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Depth-dependent static shielding of an impurity by a quantum plasma in a magnetic field
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The static shielding of a charged impurity embedded in a quantum plasma is studied with the use
of linear-response theory. The required response function is calculated in the random-phase approx-
imation with a uniform magnetic fieM applied in a direction perpendicular to the surface. The sur-
face is assumed to be an infinite potential barrier. When quantum-interference effects between in-

cident and reflected electrons scattered off the surface are ignored, an analog of the Debye-
Thomas-Fermi shielding law for a semi-infjnite plasma is derived when all electrons with the same
spin are in the lowest Landau level. In the quantum strong-field limit, the induced electron number
density is calculated numerically. The results, which exhibit Friedel-Kohn oscillations, are analyzed
when the depth of the impurity below the surface is varied. It is suggested that these effects might
be studied experimentally by conversion electron Mossbauer spectroscopy in appropriate materials.

I. INTRODUCTION

The static shielding of a charged impurity by a quan-
tum plasma has been a subject of considerable interest.
The problem has been divided into two areas of considera-
tion. One is the shielding of an impurity in an infinite
plasma, and the other is concerned with the effect which a
surface has on the induced potential and screening charge
amund an impurity. However, as has been shown in non-
self-consistent Hartree single-particle theory by Horing, 'I
Rensink, and Glasser ' for a bulk plasma at zero tem-
perature (T=O) in the presence of an external magnetic
field, the shielding is spatially anisotropic. In addition,
the Friedel-Kohn oscillatory behavior is significantly
modified by high magnetic fields. It is the purpose of this
paper to study the combined effect of Landau quantiza-
tloil alld R sllrfacc 111 dctcrlllll1111g tllc static shlcldlng 1RW.

Our understanding of the static shielding of a point
charge in an infinite plasma, in the absence of a magnetic
field, is based on work of Friedel and of Langer and
Vosko. 7 The result of Langer and Vosko for the induced
charge density and screened potential at T=O exhibits
long-range oscillations with a radial wavelength m. /kF and
an envelope proportional to r, where kF is the Fermi
wave number and r is the distance from the impurity.
The Thomas-Fermi approximation gives an exponential at
large distances with the charge and effective potential
confined to within a distance of the order of the Debye
screening length. The corresponding problem for a semi-
infinite plasma in the absence of a magnetic field has been
studied by Equiluz and others.

The result for the Debye-Thomas-Fermi (DTF) static
shielding potential for an impurity in an infinite plasma,
in the presence of a magnetic field, was first derived by
Horing, in the random-phase approximation (RPA). It
was shown by Horing that the effective Debye length de-
pends on the angle between the direction of the magnetic
field and the position vector from the impurity. When all
electrons with the same spin are in the lowest Landau lev-
el, it was shown that the Friedel-Kohn oscillatory

behavior is modified by an exponential factor which
damps the oscillations.

Beck, Celli, Lo Vecchio, and Magnaterra' have calcu-
lated the modification of the induced potential and charge
density due to a surface, in the absence of a magnetic
field. As a model for the surface, an infinite-barrier
model (IBM) was used. Linear-response theory was as-
sumed for the interaction between the impurity and con-
duction electrons in a uniform positive jellium back-
ground, and the response function was calculated in the
RPA. It has been shown by Beck et a/. ' for the classical
infinite-barrier model (CIBM), where quantum interfer-
ence between incident and reflected electrons scattered off
the surface is ignored, that the DTF static shielding law is
given in terms of modified Bessel functions as well as ex-
ponential terms. The exponential terms are the long-
wavelength shielding contribution for a bulk plasma. For
both the CIBM and IBM, the shielded potential exhibits
Friedel-Kohn oscillations. We note that Gadzuk" has
also calculated some effects due to static shidding of an
impurity by a quantum plasma with a surface in the ab-
sence of a magnetic field. However, Gadzuk's results do
not take into account the shielding due to a surface charge
distribution. That is, the electron-gas dispersion is not
adequately included in the calculation. In this work, we
generalize the above results by including the effects of an
applied magnetic field.

In Sec. II we derive expressions for the shielded poten-
tial and charge density induced by an impurity which is
embedded near the surface of a plasma of finite thickness
A uniform magnetic field is applied in a direction perpen-
dicular to tlm surface. Tllc llllcRr-rcspolisc foHIlahsm is
used and the response function is calculated in the RPA.
The electron eigenstates used are those appropriate to a
jellium model with planar boundaries simulated by infin-
ite potential barriers. Combining Poisson's equation with
the linear-response equation, we obtain the dispersion rela-
tion for the collective modes of a film. The dispersion re-
lation reduces to the result obtained by Gumbs and Grif-
fin' for the half-space, when the thickness of the film is
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allowed to become infinite (in Ref. 12, this result was de-
rived for an external charge).

