& 

(Lubin & Frederick 1991). Given the variety of biologi- 
cal and biochemical effects induced by UV radiation, 
all of them wavelength-dependent, it is not always 
appropriate, nor biologically relevant, to be bounded 
by these arbitrary limits. 

Some marine copepods are negatively affected by 
current levels of W - B  radiation (Thomson 1986). UV-B- 
induced naupliar mortality, reduced survival and 
fecundity in females, and sex ratio shifts have all been 
reported (Karanas et al. 1979, 1981, Chalker-Scott 
1995, Naganuma et al. 1997). Further, UV-B-induced 
damage to the DNA of crustacean zooplankton has 
been detected in samples collected from depths of up 
to 20 m (Malloy et al. 1997). This is the first investiga- 
tion of the effects of UV radiation on the early life 
stages of Calanus finmarchicus; few data exist on UV- 
induced egg mortality in marine copepods with which 
to compare our results. Nonetheless, these screening 
experiments, and the results presented below from 
higher spectral resolution treatments, support the con- 
tention that UV is detrimental. 

It is also possible that eggs were killed by longer 
wavelengths of UV-A radiation. The effect of W - A  
radiation on biological systems remains unclear 
(Sutherland et al. 1992). While its role in DNA photore- 
pair has been well documented (Sutherland 1981, 
Hearst 1995, Mitani et al. 1996), fewer studies have 
demonstrated its deleterious effects on aquatic organ- 
isms. However, UV-A radiation inhibits photosynthesis 
in Antarctic diatoms and dinoflagellates, and in fresh- 
water algae (Cullen et al. 1992, Bothwell et al. 1994). 
Furthermore, UV-A radiation induced a transitory 
decrease in the metabolic rate of the cichlid fish Cich- 
lasoma nigrofasciatum (Winckler & Fidhiany 1996), a 
lower hatching success in embryos of the Japanese 
medaka Oryzias latipes (Bass & Sistrun 1997) as well as 
increased mortality in eggs of the yellow perch Perca 
flavescens (Williamson et al. 1997) and in the fresh- 
water copepod Boeckella gracilipes (Zagarese et al. 
1997). Unlike UV-B, UV-A does not induce damage 
through direct absorption of photons by the DNA mol- 
ecule (Beer et al. 1993). Although wavelengths as long 
as 365 nm induce detectable levels of cyclobutane 
pyrimidine dimers (Ahmed & Setlow 1993), 1 of the 
main UV-B photoproducts in the DNA molecule 
(Hearst 1995), the action spectrum for DNA damage 
indicates that the relative biological response to wave- 
lengths beyond 310 nm is negligible (Setlow 1974). 

UV-A radiation is absorbed by organic molecules 
other than DNA, such as proteins, lipids and RNA. The 
dissipation of the absorbed energy via photochemical 
reactions generates a variety of by-products (hydroxyl 
radicals, superoxide, hydrogen peroxide and singlet- 
state oxygen) which can accumulate and cause signifi- 
cant oxidative damage to cross-link membrane lipids 
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and other cellular components (Lesser & Shick 1989 
and references therein, Beer et al. 1993). Pigments 
such as melanin or the carotenoids are known to act as 
free-radical scavengers and energy transducers (Hes- 
sen 1994), but Calanus finmarchicus eggs are unpig- 
mented. Moreover, interaction between UV and dis- 
solved organic matter (DOM) present in the water can 
alsoproduce reactive oxygen transients which subse- 
quently have cytotoxic effects (Zepp et al. 1987). This 
mechanism of damage occurs over a relatively longer 
time frame than direct damage to DNA since it results 
from cumulative physiological stress. This might 
explain why Kouwenberg et al. (1999b) did not find a 
W - A  effect: in those experiments, C. finmarchicus 
eggs were exposed to only l h d-l of UV-A (see below). 
Further experiments are required to resolve the issues 
surrounding UV-B versus UV-A effects. 

Atlantic cod. Cod embryos exposed to UV-B radia- 
tion (Quartz treatment) exhibited a higher rate of mor- 
tality, and greater cumulative mortality, than those 
shielded from UV-B (Mylar and OP-2 treatments) 
(Fig. 4). These results were consistent across 4 experi- 
ments (only 1 of which is presented here), and were 
statistically discernible (Beland et al. 1999). UV-B- 
induced mortality at the surface was virtually loo%, 
but that at 50 cm was negligible (at least in this exper- 
iment-but see Beland et al. 1999). 

Mortality of yellow perch Perca flavescens eggs, 
incubated in situ at various depths and under spectral 

exposure treatments similar to those reported here, 
was very high (>95%), even at depths up to 0.8 m 
(Williamson et al. 1997). Observations from the few 
other studies on UV-B-induced mortality in fish eggs 
are also consistent with our results (Marinaro & 
Bernard 1966, Pommeranz 1974, Hunter et al. 1982). 

Negative effects of UV-A on fishes have been docu- 
mented (see the preceding section). Nonetheless, cod 
eggs were not negatively affected by exposure to UV- 
A radiation in our experiments: there were no clear dif- 
ferences in mortality in the UV-A+PAR (Mylar) treat- 
ment relative to the PAR-only (OP-2) treatment (Fig. 4). 
This result is consistent with that reported from higher 
spectral resolution experiments on UV-induced mor- 
tality in cod eggs: there was no clear negative effect of 
UV-A (see below and Kouwenberg et al. 1999a). As 
was the case for Calanus finmarchicus, further experi- 
ments on the effects of UV-A and visible light- both in 
inducing mortality and with respect to the balance 
between photodamage and photorepair-are required 
to resolve these issues. 

