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Pattern Formation inside Bacteria: Fluctuations due to the Low Copy Number of Proteins
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We examine fluctuation effects due to the low copy number of proteins involved in pattern-forming
dynamics within a bacterium. We focus on a stochastic model of the oscillating MinCDE protein system
regulating accurate cell division in E. coli. We find that, for some parameter regions, the protein
concentrations are low enough that fluctuations are essential for the generation of patterns. We also
examine the role of fluctuations in constraining protein concentration levels.
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terns, in good agreement with experiment [9–11]. resented as a particle which, at each time step, may hop
In recent years, dramatic experimental progress
has been made in resolving the subcellular localiza-
tion of bacterial proteins. Often the proteins form self-
organized, spatially inhomogeneous patterns that can
involve coherent spatiotemporal oscillations. These self-
organized patterns are vital for accurate cell division
[1–7]. Understanding these patterns promises to reveal
new mechanisms for the generation of subcellular bacte-
rial structure. In this Letter, we examine, for the first
time, the impact of fluctuations on these patterns, focus-
ing on the oscillatory MinCDE system in E. coli [1–7].

Each E. coli cell divides roughly every hour, first rep-
licating its DNA into two nucleoids and then dividing at
midcell into two daughter cells. If division is not targeted
accurately to midcell, then DNAwill not be distributed to
both daughter cells, resulting in unviable anucleate ‘‘min-
icells.’’ Division is initiated by a polymeric ring of the
protein FtsZ, which forms on the inner side of the cyto-
plasmic membrane. Precise positioning of the FtsZ ring
to midcell is controlled both by the inhibiting effect of
the nucleoids (‘‘nucleoid occlusion’’) and by the MinCDE
system of proteins [8]. MinC inhibits the formation of the
FtsZ ring and is recruited to the membrane by MinD.
MinE is also recruited to the membrane by MinD, where
it forms a dynamical ring structure that drives pole to
pole oscillations of MinC and MinD, with a period of
about a minute. The oscillations lead to a time-averaged
midcell MinC concentration minimum [7]. As MinC
inhibits FtsZ ring formation, the FtsZ can assemble
only near the cell midplane. The self-organized protein
patterns are thus used by the cell to obtain positional
informationwithout stationary positional markers [9–11].

Very recently, the physical principles behind the
MinCDE protein patterns have been explored through
reaction-diffusion equations [9–11]. The resulting equa-
tions represent protein diffusion, both in the cytoplasm
and along the membrane, and also protein binding/un-
binding from the cytoplasmic membrane. The slow mem-
brane diffusion used in these models, relative to the
cytoplasmic diffusion, results in Turing-like (Hopf) in-
stabilities that spontaneously generate oscillatory pat-
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Bacterial proteins are, however, typically present in
low numbers within the cell. This induces large fluctua-
tions [12,13] which have not been considered in previous
pattern-forming models [9–11]. In E. coli, a recent assay
put the copy numbers for MinD and MinE at 2000 and
1400, respectively [14].We have therefore investigated the
role of fluctuations in a discrete particle model of the
E. coli MinCDE system where each protein molecule is
explicitly tracked. This allows for a full analysis of the
fluctuations of both reactions and diffusion. Although the
effects of noise have been studied in subcellular models
without spatial dynamics [15,16], and also in some spa-
tially extended patterns [17–21], the effects of fluctua-
tions on subcellular positional information, and the
constraints on protein concentrations due to fluctuations,
have not previously been studied. We find that (i) even at
surprisingly low concentrations, the noise does not de-
stroy the oscillatory dynamics and indeed can be vital for
generating patterns in regions of parameter space where
the equivalent deterministic dynamics decays away. A
bacterium can thus exploit low copy number fluctuations
to produce stable, self-organized patterns. This result
likely applies to any stochastic reaction-diffusion model
of pattern formation involving sufficiently few protein
copies (i.e., thousands or fewer). (ii) We find evidence that
the cell employs sufficient copy numbers of the MinCDE
proteins to ensure reliable midcell division; using sub-
stantially fewer copies degrades accurate positioning of
the midcell MinCD minimum; using more does not lead
to significantly improved accuracy.