In Sec. III, a numerical evaluation of the electron num-
ber density induced by an impurity in the surface region is
carried out for the CIBM. Vhthin this model, the total
induced electron number density is compared with the
contribution due to the surface of a semi-infinite plasma.
The calculations are done in the absence of a magnetic
field as well as in the quantum strong-field limit. For an
impurity located at the surface of the plasma, the effect of
a magnetic field in the quantum strong-field limit is to
reduce the magnitude of the induced density on the sur-
face by Rs IIlllcll Rs 70%. Tllc colltrlbllt1011 to tllc lllduccd
electron number density due to the surface is itself re-
duced by Rs Illllcll as 75% 111 tllc qllRIltu111 stl'011g-field
limit. This means that the effect of extremely high mag-
netic fields is to produce significant quantitative changes
in the static shielding of a source. Calculations are also
carried out to analyze the corresponding effects due to an
impurity at varying distances from the surface. This
method of calculation (RPA) treats plasmon dispersion
satisfactorily. That is, the induced electron number densi-
ty and the shielded potential are both given in terms of
the density-response properties for excitations within a
bounded plasma. This means that in the case of dynami-
cal shielding the model response function has poles which
correspond to the active plasmon resonances (bulk and
surface). The formalism treats dynamical and static
(time-averaged) shielding within the same approximations,
with the latter being obtained by setting the frequency
variable equal to zero.

In Sec. IV the DTF static shielding law for an impurity
embedded near the surface of a semi-infinite plasma in an
cxtcrI181 IIlagllctlc field 18 obtained for flic CIBM. Ill Scc.
V we suggest an experiment which should verify these re-
sults. T1118 cxpcrlnlcllt lllvolvcs I'csolvlng tllc cllcrglcs of
backscattci'cd clcctl 0118 ' fl'olll tllc sllrfacc rcgloll of 8
Mossbauer absorber. By energy-resolving the flux of elec-
trons, the spectra will be weighted towards a particular
depth. This techmque is referred to as depth-selective
conversion-electron Mossbauer spectroscopy (DCEMS).
The use of DCEMS in examining the depth dependence of
the static shielding induced by a distribution of impurities
should also be feasible in the presence of an external mag-
netic field (distinct from that used for energy resolution of
emitted electrons), which could be used with some advan-
tage in further probing the information provided by the
backscattcrcd clcct1OIls.

Surface impurity effects are of interest in a wide variety
of situations. In particular, the adsorption of ions on me-
tallic surfaces and their effects on corrosion, as well as the
polarization produced in the surface region of a layered
saIIlplc» have been 8 sub)ect Qf IDUch d1scusslon.

These problems are of basic importance, but it is ex-
tremely difficult to treat rigorously the combination of ef-
fects due to the surface, the magnetic field, and the
dynamical screening due to the Coulomb interaction be-
twccn thc 1Inpur1ty» which 18 taken as 8 po1nt charge» RIld

the plasma. To our knowledge, this is the first work
where all of these effects have been simultaneously taken
into account, Rlbc1t w1th simple Rpprox1IQat1ons, Rnd wc

hope that the results, which exhibit a quite marked depen-
dence on the applied magnetic field, will stimulate further
work with more sophisticated and extensive analysis.

II. INFINITE-BARRIER MGDEI.

In this section we calculate the potential and charge
density illdUccd by Rll llllpurl'ty wltll cllar'gc Ze embedded
in a bounded plasma. &e extend the method of solution
of the RPA equation for the response function of Beck
ct al. ' to a film in the presence of a uniform magnetic
field perpendicular to the surface. The film is bounded by
infinite potential barriers at z =0 and I., but is unbound-
ed in the r~~ plane (parallel to the surfaces). The point
chalgc 18 Illscrtcd at (0,0,zo) llHtklII tllc otllcrwlsc Uniform
plasma, and the magnetic field of strength Ho is in the z
dlrcctlon.

The general, frequency-dependent, induced charge den-
sity is, in linear-response theory, related to the total poten-
tial V by the equation

(2.1)

&sin(k, z), (2.2)

where the g'„are normalized harmonic-oscillator wave
functions involving Hermite polynomials, with the cyclot-
ron orbit centeI'ed at

xo(ky) =— (2.3)

Periodic boundary condit1ons have bccn imposed 1n thc rII
plane, and we take A to be the area of each plane slab
face. The k, wave number in Eq. (2.2) is restricted to
mItli. with m=1, 2, 3, . . . in order to ensure that the
wave functions vanish at the surfaces z=O and I.. The
scalar effective mass of an electron is m* and the energy
clgcnvRlues Rrc

(2.4)

Here, P;(r) is an electron eigenstate of energy E;, and
fo(E~ ) is the Fermi distribution function. For the
infinite-barrier model (IBM), where the single-particle po-
tential within the plasma is assumed uniform in the ab-
sence of the inserted charge, a complete set of unperturbed
eigenstates is given by
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with the I.andau levels labeled by n =0,1,2,. . . .
It is convenient to define a symmetric charge density by

L
p, (q, co)=2 f drll f dze

'
ll 'llcos(q, z)p(r, co), (2.5)

where q=(qll, q, ) with q, =0,+ir/L, +2m/L. , . . . . Sub-
stituting the eigenfunctions (2.2) into Eq. (2.1) and then
making use of the result for p(r, co) in Eq. (2.5), we obtain

2 f()(E(k,n ) ) —f()(E(k,' n ') )
p, (q, co) =

&&i gg, , g R(k„k,';q, )B(n,ky;n', ky;q„)5

X f dz'sin(k, 'z'}sin(k, z') f dy'e

X @ X —Xo y ~~X —Xo y V r ~Q) . 2.