The experiments reported here indicate that Atlantic 
cod eggs-at least those present in the first 0.5 m of 
the water column-are susceptible to UV-B radiation. 
However, the 10% depths for UV penetration in the 
outdoor reservoir were less than those for regions of 
the Gulf of St. Lawrence where cod spawn (Fig. 2, and 
see Beland et al. 1999). This suggests that the impact of 
UV-B reported here is an underestimate of that which 
would be observed in the wild. This conclusion, how- 
ever, must be carefully qualified. 

Although the available information on the vertical 
distribution of cod eggs in this region is limited, it 
appears that most are not present in the upper 4 m of 
the water column (Ouellet 1997). Even if most cod eggs 
were present in the 0 to 15 mmixed layer of the north- 
ern Gulf of St. Lawrence water column, they would be 
in circulation and their daily -residence time in the 
upper 4 m would depend upon meteorological and 
hydrographic conditions (among other things-see 
Solemdal & Sundby 1981). Short residence times, 
which appear likely, would further reduce the popula- 
tion-level impact of UV-B on cod eggs. These issues 
are taken up again in the simulation model section 
below. 

Solar simulator experiments 
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be used to make predictions about impacts that might 
occur under different conditions of spectral quality and 
intensity. 

A number of factors make it difficult to predict the 
biological effect of UV-B radiation on aquatic organ- 
isms. For example, (1) the spectral composition and 
intensity of light reaching the Earth's surface are 
highly variable, being affected by weather conditions, 
the thickness of the ozone layer, and air pollution, 
among other things (Varotsos et al. 1994, Graedel & 
Crutzen 1995, Madronich et al. 1995, Nemeth et al. 
1996). This variability is both spatial and temporal. 
(2) The underwater light field is further affected by the 
wavelength-specific diffuse attenuation coefficients of 
water bodies, themselves highly variable, geographi- 
cally, seasonally and annually (Piazena & Hader 1994, 
Laurion et al. 1997). (3) Photon absorption by the DNA 
molecule, by proteins, by tissues and by whole organ- 
isms is strongly wavelength-dependent, dropping off 
steeply above 300 nm (see the data reported by e.g. 
Setlow 1974, Coohil 1991, Cullen & Neale 1997). Since 
the biological effectiveness of UV photons is inversely 
related to wavelength, and short-wave photons are 
strongly absorbed by organic molecules and sea water, 
relatively small changes in UV-B irradiance can lead to 
large changes in biological effect. (4) Ozone layer 
depletion will not affect the entire UV-B waveband 
equally. Rather, increases in UV-B associated with a 
thinning ozone layer will be mainly restricted to the 
295 to 312 nm waveband: the most damaging wave- 
lengths (Kerr & McElroy 1993, Graedel & Crutzen 
1995, Madronich et al. 1995). Following from this, any 
attempt to assess the impact of UV-B radiation on 
planktonic marine organisms requires that the wave- 
length-dependent biological effect of UV-B photons be 
known. That is, a relevant BWF-like those presented 
here for Calanus finmarchicus and cod egg mortality 
(see below)-must be available (Cullen & Neale 1997 
provide a thorough presentation of this issue). 

The goals of the solar simulator (SS) experiments 
were: (1) to evaluate the effect of UV radiation on mor- 
tality in the eggs of Calanus finmarchicus and Atlantic 
cod, with a higher degree of spectral resolution and 
irradiance control than is possible with screening 
experiments; (2) to generate dose-response relation- 
ships and test the principle of reciprocity, which states 
that the UV-B-induced mortality effect on eggs will be 
dose but not dose rate dependent; (3) to derive BWFs 
for the effect of UV on mortality in C. finmarchicus and 
Atlantic cod eggs; (4) to evaluate DNA damage as a 
function of spectral exposure; and (5) to present an 
assessment of the potential direct impact of solar UV 
radiation on the early life stages of C. finmarchicus and 
cod in the subarctic marine ecosystems of eastern 
Canada. 

Calanus finmarchicus and cod eggs were irradiated 
under a SS consisting of two 1 kW Xenon-arc-lamps. 
The spectraloutput of these lamps was adjusted using 
various combinations of optical filters to produce a 
mean (+SD) integrated irradiance of 450 _+ 197 W m-' 
(280 to 800 nm). This approximated the irradiance 
delivered to the Earth's surface outside the MLI during 
a sunny summer's day (429 _+ 164 W m-'-this is a 
mean of 3 measurements made at 10:00, 12:OO and 
15:00 h on the same day). However, as compared to 
sunlight, the spectral irradiance delivered by the SS 
was higher in the UV-B region and lower in the visible 
waveband (400 to 700 nm, Kouwenberg et al. 1999a, 
their Fig. 1). Full details of the optical characteristics of 
this SS are available in Kouwenberg et al. (1999a). 

Eggs were irradiated in glass incubation tubes 
immersed in a circular basin filled with re-circulating 
filtered seawater at 6°C and a salinity of 28 + 1 psu. 
This design ensured that 'all of the eggs in the experi- 
ment were exposed to similar conditions. The bottom 
of the incubation basin was fitted with a polyethylene 
holder which contained a slot for each of 34 incubation 
tubes. The holder was designed so that it remained in 
the same position and orientation under the SS during 
each exposure. Each incubation tube was covered with 
a 25 X 25 mm quartz-substrate long-pass filter. The fil- 
ters used were Schott WG280, WG295, WG305, 
WG312, WG335, WG360 and GG400, for which the 
50% cut-off wavelength (nm) is approximately that 
specified. Spectral transmission curves for the filters 
used are reported in Kouwenberg et al. (1999a, their 
Fig. 2). There were 5 replicate tubes for each cut-off fil- 
ter treatment except for WG360, which had 4. Spectral 
irradiance, E(h) (in W m-2 nm-l), was measured (using 
the Optronic Laboratories OL-754-0-PMT) at 1 nm 
intervals under each of the cut-off filters at all 34 tube 
positions in the incubator. 

