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Abstract

This dissertation features methods of analyzing symbolic music, focused on n-gram-

based approaches, as this representation resembles the most text and natural lan-

guages. The analysis of similarities between several text and music corpora is accom-

panied with implementation of text-based methods for problems of composer classi-

fication and symbolic music similarity definition. Both problems contain thorough

evaluation of performance of the systems with comparisons to other approaches on

existing testbeds. It is also described how one can use this symbolic representation in

conjunction with genetic algorithms to tackle problems like melody generation. The

proposed method is fully automated, and the process utilizes n-gram statistics from

a sample corpus to achieve it. A method of visualization of complex symbolic music

pieces is also presented. It consist of creating a self similarity matrix of a piece in

question, revealing dependencies between voices, themes and sections, as well as music

structure. A fully automatic technique of inferring music structure from these simi-

larity matrices is also presented The proposed structure analysis system is compared

against similar approaches that operate on audio data. The evaluation shows that

the presented structure analysis system outperformed significantly all audio-based

algorithms available for comparison in both precision and recall.

xii



Chapter 1

Introduction

Beginning with the computer revolution, new opportunities have emerged for music

artists and researchers. When some started to execute computational problems on

large but slow, by today’s standards, mainframe computers others started using them

to generate early computer music. This was the starting point for thinking how com-

puters might be used to process and analyze music [102]. Music, similarly to human

speech, accompanied human evolution from its beginning, therefore deep understand-

ing of music can allow us to understand better human cognition. Since computers

are now the best tools for any kind of complicated and strenuous analysis, musicians

and musicologists joined computer science society and created such areas of research

like computer music, music information retrieval or music analysis and modelling.

On the other hand, people store large amounts of music on their computers, and

more music is available to everybody through the Internet services. These facts make

the problem of processing musical data even more important. Musical data is still

mostly treated as unstructured binary data left on the same shelf with images, movies,

or executables, unlike textual data, which is easy to process, search, or index, and

driven by a large number of available computer-aided techniques provided by natu-

ral language processing, information retrieval or text data mining like classification,

analysis, generation, summarization, indexing, searching and many more.

Additionally, the computational theory of music is an important area of research

because of music’s mathematical foundations, as well as the fact that computer sci-

ence, or the theory of computation in general, descended from mathematics and is

highly related with it. In ancient Greece, Pythagoras thought that we are all sur-

rounded with noises and tones of various frequencies and intensities, but our mind is

not noticing them, because we have just got used to them. Cosmos was also supposed

1
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to make such sounds, but our brains were not able to perceive them. According to

Pythagoras, music was one of the four foundations of wisdom, along with arithmetic,

astronomy and geometry and each of his apprentices was required to master all four

of them. Pythagoreans thought that the world was created from chaos with sound

and harmony and according to music rules [160]. Music harmony, which summa-

rizes music from the theoretical perspective, bases its foundations in acoustics, which

explores physical and mathematical features of sound.

The aim of this research is to investigate if music can be treated as a natural

language and processed in the similar way as text is being processed. This parallel

have been used in the previous work [216], where a solution to composer classifica-

tion problem have been proposed, and here, it is further extended to the problem of

unveiling music structure. Showing that music and text are very closely related will

be beneficial for both domains of music research and natural language processing, as

it would be much easier to port existing algorithms and approaches between them.

Although there are substantial differences between written text and music, they have

many features in common. The progress in music visualization and automatic navi-

gation makes music more accessible and browsable as text is. Some already existing

music visualization systems help users better perceive and navigate through music

both on a corpus scale (through various music searching methods in large corpora

using music information retrieval techniques), and locally (by aiding user experience

with particular music piece using various music analysis, processing and visualization

tools).

We developed techniques that aid navigation in music and tested them against

existing methods operating on low-level audio representation. Our hypothesis is that

although music represented in a symbolic form might be less appealing to the end

users, it gives much cleaner information for algorithms, hence allowing for more ac-

curate and thorough analysis. If this holds true, embedding symbolically represented

music in audio files would become a necessity for music publishers in the future if

they want to benefit from applications, such as ones presented in this dissertation.
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1.1 Challenges for Research in Computational Musicology

Research in the field of computational musicology is strongly trans-disciplinary. Ap-

plication of computer science methods to music requires incorporating some musico-

logical or signal processing background knowledge about the data into the process.

Similarly, from the musicology point of view, solving computational problems means

that one has to know computer science techniques and algorithms or programming in

general. This makes problems of processing music media unique in a sense, that they

usually require a targeted approach or special algorithms developed just for those

problems. However, one can also point out certain similarities with other areas which

often escape the need of coming up with custom approaches and allows using known

algorithms for new problems. I will now list major areas that require computational

approach in music domain. However, since music research is such a multifaceted field,

a different perspective would give a slightly different list.

Music Representation. This area deals with a fundamental question, how to

digitally represent music data, and it links many research domains that define trans-

disciplinarity of music research including Computer Science, Musicology, Library Sci-

ence, Cognitive Science [56] and Audio Engineering (compression). The main issues

are how to choose proper information, how to encode it so that it allows for more ac-

curate processing, or provide new information to create opportunities for solving new

problems. Since this usually leads to defining new standards [7, 8], and one should

not change them frequently, it has to be done with great care.

Search. To create an effective and efficient music information retrieval system was

the initial goal of the researchers coming from computer science domain into computa-

tional music, hence the commonly used name for the entire domain, Music Information

Retrieval. Successful models have been proposed. They use symbolically represented

corpora, with querying and indexing approaches based on n-grams [33, 41, 107, 193].

It is closely related to textual information retrieval as it uses similar techniques to



4

achieve similar goals. Orio and Neve [142] pointed out that simple n-gram-based ap-

proach yields much better results than more sophisticated models based on a priori

music knowledge.

Not all problems in the music search domain have text processing origin. Lots

of attention has been paid to Query By Humming (QBH) systems which incor-

porate melody extraction techniques from hummed queries to match against the

database [56]. There are also audio-based systems that, in most cases, try to solve

another problem — Query By Example (QBE), where one searches, using a short

audio fragment, for the exact song in a database of audio pieces, that the query-

ing fragment comes from. Lee and Downie [105] concluded from their user study,

investigating users information needs, that this is a kind of search that users are

most likely willing to do. The most successful example of such system is UK-based

Shazam [205,206], with more than 2.5 million songs in their database.

Typke et al. [189] lists 17 different music information retrieval systems where 7

operate on audio data only, 6 on symbolic data only and 3 on both.

In this dissertation, we are elaborating on the n-gram approach to symbolic music,

showing how it can be applied to other tasks and fields within computational music

research.

Browsing and Navigating. Direct searching for a specific phrase or document is

not the only way of seeking information. Issuing and understanding music queries is

not that straightforward as it is in textual information retrieval. This forms a place

for other approaches that do not require forming the actual query [141]. They can

either operate on corpus (entire collection) or opus (individual piece) level.

The first task is called music browsing. An effective music browser should allow

user to quickly find relevant pieces by organizing, grouping and linking music content

in a way, that is meaningful for the user [65]. Lee and Downie [105] identified, that

relations between music pieces are among the most desired information that users are

seeking for. A good music browser should adjust to user needs, mitigating the lack

of the actual query [141].
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On the opus level, it is usually called music navigation, and it helps users to

locate interesting parts in music pieces. Possible approaches involve creating music

summaries, creating linked description of a given piece, indicating verses, choruses

enabling users to navigate consciously within a piece. An example of such system has

been developed by Goto [66].

Futrelle and Downie [56] referred to this area as User Interface Design, but in

our opinion the most challenging part is the actual retrieval of the dependencies and

navigational information from music corpora, not the interface part.

Recommendation. This is currently a very active area, not only in music domain.

Orio [141] refers to it as music filtering, because such system can be seen as a filter that

adjusts itself to user personal needs, making available to the user only those items,

that suit them according to their personal profile. It is often called personalized

search, when it also involves the actual query from the user. Recommendations are

usually based on either social data associated with the music context (collaborative

filtering) or directly on music data and non-social metadata, like lyrics (content-based

recommendation). According to the survey by Lee and Downie [105], we are most

likely to ask family and friends for help when we search for music or music information,

twice as eagerly as anybody else, including music professionals. They also found out

that we search the most for music heard from our friends and family places and

that we are positive to receive recommendations from them as well. This is why

recommendation systems are important, as they address typically social users needs

through an automatic way. According to Stenzel and Kamps [174], pure collaborative-

based models outperform content-based, which may indicate that lots can be done to

improve the music information technology side of the music recommendation task.

Classification. This typical data mining task is present in all domains, and for

all sorts of data. In music, classification challenges cover detection of various music

aspects including genre, composer, performer, sound type (e.g., speech, music, envi-

ronmental sound [141]), or instruments used in a recording. According to user surveys,
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we would respond positively if the system offered us the ability to listen to similar

music, similar artists of similar genre of what we are currently listening to [105].

What makes music classification different and the research unique, is the problem of

selecting features used for classifier input data. Typically various audio-based features

(spectral and temporal), symbolic features and meta-data are aggregated for better

results [56]. What is interesting, while music classification solutions are frequently

quite complex systems, studies have showed, that “even untrained listeners are quite

good at classifying audio data with very short excerpts (less than 1 sec)” [141], which

shows the ability of human perception in this regard versus current state-of-the-art

computer systems.

Visualization. Similarly to music browsing and navigating, music visualization can

be aimed at opus or corpus level. Its main goal is not to automatically create relations,

either between music pieces or within a piece, but rather visualize them and leave

them to the users to interpret by themselves. This makes the result highly subjective

and therefore not easy to evaluate. The only way to do it directly is through user

studies, but they are quite rarely seen in music domain.

Orio [141] motivates the need of corpus scoped visualizations with difficulties that

users have organizing their personal collections of music and that a meaningful spa-

tial organization of pieces will allow them to draw correct conclusions about where to

locate specific pieces. Those solutions are based usually on calculating similarity be-

tween pieces and further reducing dimensionality to fit into several visual dimensions

or by visualizing them using self-organizing maps (SOMs). They usually aim to suit

non-expert users [141].

On the other hand, the main idea behind opus-based visualization techniques is

to create a snapshot representing the content of a music piece, so that one can draw

conclusions about the music without hearing it. Isaacson [85] refers to Common Music

Notation as a first approach to this task. What those approaches have in common

is that they usually replace temporal dimension of music with one spatial dimension,
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allowing users to capture the main idea behind a piece in a glimpse, much like we

perceive images. Chapter 5 of this dissertation provides our solution to this task.

Audio Transcription. Many areas in music research that have been introduced

above, prefer some music representations more than others. Symbolic representation

carries cleaner and more accurate information for many tasks, while audio is simply

more popular, so for some applications, like recommendations, audio data is assumed

at the input. For some tasks, like search, we know quite simple solutions that work

well with symbolic data but it is currently not possible to transfer them to audio

domain. Audio transcription tries to bridge those two worlds by creating tools to au-

tomatically recognize notes from the recording. Although the technology is improving,

the accuracy of current state-of-the-art solutions, especially for polyphonic music, is

still too small if one wants to use their output for further analysis or even just for

search [43,164]. However, there are at least two ways to mitigate the problem. First

one uses score-to-audio or midi-to-audio alignment approach, where both symbolic

description and audio data are available a priori. We just need to map temporarily

symbolic features onto audio data, which can be done fairy accurately [31,54,81,97].

The second approach circumvents the need of the full transcription using a mid-level

representation that gives more higher level information than audio, but does not in-

troduce as many errors as a fully transcribed piece. It is useful in some tasks, like

structure analysis [125].

Music Information Discovery. This area embraces the needs and hopes of mu-

sicologists that they laid upon the arrival of computer techniques that would allow

them to analyze music more quickly and thoroughly. The domain is also called Musi-

cal Analysis [56]. According to Honing [78], there has been recently an important shift

within musicology from perceiving music mostly as an art and musicology as a tool for

analyzing art, into a more scientific field, that deals with music as an acoustic, psy-

chological and cognitive phenomenon. This shift into empirical, computational, and

cognitive musicology can be seen as a “cognitive revolution” in the humanities [78].
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As a result, the role of formalization have increased, resulting in the emergence of

formal, computational theories of music with the first one being Lerdahl and Jackend-

off’s “Generative theory of Tonal Music” [111]. Many have followed with similar ideas

(Narmour [135], Temperley [178]) and with the actual implementations of the original

theories [26, 70]. Developing those techniques seems important, even when one does

not see any direct applications and benefits, because they actually try to achieve what

Natural Language Processing is doing for text. Parsing of written text is an essential

part of many high-level applications that require this higher-level understanding of a

text they deal with. It seems very likely that we will need music information discov-

ery tools for more sophisticated music applications in the near future, apart from the

current applications in musicology.

Music OCR. This domain is a part of image-processing domain, but involves the-

oretical music knowledge to improve and interpret the results. It is a very important,

as many of the existing music scores were published before the computer era, and

digitizing them is as vital as digitizing books for libraries. Bainbridge and Bell [4]

provide an overview of a typical approach to the problem. According to Rebelo et

al. [159], most of the difficulties lie not on the image processing side, but in the in-

terpretation of the results which are still far from perfect, especially for hand-written

scores.

Music social networks. Mining music social networks is an important and quickly

growing area that combines music data and metadata with user social information. It

has been shown by Lee [105], that our musical taste is highly influenced by our peers.

They call this social information, relational metadata. There are successful systems,

like last.fm, that rely solely on social dependencies and previous listening history in

playlist generation. Youtube, which is mostly used as a free music store, uses users

browsing patterns to recommend similar songs. What is different, and puts this field

in a better position comparing to other areas of music research, is that there are big
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datasets of socially generated user data for evaluation and development of socially

motivated tools, one of the recent examples being million song dataset challenge [127].

1.2 Levels of Computational Music Research

Computational Music Research (CMR) or Music Information Research (MIR) spans

all sorts of levels, on which one can perceive music and analyze music data. It is

often called Music Information Retrieval for historical reasons, although one could

prefer not to use this term, as it reminds too much of textual Information Retrieval,

which in the end limits the perceived scope of the domain to search, and search

related problems. In fact, MIR deals with a range of problems, from low-level analysis

of audio signals using signal processing techniques, to high-level semantic analysis

and interpretation of music pieces. Figure 1.2, taken from Fingerhut [50], depicts

the dependencies between various levels, that MIR operates on. They differentiate

between internal data sources (blue) and external actors (white), which, through their

interactions with the system, become also data providers bringing meta-data (on

various levels), usage data or social data. Through application of various techniques,

a knowledge is generated (in yellow) gradually pushing acoustic data onto semantic

and cognitive level. Similarly, hierarchical approach was presented by Vincent et

al. [204], where a dynamic Bayesian network model was proposed spanning all facets

of music, with similar dependencies as presented by Fingerhut [50]. Downie [39] in

his article about Music Information Retrieval defines a similar distinction between

different facets of music information indicating main challenges that come with it:

• multi-representation: Each piece of music is represented on different levels

in different forms, i.e., audio, sheet music or symbolic representations.

• multi-culturalism: Not only music, but also approach to music and aesthetics

differ among musical cultures.

• multi-experience: Since music is art, and by nature it is very subjective,

many basic notions are not as clearly defined as for other domains, like text. For
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Figure 1.1: Levels of music information retrieval. External data sources are indicated
in white, internal in blue, information in yellow and interactions / operations in red
arrows. Adapted from [50]

instance music similarity is a very subjective term and everybody can perceive it

on different levels. As a result, we can have many different similarity perceptions

and all of them are valid.

• multi-disciplinarity: The entire domain is driven by a compilation of needs of

several different research communities (Computer Science, Audio Engineering,

Musicology, Library Science, Cognitive Science and Law [56]). Those needs

not always match and in some cases, they are even contradictory (e.g., Digital

Rights Management (DRM) and data openness), which makes it sometimes

impossible to satisfy everybody.
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1.3 Importance of Symbolic Music Research

It is relatively easy to indicate, why music research is important in general: there

is plenty of music content on the Internet and in personal collections and one needs

methods to process, analyze, organize, and search through them, and make the con-

tent more semantically meaningful for a user and other applications as well. However,

one realizes, that most of the content, that these problems deal with, is in audio form,

and most of the solutions to these problems operate in audio domain as well. This

raises an important question: why would we ever care about symbolic music. There

are actually several good reasons, why it is important to develop solutions for symbolic

data.

The lack of symbolic data and other higher-level meta information aligned with

audio and available for processing is only temporary, since the general direction for

all sorts of digital content is towards combining raw data with its high-level meta-

data. For example, currently most images taken with any camera are supplied with

EXIF data — a detailed description about the conditions, parameters, even GPS

location and direction, where the picture was taken, and even names of people on

the actual photo if face detection and face recognition functions are provided with a

given camera. The same phenomenon can be observed for music files. If purchased

in a good store, they are fully supplied with general information about the song, like

artist, title, album, etc. That information is embedded within an MP3 file in a form

of an ID3 tag. When information about melodic, harmonic or structural layer would

appear as a standard along with audio, then there will be not only plenty of symbolic

music corpora, but also corpora of aligned symbolic and audio data for tasks that

require both at the same time.

Second reason results from music’s dichotomy, or its rather multi-faceted nature

(Downie’s multi-representation [39]) which states, that every music opus contains

information at all those levels of representation, and each level brings some new and

important aspects of the given piece. According to Fingerhut [50], music is not only

recorded music, it is also scores (prints and symbols), books (theory) and infomation
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about it (meta-data): virtually all the aspects, what can be found on Figure 1.2. If

we limits ourselves to just one representation for a given problem, then the quality

of the results is also limited by the quality of the data and natural limitations of

certain representation. This may be one of the reasons behind the “glass ceiling

effect” described by Downie [42], when one realizes, that despite the efforts and

sophisticated solutions we cannot get close with the results of the algorithms to what

humans with their music perception can easily achieve. Some music representations

are simply lacking important aspects of the problem we are solving, for instance

precise information about notes pitch, position and identification, which is necessary

for search applications, is often scrambled, and usually lost, in audio stream, but it is

precisely defined on symbolic level. On the other hand, timbral information is part of

the audio signal but it is irrelevant on the symbolic level [85]. Just because of that, to

analyze content at any level is equally important than analysis of this content at other

layers (obviously, if the level contains relevant information to solve a given problem),

regardless if this makes the problem easier or harder to solve. The ideal solution

to any problem would involve analysis at all layers simultaneously, using integrated

approach, which would automatically decide, which information are the most relevant

for a given task as suggested by Vincent et al. [204] or by employing some mid-level

representations that reduce the semantic gap between various levels, on which music

is represented [125].

Another argument for symbolic music research is shared among those trans-

disciplinary research fields, that join quite distant domains, like arts and sciences

— it is quite unlikely for a researcher to acquire enough skills in both domains to

effectively join them. This problem was identified by Downie [42], who looked into

MIREX, which hosts evaluation of a number of MIR related tasks. He concluded,

that the domain has biased towards audio-based techniques due to the fact, that most

researchers have strengths in sound engineering which is closely related to computer

science. He suggested that the results in some MIR domains would be better if more
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musically meaningful features were analyzed and used, and symbolic representation

is more musically meaningful than pure audio.

1.4 Research Questions

This dissertation addresses a number of research problems summarized in the ques-

tions below. The main focus is put on the development of the new techniques as well

as adaptation of the existing ones from other fields, to aid analysis of symbolic music.

Symbolic music for those problems is perceived as a sequence of symbols, and there-

fore it is approached in a similar way as a sequence of letters (i.e., text). The last two

questions tackle the problem of structural segmentation, which is usually analyzed

with audio data, while here we focus on using symbolic representation, showing the

benefits of using it for this particular task.

How one can apply well-studied text processing techniques to symbolic

music data? My current analysis of music data presented in this dissertation and

other previous work shows that one can reasonably assume, that music in its symbolic

form can be analyzed and used in the same way as text. Domains of computational

music research and natural language processing deal with problems of similar nature

using similar methods. I will expand this issue by analyzing how various methods

of keyword extraction, or the choice of similarity measure affects performance of

music-related AI tasks, like classification. The parallels of music and text will also

be analyzed for enhancing proposed visualization approach to be more semantic, i.e.,

visualizing more high-level features as well as for developing some fundamental music

operators, like similarity, based on their textual counterparts. Part of the answer to

this question has been our submission that evaluated text-based similarity measures

for MIREX 2011 challenge for symbolic music similarity [99].

How to represent and automatically evaluate melodies for music generation

task within various frameworks of genetic algorithms? Genetic algorithms

(GA) is a flexible tool that can be applied in various domains for many kinds of
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data, so it is both interesting and important to determine how we can represent

music for GA systems and which approach to genetic algorithms would be the most

suitable for automatic music generation. Are there any specific features that make

music applications in genetic algorithms unique? What is the fitness landscape of the

domain? Is it diverse, or are we stuck in a single local optimum? Since running a

genetic algorithm usually involves a large number of fitness evaluations of individuals

in big populations, how one can approach automatic fitness evaluation to allow for

wider applications of GA methods in music domain? Which GA framework works

best for symbolically represented music?

How to visualize symbolic music such that both local patterns and high-

level structure are easy to perceive? In order to get an idea about the content

and the structure of a piece of music, the obvious solution is to listen to it, but this

takes time — the same as the length of the piece. Is it possible to achieve a good

perception of music content through visual matters without the need of spending

time for listening? Does the proposed visualization method reveal structure, patterns,

music textures and dependencies between voices or instruments? Can we make the

visualization method suitable for various styles and genres?

How to automatically infer the structure of a symbolically encoded music

piece? It has been shown that it is possible to create a system that detects bound-

aries between different parts of a piece that have different music features. Those

systems frequently use audio data for analysis [147], but even then, it has been shown

that extracting higher-level features from audio leads to much cleaner solutions [125].

This might be an indication that knowing the actual music events, or in general —

symbolic music representation of a given piece, could lead to more accurate and more

in-depth analysis of the content. It could be even possible that some dependencies

that are not possible to be inferred from audio data will emerge by the proper use of

symbolic data. Looking for such features is one of the goals of the thesis.
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Does the process of finding a high-level structure benefit from high-level

symbolic data, comparing to low-level audio? To answer this question, one

can research and develop methods of detecting structure in music pieces based on

the visualizations proposed for symbolic music. The cleaner, more precise symbolic

data should allow for more accurate and precise piece partitioning; more high-level

information could result in detection of related excerpts which would not look similar

using current state-of-the-art techniques for audio data. The use of text parallels

could aid detection of similar parts of the piece which could work better than the

methods based on image processing used for structure analysis from audio similarity

matrices. To answer those issues we will perform a comparison between our solution

and a number of methods evaluated on audio data.

1.5 Contributions

Analysis of linguistic parallels in symbolic music research. We have intro-

duced the history and levels of Natural Language Processing and aligned it with the

equivalent concepts and theories in the field of Computational Musicology, commonly

referred to as Music Information Retrieval. The similarities allowed for hypothesis-

ing about the possible paths Computational Musicology can take. The findings from

this analysis were presented during fMIR workshop held as a part of ISMIR 2010

conference, and published in conference proceedings [211].

Development of MIDI::Corpus module for handling corpora of MIDI files.

We have developed a PERL module to allow for simple handling and analysis of

symbolic music corpora stored in MIDI files. It provides object-oriented interface,

incorporates n-gram-based approach, and contains relevant analytics and statistics

functions. It implements a number of similarity functions with bag-of-terms assump-

tion, typically used in Data Mining, Information Retrieval or Natural Language Pro-

cessing.
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Collection and analysis of several classical symbolic music corpora. We

have collected and analyzed several classical music corpora and compared its features

with a pop music corpus (Beatles songs) and two text corpora: Wikipedia (English)

and Orchid (Thai), seeking primarily for similarities and differences between music

and written natural languages. The analysis covered areas from size statistics, entropy

of symbols, distribution of terms (n-grams) and complexity.

Analysis and comparison of n-gram based approaches to composer clas-

sification and symbolic music similarity problems. Using n-grams and bag-

of-terms assumption allows treating symbolic music in the same way as text. We

have applied this philosophy in two tasks: authorship attribution (classification) and

retrieval of similar items to the query. In the classification task, we have compared

results with previous work as well as human judgements (Haydn/Mozart Quartet

Quiz). The solution to the retrieval task has been submitted to 2011 MIREX Sym-

bolic Melodic Similarity task [212,213].

Design and application of a number of genetic algorithm models to melodies

generation problem. We have presented how one can represent melodies in the

framework of genetic algorithms and automatically evaluate their fitness based on

a corpus of existing symbolic music pieces. This approach has been applied to var-

ious genetic algorithm frameworks, including generational, steady-state and Pareto

optimization models. The main goal was to observe and understand how individu-

als behave under different models. The work has been presented on 2009 EvoStar

conference [210].

Design and development of a new symbolic music visualization scheme

based on self-similarity matrices. We have designed and developed a visual-

ization system for symbolic music. It unveils both general structure and fine theme

leading on a single image, through the concept of music self-similarity. The GUI
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application has been developed, allowing anybody to use the system with their own

MIDI files. The work has been presented during 2009 ICMC Conference [209].

Design and development of an automatic structure analysis algorithm for

symbolic music. Since the structure of a piece was very apparent on the result-

ing visualizations, the natural extension was to derive the structure automatically.

We have proposed a system, based on self-similarity matrices, that uses a modified

Dijkstra algorithm to derive the piece structure. The system automatically labels

obtained segments, indicating similar sections.

Quantitative comparison between algorithms for structural segmentation

of audio and symbolic files on classical music pieces. We have compared

the proposed segmentation system, operating on MIDI files, with five algorithms

operating on audio data. We have used evaluation results obtained by an independent

research group for audio data. We have manually aligned corresponding MIDI files

with pieces in audio dataset and evaluated our algorithm under the same criteria.

We have determined the statistical significance of the differences of performance of

segmentation methods in question.

1.6 Publications

The following work have been published during the course of this doctorate research

studies:

• Jacek Wo lkowicz, Malcolm Heywood, and Vlado Kešelj. Evolving indirectly

represented melodies with corpus-based fitness evaluation. In EvoWorkshops

’09: Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary

Computing, pages 603–608, Berlin, Heidelberg, April 2009. Springer-Verlag.

[210]
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• Jacek Wo lkowicz, Stephen Brooks, and Vlado Kešelj. Midivis: Visualizing mu-

sic structure via similarity matrices. In Proceedings of International Computer

Music Conference ICMC2009, pages 53–56, August 2009. [209]

• Jacek Wo lkowicz and Vlado Kešelj. Predicting development of research in music

based on parallels with natural language processing. In 2010 Int. Society for

Music Information Retrieval Conf.(ISMIR), fMIR Workshop, pages 665–667,

2010. [211]

• Jacek Wo lkowicz and Vlado Kešelj. Text information retrieval approach to mu-

sic information retrieval. In Music Information Retrieval Evaluation eXchange

(MIREX), 2011. [212]

• Jacek Wo lkowicz and Vlado Kešelj. Analysis of important factors for measuring

similarity of symbolic music using n-gram-based, bag-of-words approach. In

Leila Kosseim and Diana Inkpen, editors, Advances in Artificial Intelligence,

volume 7310 of Lecture Notes in Computer Science, pages 230–241. Springer

Berlin / Heidelberg, 2012. [213]

• Jacek Wo lkowicz and Vlado Kešelj. Evaluation of n-gram-based classifica-

tion approaches on classical music corpora. In Proceedings to The Fourth In-

ternational Conference on Mathematics and Computation in Music, Montreal,

Canada, June 2013. Springer-Verlag: Berlin, Heidelberg. [214].

The following publication is related to the research conducted in this thesis, and it

has been published during the course of my doctorate studies, but it is a follow-up to

my previous master’s thesis research:

• Jacek Wo lkowicz, Zbigniew Kulka, and Vlado Kešelj. N-gram-based approach

to composer recognition. Archives of Acoustics, 33(2008)(1):43–55, Jan 2008.

[215]
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1.7 Overview of the Dissertation

Chapter 2 contains the description of the digital data formats, in which music is

available: audio and symbolic. It is followed by the description of the ways basic

music features - pitch and rhythm - are encoded in symbolic music, followed by the

analysis of the general approaches to symbolic music analysis. Chapter 2 concludes

with analysis of linguistic parallels in symbolic music research.

Chapter 3 introduces n-gram based approach to monophonic symbolic music, used

throughout the dissertation. It is then followed by the description of collected corpora

of classical symbolic music along with a Beatles corpus, and two text corpora, used

for comparison. Then, MIDI::Corpus module, used to manipulate corpora of MIDI

files is introduced. This is followed by statistical analysis of collected corpora and

application of two typical data mining tasks - document classification and retrieval of

relevant documents to a given query. The latter constitutes our submission to 2011

MIREX symbolic melodic similarity task.

Chapter 4 contains description of our solution to melodies generation task with

the use of Genetic Algorithms (GA). We propose representation of melodies which

allows for the use of standard GA operators, and automatic fitness evaluation method

based on a corpus of man-made music pieces. Several GA schemes were evaluated,

which include Generational GA, Steady-State GA and multi-objective optimization.

The chapter ends with a discussion on issues and possible extensions of the system.

Chapter 5 introduces a method of visualizing symbolic music pieces based on

creating self-similarity matrices. The overview of the existing approaches continues

with discussion about certain challenges and features of the system, including dealing

with multiple tracks, defining a simple similarity function and applying filtering based

on certain theme. It is accompanied with a number of examples, showing each step

of the process. It follows with the description of the software package developed

to allow for interactive creation and playback of our visualizations. The chapter

concludes with more examples and future work.
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Chapter 6 starts with the description of the existing approaches to the problem

of structural segmentation. The methodology section contains redefinition of self-

similarity matrix focused on structural segmentation, rather than on visualization.

It is followed by exhaustive analysis of a proper similarity function that would give

the most desirable base for a good structural analysis. It is accompanied with a

number of examples, showing how well each similarity function unveils the structure

of a sample piece. The chapter continues with the description of the method of

deriving structural information from similarity matrices, from converting it to a single

value (monochrome) layer, through definition of a novelty function, description of the

modified Dijkstra algorithm that allows for jumps that indicate section boundaries,

to the procedure of inferring final section boundaries and section labels. It is then

followed with a description of the evaluation procedure, where our method is compared

against five algorithms which were previously evaluated independently on a small

testbed consisting of a number of classical music pieces. Chapter concludes with a

comparison of the results with the analysis of significance of the obtained difference

in performance of the algorithms.



Chapter 2

Background

A very important aspect of music is its polychotomy. From the digital perspective,

music is usually represented in two forms: audio and symbolic, which are two, very

different approaches to digitizing music. Currently, there is no good method of con-

verting audio to symbolic representation, while the opposite conversion is, by nature,

inaccurate. This sets the two worlds far apart. However, the research done in both

areas — audio and symbolic music — deals, in fact, with the same object, a music

piece. Both representations are two sides of the same coin: symbolic information and

its audio realization.

2.1 Recorded Audio

Audio represents recorded music as a physical analog signal that is further quantified

and discretized. Good quality output requires much storage space as quantization

and discretization generates lots of data. To estimate those requirements, one can

follow this simple analysis. Humans can perceive audio signals with frequencies up

to 20kHz. According to the Nyquist sampling theory [138], the appropriate sampling

frequency should double the maximal component of the signal, which in this case gives

a requirement for sampling with at least 40kHz. The signal has to be also quantized

with an appropriate level of details. Human ear is most sensitive in the range of

1-3kHz where its dynamic range reaches 120dB (between the absolute threshold of

hearing and the threshold of pain). This is, however, much more than perceived

dynamics of speech (30dB) or music (55dB) [208]. To keep 120 dB of dynamic range,

assuming 6dB/bit, it is necessary to have 20 bits dynamic or 220 discrete sound

levels. On this psychoacoustic basis, standards were defined with the most popular,

21
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Figure 2.1: Human hearing range spans a range of frequencies and sound levels.
Adapted from F. Winckel [208].

CD quality, being 44.1 kHz sampling frequency with 16 bits quantization, which

captures most of the range of what humans can hear [55]. This gives the estimated

requirements for bandwidth of a stereo Hi-Fi (High Fidelity) signal at the level of

about 172kB per second or 10MB per minute or 600MB per hour.

To cope with the problem of audio file sizes, perceptual audio coding has been

developed which allows on focusing only for those parts of the signal spectrum that are

perceived by human ear. Those methods use various psychoacoustic phenomena, like

temporal and frequency masking or hearing limits to achieve similar sound perception

with much lower bandwidth required. Auditory tests show that current audio codecs

are capable to deliver high-quality audio with 128kbps (or 16kB per second or 1 MB
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per minute) limit on bandwidth [173]. This procedure reduces significantly size of the

output files, however it keeps them in the same order of magnitude.

The principal modus operandi behind compression techniques is to deal with spec-

tral representation of an audio signal, which is then used to extract features from the

data. Most approaches to many tasks in the audio domain incorporate this approach.

Typical workflow (from Pohle [156]) involves applying short and overlapping windows

on the input signal to isolate frames, and computing certain features in each frame

or global features for the entire piece. Feature extraction methods typically involve

features belonging to the following groups (mainly from Tzanetakis [192]):

• Time domain features (based on signal): zero crossing rate, audio power.

• Timbral texture features (based on spectrum): spectral centroid, roll-off, flux,

spread and flatness, as well as mel-frequency cepstral coefficients (MFCC), low-

energy ratio.

• Rhythmic content features (based on beat histogram): amplitude of highest

peaks, peak ratio, bpm (beats per minute) values of highest peaks, beat strength.

• Pitch content features (based on pitch histogram): most dominant pitch am-

plitude and octave range, main pitch class, main tonal interval relation, pitch

detection strength and chroma vector (folded pitch histogram).

The obtained feature vectors are then subjected to a relevant data mining algorithm

for a given problem.

2.2 Symbolic Representations

The second approach to storing music pieces on digital media is to encode music

scripts prepared by composers, which define how to play them back to achieve the

final effect as intended by the author. Music, as well as text, has its symbolic represen-

tation. Moreover, both music and writing are the only old human cognitive activities

where symbolic representation is typically used. Others, like painting, sculpture, or

dance did not have such symbolic notation.
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The first text script system, cuneiform, was found by Sumerians in Mesopotamia

about 3200 b.c. [182], while the first known inscription that may be treated as a basic

music notation is dated back to 2000 b.c. [166]. Current notation used by musicians

these days, known as Western Notation or Common Music Notation (CMN), origi-

nated in 14th century in France, but it is not a definite distinction as it had been

evolving constantly since early 11th century (Guido d’Arezzo) to converge in 18th

century, with Bach’s introduction of ‘equal temperament’ [60].

Accroding to Isaacson [85], this slow evolution led to creation of certain metaphors

that reflect and define our music understanding. We perceive some note as higher

and longer than others which reflect their position and space, they occupy. Melodies

ascend and descend creating a sense of direction. Motifs are stretched and compressed,

reflecting their appearance on the score [85].

Most music events in Common Music Notation are notes positioned on a five-line

staff for accurate pitch definition in the twelve-tone chromatic scale. The look of each

note defines its length in comparison to other notes. For more complex scores, a staff

system is used, that comprises many staves. It is usually one staff or one staff group

for an instrument.

The use of additional marking is required for precise note placement and perfor-

mance guidelines:

• Rests mark periods of silence in music.

• Grace notes, trills and other ornament marking may introduce additional notes

not stated explicitly in the score.

• Clefs, key signatures and accidentals may alter a note’s pitch. The use of them

is necessary to display all possible pitches in a twelve-tone chromatic scale since

pure five-line staff accommodates only diatonic notes in C key.

• Tempo marking such as dots, ties, fermatae, some verbal indications, affects

duration of notes and rests.

• Articulation marking affects the ways a note is to be played.



25

Name extension format description

Finale .mus proprietary/binary —
Sibelius .sib proprietary/binary —

MusicXML .mxl open/textual XML format
LilyPond .ly open/textual LATEX style

Guido .gmn open/textual similar to LilyPond, compact
Humdrum .hrm, .krn open/textual pseudo tabular, research oriented

MIDI .mid open/binary encodes only audible features

Table 2.1: Score formats.

• There are more, mainly verbal, marking that define music expression.

Music symbolic representation can not be directly ported into computers like text

is, but there are ways to convert this representation to be more computer friendly.