Stochastic model.—We begin by introducing the sto-
chastic model for the MinCDE dynamics, based on our
deterministic model of Ref. [9]. We employ a 1d discrete
particle model, where the particles hop between lattice
sites and where the full fluctuation effects are intrinsi-
cally included by discrete particles. As in earlier models
[9–11], the MinC dynamics is omitted, since it is known
to closely follow the MinD dynamics. The occupancy at
site i is nfigj , with j � fD; d; E; eg representing cytoplasmic
MinD, membrane MinD, cytoplasmic MinE, and mem-
brane MinE, respectively. Each protein molecule is rep-
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TABLE I. Reaction rate parameter values.

N ~��0
1 ~��2 �s�1� ~��3 �s�1� ~��0

4

200 25.0 0.27 30.0 20.0
400 2.0 0.135 15.0 10.0
800 0.6 0.0675 7.5 5.0
1500 0.25 0.036 4.0 2.7
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FIG. 1. Ratio of average MinD density in right-hand 30% of
the cell to that in left-hand 30%. Full line: stochastic dynamics
with random initial conditions at (a) N � 200, (b) N � 1500;
dashed line: deterministic dynamics with equivalent parame-
ters but with inhomogeneous initial conditions.

P H Y S I C A L R E V I E W L E T T E R S week ending
28 MARCH 2003VOLUME 90, NUMBER 12
with equal probability ~DDj�t=��x�
2, where �t is the time

increment, to one of its neighboring sites at x ! x� �x
(except for the boundary sites at either end, where hard
wall boundary conditions are imposed). At site i, the
following reactions may occur, the first being for each D
particle, and then for each d; E; e particle, respectively:

Probability:

nfigD ! nfigD � 1; nfigd ! nfigd 	 1 ~��1�t=�1	 ~��0
1n

fig
e �;

nfigD ! nfigD 	 1; nfigd ! nfigd � 1 ~��2 �t n
fig
e ;

nfigE ! nfigE � 1; nfige ! nfige 	 1 ~��3 �t n
fig
D ;

nfigE ! nfigE 	 1; nfige ! nfige � 1 ~��4�t=�1	 ~��0
4n

fig
D �:

These reactions are the stochastic analogs of the reac-
tion processes used in our deterministic partial differ-
ential equation model [9]. The ~��1 term describes
spontaneous membrane association of MinD, whereas
the ~��2 term describes ejection of MinD from the mem-
brane by membrane-bound MinE. Similarly, the ~��4 term
describes spontaneous membrane disassociation of MinE,
whereas the ~��3 term describes recruitment of MinE to the
membrane by cytoplasmic MinD. The ~��0

1, ~��0
4 ‘‘suppres-

sion’’ terms correspond to membrane MinE suppressing
the binding of MinD to the membrane and similarly to
cytoplasmic MinD suppressing the unbinding of mem-
brane MinE.

ATP dynamics.—We next address the question of how
adenosine triphospate (ATP) dynamics fits into the model.
Experimentally, MinD is an ATPase [22] and it is the
MinD-ATP complex that binds to the membrane, whereas
the release of MinD back into the cytoplasm requires
MinE-induced ATP hydrolysis [23]. Our model assumes
that, following ATP hydrolysis and release of MinD into
the cytoplasm, nucleotide exchange is sufficiently rapid to
allow for membrane reattachment of MinD-ATP almost
immediately. As a result, we model only MinD-ATP in
the cytoplasm (nfigD ) and on the membrane (nfigd ). Like
‘‘actin treadmilling’’ in eukaryotic cells, the ATP driven
binding and unbinding of MinD allows for a cyclic
MinCDE pattern to be maintained with only low levels
of protein synthesis: this makes the pattern-forming dy-
namics extremely energy efficient. This recycling is also
consistent with experiments where protein synthesis was
blocked, but where the MinCDE oscillations were ob-
served to continue unaffected [1]. Consequently, the
above model (similar to that of Ref. [11]) does not include
protein synthesis or degradation. These processes will
occur, but only on longer time scales than the relatively
rapid end-to-end oscillation of the Min proteins.