DNA-weighted biologically effective irradiance 
delivered to the tubes in the WG280, 295, 305, 312 and 
335 treatments-calculated a s  the mean (*SE) of all 
the tubes in each of these spectral exposure treatments 
-was: 12.62 * 5.4, 4.55 -c 2.0, 1.55 + 0.8, 0.07 * 0.04, 
and 0.03 * 0.01 W m-2, respectively. These dose rates 
were weighted using the Setlow (1974) DNA action 
spectrum (interpolated linearly in log space), normal- 
ized to 1 at 300 nm, and for which weightings were set 
to 0 for wavelengths >315 nm. 

Calanus finmarchicus eggs were irradiated under 
the SS for 1 h on 1 day and for 0.5 h on another day (2 
different experiments with the same dose rate but a 
different total dose). After the exposures, eggs were 
maintained on a 12 h light: 12 h dark photoperiod. Con- 
trol groups (4 to 5 incubation tubes), drawn from the 
same population of females but not exposed to the SS, 
were maintained on the same photoperiod. Cod eggs 
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were typically irradiated for 7 d (2 h d-l), until just prior 
to hatching. In the C. finmarchicus experiments, 
healthy nauplii (as a percent of the initial number of 
eggs placed into each tube) were enumerated at the 
end of each experiment. For cod, incubation tubes 
were examined each morning for egg viability, and 
dead eggs-which sink and quickly become opaque- 
were removed and counted. Complete details of the 
methods employed in the SS experiments are reported 
in Kouwenberg et al. (1999a, b). 

Wavelength-dependent mortality in Calanus fin- 
marchicus and cod eggs. W - B  radiation, particularly 
in the 280 to 312 nm waveband, had a strong negative 
impact on the survival of C. finmarchicus eggs, even 
over short exposure times (Fig. 5) and at low total 
doses. At the shorter wavelengths (<305 nm) W-B-  
induced mortality was strongly dependent upon cumu- 
lative dose (Kouwenberg et al. 1999b). The mortality 
effect was less pronounced in the 312 nm treatment, 
and there was no effect in the 335, 360 and 400 nm 
treatment groups (Fig. 5). The spectral resolutions of 
these results are the highest so far generated for a 
copepod. Nonetheless, similar dose-dependent effects 
have been reported for Acartia clausii (Karanas et al. 
1979) irradiated under Westinghouse FS40 sunlamps 
and for several other species (Karanas et al. 1979, 1981, 
Thomson 1986, Dey et al. 1988, Naganuma et al. 1997). 

UV-B radiation, particularly in the 280 to 312 nm 
waveband, had a strong negative impact on the sur- 
vival of Atlantic cod eggs (Fig. 6). This is consistent 
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Fig. 5. Calanus finmarchicus. Survival of eggs exposed to var- 
ious spectral wavebands. Open circles are the mean (*SE) 
proportion of healthy nauplii from eggs exposed to radiation 
greater than the specified cut-off wavelength; filled bars rep- 
resent the mean (*SE) UV-B dose delivered under each of the 
spectral exposure treatments; 2 exposure durations are pre- 

Fig. 6 .  Gadus morhua. Mean (*SE) survival of Atlantic cod 
eggs exposed to various spectral wavebands, without pho- 
torepair between exposures. Each curve represents the mor- 
tality induced by exposure to radiation greater than the cut- 
off wavelength indicated. Open symbols denote treatments 
that received UV-A and visible light, or visible light only. 
Filled symbols denote treatments that received radiation in 

the UV-B+W-A+visible wavebands 

with observations on several other species (Marinaro & 
Bernard 1966, Pommeranz 1974, Hunter et al. 1982, 
Williamson et al. 1997), although these earlier studies 
do not provide the same spectral resolution. There was 
also evidence suggesting the presence of photorepair 
mechanisms in cod eggs (Kouwenberg et al. 1999a). 
Remediating effects of photorepair on UV-B-induced 
mortality, and DNA damage, have been reported for 
northern anchovy Engraulis mordax larvae (Kaup & 
Hunter 1981, Vetter et al. 1999). Mitchell et al. (1993) 
reported on DNA photorepair in UV-B exposed platy- 
fish Xiphophorus variatus and Mitani et al. (1996) 
observed that exposure to UV-A and blue light 
induced the production of cyclobutane pyrimidine 
dimer photolyase (involved in the repair of UV-B- 
induced DNA damage) in cultured cells of the goldfish 
Carassius auratus. Similar results on photorepair have 
been reported by Vetter et al. (1999). 
DNA damage. Formation of cyclobutane pyrimidine 

dimers (CPDs) in DNA is one of the most common 
results of exposure to UV-B radiation. The formation of 
CPDs, and their repair, has been well-studied in fish 
cell lines, fish embryos and fish skin (Achey et al. 1979, 
Shima et al. 1981, Regan et al. 1983, Shima & Setlow 
1984, Applegate & Ley 1988, Ahmed & Setlow 1993). 
Since the concentration of CPDs in an organism's DNA 
is directly related to W - B  exposure, they are poten- 
tially useful as UV-B-specific indicators of exposure in 

sented, as noted in-each panel wild populations of fish larvae (Vetter et al. 1999). 
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Thus, we undertook to describe the wavelength-spe- 
cific effect of UV-B exposure on DNA damage in 
Calanus finmarchicus and cod eggs. 