Their aim is not to store the exact and accurate information about the recorded sound

but to digitally encode music score, which can be later used by a musician to learn

and perform the piece. This approach keeps just the information intended by the

composer, discarding all the details about actual recording.

Symbolic representations are also used by computer notation software, whose aim

is to capture all possible visual features of a score, so that one can print it, without

loosing any important information from the original score. All scorewriting systems

allow for playback of an edited file, which proves that those formats are capable of

storing symbolic music information (contrary to scanned versions of the same score).

There are two leading commercial scorewriting programs (Finale [84] and Sibelius

[83]), and both of them use their own proprietary binary file format (.mus and .sib

respectively). There is also a number of open standards, and their transparency makes

them more appealing for keeping symbolic music for research and analysis purposes.

Some of them, e.g., Humdrum [82], are designed specifically to meet requirements of

music researchers, but for most of them, the main purpose is to serve music scripting.

The most popular formats for storing symbolically represented music are described

in Table 2.1.
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2.2.1 MIDI Protocol

MIDI represents a different approach. Instead of storing actual audio information,

which requires lots of space, it keeps only information about music events such as

pressing or releasing a key on some predefined instrument. Unlike scorewriters, it

does not intentionally store any information necessary to print the actual music score,

only audible events are stored in a MIDI file, however approximate printing is still

possible.

MIDI stands for Musical Instrument Digital Interface and it was designed as a

communication protocol to control and synchronize musical instruments, computers

and other electronic equipment. The aim was to extend a set of event messages

beyond media signals such as pitch and intensity of a played note, to other types

events like control signal for various audio and non-audio features and precise clock

signals for synchronization. MIDI standard defines not only the electronic protocol,

but extends to hardware specification as well (RFC 6295 [104]). MIDI standard has

been adopted widely in the industry and remained unchanged since its introduction

in 1983 despite all the changes in the technology.

Standard MIDI File (SMF) is a container for MIDI protocol messages. It contains

concurrent channels and tracks. Each channel is a container for events, called MIDI

messages. There are three categories of these messages:

1. Channel (voice) messages — represent media type, playback events, like Note-

On (note initiation), Note-Off (note termination), Key Pressure (sound volume),

etc.

2. System (real-time) messages — messages controlling real-time events that may

happen during playback, such as Clock, Tick, Start, Stop, Continue, Reset.

They affect control and flow of other sync messages.

3. System Common messages — provide additional information, which is not es-

sential for playback, such as System Exclusive messages (mostly textual data)

and playlist controllers (Song Select, Song Request).
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Both channel and real-time messages depend on time. Time in Standard Midi

File is counted in microseconds, so any event can be precisely located. While time

information remains more or less continuous (as it is in audio data), pitch informa-

tion is encoded symbolically. Instead of frequency value, a key number on a virtual

instrument is used. There are 128 possible notes on a MIDI device, numbered from

0 to 127. The middle C (261 Hz for most temperaments) is note number 60, and, as

in the well-tempered system, the frequency of each note is 21/12 times larger than the

previous note. This solution puts a constraint to the use of MIDI for western mu-

sic’s chromatic, twelve-tone scale. The use for other systems is problematic, although

possible with the use of pitch bend events, if they do not fit easily into twelve-tone

well-tempered scale.

These features put MIDI somewhere in between audio and music score formats.

Like audio, it operates in continuous time, keeping information on audible events.

Except for fixed notes frequency levels, information in MIDI files is unstructured and

unbounded by rules of music. High-level music features like phrase structures, key,

rhythm are not part of MIDI standard, although they may be stored as metadata in

Sys-Ex messages. However, in most of the cases it is not present and scorewriting

software has to infer those information from bare notes. Along with audio data,

its main purpose is for recording and playing back music performances. With a

proper synthesizing software and well-formed data file, the idea behind MIDI is that

it can produce quite good results in terms of perception assuming that it stores a

tiny fraction of the original audio information (typically less than 0.1% comparing to

Hi-Fi audio), still being able to recover most of the score information. In most cases

this is enough for research where one does not deal with very high-level and abstract

music features. Other positive aspect of using MIDI in research is that it is, and has

been, used widely, therefore it is quite easy to acquire a corpus of any genre of music,

large enough to perform statistically significant analysis on it. It is usually not the

case with other scripting formats.
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MIDI time. MIDI specification has a very intricate way of defining time. The

reason is to keep the definition of each measured note the same regardless of local

tempo fluctuations. MIDI file uses ticks as internal time dimension for all the events.

The way, how ticks map to real life time, i.e., seconds, is defined with two parameters:

• division appears once, in the header and defines how many ticks fall into one

quarter note (tpqn), typically a value of 96 is used, but anybody can set it to

a higher value if a more fine grained representation is required.

• tempo events are meta events scattered across a MIDI file, each defining how

many microseconds lasts a quarter note. Their position, as other MIDI events,

is measured in ticks. Tempo events define a tempo map, indicating how the

speed of music fluctuates with in a piece. The default tempo assumed at the

beginning of a file is 500000 microseconds per quarter note, or 120 beats per

minute.

For example, to calculate the duration of a piece, a following formula can be used:

duration =
0.5p1
d

+
N−1∑
i=1

(
ti (pi+1 − pi)

1000000d

)
+
tN (pmax − pN)

1000000d
(2.1)

where d is the division from header, N is the number of tempo events in the file, pi

is a position on a ticks scale of ith tempo event, ti is the tempo value defined by ith

tempo event, and pmax is the position of the last note-off event in the file.

2.3 Format Conversions

As it has been pointed out in the previous sections, music digital representations

span various levels and the most important distinction is between three of them:

audio (digital signals), music events (e.g., MIDI, unstructured audio event stream)

and music score (music notation that encodes all high-level music features). Tasks

at each of these levels experience different issues and problems so it is important to

realize what are the limitations of conversions between those formats. In practise,

there are four steps to be considered, two top-down (score to events, events to audio)
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and two bottom-up (audio to events, events to score). Both top-down steps are

quite straightforward, especially score to event representation, which requires only

identification of audible features in the score with all the features that affect them,

and decoding them into events (MIDI). Music events-to-audio process, which is called

synthesizing, involves either synthesis of artificial sounds from a computational model

or by using a set of digital audio samples, which is similar to the process of using

fonts in word processing software. Both of these methods work quite well, although

the final result may be different from the original recording. It is not surprising, given

the fact that MIDI format can be considered as a lossy compression with a ratio of

more than 1 to 1000. Nevertheless, music is primarily an art, so a lot depends on

the performers interpretation and subtle details, that define player’s uniqueness and

artistry. This cannot and should not ever be captured and accurately re-generated

using any formal symbolism, since true art should be inimitable.

The problem starts when one wants to transcribe pieces from audio to symbolic

representation. The transcription from MIDI to score format poses interpretation

problems, because raw music events information does not have any high-level or

structural components. This information has to be implied from the event sequence,

which is not always obvious, however with some feedback from the user it can be

done well. The real problem is with note recognition from raw audio data. It is a

complex process and it is effective usually for only simple, monophonic pieces. Recent

approaches to this problem focus on certain aspects of transcription, like main melody,

bass line, harmony or rhythm tracking, being able to correctly assign from about a

half to 75% of the events [43, 164]. Surprisingly, a trained professional or a music

school student should be able to recognize and write down with relative ease even

a complex polyphonic piece. The problem lies in the fact that in recorded audio

all events are blended together to form a single sound, and most of the notes that

conform this sound usually span most of the spectrum. From the computational

analysis perspective, note and source separation is a very complex process while it

happens to be a relatively easy procedure for human brain.
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(a) J. S. Bach, Prelude C major from WTK 1 (BWV 846)

(b) F. Chopin. Etude C minor op. 25 no. 12

Figure 2.2: Score samples with its corresponding spectral images.
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To illustrate the problem of audio transcription, Figure 2.2 contains two excerpts

of piano music, one is a simple monophonic example (only one note is being played at

a time) while the second contains passages of notes in rapid succession in both hands

simultaneously. Both excerpts are accompanied with spectral images that correspond

to each of those excerpts and are aligned accordingly. Since spectral (and cepstral)

images of the actual audio serve as a base for transcription analysis, it is clear that

although in the first case it would be relatively easy to recognize component notes, the

second example poses serious problems for this analysis. It results from the fact that

the spectral image of a note played on any instrument is represented in its spectral

image not only by a single frequency peak, but it is always accompanied by a series

of harmonics that can mix-up with other notes and other note’s harmonics and bands

of noise that can mask components of other notes played at the same time. The

resulting spectral image is a sum of all the images of all notes played at the same

time, and in most cases it is also blended with some background noise. The result

is mathematically not easy to separate which leaves researchers in this area with

complicated interpretation problems.

There is, however, a method to avoid the need of doing transcription for tasks,

that requires audio along with its precise symbolic representation. This idea comes

from Natural Language Processing, and deals with automatic machine translation.

It turned out, that creating vocabularies and building a linguistic model to translate

from one language to another is a very complicated task, that brings quite poor and

sometimes surprising results. Anecdotal is a translation of a passage from the Bible

where “The spirit is willing, but the flesh is weak” had been translated back and

forth from English to Russian and turned into “The vodka is good, but the meat

is rotten”. The way to overcome this problem is, instead of building complicated

language models, analyze plenty of bi-lingual texts, align them and extract patterns,

perfectly translated from one language to the other. Then for any input text, try to

compile it from the list of known phrases and their translations, to form a translated



32

text. It turns out that this approach outperforms significantly classical machine

translation systems [18].

Audio transcription task resembles machine translation from one “language” —

audio into another — score. Instead of creating complex models, what if one finds

for a given audio file a corresponding MIDI file, then the only thing missing for the

transcription would be to find the alignment, i.e., mapping from audio time to MIDI

time, between them. Unlike transcription, alignment can be done accurately [31],

which allows application of symbolic-based methods to problems, where typically

audio is the only available source of data.

2.4 Monophonic Music Encoding

Monophony is additional requirement for symbolic music, which enforces that each

voice has only one note sounding at any time. This constrains music data not to have

chords nor parallel voicing. For the purpose of applying bag-of-words approach, used

primarily in this thesis, monophonicity have to be enforced for each voice separately,

which allows for multiple concurrent voices with notes played at the same time. If

these requirements are not met, then one deals with polyphony. Monophonic music

has the following benefits over polyphonic music:

1. Since one can define order of notes, as they follow one another, it is possible

to introduce relative measures between them. This allows to satisfy tempo and

transposition invariance, which is one of the primary requirements in symbolic

music analysis.

2. Complexity of the linear (string) models drop significantly, as one does not have

to deal with the lattice of all possible connections between notes, which grows

exponentially if one allows for chords to appear [44].

3. It makes music similar in nature to written texts, where letters and words follow

one another and it is always clear which is before and after, so adaptation of
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text-based methods (either using string or bag-of-words approaches) is relatively

straightforward.

It is possible to reduce polyphonic music either through splitting polyphonic channels

to a number of monophonic ones [44], or by dropping the most irrelevant notes to

preserve the most of melody perception, while making it monophonic (e.g., through

skyline method [193]).

The term polyphony is also used in music theory in different context, that may

introduce confusion in certain areas. A piece is polyphonic (music theory) if all the

voices are equally important and lead their own melody. This is opposite to ho-

mophony (music theory), where one voice has a distinct lead over all other, subor-

dinate voices. The equivalent of monophony in computational musicology is usually

called monody in music theory. As a result, from music research perspective all ho-

mophonic (music theory) pieces are polyphonic (computational musicology) as they

feature many concurrent voices, but not polyphonic (music theory), not all of them are

equally important. Similarly, polyphonic (music theory) pieces, like Bach’s fugues, are

usually monophonic for computational models, as each voice features a single melodic

line, so it is not polyphonic (computational musicology). The actual meaning of these

terms depend on context and domain, which is usually easy to recognize.

Notes in a monophonic melody represent actual music events, placed in time

(rhythm) and frequency (pitch) space. The are several approaches to computing basic

features from both dimensions and they are summarized in the following sections. The

are primarily grouped into absolute, semi-relative and relative, depending whether

their values are taken from a single note or the relations they have with other notes.

Although, here we deal with pitch and rhythm separately, they are often combined

to create a single pitch/rhythm feature space [136] or intertwined [33] to get much

more complete representation.



34

2.4.1 Pitch Encodings

Absolute

Absolute notes encoding places them directly and precisely on a pitch scale, therefore

they are useful for scorewriting or playback purposes:

1. Frequency maps a note n to a real positive number representing typically the

base frequency or the fundamental tone of a note f(n). It is historically assumed

that 440Hz represents the middle A. Since it is a real scale — it can represent

any sound, even outside of western tonal music system. It is typically assumed

that humans can hear sounds in the range from 20Hz to 20kHz.

2. MIDI pitch maps a note to MIDI event’ pitch number, an integer from a

range [0, 128], however theoretically any integer number can be used, as 0 and

128 limits are arbitrary. To map from MIDI pitch to frequency, one has to define

a meeting point for frequency and pitch scale, and since MIDI standard defines

that the middle A is 69, so f(n) = 440Hz ⇐⇒ p(n) = 69. Assuming equal

temperament, every MIDI pitch can be mapped to the respective frequency

using the following formula:

f(n) = 440Hz × 2
p(n)−69

12 (2.2)

or vice versa:

p(n) = 12× log2
f(n)

440Hz
+ 69 (2.3)

with the following two features, that the frequency ratio between two consecu-

tive pitches is constant:

f(n1) = 21/12 × f(n2) ⇐⇒ p(n1) = 1 + p(n2) (2.4)

and that the frequency doubles every octave (12 notes):

f(n1) = 2× f(n2) ⇐⇒ p(n1) = 12 + p(n2) (2.5)

There are other temperaments used historically, like Pythagorean (based on

circle of fifths and stacking 3/2 frequency ratios between them) or Natural
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(based on harmonic series, where frequencies are tuned to represent fractions in

a form k+1
k

where k > 0 for certain intervals). They do not satisfy condition from

Equation 2.4, but they are all constructed to satisfy Equation 2.5. Those historic

temperaments are still important as many instruments (most wind instruments)

or playing techniques (e.g., string flageolet) generate tones in natural scale.

3. CMN (Common Music Notation) pitch is used for music notation purposes

and precisely defines the position and look of each note on the score and its

harmonic function within a given key. Rizo [163] defines a note as a 3-tuple,

n
def
= 〈d, a, o〉, where:

• d ∈ D, and D is a diatonic note set, such that D = {C,D,E, F,G,A,B},

• a ∈ A, and A contain accidentals, where A = {[[, [, \, ],×},

• o ∈ O, and O defines octaves and O = [−1, 9], but again, lower and upper

bounds are set arbitrary, so theoretically O = Z.

If one assigns specific values to D and A set elements, namely interval from C

in semitones (C
def
= 0, D

def
= 2, E

def
= 4, F

def
= 5, G

def
= 7, A

def
= 9, B

def
= 11)

and accidentals to the original pitch modification they carry ([[
def
= −2, [

def
= 1,

\
def
= 0, ]

def
= 1, × def

= 2), then the mapping from Common Music Notation to

MIDI pitch can be defined as:

p(〈d, a, o〉) = 12(o+ 1) + d+ a (2.6)

Since this notation is more musically complete than MIDI pitch, as it defines

also the role of a note for a given key, it is redundant with regards to defining

pitch, for example p(〈C, ], 4〉) = p(〈D, [, 4〉), but 〈C, ], 4〉 6= 〈D, [, 4〉.

Semi-relative

Semi-relative mappings calculate note’s pitch in relation to static, or locally static,

reference, which is usually either C note, or local tonic, assuming we either know

or have inferred the key of a melody. They partially satisfy transposition invariance
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requirement, because if the same melody is transposed into two different keys, knowing

them allows us to identify their identity. However, this approach assumes, that we

know the correct key of the melody, which might not be the case, and it is insensitive

to local modulations or progressions. The latter might not be necessarily a problem,

if we assume that a modulation or a progression defines a different melody, which is

fair to do if that is what is required.

The relation to particular reference note loops the values for each octave, creating

an equivalent of mathematical ’modulo’ operation. According to Rizo [163], those

modulo-n, or base-n representations may have two useful properties:

• accommodation of enharmonic pitches — two notes with the same MIDI pitch

and different CMN pitch (e.g., 〈E, ], 3〉 and 〈D, [, 3〉 should have two different

codes to accommodate CMN notation.

• interval invariance — same interval (i.e., numerical difference of MIDI pitches)

between any two notes should lead to the same numerical value, modulo n.

There are four approaches to semi-relative coding:

1. diatonic encoding divides an octave into 7 different equivalence classes, taken

from the first dimension of CMN pitch notation, i.e.:

base7(〈d, a, o〉) = d (2.7)

Typically for analysis, number from 0 to 6 (or from 1 to 7, as in Figure 2.3) are

used, but historically, diatonic tones were encoded using syllables: do, re, mi,

fa, sol, la and si(ti). Discarding accidental information leads to generalization

of a melody, and it does not holds any of base-n desired properties.

2. chromatic encoding divides an octave into 12 equivalence classes, commonly

known as pitch classes, each corresponding to a semitone of the octave as defined

by equal temperament. It does not accommodate for enharmonic pitches, but

preserves interval invariance. Since the first property is relevant mainly for
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notation purposes, this encoding is frequently used for analysis purposes (e.g.,

in [128]). It can be directly derived from MIDI pitch value:

base12(n) = 1 + (p(n)− p(r)) mod 12 (2.8)

Where r is a reference note, usually 〈C, \, 4〉.

3. base21 encoding has been suggested to “provide a sufficient number of numer-

als to differentiate each enharmonic tone within the range of single sharps and

flats” [165]. It accommodates therefore for representing enharmonic pitches, but

it is not interval invariant, e.g., two intervals (here minor thirds) have the same

difference in pitches, p(〈E, [, 4〉)−p(〈C, \, 4〉) = 3 and p(〈G, [, 4〉)−p(〈E, [, 4〉) =

3, but different base21 values (base21(〈E, [, 4〉) − base21(〈C, \, 4〉) = 5 and

base21(〈G, [, 4〉) − base21(〈E, [, 4〉) = 6) [163]. Figure 2.3 shows, how base21

values are assigned to notes.

4. base40 encoding — it was suggested by Hewlett [74], to acquire interval in-

variance property, while accommodating for enharmonic pitches representation.

Thus it can be used in various analysis tasks like base12, keeping information

about note’s visual appearance. It has been used as intermediate pitch rep-

resentation in Humdrum system [82]. One can see on Figure 2.3, how base40

values are assigned to notes.

Relative

Relative pitch values, calculated using a local reference point, which is one of the

neighbouring notes, satisfy transposition invariance requirement. The same perceived

melody, played in different keys would result in the same dependencies between each

pair of notes, although absolute values may be different. Relative pitch features are

based on the notion of interval — the distance in pitch (i.e., MIDI pitch), usually be-

tween two consecutive notes. From each sequence of N notes, there is N−1 intervals,

so depending on which neighbour we refer to (preceding or following) either the first
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Figure 2.3: Pitch encodings for each note (from the top): diatonic, chromatic, base21
and base40.
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or the last note does not have an associated interval. The choice of a reference point

is not important as long as the consistency is preserved. Here, interval calculations

will be conducted with regards to notes that follow a given note. One can classify

interval types into several groups:

1. Melodic Interval is a difference in value of two consecutive MIDI pitches. This

approach is very frequently used in the literature, e.g., [33, 128, 136, 144] as it

allows for precise notes’ pitch definition with the ability to restore the original

sequence of notes, as long as the starting point is known. Melodic interval

between two neighbouring notes can be computed directly from MIDI pitches,

and expresses traditional music interval in semitones:

mi(ni) = p(ni+1)− p(ni) (2.9)

where i ≥ 1 is a position of a note ni in the input notes sequence.

2. Clipped Melodic Interval. Melodic intervals can be big, but large intervals

are relatively rare. In order to limit the number of possible intervals, clipping

to some maximum value can be used. Typically an octave (12 semitones) sets

the limit [140], but any arbitrary value can be used. In case of an octave, the

formula changes to the following:

cmi12(ni) = max (−12,min (12, p(ni+1)− p(ni))) (2.10)

3. Melodic Interval Classes is another approach to limit the feature space,

which is more musically meaningful. Intervals of up to 12 semitones (i.e., an

octave) are called simple intervals, and above that — compound intervals [218].

For example, a major tenth (16 semitones) is composed of an octave (12 semi-

tones) and a major third (4 semitones), and it is typically referred to as a

third over the octave and it is perceived as such. It is, therefore, reasonable

to implement this reasoning in a music analysis system [193, 196]. Unlike for

clipped melodic intervals, only the octave (12 semitones) is a musically mean-

ingful threshold, and the formula for melodic interval classes can be expressed
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as follows:

mic(ni, ni+1) =


mi(ni) if |mi(ni)| ≤ 12

mic(ni, n
8−
i+1) if mi(ni) > 12

mic(ni, n
8+
i+1) if mi(ni) < −12

(2.11)

where for any nj = 〈d, a, o〉, n8+
j = 〈d, a, o+ 1〉 and n8−

j = 〈d, a, o− 1〉.

4. Pitch contour. There are applications, mostly those dealing with user input,

that have to be robust in terms of handling inaccuracies in the data. In many

cases, music information retrieval systems using query by humming (QBH)

input approach face a problem that users can not sing clearly. Often, the only

correct information is the direction of the melody. To mitigate this problem,

pitch contour is frequently applied. It encodes the direction of the melody,

instead of a precise interval. Uitdenbogerd and Zobel suggested using three

symbols, U for unison, A for ascending and D for descending melody [193,197].

Grachten et al. in their comparison of various approaches to melody coding

for measuring similarity found a very strong correlation (0.95) between results

using melodic intervals and pitch contour [67], which indicate, they might be

used interchangeably. Pitch contour uses a three symbols alphabet and it is

often expressed as:

pc(ni) = sgn(mi(ni)) (2.12)

5. Fine pitch contour. There are situations when pitch contour’s precision is

too small, and using melodic intervals produces too few results. In that cases,

increasing the number of levels for calculating the contour is a good trade-

off between them. Uitdenbogerd and Yap have found, that users, especially

those with intermediate music background, can successfully query a retrieval

system that uses fine pitch contour, almost as well as those using normal pitch

contour, and much better than systems that use strict melodic intervals [197].

Downie [38] analyzed entropies of obtained interval groups to find the optimal

division points defining pitch classes. Muellensiefen and Frieler [132] referred
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to the process of grouping intervals as fuzzification, suggesting nine levels, four

ascending (i.e., seconds, thirds, fourths with fifths, and sixths and up), same

four descending and unison. Berthelemy [6] classified intervals into those that

join melody (seconds) and disjoin, creating jumps (thirds and up). In the

experiments conducted in this thesis the following definition is used:

fpc(ni) =



−2 if mi(ni) < −3

−1 if − 3 ≤ mi(ni) ≤ −1

0 if mi(ni) = 0

+1 if 1 ≤ mi(ni) ≤ 3

+2 if mi(ni) > 3

(2.13)

2.4.2 Rhythm Encodings

Second and equally important dimension of a note is rhythm, which describes its

temporal placement. One can treat rhythm in similar way as we deal with melodic

aspects of notes, with a few differences. One of them is the existence of rests —

breaks in melody, when one note’s offset time does not match and it is before next

note’s onset time. In the literature, different approaches have been used, but since

rests do not carry pitch information, they would break interval passages. In this work

we just omit them, since some rhythm encodings, like IOI or IOR escape the needs

of dealing with them at all.

Absolute

Absolute methods of representing rhythmic features give results in time domain, mea-

sured typically in seconds. Since they do not stand in any relation with each other,

they do not hold tempo invariance property, which states, that the same melody

played in two different tempos should be represented in similar way.

1. onset time, duration. Unlike melody, where frequency (or pitch) is the only

basic physical feature, each rhythm event is defined with onset and offset time,
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or more frequently, onset o(n) and duration d(n), which is a difference between

note’s offset and onset time. It is usually expressed in seconds, however MIDI

specification uses ticks measure. In a well-sequenced MIDI file, ticks are sup-

posed to represent more semantically meaningful time, keeping the same ticks

value for same notes regardless of local tempo fluctuations. The detailed de-

scription on how to convert from MIDI ticks to real time is presented in Section

2.2.1.

2. Inter-onset intervals (IOI) present a very similar concept to duration, but

instead of relying on notes offset times to determine when a note ends, IOI

assumes that the offset time of a note is the onset of the following note [68].

In this approach, we not only solve the ‘rests’ problem, where they are simply

merged into the length of the preceding note, but also allow for notes to over-

lap, i.e., when the offset time of a note is after the onset time of the next note.

As a result, IOI stream is always a continuous stream of strictly monophonic

events, so in turn the process of obtaining IOIs acts like skyline monophoniza-

tion method proposed by Uitdenbogerd and Zobel [193]. IOI function can be

expressed as follows:

ioi(ni) = o(ni+1)− o(ni) (2.14)

This gives N − 1 values for a series of N notes. In general, the duration of the

last note is often used as the last, N ’th, IOI.

Semi-relative

Semi-relative approaches for rhythm work similarly to pitch approaches, the only dif-

ference is that, since time space is continuous and pitch is discretized, a quantization

step is often performed.

1. duration classes. Similarly to melody fuzzification, Muellensiefen and Frieler

applied a fuzzification process to durations, classifying notes into 5 classes com-

paring to the most frequent duration in a given piece [132]. They came up with
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the following classes:

dc(n) =



+2 if d(n)
dmax

> 3.3

+1 if 1.8 < d(n)
dmax

≤ 3.3

0 if 0.9 < d(n)
dmax

≤ 1.8

−1 if 0.45 < d(n)
dmax

≤ 0.9

−2 if d(n)
dmax

≤ 0.45

(2.15)

where dmax is the most frequently occurring duration.

2. note symbols. Typically in music, the duration is expressed using different

graphical symbols for expressing how long each note should last. What speed

the piece is played (what is the actual duration of each note is suggested by

the composer in the tempo description at the beginning of a piece) is left up to

the performer. Those symbols define duration with reference to the whole note,

and they are named after what fraction of a whole note they represent (whole

note, half note, quarter, eighth, etc.). This representation is widely adopted by

musicians, and used in scorewriting systems.

In computer music research, note symbols are usually referred to as relative to

a standard duration representation [163, 165, 197], and can be expressed with

the following equation:

dc(n) =
d(n)

dref
(2.16)

Typically, the end result is quantized and rounded to some power of 2, which

gives the precision of, for example, eighths (i.e., 2−3) or sixteenths (i.e., 2−4),

or it might be left as a real value. This procedure may be also applied to IOI

values resulting in quantized IOIs [136].

Relative

Relative approaches to rhythm encoding work similarly to relative pitch encoding,

with several important differences. Pitch is already quantized and since usually one
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needs discreet classes, rhythmic features need to be quantized separately. Secondly,

as human perception of pitch grows exponentially with frequency, the same can be ob-

served on rhythm, which lacks this fundamental logarithmic representation that MIDI

pitch and all its derivatives feature. The last difference lies in the fact, that note’s

duration can be calculated either to its nominal offset time, or until the beginning of

the next note (IOI), as it was discussed earlier. Typically, relative feature functions

use IOI, but absolute note durations may be used as well. Similarly to melodic rel-

ative methods, this approach allows to achieve tempo invariance, so two equivalent

melodies played in different tempos, will be represented using same, relative features.

1. Inter-onset interval ratios (IOR), sometimes abbreviated differently in the

literature, represent the ratios between two durations (or rather IOIs) of two

consecutive notes:

iorr(ni) =
ioi(ni+1)

ioi(ni)
=
o(ni+2)− o(ni+1)

o(ni+1)− o(ni)
(2.17)

Since three notes are involved in the calculation of a single feature (i’th, the

preceeding i − 1’th and the following i + 1’th), N notes would give us N − 1

melodic interval features and N − 2 IOR features represented in rational num-

bers, hence the r index. Doraisamy [33] proposed intertwining melodic and

rhythmic features, in the pattern like mrmrmrm, which allows for one less

rhythmic feature in each string. She also used a binning approach to quantiza-

tion, where named bins, derived from the data distribution, were used to classify

IORs into categories. Pardo and Birmingham [144] used linearly distributed bins

on the logarithms of IOR, and aimed to preserve sufficient information to dis-

criminate between melodies, while keeping the alphabet small. They concluded

that even a very small number of bins (4) allows for clear distinction between

different melodies although the information needed to recover those durations

is certainly lost at this point. Meek and Birmingham [128], looked into this

issue and suggested using 4 bins per each exponent of 2 in the iorr space. The

definition I propose results in integer numbers each representing a bin of 1/p of
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each doubling of IOI time:

ior(ni) = bp× log2 ior
r
ni

+ 1/2c = bp× log2

o(ni+2)− o(ni+1)

o(ni+1)− o(ni)
+ 1/2c (2.18)

where p is quantization precision. Here, we typically will be using the precision

of p = 5 for this ratio, which is sufficient to preserve the perception of the rhythm

[216]. Meek and Birmingham used similar approach with p = 4 precision [128],

which gives slightly coarser representation.

2. rhythm contour. Like melodic intervals, IORs also can be reduced to contour

information. However since rhythm does not have precise quantization, like

melody with semitones, the general ior binning approach can be used with only

three bins:

rc(n) =


−1 if iorr(n) < 1

0 if iorr(n) = 1

+1 if iorr(n) > 1

(2.19)

As Pardo and Birmingham suggested [144], rhythmic contour works surprisingly

well in recognizing different melodies. This approach has been used, for example,

by Uitdenbogerd and Yap [197]. Extended contours have also been proposed,

but they are only another special cases of iorr binning.

2.5 Analysis of Symbolic Music

Analysis of symbolic music usually focuses on creating algorithms that define simi-

larity or distance between two music excerpts. Having a properly defined similarity

measure allows for application of traditional data mining techniques for typical tasks,

like classification, clustering and many others. Other approaches involve creating

models, e.g., stochastic, generative or graph-based.

Typically, one can distinguish four main approaches to symbolic music analysis:

string matching, geometric approaches, n-gram methods and hierarchical approaches.

They all utilize the fact that events in music stream are precisely defined, where
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each event, a note, is defined in usually two-dimensional space of pitch and time

(duration), unlike for approaches dealing with audio data, where this information has

to be inferred and it is assumed it might not be correct.

There has been a number of publications that summarize existing work. The

following sections are based mainly, but not solely, on the analysis conducted by

Rizo [163] and Orio [141].

2.5.1 String Matching

String matching techniques deal with note data as a continuous sequences of events,

called strings, where the position of each note in the string, as well as the relationship

with neighbouring notes are important. The matching process either finds similar

areas or match the entire string returning a numerical score indicating how close two

strings are together.

The easiest approach would be to use Hamming, Euclidean or Manhattan distance

[119]. Hamming distance indicates the number of different symbols in two strings,

Euclidean distance is the distance in an N -dimensional space, assuming aN and bN

are vectors in this space, and Manhattan distance is the sum of differences between

symbols at each position:

dhamming (aN,bN) = |{i|ai 6= bi, 1 ≤ i ≤ N}| (2.20)

deuclidean (aN,bN) =

√√√√ N∑
i=1

(ai − bi)2 (2.21)

dmanhattan (aN,bN) =
N∑
i=1

|ai − bi| (2.22)

Although, computing the distance with any of these measures take only O(n) time,

they require strings with the same lengths, which is rarely the case, and any shift of

notes in the input strings would cause a significant change of the distance. Despite

that, those methods are sometimes used for music analysis [119,120].

One of the issues with those approaches is, that even if the symbols in the input

represent similar concepts, which are not exactly the same, then the outcome would
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be similar to the situation where they were completely different. Unlike text letters

and words, both pitch and rhythm dimensions are quantitative, which gives the ability

to perform approximate matching. One of the approaches that matches on a symbol

level called δ-γ matching [20, 21, 27], and it allows for small variations in values,

further analyzed by Clifford and Iliopoulos [23].

Typically, string matching techniques focus on computing edit distances between

strings. Edit distance is the minimum cost to transform one string into another given

a set of possible atomic, symbol-level operations, each with a certain predefined cost.

The classical edit distance measure, called the Levenshtein distance, assumes three

basic operations: deletion, insertion and substitution, all with the same cost of 1. An

example how to transform two strings: ‘knitten’ and ‘sitting’ can be found on Figure

2.4(a). Levenshtein edit distance between these two strings is 4.

Edit distance can then be computed efficiently using dynamic programming with

O(N2) time and can be seen as a shortest path problem through a grid graph de-

fined by allowed edit operations (Figure 2.4(c)). Levenshtein edit distance allows for

three transformative operations (Figure 2.4(b)). A non-transformative operation of

rewritting the same symbol (no-op) is always allowed at no cost.

There are several approaches to using edit distances in music research. First of

them is global alignment, using typically Needlemand-Wunsch algorithm, used for

aligning nucleotide sequences in bioinformatics, that computes the transformation

cost from one string sequence to another. Levenshtein edit distance is just a variant

of global alignment with insertion, substitution and deletion costs of 1. Since the

entire sequence has to match, it is used only for matching of small excerpts and incip-

its, which are comparable in length [49, 145]. Dynamic time warping is another,

frequently used variant of global alignment [80, 183], in principle not very different

from global alignment, with one assumption, that the compared strings do not differ

much and that the correct solution is found close to the diagonal of the dynamic

programming grid graph, which allows for limiting the scope of the search and thus

achieve sub-quadratic computational cost [80].
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(a) string transformation

(b) available operations (c) dynamic programming

Figure 2.4: How to compute Levenshtein edit distance between two strings, ‘knitten’
and ‘sitting’ : a) rewritting rules, b) available operations with their corresponding
costs as differences between values in corresponding boxes. Deletion, sibstitution and
insertion have a unit cost of 1, matching symbols (no-op) are accepted as zero cost.
c) Shortest path indicating the cheapest transition from ‘knitten’ to ‘sitting’.
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Unlike global alignment, local alignment searches for similar continuous regions

between two strings and does not aim to match the entire sequence. This can be

achieved with the same dynamic programming framework, assigning different weights

to each operation, i.e., awarding matching symbols (no-op) with positive score, pe-

nalizing insertion, deletion and substitution with negative score and not allowing the

total score to go below 0. This approach can be used for searching for a phrase (e.g.,

user query, or a small excerpt) within a music piece. Uitdenbogerd and Zobel, in

their comparison of different representation and analysis approaches [193], found the

best results while using local alignment for matching. As with global alignment, uti-

lizing parallels with bioinformatics allowed to port local-alignment-based techniques

into music domain, e.g., MusicBLAST by Kilian and Hoos [95]. Longest Common

Subsequence (LCS) is a simpler variant of local alignment, where only matching

of a symbol is rewarded without penalizing of mismatches. This approach has been

analyzed and used by Lemström et al [108] or Mäkinen et al. [120].

Until now, string matching techniques, apart from using specific music representa-

tion, do not differ from general text matching approaches. Mongeau and Sankoff

were first to incorporate music knowledge into the design of a matching algorithm.

They proposed a variable substitution cost based on consonance of intervals, and

allow for more complex substitutions, i.e., fragmentation and consolidation, where

several notes in one string correspond to a few in the other. To incorporate this in

dynamic programming framework, one just has to allow for edges connecting nodes

that do not correspond to neighbouring notes. Figure 2.5 illustrates how along with

traditional edit operation (Figure 2.5 a, b, and c) one can add fragmentation of a

tuplet (two notes) into triplet (three notes) (Figure 2.5 d), and consolidation of four

notes to a single note (Figure 2.5 e).

Mongeau and Sankoff idea has been widely used for creating effective analyses of

music content. Hu and Dannenberg [30, 80] and Grachten et al. [68] use the method

directly while some modifications to the original idea could be found. Grachten

et al. [69] evaluated optimal operation costs by using evolutionary optimization on
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Figure 2.5: Edges on a grid graph corresponding to the following edit operations:
a) insertion, b) deletion, c) substitution, d) fragmentation of a tuplet into triplet, e)
consolidation of four notes into one.

melodies represented using Narmour’s implication/realization model [135]. Gomez et

al. [61] implemented a simpler approach where substitution cost is not dependent on

subjective consonance, but an objective distance, or pitch difference.