Simulations.—In our stochastic model simulations, we
use time and spatial increments �x � 0:02 �m, �t �
2� 10�5 s, so that 100 lattice sites model a 2 �m bacte-
rium. We use ~DDD � 0:28 �m2 s�1, ~DDd � 0:003 �m2 s�1,
~DDE � 0:6 �m2 s�1, ~DDe � 0:006 �m2 s�1, ~��1 � 20 s�1,
and ~��4 � 0:8 s�1. Note that the membrane diffusion
constants are much smaller than those in the cytoplasm;
this agrees with recent data indicating that MinD may
128102-2
polymerize on the membrane [23,24]. For the remaining
variables of the model, we focus on four representative
parameter sets shown in Table I, where we define N as the
total number of MinD proteins, equal to the total number
of MinE proteins [25]. However, we emphasize that our
results for the oscillatory behavior observed below are
typical for large regions of parameter space. Initially,
MinD and MinE particles are randomly distributed
on the membrane and in the cytoplasm. Equal numbers
of proteins are used since ‘‘wild-type’’ oscillations are
observed when both proteins are equally expressed on
plasmids (this is consistent, within experimental uncer-
tainties, with the earlier quoted MinDE assay [14]).

Fluctuation driven instability.—Using the parameters
in Table I, we find that the presence of noise is vital for the
oscillations to persist. This is shown in Fig. 1, where the
ratio of the average MinD density in the right-hand 30%
of the cell to that in the left-hand 30% of the cell is
plotted as a function of time for the stochastic model (at
N � 200 and N � 1500) and for the deterministic model
[9] with equivalent parameters (i.e., with the above reac-
tion probabilities directly transformed into deterministic
reaction rates). In both cases, for the deterministic model,
the protein concentrations rapidly decay away to the
homogeneous steady state (in agreement with linear
stability analysis [9]), whereas regular oscillations
continue for the stochastic model. Hence, the average
behavior of the stochastic model is clearly not describable
using the naively equivalent deterministic model. To
investigate this issue in more detail, we have examined
how steady-state/oscillation bifurcations in the determin-
istic model are altered in the stochastic model. As a
128102-2
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FIG. 2. (a),(b) MinD and (c),(d) MinE relative density pro-
files in stochastic model with (a),(c) N � 200, (b),(d) N �
1500. Thick lines represent averages over (a),(c) 160 and (b),(d)
110 consecutive cycles, respectively (maximum average den-
sity normalized to unity). Symbols ( 	 , �, 4, �) represent
individual data sets that are averaged over only a single
oscillation cycle.
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representative example, at N � 1500, using the above
parameter set in the stochastic model, but with ~DDd �
0:001 �m2 s�1, ~DDe � 0:003 �m2 s�1, ~��0

1 � 0:2, and
varying ~��4, we find that the transition from oscillatory
to steady-state behavior is reduced by around 40% from
~��4 � 0:63 s�1 (deterministic) to ~��4 � 0:39 s�1 (stochas-
tic), as determined using the end to end MinD ratio. The
noise does smear out the transition somewhat in the
stochastic model (the transition at ~��4 � 0:39 s�1 has
width �0:05 s�1), but this effect is rather small. Hence,
this smearing out cannot account for the large regions of
parameter space where oscillations occur in the stochas-
tic, but not the deterministic, model. Rather, we have a
fluctuation driven instability, where the noise has shifted
the location of the transition, thereby promoting oscilla-
tions in large regions of parameter space where it would
be forbidden in the equivalent deterministic model (see
Fig. 1). Cells can, in principle, exploit low copy number
fluctuations to generate pattern-forming dynamics. The
oscillations continue down to very low concentrations
(N � 200), underlining the robustness of the dynamics.

The above examples show that the fluctuations are
often essential for pattern formation. However, it is also
possible for the stochastic and deterministic models with
equivalent parameters [9] both to generate oscillations.
Hence, we cannot definitively conclude that fluctuations
are essential for the MinCDE oscillations. Nevertheless,
our analysis does show conclusively that cells can exploit
low copy number fluctuations for the generation of dy-
namical subcellular structure.