Here,

R(k„k,';q, )=— dz cos(q,z)sin(k, z)sin(k, 'z),S& S& Z L o

B(n,k„;n',k„';q„)=f dx e '" g. (x xo(ky))—g. (x xo(k,'))—
—iq„xo(k )=e " ' B„„(q„,k» —ky ),

(2.'7)

(2.8a)

B„„(q„,qy)=—f dx e " g„(x)g„(x+xo(qy)).

Expanding V( r, co) in terms of its k„Fourier components, we have

5 ~ i, f dx c„(x—xo(k„)')c„(x'' xo(k„'))v(r',m)=— , iz ge * ' ' v(k„y',s')8„'„(k„q~)5
X

Therefore, making use of the results in Eqs. (2.8) and (2.9) in Eq. (2.6), we rewrite p, (q, co) as

(2.8b)

(2.9)

=1 1 fo(E(k,n ))—fo(E(k,' n ') )
p. (q,~)=— gg g ',

,
' C„„(qll}R(k„k;;q,) f d'»n(k, ')sin(k;. )V(qll,.),

fico [E(k,'n') —E(k—,n )]

(2.10)

where we have now extended the sums over k, and k,
'

in Eq. (2.10) to a/I multiples of rc/L as well as zero since the
k„k,' =0 terms make no contribution to the sum. We also have

C„„(qll)—:
~
B„„(q„,qy) ~

—s l( —)([L&l )(( ) ]2
n't

(2.11a)

(2.11b)

where s =fiq
ll

/2»n*co, an—d L„" "is a I.aguerre polynomial. The form for C«(qll ) in Eq. (2.11b) is due to Horing. '

Defining a symmetric potential V, ( q, co) by
I.

V, (q, co)=2 f drll f dze ll llcos(q, z)V(r, co), (2.12)

it is possible to straightforwardly show that Eq. (2.10}may be rewritten as

I I

pg(q~co) =X ( q, co) Vg( q, co) — gS, ;qll, co Vg(q~;qll, co),
»

(2.13)

where the prime on the summation in the second term of Eq. (2.13) means that the q,
' 's summed over must have the

same symmetry as q, . X ( q, co) is the single-particle density-response function in the presence of a magnetic field in the z
direction and is given by

X (q,oa)= QS(k„k,+q, ;qll, co),
k

(2.14)
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where

fo(E(k„n))—fo(E(k,', n'))

k .n
—[ky &f1'

(2.15)

The potential and charge density are related by Poisson's equation,

(z qll co)=(2~e/qll) Zee ' + dz'e p(z qll co)lg// jZ Zp / & Q'j/ /Z —Z'
J g

Therefore, V, (q, co) is given by

(2.16)

(2.18)

V, (q, co)=
2 [2Zecos(q, zo)+cT(qll co)+p (q'co)]

4me
(2.17)

g

which is a function of q, and qll separately, with q =q, +q II. 0(qll, co), which plays the role of a frequency-dependent
surface charge density for the film, is given by

—
qll j2 —

qll zo L /2) —
qll 0—

L

where m is the integer multiplying ~/L for the wave number q, in Eq. (2.17). Note that cT(qll, co) of Eq. (2.17) is depen-
dent on m (either even or odd). This should be remembered in the following derivation. We have

~ p~(&~qll ~~) 1

2
—— . dz p(z;qll, co)cosh[qll(z —L/2)]

L q +qll »nh qIIL 2

if the sum on the left-hand side of Eq. (2.19a) is over euen multiples of m /L, and

(2.19a)

dz p(z qll co)»nh[q-II(z L/2)]
L q, +qll cosh qIIL/2

(2.19b)

for a sum on q, over odd multiples of m/L. Theref.ore, making use of the results of Eq. (2.19) in Eq. (2.18), we obtain

, p, (q„'q,co)= —Z [ II —( —1)m II 0 ] [1 ( 1)m
L

q qZ+

We introduce a function v( q, co) in terms of the charge densities p, ( q, co) and cr(q Il,co) by

p, (q, co) =cr(qll, co)[vo(q, co)—1]+2Ze[v(q, co) —cos(q, zo)],

(2.20)