2.5.2 Geometric Approaches

The way concepts are represented, suggests sometimes the approach to tackle the

data. Piano roll representation [121] of symbolic music may have triggered evolution

of geometric approaches to symbolic music analysis, where notes are objects placed

in pitch-onset-offset type of two dimensional space. Those methods typically handle

polyphonic music naturally, which is often a problem for other methods.

Clausen et al. [22] proposed PROMS, a retrieval system where query is a sequence

of points on a two-dimensional grid of MIDI pitch levels and onset times quantized

to the closest sixteenth. The query is matched onto the target piece to check where

the target melody overlaps with it. Wiggins et al. [207] proposed SIAMESE system

that was able to find incomplete matches. Often, continuity of notes and melodies

was reflected in representing notes as lines, indicating their duration [108, 109, 200].

Then, the similarity between two melodies was often the area between functions that
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the melodies formed [115, 177] as initially suggested by Maidin [118]. Aloupis [1]

extended this idea allowing for horizontal stretches of the query to accommodate

for tempo and transposition invariance. However, minimizing the area between the

curves can only be applied to monophonic data. Similar, time warping effect has been

used by Laitinen and Lemström [101].

Earth Mover Distance is another technique proposed by Typke [185, 188, 190],

where each note length is not represented as the length of a line, but as a weight (di-

ameter) of a disc corresponding to this note, and the similarity between two melodies

is the effort one has to put to transform (or move) points from one melody to the

other. Since there is no notion of continuity, the model can be applied to polyphonic

music without any change.

Detailed comparison between different geometric approaches with examples can

be found in Lemström and Pienimäki [110].

2.5.3 N-gram Approaches

N-grams approaches are in assumptions very different from geometric, string match-

ing, and other techniques used for symbolic music analysis. They are often inspired

by research in Text Information Retrieval, which is based on the same principles

and use similar methods. Primarily, information retrieval systems typically employ

bag-of-words or bag-of-terms assumption, which states, that the order of terms in

documents does not matter, so features (terms) are often combined in the form of

sets. Music information retrieval and analysis systems can employ the same assump-

tion, discarding information about the order of features (e.g., phrases, n-grams) in

the analyzed music pieces. As a benefit, there is only one solution necessary to solve

both problems of matching two sequences of similar length and searching for a query

pattern with a large corpus of longer pieces. As a result of indexing process, retrieval

of similar (or relevant) items is computationally cheaper than with other methods,

because indexing escapes the need of scanning through the entire dataset to find a

match for each query. With benefits, there are new issues that arise from applying
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n-gram based approach. Text Information Retrieval typically uses words as features.

With music, there is not clear distinction between lexical units, hence n-grams, which

represent any arbitrary substrings of n symbols from the input sequence, are fre-

quently used. The other issue is the discontinuity of the events, which result from

the fact that the order of features does not matter. This can be partially addressed

by using larger n to build n-grams that preserve more of the local context of each

note event, however global context and long-range dependencies are usually lost with

n-gram based techniques.

There are many approaches where an n-gram-based bag-of-terms approach and

feature indexing are implicitly introduced, and often used as an intermediate repre-

sentation to achieve other goals. The benefit of indexing features in music corpora to

quickly retrieve data for further computation was used by Clausen et al. [22], where

only single symbols, representing pitch related aspect for each note, were stored.

Hoos et al. [79] presented an information retrieval system based on files in GUIDO

music notation, where queries and documents were represented as non-deterministic

finite state automata derived from sequences of pitches and durations using first-order

Markov chains, which, in turn, is equivalent of building a probabilistic model based on

bi-grams. Similar approach was proposed by Pardo et al. [145], where state transitions

were determined by pairs of melodic intervals and IORs. Again, using a first-order

Markov model implies a probabilistic model based on bi-grams. Li and Sleep [114] de-

signed their melodic similarity measure based on calculating Kolmogorov complexity

of note sequences using LZ78 algorithm, which resembles building a variable length

n-gram profile while scanning through the note passage. Estimation of next symbol

based on previous n− 1 (in this case n was fixed, n = 4) was also suggested and used

by Serrano and Iñesta [167,168] for pattern structure extraction.

What works best as a feature, or the music equivalent of word, was often an

object of research and discussions. Melucci and Orio [129,130] suggested segmenting

input stream into non-overlapping phrases based on musicological knowledge. As

suggested by Pienimäki [153], Neve and Orio [136] created segmentation approach
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based on analysis of recurrent patterns, which resembles Li and Sleep’s Kolmogorov

complexity approach [114]. It turned out (Orio and Neve [142]), that all of those

methods, including extraction of recurrent, musicologically oriented and perception-

based patterns were outperform by a standard n-gram based extraction method using

sliding, fixed-length window, which gives just a set of all possible substrings of length

n. For detailed description on how a typical n-gram extraction process works, please

refer to the Chapter 3.1.

There is a number of existing solutions that incorporate architecture and ap-

proaches typical for text processing tasks, like information retrieval, text data mining,

or natural language processing. Typical bag-of-terms approach can be found in Uit-

denbogerd and Zobel [193,198], where the performance of n-gram-based methods are

shown to be on par with much more expensive alignment techniques. Downie [38,41]

analyzed n-gram based corpora and compared them to text corpora in terms of infor-

metric features, showing resemblance between text words and music n-grams, but also

noticing the differences. Downie and Nelson [40] proposed a retrieval system based on

an of-the-shelf text retrieval solutions, where music n-grams were coded as text words

and retrieved this way. Another system, that takes a general text retrieval solution,

in this case Ponte and Croft’s probabilistic retrieval engine based on language model-

ing [158], was proposed by Pickens [152]. He tested interval uni-grams and bi-grams

for features achieving way better performance with bigrams, which shows the im-

portance of combining basic feature components into bigger structures, like n-grams.

Dannenberg and Hu [30] proposed a two-stage model where content is initially sieved

with an n-gram based technique, which is then refined with Mongeau-Sankoff align-

ment. They pointed out outstanding high recall abilities of n-gram-based methods,

with rather lower precision and ordering capabilities, thus additional alignment-driven

postprocessing step. Doraisamy and Rüger [33–37] proposed a retrieval system that

handles any polyphonic symbolic music by collecting all possible monophonic n-grams
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from any combination of notes within a certain window. This approach increases sub-

stantially the number of possible n-grams from each polyphonic excerpt, yet allowing

for standard retrieval techniques to work with polyphonic data.

2.5.4 Hierarchical Approaches

Since music has its strong hierarchical structure on every level, there are approaches

that try to create a parsing tree of music excepts in the same way one parses sen-

tences of natural languages with grammar rules, indicating dependencies between

words. The main advantage, they have over string and n-gram methods, relies from

the fact, that they consider not only dependencies based on the notes immediate

neighbourhood. The reality is that notes build a similar structure to text, where

dependencies can span the entire excerpt and often go beyond the excerpt level.

The initial proposal, Generative Theory of Tonal Music (GTTM) by Lerdahl and

Jackendoff [111], was to create a grammar for music melodies and pieces in the same

way they exist for natural languages, creating tree structures corresponding to parsing

trees based on preference rules. It was based on an old idea of Schenkerian analysis,

where a music piece could be observed on a number of levels where the top level con-

sists of just a single object and each level is an elaboration of the previous level, down

to the bottom, which consists of all notes from the given piece. The dependencies

between those levels, drawn on a single figure, create a parsing tree of the piece. Since

their model was in many places subjective, and based on common musicological sense,

it have become only a very interesting theoretical system, although they indicated

that it is possible to implement their reasoning. It has been finally done, after some

simplifications, by Hirata and Matsuda [77] and Hamanaka et al. [70].

A similar theoretical approach, but simpler than GTTM, thus easier to imple-

ment, have been proposed by Narmour [135]. It is called Implication/Realization

model and relies on the premise, that our perception of music depends on our expec-

tations (implications) that build up while listening to the music and how they resolve

(realization) — are they fulfilled (satisfaction) or not (surprise). The system was
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based on a fixed number of basic units, that all melodies are build from. Identifying

those patterns and segmenting based on them, has been used for measuring melodic

similarity and retrieval by Grachten et al. [67–69].

Traditional linguistic approach to grammar learning from data using probabilities

can be found in Bod [14, 15], where they used Essen Folksong Collection as input

data. Explicit creation of Probabilistic Context Free Grammars (PCFGs) can be

found in Gilbert and Conklin [46] where they built them based on Bach Chorales.

A simpler approach have been proposed by Rizo and Iñesta [162], where trees are

fit in the metric, i.e., depending on the meter, binary or ternary structure, and then

they were used to calculate melodic similarity between monophonic and polyphonic

melodies [161,163].

2.5.5 Other Approaches

There are numerous approaches to symbolic music analysis that do not fall into any

of the four categories introduced in the previous chapters, looking at the problem of

symbolic music analysis from different perspectives.

Engelbrecht [47] treated melodies as progression functions seen as stochastic ran-

dom variables. With this assumption, he was able to compute several typical statis-

tical measures, like correlation, central moments, or mutual entropy, and he reported

how one can use them to match melodic sequences.

Pinto [154, 155] viewed connection between notes as transitions in a graph of

nodes representing chromatic encoding base12 introduced earlier (see Equation 2.8).

This may resemble 1-st order Markov chains analysis done by Hoos et al. [79] and

Pardo et al. [145], which was similar to n-gram analysis, but here instead, Pinto uses

typical graph-based methods for further analysis, comparing eigenvalues of Laplacians

representing each melody graph.

There are some general approaches, that usually work for various kinds of data

with little adjustments necessary to make them working for symbolic music. The main

drawback of these one-size-fits-all methods is that the result is not self-explanatory. In
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other words — we can plug the data, run the model and get very good results, but still

it would not be easy to tell why this particular model works well, or why it does not.

The valuable knowledge lies inside the model, a black box, and the results are hard to

interpret. Some of those approaches use neural networks framework, and there have

been research done, where it has been used with symbolic music data. Yahzong et

al. [219] used neural networks to create an index of MIDI documents in the collection

for further retrieval. Harford [72] used self-organizing maps to automatically segment

and retrieve melodies based on both pitch and rhythm by creating separate models

for each of two dimensions of melody. Neural networks are often used as evaluation

method in conjunction with genetic algorithms for generation task [103,139,151]. In

general, applying genetic algorithms to music data, mainly for generation task, has

been widely used [12,87,92,180] mostly with manual or supervised fitness evaluation.

Since this problem will be approached in this dissertation, for detailed description of

those approaches, please refer to section 4.1.1.

2.6 Linguistic Parallels in Music Research

There are discussions about the precise definition what a natural language is. One of

the possible ways to define it could be found in Wikipedia, which states that it “is any

language which arises in an unpremeditated fashion as the result of the innate facility

for language possessed by the human intellect”. Not everybody agrees that music fits

this definition, but music researchers, who know the rules of music, are usually more

prone to agree with it. Orio [141], who refers to music as a language, points what

kind of information music, as a language, conveys. Music, as well as text, has the

symbolic representation that has its origins dated back in ancient times. Music and

language are the only old human creative activities where symbolic representation is

commonly used. Others, like painting, sculpture, dance did not have such common

symbolic notation. Music notation cannot be directly ported into computers like text

is, but this is only a representation issue that could be easily overcome. For instance,

the argument that text can easily be split into words — the basic features for Natural
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NLP level Music research areas
phonetics Waveform analysis, audio signals
phonology Sound events identification
morphology Score symbols, symbolization
syntax N-grams, shallow reduction and parsing
semantics Harmonics, phrase level, parsing
pragmatics Phrases, voice leading
discourse Interpretations, context of a piece

Table 2.2: NLP Levels with respective music research tasks.

Language Processing (NLP) and Information Retrieval (IR), which is not the case for

music, can be countered if one mentions that there are natural languages that do not

use anything to separate words, like Thai.

In order to treat music as a natural language, one has to show that music process-

ing works on the same classes of problems as NLP does. One distinguishes certain

levels of a text processing, listed in the Table 2.2. The research in NLP spans all those

levels, from recording (a voice, speech) to understanding (the meaning of a text).

These levels also exist for music. Similarly to a natural language, music can be

recorded and presented primarily as a waveform. On the ‘phonetics’ level one tries

to investigate the structure of a sound, separate and distinguish between notes or

instruments. However, music is much more complex in this area and sound recognition

tasks are still facing basic problems.

The second very important similarity results from the fact both domains use sym-

bolic notations. Music score also consists of characters which are called notes. Simi-

larly to NLP’s morphology and syntax — music has hidden, grammar-like structure,

and hidden rules — the harmony. It determines how to put words (notes) together,

and how to build well-formed phrases with them. It also manages the musical mean-

ing of a piece of which the basic exemplification is a progression of chords and notes.

In the case of notes and their dependencies — we may talk about the syntax of the

music, while in the case of chords or harmonic progressions — about the semantics

of the certain phrase, or given the phrasing — the pragmatics of the excerpt. This is
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very similar in its form to one of the main areas of NLP, which is grammatical analy-

sis. The highest level of NLP (discourse) is also common in music in a form of ideas,

desires or aspirations (romantic music) of a composer as well as images and actions

behind it (program music). Dukas’s “The Sorcerer’s Apprentice” or Smetana’s “Die

Moldau” are very good examples of such music.

2.6.1 History of NLP and Music Research

The history of NLP reaches beginnings of the history of computation since it is be-

lieved that the ability of computers to process natural language as easily as we do will

signal creation of intelligent machines. It comes from the assumption that the use of

language is an inherent part of human cognitive abilities. Based on that, Alan Turing

proposed in 1950 [184] a test, known as the Turing test, to determine if a machine

is intelligent. Its main objective is that a truly intelligent machine could carry on a

discussion with a human so that the latter could not recognize if he is talking to a

human or to a machine. This definition of intelligence triggered the research in NLP

with the ultimate goal to create such a conversational program. If it is a feasible

goal, one has to actually and physically implement the way people think, reason and

formulate thoughts.

At this point we can see a resemblance between human speech and music. Assum-

ing music is a natural language, the Turing test would consist in generating musical

pieces so that an expert could not recognize if an author is a machine or not. Why an

expert and not a layman? Because it would be equivalent to a Turing test where an

interlocutor does not know the language of the talk. We would call it a Soft Turing

Test which, unlike for regular human natural languages, makes more sense for music.

Introduction of Grammars. There has been some pioneering work in both areas,

NLP and Music Research. Some natural language analysis in a form of linguistics

theories were made before the introduction of computing machines. As an early, pre-

computer music research, one can point work to the of Heinrich Schenker with his

Reduction theory in the beginnings of 20th century.
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The approach to linguistic problems has changed substantially just after comput-

ers were invented. Interface to computers is textual and this is a natural format

for computer files. Moreover, there was a very strong need for developing automatic

machine translation. The beginning of this — the Noam Chomsky’s theory of context-

free grammars for natural texts — dates back to 1956. Representing and processing

music was not the top priority of that times. As a similar work in the field of music,

one can point the book “A Generative Theory of Tonal Music” by Lerdahl and Jack-

endoff published in 1983. Both of this approaches deal with the respective areas in the

same way — by introducing a formal grammar that may generate utterances in the

given areas. However, there is substantial difference between the dates of publication

of both works — nearly 30 years. The similar difference one can observe between the

areas of music and textual Information Retrieval.

The period of ‘Look ma, no hands’. The early NLP researchers were very

optimistic. The research was driven by the goal of developing automatic machine

translation. Various systems were created but, although they worked perfectly on

several, very limited examples, they were failing in the real-world applications. The

research came to the point where nothing more could be achieved, and yet they

haven’t created any robust system that will work on real data. This caused a crisis

in the whole field. It looked that despite their complicated system, it is not possible

to mimic human cognition in the area of natural languages.

It is likely the time where the music research has just come (Downie’s glass ceiling

effect [42]). It is not that crucial as for natural languages, since one can still try

to trick unexperienced listeners and thus pass the Soft Turing Test with the system

that does not demonstrate the full understanding of the music matter it deals with.

Another sign that the field of music research might be in this kind of situation is the

introduction of seminars, where one asks about the future of the field (e.g., fMIR).

Present NLP. The previous knowledge-based approaches did not work well for

many NLP tasks. Current research of NLP still deals with creating more precise
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models that include more aspects and features of languages. However, research tends

to shift toward stochastic NLP that uses various corpora-based methods, where the

use of simple NLP techniques gives much better results than simple statistical analy-

sis. NLP is also used to aid Information Retrieval systems, increasing their sensitivity

to language-dependent features. Finally, great improvement has been done in machine

translation, the first goal of NLP researchers, where Google Translate demonstrates

the current state-of-the-art. This is the direction which current music research may

follow, but this shift towards stochastic approaches in NLP would not be possible

without emergence of large text corpora, which were available to researchers. It is

still not the case, especially for symbolic music.

2.6.2 Music Linguistic Theories

Current research in music concentrates around Music Information Retrieval, both for

the signal and symbolic music representations. In most cases it deals with basic issues

how computers should deal with music data in general. The level of music interpre-

tation does not go into semantics, probably because it is vague what the meaning in

music is. However, one should notice that current text Information Retrieval ben-

efits from using text semantics, by use of ontologies and relations between terms,

dependencies between documents, or linguistic layer of text.

We would like to emphasize the work of Lerdahl and Jackendoff [111], who first

described a generative approach that one can use toward the music. They describe it

in a computational linguistics manner, using preference rules approach, mentioning

that it could be possible to implement their rules in a working system. We had to

wait for a long time for an implementation of their system, because they introduced

several tough to define but fundamental concepts, that are easy to understand for

humans, but hard to implement on a machine. A recent try, ATTA [70], deals with

all the implementation issues by introducing several important limitations to the

system, which makes the system not going beyond syntactic level by leaving behind

harmony issues. Simpler model than the one proposed by Lerdahl and Jackendoff,
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Implication/Realization model, was proposed by Narmour [135] and have been applied

to several tasks by Grachten et al. [67–69].

Another generative approach based preference rules, which introduces very impor-

tant component of modern NLP — probabilistic modelling, is described by Temper-

ley [178]. Probabilities and corpus based statistics is an inherent part of all modern

NLP theories hence probabilities can model the meaning of text by inferring depen-

dencies within it [124]. This work reminds of the idea of probabilistic grammars

introduced earlier for text [96] and proposed for music by Bod [15].

Statistical analysis is a very important component of NLP models and it has played

(Cope [26]) and will play a major role in music research. In many cases, solutions

to many problems that gave good results for texts, could give comparable results in

music area. As an example, our n-gram method of authorship attribution developed

for natural language texts [93] gave good results for composer recognition of musical

pieces [215].

2.6.3 Future of Music Research

If the hypothesis that NLP and current computational music research operate on

two similar fields is true, it could be beneficial for both domains. For instance,

applications that span large number of levels of NLP (e.g., try to draw some high-

level conclusions based on low-level music representations) could work better, if they

focus only on fewer levels. As we have pointed out the layers of NLP, some of them

are not that well covered for the music matter. Lots have been done in the areas

of music ‘phonetics’, ‘phonology’ and ‘morphology’. We notice some recent work in

the area of ‘semantics’ but there are no models in higher, much more interesting but

complicated levels: ‘semantics’, ‘pragmatics’, and ‘discourse’. Those areas define the

meaning of the data we deal with, the understanding of undergoing structure and the

flow of composers ideas within a piece. In general, one can stack different applications

given the structure of NLP, i.e., the output of a model that operates on syntactic level

could be an input of a model operating on semantic level.
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A few tasks that are relevant for music research and are well developed within NLP

are sentiment analysis, genre classification, automatic summarization or idiom extrac-

tion. Other approach would be to enhance Music Information Retrieval with some

semantic aspects of music matter — music ontologies with an application of shallow

parsing (or alternatively, local reductions) to reach the level of current state-of-the-

art of textual Information Retrieval. However, it is still not clear how to represent

meaning of music in computational tasks, but in this case statistical approaches and

data mining techniques may bring relevant tools to describe this phenomenon.



Chapter 3

Quantitative Analysis of Symbolic Music

This section provides introduction and analysis of content of a number of corpora,

used further in this thesis for various tasks, as well as some other corpora, interesting

for some unique reasons. Since music data is approached here in the same manner

as text is for standard text information retrieval or natural language processing, it

is important to point what text and music have in common and where they differ.

The similarities would justify porting similar methods from one domain to another,

and differences may indicate where one would need to look closely while designing

a specific solution for music data. Downie indicates [41], that this kind of analysis,

which he refers to as “informetric analysis”, allows not only to get an insight about

the nature and quality of the data as well as the features that different corpora have in

common, but also to estimate storage requirements, evaluate scalability and optimize

system usage.

As a consequence of the analysis, the chapter ends with a series of experiments,

where native text information retrieval techniques of measuring text similarity are

applied directly to music corpora for composer classification task , as well as Mu-

sic Information Retireval Evaluation eXchange (MIREX) symbolic melodic similarity

(SMS) challenge, which directly evaluates applicability of text-based methods of anal-

ysis to music data. Naturally, the differences between music and natural text exist,

however, it is shown in this chapter how one can mitigate them in the preprocessing

steps so the actual procedure of measuring similarity between two excerpts remains

untouched.

63
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3.1 N-gram-based Approach to Symbolic Music

If the hypothesis about the same provenience of music and text holds true, then music

should have similar statistical properties as text as it arises from the same kind of

cognitive process. In order to compare them, one needs a common feature space that

removes representational differences between them. Text has a much more straight-

forward structure because it consists of a single flow of symbols while music can have

(and usually has) multiple voices that sound at the same time with concurrencies

possible even within each voice. This poses interpretation issues and performance

bottlenecks as analyzing all possible passages leads to exponential explosion. This

problem affects the entire domain of research in symbolic music as most of the meth-

ods have text analysis origin.

One of the methods to overcome these problems is to deal with one voice, and

one note at a time. This is called the monophonic approach and it allows music to

be treated as sequence data like text or genes. The opposite (polyphonic) approach,

deals with all the notes from all voices at the same time, but this leads to compu-

tationally complex models. It is used in the tasks that require polyphonic data, like

streaming [44], polyphonic pattern matching [24], or polyphonic music information

retrieval [33, 41, 107, 193]. However, in most cases polyphonic music can be reduced

to the monophonic level using various heuristics; the most frequently used one being

the skyline method [193], which treats each voice separately and, given the voice,

takes only the highest currently played note. Uitdenbogerd [194] analyzed a number

of monophonization approaches concluding, that skyline method (dubbed all-mono)

produces the most accurate results. This approach works best for precisely separated

symbolically represented streams (where the only concurrency problem comprises

chords and in-voice concurrencies), but it is also helpful in analyzing unprepared

polyphonic data (where there is no voice separation).

The result of the linearization of music data is a series of symbols, each being

a result of some function of these basic note features (e.g., pitch, duration, onset

and offset time). In order to model and analyze these streams of symbols an n-gram
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model is frequently used. Unlike for natural languages, where word boundaries are

commonly seen (i.e., it is easy to separate basic lexicographical units (words) to be

used for further analysis), music does not have these strict boundaries and this is

where n-gram models become very useful.

N-grams are the manifestation of a Markov process where the probability of a

symbol depends only on the probabilities of the preceding symbols. It is often further

simplified to a Markov chain (of order n) where the probability of a symbol depends

only on the previous n− 1 symbols. This can be represented as a ratio of two n-gram

probabilities, or frequencies f :

P (xi|xi−1, .., x1) = P (xi|xi−1, .., xi−n) =
P (Xi, .., Xi−n)

P (Xi−1, .., Xi−n)
' f(xi, .., xi−n)

f(xi−1, .., xi−n)
(3.1)

Typically, the general idea behind n-gram models is to count substrings of symbols

of a certain length. However, what constitutes a good feature for n-gram analysis is

the next problem to be solved. With the stream of notes, each having its own pitch

and duration, there are numerous approaches proposed for how to convert it to a series

of features to be later used as an input for such an analysis [17,33,41,53,157,179,193].

The straightforward approach to this problem is to take notes lengths and pitches

and map them directly to features. This approach has a main caveat, as it does not

satisfy tempo and transposition invariance requirement. Moreover, the same note

with a certain pitch and duration may mean different things in different excerpts

since its role also depends on the neighbouring notes.

This issue has been addressed in the previous work [34, 145, 215], which defines

a relative representation, where each note transition is encoded by two numbers in-

dicating relative pitch (melodic interval, as in 2.9) and relative change in duration

(inter-onset interval ratio, IOR as per 2.18) with respect to the previous note. An

n-gram then becomes a series of tuples indicating these relative changes.

More formally, for a given melody and a corresponding set of notes (i.e., MIDI

events carrying information about note pitch and duration), one can create a set
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Figure 3.1: N-gram extraction process. a) Input monophonic melody. b) Raw MIDI
features extracted from the input. Here: MIDI pitch and duration (in milliseconds).
c) Uni-grams obtained by transforming each pair of basic features using Formula 3.2.
d) Each N consecutive uni-grams form an n-gram, here of length 3. The initial melody
is finally represented by the set of five 3-gram terms.

of features (dubbed uni-grams). Each uni-gram υi represents the relative pitch and

relative duration between two consecutive notes:

υi = 〈mi(ni), ior(ni)〉 (3.2)

A simple n-gram’s extraction process is shown in Figure 3.1. The same melody

played in various tempos and in different pitches gives the same sequence of uni-

grams, and therefore — n-grams. This is especially important in analyzing classical

music, which often contains similar patterns that may be transposed to different keys

and may be played with different paces.

One can notice that with this representation, for a melody of N notes one can

obtain a sequence of uni-grams of lengthN−1. Each subsequence of n consecutive uni-

grams can be then combined to form a single, n-gram term. N-gram sets representing
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music documents or collections can be processed and analyzed in the same way as

text with n-grams or words, or form a base for statistical models based on Markov

assumption. It has been shown in our previous work [215], that this representation is

useful for the composer classification task. Overall, this approach is widely adopted

as fundamental, wherever bag-of-terms assumption is accepted.

3.2 Available Corpora

The common issue to deal with for most symbolic music researchers is that there is

not many large, high-quality datasets available for analysis, as well as testing and

comparing solutions to common problems. Some large audio and social metadata

datasets are available, e.g., Million Song Dataset [11], since companies that deal

with large amounts of music content, e.g., Last.fm or Youtube (Google), directly

benefit from research on audio data. The benefits from symbolic music research

are not directly transferable to new solutions and applications in their circumstances.

Symbolic datasets require work of an expert musician to both sequence each individual

document as well as annotate them with semantic information. They typically cannot

be crowd-sourced as it is often done with text corpora, where many Web 2.0 services

share their data for research purposes, like Wikipedia or Twitter. As a result, datasets

used in symbolic music research are mostly small in size, created for a specific purpose,

often through scavenging of online sources of MIDI data, e.g., 2006 and 2007 MIREX

SMS mixed dataset of 15000 random web MIDI files [98], which often result in poor

quality of data, or created as a collaborative effort of rather small music communities,

e.g., String Quartetdataset, described in the following section.

High-quality, monophonic, or highly monophonised on voice level (i.e., after ap-

plying monophonisation procedure, like skyline method [194], the result sounds very

similar to the original) files are the most desired for the purpose of the research pre-

sented in this dissertation. Most well-sequenced MIDI files, oriented not only for

playback, that keep voices and instruments in separate channels, fit well this defini-

tion. However, it turns out, that they conform just a small fraction of all MIDI files
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available in online resources like classicalarchives.com. So even, if one combines a

dataset from the existing resources, it still does not mean, that the one would get a

large, high-quality corpus with little effort. Several medium size music corpora will

be analyzed in this chapter. They all contain accurately sequenced, monophonic or

layered pieces of mostly classical music, either full compositions, or just themes or

incipits.

The corpora of symbolic music will be analyzed along with a few text corpora, to

find where symbolic music resembles natural languages and where it differs from them.

Typically, research in information retrieval and natural language processing focuses

on Western languages, mostly English, e.g., Downie compared statistical features of

music n-gram corpora to English and “other Roman alphabet languages” [41]. In this

chapter, another non-Western corpus will be analyzed along with an English corpus.

This should allow looking at similarities and differences between natural languages

and symbolic music from a broader perspective.

3.2.1 Symbolic Music Corpora

Piano Composers Dataset [pcd, pcd ex]. Piano Composers Dataset contains 256

pieces of classical music, organized in 5 classes based on authorship. All the pieces

in the corpus are either written directly for piano or for other keyboard instruments,

like harpsichord or pipe organ, or they have been transcribed for a keyboard instru-

ment, which makes the texture of the music data in the corpus uniform. The corpus

have been put together for the previous work [216] to evaluate composer recognition

approach. The items in the collection were selected manually by scavenging MIDI

files from the Internet and then selecting those with voices separated into different

channels with notes information likely reflecting the original music score. As an ad-

ditional requirement, a piece qualified only if it sounded similarly to the original even

after applying skyline linerization process [193] indicating, that monophonization does

not affect the overall music perception of the composition. The main classes of pcd

dataset contain the following pieces:
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• bach — 113 pieces of Jan Sebastian Bach, consisting of 24 Preludes and Fugues

from “das Wohlthemperierte Klavier” vol. 1 (BWV 846–869) (48 pieces), 3

Preludes and Fugues from vol. 2 (BWV 871, 872, 888 ) (4 pieces), 34 parts of

various Cantatas, 20 pieces from 15 Inventions set (15 arranged trios by Straube

and Reger, 5 selected originals) (BWV 772–786), 5 pieces from Anna Magdalena

Notebook, second part of Italian Concerto BWV 971, and Duetto No. 2 (BWV

803).

• beethoven — 45 pieces of Ludwig van Beethoven, mostly Piano Sonatas (30

pieces), but also Variations (2 pieces), 6 Bagatellen op. 33, Rondos (3 pieces),

Romances (2 pieces), Sonatina op. 79, and Bagatelle Für Elise.

• chopin — 58 pieces of Frederic Chopin including: Preludes op. 28 (24 pieces),

Etudes (8 pieces), Nocturnes (6 pieces), Mazurkas (8 pieces), Waltzes (2 pieces),

Fantasie-Impromptu op. 66 (2 renditions), Ballade op. 23, Scherzo op. 31,

Piano Sonata op 35 (4 pieces), Polonaise op. 53, and Concerto op. 11, part 2.

• mozart — 17 pieces of Wolfgang Amadeus Mozart including: Sonatas (9 pieces),

Rondos (2 pieces), Piano Miniatures (4 pieces), Variations KV 265, and Over-

ture to KV 384 (arranged for piano).

• schubert — 23 pieces of Franz Schubert including: Sonatas (16 pieces), Mo-

ments Musicaux op. 94 (5 pieces), Klavierstücke D. 946 No. 1, and Ave Maria

D.839.

There is an extended version of this dataset, pcd ex, with a number additional com-

posers, with fewer pieces in the collection, which gives in total 366 pieces:

• 39 pieces of Johann Burgmüller: Etudes Faciles op. 100 (22 pieces), Etudes op.

105 (9 pieces), and Etudes op. 109 (8 pieces),

• 11 pieces of Muzio Clementi: Sonatinas (8 pieces), and Etudes (3 pieces),

• 5 various pieces of Georg Händel,
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• 16 pieces of Modest Musorgsky (Pictures at an Exhibition),

• 12 pieces of Robert Schumann: Scenes from Childhood op. 15 (5 pieces), Album

for the Young op. 68 (4 pieces), Moment Musicaux op. 94 (2 pieces), and

Fantasie op. 12 No. 3,

• 11 pieces of Alexander Scriabin: Preludes (8 pieces), Etude op. 8 No. 5, Scherzo

op. 46, and Nocturne op. 9 No. 2, and

• 16 pieces of other composers: Luigi Boccherini, Alexander Borodin, Claude

Debussy (2 pieces), Léo Delibes, Edvard Grieg, Joseph Haydn (2 pieces), Scott

Joplin (3 pieces), Ferenz Liszt, Felix Mendelssohn (2 pieces), Johann Pachelbel,

and Richard Winkelmann.

Haydn/Mozart String Quartets [string, string rh]. String Quartets dataset

contains all string quartets of Joseph Haydn and Wolfgang Amadeus Mozart. They

both lived in the same times (Haydn was born in 1732 and died in 1809, Mozart was

born in 1756 and died in 1791) and in the same place — Vienna, which made their

style very similar. Since the corpus contains only one music form, this makes it very

uniform. The data come from Center for Computer Assisted Research in the Hu-

manities (CCARH) at Stanford University, where they make them available in kern

format. The files were then converted to MIDI using Humdrum toolkit, ensuring sep-

aration of voices into different tracks, to allow for direct use of monophonic methods

using string or n-gram approaches. The dataset consists of 210 Haydn pieces and

82 from Mozart. Imbalance of the size of datasets reflects the difference in life time

of both composers. Although it is not typically a strict rule, it holds true in this

particular case.

Hillewaere et al. [75] suggested modifications to the original string datasets, by

removing late Haydn quartets written after Mozart death, indicating that they can

be too easy to classify. They also added a few pieces of the same type to Mozart data,

resulting in more balanced dataset. Since they approached automatic classification

task, based on the modified dataset, it would be interesting to observe, how the
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performance of classifiers changes between those datasets. Their dataset has been

incorporated for classification analysis as an additional string rh dataset.

J.S. Bach’s Well Tempered Klavier, vol 1 [wtk, wtk rand]. wtk dataset con-

tains 48 preludes and fugues from volume 1 of “Das Wohltemperierte Klavier” by

Johann Sebastian Bach. Although these pieces are contained within pcd dataset, this

is a different rendition, where the quality of the data was checked to ensure that each

voice has its separate track. Fugues typically have 2 to 5 strictly monophonic voices

(dubbed voci), although being scripted on a 2 staff system for keyboard instruments.

In polyphonic (music theory), baroque music, and especially in fugues, each voice is

equally important and typically does not contain any accompaniment or is in sub-

ordinate relation to any other voice, so wtk dataset have been selected as a training

corpus as a good sample of melody leading for melody generation task, introduced in

the next chapter.

wtk rand dataset is an artificial dataset, based on wtk dataset. It was created from

notes (melodic intervals and IORs) statistics obtained from wtk corpus, by taking the

probability of each pair of interval and IOR, as well as the probabilities of end-of-track

and end-of-file markers, and then drawing random symbols from this distribution, one

at a time, and appending them to the output. Analysing such dataset would allow

to observe, which statistic features of music corpora come from the basic frequencies

of symbols in the alphabet, and which have deeper origin. 48 pieces were drawn with

this method, the same number as in the original wtk dataset. It turned out, rather

unsurprisingly, that even without direct control over the size of each file, we have

obtained a dataset with a very similar size as the base one.

Répertoire International des Sources Musicales, MIREX subset [rism].

Répertoire International des Sources Musicales is a non-profit organization, founded

in 1952, which aim is to document music sources all over the world from all times.

Their Series A/II catalogue contains information about handwritten manuscripts with
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more than 700,000 entries, each containing an incipit (the excerpt starting at the be-

ginning of the piece) reflecting the content of each manuscript. Currently, the access

to the database is provided by RISM through their queryable catalogue, although as

for now, one can query it solely in text mode and no melodic search is available.

A subset of RISM A/II dataset, provided by UK RISM division, have been used in

Music Information Retrieval Evaluation eXchange (MIREX) challenge for Symbolic

Melodic Similarity (SMS) in 2005 and 2006. It consists of 2 datasets, training and

evaluation, containing in total 1110 purely monophonic incipits in MIDI format. The

subsets were supplied by Typke et al. [186] with 22 queries (11 for training and 11

for evaluation) along with relevance judgements of similarity between each query and

retrieved items from the collection, obtained via human evaluation of 2005 and 2006

MIREX SMS challenge. Due to the availability of query relevance data, this dataset

is often used as an internal benchmark by participants of SMS MIREX challenge. In

this dissertation, it is used to investigate which aspects are important while designing

a melodic similarity measure using n-gram approaches.

Essen Folksongs Collection [essen]. Essen Folksongs Collection (EFC) is a re-

sult of joint initiative of German and Polish ethnomusicologists to preserve musical

heritage of folk songs from nations around the world. Currently, the holdings reached

20,000 pieces mainly from Germany, China and Poland. Each item in the collection

is a monophonic melody encoded in EsAC format, with conversions to other nota-

tions, like kern and MIDI available. Since the collection does not have the licensing

issues, that came with RISM dataset, it has been adopted as an evaluation dataset

for MIREX SMS task in 2007, 2010, 2011 and 2012. The dataset used for MIREX

task is a subset containing 5274 melodies in MIDI format.