Calanus finmarchicus and cod eggs were &radiated 
under the SS (as above) for 1 h, placed in the dark and 
preserved in anhydrous alcohol. This ensured that 
there was no time to repair any UV-induced damage to 
the DNA molecule. A control group was incubated 
under the SS in the dark (tubes were wrapped in alu- 
minum foil). Total nucleic acids were extracted from 
eggs, and the DNA was purified and eluted into TE 
buffer. DNA concentration in each sample was deter- 
mined with a DNA fluorometer. CPDs were measured 
using a chemilurninescent immunoblot assay which is 
thoroughly described in Vetter et al. (1999). 

UV-induced damage-as represented by CPD con- 
centration per mb (megabase) of DNA-to the DNA in 
Calanus finmarchicus and cod eggs was highest in the 
WG280, WG295, WG305 and WG312 exposure treat- 
ments (Fig. 7). These were all significantly different 
from the other exposure treatments, and from the dark 
controls (Bonferroni t-test, p < 0.05). CPD concentra- 
tion in the UV-A exposure treatments was not signifi- 
cantly different from that in the dark controls (Fig. 7). 
These data indicate that C. finmarchicus eggs are 
significantly more susceptible to UV-B-induced DNA 
damage than are cod eggs. This likely reflects differ- 
ences in the relative rates of damage and repair in 
these 2 organisms. 

There have been a number of studies on UV-induced 
damage and photorepair in fishes (cited above). None, 
however, have evaluated the wavelength-specific 
effect of UV on the early life stages of crustacean zoo- 
plankton, nor of fishes. Thus, these data will be used to 
develop BWFs for the evaluation of DNA damage in 
the eggs of these 2 species (Browman et al. unpubl.). 
Such BWFs can be used to assess DNA damage to egg 
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Fig. 7. Mean (+SE) DNA damage L? Calanus finmarchcus 
and Atlantic cod Gadus rnorhua eggs exposed to various 

spectral wavebands at the same dose rate and total dose 

populations exposed to sunlight, allowing a more direct 
evaluation of possible UV-B impacts to wild popula- 
tions (sensu Vetter et al. 1999). 

Biological weighting functions. Data on the differ- 
ential survival of Calanus finmarchicus and cod eggs 
exposed to varying amounts of UV radiation were fit to 
an exponential model the final form of which is: 

where Egg(0) is the number of live eggs in any 1 incu- 
bation tube on Day 0, Egg(d) is the number of live eggs 
in that tube on Day d, H' (dimensionless) is the sam- 
ple's biologically weighted radiant exposure, M (S-') is 
a fitted parameter for non irradiance-dependent mor- 
tality and T (S) is the total length of the experiment. 
Data generated in the SS experiments provided the 
number of C. finmarchicus or cod eggs surviving in 
each .of the 34 treatment tubes for each day of the 
experiment, the corresponding spectral irradiance (250 
to 800 nm) for that tube's position (and cut-off filter) 
under the SS, and the duration of the daily exposure. 
The analysis produces a weighting for each wave- 
length: it is not restricted to UV-B. Further, results from 
every tube-and not the mean of the 4 or 5 tubes from 
each spectral exposure treatment-are included in the 
analysis. Full details of the BWF analysis, and the com- 
plete set of equations, are reported in Kouwenberg et 
al. (1999a). 

The BWF for UV-induced mortality in Calanus fin- 
marchicus eggs exhibits a typically steep decline 
against wavelength: UV impact is more than 2 orders 
of magnitude higher at 290 than at 320 nm (Fig. 8A). 
The scenario is similar for cod eggs: UV-induced mor- 
tality is almost 2 orders of magnitude higher at 300 
than at 320 nm (Fig. 8B). Based upon these weightings, 
C. finmarchicus eggs appear to be significantly more 
sensitive to UV exposure than are cod eggs (compare 
the 2 BWFs in Fig. 8). This is consistent with the DNA 
results presented in the previous section. 

The wavelength-specific sensitivity of UV-induced 
mortality in Calanus finmarchicus and cod eggs, as 
defined in the BWFs, exhibits a slope consistent with 
that of the DNA action spectrum through 310 nm (Set- 
low 1974) (Fig. 8A,B). Further, the wavelength weight- 
ings of the BWFs are consistent with the wavelength- 
dependence of DNA damage reported in the preced- 
ing section. Following from this, it seems likely that 
UV-induced mortality in C. finmarchicus and cod eggs 
results from DNA damage which, if not repaired, 
causes mortal errors in embryogenesis and pattern for- 
mation. Weightings in the UV-A waveband were 
essentially nonexistent for both BWFs (Fig. 8). 

Hunter et al. (1981) related weighted UV-B exposure 
to the survival of northern anchovy eggs and larvae 



Browrnan et al.: Impact of UV radiation on zooplankton and ichthyoplankton 303 

Calanus eggs 
1 o4 Setlow DNA 

270 290 310 330 

Wavelength (nrn) 