(2.21)

where v depends on the value of zo, and vo is the value of v for zo ——0. We can straightforwardly express o(qll, co) of Eq.
(2.20) in terms of v. We have

( —1) e II qll v(q co
m -e «-ZO~

~(qll ~)=4Ze, — X ' [1+R(qll co)l
—1

1 —( —1) e II ~, q. +qll
(2.22)

where

2qll ' vo(qziqll rco)
R(qll, co) =

q. +qll
(2.23)

The function v(q, co) is determined from a set of coupled equations which are obtained by substituting Eq. (2.17) for
V, (q, co) and Eq. (2.21) for p, (q, co) into Eq. (2.13). A short calculation gives

v(q, co) =
e( q, co)

I In —n a. +n
cos(q, zo) ——g S

I
;qll, co u(q,',qll)v(q, co) (2.24)

where

e(q, co)—:1 —u(q)X (q, co), (2.25)

respond to the solutions for which the denominator on the
right-hand side of Eq. (2.22) vanishes, i.e.,

with u(q)=4vre /(q, +qll) equal to the Fourier transform
of the Coulomb potential. The collective excitations cor-

1+R (q ll, co) =0 . (2.26)

We note that the dispersion relation reduces to the half-
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space result derived previously, when the limit L~ Oo is
taken. It should be observed that the sums on wave num-
ber for the full IBM are restricted to even or odd multi-
ples of 1rIL, just as in the CIBM.

Multiplying both sides of Eq. (2.24) by e(q, co) and then
summing over q, 's which have the same parity as the q,

' *s

in the sum on the right-hand side of the equation, we ob-
tMQ

p(z =0;qII,al) =0,
p(z =L;qII, ra) =0,

(2.29a)

(2.29b)

Setting z=O and z=L, in turn, into the inverse of Eq.
(2.5), and making use of the result in Eq. (2.28), we con-
clude that

g [v(q, ;qII,~)—cos(q,z, )]=0 .

Therefore, from Eqs. {2.21) and (2.27), we have

g ps('SiqII «) =0
qg

(2.27)

(2.28)

i.e., the charge density vanishes at both boundaries, a re-
sult which is consistent with the IBM.

Substituting Eq. (2.17) into the inverse of Eq. (2.12) and
then making use of Eq. (2.21), we obtain the total poten-
tial V(r, ro) within the film, 0&z &L,

V(r, co)= g f e II IIcos(q z) 2 &
[2Zev(q, co)+o'(qII, Q))vo(q, co)], {2.30)

alld tllc induced cllal'gc dcllslty tllcrc ls

p(r, c0)= g f e ' 'cos(q, z)[o(qII, co)[vo(q, co) —1]+2Ze[v(q, co)—cos(q, zo)]$ .
2L

q
(2n. )

(2.31)

We have thus obtained results for the linear shielding of an impurity within a film. Within this formalism, the set of
coupled equations (2.24) has to be solved for v(q, co). However, when surface-induced quantum-interference effects are
neglected, v{q, co) is given by the first term on the right-hand side of Eq. (2.24). Explicit results for this model are given
in the next two sections.

III. CLASSICAL INFINITE-BARRIER MODEL

In the classical infinite-barrier model (CIBM), v(q, co) of Eq. (2.24) is given by

cos(q, zo)
v(q, co) =

e{q, al)
(3.1)

and vo(q, al) is equal to the inverse dielectric function. For this model, Eq. (3.1) is valid at arbitrary temperature and for
arbitrary magnetic field strength, where the latter takes account of Landau quantization. Thus in the CIBM, we obtain,
from Eqs. (2.30) and (2.31),

dqII; q ~ z 4~e 2Ze cos(qzzo) 1o'(qII, Q))
V(r, co) = , e ii iIcos(q, z) {3.2a)

(2~)' '
q,'+qzII e(q„qII,al)

p(r al) g f e' ll 'Ilcos(q, z}[2Ze cos(q, zo +o(qll, ~ ]2L
q (2m)

where the surface charge density defined in Eq. (2.22} is given by

(3.2b)

4Ze
cT(qII, co}=

g~~, M

1)me '1II ~0

1(1)e
q

I I

~ cos( qzzo )

(q +qII )e{q;qII,co)
(3.3)

In Eq. (3.3), D(qII, ro) is the surface dispersion formula defined by

2&Ii
D{qII al) =1+ X

(q, +qII )e(q, ;qII, co)
(3.4)

the zeros of which give the normal modes of the film. '

In the half-space hmit (L —+ ao ), the real part of the static didectric function at zero temperature and arbitrary mag-
netic fidd strength is given by

2m*le, ,
A'( ,

'
q, +kg"'

~ q, ~

)Im'+—(n'—n )e),
e(q, co=0)=1+v(q) g g+{p (n+ —,

'
)%co,)C„„(qII)ln-(2n. ) A'

( q, ~
„„A'(,'q, kz"'~ q, [

)/m*+—(n'——n)co,
(3.5)
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where the matrix element C„„(q~~) is defined in Eq. (2.11),
1/2

kF"'= [p —(n+ —,
'