Beatles Dataset [beatles]. Although this dissertation is focused on classical mu-

sic, it is usually desirable to verify how well algorithms designed with one music genre

in mind act on a different type of music. Additionally, the analysis of music content

based solely on classical music would give non-representative results, as modern pop
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music becomes also a very important part of our music heritage. For those reasons,

it seemed important to include in the analysis other, non-classical corpus, which in

this case is a collection of 209 Beatles songs. Apart from the purpose of comparing

different types of music in this chapter, items from this dataset are used to observe

how visualization and segmentation algorithms introduced in this thesis and designed

with classical music in mind, perform on a different type of music.

3.2.2 Textual Corpora

Analysis of text corpora is not an essential part of research on music but it seems

reasonable to use them in comparison with music datasets to highlight similarities

and identify differences between natural languages and music. Typically, music is

compared against Western languages, like English [41]. However, to broaden the

scope, we also included a corpus of Thai language, which shares some interesting

features with music.

Wikipedia [wiki and wiki rand]. Wikipedia dataset wiki contains the first (by

ID) 10,000 articles from English Wikipedia acquired from 2012/03/12 snapshot down-

loaded from Wikipedia backup site (download.wikimedia.org). The dataset have

been processed and cleaned using wikiprep program [57]. As a result, it yielded

about 90.1MB of clean (markup removed) text.

To create wiki rand corpus, the same method, which was used to create wtk rand,

has been applied. The probabilities of each letter, space, punctuation symbol, and

end-of-document marker have been estimated using wiki dataset and another 10,000

documents have been drawn, one symbol at a time, based on the underlying proba-

bility distribution of symbols. Here is a small sample of text created as a result of

such process:

thonarae e inn .inlc eceatts p awcht2glni tp l,f t6rn s-lrae:e

tryms2 ,eaoqc eol)( h de tleuSeisowiIeaMuDi’nprA"eIdhen

r2Ftr v 0nu2 hdl,he%9l3sC relomt Selcacbmthdhaeo r

download.wikimedia.org
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irtionibCJrun hr0m*cl2fnau.

The interesting point would be to observe, which measurable features of written

text result from symbols distribution and which have deeper reason, and among

them — which are shared with music, indicating whether symbolic music might be

perceived, from the analysis perspective, just as a specific natural language.

Thai ORCHID Corpus [orchid]. ORCHID project (Open Linguistic Resources

CHanelled toward InterDisciplinary research) was initiated in 1996 to create a Thai

part-of-speech tagged corpus, mainly to support research in natural language process-

ing. The corpus contains 164 documents, mainly scientific documents from the field

of computer science. For the purpose of comparing various text and music corpora,

all the tagging information have been removed, leaving just the pure, Thai text.

Thai language shares a number of properties with symbolic music, which are

different from properties of many other languages. Thai alphabet consist of a small

number of phonograms (letters), each representing a phoneme or a speech sound (like

in English), but different from languages like Chinese, which uses a large number of

logograms. However, like in Chinese, word boundaries are not indicated in the text,

which poses a problem similar to phrase detection in music. The second similarity

with music notation, results from the fact, that any of the 70 base characters can be

altered with one or more of 17 combining characters (as defined by TIS-620 standard)

which gives a large number of combinations representing letters, whereas languages

based on Latin alphabet are typically limited to a fixed, small number of possible

characters.

3.3 PERL MIDI::Corpus Module

In order to effectively process and analyze large amounts of data for various tasks,

one needs to obtain a set of tools to handle the data, which are shared between those

tasks. PERL programming language has a number of built-in tools, that allow easy

access, handling and analyzing of text data, which is already in a quite simple format.
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MIDI is a much more complicated, binary format, and symbolic music itself is not

tailored to fit basic data structures and algorithms, like text.

MIDI::Corpus addressed those issues by providing object-oriented interface to

handling and analyzing corpora of symbolic music in MIDI files. It does not handle

MIDI files internally, but instead, uses MIDI-Perl suite. It provides a set of high-level

functions to load corpora of MIDI files, manipulate them to obtain various statistics,

and exports a number of functions for measuring similarity between corpora.

3.3.1 Synopsis

Here is a sample code using MIDI::Corpus module to retrieve 10 most similar pieces

to the query:

#!/usr/bin/perl

use MIDI::Corpus qw/cosine/;

use strict;

opendir DATA, "beatles";

my $corpus=MIDI::Corpus::new;

$corpus->add("beatles/$_ [as] $_")

for grep {/\.midi?$/i} readdir DATA;

closedir DATA;

$corpus->add("unknown_song.mid [as] query");

die $corpus->error unless $corpus->ok;

my %sim;

$sim{$_}=cosine(4,’query’,$_,$corpus) foreach $corpus->items;

delete $sim{’query’};

my @ranked = sort {$sim{$b}<=>$sim{$a}} keys %sims;

print "$_: $sim{$_}\n" for @ranked[0..9];

3.3.2 Corpus Loading

Module provides a MIDI::Corpus object that encapsulates main module information

and allows for access to module methods. Here, this object is typically referred to
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through a $corpus variable. The following functions can be used to create an object,

set its parameters and fill it with data.

new(@files) — Creates a new object and defines music features as combined melodic

intervals and IORs. If any arguments are supplied, it treats them as a list of files to

be added to the collection. Returns itself for stacking if files were added successfully

or undef, if an error occured while adding files.

my @files = qw/ foo.mid bar.mid baz.mid /;

my $corpus = MIDI::Corpus::new(@files);

die "error while loading corpus" unless $corpus;

setf(\&function) — Changes how features are extracted from the raw flow of

notes and unigrams. The supplied function should take two list references, to notes

and unigrams. Each element in notes list is a 3-tuple indicating absolute parame-

ters: start time, MIDI pitch, and duration. Each element in unigrams list is a pair

of relative parameters: melodic interval and IOR. The function should return scalar

value uniquely identifying n-gram from those input notes. The call to setf should

immediately follow new, prior to adding any elements to the corpus.

sub melodic_interval_ngrams

{

my ($notes, $ugrams) = @_;

my @intervals;

foreach my $ugram (@$ugrams)

{

my ($mi,$ior) = @$ugram;

push @intervals, $mi;

}

return join ’;’, @intervals;

}

my $corpus = MIDI::Corpus::new;

$corpus->setf(\&melodic_interval_ngrams);

#setting melodic interval n-grams

#or just

my $corpus = MIDI::Corpus::new()->setf(sub{
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join ’;’, map {$$_[0]} @{$_[1]};

});

#setting IOR n-grams

add(@files) — Adds items to the collection. Accepts a list of document descriptors.

They contain either paths to MIDI files or paths with optional labels, under which

they should be identified, delimited with [as] keyword. If no labels are given, files

will be identified by their full filename and path. Returns undef if there was a problem

with any of the files, or itself upon success.

my $corpus = MIDI::Corpus::new;

my @files = qw/foo.mid bar.mid baz.mid/;

$corpus->add(@files);

open DIR, "very/long/path";

my @midi = readdir DIR;

close DIR;

$corpus->add(@midi); #files will have long labels

$corpus->add("very/long/path/$_ [as] $_") for @midi;

#shorter labels containing just file names

in collection($label) — Checks if a file under label supplied as an argument

exists in the collection.

opendir DATA, "beatles";

my $corpus=MIDI::Corpus::new;

$corpus->add("beatles/$_ [as] $_")

for grep {/\.midi?$/i} readdir DATA;

closedir DATA;

if ($corpus->in_collection("Yesterday.mid"))

{

print "’Yesterday’ is in the collection";

}

else

{

print "’Yesterday’ is missing";

}
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items — in list context, returns a list of labels of items in the collection. In scalar

context, returns number of items in the collection. In void context, returns undef.

See Synopsis 3.3.1 for usage.

3.3.3 Corpus Status

ok — returns true if there was no issues with the corpus, and false otherwise.

error — returns an error message if there was a problem with the corpus. When

called, resets error status, so subsequent calls to ok return true until a new problem

is encountered. Used in conjunction with ok.

explicate — prints basic information about items in the collection.

my $corpus=MIDI::Corpus::new;

#existing MIDI files: ./foo.mid ./bar.mid (corrupted)

sub check

{

$corpus->add(@_);

print ($corpus->ok)?’OK’:$corpus->error;

}

check ’foo.mid’; # OK

check ’foo.mid’; # foo.mid already in the collection

check ’foo.mid [as] other’; # OK

check ’baz.mid’; # Cannot locate baz.mid midi file

check ’bar.mid’; # Cannot load bar.mid: <error description>

$corpus->explicate;

#---

#Corpus has following features:

# number of files: 2

# 0 file (foo.mid) has 3 tracks

# 1 file (other) has 3 tracks

# number of statistics: 0

#---

3.3.4 Playback

N-gram and track playback options are available only on Windows systems, since

they require Win32::MIDI module to be installed, and loaded.
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playable — enables playback functions

play track($label,$track) — plays content of file of label indicated by the first

argument for track number indicated by the second argument.

play ngram(\@unigrams) — plays the content of an arbitrary sequence of uni-

grams containing melodic interval and IOR information

use MIDI::Corpus;

my $corpus=MIDI::Corpus::new(’foo.mid’)->playable;

$corpus->play_track(’foo.mid’,0);

#twinkle, twinkle, little star...

$corpus->play_ngram([

[0,0],[7,0],[0,0],[2,0],[0,0],[-2,5],

[-2,-5],[0,0],[-1,0],[0,0],[-2,0],[0,0],[-2,5]

]);

3.3.5 Data Functions

raw($label, ?$type?) — This function allows to retrieve files content if one wants

to analyze symbolic music data in a different way, than provided by analysis functions

of MIDI::Corpus package, yet still benefit from easy MIDI files handling. Note, that

results are already linearized using skyline method, so no polyphonic processing can

be done with MIDI::Corpus package. The function takes one mandatory argument,

label of the file. If second argument is provided, and it is ’ugrams’, it returns array

of unigrams from this label. If the second argument is ’notes’, a list of absolute

notes information is returned. If second argument is not provided, a reference to the

entire data structure, corresponding to this item in the collection, is returned. The

following example shows, how one can obtain interval statistic using raw function.

use strict;

use MIDI::Corpus;

use List::Util qw/min max/;

my @files = qw/ foo.mid bar.mid baz.mid /;
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my $corpus = MIDI::Corpus::new(@files);

die $corpus->error unless $corpus->ok;

my %stat;

foreach my $item ($corpus->items)

{

foreach my $note ($corpus->raw($item,’ugrams’))

{

$stat{$$note[0]}++;

}

}

print "$_ exists ",0+$stat{$_}," times\n"

for (min(keys %stat)..max(keys %stat));

3.3.6 Analysis Functions

create(\%options) — creates n-gram statistics for items in the collection and

returns a reference to a data structure with statistics, typically a hash reference. If an

error occurred, undef is returned and error is set. The statistics is also saved within

a corpus for further use, so to free the memory, one needs to undef’ine the corpus after

statistics has been used. Method accepts options in key-value fashion. Mandatory

options are ’length’, which is any positive integer value indicating n-gram length,

and ’type’ — indicating type of statistics required for the task. Available options

for ’type’ parameter are:

• count — calculates how many times each n-gram occurs. Returns simple hash

reference, with n-grams as keys, and counts as values.

• probability — calculates probability of each n-gram in the corpus. Returns a

hash reference.

• lobability — calculates logarithms of probability of each n-gram. Returns a

hash reference.

• probexists — calculates probability of terms assuming binary weights (1 —

exists, 0 — otherwise). As a result, all terms will have the same weights,

normalized to the total number of different terms. Returns a hash reference.
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• tf — calculates term counts for each document separately. Returns two-tier

hash, with each count associated with document label and n-gram.

• df — calculates in how many documents each n-gram occurs. Returns a hash

reference.

• tfidf — calculates if.idf score for each n-gram, according to Equation 3.19.

Returns structure similar to tf.

• bm25 — calculates bm25 score for each n-gram, according to Equation 3.20.

Returns structure similar to tf.

Other parameters include:

• ’function’ — temporarily overrides default combining function. Takes the

same function type as setf method. The global combining function remains

unchanged.

• ’name’ — optional identifier for created statistics. By default, statistics are

identified by type and length. If you want to create a different statistics with

the same type and length, but different other optional parameters, you should

specify its name.

• ’force’ — if set, calculations will be redone with new parameters, even if the

statistics of the same identification exists. The old statistics is deleted and the

memory it took — freed. This allows to perform series of analysis on the same

corpora, without taking more memory, each time a new analysis is performed.

• ’k’ and ’b’ — set custom k and b parameters for bm25 weighting function

overriding default k = 2 and b = 0.75. See Equation 3.20 for details.

use MIDI::Corpus;

$corpus = MIDI::Corpus::new(qw/ foo.mid bar.mid baz.mid /);

#counting bi-grams of combined MI and IOR across the corpus

$counts = $corpus->create(’type’=>’count’,’length’=>2);

#counting melodic interval bi-grams
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$counts = $corpus->create(qw/ type count length 2 /,

’function’=>sub{return join ’,’, map {$$_[0]} @{$_[1]}});

#wrong - ’count 2’ already exists

$counts = $corpus->create(qw/ type count length 2 force 1/,

’function’=>sub{return join ’,’, map {$$_[0]} @{$_[1]}});

#correct - ’count 2’ overwritten and recalculated

$counts = $corpus->create(qw/ type count length 2 name mi_stat /,

’function’=>sub{return join ’,’, map {$$_[0]} @{$_[1]}});

#correct - new entry created, keeping previous statistics

print "most common melodic bi-gram occured ",

max(values %$counts)," times\n";

lz78($label,?\ %dictionary?,%options) — Estimates Kolmogorov complexity

using lz78 algorithm of document specified by the first argument. If dictionary is also

specified, calculates conditional complexity, using supplied dictionary. Returns the

difference of dictionary sizes before and after application of lz78 algorithm. Changes

dictionary by including new dictionary entries, so calls to lz78 can be stacked to build

a single dictionary for multiple documents. It takes optional parameter, function

and length, in the same manner as create function, although length carries minimal

sense for complexity estimation. For details on the method, see Section 3.4.5.

use MIDI::Corpus;

$foo = MIDI::Corpus::new(’foo1.mid’,’foo2.mid’);

$foo->lz78($_,\%foo_dict) for $foo->items;

$bar = MIDI::Corpus::new(’bar1.mid’,’bar2.mid’);

$bar->lz78($_,\%bar_dict) for $bar->items;

$baz = MIDI::Corpus::new(’baz.mid [as] qux’);

$foo_score = $baz->lz78(’qux’,\%foo_dict);

$bar_score = $baz->lz78(’qux’,\%bar_dict);

say "baz looks more like ",($foo_score < $bar_score)?’foo’:’bar’;
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3.3.7 Similarity Measures

MIDI::Corpus module exports a number of functions allowing for similarity calcula-

tions of items within a corpus or across different corpora. To use them, one has to

import them in one’s own script next to use command. All functions share common

calling style:

function($length,$doc1,$doc2,$corpus1,?$corpus2? )

where $length specifies n-gram length, $doc1 and $doc2 are labels of two documents.

If they come from the same corpus, only $corpus1 is specified, otherwise $corpus2

should be specified as well. They use built-in corpora statistics, so the first call to

any similarity measure may take longer to run, required to compute relevant corpus

statistics, like tf.idf or count, depending on the measure. See Synopsis 3.3.1 for

usage.

The following measures are implemented:

• binary — returns the number of terms two documents share in common. See

Equations 3.11 and 3.16 for details.

• cosine — computes cosine similarity using standard term weighting method

based on n-gram counts. See Equations 3.13 and 3.17 for details.

• binary cosine — computes cosine similarity with binary term weighting, dis-

carding how many times an n-gram occurs in a document.

• euclidean — computes euclidean distance between two documents.

• tfidf — computes dot product between two documents with tf.idf term wight-

ing. See Equation 3.19 for details.

• tfidf norm — computes cosine similarity between two documents with tf.idf

term wighting. Essentially, it is normalized version of tf.idf method.

• bm25 — computes bm25 score between two documents in a similar fashion as

tfidf, but with bm25 term weighting method. Consult Equation 3.20 for de-

tails.
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• bm25 norm — normalized version of bm25.

• cng — computes CNG similarity score, as defined in Equations 3.14 and 3.18.

• cng profile — computes CNG similarity score between entire profiles of two

corpora, like in cng function. Labels of $doc1 and $doc2 are ignored.

3.4 Statistical Analysis of Music Corpora

3.4.1 Size Statistics

The initial analysis focuses on the sizes of the corpora, as well as the sizes of documents

and distribution of terms in each corpus. Typically for bag-of-terms approaches, it

is important, how many distinct terms are in each document and in a collection as a

whole. This allows to estimate the size of the search index, so this information has

been included in our analysis as well.

Table 3.1 contains size information for all the datasets introduced in the previous

section, along with analyses on text datasets on letter and word level. Most datasets

sizes are in the same range, from 246k symbols (essen) to 993k (orchid) with a few

small ones (wtk and rism) and much bigger Wikipedia-based datasets. The orchid

corpus has a much bigger variety of symbols, comparing to English text in wiki,

yet still not as complex as music datasets. We can also observe, that randomization

procedure, applied to wtk and wiki datasets, does not change much the volume of the

data and statistics on symbol level, but it does change greatly the number of words

in wiki randw dataset, which should also be the case for music n-grams, with n > 1.

3.4.2 Distribution of Intervals and IORs

Another analysis typically performed on symbolic music corpora, involves finding the

distribution of symbol probabilities. Since both melodic intervals and inter-onset

interval ratios (IORs) are represented with numbers, it is possible to plot them on

a numerical scale. This can not be done with text letters or words. However, since
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Corpus |D| |T | |{ti}| ¯|di| P di
10-P

di
50-P

di
90

¯|tdi| P
tdi
10 -P

tdi
50 -P

tdi
90

beatles 209 529k 4416 2530 1208-2273-4443 213 108-173-364
essen 5274 246k 494 46.6 27-43-72 20.5 13-20-28
pcd 256 421k 3299 1644 300-1025-4434 137 46-110-239
pcd ex 366 525k 3440 1434 279-885-3561 122 46-95-221
rism 1110 13.7k 352 12.4 7-12-19 9.2 6-9-13
string 292 511k 2065 1751 583-1618-3099 178 109-174-256
wtk 48 42.7k 933 890 514-791-1383 110 60-112-173
wtk rand 48 39.6k 747 826 42-624-1774 123 25-126-226
orchid 164 993k 551 6056 663-5877-11657 181 91-195-232
wiki 10k 91.0M 38 9098 985-3868-23722 35.3 31-37-37
wiki rand 10k 93.3M 38 9332 929-6444-21790 36.6 35-37-38
wikiw 10k 15.6M 310k 1556 164-692-3951 544 103-323-1290
wiki randw 10k 15.7M 6.38M 1569 157-1081-3663 1167 140-848-2646

Table 3.1: Size statistics of analyzed corpora. |D| — number of documents in the
collection, |T | — total number of terms: unigrams (for music databases), or letters
and words (for text databases), in the collection, |{ti}| — total number of distinct
term (i.e., size of the dictionary), ¯|di| — average length (number of terms) of a
document, P di

10 -P di
50 -P di

90 — distribution of document lengths: 10th percentile, 50th

percentile (median), and 90th percentile, ¯|tdi| — average number of different terms

in a document, P
tdi
10 -P

tdi
50 -P

tdi
90 — distribution of the number of different terms per

document. Text databases analysis is available for characters (wiki and wiki rand),
and words (wikiw and wiki randw).
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certain intervals have a very specific musical meaning, the numbers they represent, as

a difference in MIDI pitches (see Equation 2.9), may not conform to mathematical and

statistical laws, so it would be interesting to see, if there are any musically meaningful

regularities in the distribution. The same applies to IORs.

Typically, values of intervals and IORs are plotted in linear space [33,41]. However,

since most of the symbols occur infrequently, and there is typically a small number

of frequently occurring symbols, this indicates that the frequency of symbols may fit

some power law distribution. For this reason, we decided to plot values of probabilities

in logarithmic scale. Since both melodic intervals and IORs are already defined in

logarithmic dependency with basic physical sound parameters, e.g., frequency and

time, no logarithmic scaling is applied to those values, unlike in Doraisamy [33],

where logarithmic scaling have been applied to IOR values.

Figure 3.2 contains distributions of melodic intervals in all corpora. As we can see

in Figure 3.2(a), the probability fluctuates typically in the range up to 10 to 20 times

between consecutive intervals, which should be attributed to specific music functions

some intervals carry (e.g., multiples of octaves, perfect fourths or perfect fifths).

However, despite from rather significant local variations, it is common for all corpora

to hold the power law for general trends of probabilities of interval occurrences across

the entire interval spectrum. Figure 3.2(b) focuses on its most important part, which

contains all intervals within one octave (± 12 semitones), and where musicological

dependencies are most apparent. All corpora have rather symmetric and similar

distribution of intervals in this range, with several noticeable differences. beatles

dataset has significantly more unisons (mi = 0), than other corpora and significantly

less seconds (mi = ±1 and mi = ±2), which indicates much less scale passages, and

much more notes repetitions comparing to the other corpora, especially wtk. Second,

is low probability of strictly dissonance intervals (tritones: mi = ±6, major sevenths:

mi = ±11 and minor ninths: mi = ±13 ) in essen and rism datasets, containing

solely monophonic themes and leading melodies and no accompaniment material.
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(a) Interval distribution

(b) Intervals within 9th

Figure 3.2: Distribution of melodic intervals in the analyzed corpora. a) entire in-
tervals spectrum, b) details of the distribution of intervals within major 9th (scope
limited to ±14 semitones)
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(a) Interval distribution

(b) Interval distribution

Figure 3.3: Distribution of rhythmic IORs in all analyzed corpora. a) entire IOR spec-
trum, b) details of the distribution of IORs within the range of -20 (equiv. duration
change of 1/16) to 20 (equiv. duration change of 16/1)
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Figure 3.3 cointains distributions of inter-onset interval ratios (IORs) as defined

by Equation 2.18. Again, the overview of the distributions (Figure 3.3(a)) shows

great symmetry with respect to ior = 0, and that despite significant local variations,

the general trends among most corpora satisfy power law in terms of distribution

of IORs, especially in the range of |ior| ≥ 15. The only exception seems to be

beatles corpus, where the probabilities above |ior| = 15 seem to be accidental, with

probabilities between 1% and 1h. It can be explained by the fact that other corpora

do not typically have pieces with tracks for instruments that enter at random times

to play for a couple of notes, which is the case for beatles corpus, where those

random entries mask intentional IORs above 15. Other than that, in the range of

|ior| ≤ 15, i.e., for duration changes less extreme than �/� or �/� transitions, typical

duration ratios, like 1/1 (ior = 0), 2/1 (ior = 5), 3/1 (ior = 7), 3/2 (ior = 2) or

4/1 (ior = 10) dominate, which is most pronounced for both incipit datasets (essen

and rism) and to the lesser extent for beatles dataset, with the highest number of

off-chart rhythmic transitions.

The closer look at four classical music datasets (essen, pcd ex, string and wtk,

see Figure 3.4) highlights the lower number of unisons in wtk as well as large jumps

in essen comparing to other datasets. Other general, common for all datasets ob-

servations include twice as smaller number of jumps of 4ths down than up, as well as

50% more popular downward passages of 2nds, comparing to the upward direction.

Rythmically, wtk, string and pcd ex are very similar, with essen having typically

10 to 30 times less IORs corresponding to irregular, and twice as more to typical

combination ratios.

Plotting corpora containing only melodies and themes, i.e., essen and rism, on

one chart (Figure 3.5) indicates how similar they are with regards to distribution

of melodic intervals and IORs. In both cases, we can observe much higher content

of jumps up (with mi ≥ 5), than equivalent jumps down, compensated with more

passages in downward direction with −3 ≤ mi < 0. Rhythmic landscapes are also

very similar (Figure 3.5(b) with very low content of irregular rhythmic changes.
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(a) Interval distribution

(b) IOR distribution

Figure 3.4: Comparison of distribution of melodic intervals and IORs in classical
datasets (essen, pcd ex, string, and wtk): a) melodic intervals with major 9th, b)
IORs
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(a) Interval distribution

(b) IOR distribution

Figure 3.5: Comparison of distribution of melodic intervals and IORs in MIREX SMS
datasets (essen, rism): a) melodic intervals with major 9th, b) IORs
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(a) Interval distribution

(b) IOR distribution

Figure 3.6: Comparison of distribution of melodic intervals and IORs between oppos-
ing datasets (beatles and wtk) with a reference of pcd dataset: a) melodic intervals
with major 9th, b) IORs
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Figure 3.6 shows the difference between beatles, containing many more repeti-

tions than melodic passages, and wtk, with dominance of melodic passages. Although,

the probability of intervals |mi| ≤ 2 differ are as much as 10 times for those datasets,

and these small intervals contribute overall to 50% – 70% of all interval occurences,

it does not affect the interval spectrum for intervals larger than |mi| ≥ 3, typically

with pcd ex, ploted for reference, lying in between them. Similar properties can be

seen on rhythmic graph with much higher content of irregular rhythmic changes in

beatles and much lower in wtk (Figure 3.6(b)).

3.4.3 Zipf’s Law for n-grams

George Kingsley Zipf in the book “Human Behaviour and the Principle of the Least

Effort” points out that the least effort rule is fundamental to humans and that we

may find the manifestations of this law in all human actions [220]. One of the char-

acteristic features of natural languages which, according to Zipf, results directly from

this principle, is a very specific distribution of words that we can find in all texts.

This can be summarized in one equation:

r × f ≈ Const.

where r is the rank, or position, of a word in sorted by counts list of all words, and f

is the frequency, or count of this word. For every word, the product of its rank r and

count f should remain constant, which means that if we plot the frequency and the

rank of each word from the corpus, ordered by frequency, on a doubly logarithmic

chart, they would form a straight line with a slope of −1. At the time of Zipf, this

was an important and not easy finding keeping in mind that there was no computers

to do the counting or sorting, and the entire work was performed manually.

Following Zipfs reasoning, if the assumption that music is also a natural language,

but expressing different things than regular natural languages, that emerged from

the same kind of process in human brains satisfying Zipf’s unification—diversification

balance [220], we could expect music presenting the same kind of statistical properties.
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Downie [41] compared distribution of characters and melodic intervals, however

they focused on the most frequent symbols, where usually rank-probability graph

fluctuates and does not hold Zipf’s law very well. However, Uitdenbogerd [194] ana-

lyzed melodic features in the way suggested by Zipf, using the entire corpus of many

different n-gram features on a double logarithm graph, achieving results similar to

those obtained using text character n-grams (see Figure 3.7(j) or 3.7(i)).

Figure 3.7 contains a number of analyses of terms distribution in music in text

corpora. Music terms are n-grams of features combining melodic intervals and IORs.

Such tuples contain all the melodic and rhythmic information required to reconstruct

the original excerpt. For text, character n-grams and words are being used. Uitden-

bogerd in her analysis of n-grams distribution [194] used melodic contour features,

which gives a very limited feature space (there is only basic symbols available), which

lead to conclusion, that music n-grams do not follow Zipf’s power law distribution,

but rather form a cap-shape curve on double logarithmic graph, as one can observe

on text character n-grams distribution on Figure 3.7(j). The reason of this situation

is probably a very limited feature space of basic n-gram components with the use of

melodic contour features, similarly to English language from wiki, where it uses only

a very limited set of characters. Combining melodic intervals and rhythmic IORs cre-

ates virtually unlimited number of possible uni-grams combinations, which is the case

with English words as well as Thai letters. Apparently, the behaviour of Thai, which

is definitely a natural language, is much more similar, in terms of n-gram distribution,

to music n-grams obtained from string or pcd ex than to English character n-grams

from wiki dataset.

What looks interesting is the influence of randomization procedure applied in

wiki rand and wtk rand corpora. Surprisingly, it does not affect the Zipf’s law for

those artificially created text words of wiki rand in Figure 3.7(k), which means,

that to estimate Zipf’s word distribution, obtaining character statistics is sufficient,

without the need of counting the actual words. However, what changes after applying

randomization, is the behaviour of character n-gram distribution in both datasets.
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The original datasets (i.e., wtk and wiki) keep lines for consecutive values of n close

to each other, indicating how little changes in the distributions while increasing or

decreasing n. After randomization, the gaps between curves increases significantly,

setting them further apart.

3.4.4 Entropy Analysis

Entropy is the measure of uncertainty associated with a random variable. It can be

interpreted as the shortest average length of a message, that is required to commu-

nicate a true value of the random variable to the recipient, therefore it is considered

as a measure of information.

General formula for entropy of a discrete random variable X, which takes values

x1, . . . , xn with probabilities p(x1), . . . , p(xn) is as follows:

H(X) =
n∑

i=1

p(xi)logb

(
1

p(xi)

)
= −

n∑
i=1

p(xi)logbp(xi) (3.3)

where b determines the unit of information, with the most commonly used bit (with

b = 2), but there are also situations where nat (b = e) or dit (b = 10) are used.

Whenever k does not occur in a random variable X, it is assumed that the probability

of k is 0 (p(k) = 0) and its contribution to H(X) is none:

lim
p→0+

p log p = 0 (3.4)

Downie [41] calculated entropy of melodic intervals in a corpus of 10,000 folksongs,

mostly consisting of Essen Folksongs Collection, at the level of 3.39 bits per melodic

interval, which is in line with estimations based on essen dataset: 3.36 bits (see Table

3.2) and compared this value to entropy of English text, 4.14 (which varies from the

value obtained from wiki, because we add numbers to the character set for entropy

calculation). We can observe significant differences in music data entropy values

among styles and corpora, which result from different interval and IOR distributions,

discussed earlier, however Thai and English characters also carry different entropy

values. Despite the difference, there are certain meeting points between music and
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(a) RISM (b) WTK (c) WTK randomized

(d) EFC (e) Five (f) Five ex

(g) String (h) Beatles (i) Orchid

(j) Wiki (k) Wiki randomized

Figure 3.7: Zipf distribution of text character n-grams, music n-grams and text words
for analyzed corpora.
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Corpus combined MI IOR characters words

beatles 7.10 3.89 3.50 — —
essen 5.68 3.36 2.36 — —
pcd 6.27 4.40 1.93 — —
pcd ex 6.28 4.40 1.93 — —
rism 5.98 3.72 2.33 — —
string 6.02 3.79 2.27 — —
wtk 5.59 3.71 1.99 — —
orchid — — — 5.99 —
wiki — — — 4.30 11.42

Table 3.2: Values of entropy levels for various corpora, with different feature extrac-
tion methods: MI (melodic intervals), IOR (inter-onset interval ratios), combined
(melodic intervals with IOR values), and letters and words for textual corpora.

text corpora, e.g., English characters entropy is similar to melodic intervals of pcd

corpus, and Thai letters entropy corresponds to string and rism combined (intervals

+ IOR) entropy values. One can also notice stability of entropy values within certain

style, with pcd ex corpus being 25% larger than pcd, having exactly the same entropy

values.

Entropy of English letters and words were calculated as 4.30 and 11.42 respectively,

however with music — there are no explicitly defined phrase boundaries, so one cannot

provide a single number as an answer of whatever the entropy of music ’words’ is.

What can be done is to calculate entropy values for n-grams of different lengths for

both music and text datasets. Figure 3.8 contains results of the analysis how much

entropy changes with different n-gram lengths. Typically, entropy values increase

steady up to the point, where entropy approaches the plateau, limited by the corpus

size. Some corpora with shorter documents, especially rism and essen decrease their

entropy for large n, because the documents start to get shorter than analyzed n-gram

length, thus failing to provide enough long n-grams. Figure 3.8(a) contains entropies

of music corpora with combined melodic intervals and IORs as ’letters’ — one can

observe that again, orchid values are closer to music corpora, than to wiki.

Figure 3.8(b) contains analysis of two randomly generated corpora along with

their source counterparts. Although they start from different points, slope and the
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shape of the curves are very similar, indicating that the increase of information as

we increase n-gram length is similar. Figure 3.8(c) contains two music corpora with

the biggest difference between melodic and rhythmic entropies. Again, although they

reach plateau in different manners, the overall behaviour is similar. What is worth

noticing, is that not only entropies of melodic intervals from pcd ex and characters

from wiki are similar for n = 1, but as n increases, they stay the same, until pcd ex

saturates at n = 6.

3.4.5 Complexity and Relations Between Datasets

To measure the complexity of data, the notion of Kolmogorov complexity is often

used. Briefly, the complexity K of the dataset D, denoted as K(D), is the length

of the minimal program that generates D without any input. The question is what

programming language should one use to measure Kolmogorov complexity, since typ-

ically to find the actual K(D) involves deep (human) understanding of the underlying

data type, which is often not desired, as this does not lead to robust solutions. Typ-

ically, the upper bound of Kolmogorov complexity is estimated using compression

algorithms.

The concept of Kolmogorov complexity is often found in analyses of various types

of data, not excluding symbolic music. Approaches available in the literature, either

use general purpose compression engines, like bzlib [76], or use clean, simple algo-

rithms just to estimate the size of compressor output [114]. Although using industry-

grade compression programs usually leads to better compression ratios, which in a

sense brings the result closer to the actual Kolmogorov complexity of underlying data,

it has its drawbacks:

1. The researcher does not have full control and full insight of the actual compres-

sion process,

2. The algorithm may be optimized to operate on certain types of frequently oc-

curring data, and
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(a) Entropy of various corpora

(b) Randomized corpora (c) Melodic and rhythmic components

Figure 3.8: Factors influencing entropy estimation: a) Entropy of n-grams of various
corpora with different n-gram lengths. b) Influence of randomization on entropy
values. c) Entropy of melodic (intervals) and rhythmic (IORs) aspects of n-gram
corpora.



100

3. Algorithms typically suffer from trade-offs between resources used for compres-

sion, compression speed and compression ratio.

Using clean, simple algorithm does not have these flaws, and the resulting approach

is more theoretically sound, therefore this approach has been used in our analysis.

As suggested in Li and Sleep [114], lz78 algorithm will be used to calculate K(D).

It passes over a sequence of symbols (in this case a sequence of melodic intervals,

IORs or intervals and IOR combined), and builds up a dictionary of common past

subsequences. In terms of n-gram approach, it can be seen as creating a variable

length n-gram profile of the data it is analysing. As the dictionary is the only thing

required to reconstruct the initial sequence, the size of the dictionary can be used

as an estimation of K(D). For further details on how to compute the size of the

dictionary using lz78 algorithm, please refer to Li and Sweet [114].

Since sizes of the datasets vary and K(D) depends on the size of D, to (partially)

solve the problem of comparing datasets with different sizes, we propose to use the

ratio between K(D) and the size of D as the measure of Compressibility (C):

C(D) =
K(D)

|D|
(3.5)

although typically compression algorithms achieve better ratios when run over larger

data streams. Figure 3.9 contains compressibility ratios for all analyzed datasets with

separate estimation of compressibility of rhythmic IORs, melodic intervals and com-

bined features (intervals and IORs) for music dataset. Text datasets were interpreted

as streams of characters. One can notice higher compressibility of text datasets, but

this can be attributed to larger sizes of those corpora. An interesting observation

can be made if one overlays entropy information with compressibility ratios. Rela-

tive entropy levels between melodic intervals and IORs correspond to compressibility

obtained for a given dataset. Once again, beatles dataset seems to have the richest

rhythmic spectrum comparing to other datasets. rism and wtk datasets achieved the

worst compressibility scores (the highest in values) due to their small size. One can

also notice worse compressibility of randomized corpora (wtk rand and wiki rand)
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Figure 3.9: Compressibility of various datasets for combined melodic interval and
IORs, only melodic intervals and only IORs along with compressibility of text
datasets. For comparison, the entropies of corresponding corpora (H) are added.

comparing to their base counterparts, despite the same size and symbols entropy,

indicating the importance of order of symbols in both music and text datasets.