Fig. 8. (A) Biological weighting function (BWF) for egg mor- 
tality in Calanus finmarchicus (solid line). (B) BWF for egg 
mortality in Atlantic cod Gadus morhua (solid line). In both 
panels, the wavelength-dependence of damage to the naked 
DNA molecule (data drawn from Setlow 1974) is superim- 
posed as a dotted line. The Setlow curve was normalized 

against the BWF value at 300 nm for ease of comparison 

using several UV-B action spectra. They found that 
survival was best predicted when the UV-B exposure 
was weighted by the Setlow (1974) DNA action spec- 
trum: this represents the first attempt to apply a BWF 
to UV-B-induced mortality in ichthyoplankton. BWFs 
such as those used by Hunter et al. (1981) yield only 
relative predictions-they tell us how much more (or 
less) mortality there will be for one spectral exposure 
versus another. The BWFs reported here for Calanus 
finmarchicus and cod eggs were derived from the mor- 
tality response itself, as opposed to being chosen as the 
best predictor of relative mortality. Consequently, the 
weightings are in absolute units (J m-')-'. This allows 
differentiation of biological responses with the same 

spectral shape but for which the level of response is 
different (e.g. the DNA damage results presented in 
Fig. 7). The Hunter et al. (1981) approach would not 
allow for such a differentiation. As a result, egg mor- 
tality (in absolute terms) resulting from any given ex- 
posure (associated, for example, with different environ- 
mental conditions, such as ozone thinning) can be 
predicted using Eq. (2) (see 'Predictions of UV-induced 
mortality in Calanus finmarchicus and cod'). To the best 
of our knowledge, these are the first such BWFs gener- 
ated for crustacean zooplankton or ichthyoplankton. 

Reciprocity. One of the more important fundamental 
assumptions for construction of an accurate dose- 
dependent BWF is the principle of reciprocity (De 
Gruijl et al. 1986, Coohill 1991, Buma et al. 1997, 
Cullen & Neale 1997). In the context of a UV-B expo- 
sure experiment, reciprocity holds if the effect of 
cumulative dose is the same regardless of the dose rate 
at which it was delivered. If reciprocity fails, a short 
intense exposure would result in a different effect than 
a long weak exposure to the same cumulative dose. In 
this latter case, evaluations of effect versus cumulative 
exposure (i.e. dose-dependence) cannot be applied 
outside the conditions (i.e. time scales) under which 
they were generated, and BWFs derived from such 
results would be less reliable and of more limited use. 
The principle of reciprocity has not often been rigor- 
ously evaluated and, when it has, the results have been 
inconsistent (see references cited above). Nonetheless, 
there was no discernible effect of dose rate on hatching 
of Calanus finmarchicus eggs exposed to 3 different 
cumulative doses each delivered at 3 different dose 
rates (Browman et al. unpubl.): reciprocity held. In an 
analogous experiment with cod eggs, reciprocity also 
held (see Kouwenberg et al. 1999a, their Fig. 4). These 
radiative conditions were the same as those delivered 
in the experiments used to derive the BWFs. Further, 
reciprocity held despite the fact that the eggs were 
incubated under fluorescent lamps in between UV 
exposures, i.e., they were allowed to photorepair. 
Thus, the BWFs for C. finmarchicus and cod presented 
here can reasonably be applied to quantify the wave- 
length-specific impact of UV on the eggs of these 
species. 

To our knowledge, Hunter et al. (1981, 1982) present 
the only other assessment of the reciprocity principle 
for a marine fish. For northern anchovy larvae, and 
under relatively broad dose/dose rate exposures, reci- 
procity did not hold. The reasons for this inconsistency 
are unknown. However, one possibility is the differ- 
ence in the relative duration of intense UV-B expo- 
sures versus the time for repair. To the extent that 
repair dominates damage, reciprocity fails. When dam- 
age dominates, repair processes will not significantly 
compromise reciprocity. It is possible that the experi- 
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ments reported here were generally consistent with 
reciprocity because the duration of exposure was rela- 
tively short-and so damage was dominant-while 
those of Hunter et al. (1981, 1982) were longer and less 
intense-and so repair was dominant. In evaluations 
of reciprocity, it is important to acknowledge that 
experiments conducted on different time scales may 
yield significantly different results. 

ECOLOGICAL CONTEXT 

Direct effects of W radiation 

Calanus finmarchicus. The results presented here 
indicate that C. finmarchicus may be sensitive to vari- 
ation in incident UV radiation in subarctic regions of 
the northwest Atlantic Ocean, including the Gulf of St. 
Lawrence and Labrador Shelf, where the cold interme- 
diate layer sits just under the sea surface in early sum- 
mer. In these regions, C. finmarchicus eggs, probably 
spawned near the surface at night or in the early morn- 
ing (Runge & Plourde 1996), are constrained to develop 
in the warm surface waters above the sharp thermo- 
cline that typically commences at a depth of 10 to 15 m. 
Observations of C. finmarchicus egg distribution in the 
Laurentian channel show the majority of eggs residing 
in the surface layer (above 5 to 10 m) during daytime, 
where they hatch into the first naupliar stage 1 to 2 d 
after maternal release (depending upon ambient tem- 
perature: McLaren et al. 1988). Because C. finmarchi- 
cus eggs are negatively buoyant (Marshal1 & Orr 1955), 
those released in the cold intermediate layer (20 to 50 
m), or those that sink into it from above, probably 
never return to the surface mixed layer. We hypothe- 
size that these eggs are likely lost to the population (as 
well as to larval fish predators) because their develop- 
ment time in this cold water is prohibitively long (> 6 d, 
McLaren et al. 1988). The high mortality exhibited by 
C. finmarchicus eggs after short exposures to UV-B 
implies that UV-B radiation may exert a countervailing 
selective pressure which favours release of eggs 
deeper in the water column or the production of nega- 
tively buoyant eggs: both would increase the probabil- 
ity of their loss to the cold intermediate layer. 