)irico, ] (3.6)

and p is the chemical potential. The step function g+ sets an upper limit on the sum over occupied states. For magnetic
fields so strong that all electrons are in the lowest Landau level, i.e., the chemical potential is comparable with the energy
scale of quantized cyclotron motion, only the n =0 term contributes to the sum in Eq. (3.5). Equation {2.11}gives
Cz o z~(q~~)=e 5 /n .. Substituting this result, ln Eq. (3.5), we obtain

kDkp q'rp„' -Iq. I+2kp' r(-,'q,'+k,"'~ q, ~

)/m" +n ~,
A'( —,'q, —kP'

~ q, ~

)/m'+n'co,
(3.7)

where kDkF=(m*coplfiMp (m*/2)'~ and pH = (2m*—co, /fi)'~ . The plasma frequency is given by cop 4'——ne /m*
where, in the quantum strong-field limit, the electron density is n =(m* co,p/2)'~ /rc fi . kp is defined by

k, =(2m'q/e')'"
Substituting Eq. (3.5) into Eq. (3.2), with l. = 00 and co=0, we obtain the static shielded potential for a semi-infinite

plasma in the CIBM. We write the result as

V(r,co=0)= Vi(r)+ V2(r), (3.&)

4m.Ze
V, ( )=, ydq ' "I o (q,

~

—
~
)+ o [q, ( + )]I

(2m ) (q,'+q', ~).(q„.q~~, ~=o} '

16Z'
V~(r)=—,dqe '~ ~' co(s,qz)

(2ir)' D(q~~, =0) (q,'+q', ~)e(q, ;q~~, =0) '

where N(q
~~

) is the integral for the surface charge density cr{q~ ~, co =0) for the half-space geometry and is given by

oo

N(q
~~

) = dq, cos(q, zo) 2 z
(q~ +q ii )e(qz,

qadi,

co ='0)

Similarly, we have the static density distribution for a half-space in the CIBM. The result is, from Eq. (3.2),

p(r, co=0) =pi(r )+p2(r ),
where

(3.9)

(3.10)

(3.11)

(3.12)

p,(r)=, f dq e " ")ftos(q, (z —zn
(
)+cos[q(z+zo)]) —)

Ze iq r 1

(2n. ) E(qz ,q~~, co=0)' (3.13)

(2ir)
' D(q

~
|,co =0) e(q„'q

~
~, co =0} (3.14)

»th Vi(r»n Eq (3 9) and pi(r ) in Eq. (3.13) are contri-
butions to bulk screening from the impurity and its image
in the surface. On the other hand, Vz(r) and pi(r), de-
fined, respectively, in Eqs. (3.10) and (3.14), are due to
surface collective effects.

In the non-self-consistent Hartree single-particle ap-
proximation, the screening contributions to the induced
density, including collective modes, are 1]jot included.
Thus, pz(r) arising from the surface modes is neglected
and pi ( r ) is approximated by'5

pH,„„,(r)=Ze f dr 'g (r, r ';co=0)u(r ') . (3.15)

The induced electron number density has been calculated
previously with the use of Eq. (3.15) in a case of a contact
interaction, u(r)=uo5(r —ru), and for the case of a
shielded Coulomb potential,

u(r)=(Ze /) r —ro~ }exp{—ic
~

r —ro~ ) .

It is of interest to determine whether the parameters of
these approximations can be adjusted so as to reproduce
the RPA results reported here. This turns out not to be
possible. For example, the contact interaction, having
only one parameter, can be adjusted to reproduce the
long-range Friedel oscillations, but the phase of these os-
cillations is not given correctly. The screened Coulomb
potential has more flexibility and can be adjusted to repro-
duce the long-range oscillations, but then the behavior
near the impurity is not so well described.

In examining the effect of a magnetic field on the in-
duced electron number density in the RPA, we have corn-
puted p{r ) in the absence of a magnetic field as well as in
the quantum high-field limit. The results are plotted in
Figs. 1—3. The calculations for the high-field quantum
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lliilit ai'e based oil tlic rcslllts 111 Eq. (3.12) witli tlic bulk
dielectric function given by Eq. (3.7). For the calculations
in the absence of a magnetic field, Eq. (3.12) was used
with the bulk dielectric function in Eqs. (3.13) and (3.14)
given by the well-known result for e( q, co =0) involving
the Lindhard function, in the absence of a magnetic field.
The electron number density n is chosen to be 0.768 & 10'
cm and the scalar effective mass of an electron is
m =0.01m, =0.911X 10 g, which are appropriate for
a semiconductor such as InSb. At zero temperature, the
Fermi energy in the absence of a magnetic field is given

fi ir 6n
Po~

2ptl
(3.16)