As mentioned before Kolmogorov complexity K(D) is the length of the shortest

program to generate D without any input. Conditional Kolmogorov complexity,

K(D|T ) is defined as the length of the shortest program to generateD with T available

at the input. Likewise, joined Kolmogorov complexity, K(TD) is the length of the

program to generate T and then D without any input. According to Li and Sweet

[114], one can define K(TD) as the complexity of concatenated streams of T and D:

K(TD) = K(T.D) (3.6)

and conditional complexity K(D|T ) as:

K(D|T ) = K(TD)−K(T ) (3.7)

Li and Sweet [113] proposed two Normalized Information Distance metrics, dK1

and dK2 , based on the notion of conditional Kolmogorov complexity, which can be

expressed as similarity measures with the following equations:
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(a) dK1 measure (b) dK2 measure

Figure 3.10: Similarities between music corpora using dK1 and dK2 measures based
on Kolmogorov complexity estimation (values in percents)

dK1 (x, y) = 1− K(x|y) +K(y|x)

K(xy)
(3.8)

dK2 (x, y) = 1− max (K(x|y), K(y|x))

max (K(x), K(y))
(3.9)

They operate on the premise that two similar sequences of symbols, when com-

pressed together, would achieve better compression ratio than two less similar se-

quences. Both measures can be used in place of any similarity measure for tasks

where such is required, and since they do not require any parameter tuning (like

most n-gram based similarity measures), they can be used for preliminary analysis of

similarities between different datasets. Figure 3.10 contains results of such analysis,

without significant differences between results of dK1 and dK2 measures. What was

expected, as a result of randomizing, wtk rand dataset is less similar to all original

datasets, comparing to the results obtained for baseline wtk. Also, beatles dataset,

the only contemporary music dataset, achieved generally low similarity with other

datasets. What is surprising is the relatively low similarity score between essen and

rism and high score between wtk and rism.
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3.5 Composer Classification of Symbolic Corpora

As it has been shown in this chapter, various symbolic music corpora share many sim-

ilar properties with natural languages, which supports porting existing text analysis

methods to music data. One of the hallmarks of text data mining is classification task,

where a program, based on a number of documents assignments to specific classes,

has to assign a class label to an unseen object. Accuracy, the ratio of correctly as-

signed items from the testing set to the size of the testing set, is typically used as a

measure of classification performance. Usually, systems that classify text documents

employ bag-of-words approach which assumes that the order of terms, or words in the

document does not matter and the whole document is perceived as a set of features,

typically words.

This model can be applied to symbolic music if one takes n-grams as features.

This however, poses a new problem, as since n, the n-gram length, is not given a

priori, which creates a new degree of freedom for the system and even non-parametric

methods effectively become parametric when applying this model. And, like with all

parametric methods, it would require fine tuning of what n should be taken, which

involves the risk that the optimal n may change upon conditions that are difficult to

foresee.

To evaluate classification performance of various text-derived models on symbolic

music, two of our test collections can be used. The pcd dataset contains items clas-

sified into 5 classes, each representing not only a different composer, but typically

different style and usually containing different forms of music. In the previous work,

it have been shown, that one can obtain high accuracy scores despite having many

classes [216]. What has been missing is the comparison with other approaches and

other datasets. This can be achieved with the inclusion of string dataset.

The string dataset contains two classes of highly similar content, of two different

composers, but living in the same place and times, and of the same form (string

quartets). Having a very uniform dataset sounds like a good opportunity to set up

a human classification challenge. CCARH hosts such a quiz, allowing anybody to
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participate and guess who wrote a given piece. With over 40 thousand participations,

they have precisely measured human accuracy of 57% (56% for Mozart and 58% for

Haydn), although with this very unbalanced dataset, a majority classifier would score

72% pointing solely to Haydn (with 0% for Mozart and 100% for Haydn).

Furthermore, Hillewaere et al. [75] evaluated classification performance of several

different methods based on a dataset derived from the original string dataset, which

we included as string rh. According to them, string rh contains fewer pieces char-

acteristic for Haydn, increasing the difficulty of the problem, and reducing imbalance

from 72% for Haydn to 56%.

Evaluating classification performance of a number of classical approaches on all

three datasets at the same time would allow comparison of the previous work done on

pcd dataset, human evaluations of string dataset hosted by CCARH, and approaches

used by Hillewaere et al. [75] on automatic classification of string rh dataset.

3.5.1 Methodology

Evaluation procedure. Due to small size of datasets in question, we have chosen

to rely on leave-one-out N -fold cross-validation for testing. It takes one item from a

collection, apply training based on the remainingN−1 items and repeat the procedure

for each item in the collection, aggregating accuracy score over the entire dataset.

Full and balanced training. Due to imbalanced nature of all three datasets, we

decided to test performance of the algorithms in two variants. The first one is the

unchanged cross-validation procedure where the entire dataset is available for training.

For the second one, the data supplied for each testing algorithm is limited to Nmax

which is the maximum possible number of tokens allowed for all items to be tested

in the cross-validation procedure:

Nmax = min
class∈Classes

( ∑
document∈class

(|document|)− max
document∈class

(|document|)

)
(3.10)
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Forcing balancing of training datasets reduces some training information for most

classes, but removes the bias in the results that arise from comparing sets of different

lengths or numbers. As the outcome, the only bias seen in the results with balanced

training comes from the unique features of n-gram landscapes of a particular class.

N-gram lengths. With text corpora and bag-of-terms approach used on words,

this problem does not exist. There are however situations, where text character

n-grams are used [93], or language simply does not provide word boundaries (see

orchid corpus), and the issue, what is the proper value for n arises. While typically

for symbolic music small values of n-gram lengths are suggested (up to n = 5), to test

the broader landscape, we tested for more values, up to n = 15. This allowed us to

observe how, and if, the performance converges when long n-grams are being used.

Importance of rhythmic and melodic dimension. With text, there is no prob-

lem on how to interpret particular characters from the input. Since music features

are multi-dimensional (i.e., typically are placed in 2-dimensional melodic-rhythmic

space), it is important to test individually what is the usefulness of particular aspects

of symbolic music spectrum. Here, melodic intervals and inter-onset interval ratios

(IORs) are being tested, both separately and combined to form a single dimension

joining melodic and rhythmic aspects. This combined feature is particularly interest-

ing, as while still being transposition and tempo invariant, they keep full information

about the melody, allowing the original melody to be fully recovered.

Similarity algorithms. The core of the classification procedure is the similarity

(or distance) function which compares an individual with the rest of the training data.

The similarity functions evaluated in this experiment are the following:

1. common — As suggested by Suyoto and Uitdenbogerd [175], this should be

the simplest, baseline method of comparing two feature sets, which returns a

number of features in common as a measure of similarity:

common(X,C) = |X ∩ C| (3.11)
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where X is the individual being compared to the set representing all features

from class C. Dice coefficient and Jaccard index (introduced later in the dis-

sertation, section 6.3.1) can be seen as two extensions of this measure, with

two different normalization approaches, while here no normalization is applied.

Evaluating it would allow one to observe, whether other more complicated func-

tions introduced below, benefit from their sophistication.

2. markov — Hillewaere et al. [75] used this model to evaluate classification per-

formance on string rh dataset. It uses Markov assumption directly, calculating

probability of the measured document as the product of probabilities of each

symbol that depend only on the previous n− 1 symbols:

P (X|C) =
∏
xi∈X

p(xi|xi−1, . . . , xi−n+1) (3.12)

where probabilities p(xi| . . . ) are drawn from C class n-grams statistics. Add-

one smoothing have been applied to the probabilities to accommodate for po-

tential zero-probability events that would zero the final product. In the original

approach, Hillewaere et al. [75] fixed the parameters for the system to n = 3

and melodic intervals as features, so it would be interesting to observe how this

method performs in broader contexts.

3. cosine — It is classical cosine similarity, which is the cosine of the angle between

vectors representing X and C in multi-dimensional n-gram feature space:

cosine(X,C) =

∑
i∈X XiCi√∑

i∈X X
2
i

√∑
i∈C C

2
i

(3.13)

As typically used for text comparison, it is relevant to include it in this analysis.

4. cng — A measure used in previous work [216], to evaluate classification per-

formance on pcd dataset. Here, the non-parametric version have been used,

although in [216], there is a thorough analysis of influence of additional factors,

like profile sizes limits and the ageing factor, which improve results obtained

using plain cng function. In essence, cng measure uses normalized arithmetic
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differences of probabilities of n-grams in both compared objects:

cng(X,C) =
∑

i∈X∪C

(
1−

(
Xi − Ci

Xi + Ci

)2
)

(3.14)

A different, not normalized version, which can be found in Ukkonen [199] has

been used with music n-grams by Uitdenbogerd and Zobel [193], and Mullen-

siefen and Frieler [132].

5. lz — It uses LZ78 compression algorithm to estimate conditional complexity of

a document X given class C. Since it can be used as a measure of distance (i.e.,

the more similar objects, the smaller the value), we used a simple negation to

obtain similarity measure:

lz(X,C) = −K(X|C) = K(X)−K(CX) (3.15)

Since complexity K operates on individual melodic and/or rhythmic features,

and builds a dictionary of variable length n-grams while scanning the data

stream, it does not depend on parameter n.

Precision of measuring accuracy. Every time a single evaluation is performed,

the data is available to the algorithm in a random order, which makes a difference for

some algorithms. What is more important, with forced balancing on training data,

every time an algorithm receives different data from a number of random documents.

This creates variability of the obtained accuracy scores for each performed evaluation.

To accommodate for that, each test is performed many times, until the standard

deviation of the mean accuracy estimation falls below 1%. Initially, every algorithm

with certain settings is evaluated 10 times. If it does not return consistent results

(with σ > 0.03, hence σmean > 0.01), it is repeated until desired σmean ≤ 0.01

is obtained. Results are posted with error bars indicating the dispersion (standard

deviation) of results for given settings, which is not the error of average performance

estimation (standard deviation of the mean), which is kept, as mentioned, below 1%

through exhaustive evaluation.
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(a) pcd (b) balanced pcd

Figure 3.11: Accuracy of classification for pcd dataset with: a) full training data, b)
balanced training data

3.5.2 Results

Overall results for pcd dataset. The highest accuracy scores with full train-

ing have been obtained for 2 ≤ n ≤ 5, depending on the method, with similar scores

(around 72% scored by markov, common and cng methods (Figure 3.11). lz algorithm

scored 71%, while cosine fall significantly below others. Previous work [215,216] fo-

cused on analysis of various parameters associated with cng measure, being able to

put the results up to 80%, however, due to lack of analysis of other datasets, the

obtained high accuracy scores may not transfer well to other datasets and settings.

Introduction of balanced training increases performance of most top performing al-

gorithms, being able to push the results to around 74% (see Figure 3.11(b)).

Overall results for string dataset. Most top performing algorithms from pcd

results fall quickly into majority or minority classification, fixing themselves in point-

ing consistently to just one class (Figure 3.12(a)). The string dataset is highly

unbalanced with Haydn pieces — the easiest class to be classified, being also the
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most numerous. The best and the most balanced results were obtained, rather sur-

prisingly, for markov method with rhythmic features (accuracy about 60% for both

classes). However the most consistent and stable (unbiased) results were given by

cosine measure, with the accuracies ranging from 55% to 60%, regardless of the

class (Figure 3.13(a) and 3.13(c)). By the introduction of balanced training, top ac-

curacy scores stay around 70% to 75% (Figure 3.12(c)). However, we do not see any

more the situation where an algorithm would entirely bias toward just one class, which

makes those results much more desirable comparing to full training. Top performers

were common with combined and melodic features and markov with melodic features,

although markov seems to be better at providing much more consistent results for

haydn and mozart class separately (Figure 3.13(b) and 3.13(b)).

Overall results for string rh dataset. The string rh dataset is indeed much

more balanced, comparing to string, which is clear after looking at algorithms per-

formance on Figure 3.12(b), where most algorithms scored above the baseline 54%

of majority classification for this corpus. Best results were obtained with markov

method for melodic intervals, providing very balanced results. This method have

been used by Hillewaere et al. [75] on this dataset, where they used a 3-gram model.

According to our analysis, it seems that increasing n to 4 or 5 would yield even better

results. Performance of the second best method, common, was highly driven by their

increased accuracy in haydn class. Enforced balanced training improved results of

most methods (common,cng), which bring them closer to the top markov (see Figure

3.12(d)), improving results mostly for mozart class and reducing bias, mainly for

the markov method (see Figure 3.14(b) and 3.14(d)). Top results obtained for with

balanced training were on par with SVM results reported by Hillewaere et al. [75].

Results for the common similarity measure. Although being a very simple

method, based just on calculating the number of common n-grams between docu-

ments, common similarity measure performs really well on the pcd dataset (see Figure
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(a) string (b) string rh

(c) balanced string (d) balanced string rh

Figure 3.12: Accuracy of classification for string and string rh datasets with:
a),b) full training data; c),d) balanced training data
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(a) mozart class (b) mozart class for balanced data

(c) haydn class (d) haydn class for balanced data

Figure 3.13: Accuracy of ’Mozart’ and ’Haydn’ classes classification for string

dataset. a) mozart class with full training data, b) mozart class with balanced training
data, c) haydn class with full training data, d) haydn class with balanced training
data.
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(a) mozart class (b) mozart class for balanced data

(c) haydn class (d) haydn class for balanced data

Figure 3.14: Accuracy of ’Mozart’ and ’Haydn’ classes classification for string rh

dataset. a) mozart class with full training data, b) mozart class with balanced
training data, c) haydn class with full training data, d) haydn class with balanced
training data.
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3.11), especially with combined features, reaching accuracy of 73% with full and bal-

anced training. Using only melodic intervals as features reduces performance by about

5% overall, and using only rhythmic features reduces it even more, to maximum of

55% accuracy for balanced training. The algorithm has very even performance in its

sweet spot, for 2 ≤ n ≤ 5, which means, that it should be a robust performer under

different conditions and different datasets.

Evaluation on string dataset (Figure 3.12(a)) reveals high bias toward majority

class, still common being one of the top performers (with combined MI and IOR

features) for both string and string rh datasets for n = 4 and n = 5. It keeps

favouring the haydn class even with more balanced string rh dataset and forced

balance on training data for both corpora, with average performance for, the harder

mozart class. What is interesting is that, the majority class bias occurs for n > 2, and

it favours the mozart class for small n, which is not the case for any other similarity

algorithm tested in this analysis. Overall, the best results are obtained with balanced

training for n = 4 with 75% overall accuracy for string dataset, with 35% accuracy

for mozart and 90% accuracy for haydn, and 74% overall accuracy for string rh

dataset, with 46% accuracy for mozart and 95% accuracy for haydn.

Results for the markov similarity measure. This measure performs very well

for small n-gram lengths (n < 6). Above that value it is prone to favouring one class

even, if it is not a majority class. Bias is its biggest problem, with the biggest changes

between similarity measures noted after introducing forced balanced training, which

is most visible for string rh dataset results (see Figures 3.14(a) and 3.14(c)). For

small n-grams, it is one of the best performers, yielding the best results, using melodic

interval features, for all three datasets, although being very sensitive to changes of

n. n = 3 and n = 4 gave best results for string rh dataset, but with those settings,

performance on pcd was one of the worst, where the sweet spot was around n = 2.

Performance for combined melodic intervals and IORs was comparable to just melodic

intervals. Using just rhythmic features typically brought results 10 to 20% down,

comparing to other features.
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What can be observed, especially on string dataset results, with smaller n, is

that markov measures are very resistant to majority class bias, while they lose this

resistance quickly with growing n where they bias towards minority class much faster

than other methods (see Figures 3.11(a), 3.13(a) and 3.13(c), as well as 3.14(a) and

3.14(c)). Overall, the best results are obtained for n = 5 with 71% overall accuracy

(54% for the mozart and 78% for the haydn class) for the string dataset and 76%

overall accuracy (76% for the mozart and 75% for the haydn class) for the string rh

dataset. The best unbiased results for the string dataset were obtained with n = 3,

n = 4 with accuracies for both classes in the range from 65% to 70%. With CCARH

estimation of best scores obtained with experienced users around 60%; this is a very

good result.

Results for the cosine similarity measure. Cosine similarity was the worst

performer in terms the of overall accuracy scores, for all datasets, scoring typically 10

to 20% less comparing to the other, top performing methods. On the other hand, it

was the least susceptible to bias in the training data, scoring just above 50% for both

mozart and haydn class for both string and string rh datasets. Unsurprisingly,

the introduction of forced balance in training data did not affect its performance.

Combined melodic and rhythmic features outperformed methods using just melodic

intervals or just IORs for string and string rh datasets. In case of the pcd dataset,

melodic features performed similarly to combined features, still being significantly

above accuracy scores obtained with IORs only.

Results for the cng similarity measure. The cng measure achieved the highest

scores for pcd dataset, obtaining 73% for both balanced and full training. Its preferred

n-gram lengths are around n = 4 and 5, which, unlike for the markov method, is

consistent across corpora. Like common measure, it turns into a majority classifier for

string dataset, favouring haydn class. It does so, even after applying forced balance

in training as well as for the more balanced string rh dataset, being typically one

of the worst performing approaches in terms of accuracy in the mozart class (see
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Figures 3.13(a), 3.13(b), 3.14(a) and 3.14(b)), although the gap between the haydn

and mozart classes diminishes when balanced training is in effect. For the string

and string rh datasets, achieved accuracy scores are typically a few percent below

top performing markov and common, on par with lz and significantly above cosine.

Combined melodic intervals and IORs perform much better, compared to intervals

and IORs alone, with much bigger differences than the one observed with common and

markov methods.

Results for lz similarity measure. The lz method achieved one of the best

scores for pcd dataset (see Figure 3.11), with 70% for full, and 73% for balanced

training data for combined melodic intervals and IOR features. It was also a solid

performer for string rh dataset. For original string dataset, it falls into majority

classification, achieving even lower score after applying balanced training, although

one can notice that it never falls below 50% accuracy for any class except for highly

imbalanced string dataset, where all algorithms (except for cosine) did not do well.

One can notice a significant variation of obtained results (error bars on Figures 3.11(a)

and 3.12(b)) even with full training data, due to high sensitivity to the order in which

the data is provided for the training. It is not the case for any other algorithm.

Influence of selected n-gram representation method. Typically, results ob-

tained using combined melodic intervals and inter-onset interval ratios achieved bet-

ter results, in comparison with using only melodic features. Using rhythmic features

typically yielded the worst results. It is true for common, cosine, lz and cng meth-

ods. Melodic intervals used without IORs achieved better results only for the markov

method for some datasets. Despite that, rhythmic features performed better for larger

n-gram lengths, being less prone to bias towards majority classes (see Figure 3.12(a)),

so depending on the circumstances, they still may be a preferred over other music

features in some cases.
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Influence of forced balanced training. Although forcing balance training was

introduced primarily to reduce bias associated with imbalanced dataset, it also im-

proved results by several percent for all analyzed datasets. Despite removing physical

bias resulting from different size of training data, there is still tendency in string

and string rh datasets towards haydn class, indicating that indeed, as Hillewaere

pointed out in [75], Haydn seems to have more characteristic pieces, comparing to

Mozart, when considering string quartets.

With better average results comes greater uncertainty of the achieved accuracy

scores. Balancing training data allowed for, and required, shuffling and changing data

used for training each time an algorithm was evaluated, which had a great influence on

the accuracy scores obtained by all similarity measures. However it turned out that

the greatest variability in accuracy was observed for average and poorly performing

algorithms, leaving no doubts which of the algorithms was the best in each category.

Overall, the influence of balanced training was beneficial for the obtained accuracy

results.

3.5.3 Summary of Composer Classification Experiment

Our experiments with composer classification task show that many n-gram-based

methods, when used with a proper settings, may produce very good results. One of

fundamental factors, usually assumed through intuition or music knowledge, is the

length of n-gram features used for analysis, which turned out to be a very important

and difficult parameter to set, with optimal values varying between similarity mea-

sures and datasets. Nevertheless, most methods were able to achieve good results,

outperforming humans in Haydn/Mozart string quartets quiz. Typically, the best

results were obtained with combined melodic and rhythmic features, and the worst

performance with rhythmic features only. Another important issue is imbalance in

training data. We have shown, that one way to eliminate it is to limit the training

data to equal size portions for all the classes. It turns out that this approach leads not
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only to more balanced results, but to better results overall, better than the majority

classifier, even when the majority class is dominating, like in the string dataset.

3.6 Symbolic Music Similarity

In the following section, we evaluate several factors that influence the performance of

n-gram-based music similarity algorithms. Those algorithms are derived from textual

information retrieval and adapted to operate on music data. The influence of n-gram

length, applied feature extraction method, term weighting approach and similarity

measure to the final performance of the similarity measure has been analyzed. The

main contribution of this approach is to utilize well established term weighting meth-

ods for text retrieval and check their suitability for music data. MIREX 2005 data

and the MIREX 2011 evaluation framework for symbolic music similarity task have

been used to measure the impact of each of the factors. We have found out that the

choice of a proper feature extraction method and n-gram length are more important

than the applied similarity measure or term weighting technique.

It has been shown, that bag-of-words methods, which are well-established ap-

proaches in textual Information Retrieval, work well for retrieving relevant melodies

from music corpora. It is noticeable that the main focus has usually been put on

how to transfer the input sequences of notes into a set of features and how to com-

pare (measure the similarity) between different feature sets, yet there has not been

sufficient quantitative analysis on how to make proper decisions regarding certain pa-

rameters. Usually the parameters are chosen based on music knowledge and intuition

rather than experimentation.

It has been found in textual information retrieval, that simply using words as

terms and basic similarity measures between terms (like string equality or stemmed

string equality) is sufficient. Current research focuses on term weighting, i.e., given

documents in a dataset — to determine which terms are more important for each

document or the dataset as a whole. Some frequent terms (dubbed stopwords) do not

usually even take part in the retrieval process at all. This reduces retrieval time, but
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also allows for better ordering of the retrieval results by discarding irrelevant terms.

Similar approach is used in general for other text mining tasks, such as classification.

Music Information Retrieval Evaluation eXchange (MIREX) has been created to

compare and evaluate algorithms that operate on music data. It provides a TREC-like

[137] collaboration framework for researchers dealing with both audio and symbolic

music problems. Since the beginning, the Symbolic Melodic Similarity (SMS) task

has its well-established position in a core of symbolic music analysis with repetitive

releases among the years. We have used the released 2005 SMS MIREX dataset

to evaluate how various design decisions impact performance of similarity measures,

and we have contributed to the 2011 SMS task to evaluate further some aspects of

using different term weighting approaches. The 2005 SMS MIREX task used a subset

of a larger Répertoire International des Sources Musicales (RISM) music excerpts

collection, introduced earlier as rism dataset, while the 2011 task was based on Essen

Folksongs Collection (EFC) that contains more than 5,000 monophonic folk melodies

(essen dataset).

3.6.1 Background

Previous Work

Existing approaches to symbolic music similarity task are common with the other

tasks dealing with symbolic music. Among them one can differentiate several main

streams, which will be described in the following paragraphs. Successful approaches

can be found in all these groups, but string methods that deal with music in the

similar way as text IR with written text seem to play a major role.

Geometric methods usually treat music excerpts as points in two-dimensional time

and pitch space [101,108,109,188,190]. Since there is usually no notion of succession

of notes (it is represented naturally on the time dimension) those methods are usually

suitable for both monophonic and polyphonic music. However, it is generally more

challenging to implement methods that are robust with regards to small changes that
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are perceptually not very important, but cause the entire geometric representation to

bend or stretch significantly.

String methods deal with music data as it is a linear sequence of symbols and

use methods originally developed for texts. They do not typically handle polyphonic

music very well, but SMS MIREX task deals with monophonic queries to the mono-

phonic database, so this simplifies the problem for those methods. Among them, the

major group employs algorithms based on the local or global alignment techniques,

created initially to compute the edit distance between two strings [48, 49, 61, 69, 108,

176,195,196,201,202]. This seams to be a natural choice for the kind of data present

in EFC and RISM datasets, since they contain only short melodies. The major draw-

back of those methods is their computational complexity, being at least O(n2). The

other approach utilizes a “bag-of-words” type of analysis, that treats features as a

set, without specific order between them [140,175,176]. This approach works best for

larger documents giving the capability of linear processing (O(n)), which means that

RISM and EFC datasets with their short excerpts might not be the perfect environ-

ment to show their benefits. Computational complexity for each query can be even

sub-linear if we allow for initial indexing of n-gram features, bringing them very close

to traditional text information retrieval systems.

There are also other ways to compute music similarity based on graph meth-

ods [154] or tree representation [161], but they are not as popular as the previous

approaches.

Datasets

We have decided to base our work on two datasets that were previously used in

the SMS MIREX tasks. The dataset from 2005 is based on a subset of Répertoire

International des Sources Musicales (RISM) collection and contains two subsets used

for training and evaluation, each having 11 unique queries and more than 550 melodies

to match. The ordering of the most relevant results annotated by experts for each

query has been analyzed by Typke et al. [186] and further refined and validated by
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Urbano et al. [203]. This gives a solid background, allowing for complete evaluation

of similarity algorithms, and the fact that the dataset have been released to the

broad public make it suitable for performing our own analysis. The incipits in RISM

collection are typically 10 – 40 notes in length.

The second dataset, Essen Folksongs Collection (EFC) has been used in MIREX

SMS tasks in 2007, 2010 and 2011 edition. It contains 5,274 MIDI encoded mono-

phonic folksongs from different countries. Typically the documents in the collection

are longer than in RISM dataset, ranging from 15 to 80 notes with the average of

48 notes. For EFC based tasks, MIREX does not post any detailed evaluation data,

including queries that are used to evaluate submitted algorithms (6 base queries, in

30 variants in total), and only quantitative performance data (rankings and perfor-

mance measures) are publicly available. This allows for reuse of the same testing

dataset among different releases of the SMS challenge, since the effort of creation of

such dataset is significant as it requires lots of experts time. We use results from this

dataset to verify hypotheses drawn from RISM dataset.

MIREX SMS Evaluation Framework

The evaluation of an SMS MIREX task takes place on ISMIR Conference. Teams

submit their algorithms and each team is allowed to submit many variants of their

submission. Each system is supposed to return the 10 most similar documents for each

query, ordered by similarity to the query. Results are then combined and presented

to human judges. Each time a judge sees a query melody and a single retrieved

result (a pair of documents), they evaluate similarity between them. The system

ensures that each pair is evaluated by a random grader, and receives from them two

scores, ordinal (Very Similar, Somewhat Similar, Not Similar) and fine (a number

from 0 to 100) indicating how close are those two melodies. The results lists are then

evaluated using several performance measures, including Average Dynamic Recall

(ADR), Normalized Recall at Group Boundaries (NRGB), Average Precision (AP),
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Precision at N Documents (PND) plus a variety of summative measures that aggregate

judge ratings for each returned result.

In our testing we focus on two measures. First of them is Average Dynamic Recall

(ADR). To calculate it for each query, a union of all results returned by all candidate

algorithms is obtained. The designers of SMS task assumed that if a few documents

have very similar relevance ratings to a given query, their order in the perfect result

list should not matter, e.g., a result list (equivalence groups indicated by brackets)

[ABC]D[EF ] should yield the same result as [BCA]D[FE]. To calculate ADR, recall

at each item on the result list is calculated (ri, 1 ≤ i ≤ 10) assuming the results in the

same group could occur in a different order, and ADR is an average of all ri. In brief,

ADR gives the average recall among all the documents that the user should have seen

at any number of retrieved items [187]. It captures both quality (relevance of items)

and order (how high are the most relevant items) aspects of the resulting ranked lists

and it is a primary measure used in the evaluation of submitted algorithms to MIREX

SMS task. For details on ADR measure please refer to [187].

The second measure we will evaluate the algorithms against is Fine Precision at

10 (FP10). It is the sum of all the fine ratings of all the items in the result set. It does

not tell anything about the order of the results, but it indicates the general quality

of all the results returned by the algorithm. Unlike for other measures, MIREX

publishes not only total cumulative measures for all the queries, but also per-query

FP10, allowing for analysis of differences in performance for different queries.

3.6.2 Methodology

Our approach to symbolic music retrieval focuses on evaluation of the impact on

performance of certain aspects like feature extraction, n-gram length and similarity

function. The basic framework of the retrieval process is kept standard. Our goal

is to check what kind of results one can obtain with pure, well established methods

known from text information retrieval ported directly to music data.
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The main analysis has been conducted using the MIREX 2005 dataset, which

consists of a subset of RISM collection. Based on that and using average dynamic

recall (ADR) as a performance measure, we were able to evaluate the best parameters

for each of the proposed approaches and draw general conclusions about the behaviour

of the systems under different settings.

We have initially assumed that the performance may depend on the following

factors:

• the feature extraction method used to retrieve basic components of the melodies

in question (the analysis checks for importance of rhythmic and melodic com-

ponents separately),

• the n-gram size, i.e., the length of the sliding window used for extraction of

terms,

• the similarity measure applied to calculate similarity between term vectors rep-

resenting two compared melodies, and

• the term weighting algorithm.

Our hypothesis is that all of those components play a role in retrieval of similar

melodies, and our goal was to investigate the importance of each of them. From

the plain melodic intervals and rational IOR, there are multiple approaches one can

generalize the data or smooth out irrelevant differences, which we have indicated

above. Without experiments, it is not possible to foresee what does and what does

not influence the quality of the end result. Therefore our set of experiments covers

various aspects, from quantization of rhythm and melody to the actual similarity

formula.

The process of document retrieval starts with extracting features from documents.

Input dataset consists of a set of standard MIDI files, each containing a single track

of notes representing a monophonic melody. Since none of the notes are concurrent

or overlapping in the datasets we have used, string-based methods can be directly

applied to the input documents. Like text documents, that can just be seen as series of
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characters, monophonic music pieces are just series of notes. The difference with music

files is that text documents are easily separable into basic terms — words. Since there

is no such a thing as a clear phrase boundary in music, the typical approach to bag-

of-words, (or bag-of-terms) methods consists of building n-grams, i.e., all substrings

of n consecutive tokens (notes). This process is widely used in bio-informatics (DNA

sequence analysis) and in some text processing tasks (for authorship attribution [93],

or for tasks with languages that have no word boundaries, like Thai [73]).

Granularity of Melodic and Rhythmic Features

Each of the basic features that conforms an n-gram (which is just an n-gram with a

length of 1, or a uni-gram), is derived from each note event from the notes stream. It

can either contain values representing absolute features, such as note’s pitch, duration

or inter-onset interval (IOI), but it is more beneficial to use relative features. They

allow to achieve basic transposition and tempo invariance, which is required in this

task, i.e., a melody played in a different key and in a different tempo, then the base

melody, should be considered equivalent. Therefore we have decided to use melodic

intervals and inter-onset interval ratios (IORs). The other question is how one should

translate the numbers that represent melodic intervals and IORs into discrete values,

i.e., at which level of granularity they should be dealt with.

Melodic intervals derived from MIDI files give precise, discrete interval classes.

We have chosen the following levels of granularity of melodic features to test:

• accurate/fine: each feature represents the actual interval between two consecu-

tive notes, in semitones, taken directly from MIDI note events.

• coarse: intervals belonging to the same class are grouped together. We use five

classes: same (no pitch change), small jump up (1-3 semitones), small jump

down, large jump up (more than 3 semitones), large jump down.

• contour: only direction of the melody matters. This gives tree classes: no

change, melody ascends, melody descends.
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• identity: always 0. Melodic properties are excluded from feature extraction

Raw inter-onset interval ratios (IORs), unlike melodic intervals, represent rational

numbers. The method used in this submission uses our previous research results where

rounding (with 0.2 threshold) was applied to the binary logarithm of the IOR. This

gives progressively wider steps as IOR increases, yet being precise enough to maintain

the perception of rhythm changes [216]. With this as a base, we have come up with

four IOR granulation schemes:

• accurate/fine: rounded values of binary logarithm of IORs with precision of 0.2.

• coarse: five classes of no change in duration (log 2IOR = 0), next note being at

least twice as fast (−1 ≤ log 2IOR < 0), at least twice as slow (0 < log 2IOR ≤

1), more than twice as fast (log 2IOR < −1) and more than twice as slow

(log 2IOR > 1) as the previous note.

• contour: similarly to melodic contour, with three classes — same duration,

slower or faster.

• identity: always 0, which excludes rhythmic properties.

Length of n-grams

With our testing we were also able to determine the optimal n for each of the proposed

settings. We have analyzed n-gram lengths from 1 to 10 with peaks of performance

observed usually between n = 2 and n = 7. The general rule of thumb is though, the

more general the features, the bigger the n should be.

Similarity Measure

We have also tested for the impact of the following similarity measures:

• Common Features: represents a dot product between two vectors representing

two documents that are being measured, which can be denoted as follows:
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sim(x,y) =
∑
i

xiyi (3.16)

where xi is a weight of a term i in a document x.

• Cosine Similarity: the cosine of the angle between both document in the hi-

dimensional feature space. In essence it is a dot product between two vectors

normalized by their lengths. Unlike the previous approach, this also takes the

length of the vectors into consideration:

sim(x,y) =

∑
i xiyi√∑

i x
2
i

√∑
i y

2
i

(3.17)

• CNG measure: This method calculates the arithmetic mean over n-gram vectors

that consist of weighted features. The similarity measure is proven to distinguish

well between authors of texts [93] as well as composers in music domain [216]

making it an interesting candidate for application to this task. The equivalent

formula for the similarity measure is given as follows:

sim(x,y) =
∑
i

(
1−

(
xi − yi
xi + yi

)2
)

(3.18)

Term Weighting Method

One of the goals of this research was to measure impact of how various text-based

term weighting measures affect measuring similarity between music documents. We

have decided to evaluate four approaches:

• binary: It is either 0 (if a term, or an n-gram does not appear in the document)

or 1 (if a term appears in the document). With Common Features similarity

measure, it gives a basic number indicating the number of terms two documents

have in common.
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• frequency: simple term counts (the number of times the term appears in the

compared documents) which gives a classical cosine similarity or CNG measure

definition.

• tf.idf: a standard term weighting technique where term frequencies are normal-

ized by document frequencies, i.e., the number of documents a term occurs in.

This penalizes high frequency, common terms that occur in most documents.

The formula for an term i in the document x is given as follows:

tf.idfxi
=
countxi

‖x‖
log
‖D‖
δi

(3.19)

where δi = ‖{d ∈ D|i ∈ d}‖ is the number of documents containing term i in

the entire collection D. This measure is commonly used in Textual Information

Retrieval for term weighting so it would be interesting to see how it performs

for music data.

• Okapi BM25: it is an industry-developed weighting scheme, that typically out-

performs classic term weighting measures like tf.idf. It tries to capture roughly

the same concept as original tf.idf measure but attempts to balance documents

with different lengths and different term distribution:

bm25xi
=

countxi
(k + 1)

countxi
+ k(1− b+ b ‖D‖

avgdl
)

log
‖D‖ − δi + 0.5

‖D‖+ δi
(3.20)

where avgdl is an average document length. It is parametrized, with parameters

b and k, and we have used recommended settings of b = 0.75 and k = 2.

3.6.3 Analysis Based on RISM Data

In order to evaluate which factors have the biggest impact on the performance of

similarity algorithms, we have reproduced the MIREX 2005 task using existing doc-

ument relevance information. At each run of an algorithm, a set of 10 ordered results

is returned. For each of the results a relevance score is assumed, such that if a result
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was previously marked as relevant with an appropriate relevance group label used to

calculate ADR score, the same group is kept. If a result relevancy to a given query

was not marked in the judgment list, the item is assumed to be not relevant, although

it could get some recognition from the judges if it was submitted to the actual MIREX

task. As a result of that, the measured ADR score does not exceed the actual ADR

score that the given result set would get, so it marks its lower bound.

For each similarity measure test, the ADR score is evaluated for each available

query and the average ADR among all queries is returned as a result. The performance

for each different settings is tested for a range of n-gram length values, although one

could use one of the other dimensions as a reference point (e.g., feature granulation)

as well; it is an arbitrary choice.

We have found that, regardless of the term weighting algorithm applied, melodic

features give better results than rhythmic features and that there is not a significant

difference in using only melodic features versus combined melodic and rhythmic (see

Figure 3.15). One can observe that the peak performance is achieved with n-gram

lengths from n = 2 to 3 for more precise, combined features, and between n = 3 to

5 for more general melodic features. Using only IOR’s (rhythmic) features leads to

significantly worse results with the peak performance around n = 5 or 6.