Of the copepod species that predominate in subarc- 
tic planktonic communities, Calanus finmarchicus may 
be among those most vulnerable to UV-B radiation. 
Calanus hyperboreus, the other dominant calanoid 
copepod in the deep waters of the Gulf of St. 
Lawrence, releases eggs at depth in late winter 
through early spring (Conover 1988). Thus, their eggs 
are not exposed to UV-B radiation, although naupliar 
stages residing in the surface mixed layer later in 
spring and early summer might be. The calanoid cope- 

pod Pseudocalanus sp. and the cyclopoid copepod 
Oithona sp. carry their eggs until hatching: it is possi- 
ble, therefore, that females protect their eggs from UV- 
B exposure by maintaining a depth in the mixed layer 
below that to which UV-B penetrates; Temora longi- 
cornis, a calanoid copepod dominant on the shallow 
Magdalen Plateau in the southern Gulf of St. 
Lawrence, releases highly pigmented eggs into the 
water: although the photoprotective qualities of this 
pigment are presently unknown, they may protect 
eggs from UV-B-induced damage (see Ringelberg et 
al. 1984, Zellmer 1995, Zagarese et al. 1997). Metridia 
longa, another common calanoid species in the Gulf of 
St. Lawrence, although less abundant than C. fin- 
marchicus, broadcasts unpigmented eggs and may 
also be susceptible to UV-B. 

Exposure to UV-B radiation may be even more dam- 
aging than suggested by results on egg mortality 
alone. Even short (sublethal) exposures to UV-B pro- 
duced a significant proportion of deformed first stage 
nauplii which were clearly nonviable. This was partic- 
ularly significant in the 312 nm treatment, in which 
abnormal naupliar development accounted for approx- 
imately 30 % of all nonviable progeny (eggs and nau- 
plii) (Kouwenberg et al. 1999b, their Fig. 1). 

Atlantic cod. The work of Marinaro & Bernard 
(1966), Pommeranz (1974) and Hunter et al. (1979, 
1981, 1982) provided clear evidence of the detrimental 
effect of UV-B on the planktonic early life, stages of 
marine fishes. Hunter et al. (1979), working with north- 
ern anchovy Engraulis mordax and Pacific mackerel 
Scomber japonicus embryos and larvae, reported that 
exposure to surface levels of UV-B could be lethal. Sig- 
nificant sublethal effects were also reported: lesions in 
the brain and retina, and reduced growth rate. The 
study concluded that, under some conditions, 13% of 
the annual production of northern anchovy larvae 
could be lost as a result of UV-B related mortality 
(Hunter et al. 1981, 1982). 

With the exception of a small number of recent stud- 
ies (Malloy et al. 1997, Williamson et al. 1997, Freitag 
et al. 1998, Vetter et al. 1999), very little additional 
information has been generated for the effects of UV-B 
on ichthyoplankton. The results presented. here sub- 
stantiate earlier results on the lethal effects of UV-B on 
planktonic fish eggs and provide the first BWF and 
only the second assessment of the reciprocity principle 
generated for a marine fish. 

Predictions of UV-induced mortality in Calanus fin- 
marchicus and cod. Biologically weighted radiant 
exposure-H' (Eq. 2)-is obtained by combining 
spectral irradiance and exposure time with the BWFs 
for eith.er C, finmarchicus or cod egg mortality. A more 
ecologically meaningful analysis is possible from 
Eq. (2) which, since the second order mortality term 
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(M) is essentially 0 (see Kouwenberg et al. 1999a, b), 

Under any spectral irradiance, the H' that yields, for 
example, Egg(d)/Egg(O) = 0.5 is calculated. This value 
then allows Eq. (3) to be solved for t,,, the exposure 
time resulting in 50 % egg mortality. 

Under current noon surface irradiance, 50 % of Cala- 
nus finmarchicus eggs located at or very near the 
ocean surface will be dead after 2.5 h of exposure. The 
analogous time for 50% mortality in cod eggs is 42 h. 
Under solar spectral irradiance simulating 20% ozone 
thinning, this time drops to 2.2 h for C. finmarchcus 
eggs at the surface, and 32 h for cod eggs. In this geo- 
graphic region, seasonal minima in ozone layer thick- 
nesses occur during the winter and early spring. Thus, 
only the very beginning of the C. finmarchicus or cod 
spawning seasons occur under (seasonally) thinned 
ozone. 

The depth at which eggs are suspended in the water 
column-and the diffuse attenuation coefficient for 
UV-B wavelengths exhibited by the water-wiU also 
affect their susceptibility to UV-B. We calculated (as 
above) that 50 % of Calanus finmarchicus eggs incu- 
bated under 50 cm of water from the maritime estuary 
of the St. Lawrence River would be dead after 4.6 h of 
exposure to the noon-time sun-double the time cal- 
culated for the surface. The time was 83 h for cod eggs, 
also double the value for a surface exposure. 

In an outdoor exposure experiment with the fresh- 
water calanoid copepod Diaptomus sp., significant 
mortality in eggs and nauplii was observed after near- 
surface exposures of 3 d or less (Williamson et al. 
1994). In our own exposure experiment with cod 
(above), approximately 60% of the eggs died after 4 d 
of incubation in quartz tubes held at 5 cm depth 
.(Beland et al. 1999). In a similar experiment, approxi- 
mately 90% of yellow perch eggs were dead after 6 d 
(Williamson et al. 1997). These values are of the same 
order of magnitude as the above estimates. 

The estimates presented above are based upon irra- 
diance taken at a time of day during which the values 
would be maximal, and upon a worst case scenario 
BWF. Nonetheless, they illustrate the relative changes 
in UV-B impacts that result from seasonal changes in 
ozone layer thickness, and/or from depletions ex- 
pected over the coming decades (Kerr & McElroy 1993, 
Graedel & Crutzen 1995, Fergusson & Wardle 1998). 