Thus with our choice of electron number density and ef-
fective mass for the electron, po =0.105 eV and
k~„—=(6nir )'~ =0.017 A ', it can be shown that in the
high-field quantum limit, with one Landau energy level
occupied the chemical potential, p is given by"

3

p= i 'Iico~+
4 Po

(3.17)
9 (fico, )

The magnetic field Ho is chosen to be 200 kG. Thus
fuu, =0.231 eV, and from Eq. (3.17) we obtain the chemi-
cal potential @=0.125 eV. The quantum high-field limit
( —,

'
irico, &p, & —,

'
duo, ) is thus satisfied, i.e., all electrons are

in the lowest Landau energy level.
In Fig. 1 we have plotted the total induced electron

number density p(r) and the contribution pz(r) associated
with the surface dispersion formula, for the CIBM. An
impurity is located at the surface of the plasma. The in-
duced electron number density is plotted as a function of
distance into the plasma along the polar axis perpendicu-
lar to the surface. For Figs. 1(a) and 1(b), the magnetic
field Ho =0, whereas Ho ——200 kG in Figs. 1(c) and 1(d).
This magnetic field satisfies the quantum high-field limit
for a degenerate plasma with all electrons in the lowest
Landau energy level. The effect of the field is to signifi-
cantly reduce the amplitude of the induced electron num-
ber density within a few Fermi wavelengths from the sur-
face. The results in Fig. 1 also show that the long-range
oscillatory behavior of the induced electron number densi-
ty in the quantum high-field limit has a Friedel-
Kohn —type "wiggle»» in a direction parallel to the mag-
netic field. In Fig. 2 the total induced electron number
density p(r) due to an impurity on the polar axis at
zo ——2k+ ' within the plasma is calculated. For Fig. 2(a)
the magnetic field Ho ——0. The magnetic field Ho ——200
kG for Fig. 2(b). In Fig. 2, p(r) is plotted for points r ly-
ing along the polar axis for a degenerated plasma. Com-
paring Fig. 1(a) with Fig. 2(a) and Fig. 1(c) with Fig. 2(b)
we find that the value of the induced electron number
density p at the source can be reduced by as much as 15%
when the impurity is moved from a point on the surface
to a point zo =2k' within the plasma. In the absence of
an external magnetic flcld» p ls shown as havlIlg Frlcdcl-
Kohn oscillations for values of z &zo. As the value of zo
increases, numerical calculatloQ shows that osclllatlons IIl

p appcaI' fox' 0 Kz Kzo. In Flg. 3 wc plot p IIl thc dllcctlon

perpendicular to the magnetic field for an impurity on the
surface. Figure 3{a) shows that there are Friedel-Kohn
oscillations in the total induced electron number density.
A comparison of Fig. 3(b) with Fig. 1(d) shows how high-
ly anlsotroplc thc Frlcdcl-Kohn oscillatory bchavlol ls ln
the quantum strong-field limit.

It is clear from the above that the magnetic field depen-
dence of the induced electron density around impurities,
including the Friedel-Kohn quantum density oscillations,
is very sensitive to variations in the applied magnetic
field. Although these numerical results are based on sim-
ple treatments of the surface effects, in particular the
CIBM, it is clearly to be expected that this sensitivity to
the magnetic field will also be found in more precise treat-
Inents. There are also situations where the screening
properties of the plasma are simplified by using long-
wavclcligtli approximations. Tllls is discussed 111 the fol-
lowing scctlon.

IV. DESYE-THOMAS-FERMI STATIC
SHIEI.DING I,AVE

Substituting the long-wavelength approximations for
the matrix element C«(q

~ ~

) defined in Eq. (2.11),namely

C„„(q)()=1 {n+—,
'

)q—((+O(q((), (4.1a)

C„„+i(q~~)=,'(n+—1)q~~+O(q~(),

(q~~ ) =O(q~g), (4.1c)

into Eq. (2.14) [here q~~
—=q~~/(m*co, /i')'~ ], it is a simple

matter to show that, for zero frequency,

2 2 2 — 2
0 c}n & Cz c} n 9~~ c}8'—Pf

c)p 4m c}p m co, c)p

(4.1b)

(4.2)

(4.3)

W= g g (n+ ,
'

)fico,fo(E(k„n—)).
1

k n
(4 4)

Here IT is the number density per unit volume and 8' is
the mean oscillator "potential energy. " The results in
Eqs. (4.1)—(4.4) are valid for arbitrary magnetic field
strength and at arbitrary temperature.