The significance of the choice of feature granulation scheme is shown on Figure

3.16. The conclusion is that the finer (or the more precise) the representation, the

better results can be achieved with smaller n. Figure 3.16 shows the performance for

melodic features with increasing generalization of intervals. The peak performance is

achieved with fine interval values for n = 2 and 3. Coarse representation, with only

five levels yields the best results around n = 5 and melodic contour (three levels)

performs much worse, with a peak performance around n = 7.

Figure 3.17 shows ADR scores achieved using fine melodic interval features using

different similarity measures (CNG, common features and cosine) and Figure 3.18

shows scores for cosine similarity measure and with different weighting methods ap-

plied (binary, frequency, tf.idf and bm25). It turned out, rather surprisingly, that the
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Figure 3.15: The comparison of performance of similarity measures using the same
cosine similarity method, and using various feature extraction method. Using only
rhythmic features is easily outperformed by melodic features and combined melody
with rhythm.

Figure 3.16: The influence of various quantization approaches for the same fea-
ture extraction method (here, melodic intervals). More precise features offer better
performance than more general ones.
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Figure 3.17: Here the same fine melodic interval features have been used with three
different similarity measures. As one can see, there is no significant difference in
performance with regards to the similarity function applied to measure similarity
between music excerpts

usually important aspects, do not have much influence on the final result, e.g., the

number of features in common gives as good results as applying cosine similarity mea-

sure with bm25 term weighting method. The peak performance for all those methods

is achieved between n = 2 and 4. This can result from the fact, that queries and

documents are rather short and those more sophisticated similarity measures were

designed to evaluate similarity between larger documents or profiles with hundreds

and thousands of features.

The MIREX 2011 Evaluation

Having in mind our previous findings, we have chosen to evaluate further how different

text-based term weighting methods perform in a different task. To do that we came

up with the following 6 setups, with parameters tuned according to our previous

analysis. All of our submissions feature cosine similarity measure with melodic or
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Figure 3.18: Fine melodic interval features have been used with cosine using different
weighting scheme. Again, no significant difference in performance with regards to the
weighting scheme applied to measure similarity between music excerpts

combined, fine features. The main aspect that varies between them is the term

weighting approach:

• Binary (WK1). It uses binary term weighting approach and fine melodic

features with n = 5. The resulting similarity measure between two documents

is the number of terms in common normalized by geometric average of numbers

of unique terms in both documents. This algorithm got the best results on the

2005 SMS MIREX dataset.

• Term counts (WK2 and WK3). They both use frequency-based weighting,

which gives a classical cosine similarity definition. This rather simple method

gave us surprisingly good results for two different settings so we have decided

to submit both for MIREX evaluation. The first one (WK2) uses again melodic

intervals as features and n = 4, while the second one uses a combinations of

melodic intervals and IORs with n = 2. The relative performance of these two
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algorithms allow us to assess whether introduction of rhythmic features helps

to improve the overall score.

• tf.idf (WK4). The algorithm computes standard tf.idf weights of each term

from documents to compare, which gives each term weight depending on its

count within the document and in how many documents of the collection a

term occurs. For the settings of WK4 we have determined, that n = 4 and

melodic interval features worked the best in our tests.

• Okapi BM25 (WK5 and WK6). Since they feature bm25 weighting, and

it may be a top performing function, we have came up with two sets of set-

tings: WK5 with melodic interval features of length 4 and WK6 with features

combining melodic interval and IORs with n-gram length of 2.

Our algorithms were evaluated along with 5 other submitted algorithms reaching

similar total score. UL set of algorithms uses sequence alignment with geometric

representations (see Urbano et al. [202] for details), while LJY algorithms employ

quite similar approach with coded geometric melodic contour model (see Lee at al.

[106] for details).

Only the UL series algorithms outperformed most of our submissions, yet still

the difference in most cases was not measured as significant (apart from UL1) [100].

For most measures, only cumulative results were published, which does not allow us

to draw many conclusions about the actual algorithm performance, however for the

purpose of performing Friedman test with multiple comparison results, a FP10 results

for each query and each algorithm have been published. FP10 stands for fine precision

at 10 and is the sum of all the fine ratings of all the items in each of the result sets.

The results for each query type are collected in the Table 3.3 (ADR measure) and

Table 3.4 (FP10 measure). The best and the worst performers for each query have

been highlighted (with bolded and crossed-out cells respectively) and all the values

— colour coded for clarity.

According to the results, with ADR scoring, UL3 was the best in all 5 categories

and was the best algorithm for this measure overall. UL1 and one of our submissions,
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Table 3.3: Results of SMS 2011 task calculated for each query modification type
separately. The numbers represent average dynamic recall (ADR) values, in percent-
age. Other participating algorithms are described in Urbano et al. [202] and Lee et
al. [106].

Table 3.4: Results of SMS 2011 task calculated for each query modification type
separately. The numbers represent fine precision at 10 (FP10) values, in percents.
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Table 3.5: Results of SMS 2011 task calculated for each base query separately. The
numbers represent FP10 values, in percents.

WK1 came second, on par. In terms of precision (FP10, Table 3.4), all UL algorithms

outperformed the competition by at least a few percents.

What drew our attention were the fine results calculated for each query separately

(see Table 3.5). The table consists of FP10 values achieved by each of the algorithms

for every base query which in essence breaks down the no errors row from Table 3.4. It

turned out that a lot depends on the actual query, since our most sophisticated setup

— WK6, although it performed rather poorly overall (it was one of the algorithms

that came last in this category), achieved the best scores in two out of six queries.

Since one knows nothing about the actual queries (this also is kept confidential at

MIREX) it does not allow us to draw any meaningful conclusion why it happened,

but one can clearly see that the type of the actual query should also play an important

role in determining the best algorithm for the task.

3.6.4 Conclusions

The results of our experiments show that for this simple tasks even basic retrieval

methods yield very satisfactory results. At the end, the simplest of our algorithms

submitted to 2011 MIREX SMS challenge came second overall. On the other hand,

we have pointed out the importance of more foundational design decisions like the use

of proper features extraction method, and the impact of choosing a proper n-gram

length. The FP10 per query results from MIREX 2011 show that there are other
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factors, that we are just unable to capture because of lack of proper evaluation data,

which creates more possibilities for the future research.

3.7 Summary of the Chapter

In this chapter we have shown our n-gram-based approach to symbolic music. It

deals with music in a similar way as with text and allows application of similar

methods to common tasks, like classification or search. We introduced and collected

a number of classical music corpora, which contain symbolic music data. Since music

is a complex type of data, it requires additional treatment upon pre-processing so

we have presented a PERL module, MIDI::Corpus, that implements essential data

handling, feature extraction and analysis functions required in many, typical data

mining tasks, also introduced in this section.

With the data and the tools, we were able to analyze various statistical features

of symbolic music in comparison with several text corpora. We found a great resem-

blance of symbolic music and text, which justifies application of text-derived methods

to analysis of symbolic music. This lead to the analysis of the relevance of several

text-based techniques on tasks vital for both, text and music domain: classification

(authorship attibution) and retrieval (measuring document similarity).

For the first task, we analyzed several similarity metrics with leave-one-out cross-

validation on three corpora and compared the results to human judgments as well as

results obtained by others. We have shown, that with proper parameters, text-based

measures were capable of obtaining very good results, outperforming human scores

and being on par with other automatic methods.

In the second task, we implemented a n-gram-based retrieval system, being able

to find melodies similar to a given query in a large corpus. The system has been sub-

mitted to the 2011 MIREX symbolic melodic similarity task, achieving good results,

marginally worse than the top performing algorithms, while still allowing for great

scalability and possible indexing for sub-linear performance. The detailed analysis of

the factors determining the optimal performance revealed that it is more important
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how basic terms are constructed from raw notes data (such as the choice of n-gram

length, representation of music features), than the actual selection of similarity mea-

sures for retrieval.

Having shown, how text-based methodology functions in typical text mining set-

ting, the focus in next chapters is shifted towards more music-specific applications, as

melody generation, visualization and structural analysis, which would allow to show,

how robust is our methodology for a different, not text-related kinds of problems.



Chapter 4

Using Genetic Algorithms for Evolving Excerpts with

Corpus-Based Fitness Evaluation

This chapter addresses the issue of automatic generation of music excerpts. The char-

acter of the problem makes it suitable for various kinds of evolutionary computation

algorithms. We introduce a special method of indirect musical melodies representa-

tion that allows simple application of standard search operators like crossover and

mutation with no repair mechanisms needed. We propose a method for automatic

evaluation of melodies based upon a corpus of manually coded examples, such as

classical music pieces. Various kinds of Genetic Algorithm (GA) systems were evalu-

ated i.e., generational GAs, steady-state GAs and multi-objective optimizations. The

problem of determining fitness landscape for this problem is also addressed. The

results identifies the potential and the issues associated with certain approaches for

further applications in the domain of automatic music composition.

4.1 Background

Internally, music is a well-structured organization of notes. Thus one can design al-

gorithms and systems to make computers understand music and aid humans in their

composition tasks. Applications for music touch many fields of computer science,

but evolutionary computation seems to be especially suited for music; not least be-

cause music melodies have a linear, sequential nature, which clearly lends itself to

representation in terms of a gene structure. Moving beyond representational issues,

there are still many outstanding problems that are worthy of study. A few major

problems to address were summarized by McCormack in [126] and this chapter pro-

pose a solution to at least two of them: the problem of building music representation
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especially suited for evolutionary techniques and development of automated fitness

function that is able to select “pleasant” individuals.

Automatic evaluation of melodies in terms of their fitness is both the most im-

portant and the most difficult problem. A judgement whether certain melody sounds

‘good’ or ‘bad’ is a vague issue even for humans. Many solutions to this problem

try to overcome it by manual fitness assignment, but this compromises our ability to

automate the process of music creation. Other approaches include fitness-assigning

methods that result from some theoretical models of music. However, aside from

the fact that such models are very hard to derive, limiting melody creation in such

a way results in a series of artificial constraints on the resulting composition. The

third approach, which will be used in this chapter, utilizes sample pieces from users

to create classifiers able to judge the properties inherent in new melodies.

There are many other problems such as representation issues or application of

different search operators that must be solved. However, assuming some basic music

theory, those problems can be easily addressed, yet still requiring special, music-

designated solutions. This determines the uniqueness of music-driven tasks. And

it means no “free lunch” for those who try to solve music related problems using

standard methods and approaches.

4.1.1 Previous Work

Since the structure of music is linear and quite easy to represent in Genetic Algo-

rithms (GA), several works have considered solving music generation problems using

evolutionary methods.

One of these approaches was introduced by Biles [12], who presented a system for

generating jazz solos. It is based on developing two populations (phrases and bars)

of music melodies. The authors used a fixed structure of the music and fixed and

small set of possible notes which resulted in significant simplification of the problem.

They relied on human judgement as a feedback for fitness evaluation, which limits

the number of iterations and population size in GA and thus the application and
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thorough testing of the system. As the problem of generating jazz solos becomes

popular, there are approaches that try to address the human factor problem [3].

Jacob [87] proposed a complete system for composing music. This system consists

of several GA agents, each responsible for a different stage of the work of a composer

(e.g., phrase selection, structure arrangement). However, this system also relies on

human judgements and it also requires a set of initial themes as building blocks for

the system. As a result, the author presented a set of compositions made by the

system. However, the structure of the agents and the way the agents work were not

described in the paper. Similar approach was proposed also by Gartland-Jones [58].

Johanson and Poli [92] proposed a method for using Genetic Programming (GP)

for generating small melodic sequences. This approach also required manual user

evaluation of every generation, but they also created a neural network that used the

human feedback from their previous experiments for automatic evaluation of later

melodies. The neural network was able to provide as good an assessment as the

human evaluation. A similar approach was presented by Tokui and Iba [180] for

generating rhythm structures using both GA and GP with human judgement-based

fitness evaluation. They reported good results, which could result from several factors:

the rhythmic domain is much simpler than melodic one (as indicated in the previous

chapter), they used complex architecture to solve the problem, and they employed

human feedback to assess fitness — accurate but slow, expensive and not a scalable

solution.

Papadopoulos and Wiggins [143] pointed out that there is no proven approach

for establishing the automatic evaluation of music quality. They proposed a method

of evading this problem by applying automated fitness evaluation that was based

on static melody features. The automated fitness evaluation based on several static

melody features (such as contour and speed) provides specific melodies with a nice

‘overall look’ without reference to the human perception of a piece. A weighted fitness

of all the melody features was assumed. However, a Pareto-based evaluation, which
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takes all aspects of the system as equally important and evaluate them on separate

dimensions, might be more appropriate in this situation.

An approach similar to the one used in this chapter can be found in Manaris et

al. [122,123] and Machado at al. [116]. They also use a corpus of recognized “pleasant”

music as a foundation for development of a fitness function to assess individuals in a

GA process. They use corpora to create certain ideal metrics based on Zipf’s statis-

tics of various music features, e.g., intervals or IORs, typically without combining

them into longer, n-gram sequences (tri-grams were the longest observed sequences).

Despite their aims to build a definite fitness function for genetic systems, they applied

their techniques primarily to classification tasks. Our goal is to build a model based

on a corpus of existing music pieces directly for evolving music excerpts through a

GA process.

Other approaches to the problem of automatic fitness assignment for melodies

generation involve Neural Networks [139], SOMs [103, 151], fixed musicological rules

[94,217] or similarity to a target [58]. There are also approaches to polyphonic music

generation [59,123,181], not studied in this chapter.

4.2 Methodology

Evolutionary computation bases upon premises of genetics, evolution and natural

selection known from Charles Darwin’s evolutionary biology. The basic building block

of the system is an individual represented by a genome — a series of features (genes),

like parameter values, steps or instructions, indicating a complete solution to a given

computational problem. A certain number of those individuals form a generation.

From each generation, pairs of individuals are chosen based on their fitness to mate

(exchange their gene material) to generate offspring (new individuals) that can further

mutate (randomly change their genes, typically at a very small rate). Entire offspring

from a certain generation forms the next generation and the process repeats until a

specified goal is met, that is, we obtain individuals that satisfy our predefined quality

requirements for the final solution.
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This chapter presents a novel approach to representing melodies (individuals in

GA terms), and avoids utilizing human feedback during fitness evaluation. How-

ever, a sample of MIDI files is necessary to provide the source from which music

features are extracted. Specifically, a complete set of Preludes and Fugues from Das

Wohltenperierte Klavier 1 by J.S. Bach establishes the source of music features, al-

though no special significance is associated with this selection.

Similarly to other work done in this area, the melodies created by the system op-

erate on the Western music twelve-tone scale. However, unlike previous approaches,

where notes were represented using absolute note pitches and timings [58,94], here the

smallest melody component will be the information about pitch change and duration

change. The genome would be a sequence of genes, dubbed unigrams — pairs of inte-

ger values indicating the interval between notes in semitones (i.e., melodic intervals)

and the rounded binary logarithm of the ratio of the corresponding note’s duration

(i.e., inter-onset interval ratios (IORs) in MIR nomenclature).

Naturally, the same melody can be played in different scales or different tempos

and it still remains the same melody and preserves relations between notes. By

emphasizing the underlying relation between notes we fulfill the human perception of

rhythm and melody. Since the pitch and the tempo of a melody is not determined

nor needed, the preset scale and the tempo are used in playback only.

The other advantage of this approach over direct representations is that the logic

of the melody is preserved. Moreover, application of classical one/two point crossover

does not result in lethals, if one creates interval-based children. Note-based chil-

dren, which result from using direct representations, may create odd connections at

crossover points, like the 9th on Figure 4.1, that does not exists in any of the par-

ents. This typically makes the resulting melody corrupted, and thus the individual

— lethal.
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Figure 4.1: Two children created using different representations for standard
crossover.

4.2.1 GA Design Decisions

The evaluation of fitness is automatic and reflects the likelihood that the given melody

is a good melody according to a given corpus of musical compositions. The features

of the corpus are calculated by counting all different sequences of melodies of n

consecutive unigrams, i.e., n-grams, and taking some statistical information of n-

grams in the corpus like:

1. n-gram’s tf (term frequency, n-gram’s count)

2. n-gram’s probability (normalized count)

3. n-gram’s df (document frequency, the count of documents in which the n-gram

occurs)

Based on the statistical information from the corpus, fitness can be evaluated

according to the following general formula:

Fitness(melody) = Γ1
1≤n≤N

(
wn · Γ2

n-gram∈melody
ϕ (n-gram)

)
(4.1)

where:

• Γ1 and Γ2 are some aggregate functions e.g., sum, average, max;

• Γ1 has the range over the various n-gram sizes, and



142

• Γ2 has the range of all n-grams in an individual with the size of n,

• wn is a weighting factor of certain n-gram size,

• ϕ(n-gram) is an n-gram weighting function that is derived from corpus statistics.

The formula is left in the basic form because various types of GA’s presented in this

chapter will use different component functions Γ1, Γ2 and ϕ.

Selection operator. A standard roulette-wheel selection operator will be consid-

ered, where the likelihood of being chosen for reproduction is proportional to the

fitness value of the individual.

Search operators. The indirect representation proposed in this system allows sev-

eral classical operators to be supported directly:

• Unbounded crossover. One-point crossover is defined such that the crossover

point is selected independently in each individual. That is to say, a melody

coded using our proposed indirect method does not have the limitation where

a gene at a position has a certain meaning according to its localization in the

genome. Moreover, we do not want to impose a priori limits on the evolution

of melody length. This approach allows creation of individuals of any size,

albeit potentially leading to the phenomenon known as ‘code bloat’ from genetic

programming.

• Gene-wise stochastic mutation. Mutation consists of replacing a gene with

a new tuple drawn according to the probability of unigrams (n-grams of the

length 1) from the corpus. Since unigrams represent a change of melody, drawing

a melody from the corpus probabilistically will change a single inflection point

of the melody leaving the rest of the melody (relatively) unaffected.
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4.3 Experiments

The following experiments were conducted to characterize various features of the

solution presented to the problem of automatic music melody generation. In most of

the experiments the following algorithm parameters were set:

1. Population size: 100

2. Individuals in the initial population are sequences of 10 unigrams drawn ran-

domly according to the probabilities obtained from the corpus

3. Equal wn weights are used for evaluating different n-grams of different sizes.

4. N (maximal size of n-grams considered): 6

5. Probability of crossover: 1.0, mutation: 0.0

6. Number of epochs/generations: 100

All experiments were written as Perl scripts using MIDI::Corpus module for ana-

lyzing and managing n-gram features of MIDI files and individuals in the populations.

4.3.1 N-gram Statistics

The key point in this system is to define the details of the fitness function. The

simple and most obvious decision for aggregate functions Γ1 and Γ2 is using the sum

or the average for Γ1, and the average for Γ2. One will then have ranked individuals

according to the average fitness of their components. The main challenge is how to

evaluate individual sub-sequences for their likelihood of being good or bad melodies.

The simplest approach is to take the probability of n-grams in a reference corpus as

an indicator of fitness. However, despite the fact that ‘good’ melodies are usually

quite complicated, the majority of the corpus is built from very simple elements. The

melodies evolved from ϕ functions based on the probability model resulted in passages

of notes just going up, down or simple trills i.e., the most frequent n-grams.



144

Such behaviour is similar to the occurrence of stopwords known from Information

Retrieval (IR). The value of melodies resulting from using these kinds of n-grams

is minor while the fitness reward for the melodies containing them is high. The

distribution of the n-grams with a different size in the corpus follows Zipf’s law as

shown in Manaris et al. [122, 123] as well as in chapter 3 of this dissertation. Figure

4.2(a) show this property on our reference Bach’s WTK corpus. The most frequent

n-grams are many times more popular that others. We have checked that replacing

the ϕ frequency-based function with the binary existence test (i.e., 1 if an n-gram

exists in the corpus and 0 otherwise) does not improve the situation so there should

be a mechanism to remove the influence of the most common n-grams.

The simple, non-parametric and conceptually acceptable solution to this problem

is to use a variant of the tf.idf measure from IR to determine term importance. Most

important terms are the ones that are quite frequent, but occur in few documents.

The most frequent n-grams are present almost in every document. Thus they are

discarded as good melody components. Keeping in mind the exponential distribution

of n-grams in a musical document, the following formula may be applied to express

the ‘goodness’ of an n-gram:

ϕ (n-gram) =
log (tf (n-gram))

df (n-gram)
(4.2)

The distribution of tf.idf values according to n-gram’s popularity is shown in

Figure 4.2(c).

It is apparent that this approach successfully decreased the influence of ‘stopwords’

in the fitness function. The ϕ value of the most frequent n-grams was around 0.2

while for the most important n-grams this value reaches 4. However, the stopwords

remained important because the smallest simple components may build larger, much

fitter blocks. The influence of very low probable n-grams was also diminished, keeping

the most valuable n-grams in the middle of the rank scale.
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(a) Count distribution

(b) Document frequency distribution

(c) tf.idf distribution

Figure 4.2: Distribution of n-grams: counts (a), document frequencies (b) and tf.idf
scores (c) according to their rank.
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Figure 4.3: Generational GA evolving 100 melodies over 500 generations. Average
fitness, maximum fitness, average size of melodies and the number of different indi-
viduals are plotted, with indications whether values for certain parameter are on left
(l) or right (r) vertical axis.

4.3.2 Generational GA

Having established a suitably informative fitness function, we are in a position to

apply a standard generational GA (GGA). Figure 4.3 shows a sample run of this

system. Most parameters were set to default values. The parameters tracked were:

average and maximum fitness, average individual’s length, and the number of different

individuals in the population. The fitness function represented the sum (Γ1) of five

averages (Γ2) associated with component n-grams (n from 2 to 6). The average values

for fitness was around 1.5 which gives the average ϕ value of 0.3 that is close to the

stopwords value. The maximum fitness was changing rapidly, reaching the level of

3 (average ϕ value of 0.6) without the ability of keeping these good genes across

generations. It was still far from the peak ϕ values (∼ 4.0). This showed the inability

of the Generational GA to take advantage of tf.idf rating.

In later generations a new phenomenon occurs — ‘note bloat’, unlimited grow of

individuals in the population, similar to code bloat known from Genetic Program-

ming. It may result from many factors. The individuals are not limited in length.

Crossover is known to have a destructive influence on the offspring. The influence

of a wound after crossing over some ‘valuable’ regions may be hidden by the length

of individuals (other n-grams). Hence shorter children are more likely to suffer from



147

this destructive influence then longer ones. The influence of note bloat is definitely

negative. Populations with larger individuals typically register lower fitness prop-

erties (average and maximal). One can observe negative correlation of fitness and

individual size.

4.3.3 Steady-State GA

A steady-state, elitist selection operator always maintains the best solutions. Only

one child is created per iteration and the worst solution from the current population

is replaced. Since only one individual changes from generation to generation, to

better reflect computational complexity of steady-state GA, epochs are used instead

of generations. One epoch passes after a system generates the same number of new

individuals as it existed in the original population. This gives the same execution cost

as one generation of traditional Generational GA, and unlike for Generational GA,

the fittest individuals can survive from one epoch to another, promoting elitism. An

illustrative sample run of the system with this approach is shown in Figure 4.4(a).

Unlike Generational GA, the variety in the population drops and the whole pop-

ulation ‘converges’ to a single individual. One can observe a quite quick convergence

to one solution found around the 45th epoch. There is no note bloat and the qual-

ity of solutions is higher compared to those identified by Generational GA. Figure

4.4(b) shows the average behaviour over 100 runs. In the first 5-10 runs the algorithm

searches for a niche to converge (increasing size of individuals); thereafter, a single

solution appears.

Mutation

Mutation can inject new genes, resulting in new component melodies, which may

be more or less fit than those currently in the population. Steady-state selection

insulates us from the destructive influences of mutation. The averaged behaviour of

the system with mutation is shown in Figure 4.5. Moreover, it appears that mutation

is important; the rate of 0.2 results in a fitness improvement of around 20%, and with
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(a) Single run

(b) Average

Figure 4.4: Steady-state GA evolving run over 100 epochs: single run example (a),
and average over 100 runs (b).
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even a small gene-wise mutation rate of 0.01 resulting in significant improvements.

Without mutation, the steady-state approach concentrated only on a single peak in

the landscape; resulting in premature convergence. The positive influence of mutation

is due to the fact that with elitist selection, the solution tends to converge to a local

optimum, and mutation helps to jump to a possibly better solution that is relatively

close to the current best solution. However, applying mutation to Generational GA

did not provide any difference to the results obtained by this method.

4.3.4 Diversity by Multi-Objective Optimization

The main problem of the simple single-objective steady-state approach is that it

evolves to only one solution, which is usually not indicative of the potential spread of

available solutions. One needs a method of preserving individuals that contain valu-

able n-grams, which may be the components of good melodies, but without assuming

a single solution to the overall problem. The solution to this may be to utilize a

multi-objective Pareto-based fitness function based on two criteria:

1. Standard fitness evaluated by the ‘average’ function as Γ1 and Γ2.

2. Fitness evaluated taking the ‘max’ function as Γ1 and Γ2.

The first objective will take care of the overall performance of melodies. The

second will take care of those individuals that contain valuable fragments, but do not

have enough other content to record a high average value. Those individuals may be

crossed over with those with a high standard fitness; thus establishing a chance of

injecting their material to the offspring.

Although the method is promising, the results from this algorithm are comparable

to those that used a single objective, but it requires more computational power.

Figure 4.6 shows the walk of a population towards the Pareto-front, i.e., the situation

where more individuals represent potentially optimal combination of qualities used as

objectives for this particular approach. Presumably, assuming better objectives may

lead to better results because Pareto-optimization methods are generally known for

their efficacy.
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(a) 0.01

(b) 0.1

(c) 0.2

Figure 4.5: Steady-state GA evolving run over 100 epochs averaged over 100 runs
with different mutation probabilities: 0.01 (a), 0.1 (b), 0.2 (c).
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(a) (b)

(c) (d)

Figure 4.6: Converging towards Pareto-front for music melodies generation at various
stages: initial population (a), population after 10 epochs (b), population after 100
epochs (c), poplation after 1000 epochs(d).
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4.3.5 Results

Some melodies generated by the system are shown in Table 4.1. Each melody is

preceded by its fitness and the number of runs in which it occurred as a result.

They were taken as final results from 100 runs of the steady-state algorithm with

mutation since this system set-up produced the best offspring in the most reasonable

time. Although this is only a sample of the result set, one can notice that the fitness

landscape has some unique properties. There are narrow spikes of fitness surrounded

by patterns with a count of 1; and a series of additional ‘hills’ that have a wider

base (e.g., the melody with count 15). It is usually easy to put those melodies into

a harmonic context and most of them preserve the scale or the key in which they

are being played, which is rather surprising, because harmonic context is not directly

imposed by our n-gram-based fitness evaluation method. Most of them are in major

scale, but some of them are complementary: the melody with the fitness of 8.21 is the

major version of the minor melody with fitness 7.98. The important thing to notice

is that most of those melodies, even if they have interesting melodic structure, have

poor rhythmic pattern separating rhythm from melody. An additional objective will

help in solving this issue.

4.4 Issues and Possible Extensions

The method for generating music melodies using a corpus of musical pieces as a guide

for evaluating individuals gives encouraging results without resorting to sophisticated

evolutionary frameworks. Applying some knowledge of music while formulating the

representation has provided the basis for an indirect encoding, thus avoiding the need

for specialist search operators. The problem of evolving melodies also demonstrates

some new artifacts such as ‘note bloat’ that may be very interesting to investigate.

The method proposed in this chapter revealed an interesting area of research in evo-

lutional computation and may be helpful for the people of music to create new ideas

for composition.
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Table 4.1: The samples of resulting melodies.

Fitness Count Pattern

9.55 1

8.83 1

8.46 1

8.37 1

8.21 3

8.05 2

7.98 1

7.48 15

7.17 1
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The results of the approach to date are characterized by quite a simple rhythmic

scheme. Separating rhythm from melody may help in obtaining more diversified

results, but one cannot make rhythm and melody totally independent from each

other. Other music features like establishing a proper beginning and ending and

maintaining a common harmonic logic and structure of an excerpt also need to be

investigated.

The evaluation of results is still an open-ended issue. Unlike some other previous

systems that take feedback from humans for evaluating fitness of individuals, the

results from the proposed system do not have any contact with humans until they

show up in the final population.

The fitness landscape of the problem for the representation of music and evaluation

of individuals presented in this chapter was shown to be multi-modal. There are many

local minima, and no information about maximum fitness is obtainable by the system.

Moreover, it is difficult to identify useful individuals for latter use. This results in the

general contradictory requirement for preserving diversity while maintaining progress

towards specific solutions. Allowing melodies to have variable length may lead to

the problem dubbed the ‘note bloat’. Can this problem be solved by using some

simple form of fitness evaluation that does not force a certain individual length? The

Steady-state approach looks like it provides an appropriate mechanism, but on the

other hand, most of the final results have a length that correlated with the definition

of weights in the fitness function. Addressing all these issues may help in solving

similar, real world problems where individuals are organized in a similar way.

There are many other problems such as additional representation issues or applica-

tion of context-aware search operators. Assuming some basic music theory, we main-

tain that such problems can be addressed using music-designated solutions. This de-

termines the uniqueness of music-driven tasks. And it means no “free lunch” for those

who try to solve music related problems using standard methods and approaches.



Chapter 5

Symbolic Music Visualization

In the following chapter we present a technique for visualizing symbolically encoded

music stored in MIDI files. The method is automatic and enables visualizing an entire

opus on a single image. The resulting images unveil the structure of a piece as well as

detailed themes’ leading within it. The technique is suitable for many types of music

(both classical and popular) and the quality of the visualization highly depends on

the quality of input MIDI file. The program for creating visualizations using this

technique and previewing them with MIDI playback is made available for use within

the community.

Music visualization systems work with two types of data — raw recordings and

various forms of symbolic representations. There are also two different target groups

of such visualizations — untutored audiences and musical experts. The former’s needs

are quite simple — it is sufficient to provide them with a solution that follows the

music in some way, enhancing their listening experience. Such visualization systems

are present in multimedia players. On the other hand, professional visualizations

are designed to convey specific information to users with a proficiency in the music

domain, which includes various ways of presenting audio signal for sound engineers.

The other approaches incorporate symbolic music representations such as sheet music

for music performers to better understand a given opus. The solution proposed here is

designed for both music performers to help them understand the structure of a piece,

and laymen to track the flow of music. It will also serve as a basis for automatic

music structure analysis introduced in the next chapter.

There are many benefits of using symbolic music data for music visualization.

Primarily, the data is much cleaner and the actual, high-level music events are clearly

distinguished and annotated. As a result, the potential algorithm does not need to
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assume that it deals with inaccuracies in the data. Moreover, all formats for storing

symbolically represented music allow for separation of logically different voices. This

makes it possible to investigate the inter-voice dependencies, which would result in

more adequate structure-revealing analyses. This is particularly true for works for

music ensembles, where each instrument has to have its own track, according to MIDI

specification. However, the most important benefit of using symbolic representation,

is a clearly defined local context for each of the music events within that piece. This

context is derived from the relationships between these events and other notes within

their neighbourhood. Symbolic representation allows for the use of linguistics-like

methods of analyzing streams of notes, for example by using text-based methods of

determining similarity, as we introduced in previous chapters.

However, there is one problem with these kinds of symbolic-based analyses. Most

of the music available and accessible to the general public is in audio form. Proposed

methods would work for those cases only if the audio is supplied with annotations

describing the low-level music features that are present in MIDI or score files. Current

automated transcription systems do not usually work for complex pieces and they

introduce too many errors (accuracy reaches from 0.6 to 0.8 depending on the dataset

[43]). There are two techniques that could help to overcome this problem. One of them

is to supply the audio channel with the actual music event information. Such solution

has been proposed [8], but they have not yet become popular. The alternative is to

use automated score-audio alignment systems that, unlike automatic transcription

systems, are quite accurate. Our solution focuses only on working with symbolic

representations, assuming that the alignment or annotation step has been completed.

5.1 Existing Approaches to Music Visualization

The concept of similarity matrices was primarily introduced as a mathematical con-

cept of recurrence plots for time series by Eckmann et al. [45]. It applies to any time

series data and a result is a two-dimensional image that visualizes internal dependen-

cies within the given time series. This concept, upon which our work is built, has
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been applied to audio data by Foote [51]. In his approach, a raw music recording is

taken as input data. The output is a visualization, that is organized as a rectangular

image, where each pixel (at position (i, j)) expresses the audio similarity that results

from cepstral analysis of two corresponding excerpts (frames) of the piece (Figure 5.1)

at time i and j. Cepstral analysis simulates human perception of audio signals, thus

fragments that sound similar for humans tend to have similar cepstral coefficients.

Organizing them in a rectangular image allows for tracking of the dependencies in a

music piece. Although the techniques summarized in Foote’s work were applied to

audio-based systems, it is possible to adapt them to operate on symbolic data in a

similar fashion.

Using a single channel recording (mono) as input data decreases the complexity

of the problem, so there is just one concurrent object to compare in each time frame.

However, if we consider music in general, there are usually multiple separated logical

channels of music information, at least one for each instrument, voice or stave, which

cannot be accurately separated, after these have been blended together within a au-

dio recording. Because of this, many important details of voice dependencies remain

hidden. J. Foote presented a sample similarity matrix that results from analyzing a

MIDI file (Figure 5.1b), but his simplifications in this area remain significant: one

channel with one note compared at a time. Symbolic representations hide all the

performance-dependent features but carry the entire structural information. Incor-

porating this information is one of key benefits of this kind of data. This can result

in more complex and sophisticated analysis [9, 121,172].

Isaacson [85] in his introduction to various music visualization systems, points out,

that audio “has many limitations as a representation for analysis. Humans have the

(remarkable) ability to recognize individual components in a sound source, including

identifying specific instruments ..., as well as melodic lines and rhythmic patterns

within each, and to translate that information into a mental symbolic form that is

more reminiscent of the musical score than of a spectrogram. ... It is exceedingly

difficult to extract this information from an audio signal, and hardly more visible in
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(a) audio MFCC

(b) symbolic binary (c) proposed scheme

Figure 5.1: Bach prelude C major — an excerpt visualized using three methods:
a) Foote [51], b) symbolic based on exact notes comparison, c) with the proposed
context-aware approach
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a picture of that signal. In fact, except when spectral (i.e., timbral) information is

specifically the focus, the visual ‘noise’ that the overtone structures add to the image

masks much of the information that is traditionally of interest in music analysis” [85].

Symbolic representation is a more suitable source material for high-level analysis even

though incorporating it leads to the problem of conversion from audio to symbolic

music. This was shown in the paper describing the ImproVis system [172] where the

manual transcription of recorded performances practically prohibited a wide applica-

tion of the presented method.

The most practical approach is therefore the visualization of existing, symbolically

coded music, such as MIDI files, that incorporate MIDI protocol to encode musical

events such as notes, rests, etc., and require much less disk space than audio files.

However, most of the existing MIDI visualization systems either simplify the visual-

ization problem by just modifying western music notation in order to add some other

visual features (colour, line thickness) and displaying them on the score staves [121],

or extract from the music some very sophisticated (e.g., harmonic) features, visual-

izing them in a very specialized way for a very specific purpose, so not practical in

general.

One of more sophisticated approaches was presented by Bergstrom et al. [9]. The

approach presented in that paper visualizes tone classes instead of notes, which reveals

the harmony structure of a given piece of music. Tones are placed on a grid, based

on Tonnetz template, such that notes belonging to a chord form a cluster. Similar

chords lie close to each other on this grid, making chord progressions easy to observe.

The method can be used in music education for teaching harmony rules or may

aid professionals in their work with music. On the other hand, using this kind of

tools is strictly limited to people with a certain proficiency in the domain of music

theory so even self-taught musicians without theoretical background may not find

this visualization technique helpful.
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A solution utilizing a similar concept of visualizing symbolic music using self-

similarity matrices for monophonic symbolic music, developed in parallel to our solu-

tion, was developed by Hanna et al. [71]. They also used melodic intervals and IOR

features to accommodate for transposition and tempo invariance, as well as local con-

texts. They used editing algorithm to compare contexts, which takes care of small

variations in melodies, while masking fine textural information. Main limitation of

the solution was it’s strict requirement of the monophonic music as the input.

5.2 Methodology for Symbolic Music Visualization

Our solution to visualizing symbolic music tries to address the problems of existing

visualizations of symbolic music. This tool does not need any pre-processing steps.