Indirect effects of UV radiation 

The great majority of UV-B radiation research 
examines direct effects on specific organisms. The 

few studies that have investigated indirect effects 
illustrate how UV-B-induced changes in food-chain 
interactions can be far more significant than direct 
effects on individual organisms at any single trophic 
level (e.g. Bothwell et al. 1994, Williamson et al. 1999, 
and see discussion in Hessen et al. 1997). Recent 
investigations point to the possibility of such a food- 
chain effect in both marine and freshwaters: UV-B 
exposure (even at low dose rates) reduces the total 
lipid content of some microalgae (Arts & Rai 1997, 
Plante & Arts 1998, Arts et al. 2000): this effect 
includes the polyunsaturated fatty acids (PUFAs) 
(Goes et al. 1994, Wang & Chai 1994, Hessen et al. 
1997). For zooplankton and fish larvae, the only 
source of these fatty acids is dietary-since they can- 
not synthesize PUFAs de novo, they must be obtained 
through prey organisms (e.g. Goulden & Place 1990, 
Rainuzzo et al. 1997, Reitan et al. 1997, Sargent et al. 
1997). Dietary deficiencies of these fatty acids are 
manifested in many ways. For example, in the fresh- 
water cladoceran Daphnia spp., growth rates are cor- 
related with the sestonic content of eicosapentaenoic 
acid (Miiller-Navarra 1995a,b, also see De Lange & 
Van Donk 1997). In Atlantic herring Clupea harengus, 
dietary deficits of essential fatty acids, in particular 
docosahexaenoic acid, reduces the number of rods in 
the eyes (Bell & Dick 1993) and also negatively affects 
the feeding of these fish under low light intensities 
(Bell et al. 1995, also see Masuda et al. 1998). Other 
negative consequences of essential fatty acid deficits 
have also been reported (e.g. Kanazawa 1997, Rain- 
uzzo et al. 1997, Bell et al. 1998). A UV-B-induced 
reduction in the PUFA content of microalgae will be 
passed on to the herbivorous zooplankton that graze 
upon them, thereby also decreasing the levels of this 
essential nutrient that are available to be taken up by 
fish larvae. Since fish larvae (and their prey) require 
these essential fatty acids for proper development and 
growth, such a reduction in the nutritional quality of 
the food base has potentially widespread and signifi- 
cant implications for the overall productivity and 
health of aquatic ecosystems. 

Exposure to UV radiation, especially UV-B, has 
many harmful effects on animal health. These may 
result in poorer performance, or death, even though 
they are not directly induced by the UV exposure. 
UV-B suppresses both systemic and local immune 
responses to a variety of antigens, including micro- 
organisms (Hurks et al. 1994, Garssen et al. 1998). In 
addition to suppressing T-cell-mediated immune reac- 
tions, UV-B also affects nonspecific cellular immune 
defences. Recent studies demonstrate disturbed 
immunological responses in UV-B-irradiated roach 
Rutilus rutilus L.: the function of isolated head kidney 
neutrophils and macrophages (immuno-responsive 
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cells) were significantly altered after a single dose of 
UV-B (Salo et al. 1998). Further, natural cytotoxicity, 
assumed to be an important defence mechanism in 
viral, neoplastic and parasitic diseases, was reduced. A 
single UV-B exposure decreased the ability of fish lym- 
phocytes to respond to activators, and the reduction 
was still visible 14 d after the single exposure (Jokined 
et al. unpubl.). This indicates altered regulation of lym- 
phocyte-dependent immune functions. Finally, expo- 
sure to UV-B induces a strong systemic stress response 
which is manifested in the fish's blood by an increased 
number of circulating phagocytes and elevated plasma 
cortisol levels (Salo et al. 2000). Since high cortisol lev- 
els induce immunosuppression in fishes (Bonga 1997) 
it is now clear that the effect of UV-B exposure on the 
immune system has both direct and indirect compo- 
nents. Taken together, these findings strongly suggest 
that the inimune system of fishes is significantly 
impacted by exposure to a single, moderate-level dose 
of UV-B radiation. At the population level, such a 
reduction in immune response might be manifested as 
lowered resistance to pathogens and in increased sus- 
ceptibility to diseases. The ability of the fish immune 
system to accommodate increases in solar W - B  radia- 
tion are unknown. Further, the immune system of 
young fishes is likely highly vulnerable to UV-B radia- 
tion because lymphoid organs are rapidly developing 
and critical phases of cell proliferation, differentiation 
and maturation are occurring (Grace & Manning 1980, 
Botham & Manning 1981, Chilrnonczyk 1992). It is also 
pgssible that exposure to ambient UV-B radiation 
impedes the development of the thymus or other lym- 
phoid organs resulting in compromised immune 
defence later in life. The effect of UV radiation on the 
immune function of fish embryos and larvae, and on 
the development of the immune system, is unknown. 

Other indirect effects of UV radiation are also possi- 
ble. For example, for species that spawn in the surface 
layer, UV-B may affect sperm quality (sensu Don & 
Avtalion 1993, Valcarcel et al. 1994) and thereby affect 
fertilization rate and/or genome transfer. Also, if UV 
reduces the productivity of protozoans and crustacean 
zooplankton, there will be less prey available for fish 
larvae and other organisms that feed upon them. 
Finally, existing studies of UV-B impacts have almost 
all examined the effects of short-term exposure on bio- 
logical end-points such as skin injury (sunburn), DNA 
damage, development and growth rates, immune func- 
tion or outright mortality. To date, few studies have 
examined the potential effects of longer-term (low- 
level) UV-B exposures (but see Fidhiany & Winckler 
1999). 