In the limit of zero temperature, X (q, co=0) of Eq.
(4.2) contains sums of 5 functions which cause thc linear-
response theory to become unreliable in the absence of
broadening of the Landau energy levels. Whenever the
chemical potential matches the energy of one of the Lan-
dau levds of finite slabs or quasi-two-dimensional elec-
tronic systems, ' ' the above-mentioned limiting pro-
ccdurcs arc not well dcflQcd. FOI px'escnt appllcatloIls wc
restrict our attention to the static shleldlng of an impurity
for the half-space geometry and the CIBM. In the limitI ~m, the sums over the q, wave number are replaced
by integrals. Substituting the long-wavelength result for
X ( q, co =0) in Eq. (4.2) into Eq. (3.4), and then doing the
Q'g 1QtcgI ation» wc obtalll
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FIG. 2. Total induced electron number density for the CIBM of a semi-infinite plasma, along the polar z axis. An impurity is on
the polar axis at zo ——2k~ within the plasma. For (a) the magnetic field Ho ——0, while Ho ——200 kG for (b). The inset of (a) shows
the Friedel-Kohn oscillatory behavior.

A(qii)—=

z c)n
1

4n.e c) W
4me + 1 —

2
—n

c)p m co, 5p

ne fi dn1—
pl Bp

D(qii, co =0)=1+ are I Bn1—
&(qii) m* c)p'

where

(4.5)

1/2

(4.6)

qiiexp[ —zoA(qii) j
(4.7)

2 2 2—
q+ 1 — A( )

Substituting Eqs. (4.2), (4.5), and (4.7) into Eqs. (3.9) and
(3.10), we obtain

qli'co =0)= —2Ze

&)(r)= &s(r+)+ &g(r ),
where

(4.8)

I

With the use of Eq. (4.2) in Eq. (3.3), we obtain the static
surface charge density for a half-space as

Vs(r+) =

Ze p dn
exp —p'+ ' 477e

r+ c)p

1/2
4me BR

2

g(1+5 cos 8+)'i

1/2

(1+5cos 8 )'

(4.9)

4me fP "d n
m' 4 c)p~

1 BR'

Bp

1—n.e fi c}'n

7' Bp

(4.10)
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4me BW —Pl

m co~ ~p

1/2 1/2
meA Bn1—

m Bp
(4.11)

V2{r)=—

where W(rI; r ) is an integral defined by

Here 8+ is the angle between the magnetic field and the spatial vector r+ ——(r~~,z+zc). The contribution Vq(r) to the
Sh1Cld1Qg 1S, 1Q th1S RPPIOX1IRt1OQ, g1VCQ l3$

—2' . W{g;r), (4.12)
4me B8' —Pl

m co, ~p

W(q;r)—: dk((k((exp —(z'+zc) 4ne +k((
2 2 BPl

0 p
(4.13)

g0 ZQ

7' A 871] m' Bp
r

4me 88 —Pl

ma, ~P

(4.14a)

(4.14b)

Vs(r ) and Vz(r+) are, respectively, the DTF contributions to the potential from the impurity and its image in the sur-
face. Thus V, {r) is due to classical specular scattering, with the electronic properties described by the bulk response
function. The role played by the surface collective excitations in shielding the impurity in the DTF approximation is
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given by Eq. (4.12).
The term Bn /B(M in Eq. (4.2) gives rise to quantum effects associated with the presence of a magnetic field. Additional

quantum corrections are due to the q, and q
~~

terms. If these quantum corrections are small, i) in Eq. (4.11) is approxi-
mately unity. In this approximation, the integral W(i)) in Eq. (4.13) can be done analytically. This is shown in the ap-
pendix using results of Gradshteyn and Ryzhik. ' With the use of the results in the Appendix, we obtain, for Vz(r),

Vi(r) = 2Ze /y il

4me 8 W

)il CO~ ()P

p(i)(&.p ~)+~@(2)(~.p ~)]

(4.15)

The functions F(" and F' ' are defined in Eqs. (A3) and
(A4), respectively. For convenience of notation, the vari-
ables a, » and y appearing in Eq. (4.15) are defined to be

(4.16b)

1/2

(4.16c)

Equations (4.8)—(4.16) thus give the analog of the DTF
static shielding law for an impurity embedded near the
surface of a semi-infinite quantum plasma. We em-
phasize that the result for Vz(r) in Eq. (4.15) is based on
the assumption that the quantum corrections to Bn/B)M in
Eq. (4.2) are sufficiently small for one to take i) —1 as a
small parameter. From the results in Sec. II of Ref. 9,
one determines the conditions under which the approxi-
mation q=1 is satisfied. For example, in the quantum
strong-field limit, if both roq (co, and p/4fici), & 1 are sa-
tisfied, the result i) = 1 is obtained.

The approximation for the frequency-dependent bulk
dielectric function to order q gives magnetoplasmon
modes in the long-wavelength limit. Higher-order terms
in e(q, co) give "Bernstein"-type plasmon resonances'
near each higher inultiple of the cyclotron frequency
neo, (n )2) for propagation nearly perpendicular to the
magnetic field, and "quantum"-type plasmon resonances
near each higher multiple of the cyclotron frequency neo,
(n )2) for propagation off the perpendicular direc-
tion. ' lt has been dhmonstrated by Boring, Danz, and
Glasser that in the quantum strong-field limit, the con-
tribution to the bulk correlation energy from both the
"Bernstein"-type modes and the "quantum"-type plasmon
resonances is small compared with the magnetoplasmon
modes. Thus it is clear that the present calculation of
long-range static shielding is consistent with the calcula-
tion of the bulk correlation energy, in the quantum
strong-field limit.