It takes MIDI files as input and visualizes the content of those files so the quality of

visualization depends on the quality of the MIDI file, where the quality is determined

by the approach to sequencing a MIDI file. One can imitate the original score, pre-

serving voicing structure in channel structure, preserving notes durations indicating

note lengths, and so on. But MIDI can also be used to encode a performance on

an electronic instrument in a very compressed way. In this case there is usually one

track with a mass of notes with timing taken from the performance that may include

augmentation and diminution of tempo, and where notes do not have to be aligned

exactly. The resulting MIDI file sounds more realistic but is not suitable for analysis

and, to some extent, for this kind of visualization. Fortunately, there are relatively

few instances of such MIDI files, as most available MIDI files that can be found in

various repositories, such as classicalarchives.com, come from score transcriptions.

The presented approach allows for wide parameter customization so that the user

can filter and limit what they think should be visualized. The entire visualization

system is available as a program that allows previewing and playing back of the

underlying music piece enabling users to track the visualization along with audio.
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Figure 5.2: Visualized excerpt from Bach prelude C sharp Major

5.2.1 Use of Similarity Matrices as a Layout for Visualization

In order to visualize music stored in MIDI files, we generate similarity matrices that

correspond to Foote’s system [51]. They incorporate symbolic music representation

as input data. Since symbolic music is more complex in its structure compared to

the raw recordings, there are many problems that emerge which will be addressed in

this approach. Although performances have at least the same level of complexity as

a corresponding musical score, everything is merged together into a single waveform

(i.e., one dimensional, time dependent function) and it is almost impossible to recover

the underlying high- and low-level structure using techniques currently available. In

our solution, a visualization is organized in a rectangular colour image, where each

square in the image represents the similarity between two corresponding notes that

are played at two corresponding times, ti and tj (Figure 5.2).
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Time proceeds from the upper left corner to the lower right. The diagonal line

shows the currently played notes as very bright since self-similarity of any excerpt is

always assigned the highest possible value.

5.2.2 Dealing with Multiple Layers and Tracks

MIDI files, as do their underlying musical pieces, consist of many concurrent sources

of notes. In the corresponding digital audio signal approach, this problem never arises

because there is only one currently played track of music at a time. In real music,

one has many logical channels with each representing a different hand, a different

instrument or a different voice. The question is, how to incorporate those inter-track

dependencies? In Foote’s proposal, the resulting images are greyscale since just one

feature has been visualized (audio is one-dimensional), and hue remained free for

visualizing other features.

In our solution we reserve colour space to show dependencies between different

music tracks. For example, in Figure 5.2 blue colour represents self-similarity of the

left hand, red colour shows the self-similarity of the right hand and green shows the

similarity between left and right hand. Larger blue squares at the first half of the

diagonal axis and red ones in the second half represent longer notes played in the

corresponding voices. The fine checkerboard pattern of the red small squares at the

beginning (the top left corner) and the same pattern of blue colour around the lower

part of the axis show the self-repetitive fine structure of the 16ths’ groups in both

hands. Green patterns indicate inter-voice dependencies. Larger squares in the upper-

right corner show the repeating pattern of quarters and eights that are transferred

from the left hand to the right hand. The fine checkboard structure of the green cloud

in the lower left corner shows the fast pattern of 16ths that moved from the right to

the left hand.

The other problem is how to handle chords and concurrencies in a single track.

One can not easily determine what is the direction of the melody if one finds a chord.

According to previous research [193], it has been shown that one concentrates on the
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highest currently played note so the simplest approach for dealing with concurrencies

is to retain only the highest note at a time frame. This approach to dealing with

concurrencies has been used in our system.

5.2.3 Comparison Function for Music Excerpts

Assuming that we now have a linear note structure in every track and we compare

each pair of tracks, one has to define a certain music representation and comparison

function. The trivial approach to this problem is to take notes lengths and pitches

and map them directly to a comparison function. As it was shown in the previous

sections, this approach has two main caveats. It does not preserve melody direction

while comparing two similar melodies that lay on different pitches or are played in

different scales. It also does not preserve rhythmic similarities that exist while the

same melody is played slower or faster. Moreover, the same eighth note with a certain

pitch may mean different things in two different excerpts since its role depend also

on the neighbouring notes.

These issues may be overcome if one takes relative pitch and relative duration

(melodic intervals and rhythmic inter-onset interval ratios (IORs)) to form basic fea-

tures, unigrams. The same melody played in various tempos and in different pitches

gives the same sequence of unigrams. This is especially important in analysing fugue

themes, which occur on different heights and may be played with different paces.

The last issue to be addressed in this section is how to determine the similarity of

two sequences of unigrams. The solution proposed is that the similarity is the number

of the same (overlapping) unigrams in both excerpts within a certain window:

sim({ai}Ni=1, {bi}Ni=1) = |{i | 1 ≤ i ≤ N, ai = bi}| (5.1)

where {ai} and {bi} are two input sequences, and N is the window size. Having

windows of size N will result in similarity levels varying from 0 (no similarity) to N

(full similarity). It is then encoded by the saturation of a certain hue on the resulting

image. The choice of colours does not matter at this point, but primary colours
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are preferred due to the mixing problem described later. The values from different

layers are then summed up and normalized across the image. Figure 5.1 and Figure

5.2 show in details how the level of brightness is applied. However, both presented

excerpts do not have any problems with colours assignment because they both have

only two channels which gives three possible colour layers. Keeping in mind that the

basic colour table has three dimensions (i.e., red, green and blue) three layers can be

displayed without ambiguity.

5.2.4 Dealing with Layer Overload

The number of layers grows quadratically with the increasing number of visualized

tracks. Adding one more channel to the simple pair requires six combinations, which

with the support of the secondary hues (cyan, magenta and yellow), can also be

visualized. However, in this situation some overlapping similarities, e.g., on the red

and the blue layer, may be misunderstood as a similarity on the magenta layer. The

situation becomes more complicated if one has even more channels. Figure 5.3 shows

the excerpt of Bach’s Fugue C# minor with 5 voices (15 possible layers), where we

had to repeat certain hues or different channel pairs.

Figure 5.4 shows just these layers that compare with the 3rd voice. The amount of

information is smaller but one can easily observe the theme (saturated green pattern

at the beginning) and fine structure of counterpoint (middle of the image) repeated

in remaining voices (high similarity to other voices).

Filtering The other important feature of the visualization is that it enables filtering

by a set of unigrams. In this case, the system will increase the similarity of two

excerpts only for the unigrams in those melodies from a fixed, predefined set. This

allows content based visualization of certain types of melodies. Figure 5.5 shows the

same excerpt as in the Figure 5.3 with respect to the unigrams present in the theme

of the Fugue. One can observe the yellow theme at the beginning of the excerpt that

corresponds to the green one (different colour assignment) in Figure 5.4.



165

Figure 5.3: Plethora of layers in 5 voci C sharp minor Bach’s Fugue. Middle of the
piece. 15 layers.

Figure 5.4: Excerpt from Figure 5.3 displayed 3rd voce comparison only (1&3 –
cyan, 2&3 – blue, 3&3 – green, 3&4 – red, 3&5 – magenta).
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Figure 5.5: Excerpt from Figure 5.3 filtered by the theme.

Figure 5.6: Excerpt from Figure 5.3 filtered by the counterpoint.
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Figure 5.6 presents the same excerpt filtered with the unigrams characteristic

for the counterpoint of the theme. The theme is easily distinguishable from the

counterpoint because they demonstrate quite different rhythmic and melodic styles.

5.2.5 Algorithm for Matrix Generation

Algorithm 1 presents the general procedure to obtain self-similarity images. A vari-

ation to it, presented in Algorithm 2, is more suitable for generation of small, not

full-size images. These two approaches feature the same computational complexity,

and the only difference in their performances lies in sizes of generated images. The

first one iterates over each pair of notes and sets many pixels at once, corresponding

to the respective area on the image. The second version iterates over each pixel in

the image, assuming it would require less similarity computations, as not all notes

will be involved in generation of a small thumbnail.

The most precise result occurs when even the shortest note appears in the final

visualization. This makes images very large, and longer notes contribute to many

pixels simultaneously, which makes Algorithm 1 a default choice.

5.3 Visualization Package

The visualization program was written in Perl with a graphical user interface. The

application was then compiled to an executable file using Perl::Packer module and

the NSIS installer was created for the application.

The application opens with an empty window waiting for a MIDI file to be chosen.

After the MIDI file is loaded the user sees a window with the following controls:

A. A visualization panel with the visualized piece in the background and two sliders

for playback control.

B. The status bar informing the user about system state and showing the progress

of operations.
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Algorithm 1 Symbolic music visualization I

1: determine the size of the visualization based on the shortest note from the MIDI

piece

2: for every track1 in MIDI do

3: for every track2 in MIDI do

4: colour = DetermineLayerColour(track1, track2)

5: for every note1 in track1 do

6: for every note2 in track2 do

7: area = IdentifyArea(note1@track1,note2@track2)

8: similarity = CalculateSimilarity(note1@track1,note2@track2)

9: AdjustLayer(area,similarity,colour)

10: end for

11: end for

12: end for

13: end for

14: SaveImage()
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Algorithm 2 Symbolic music visualization for thumbnails

1: set a priori the size of the visualization

2: for every y in Image.Rows do

3: for every x in Image.Columns do

4: for every track1 in MIDI do

5: note1 = IdentifyCurrentNote(y,track1)

6: for every track2 in MIDI do

7: note2 = IdentifyCurrentNote(x,track2)

8: colour = DetermineLayerColour(track1, track2)

9: similarity = CalculateSimilarity(note1@track1,note2@track2)

10: AdjustLayer(x,y,similarity,colour)

11: end for

12: end for

13: end for

14: end for

15: SaveImage()
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Figure 5.7: Program main window with the following components: A) visualization
pane B) status bar C) visualization controls D) toolbar

C. Visualization properties and visualization dependent controls. Each field contains

an indication if changes in a following section require refreshing an image by simple

reviewing image data ( ) or require reload of the whole file, which usually takes

more time ( ). Controls include:

(a) Colours and layers controls. Colour of a box describes the hue of points

representing similarity on a given layer. Symbols on the buttons represent if

a corresponding layer is to be included in the final visualization ( ) or not

( ). Right-clicking on a corresponding layer button allows changing the hue

of the layer, while left-clicking controls the layer toggle.

(b) Similarity range — the range (a window) of unigrams within the similarity

is measured. The possible values vary from 2 to 14 with a step of 2. Larger

values create more ‘smooth’ visualizations. Smaller values produce ‘angular’

visualizations faster.



171

(c) Image size — the size of the image presented in the visualization pane. Since

source MIDI files produce usually much larger and thus time-consuming im-

ages, the adjustment of size can be done efficiently once, at visualization

creation time.

(d) Filtering pattern — unigrams that are chosen as a filter of the image. User

can point within the visualization image, and with a right click, get those

unigrams that give the highest similarity among all active layers in this point.

User can edit those unigrams manually in a textbox at any time.

(e) Track’s volumes — volume controls for playback, separate for each track so

that the user can listen the piece focusing on certain tracks. The volume can

be changed any time, even during playback.

(f) Playing speed — the speed of playback. The change during playback does

not affect current speed, until it is paused and un-paused.

D. Toolbar containing the following buttons:

(a) Load new file ( ) — to load new file and open it with default visualization

properties

(b) Play/Pause ( / ) — to start/play playback. It will start in the moment

pointed by white indication lines in the visualization pane, which can be

controlled with a mouse.

(c) Refresh ( ) — to refresh current view according to changed settings that

do not require reload of data.

(d) Reload ( ) — to reopen the file again keeping all the settings already set.

Required for most parameter changes to update the visualization.

(e) Save image ( ) — save the current view with optimal image resolution based

in the analysis of the content. The images are stored in a lossless PNG format

and usually do not exceed 1MB.
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5.4 Examples and Features of Proposed Visualization Scheme

The visualization technique proposed in this chapter unveils the structure of a piece.

Similar sections containing similar melodies will occur as repeating squared blocks on

the diagonal for every such section and on the side — which indicates the repetition of

a section. Moreover, repeating themes occur in the visualization as graphical patterns

drawn parallel to the diagonal axis if a melody occurs in two different places.

This technique seems to be especially suited for polyphonic music. Polyphony is

a kind of music with two or more independent voices (voci), all leading their own,

equally important melody lines. They usually contain similar themes that are moving

between voices throughout the piece. The next interesting aspect of polyphonic music

for this visualization technique is that it does not contain many chords, which have

to be simplified to a single note in our approach, so less information is lost.

Figure 5.8 shows Bach’s Prelude C sharp major with indicated structure of a

piece. One can observe two passages of music phrase followed by short intermezzo

and then followed by the repetition of main phrase but with inverted roles of right

and left hand. After them, there is another, very different section with high frequency

patterns, which appear as a thin long lines close and parallel to the main diagonal

(to the melody). If those lines are close to the diagonal it means that the melody

represented by this line repeats with a very short period.

One can also see the magnified part of this prelude with repeating sections shown

in Figure 5.8. The inter-hands layer was the only layer visualized. One can observe

how the coarse theme that primarily occurred in the left hand moves to the right,

while the fine structured theme (checkboard pattern) moves from right to left hand.

This pattern is repeated many times. In the intermezzo, one can observe how the

melody moves from one hand to another by the waving patterns followed by repetition

of the main theme.

These repeating themes are especially important in fugues. Fugues are a poly-

phonic genre with a specific, hierarchical structure (parts and subparts) and its main

goal is to convey the main theme through voices in the whole piece. The main game
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(a) piece structure

(b) voice dependencies

Figure 5.8: J.S. Bach prelude in C sharp major. Upper picture: highlighted the
visible hierarchy of the piece (manual marking), left hand has blue colour, right hand
has red colour. The inter-hands relations are encoded in green. Lower picture:
The magnified first part of the piece with only green layer displayed. Transitions of
themes between voices are clearly visible.
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Figure 5.9: J.S. Bach — Fugue in C major. Filtered by the main theme pattern.
Unveils the number of themes in the piece.

between the composer and the performer is that the composer tries to hide as many

themes as possible and the performer has to find and emphasize all the theme melodies

so that the listener, the third participant of the show, can clearly recognize them. The

tool described in this chapter should help players and listeners to better understand

composer’s intentions.

Figure 5.9 shows the Fugue in C major filtered by the pattern collected from the

first theme occurrence. One can see how many theme instances were packed in this

fugue by Bach.

This visualization technique also shows modified themes. The composer may

augment or diminish a theme. However, the unigram structure of this theme differs

only by the first unigram, so it still remains similar to the original theme. The only

difference will be that it will not be parallel to the axis but rotated. Figure 5.10

shows one theme repeated three times with different speeds. The augmentation and

diminution is clearly visible.

Figure 5.11 shows the structure of fugue in E flat minor with everything except

the main theme sieved out. One can observe that some themes in the last part of the

fugue were augmented.
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Figure 5.10: Three occurences of the same theme, played with three different tempi.

Figure 5.11: J.S. Bach — Fugue in E flat major. Filtered by the main theme pattern.
Augmented themes are visible in the second part of the piece.
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Figure 5.12: The Beatles — The Magical Mystery Tour. All melodic layers visual-
ized. The structure of the piece is easy to perceive

This visualization technique is suitable not only for polyphonic (style) and clas-

sical music. Figure 5.12 shows the visualization for the Beatles’ song “The Mystery

Tour”. The structure of three verses with choruses, an intermezzo between second,

and third verse and the ending coda are clearly visible. The thin light lines in each

verse unveil repeating melodies within the verse. The high brightness of the image

shows significant similarity between sections, which indicates the simple structure of

a piece (the repeated themes are just copied, so the similarity reaches highest levels).

Regarding popular music, one has to keep in mind that they typically contain one

or more percussion tracks — they are encoded using the same MIDI protocol, but

the pitch value in those tracks does not indicate pitches of notes played, but the

instrument used to play the note. Therefore those tracks are not meaningful and are

removed from the visualization for its clarity. In this case, the last track of the piece

was the percussion track and it has been removed from the final visualization.
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5.5 Future Work

The technique of visualizing music represented symbolically in MIDI files presented

in this section seems to be especially suited for music performers to aid them in better

understanding the piece.

The algorithm was analyzed on polyphonic baroque music, but it should also

work with other kinds of music, even modern, and in many cases it will reveal their

simplicity and highly repetitive nature. Music enthusiasts may find it appealing,

that their music player reveals the structure and theme leading, while playing their

favourite songs. Keeping in mind that automatic audio-to-notes transcription seems

to be unreachable at this stage, if the audio files are enriched with the symbolic

content before the distribution of an album, one can use this rich information for

more advanced visualizations of audio tracks.

The technique enables the production of the images of any size, and the smaller

images require much less computational time and resources, the generation of MIDI

thumbnails is then possible. Since the power of personal computers increases in a

rapid pace, thumbnailing, that is, previewing the content of a file in the file icon,

has became more and more popular. Using the technique presented in this chapter,

one can produce thumbnails of MIDI files and other kinds of music files that contain

symbolic information (such as suggested enriched audio files, or score files). The

efficient implementation of the program for generating these thumbnails is left for

future plans.

The system was briefly reviewed by music experts and they agreed on the capa-

bilities of the system, but a thorough evaluation through a user study should be the

part of the future work. It is possible, however, to use this visualization approach as

a foundation for other tasks. Then, next chapter shows an extension of this technique

which automatically analyzes structure of symbolic music.



Chapter 6

Structural Analysis of Symbolic Music

Automatic discovery of patterns and structure in music is a very active area in today’s

computational musicology. Most of the approaches to this task focus on analysis of

audio data, while some were indicating that it could be beneficial to apply those

methods to music represented symbolically. The proposed automatic structure anal-

ysis system is based on creating self-similarity matrices and implements a text-like

n-gram representation of symbolic music data. The aim of this work is to explore

how various similarity measuring techniques adopted from Information Retrieval and

Natural Language Processing help in exploring structure of symbolic music. We have

found that the context of each music event within a piece plays a very important role.

The modified Dijkstra algorithm is then applied to the matrix, revealing its structure

and patterns derived from the obtained shortest path. The proposed solution has

been evaluated on both classical and popular music, showing significant improvement

in both precision and recall.

6.1 Motivation

Structure is a very important aspect of music. Studying it is a vital part of musi-

cological analysis which unveils human cognitive processes upon creation of a given

music piece. Being able to automatically unveil this structure through a computer

program would mean that one can analyze this aspect of art in an algorithmic way.

One can point out a number of applications of music structural analysis, including

active music listening and navigation [16, 191], music summarization [25], automat-

ically locating certain sections [63], a framework for semantic music analysis [117],

178
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music creation [134], playlist generation [2], improving audio based music information

retrieval [88] or aiding research in ethnomusicology [91].

Structure in music is driven by repetition: repetition of certain parts and themes,

but also repetition of music textures, or rhythmic and harmonic patterns. According

to Schenker, “repetition is the basis of music as an art” and repetition leads to

structure of a piece. Thus, in order to determine structure of a piece of music one

has to mine the internal dependencies and repetitions within that piece.

Mining of self-similarity matrices has become recently a very popular strategy for

structural analysis [28,147]. It is a very convenient way of visualizing music structure

because, if the feature extraction and comparison methods pull relevant information,

the structure is usually clearly visible on a resulting 2-D image. However, it has been

used only in audio-based systems, despite the concerns that symbolic representations

carry the actual information that similarity based audio comparison functions actually

try to identify [28, 125]. Indeed, the simple, same-or-different binary comparison

approach applied to note data does not typically result in a sophisticated structure

visualization (see Figure 5.1(b)), but for more advanced approaches, presented in this

chapter, the structuring becomes quite clearly visible.

In this chapter, we propose our solution to the problem of inferring structure from

music pieces represented symbolically. Since most applications in this area operate

on audio data, we assumed that either symbolic annotations are available or one

obtains them through some other preprocessing steps, like automatic transcription or

score to audio alignment. To fully describe the structure of the piece, the solution

should find the number of sections the piece divides in, place them precisely within

the piece, and identify and name them, e.g., using symbols like A, B, C indicating

similar and different sections. Since there are currently no solutions that operate on

symbolic representation, the proposed algorithm will be tested against the existing

approaches operating on audio data. The evaluation will be based on precision and

recall of correctly assigned and placed section borders. Most of the existing test beds
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do not evaluate the quality of determining relationship between sections (i.e., naming

the section with symbols), so we will omit this aspect in our quantitative evaluation.

6.2 Related Work

Most of the existing literature, that deals with music structure analysis, focuses on

audio data. Works dealing with symbolic representations are rare, but they exist.

Murphy [134] proposed an algorithm to mine for low-level patterns on a phrasing

level in MIDI files. Cambouropoulos [19] analyzed approaches of identifying repetitive

segments in symbolically represented pieces. Hanna et al. developed a method of

obtaining self-similarity matrices for monophonic symbolic music [71]. Dannenberg

and Hu [29], and Marolt [125] tried to infer higher-level, symbolic features from

low-level audio and then infer the structure based on this mid-level representation.

However, most of the existing work in music structure analysis is focused on audio

data and similarity matrices.

The use of similarity matrices, introduced in the previous chapter, has been widely

used for audio-based music structure analysis since Foote’s publication [51,52], which

was summarized by Dannenberg and Goto [28], and Paulus et al. [147]. Numerous sys-

tems were proposed using different ways of measuring similarity between two excerpts,

mainly using MFCC (mel-frequency cepstral coefficients), chromatic (i.e., spectral)

or rhythmic (i.e., temporal) features. Paulus describes 28 such audio-based struc-

ture analysis solutions, with a number of them focusing on the analysis of similarity

matrices. Among them one can distinguish three main approaches to the problem:

1. Novelty-based, whose aim is to automatically identify points of change in the

audio, in order to detect borders between sections.

2. Homogeneity-based, whose aim to identify homogeneous sections of a piece.

This is an opposite approach to the one used in novelty-based methods.
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3. Repetition-based, whose focus on detections of repetitive sections within a piece.

This allows for structural grouping of similar sections that may repeat in dif-

ferent places within a piece.

The proposed method for symbolic music structure analysis uses both novelty

and repetition paradigm. However, the end result depends only on repetition of

certain fragments (novelty is used only to precisely place section borders only, when

a repetitive fragment is detected). A drawback of this kind of approach is that

mining solely for similarities may lead to the situation where a part that does not

reoccur, may not be revealed [146]. Birmingham et al. [13], identify structural analysis

with detection of repeated patterns. In their proposal of new techniques for music

information retrieval, they suggest using notion of recurrent state as it “abstracts the

concept of structural organization in a piece of music” [13].

Dannenberg and Hu [29] presented three algorithms, operating on transcribed

monophonic audio, transcribed harmonic progression and spectrum-based analysis.

For symbolic matching they used direct note equivalency (same pitch, same duration).

They also recognized that simple application of dynamic programming would lead to

trivial solution of one part spanning the entire matrix across its diagonal and they

proposed heuristic techniques to identify stripes as section repetitions. Goto [63]

suggested a different intermediate representation — a time lag plot, where repeated

segments appear as horizontal lines. He used it then to extract the part that occurs

the most to mark it as a chorus. Similar technique of extracting patterns operating

on similarity matrices was proposed by Peeters [149].

Marolt [125] also pointed out that incorporating higher-level symbolic information

would be beneficial in structural analysis, and like Dannenberg and Hu [29], employed

melody and rhythm extraction from audio. Similarly to our previous approach to vi-

sualization, they used sliding window to incorporate context in similarity calculations

and they also used cosine similarity measure. However since they used absolute val-

ues for pitch and duration, their approach would not be tempo, transposition and
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progression invariant, which may not be that important for pop music but play im-

portant roles in classical music analysis. Their context size is quite large (above 10

notes), which indicates that the resulting analysis will focus on melodic phrasing,

rather then melodic texture. They suggested that using this higher-level informa-

tion would outperform typically used audio-based features, like chroma or MFCC.

Although they did not advance their analysis beyond similarity matrices, they used

the results of theme extraction for information retrieval purposes.

Goodwin and Laroche [62] incorporated dynamic programming to determine par-

titioning of a piece where we stay in a state if the distance to the centroid is kept

low. The algorithm uses dynamic programming to determine the best segmentation,

as they included two kinds of costs — local, as an indication of staying in the same

state, and transitional — for jumping to the new section. Their focus was to group

similar frames together, so if a part consist of radically different areas, it will be sepa-

rated into many parts. Jensen [90,91] used a similar, dynamic programming approach

to find the best partitioning among all possible partionings of the piece. Although

both solutions use dynamic programming, their approach is very different to the one

presented below, as they traverse through the graph of partitions as the way to find

the best partitioning, while we are traversing through a self-similarity matrix and the

structure analysis is inferred from this path. Similar approach could also be seen in

Peeters [148].

Muller and Kurth [133] suggested a two-step structure analysis process, where one

finds and isolates off-diagonal stripes on the similarity matrix (stripes indicate section

repeats) and then apply structure analysis process to find the description. What is

worth noticing is that they introduced stripe pruning mechanism to remove unwanted

patterns based on graphical features of the obtained similarity matrix. We suggest

how one can do it in the preceding step, upon similarity matrix calculation, based on

original vector features.

Paulus and Klapuri [146] described the system that creates a full description from

an audio stream. The entire piece is initially segmented with border candidates (30
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of them, arbitrarily for each piece) using Foote’s boundary detection kernel [51] and

then partitioned to form descriptions. The objective function of this greedy approach

is to maximize the fitness of the description, based on the similarity of segments. A

similarity of two segments depends on the shortest path through the subblock of the

similarity matrix bounded by those two segments. The best partitioning is found by

a version of a token-passing algorithm that browses the space of possible partitions.

The closest approach to the one presented here can be found in Shiu et al. [169],

where a similar matrix traversing approach was introduced. However, they forced the

path to stay off the diagonal so the resulting path would not indicate all the section

borders, leading to an incorrect description if our approach was taken. They used

standard novelty detection approach to find section borders and the shortest path

through the similarity matrix serves only as indication of relation between sections.

In general, the existing solutions either focus on just one part of the process or

create the entire structural description in many disjoint steps, using different methods

in each step (e.g., calculating self-similarity matrix, finding borders, defining similar

sections, grouping/naming sections). We propose a two-step model: after finding the

similarity matrix, the pathfinding algorithms finds all the boundaries, defines similar

sections and describes the piece at once. This makes the solution less expensive than

other solutions that incorporate dynamic programming, typically with O(n4) (e.g.,

Jensen [90] or Peeters [148]), while our approach requires O(n3).

6.3 Methodology

One of the most important benefits of using symbolic information is the ability to

link musical events together to utilize dependencies between them. This differs from

mining in audio-based similarity matrices as proposed by Foote [51] where each point

on the similarity matrix depended only on the corresponding fragments used for

calculating similarity. As was pointed out by Paulus et al. [147], although using small

windows leads to finer and more accurate similarity matrices, longer window sizes

and coarser images are better for determining the structure of a piece.
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The general idea behind creating similarity matrices based on symbolic music con-

sists in determining similarity between each pair of notes in the piece and organizing

them in a rectangular matrix (Figure 6.1), which formally could be denoted as:

S = [ai,j]M×M and ai,j = sim(xi, xj|ci, cj) (6.1)

where M is the number of notes in the piece, the similarity function sim is any

function of four arguments, where xi and xj represent notes at positions i and j

respectively, and ci and cj are contexts, which are vectors of dimension N . They

could be more precisely expressed as: ck = (xk−bN/2c, . . . , xk−bN/2c+N−1).

Since there are usually multiple channels of notes that are played at the same

time, in order to find dependencies between all voices, such a similarity matrix can

be calculated for every pair of voices. We called them layers and we have used them

previously in music visualization [209]. With n voices it gives
(
n
2

)
= n2/2 − n/2

possible layers. At this point, there is no reason to merge them for analysis purposes.

It is fine to keep them as a multi-dimensional feature vector for further analysis, as

it was used in the previous chapter for visualization purposes, where the number of

dimensions of the feature vector was reduced from
(
n
2

)
to 3 for red, green and blue

channels. For the analysis of the influence of various similarity measures we keep this

approach and assign each layer to a colour from a list (red, blue, green, cyan, magenta

and yellow), repeating them if necessary, and then using simple sum to merge all the

layers. It may introduce ambiguities, but our results show that this is not relevant at

this level of analysis.

6.3.1 Similarity Measure

Since the visualization task, presented in the previous chapter, was focused on show-

ing dependencies between tracks, less attention was paid to the choice of similarity

measure. With the music segmentation goal in mind, it becomes an important factor

that has to be investigated. The question is now, which similarity measure gives a

good separation of different sections (for boundary detection tasks), displays uniform
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Figure 6.1: The method of obtaining similarity matrices from symbolically repre-
sented music pieces. The similarity value at points at xi and xj results from similarity
score obtained for contexts ci and cj, of length N .
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Figure 6.2: Good similarity measure should allow to detect section boundaries (a),
homogeneous regions (b), and repetitions of identical (c) and similar (d) sections

patterns or texture between section boundaries (homogeneity detection) and identi-

fies repetition of similar sections by highlighting areas off the diagonal (repetition and

section dependencies detection). Figure 6.2 illustrates how a good similarity measure

should perform with regard to those requirements.

Among all the methods used in the literature to measure similarity between texts,

one can distinguish two main groups — order-aware and order-free. The first group

keeps the order of tokens (or features) and a small shift of context may substantially

change the similarity value. Generally, theme melodies are usually quite complicated

in contrast to accompaniment, i.e., the same notes or relations between notes do

not repeat in close proximities or if they do, it is done purposely by the composer.

As a result, using order-aware similarity measures makes similar patterns appear as

distinct linear patterns on similarity matrices. On the other hand, order-free methods

should be able to mask that and blend certain sections to form uniform blocks.
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Dealing with features from a given context in a completely order-independent

way acts against one of the key benefits of using symbolic representations: preserving

dependencies between notes. To compensate for this, the algorithms will be analyzed

with note n-grams, which are created based on each n consecutive uni-grams, in

addition to features that are derived from single notes.

The uni-gram feature set 01 for a context ci is given as:

xk ∈ 01
ci
⇐⇒ ∃v : civ = xk (6.2)

where 01
ci

is simply a set of all elements contained in otherwise ordered sequence ci.

Likewise, n-gram feature set 0n for a context ci could be denoted as:

(xk, . . . , xk+n−1) ∈ 0n
ci
⇐⇒ ∃v : (civ , . . . , civ+n−1) = (xk, . . . , xk+n−1) (6.3)

so 0n
ci

contains all the subsequences of consecutive elements within context ci.

In the following paragraphs various text-based distance measures used in our

experiments will be introduced. All of them calculate distance based on the contexts

of the notes for which the similarity is measured, but the resulting similarity will affect

only a very precise point (with (xi, xj) coordinates) on the matrix. The similarity

formulae given below typically apply to 01
ci

, but they can be adjusted to any n-gram

length feature sets, so for simplicity of notation, we would use 0ci as a notation for

a general feature set of context ci with some arbitrary n chosen a priori.

Hamming distance. This distance measure treats both contexts as vectors and

the similarity is equal to the number of the same components in both vectors (the

order of features is preserved). It can be denoted as:

sim(xi, xj|ci, cj) = |{cik |cik = cjk}| (6.4)

This measure is fully order dependent and a slight misalignment of the elements

of vectors could result in no similarity. This approach has been used in the previous

work [209] that was focused solely on the visual part of the problem.
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Levenshtein edit distance. Edit distances are well known text similarity mea-

sures to calculate the distance between two arbitrary texts. The result reflects the

number and type of edition operations that transform from one text to another. Lev-

enshtein edit distance, employs three operations: deletion, insertion and substitution,

giving them equal weights.

sim(xi, xj|ci, cj) = levci,cj(|ci|, |cj|) where (6.5)

levci,cj(m,n) =



m+ n if mn = 0

min(1 + levci,cj(m− 1, n),

1 + levci,cj(m,n− 1),

0 + levci,cj(m− 1, n− 1)) if mn > 0 ∧ cim−1 = cjn−1

min(1 + levci,cj(m− 1, n),

1 + levci,cj(m,n− 1),

1 + levci,cj(m− 1, n− 1)) if mn > 0 ∧ cim−1 6= cjn−1

The algorithm finds the optimal sequence of transitions from one text to another in

O(n2) time where n = ‖c‖, so in total it gives O(N2n2) whereN is the number of notes

in the piece. Assuming that n is constant, this does not change the general complexity

of the algorithm, however it is still considerably slower than other measures, which

perform in at most O(n log n) time.

Edit distance algorithms are order-aware, albeit the ability to shift the entire

context (by a deletion at one end and an insertion at the other) makes them able to

accommodate for some shifts in the contexts. This causes the maximal difference of

similarity between two neighbouring points on the matrix less than or equal to 2 and

hence leads to smoother results.

Cosine similarity. This measure belongs to the group of order-free methods

(also dubbed bag-of-words approaches) and is commonly used to compare texts in

information retrieval. It is expressed as the cosine value of an angle between two

document vectors where each vector contains values of frequencies of each term in
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the documents in question. Formally, cosine similarity it is a dot product of two term

vectors:

sim(xi, xj|ci, cj) =

∑
w∈0ci

∪0cj
fiwfjw√∑

w∈0ci
f 2
iw

√∑
w∈0cj

f 2
jw

(6.6)

where fiw denotes the frequency, or the number of occurrences of a certain term, or

n-gram w in context ci, that is:

fiw = |{k | w = cik}| . (6.7)

This measure should perform well with respect to hiding irrelevant details, unveil-

ing the general structure of the piece.

Dice’s index. Dice’s index [32] can be seen as a special version of cosine similarity

with binary weights applied to the feature set, i.e., each feature, or n-gram weight is

either 0 or 1 depending on its existence in the input vectors. Since the number of

times a feature occurs in the input string does not matter, the measure should focus

on more complicated passages, that is, those that contain more distinct features. This

is a slight modification of the original formula that normalizes the result by the size

of context, not feature vector:

sim(xi, xj|ci, cj) =
2
∥∥0ci ∩ 0cj

∥∥
|ci| · |ci|

(6.8)

Jaccard index. This is another variation on binary-weight cosine similarity

where the result is normalized with respect to the total number of features that occur

in either vectors [86]. This should give more focus to background repetitive patterns:

sim(xi, xj|ci, cj) =

∥∥0ci ∩ 0cj

∥∥∥∥0ci ∪ 0cj

∥∥ (6.9)

CNG measure. This method calculates similarity over n-gram profiles that

consist of frequency counts as defined in Equation 6.7. The similarity measure as

defined below is a linear transformation of the original distance measure by Keselj

et al. [93], which was proven to be useful in distinguishing between authors of texts
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as well as composers in music domain [215], making it an interesting candidate for

application to this task. The formula for the similarity measure is given as follows:

sim(xi, xj|ci, cj) =
∑

w∈0ci
∪0cj

(
1−

(
fiw − fjw
fiw + fjw

)2
)

(6.10)

The goal of this analysis is to assess suitability of certain text-based similarity

measures for the structure analysis task. A good measure should perform well for

both classical and popular music, so one does not have to design separate approaches

to both areas. Since popular music has usually simple structure and demonstrates

less complicated internal relations between fragments, as an initial benchmark we

decided to take first 32 bars of Prelude C# major from “Das Wohltenperierte Klavier

I”. This excerpt contains repeating fragments and pattern that migrate between

voices, to different registers, and which are played in parallel keys. A good similarity

measure should capture, what is similar, and discard, or at least diminish the influence

of the differences.

Figure 6.3 contains results of analysis of this excerpt. One can notice that sim-

ple Hamming distance measure is not capable of capturing structure very well, re-

gardless of the feature extraction method it employs. Figure 6.3a uses exact notes

pitch and duration matching, Figure 6.3b takes pitch information modulo 12, so in a

sense employs the equivalent of chroma features used in audio-based applications, and

Figure 6.3c and d employ the measure where relative pitch and duration are being

used. One can notice that using relative features helps in extracting patterns but not

structure and that Levenshtein edit distance better averages little fluctuations in the

patterns and tend not to cross section borders, but that is not sufficient to reveal the

full structure in this particular example.