All of these indirect (and/or longer-term) effects of 
UV radiation have yet to be investigated. These will be 
the focus of our future investigations. 

A SIMULATION MODEL FOR W-B-INDUCED 
MORTALITY 

All of the preceding represents the building blocks 
necessary to predict the ecological significance of UV- 
B radiation on the population dynamics of planktonic 
organisms-in this case, the early life stages of 
Calanus finmarchicus and Atlantic cod in the Gulf of 
St. Lawrence. A more complete quantitative assess- 
ment of direct UV-B effects on these planktonic life 
stages requires further information and analysis. 
Specifically, (1) detailed vertical distributions of eggs 
in the mixed layer of the water column (with high res- 
olution in the upper 10 m); (2) surface UV-B irradiance 
during the reproductive season, and subsurface spec- 
tral irradiance for waters supporting such eggs (see 
Kuhn et al. 1999); (3) biological weighting functions- 
which explicitly consider the possibility of photorepair 
(and, therefore, the absence of reciprocity)-for the 
effect of UV-B radiation on egg mortality (see Kouwen- 
berg et al. 1999a,b); and (4) a model to predict the ver- 
tical position of passive particles (such as eggs) in the 
mixed layer, and particularly their daily residence time 
near the surface under various meteorological and 
hydrographic conditions. All of these components can 
be incorporated into a broader simulation model to 
provide an assessment of UV-B effects on a population 
of eggs distributed (and circulating) throughout the 
mixed layer (e.g. Neale et al. 1998). We have recently 
developed such a model (Kuhn et al. 2000). 

The model incorporates all of the physical and bio- 
logical information listed above and generates an 
absolute estimate of mortality under different meteoro- 
logical and hydrographic conditions. As a result, the 
relative impacts of differing combinations of environ- 
mental conditions-for example, clear versus overcast 
skies; clear versus opaque water column; ambient ver- 
sus thinned ozone layer-can be evaluated. 

The physical model 

A Langrangian vertical mixing model (Visser 1997) 
was used to trace diurnal changes in the depth (z, in 
meters) distribution of particles (Calanus finmarchicus 
or cod eggs) through a homogenous mixed water col- 
umn of varying depth. Eggs were mixed every 3 min 
(At) throughout the day. The model's solar radiation 
subcomponent generates surface downwelling spec- 
tral irradiance at a temporal resolution matching 
the mixing frequency of the model's vertical mixing 
component. Various ozone losses were modelling and 
percentage increases in surface irradiance were calcu- 
lated using a delta-Eddington radiative transfer algo- 
rithm (Davies et al. 2000). Irradiance at depth was 
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calculated using Beer's law. Diffuse attenuation coeffi- 
cients were calculated by applying Beer's law to the 
spectral downwelling irradiance measurements made 
in the estuary and Gulf of St. Lawrence. 

The biological model 

Biologically weighted exposure (H,,,) was calculated 
using the biological weighting for the mortality of 
either Calanus finmarchicus or cod eggs. H,,, was cal- 
culated-and accumulated-for each 3 min time step 
(At). At the end of the mixing period (1 d), the negative 
exponent of the summed H,, determines the probabil- 
ity of mortality (M). Finally, M is compared with a uni- 
formly distributed random number ranging from 0 to 1. 
If M is less than the random number, the egg is consid- 
ered dead. If M is greater than the random number, 
the egg survives to the next time step. 

This is an individual-based model, so it is run itera- 
tively on several thousand eggs. The output is the per- 
cent of eggs that have died as a result of exposure to 
UV-B. 

Model predictions 

For Calanus finmarchicus eggs, W-B-induced mor- 
tality under all model scenarios ranged between < l  
and 32.5 %, with a mean (kSD) of 7.6 -+ 8.3 % (n = 48 
modelled scenarios). For cod, none of the model sce- 
narios produced a UV-B-induced mortality > 1.2 %, 
with a mean (*SD) of 0.64 + 0.42 % (n = 72 modelled 
scenarios). This result is consistent with the data pre- 
sented above- C. finmarchicus eggs are more suscep- 
tible to UV-B radiation than are cod eggs. Complete 
details of the model, and the scenarios evaluated, are 
reported in Kuhn et al. (2000). 

PARTING WORDS OF CAUTION 

It is important to point out that variability in cloud 
cover, water quality, and vertical distribution and dis- 
placement within the mixed layer will likely all have a 
greater effect on the flux of UV-B radiation to which 
the eggs of zooplankton and fishes are exposed than 
will ozone layer depletion at these latitudes. Thus, 
although UV-B radiation can have negative impacts 
(direct effects) on crustacean zooplankton and ichthy- 
oplankton populations, it must be viewed as only 1 
amongst many environmental factors-bacterial 
and/or viral pathogens, predation, toxic algae, etc.- 
that produce the mortality typically observed in the 
planktonic early life stages of these organismal groups. 

For zooplankton and fish species whose early life 
stages are distributed throughout the mixed layer, it 
seems most likely that UV-B radiation would represent 
only a minor source of direct mortality for the popula- 
tion. However, for those species whose early life stages 
are neustonic, there may be circumstances (albeit 
rare)-cloudless sky, thin ozone layer, no wind, calm 
seas-under which the contribution of UV-B radiation 
to the population's mortality could be much more sig- 
nificant. Simulation models such as that described here 
allow quantification, in a relative sense at least, of the 
direct contribution made by UV-B radiation to overall 
mortality under varying atmospheric and oceano- 
graphic conditions. The impact of indirect effects- 
which may well be of much greater import to marine 
populations and ecosystems-have yet to be evalu- 
ated. 
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