It is known that the electrons emitted in the Mossbauer
process of depth-selective conversion-electron Mossbauer
spectroscopy (DCEMS) could be used to study the surface
layers of a Mossbauer absorber. Rix:ently, depth-
selective Mossbauer spectroscopy involving the detection
of conversion electrons has been used to probe magnetic
hyperfine interaction and isomer shift as a function of
depth in iron films. Thus we feel that a conversion-
electron investigation would be a useful experiment to
study the depth dependence of the static shielding in the
presence of an externally applied magnetic field. The iso-
mer shift for Sb is relatively large. The small effective
mass and low electron number density of InSb make it
possible for the quantum strong-field limit to be achieved.
Thus our predictions may be verifiable in an experimental
study using DCEMS for InSb where high-magnetic-field
conditions are favorable. Of course, InSb has a diamond-
crystal lattice and the band structure has been deter-
mined. The Fermi surface for this group —III-V com-
pound is more like that of the group-IV element Ge,
which also has a diamond lattice, rather than that of the
free-electron spherical model. However, the free-
electron-gas model is the simplest model to study the ef-
fect of applying a magnetic field and is sufficient to
deinonstrate that the effects are numerically very signifi-
cant.

Several theories have been used to derive expres-
sions relating the observed Mossbauer signal to layer
thickness in the absence of an external magnetic field.
The results of Refs. 26—28 would have to be generalized
to include a magnetic field should they by useful in the in-
terpretation of a DCEMS experiment where an external
magnetic field is applied. These experiments are expected
to be difficult, but they would be very valuable. Finally,
we emphasize again that the present calculations have
been carried out within simple approximations, which
nonetheless, allow simultaneous consideration of the sur-
face effects, the perpendicular magnetic field, and dynam-
ical screening. The resulting magnetic field dependence of
the induced election number density alound impurities is
found to be significant, and we hope that the present work
will encourage further study.
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APPENMX: APPRGXIMATE EVAI.UATIGN GF W(q)

In this appendix, we evaluate the integral W(11) defined by Eq. (4.13) for a value of ri approximately equal to unity.
Rewriting Eq. (4.13), we have

Jr(g)= f dpi((ki((exp[ —(z'+z'0N4me't)n/Bp+kI(i)' ']10(k(i(irt(i)

X 'a-/a~+k)'" (4 '~-/~„)„'+(„'—1)k

Expanding the denominator in the last factor of Eq. (Al} in powers of 11 —1, we have

J('(11)= f dk~~exp[ —(z'+z() )(4me Bn/Bp+k~~~)'/ ]
(4me Bn/BI2)ri

(A 1}

r

kt(xJ (kii ii ) rjk ii
— +

(4 k} /BP+k~~ ) 11 4 8 /BP (4 (3r/BP+k~))

1 k

(4m.e Bn/Bp)

Each term in Eq. (A2) yields an integral whose evaluation we now discuss separately.
Making use of the results in 6.616(2) and 6.637(1) of Gradshteyn and Ryzhik, ' we have

00
2 2 1/2F'"(a;p,y):—f dx x exp[ —a{y +x )'/ ]

{A2)

, /2 exp[ —y(a +p )'/ ],(a2+ p2)1/2

2 2 1/2F' '(a;p, y)= f dx exp[ —a(y +x )'/ j

=ID( —,
' y[(a2+p )'/ —a])EO( —,

' y[(a +p )'/ +a]),

where Io and Ko are modified Bessel functions.
Treating a, p, and y as independent variables, we find that

xx exp —ay +x '~ Jo x = x y+x exp —ay+x ~ Jo x

—y f dx exp[ —a{y +x )'/ ]Jo(px)= — —y F' '(a;p, y) .
0 Ba

Tllls rcslllt glvcs tllc lntcglal foI' thc fll'st tcr111 111 Eq. (A2).
It is a simple matter to show that

dx, exp[ —a(y2+x2)'/2]JO(px)= —y2 F'"(a;p,y),

xf dx
2 2, /2 exp[ —a(y +x )'/ ]J(1(px)=

0 (y2+x 2)1/2
B 2 8—2a' +y' F"'(a;p,y),

Bol BA
(A7)

dxx exp[ —a(y +x )'/ ]JO(px)= —2y +y F' '(a;p, y) . (AS)

With the use of the results of Eqs. (A6)—(AS), we obtain the integrals for the remaining terms in Eq. (A2), with a, p, and

y defined in Eq. (4.16). We have thus completely determined the integral W(21) and hence V2(F) of Eq. (4.12) to lowest

order in ri —1. V2(r), to this order, is given in Eq. (4.15), and higher-order corrections can also be calculated in this
wa'jj ~
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