Effect of fluctuations on the midcell MinD minimum.—
In Fig. 2, we plot the MinD and MinE concentration
profiles for N � 200 and N � 1500, showing their aver-
ages over 160 and 110 successive cycles, respectively, and
also for four individual data sets each, where each set is
averaged over only an individual oscillation cycle. For the
long time data sets, we find that the midcell MinD con-
centration minimum (and a MinE concentration maxi-
mum) are still robustly reproduced even in the presence of
noise. However, as can be seen from the data averaged
over individual cycles, the fluctuations around this aver-
age can be very large for small N. In Fig. 3 we show
histograms of the position of the MinD concentration
minimum, where each minimum is determined over a
single oscillation cycle (the use of a single cycle here is
explained below). For N � 1500, the histogram is sharply
peaked around the cell center at 1:0� 0:07 �m (1 stand-
ard deviation). As expected, with decreasing N the width
increases: 0:09 �m at N � 800, 0:16 �m at N � 400,
and 0:27 �m at N � 200 [25]. The width of the midcell
localization is large, particularly at protein counts (N �
200 and N � 400) that are significantly below those seen
naturally. Hence, using significantly fewer protein copies
degrades the accuracy of midcell division.

Nucleoids, when present, also affect the positioning
of the FtsZ ring through the poorly understood phenom-
enon of nucleoid occlusion [8], where FtsZ rings do not
128102-3
nucleate over nucleoids and are restricted to either near
the midcell or at the cell poles. Segregated nucleoids (at
the 1=4 and 3=4 positions along the cell) will truncate the
tails of the distributions shown in Fig. 3, further enhanc-
ing the accuracy of midcell division (in agreement with
experiment [8,26]). In normal cells with nucleoids, it is
particularly important that the MinCDE system block
polar FtsZ rings, since the nucleoids themselves will
inhibit FtsZ rings elsewhere away from midcell.
Assuming that FtsZ nucleation occurs at a single cycle
MinD minimum (see below), then from Fig. 3 we see that
N � 1500 is a high enough concentration to reduce the
probability of polar division to considerably less than 0:01
per oscillation cycle. Given that about 50 complete oscil-
lation cycles normally occur between successive divi-
sions, we see that attaining this level of accuracy is
important. Significantly lower concentrations than N �
1500 will lead to an unacceptable probability of polar
division, while higher concentrations will lead to only
marginally increased accuracy, but at the cost of manu-
facturing many additional protein copies. From these
simple arguments based on fluctuation effects, we see
that E. coli may be using an optimal number of Min
proteins, trading off midpoint precision against the cost
of protein synthesis. There will be other constraints
on the protein copy numbers (e.g., sufficient MinC to
successfully inhibit off-center FtsZ ring formation),
but fluctuations set useful bounds on the concentration
levels.
128102-3
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FIG. 3. Histogram for position of MinD density minimum in
the stochastic model with (a) N � 200, (b) N � 400,
(c) N � 800, (d) N � 1500. The position of each minimum
is computed by averaging over a single oscillation cycle. Data is
for 160, 135, 120, and 110 consecutive cycles, respectively.
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Comparison with experiment.—Experimentally, the
precision of the MinCDE system can be probed in anu-
cleate cells by measuring the position of the FtsZ ring. In
these cells the only positional guide for division is the
MinCDE system, which functions even in the absence of
the nucleoids. Indeed, in these anucleate cells the FtsZ
ring position is placed at midcell with a width of 0:12 �m
(scaled to a 2 �m length) [8], somewhat larger than the
MinD distribution width 0:07 �m at N � 1500. We would
expect that FtsZ ring nucleation would not precisely track
the MinCD minimum, which could account for the differ-
ence. In order to make this comparison, we need to know
how many cycles the FtsZ nucleation averages over
to identify the location of the MinCD minimum.
Experimentally, this time scale is on the order of a mi-
nute, since, from Ref. [1], oscillation cycles of between 30
and 120 s give normal division. As referred to earlier, this
justifies a rough comparison of the width of the single
cycle ( � 90 s) MinD density minimum distribution
at N � 1500 with that of the FtsZ distribution in anu-
cleate cells.

In conclusion, we have studied fluctuations in the E. coli
MinCDE system. In some regimes, we have found that
fluctuations are essential for pattern generation. We have
also found evidence that the MinCDE concentrations may
be optimal for reliable midcell division. Based on the
MinCDE system, we see that O�103� copies of pattern-
forming proteins are required in bacteria to obtain posi-
tional information accurate to within a few percent.
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