Figure 6.4 displays results for order-free functions. One can observe that they

behave much better for larger context sizes and with features based on intervals

and relative durations rather than pitch classes. All of the proposed bag-of-words

algorithms perform well in determining the structure in this case, so in order to

find which of them performs better than others, one would have to look at a bigger
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(a) Absolute, n=4 (b) Absolute, n=14 (c) Pitch classes, n=4

(d) Pitch classes, n=14 (e) Relative, n=4 (f) Relative, n=14

(g) Levenshtein, n=4 (h) Levenshtein, n=4

Figure 6.3: Similarity matrices for test input using Hamming distance with absolute,
pitch classes and relative methods of feature extraction (a–f) and Leveshtein edit
distance (g, h)
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(a) Cosine, n=4 (b) Cosine, n=14

(c) Dice’s, pitch classes (d) Dice’s, relative

(e) Jaccard index (f) CNG measure

Figure 6.4: Similarity matrices for test input using bag-of-words approches: Cosine
similarity (a–b); with n=14: Dice’s index with pitch classes and relative features
(c–d), Jaccard index (e) and CNG measure (f)
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example. Figure 6.5 contains results of the analysis of the entire prelude. The best

performer is cosine similarity measure with bi-gram features where all the different and

similar sections are clearly visible. It shows a clear distinction of subsections within

sections and indicate sections that are not similar at all by keeping the relevant areas

on the matrix dark. This is not the case with the CNG measure (Figure 6.5f) where

almost entire similarity matrix indicates that all sections are related to each other,

albeit it clearly indicates, with specific colour transitions, where each section begins

and starts, which indicates its potential with novelty detection techniques.

The segmentation algorithm works for popular music as well. Figure 6.6 contains

analyses of the same measures as in Figure 6.5, but for the Beatles song, “Magical

Mystery Tour”. It has a tripartite structure with an instrumental section in the

middle and a long coda. One can draw the same kind of conclusions about similarity

measures in question as for Bach’s Prelude, despite a different nature of those two

pieces.

To conclude, for all the introduced similarity functions, namely Hamming distance

(order aware) used in previous work [209], Levenshtein edit distance (order-aware) and

cosine similarity, Dice index, Jaccard index and CNG similarity measure (all order-

free), we have made a number of qualitative comparisons between them. We observed

that some perform well in identifying (visualizing) repetitive patterns (Levenshtein)

while some focused mainly on identifying homogeneous parts (CNG measure, see

Figure 6.5). The similarity function we have chosen for future analysis was cosine

similarity as it performed well in distinguishing similar and different sections as well

as identifying repetitive patterns.

6.3.2 Similarity Matrices Adjustments for Structural Analysis

In order to perform effective structural analysis, we had to make a number of adjust-

ments to the original visualization technique. First of all — having multiple layers,

one for each pair of voices, increases the ability to display more information on a

single image but may create ambiguity in further analysis. Moreover, keeping layers
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(a) Cosine, uni-grams (b) Cosine, 2-grams

(c) Levenshtein (d) Dice’s, 2-grams

(e) Jaccard, 2-grams (f) CNG, 2-grams

Figure 6.5: Similarity matrices for Bach Prelude C# major, all n=14: Cosine
similarity (a–b), Levenshtein (c), and Dice’s (d), Jaccard (e) and CNG (f) with 2-
grams.
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(a) Cosine, uni-grams (b) Cosine, 2-grams

(c) Levenshtein (d) Dice’s, 2-grams

(e) Jaccard, 2-grams (f) CNG, 2-grams

Figure 6.6: Similarity matrices for the Beatles’ “The Magical Mystery Tour”, all
n=14: Cosine similarity (a–b), Levenshtein (c), and Dice’s (d), Jaccard (e) and CNG
(f) with 2-grams.
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separate results in asymmetric image which would lead to unnecessary complications.

Therefore we have decided to merge layers such that similarity at each point reflects

similarity between n-gram sets from all currently active tracks. As a result of that,

obtained similarity matrices are monochrome and symmetric along the diagonal, so

one can focus only on one side of the similarity matrix for analysis purposes.

Some adjustments have been made to the timing parameters. Previously similarity

has been defined between two notes (or in fact, two uni-grams) each with the same

context size of N notes. As notes are not well defined for audio-based structure

segmentation systems, it’s common to use actual durations (in seconds) to define

temporal parameters of the analysis. Isaacson [85] demonstrated how greatly music

performers tend to deviate from the set metric time into more irregular patterns,

pointing the importance of deciding, whether to use the real time flow, or metric time

of a music score. Since other approaches that we will be using for comparison use real

audio time, we have decided, for compatibility, to switch to it as well, using seconds

for analysis resolution and context size. As a result — to create a vector at each point

(which is then compared against other vectors), we have to define a window size, or

resolution (r), and offset (o) in seconds. First defines a window that contains all notes

played during a given time r. A stream of notes for each track is then expanded by N

notes, where N is calculated as the average number of notes that fall into o seconds.

It is fixed for all layers and allows for more balanced measuring of cosine similarity

between vectors (i.e., the size of each vector is at least 2 ∗ N ∗ #tracks plus all the

notes that fall into the r gap)(see Figure 6.7).

We usually refer to each step with its contexts as a music phrase, which length

is proportional to N . Similarly, the choice of n-gram length, n, reflects the size of a

music word. According to our previous analysis [213], it turned that a choice of n = 2

or n = 3 gives good results for determining symbolic music similarity, so those values

will be our preferred n-gram lengths.
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Figure 6.7: An example showing how layers are joined to form one vector of features
corresponding to ti. Here the context size of N = 3 notes is used. All of the features
(a’s, b’s, c’s and d’s) on the drawing conform the feature vector at ti.

6.3.3 Novelty Detection Function

Novelty detection is one of the techniques used frequently in music structure analysis

task. It can be used as it is, as a boundary detection algorithm, but we will use it as

a helper function for the proposed modification to Dijkstra path-finding algorithm.

Novelty function was originally proposed by Foote [52], where he was convolving the

diagonal of a self-similarity matrix with a checkerboard kernel and this it a common

technique to determine novelty in other structure analysis systems. However, this so-

lution acts locally, i.e., only points in the local context to the point we are currently

evaluating count towards the novelty value. Since music has its repetitive nature, a

strong boundary can be reinforced by another, previous (directly above the analyzed

point) or subsequent (directly below the analyzed point) occurrence of a similar sec-

tion boundary. Therefore it is reasonable to compute novelty function using not only

local context near the diagonal, but through the entire similarity matrix. However,

it looks probable that calculating local novelty function on a second order similarity

matrix as proposed by Peeters [149] would lead to similar results. At each point of

time tx, given self-similarity matrix S = [ai,j]M×M , novelty nov(x) is defined as:

nov(x) =
∑

i=0..M

∣∣∣∣∣ ∑
j=x−N..x

ai,j −
∑

j=x..x+N

ai,j

∣∣∣∣∣ (6.11)
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Novelty is then normalized to the range of values [0, 1]. Peaks in value indicate rapid

change of music structure (and a possible boundary).

6.3.4 Modified Dijkstra Algorithm

Self-similarity matrix is organized in a way that all the points above the diagonal

(upper triangle) refer to the similarity of the notes on the diagonal to the notes before

the current one, i.e., the past. Likewise, points below the diagonal (lower triangle)

refer to the future, and points on the diagonal — to the present. To detect repetitive

patterns in similarity matrices one can find a path from the beginning of the piece to

its end, such that one can only move on the diagonal, or jump and move on the upper

triangle on the patterns that occurred in the past. The shortest path, assuming it

is less expensive to travel through areas of higher similarity, contains the analysis of

the patterns. We allow the pathfinder to make jumps to the areas of higher similarity

and those jumps will indicate section boundaries. Only the following moves within

the upper triangle of a similarity matrix S = [ai,j]M×M are allowed:

• xi,j → xi+1,j+1 with a cost of 1 − ai+1,j+1 (when a new pattern is in the same

tempo as the original),

• xi,j → xi+1,j with a cost of 1 + (1− ai+1,j) (when a new pattern is slower then

the original),

• xi,j → xi,j+1 with a cost of 1 + (1 − ai,j+1) (when a new pattern is faster then

the original), or

• a jump xi,j → xi,k where a jump is at least a phrase long, i.e., |j − k| > N and

the cost of a jump is the sum of jumping from j: N(1− nov(i)), jumping to k:

N(1− nov(i)) and a regular cost of moving to k: 1− ai,k.

The cost of jumps ‘from’ and ‘to’ can be waived based on the history of the previous

jumps. Theoretically, a jump from (i, j) to (i, k) indicate section boundaries at i, j

and k so if a walker already made decisions of defining those boundaries, it should be

free for him to make this jump again.
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The algorithm stops when the right side of the matrix is reached, i.e., the current

shortest path ends in (M, j) for any j. Of course, based on those assumptions, the

shortest path would be directly from (0, 0) to (M,M) through the diagonal (similarity

on the diagonal is always 1); therefore the diagonal needs to be pruned to discard

this trivial solution. We propose a non-parametric solution where, while calculating

the dot product for cosine similarity between two points, we ignore n-grams in both

vectors that correspond to exactly the same notes from the piece. As a result of that,

as we get closer to the diagonal, more and more n-grams are excluded, resulting in

lower similarity, to the points on the diagonal, where all n-grams from both vectors

correspond to the same notes and similarity is 0. Since going back to the diagonal

should always be allowed (when there is no other patterns that occurred in the past

for some i) the similarity on the diagonal should be assigned some value (parameter

d) to allow diagonal passes. Typically, values 0.2–0.6 work fine. Lower values of d

allow for more flexible dealing with variations of a theme and higher d impose more

strict theme similarity checks.

6.3.5 Automatic Structure Inference

Given the shortest path through the matrix, one can derive the structure of the

piece. Since only a few borders are found at the first place (the algorithm finds only

all necessary borders to travel through the graph), all others have to be derived from

the existing ones. If at some point (i, j) the path crosses one of the existing borders,

either vertical i or horizontal j, the other one should be added to the border set.

Since adding a border can create a new crossing point in a different spot on the path

— the process needs to be repeated until there are no new borders found.

Each group (bounded by two consecutive borders) is assigned a group ID, starting

from the first group defined between the beginning of the piece and the first detected

border. For each next group, if there is no path passing above the current segment, a

new ID is assigned to it; otherwise it is assigned an ID of a group, the path points to
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(a) Computing matrix and novelty func-
tion

(b) Pruning of the diagonal

(c) Finding shortest path (d) Defining boundaries and sections

Figure 6.8: Structure inference from self-similarity matrices step by step (based on
Beatles’ “Magical Mystery Tour”).
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Figure 6.9: Illustration how group ID’s propagate and are inferred from the shortest
path.

(see Figure 6.9). At the end, the same group ID of different segments indicate their

equivalence.

6.4 Analysis of the Results

It is not an easy task to compare symbolic structure analysis algorithms. Most of

the related research is focused on audio data and there are venues, like MIREX that

regularly host audio structure analysis challenges. The issue with MIREX is that

they usually just post final results of the competition, hiding temporary algorithm

outputs and gold standards. The other problem is that even if one wants to evaluate

existing approaches on their own, it turns out it is often difficult to run on your

own other peoples’ programs. Those problems were identified by Smith [170], who

committed his work to evaluate a set of structure annotation algorithms as well as to

fully publish all algorithm outputs for further use. We will use this dataset for our

own quantitative analysis of our algorithm.
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There is other problem of doing research in the symbolic music domain — the lack

of well annotated datasets of aligned audio and symbolic music. It is understandable

as creation of such datasets require enormous amount of expert manual work, unlike

in some other areas where community collaboration and social media can be used for

data gathering.

We have applied our algorithm to the Beatles song dataset, consisting of 209 pop-

ular music pieces, achieving very good segmentation and song interpretation results.

With this dataset, we have identified one issue with the algorithm — when some area

is dominated with ostinato of quickly repeating short patterns or notes (which happen

quite frequently in popular music, but not as much in classical music), the algorithm

starts to multiply irrelevant borders that trigger creation of even more borders which

at the end creates groups of packed borders appearing close to each other. Thankfully

this problem is quite easy to detect and fixed by merging those boundaries to form a

separate section. To deal with it, a post-processing rule has to be set, that whenever

a short section, typically representing the shortest repeating fragment in the solution,

repeats many times (e.g., at least 4 times) in a row, this segment is marked as ostinato

and is merged across the entire piece with other segments with the same label, that

appear next to each other.

Based on SALAMI (Smith et. al [171]) dataset, we have extracted a subset of

classical music pieces (which was a part of IA (Internet Archive) corpus, prepared

and annotated by Smith et al. [170]), along with the results of 5 algorithms operating

on audio data supplied with SALAMI-IA corpus:

• barrington (Barrington et al. [5]),

• echonest (Jehan and DesRoches [89]),

• levy (Levy and Sandler [112]),

• peiszer (Peiszer [150]), and

• xavier (Mestres [131]).
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We have manually searched for MIDI files of well-sequenced counterparts of files

in the SALAMI-IA corpus and we have managed to find 11 out of 15, which are:

1. Suite in D for orchestra by George Handel,

2. Nutcracker Suite no. 2, “Marche” for orchestra by Peter Tchaikovsky,

3. Symphony no. 8, op. 93, third movement for orchestra by Ludvig van

Beethoven,

4. Symphony no. 40 in G minor, K. 550, third movement for orchestra by

Wolfgang Amadeus Mozart,

5. Piano Sonata no. 8 op. 13 (“Pathétique”), second movement for piano

by Ludvig van Beethoven,

6. Sonata no. 14 (“Moonlight”), op. 27 no. 2, second movement for piano

by Ludvig van Beethoven,

7. L’arlésienne: Suite no. 1 — 2nd movement, Menuet for orchestra by

Georges Bizet (marked in the SALAMI-IA corpus by Smith et al. [170] as Un-

known),

8. Gigue en Rondeau for piano by Jean-Philippe Rameau,

9. Symphony no. 1, third movement for orchestra by Robert Schumann,

10. Minuet in G major, op. 14 no. 1 for piano by Ignacy Jan Paderewski, and

11. Minuet in G minor for piano by Christian Petzold.

After that, MIDI files were manually aligned with corresponding audio files to

perform meaningful comparison of the results of those algorithms. We have used

the best parameters reported by Smith for all five algorithms. For our analysis we

have used heuristically optimal parameter set (r = 0.5s, o = 2.5s, n = 3, d = 0.3),

estimated based on our analysis of Beatles corpus. The SALAMI-IA corpus is supplied
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with two sets of annotations, fine and coarse, to accommodate ambiguous nature of

determining music structure. We evaluated the algorithms against both of them.

Smith allowed an algorithm to miss a section border by 0.5s or 3s. We have found 3s

too large as with fine annotations, it was common that error margins have spanned

most of the length of a short and dense piece. In our evaluations we have used allowed

error margins of 1s. Evaluations of all the pieces mentioned above, along with manual

alignment can be reviewed on Figure 6.10. One can observe, that some MIDI pieces

do not align exactly with corresponding audio files, i.e., piece #4 has one repeated

section missing in MIDI, in #8 has some content entirely skipped comparing to its

audio counterpart, and some pieces have missing silence periods at the front and at

the back of a piece, so adjustments have been made to the evaluation data to reflect

those changes. Same colour has been applied to the parts marked with the same label

for a given segmentation. However, echonest and xavier do not label sections, and

labelling is not part of the evaluation, so colours are provided here just for reference.

Each algorithm, for each piece and each gold standard, has been given a score,

based on the number of correctly assigned borders. Two basic measures have been

applied: precision, as the ratio between the number of correctly assigned (matching)

borders and the total number of borders returned by the algorithm, and recall, as the

ratio of correctly assigned (matching) borders to the total number of borders defined

by a gold standard. To balance precision and recall, the F-measure is frequently

used, which is their geometric average. All the partial results are then averaged

for each algorithm and gold standard for cumulative precision, recall and F-measure

(see Figure 6.11). We have found that our algorithm performed much better than

any other algorithm operating on audio data. In many individual cases we were

able to score either P = 1 or R = 1, although it is almost impossible to score

F = 1 due to ambiguous nature of music annotation. Our algorithm scored for coarse

segmentation F = 0.75 versus the second next, xavier with F = 0.42. Similar result

was achieved for fine segmentation where our algorithm achieved F = 0.67 versus

second best, xavier’s F = 0.40. To see how far apart was the performance our
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1) 2)

3) 4)

5) 6)

7) 8)

9) 10)

11)

Figure 6.10: Structural segmentation of eleven pieces from IA corpus. Each figure
consists of our analysis of MIDI data (w), followed by MIDI-audio alignment (a), fine
and coarse gold standard (f, c), followed by results obtained from other evaluated
algorithms (barrington (b), echonest (e), levy (l), peiszer (p), and xavier (x)).
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algorithm comparing to other algorithms operating on audio data, Figure 6.12 shows

precision-recall graph of the obtained results, with error bars indicating standard

errors of the average precision and average recall estimations.

To quantify the significance of the obtained results, paired t-test have been per-

formed on all partial precision, recall and F-measure results. The p values, indicating

the probability of the null hypothesis, that there is no difference between correspond-

ing performance results, have been collected in Tables 6.1 and 6.2. Colour indicates

where the probabilities of the null hypothesis falls below 5%, so one can say that

the difference is statistically significant. Red indicates that algorithm in a given row

performs significantly worse than the algorithm in the column, while green means

that it performed significantly better. We can see that our approach outperformed

all other algorithms consistently for all measures and settings. One can also note a

good performance of xavier for both segmentations, levy for coarse and peiszer

for fine gold standard.

Although our algorithm performed significantly better than other, based on audio

data, there is still a room for improvement. Primarily, we still do not know how much

of the success of our system has to be attributed to a different data type used as input,

and how much to the actual performance of this algorithm design. Aside from that,

we have identified several potential issues. For some classical music pieces, where the

structure is defined in a very complex way, that is, it is not demonstrated by changes

in rhythmic, melodic, harmonic or phrasing aspects of the piece, the algorithm will

not be able find any clear structure. This applies, for example, to fugues. The quality

of the results depends also on the quality of the underlying MIDI file. If the file is

sequenced in a messy, unorganized way, the resulting structure may be misleading

or wrong. With a large number of effect tracks and small number of the actual

music tracks, the structure driven by these effect tracks may overload quickly the real

structure that is derived from melodic tracks. Our last issue affects mainly popular

music, however this problem is actually relatively easy to overcome by detecting those

tracks and removing them in preprocessing.
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(a) Coarse structure annotations

(b) Fine structure annotations

Figure 6.11: Comparison of Precision, Recall and F-measure results on a subset
of classical IA Corpus of a set of audio driven segmentation algorithms against the
proposed algorithm operating on symbolic data.
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(a) Coarse gold standard

(b) Fine gold standard

Figure 6.12: Precision — Recall graphs indicating performance of compared al-
gorithms. Error bars indicate errors of mean estimations for precision and recall
separately, indicating separation of obtained cumulative results.
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Table 6.1: Significance of the obtained results for coarse segmentation. Values rep-
resent the probability that the corresponding algorithms have the same performance,
assuming t-distribution of the results. Red and green background indicates significant
differences in the performance between an algorithm in a row versus the algorithm
in the column (with p < 0.05). Red indicates significantly worse performance, while
green — significantly better.

(a) precision

wolk barr echo levy peis xavi
wolk 0.500 0.000 0.000 0.010 0.000 0.002
barr 0.000 0.500 0.057 0.001 0.252 0.001
echo 0.000 0.058 0.500 0.013 0.020 0.006
levy 0.010 0.001 0.013 0.500 0.006 0.386
peis 0.000 0.252 0.020 0.006 0.500 0.001
xavi 0.002 0.001 0.006 0.386 0.001 0.500

(b) recall

wolk barr echo levy peis xavi
wolk 0.500 0.000 0.000 0.000 0.000 0.000
barr 0.000 0.500 0.258 0.382 0.334 0.098
echo 0.000 0.258 0.500 0.142 0.169 0.030
levy 0.000 0.382 0.142 0.500 0.419 0.099
peis 0.000 0.334 0.169 0.419 0.500 0.223
xavi 0.000 0.098 0.030 0.099 0.223 0.500

(c) F-measure

wolk barr echo levy peis xavi
wolk 0.500 0.000 0.000 0.000 0.000 0.000
barr 0.000 0.500 0.283 0.005 0.432 0.003
echo 0.000 0.283 0.500 0.040 0.253 0.010
levy 0.000 0.005 0.040 0.500 0.055 0.190
peis 0.000 0.432 0.253 0.055 0.500 0.009
xavi 0.000 0.003 0.010 0.190 0.009 0.500
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Table 6.2: Significance of the obtained results for fine segmentation. See Table 6.1
for description.

(a) precision

wolk barr echo levy peis xavi
wolk 0.500 0.000 0.000 0.000 0.000 0.000
barr 0.000 0.500 0.445 0.045 0.398 0.001
echo 0.000 0.445 0.500 0.068 0.445 0.000
levy 0.000 0.045 0.068 0.500 0.107 0.002
peis 0.000 0.398 0.445 0.107 0.500 0.001
xavi 0.000 0.001 0.000 0.002 0.001 0.500

(b) recall

wolk barr echo levy peis xavi
wolk 0.500 0.000 0.000 0.000 0.001 0.000
barr 0.000 0.500 0.049 0.109 0.037 0.118
echo 0.000 0.049 0.500 0.453 0.001 0.002
levy 0.000 0.109 0.453 0.500 0.000 0.001
peis 0.001 0.037 0.001 0.000 0.500 0.123
xavi 0.000 0.118 0.002 0.001 0.123 0.500

(c) F-measure

wolk barr echo levy peis xavi
wolk 0.500 0.000 0.000 0.000 0.000 0.000
barr 0.000 0.500 0.167 0.280 0.109 0.032
echo 0.000 0.167 0.500 0.446 0.024 0.001
levy 0.000 0.280 0.446 0.500 0.009 0.001
peis 0.000 0.109 0.024 0.009 0.500 0.268
xavi 0.000 0.032 0.001 0.001 0.268 0.500
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6.5 Conclusions

This chapter introduces an approach to the problem of structural analysis with sym-

bolic music. We have found that symbolic representations are capable of delivering

better quality information than audio files which results in more thorough analysis

as the context, or the dependencies between notes, plays very important role.

Many popular text-based similarity measures were introduced to enhanced sym-

bolic music visualizations for analysis purposes and we have found that most bag-of-

word approaches work well in revealing music structure especially if they incorporate

a wide note context, which could be achieved only using symbolic representations.

We obtained the best results with cosine similarity measure using bi-gram frequen-

cies. We proposed a broad context novelty function, modified Dijkstra shortest path

algorithm with effective diagonal pruning as well as structure inference algorithm,

which conforms a complex solution to symbolic music structure analysis. Since the

proposed algorithms operate on final self-similarity matrices, it would be interesting

to see how our algorithm would perform on audio-based self-similarity images.

The proposed method works well for both classical and popular music, and our

quantitative comparison against a handful of audio-based algorithms suggests, that it

is very beneficial to use symbolic representations for this task. They are cleaner, they

provide more complex and high-level information that allows for more musicologically

meaningful analyses. However, our evaluation did not indicate if the advantage of our

method comes from the use of symbolic data or the method itself. We know that the

use of symbolic information helps, but we do not know to which extent. Porting

our method to audio domain and comparison of on the same testbed would be a

possible solution to this issue, which would provide far more fair comparison between

structure analysis systems. It is also possible that some audio-based methods that can

be ported to symbolic domain would yield a better score, comparing to our system.



Chapter 7

Conclusions

7.1 Presented Work

In this dissertation we have presented a number of applications employing n-gram-

based techniques to symbolically represented music. Symbolic representations, which

include digitized music scores as well as MIDI protocol, are capable of delivering

clear and precise information about the actual music events, unlike audio which often

combines in a single waveform a number of different sound sources playing several

notes at the same time. As it was shown in the preliminary studies, music in its

symbolic form demonstrates resemblance to natural languages and this parallel can

be used to aid music research with techniques founded upon computational linguistics

and information retrieval. The popularity of audio-based methods results from the

fact that this representation is much more common. However, there is strong demand

for enhancing audio data with symbolic annotations, and if this happens, the proposed

techniques could be implemented in a wider context.

Statistical features of symbolic music corpora. Since n-gram-based methods

are often used in various computer science domains that typically deal with text,

like Information Retrieval, Natural Language Processing or Text Data Mining, we

have introduced and performed extensive analysis of statistical features of various

symbolic music corpora and compared them to a few text corpora, identifying a

number of similarities between natural languages and symbolic music. This justified

porting directly n-gram based techniques employing bag-of-terms assumption, used

extensively in text processing domain, to certain tasks that both domains have in

common, like document classification or retrieval.

212



213

Composer classification. For the document classification analysis, we have ana-

lyzed three labelled corpora, five similarity measures, several feature types, influence

of forced balanced training and extensive range of n-gram lengths. We found that

most of the approaches we analyzed, when properly parametrized, can give very good

results, on par with other state-of-the art data mining techniques and greatly outper-

forming humans in composer recognition.

Symbolic music similarity. To evaluate symbolic music similarity measures that

have text origin, we have participated in 2011 MIREX symbolic melodic similarity

shared task. Our submission consisted of several ranking algorithms featuring four

different similarity measures. The results confirmed our previous findings from clas-

sification task, that one can obtain similarly good results with any kind of similarity

measure if it is properly defined in terms of parameters, and that one of the most im-

portant parameter is n-gram length used while creating n-gram features. It was also

encouraging that our simple and scalable solutions achieved relatively good overall

scores, falling closely behind top performing tailored approaches.

Evolutionary approach to melodies generation. N-gram approach to symbolic

music is not just limited to tasks analogue to the tasks in text processing domain.

Our next challenge was to implement a genetic algorithm (GA), that would gener-

ate pleasant melodies. The goal was to create a fully automatic system, so we have

devised a way of assessing pleasantness of generated melodies based on a corpus of

existing, pleasant music. The assumption is that if a melody in question is pleasant,

it contains subsequences of notes that are important components in our reference

corpus. This approach allowed us to test extensively how various evolutionary com-

putation frameworks react to symbolic music specificity and our assumptions. We

have found, that traditional generational GA is not capable of controlling the length

of the generated melodies, which we called the ‘note bloat’ phenomenon, resembling

‘code bloat’ known from genetic programming. Other evolutionary frameworks, like

steady-state GA or multi-objective Pareto optimization were capable of delivering
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better quality results. Although we did not perform any quantitative analysis of

pleasantness of the results (this would be achievable only through a user study), we

have found that obtained melodies kept melodic and harmonic logic, which was not

directly imposed by our corpus-based fitness function.

Symbolic music visualization. This was followed by our approach to music

content-based visualization and related to it — automatic music structure analysis,

which is a timely and interesting topic of current research in the area of Computa-

tional Musicology (or Music Information Retrieval). While most of current efforts

focus on audio data, our solution to these problems utilizes symbolic data and, again,

n-gram based approach.

The proposed visualization system takes MIDI files as input, which are required

to have logical channels, representing different voices or instruments separated. The

algorithm computes one visualization layer for each pair of channels, looking for

similarities between different fragments. The result is displayed on a two-dimensional

image, which is typically refereed to as self-similarity matrix, visualizing the entire

piece with its structural, melodic and textural features visible in a single glimpse,

without the need of referring to the actual piece for this information. The system is

semi-automatic, as it allows to manually override certain aspects to isolate specific

motives or filter layers to reduce clutter. The system has been implemented as an

installable program allowing to track both playback and visualization simultaneously

to demonstrate its capabilities.

Structural analysis of symbolic music. One of the positive outcomes from the

visualization system was the fact that, despite the lack of direct design decisions to

focus on visualizing music structure, it was clear from the resulting images, what

was the structure of the piece in question. Consequently, the proposed approach to

automatic music structure analysis was based on our previous visualization technique,

and the principle of creating a self-similarity matrix. This technique is used widely

in audio domain. The main contribution of this project was to introduce a method
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of measuring similarity between more than one consecutive tracks and to utilize local

context of symbolic events. These improvements show that the analysis based on

symbolic representation can be more thorough comparing to audio-based analysis,

where those low-level music events, like note events, while easily perceived by humans,

are typically blended together, prohibiting its accurate detection.

The application of our visualization method to aid automatic music structure anal-

ysis required flattening all layers to a single layer where each point of the similarity

matrix represented similarity of all tracks between two excerpts within a given piece.

It also required further analysis of the similarity measures used in creation of those

visualizations to better reveal the underlying structure. The analyzed similarity mea-

sures included various text-based techniques, both order-aware and order-free, and

we have chosen cosine similarity as best reflecting the desired features. Additional

steps consisted of diagonal pruning and calculation of the novelty helper function,

which is a higher-order version of the commonly used novelty function in audio do-

main. The main algorithm implements dynamic programing to find the shortest path

on the resulting self-similarity matrix, from the beginning to the end of the analyzed

piece. The modification to the original shortest path algorithm allowing the walker

to make certain jumps enabled detection of section borders so that the shortest path

through the matrix indicated its structure. The comparison with a number of audio

based algorithms on a corpus of matching audio and MIDI files along with experts

border annotations showed a significant advantage of our method in both precision

and recall of correctly assigned borders. However, the answer whether this gap is

caused by a superior structure detection algorithm or just simply by employing rich,

symbolic music information remained unanswered.

7.2 Impact and Implications

Stephen Downie in his retrospection of MIREX events [42] writes about the glass

ceiling effect, where we see very little advancement of current state-of-the art solutions

to known problems. The performance of those solutions are far from perfect, while
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humans perform such tasks routinely. It would require radically different approaches

to current problems in order to shatter this glass ceiling.

Here comes the possible role of symbolic data. Unlike in audio, symbolic music

building blocks — notes, and other sound events, are on par what music actually

consists of, as far as human perception is concerned. Perhaps audio is a too low-level

representation containing basic components (noise bands, tones of certain frequency),

which rarely seem to reflect what its needed to solve a certain musical problem.

Obviously, adding other levels of aligned data to each recorded piece requires some

extra work, but with the help of accurate MIDI-audio alignment techniques (also

known as computer accompaniment [31]), it can be done relatively easily. The need

of this multi-level analysis was suggested by Vincent et al. [204], where not only audio

and symbolic information would be contained within such “intelligent audio” piece,

but other layers, e.g., harmonics, structure, performance markings, would be included

as well.

Typically, the use of symbolic representations in computational musicology is

limited to indexing and to search related problems. This does not have to be the

case. We have demonstrated that symbolic data can be a useful material for genera-

tion, visualization and various analysis tasks, providing with extra opportunities, like

context-aware analysis. Moreover, tasks like music visualization or structure analysis

approached in this thesis did not originate from text-related background. This could

potentially inspire a move in the other direction — solutions to text-related problems

using music-inspired techniques.

7.3 Future Work

Several extensions of the research presented in this thesis can be drawn directly from

our results. Our evolutionary approach to melodies generation would benefit from

human evaluation of the final results, done through a user study. The system itself

could be expanded to generate bigger fragments or entire pieces from smaller building

blocks, such as generated melodies. Proposed visualization scheme would also benefit
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from a user study, where more and less important aspects of our visualization ap-

proach would be identified. The system could be expanded to form a visual analytics

tool for musicological analysis or to create a computer-aided composing system for

professionals. Our structure analysis algorithm would benefit from further quanti-

tative analysis, where it would be ported to operate on audio data with the same

modified Dijkstra path-finding algorithm, or with other algorithms being ported to

work with symbolic data, to identify what is the sole benefit of using symbolic data

over audio for this problem, and what results from the actual difference in algorithm

design.

We can also draw other conclusions for future work with more general conse-

quences, which all revolves around defining new standards incorporating new layers

of information with audio data. But to succeed, one has to convince big companies

that deal with content creation, like Sony Music, or media content distributors, like

Apple iTunes, that everybody, including them, would benefit from the new applica-

tions that this new unified music format would make possible, let alone music search

and cataloguing possibilities for large music repositories. Other functionalities that

this new format would instantly provide includes, for example, automatic karaoke

music generation or intelligent music navigation (similar to Goto’s SmartMusicK-

IOSK [64]). The new format and the new data would allow for even higher-level of

analysis. We have seen many parallels between natural languages and symbolic music.

One of them lies between language’s grammars and music harmony rules. High-level

syntactic and semantic analysis is at the core of domains like Natural Language Pro-

cessing and there is no reason, why it could not be the case with computational music,

especially that we already have such theoretical foundations in the form of Shenkerian

analysis [10, 111].



Bibliography

[1] Greg Aloupis, Thomas Fevens, Stefan Langerman, Tomomi Matsui, Antonio
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[46] Édouard Gilbert and Darrell Conklin. A probabilistic context-free grammar for
melodic reduction. In International Workshop on Artifficial Intelligence and
Music at Twentieth International Joint Conference on Artifficial Intelligence,
IJCAI-07, 2007. Cited at [55]

[47] Ronald Engelbrecht. Statistical comparison measures for searching in melody
databases. Technical report, Communication Systems and Algorithms Group,
University of Bonn, 2002. Cited at [55]

[48] Pascal Ferraro and Pierre Hanna. MIREX Symbolic Music Similarity. In Music
Information Retrieval Evaluation eXchange (MIREX), 2006. Cited at [119]

[49] Pascal Ferraro, Pierre Hanna, Julien Allali, and Matthias Robine. MIREX Sym-
bolic Music Similarity. In Music Information Retrieval Evaluation eXchange
(MIREX), 2007. Cited at [47, 119]

[50] Michael Fingerhut. Real music libraries in the virtual future: for an integrated
view of music and music information. Digitale Bibliotheken voor muzikale audio,
pages 73–81, 2005. Cited at [9, 10, 11]

[51] Jonathan Foote. Visualizing music and audio using self-similarity. In MUL-
TIMEDIA ’99: Proceedings of the seventh ACM international conference on
Multimedia (Part 1), pages 77–80, New York, NY, USA, 1999. ACM. Cited at
[157, 158, 161, 180, 183]

[52] Jonathan Foote. Automatic audio segmentation using a measure of audio nov-
elty. In Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International
Conference on, volume 1, pages 452–455, 2000. Cited at [180, 197]

[53] Cristian Francu and Craig G. Nevill-manning. Distance metrics and indexing
strategies for a digital library of popular music. In in proc. IEEE International
Conference on Multimedia and Expo (II), 2000. Cited at [65]

[54] Christian Fremerey, Meinard Müller, Frank Kurth, and Michael Clausen. Au-
tomatic mapping of scanned sheet music to audio recordings. Proceedings of the
ISMIR, Philadelphia, USA, pages 413–418, 2008. Cited at [7]

[55] Bruce Fries and Marty Fries. Digital audio essentials. O’Reilly digital studio.
O’Reilly, 2005. Cited at [22]

[56] Joe Futrelle and J. Stephen Downie. Interdisciplinary Research Issues in Music
Information Retrieval: ISMIR 2000-2002. Journal of New Music Research,
32(2):121–131, 2003. Cited at [3, 4, 5, 6, 7, 10]



223

[57] Evgeniy Gabrilovich. Wikipedia preprocessor. http://sourceforge.net/

projects/wikiprep, November 2012. Cited at [73]

[58] Andrew Gartland-Jones. MusicBlox: A real-time algorithmic composition sys-
tem incorporating a distributed interactive genetic algorithm. In G.R. Raidl,
editor, Proceedings: EVOMusArt 2003. Applications of Evolutionary Comput-
ing, volume 2611, pages 490–501. Springer Berlin / Heidelberg, 2003. Cited at
[138, 139, 140]

[59] Zong Geem and Jeong-Yoon Choi. Music composition using harmony search
algorithm. In Mario Giacobini, editor, Applications of Evolutionary Computing,
volume 4448 of Lecture Notes in Computer Science, pages 593–600. Springer
Berlin / Heidelberg, 2007. Cited at [139]

[60] Karl Wilson Gehrkens. Music Notation And Terminology. The A.S. Barnes
company, 1914. Cited at [24]
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[214] Jacek Wo lkowicz and Vlado Kešelj. Evaluation of n-gram-based classification
approaches on classical music corpora. In Proceedings to The Fourth Inter-
national Conference on Mathematics and Computation in Music, Montreal,
Canada, June 2013. Springer-Verlag: Berlin, Heidelberg. Cited at [18]

[215] Jacek Wo lkowicz, Zbigniew Kulka, and Vlado Kešelj. N-gram-based approach
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